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Preface

Welcome to the 17th International Conference on Neural Information Processing 
(ICONIP 2010) held in Sydney, 22–25 November 2010. In this volume you will find 
papers presented at this conference. ICONIP is the annual conference of the Asia 
Pacific Neural Network Assembly (APNNA, http://www.apnna.net). The aim of the 
Asia Pacific Neural Network Assembly is to promote the interaction of researchers, 
scientists, and industry professionals who are working in the neural network and re-
lated fields in the Asia Pacific region, primarily via the ICONIP conference. This 
year's theme was hybrid / human centred neural systems. 

ICONIP 2010 received 470 excellent submissions. Of these, 146 regular session 
and 23 special session papers appear in these proceedings by Springer. Many out-
standing papers do not appear here due to space limitations. Each paper was assessed 
by at least three reviewers. The conference will be followed by two associated work-
shops, the ICONIP International Workshop on Data Mining for Cybersecurity, held in 
November at the University of Auckland, New Zealand, and the ICONIP International 
Workshop on Bio-inspired Computing for Intelligent Environments and Logistic 
Systems, held in March at the Australian National University in Canberra, Australia. 

I am very pleased to acknowledge the support of the conference Advisory Board, 
the APNNA Governing Board and Past Presidents, who gave their advice, assistance 
and promotion of ICONIP 2010. I gratefully acknowledge the technical sponsorship 
of the International Neural Network Society (INNS), the Japanese Neural Network 
Society (JNNS), the European Neural Network Society (ENNS), and the Australian 
Research Council Network in Human Communication Science (HCSNet). 

A special thanks to Kevin Wong, Sumudu Mendis and Sukanya Manna without 
whom the conference organisation would have been much less smooth. 

For the many reviewers who worked hard on giving thorough, tough but fair refe-
ree reports, thank you! Finally I would like to thank all the authors of papers, the 
speakers and panelists, volunteers and audience. With your support ICONIP 2010 will 
continue the tradition of being an uplifting, educational and enjoyable conference. 

October 2010 Tom Gedeon 
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Abstract. Current Brain-Computer Interfaces (BCI) suffer the require-

ment of a subject-specific calibration process due to variations in EEG

responses across different subjects. Additionally, the duration of the cal-

ibration process should be long enough to sufficiently sample high di-

mensional feature spaces. In this study, we proposed a method based

on Fuzzy Support Vector Machines (Fuzzy-SVM) to address both issues

for P300-based BCI. We conducted P300 speller experiments on 18 sub-

jects, and formed a subject-database using a leave-one-out approach. By

computing weight values for the data samples obtained from each sub-

ject, and by incorporating those values into the Fuzzy-SVM algorithm,

we achieved to obtain an average accuracy of 80% with only 4 training

letters. Conventional subject-specific calibration approach, on the other

hand, needed 12 training letters to provide the same performance.

Keywords: Brain-Computer Interfaces, P300, EEG, Subject-Database,

Fuzzy Support Vector Machines.

1 Introduction

Linear soft margin support vector machines (C-SVM) assume that each data
sample in the training set is of equal importance, while constructing the model
parameters and hence the decision boundary. However, in some pattern recog-
nition problems, the samples do not represent assigned class labels equally well.
Especially in Brain-Computer Interfaces (BCI), the intersubject variance in Elec-
troencephalogram (EEG) responses is so significant that incorporating samples
from a pool of subjects does not help to sample feature space of the test sub-
ject, and it may even deteriorate the system performance [1]. This is the main
reason why subject-specific calibration has been assumed to be indispensable for
current BCI.

Fuzzy support vector machines (Fuzzy-SVM) [2] provide this problem with
a solution by assigning each input data sample to a different degree of penalty
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when they lie on the wrong side of the boundary. Different penalty degrees
represent different quantities of importance, or weight, and therefore, each sam-
ple contributes differently to the construction of the decision boundary. In this
study, we employed P300 recordings obtained from 18 different people. Using a
leave-one-out approach, we formed a database of 17 subjects, assigned different
weight values to the samples acquired from different subjects and validated the
performance of Fuzzy-SVM. As long as there is a sufficient amount of training
data, P300-based BCI operate with acceptable accuracy [3], [4]. Our goal in this
study was to obtain around 80% of system accuracy with minimum amount of
subject-specific calibration data.

2 Linear Soft Margin Support Vector Machines (C-SVM)

Given a set of training data samples and corresponding class labels D={(xn, yn)|
xn ∈ Rp, yn ∈ {−1, +1}}N

n=1, C-SVM attempt to find a hyperplane that sep-
arates the data samples of two different classes with maximal margin, while
allowing errors during separation [5]. A user defined constant C controls the
tradeoff between the maximization of the margin and number of errors on the
training set. The task can be modeled by the following optimization problem.

min
(w,b,ξ)

1
2
‖w‖2 + C

N∑
n=1

ξn

subject to ∀N
n=1 yn(wT xn + b) ≥ 1 − ξn , (1)

∀N
n=1 ξn ≥ 0

where w = [w1, ..., wp]T and b are the model parameters, {ξn}N
n=1 ≥ 0 are the

slack variables. To solve (1), we first construct the Lagrangian LP by introducing
the multipliers {αn}N

n=1 ≥ 0 and {rn}N
n=1 ≥ 0 with the corresponding set of KKT

conditions.

min
(w,b,ξ,α,r)

1
2
‖w‖2 + C

N∑
n=1

ξn −
N∑

n=1

αn[yn(wT xn + b) − 1 + ξn] −
N∑

n=1

rnξn

subject to αn ≥ 0
yn(wT xn + b) − 1 + ξn ≥ 0
αn[yn(wT xn + b) − 1 + ξn] = 0 (2)
rn ≥ 0
ξn ≥ 0
rnξn = 0

Setting the partial derivatives of LP with respect to w, b, and ξ to zero, and
substituting obtained equations into (2), we form the Lagrangian LD, which only
depends on the unknown multipliers α. LD represents a quadratic optimization
problem and can be solved by different approaches such as chunking or sequential
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minimal optimization (SMO) [6]. Once the optimization problem in (1) is solved
and the model parameters are computed, the label y∗ of a new feature vector x∗

is assigned to sign(wT x∗ + b).

3 Fuzzy Support Vector Machines (Fuzzy-SVM)

Fuzzy-SVM are an extension to the C-SVM that assign weight values {mn}N
n=1 ∈

(0, 1] to the slack variables of the training data samples [2]. As these weight val-
ues are also multiplied by the C-parameter, they adjust the weight of each data
sample during computation of the separating hyperplane. A small mn decreases
the cost for the misclassification of the corresponding xn, hence lowers the im-
portance of the data sample.

min
(w,b,ξ)

1
2
‖w‖2 + C

N∑
n=1

mnξn

subject to ∀N
n=1 yn(wT xn + b) ≥ 1 − ξn (3)

∀N
n=1 ξn ≥ 0

∀N
n=1 1 ≥ mn > 0

Comparing (1) with (3), we see that the complexity of the problems are almost
identical. The only difference between Fuzzy-SVM and C-SVM is the boundary
of Lagrangian multipliers {αn}. With the introduction of mn, each multiplier
is bounded with 0 ≤ αn ≤ Cmn. During our evaluations, we used LIBSVM
implementation of Fuzzy-SVM [7].

4 P300 Spellers

P300 spellers are brain-computer interfaces that enable subjects to spell text
through the so-called oddball paradigm [8]. In the oddball paradigm, subjects
are randomly presented with two types of stimuli, one of which is frequent. The
infrequent, or oddball, stimulus generates a positive peak in the EEG recordings
at around 300 ms after the stimulus onset assuming that the subject reacted to
the stimulus by noticing or silently counting it. P300 spellers present subjects a
matrix of letters (Fig. 1) and initiate random flashes on the rows and columns
at a frequency of about 2-5 Hz. Flashes on the target letter generate a particu-
lar response in the EEG recordings, and the system attempts to identify those
responses using a linear classifier. A complete cycle of flashes in which all of the
5 rows and 6 columns flash once are called as one trial.

From a pattern recognition point of view, the task of identifying the target
row or column is a binary classification problem, where the classifier outputs
are added up for T number of trials. Feature vectors are derived from the EEG
responses of the subject to each row- or column-flash. During calibration, i.e.
adjustment of the model parameters, feature vectors that correspond to a target
row or target column flash are labeled as +1. Others are labeled as −1. Given
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A  B  C  D  E  F

G  H  I  J  K  L

M  N  O  P  Q  R

S  T  U  V  W  X

Y  Z  SPC DEL LEX  RET

Fig. 1. Conventional P300 speller interface, where the fourth column col4 is flashing

the speller interface in Fig. 1, and the probabilistic classifier outputs {Φt
row, Ψ t

col}
t = 1, ..., T , the target row and column are simply identified by (4a) and (4b).

row(yn=+1) = arg max
row∈[1,5]

T∑
t=1

Φt
row (4a)

col(yn=+1) = arg max
col∈[1,6]

T∑
t=1

Ψ t
col (4b)

5 Collected Data

To evaluate the efficacy of the subject-database and Fuzzy-SVM, we conducted
P300 copy-spelling experiments with 18 able-bodied voluntary subjects (mean
= 29.0, std = 4.1, range 23-38 years old). We acquired the EEG data through
a 64-channel Biosemi ActiveTwo system at 256 Hz but employed only the data
recorded from the Fz, Cz, Pz, Oz, C3, C4, P3, P4, PO7, and PO8 channels
according to the international 10-20 system [9].

Targets, namely English letters from-A-to-Z, were placed in a 5x6 matrix
(Fig. 1). The matrix also included four special characters, but those characters
were not assigned as targets. The task for the subject was to attend to the speci-
fied letter, while the rows and columns were flashing in random order. The inter-
val between two flashes was 175 ms, and the flash duration was 100 ms. 5 trials
were performed for each target letter, and after each 5 trial block, a 6 s break was
given to start with the next target letter. Using the 5x6 matrix, subjects copy-
spelled the following 15 words: SAME, PIPE, HINT, CHAT, KEEN, RARE,
USSR, BARE, UNIX, FARE, VIII, CARE, ECHO, MARE, EMMA, which cor-
responds to 60 target-letter/subject. The raw EEG data acquired through the
10 selected channels were initially passed through a 1-18 Hz bandpass filter,
and downsampled by a factor of 8. Each trial consisted of 11 flashes, and as
a result, yielded 11 epochs. Epoch data were extracted using a time window of
600 ms following stimulus onsets, corresponding �256/8∗0.6	 = 20 sample points
per channel. Extracted epoch data were normalized to the [-1,+1] interval, and
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channel data are concatenated to obtain the 200 (20 sample-points/channel x 10
channels) dimensional feature vectors {xn}.

6 Database

We collected data from 18 subjects and formed the database using a leave-
one-out approach. At each run, one of the 18 subjects was selected as the test
subject, and the corresponding data set was denoted as D0. The remaining sets
were denoted as {Dk} k = 1, ..., 17. Individual data samples corresponding to
letter1-to-letter20 were grouped as the training set {Dtrain

k } k = 0, ..., 17, and
the data samples corresponding to letter21-to-letter60 were grouped as the test
set {Dtest

k } k = 0, ..., 17. The database was constructed using the training sets
of the 17 subjects Ddatabase = {Dtrain

1 , ...,Dtrain
17 }, and {Dtest

k } k = 1, ..., 17
were discarded for a more realistic evaluation scenario. Ddatabase included 18700
feature vectors (11 flashes/trial x 5 trials/target-letter x 20 target-letters/subject
x 17 subjects), where |Ddatabase : yn = +1| = 3400 and |Ddatabase : yn = −1| =
15300.

7 Estimation of the C -Parameter and the Weight Values

During evaluations, we set the C -parameter of the support vector machines to 1
and computed the weight values {mn} n = 1, ..., N accordingly. Computation of
the weight values was a key step before solving the optimization problem in (3).
Initially, we assumed that the weight values are the same for the data samples
obtained from the same subject, and the value for the test subject is always equal
to the ratio of |Dtrain

k |/|Dtrain
0 |, k ∈ [1, 17] (note that all |Dtrain

k | are the same).
Since there were 17 different subjects whose training sets were available in the
database, we needed to compute only 17 different weight values. These values
are calculated in two steps. At first, we trained 17 C-SVM using {Dtrain

k } k =
1, ..., 17 and tested each C-SVM on Dtrain

0 leading to individual accuracy scores
of {ck}. At the second step, we employed a mapping function g(x) : R 
→ R to
obtain {mk} from {ck}. We used a mapping function in the form of Fig. 2(b). We
set cmin and mmin to 0.05, and cmax to 0.95. Keeping the endpoints constant,
we also tried logarithmically and exponentially increasing functions, but found
that monotonically increasing functions with similar endpoints produce almost
identical performances, so we omitted those results for brevity.

The main properties of the mapping function g(x) are twofold. (1) However
low {ck} become, corresponding weight values should be nonzero, because zero
weight values make the matching data samples in the database invisible to the
classifier. (2) As {ck} increase, the weight values should also increase, meaning
that samples of the similar subjects should count more during computation of the
SVM model parameters. The upper limit for the increase (mmax) can be deter-
mined by cross-validation. During our experiments, we tried {0.05, 0.10, ..., 1.00}
and observed that a value of 0.20 generates satisfactory results.
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C-SVM

D1
train

c1

C-SVM c2

C-SVM c17

.

.

.

g(x) m1

g(x) m2

g(x) m17

.

.

.

D0
train

D0
train

D0
train

D2
train

D17
train

(a)

0 0.2 0.4 0.6 0.8 1

1

(cmin,mmin)

(cmax,mmax)

Mapping Func�on

SVM performance {ck}

W
ei

gh
t {

m
k}

(b)

Fig. 2. (a) Computation of the weight values is illustrated. 17 different C-SVM were

trained using {Dtrain
k } k = 1, ..., 17 and tested on Dtrain

0 . Corresponding accuracy

values {ck} k = 1, ..., 17 were later mapped to the weight values by the function g(x).

(b) Form of the proposed mapping function g(x), g : R �→ R.

8 Results

During evaluations, we compared four different calibration approaches as sum-
marized in Table 1. In the first approach, we trained a single C-SVM using
only the test subject’s training set Dtrain

0 and tested the trained C-SVM on the
subject’s test set Dtest

0 (conventional approach). In the second approach, we com-
bined Dtrain

0 with the training sets of the 17 other subjects {Dtrain
1 , ...,Dtrain

17 }
to train a single C-SVM. While computing the separating hyperplane, all data
samples were assumed to be of equal weight. In the third approach, we did
not use any data from the test subject’s training set, and therefore, this case
represented zero calibration. We trained a single C-SVM with Ddatabase, and
tested the classifier with Dtest

0 . In the fourth approach, we combined Dtrain
0

with {Dtrain
1 , ...,Dtrain

17 }, but different than the second approach, we trained a
Fuzzy-SVM by multiplying the data samples with the computed weight values
(proposed approach). As shown in Fig. 3, the proposed approach provided a
2%∼20% increase in the average accuracy.

We also measured the training times of the classifiers and presented the re-
sults at Table 2. We observed that the improved performance of the proposed
approach comes with a computational cost of about 10 minutes of training time,
compared to about one second for the conventional subject-specific calibration
(No database) approach. Note that these measurements do not include the time
needed to collect the corresponding training data.
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Table 1. Evaluation details

Approach Training Set (Dtrain) Test Set Classifier C -const

No database Dtrain
0 Dtest

0 C-SVM 1

All subjects Dtrain
0

⋃
{Dtrain

1 , ..., Dtrain
17 } Dtest

0 C-SVM 1

Database only {Dtrain
1 , ..., Dtrain

17 } Dtest
0 C-SVM 1

Weighted subjects Dtrain
0

⋃
{m1D

train
1 , ..., m17D

train
17 } Dtest

0 Fuzzy-SVM 1

4 8 12 16 20

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Number of Calibra�on Le�ers Spelled by the Test Subject

A
ve

ra
ge

 A
cc

ur
ac

y

No database
All subjects
Database only
Weighted subjects

Fig. 3. Average accuracy values obtained with four different training approaches. Note

that Database only corresponds to zero calibration, and therefore the system perfor-

mance does not depend on the amount of the subject-specific calibration data.

Table 2. Number of feature vectors in the corresponding training set and the average

training time (in seconds) of the machine learning algorithm. The measurements were

conducted on a computer with Intel Core2 Duo 2.66 GHz processor and 2GB of RAM.

Approach
# of Calibration Letters Spelled by the Test Subject

4 8 12 16 20

No database
220 440 660 880 1100

0.42s 0.47s 0.80s 1.25s 1.80s

All subjects
220+18700 440+18700 660+18700 880+18700 1100+18700

786s 807s 824s 845s 864s

Database only
18700 18700 18700 18700 18700

765s 765s 765s 765s 765s

Weighted subjects
220+18700 440+18700 660+18700 880+18700 1100+18700

645s 656s 669s 682s 694s
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9 Conclusion

BCI systems provide improved system performance with increasing amounts of
subject-specific calibration data. Therefore, current systems keep the calibration
time long enough to acquire satisfactory amounts of training data. Prolonged
calibration processes represent a major inconvenience for the end-users. In this
study, we showed that incorporation of a pool of subjects’ training data into the
calibration process along with the fuzzy support vector machines alleviates this
inconvenience. By assigning subjects that show similar responses with the user
to larger weights, we managed to reach, for example, the average accuracy of
80% with only 4 training letters.
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Abstract. Spatial filtering is important for EEG signal processing since raw
scalp EEG potentials have a poor spatial resolution due to the volume conduc-
tion effect. Extreme energy ratio (EER) is a recently proposed feature extractor
which exhibits good performance. However, the performance of EER will be de-
graded by some factors such as outliers and the time-variances between the train-
ing and test sessions. Unfortunately, these limitations are common in the practical
brain-computer interface (BCI) applications. This paper proposes a new feature
extraction method called importance-weighted EER (IWEER) by defining two
kinds of weight termed intra-trial importance and inter-trial importance. These
weights are defined with the density ratio theory and assigned to the data points
and trials respectively to improve the estimation of covariance matrices. The spa-
tial filters learned by the IWEER are both robust to the outliers and adaptive to
the test samples. Compared to the previous EER, experimental results on nine
subjects demonstrate the better classification ability of the IWEER method.

Keywords: Brain-computer interface (BCI), Feature extraction, Extreme energy
ratio (EER), Density ratio.

1 Introduction

A brain-computer interface (BCI) is a system for controlling a device, e.g, a computer,
a wheelchair or a neuroprothesis by human intentions. BCI technology relies on the
ability of individuals to voluntarily and reliably produce changes in their electroen-
cephalogram (EEG) signal activities. Classification of electroencephalogram (EEG)
signals is an important problem in the development of EEG-based brain computer inter-
faces (BCIs) and spatial filtering can improve classification performance considerably.
Extreme energy ratio (EER) [1] can efficiently calculate spatial filters for brain sig-
nal classification. It is theoretically equivalent and computationally superior to a highly
successful algorithm called common spatial patterns (CSP) [2].

However, the effectiveness of EER method may be disturbed by some limitations.
First, it is sensitive to outliers. If the few training samples that are measured within
the ’calibration’ time are contaminated by such artifacts, a suboptimal feature extrac-
tor or classifier can be the consequence [3]. Thus the feature extractors and classifiers
should be robust to the outliers, e.g., by reducing or eliminating their negative influ-
ences. Moreover, the data still prove to be inherently non-stationary after outlier elim-
ination [4]. The difference of the spatial distribution of the activation patterns between

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 9–16, 2010.
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calibration and feedback sessions will also strongly degrades the performance of EER
features. Thus adaptive learning is necessary to boost up the performance of existing
classifiers and feature extractors. Due to the time-varying characteristic of EEG sig-
nals during different sessions, it is reasonable to utilize samples in the test session to
increase the classification ability on test samples. One way to realize this goal is to
combine the brain signals recorded recently in the test session and samples which were
labeled in the training session to enhance the classification ability. However, up to now,
most work addressing this problem are based on labeled feedback samples. This as-
sumption is hard to achieve in practical BCI systems since it needs disturbing users and
may upset them. As a result, it is worthwhile to study how to make feature extractors or
classifiers adaptive to the test samples with no labels.

In this paper, we define two kinds of weight: intra-trial importance and inter-trial
importance by considering the distribution of samples in test session and obtain an im-
proved EER algorithm called importance weighted EER (IWEER). We expect these two
kinds of weight will be small on the samples that are outliers or strongly dissimilar with
the distribution of test samples (we call the later one as the “misleading” sample since it
may degrade the performance of feature extraction or classification on the test session).
Thus, the negative influences of outliers and “misleading” samples to the estimation of
covariance matrices can be reduced. As a result, the spatial filters obtained by IWEER
can not only be robust to the outliers but also adaptive to the test samples.

The rest of this paper is organized as follows. Section 2 describes previous work
on the EER algorithm. Subsequently, in Section 3, we introduce the proposed IWEER
method and its computational details. The experimental results on data sets from nine
subjects are presented in Section 4. Finally, the conclusion and promising work for
IWEER are showed in Section 5.

2 EER Algorithm: A Brief Review

EER tries to discover source signals whose average energy of two conditions are most
different. In other words, it learns the spatial filters maximizing the variance of band-
pass filtered EEG signals under one condition while minimizing it for the other con-
dition. Though having the same motivation as CSP, it simplifies the CSP algorithm to
a Rayleigh quotient. EER has been proven to be theoretically equivalent and computa-
tionally superior to the CSP method in [1].

Assume only one latent signal source from each class is to be recovered. For an EEG
sample X , the spatially filtered signal with a spatial filter denoted by φ(N×1) will be
φ�X . The signal energy after filtering can be represented by the sample variance as
(φ�X)(φ�X)� ∝ φ�Cφ, where C is the normalized covariance of the EEG sample
X and can be written as:

C =
1

T − 1
XX�

tr(XX�)
. (1)

Without loss of generality, we can ignore the multiplicative factor 1/(T − 1) in the
following calculation of covariances. As a result, in order to maximize the difference
of energy features under two conditions, EER finds a spatial filter which maximizes or
minimizes their ratio. Thus, the discriminative EER criterion is defined as follows:
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max / min
φ�CAφ

φ�CBφ
, (2)

where CA and CB are the covariances of specific classes that can be computed as the
average of all single covariances belonging to one class:

CA =
1

TA

TA∑
p

XApX�
Ap

tr(XApX�
Ap

)
, CB =

1
TB

TB∑
q

XBqX
�
Bq

tr(XBq X
�
Bq

)
. (3)

By optimizing (2), we can obtain two optimal spatial filters φ∗
max and φ∗

min which
maximize and minimize the objective function in (2). It turns out that φ∗

max and φ∗
min

are two eigenvectors corresponding to the maximal and minimal eigenvalues of the
matrix (C−1

B CA), respectively.
For classification, when we wish to extract m sources, EER will seek 2m spatial fil-

ters. Half of them maximize the objective function (2) while the other half minimize it.
Thus, φ∗

max consists of m generalized eigenvectors of the matrix pairs (CA, CB) which
correspond to the m maximal eigenvalues: φ∗

max � [φ1, · · · , φm]. Similar, the m en-
tries of φ∗

min are m generalized eigenvectors of matrix pair (CA, CB) whose eigenval-
ues are minimal. For a new EEG sample, it can be filtered by 2m spatial filters coming
from two filter banks φ∗

max and φ∗
min. Thus, the energy feature vector consists of the

2m energy values.
However, if the EEG training set is noisy or different strongly from the test set, the

covariance matrices may be poor or non-representative estimates of the mental states
involved, and thus the spatial filters learned by EER will be poor.

3 Importance Weighted EER

In this subsection we introduce two kinds of weight which can define the “importance”
of each data point and each trial respectively. A data point or trial is less important when
it is strongly different from the data distribution in test session since it may be the out-
lier or misleading sample. By integrating the weights into the estimation of covariance
matrices, we obtain IWEER method which can be robust to the outliers and adaptive to
the test samples.

Density ratio estimation is a recently proposed algorithm in various statistical data
processing tasks such as non-stationarity adaptation, outlier detection, feature selec-
tion, and independent component analysis [5]. Based on the density ratio theory, two
kinds of weight called intra-trial importance and inter-trial importance are defined and
integrated into the EER method. They are assigned to data points and trials respectively.

Let XAp = {xAp

1 , · · · , x
Ap

T }, (p = 1, · · · , TA) and XBq = {xBq

1 , · · · , x
Bq

T },
(q = 1, · · · , TB) respectively define samples from two different classes A and B, where
TA and TB are their corresponding sample sizes. Analogously, XUt = {xUt

1 , · · · , xUt

T },
(t = 1, · · · , TC) is used to denote the samples form test set with TC being the corre-
sponding sample number. Suppose we have a training snapshot set {XA} ∪ {XB} =
{x1, · · · xl1} with l1 = T (TA + TB) and a test snapshot set {XU} = {x1, · · · xl2}
with l2 = T × TC .
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We define intra-trial importance which are different for each data point in a trial.
The intra-trial importance of data point x

Ap

i is formulated as:

w
Ap

i =
pte(xAp

i )

ptr(xAp

i )
, (4)

where pte(·) is the test density estimated by the test snapshot set {XU}, and ptr(·) is
the training density estimated by the set {XA} ∪ {XB}. The calculation of the intra-
trial importance depends on the density ratio estimation. A naive approach to estimate
the density ratio would be to first estimate the training and test densities separately
from the training and test input samples, and then estimate the ratio of the estimated
densities. However, density estimation is known to be a difficult problem, especially for
high-dimensional situations. Therefore, this approach is not feasible and alternatives
should be used. Here we adopt a method called Kullback–Leibler importance estimation
procedure (KLIEP) [6] to directly estimate the density ratio. KLIEP directly estimates
the density ratio as follows:

ŵ(x) =
p̂te(x)
p̂tr(x)

=
b∑

l=1

αlexp

(
−||x − cl||2

2σ2

)
, (5)

where {αl}b
l=1 are coefficients to be learned (αl ≥ 0 for l = 1, 2, · · · , b), {cl}b

l=1

are chosen randomly from {xte
j }nte

j=1, and the number of parameters is set to b =
min(100, nte) in the experiments. The kernel width σ can be optimized by cross-
validation.

By the aforementioned model, the test input density can be formulated as:

p̂te(x) = ŵ(x)ptr(x). (6)

With this expression, {αl}b
l=1 are then determined by minimizing the Kullback–Leibler

divergence between pte(x) to p̂te(x):

KL(pte(x), p̂te(x)) =
∫

D

pte(x)log
pte(x)

ŵ(x)ptr(x)
dx

=
∫

D

pte(x)log
pte(x)
ptr(x)

dx −
∫

D

pte(x)logŵ(x)dx,

(7)

where D is the domain of x. Note that the first term of (16) is a constant with regard to
{αl}b

l=1 and minimizing the second term is equivalent to maximizing its negative form.
As a result, the optimization criterion of KLIEP is given as follows:

max
nte∑
j=1

log

[
b∑

l=1

αlexp

(
−
||xte

j − cl||2

2σ2

)]
, (8)

subject to

ntr∑
i=1

b∑
l=1

αlexp

(
−||xtr

i − cl||2
2σ2

)
= ntr, and α1, α2, · · · , αb ≥ 0. (9)
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After obtaining the intra-trial importance for each data point, we calculate the normal-
ized covariance of one EEG sample as:

C̃Ap =
1

T − 1

T∑
i=1

w
Ap

i x
Ap

i (xAp

i )�, p = 1, · · · , TA. (10)

Analogously, we can get C̃Bq for q = 1, · · · , TB.
On top of the intra-trial improtance, we also assign a kind of weight to each trial

to define its total importance, which is called inter-trial importance . Here we just use
the sum of all weights of the data points in a trial to represent the importance of the
corresponding trial:

IAp =
T∑

i=1

w
Ap

i , p = 1, · · · , TA. (11)

Analogously, we can obtain IBq for q = 1, · · · , TB .
Similarly, the improved estimations of covariances for specific classes can be com-

puted as

C̃A =
1

TA

TA∑
p=1

IApC̃Ap , (12)

C̃B =
1

TB

TB∑
q=1

IBq C̃Bq , (13)

Then the criterion of IWEER can be defined as

max / min
φT C̃Aφ

φT C̃Bφ
. (14)

Consequently, we can learn the spatial filters by eigen-decomposing of matrix pair
(C̃A, C̃B).

Thus we assign less importance value to the training samples that are largely differ-
ent from test samples. They may be outliers by measurement artifacts and non-standard
noise sources, or misleading samples generalized by the strong differences in the train-
ing and test session. Due to the lighter weights, they will be deemphasized in the esti-
mation of the covariance matrices. As a result, our IWEER can be robust to the outliers
and adaptive to the test data distribution.

4 Experiment

4.1 Data Description and Experimental Setup

The EEG data used in this study were made available by Dr. Allen Osman of University
of Pennsylvania during the NIPS 2001 BCI workshop [7]. There were a total of nine
subjects denoted S1, S2, · · · , S9, respectively. For each subject, the task was to imagine
moving his or her left or right index finger in response to a highly predictable visual cue.
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EEG signals were recorded with 59 electrodes mounted according to the international
10C10 system. A total of 180 trials were recorded for each subject. Ninety trials with
half labeled left and the other half right were used for training, and the other 90 trials
were for testing. Each trial lasted six seconds with two important cues. The preparation
cue appeared at 3.75 s indicating which hand movement should be imagined, and the
execution cue appeared at 5.0 s indicating it was time to carry out the assigned response.

Signals from 15 electrodes over the sensorimotor area are used in this paper, and for
each trial the time window from 4.0 s to 6.0 s is retained for analysis. Other prepro-
cessing operations include common average reference, 8–30 Hz bandpass filtering, and
signal normalization to eliminate the energy variation of different recording instants [9].

All the epochs were filtered with pass band 8-30Hz and spatially by common aver-
age reference [8]. Firstly, we employed the EER and IWEER criterions respectively to
calculate the projection directions with parameters σ determined by 10-fold crossvalid
on the training set. Then corresponding energies (variances) are extracted as features for
later classification. Fisher linear discriminant classification method was used to classify
EEG signals to be tested.

4.2 Results and Performance Analysis

The classification results for nine subjects with the feature extraction methods EED and
CSP are shown in Fig. 1. From this figure, we see that for almost all subjects IWEER
outperforms EER consistently, which demonstrates the better classification ability of
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Fig. 1. The performances of EER and IWEER on the data sets from nine subjects
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Fig. 1. (continued)

spatial filters obtained by IWEER. Note on S4 and S9, the previous EER can obtain
good results (≥ 80%) and the improvements of performances are relatively trivial, com-
pared with the large improvements on other data sets.

5 Conclusion and Future Work

In this paper, we have proposed a new feature extractor which can utilize the distribution
knowledge of the samples in the test session to improve the classification ability of the
spatial filters. Specially, we define two kinds of weight called intra-trial importance and
inter-trial importance and assign them to the data points and trials. Thus the covariance
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matrixes estimated by these weighted samples can be improved and the obtained spatial
filters are both robust to outliers and adaptive into the test samples. By integrating the
weights into the EER method, we proposed IWEER. The experimental results on the
data sets from nine subjects demonstrate the better performance of the IWEER.

Though the current research of IWEER is based on off-line analysis, it can be easily
extended to the on-line scenario [10], which is meaningful for practical BCI applica-
tions. Moreover, the samples weighting strategy of IWEER is promising for selecting
samples from other sessions and subjects to reduce the calibration time, which has been
proposed explicitly as a task, e.g., by Schalk et al [11].

Acknowledgments. This work is supported by the National Natural Science Founda-
tion of China under Projects 60703005 and 61075005.
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Abstract. Multi-electrode arrays contain an increasing number of electrodes. 
The manual selection of good quality signals among hundreds of electrodes 
becomes impracticable for experimental neuroscientists. This increases the need 
for an automated selection of electrodes containing good quality signals. To 
motivate the automated selection, three experimenters were asked to assign 
quality scores, taking one of four possible values, to recordings containing 
action potentials obtained from the monkey primary somatosensory cortex and 
the superior parietal lobule. Krippendorff’s alpha-reliability was then used to 
verify whether the scores, given by different experimenters, were in agreement.  
A Gaussian process classifier was used to automate the prediction of the signal 
quality using the scores of the different experimenters. Prediction accuracies of 
the Gaussian process classifier are about 80% when the quality scores of 
different experimenters are combined, through a median vote, to train the 
Gaussian process classifier. It was found that predictions based also on firing 
rate features are in closer agreement with the experimenters’ assignments than 
those based on the signal-to-noise ratio alone. 

Keywords: Continuous wavelet transform, Electronic depth control, Gaussian 
process classifier, Inter-rater reliability, Multi-unit recordings, Spike detection. 

1   Introduction 

Multi-electrode arrays (MEAs) are able to monitor the simultaneous spiking activity 
of many neurons [1] and are, therefore, in a position to provide valuable insights into 
how multiple neurons process information and how different brain areas interact. 
MEAs typically consist of tens of electrodes with inter-electrode distances ranging 
from 100 to 500 μm [2]. Recent advances in CMOS-based microprobes [3], support 
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in-vivo recordings up to 500 electrodes with inter-electrode distances as small as 40.7 
μm [3], hence, at a spatial range of an individual neural cell’s soma diameter. Signal 
quality can degrade over time due to apoptosis, tissue drift, relaxation, inflammation 
and reactive gliosis, among other reasons. Hence, there is a need for (re)selecting or 
(re)positioning the electrodes. Essentially 2 different systems can be used for 
obtaining and maintaining a good signal quality among different electrodes: movable 
microelectrodes [4-7] and the electronic depth control system [3]. The movable 
microelectrode systems mechanically position single electrodes independently, 
whereas the electronic depth control system switches electronically between different 
microelectrodes on a single shaft (up to 500 electrodes [3]) once the array is 
implanted. In the electronic depth control system, 8 electrodes, out of the total number 
of electrodes, can be read simultaneously from a single shaft. This is due to 
technological limitations in the switching electronics and the lithography. So far, the 
electrode selection was performed manually by the experimenter or semi-
automatically. In the latter case, electrodes are sorted according to the signal-to-noise 
ratio (SNR) [3]. To fully automate the electrode selection, it is of interest to know 
whether experimenters can agree on the quality of a signal. This is studied in section 3 
using Krippendorff’s alpha inter-rater reliability. So far, the SNR was used as the 
quality metric in both the movable microelectrode systems [4,6-7] and the electronic 
depth control [3]. It is studied in section 4 whether signal features other than the SNR 
may be needed to reflect the experimenter’s assignments of a quality score to signals 
containing action potentials. This is performed by studying the accuracy of a Gaussian 
process classifier (GPC) [8] as a function of the SNR feature and firing rate features. 

2   Experiments 

The neural activity used in this study was collected from two series of recording 
sessions performed using a new generation microprobes [9], semi-chronically 
implanted in the cortex of an awake macaque monkey. 

The silicon-based probes applied in this study comprise four slender, 8-mm-long 
probe shafts arranged as a comb, as shown in Figure 1(a). Each probe shaft has a 
width and thickness of 140 µm and 100 µm, respectively, and carries nine circular Pt 
electrodes with a diameter of 35 µm (cf. Figure 1(a)). Out of these 36 electrodes, the 
first eight electrodes of each shaft, i.e. 32 electrodes, as counted from the electrode tip 
are accessible for the recording experiments. The inter-electrode pitch and the 
distance between the probe shafts were set to 250 µm and 550 µm, respectively. The 
two-dimensional electrode array as shown in Figure 1(a) is fabricated using 
microsystem technology detailed elsewhere [9]. Figure 1(b) shows the silicon-based 
probe assembled to a U-shaped polyimide cable comprising the interconnection part 
for a zero insertion force (ZIF) connector. The probe insertion into the brain tissue is 
performed using the insertion device in Figure 1(b). During insertion, the probe and 
its cable are fixed on the insertion device using vacuum suction. They are released for 
operating of the probe after retraction of the insertion device. The two semi-chronic 
recording sessions were performed using the same neural device. In the first series of 
recording sessions, the neural device was implanted in the primary somatosensory 
cortex (SI) and it was kept in the cortex for 8 days. 
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Fig. 1. (a) Silicon-based probe comb with four slender shafts with planar electrodes and a 
connector pads for cable assembly and (b) probe comb assembled to a U-shaped ribbon cable 
temporarily mounted onto an insertion device using vacuum for insertion 

The second implantation was located in the superior parietal lobule (SPL) and the 
neural device was kept in the cortex for 10 days. The acquisition time of each trial 
lasted 4 seconds that corresponded to 2 seconds before and 2 seconds after the 
somatosensory stimulation. In order to assess the quality of the recorded signal from 
the implanted neural device, the neuronal activity of each electrode was carefully 
investigated on-line by the experimenter. In addition to the on-line recorded signal 
assessment, three experimenters performed an off-line quality signal assessment. 
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Fig. 2. Example signals of the four different scores. All 3 raters agreed independently on the 
score of each of the 4 signals. The stimulus was presented starting from 2 seconds. 

This assessment was done separately and independently by each experimenter in 
order to avoid any possible bias in the evaluation of the neural signal quality. The 
assessment was done by a visual inspection of the neuronal discharge in single trials, 
on the basis of the personal experience of the experimenter. The assignment was 
based on a four levels scale, from 1 to 4. Each number corresponded to a different 
quality of the recorded neuronal activity, see Figure 2. Score 1 was assigned when no 
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activity was recorded, score 2 when there was only background activity, score 3 when 
many different spikes were recorded simultaneously but the isolation of a single 
neuron was not possible. Score 4 was assigned when well isolated spikes were 
recorded. 

3   Inter-rater Reliability 

The degree to which raters agree on a quality score for signals, can be computed by an 
inter-rater reliability coefficient. Hereto, we used Krippendorff’s agreement 
coefficient alpha (α) [10]. This reliability coefficient can be interpreted as: the degree 
to which independent observers, here using quality scores on a scale of 1 to 4, respond 
identically to each individual signal. Properties of α that are important in our case are 
the ability to deal with more than 2 raters, the use of confidence intervals, the 
correction for small sample sizes and the possibility to penalize more heavily larger 
disagreements between raters. To illustrate the latter: a 1-4 confusion between raters, 
i.e. one rater gives the lowest score 1 and another gives the highest score 4, is not as 
forgivable as 1-2 confusion or a 2-3 confusion between raters. 

The alpha reliability can be computed as: 

o

e

D
1

D
α = − , (1) 

where Do is the observed disagreement and De is the expected disagreement. Do and 
De are computed as:  

2
o ck ck

c k

1
D o

n
= δ∑∑ , (2) 

2
e c k ck

c k

1
D n n

n(n 1)
= ⋅ δ

− ∑∑ . (3) 

Here, n is the total number of values that have been assigned over all raters, i.e. n is 
equal to #raters x #signals (here 3 raters x 256 signals). Further, ock is the observed 
number of c-k pairs, i.e. the number of times one rater gave quality ‘c’ and another 

quality ‘k’. 2
ckδ is the penalty factor for a disagreement that one rater rated a signal as 

quality ‘c’ and another as quality ‘k’ ( 2
ckδ  = 0 for c = k), nc and nk are the number of 

times score ‘c’ and score ‘k’ have been assigned. For details on the computation of 
the observed coincidences ock we refer to chapter 11 of [10]. 

The α value can range between -1 and 1, with a -1 indicating systematic 
disagreement between raters and 1 indicating systematic agreement. A small value of 
α around 0 indicates that raters do not agree more or disagree less than expected by 
chance level. In Table 1, we report the reliability scores for different choices of the 

penalty function 2
ckδ . 
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Table 1. Krippendorff’s alpha reliability scores for different metric values. 1000 bootstraps 
were taken to obtain the 95% confidence interval. α123 is the reliability coefficient computed 
between all 3 raters. 

Metric 2
ckδ  α123 coefficient 95% confidence interval 

Nominal: 
2
ck

2
ck

1,c k

0,c k

δ = ≠

δ = =
 0.6458 [0.5989,0.6908] 

Ordinal: see [10] 0.8882 [0.8691,0.9048] 

Interval: ( )22
ck c kδ = −  0.9006 [0.8863,0.9144] 

Ratio: 
2

2
ck

c k

c k

−⎛ ⎞δ = ⎜ ⎟+⎝ ⎠
 0.8658 [0.8435,0.8859] 

 
The first column of Table 1 shows that the nominal metric punishes every 

mismatch between the scores of raters in an equally severe way, while in the other 
metrics the penalty depends on the degree of mismatch. The ordinal metric is likely 
the most suitable metric here, because it considers the values of the raters as a rank. It 
is observed that the nominal metric leads to the smallest reliability value, while the 
other metrics are about the same. This suggests that raters disagree sometimes on the 
exact quality score, but their assignments will seldom differ by more than 1 value. 
Larger confusions almost never happen. Indeed, in only 6 out of the 256 signals, a 
difference in quality larger than 1 was observed between any 2 observers. Under the 
ordinal (0.8882), interval (0.9006) and ratio (0.8658) metric, the assignments can be 
considered as reliable. 

4   Prediction of Quality Scores 

Our goal is now to predict the quality scores assigned by the different raters, since 
these predictions can then be used in the electronic depth control. Hereto, we train and 
test a Gaussian process classifier using features extracted from the neural signals. The 
features are based on the spikes which are detected with a continuous wavelet 
transform. We consider the following features: (1) the signal-to-noise ratio (SNR) 
which has been considered so far as the standard in electrode positioning [4,6-7], and 
selection [3], (2) the maximal firing rate in 20 ms bins around stimulus presentation 
and (3) the average firing rate in the same interval around stimulus presentation. 

First, spikes are detected off-line in the neural signals using a continuous wavelet 
transform [11]. We used the Daubechies 2 wavelet, detecting spikes that are about 0.5 
ms wide. We tried 2 detection thresholds: one equal to 0 and a more conservative one 
that only detects the larger spikes, see Figure 3. A higher detection threshold will in 
general lead to a lower probability of detection (PD) and to a lower probability of 
false alarms (PFA). For an interpretation of the detection thresholds the reader is 
referred to [11]. 
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Fig. 3. The circles locate the spikes detected with a continuous wavelet transform (Daubechies 
2 mother wavelet) using a threshold equal to 0, the diamonds are spike locations with a more 
conservative threshold equal to 0.2. The boxes are centered on the detected spikes (spikes 
detected at the diamonds) taking 0.5 ms before and 0.5 ms after the spike location. The average 
root-mean-square (RMS) of the signal within the boxes (spikes) is divided by the standard 
deviation outside the boxes (which are the noise segments) in the computation of the signal-to-
noise ratio. 

The SNR is computed as the average root-mean-square (RMS) of the spikes, N in 
total, divided by the median absolute deviation (MAD) noiseσ̂  of the noise segments 

(see also Figure 3): 

N

n
n 1

dB 10
noise

1
RMS(spike (t))

N
SNR 20 log

ˆ
== ⋅

σ

∑
. 

(4) 

The median absolute deviation was used as a robust estimator for the noise [11]. The 
SNR quantifies how large spikes are compared to the background noise. However, it 
has to be noted that only a few, but large spikes can result in a high SNR. 
Experimenters often are not only interested in obtaining large spikes, but also in how 
responsive the cell is towards a stimulus. Therefore, also firing rate features were 
computed. For the analyses performed in the present study, we considered 1 second 
before and one second after the somatosensory stimulation, in order to be sure to 
include the whole neuronal response, since the discharge onset varied in relation to 
the different properties of the neurons recorded from different cortical layers and 
cortical areas. We segmented this interval into bins of 20 ms, the firing rate of the bin 
with the highest firing rate was considered as a feature. Furthermore, the average 
firing rate over the same interval was computed as the third feature. 

We used a Gaussian process classifier (GPC) [8] to predict the quality scores. The 
variational Bayesian approach [8], using a radial basis function (RBF) kernel, was 
used. The kernel hyperparameters as well as the other parameters of the GPC are 
found by maximizing the variational lower bound on the marginal likelihood [8]. The 
advantage of using this GPC compared to some support vector machines is that no 
extra cross-validation cycles are required for tuning the kernel hyperparameters, they 
are inferred elegantly in a Bayesian way from the data [8]. We used the leave-one-out 
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method for validation. Before training and testing the GPC, the SNR and firing rate 
features were standard normalized. The classification test accuracies for each rater 
separately, are shown in Figure 4. The SNR and the bin with maximal firing rate were 
used to train and test the GPC for the results shown in Figure 4. 
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Fig. 4. Classification accuracies for the prediction of the quality scores using the variational 
Bayesian GPC and a leave-one-out validation. The last pair of bars, labeled ‘raters combined’, 
was obtained by taking the median vote of all 3 raters for each signal and training and testing 
the GPC on this median vote. For this median vote the accuracy is about 80%, which is higher 
than the accuracies of each rater separately. 

To study the effect of different feature combinations, we tested (1) the SNR only, 
(2) the SNR and Max. Fr (bin with maximal firing rate), (3) the SNR and Avg. Fr 
(average firing rate) and (4) the SNR, Max. Fr and Avg. Fr. The results are shown in 
Figure 5. 
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Fig. 5. Accuracies of different parameter combinations in the variational Bayesian GPC. The 
median vote of all 3 raters was used to provide the quality scores to the GPC. Clearly, the 
accuracies are higher when the SNR is combined with the bin containing the maximal firing 
rate (the SNR-Max Fr pair of bars) or with the average firing rate (the SNR-Avg Fr pair of bars) 
compared to the SNR alone (the SNR pair of bars). 
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Comparing previous tables, we observe that the predictions of the quality scores 

become more accurate when a firing rate parameter is used in combination with the 
SNR (Table 3, Table 4 and Table 5), compared to the case when the SNR is used 
alone (Table 2). The most accurate result is obtained when the SNR is combined with 
the average firing rate (Table 4): 82.03%. Comparing Table 2 and Table 4, we can 
make following observations for the most important class (score 4). The recall for 
class 4 in Table 2 (SNR) is equal to 51/56 = 0.911 which is the same as for the other 
tables. However, in Table 2 the precision for class 4 is lower, 51/66 = 0.773, 
compared to 51/54 = 0.944 for Table 4. Hence, the predictions for class 4 become 
much more precise if besides the SNR also the average firing rate parameter is used. 
Similar conclusions can be drawn when comparing Table 3 or Table 5 with Table 2: 
in both cases the predictions become more precise when the SNR is combined with 
firing rate features. 

5   Conclusion 

Quality score assignments by experimental neuroscientists seldom differ more than 1 
quality value, on a scale of 4 possible values. This was reflected in the high (inter-
rater) Krippendorff’s alpha reliability of about 0.88 using the ordinal metric. In 
previous research, the signal-to-noise ratio (SNR) was used as the quality metric in 

Table 2. Confusion matrix SNR 

  Manually assigned scores 

 
74.22 

% 
score  

1 
score  

2 
score 

3 
score 

4 

score 1 107 17 1 0 

score 2 2 4 4 1 

score 3 2 20 28 4 

P
re

di
ct

ed
 

sc
or

es
 

score 4 7 6 2 51 

Table 4. Confusion matrix SNR – Avg Fr 
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Table 3. Confusion matrix SNR – Max Fr 

  Manually assigned scores 
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Table 5. Conf. matrix SNR – Max Fr – Avg Fr 

  Manually assigned scores 
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score 2 6 24 11 2 
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movable microelectrode systems [4,6-7]. In this research a variational Bayesian 
Gaussian process classifier was used to predict the quality scores, leading to an 
accuracy of 82% if the SNR and the average firing rate are used together. These 
results suggest that the selection of the electrodes that capture signals of the highest 
quality can be performed by using the predictions of the quality scores. 
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Abstract. In this paper we propose a Multi-linear Principal Compo-

nent Analysis (MPCA) which is a new feature extraction and sample

weighting method for classification of EEG signals using tensor decom-

position. The method has been successfully applied to Motor-Imagery

Brain Computer Interface (MI-BCI) paradigm. The performance of the

proposed approach has been compared with standard Common Spatial

Pattern (CSP) as well with a combination of PCA and CSP methods.

We have achieved an average accuracy improvement of two classes clas-

sification in a range from 4 to 14 percents.

Keywords: Feature extraction, classification, tensor decomposition,

multi-linear PCA.

1 Introduction

Many contemporary signal processing applications are characterized by
multiway structures of the recorded datasets. Biomedical datasets belong to the
most common examples of such multiway structures which for example could
be indexed by subjects, trials, sensor channels, time or frequency bins, etc. It is
often a case that datasets are reconstructed in form of a vector or a matrix to
apply next vector/matrix based signal processing methods. Feature extraction
and selection are key factors in classification and model reduction problems. Usu-
ally, sampled data are represented by vectors or matrices and model reduction is
performed by PCA. However, in many applications, original sampling data such
as multi-modal brain data sets can be naturally represented by tensors (multi-
way arrays) [1]-[4]. Tensors provide natural and convenient representations of
such multidimensional data sets allowing us to preform feature extraction and
classification.

Multilinear PCA (MPCA) and Higher Order SVD (HOSVD) for tensor data
have been proposed (see, for example [2,3]). A pioneering work is the so-called
Higher order singular value decomposition (HOSVD) [3] which is a decomposi-
tion method which performs decomposition of a tensor into a dense core-tensor
and unitary matrices. The HOSVD is a tensor decomposition technique rather
than feature extraction under the approximation model. Biomedical data sets

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 26–33, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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very often contain noisy periods which should be classified as outliers, for ex-
ample, in the EEG experiments, subjects often don’t obey the instructions by
not focusing their attention on the presented stimuli. For the accurate machine
learning results, it is thus necessary to automatically detect and reject such
outliers. For this purpose we extend in this paper the multilinear principal com-
ponent analysis (MPCA) [2] to extract features and to perform simultaneously
weighting of data samples.

The following notation and mathematical operations for tensors (multi-way
data) are used in the paper (note that tensor has multiple indexes - usually more
than three):

– Tensor - denoted by a calligraphic large letter e.g., A or A(i1, i2, . . . , iN)
(i1 = 1, 2, . . . , I1, . . . , iN = 1, 2, . . . , IN ), where N is the number of modes.
Supposed that each index of a mode is positive integer, and the maximum
number of the index is called the dimension of the mode (I1, I2, . . . , IN ).

– Fiber - an Ij -dimensional vector obtained by fixing all modes except the
jth mode, is called the fiber of the jth mode,

– Unfolding matrices - (Ij) by (
∏

k �=j Ik) matrix laying all possible fibers
of the jth mode is called the unfolding matrix of the jth mode. We denote
the unfolding matrix of the jth mode by A(j). The inverse operation of the
unfolding is called the folding. We denote the unfold and the fold operator
of the jth mode by Unfoldj(·) and Foldj(·) respectively (A(j) = Unfoldj(A),
A = Foldj(A(j))).

– Tensor-matrix multiplication - suppose a be a fiber vector of a tensor A.
Given m by Ij matrix B, the jth multiplication A×j B is done by replacing
all possible fibers a by Ba. The dimension of the jth mode of (A ×j B) is
m. Note that A×j B = Foldj(BA(j)).

– We denote A×1 B1 ×2 B2 · · · ×N BN =
∏N

i=1 A×i Bi.
– Frobenius norm of a tensor A is defined by

‖A‖2
F =

Ii∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN =1

[A(i1, i2, . . . , iN )]2. (1)

2 Multilinear Weighted PCA

2.1 Matrix Based PCA and Weighted PCA

We explain basic concept for the standard PCA and the weighted PCA
Let an L-dimensional vector xk ∈ R

L be the k-th sample, and a matrix
X = [x1, x2, . . .xM ] represents all available samples, where M is the number of
samples.

The standard PCA can be performed by the following optimization problem
(applying the least mean squared error (LMSE) criterion)

minimize
P

f0(P ) =
M∑
i=1

‖xi − Pxi‖2 = ‖X − PX‖2
F , subject to rank(P ) ≤ r,
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where r is a parameter that specifies the dimension of the subspace. The optimum
solution P is the projection matrix onto principal subspace of the all samples,
hence there exists an orthogonal transform matrix U ∈ R

L×r such that P =
UU� and U�U = I, where I is the identity matrix. Note that U has an unitary
ambiguity.

The standard PCA is also often formulated by using maximum variance crite-
rion. Then the problem cab be reduced smaller dimensional space. However, the
optimization problem has an unitary constraint and some ambiguity mentioned
above.

In general for standard PCA, all samples are handled evenly. However, in real
applications there are some outliers or bad data that do not represent features
well. In order to extract proper features from samples, we should down-rate such
samples. In such cases the cost function for weighted PCA can be expressed,

f1(P , D) =
M∑
i=1

d2
i ‖xi − Pxi‖2 = ‖XD − PXD‖2

F , (2)

where di is the weight for the i-th sample, D = diag(d1, . . . , dM ). The case of
D = I is reduced to the standard PCA.

If we do not have a priori information about quality of each sample, we have
to estimate optimal weighting diagonal matrix D with positive entries di . The
samples that do not have proper feature contribute large cost in the cost function
f0(P ), and we should downrate such samples. Hence, we introduce following
optimization problem,

minimize
P ,D

f1(P , D) = ‖XD − PXD‖2
F

subject to rank(P ) ≤ r,

M∑
k=1

dk
2 = M, 0 ≤ l ≤ dk ≤ u, for k = 1, . . . , M

(3)

where l and u are lower and upper bound of the weight respectively.

2.2 Multilinear PCA for Tensor Samples

In [2], data tensor is separated to trials or samples, i.e., X1, . . . ,XM and M is the
number of samples. However, we consider such index is a one of modes because
integrated form enables us to extract feature and weight samples simultaneously.

MPCA [2] was originally defined by using maximum variance criterion, that
is equivalent to LMSE problem.

minimize
P1,P2,...,PN

‖X −
N∏

i=1

X ×i Pi‖2
F , subject to rank(Pi) ≤ ri, for all i, (4)

where the mode that corresponds to the index of samples or trials is fixed to
Pi = I.
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2.3 Details of the Proposed Method

In our approach, we combine standard MPCA with the idea of weighting sample
(3). Let A ⊂ {1, . . . , N} be a set of modes that its dimension is reduced by
PCA, e.g., channel or frequency, and B ⊂ {1, . . . , N} be a set of modes that its
dimension is weighted, e.g., trial or subject. Here, A ∩B = φ. The optimization
problem including (4) and (3) can be written as

minimize
Pa,Db

f2 =
∥∥∥∥∏

b∈B

(X ×b Db) −
∏
b∈B

{∏
a∈A

(X ×a Pa) ×b Db

}∥∥∥∥2

F

subject to rank(Pa) ≤ ra, ∀a ∈ A, Db = diag(db
1, d

b
2, . . . , d

b
Lb

),
Lb∑

j=1

(db
j)

2 = Lb, 0 ≤ lb ≤ db
j ≤ ub, j = 1, . . . , Lb, ∀b ∈ B,

(5)

where, lb and ub are the lower and upper bound of the weights db
j in the bth-mode,

respectively. The cost function is an extension of the problem (3). If X has only
two modes and |A| = |B| = 1, then this problem is equivalent to the problem
(3). Note that in (3), the cost function can be simplified to ‖(I − P )XD‖2

F .
However, for higher-order tensors, we cannot simplify the cost function.

Since there is no way to solve (5) directly, we exploit alternating least square
(ALS) strategy in a similar way to MPCA. In each step, for each mode i =
1, 2, . . . , N , we solve the problem (5) for the matrix of the mode i (Pi or Di),
while fixing the matrices of the other modes j �= i. We consider two sub-problems
that are the cases i ∈ A and i ∈ B.

i) The case of i ∈ A. We obtain optimal Pi while fixing all the other matrices
Dj and Pj , j �= i. Then the sub-problem is

minimize
Pi

f3(Pi) = ‖Fi − PiZi‖2
F , subject to rank(Pi) = ri, (6)

where Fi = Unfoldi(
∏

j∈B X ×j Dj). and Zi = Unfoldi(
∏

k∈B{
∏

j∈A,j �=i(X ×j

Pj) ×k Dk}). Let RFZ = FiZ
�
i and RZ = ZiZ

�
i . Then f3(Pi) can be trans-

formed to f3(Pi) = ‖Fi − PiZi‖2
F = ‖PiR

1/2
Z − RFZR

−�/2
Z ‖2

F + ‖Fi‖2
F , where

R
1/2
Z is one of matrices that satisfies RZ = R

1/2
Z R

�/2
Z . From the Schmidt approx-

imation theorem (also called the Eckart-Young theorem), f3(Pi) is minimized
when PiR

1/2
Z =

∑ri

i=1 uju
�
j RFZR

−�/2
Z where uj is the eigenvector correspond-

ing to the jth largest eigenvalue of RFZR−1
Z R�

FZ . Hence f3(Pi) is minimized
by

Pi =
ri∑

j=1

uju
�
j RFZR−1

Z . (7)

If all Di = I (in the case of MPCA), all column vectors of Z are projections of
corresponding column vectors of F . Hence, Pi becomes also projection matrix,
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and there exists a partial unitary matrix V that satisfies Pi = V V � and V �V =
I (V is not unique). In the case of Di �= I, Pi in eq. (7) is not a projector any
more, therefore, we should consider LMSE criterion but not maximum variance
criterion under the unitary constraint. In the right hand side of eq. (7), the first
factor (matrix U) is the partial unitary that pulls back a vector from R

ri to
R

Li . The essential feature extraction is done in the second factor represented by
U�RFZR−1

Z . We utilize this factor as the feature extractor in a similar way as
was used V � in the standard MPCA.

ii) The case of i ∈ B. In the case of i ∈ B, the problem is reduced to following
optimization sub-problem,

minimize
Di

f4(Di) = ‖Di(Fi − Zi)‖2
F = ‖DiGi‖2

F ,

subject to
Li∑

j=1

di
j

2
= Li, 0 ≤ li ≤ di

j ≤ ui, for j = 1, . . . , Li,
(8)

where Fi = Unfoldi(
∏

j∈B,j �=i X ×j Dj), Zi = Unfoldi(
∏

k∈B,k �=i{
∏

j∈A(X ×j

Qj) ×k Dk}), Gi = Fi − Zi, Di = diag(di
1, d

i
2, . . . , d

i
Li

).
Let gj be the jth row vector of Gi ( Gi = [g1, g2, . . . , gLi ]�) and h =

[‖g1‖2, ‖g2‖2, . . . , ‖gLi‖2]�. f4(Di) can be rewritten to ‖DiGi‖2
F =

∑Li

j=1 di
j
2

‖gi‖2 = d�h, where d = [di
1
2
, di

2
2
, . . . , di

Li

2]�. Let 1Li be the Li-dimension vec-
tor whose elements are one (1Li = [1, 1, . . . , 1]�), C = [1Li| − 1Li|ILi | − ILi ]�,
and r = [Li,−Li|ui · 1�

Li
| − li · 1�

Li
]�. From these definitions, the minimiza-

tion problem (8) can be formulated as the standard linear programming (LP)
problem,

minimize
d

d�h, subject to Cd ≤ r. (9)

The problem can be solved by existing algorithms such as simplex method.
The ALS procedure monotonically decreases the cost function of (5), and

leads to a local minimum solution. Initialization for Pi and Di is also important
problem. For Pi, initialization by identity matrix (Pi = I) or simple PCA of
the unfolding matrix X(i) are feasible. For Di, initialization by identity matrix
(Di = I) is feasible.

The pseudo-code of the final procedure is presented Algorithm 1.

3 Experiment

We used EEG data containing two classes: right hand and right foot motor-
imageries. They were provided by Fraunhofer FIRST (Intelligent Data Analysis
Group) and Campus Benjamin Franklin of the Charité - University Medicine
Berlin (Department of Neurology, Neurophysics Group) [6]. The EEG signals
were recorded from five subjects. 118 EEG channels are measured at positions
of the extended international 10/20-system (Nch = 118). Signals were band-pass
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Algorithm 1. Tensor based feature extraction/sample weighting

Input: X
Parameter: ra , lb and ub (a ∈ A, b ∈ B)

Output: Pa, Db (a ∈ A, b ∈ B)

Initialization: Pa (∀a ∈ A): identity matrix or simple PCA, Db (∀b ∈ B): identity

matrix, k = 0: no. of iteration.

calculate initial cost L0 from the cost function f2.

repeat
k ← k + 1

for all a ∈ A do
Update Pa by eq. (7).

end for
for all b ∈ B do

Update Db by solving linear programming (9).

end for
Calculate cost Lk from the cost function f2.

until (Lk−1 − Lk) is sufficiently small.

filtered between 0.05–200 Hz and then digitized at 1000 Hz with 16 bit (0.1 μV).
During each experiment, the subject was given visual cues that indicated for 3.5
seconds which of the three motor imagery should be performed: left hand, right
hand, and right foot. The resting interval between two trials was randomized
from 1.75–2.25 seconds. Only EEG trials for right hand and right foot were
provided. Each class of EEG signals consists of 140 trials (Ntr = 2×140 = 280).
We used pre-processed EEG data that were down-sampled to 100 Hz, and we
applied a band-pass filter between 5-45 Hz.

The data is described in a three-mode tensor. Three modes represent time,
channel, and trial. The data tensor X is in R

T×Nch×Ntr . In order to remove phase
component, we applied the Fourier transform for mode 1, and took absolute
values. The transformed data is denoted by X̂ ∈ R

T/2×Nch×Ntr . Then we applied
our feature extraction and sample weighting method. The sets are A = {1, 2}
and B = {3}, i.e., features with respect to frequency and channels are extracted
and samples with respect to trials are weighted simultaneously. Our method
outputs three matrices P1, P2 and D3. As we mentioned, we utilize only a part,
U�RFZR−1

Z in eq. (7). We denote the parts of P1 and P2 by U1 ∈ R
r1×T/2 and

U2 ∈ R
r2×Nch respectively. We used data of both two classes for this procedure.

As a reference, the common spatial pattern (CSP) method is usually used
since it is the basic tool for classification of EEG signals for M-I-BCI paradigms
[5]. Since CSP is the technique for time-domain signals we use the data X̂ instead
of X̂ . Each row vector of U1 represents a frequency filter. Therefore, we applied
these frequency filters for all fibers of mode 1. Note that since this frequency fil-
ter is FIR filter, it is relatively easy to apply to real time streaming signals. We
denoted the filtered signal of the ith row of U1 by X̃i (i = 1, . . . , r1). Then, we
applied the feature extraction for channels (X̃i ×2 U2). Finally, by fixing mode 3
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Table 1. Classification accuracies [%] and standard deviation of BCI benchmark over

five-fold CV

Accuracies and standard deviations Optimal parameters

Subj. Proposed CSP PCA + CSP r1 r2 u/l r (PCA+CSP)

aa 72.14 ± 6.75 52.14 ± 2.93 61.07 ± 5.98 7 20 1.1 20

al 86.79 ± 5.14 73.93 ± 4.11 80.71 ± 4.62 1 25 2.5 20

av 59.64 ± 4.66 52.86 ± 4.82 57.86 ± 2.04 5 20 3.5 25

aw 65.71 ± 4.26 59.64 ± 2.70 61.79 ± 9.99 2 50 4.0 20

ay 79.64 ± 6.00 55.36 ± 5.05 78.93 ± 3.66 2 20 1.5 20

Total 72.79 ± 11.04 58.79 ± 8.97 68.07 ± 11.27

(trial) to n, we obtained a matrix, X(i,n) ∈ R
T×r2 (n = 1, . . . , Ntr, i = 1, . . . , r1).

By rearranging matrices, we have Xn = [X(1,n)|X(2,n)| · · · |X(r1,n)] ∈ R
T×(r1r2).

We denote the two-classes labeled training sets by X1
n1

and X2
n2

, and cor-
responding weight by d

(1)
n1 and d

(2)
n2 that are corresponding diagonal elements of

the weight matrix D3 (n1 = 1, . . . , N1, n2 = 1, . . . , N2).
The standard CSP utilizes variance-covariance matrix of the data. To make

fair comparison, we exploited the weight matrix D3 to extend the CSP to
weighted CSP using weighted variance-covariance matrix,

Σc =
Nc∑

n=1

(d(c)
n )2(Xc

n)�Xc
n, c = 1, 2, (10)

Σc ∈ R
(r1r2)×(r1r2). The weight vectors of CSP maximizes the Fisher’s criterion,

(w�
c Σcwc)/(w�

c (Σ1 + Σ2)wc) for c = 1, 2. Testing data X ∈ R
T×(r1r2) is

classified the class, such that ‖Xwc‖ is larger.
We conducted five-fold cross validation (CV). The data set was divided into

five subsets, and four subsets are used for training (both feature extraction/
sample weighting and CSP), and remaining one is used for testing. The opti-
mal parameter is chosen for each subject (the parameters are the same among
CV). We compared three methods; our method, standard CSP, and PCA+CSP.
For our method, we gave the one parameter u/l for upper and lower bound of
the linear programming. Table 1 shows the classification accuracies, standard
deviations, and the optimal parameters.

The proposed method outperforms standard CSP and CSP with PCA for all
subjects in the dataset. In case of u/l = 1, all training samples are handled
evenly. For subjects ‘aa’ and ‘ay’, smaller values of u/l resulted in better perfor-
mance. This means that EEG signals obtained from those subjects have fewer
outliers or noisy samples. In contrast, data of subjects ‘av’ and ‘aw’ have more
outliers.

We coded our algorithm in GNU Octave compiled with Intel Math Kernel
Library. GLPK was used for linear programming. For one CV, our algorithm
takes 50 sec. to obtain U1, U2 and D3 (four iterations), 17 sec. to obtain Xn on
a PC that has Intel Core i7 2.8GHZ CPU.
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As we discussed in the above sections, the feature extractor of the mode 1,
P1, works as a FIR filter. Even though the extractor does not only result with
positive values, we consider the lager magnitude elements of P1 to represent
important feature for classification since the effect of the negative sign vanishes
in eq. (10). We believe that still a detailed study and alternative methods such as
non-negative matrix factorization (NMF) should be discussed in future research.

4 Conclusions

We proposed the extension of the Multilinear PCA method for the classifica-
tion of EEG signals in application to the motor-imagery-paradigm. The main
contribution of the technique is to incorporate the weighting of tensor samples
and to convert the problem to the standard linear programming. The included
in the paper simulation results are very promising since we have achieved a con-
siderable improvement of classification performance of the benchmark BCI EEG
data with motor-imagery-paradigm (right hand and foot movements) for five
subjects. We expect to achieve further improvements by further application of
time-frequency EEG preprocessing techniques as well 4D or 5D Tucker models
with various constraints.

References

1. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix Factorization

and Tensor Factorizations. John Wiley and Sons, Chichester (2009)

2. Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: MPCA: Multilinear principal com-

ponent analysis of tensor objects. IEEE Trans. Neural Network 19(1), 18–39 (2008)

3. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decom-

position. SIAM Journal of Matrix Analysis and Application 21(4), 1253–1278 (2001)

4. Phan, A.H., Cichocki, A.: Tensor Decompositions for Feature Extraction and Clas-

sification of High Dimensional Datasets. IEICE NOLTA E93-N(10) (October 2010)

5. Ramoser, H., Mueller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of sin-

gle trial EEG during imagined hand movement. IEEE Trans. Rehabilitation Engi-

neering 8(4), 441–446 (2000)

6. Dornhege, G., Blankertz, B., Curio, G., Müller, K.-R.: Boosting bit rates in non-

invasive EEG single-trial classifications by feature combination and multiclass

paradigms. IEEE Trans. Biomedical Engineering 51(6), 993–1002 (2004)



A Tongue-Machine Interface: Detection of
Tongue Positions by Glossokinetic Potentials

Yunjun Nam1, Qibin Zhao2, Andrzej Cichocki2, and Seungjin Choi1,3,4

1 School of Interdisciplinary Bioscience and Bioengineering

Pohang University of Science and Technology

San 31 Hyoja-dong, Nam-gu, Pohang 790-784, Korea

druid@postech.ac.kr
2 Lab for Advanced Brain Signal Processing

Brain Science Institute, RIKEN

2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan

{qbzhao,a.cichocki}@brain.riken.jp
3 Department of Computer Science

4 Division of IT Convergence Engineering

Pohang University of Science and Technology

San 31 Hyoja-dong, Nam-gu, Pohang 790-784, Korea

seungjin@postech.ac.kr

Abstract. Artifacts are electrical activities that are detected along the

scalp by an electroencephalography (EEG) but that originate from non-

cerebral origin, which often need to be eliminated before further pro-

cessing of EEG signals. Glossokinetic potentials are artifacts related to

tongue movements. In this paper we use these glossokinetic artifacts (in-

stead of eliminating them) to automatically detect and classify tongue

positions, which is important in developing a tongue-machine interface.

We observe that with a specific selection of a few electrode positions,

glossokinetic potentials show contralateral patterns, so that the magni-

tude of potentials is linearly proportional to the tongue positions flicking

at the left to the right inside of cheek. We design a simple linear model

based on principal component analysis (PCA) to translate glossokinetic

potentials into tongue positions. Experiments on cursor control confirm

the validity of our method for tongue position detection using glossoki-

netic potentials.

1 Introduction

Various assistive technologies have been developed for persons with limb motor
disabilities, in order to help them to carry out daily tasks. Assistive devices are
controlled by detecting brain waves, muscle activities, eye positions, or tongue
motions. Tongue has recently been recognized as a promising man-machine in-
terface, due to several reasons [1,2]. A tongue is directly connected to a brain by
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cranial nerves and the distance from a brain is relatively short. A tongue gener-
ally escapes severe damage in spinal cord injuries and the last to be affected in
most neuromuscular degenerative disorders, such as amyotrophic lateral sclero-
sis (ALS). Furthermore a tongue consists of special muscles suitable for complex
vocalization and ingestion tasks, so it can move very quickly and accurately
and does not fatigue easily. Furthermore, tongue movements can be hidden by
a mouth cavity, and it brings a cosmetic advantage.

There are several tongue-operated assistive devices that utilize above advan-
tages, such as the Tongue Drive [2], inductive tongue computer interface (ITCI)
[3], Think-A-Move [4], Tongue-mouse [5], TongueTouchKeypad (TTK) [6], and
Tonguepoint [7]. In contrast to most of existing devices, we solely use glossoki-
netic artifacts recorded on a specific selection of electrodes by an EEG, in order
to detect and classify tongue positions which are allowed to flick at the left to
the right inside of cheek.

2 Glossokinetic Potentials

A glossokinetic artifact (GKA) [8,9] is a slow wave response caused by tongue
movements, which can be considered as of the major EEG artifact. As the cause
of the glossokinetic potential, the potential difference between the base and the
tip of the tongue was regarded as main reason for the phenomenon. The tip
of the tongue has a negative electrical charge with respect to the root, and if
the tongue touches a palate or a cheek, significant discharge that is detectable
at scalp, is generated [9]. However, Vanhatalo et al. [10] suggested that rear-
rangement of conduction pathway could be another origin of glossokinetic po-
tential. If a tongue touches a cheek or a palate, a new current pathway between
a ground and a reference is created, and then this conductive change could be
observed as the altered potential of EEG channels. They also reported that the
this kind of glossokinetic artifact can be removed by insulating surface of the
tongue [10].

During our extensive experiments for searching new tongue-related mental
tasks, we have found out that the glossokinetic potential (GKP) shows con-
tralateral patterns (we will call them as contralateral glossokinetic potentials),
when ground and reference electrodes are located along a longitudinal line of
the head, as illustrated in Fig. 1 (a). In other words, we observed that when the
tongue touches the cheek, DC levels of EEG signals recorded from two earlobes
move to opposite directions and its magnitude is linearly proportional to the
angle of the tongue as shown in Fig. 2.

It can be explained by resistance change caused by contact between a cheek
and a tongue (see Fig. 1 (b)). When tongue touches cheek, a new current path-
way is created and this pathway act as a variable resistance that can increase
or decrease DC levels of EEG signals. We analyze this difference to find con-
tact position of cheek and tongue, which also corresponds the direction of the
tongue.
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Fig. 1. (Left) Channel location for EEG recording. Signals are recorded from

temporal regions (F7/8, T7/8, P7/8 and left/ right ear lobes) for measuring contralat-

eral glossokinetic potential. Signals from left and right ear lobes are mainly used for

the analysis. However if the subject’s performance is not good enough, auxiliary chan-

nels have been also used for improving the performance. (Right) Circuit model for
GKP. The reference electrode was mounted on top of the head (Cz) and two coupled

ground electrodes were mounted on the forehead (AFz) and back of the head (POz).

EEG signals from left earlobe (or T7) and right earlobe (or T8) were also recorded.

If the tongue’s position is changed while maintaining contact with a cheek, the con-

ductive condition between the ground and the reference will be changed, and these

changes can be interpreted as a variable resistance between electrodes for generating

distinguishable signals to detect the tongue’s position.

3 Method

3.1 Contralateral Glossokinetic Potentials

To detect the tongue’s direction, we used potential difference between different
EEG channels recorded from left and right side of the head. EEG signals were
recorded using g.Tec system with 5 Ag/AgCl electrodes. The reference electrode
was mounted on top of the head (Cz) and two coupled ground electrodes were
mounted on the forehead (AFz) and back of the head (POz). Then the signals
from left earlobe and right earlobe were recorded. Instead of ear lobes, other
channels on temporal region such as T7 or T8 can be used, but pattern differences
are not as clear as using earlobes. We will denote signal from left earlobe as x1(t)
and signal from right earlobe as x2(t).

For validating the relationship between EEG signals and tongue’s direction,
we recorded EEG signals during real tongue movement from 2 healthy subjects.
The subjects are requested to move their tongue to the direction where the cue is
located while maintaining contact between tongue and cheek. At the beginning
of the each trial, the cue was appeared from right side, and move to left side
along the semicircle line. Then the cue was returned back to right side by same
path as shown in Fig. 2. Traveling from one side to other side took 6 seconds.

When tongue is moving from right side to left side, signal of x1(t) is decreased
while x2(t) is increased. In opposite, if the tongue is moving to right side x1(t)
is increased while x2(t) is decreased. These changes are almost linearly pro-
portional to the direction of tongue. Small fluctuations between each trials (on
17∼20, 32∼35 and so on) are caused by EOG (eye blinking).
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Fig. 2. (a) Visual cue, (b) x1(t) : Signal recorded on left side channel (Left
earlobe), (c) x2(t) : Signal recorded on right side channel (Right earlobe),
(d) Difference between x1(t) and x2(t), xd(t) = x1(t)−x2(t). EEG signals during

repetitive left-right side tongue movements. The subjects are requested to move their

tongues to the direction where the cue is located while maintaining contact between

tongue and cheek. At the beginning of each trial, the cue was appeared from right side

and move to left side along the semicircle line. Then the cue was returned back to right

side by same path. Traveling from one side to other side took 6 seconds.

From Fig. 2 (b), (c), we can see that the potential of each signal is gradually
decreasing. These patterns, can be considered as drift, is general characteristic of
electric sensors. The magnitude of EEG signal are evaluated by relative potential
difference between the channel, the reference and the ground. However, conduc-
tive properties of human body are unstable and such instabilities are observed
by drift, which is unwanted and unwarranted signal changes over time.

Although this artifact, the relation between tongue’s direction and difference
between x1(t) and x2(t) was significantly maintained, during the experiments.
We developed the model that can translate this potential difference to the di-
rection of the tongue for the novel human computer interface.

3.2 Tip for Experiments

The proposed paradigm exploits resistance change caused by contact between
two tissues: a tongue and a cheek, so property of tissue’s surface are important
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factor. At first, the humidity inside mouth is quite important. If inside mouth is
dry, the pattern change was insignificant. Otherwise inside mouth is filled with
water, the signals showed more significant potential difference (but we did not
use water during the experiment). Even though there is no water, the subject
could wet their tongue with their saliva for improving performance.

Moreover, we observed that contralateral patterns for GKP are similar to
electrooculogram (EOG) for horizontal eye-ball movements. So, we request to
the subjects not to move eyes for horizontal direction during the experiments.

3.3 Detection of Tongue Positions

Electrical conditions of body and skin could be varied over time, so amount
of difference between channels also could be changed. To build robust interface
system that can follow up this change, we applied short training procedure to the
interface. During the training phase, we recorded 3 kinds of signal for different
tongue’s position: left (L), front (F) and right (R). The length of each signal
was 4 seconds, so 12 seconds were required for recording entire training data
as shown in Fig. 3. By ignoring transition state between tasks, only the last 3
seconds of signals are considered.

As mentioned in previous section, potential difference between two channels
is linearly proportional to the direction of the tongue. To translate the potential
difference to the angle for tongue’s direction, we used simple linear model. At
first, each signal was low-pass filtered with cut-off frequency 4 Hz by using
butterworth filter (green line on Fig. 3 (a), (b) ) to avoid unstable fluctuation.
From the filtered signals, the features corresponding to potential difference were
obtained. Simple subtraction could be an acceptable choice, but for maximizing
discriminability, we applied principle component analysis (PCA)-based linear
filter. By using the PCA, we can find the vector ŵ that can maximize feature’s
temporal differences, as follows,

ŵ = arg max
w

w�XX�w, (1)

where X = [x(1), . . . , x(N)] and x = [x�
1 , x�

2 ]� and N is the time length of
EEG signals. X is EEG signals recorded during the left, front and right cues
of the training procedure. From the vector ŵ, we can calculate projected signal
z(t) = ŵ�X , as it illustrated on Fig. 3 (c). We can see that obtained feature is
increased whenever tongue is moved to next position on right side. If the vector
z(t) is segmented into zL(t), zF (t), zR(t), then we can obtain their mean values
μL, μF , μR.

The next step was translating obtained feature z(t) with range from μL to
μR, to corresponding angle θ(t) with range from −π/2 to π/2, as represented on
Fig. 3. (d). The value of θ(t) means the relative angle of tongue’s direction, when
the angles for positions L, F and R is fixed to −π/2, 0 and π/2. Since relations
between potential difference and corresponding angle are linearly proportional,
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Fig. 3. Training procedure. (a) Signal recorded on left side channel. (b)
Signal recorded on right side channel. (c) Obtained feature by PCA for
predicting tongue’s direction. (d) A color wheel for representing predicted
angles. (e) Linear model for translating potential difference to angle. Mea-

sured EEG signals (blue line on (a), (b)) are band-pass filtered (green line on (a), (b)).

Then feature values (c) are obtained by projecting the signals to the linear base from

PCA. The mean values of each time segment for left, front and right (μL, μF , μR) was

calculated. From these values, the linear model (e) that translates the feature value of

(c) to the tongue’s angle of (d) was generated. Newly obtained feature value on (c) was

translated to the angle on (e) with the same height.

if the new feature value is given by zt, its corresponding angle θt can be calculated
by

θt =

⎧⎨⎩
−π

2 · zt−μF

μL−μF
, (μL ≤ zt ≤ μF )

π
2 · zt−μF

μR−μF
, (μF ≤ zt < μR)

Error, etc.
(2)

4 Experiments

The following experiments were designed to evaluate the accuracy of the devel-
oped interface. Set of random angles were given to the subjects and the subjects
moved their tongue to match direction of the interface to the given cue as close
as possible. In Fig. 4, the given cue is plotted by blue line and the predicted an-
gel from the signal is plotted by green line. For each session, subjects repeated
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Table 1. Performance for the cue following experiment. The mean of absolute error

was measured for each trial.

1 2 3 4 5 6

Subject 1 20.4◦ 26.1◦ 13.4◦ 14.2◦ 14.3◦ 17.3◦

Subject 2 38.7◦ 48.8◦ 39.7◦ 43.1◦ 42.2◦ 42.1◦

training and testing procedure. As mentioned in the implementation section,
training procedure took about 12 seconds and testing procedure takes almost
40 second for testing 15 trials for different angles with 2.5 seconds of length.
To measure error of the interface, mean of absolute error between the cue and
the predicted result was measured for each session. The subject 1 was a trained
subject who has experiences for this interface, and the subject 2 was a näıve
subject with 3 hours of the instruction and practices procedure. As shown in Ta-
ble 1, the subject 2 showed worse performances than the subject 1. The subject
1 reported a few tips that can improve the performance, such as “Increase the
area of contacting surfaces.” or “Touch by upside of the tongue.”. However these
tips were not beneficial for the subject 2. We are assuming that individual phys-
iological conditions are related with these differences and personal adaptation is
required to guarantee the performance. Furthermore, during the experiment for
the subject 2, the severe drift was observed and the subject reported that the
direction of the interface is slowly biasing to the single direction. To eliminate
this interference, we reset the baselines of signals whenever trials are begun. We
are still working to find better experimental conditions and more sophisticated
model to solve above problems.
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Fig. 4. Results for cue following experiments

5 Conclusions

We have proposed a novel interface paradigm based on glossokinetic potential.
Until now, the glossokinetic artifact was a vague concept that includes all arti-
facts evoked by tongue-related tasks such as speaking, touching, licking or even
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swallowing. In this paper, we specified the contralateral glossokinetic potential
that means potential change triggered by contact between tongue and cheek. We
also showed that the patterns of GKP is linearly proportional to the tongue’s
direction with specific arrangement of EEG channels. This patterns can be used
for designing new interface that can input the angle by the tongue. We hope
that the interface has unique advantages over other tongue-based or EEG-based
interfaces. Unlike known tongue-based interfaces, the system is able to obtain
signals from outside of the mouth in completely noninvasive way, so it causes less
discomfort. The interface enables analog control like stirring wheel, because the
system uses subtle potential variations modulated by the tongue’s position. Our
future research topic is implementation of practical interface that can control
external devices by tongue movements while optimizing above advantages. We
already implemented this idea to control an electric wheelchair, but due to space
limit, this is out of the scope of this paper.
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Abstract. Real-time pattern classification of electromyogram (EMG)

signals is significant and useful for developing prosthetic limbs. However,

the existing approaches are not practical enough because of several limi-

tations in their usage, such as the large amount of data required to train

the classifier. Here, we introduce a method employing a selective desen-

sitization neural network (SDNN) to solve this problem. The proposed

approach can train the EMG classifier to perform various hand move-

ments by using a few data samples, which provides a highly practical

method for real-time EMG pattern classification.

Keywords: EMG Pattern Classification, Selective Desensitization Neu-

ral Network, Prosthetic Limb, Hand Movement Classification.

1 Introduction

Hands play an important role in our lives. The classification of hand movements
by using surface electromyogram (EMG) signals is an important research issue
in the development of prosthetic limbs. Although there is an extensive history of
research in this field, the real-time robust implementation of this methodology
is still practically very difficult [1,2]. First, because each hand movement is as-
sociated with multiple muscles, the surface EMG signal obtained from a sensor
is the superposition of all the signals obtained from the related muscle activity;
hence, complicating the correspondence relationship between movements and
signals. Second, surface EMG signals are not reproducible, because there is a
large difference between individuals, and even within a person the signals tend
to fluctuate on every trial. As a result, in order for the existing approaches to
work, the following conditions have been assumed:

– Collect sufficient data samples from the subject.
– Choose the number of sensors carefully in order to avoid redundancy, which

often causes harmful effects while learning the data.
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– Choose the positions of the sensors carefully.
– The subject needs to be trained in advance, so that he/she can deliver stable

EMG signals.
– Preprocess the obtained signals carefully, so that the data-learning algorithm

can produce a satisfactory EMG classifier.
– Extract suitable features from the data samples (for the same reason as

above).

All these requirements made the real-time EMG pattern classification practically
difficult to implement.

On the other hand, a selective desensitization neural network (SDNN) [3]
performs significantly better in approximating a wide range of functions by using
few training data samples. Therefore, in this paper, we will exploit the SDNN
for the classification of the surface EMG pattern. In particular, we will apply
this method to the problem of hand-movement classification, wherein real-time
performance is crucial, particularly for prosthetic limbs.

2 Research Background

2.1 Electromyogram

Muscle contraction is triggered by the excitement of muscle fibers, which is in-
voked by a signal from the alpha motor neurons in the spinal cord. The electrical
potential difference measured through the muscle contraction is called a myo-
genic potential, and its time-series signal is called an EMG. Since an EMG occurs
30–100 ms before the muscle contraction, it is considered theoretically possible
to estimate the occurrence of the corresponding bodily movement from the EMG
signals before the actual movement (muscle contraction) occurs.

For measuring the EMG signals, two types of electrodes can be used: needle
electrodes and surface electrodes. The needle electrodes target specific muscle
fibers and measure EMG signals with precision. However, they are accompanied
with a physical pain to the subject, because the needle has to be inserted into
the subject’s skin. On the other hand, in the case of surface electrodes, there is
little pain, as there is no needle insertion involved to measure the EMG signals.
Instead, the electrical potential measured by the surface electrodes is a sum-
mation of the local electrical potentials, which makes the exact estimation of
the corresponding bodily movement more difficult than that in the case of using
needle electrodes.

In this study, we will use surface electrodes, considering the advantage and to
try overcoming the disadvantage described above by introducing the SDNN.

2.2 Selective Desensitization Neural Network

The SDNN [3] is known to have overcome the several limitations of the multilayer
perceptron, and to ably approximate a wide range of functions by using few
training data samples. Here, we will be illustrating an example of approximating
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a function y = f(x) by employing the SDNN, given a continuous-valued input
vector x = (x1, . . . , xm), where m ≥ 2.

The input layer of the SDNN consists of m neuronal groups (G1
1, . . . , G

1
m).

Each group is composed of n neurons and represents an input variable xμ, i.e.,
the input variable is represented in a distributed manner by the activity patterns
of the neurons. Then, the middle layer of the SDNN consists of m(m−1) neuronal
groups G2

μ,ν (μ, ν = 1, . . . , m; μ �= ν). The neurons in G2
μ,ν are connected with

both the neurons in G1
μ and G1

ν (μ �= ν), in the input layer. This realizes a
procedure called desensitization, which neutralizes the output of the neuron
regardless of its input and inner potential. For example, if a neuron is configured
to output either 1 or −1 with equal probabilities as its default output, it will
output 0 in the case that the neuron is desensitized. Finally, the output layer
of the SDNN consists of n′ neurons, each of which is connected with all the
neurons in the middle layer. The output of the i-th neuron in the output layer
is calculated by

yi = g

( ∑
μ,ν( �=μ)

n∑
j=1

ωμ,ν
ij xμ,ν

j − hi

)
, (1)

where hi is a threshold, ωμ,ν
ij is a synaptic weight from the j-th neuron of G2

μ,ν

in the middle layer, and g(u) is the activation function, where g(u) = 1 for u > 0
and 0 for u ≤ 0.

Learning of this network is performed using a target vector p = (p1, . . . , pn′).
The threshold and the synaptic weights between the middle layer and the output
layer are specifically updated by

ωμ,ν
i,j ← ωμ,ν

i,j + c(pi − yi)x
μ,ν
j , (2)

hi ← hi − c(pi − yi), (3)

where c is a learning coefficient.

3 Methods

3.1 Signal Measurement

Personal-EMG (Oisaka Electronic Device Ltd. [4]) equipment is used to measure
the surface EMG signals. This can measure the integral of the EMG signal
(IEMG) and the original EMG at the same time. In this study, the EMG and
IEMG signals are sampled at 3 kHz by using a 12-bit A/D converter, and for
the classification of hand movements, an IEMG signal is used, which is low-pass
filtered with a cut-off frequency of 4.8 Hz.

Regarding the myoelectric sensors, we use 10 pairs of wet-electrodes, which are
pasted around the subject’s right arm (Fig. 1). The sensors target the following
six muscles: flexor carpi radialis, flexor digitorum profundus, flexor carpi ulnaris,
extensor digitorum, flexor carpi long radialis, brachioradialis, and biceps brachii
[5]. However, the sensors do not need to be positioned accurately.
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Fig. 1. Placement of wet electrodes

none A B

C D E F

Fig. 2. Seven categories to be classified

from the EMG signals [6]

3.2 Target Hand Movements

In this study, six hand movements (wrist flexion, wrist extension, grasping,
opening up, wrist supination, and wrist pronation) and no-movement condi-
tions are targeted for the classification. In the following sections, we denote the
no-movement condition by “basic position (none),” wrist flexion by “movement-
A,” wrist extension by “movement-B,” grasping by “movement-C,” opening up
by “movement-D,” wrist supination by “movement-E,” and wrist pronation by
“movement-F” (Fig. 2).

3.3 Preprocessing of IEMG Signals

Preprocessing is performed to handle the IEMG signals with the SDNN (Fig. 3).
First, each IEMG signal is normalized by the maximum value at each channel,
and the normalized IEMG signals are then normalized again by the maximum
value at each time step. Next, each IEMG channel is connected to a neuronal
group in the input layer of the SDNN, and each neuronal group is composed
of multiple neurons, as described in the previous section. In consequence, we
code the value of the IEMG signal so that only 50% of the neurons can be in a
continual excited state, and the pattern of excitement can depict the continuous
change in the IEMG value consecutively (Fig. 4).

3.4 Learning of the SDNN

The internal structure of the SDNN is shown in Fig. 5. In this study, the in-
put layer of the SDNN is composed of 360 neurons: 300 neurons for 10 IEMG
channels, 30 neurons for the total value of all the IEMG signals, and 30 neurons
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for the difference of the total IEMG value from a step in the past. There are
two middle layers composed of a total of 6600 neurons: in the first layer, half
of the neurons are desensitized by the corresponding neurons in the input layer,
except for the neurons representing the total value of the IEMG signals; and
in the second layer, the desensitization procedure is repeated by the neurons
representing the total value of the IEMG signals. The output layer is composed
of six neurons, each of which corresponds to the classifier of each movement.

In the learning cycle, we train the SDNN by supplying the preprocessed input
signals greater than the noise threshold and the target patterns representing
the corresponding movement. The synaptic weights from the middle layer to
the output layer and the thresholds in the output layer are specifically modified
according to Eqs. (2) and (3). Here, the training is repeated 10 times and the
learning coefficient c is set to 0.1.

3.5 Evaluation of Classification

In order to evaluate the classification ability of the proposed system after learn-
ing, we define a classification rate for each movement as follows. First, a test
data sample is fed into the system and movement detection is performed in
every frame. Second, if any movement has been detected more than six times,
the test data sample is classified into the movement detected most frequently;
otherwise, it is classified into “none”. Third, we judge whether the classification
is correct or not. For example, the classification is regarded as correct if the
classified movement is the same as that corresponding to the test data sample.
Finally, we apply this procedure to all the test data samples corresponding to the
same movement, and then calculate the classification rate as a percentage of the
number of correct classifications to the total number of the test data samples.
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Channel 1

Channel 2

Channel 10

Difference

Total Value

Movement-A

Movement-B

Movement-F

Fig. 5. Structure of SDNN

4 Experiment

To collect the IEMG data, five male subjects are asked to execute one movement
for 2 s and repeat all the six movements (Fig. 2), three times in the same order
in a session. The session is repeated nine times, which provides the total number
of data samples.

After the measurement, a cross validation is performed to calculate the fi-
nal classification rate: (1) pick up one session data (which contains three data
samples for every movement) to train the SDNN whose classification rates are
calculated by using the other eight session data as test data, (2) repeat it by
changing the training data samples for all combinations, and (3) compute the
total average as the final classification rate.

Figure 6 shows an example of the IEMG signals obtained from one subject
when the subject performs the six movements. Each line corresponds to the
signal from a channel, and each shaded box represents the movement that is
labeled. From this figure, it can be seen that the signals are very unstable and
fluctuate at every trial.

Figure 7 plots the final classification rate for each movement of each subject.
The average classification rates over the six movement categories are (s1) 86.73%,
(s2) 100.00%, (s3) 92.44%, (s4) 97.15%, and (s5) 100.00%. The total average
classification rate over the five subjects and the six movements is 95.26%.

Figure 8 shows an example of the total value of the IEMG signals together
with the outputs (classified movements) of six neurons in the output layer of the
SDNN. The shaded regions represent the movements classified by the SDNN.
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Each classification is computed together with an increase in the total IEMG
value, implying that the real-time classification is achieved (see the video at [7]).

5 Conclusion

By introducing the SDNN into the pattern classifier, the real-time pattern clas-
sification of multiple hand movements was presented. The experimental results
from the five human subjects showed that only three training data samples for
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each movement are sufficient for the proposed system to output a classification
accuracy of >95% (average) for the six targeted hand movements. This approach
is considered to be more practical than the existing methods for the following
reasons:

– It does not require large number of training data samples to obtain a good
classifier.

– It does not require the user to position sensors on optimal locations.
– It does not require complicated preprocessing of the signal data.
– It does not require the subject to be trained or to be given detailed instruc-

tions in advance.

Future work includes more detailed analyses on both the number of training
data samples and sensors. Furthermore, because the SDNN exhibits high perfor-
mance in approximating a wide range of functions, it is considered to be able not
only to classify the categories of movements but also to estimate the speed/force
of each movement.
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with Error Potential-Based Error Correction for

Improving P300 Speller Performance

Hiromu Takahashi, Tomohiro Yoshikawa, and Takeshi Furuhashi

Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Abstract. The P300 speller allows users to select letters just by thoughts.

However, due to the low signal-to-noise ratio of the P300 response, signal

averaging is often performed, which improves the spelling accuracy but

degrades the spelling speed. The authors have proposed reliability-based
automatic repeat request (RB-ARQ) to ease this problem. RB-ARQ could

be enhanced when it is combined with the error correction based on

the error-related potentials. This paper presents how to combine both

methods and how to optimize parameters to maximize the performance

of the P300 speller. The result shows that the performance was improved

by 40 percent on average.

Keywords: Brain-computer interface, P300 speller, automatic repeat

request, error-related potential.

1 Introduction

Brain-computer interfaces (BCIs) are promising technologies to restore control
and communication to severely paralyzed people, and appealing to healthy peo-
ple as well [10]. The P300 speller is one of the BCI applications, which allows
users to select letters just by thoughts [5]. However, due to the low signal-to-
noise ratio of the P300 response, signal averaging is often performed, which
improves the spelling accuracy but degrades the spelling speed. The authors
have proposed reliability-based automatic repeat request (RB-ARQ) to ease this
problem [9], i.e., one can spell letters faster while the accuracy remains at a
high level. Meanwhile, it was reported that the error-related potentials (ErrPs)
elicited when a user notices some error could be used for error correction in BCIs
[6,3]. This suggests that RB-ARQ could be enhanced when combined with the
ErrP-based error correction (hereafter referred to as error correction).

In RB-ARQ, there is a trade-off between the accuracy and the speed, and they
are controllable by changing the threshold for the repeat requests; thus there
exists such a threshold that balances them and maximizes Utility [2], which is
a performance measure of the P300 speller calculated using the accuracy and
the speed. On the other hand, it was reported that higher accuracy of the fed
back results led to larger amplitude of ErrPs [6], which would result in a greater
discriminability of ErrPs and accordingly an even higher spelling accuracy in the
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P300 speller. Thus, such a threshold that maximizes the Utility when RB-ARQ is
solely applied does not always lead to the maximum Utility when combined with
the error correction. Meanwhile, Dal Seno et al. [3] conducted an on-line P300
speller experiment with the error correction. However, the relation between the
Utility and the performance measures for ErrPs detection, i.e., the true-positive
(TP) and true-negative (TN) rates, was not taken into account; thus, the TP
and TN rates were not necessarily tuned to maximize the Utility. Therefore, the
present study has three purposes: firstly to investigate the relation between the
spelling accuracy and the discriminability of ErrPs, secondly to show how to
tune the TP and TN rates to maximize the Utility, and lastly to evaluate the
combination of RB-ARQ with the error correction.

2 Methods

2.1 P300 Speller

This paper utilizes the P300 speller in the BCI2000 [8] with an interface as in
Fig. 1(a), which allows spelling a letter per trial. A trial proceeds as follows:
subjects are given 3 s to turn their gaze on the target letter, and then the
stimulus presentation, i.e., successive and random intensifications of each row
and column with a stimulus duration of 100 ms and an inter-stimulus interval
of 75 ms, follows. Subjects are instructed to count how many times the target
flashed. Only the EEG corresponding to the target should contain the P300
response. Each sequence consists of 12 flashes, i.e., 6 rows and 6 columns, and 5
sequences are repeated per letter. A result is presented for 1 s immediately after
the stimuli finishes as in Fig. 1(b), which enables seeing the result without gaze
shift whichever the target is. However, only in the first two experiments involving
subject A and B, a fixation point appeared at the center of the monitor after the
stimuli and it was replaced by the result 1 s later. Note that the white square
in the bottom left appears synchronously with the result presentation so that a
photo-sensor attached to the monitor can detect the exact timing of the result
presentation, which is delayed by roughly 30 ms due to a display lag. In addition,
a typical number of sequences per letter is 15; however it is set to be 5 to obtain
sufficient ErrP samples.

2.2 Proposed Method

Automatic repeat request (ARQ) is an error control scheme, in which the re-
ceiver asks the sender for re-transmission on error detection, and reliability-based
automatic repeat request (RB-ARQ) [9] is a variant of ARQ, which employs a
reliability of a classification result, i.e., the maximum posterior probability, as
the repeat criterion. Specifically, the stimulus presentation continues until the
maximum posterior probability λi, calculable after ith sequence, is larger than an
arbitrary threshold λ. A large threshold λ leads to a better accuracy p and more
sequences per letter, i.e., a longer trial duration d (see details in [9]). As a result,
RB-ARQ makes BCIs faster and more accurate than the standard averaging.
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(a) Stimulus presentation (b) Result presentation

Fig. 1. Illustration of the user interface used in this experiment

ErrP-based error correction rejects the selected letter on detection of ErrPs,
consequently the accuracy p can be improved. This paper proposes to combine
RB-ARQ with the error correction, in which the stimulus presentation continues
until the stopping criterion is satisfied, and the selected letter is rejected on
detection of ErrPs.

2.3 Performance Evaluation

The discriminability [4] defined in (1) is utilized to measure how separable the
ErrP and the non-ErrP are,

d′ = |μ0−μ1|
σ , (1)

where μ0, μ1, and σ respectively denote the mean discriminant score [7] of non-
ErrP, that of ErrP, and the standard deviation of them, in this paper.

The Utility [2] defined in (2) is used to evaluate the performance of the speller
because it is said to be a more practical measure than the popular information
transfer rate (ITR) [10],

U = (2p−1)
d log2(N − 1) , (2)

where N is the number of selectable letters, but U = 0 if p ≤ 0.5. RB-ARQ can
maximize U by adjusting the threshold λ, on which p and d depend. By contrast,
when the error correction is applied, the Utility becomes

U ′ = pc−(1−p)(1−e)
d log2(N − 1) , (3)

where e and c respectively denote the TP and TN rate, i.e., the probability of
correct classification of EEGs after erroneous result presentation and that after
correct result presentation, respectively; but U ′ = 0 if pc ≤ (1 − p)(1 − e).
Apparently U ′ is a function of p, e, and c.

2.4 Utility Maximization

Now let us consider how to maximize U ′. To this end, the receiver operating
characteristic (ROC) curve [4] is utilized, because p is thought to depend on e
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Fig. 2. ROC curves (thin lines), optimum e and c (filled circles) for Utility, and linear

interpolation of optimum points (thick line)

and c as described just bellow, but their mathematical relation is unknown. The
ROC curve is a plot of e versus 1− c, as the decision threshold for ErrPs varies.
It passes points of (0, 0) and (1, 1), and the greater d′ is, the more top left corner
it approaches; thus, e and c depend not only on the decision threshold but also
on d′, and on p assuming that d′ is proportional to p.

Certain p and d′ are obtained given a threshold λ in RB-ARQ, then let
gp(e, c) = 0 be the resultant ROC curve and fp(e, c) be the Utility function (3)
given p. Consequently, the maximization of U ′ given λ is expressed as follows:

max
(e,c)

fp(e, c) subject to gp(e, c) = 0 . (4)

The solution of (4), denoted by hp, yields a local maxima under a certain λ; thus,
the global maxima can be found by tuning λ. Figure 2 illustrates how to find h.5

and h.8 from a geometrical viewpoint, which tells that e and c are not always
equal in order to maximize the Utility. It is worth noting that hp converges to
(0, 0) and (1, 1) when p approaches 1 and 0, respectively, though ROC curves
in both cases are not plottable. Suppose h(e, c) = 0 denotes the curve that hp

moves along, then the polygonal line h̃(e, c) = 0 connecting {h0, h.5, h.8, h1} is
a underestimation of h(e, c) = 0. Therefore, in this paper, an arbitrary hp is
approximately obtained by an interpolation using h̃(e, c) = 0.

3 Experiment

3.1 Data Collection

Five male volunteer subjects: A, B, C, D, and E in their early 20’s participated
in this experiment. Their EEGs were recorded from Fz, C3, Cz, C4, and Pz
referenced to the linked-ears with the sampling rate of 1000 Hz using a Poly-
mate AP216 (DIGITEX LAB. CO., LTD, Tokyo, Japan). A session consisted of
spelling predetermined twenty target letters, or twenty trials, and each subject
performed eleven sessions. The results were selected independently from his or
her EEGs and presented except for the first session. Namely they were simply
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the same as the target with a given accuracy: p = 0.8 in a randomly chosen half
and p = 0.5 in the rest, to investigate the relation between the spelling accuracy
and the discriminability of ErrPs, which the users were not informed of.

3.2 Data Processing

In the off-line waveform analysis, their EEGs were down-sampled to 100 Hz
and filtered with a pass-band of 1 Hz to 10 Hz since both the P300 and the
ErrPs are relatively slow potential changes. The EEGs after the result presen-
tation were extracted with a time-window of 500 ms, and a threshold rejection
of ±50 μV was applied, not to include those contaminated by artifacts. In the
off-line classification analysis, the rejection was not applied, and the data were
further down-sampled to 20 Hz, and a time-window from 200 ms to 500 ms was
used. The linear discriminant analysis (LDA) was employed, and the classifier
was trained separately for each subject. The ten-fold cross validation [7] has been
performed to estimate the accuracy of ErrPs, i.e., e and c, and this procedure
was repeated with different decision thresholds to draw a ROC curve for each
subject. The P300 data were similarly collected except that a time-window of
650 ms was used instead. The datasets of the first two sessions were used to
train a classifier, which was different for each subject. The rest nine were used
for evaluation: successive three sessions were assumed to be a single session so
that the results could be comparable to the conventional studies. Hence, the
number of sequences was 15 and that of spelled letters was 60.

4 Results and Discussions

Figure 3 illustrates the grand average error-minus-correct difference waveforms
at Cz after the result presentation. This figure shows that the waveforms had
three peaks at roughly 200 ms, 290 ms, and 410 ms, respectively; and the 410-ms
component was observably larger at p = 0.8 than at p = 0.5. Taking the dis-
play lag of around 30 ms into account, the characteristics of these peaks are
consistent with [6]. Additionally, Fig. 4 shows the average discriminabilities cal-
culated by (1), telling that the discriminability was larger at p = 0.8; however,
they were not statistically significantly different at the significance level of 5%
(the p-value was 0.076), according to the paired t-test. Nonetheless, considering
the proportionality of the amplitude of ErrPs to the accuracy, shown by earlier
studies including [6], and the number of samples, we could conclude that the
discriminability d′ is also proportional to the accuracy p.

The spelling accuracies on the basis of the 15 sequences per trial for the
five subjects were 95.0%, 98.3%, 83.3%, 91.7%, and 91.7%, respectively; but
remember that these accuracies did not affect the result presentation. These
accuracies can compare with the result of the data set II of the BCI competition
III, where several competitors achieved the accuracy of over 90 percents [1]; thus,
the attained accuracies are satisfactory enough to proceed to a further analysis.

Figures 5(a) and 5(b) show the obtained ROC curves for subject B and
C, whose spelling accuracies were the best and the worst, respectively. Basic
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characteristics of these figures, e.g., g.8 = 0 approaches the (0, 1) point closer
than g.5 = 0, are in agreement with those of the expected figure as in Fig. 2.
Figures 6(a) and 6(b) show the performance curves of subject B and C, respec-
tively. Note that when RB-ARQ is applied, the number of sequences varies from
trial to trial, and the average number depends on the threshold λ; thus, such
a λi (i = 1, 2, . . . , 15) was set that the average became i. Also note that when
the error correction was applied, the Utility was calculated by using (3), where
approximate e and c obtained from the interpolation were used. Figures 6(a)
and 6(b) tell that the Utility reached the maximum at a certain average num-
ber of sequences, i.e., a certain threshold λi in the case of RB-ARQ, and that
the proposed combination yielded the best Utility in both cases. In addition,
when the Utility was maximized in the case of the combination, the accuracies
p were 78.3% and 71.7% for subject B and C, respectively, and the average over
all subjects was 80.0 ± 6.0%; thus, TP rate e and TF rate c for the maximum
Utility were tolerant of the approximation error caused by the interpolation.
Moreover, Fig. 7 shows the performance gain of each method from Averaging:
the gain was defined as the rate of increase of the maximum Utility obtained
by each method to that obtained by Averaging, assuming that in practice the
system operator would select the best performance in each method. This figure
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Fig. 7. Performance gain from Averaging

tells that RB-ARQ improved the Utility by 30% on average and the combination
further improved it by up to over 40% on average.

However, these results are conditional on the ROC curves estimated by the
cross-validations and on the classifier for the P300 trained using the datasets
recorded in the same day, also on the fact that the successive three sessions
were assumed to be a single session; thus, further analyses and experiments are
necessary before drawing a final conclusion.

5 Conclusion

This paper proposed to combine RB-ARQ with the ErrP-based error correction,
and showed how to tune the true-positive and true-negative rates of ErrP detec-
tion to maximize the performance of the P300 speller. To evaluate the proposed
method, this paper conducted the P300 speller experiment where five subjects
participated. The results showed that the discriminability of ErrPs was pro-
portional to the spelling accuracy, and that the proposed combination method
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yielded the best performance, which was greater than the standard averaging
by 40% on average. However, these results are conditional; therefore, further
analyses and experiments are necessary.
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Abstract. In this study we demonstrate how the combination of

Augmented-Reality (AR) techniques and an asynchronous P300-based

Brain-Computer Interface (BCI) can be used to control a robotic actua-

tor by thought. We show results of an experimental study which required

the users to move several objects placed on a desk by concentrating on

a specific object. Competitive communication speed of up to 5.9 correct

symbols per minute at a 100% accuracy level could be achieved for one

subject using an asynchronous paradigm which enables the user to start

communicating a command at an arbitrary time and thus mitigating the

drawbacks of the standard cue based P300 protcols.

Keywords: P300 BCI asynchronous speller augmented-reality robot.

1 Introduction

Recent years have brought up a tremendous growth of contributions to the field
of brain-computer interfaces (BCI). In general, BCI allow to infer mental com-
mands of the user by measuring their brain potentials with electroencephalogra-
phy (EEG). Such a system enables a direct communication between a computer
and the user without using any motor function as it is required for speaking,
eye-tracking or using a mouse or keyboard. Nowadays the application of BCIs,
once intended for people with severe motor disabilities , spans the full range of
medical to entertainment scenarios.

Two popular strategies are employed in modern BCIs which control artificial
actuators. As reviewed by [7], control strategies can be distinguished by Process
Control and Goal Selection (see figure 1). Thereby, process control strategies
aim at direct control of the available motors or muscles which result in an action
while goal selection approaches focus on recognizing the intent of a user. The
intent serves as input for an execution unit which translates it to a sequence of
motor actions. Obviously, the goal selection approach does not require the user
to achieve full control over the output device via brain signals. A rather simple
goal selection scheme would be sufficient which requires only a one dimensional
selection of a target symbol corresponding to the desired action while the process
control approach would require the user to be able to control at least 3 DOF
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Fig. 1. Depicted are the two main approaches when using BCIs to control a robotic

device. Process control establishes a closed feedback-loop between action and the brain

and offer full control over the robot. Goal selection approaches are easy to use since

actual motor control is delegated to autonomous subsystems.

to navigate freely in space. With goal selection approaches, actual control is
delegated to system subcomponents (e.g. robot controller) which do not require
control via higher cognitive functions. This reflects the normal output pathways
of the brain and its underlying systems for motor control. Thus, it can be stated
that goal selection approaches are currently the most natural way to control
robotic output devices by brain signals. A popular type of goal-selection BCIs is
the P300-Speller paradigm [2] which presents visual stimuli in rapid succession
and random order. The subjects are required to attend to a specific stimulus and
mentally count whenever the focused stimulus appears. The appearance rate of
this relevant stimulus is low compared to the other background stimuli. When-
ever the relevant stimulus appears, a positive deflection in the EEG occurring
at 300ms after stimulus onset can be observed. This component, called P300,
is utilized by P300 BCIs to predict the user’s selection. A drawback of most
goal-selection systems (primarily P300-based BCIs) is the assumption that the
user is trying to communicate with the BCI at all times. While this assumption
makes it possible to easily implement the selection method via visual or auditive
cues that signal the start of a selection round (i.e. trial), it is an unreasonable
constraint for a practical application. Even though P300-based BCI require ex-
ternal stimulation, and thus are reliant on cues to some degree, it is possible
to omit the trial-based nature of these paradigms. A system which is able to
continuously present stimuli and detect whether a user is currently trying to
communicate with the system is considered an asynchronous BCI. Operating in
an asynchronous mode is vital for any practical application involving control of
robotic actuators since it allows to intervene or start communicating with the
system at any time.

Recent research has brought up new methods for stimulus dependent BCIs to
achieve this kind of behavior. In [6] the control of a wheelchair is realized by using
buttons on a screen as selection targets for a P300 BCI. Each button is associated
with a preprogrammed path the wheelchair should take. Their system features
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Fig. 2. Scene setup with robot arm and marker objects. (a) Scene as viewed through

the HMD during the pickup task. (b) Scene during the placement task.

an asynchronous protocol that allows the subject to issue commands at any time.
Similar work related to the detection of no-control states has been presented by
[8]. Instead of exploiting the distribution of class scores, they proposed a method
which computes a probabilistic model of EEG data during no-control periods.

In this paper we present an asynchronous P300 BCI designed to grasp and
place arbitrary objects using a robot arm with an attached gripper. A method
to dynamically adapt the stimulus content which represents the physical scene
in front of the subject using augmented-reality techniques will be described.
Further, an extended version of the asynchronous protocol as presented by [6]
will be evaluated. A preliminary study with 4 healthy subjects was conducted
to test the usability of the system.

2 Augmented-Reality BCI Design

The BCI setup consists of a Kuka robot arm with an attached Schunk SDH-1
gripper, a stereoscopic video see-through head-mounted display (HMD) with two
integrated firewire cameras and a g.tec gUSBAmp 16 channel EEG amplifier.
Five plastic cubes with attached markers on the upper side were placed on a
desk. When the scene is observed through the HMD, 3D models of numbers are
augmented on top of these cubes as seen in figure 2. The markers are special 2D
bar code images which code a unique number. These bar codes are recognized by
the vision component of the BCI system. Interaction with the scene is a two-step
process consisting of an object pickup and and object placement task.
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2.1 Experimental Protocol

The selection of an object is achieved by flashing up all numbers one-by-one in
random order (Fig. 2 (a)) while the user mentally counts whenever the desired
object flashes. At the beginning of each flash a short EEG time window (epoch)
of 700ms is extracted and passed to the classification method. An object is se-
lected when the classification method reports sufficient confidence in the current
prediction. On a successful classification, the 3D coordinates and orientation of
the object are extracted using the available methods of ARToolkit [4]. Since
the extracted coordinates are relative to the camera position but are required
to conform with the robots coordinate frame, a special reference marker with
known coordinates in the robot frame is used to calculate the objects position
relative to the reference marker. This step is necessary since the camera position
(i.e. the head of the user) is not tracked. The extracted coordinates are sent to
the robot backend with the instruction to grasp the object. Placing an object
works in a similar way. After an object has been grasped, the reference marker
serves as the origin for a semi-transparent 8 × 8 chessboard model as shown in
Fig. 2 (b). Each cell of the board corresponds to a spatial location on the desk.
Selecting a location is done in the same way as in the well known P300-Speller
paradigm [2] by flashing up rows and columns in random order. The intersection
of the row and column with the highest classification score will correspond to
the selected grid cell.

3 Methods

The classification of epochs containing P300 event-related potentials requires
an initial training step in which EEG data of the user is collected. During the
training phase, the system starts in object selection mode and marks a random
cube by highlighting its associated stimulus in green for 3 seconds. The user is
advised to mentally count whenever this stimulus is flashed. The BCI then starts
to flash the stimuli in random order in a 200ms interval. After all stimuli have
been flashed 5 times, the BCI switches to grid mode and repeats the procedure
analogously. The flashing of all rows and columns are flashed in random order
once is repeated 5 times resulting in 80 stimulations per trial in this mode.

3.1 Data Acquisition

EEG data from the position 10-20 locations [3] O1, O2, Pz, P3, P4, Cz, C3, C4,
FCz, Fz, F3 and F4 were collected at 256Hz sampling rate using a 16-channel
gUSBAmp EEG amplifier with reference and ground electrodes attached to the
left and right mastoids. The derivation method was set to common reference
which measures the potential differences between the active and the reference
electrode. During the training phase, data of 20 stimulus presentation rounds
(trials) for each task (pickup/placement) were collected. All data were highpass
filtered to at 1Hz and subsequently downsampled by a factor of 16. No effort has
been made to remove eye blink and muscle artifacts from the training set.
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Fig. 3. Classification score distribution for P300 and non-P300 class

3.2 P300 Classification

Using the data obtained during the training phase, a two-class dataset contain-
ing both P300 (P+) and non-P300 (P−) time windows of 700ms (epochs) was
extracted. The set was balanced to contain an equal number of observation for
both classes. Each epoch was concatenated channel wise to form a single epoch
vector x. A Fisher Linear Discriminant classifier with regularized covariance
matrices was trained on these data by computing

w = S−1
W (μ+ − μ−) (1)

with Sw being the regularized within scatter matrix which is defined as the sum
of sample covariance matrices of both classes S+ +S−. The mean vectors of the
P300 class are represented by μ+ while the non-P300 means are represented by
μ−. A classification score is obtained by projecting an epoch vector x onto w
resulting in a scalar value. Positive values correspond to a P+ class assignment
while negative values are associated with the P− class.

3.3 Asynchronous Control for P300 BCIs

To mitigate the drawbacks of the trial based nature of classical P300 BCIs, we
developed a novel flexible method similar to [6] extending our previous work [5].
Classical P300 BCIs use a fixed number of stimulus presentation round to ac-
quire multiple EEG segments for each stimulus (epochs) which are subsequently
averaged to improve the signal-to-noise ratio for improved classification accu-
racy. Using this method, a cue (marking the start of a new trial) is required
that instructs the user to start focusing on the symbol she wants to select. In
contrast to the classical approach of using dedicated time intervals during which
data is collected for a classification, we are continuously presenting stimuli and
collecting EEG epochs for each stimulus. While the first approach can be consid-
ered as a batch method as it needs to acquire multiple EEG epochs and further
assumes that the subject is focused on the BCI, our new method is an online
method that successively adds EEG epochs and dynamically decides when to
output a classification. In that sense, our new method has two major advantages
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over the classical approach. Given a function P that measures the confidence
of a classification result based on n epochs, a trial can be ended whenever P
exceeds a certain threshold. As shown in [5] this can significantly reduce the
number of stimulus presentations. As a second advantage, our method does not
rely on the assumption that the subject is trying to communicate with the BCI
at all time and thus can be considered as an asynchronous BCI. We will show
that both problems of detecting no-control/intentional-control states of the sub-
ject and detection of the optimal number of subtrials are in fact closely related
problems which can be solved by computing a single metric based distribution
of classification scores.

Depicted in figure 3 is a simplified sketch where the points represent the
EEG data epochs which are being projected onto the weight vector w. These
scores will be interpreted as features and the gaussian PDF properties μ and
σ2 for both classes in the feature space are estimated from the training set.
In its simplest form, the method works by iteratively adding scores for each
corresponding target i to an observation vector xi. A subsequent two-sided z-
test is conducted with the H0 hypothesis that the observation mean xi is equal to
the P300 class mean μ+. A sequence of classification scores is considered reliable
whenever the z-test can not reject H0 at a given significance level. Using this
approach, the problem of finding the optimal number of stimulus presentations
is solved since with increasing subtrials xi will converge towards μ+ if i is the
attended symbol and towards μ− if i does not correspond to an attended symbol.
At the same time, the second problem of detecting no-control states is solved.
When the subject is not focusing on the BCI, it is unlikely that mean scores will
converge towards μ+ and thus all targets will be classified as P−.

More formally, the method utilizes the standardized z-statistic

z(x, μ, σ2) =
x− μ

σ2/
√

n
(2)

to estimate the observation mean value’s deviation from the true mean μ. A
decision function that determines the end of a trial can be formulated as

D(xi, α, μ, σ2) = P (z(xi, μ, σ2) ≤ zp=α|H0) < α (3)

with zp being the quantile function which can be derived by inversion of the
standard normal cumulative density function. This formulation allows to define
a confidence level α which can be used to tune the BCI for higher speed or higher
accuracy. With increasing α, the acceptance interval around the P+ mean is
getting smaller which in turn mean that fewer scores will be accepted for the
P+ class assignment. With very high confidence levels it is even possible that no
classification occurs at all. Thus, the general aim is to minimize false positives1

while keeping the acceptance rate at a reasonable level.

1 i.e. Labeling a sequence of classification score for one symbol as P300 epoch when it

is in fact belonging to the non-P300 class.
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4 Experimental Results

An experiment was conducted with 4 mixed male and female subjects with the
aim to evaluate the overall usability of the system and the feasibility of the
asynchronous protocol. The task for the subject was to move objects placed
in front of them to a different location on the table. Both, the object and the
target location were chosen by the subject. Whenever the robot picked up or
placed an object, the subject was asked to report on the correctness of the
robots action. The experiment ended when the subject successfully moved 10
objects to different locations which required 20 selection commands (i.e. 10 for
pickup and 10 for the placement task). The task performance was measured by
calculating the communication rate in correct symbols per minute, as well as
the overall accuracy. To evaluate the feasibility of the asynchronous protocol,
the subject’s focus had to be distracted from the BCI stimulus presentation.
For this reason, they were asked to fill out a short questionnaire and answer
to question of the experiment supervisor after the experiment ended. During
that time the BCI was still running and ready to receive commands. Further, to
evaluate how long the system takes to recognize that the subject is now actively
communicating with the system, one more object relocation had to be carried
out. Table 1 summarizes the number of wrongly conducted actions per minute
during questionnaire period as well as the time it took the system to recognize
a voluntary selection command of the user (i.e. time to active (TTA)).

Table 1. BCI performance achieved in the study. The measures accuracy (Acc.), cor-

rect symbols per minute (Sym./min), actions per minute during the no-control period

and time to active (TTA) are shown.

Pickup Task Placement Task No-Control Task
Subject Acc. Sym./min Acc. Sym./min Act./min TTA
S1 80% 3.3 (2:20) 70% 1.1 (6:30) 0.4 12s
S2 90% 2.3 (2:50) 70% 1.4 (5:00) 0.6 18s
S3 100% 5.9 (1:40) 90% 1.7 (5:50) 0.2 8s
S4 80% 2.3 (3:40) 60% 0.7 (8:20) 0.8 10s
Mean 87.5% 3.45 72.5% 1.23 0.5 12

5 Discussion

For the pickup task, promising accuracies of 80% up to 100% across all sub-
jects could be achieved. The communication speed is roughly between 2 and 3
symbols/min except for subject 3 who performed exceptionally well compared to
the other users. These values however dropped significantly during the placement
task. While the performance loss in terms of communcation speed was expected
since this task contains 64 stimuli in contrast to the 5 stimuli of the pickup task,
the accuracy loss is remarkable. We explain this loss of accuracy with the fact
that all subjects noted on the questionnaire that it is difficult to keep focused
on a specific grid cell due to their equal appearance. All of them remarked that
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during the training and online phase their attention slipped to adjacent cells
from time to time. One subject also noted that the cell he was focusing seemed
to visually fade when he was focusing it for a sustained time. Contrary, none
of the users had problems to stay focused during the pickup task which used
unique 3D models of numbers as stimuli. We assume that this issue could be
related to the rather poor performance of subject 4 during the placement task.
The evaluation of the asynchronous protocol shows an average misclassification
rate of 0.5 symbols per minute. For this experiment, the α value for the decision
function (Eq. 3) was set to 0.2 which seemed to be a reasonable tradeoff for speed
and accuracy. On average, our method achieves a false positive rate (FPR) of
0.5 symbols per minute which is comparable to the work of [8] with an FPR of
0.71. Similar to Zhang et al. the accuracy of the system can be optimized at
the cost of communication speed. The overall performance of the system is suffi-
cient for practical use (e.g. for motion impaired people). The current limitation
of marker based pose estimation can also be replaced by a more sophisticated
method using natural features [1]. Practical tasks could consist of picking up a
variety of objects like telephones, books or using a TV remote control. In the
near future, this method could also be extended to aid in hands-busy tasks for
healthy subjects as mentioned in [9].
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Abstract. This paper explores the use of recurrent neural networks in

the field of Brain Computer Interfaces(BCI). In particular it looks at a

recurrent neural network, an echostate network and a CasPer neural net-

work and attempts to use them to classify data from BCI competition

IIIs dataset IVa. In addition it proposes a new method, EchoCasPer,

which uses the CasPer training scheme in a recurrent neural network.

The results showed that temporal information existed within the BCI

data to be made use of, but further pre-processing and parameter explo-

ration was needed to reach competitive classification rates.

Keywords: BCI, RNN, CasPer, Echostate Network.

1 Introduction

Brain Computer Interfaces (BCI) is attempts to use the brain as a control device
for a computer. Long term, BCIs have potential commercial application due to
their nature as a new mode of control for computers. Given sufficient reliability
they would allow the control of electronic devices with just a thought! More
immediately, Brain Computer Interfaces can be used to improve the quality of
life of patients suffering from advanced Amyotrophic Lateral Sclerosis (ALS).
Patients with advanced ALS suffer from complete paralysis while still receiving
information from the environment and having active brains. A BCI would allow
such people to communicate, as well as potentially control entire devices.

This paper investigates various classifiers that take advantage of the time
series nature of the EEG data, and the temporal information that should be
contained within it. In particular it will investigate various recurrent neural net-
works, which have typically been successful in exploiting temporal information.

2 Classifiers

Four different classification methods were used. A Recurrent Neural Network,
trained using the Backpropogation Through Time(BPTT) initially proposed by
[1]. An Echostate Network, based on the work of [2], [3]. Thirdly a CasPer Neural
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Fig. 1. Topography of a RNN with 4 Input neurons, 2 Hidden neurons and a single

Output neuron

Network, following the design proposed in [4],[5]. Finally a new, hybrid exten-
sion of the CasPer neural network, EchoCasPer Neural Network, was designed
to extend the principles behind the training of the CasPer neural network to
a network whose structure could take advantage of the temporal information
inherent in time series data.

2.1 Recurrent Neural Network

The RNN has three sets of neurons, Input (I), Hidden (H) and a single Output
neuron (Fig. 1 shows the topography). The following weight matrices define the
connections between these layers.

– Input to Hidden neurons: a I × H matrix Win
– Hidden to Hidden neurons: a H × H matrix Wnext
– Input and Hidden to Output neurons: a (I + H) × 1 matrix Wout
– Output neurons to Hidden neurons: a 1 × H matrix Wback

Using these weight matrices, the activation functions were defined as follows:

h(t + 1) = tanh(u(t + 1) × Win + h(t) × Wnext + o(t) × Wback) (1)

o(t + 1) = [u(t + 1), h(t + 1)] × Wout (2)

To train the RNN the activation function is used to calculate the value of each
hidden neuron and each output neuron at all times t. The error of the output
neurons γ and hidden neurons δ are calculated for the last time step by:

γ(t) = class(t) − o(t) (3)

δ(t) = (1 − h(t)2) × γ(t) × Wout (4)
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The errors of each previous time step are then calculated by:

γ(t) = class(t) − o(t) +
∑

h(t + 1) × Wback (5)

δ(t) = (1 − h(t)2) × γ(t) × Wout +
∑

h(t + 1) × Wback (6)

Finally the weights are updated by these error values using:

Wini,j+ = l
T∑

t=0

δi(t) × Ij(t) (7)

Wouti+ = l
T∑

t=0

γ(t) × hi(t) (8)

Wnexti+ = l

T−1∑
t=0

o(t) × δi(t + 1) (9)

Wbacki,j+ = l

T−1∑
t=0

δj(t + 1) × hi(t) (10)

Where l is the learning rate. To classify using a trained RNN, the error between
each individual class is calculated by

error(class) =
T∑

t=0

(class − o(t))2 (11)

and the smallest is selected.

2.2 Echostate Network

The Echostate Network topography is the same as that of the RNN, see Fig. 1.
As such the activation function and weights can be defined by equations 1 and
2. To ensure the echostate property[6], after initialising the weight matrices,

Wnext =
Wnext

λmax
(12)

Wnext = Wnext × α (13)

where λmax is the maximum absolute eigenvalue of Wnext and α is a value be-
tween 0 and 1 which governs the speed of attenuation within the hidden neurons.

To train the Echostate Network, BPTT is again used to calculate the error of
each output neuron and each element of the hidden layer as per equations 3 to
6. The weights are then updated as follows:

Wini,j+ = l

T∑
t=0

δi(t) × Ij(t) (14)
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Fig. 2. Topography of a CasPer Neural Network with 4 Input neurons, 2 Hidden neu-

rons and a single Output neuron

Wouti+ = l

T∑
t=0

γ(t) × hi(t) (15)

Notice that the weights connecting the hidden layer remain fixed. Once again clas-
sification is done by calculating the error for each individual class by equation 11.

2.3 CasPer Neural Network

A full description of the CasPer Neural Network training method can be seen
in [4]. The topography of a CasPer Neural Network is shown in in Fig. 2. The
hypobolic tangent function was used as the activation function for neurons within
the CasPer Neural Network. The classification is done by calculating the error
for each individual class and selecting the minimum by:

error(class) = (class − o)2 (16)

2.4 EchoCasPer Neural Network

The topography of the EchoCasPer Neural Network can be seen in Fig. 3. It
consists of Input(I), Hidden(H), Casper(C) Neurons and an Output Neuron,
(Fig. 3 shows an example topography). The connections are defined by the weight
matrices:

– Input layer to the Reservoir: I × R matrix Win
– Reservoir to itself: R × R matrix Wnext
– To ith neuron of the CasPer layer: (I + R + i) × 1 matrix Wi
– To the Output neuron: (I + R + C) × O matrix Wout

The Wnext matrix has the Echostate property enforced on it as in the Echostate
Network section. The activation functions are defined for each time t by:

r(t + 1) = tanh((r)(t) × Wnext + (u)(t + 1) × Win) (17)
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Fig. 3. Topography of a EchoCasPer Neural Network with 4 Input neurons, 2 Hidden

neurons, 2 CasPer layer Neuron and a single Output neuron

ci(t + 1) = tanh([(u)(t + 1), r(t + 1), c1(t + 1)...ci−1(t + 1)] × Wi) (18)

o(t + 1) = ([(u)(t + 1), r(t + 1), c(t + 1)] × Wout) (19)

The training takes place in a series of iterations equal to C. At the beginning
of each iteration the weight matrices need to be updated for the new neuron.
Wi needs to be initialised, and a new column needs to be added to Wout.
Additionally, matrices of learning rates, L1, L2 and L3 need to be assigned to
each weight going to and from the neurons in the CasPer layer. The weights in
the reservoir are not adaptable. The learning rates should be defined so that
L1 > L2 >> L3.

All weights going to into the newly added neuron should be given a learning
rate of L1 so that they adapt the fastest. Weights going from the newly added
neuron to the output layer should be given a learning rate of L2. All other
weights going to and from neurons in the CasPer or output layer should be
given a learning rate of L3 so that the weights are mostly fixed.

Once the network is set up for the next set of training, it is trained to within a
level of convergence using a backpropagation through time algorithm (BPTT).
This is done by first running the EchoCasPer network for a training data for
n time iterations, collecting the activations of the neurons at each time period.
The errors for the CasPer layer(δ), Output Layer (γ) neurons are given by:

γ(t) = class − o(t) (20)

δi(t) = (1 − ci(t)) × γ(t) × WoutI+R+i +
C∑

m=i

δm(t) × Wmi (21)

Using the calculated errors the weights can be updated for each time step using
the appropriate learning rates by:
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Wout+ =
T∑

t=0

gradout[u(t), h(t), c(t)] × γ(t) − sign(Wout)Wout2e−0.01it (22)

Wi+ =
T∑

t=0

gradi[u(t), h(t), c1(t)..ci(t)] × δi(t) − sign(W)W2e−0.01it (23)

Here the matrices grad and gradout contain the learning rates for the appropriate
weight. The final term in each of the above expression is a regularisation term,
used to prevent overfitting. Sign returns the sign of the passed number, so that
the regularisation is performed in the correct direction. The decay term is a
parameter that controls the amount of regularisation applied and it is the number
of iterations of training have passed since the last neuron was added.

Once the weights have been updated, the error is calculated and convergence
is checked. The convergence can be checked with:

0.01 <
Elast − Ecurr

Elast
× (15 + pnodes) (24)

Where p is an input parameter, increasing the steps trained before convergence
and nodes is the number of neurons currently inserted in the hidden layer of the
network. By having the convergence dependent on the number of neurons in the
network the neural network will train longer. After convergence is reached the
next neuron is added to the CasPer layer. Classification can be done once again
by equation 11.

3 Pre-processing

The data for each classifier was pre-processed using two pre-processing tech-
niques. Firstly the channels across the motor cortex were selected from the total
number of channels, using expert knowledge to determine the correct ones to
remove, reducing the number of channels to 43. Secondly a FIR filter was con-
structed to reduce frequencies outside of the beta (11 to 25Hz) rhythm as this
is the primary band in which responses to motor tasks occur.

4 Experiment

The dataset used in these tests comes from the the Brain Computer Interface
III, which is a competition that was held in association with Brain-Computer
Interface Technology: Third International Meeting of june 2005 [7]. The specific
dataset used was that of dataset IVa. This was provided by Fraunhofer FIRST,
Intelligent Data Analysis Group. The dataset is a two class classification prob-
lem, with varying amount of training data and induced noise.

The data was recorded by a 118 electrode EEG. Only the right foot and
right hand tasks were given as the training and test data for this classification
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Table 1. BCI Compeon III Dataset IVa

Subject Test Training Induced Noise

aa 168 112 yes

al 224 56 no

av 84 196 no

aw 56 224 yes

ay 28 252 no

problem. Each of the 5 subjects was broken into a separate test and training
datasets, with characteristics described in the below table.

After initial testings, the following parameters for the topography of each
network were used. The RNN had 7 Hidden Layer Neurons and a learning rate
of 0.01. The Echostate Network also had 7 Hidden Layer Neurons and a learning
rate of 0.01 with an alpha value of 0.5. The CasPer Neural Network had 5
Hidden Layer Neurons and values of 0.001, 0.0001 and 0.00001 for the learning
rates L1, L2 and L3 respectively. The EchoCasPer Network had 7 Hidden Layer
and 5 CasPer Layer Neurons, values of 0.1, 0.01 and 0.001 for L1, L2 and L3
respectively and finally an alpha value of Alpha.

Fig. 4. Average classification rates over all subjects

Fig. 4 shows the average results of each classifier, in addition to four of the
results of the best classifiers in the BCI competition. More details of their al-
gorithms can be found in [7],[8],[9]. It can be clearly seen that, of the designed
classifiers, the EchoCasPer Network performed the best, followed by the CasPer
Network. All of these results fell short of the literature classifiers.

5 Conclusion

Both the RNN and the echostate network performed relatively poorly. The
CasPer neural network was found to be significantly more successful than these
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two but fell short of the best literature classifiers. In addition, the large number
of inputs from the time series data resulted in extremely long training times,
which also limited the amount of fine tuning of the multiple parameters could
take place. The EchoCasPer network was designed as a way to allow the iterative
method of dynamically creating the topography of a neural network used by the
CasPer algorithm be used in a network that maintains a state. The resulting
network made use of a reservoir from the echostate network to store the state
while allowing a neural network to be built above it that preserved the CasPer
properties. The results on the dataset were close to the literature results, and so
shows promise if parameters and preprocessing methods are further fine-tuned.
Additionally the classification rate was a 5% improvement over the CasPer algo-
rithm. This implied that the EchoCasPer network was able to make use of some
of the temporal information in the resevoir so further investigation is warrented.
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Abstract. Our goal is to develop a novel BCI based on an eye move-

ments system employing EEG signals on-line. Most of the analysis on

EEG signals has been performed using ensemble averaging approaches.

However, in signal processing methods for BCI, raw EEG signals are

analyzed.

In order to process raw EEG signals, we used independent component

analysis(ICA).

Previous paper presented extraction rate of saccade-related EEG sig-

nals by five ICA algorithms and eight window size.

However, three ICA algorithms, the FastICA, the NG-FICA and the

JADE algorithms, are based on 4th order statistic and AMUSE algorithm

has an improved algorithm named the SOBI. Therefore, we must re-select

ICA algorithms.

In this paper, Firstly, we add new algorithms; the SOBI and the

MILCA. Using the Fast ICA, the JADE, the AMUSE, the SOBI, and

the MILCA. The SOBI is an improved algorithm based on the AMUSE

and uses at least two covariance matrices at different time steps. The

MILCA use the independency based on mutual information. We extract

saccade-related EEG signals and check extracting rates.

Secondly, we check relationship between window sizes of EEG signals

to be analyzed and extracting rates.

Thirdly, we researched on relationship between Saccade-related EEG

signals and selection of electrode position by ICA. In order to develop

the BCI, it is important to use a few electrode. In previous studies, we

analyzed EEG signals using by 19 electrodes. In this study, we checked

various combination of electrode.

1 Introduction

Brain-computer interfaces (BCIs) have been researched as a novel human in-
terface for a few decades. The capabilities of BCIs allow them to be used in
situations unsuitable for the conventional interfaces. BCIs are used to connect a
user and a computer via an electroencephalogram (EEG).
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EEG related to saccadic eye movements have been studied by our group toward
developing a BCI eye-tracking system [1]. In previous research, saccade-related
EEG signals were analyzed using the ensemble averaging method. Ensemble aver-
aging is not suitable for analyzing raw EEG data because the method needs many
repetitive trials.

Recording EEG data repetitively is a critical problem to develop BCIs. It is
essential to overcome this problem in order to realize practical use of BCIs for
single trial EEG data.

Recently, the independent component analysis (ICA) method has been intro-
duced in the field of bio-signal processing as a promising technique for separating
independent sources. The ICA method can process raw EEG data and find fea-
tures related to various one’s activity. Therefore, the ICA algorithm overcomes
the problems associated with ensemble averaging, and the ICA analyzes the
waveforms of the EEG data.

There are many algorithms to compute independent components [2]. In pre-
vious studies[3], we used the FastICA, the NG-FICA, the AMUSE, the JADE
to analyze saccade-related EEG signals. However, we must re-select an ICA al-
gorithm since three ICA algorithms: the FastICA, the NG-FICA and the JADE
algorithms are based on the 4th order statistic and the AMUSE algorithm has
an improved algorithm named the SOBI[8].

In this research, we add new algorithms: the SOBI and the MILCA[9]. The
SOBI is an improved algorithm based on the AMUSE and uses the independency
based on two covariance matrices at different time steps. The MILCA uses the
independency based on mutual information. Using the Fast ICA, the JADE, the
AMUSE, the SOBI, and the MILCA, we extract saccade-related EEG signals
and check extracting rates.

Secondly, we focus on window sizes of EEG signals to be analyzed. In order to
analyze EEG signals in on-line system, we must choose an appropriate window
size to extract continuous EEG signals. In this paper, we separate window sizes
into two groups: the windows excluding EEG signals after eye movements and
the windows include EEG signals after eye movements.

Thirdly, we researched on relationship between Saccade-related EEG signals
and selection of electrode position by ICA. In order to develop the BCI, it is
important to use a few electrode. In previous studies, we analyzed EEG signals
using by 19 electrodes. In this study, we checked various combination of electrode.

2 Independent Component Analysis (ICA)

The ICA method is based on the following principles. Assuming that the original
(or source) signals have been linearly mixed, and that these mixed signals are
available, ICA recognizes in a blind manner a linear combination of the mixed
signals, and recovers the original source signals, possibly re-scaled and randomly
arranged in the outputs.

The s = [s1, s2, · · · , sn]T means n independent signals from mutual EEG
sources in the brain, for example. The mixed signals x are thus given by x = As,
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where A is an n × n invertible matrix. A is the matrix for mixing independent
signals. In the ICA method, only x is observed. The value for s is calculated by
s = Wx (W = A−1). However, it is impossible to calculate A−1 algebraically
because information for A and s are not already known. Therefore, in the ICA
algorithm, W is estimated non-algebraically. The assumption of the ICA algo-
rithm is that s is mutually independent. In order to calculate W, different cost
functions are used in the literature, usually involving a non-linearity that shapes
the probability destiny function of the source signals.

3 Experimental Settings

There were two tasks in this study (See Fig.1). The first task was to record the
EEG signals during a saccade to a visual target when a subject moves its eyes to
a visual stimulus that is on his right or left side. The second task was to record
the EEG signals as a control condition when a subject dose not perform a saccade
even though a stimulus has been displayed. Each experiment was comprised of
50 trials in total: 25 on the right side and 25 on the left side.

The experiments were performed in an electromagnetically shielded dark room
to reduce the effect of electromagnetic noise and any visual stimuli in the envi-
ronment. The visual targets were three LEDs placed in a line before the subject.
One was located 30 [cm] away from the nasion of the subject. The other two
LEDs were placed to the right and left of the center LED, each separated by 25
degrees from the nasion. They were illuminated randomly to prevent the sub-
jects from trying to guess which direction the next stimulus would be coming
form next.

The subject were five 25-26 year-old male and subjects all have normal vision.
The EEG signals were recorded through 19 electrodes (Ag-AgCl), which were

placed on the subject’s head in accord with the international 10-20 electrode
position system (see Fig.2). The Electrooculogram (EOG) signals were simul-
taneously recorded through two pairs of electrodes (Ag-AgCl) attached to the
top-bottom side and right-left side of the right eye.

All data were sampled at 1000 [Hz], and stored on a hard disk for off-line data
processing after post-amplification. The raw EEG data was filtered by a high-
pass filter (cut-off 0.53 [Hz]) and a low-pass filter (cut-off 120 [Hz]). The EOG
data was recorded through a high-pass filter (cut-off 0.1 [Hz]) and a low-pass
filter (cut-off 15 [Hz]).

Recorded EEG signals were calculated by five ICA algorithms: FastICA,
AMUSE, JADE, SOBI, MILCA. In order to calculate independent components,
we must decide the window length. In this paper, there were 8 size windows.

– Group A
• Window A: -999[ms] to 1000[ms]
• Window B: -499[ms] to 500[ms]
• Window C: -349[ms] to 350[ms]

– Group B
• Window D: -999[ms] to 0[ms]
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Fig. 1. Experimental tasks

• Window E: -499[ms] to 0[ms]
• Window F: -349[ms] to 0[ms]
• Window G: -249[ms] to 0[ms]
• Window H: -99[ms] to 0[ms]

0[ms] indicates the starting point of saccade. After eye movements, EEG signals
include big noises caused by EOG signals. In order to observe influence of noises
caused by EOG signals, we separated window size into two groups: Window A
to C including EEG signals after saccade and window D to H excluding EEG
signals after saccade.

In using five algorithms and eight windows, we calculated saccade-related
independent components.

4 Experimental Results

First, we define two words: an extracting rate and saccade-related IC. The ex-
traction rate is defined by the following ratio:

(the number of trials in which saccade-related IC are extracted)

/ (The total number of trials).

We make assumption that a saccade-related IC has a positive peak from -50 [ms]
∼ -1 [ms]. The peak-amplitude n is larger than 3; n = x̄−μ

s ; where x̄ is mean of
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Fig. 2. International 10-20 electrode position classification system

Table 1. Extracted rate by five ICA algorithms

AMUSE FICA JADE SOBI MILCA

A 14% 98% 100% 70% 50%

B 18% 82% 94% 76% 46%

C 30% 94% 96% 80% 62%

D 30% 98% 98% 66% 50%

E 24% 94% 96% 70% 46%

Table 2. Extracted rate by six window size

category Window size FastICA JADE

A -999 ∼ 1000 [ms] 37.2% 38%

-499 ∼ 500 [ms] 29.6% 27.2%

-349 ∼ 350 [ms] 22.4% 26.4%

B -999 ∼ 0 [ms] 90% 93.6%

-499 ∼ 0 [ms] 93.2% 96.4%

-349 ∼ 0 [ms] 99.4% 99.2%

-249 ∼ 0 [ms] 93.2% 93.6%

-99 ∼ 0 [ms] 99.4% 99.2%

EEG potential during 1000 [ms] before saccade, μ is maximum amplitude, and
s is standard deviation during 1000 [ms] before saccade.

Table 1 represents the rate for extracting saccade-related ICs from the raw
EEG data by each algorithm in the case of window E. From these results, the
FastICA and JADE got good performance in extracting saccade-related indepen-
dent components. However, the results of the AMUSE and SOBI and MILCA
algorithm were not good. From these results, in order to extract saccade-related
EEG signals, it is not suitable to use independency of 2nd order statistics and
the mutual information.

Next, we focus on extracting rate in each windows (see Table 2). From Table 2,
extracting rates in group 1 were lower than those in group 2. Therefore, we should
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not use EEG signals after saccade. because the signals in group 1 include EOG
noise. In the case of group 2, the results of small window size is better. From
these result, we can get good results in the case of short window size excluding
signals after saccade. Fig 3 is extracted signals by FastICA and window D,E,F.
Each extracted signals are not the same although input signals are the same.
However, each signals denote the same tendency.

5 Selection of Electrode

Next, we researched on relationship between Saccade-related EEG signals and
selection of electrode position by ICA. In order to develop the BCI, it is impor-
tant to use a few electrode. In previous studies, we analyzed EEG signals using
by 19 electrodes.

In results by ensemble averaging, Fig.4 is a series of a topographical map of
the EEG at three different time period; 45, 25, 5[ms] advance to the saccade in
the visual experiment above. The upper series indicate the maps in the right
directional saccade, and the lower, the left. The gray scale in the figure indicates
the amplitude. (The darker shows the higher amplitude.) Besides, each map is
viewed from the top. (The upper of the diagram is a frontal lobe, and the lower,
an occipital lobe.) This figure shows clearly that the sharp drop is observed
at the right occipital cerebrum. On the contrary, the EEG at the left occipital
cerebrum decreases in the left saccade.

From this results, electrodes in occipital lobe are more important than another
electrodes. Therefore, we select 4 sets of the electrode position.

– All electrodes (19 electrodes)
– O1, O2, P3, P4, Pz, Cz (6 electrodes)
– P3, P4, Pz (3 electrodes)
– O1, O2 (2 electrodes)

Table 3 shows relationship between the extracting rates and the electrode posi-
tions. From this results, results using only 3 electrodes have good extracting rates
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Fig. 3. Extracted signals for FastICA by each window size
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Fig. 4. Topography of EEG electric potential

Table 3. Relationship between extracting rate and electrode position

Electrode position Number of electrodes Extracting rate by FastICA Extracting rate by JADE

All 19 99.4% 99.2%

O1, O2, P3, P4, 6 100% 100%

Pz, Cz

P3, P4, Pz 3 92% 92%

O1, O2 2 80% 80%

and results using only 3 electrodes have better extracting rates than results us-
ing all electrodes. Therefore, important electrodes for extracting saccade-related
EEG signals stay on only occipital lobe.

6 Conclusion

This paper presented extraction rates of saccade-related EEG signals by five
ICA algorithms and eight window sizes.

As results of extracting rate focused on ICA algorithms, The JADE and Fast
ICA had good results.

As results of extracting rates focused on window sizes, the window H (-99[ms]
∼ 0[ms]) had good results. In the case of the window A,B, and C, we could not
get good results because these windows included big EOG noise.

Finaly, we checked relationship between extracting rate and the number of
input channels. From this results, in the case of only 3 electrodes in occipital
lobe (P3, P4, Pz), we can obtain best extracting rate.

In this paper, we checked only 4 sets of electrodes. In the future, we must
check all combination of electrodes.
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Abstract. In this paper, a novel adaptive filter based on support vector 
machines (SVMs) that preserves image details and effectively suppresses 
impulsive noise is proposed. The filter employs an SVM impulse detector to 
judge whether an input pixel is noisy. If a noisy pixel is detected, a median filter 
is triggered to replace it. Otherwise, it stays unchanged. To improve the quality 
of the restored image, an adaptive LUM filter based on scalar quantization (SQ) 
is activated. The optimal weights of the adaptive LUM filter are obtained using 
the least mean square (LMS) learning algorithm. Experimental results 
demonstrate that the proposed scheme outperforms other decision-based median 
filters in terms of noise suppression and detail preservation.  

Keywords: support vector machine, least mean square, impulsive noise, image 
restoration. 

1   Introduction 

Impulsive noise is a common type of noise that often corrupts digital images during 
acquisition or transmission processes over open communication channels. Denoising 
is an essential step before image segmentation, edge detection and object recognition 
for image processing [1]. Image restoration is concerned with not only how to 
efficiently remove impulsive noise but also how to preserve image details. The 
median filter is a well-known nonlinear filter. However, while suppressing impulsive 
noise, the median filter sometimes removes fine details. 

In recent years, variants of the median filter such as weight median (WM) filters, 
fuzzy-rule-based filters, and decision-based filters have been developed in an attempt 
to improve the median filter [2-6]. Satisfactory results have been achieved using these 
filters. Nevertheless, many WM filters tend to mistakenly alter noise-free pixels; the 
generalization capability of fuzzy-rule-based filters is poor; and the parameters of 
decision-based filters inflexibly depend on a pre-assumed noise density level. The 
latest advancement is the adaptive two-pass median (ATM) filter based on support 
vector machines (SVMs) by Lin and Yu, called the support vector classifier (SVC) 
based filter [3]. The SVC-based filter can be also regarded as a decision-based filter. It 
first utilizes SVMs to classify the signal as either noise-corrupted or noise-free and 
then applies the noise-free reduction filter to remove the corrupted pixels. However, 
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to improve the filtering performance, the SVC-based filter also needs proper threshold 
values for a pre-assumed noise density level in second pass filtering. 

In this paper, we propose a novel adaptive SVC-based (ASVC) filter based on 
SVMs and a least mean square (LMS) learning algorithm to overcome the drawbacks 
of previous methods. The proposed ASVC filter consists of an SVM impulse detector 
and LUM (low-upper-middle) smoothers [10]. The proposed adaptive LUM filter uses 
an adjustable weight to best balance the tradeoff between impulse noise suppression 
and image detail preservation. The scalar quantizer (SQ) method and a learning 
approach based on the LMS algorithm are employed to obtain the optimal weight for 
each block independently [9]. With this filtering framework, the proposed ASVC filter 
can perform significantly better than other median-based filters in terms of noise 
suppression and detail preservation.  

The rest of this paper is organized as follows. In Section 2, the concept of SVMs is 
reviewed. In Section 3, the design of the proposed ASVC filter is presented in detail. 
Section 4 presents the results of some extensive experiments. Finally, the conclusion 
is given in Section 5. 

2   Support Vector Machines  

Support vector machines (SVMs) have been recently proposed as a kind of 
feedforward network for pattern recognition because of their high generalization 
capability without priori knowledge [7]. In the present study, the SVM technique is 
employed to classify a signal as either noise-corrupted or noise-free. 

Let },,1),,{( Niyx ii =  be a training data set of N  data points, where n
i Rx ∈  

and }.1,1{−∈iy  The training goal of the SVM is to find an optimal hyperplane that 

maximally separates the training data set into two classes. For the linearly inseparable 
case, the optimal classification hyperplane is found by solving the following quadratic 
programming (QP) problem [8]: 
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where W  is a weight vector, iξ  is a non-negative variable, b  is a bias of the 

hyperplane, and C  is a predefined positive constant. The optimization problem (1) 
can be rewritten as: 
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By solving (2), we can get the optimal hyperplane: 
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Therefore, the linearly inseparable discrimination function is in the form: 
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where sgn [ ]⋅  stands for the bipolar sign function and non-negative variables iα  are 

the Lagrange multipliers. 
For the nonlinearly inseparable case, the original data is projected onto a certain 

high dimensional Euclidean space H  by a nonlinear map .: HRn →Φ  The kernel 
function ),( ji xxK  is introduced such that it is not necessary to get to the bottom of 

)(⋅Φ . Hence, the optimal decision can be found by solving the following dual 

problem: 
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By solving (5), we can get the optimal hyperplane with the maximal margin: 
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Therefore, the nonlinearly inseparable discrimination function that separates the 
training data into two classes is in the form: 
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3   Design of the ASVC Filter  

Let }1,1|),({ 2121 WkHkkkkI ≤≤≤≤==  denote the pixel coordinates of the 

image, where H  and W  are the image height and width, respectively. Let )(kx  

represent the input pixel value of the image at location .Ik ∈ The filter window 
}{kw is defined in terms of the image coordinates symmetrically surrounding the  
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current pixel ).(kx The window size 12 += nS ( n  is a non-negative integer) can be 

given by 

},,,1,,,2,1:)({}{ Snnfkxkw f +==                            (8) 

where the input pixel )()( 1 kxkx n+=  is the central pixel. Nonlinear LUM  smoothers 

have been shown to be equivalent to center-weighted medians (CWM) [10]. LUM 
smoothers are defined as follows: 

)},(),(),({)( )1()( kxkxkxMEDky cSc +−=                             (9) 

where MED denotes the median operation, ,2/)1(1 +≤≤ Sc )(kx is the central 

sample from the filter window }{kw  and )()()( )()2()1( kxkxkx S≤≤≤  is the rank-

ordered set of }{kw .  

3.1   Structure of the ASVC Filter 

The framework of the proposed ASVC filter is illustrated in Fig. 1. At first, the SVM 
impulse detector is used to efficiently determine whether the median filter or the 
identity filter will be on. The first median filter can remove most of the noise, but 
smaller impulse noise might remain. To alleviate this problem, an adaptive LUM filter 
is used to remove noisy pixels that are missed, false alarms, or over-correction errors.  
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Fig. 1. Structure of ASVC filter 

3.2   SVM Impulse Detector 

3.2.1   Feature Extraction 
Before noise filtering begins, the local features of the filter window }{kw  must be 

extracted to identify noisy pixels [3]. We take into account the local features in the 
filter window, such as prominent signals and the possible presence of details and 
edges. The following three variables can be defined to generate the feature vector 

}{kf as the input data of the SVM impulse detector.  
 

Definition 1: The variable )(kc  denotes the absolute difference between the input 

)(kx  and the median value of }{kw  as follows [1]: 

.}){()()( kwMEDkxkc −=   
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Definition 2: )}.(,),(),(,),({)( 101
0 kxkxwkxkxMEDkc Snn

w
+◊=         

Here, 0w  denotes the non-negative integer weight, and )(10 kxw n+◊  means that 

there are 0w  copies of input pixel )()( 1 kxkx n+= . 
 

Definition 3: )()()( 3 kckxkl −= .   

 

Definition 4: )()()( 5 kckxke −= .   

Note that )(),( klkc and )(ke are a measure for detecting the probability whether 

the input )(kx  is noisy. In the present study, the feature vectors are given by: 

)}(),(),({}{ keklkckf = .                                                (10) 

The feature vectors }{kf serve as the input data set to the SVM impulse detector.  

3.2.2   Training the SVM Classifier 
The optimal separating hyperplane can be obtained through a training process by 
using a set of supervised class labels for the training corrupted image. The input in the 
training process is the set of unsupervised features }.{kf Figure 2 shows the 

feedforward network architecture of the SVM impulse detector that identifies noise-
free pixels and noise-corrupted pixels [3]. 
 

⋅⋅⋅

Class level: noisy or free 

Bias b  

}){},{( 2 kfkfK }){},{( kfkfK N

)(kc  )(kl )(ke

}){},{( 1 kfkfK  

 
Fig. 2. Feedforward network architecture of support vector machines 

3.3   Adaptive Weight of the LUM Filter 

The adaptive weight c  can help the LUM filter perform various degrees of noise 
suppression and image detail preservation. To decide the adaptive weight c , the 
weight controller shown in Fig. 3 is proposed in this work [9]. Note that )(⋅d shown in 

Fig. 3, which is defined as a function of the feature vector, is a classifier used to 
determine the partitioning, and },,2,1{),( Miki ∈β serves as the adaptive weight c  

for the LUM filter.  
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Fig. 3. Structure of the adaptive LUM filter 

3.3.1   Partitioning of the Feature Space 

The feature vector space 3ℜ  is where the feature vector exists: 

              .)}(),(),({}{ 3ℜ∈= keklkckf                                             (11) 

The weight controller, shown in Fig. 3, decides that 3ℜ  is partitioned into M  

mutually exclusive blocks .,,2,1, Mii =Ω Then, each weight )(kiβ  is associated 

with the i  block in the partition given by: 

,,,2,1},}){(:}{{ 3 Miikfdkfi ==ℜ∈=Ω                         (12) 

where the classifier )(⋅d  is now defined as a function of the feature vector }.{kf  As 

a result, the M  blocks satisfy  

 ∪
M

i

i

1

3

=

Ω=ℜ and φ=ΩΩ ji ∩ , for ji ≠ .                           (13) 

Each input )(kx  corresponding to its }{kf  is only classified into one of the M  

blocks by the classifier ).(⋅d  Due to the low computational complexity of the 

partitioning indices, the classifier )(⋅d  can be designed using simple scalar 

quantization (SQ) [1], [9]. Each scalar component of }{kf can be classified 

independently using SQ, which involves an encoder mapping process and a decoder 
mapping process [9]. The encoder mapping process includes receiving the input value 

}{kf j  and providing an output codeword, which is determined using the interval in 

which the value falls. The decoder mapping process transforms the codeword into a 
representative value .z  In the present study, the encoder mapping process divides the 
range [0, 255] into five intervals such that each scalar component }{kf j  belongs to 

one of the five intervals, as shown in Fig. 4 [9]. Other quantization intervals are also 
possible. The three-dimensional array P  can be used to perform the partitioning 
as: .51,51,51],][][[ 321321 ≤≤≤≤≤≤ zzzzzzP  
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Fig. 4. Quantizer input-output map for ),(),( klkc and )(ke scalar feature vectors 

3.3.2   Setting Weights Using LMS Algorithm 
Designing the optimal weight Miki ,,2,1),( =β  for the adaptive LUM filter 

requires minimizing the mean square error (MSE). The value of )(kiβ  can be 

obtained independently by executing the LMS algorithm, which is capable of 
minimizing the error function with respect to the block iΩ [7]. The weights )(kiβ  

corresponding to their block iΩ  can be adjusted in an iterative fashion along with the 

error surface toward the optimal solution. For each input )(kx  associated with block 

iΩ , the value of )(kiβ  is updated iteratively in a gradient way: 

.
0,0

0|,)()(||)(|)(
)( )1(

)1()(
)1(

⎪⎩

⎪
⎨
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<
≥−−= +

+
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ii

t
it

i
kokxkek

k
β
βηββ                 (14) 

Here, the error )(ke  is the difference between the desired output )(ko  and the 

physical output )(ky . iη  denotes the learning rate (with constant), )()0( kiβ  

represents the initial weight, and )()( kt
iβ  is the weight after the t -th iteration. 

3.4   Adaptive LUM Filtering  

At first, the median filter is activated for noisy pixels. The SVM impulse detector 
might make mistakes, so undetection and misdetection problems might occur with the 
ASVC filter. Undetected noisy pixels may remain in the restored image because the 
SVM impulse detector did not detect them as noisy and misdetected pixels may be 
mistakenly modified although they are noise-free. Therefore, we incorporated 
adaptive LUM filtering in the ASVC filter to reduce the number of undetected and 
misdetected pixels. Since the ASVC filter adaptively selects an optimized weight to 
carry out the filtering operation for each input pixel )(kx  corresponding to its )(kiβ  

of block iΩ , better noise attenuation can be achieved without degrading the quality of 

fine details. 
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4   Experimental Results 

The optimal separating hyperplane and optimal weight Miki ,,2,1),( =β  were 

obtained using a training image ‘Couple’ corrupted by 20% impulsive noise in the 
training process. Several experiments were conducted to compare the proposed ASVC 
filter with the standard median (MED) filter, the tri-state median (TSM) filter [2], the 
fuzzy median (FM) filter [4], the partition fuzzy median (PFM) filter [1], the fast peer 
group filter (FPGF) [6], and the adaptive two-pass median (ATM) filter [3] in terms of 
noise removal capability (measured in PSNR). 33×  filter windows were used in all 
the experiments. Table 1 compares the PSNR results of removing both the fixed-
valued and random-valued impulsive noise at 20%. As the table shows, the proposed 
ASVC filter performs significantly better than the other schemes. Figure 5 shows the 
restoration result comparison for the image ‘Lake’ corrupted by 20% random-valued 
impulsive noise. The ASVC filter produces a better subjective visual quality restored 
image by offering more noise suppression and detail preservation.  

Table 1. Comparative restoration results in PSNR (dB) for 20% impulsive noise. (a) fix-valued 
impulse, (b) random-valued impulse. 

p ( ) p

Filter 
Cameraman F16 Boat Lake Lena 
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b) 

MED 33.76 31.51 29.62 30.93 29.20 30.14 27.19 27.84 30.18 31.72 

TSM 34.71 31.62 32.76 31.56 31.16 32.29 29.73 30.22 31.84 34.03 

FM 34.82 32.15 31.45 30.79 30.86 32.11 28.61 29.76 31.32 33.40 

PFM 36.08 34.04 32.92 32.03 33.34 32.43 31.13 30.11 35.52 33.88 

FPGF 34.11 29.65 29.66 28.52 29.94 29.46 27.58 28.15 31.06 30.11 

ATM 36.64 33.34 32.99 32.00 33.05 32.42 30.62 29.96 35.77 34.26 

ASVC 36.81 34.15 33.58 32.20 33.06 32.52 31.15 30.26 35.94 34.45  
 

   
(a) original image                    (b) noisy image                      (c) MED filter 

   
               (d) PFM filter                        (e) ATM filter                       (f) ASVC filter 

Fig. 5. Restoration performance comparison on the ‘Lake’ image degraded by 20% impulsive 
noise 
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5   Conclusion 

In this paper, a novel decision-based median filter based on SVMs was developed to 
preserve more image details while effectively suppressing impulsive noise. A new 
impulse detector design based on SVMs is a part of the proposed ASVC filter; it is 
responsible for judging whether the input pixel is noisy. In addition, an adaptive LUM 
filter was proposed to efficiently improve the detection error of the SVM impulse 
detector. The excellent generalization capability of SVMs and the optimal weight of 
each block allow the mean square error of the filter output to be minimized. The 
experimental results demonstrate that the proposed ASVC filter is superior to a 
number of well-accepted decision-based median filters in the literature.  
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Abstract. Even though Support Vector Machines (SVMs) are capable

of identifying patterns in high dimensional kernel spaces, their perfor-

mance is determined by two main factors: SVM cost parameter and

kernel parameters. This paper identifies a mechanism to extract meta

features from string datasets, and derives a n-gram string kernel SVM

optimization method. In the method, a meta model is trained over com-

puted string meta-features for each dataset from a string dataset pool,

learning algorithm parameters, and accuracy information to predict the

optimal parameter combination for a given string classification task. In

the experiments, the n-gram SVM were optimized using the proposed

algorithm over four string datasets: spam, Reuters-21578, Network Ap-

plication Detection and e-News Categorization. The experiment results

revealed that the proposed algorithm was able to produce parameter

combinations which yield good string classification accuracies for n-gram
SVM on all string datasets.

Keywords: Meta learning, n-gram String Kernels, SVM, Text Cate-

gorization, SVM Optimization.

1 Introduction

Support Vector Machines (SVMs) are a set of supervised learning techniques, us-
ing statistical learning principles, kernel mapping, and optimization techniques
for classification and regression, SVM in its simplest form learns a separating
hyperplane which maximizes the distance between the hyperplane and its closest
point by solving a convex quadratic optimization problem. In practice, the effec-
tiveness of SVM is heavily dependent upon three main factors: kernel selection,
SVM cost parameter, and kernel parameters.

Apparently, as diverse sets of kernel functions are available, identifying the
most suitable one for a given pattern recognition task is quite challenging, where
the researcher spends considerable time on kernel identification. On the other
hand, for a suitable kernel function, the performance is again influenced by
two factors: SVM cost parameter and kernel parameters. Also, for string kernel
parameters like substring length in n-gram kernel and subsequence size in fixed
length subsequence kernel affects the performance of SVM. Thus, SVM kernel
parameter optimization is a challenging difficulty for pattern recognition, due to
the higher dimensionality of the parameter space.

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 91–98, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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While various optimization techniques are being used in SVM kernel param-
eter optimization, namely trial and error method, grid optimization, leave-one
out cross validation, generalization error estimation using gradient descent and
evolutionary algorithms [1]. It is noticeable that all the above SVM optimization
methods are merely for numeric kernels, but not sustainable for string kernels.
For string kernel SVM optimization, researchers are confronted with two main
obstacles. Firstly, there is little or no literature pertaining to string kernel SVM
optimization. Secondly, string characteristics influence string kernel SVM opti-
mization, while it is often difficult to learn string characteristics from data.

The paper explains a novel string kernel SVM optimization method by adopt-
ing string characteristics extraction, meta model learning, and performance pre-
diction regression. Consider the widely accepted success of n-gram SVM for
string classification, the paper addresses only n-gram kernel as a starting work
of our string kernel SVM optimization research.

2 N-gram String Kernel

For n-gram kernel, a string s is defined from alphabet Σ of |Σ| symbols, and
is presented in a feature space F , where each dimension is a string [2]. Also,
Σ∗ represents the set of all strings and Σn represents the string set of length
n. Furthermore, ss′ represents the concatenation of strings s and s′. Now, the
substrings : u, v1, v2 of string s, are defined such that:

s = v1uv2,

where, if v1 = ε (ε is the empty string of 0 length) then, u is called to be the
prefix of s and if v2 = ε, then u is called to be the suffix of s. Now, a feature
map Φ is defined in feature space F , with below embedding,

Φn
u(s) = |{(v1, v2) : s = v1uv2}|, u ∈ Σn.

The associated kernel is defined as:

Kn(s, t) = 〈Φn(s), Φn(t)〉 =
∑

u∈Σn

Φn
u(s)Φn

u(t),

and the computational complexity of n-gram kernel is written as O(n|s|t|) [2].

3 The Proposed Meta Learning Approach to N-gram
SVM Optimization

Motivated by [3], this paper defines a set of string meta-features. With a pool of
string datasets, a meta model is built on extracted string meta-features, string
kernel SVM parameter combinations and accuracy information. The obtained
meta model is used to predict the string classification accuracy of a given n-
gram SVM parameter combination for a string data classification task.
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input :

LTR =Training String Dataset Pool

LTS =Testing String Dataset Pool

C =Parameter Combination Pool for Training (c ∈ C)

C′ =Parameter Combination Pool for Testing (c′ ∈ C′)
LA =SVM with n-gram String Kernel

output: Parameter combination ĉl which yields the best accuracy for string

dataset DlTS

for l ← 1 to l′ do
Pick DlTR from LTR

for p ← 1 to p′ do
Compute f ′

p,DlT R

end
repeat

Pick a parameter combination c from C
Do 10-fold cross validation on DlTR, using LA with parameter

combination c which yields YDlTR,c accuracy

until no more parameter combinations in C;

end

Build a regression model (meta model) using f ′
p,DlT R

, c, and YDlTR,c

for l ← 1 to l′ do
Pick DlTS from LTS

for p ← 1 to p′ do
Compute f ′

p,DlT S

end
repeat

Pick a parameter combination c′ from C′

Predict accuracy YDlTS ,c′ for LA with parameter combination c′ using

build meta model
if YDlTS ,c′ is maximum then

ĉl = c′

end

until no more parameter combinations in C;

end

Algorithm 1. The proposed meta learning algorithm for n-gram SVM
optimization

3.1 String Meta-features

In order to use the meta-features discussed in Lam et al. [3] for string classifi-
cation, the string dataset needs to be presented as terms and term frequencies.
We accomplish this in a string dataset by using splitting characters: ”+’:(){}[].
,-\” to split a string into set of terms or synonymously tokens. This approach is
referred as ‘tokenization’ in the literature [2]. Each token is associated with a fre-
quency, which is how many times it occurs in the dataset. This token-frequency
information are used to compute the string meta-features explained in this
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paper. Note that tokenization here is used only for string meta feature calcula-
tion, but not for n-gram SVM classification.

Assume a string dataset which has n number of instances, the seven string
meta-features are:

1. AvgInstanceLen: The average instance length of the dataset. The instance
length refers to number of tokens in an instance. The average is taken across
all the instances. If ith instance has Ni tokens, then the average instance
length for that dataset is

∑n
i=1 Ni

n .
2. AvgTokenVal: The average token weight of an instance across a string

dataset. Initially, the token weight is calculated for each token and the av-
erage is computed for single instance. Then, the average token weights for
each instance are summed and the average is computed for all the instances.
If there are m unique tokens in ith instance, the average token weight for a
string dataset is written as:

Average token weight of the string dataset =

∑n
i=1

∑m
j=1 TW (j, i)
mn

, (1)

where TW (j, i) is the token weight of jth token in ith instance. According
to [4]s interpretation of term weight, the TW (j, i) can be written as:

TW (j, i) = TF(j, i) × IDF(j), (2)

where IDF(j) is the inverse document frequency of jth token, and TF(j, i)
is the frequency of jth token in instance i. Furthermore, according to [4], the
IDF(j) is computed as:

IDF (j) = log
n

TF (j)
+ 1, (3)

where TF (j) is the frequency of the jth token in the dataset. Now, consid-
ering (2) and (3), equation (1) is rewritten as:

Average token weight of the string dataset =

∑n
i=1

∑m
j=1 TF (j)

(
log n

TF (j)
+ 1

)
mn

(4)

3. AvgMaxTokenVal: The average maximum token weight of an instance
across a string dataset. Maximum token weights of an instance are summed
and the average is taken across all instances.

4. AvgMinTokenVal: The average minimum token weight of an instance
across a given string dataset. Minimum token weights of an instance are
summed and the average is taken across all instances.

5. AvgTokenThre: The average number of tokens above a token weight thresh-
old for a given string dataset. The token weight threshold is set globally. The
number of tokens where the token weight is above the threshold are summed
and the average is taken across all instances.
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Fig. 1. The procedure to employ meta learning for string classification

6. AvgTopInfoGain: The average information gain of the top r tokens in the
string dataset. The information gain of each individual token is computed
for each instance and raked. Then, the average is taken across top r terms
with highest information gain.

7. NumInfoGainThres: The average number of tokens in an instance where
the information gain value exceeds a globally specified threshold.

3.2 Meta Learning on String Categorization

Consider a string dataset D, which is represented as a vector in token-frequency
space Ω, where each dimension in Ω is associated with one token. Now, the
dataset D is represented via function ω in this new Ω token-frequency space:

ω(D) = (TF (t1, D), TF (t2, D), ...., TF (tN , D)) ∈ Ω,

where TF (tj, D) is the token frequency of jth token in the string dataset D, and
N is the number of unique tokens in the dataset. Now one can derive a function
fp : Ω → R:

fp(D) = f ′
p,D

where f ′
p,D represents the value for the pth string-meta feature for D. For the

string dataset D, there are p′ finite meta-features, where all string meta-features
fp(D) (p = 1, 2, 3, ..., p′) are well defined.

Using the above discussed string meta-features, Figure 1 explains the prin-
ciple of meta learning for string classification. Assume there is a string dataset
pool L with l′ datasets, where, each string dataset Dl (Dl ∈ L, l = 1, ..., l′) is
again subdivided into unique DlTR (training) and DlTS (testing) datasets, which
creates training (LTR) and testing (LTS) dataset pools. The string meta-feature
f ′

p,DlTR
is computed for dataset DlTR. Also, for DlTR, the machine learning

algorithm LA with parameter combination c, generates YDlT R,c classification ac-
curacy. These computed string meta-features (f ′

p,DlT R
), parameter combinations

(c) and accuracy information (YDlT R,c) generate a meta model via regression,
which is able to predict the classification accuracy for a new string dataset, given
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the computed string meta-features and the parameter combination. Hence, for
a new string dataset DlTS , the meta model predicts the accuracy YDlT S ,c′ for
parameter combination c′ by computing string-meta features f ′

p,DlT S
.

3.3 The Proposed Meta Learning Algorithm

According to the principle introduced in Section 3.2, the built meta model is able
to predict the string classification accuracy for a machine learning algorithm on
a novel string dataset, using computed string meta-features. This section ex-
plains the procedure to use this principle (meta learning for string classification)
to optimize string kernel SVMs, which is shown in Algorithm 1. Algorithm 1
explains the procedure to use meta learning to optimize n-gram string kernel
with SVM.

4 Experiments

The proposed algorithm was experimented for n-gram SVM optimization. The
algorithm was trained using training string dataset pool LTR, and was tested
on testing string dataset pool LTS . In the experiments, SVM cost parameter (c)
was selected as 20, 21, ..., 216 and the substring length in n-gram string kernel
was selected as 1, 2, ..., 8. The string meta-feature, AvgMinTokenV al was not
considered in the training stage, as it was having the value 0 for all datasets. Also,
the global threshold for the AvgTokenThr was set to 2 in all the experiments.
Support Vector Regression (SVR) was used to build the meta model. In the
training stage, the parameters which yield lowest cross validation RMSE for
SVR, were considered in regression (in building the meta model). 10 fold- cross
validation was done for the top 10 predicted parameter combinations, on each
string dataset. The performance evaluation was done considering Root Mean
Squared Error (RMSE) for the top 10 predicted parameters on each dataset.

In the experiments, the n-gram string kernel was implemented using shogun
octave interface [5]. The string meta-feature computation program was coded
using C++ language. All the experiments were run on a PC having Intel Core2
Duo 3GHz processor and 2.96 Gb RAM.

4.1 Datasets

Four string datasets were used in the string dataset pool L = {Spam, Reuters-
21578, Network Application Detection, e-News Categorization}. In a strict meta
learning concept, datasets for training and testing should be from different
sources. For a simple meta learning experiment, we construct training dataset
pool (LTR) and testing dataset pool (LTS) by partitioning respectively Spam,
Reuters-21578,Network Application Detection, e-News Categorization into two
parts, and taking one part for training and the other part for testing.

The spam dataset consists of 696 ham messages and 384 spam messages from
[6]. The Reuters dataset used in the experiments has the exact split to Lodhi
et al. [7]. The network application detection dataset consists of network traffic
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Table 1. Experimental Results for N-gram SVM Optimization on each string dataset)

(a) Spam Data

cost substring length rank predicted% actual%
16384 8 1 99.3074 98.33333
4096 8 2 99.2982 98.33333
32768 7 3 99.2683 98.33333
16384 7 4 99.2652 98.33333
4096 7 5 99.2628 98.33333
4096 6 6 99.2524 98.33333
4096 5 7 99.2066 98.33333
2048 8 8 99.1935 98.33333
32768 6 9 99.1862 98.33333
4096 2 10 99.1803 97.81251

root mean squared error 0.971167898

(b) Reuters-21578

cost substring length rank predicted% actual%
4096 6 1 92.6961 95.36587
2048 6 2 92.6842 95.36587
8192 6 3 92.6771 95.36587
1024 6 4 92.6636 95.36587
512 6 5 92.6474 95.36587

16384 6 6 92.6405 95.36587
256 6 7 92.6376 95.36587
128 6 8 92.6322 95.36587
64 6 9 92.6294 95.36587
32 6 10 92.6279 95.36587

root mean squared error 2.712372587

(c) Network Application Detection

cost substring length rank predicted% actual%
16384 2 1 99.6656 98.22917
2048 2 2 99.5895 98.22917
1024 2 3 99.5776 98.22917
32768 2 4 99.5685 98.22917
4096 2 5 99.5634 98.22917
512 2 6 99.5607 98.22917
256 2 7 99.5489 98.22917
128 2 8 99.542 98.22917
64 2 9 99.5384 98.22917
32 2 10 99.5365 97.81252

root mean squared error 1.386738588

(d) e-News Categorization

cost substring length rank predicted% actual%
4096 5 1 90.8189 74.35295
4096 6 2 90.6225 75.05881
4096 4 3 90.5267 73.76471
8192 5 4 90.484 73.88235
32768 5 5 90.3336 73.64706
16384 5 6 90.3317 73.64706
8192 6 7 90.3088 75.17647
4096 3 8 90.2765 74.70588
8192 4 9 90.275 73.41176
32768 4 10 90.1778 73.17646

root mean squared error 16.34502652

Table 2. Root Mean Squared Error (RMSE) for String Kernel SVM Optimization on

each String Dataset (for top 10 predicted parameter combinations)

String Kernel Dataset RMSE Avg RMSE

N-gram
Spam 0.971168

5.353826
Reuters-21578 2.712373

Network Application Detection 1.386739

e-News Categorization 16.345027

data produced by network applications. The e-News Categorization dataset is
collected from four electronic newspapers: New Zealand Herald, The Australian,
The Independent and The Times, on five news topics: business, education, en-
tertainments, sport and travel.

5 Results on N-gram SVM Optimization

In the experiment, the algorithm attempts to find optimized parameters (sub-
string length and SVM cost) for n-gram SVM. The algorithm was trained on
string dataset pool LTR and tested on testing string dataset pool LTS . The SVR
parameters: γ = 0.95 and SVR Cost=500 were used in regression. 10-fold cross
validation was done for the top 10 predicted parameter combinations on each
string dataset. Table 1 summarizes the experiment results for the top 10 pre-
dicted combinations on each dataset. As seen in Table 1, the proposed algorithm
produces optimized parameters, which yield good string classification accuracies
for n-gram SVM, on all four string datasets. The algorithm has a very low RMSE



98 N. Gunasekara, S. Pang, and N. Kasabov

for top 10 predicted on spam, Reuters-21578 and network application detection
datasets (see Table 1a- 1c). Even though in Table 2, the proposed algorithm is
seen with a quite high RMSE on the e-News categorization dataset, the top 10
predicted parameter combinations yield still good string classification accuracies
on the e-News dataset (see Table 1d).

6 Conclusions and Future Work

Addressing n-gram string kernel SVM optimization, this paper proposes a novel
meta learning algorithm. In this study, we define string meta-features for ex-
tracting meta knowledge from any string dataset, apply obtained string meta
features for meta learning on string classification, and finally predict optimum
string kernel SVM parameters for n-gram string kernel SVM on a string dataset.
The experimental results show that the proposed algorithm produces parameter
combinations which yield good string classification accuracies on most of the
datasets. In practice, the proposed algorithm is applicable to all types of string
kernel optimization, even though some string kernel SVMs (e.g. edit-distance
SVM) may not produce the same good classification result as the n-gram string
SVM. One limitation of the presented research is that, depending upon the SVR
parameters, the proposed algorithm sometime yields accuracies above 100% on a
given string dataset. This can be resolved by setting upper and lower bounds for
the SVR regression. We will leave this as our future work along with developing
new string kernel optimization techniques.

References

1. Zhang, X.L., Chen, X., He, Z.: An ACO-based algorithm for parameter optimization

of support vector machines. Expert Systems with Applications (9), 6618–6628 (2010)

2. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge

University Press, Cambridge (2004)

3. Lam, W., Lai, K.: A meta-learning approach for text categorization. In: Proceed-

ings of the 24th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 303–309. ACM, New York (2001)

4. Hersh, W.: Information retrieval: A health and biomedical perspective. Springer,

New York (2008)

5. Sonnenburg, S., Raetsch, G., Schaefer, C., Schoelkopf, B.: Large scale multiple kernel

learning. The Journal of Machine Learning Research 7, 1531–1565 (2006)

6. Spam assassin public mail corpus (2002),

http://spamassassin.apache.org/publiccorpus/ (Retrieved December 23, 2009)

7. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classi-

fication using string kernels. The Journal of Machine Learning Research 2, 419–444

(2002)

http://spamassassin.apache.org/publiccorpus/


Bilinear Formulated Multiple Kernel Learning
for Multi-class Classification Problem

Takumi Kobayashi and Nobuyuki Otsu

National Institute of Advanced Industrial Science and Technology,

1-1-1 Umezono, Tsukuba, Japan

Abstract. In this paper, we propose a method of multiple kernel learn-

ing (MKL) to inherently deal with multi-class classification problems.

The performances of kernel-based classification methods depend on the

employed kernel functions, and it is difficult to predefine the optimal

kernel. In the framework of MKL, multiple types of kernel functions are

linearly integrated with optimizing the weights for the kernels. How-

ever, the multi-class problems are rarely incorporated in the formulation

and the optimization is time-consuming. We formulate the multi-class

MKL in a bilinear form and propose a scheme for computationally effi-

cient optimization. The scheme makes the method favorably applicable

to large-scaled samples in the real-world problems. In the experiments

on multi-class classification using several datasets, the proposed method

exhibits the favorable performance and low computation time compared

to the previous methods.

Keywords: Kernel methods, multiple kernel learning, multi-class clas-

sification, bilinear form.

1 Introduction

The kernel-based methods have attracted keen attentions, exhibiting the state-
of-the-art performances, such as in support vector machines (SVM) [10] and
kernel multivariate analyses [8]. These methods are applied in various real-world
tasks, e.g., in the fields of computer vision and signal processing. In the kernel-
based methods, the input vectors are implicitly embedded in a high dimensional
space (called kernel feature space) via kernel functions which efficiently compute
inner products of those vectors in the kernel feature space. Thus, the performance
of the kernel-based methods depends on how to construct the kernel functions.

In recent years, Lanckriet et al. [5] proposed the method to integrate differ-
ent kernel functions with optimizing the weights for the kernels, which is called
multiple kernel learning (MKL). By combining multiple types of kernels, the
heterogeneous information, which is complementary to each other, can be effec-
tively incorporated, possibly improving the performance. The composite kernel
is successfully applied to, for example, object recognition [11].

In MKL, the weights for combining the kernels are obtained via the optimiza-
tion processes based on a certain criterion, mainly for classification. Since the
criterion can be defined in different formula, various methods for MKL have been

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 99–107, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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proposed by treating different optimization problems in different approaches;
e.g., semi-definite programming [5] and semi-infinite linear program [9,13]. Most
of the methods, however, are intended for classifying binary classes, while real-
world problems contain multi classes in general. In addition, for application to
practical problems, the optimization process should be computationally efficient.

In this paper, we propose a MKL method for multi-class classification prob-
lems. Without decomposing the multi-class problem into several binary class
problems, the proposed method inherently deals with it based on the formu-
lation of Crammer & Singer [2] which first proposed multi-class SVM using a
single kernel. The contributions of this paper are as follows:
– We extend the formulation of multi-class classification in [2] to cope with

multiple kernel functions, and formulate multi-class MKL (MC-MKL) in a
bilinear form. In the formulation, the optimal weights for kernel functions
are obtained in respective classes.

– We propose a scheme to effectively optimize the bilinear formulated problem,
which makes the method applicable to large-scaled samples.

– In the experiments on various datasets, we demonstrate the effectiveness of
the proposed method, compared to the existing MKL methods [7,13].

While Zien & Ong [13] proposed the method of MC-MKL based on a similar
formulation, we employ a different criterion for the margin of the multi-class
classifiers and propose a more efficient optimization scheme.

2 Bilinear Formulation for MC-MKL

To consider multiple kernels, we introduce multiple types of features x(r) (r ∈
{1, .., R}, where R is the number of feature types). The inner products of those

features can be replaced with respective types of kernels via kernel tricks: x(r)
i

′
x

(r)
j

→ kr(x
(r)
i , x

(r)
j ). Crammer & Singer [2] have proposed a formulation for multi-

class SVM, considering only a single type of feature x. We extend the formulation
to incorporate the multiple types of features (kernels). We additionally introduce
the weights v for feature types as well as the weights w within features similarly
in MKL methods [13]. These two kinds of weights are mathematically integrated
into the following bilinear form to constitute multi-class classification [2]:

∗
c = arg max

c∈{1,..,C}

{
R∑

r=1

v(r)
c w(r)

c

′
x(r) = w′

cXvc = 〈X, wcv
′
c〉F

}
, (1)

where C is the number of classes, 〈 , 〉F indicates Frobenius inner product, v
(r)
c

is a weight for the r-th type of feature, w
(r)
c is a classifier vector for the r-th

type of feature vector in class c, and these variables are concatenated into long
vectors, respectively;

vc �
[
v(1)

c , · · · , v(R)
c

]′
, X �

⎡⎢⎣x(1) 0 0

0
. . . 0

0 0 x(R)

⎤⎥⎦ , wc �

⎡⎢⎢⎣
w

(1)
c

...
w

(R)
c

⎤⎥⎥⎦ . (2)
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Then, we can consider the margin of the above-defined bilinear classifiers (pro-
jections) by using the Frobenius norm ||wcv

′
c||F , and define the following opti-

mization problem based on a large margin criterion:

OP: min
{wc,vc},{ξi}

C∑
c=1

||wcv
′
c||F + κ

N∑
i=1

ξi (3)

s.t. ∀i, c 〈Xi, wyiv
′
yi
〉F − 〈Xi, wcv

′
c〉F + δyi,c ≥ 1 − ξi,

where N is the number of samples, yi indicates the class label of the i-th sample;
yi ∈ {1, .., C}, δyi,c equals to 1 if c = yi and 0 otherwise, ξi is a slack variable for
soft margin, and κ is a parameter to control the trade-off between the margin
and the training errors. Note that we minimize the Frobenius norm, not squared
one in SVM. Since this problem is difficult to directly optimize, we employ the
upper bound of the Frobenius norm:

||wcv
′
c||F = ||wc||||vc|| ≤

1
2
(||wc||2 + ||vc||2). (4)

Therefore, the optimization problem OP is modified to

P’: min
{wc,vc},{ξi}

1
2

(
C∑

c=1

||wc||2 + ||vc||2
)

+ κ

N∑
i=1

ξi (5)

s.t. ∀i, c w′
yi

Xivyi − w′
cXivc + δyi,c ≥ 1 − ξi.

The weights w and v separately emerge as standard squared norm, which facil-
itates the optimization. It can be shown that the OP and P’ have the identical
optimum solution by using rescaling technique described in Sec. 3.3.

In the problem P’, if the optimal weights
∗
v are obtained, the optimal classifier

vectors are represented as
∗
wc =

∑N
i=1

∗
τ icXi

∗
vc, where

∗
τ ic are the optimal dual

variables [2]. Thus, the multi-class bilinear classifier in Eq.(1) results in

∗
w

′
cX

∗
vc =

N∑
i=1

∗
τ ic

∗
v
′
cX

′
iX

∗
vc =

N∑
i=1

∗
τ ic

R∑
r=1

∗
v
(r)

c

2

x
(r)
i

′
x(r) (6)

→
N∑

i=1

∗
τ ic

R∑
r=1

∗
v
(r)

c

2

kr(x
(r)
i , x(r)),

where kr(x
(r)
i , x(r)) is a kernel function on behalf of the inner-product of the

r-th type of features, x
(r)
i

′
x(r), in kernel tricks. Note that the kernel functions

can be differently defined for respective feature types. The squared weights v
(r)
c

2

play a role to weight the kernel functions as in MKL, and produce the composite
kernel function specialized to class c. In this case, we can introduce alternative

nonnegative variables d
(r)
c =v

(r)
c

2
≥0 without loss of generality. The variables d

are the weights for kernel functions, and therefore the above bilinear formulation
is applicable to MC-MKL. The primal problem P’ is reformulated to
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P: min
{wc,dc},{ξi}

1
2

(
C∑

c=1

||wc||2 + 1′dc

)
+ κ

N∑
i=1

ξi (7)

s.t. ∀i, c w′
yi

Xid
1
2
yi − w′

cXid
1
2
c + δyi,c ≥ 1 − ξi, dc ≥ 0,

where dc = [d(1)
c , .., d

(R)
c ]′, and d

1
2
c is a component-wise square root of the vector

dc. In the problem P, non-negativity constraint is additionally introduced to the
problem P’ (or OP). The bilinear classifier is finally obtained by

∗
w

′
cX

∗
d

1
2

c =
N∑

i=1

∗
τ ic

R∑
r=1

∗
d
(r)

c kr(x
(r)
i , x(r)). (8)

We describe the scheme to efficiently optimize P in the following section.

3 Optimization Methods

The primal problem P in Eq.(7) has the following dual form, similarly to [11]:

max
{τi}

N∑
i=1

e′
yi

τi, s.t. ∀i τi ≤ κeyi , 1′τi = 0, ∀r, c
1
2

∑
i,j

kr(x
(r)
i , x

(r)
j )τicτjc ≤ κ.

where τi is the i-th C-dimensional dual variable, eyi is a C-dimensional vector in
which only the yi-th element is 1 and the others are 0, and 1 is a C-dimensional
vector of which all elements are 1. This is a convex problem having the global
optimum. However, it is actually solved by second order cone programming,
which requires exhaustive computational cost, and it is not applicable to large-
scaled samples. Therefore, we take an alternative scheme to optimize the primal
problem P in a manner similar to [7,11]. The scheme is based on the iterative
optimization for w and d, with applying projected gradient descent.

3.1 Optimization with Respect to w

At the t-th iteration with fixing the variable d to d[t], in a manner similar to [2],
the problem P results in the dual form:

max
{τi}

−1
2

N∑
i,j=1

C∑
c=1

(v[t]
c

′
X ′

iXjv
[t]
c )τicτjc +

N∑
i=1

e′
yi

τi

⇔ Dw: max
{τi}

−1
2

N∑
i,j=1

τ ′
iΛijτj +

N∑
i=1

e′
yi

τi, s.t. ∀i τi ≤ κeyi, 1′τi = 0, (9)

where Λij is a C-dimensional diagonalmatrix, {Λij}cc =
∑R

r=1 d
(r)[t]
c kr(x

(r)
i , x

(r)
j ).

In this dual problem, the constants derived from d[t] are omitted. This is opti-
mized by iteratively solving the decomposed small subproblem [2,3], as follows.
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Algorithm 1. Optimization for subproblem SubDw

Require: Reindex b̃c = bc
λc

and λc such that b̃c are sorted in decreasing order

Initialize c = 2, ζnum = λ2
1b̃1 − κ, ζden = λ2

1.

while c ≤ C, ζ = ζnum
ζden

≤ b̃c do

ζnum ← ζnum + λ2
c b̃c, ζden ← ζden + λ2

c, c ← c + 1.

end while
Output: τ̃c = min(bc, ζλc), ∴ τc = min{κδy,c, λ

2
c(ζ − βc)}.

The dual problem Dw is decomposed into N small subproblems; the i-th
subproblem focuses on the dual variable τi associated with the i-th sample,
while fixing the others τj (j �= i):

SubDw: max
τi

−1
2
τ ′

iΛiiτi − β′τi − γ, s.t. τi ≤ κeyi , 1′τi = 0, (10)

where

β =
∑
j �=i

Λijτj − eyi , γ =
1
2

∑
j �=i,k �=i

τjΛjkτk −
∑
j �=i

e′
yj

τj .

For optimization in Dw, the process to solve SubDw works in rounds for all i
and the dual variables τi are updated until convergence. The subproblems are
rather more complex than those in [2] since they include not scalar value x′

ixj

but the diagonal matrix Λij derived from multiple features (kernels). However, it
is noteworthy that they are solved at a quite low computational cost, as follows.

Optimization for Subproblem SubDw

In the following, we omit the index i for simplicity. By ignoring the constant,
the subproblem SubDw in Eq.(10) is reformulated to

min
τ̃

1
2
||τ̃ ||2, s.t. τ̃ ≤ κλ−1

y ey + Λ− 1
2 β, λ′τ̃ = λ′Λ− 1

2 β,

where τ̃ = Λ
1
2 τ + Λ− 1

2 β, λ is a C-dimensional vector composed of diagonal
elements of Λ− 1

2 , and λy is the y-th element of the vector λ. By using b =
κλ−1

y ey + Λ− 1
2 β, the constraints are rewritten as

s.t. τ̃ ≤ b, λ′τ̃ = λ′b − κ. (11)

The Lagrangian for this problem is

L =
1
2
||τ̃ ||2 − α′(b − τ̃ ) − ζ(λ′τ̃ − λ′b + κ), (12)

where α ≥ 0, ζ are Lagrangian multipliers. When the subproblem is optimized,
the followings hold:

∂L

∂τ̃
= τ̃ + α − ζλ = 0, KKT: ∀c αc(bc − τ̃c) = 0. (13)
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Therefore, we obtain

αc = 0 ⇒ τ̃c = ζλc, ζ ≤ bc

λc
, αc > 0 ⇒ τ̃c = bc, ζ >

bc

λc
. (14)

By using the above, the second constraint in Eq.(11) results in

λ′τ̃ =ζ
∑

c|αc=0

λ2
c +

∑
c|αc>0

λcbc =
C∑

c=1

λcbc − κ, ∴ ζ =

∑
c|αc=0 λcbc − κ∑

c|αc=0 λ2
c

. (15)

Thus, for solving the subproblem, we only seek ζ satisfying Eq.(14) and (15),
and the simple algorithm is constructed in Algorithm 1.

The optimization of Dw is the core and most exhaustive process for the whole
optimization inP.Therefore, the effective algorithm(Algorithm1) to solve the sub-
problem SubDw makes the whole optimization process computationally efficient.

3.2 Optimization with Respect to d

Then, the optimization of P is performed with respect to d. In this study, we
simply employ projected gradient descent approach, although the other method
such as in [12] would be applicable. In this approach, the objective cost function is
minimized by a line search [6] along the projected gradient under the constraints
d ≥ 0. Based on the principle of strong duality, the primal P is represented by
using Dw in Eq.(9) with the optimal dual variables τ [t] as

min
{dc}

{(
C∑

c=1

1
2
1′dc − θ′

cdc

)
+

N∑
i=1

e′
yi

τ
[t]
i = W (d)

}
, s.t. ∀c dc ≥ 0,

where θc is a R-dimensional vector of θ
(r)
c = 1

2

∑
i,j τ

(r)[t]
ic τ

(r)[t]
jc kr(x

(r)
i , x

(r)
j ). In

this case, W is differentiable with respect to d (ref. [7]), and thus the gradients
are obtained as ∇W = 1

21− θc. Thereby, the optimization in P is performed by
using projected gradient descent, d[t+1] = d[t]− ε∇W . We apply a line search [6]
to greedily seek the parameter ε such that W , i.e., the objective cost function in
P, is minimized while ensuring d ≥ 0. Note that, in this greedy search, the cost
function is evaluated several times via optimization of Dw .

3.3 Rescaling

After optimization of Dw with the fixed d, the cost function is further decreased
by simply rescaling the variables of τ and d, so as to reach the lower bound
in Eq.(4). The rescaling, τ̂ic = scτic, d̂c = 1

sc
dc, does not affect the bilinear

projection in Eq.(8) and thus the constraints in P are kept:

ŵ′
cXd̂

1
2
c =

N∑
i=1

scτic

R∑
r=1

d
(r)
c

sc
kr(x, xi) = w′

cXd
1
2
c , (16)
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while the first term in the cost function is transformed to

1
2

C∑
c=1

||ŵc||2 + 1′d̂c =
1
2

C∑
c=1

sc||wc||2 +
1
sc

1′dc. (17)

The optimal rescaling that minimizes the above is analytically obtained as
∗
sc =√

1′dc/||wc||, and Eq.(17) equals to the lower bound (the Frobenius norm):

1
2

C∑
c=1

||ŵc||2 + 1′d̂c =
C∑

c=1

√
1′dc||wc|| =

C∑
c=1

||wcd
1
2
c

′
||F . (18)

Although the rescaled τ̂ is not necessarily the solution of the problem Dw with
the rescaled d̂, in the greedy optimization for d, the gradients using τ̂ are
employed as the approximation for ∇W (d̂). This rescaling contributes to fast
convergence.

4 Experimental Result

We show the classification performances and computation time of the proposed
methods in comparison with the other MKL methods [7,13] on various datasets.
We employed the 1-vs-all version of [7] to cope with multi-class problems. The
proposed method is implemented by using MATLAB with C-mex on Xeon 3GHz
PC. For the methods of [7,13], we used the MATLAB codes provided by the
authors and combined them with libsvm [1] and MOSEK optimization toolbox
in order to speed up those methods as much as possible. In this experiment,
the parameter values in the all methods are set as follows: κ is determined from
κ ∈ {0.5, 1, 10} based on 3-fold cross validation and the maximum number of
iterations is set to 40 iterations for fair comparison of computation time. These
methods almost converge on various datasets within 40 iterations.

First, we used four benchmark datasets: waveform from UCI Machine Learn-
ing Repository, satimage and segment from the STATLOG project, and USPS [4].
The multiple RBF kernels with 10 σ’s (uniformly selected on the logarithmic
scale over [10−1, 102]) were employed. We drew 1000 random training samples
and classified the remained samples. The trial is repeated 10 times and the av-
erage performance is reported. Fig. 1(a,b) shows the classification results (error
rates) and computation time on those datasets. While the performances of the
proposed method are competitive to the others, the computation time is much
more reduced; especially, more than 20 times faster than the method of [13].

Next, we applied the proposed method to the other practical classification
problems in cell biology. The task is to predict the sub-cellular localizations of
proteins, and in this case it results in multi-class classification problems. We
employed a total of 69 kernels of which details are described in [13]. MKL would
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Fig. 1. The classification performances (error rates) and computation time on the four

benchmark datasets. The number of classes is indicated in parentheses and that of

training samples is in brackets. The left bar shows the result of the proposed methods.

be effectively applied to these substantial types of kernel. In this experiment,
we used four biological datasets [13]: plant, nonplant, psort+, and psort-. We
randomly split the dataset into 40% for training and 60% for testing. The trial
is repeated 10 times and the average performance is reported. The results are
shown in Fig. 1(c,d), demonstrating that the proposed method is quite effec-
tive; the proposed method is superior and faster to the methods of [7,13]. The
experimental result shows that the proposed method effectively and efficiently
combines a lot of heterogeneous kernel functions.

5 Conclusion

We have proposed a multiple kernel learning (MKL) method to deal with multi-
class problems. In the proposed method, the multi-class classification using mul-
tiple kernels is formulated in the bilinear form, and the computationally efficient
optimization scheme is proposed in order to be applicable to large-scaled sam-
ples. In the experiments on the benchmarks and the biological datasets, the
proposed method exhibited the favorable performances and computation time
compared to the previous methods of MKL.
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Abstract. We discuss feature extraction by support vector machines

(SVMs). Because the coefficient vector of the hyperplane is orthogonal

to the hyperplane, the vector works as a projection vector. To obtain

more projection vectors that are orthogonal to the already obtained pro-

jection vectors, we train the SVM in the complementary space of the

space spanned by the already obtained projection vectors. This is done

by modifying the kernel function. We demonstrate the validity of this

method using two-class benchmark data sets.

Keywords: Feature extraction, kernel discriminant analysis, pattern

recognition, support vector machines.

1 Introduction

Feature selection and feature extraction are important in realizing high general-
ization ability of a classifier. Especially, feature extraction extracts features from
the original features by linear or nonlinear transformation. The most well-used
feature extraction methods are kernel principal component analysis (KPCA)
[1,2] and kernel discriminant analysis (KDA) [3]. To obtain more than one pro-
jection vector for two-class linear discriminant analysis (LDA), nonparametric
discriminant analysis (NDA) [4] is proposed in which the projection vectors in the
complementary space of the space spanned by the already obtained projection
vector are determined. But for KDA, to obtain a projection vector for two-class
problems, we need to calculate the inverse of the matrix whose dimension is the
number of training data. Therefore, for large size problems, calculation time will
also be large.

In this paper, we propose feature extraction by support vector machines
(SVMs) [5,6]. In training an SVM, we determine the separating hyperplane so
that the margin is maximized. The coefficient vector of the hyperplane is or-
thogonal to the hyperplane and because the training data of different classes
projected onto the coefficient vector are maximally separated, we can interpret
the SVM as a feature extractor. In addition, to obtain more than one orthogonal
projection vector, we iteratively determine the projection vectors in the comple-
mentary space of the space spanned by the already obtained projection vectors
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borrowing the idea from [4]. This is done by training the SVM with the modified
kernel function.

This paper is organized as follows. In Section 2, we explain KDA and its
problems. In Section 3, we explain classification by an SVM and the proposed
method using the SVM. In Section 4, we experimentally compare the proposed
method with KDA using two-class problems. And Section 5 concludes the work.

2 Kernel Discriminant Analysis

In this section we briefly describe kernel discriminant analysis (KDA). Let the
m-dimensional training data for Class 1 be {x1

1, . . . ,x
1
M1

}, and the data for
Class 2 be {x2

1, . . . , x2
M2

}. We obtain the coefficient vector w that maximizes
the difference of class centers and minimizes total scatter in the feature space
mapped by φ(x).

Let the difference of squares of the centers of mapped data be d2. Then d2 is
given by

d2 = (w�(c1 − c2))2

= w�(c1 − c2)(c1 − c2)�w, (1)

where ci is the center of the class i data:

ci =
1

Mi

Mi∑
j=1

φ(xi
j) = (φ(xi

1), . . . , φ(xi
Mi

))

⎡⎢⎣
1

Mi

...
1

Mi

⎤⎥⎦ for i = 1, 2. (2)

And we define the between-class scatter matrix QB as follows:

QB = (c1 − c2)(c1 − c2)�. (3)

The variance of mapped data s2
i is defined by

s2
i = wT QT w for i = 1, 2, (4)

where QT is the total scatter matrix:

QT =
1
M

M∑
j=1

(φ(xj) − c)(φ(xj) − c)�

=
1
M

[φ(x1), . . . , φ(xM )] (IM − 1M )

⎡⎢⎣ φ(x1)�
...

φ(xMi )�

⎤⎥⎦ . (5)

Here, c is the center of the training data, IM is the M ×M unit matrix, and 1M

is the matrix with all elements being 1/M . We consider maximizing the following
function:

J(w) =
w�QBw
w�QT w

, (6)
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where w is defined as follows:

w = (φ(x1), . . . , φ(xM ))α. (7)

Here α = (α1, . . . , αM )�. Substituting (7) into (6), we obtain

J(α) =
αT KBα

αT KT α
, (8)

where KB and KT are

KB = (kB1 − kB2)(kB1 − kB2)
�, (9)

kBi =
1

Mi

⎛⎜⎝
∑Mi

j=1 K(x1,xi
j)

· · ·∑Mi

j=1 K(xM ,xi
j)

⎞⎟⎠ for i = 1, 2, (10)

KT =
1
M

⎛⎝ K(x1,x1), · · · , K(x1,xM )
· · ·

K(xM ,x1) · · · , K(xM ,xM )

⎞⎠ (IM − 1M )

×

⎛⎝ K(x1,x1), · · · , K(x1,xM )
· · ·

K(xM ,x1) · · · , K(xM ,xM )

⎞⎠ . (11)

Here, K(x,x′) = φ�(x)φ(x′) is a kernel. If KT is positive semi-definite, the
solution that maximizes (6) is given by

α = (KT + εIM )−1(kB1 − kB2), (12)

where ε is a small positive value. Using (7) and (12), we can obtain the projection
vector, but because KT is an M ×M matrix, the calculation time is of the cubic
order of the number of training data.

3 Support Vector Machines

3.1 Classification by Support Vector Machines

In this section, we discuss classification by the SVM. For a two-class problem,
we consider the following decision function:

D(x) = w�φ(x) + b = 0, (13)

where w is the coefficient vector and b is the bias term. We use the following L2
SVM:

maximize Q(α) =
M∑
i=1

αi −
1
2

M∑
i,j=1

αiαjyiyj

(
K(xi,xj) +

δij

C

)
(14)

subject to
M∑
i=1

yiαi = 0 αi ≥ 0 for i = 1, . . . , M, (15)
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where (xi, yi) (i = 1, . . . , M) are M training input-output pairs, with yi = 1 if
xi belongs to Class 1, and yi = −1 if Class 2, C is the margin parameter that
determines the tradeoff between the maximization of the margin and minimiza-
tion of the classification error, and αi are Lagrange multipliers. Solving (15) for
αs yields

αs = −
∑

i�=s,i∈S

ysyiαi, (16)

where S is the set of support vector indices. Substituting (16) into (14), we
obtain

maxmize Q(αS) = c�S α′
S − 1

2
α′�

S KSα′
S (17)

subject to αS ≥ 0, (18)

where α′
S and cS are (|S| − 1) dimensional vectors, KS is a (|S| − 1)× (|S| − 1)

positive definite matrix, and

α′
Si

= αi for i �= s, i ∈ S, (19)
cSi = 1 − ysyi for i �= s, i ∈ S, (20)

KSij = yiyj(K(xi,xj) − K(xi,xs) − K(xs,xj)

+K(xs,xs) +
1 + δij

C
) for i, j �= s, i, j ∈ S. (21)

If S is given we can obtain the solution solving (17) for α′
S . Here, we estimate S

by active set training [7]. Starting from the initial set of S, we calculate α′
S by

α′
S = K−1

S cs. (22)

We delete subscripts with non-positive αi from S and add subscripts associated
with violating data to S and iterate the above procedure until the same set of
support vectors is obtained for the consecutive iterations.

The coefficient vector w and bias term b are obtained by

w =
∑
i∈S

yiαiφ(xi),

b = yi −
∑
j∈S

αjyj

(
K(xi,xj) +

δij

C

)
for i ∈ S. (23)

3.2 Feature Extraction by SVM

Usually, the decision function obtained by training the SVM is used to classify
data. Instead of considering the SVM as a classifier, we can interpret it as a fea-
ture extractor. Two classes are separated by the optimal separating hyperplane
and the coefficient vector w is orthogonal to the optimal hyperplane. Therefore,
the training data of different classes projected onto w are maximally separated.
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Because the coefficient vector in the optimal separating hyperplane works as a
feature extractor, like KDA, by w�φ(x) + b, we obtain one feature. To define
more than one projection vector, we consider obtaining the projection vector
that is orthogonal to the previously obtained projection vectors. This is done
by determining the projection vectors in the complementary space of the space
spanned by the already obtained projection vectors.

Namely, we obtain the first projection vector w(1) training the SVM. Then
we obtain the second projection vector w(2) that is orthogonal to w(1) in the
feature space. Likewise, we obtain the kth projection vector w(k) that satisfies

w�
(k)w(i) = 0 for i = 1, . . . , k − 1. (24)

Now assuming that projection vectors w(i)(i = 1, . . . , k − 1) are obtained, con-
sider determining w(k). We obtain this vector from the complementary space of
the space spanned by the already obtained projection vectors. Let z(k) be the
vector of φ(x) in the complementary space of the space spanned by w(i)(i =
1, . . . , k − 1) as follows:

z(k) = φ(x) −
k−1∑
i=1

w�
(i)

φ(x)
||w(i)||2

w(i), (25)

where z(1) = φ(x), and w(i) is obtained by

w(i) =
∑

j∈S(i)

yjαj(i)φ(xj). (26)

Here, S(i) and αj (i) are the set of support vector indices and support vectors for
w(i). In determining w(k), we only need to replace K(x,x′) in (14) with z�(k) z

′
(k).

Here, we define K(k)(x,x′) by

K(k)(x,x′) = z�(k)z
′
(k)

= K(x,x′) −
k−1∑
i=1

w�
(i)φ(x)w�

(i)φ(x′)||w(i)||−2, (27)

where K(1)(x,x′) = K(x,x′). Using (27), we can iteratively obtain the new
projection vector.

The advantage of our method is that we can calculate the projection vectors
by modifying the kernel calculation of SVM software by (27).

In LDA or KDA, to determine the projection vector we solve (12) by the
M × M matrix inversion, which is of the order of M3. However, to obtain the
projection vector in SVM, at each iteration of active set training we only need
to obtain an |S| × |S| inverse matrix, which is of the order of |S|3. Usually |S| is
much smaller than M . Therefore, feature extraction by the SVM is expected to
be much faster.
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Table 1. Two-class bench mark data sets

Data Inputs Train Test Sets

Banana 2 400 4900 100

B. cancer 9 200 77 100

Diabetes 8 468 300 100

German 20 700 300 100

Heart 13 170 100 100

Image 18 1300 1010 20

Ringnorm 20 400 7000 100

F. solar 9 666 400 100

Splice 60 1000 2175 20

Thyroid 5 140 75 100

Titanic 3 150 2051 100

Twonorm 20 400 7000 100

Waveform 21 400 4600 100

Table 2. Parameter values for two-class

problems

KDA SVM

Data γ C (Rec) γ C C (Rec)

Banana 10 500 10 100 0.1

B. cancer 0.1 0.5 15 0.5 50000

Diabetes 0.1 1 0.1 5000 0.5

German 0.1 0.5 10 5 50000

Heart 0.1 0.5 3 1 50000

Image 15 5 15 100000 10

Ringnorm 0.1 100 15 10 5

F. solar 0.1 0.1 1 1000 3

Splice 15 50 10 5 100

Thyroid 5 50 15 500 10

Titanic 1 0.5 0.5 10 0.1

Twonorm 0.1 0.5 10 0.5 1

Waveform 0.1 0.5 15 1 50000

4 Computer Experiment

We evaluated the proposed method as a feature extractor for the linear SVM
(SVM with linear kernels) used as a classifier and compare the proposed method
with KDA.

We used two-class benchmark data sets [8,9] shown in Table 1. In the table,
“Inputs,” “Train,” and “Test” are the numbers of input variables, training data,
and test data, respectively, and “Sets” is the number of training and test data
set pairs. We used RBF kernels: K(x,x′) = exp(−γ||x − x′||2), where γ is a
positive parameter and set 10−12 to ε in (12).

To compare the proposed method with the conventional method, we need
to determine the values of the kernel parameter γ, and the margin parameter
C. For KDA + linear SVM, we determined the values of γ for KDA and C
for the linear SVM by fivefold cross-validation using the first five data sets.
And for the proposed method, we determined the values of γ and C for the
feature extractor, by training the SVM with RBF kernels and then we extracted
ten features in maximum setting the values of γ and C determined by cross-
validation. In classification, for the ten extracted features, we determined the
value of C for the linear SVM by cross-validation and used the C value for one
to ten features. The value of γ was selected from {0.1, 0.5, 1, 1.5, 3, 5, 10, 15}
and the value of C was selected from {0.1, 0.5, 1, 5, 10, 50, 100, 500, 103, 5 103,
104, 5 104, 105}.

Table 2 shows the parameter values determined by the above procedure. In
the table, the “γ” columns in KDA and SVM list the γ values determined for
KDA and SVM and the “C (Rec)” columns list the C values for the linear SVM.
The “C” column in SVM lists the C values for the SVM feature extractor.

Using the parameter values listed in Table 2, we extracted features, performed
classification by the linear SVM, and calculated the average recognition rates and
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Table 3. Recognition performance for test data sets

KDA SVM (1) SVM (C) SVM (T)

Data Test Test Test Feature Test Feature

Banana 88.74±0.56 89.27±0.51 89.21±0.47 5 89.25±0.47 10

B. cancer 74.30±4.51 73.04±4.86 72.04±5.06 8 73.04±4.86 1

Diabetes 76.87±1.69 75.79±1.60 76.79±1.62∗ 10 76.91±1.63 2

German 75.71±2.10 76.62±2.18 75.04±2.18 10 76.69±2.18 1

Heart 83.24±3.14 84.47±3.08 82.69±3.08 8 84.36±3.08 1

Image 95.48±0.60 96.12±0.69 96.26±0.58∗ 3 96.34±0.59 7

Ringnorm 98.01±0.28 97.67±0.34 97.92±0.28∗ 2 98.03±0.26 9

F. solar 66.35±1.62 66.02±1.76 66.12±1.56∗ 3 66.15±1.61 2

Splice 87.60±0.55 89.08±0.74 89.29±0.73∗ 10 89.29±0.73 10

Thyroid 93.71±2.81 95.86±2.20 95.97±2.39∗ 8 95.98±2.24 7

Titanic 77.52±1.12 77.44±0.61 77.41±0.57 10 77.44±0.61 5

Twonorm 97.29±0.23 97.57±0.27 97.57±0.27∗ 1 97.57±0.27 1

Waveform 90.12±0.47 89.98±0.46 88.56±0.37 5 90.07±0.37 1

Table 4. Feature extraction time (s)

Data KDA SVM (1) SVM (5) SVM (10)

Banana 0.61 0.18 0.97 2.14

B. cancer 0.04 0.01 0.05 0.10

Diabetes 0.62 0.11 0.54 1.12

German 2.21 0.33 1.66 3.89

Heart 0.03 0.01 0.05 0.09

Image 24.18 0.31 1.58 3.29

Ringnorm 0.82 0.20 1.19 3.00

F. solar 1.91 0.29 1.47 3.02

Splice 10.77 1.12 7.27 15.48

Thyroid 0.02 0.01 0.03 0.05

Titanic 0.06 0.06 0.29 0.63

Twonorm 0.88 0.12 0.69 1.58

Waveform 0.66 0.22 1.31 3.15

the standard deviations. Table 3 shows the average recognition rates and their
standard deviations of the test data sets for KDA and the proposed method. In
the table, the “SVM (1)” column shows the recognition rates when one feature
was extracted by SVM and the C value for the linear SVM was determined using
one feature by cross-validation. In KDA and SVM (1), the better recognition rate
is shown in boldface. The “SVM (C)” column lists the recognition rates and the
number of features selected by cross-validation. This means that we selected the
features that realized the maximum recognition rate for the validation data set
among one to ten features. The asterisk denotes that the recognition rate of SVM
(C) is higher than or equal to that of SVM (1). The “SVM (T)” column lists
the maximum recognition rates among one to ten features and the associated
number of features. Thus, the recognition rate of SVM (T) is better than or
equal to that of SVM (C).

The recognition rates of SVM (1) are comparable with those of KDA. For
SVM (T) more than one feature were better than one feature for eight data sets.
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But the recognition rates of SVM (C) were better than or equal to those of SVM
(1) for seven data sets and for other six data sets worse. This meant that the
cross-validation did not work well for these data sets.

Table 4 shows the time for extracting one feature for KDA and one, five,
and ten features for the proposed method. Compared to KDA by the proposed
method with one feature we could reduce feature extraction time for all the data
sets. Especially, large data sets such as German, Image, and Splice data sets, the
proposed method was much faster than KDA. Feature extracting time increases
linearly as five and ten features were extracted.

5 Conclusions

In this paper, we proposed feature extraction using SVMs. We regard the coeffi-
cient vector orthogonal to the separating hyperplane as a projection vector, and
obtain a new projection vector in the complementary space of the space spanned
by the already obtained projection vectors.

According to the computer experiment, the recognition rates of many data
sets were almost equal to the conventional method. But in some cases we could
not optimize the number of feature by cross-validation. The proposed method
with one feature could reduce calculation cost for almost all data sets. Especially,
we could reduce much calculation cost for large data sets.

References

1. Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Möller, K.R., Smola, A.J.:
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Abstract. This article presents a support vector machine (SVM) learn-

ing approach that adapts class information within the kernel computa-

tion. Experiments on fifteen publicly available datasets are conducted

and the impact of proposed approach for varied settings are observed. It

is noted that the new approach generally improves minority class predic-

tion, depicting it as a well-suited scheme for imbalanced data. However,

a SVM based customization is also developed that significantly improves

prediction performance in terms of different measures. Overall, the pro-

posed method holds promise with potential for future extensions.

Keywords: SVM, Class Informed Kernel, RBF, Sensitivity, Imbalanced

data.

1 Introduction

Support Vector Machine (SVM) [1, 2] has positioned itself as a state-of-the-art
pattern classification technique in many contemporary research areas including
brain informatics (e.g. [3,4]). Given a set of inputs with known class labels (i.e.,
supervised learning), SVM maps the input space to a high-dimensional feature
space such that the training data become linearly separable. The outcome of
training SVM is a decision hyperplane that maximizes margin from the class
boundaries and, thereby, produces a classifier with high generalization capacity.
The explicit mapping from input space to feature space is unknown and is con-
trolled by a function, termed as kernel function, that computes the dot product
between the mapped input vectors in the feature space (and dot product is the
only processing step, in the unknown feature space, required for SVM training
and prediction). While several kernel functions have been proposed and employed
in literature, radial basis kernel are often used due to robust performance. These
kernel functions can also be viewed as measuring similarity between the feature
vectors [5]. The optimization process involved in the SVM training [6, 7] also
considers the similarity between feature vectors in its underlying philosophy.
However, the similarity (i.e., kernel) is computed based on the input vectors’ at-
tributes only and class information of the corresponding vectors are not involved.
Viewing kernel value as a similarity measure, this article presents a kernel that
takes into consideration the class information of the corresponding vectors. The
aim is to conceptualize the impact of including class information during kernel
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computation on the classifier’s performance. The study reveals that the proposed
approach improves the performance of SVM in terms of different measures.

The rest of this article is organized as follows. In Section 2, we present a
brief survey on Support Vector Machine classification technique. Section 3 then
details our proposed learning approach. A set of experiments, outlining the dif-
ferent characteristics of the proposed approach, and corresponding discussions on
outcomes are then highlighted in Section 4. Lastly Section 5 provides a summary
of the findings and indicates future potential research.

2 Support Vector Machine

Support Vector Machine is a robust classifier that derives the maximal margin
decision hyperplane during training and use it to discriminate test data to one of
the two classes (i.e., SVM is a binary classifier working with two class labels only)
during prediction [8]. Let the training dataset comprises of tuple (xi, yi) for i =
1...N where, N is the total number of data, xi the i-th attribute vector and
yi (where yiε{−1, 1}) the corresponding class label. Then SVM training can be
expressed as the following optimization problem (dual form):

minαJD(α) =
1
2

∑
αiαjyiyjK(xi.xj) −

∑
αi (1)

subject to,
∑

αiyi = 0; 0 ≤ αi ≤ C for ∀αi;
The function K : �x� → � is known as the kernel function, that computes

the dot product between the data vectors in high dimensional feature space.
Several kernel functions have been proposed in literature. Two of these most
commonly used kernels are:

– Linear: (x1.x2)
– RBF: (e−γ‖x1−x2‖2

for γ > 0).

The parameter C in the optimization problem (Eq. 1) is a user-defined penalty
assignment on training errors. Together, the parameters to kernel (ex., γ for
RBF) and C are referred to as the hyper-parameters. SVM training, basically,
computes a weight (αi) associated to each of the data points. In the final so-
lution, data points with αi > 0 are the only important points for classification
and are termed as support vectors. SVM training also computes an intercept
b for the decision hyperplane. The prediction on a test data x is given by:
sign (

∑nsv
i=1 α∗

i yiK(xi.x) + b), where nsv is the number of support vectors (i.e.,
data points with non-zero α).

3 Class Informed Kernel

Noting that dot product relates to cosine similarity, the kernel values (that de-
notes dot product between vectors in feature space), can be viewed as indicating
similarity between the data vectors. But, the calculation of this similarity is
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based on the attribute vectors only and does not take into account the respec-
tive class labels. Although literature exists that have attempted different kernel
modifications to improve prediction performance (e.g. [9]), a kernel that adapts
class information in the computation and also addresses the issue that arises
during prediction from the use of such kernels (explained in a subsequent para-
graph), to the best of our knowledge, is still lacking. Viewing the kernel values
as similarity measures, a class informed kernel is as proposed below:

K((x1, y1) , (x2, y2)) = e−γ(‖x1−x2‖2 + (y1−y2)
2
for γ > 0; (2)

Here, x1,x2 are the input vectors’ attributes and y1, y2ε{−1 , +1} are the re-
spective class labels.

The kernel expression in Eq. 2 is similar to the expression of RBF kernel. The
difference is the additional term (y1−y2)2. Assuming that class labels are either
+1 or −1, the value of this additional term results in 0 when both x1,x2 belong
to the same class and 4 when x1,x2 belong to the different class. Thus based
on the class labels of the vectors for which kernel is computed, an additional
weight is added to the expression of RBF. Further, it is to be noted that, the
term ‖ x1 − x2 ‖2 denotes the distance between the two vectors in input space.
For same class input vectors and the proposed kernel K, this distance remains
the same as that for RBF kernel. However, for different class input vectors, the
addition of the positive weight in effect increases the distance between the vectors
(i.e., artificially increases pairwise margin and thus reduces overlap between the
different class data).

An issue with use of this class informed kernel lies in the application of it
during prediction. While class labels of the support vectors, derived from training
SVM, are known, that of the prediction vectors are unknown. To address this
issue, we employ a learning framework outlined in Fig. 1. During training, a
SVM model is learnt using the proposed class informed kernel. In addition, a
second classifier is trained on the training data. This second classifier (termed as
support classifier) is used to provide an estimate of class label during test phase.
The estimated class label coupled with the prediction input vector is then given
as input to the trained SVM model and the outcome from the model is the final
prediction.

4 Experiment Setups and Results

4.1 Datasets and Software

We perform experiments on five publicly available datasets [10]: diabetes, glass,
iris, liver and vehicle. For running SVM, we employ the LibSVM classification
technique as implemented in R (through the package kernlab) [11]. Other than
the diabetes and liver datasets, the rest of the datasets have originated from
multi-class domain. Since SVM is primarily a binary classification technique,
we convert the multi-class datasets to binary by considering one of the class as
positive class and the rest as negative class. Doing this conversion for each of the
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Fig. 1. Framework for learning with class-informed kernel

multiclass data results in total the 15 datasets outlined in Table 1. Table 1 also
indicates the total number of data, number of positive and negative class samples
and the percentage of the class representation in the datasets. It is noteworthy
that some of the datasets are imbalanced (i.e., skewed) in terms of representation
of the classes. Imbalanced dataset often arises in many practical applications and
it is well known that many classifiers make more prediction errors on minority
class samples than that belonging to majority class [12]. Accuracy (ratio of the
total number of correctly classified data and the total number of data) is not
an appropriate performance measure when datasets is imbalanced. Sensitivity
(accuracy for the positive class data) and gmean (geometric mean of the accuracy
for positive class data and the accuracy of negative class data) are often employed
as performance metric for imbalanced datasets [13, 14]. In our experiments, we
focus on all three of these prediction performance measures.

Table 1. Datasets used in the experiments

Datasets Total Data # Positive # Negative % (+) % (-)

diabetes 768 268 500 34.90 65.10
glass 1 214 70 144 32.71 67.29
glass 2 214 76 138 35.51 64.49
glass 3 214 17 197 7.94 92.06
glass 5 214 13 201 6.07 93.93
glass 6 214 9 205 4.21 95.79
glass 7 214 29 185 13.55 86.45
iris 1 150 50 100 33.33 66.67
iris 2 150 50 100 33.33 66.67
iris 3 150 50 100 33.33 66.67
liver 345 145 200 42.03 57.97

vehicle 1 846 212 634 25.06 74.94
vehicle 2 846 217 629 25.65 74.35
vehicle 3 846 218 628 25.77 74.23
vehicle 4 846 199 647 23.52 76.48
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Fig. 2. Performance measures for RBF kernel and CIK (Class informed kernel)

4.2 Experiment with Class Informed Kernel

For our experiments, we randomly split each of the datasets into a train and a
test data file. 90% of the total data is used for training and the rest for prediction.
Stratified sampling is used to preserve the ratio of positive and negative class
data in the train and test files. We analyse the impact of class informed kernel
by comparing its performance against a SVM trained on the dataset using RBF
kernel. Focus is made on RBF kernel due to its wide popularity and well known
robust performance, and also due to the similarity of class informed kernel to the
RBF kernel. For RBF kernel, a 10-fold cross validation technique is employed to
determine the best parameters (γ and C) for SVM training on the training data
file, and the trained model is employed to note prediction performance on test
data file. For class informed kernel (CIK), γ and C are set to the best parameter
values identified for the RBF kernel. For this initial experiment, we use Naive
Bayes classifier (due to its simplicity and high training speed) as the support
classifier. Fig. 2 denotes comparison of RBF and CIK. We note that while the
CIK (with Naive Bayes as support classifier) based learning does not perform
well against the RBF learning in terms of accuracy, in terms of sensitivity the
CIK emerges as a clear winner (performs better than or comparable to RBF
for 12 datasets out of 15). In terms of gmean, however, there is no clear winner
(CIK performs better than or comparable to RBF for 8 datasets out of 15).
Thus, we observe that CIK has a positive impact on prediction performance,
especially when the dataset is imbalanced (i.e., CIK results in higher prediction
of minority class).

4.3 Varied Support Classifier

In the previous experiment, we have used Naive Bayes as the support classifier.
In this section, we present the impact of other different support classifier on pre-
diction outcomes. In particular, we experiment with recursive partitioning and
regression trees [15] and a single-hidden-layer neural network. For each of these
different support classifiers, prediction performance of CIK is compared against
that for RBF. Fig. 3 illustrates the results. We note that the performance for CIK
noticeably varies depending on the support classifier. For recursive partitioning
and regression trees (RT), CIK consistently performs better or comparable to
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RBF for all the datasets in terms of sensitivity. In terms of accuracy and gmean,
however, CIK (with RT as support classifier) performs worse than RBF. For
single-hidden-layer neural network (NN), CIK performs better than or compara-
ble to RBF for 10 of the 15 datasets in terms of sensitivity. In terms of accuracy,
CIK with NN as support performs better than CIK with Naive Bayes as support.
However, compared to RBF, CIK with NN performs slightly worse than RBF in
terms of accuracy and gmean (CIK with NN is comparable or better than RBF
in terms of both accuracy and gmean for 6 of the 15 datasets). Overall, CIK
with NN performs better than CIK with other support classifiers focused on so
far. In the next subsection, we present CIK with another support classifier that
significantly depicts performance improvement over RBF.

(a) RT

(b) NN

Fig. 3. Performance measures for RBF kernel and CIK (Class informed kernel) with (a)

recursive regression and partition tree (RT) and (b) single-hidden-layer neural network

(NN) as support classifier

4.4 SVM as Support Classifier

In the previous sub-sections we have experimented with different support classi-
fiers and noted varied effects on prediction performance. More specifically, CIK
has generally performed better than RBF in terms of sensitivity, but depicted
variations in terms of the other two measures. In this section, we present results
for RBF kernel based SVM being used as the support classifier. Thus, for a
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Fig. 4. Performance measures for RBF kernel and CIK (Class informed kernel) with

SVM as support classifier

given train data file, SVM is first trained on the input using the class informed
kernel formulation of Eq. 2, and another SVM is trained using RBF kernel. The
hyper-parameters are kept at the same values for both of these trainings. Dur-
ing prediction, the RBF based model first predicts the class and the predicted
labels along with respective attribute vectors are fed to the CIK based model
for prediction. The outcome from CIK is the final prediction. Fig. 4 presents
the performance of CIK with SVM as support against that for RBF. We note
a significant performance improvement in terms of all the measures. In terms
of sensitivity, CIK (with SVM support) performs better or comparable to RBF
for 14 of the 15 datasets. In terms of both accuracy and gmean, CIK performs
better or comparable to RBF for 12 of the 15 datasets. Thus, not only CIK with
SVM improves prediction of minority class (i.e., sensitivity), but also achieves
notable prediction improvement for both the classes (as evidenced by improved
value of gmean and accuracy). From statistical perspective, we note that the
difference in performance for all the three measures are significant using two-
tailed sign test [16] with p < 0.05. To get further insight on the behaviour of the
classifier, we have also recorded the performance of RBF and CIK (with RBF
based SVM as support classifier) on the training data in terms of area under
ROC (AUC). We note that the CIK performs comparable or better than RBF
for 14 of the 15 datasets (with iris 3 being only exception, having slight drop
in AUC). We have also noted the ratio of training data incorrectly classified by
both RBF and CIK (II ), incorrectly classified by RBF but correctly classified
by CIK (IC ), correctly classified by RBF but incorrectly classified by CIK (CI )
and correctly classified by both RBF and CIK (CC ). We observe that for major-
ity of the datasets, IC is greater than CI. These findings imply that CIK gains
better separability between the class representatives than RBF and which, in
turn, provides an explanation of its better prediction performance on the test
set in terms of the different measures.

5 Conclusion

This article has presented a new learning approach along with a kernel formula-
tion for SVM incorporating class information. An integral part of this approach
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is the training of a second (support) classifier and results have been presented for
varied support classification schemes. Overall, the proposed kernel based learn-
ing (CIK) improves prediction performance in terms of sensitivity and thereby is
well suited for imbalanced data classification. Experiments are also conducted us-
ing SVM as support classifier and statistically significant prediction performance
improvement is noted. The proposed kernel is based on RBF kernel formulation.
Future research possibilities lie in the extension of the formulation in terms of
other kernels and varied added weights.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their insightful recommendations.
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Abstract. Does the way a person read influence the way they under-

stand information or is it the other way around? In regard to reading of

English text, just how much we can learn from a person’s gaze pattern? It

is known that while reading, we inadvertently form rational connections

between pieces of information we pick up from the text. That reflects in

certain disruptions in the norms of reading paradigm and that gives us

clues to our interest level in reading activities.

In this paper, we validate the above statement and then propose a

novel method of detecting the level of engagement in reading based on a

person’s gaze-pattern. We organised some experiments in reading tasks

of over thirty participants and the experimental outputs are classified

with Artificial Neural Networks with an approximately 80 percent accu-

racy. The design of this approach is simple and computationally feasible

enough to be applied in a real-life system.

“Your eyes are the windows to your soul”

Keywords: Eye-gaze Pattern, Artificial Neural Network, SVM, Grid-

based Clustering.

1 Introduction

Everyone is taught to read (in English) the same way: Read a line form left to
right and then drop down to the next line once the end of the current line is
reached. As a beginner, we followed this simple rule very closely but as we get
more adept in reading English text, it is no longer the case. What we have found
is that people develop their own personal behaviours when reading, that they
probably do not notice they even do. One aim of this research is to characterise
these behaviours and to identify and abstract significant model that can show
how engaged a person is in the reading activity.

We conducted an experiment where we capture test participants gaze activ-
ities while they perform reading tasks. We analysed a set of features of those
data: reading time, fixations time, differences in X and Y coordinates, etc....
to identify the key factors to indelicate user engagement level in reading. With
the positive result obtained from that, we would like to introduce a simple but
affective approach to measure a person’s interest in the materials he is reading.

We use Artificial Neural Network (ANN) method to validate the effectiveness
of the proposed approach. By combing our solution with a reasonably simple

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 124–131, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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ANN, we could introduce a very achievable real life system. This solution is also
flexible in combining with other classifying techniques. We further strengthen our
claim by achieving a comparably accurate results with Support Vector Machine
(SVM).

2 Proposed Method

2.1 Background

Comprehending the meaning of words in sentences and paragraphs is a great
(unnoticed) strain on a persons cognitive process. In order to comprehend text a
person needs to be able to read quickly because a person can, generally, only keep
seven pieces of information (±2) in their short-term memory [6]. Any additional
information is quickly lost and cannot be recalled. This general rule stands for
many different kinds of information from the very simple (letters, or words) to
the very complex (entire sentences or a word and 20 Literature Survey all its
associated contexts). This allows a fluent reader to be able to “chunk” related
information together so that they can get more words into their short term
memories.

The above phenomenon results in certain disruptions in reading patterns. We
believe that these stochastic behaviours are the keys to effectively quantify the
reading engagement load level of a person. Previously in 2009, a study was or-
ganised in our research group to investigate using eye-tracking to analyse reading
behaviour. Even still in the preliminary stages, it showed the potential in us-
ing machine learning approached to classify eye gaze patterns. The purpose of
the research behind this paper is to consolidate the previous studies result and
to propose a feasible model for classifying gaze-pattern with machine learning
methods such as Neural Networks.

The method we are proposing here is for detecting user engagement in reading
and is based on the aforementioned gaze features. We also introduce three design
principles to make it a lightweight yet effective method for this purpose.

2.2 Effective Reduction of Data Resolution

The gaze-tracking equipment that we use provides us the gaze points in term
of a series of X and Y coordinates. These coordinates identify the locations of
the gaze points on the screen and have been used to calculate the horizontal
and vertical movements. In previous experiments[2][3], fixation points have been
produced by filtering those gaze points, resulting in a more interpretable form
for later data processing.

By observation, we found that most of the movements of fixations, i.e. saccades
are just small and subtle position changes caused by the fact that the eyes do
not actually focus on one place. Those saccades are considered irrelevant for this
purpose and we can afford to omit them in the pattern recognition stage, hence
further reduce the sample size.
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We proposed a simple but effective method by dividing the screen into smaller
cells using a m-by-n grid. This effectively replaces change in positions of any two
fixations with the difference in position of the cells that contain them. We refer to
this as cell movements. In the cases when the fixation movements are contained
within a cell, we consider it a no change in cell position. The benefit of this is
it will be less computationally demanding to perform any processing/analysis
because the number of data points have been greatly reduced. We can also
adjust the resolution of the grid (m and n) for finer or coarser filtering.

Fig. 1. A paragraph is divided into cells by a 4-by-5 grid. Each identified by a cell

number

We examined the data sample from the experiment with and without using
this data reducing method. Both yield comparable results except for computa-
tional speed.

2.3 Focus on Back Tracking and Forward Tracking

The most significant disruption in reading flow are the skipping forward and
back-tracking activities found in the gaze. As participants try to “link” infor-
mation up, they shift their eyes’ focus back-and-forth to achieve a better under-
standing of the information.

Back tracking and forward tracking are two activities that we would like to
qualify as the main factor to detect engagement in reading tasks. To quantify if
a gaze movement is a back/forward tracking patterns, we consider if it belongs
to the two “extreme” of cell movement groups. If we established a normal distri-
bution of the distances of movement, the “extreme” groups are the one that did
not fall within the 68-th confidence interval (a margin of one standard error).
Figure 2 below demonstrates this idea:

The figure depicts the distribution of all cell movement distances of a person
reading of one paragraph. It shows that if the distance of a cell movement is less
than -5 (μ− 1σ), that saccade is considered a backtracking. On the other hand,
a forward tracking saccade is one that has the distance greater than 5(μ + 1σ).
These thresholds are expected to be different on a case by case basis.
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Fig. 2. A distribution of cell movement distances throughout reading activity of a

paragraph

2.4 Levenberg-Marquardt Based Neural Network

Previously, an experiment carried out by Zhu et al.[2] to evaluate the perfor-
mance of Levenberg-Marquardt optimization, combined with fuzzy signature, in
classifying gaze patterns. What they found is that this optimization algorithm
performs well with the gaze-pattern classification problem and on par with SVM
in the two classes test.

In this paper, we evaluate the performance of Levenberg-Marquardt optimiza-
tion as the training function in a Neural Network to classify eye gaze. The neural
network we construct is a two-layer, feed-forward back-propagation that has one
single output node. Hence the output value regarding to a pattern T is described
as[4],[5],[7]:

yT
1 = gO(b1 +

∑
j

W1j · gH(bj +
∑

k

wjk · xT
k )), (1)

– b1, bj: the bias
– w1j is the weight of the jth hidden neuron to the single output neuron
– wjk is the weight of kth input neuron to the jth hidden neuron
– xT

k the kth element of the input pattern T
– gO transfer function on the output layer - linear transfer function
– gH transfer function on the hidden layers - sigmoid transfer function

We evaluate the training performance of the network with this error function
(mean square error):

E =
1
N

N∑
k=1

(yE − yP )2, (2)

where yE is the vector of predict outcomes and yP represents the vector of
predicted outcome.
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The back-propagation training algorithm, being Levenberg-Marquardt opti-
mization, will be represented by the formula[5]:

δw = (JT J + I · μ)−1JT e (3)

where J is the Jacobian matrix of the error function calculated in equation(2),
μ is the learning rate which is updated after iteration. diag being the diagonal
of JT J .

3 Experiment

3.1 Background

We have selected 35 participants for this experiment. The experiment involves
the participant reading some paragraphs from a computer screen while the com-
puter gathers their eyes’(gaze) movements with gaze-tracking equipment.

In total there were ten paragraphs for the participants to read. Seven of the
paragraphs were taken from the paper “Keyboard before Head Tracking De-
presses User Success in Remote Camera Control” by Zhu et al.[1]. The remaining
three paragraphs were extracts from various sources (miscellaneous paragraphs).
Five of the paragraphs from the paper were chosen for the amount of useful infor-
mation that was contained within. The other two paragraphs from the paper and
the three miscellaneous paragraphs describing that paper were chosen because of
their generality and lack of specific technical information, the paragraphs being
introductory in nature. That is, care was taken to make sure that this fact was
not obvious.

3.2 Setup

Within the 35 volunteered participants, we divided them into two groups. Group
A were people that had been informed that they would have to answer questions
about the paragraphs they read toward the end of the experiment session. Group
B, however, were allowed to read as if they were just reading any piece of text -
and that they would not be questioned at the end. Group A contained 13 people
while group B had 22 participants.

The paragraphs were presented to participants in different orders to prevent
any specific paragraph ordering from affecting the results. This was an exper-
iment design choice to help show which participants could look at the bigger
picture even when the information is out of sequence and scattered.

The screen used was a 19 inch LCD and was set to a resolution of 1280 by 1024.
All the paragraphs are displayed in full-screen. To stabilise the head position,
we use a chin rest, which positions the participant faces about 72 cm away from
the centre of the screen.

3.3 Data Collection and Preparation

The gaze points are collected at about 1/60th of a second rate, and we produce
fixation points from them. We “group” gaze points into clusters with size of 15
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pixels radius[3] to define fixations. The fixation length (ms) is worked out by the
number of gaze points within each cluster.

Below are a visualisation of gaze data being projected onto their correspondent
paragraphs. The solid circles represents the fixation points. The shade of the
circles indicates the fixation length - with the darker one indicate a longer fixation
point. The lines that connect the fixations points represent the saccades.

(a) (b)

Fig. 3. An example of 2 read patterns of the same paragraph by two different participant

We further filter out the data using the aforementioned grid-based method
with 4-by-5 grid. Based on that we calculate numbers of back-tracking and
forward-tracking of each paragraph. For the classification task, we use these
three following feature to be evaluated with ANN:

– Average fixation length for each paragraph and each participant
– Back-tracking count for each paragraph and each participant
– Forward-tracking count for each paragraph and each participant

4 Evaluation and Comparison

4.1 Neural Network Results

A two-layer neural network with one output neuron is use for classifying data.
The transfer function of the output layer is a linear transfer function while the
hidden layer is equipped with a tangent sigmoid transfer function. The hidden
layer comprise of 5 neurons. We designed this to be a binary classification prob-
lem where the target values were 1 for relevant paragraph and 0 for irrelevant
paragraph. The neural network was back propagation trained with Levenberg-
Marquardt optimization. The LM parameters are configured with an initial μ
value of 0.001 with the increase and decrease factors as 10 and 0.1 respectively.
The network performance is evaluated by Mean of Square Error method.

We performed 9-folds cross-validation and obtained the average of classifica-
tion accuracies from every fold. Due to the relatively small sample size available
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(35 participants - with 10 paragraphs per participant), 9-fold cross-validation
is preferred to the conventional 10-fold method. For each fold, the training set
is divided as followed: 60% for data training, 20% was used to generalise the
network and prevent over-fitting and the last 20% was used as the test data.

Table 1. ANN Results for Eye-gaze Feature Pattern Recognition

Experiment Classification Error Rate Sensitivity Specificity

Group A 0.2586 0.7241 0.7586

Group B 0.1717 0.7879 0.8687

Both Groups 0.1975 0.7898 0.8153

With this ANN setup, We were able to achieve about 80% classification ac-
curacy as seen in Table 1. This is encouraging because we only provided three
gaze parameters as classification categories.

As we can see the classification performance achieved with Group A data is
slightly lower than with group B data. The hypothesis behind that is that with
group A, where participants were expected to answer questions about the para-
graph, that lead to a more “careful” reading behaviour for all paragraphs. That
would results to a less disruptive forward, backward movements in the read-
ing patterns. But nevertheless, the classification results in all cases are positive
considered the small number of classification features.

4.2 Support Vector Machine Comparison

Support Vector Machines (SVM) are well-established method for this type of
classification problems[4].

We constructed a conventional Support Vector Machine with a linear kernel.
We used the same dataset as we did with ANN. The labels we chose are “1”
for relevant paragraph and “0” for irrelevant paragraph . To have a fair compar-
isons, we also cross-validated the results using 9-folds and obtains the average
Classification Error Rate (CER) after 9 iteration.

Table 2. SVM Results for Eye-gaze Feature Pattern Recognition

Experiment SVM Classification Error Rate(CER) ANN CER SVM Sensitivity SVM Specificity

Group A 0.2538 0.2586 0.7077 0.7846

Group B 0.1773 0.1717 0.8091 0.8364

Both Groups 0.2086 0.1975 0.7600 0.8229

Table 2 compares the results we got by using SVM technique with the previous
results by ANN. We found that ANN and SVM performance in term of accuracy
almost exactly match each other. Both methods (SVM and ANN) result in a very
high accuracy rate and with further optimisations on both, we believe we can
attain even more positive results.
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5 Conclusion

In this paper, we demonstrated the effectiveness of ANN in recognising gaze-
patterns. The findings are encouraging because ANN combined with our pro-
posed method for data preprocessing has resulted in a low computational model
that achieves highly accurate results: An ANN being trained with only three
classification categories is able to achieve 80% accuracy is very encouraging. It
has also consolidate the outcome of our previous experiment[3] as well as the use
of Levenberg-Marquardt optimization as the training algorithm for this types of
problem[2].
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Abstract. In support vector data description (SVDD) a spherically

shaped boundary around a normal data set is used to separate this set

from abnormal data. The volume of this data description is minimized to

reduce the chance of accepting abnormal data. However the SVDD does

not guarantee that the single spherically shaped boundary can best de-

scribe the normal data set if there are some distinctive data distributions

in this set. A better description is the use of multiple spheres, however

there is currently no investigation available. In this paper, we propose a

theoretical framework to multi-sphere SVDD in which an optimisation

problem and an iterative algorithm are proposed to determine model

parameters for multi-sphere SVDD to provide a better data description

to the normal data set. We prove that the classification error will be

reduced after each iteration in this learning process. Experimental re-

sults on 28 well-known data sets show that the proposed multi-sphere

SVDD provides lower classification error rate comparing with the stan-

dard single-sphere SVDD.

Keywords: Support vector data description, spherically shaped bound-

ary, imbalanced data, one-class classification, novelty detection.

1 Introduction

In One-Class Classification, also called Novelty Detection (ND), the problem of
data description is to make a description of a normal data set and to detect
new sample that resembles this data set [9]. Data description can be used for
outlier detection to detect abnormal samples from a data set. Data description
is also used for a classification problem where one class is well sampled while
other classes are severely undersampled. In real-world applications, collecting
the normal data is cheap and easy while the abnormal data is expensive and
is not available in several situations [14]. For instance, in case of machine fault
detection, the normal data under the normal operation is easy to obtain while
in faulty situation the machine is required to devastate completely. Therefore
one-class classification is more difficult than conventional two-class classification
because the decision boundary of one-class classification is mainly constructed

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 132–142, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A Theoretical Framework for Multi-sphere SVDD 133

from samples of only the normal class and hence it is hard to decide how strict
decision boundary should be. ND is widely applied to many application domains
such as network intrusion, currency validation, user verification in computer
systems, medical diagnosis [3], and machine fault detection [16].

There are two main approaches to solving the data description problem which
are density estimation approach [1][2][12] and kernel based approach [13][14][20].
In density estimation approach, the task of data description is solved by esti-
mating a probability density of a data set [11]. This approach requires a large
number of training samples for estimation, in practice the training data is not
sufficient and hence does not represent the complete density distribution. The
estimation will mainly focus on modeling the high density areas and can result
in a bad data description [14]. Kernel-based approach aims at determining the
boundaries of the training set rather than at estimating the probability density.
The training data is mapped from the input space into a higher dimensional
feature space via a kernel function. Support Vector Machine (SVM) is one of
the well-known kernel-based methods which constructs an optimal hyperplane
between two classes by focusing on the training samples close to the edge of
the class descriptors [17]. These training samples are called support vectors. In
One-Class Support Vector Machine (OCSVM), a hyperplane is determined to
separate the normal data such that the margin between the hyperplane and
outliers is maximized [13]. Support Vector Data Description (SVDD) is a new
SVM learning method for one-class classification [14]. A hyperspherically shaped
boundary around the normal data set is constructed to separate this set from
abnormal data. The volume of this data description is minimized to reduce the
chance of accepting abnormal data. SVDD has been proven as one of the best
methods for one-class classification problems [19].

Some extensions to SVDD have been proposed to improve the margins of the
hyperspherically shaped boundary. The first extension is Small Sphere and Large
Margin (SSLM) [20] which proposes to surround the normal data in this optimal
hypersphere such that the margin—distance from outliers to the hypersphere, is
maximized. This SSLM approach is helpful for parameter selection and provides
very good detection results on a number of real data sets. We have recently
proposed a further extension to SSLM which is called Small Sphere and Two
Large Margins (SS2LM) [7]. This SS2LM aims at maximising the margin between
the surface of the hypersphere and abnormal data and the margin between that
surface and the normal data while the volume of this data description is being
minimised.

Other extensions to SVDD regarding data distribution have also been pro-
posed. The first extension is to apply SVDD to multi-class classification problems
[5]. Several class-specific hyperspheres that each encloses all data samples from
one class but excludes all data samples from other classes. The second extension
is for one-class classification which proposes to use a number of hyperspheres to
describe the normal data set [19]. Normal data samples may have some distinc-
tive distributions so they will locate in different regions in the feature space and
hence if the single hypersphere in SVDD is used to enclose all normal data, it
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will also enclose abnormal data samples resulting a high false positive error rate.
However this work was not presented in detail, the proposed method is heuristic
and there is no theoretical investigation provided to show that the multi-sphere
approach can provide a better data description.

We propose in this paper a new theoretical framework to the multi-sphere
SVDD. A set of hyperspheres is proposed to describe the normal data set as-
suming that normal data samples have distinctive data distributions. We for-
mulate the optimisation problem for multi-sphere SVDD and prove how SVDD
parameters are obtained through solving this problem. An iterative algorithm
is also proposed for building data descriptors, and we also prove that the clas-
sification error will be reduced after each iteration. Experimental results on 28
well-known data sets show that the proposed multi-sphere SVDD provides lower
classification error rates comparing with the standard single-sphere SVDD.

2 Support Vector Data Description (SVDD)

Let X = {x1, x2, . . . , xn} be the normal data set. SVDD [14] aims at determining
an optimal hypersphere including all normal data points in this data set X while
abnormal data points are not included. The optimisation problem is as follows

min
R,c,ξ

(
R2 + C

n∑
i=1

ξi

)
(1)

subject to

||φ(xi) − c||2 ≤ R2 + ξi i = 1, . . . , n
ξi ≥ 0, i = 1, . . . , n (2)

where R is radius of the hypersphere, C is a constant, ξ = [ξi]i=1,...,n is vector
of slack variables, φ(.) is the nonlinear function related to the symmetric, pos-
itive definite kernel function K(x1, x2) = φ(x1)T φ(x2), and c is centre of the
hypersphere.

For classifying an unknown data point x, the following decision function is
used: f(x) = sign(R2 − ||φ(x) − c||2). The unknown data point x is normal if
f(x) = +1 or abnormal if f(x) = −1.

3 One-Class Support Vector Machine (OCSVM)

In OCSVM [13], a hyperplane is determined to separate all normal data and at
the same time maximise the margin between the normal data and the hyper-
plane. OCSVM can be modelled as follows

min
w,ρ

(1
2
||w||2 − ρ +

1
νn

n∑
i=1

ξi

)
(3)
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subject to

wT φ(xi) ≥ ρ − ξi i = 1, . . . , n
ξi ≥ 0, i = 1, . . . , n (4)

where w is the normal vector of the hyperplane, ρ is the margin and ν is a
positive constant.

The decision function is f(x) = sign(wT φ(x) − ρ). The unknown data point
x is normal if f(x) = +1 or abnormal if f(x) = −1.

4 Multi-sphere SVDD

4.1 Problem Formulation

Consider a set of m hyperspheres Sj(cj , Rj)with center cj and radius Rj , j =
1, . . . , m. This hypershere set is a good data description of the normal data set
X = {x1, x2, . . . , xn} if each of the hyperspheres describes a distribution in this
data set and the sum of all radii

∑m
j=1 R2

j should be minimised.
Let matrix U = [uij ]n×m, i = 1, . . . , n, j = 1, . . . , m where uij is the hard

membership representing the belonging of data point xi to hypersphere Sj , uij =
0 if xi is not in Sj and uij = 1 if xi is in Sj . The optimisation problem of multi-
sphere SVDD can be formulated as follows

min
R,c,ξ

( m∑
j=1

R2
j + C

n∑
i=1

ξi

)
(5)

subject to

m∑
j=1

uij ||φ(xi) − cj ||2 ≤
m∑

j=1

uijR
2
j + ξi i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n (6)

where R = [Rj ]j=1,...,m is vector of radii, C is a constant, ξ = [ξi]i=1,...,n is
vector of slack variables, φ(.) is the nonlinear function related to the symmetric,
positive definite kernel function K(x1, x2) = φ(x1)T φ(x2), and c = [cj ]j=1,...,m

is vector of centres.
Minimising the function in (5) over variables R, c and ξ subject to (6) will

determine radii and centres of hyperspheres and slack variables if the matrix U
is given. On the other hand, the matrix U will be determined if radii and centres
of hyperspheres are given. Therefore an iterative algorithm will be applied to
find the complete solution. The algorithm consists of two alternative steps: 1)
Calculate radii and centres of hyperspheres and slack variables, and 2) Calculate
membership U .

We present in the next sections the iterative algorithm and prove that the clas-
sification error in the current iteration will be smaller than that in the previous
iteration.
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For classifying a data point x, the following decision function is used

f(x) = sign
(

max
j

{
R2

j − ||φ(x) − cj ||2
})

(7)

The unknown data point x is normal if f(x) = +1 or abnormal if f(x) = −1.

4.2 Calculating Radii, Centres and Slack Variables

The Lagrange function for the optimisation problem in (5) subject to (6) is as
follows

L(R, c, ξ, α, β) =
m∑

j=1

R2
j +C

n∑
i=1

ξi+
n∑

i=1

αi

(
||φ(xi)−cs(i)||2−R2

s(i)−ξi

)
−

n∑
i=1

βiξi

(8)
where s(i) is index of the hypersphere to which data point xi belong and satisfies
uis(i) = 1 and uij = 0 ∀j �= s(i).

Setting derivatives of L(R, c, ξ, α, β)with respect to primal variables to 0, we
obtain

∂L

∂Rj
= 0 ⇒

∑
i∈s−1(j)

αi = 1 (9)

∂L

∂cj
= 0 ⇒ cj =

∑
i∈s−1(j)

αiφ(xi) (10)

∂L

∂ξj
= 0 ⇒ αi + βi = C, i = 1, . . . , n (11)

αi ≥ 0, ||φ(xi) − cs(i)||2 − R2
s(i) − ξi ≥ 0,

αi

(
||φ(xi) − cs(i)||2 − R2

s(i) − ξi

)
= 0 (12)

βi ≥ 0, ξi ≥ 0, βiξi = 0 (13)

To get the dual form, we substitute (9)-(13) to the Lagrange function in (8) and
obtain the following:

L =
n∑

i=1

αi||φ(xi) − cs(i)||2

=
n∑

i=1

αiK(xi, xi) − 2
n∑

i=1

αiφ(xi)cs(i) +
n∑

i=1

αi||cs(i)||2

=
n∑

i=1

αiK(xi, xj) −
m∑

j=1

∑
i∈s−1(j)

αiφ(xi)cj +
m∑

j=1

∑
i∈s−1(j)

αi||cj ||2
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=
n∑

i=1

αiK(xi, xj) − 2
m∑

j=1

(
cj

∑
i∈s−1(j)

αiφ(xi)
)

+
m∑

j=1

(
||cj ||2

∑
i∈s−1(j)

αi

)
=

n∑
i=1

αiK(xi, xj) −
m∑

j=1

||cj ||2

=
m∑

j=1

( ∑
i∈s−1(j)

αiK(xi, xi) − ||cj ||2
)

=
m∑

j=1

( ∑
i∈s−1(j)

αiK(xi, xi) − ||
∑

i∈s−1(j)

αiφ(xi)||2
)

=
m∑

j=1

( ∑
i∈s−1(j)

αiK(xi, xi) −
∑

i,i′∈s−1(j)

αiαi′K(xi, xi′ )
)

(14)

The result in (14) shows that the optimisation problem in (5) is equivalent to m
individual optimisation problems as follows

min
( ∑

i∈s−1(j)

αiK(xi, xi) −
∑

i,i′∈s−1(j)

αiαi′K(xi, xi′ )
)

j = 1, . . . , m (15)

subject to ∑
i∈s−1(j)

αi = 1 and 0 ≤ αi ≤ C j = 1, . . . , m (16)

After solving all of these individual optimization problems, we can calculate the
updating radii R = [Rj ] and centres c = [cj ], j = 1, . . . , m using the equations
in SVDD.

The following theorem is used to consider the relation of slack variables to
data points classified.

Theorem 1. Assume that (R, c, ξ) is a solution of the optimisation problem
(5) and xi is classified to hypersphere Sk(ck, Rk). If xi is missclassified then
ξi = ||φ(xi) − ck||2 − R2

k. If xi is correctly classified then ξi = 0 when xi ∈ Sk

and ξi = ||φ(xi) − ck||2 − R2
k when xi �∈ Sk.

Proof. From (12) and ξi ≥ 0, we have ξi = max
{
0, ||φ(xi) − ck||2 − R2

k

}
. The

data point xi is misclassified if it is not in any of the hypersheres, it follows that
||φ(xi)−cj||2 > R2

j , ∀j. So ξi = ||φ(xi)−ck||2−R2
k with some k. If xi is correctly

classified then the proof is obtained using (7).

The following empirical error can be defined

error(i) =
{

minj

{
||φ(xi) − cj ||2 − R2

j

}
ifxi is misclassified

0 otherwise
(17)
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Referring to Theorem 1, it is easy to prove that
∑n

i=1 ξi is an upper bound of∑n
i=1 error(i).

4.3 Calculating Membership U

We use radii and centres of hyperspheres to update the membership matrix U .
The following algorithm is proposed:

For i = 1 to n do
If xi is misclassified then

Let j0 = arg minj

{
||φ(xi) − cj ||2 − R2

j

}
Set uij0 = 1 and uij = 0 if j �= j0

End if
Else

Denote J = {j : xi ∈ S(cj , Rj)}
Let j0 = arg minj∈J

{
||φ(xi) − cj ||2

}
Set uij0 = 1 and uij = 0 if j �= j0

End Else
End For

4.4 Iterative Learning Process

The proposed iterative learning process for multi-sphere SVDD will run two al-
ternative steps until a convergence is reached as follows

Initialise U by clustering the normal data set in the input space
Repeat the following

Calculate R, c and ξ using U
Update U using R and c

Until a convergence is reached

We can prove that the classification error in the current iteration will be
smaller than that in the previous iteration through the following key theorem.

Theorem 2. Let (R, c, ξ, U) and (R, c, ξ, U) be solutions at the previous
iteration and current iteration, respectively. The following inequality holds

m∑
j=1

R
2

j + C

n∑
i=1

ξi ≤
m∑

j=1

R2
j + C

n∑
i=1

ξi (18)

Proof. We prove that (R, c, ξ, U) is a feasible solution at current iteration.

Case 1: xi is misclassified.
n∑

j=1

uij

(
||φ(xi) − cj ||2 − R2

j

)
−

n∑
j=1

uij

(
||φ(xi) − cj||2 − R2

j

)
=

uis(i)

(
||φ(xi) − cs(i)||2 − R2

s(i)

)
− min

j

(
||φ(xi) − cj ||2 − R2

j

)
≥ 0 (19)
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Hence
n∑

j=1

uij

(
||φ(xi) − cj ||2 − R2

j

)
≤

n∑
j=1

uij

(
||φ(xi) − cj ||2 − R2

j

)
≤ ξi (20)

(20) is reasonable due to (R, c, ξ, U) is solution at the previous step.

Case 2: xi is correctly classified.
Denote J = {j : xi ∈ S(cj, Rj)} and j0 = arg minj∈J

{
||φ(xi) − cj ||2

}
then

n∑
j=1

uij

(
||φ(xi) − cj||2 − R2

j

)
= ||φ(xi) − cj0 ||2 − R2

j0 ≤ 0 ≤ ξi (21)

From (20) - (21), we can conclude that (R, c, ξ, U) is a feasible solution at current
iteration. In addition, (R, c, ξ, U) is optimal solution at current iteration. That
results in our conclusion.

The validity of Theorem 2 is key to resolve the rationale of our algorithm.
The reason is that

∑m
j=1 R2

j stands for general error whereas
∑n

i=1 ξi is a quite
tight upper bound of empirical error according to (17). Thus the inequality
(18) shows that the error in current iteration is less than that in previous
iteration.

5 Experimental Results

We performed our experiments on 28 well-known data sets related to machine
fault detection and bioinformatics. These data sets were originally balanced data
sets and some of them contain several classes. For each data set, we picked up
a class at a time and divided the data set of this class into two equal subsets.
One subset was used as training set and the other one with data sets of other
classes were used for testing. We repeated dividing a data set ten times and
calculated the average classification rates. We also compared our multi-sphere
SVDD method with SVDD and OCSVM. The classification rate acc is measured
as [6]

acc =
√

acc+acc− (22)

where acc+ and acc− are the classification accuracy on normal and abnormal
data, respectively.

The popular RBF kernel function K(x, x′) = e−γ||x−x′||2 was used in our ex-
periments. The parameter γ was searched in {2k : k = 2l +1, l = −8,−7, . . . , 2}.
For SVDD and multi-sphere SVDD, the trade-off parameter C was searched
over the grid {2k : k = 2l + 1, l = −8,−7, . . . , 2}. For OCSVM, the parameter
ν was searched in {0.1k : k = 1, . . . , 9}. For multi-sphere SVDD, the number of
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Table 1. Number of data points in 28 data sets. #normal: number of normal data

points, #abnormal: number of abnormal data points and d: dimension.

Data set #normal #abnormal d

Arrhythmia 237 183 278

Astroparticle 2000 1089 4

Australian 383 307 14

Breast Cancer 444 239 10

Bioinformatics 221 117 20

Biomed 67 127 5

Colon cancer 40 22 2000

DelfPump 1124 376 64

Diabetes 500 268 8

DNA 464 485 180

Duke 44 23 7129

Fourclass 307 555 2

Glass 70 76 9

Heart 303 164 13

Hepatitis 123 32 19

Ionosphere 255 126 34

Letter 594 567 16

Liver 200 145 6

Protein 4065 13701 357

Sonar 97 111 67

Spectf 254 95 44

Splice 517 483 60

SvmGuide1 2000 1089 4

SvmGuide3 296 947 22

Thyroid 3679 93 21

USPS 1194 6097 256

Vehicle 212 217 18

Wine 59 71 13

hyperspheres was changed from 1 to 10 and 50 iterations were applied to each
training.

Table 2 presents classification results for OCSVM, SVDD and multi-sphere
SVDD (MS-SVDD). Those experimental results over 28 data sets show that
MS-SVDD always performs better than SVDD. The reason is that SVDD is
regarded as a special case of MS-SVDD when the number of hyperspheres is 1.
MS-SVDD provides the highest accuracies for data sets except for Colon cancer
and Biomed data sets. For some cases, MS-SVDD obtains the same result as
SVDD. This could be explained as only one distribution for those data sets. Our
new model seems to attain the major improvement for the larger data sets. It
is quite obvious since the large data sets could have different distributions and
can be described by different hyperspheres.
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Table 2. Classification results (in %) on 28 data sets for OCSVM, SVDD and Multi-

sphere SVDD (MS-SVDD)

Data set OCSVM SVDD MS-SVDD

Arrhythmia 63.16 70.13 70.13

Astroparticle 89.66 90.41 93.23

Australian 77.19 80.00 81.80

Breast Cancer 95.25 98.64 98.64

Bioinformatics 68.34 68.10 72.00

Biomed 74.98 63.83 74.76

Colon cancer 69.08 67.42 67.42

DelfPump 63.20 70.65 75.27

Diabetes 68.83 72.30 78.72

DNA 76.08 73.70 83.01

Duke cancer 62.55 65.94 65.94

FourClass 93.26 98.48 98.76

Glass 80.60 79.21 79.21

Heart 73.40 77.60 79.45

Hepatitis 76.82 80.17 81.90

Ionosphere 90.90 88.73 92.12

Letter 91.42 95.86 98.03

Liver 73.80 62.45 74.12

Protein 63.65 70.68 72.11

Sonar 65.97 72.91 72.91

Spectf 77.10 70.71 77.36

Splice 64.43 70.51 70.51

SVMGuide1 89.56 87.92 93.05

SvmGuide3 63.14 70.63 70.63

Thyroid 87.88 87.63 91.44

USPS 92.85 92.83 96.23

Vehicle 64.50 70.38 75.04

Wine 88.30 98.31 98.31

6 Conclusion

We have proposed a new theoretical framework to multi-sphere support vector
data description. A data set is described by a set of hyperspheres. This is an
incremental learning process and we can prove theoretically that the error rate
obtained in current iteration is less than that in previous iteration. We have
made comparison of our proposed method with support vector data description
and one-class support vector machine. Experimental results have shown that our
proposed method provided better performance than those two methods over 28
well-known data sets.
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Abstract. Text categorization is widely used in applications such as spam 
filtering, identification of document genre, authorship attribution, and 
automated essay grading. The rapid growth in the amount of text data gives rise 
to the urgent need for fast text classification algorithms. In this paper, we 
propose a GPU based SVM solver for large scale text datasets. Using Platt’s 
Sequential Minimal Optimization algorithm, we achieve a speedup of 5–40 
times over LibSVM running on a high-end traditional processor. Prediction 
time based on the paralleled string kernel computing scheme shows 5–90 times 
faster performance than the CPU based implementation. 

1   Introduction 

Standard learning systems such as neural networks and decision trees operate on input 
data that are represented as feature vectors. There are many cases, however, where the 
input data cannot readily be represented as explicit feature vectors, e.g., bio-
sequences, images, and text documents. An effective alternative to explicit feature 
extraction is provided by kernel methods (KM) [1]. The most well-known KM is the 
Support Vector Machine (SVM) [2][3], which implements the maximum margin 
principle by means of a convex optimization algorithm in the dual form. Other classic 
learning algorithms such as Perceptron, Principal Component Analysis (PCA), and 
Fisher Discriminant Analysis (FDA) can also presented in their dual forms [4][5][6] . 

Recently, many string kernels which can incorporate domain-specific knowledge 
have been studied. String kernel based Support vector machines have shown 
competitive performance in tasks such as text classification [7] and protein homology 
detection [8]. A common feature of kernel based methods is their dependency on the 
kernel matrix computation: training an algorithm in the dual form usually invokes 
quadratic computation cost in terms of the number of kernel evaluations. For full-
matrix based methods such as PCA and FDA, an N N× kernel matrix need to be 
computed and stored, and for sparse methods such as SVM and Perceptron, a V N×  
sub-matrix are needed, where V is usually in linear relation to N . Popular string 
kernels such as edit distance kernel and gap-weighted subsequences kernel are 
computed by dynamic programming and has a computational complexity of O(|x||y|) . 
The computational expense hinders the application of string-kernel based methods on 
large scale applications. Moreover, many text-related applications require real-time 
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system response, which also calls for an efficient implementation, computationally as 
well as economically, of string kernel computing algorithms. 

The programmable Graphic Processor Unit (GPU) has already been used to 
implement many algorithms including computational geometry, image processing, as 
well as computer graphics [10][11]. Specifically, with regards to high-performance 
computing for pattern recognition, some previous works [12][13] show that general 
purpose numeric kernel functions including Linear kernel, Radial Basis Function 
kernel, Polynomial kernel, and Hyperbolic kernel can be paralleled easily with a high 
speedup compared with CPU based implementations. 

Aiming at effectively treating with large scale text-based applications, this paper 
presents an implementation of string-kernel-based SVM on the CUDA C programming 
interface. Following the previous works in [12], we modify the Sequential 
Minimization Optimization algorithm [14] for nonlinear L1 soft-margin SVM 
algorithm and adopt a justifiable kernel sub-matrix caching method. Emphasis is given 
on how to parallelize and compute a group of string kernels simultaneously with highly 
parallelized GPU computing threads. Explored string kernels include p -spectrum 
kernel, gap-weighted subsequence kernel, and edit distance kernel. We verify the 
operation and evaluate the performance of the proposed integrated system using 
Reuters-21578 [15] and SpamAssassin Public Corpus [16]. Our gpuSKSVM achieves 
speedups of 5-90x over LibSVM running on a high-end traditional processor.  

The organization of the paper is as follows. Section 2 describes the SVM and string 
kernels briefly. Section 3 gives an overview of the architectural and programming 
features of the GPU. Section 4 presents the details of implementation of the parallel 
string kernels on the GPU. Section 5 describes the experimental results. Section 6 
concludes the paper. 

2   Support Vector Machines and String Kernels 

2.1   Support Vector Machines 

We now focus on the standard two-class soft-margin SVM problem (C-SVM), which 
classifies a given data point n x R∈  by assigning a label  y { 1,  1}∈ − . The main task in 
training SVM is to solve the following quadratic optimization problem with respect to α :  
 

 

α
min         1

1
2

T TQα α α−  

           Subject to     0Ty α =     
           0 , 1,...,i C i mα≤ ≤ =  

where Q is the N N×  positive semi-definite kernel matrix, ( )ij i j i jQ   y y K x  ,  x  = ; and 

( ) ( ) ( )T

i j i jK x  ,  x   x x=  is the kernel function; and 1 is a vector of all ones.  

SVM predict the class label of a new data point x to be classified by the following 
decision function: 

1

( ) ( ( , ) )
m

i i i
i

f x sign y K x x bα
=

= +∑  

where b is a bias constant. 
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2.2   String Kernels 

Regular kernels for SVM work mainly on numerical data, which is unsuitable for 
text-based applications. To extend SVM for text data analysis, we implemented the 
following string kernels algorithms in our experiments. 

2.2.1   Gap-Weighted Subsequence Kernel 
Gap Weighted Subsequence (GWS) kernel is to compare strings by way of the 
common subsequences they share – the more common subsequences and the less gaps 
(the degree of contiguity between the subsequences), the more the contribute to the 
inter-string similarity. A decay factor λ  is used to weight the presence of a gap in a 
string. We weight the occurrence of the subsequence u  with the exponentially 
decaying weight ( )l iλ . The feature space for the gap-weighted subsequences kernel of 
length p is indexed by I = ∑p, with the mapping given by 

( )

: ( )

( ) ,p l i p
u

i u s i

s uϕ λ
=

= ∈∑∑  

where i  is an index sequence identifying the occurrence of a subsequence ( )u s i=  in 
string s  and ( )l i  is the length of s . The corresponding kernel is defined as 

( , ) ( ), ( ) ( ) ( )
p

p p p p
p u u

u

k s t s t s tϕ ϕ ϕ ϕ
∈∑

= 〈 〉 = ∑  

We consider computing an intermediate dynamic programming table pDP . The 

complexity of the computation required to compute the table pDP is clearly ( )O p s t   

making the overall complexity of ( )pk  s,  t equal to ( )O p s t   [1]. 

2.2.2   Edit Distance Kernel 
Edit distance (or Levenshtein Distance, abbreviated as LD hereinafter) is a measure of 
the similarity between two strings. More specifically, LD between two strings is the 
number of insertions, deletions, and substitutions required to transforms a source 
string s into a target string t . Clearly, the greater the LD, the more different the 
strings are. For s and t  with respective length of n and m, the calculation of LD is a 
recursive procedure. First set ( ,0)d i  to i  for 0, . . . ,n,i = and (0, )d j for 0, . . . ,m,j = . 
Then, for other pairs ,i j  we have  

( , ) min( ( 1, ) 1, ( , 1) 1, ( 1, 1) ( ( ), ( )))d i j d i j d i j d i j r s i t j= − + − + − − +  

where for characters a  and b , ( , ) 0r a b =  if a b=   and ( , ) 1r a b = , otherwise. 
Similar to the above GWS kernel, the computational complexity of LD is  (|s| |t|)Ο . 

2.2.3   P-spectrum Kernel 
p -spectrum transforms strings into high dimensional feature vectors where each 

feature corresponds to a contiguous substring. Comparing the p -spectra of two 
strings can give important information about their similarity in applications where 
contiguity plays an important role. The p -spectrum kernel is defined as the inner 
product of their p-spectra. 
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We adopt an idea for p-spectrum kernel from the open source software Shogun 
[18], which is a large scale machine learning toolbox. This idea for p-spectrum kernel 
has a time complexity of  (|s| |t|)Ο +  after the pretreatment on the input string data. 

3   Graphics Processors 

Now GPUs are mainly used to accelerate specific parts of an application, being 
attached to a host CPU that performs most of the control-dominant computation. In 
this study, the algorithm is implemented on GeForce 9800GT GPU, which is widely 
available on the market. Related parameters are listed in Table 1. 

Table 1. NVIDIA GeForce 9800GT Parameters 

Number of multiprocessors 14 
Multiprocessor width 8 
Multiprocessor share memory size  16KB 
Number of stream processors  112 
Clock rate 1.57 GHZ 
Memory capacity 1024 MB 
Memory bandwidth 57.6 GB/S 
Compute capacity 1.1 

4   Kernels on GPU 

We use the SMO, which is first proposed by Platt [14], with the improved first-order 
variable selection heuristic proposed by Keerthi [9]. In one iteration step of SMO we 
need to calculate kernel values between a single string and all the training strings. For 
large data sets, the amount of kernel calculations is very large. Obviously we can use 
the inherent features of GPU to simplify these calculations, which is the idea used in 
our study. Although parallelization of a specific kernel algorithm may result in better 
speedup, we are more interested in developing a generic methodology that can be 
applicable to string kernels with different functional characteristics. This is especially 
useful where parallelization of the kernel algorithm is knotty, e.g., LD and 
subsequence kernels which require dynamic programming. 

The efficient implementation relies on one key factor of GPU programming – the 
trade off between memory access and the number of computing threads running in 
parallel. The shared memory of a Streaming Multiprocessor (SM), is much faster than 
local and global memory. However, there is a inherent limit on the volume of shared 
memory. Unlike the numerical input data, string data take up much more space. 
Employing the shared memory monotonously will result in very few active threads in 
an SM. To express thousands of threads making use of the hardware capabilities 
effectively, we have to employ GPU global memory for input string data and 
intermediate data. In general, one thread is created for computing ( , )i jk x x , where ix  

and jx stand for two input strings. If some input operand resides in off-chip memory, 
the latency is much higher. As a result, reducing the number of global memory access 
and accessing global memory efficiently are two factors for speeding up string kernel.  
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4.1   p-spectrum Kernel 

We adopt the idea for p -spectrum kernel from Shogun. This idea has a time 
complexity of (|s| |t|)Ο +  after some pretreatment on the input string data.  

The pretreatment consists of four steps. The first step is to extract p -mers from 
input strings. All threads of one block load current input string s into the shared 
memory concurrently. After s is loaded into shared memory, all the threads of the 
block extract p -mers of s  independently. The extracted p -mers are stored into the 
shared memory. The second step is to sort the p -mers for sting s . It is probable that 
one input string contains the same p -mers, so the third step is removing repeated 
p -mers from the sorted p -mer list of input string s . When detecting a unique p -mer 

in the sorted p -mer list, occurrence number of the p -mer is attached to the p -mer 
value. During the repeatability statistics the self kernel ( , )k s s of s can be computed. 
The last step is storing the new sorted p -mer lists for the subsequent kernel 
evaluation. 

In the SMO iteration when a kernel function call is launched, the kernel value 
s ik (x , x ) where i  [1, N]∈  are to be evaluated. Here N stands for the total number of 

source strings and sx stands for the common source string between the N kernel value 

evaluations. We load sx into the GPU's per SM shared memory. This is the key to the 
performance improvement, since accessing the shared memory is orders of magnitude 
faster than accessing the global memory. In order to make use of GPU resources as 
far as possible every thread is responsible for single kernel value, which means the 
other source string of each thread is distinct. Because of the limit on the shared 
memory, ix for each thread is loaded from global memory during the kernel value 
computation. Now the p -spectrum kernel value can be achieved easily by traversal of 
the two p -mer lists. However, the traversal pace of each thread is inconsistent in 
nature, which destroys the coalesced memory access. This thread branch problem may 
cause one-third decline in performance, which is a very serious bottleneck. 

In consideration of the nature characteristics of desynchronization, it is almost 
impossible to solve thread branch and memory access latency problem together. We 
mainly focus on the memory access latency due to its great impact on efficiency. At 
the beginning all threads in a warp access global memory in coalesced way. Each 
thread has an independent index variable indicating the current shifting position in 
shared p -mer list. After one thread gets its global p -mer we let the index of this 
thread moves forward as far as possible, which means examining the shared p -mer 
continuously until the next shared p -mer is equal or bigger than the loaded global 
p -mer element. Thus, each global memory access can be carried out in coalesced 

way. In view of the above improvements the p -spectrum kernel evaluation on GPU 
can be much faster than that on CPU.  

4.2   LD Kernel and Gap-Weighted Subsequence Kernel 

LD kernel and gap-weighted Subsequence Kernel are both dynamic programming 
applications. A dynamic programming application solves an optimization problem by 
storing and reusing the results of its sub-problem solutions.  
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The computational complexity of LD is (| || |)s tΟ . For two strings s and t , the 
shared string s among all the threads is loaded into shared memory by threads 
belonging to one block and one ( 1)( 1)n m+ +  matrix D is required to evaluate the LD 

( , )L s t  between s and t . The potential pairs of sequences are organized in this 2D 
matrix. The algorithm fills the matrix from top left to bottom right, step-by-step. The 
value of each data element depends on the values of its northwest-, north- and west-
adjacent elements. Matrix row is filled in turn, so only the previous line and the 
current line of the matrix D is useful. Using this feature one space of length n  is 
enough for storing matrix D , which saves a lot of memory space. Even though we 
have this shortcut, the intermediate space of each thread is still too much to be saved 
in the shared memory. In this realization we encounter no thread branch problem. 
Without loss of generality we compute D(i, j) using D(i-1, j-1) , D(i, j-1) , and D(i-1, j)  
from a previous step. Next we compute D(i, j 1)+ , which in turn depends 
on D(i-1, j) , D(i, j) , and D(i-1, j 1)+ . Now we find that there is no need to 
load D(i-1, j) and D(i, j) used by D(i, j 1)+  from global memory for computing D(i, j 1)+  
after computing j) D(i, . This finding halves the memory access operation. The GPU 
implement of LD kernel is fully compliance with CUDA's parallel constraint. It stands 
to reason that GPU LD may achieve great speed up.  

The GWS kernel is a little bit more complicated than the LD kernel. It involves 
two intermediate matrices. All the skills employed to compute the LD kernel are 
applied to compute the GWS kernel. One difference is that there is a simple thread 
branch in GWS kernel, which affects the parallelism. Due to more time-consuming 
global memory operations than the LD kernel, speedup on GWS kernel algorithm are 
not expected to be as significant as the LD kernel. 

5   Experiment Results  

The current gpuSKSVM system is tested on GeForce 9800 GT. Our gpuSKSVM’s 
performance is compared with LibSVM, which also employs SMO. Experiments are 
done on three text datasets. Detailed information on these datasets are listed in Table 2. 
LibSVM was run on an Intel Core 2 Duo 2.33 GHz processor and given a cache size of 
800M, which is almost the same as the memory volume limit of our gpuSKSVM. File 
I/O time was not included for all the solvers. Computation time of gpuSKSVM 
includes data transfer between GPU and CPU memory. 

Table 2. Text datasets for benchmarking 

DATASET # POINTS  # LENGTH 
Reuters-21578 Earn vs Acq 6295     100 
Reuters-21578 Earn vs Rest 10753     100 
SpamAssassin Public Corpus 6047     100 

 
Table 3 presents training performance results for the two solvers. We can see that 

the GPU based implementation in all cases achieves a speedup from 5-90 times 
compared with the CPU based implementation. Although for p -spectrum kernel and  
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Table 3. Comparison of GPU and LibSVM on computation time and accuracy 

   Training Time(SEC) Test Time(SEC) Accuracy 

  Parameters CPU GPU Speedup CPU GPU Speedup CPU GPU 

Spam P-spec. C=10, L=100,p=4  12.30 2.48 4.96 2.2 0.07 31.43 95.2 95.2 

 LD C=10, L=100,g=0.005 354.66 18.70 18.97 66.42 1.78 37.31 93.7 91.7 

 GWS C=10, L=100,p=5 5748 149.45 38.46 670 44.56 15.04 97.5 95.9 

E.V.A P-spec. C=10, L=100,p=4  12.60 1.45 8.69 4.80 0.13 36.92 98.06 98.06 

 LD C=10, L=100,g=0.005 317.99 19.87 16.00 100.41 5.89 17.05 96.39 97.50 

 GWS C=10, L=100,p=5 3035 234.56 12.94 805 8.94 90.10 90.22 92.00 

E.V.R. P-spec. C=10, L=100,p=4  31.70 3.15 10.06 11.50 0.34 33.82 98.87 98.87 

 LD C=10, L=100,g=0.005 761.8 59.15 12.88 215.18 11.97 17.98 94.63 94.82 

 GWS C=10, L=100,p=5 7838 639.61 12.25 2012 359 5.59 98.74 98.8 

 

      

                               (a)                                                                (b) 

Fig. 1. Computation times with different sample and input string length 

subsequence kernel, GPU based implementation can only use single-precision float, 
further detailed inspection on the results shows that there is little difference with 
respect to the number of iterations until converge. The number of support vector 
obtained by the two implementations are almost the same. This indicates that the 
computation cost for prediction are comparable -- recall that the computation cost of 
prediction heavily depend on kernel computation between support vectors. So the 
speedup on the prediction can also be deemed as speed improvement on the kernel 
function evaluations. For p -spectrum kernel, we achieve a speedup on kernel 
computation with factor of around 30; for GWS kernel, the factor is from 5 to 90, 
depend on the nature of the problem; for the LD kernel, the CPU algorithm happens 
to not converge for dataset with sample size over 4,000, and we are inspecting the 
reason of this problem, and the numerical result will be reported.  

In the second group of experiments, we examine how computation time of 
gpuSKSVM changes with the sample size and input string length. Generally the 
prediction accuracy increases as the input strings increase in length, because of the 
increment of presented information. However, as we know, the computation 
complexity of the kernels also increases along with the string length. In Figure 1(a) 
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we show the influence of the substring length on the computation time. Theoretically 
the p-spectrum kernel increase in linear proportion to, and the LD kernel and 
subsequence kernel increase in quadratic to the length of the input strings, the curves 
in Figure 1(a) clearly verifies these properties. Moreover, the figure also indicates that 
the complexity of this learning algorithm does not significantly increase with the 
input string length -- the number of invoked iteration before convergence remain 
almost the same when the string length varies. Generally as shown in Figure 1(b), the 
training time should always increase as the sample size increases. This is more about 
the nature of the SMO algorithm rather than a feature of its GPU implementation. 
However, by Figure 1(b), we wan to show that, GPU programming based 
implementation will speedup the training time even for datasets with considerably 
small sample size. 

6   Conclusion and Future Work 

In this paper we presented a high-speed SVM learning algorithm based on CUDA. 
For the implemented string kernel we achieve considerable speedup and expect better 
performance by exploiting more effective methodologies. First, we have not yet 
implemented all the optimizations possible for this problem. For example, LibSVM 
uses a second order heuristic for picking the pair of samples to optimize at a single 
iteration of QP optimization, while our GPU implementation uses a first order 
heuristic, which in most cases leads to more iterations than LibSVM. Second, there 
could be further optimization of the algorithm exploiting fast speed texture memory.  
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Abstract. In classification, when the distribution of the training data among 
classes is uneven, the learning algorithm is generally dominated by the feature 
of the majority classes. The features in the minority classes are normally 
difficult to be fully recognized. In this paper, a method is proposed to enhance 
the classification accuracy for the minority classes. The proposed method 
combines Synthetic Minority Over-sampling Technique (SMOTE) and 
Complementary Neural Network (CMTNN) to handle the problem of 
classifying imbalanced data. In order to demonstrate that the proposed 
technique can assist classification of imbalanced data, several classification 
algorithms have been used. They are Artificial Neural Network (ANN), k-
Nearest Neighbor (k-NN) and Support Vector Machine (SVM). The benchmark 
data sets with various ratios between the minority class and the majority class 
are obtained from the University of California Irvine (UCI) machine learning 
repository. The results show that the proposed combination techniques can 
improve the performance for the class imbalance problem. 

Keywords: Class imbalanced problem, artificial neural network, complementary 
neural network, classification, misclassification analysis. 

1   Introduction 

In recent years, many research groups have found that an imbalanced data set could 
be one of the obstacles for many Machine Learning (ML) algorithms [1], [2], [3], [4]. 
In the learning process of the ML algorithms, if the ratio of minority classes and 
majority classes is significantly different, ML tends to be dominated by the majority 
classes and the features of the minority classes are recognize slightly. As a result, the 
classification accuracy of the minority classes may be low when compared to the 
classification accuracy of the majority classes. Some researchers have examined this 
problem under the balancing of the bias and variance problems [5]. 

According to Gu et al. [4], there are two main approaches to deal with imbalanced 
data sets: data-level approach and algorithm approach. While the data-level approach 
aims to re-balance the class distribution before a classifier is trained, the algorithm 
level approach aims to strengthen the existing classifier by adjusting algorithms to 
recognize the smaller classes. There are three categories of data-level approach. These 
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are the under-sampling technique, the over-sampling technique and the combined 
technique. For the under-sampling techniques, many algorithms have been proposed, 
for example Random under-sampling [1], Tomek links [6], Wilson’s Edited Nearest 
Neighbor Rule (ENN) [7], and Heuristic Pattern Reduction (HPR) [8]. There are also 
several techniques applied for over-sampling methods such as Random over-sampling 
[1], and Synthetic Minority Over-sampling Technique (SMOTE) [3].  

In order to evaluate the classification performance of an imbalanced data set,  
the conventional classification accuracy cannot be used for this purpose because  
the minority class has minor impact on the accuracy when compared to the majority 
class [4]. Therefore, alternative measures have to be applied. The Geometric mean 
(G-mean) and the area under the Receiver Operating Characteristic (ROC) curve have 
been applied to evaluate the classification performance for imbalanced data set [4]. 
They are good indicators for the class imbalance problem because they attempt to 
maximize and balance the performance of ML between the minority class and the 
majority class. G-mean and the area under ROC curve (AUC) are also independent of 
the imbalanced distribution [9].  

In the reported literature, most research dealt with this problem with an aim to 
increase the classification performance of imbalanced data. They focused on 
examining the feasibility of re-distribution techniques for handling imbalanced data 
[1], [2], [3], [9].  Furthermore, several cases in the literature have presented that the 
combination of under-sampling and over-sampling techniques generally provides 
better results than a single technique [1]. By considering in a similar direction, this 
paper takes an approach by proposing alternative re-distribution techniques to 
enhance the classification performance. A combined technique based on both 
sampling techniques is also proposed.  

In this paper, in order to re-balance the class distribution, the combined approaches 
of two techniques, Complementary Neural Network (CMTNN) and Synthetic 
Minority Over-Sampling Technique (SMOTE), are proposed. While CMTNN is 
applied as an under-sampling technique, SMOTE is used as an over-sampling 
technique. CMTNN is used because of its special feature of predicting not only the 
“truth” classified data but also the “false” data. SMOTE is applied because it can 
create new instances rather than replicate the existing instances. SMOTE is also the 
successful over-sampling technique applied commonly to the class imbalanced 
problem in the literature [1], [4].  

2   The Proposed Techniques  

In this section, the concepts of CMTNN and SMOTE are described. The proposed 
combined techniques will then be presented. 

2.1   Complementary Neural Network (CMTNN) 

CMTNN [10] is a technique using a pair of complementary feedforward 
backpropagation neural networks called Truth Neural Network (Truth NN) and 
Falsity Neural Network (Falsity NN) as shown in Fig 1. While the Truth NN is a 
neural network that is trained to predict the degree of the truth memberships, the 
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Falsity NN is trained to predict the degree of false memberships. Although the 
architecture and input of Falsity NN are the same as the Truth NN, Falsity NN uses 
the complement outputs of the Truth NN to train the network. In the testing phase, the 
test set is applied to both networks to predict the degree of truth and false membership 
values. For each input pattern, the prediction of false membership value is expected to 
be the complement of the truth membership value. Instead of using only the truth 
membership to classify the data, which is normally done by most convention neural 
network, the predicted results of Truth NN and Falsity NN are compared in order to 
provide the classification outcomes [11]. 

 

 

Fig. 1. Complementary neural network [11] 

In order to apply CMTNN for under-sampling problem, Truth NN and Falsity NN 
are employed to detect and remove misclassification patterns from a training set. 
There are basically two ways to perform under-sampling [12].  

 

Under-Sampling Technique I 

 

a. The Truth and Falsity NNs are trained by truth and false membership values. 
b. The prediction outputs (Y) on the training data (T) of both NNs are compared 

with the actual outputs (O).  
c. The misclassification patterns of Truth NN and Falsity NN (MTruth , MFalsity) 

are also detected if the prediction outputs and actual outputs are different.  
For Truth NN   :      If YTruth i  ≠ OTruth i     then MTruth ← MTruth  U  {Ti}            (2) 
For Falsity NN :      If YFalsity i  ≠ OFalsity i  then MFalsity  ← MFalsity  U  {Ti}           (3) 

d. In the last step, the under-sampling for the new training set (Tc) is performed 
by eliminating the misclassification patterns detected by both the Truth NN (MTruth) 
and Falsity NN (MFalsity).         Tc  ← T  – (MTruth ∩ MFalsity)         (4) 

 

Under-Sampling Technique II  

 

a. Repeat the step a. to b. of under-sampling technique I. 
b. The under-sampling for the new training set (Tc) is performed by eliminating 

all misclassification patterns detected by the Truth NN (MTruth) and Falsity NN 
(MFalsity) respectively.           Tc ← T  – (MTruth ∪ MFalsity)        (5) 

Truth NN

Falsity NN

Uncertainty
Information

Target outputs 

Complement of 
target outputs 

Training data

Test data

Truth
Memberships

False
Memberships
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2.2   Synthetic Minority Over-Sampling Technique (SMOTE) 

SMOTE [3] is an over-sampling technique. This technique increases a number of new 
minority class instances by interpolation method. The minority class instances that lie 
together are identified before they are employed to form new minority class instances. 
This technique is able to generate synthetic instances rather than replicate minority 
class instances; therefore, it can avoid the over-fitting problem. The algorithm is 
described in Fig. 2. 
 

 
O is the original data set 
P is the set of positive instances (minority class instances) 
For each instance x in P 

   Find the k-nearest neighbors (minority class instances) to x in P  
     Obtain y by randomizing one from k instances 
    difference = x – y 
    gap = random number between 0 and 1 
    n = x + difference * gap 
     Add n to O  

End for 
 

Fig. 2. The Synthetic Minority Oversampling Technique (SMOTE) [3] 

2.3   The Proposed Combined Techniques 

In order to obtain the advantages of using the combination between under-sampling 
and over-sampling techniques as presented in the literature [1] and [3], in this paper, 
CMTNN is applied as under-sampling while SMOTE is used for over-sampling. They 
are combined in order to better handle the imbalanced data problem. Four techniques 
can be derived by the combination as follows.  

1. Under-sampling only the majority class using the CMTNN under-sampling 
technique I and then over-sampling the minority class using SMOTE technique 

2. Under-sampling only the majority class using the CMTNN under-sampling 
technique II and then over-sampling the minority class using SMOTE technique 

3. Over-sampling the minority class using SMOTE technique before under-
sampling both classes using the CMTNN under-sampling technique I 

4. Over-sampling the minority class using SMOTE technique before under-
sampling both classes using the CMTNN under-sampling technique II  

For all the proposed techniques mentioned above, the ratio between the minority 
and majority class instances after implementing SMOTE algorithm is 1:1. 

3   Experiments and Results 

Four data sets from the UCI machine learning repository [13] are used in the 
experiment. The data sets for binary classification problems include Pima Indians 
Diabetes data, German credit data, Haberman's Survival data, and SPECT heart data. 
These data sets are selected because they are imbalanced data sets with various ratios 
between the minority class and the majority class. The characteristics of these four 
data sets are shown in Table 1. 
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Table 1. Characteristics of data sets used in the experiment 

Name of data set 
No. of 

instances 
No. of 

attributes 
Minority 
class (%) 

Majority 
class (%) 

Pima Indians Diabetes data 768 8 34.90 65.10 
German Credit data 1000 20 30.00 70.00 
Haberman's Survival data 306 3 26.47 73.53 
SPECT Heart data 267 22 20.60 79.40 

 
For the purpose of establishing the classification model and testing it, each data set 

is first split into 80% training set and 20% test set. Furthermore, the cross validation 
method is used in order to reduce inconsistent results. Each data set will be randomly 
split ten times to form different training and test data sets. For the purpose of this 
study, the results of the ten experiments of each data set will be averaged.  

In the experiment, after the training sets are applied by the proposed combined 
techniques, three different learning algorithms, which are ANN, SVM (kernel 
function = Radial Basis Function (RBF)), and k-NN (k=5) are used for the 
classification. The classification performance is then evaluated by G-mean and AUC. 
Furthermore, in order to compare the performance of the proposed techniques to 
others, the over-sampling technique, SMOTE, will be compared as the base 
technique. The other two under-sampling approaches, Tomek links [6] and ENN [7], 
are also used for this purpose. These comparison techniques are selected because they 
have been applied widely to the class imbalance problem [1], [9]. 

Table 2. The results of G-Mean and AUC for each data set classified by ANN 

 
Pima Indian 

Diabetes data 
German 

Credit data 
Haberman’s 
Survival data 

SPECT 
Heart data 

Techniques GM AUC GM AUC GM AUC GM AUC 
Original Data 70.12 0.8276 63.92 0.7723 33.11 0.5885 64.05 0.7590 
a. ENN 72.64 0.8298 70.74 0.7794 50.45 0.6305 71.80 0.7895 
b. Tomek links 73.11 0.8288 70.48 0.7793 51.88 0.6323 72.88 0.8178 
c. SMOTE 74.30 0.8281 71.48 0.7777 58.60 0.6345 73.59 0.8241 
d. Technique I   
     (Majority)  
   + SMOTE 75.55 0.8332 72.03 0.7855 60.00 0.6452 73.86 0.8374 
e. Technique II    
     (Majority)   
   + SMOTE 74.53 0.8300 73.32 0.7873 62.78 0.6770 74.32 0.8273 
f. SMOTE +  
   Technique I   75.00 0.8285 71.52 0.7844 61.41 0.6653 73.00 0.8264 
g. SMOTE +  
   Technique II  74.96 0.8300 72.07 0.7860 58.59 0.6248 74.04 0.8373 
Best technique d d e e e e e d 

Second best f e & g g g f f g g 

 
The experimental results in Table 2, 3 and 4 show that four proposed techniques 

combined CMTNN and SMOTE generally performs better than other techniques, in 
terms of G-mean and AUC in each learning algorithm (ANN, SVM, and k-NN). They 
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improve the performance significantly when comparing to the results of original data 
sets. The proposed techniques f (SMOTE + CMTNN technique I) can improve G-
mean up to 45.41% on Haberman’s Survival data classified by SVM. Moreover, 
technique g (SMOTE + CMTNN technique II) generally present the better technique 
in the experiments.  

The results of the ANN classifier in Table 2 show that the combined technique d 
(CMTNN technique I (Majority) + SMOTE) and technique e (CMTNN technique II 
(Majority) + SMOTE) present the best results of G-mean and AUC. Technique g also 
presents the second best performance in most cases. The proposed combined 
techniques (technique d e f g) show the improvement significantly when comparing to 
the results of G-mean on original test sets from 5.43% to 29.67%. In addition, when 
the results of technique d. and e. are compared to the base technique (SMOTE), the 
results of G-mean show the improvement from 0.73% to 4.73%. 

In Table 3, SVM is employed as a classifier. The results show that technique g 
(SMOTE + CMTNN technique II) presents the best performance on two test sets. The 
significant improvement by technique g is up to 13.19% on German Credit data when 
compared to the base technique, SMOTE. ENN and Tomek links technique also 
perform well on some test sets. This is because they can broaden the margin between 
two classes by eliminating instances near the separating hyperplane [1]. 

Table 3. The results of G-Mean and AUC for each data set classified by SVM 

 
Pima Indian 

Diabetes data 
German 

Credit data 
Haberman’s 
Survival data 

SPECT 
Heart data 

Techniques GM AUC GM AUC GM AUC GM AUC 
Original Data 67.81 0.8294 56.78 0.7660 19.13 0.6520 71.81 0.7249 
a. ENN  73.04 0.8281 70.01 0.7842 53.16 0.7105 77.15 0.7717 
b. Tomek links 72.83 0.8231 70.73 0.7846 49.61 0.6982 76.72 0.7681 
c. SMOTE 74.32 0.8247 58.03 0.7381 58.33 0.6336 71.59 0.7253 
d. Technique I   
     (Majority)  
   + SMOTE 74.75 0.8144 60.03 0.7573 61.16 0.6505 73.08 0.7349 
e. Technique II    
     (Majority)   
   + SMOTE 74.89 0.8177 66.84 0.7626 60.92 0.6732 74.80 0.7503 
f. SMOTE +  
   Technique I   74.11 0.8262 67.87 0.7805 64.54 0.6843 74.39 0.7466 
g. SMOTE +  
   Technique II  75.57 0.8306 71.22 0.7902 58.32 0.6204 75.33 0.7555 
Best technique g g g g f a a a 

Second best e Origin b b d b b b 

 
In Table 4, k-NN (k=5) is used as a classifier. Technique g (SMOTE + CMTNN 

technique II) show the best and the second best performance in every test set. While 
Technique f (SMOTE + CMTNN technique I) show the best outcome in two test sets, 
ENN perform well only on SPECT Heart data. 

In order to explain why the proposed combined techniques outperform other 
techniques, the characteristics of the both techniques need to be discussed. On one 
hand, SMOTE technique gains the benefits of avoiding the over-fitting problem of the 
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minority class by interpolating new minority class instances rather than duplicating 
the existing instances [1]. On the other hand, the misclassification analysis using 
CMTNN can enhance the quality of the training data by removing possible 
misclassification patterns from data sets.  

Table 4. The results of G-Mean and AUC for each data set classified by k-NN (k=5) 

 
Pima Indian 

Diabetes data 
German 

Credit data 
Haberman’s 
Survival data 

SPECT 
Heart data 

Techniques GM AUC GM AUC GM AUC GM AUC 
Original Data 65.27 0.7665 59.35 0.7483 40.11 0.5741 68.00 0.8121 
a. ENN  71.15 0.7817 64.40 0.7566 46.47 0.5915 77.56 0.8369 
b. Tomek links 72.06 0.7865 67.42 0.7625 47.57 0.5918 74.10 0.8148 
c. SMOTE 71.78 0.7742 68.69 0.7518 55.82 0.5836 74.20 0.8005 
d. Technique I   
     (Majority)  
   + SMOTE 72.11 0.7938 69.32 0.7572 56.28 0.5927 74.64 0.8264 
e. Technique II    
     (Majority)   
   + SMOTE 73.17 0.7956 69.94 0.7686 57.50 0.6050 74.53 0.8030 
f. SMOTE +  
   Technique I   73.95 0.8104 72.35 0.7785 56.39 0.6226 74.13 0.8121 
g. SMOTE +  
   Technique II  73.42 0.8058 71.21 0.7719 59.30 0.6302 75.30 0.8179 
Best technique f f f f g g a a 

Second best g g g g e f g d 

 
For generalization, when the proposed techniques are compared, technique g 

(SMOTE + CMTNN technique II) constantly presents the best or the second best in 
most cases among different classification algorithms. This is because when the 
training data is applied by SMOTE technique, it can create larger and less specific 
decision boundaries for the minority class [3]. Consequently, when the data is applied 
by CMTNN as under-sampling, the training data is eliminated all possible 
misclassification patterns detected by both the Truth NN and Falsity NN. Moreover, 
when a number of instances removed from the training sets are compared, it is found 
that misclassification instances eliminated by technique g are greater than other 
combined techniques. The lesser noise the training set retains the better performance 
the learning algorithm performs.  

However, in some cases, for example Haberman’s Survival data, technique g 
cannot gain the better results than other techniques. This is because it removes lots of 
instances from the training set. While technique g removes misclassification instances 
between 14% and 24% in other data sets, it eliminates instances up to 55% in 
Haberman’s Survival data. As a consequence, a number of remaining instances of this 
data is not enough for the learning algorithms (ANN and SVM) to generalize the 
correct results. Therefore, in summary, although the combined technique g 
consistently presented better results in this paper, the number of instances removed by 
technique g is also a major constraint which is able to affect the classification 
performance on the class imbalanced problem.   
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4   Conclusions 

This paper presents the proposed combined techniques to re-distribute the data in 
classes to solve the class imbalance problem. They are the integration of under-
sampling techniques using Complementary Neural Network (CMTNN) and the over-
sampling technique using Synthetic Minority Over-sampling Technique (SMOTE). 
The experiment employs three types of machine learning algorithms for classifying 
the test sets including ANN, SVM, and k-NN. The results of classification are 
evaluated and compared in terms of performance using the widely accepted measures 
for the class imbalance problem, which are G-mean and AUC. The results obtained 
from the experiment indicated that the proposed combined technique by SMOTE and 
CMTNN generally performs better than other techniques in most test cases. 
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Abstract. Weight decay is a simple regularization method to improve

the generalization ability of multilayered perceptrons (MLPs). Besides,

the weight decay method can also improve the fault tolerance of MLPs.

However, most existing generalization error results of using the weight

decay method focus on fault-free MLPs only. For faulty MLPs, using a

test set to study the generalization ability is not practice because there

are huge number of possible faulty networks for a trained network. This

paper develops a prediction error formula for predicting the performance

of faulty MLPs. Our prediction error results allows us to select an ap-

propriate model for MLPs under open node fault situation.

1 Introduction

One concern in the multilayer perceptron (MLP) training is how well a trained
MLP perform on an unseen test set [1]. Therefore, many methods, such as sub-
set selection and regularization, were proposed for improving the generalization
ability. One simple method is the weight decay technique [2–4]. However, the per-
formance of weight decay depends on whether an appropriate decay parameter
is chosen.

One approach to select the appropriate decay parameter is to use a test set. We
train a number of networks with different decay parameters and then select the
best trained network based on the test set. However, in many real situations, data
are very scarce. Also, the process to investigate the performance of the trained
networks based on the test set is very time consuming. Another approach is
mean prediction error (MPE)[1]. We train a number of networks with different
decay parameters and then select the best trained network based on a so-called
prediction error formula which is a function of training error and trained weights.
Although there are a lot of theoretical results related to the generalization ability,
many of them focus on faulty-free networks only.

In the implementation of a neural network, network faults take place unavoid-
ably [5–8]. One of important fault models is open node fault, where some hidden
nodes are disconnected to the output layer. Several algorithms for this fault
model have been investigated [6–10]. Unfortunately, most of them focused on
the training error. With a test set, they can be modified to handle the general-
ization error but the modifications may not b practice because of huge number
of possible faulty networks.

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 160–167, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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From [9], the weight decay method is able to handle the open node fault of
MLPs. To optimize the generalization ability under the open node fault situation,
we can use different weight decay parameters to train a number of MLPs. For
each trained MLP, we generate a huge number of faulty MLPs. Afterwards, we
use the test set to study the performance of those faulty networks to study the
generalization ability. Clearly, this test set method is very time consuming.

This paper investigates the generalization ability of MLPs under the open
node fault situation. We develop a MPE formula for MLPs to estimate the
performance of MLPs. Based on this formula, we can perform the model selec-
tion (appropriate weight decay parameter) for MLPs with open node fault. The
background knowledge about the MLP model, the weight decay technique, and
fault model will be presented in Section 2. Section 3 presents the MPE formula.
Section 4 presents the simulation result. Section 5 concludes our results.

2 MLP and Fault Model

The training dataset is denoted as Dt =
{
(xj, yj) : xj ∈ �K , yj ∈ �

}
, where xj

and yj are the training input and desired output, respectively, and j = 1, · · · , N .
The dataset Dt is generated by a stochastic system, given by yj = f(xj) + εj ,
where f(·) is the unknown system mapping, and εj’s, being the measurement
noise, are identical independent zero-mean Gaussian variables with variance Sε.
We denote Df =

{
(x′

j′ , y
′
j′), j

′ = 1, · · · , N ′} as the test set.
In the MLP model, the unknown mapping f(·) is realized by

f(x) = f(x, wo, bo, wI , bI) = woT φ(wIx + bI) + bo, (1)

where wo = (wo
1 , · · · , wo

M )T is the output weight vector, bo is the output basis,
φ = (φ1, · · · , φM )T is the hidden output vector, wI is the input weight matrix,
and bI is the input bias vector. This paper uses the hyperbolic tangent as the
activation function φ(·). We can denote w as the collection of all the parameters.
The network output f(x, wo, bo, wI , bI) can then be written as f(x,w). The
training set error of a given weight vector is

Et(w) =
1
N

N∑
j=1

(yj − woT φ(wIxj + bI) − bo)2 =
1
N

N∑
j=1

(yj − f(xj ,w))2 . (2)

In weight decay, the training objective is

L(w) =
1
N

N∑
j=1

(yj − f(xj ,w))2 + λwT w. (3)

When open node fault appears in a hidden node, it is equivalent to set the output
of the faulty node to zero. Hence, we can use a weight multiplicative model to
describe the open node fault situation, given by

w̃o
i,β = βiw

o
i , ∀ i = 1, · · · , M (4)
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where the fault factor βi describes whether the i-th hidden node operates prop-
erly. If βi = 0, the i-th node is out of work. If βi = 1, the i-th node operates
properly. The training set error of an implementation w̃β is given by

Et,β(w) =
1
N

N∑
j=1

(yj −
M∑
i=1

βiw
o
i φj,i − bo)2 (5)

where φj,i is the i-th element of φ(wIxj + bI).

3 Mean Prediction Error of Fault MLPs

In this section, we will first estimate the train set error of a faulty MLP and
then test set error of a faulty MLP. We assume that the faulty factors βj ’s
are identical independent binary random variables with Prob(βj = 0) = p and
Prob(βj = 1) = 1 − p. The training set error over all faulty vectors becomes

Et,β(w) =
1

N

N∑
j=1

⎛⎝(yi − bo
)
2 − 2(yi − bo

)

〈
M∑

i=1

βi wo
i φj,i

〉
β

+

〈
(

M∑
i=1

βj wo
j φj,i)

2

〉
β

⎤⎦ ,

(6)

where < · > is the expectation operator. Since 〈βi〉 = 〈βi
2〉 = 1−p and 〈βiβi′〉 =

(1 − p)2 for i �= i′, we have〈
M∑
i=1

βiw
o
i φj,i

〉
β

= (1 − p)
M∑
i=1

wo
i φj,i (7)

1
N

N∑
j=1

〈
(

M∑
i=1

βi wo
i φj,i)2

〉
β

= woT ((1 − p)G + (1 − p)2 (Φ − G)
)
wo . (8)

where Φ = 1
N

∑N
j=1 φj φT

j , φj = φ(wIxj + bI), and G = diag(Φ). The expec-
tation on Et,β(w) over all possible fault patterns is then given by

Et,β(w) =
p

N

N∑
j=1

(yj−bo)2+
1 − p

N

N∑
j=1

(yj−f(xj ,w))2+(p−p2)woT {G − Φ}wo .

(9)
Similarly, we have the test set error over all possible fault patterns, given by

Ef,β(w) =
p

N ′

N∑
j′=1

(yj′ −bo
)
2
+

1 − p

N ′

N′∑
j′=1

(yj′ −f(xj′ ,w))
2
+(p−p2

)woT {G′ − Φ′}wo

(10)

where Φ′ = 1
N ′
∑N ′

j′=1 φ′
j φ′

j
T , φ′

j′ = φ(wIxj′ + bI), and G′ = diag(Φ′). Let w∗
be the true weight vector. The datasets are then generated by

yj = f(xj ,w∗) + εj and yj′ = f(xj′ ,w∗) + εj′ . (11)
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In weight decay, our training objective is L(w) = 1
N

∑N
j=1(yj − f(x,w))2 +

λwT w. So, there is a derivation Δw between the trained vector w from the true
weight vector w∗. After training, we have

∂L(w)
∂w

= 0 . (12)

Considering the first order approximation [11] on (12), we have

∂L(w∗)
∂w

+
∂2L(w∗)
∂w∂w

Δw = 0. (13)

Hence,

Δw = (H + λI)−1

⎛⎝ 1
N

N∑
j=1

εjϕj + λw∗

⎞⎠ (14)

where I is an identity matrix, ϕj = ∂f(xj ,w∗)
∂w , and H = 1

N

∑N
j=1 ϕjϕ

T
j . Consid-

ering the first order approximation on f(xj ,w) around w∗, we have

f(xj ,w) = f(xj ,w∗) + ϕT
j (w − w∗) = f(xj ,w∗) + ϕT

j Δw. (15)

From (11) and (15), we have

yj − f(xj ,w) = εj − ϕT
j Δw . (16)

Applying (16) into (9), we have

Et,β(w) =
p

N

N∑
j=1

(yj −bo)2 +
1 − p

N

N∑
j=1

(εj −ϕT
j Δw)2 +(p−p2)woT {G − Φ}wo .

(17)
Applying (14) into (17) and taking average over εj, we can rewrite the training
set error of faulty MLP, i.e., (17), as

Et,β(w) =
p

N

N∑
j=1

(yj − bo)2 + (1 − p)Sε −
2(1 − p)Sε

N
Tr(H(H + λI)−1)

+
(1 − p)Sε

N
Tr(H(H + λI)−1H(H + λI)−1)

+(1 − p)λ2wT
∗ (H + λI)−1H(H + λI)−1w∗

+(p − p2)woT {G − Φ}wo (18)

where Tr(·) is the trace operator. Using the similar technique, we can rewrite
the test set error of faulty MLPs, i.e., (10), as

Ef,β(w) =
p

N

N ′∑
j′=1

(yj′ − bo)2 + (1 − p)Sε

+
(1 − p)Sε

N ′ Tr(H′(H′ + λI)−1H′(H′ + λI)−1)

+(1 − p)λ2wT
∗ (H′ + λI)−1H′(H′ + λI)−1w∗

+(p − p2)woT {G − Φ}wo (19)
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Fig. 1. Datasets. (a) The NAR dataset. (b) The astrophysical data.

H′ = 1
N ′
∑N ′

j′=1 ϕ′
jϕ

′
j
T , and ϕ′

j = ∂f(xj′ ,w∗)

∂w . For large N and N ′, H′ = H,
G′ = G, and Φ′ = Φ. Compared (19) with (18), the test set error of faulty
MLPs can be approximated as

Ef,β(w) =
p

N

N∑
j=1

(yj − bo)2 +
1 − p

N

N ′∑
j′=1

(yj − f(xj,w))2

+
2(1 − p)Sε

N
Tr(H(H + λI)−1) + (p − p2)woT {G′ − Φ′}wo (20)

=
p

N

N∑
j=1

(yj − bo)2 + (1 − p)Et(w) +
2(1 − p)Sε

N
Tr(H(H + λI)−1)

+(p − p2)woT {G − Φ}wo . (21)

In the above, the term Et(w) is the training set error of the trained fault-free
MLP. The matrices H, G, and Φ can be estimated from the training set. The
fault rate p is assumed to be known. The only unknown is the variance of the mea-
surement noise Sε. However, it can be obtained from the Fedorov’s method [12],
given by Se ≈ N

N−M Et(w) or Moody’s method [1], given by Se ≈ N
N−Meff

Et(w),
where Meff = Tr(H(H + λI)−1). From (21), we can directly estimate the gen-
eralization error of a faulty MLP under the open node fault situation based on
the training set error of a fault-free MLP, the trained weights, and the training
set.

4 Simulations

To verify our result, we consider two datasets. The first dataset, shown in
Figure 1(a), is generated from a nonlinear autoregressive time (NAR) series [13],
given by

y(i) =
(
0.8 − 0.5 exp(−y2(i − 1))

)
y(i − 1) −

(
0.3 + 0.9 exp(−y2(i − 1))

)
y(i − 2)

+0.1 sin(πy(i − 1)) + ε(i), (22)
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(a) fault rate p = 0.005. (a) fault rate p = 0.2.

Fig. 2. Generalization error of faulty MLPs for the NAR problem. We can observe that

the MPE formula can locate an appropriate weight decay parameter λ to minimize the

test set error of faulty MLPs.

where ε(i) is a mean zero Gaussian random variable that drives the series. Its
variance is equal to 0.01. Two hundred samples were generated given y(0) =
y(−1) = 0. The first 50 data points were used for training. The other 150 samples
were used for testing. Our MPL model is used to predict y(i) based on the past
observations, {y(i−1), y(i−2)}. The MLP model has two input nodes, 12 hidden
nodes, and one output node.

The second dataset, shown in Figure 1(b), is the astrophysical data. It is the
time variation of the intensity of the white dwarf star PG1159-035 during March
1989 [14]. The data samples are noisy and nonlinear in nature. Part one of this
dataset is selected. There are 618 data samples. Our task is to train MLPs to
predict the current value y(i) based on six past values {y(i − 1), · · · , y(i − 6)}.
The MLP model has six input nodes, 16 hidden nodes, and one output node.
There are 612 input-output pairs. The first 300 pairs are the training data and
the remaining pairs are the test data.

In weight decay, the turning parameter is λ. We illustrate how our MPE result
can help us to select an appropriate value of λ for minimizing the test error of
faulty MLPs. We training MLPs under different λ values. For each λ value, we
try 20 MLPs with different initial conditions. After training, we calculate the
MPE value based on our formula. To verify our estimation, we also measure the
test error of faulty MLPs based on the test sets. For each fault rate and each
trained MLP, we randomly generate 10, 000 faulty networks.

The simulation results are presented in Figures 2–3. From the figure, although
there are differences between the true test error and MPE value of faulty MLPs,
the general shape of the two curves are quite similar. Also, a large range of λ
produces the good MPE values/generalization error.

Our MPE results can help us to select an appropriate value of λ for minimizing
the true test error of faulty networks. For example, for the NAR problem with
p = 0.005, the optimal value of λ based on the test set method is around 0.0005.
With our MPE formula, the good λ value to minimize the MPE values is also
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(a) fault rate p = 0.005. (a) fault rate p = 0.2.

Fig. 3. Generalization error of faulty MLPs for the astrophysical data. We can observe

that the MPE formula can locate an appropriate weight decay parameter λ to minimize

the test set error of faulty MLPs.

around 0.0005. For the NAR problem with p = 0.2, the optimal value of λ based
on the test set method is around 0.009. With our MPE formula, the good λ
value to minimize the MPE values is also around 0.009.

5 Conclusion

This paper perform an error analysis on faulty MLPs. A MPE formula with
weight decay for open node fault were derived. Simulation results show that our
MPE results can help us to select an appropriate value of decay parameter for
minimizing the test error of faulty networks. Since the generalization error plays
an important role in MLPs, we will further explore theoretical issues of the MPE
result for other fault modes, such as multiplicative weight noise and open weight
fault.
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Abstract. Many modifications have been proposed to improve back-
propagation’s convergence time and generalisation capabilities. Typical 
techniques involve pruning of hidden neurons, adding noise to hidden neurons 
which do not learn, and reducing dataset size. In this paper, we wanted to 
compare these modifications’ performance in many situations, perhaps for 
which they were not designed. Seven famous UCI datasets were used. These 
datasets are different in dimension, size and number of outliers. After 
experiments, we find some modifications have excellent effect of decreasing 
network’s convergence time and improving generalisation capability while 
some modifications perform much the same as unmodified back-propagation. 
We also seek to find a combine of modifications which outperforms any single 
selected modification. 

Keywords: bottleneck, backpropagation, neural network, pruning, noise. 

1   Introduction 

One difficulty of carrying out back-propagation networks is deciding the number of 
hidden neurons. There are two methods to solve this problem. One is starting the 
network with extra hidden neurons and excising weights which have similar or 
complementary functions with others. This method is called ‘pruning’ [1] the other is 
using less hidden neurons and gradually adding more hidden neurons to the network 
[2]. The neural networks’ learning can be viewed as ‘curve fitting’ [3] and good 
generalisation capabilities come from a smoother data fitting curve. In other words, 
networks with less hidden neurons generalise better. However, some research points 
out that by using extra units, thus adding dimensions to the error surface, the 
network’s training can avoid local minima [4]. So one of our experimental goals is to 
observe this dilemma. 

It is claimed [5] claims that adding noise to the training can dramatically improve a 
network’s ability to recognize noisy data as well as clean data. In another paper [6] it 
is concluded that with noise in the training, the error converges faster. 
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All the modifications mentioned above are concerned with the inside of the neural 
network black box, while some research puts forward algorithms for reducing the 
input patterns [7-10]. This kind of modification assumes that outliers exist in real 
datasets and the training period can be shortened by discarding these outliers. 

2   Algorithm Descriptions 

2.1   Sensitivity 

The basic idea of ‘sensitivity’ is excising weights without which the network is 
affected least (Karnin, 1990). The sensitivity is evaluated as: 

 S ∆w n ww w  

 

where  w  is the value of weight when the training stops, w  is the initial value of 
weight, and n is the number of running epochs. 

2.2   Distinctiveness 

The distinctiveness idea prunes neurons which have similar or complementary effect 
corresponding to other neurons [1, 12-14]. For each hidden neuron, construct a vector 
containing the output activations for all input patterns during a selected epoch. Then 
calculate the angle between each vector. All of the angles are normalised to 0 to 180 
degrees. If the angle is less than 15 degrees, the relative hidden neurons are 
considered as similar and one of those could be removed with its connected weights 
added to the other one. On the other hand, if the angle is larger than 165 degrees, 
these two neurons are considered to have complementary functions, and both could be 
removed. 

2.3   Badness 

The badness factor ‘indicates badness of each hidden unit. It is the sum of back 
propagated error component over all patterns for each hidden unit’ [2]. 

The badness factor is evaluated as BAD ∑ e , ∑ ∑ w   δ   

where 

                                               δ t o f net  (output layer) δ ∑ w   δ f net  (hidden layer) net  is the input to jth neuron, t  is the target output, and o  is the desired output. 
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The neuron whose badness factor is largest is considered the worst neuron and the 
weights connected to it will be set to small random values. 

2.4   Adding Noise 

In this paper, we add a kind of noise [6] which is evaluated as: noise , m β , x , m 0.5     

and   

 x , m 1  αx m 1 x m  . 

At each epoch of the training, each weight is changed with noise added. In our 
experiment, α is set to be 4.0 and β is fixed as 0.01. 

2.5   Heuristic Pattern Reduction 

If we had before training some prior knowledge of what percentage of outliers exists 
in the dataset, then we could discover and eliminate them relatively readily. This 
situation rarely occurs. 

The heuristic pattern reduction algorithm [7-8] eliminates outliers by assuming that 
the number of outliers are significantly less than normal patterns, and that a trained 
network can provide information as to the approximate likelihood that a pattern is an 
outlier. That is, that the error on a pattern is roughly correlated with its likelihood of 
being an outlier. Thus, we just remove half of the data in the approximate middle of 
the training, with the patterns sorted by the pattern error we discard every second 
pattern. 

2.6   Bimodal Distribution Removal 

The Bimodal Distribution Removal algorithm [9] also does not need any prior 
knowledge about the input dataset, and uses the network itself to recognise the 
outliers. The algorithm processes as follows: 
 

(1) Begin training with the whole training set. 
(2) Wait until the normalised variance of errors over the training set vts is below 0.1. 

(3) Calculate the mean error δ  over the training set.  

(4) Take from the training set those patterns error greater than error δ .  

(5) Calculate the mean δ , and standard deviation σss of this subset. 

(6) Permanently remove all patterns from the training set with error δ σss  
where 0 α 1 

(7) Repeat steps 2-6 every 50 epochs, until normalised variance of errors over the 
training set vts ≤ 0.01." 
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3   Experiments 

Table 1. The 7 UCI datasets used with their attribute information 

Dataset Number 
of instances 

Number 
of attributes 

Number 
of classes 

Breast Cancer 569 32 2 

Ecoli 336 8 8 

Ionosphere 351 34 2 

Iris 150 4 3 

Sonar 208 60 2 

Survival 306 3 2 

Wine 178 13 3 

3.1   Method  

In the experiments, we used all algorithms mentioned above as well as normal back-
propagation to train networks using all of the datasets. The training was halted at 3000 
epochs, well past the best generalisation on all data sets.  

The evaluation criteria are final errors of the network and the best prediction 
accuracy on test data. Each training used ten-fold cross validation. Due to lack of 
space, we show an example of each of pruning and adding noise, and show substantial 
experimental results for reducing data sets. 

3.2   Results  

We report all the results here, with the baseline normal back-propagation (BP) results 
line being repeated in the tables for consistent ease of comparison. 

An example of pruning of the neurons or connections is shown below. 

Table 2. The average accuracy on test data by normal BP and badness 

   breast   ecoli  ionosphere   iris   sonar   survival   wine 

  BP   0.5165   0.5806   0.8528   0.9667   0.7827   0.0290   0.3438 

  noise   0.4797   0.5461   0.8389   0.9600   0.7594   0.0065   0.3319 
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The experiment results of badness algorithm show that it does not improve the 
generalisation on any of these seven datasets. We can see that ‘badness’ is bad. 

An example of adding noise is shown below. 

Table 3. The average accuracy on test data by normal BP and adding noise 

   breast   ecoli  ionosphere   iris   sonar   survival   wine 

  BP   0.5165   0.5806   0.8528   0.9667   0.7827   0.0290   0.3438 

  noise   0.5202   0.6247   0.8667   0.9600   0.7885   0.0355   0.3722 

 
Adding noise has a slight improvement of the net’s generalisation capability, 
normally 1% to 5%. 

A set of examples of reducing datasets is shown below. 

Table 4. The average accuracy on test data by normal BP, BDR and HPR 

   breast   ecoli  ionosphere   iris   sonar   survival   wine 

  BP   0.5165   0.5806    0.8528   0.9667   0.7827   0.0290   0.3438 

  heuristic   0.5956   0.7090    0.8380   0.9600   0.7218   0.7110   0.5847 

  bimodal   0.6874   0.6520    0.7287   0.7133   0.6378   0.7323   0.6354 

 
Bimodal distribution removal (BDR) and heuristic pattern reduction (HPR) 

generally outperform normal BP in the experiment. In some datasets, the accuracy on 
test data is markedly improved by 22%. Furthermore, the survival dataset which 
seems hard to be recognised by normal BP, is well recognised by BDR and HPR.  

We can detect some pattern in the results, in that the better the result using BP, the 
less beneficial effect either technique has, with BDR reducing the correctness in 
these cases. We can predict that this is due to the nature and amount of noise in the 
dataset. While BP can cope with noise, the less noise in the dataset the better it will 
perform, and will be negatively impacted by the elimination of hard-to-learn training 
patterns.  

Since the HPR method will only remove half of these, any negative effect is 
reduced. Thus, if BP performs well, we should use only HPR, while if BP performs 
badly, we should try both HPR and BDR. 

The training process on the Survival dataset by nomal BP, BDR and HDR are 
shown in Figures 1, 2, 3. 
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Fig. 1. Survival dataset training by normal BP 

 

We can see that the training error does not decrease and the test set accuracy stays 
at zero throughout. This run is clearly stuck in a very bad local mininimum. 

 

 

Fig. 2. Survival dataset training by Bimodal Distribution Removal (BDR) 



174 X. Zang 

 

Fig. 2. (continued) 

The network is clearly now learning well. 

 

 

Fig. 3. Survival dataset training by Heuristic Pattern Reduction (HPR) 
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At 1,500 epochs, half the training patterns are eliminated and the network learns 
within a very small number of epochs. Clearly, the relatively slow and otherwise 
insufficient learning up to this point is suitable to sort the training patterns meaning-
fully and so the technique can eliminate half the noisy points. 

Eliminating half the noisy points appears to work since there are enough normal 
patterns that the underlying function can still be learnt but with only half as much 
distraction from confounding noise / outliers and allows us to balance the bias and 
variance dilemma [15] in neural network training. 

One interesting observation of these two algorithms is that they discard a great 
percentage of the original dataset, and clearly not all of them are outliers. In the 
example we have shown, HPR eliminates exactly 50% of the patterns, producing 
datasets which improve training. For the BDR technique, for some datasets, the 
remaining training data are composed by parts of classes which represented by the 
original data; however, the network is still able to recognise the classes which are 
removed since that information is still encoded within its trained weights.  

Table 5. The average % of the dataset removed by BDR and accuracy 

   breast   ecoli  ionosphere   iris   sonar   survival   wine 

  BP accur.   0.5165   0.5806    0.8528   0.9667   0.7827   0.0290   0.3438 

  removed   0.1481   0.9412    0.9630   0.6074   0.8254   0.2724   0.7222 

  BDR 
  accur. 

  0.6874   0.6520    0.7287   0.7133   0.6378   0.6897   0.6354 

 
For the survival dataset we can see that only 27% is removed, to substantially 

improve accuracy. On that dataset the HPR technique was better, removing 50%. We 
can not otherwise conclude that the amount removed is correlated with the results 
beyond our previous observations linking success to the amount of noise in the data. 

4   Conclusions 

Many authors have proposed various modifications to the backpropagation algorithm, 
and usually compare it against one or two other modifications at most, and sometimes 
only on their own datasets. To our knowledge, this is the first thorough comparison of 
a reasonable number of such modifications, on a reasonable number of standard 
datasets.Our results presented here showed brief examples of pruning and adding 
noise, which notwithstanding their prominence in the literature are not the lowest 
hanging fruit. We showed a substantial set of results on reducing data sets and have 
derived heuristics for when the two main techniques can be expected to have a 
significant beneficial effect on neural network learning and generalization. 
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Abstract. Compressive sampling is a sampling technique for sparse sig-

nals. The advantage of compressive sampling is that signals are compactly

represented by a few number of measured values. This paper adopts an

analog neural network technique, Lagrange programming neural networks

(LPNNs), to recover data in compressive sampling. We propose the LPNN

dynamics to handle three sceneries, including the standard recovery of

sparse signal, the recovery of non-sparse signal, and the noisy measure-

ment values, in compressive sampling. Simulation examples demonstrate

that our approach effectively recovers the signals from the measured val-

ues for both noise free and noisy environment.

1 Introduction

Compressive sampling is a novel sampling paradigm in data acquisition for sparse
signals [1,2]. It suggests that many signals can be concisely represented by a few
measured values when a proper basis is chosen. The basic principle is that a signal
can be represented by a number of measured values, which is much smaller than
the length of the signal. To obtain those measured values, signals are measured
by a set of pseudo random functions. Afterwards, we can recover the original
signal by these measured values. Traditional approaches to recover signals from
compressive sampling are based on Newton’s method.

Analog computational circuits [3] have long been used to linearly approx-
imate the nonlinear response of a system in the neural networks community.
The advantages of using analog neural circuits as specific purposes include the
inherent parallelism of the weight sum operations [4] and the compact size[5].
Hopefield [6] investigated an analog neural circuit for solving quadratic optimiza-
tion problems. In [7], a canonical nonlinear programming circuit was proposed to
solve nonlinear programming problems with inequality constraints. Apart from
optimization, neural circuits can also be used for searching the maximum of a
set of numbers [8]. In [9], the Lagrange programming neural network (LPNN)
model was proposed to solve general nonlinear constrained optimization prob-
lems based on the well-known Lagrange multiplier method. A LPNN consists of
two types of neurons: variable and Lagrangian neurons. The variable neurons
seeks for a state with the minimum cost in a system while the Lagrange neurons

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 177–184, 2010.
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are trying to constrain the system state of the system such that the system state
falls into the feasible region.

This paper adopts the LPNN model to recover data in compressive sampling.
We propose the LPNN dynamics to handle three sceneries, including the stan-
dard recovery of sparse signal, the recovery of non-sparse signal, and the noisy
measurement values, in compressive sampling. We formulates the signal recov-
ering process in compressive sampling as a set of differentiate equations which
are derived from a Lagrange function. From the dynamics, we find out that the
operation of the LPNN model for compressive sampling can be considered as
a special form of bidirectional associative memories. Another interesting thing
is that the connection matrix of the LPNN model for compressive sampling is
random matrix.

This paper is organized as follows. In Section 2, the background of compres-
sive sampling and the LPNN model are reviewed. Section 3 introduces our neural
model for recovering compressive sampled signals. In Section 4, we use two ex-
amples to verify our LPNN model for compressing sampling. Section 5 concludes
our results.

2 Compressive Sampling and LPNN
In compressive sampling, a sparse1 signal x ∈ �n is measured by a set of m
random valued vectors, {φ1, · · · , φm : φj ∈ �n}, where m < n. The m measured
values are given by

y1 = 〈x, φ1〉, · · · , ym = 〈x, φm〉 , (1)

where 〈·, ·〉 is the inner product operator. The compressive sampling process can
be written in the matrix form, given by y = Φx. Practically, φi’s are pseudo
random valued vectors, such as noiselets [10]. One of advantages of using noiselets
is that the matrix Φ can be decomposed as a multiscale manner. Hence, the
computation of Φx can be performed in an efficient manner. If the sparse signal
x has high sparsity feature in the original domain, it can be recovered from the
measured signal y by solving the following constrained optimization problem,
given by

min ‖x̂‖l1 subject to y = Φx̂ , . (2)

From [1,2], if m < Co log n, then with probability very close to one the signal can
be recovered, where Co is constant depending on Φ. If the signal x is not sparse
in the original domain, we can transform it into a basis Ψ , such as wavelet basis.
Then, the recovery of the signal can be formulated:

min ‖Ψx̂‖l1 subject to y = Φx̂ . (3)

In (3), the objective is to search an n-component signal x̂ with a sparse trans-
formed signal Ψx. The constraints y = Φx̂ limit the searching signals.
1 A signal is sparse if a few components are large in magnitude and other components

are nearly zero.
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A LPNN aims at minimizing the following constrained optimization problem:

Minimize f(x̂) subject to h(x̂) = 0 , (4)

where x̂ ∈ �n is the state of system, f : �n → � is the objective function, and
h : Rn → Rm describes the m equality constraints, where m < n. The LPNN
model uses the Lagrange multiplier approach to obtain the optimized solution
of (4). The Lagrange objective function is given by

L(x̂, λ) = f(x̂) + λT h(x̂) , (5)

where λ = [λ1, · · · , λm]T is the Lagrange multiplier vector. To realize the op-
timization, a LPNN consists of two types of neurons: variable and Lagrange
neurons. Intuitively, the variable neurons are seeking for a minimum point of (4)
and the Lagrange neurons are trying to constrain the state of the system. The
transient behavior of those neurons is given by

dx̂

dt
= −∇xL(x̂, λ) and

dλ

dt
= ∇λL(x̂, λ) . (6)

With (6), the network will be settled down at an stable state [9] when the gradi-
ent vectors ∇x̂h(x̂) = {∇x̂h1(x̂), · · · ,∇x̂hm(x̂)} of h(x̂) are linear independent.

3 LPNNs for Compressive Sampling
3.1 Sparse Signal

To recover a sparse signal from the measured vector y by LPNNs, one may
suggest that we can define the objective function of the LPNN model as

L(x̂, λ) = ‖x̂‖l1 + λT (y − Φx̂) . (7)

However, the norm–1 measure, involving absolute operator |x|, is not differen-
tiable at x = 0. Hence, we need an approximation on the absolute operator. In
this paper, we use the following approximation:

|x| ≈ α(x) =
log coshax

a
(8)

to approximate the absolute operator, where a > 1. For a large a, the approxi-
mation is quite accurate.

With the approximation, the Lagrange objective function for recovering the
signal is

L(x̂, λ) = f(x̂) + λT (y − Φx̂) . (9)

where f(x̂) = α(x̂1)+ · · ·+α(x̂n) = log cosh ax̂1
a + · · ·+ log cosh ax̂n

a . The dynamics
of the variable and Lagrange neurons are given by

dx̂

dt
= − tanh(ax̂) + ΦT λ , and

dλ

dt
= y − Φx̂ . (10)
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Fig. 1. The 1D sparse artificial signal recovery. (a) The sparse signal and its recovery

without measurement noise. (b) The dynamics of recovered signal without measure

noise.(c) The original sparse signal and its recovery with measurement noise. (d) The

dynamics of recovered signal with measurement noise.

In the above, Φ is the interconnection matrix between the variable neurons and
Lagrange neurons. This kind of dynamics can be considered as a special form
of bi-directional associative memories (BAMs) [11,12]. Besides, practically, the
interconnection matrix Φ can be a random {+1,−1} matrix. This suggests that
the implementation of the analog neural circuit could be very simple because we
have no need to precisely construct the interconnection matrix.

3.2 Non-sparse Signal
Our neural circuit can also be used for recovering a signal x with low sparsity.
Let x = x1, · · · , xn be an 1D signal in the spatial domain. One of the simplest
methods for handling this case is to consider the spatial domain gradient, given
by ∇sx̂ = [x̂1 − x̂0, x̂2 − x̂1, · · · , x̂n − x̂n−1]T . The Lagrange objective function
for recovering the signal becomes

L(x̂, λ) = f(∇sx̂) + λT (y − Φx̂) . (11)

The dynamics of neurons are given by

dx̂i

dt
= − tanh[a(x̂i − x̂i−1)] + tanh[a(x̂i+1 − x̂i)] + [ΦT λ]i , (12)

dλ

dt
= y − Φx̂ , (13)

where [·]i is the i-th component of a vector.
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3.3 Measurement Noise

When there is some measurement noise in y, the compressive sampling process
can be represented as

y = Φx + ξ , (14)

where ξj ’s are independently identical random noise with zero mean and vari-
ance σ2. In this case, the estimated signal x̂ can be recovered based on the
optimization problem:

minf(x̂) subject to y − Φx̂ = ξ̂j ∀j = 1, · · · , m and ξ̂
T
ξ̂ ≤ mσ2. (15)

Again, the Lagrange objective function (15) is

L(x̂, ξ̂, λ, μ) = f(x̂) + λT (y − Φx̂ − ξ̂) + μ(ξ̂
T
ξ̂ − mσ2) , (16)

where x̂ is the state vector of the network, ξ̂ is the estimation of the noise vector,
λ is the Lagrange multiplier vector, and μ is another Lagrange multiplier. With
(16), the dynamics of the network are

dx̂
dt = − tanh(ax̂) + (ΦT λ), dξ̂

dt = −2μξ̂ + λ
dλ
dt = (y − Φx̂) − ξ̂, dμ

dt = ξ̂
T
ξ̂ − mσ2

. (17)

4 Simulation Results

4.1 Artificial Data

The first example is an artificial 1D signal which has 256 values. 244 values
are of zero value while 12 values are wof non-zero value. These non-zero values
are located randomly distributed. Figure 1 shows the recovery of the 1D sparse
artificial signal from 60 measured values with no measurement noise. From the
figure, the recovered signal has the nearly the same to the original signal as
shown in Figure 1(a). Moreover, the recovered signal has converged after 10
characteristic times, as shown in Figure 1(b). Figures 1(c)-(d) show the recovery
of the 1D sparse artificial signal from 60 noisy measured values. The noise added
to the measured values is independently identical random noise with zero mean
and variance σ2 = 0.04. In this experiment, the values of recovered signal are
also close to the original signal as shown in Figure 1(c), and the recovered signal
is converged after 10 characteristic times, as shown in Figure 1(d).

4.2 Non Sparse Signal

We use a large scale problem, 2D image, to verify our LPNN approach. Its res-
olution is 256 × 256 = 65536 pixels. Its values are non-sparse in nature. We
generalize the 1D method presented in Section 3.2 to the 2D case. There are
n = 65536 variable neurons and we vary the number m of measured values.
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Fig. 2. Image recovery by our LPNN approach. (a) Performance curve. (b) Original

image. (c) Recovered image using DCT with 20000 measured values. The PSNR is

equal to 29.0dB. (d) Recovered image using our LPNN approach with 20000 measured

values. The PSNR is equal to 31.6dB.

Our proposed approach is compared with an 2D DCT-based approach. In the
DCT-based approach, the image is transformed to the DCT domain. The selec-
tion order of DCT coefficients is based on the zig-zag ordering. In our approach,
the first 1000 measured values are the low-frequency DCT coefficients and the
rest of measured values are obtained from the compressive sampling process.
Figure 2 shows the result. The result verifies that our LPNN approach is suc-
cessful in recovering the signal for this large scale problem. Figure 2 (a) shows
the peak signal-to-noise rate (PSNR). When the number of measured values are
less than 10000, both approaches have nearly the same PSNR value. When the
number of measured values used increases, our LPNN approach outperforms the
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Fig. 3. Image recovery by our LPNN approach for noisy measurement values. (a) Orig-

inal image. (b) Recovery with no measurement noise. (c)–(i) Recovery with measure-

ment noise. (c) σ2 = 0.0001. (d) σ2 = 0.0004. (e) σ2 = 0.0009. (f) σ2 = 0.0016. (g)

σ2 = 0.0025. (h) σ2 = 0.0036. (i) σ2 = 0.0049.

DCT-based approach. For example, when the number of measured values used
is equal to 20000, the DCT-based approach has 29.0dB and our approach has
31.6dB. Figures 2(b)-(d) shows the original image, the recovered images from
the DCT-based approach and our approach. Ringing artifacts are observed for
the DCT-based approach as shown in Figure 2(c). Besides, in the DCT-based
approach, there is a large visual distortion around the arm of the camera stand.
On the other hand, in our LPNN approach, there are no ringing artifact and no
distortion around the arm of the camera stand.

4.3 Measurement Noise

We use a 2D image with resolution equal to 256 × 256 = 65536 pixels to verify
our LPNN model for recovering signal from noisy measurements. The image,
shown in Figure 3, is sparse. There are n = 65536 variable neurons. 15, 000
measured values are used for recovering. After the measurement, we find that
the average power of the measured values is equal to 0.0492. We add Gaussian
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measurement noise to the measured values. The noise variances are equal to
{0, 0.0001, 0.0004, 0.0009, 0.0016, 0025, 0.0036, 0.0049}. We use the Section 3.3’s
method to recover the image. Figure 3 shows the recovered images. From the
figure, the LPNN method can recover the image when there are noise in the
measured values. As expected, the recovered signal is degraded when the variance
of the noise increases.

5 Conclusion

In this paper, we formulate the LPNN model to handle the signal recovery in
compressive sampling. We propose the LPNN dynamics to handle three scener-
ies, including the standard recovery of sparse signal, the recovery of non-sparse
signal, and the noisy measurement values. For the standard recovery of sparse
signal, the dynamics of our LPNN model can be considered as a special case
of bidirectional memories. Simulation results verify that our approach can be
applied for recovering 1D and 2D data in compressive sampling for both noise
free and noisy environments.
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from City University of Hong Kong (Project No. 7002588).
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Abstract. In this paper, we propose a new auto-associative multilayer 
perceptron (AAMLP) that properly enhances the sensitivity of input and output 
(I/O) mapping by applying a high pass filter characteristic to the conventional 
error back propagation learning algorithm, through which small variation of 
input feature is successfully indicated. The proposed model aims to sensitively 
discriminate a data of one cluster with small different characteristics against 
another different cluster’s data. Objective function for the proposed neural 
network is modified by additionally considering an input and output sensitivity, 
in which the weight update rules are induced in the manner of minimizing the 
objective function by a gradient descent method. The proposed model is applied 
for a real application system to localize laser spots in a beam projected image, 
which can be utilized as a new computer interface system for dynamic 
interaction with audiences in presentation or meeting environment. Complexity 
of laser spot localization is very wide, therefore it is very simple in some cases, 
but it becomes very tough when the laser spot area has very slightly different 
characteristic compared with the corresponding area in a beam projected image. 
The proposed neural network model shows better performance by increasing 
the input-output mapping sensitivity than the conventional AAMLP. 

Keywords: Auto-associative multilayer perceptron, input and output mapping 
sensitivity, laser pointer detection, computer interface using a laser pointer. 

1   Introduction 

A lot of researchers are currently focusing on new computer interfacing methods [1-5]. In 
a beam projection for presentation and meeting, it has been tried to develop easy interface 
methods based on gesture and/or speech recognition. Those studies have the same goal to 
overcome the limitation of interaction using conventional computer keyboard and mouse. 
When a presenter tries to manipulate his/her presentation system, he or she must closely 
stand to the control devices such as keyboard and mouse. Also, the presentation slides are 
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mostly controlled by a presenter only. It hinders active discussion based on controlling 
the presentation slides by people who attend the meeting. In this paper, we propose a new 
laser pointer recognition based computer interface system to help a beam project based 
meeting, which is a kind of digital convergence system for a laser pointer and a computer 
mouse as well as joysticks for a game. 

In early stage of laser pointer interface system development [1-4], image 
processing based approaches have been generally considered. Kirstein, C. et al 
propose a laser pointer system based on a camera tracked system, in which mouse 
move up and down events are controlled based on X-Window system of the Linux. 
This system takes too long time to localizing a laser pointer [1]. Olsen Jr. et al   
describes an inexpensive laser pointer interaction system working on XWeb system 
for laser pointer interaction. This system is uncomfortable because the user had to 
preset a specific mode, therefore it is not suitable for getting a fast response [2]. 
Alternatively, Lapointe et al reported an architecture of laser pointer interaction 
system with fast detection of a laser pointer. But they didn’t mention about the 
performance of their system [3]. Another research is to apply a hardware platform for 
a laser pointer system. This simple idea has a separated function of a camera-tracked 
laser pointer with a gyro sensor. It is natural that a new physical switch on a laser 
pointer has been considered seriously considering the necessity of a switch to turn 
on/off cursor echo. However a physical switch is not directly related to image 
processing improvement, in particular, the improvement of laser pointer detection 
reliability. Also, this system still has several disadvantages; if brightness of 
environment is too strong, the system will not operate very well [4]. Moreover, all of 
image processing based laser pointer interaction systems have common problems, 
which are easily affected by illumination noise and white balance of a camera as well 
as image sensor noises. Moreover, it is almost impossible to detect a laser spot if a 
spot area in a background pointed by a specific color of a laser pointer (red or green) 
has similar color with that of a laser pointer. 

In order to overcome those limitations of conventional laser pointer detection 
system based on an image processing, we newly propose a new auto-associative 
multilayer perceptron (AAMLP) neural network with an input and output (I/O) 
mapping sensitive error back propagation (EBP) learning algorithm. The proposed 
neural network learns the background patch without a laser spot of an input camera 
image to resemble to the same patch of an image frame showing on a computer 
monitor screen. In test mode, the trained neural network generates an output values 
according to an input patch of a camera image, and checks whether the produced 
outputs are similar to the same patch values that is used for training of AAMLP. If a 
patch contains a laser pointer spot, the input will be different from that of training 
phase, then the produced output will generate different value from the input patch 
values. However, when a background patch has similar color with a laser pointer, the 
variation of the input patch value is not too big, and resultantly the neural network 
output by the conventional error back propagation is not much different from the case 
that the background does not contain a laser pointer spot. Thus, we develop a new 
auto-associative multilayer perceptron model with a new learning algorithm that can 
generate a big difference of output value according to a small variation of input 
pattern, in which an I/O mapping sensitivity term is additionally considered in an 
objective function generally defined as a sum of squares of output errors. 
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Section 2 and Section 3 describe the proposed new neural network model and its 
application for a laser pointer based computer interface system, respectively. Section 
4 presents experimental results and discussion. Conclusion and future works follow in 
Section 5. 

2   Proposed Input-Output Mapping Sensitive AAMLP(I/OS-
AAMLP) 

Many two-class clustering and recognition problems such as face detection and laser 
spot localization, which is considered as an application problem have tremendous 
within-class variability. Such a two-class recognition problem might be one of the 
partially-exposed environments problems which are well known problems where 
training data from on-class is very little or non-existent.  

An Auto-associative neural network has been used successfully in many such 
partially-exposed problems [6-7]. An auto-associative neural network is basically a 
neural network whose input and target vectors are the same as shown in Fig. 1. 

 

 

Fig. 1. Architecture of an auto-associative multilayer perceptron 

For the AAMLP with an error back propagation learning algorithm, the objective 
function, E , is generally defined as a sum of squares of output errors as shown in Eq. 
(1) [6]. The weight update learning algorithm for the AAMLP is derived in the course 
of minimizing the objective function. Eq (2) presents an output equation of the 
AAMLP. E 12 t y  (1) 

where t  is a target value of an output node i and, s and p represent a sample index of 
a specific pattern class and a pattern class index, respectively.  y w h  (2) 

where h  is an output of a hidden node j, of which the equation is described in Eq.(4). 
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In our newly proposed AAMLP with a new learning algorithm that reflects an 
input/output sensitivity term in the objective function as E  in Eq. (3). In Eq. (3), the 
denominator reflects an input/output sensitivity, which is obtained from Eq. (5) 
derived from Eq. (4) of an input/output sensitivity equation. In order to make a 
positive definite cost function, we consider only ′ ∑ w x  term in Eq. (5), which 
plays a role for getting the better sensitivity of I/O mapping.  

E E∑ w x  (3) 

where  is a weight between jth hidden node and kth input node and  is an input 
value of the kth input node. 

∂y∂x ∂y∂h ∂h∂x ,  y w h , h w x  (4) 

∂y∂x w ′ w x w  (5) 

where ′ ·  is a derivative of a sigmoid activation function · . 
Eq. (6) shows the weight update equation for w , in which ∆ω  is obtained by  

Eq. (7). When we derive the weight update equation as shown in Eq. (7), the 
denominator term of E  can be treated as a constant term since the denominator term 
of the new objective function E  is not a function of w . Therefore, E  is considered 
for derivation equation in Eq. (7) instead of E . 

w n 1 w n ∆w  (6) 

 ∆w η
∂E∂w

                              η t y ∑ w h h  

δ  

(7) 

where ′ ·  is a derivative of a sigmoid activation function ·  and η is a learning 
rate. 

Eq. (8) is the weight update equation for w , in which ∆w  is derived by Eq. (9). w n 1 w n ∆w  

 

(8) 
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           ∆w ∂E∂w ∂∂w E
′ ∑ w x  ∂∂w E · ′ ∑ w x E · ∂∂w ′ ∑ w x

′ ∑ w x                
  η t y w η 12 ∑ t y 1 2 ∑ w x∑ w x 1 ∑ w x ε x  

(9) 

 

where  and  are learning rates which are experimentally defined, and  should 
be greater than  to increase the I/O sensitive effect. ε is a constant slack value to 
avoid being divided by zero in Eq. (9).  

3   Laser Pointer Interfacing System Using I/OS-AAMLP  

Figs. 2 (a) and (b) shows a new computer interfacing environment and the overall 
processes of the proposed computer interface system using I/OS-AAMLP, 
respectively. The proposed system mainly consists of three parts. First part is to 
localize a beam projected area (ROI) from an input beam projected screen image 
captured using a camera. Second one is to localize a laser spot in a localized beam 
projected area, which is the most important function for the proposed laser pointer 
based computer interfacing system. Third one is to recognize moving patterns of laser 
spots obtained from input image stream in order to generate proper interaction 
commends for interfacing. 

For localizing a beam projected area from an input camera image, an iterative 
lighting condition adjustment method and a geometric based rectangular area 
detection algorithm using edge features are applied. In addition, a warping algorithm 
is used for coordinate transformation from a real coordinate obtained from localized 
beam projected area of a camera input image to a computer frame coordinate [8]. 
Next, a laser spot area in each localized beam projected area is detected using the 
proposed I/OS-AAMLP with a new input-output mapping sensitive error back 
propagation learning algorithm, which enhances performance for localizing even a 
difficult laser spot area such as having low sensitivity against a background. The three 
channel color intensities (red, green, blue) are considered as input features for training 
each area. Instead of directly using the three color features as input of the I/OS-
AAMLP, we considered a principal component analysis (PCA) [9] for dimension 
reduction of input features for enhancing computation time as well as for obtaining 
better features for training each area of a beam projected image. Finally, the proposed 
interface system can generate five different interfacing commands (scroll 
up/down/left/right and double click) based on recognizing the laser pointer moving 
patterns using the coordinates of the localized laser spots obtained from an input 
image stream, which is conducted by a conventional multilayer perceptron [10]. 
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Fig. 2. A new computer interfacing environment (a) and the process outline of the laser pointer 
based computer interface system using the proposed I/OS-AAMLP (b) 

4   Experiments 

We verified the performance of the proposed I/OS-AAMLP using the accuracy of laser 
spots detection in a laser pointer based computer interfacing system. Each patch size in 
Fig. 3 for localizing a laser spot is 5 by 5 pixels. Therefore a color feature vector with 
75 values (3 color channels for 5 by 5 pixels) is considered as a feature for recognizing 
a laser spot. Each extracted feature vector is transformed by projecting on a number of 
selected eigenvectors obtained from PCA. The PCA was applied to reduce the 
computation time of the proposed model with small dimensions of the input data, and 
also to extract more plausible robust features against noise. The number of 
eigenvectors is experimentally decided by comparison of performance according to the 
different cases with varying number of principal components. According to 
performance comparison result, 25 principal components are considered for dimension 
reduction of 75-dimension feature vectors. Therefore, the reduced 25-dimension 
vectors are used as input of the I/OS-AAMLP for deciding whether a laser spot area or 
not during a test mode. 100 sample patches without a laser spot are used for training 
the I/OS-AAMLP. For testing the I/OS-AAMLP, 10, 44, 54, 37, 10, 30 21, 40, 26 and 
30 samples are considered for both each 10 without a laser spot data sets and each 10 
with a laser spot data sets. Figure 3 shows a training process of the I/OS-AAMLP, 
which has 26 input nodes including one constant bias node, 16 hidden nodes including 
one constant bias node and 25 output nodes as the same number of input nodes since 
the I/OS-AAMLP model follows the structure of the conventional AAMLP. 

 

 

Fig. 3. I/OS-AAMLP training process 
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Table 1 compares experimental results between a conventional AAMLP and the 
proposed I/OS-AAMLP. The same test data samples are used for the conventional 
AAMLP and the I/OS-AAMLP. In Table 1, the relative error ratio is calculated by Eq. 
(10), in which an error means the difference between input and corresponding output 
of the neural network and the relative error ratio reflects sensitivity about input and 
output mapping of the neural network. relative error ratio  average error for all test images with a laser spotaverage error for all test images without a laser spot  (10) 

The larger value of the relative error ratio means that an output of the neural network 
more sensitively responds about an input, which means that a laser spot with small 
variance can be more properly indicated by the neural network model. As shown in 
Table 1, the proposed I/OS-AAMLP shows better localization performance than the 
conventional AAMLP even in the cases having very low discrimination property 
between a laser spot area and a corresponding background area. Moreover, the 
proposed I/OS-AAMLP shows robust performance in terms of a threshold of error for 
deciding whether a trained non-laser spot area or a laser spot area. The conventional 
AAMLP shows more sensitive performance according to change of a threshold value. 
In the experiments, learning rates η and η  for I/OS-AAMLP are 0.005 and 0.000001, 
respectively. As shown in Table 1, for both the conventional AAMLP and the 
proposed I/OS-AAMLP, better performance was obtained from the method 
considering PCA for dimension reduction and feature enhancement. Moreover, the 
proposed I/OS-AAMLP applying PCA shows the best performance among four 
different methods, which are due to the input-output sensitivity enhancement by the 
I/OS-AAMLP as well as feature enhancement by PCA. In addition, the I/OS-AAMLP 
can take far less computation time when it applies PCA for reducing dimension of 
input data than the model without applying PCA. 

Table 1. Performance comparison of the proposed I/OS-AAMLP with the conventional AAMLP 
for laser spot localization 

Data
set 
No. 

Relative error ratio Laser spot detection accuracy performance 

AAMLP 
(without 

PCA) 

AAMLP 
(with 
PCA) 

Proposed 
I/OS-AAMLP

(without 
PCA) 

Proposed 
I/OS-

AAMLP 
(with PCA)

AAMLP 
(without 

PCA) 

AAMLP
(with 
PCA) 

Proposed 
I/OS-AAMLP 

(without 
PCA) 

Proposed 
I/OS-

AAMLP 
(with PCA) 

1 1.8785  3.4600 2.0348  3.7339 100% 100% 100% 100% 
2 1.9222  1.5451 2.1785  1.6044 79.55% 79.55% 81.82% 81.82% 
3 1.8606  2.8947 2.0886  2.9007 94.44% 100% 96.30% 100% 
4 1.3843  3.9265 1.6179  2.9469 72.97% 100% 94.59% 100% 
5 1.6751  2.2431 1.5679  2.5015 100% 50% 70% 100% 
6 1.5649  7.8424 1.6108  9.4989 73.33% 100% 63.33% 100% 
7 2.0005  1.5076 1.8297  1.5184 100% 85.71% 100% 90.48% 
8 2.0693  14.0511 2.2017  15.2526 82.5% 100% 92.5% 100% 
9 1.0545  1.7205 1.2826  1.9362 80.77% 100% 92.31% 100% 
10 1.7333  7.4001 1.8360  7.8044 90% 100% 93.33% 100% 
 Total 87.36% 91.53% 88.42% 97.23% 
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5   Conclusion 

We propose a new AAMLP with increased input-output mapping sensitivity. The 
proposed laser pointer based interface system with a novel I/O sensitive EBP learning 
algorithm works well under illumination change and complex background images 
with similar color of laser pointer. The proposed algorithm can not only improve the 
laser pointer detection but also can be used for an inspection system like TFT-LCD 
manufacturing. Although experimental data is not sufficient in this work, our 
approach guides a new concept to solve difficult problems of the laser pointer 
detection which has illumination change, complex background, distortion of image 
sensor and other nonlinear environment variation. 
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Abstract. Reservoir computing approaches have been successfully ap-

plied to a variety of tasks. An inherent problem of these approaches, is,

however, their variation in performance due to fixed random initialisa-

tion of the reservoir. Self-organised approaches like intrinsic plasticity

have been applied to improve reservoir quality, but do not take the task

of the system into account. We present an approach to improve the hid-

den layer of recurrent neural networks, guided by the learning goal of the

system. Our reservoir adaptation optimises the information transfer at

each individual unit, dependent on properties of the information transfer

between input and output of the system. Using synthetic data, we show

that this reservoir adaptation improves the performance of offline echo

state learning and Recursive Least Squares Online Learning.

Keywords: Machine learning, recurrent neural network, information

theory, reservoir computing, guided self-organisation.

1 Introduction

Reservoir Computing (RC) is a recent paradigm in the field of recurrent neural
networks (for a recent overview, see [1]). RC computing approaches have been
employed as mathematical models for generic neural microcircuits, to investigate
and explain computations in neocortical columns (see e.g. [2]). A key element of
reservoir computing approaches is the randomly constructed, fixed hidden layer
– typically, only connections to output units are trained. Despite their impressive
performance for some tasks (e.g. [3]), their fixed random connectivity can lead
to significant variation in performance [4]. To address this issue, approaches
like Intrinsic Plasticity (IP) [5, 6] can help to improve randomly constructed
reservoirs. IP is based on the idea to maximise available information at each
internal unit in a self-organised way by changing the behaviour of individual
units. This is contrast to, for example, Hebbian learning [7], which strengthens
connections between two units if their firing patterns are temporally correlated.

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 193–200, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Both adaptation of individual units as well as adaptation of connections are
phenomena that occur in biological units.

IP learning has been used as an approach to optimise reservoir encoding spe-
cific to the input of the network [6]. It is, however, only dependent on the input
data, and does not take the desired output of the system into account, i.e., it
is not guaranteed to lead to optimised performance with respect to the learn-
ing task of the network [4]. Ideally, we would like to retain the principle of a
self-organised approach to optimise reservoirs, but to guide self-organisation [8]
based on the overall learning goal.

The approach presented in this paper for the first time leads to a method
that optimises the information transfer at each individual unit, dependent on
properties of the information transfer between input and output of the system.
The optimisation is achieved by tuning self-recurrent connections, i.e., the means
to achieve this optimisation can be viewed as a compromise between Hebbian
and IP learning. Using synthetic data, we show that this reservoir adaptation
improves the performance of offline echo state learning, and is also suitable
for online learning approaches like backpropagation-decorrelation learning [9] or
recursive least squares (RLS, see e.g. [10]).

2 Echo State Networks

ESN provide a specific architecture and a training procedure that aims to solve
the problem of slow convergence [11, 3] of earlier recurrent neural network train-
ing algorithms. ESN are normally used with a discrete-time model, i.e. the net-
work dynamics are defined for discrete time-steps t, and they consist of inputs,
a recurrently connected hidden layer (also called reservoir) and an output layer
(see Fig. 1).

We denote the activations of units in the individual layers at time t by ut ,
xt , and ot for the inputs, the hidden layer and the output layer, respectively.
The matrices win, W, wout specify the respective synaptic connection weights.
Using f(x) = tanhx as output nonlinearity for all hidden layer units, the network
dynamics is defined as:

xt = f(Wxt−1 + winut ) (1)

ot = woutxt (2)

The main differences of ESN to traditional recurrent network approaches are
the setup of the connection weights and the training procedure. To construct
an ESN, units in the input layer and the hidden layer are connected randomly.
Only connections between the hidden layer and the output units are trained,
usually with a supervised offline learning approach using linear regression. Here,
the output weights wout are calculated using the collection of desired output
states D, and the pseudoinverse of a matrix S collecting the states of the system
over a number of steps as wout = S†D (see [11] for details). An online learning
procedure, like RLS, adapts the output weights while training input is fed into
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Fig. 1. In echo state networks, only output weights (represented by dashed lines) are

trained, all other connections are setup randomly and remain fixed. The recurrent layer

is also called a reservoir, analogously to a liquid, which has fading memory properties

in response to perturbations (like e.g. ripples caused by a rock thrown into a pond).

the network, i.e., no states need to be collected. The RLS update rule can be
described with the following set of equations:

αt = dt − wout
t−1 · xt , (3)

gt = pt−1 · xt/(λ + xt
T · pt−1 · xt ) , (4)

pt = (pt−1 − gt · xt
T · pt−1 )/λ , (5)

wout
t = wout

t + (αt · gT
t ) , (6)

where αt represents the a priori error vector between desired output dt and
current input, pt the inverse of the autocorrelation, and λ is close to 1 and is an
exponential forgetting factor. RLS has been applied to ESN learning in [12].

Even though the reservoir weights are randomly initialised and remain fixed,
these connections cannot be completely random; they are typically designed to
have the echo state property. The definition of the echo state property has been
outlined in [11] and is summarised in the following section.

2.1 The Echo State Property

The Echo State Property is reflected in the following definition. In simple terms,
the system has echo state property if different initial states converge to each
other for all inputs. Consider a time-discrete recursive function:

xt+1 = F(xt ,ut+1 ) (7)

that is defined at least on a compact sub-area of the vector-space x ∈ Rn, with
n the number of internal units. The xt are to be interpreted as internal states
and ut is some external input sequence, i.e. the stimulus.
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Definition 1. Assume an infinite stimulus sequence: ū∞ = u0,u1, . . . and two
random initial internal states of the system x0 and y0. From both initial states
x0 and y0 the sequences x̄∞ = x0,x1, . . . and ȳ∞ = y0,y1, . . . can be derived
from the update equation Eq. (7) for xt+1 and yt+1 . The system F (·) will have
the echo state property if, independently of the set ut , for any (x0,y0) and all
real values ε > 0, there exists a δ(ε) for which d(xt ,yt ) ≤ ε for all t ≥ δ(ε),
where d is a square Euclidean metric.

3 Transfer Entropy

To improve the reservoir based on the learning goal, we are interested in de-
tecting the characteristics of the information transfer between input and desired
output of the system. Transfer Entropy [13] is an information-theoretic measure
for the information provided by a source about the next state of the destination
which was not already contained in its own history. It is similar to mutual in-
formation [see e.g. 2], but asymmetric (i.e. directed), and takes the dynamics of
information transfer into account. The transfer entropy from a source node Y
to a destination node X is the mutual information between previous l states of
the source y

(l)
n and the next state of the destination xn+1,

TY →X = lim
k,l→∞

∑
un

p(xn+1, x
(k), y(l)

n ) log2

p(xn+1|x(k)
n , y

(l)
n )

p(xn+1|x(k)
n )

. (8)

where un is the state transition tuple (xn+1, x
(k), y

(l)
n ).

For our purposes, TY →X(k, l) represents finite k, l approximation.

4 Reservoir Dynamics

In the following, we consider the case where we have an one-dimensional input
vector u. The learning goal for our system is a one step-ahead prediction of an
one-dimensional output vector v. Departing from the usual reservoir dynamics
described above, we use

x(k + 1) = diag(a)Wy(k) + (I − diag(a))y(k) + winu(k) (9)
y(k + 1) = f(x(k + 1)) , (10)

where xi, i = 1, ..., N are the neural activations, W is the N × N reservoir
weight matrix, win the input weight, a = (α1, ..., αN )T a vector of local decay
factors, I is the identity matrix, and k the discrete time step. In this work, we
use f(x) = tanh(x).

The αi represent a decay factor, or coupling of a unit’s previous state with
the current state; they are computed as:

αi =
2

1 + mi
, (11)
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where mi represents the memory length of unit i (mi ∈ {1, 2, 3, ...}). All memory
lengths are initialised to mi = 1, so that αi = 1, i.e. the reservoir has the usual
update rule. Increasing individual mi during an adaptation will increase the
influence of a unit’s past states on its current state.

5 Adaptation of Information Transfer

Adaption of the reservoir to the learning goal introduces two extra steps to the
learning procedure. In a first step, we determine the required history size l to
maximise the information transfer from input u to output v, i.e. a first idea may
be to look for a value

lmax = arg max
l

Tu→v(1, l) .

Using increasingly larger history sizes may, however, always increase the transfer
entropy (by possibly smaller and smaller values). To optimise the information
transfer, we will instead be looking for the smallest value l̂ that does not increase
the transfer entropy Tu→v(1, l̂ − 1) by more than a threshold ε, i.e.

Tu→v(1, l̂ + 1) ≤ Tu→v(1, l̂) + ε and (12)

Tu→v(1, l) > Tu→v(1, l − 1) + ε for all l < l̂ . (13)

From this first step, we learn the contribution of the size of the input history
to the desired output (the learning goal of the system): some input-output pairs
may require a larger memory of the input history to be informative about the
next output state, other outputs may be more dynamic, and be dependent on
the current input state only.

We take this information into the second step, which consists of a pre-training
of the reservoir. Here, the local couplings of the reservoir units are adapted so
that the transfer entropy from the input of each unit to its respective output is
optimised for the particular input history length l̂. The idea behind this step is
to locally adjust the memory at each unit to approximate the required memory
for the global task of the system. Pre-training is done in epochs of length � over
the training data. Over each epoch θ, we compute, for each unit i, the transfer
entropy from activations x

(�)
i to output y

(�)
i :

teθ
i = T

x
(�)
i →y

(�)
i

(1, l̂). (14)

If the information transfer during the current epoch θ exceeds the information
transfer during the past epoch by a threshold (i.e., teθ

i > teθ−1
i + ε), the local

memory length mi is increased by one. Likewise, if teθ
i < teθ−1

i − ε, the local
memory length is decreased by one, down to a minimum of 1.

After each epoch, all mi and αi are adapted according to this rule, and used
to compute activations over the next epoch. Once the training data is exhausted,
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pre-training of the reservoir is finished and the αi are fixed. For the subsequent
training we compute the output weights by linear regression with data as used in
the pre-training. In additional experiments, we use RLS online learning, where
adaptation and training of output weights were run in the same loop.

6 Experimental Results

We tested our method using a one-step ahead prediction of unidirectionally
coupled maps, and a one-step ahead prediction of the Mackey-Glass time series.

6.1 Prediction of Autoregressive Coupled Processes

As first experiments we studied our approach using a one-step ahead prediction
of two unidirectionally coupled autoregressive processes:

ut+1 = 0.7 ut + 0.7 cos(0.3t) + nx
t (0, σ2) and (15)

vt+1 = 0.7 vt + e ut−ω+1 + ny
t (0, σ2) , (16)

where the parameter e ∈ [0, 1] regulates the coupling strength, ω ∈ {0, 1, 2, ...} an
order parameter, and nx

t (0, σ2) and ny
t (0, σ2) are independent Gaussian random

processes with zero mean and standard deviation σ = 0.4. For each trial, we
generated time series u and v (random initial conditions; time series divided
into 10000 values for training and 1200 values for testing; the first 200 values
of both training and testing were used to prime the reservoir), where the task
of our system was a one-step ahead prediction of v using u. The reservoir was
initialised using a random, sparse recurrent weight matrix (|λ| = 0.95), with 40
internal units. Figure 2 (a) displays the mean square errors of the prediction over
the test data for different coupling strengths and fixed ω = 0 for both echo state
learning with and without adaptation of information transfer in the reservoir. All
values are averaged over 50 trials; for each individual trial the same reservoir and
time series have been used once with and without adaptation. The prediction
using the reservoir adaptation is better over almost the entire range of e, with
the improvement becoming more significant as the influence of the input time
series becomes larger. Figure 2 (b) is a plot of the mean square error for different
ω using a fixed coupling of e = 0.75. In all but one cases the reservoir adaptation
improves results.

6.2 Prediction of Mackey-Glass Time Series

A further experiment was prediction of the widely used Mackey-Glass time series
(see e.g. [11, 14, 6]) with parameter τ set to 17. The first task using this time
series was again a one-step ahead prediction using a reservoir size of 40 units. For
this task, the transfer entropy between input and output time series is maximised
already for smaller values of � compared to our first experiment (� was typically
around 2 for Mackey-Glass one-step ahead prediction), i.e., the information used
from the previous state to predict the next state is already quite high. The
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Fig. 2. (a) Left: mean square errors of the prediction over the test data for different

coupling strengths and fixed ω = 0. (b) Right: mean square error for different ω using

a fixed coupling of e = 0.75. Reported results are averages over 50 runs.

reservoir adaptation lead to an average improvement of the MSE (averaged over
50 runs) from 0.4530 · 10−6 to 0.0751 · 10−6. Individually, in 48 of the 50 runs,
the same reservoir performed better with adaptation than without adaptation.

Instead of offline learning, we also used RLS in the same loop with our reservoir
adaptation. To less consider data from earlier stages of the adaptation, we used a
forgetting factor λ = 0.995. Again, the adaptation improved performance, from
9.1 · 10−6 to 7.2 · 10−6; a fine-tuning of λ may further improve the results.

7 Conclusions

We presented an information-theoretic approach to reservoir optimisation. Our
approach uses a local adaptation of a units internal state, based on properties of
the information transfer between input and desired output of the system. The
approach has shown to improve performance in conjunction with offline echo-
state regression, as well as with RLS online learning. In our experiments we have
used only a small number of internal units – our goal was to show the capability
of our approach compared to standard echo state learning. In first additional
experiments (not reported here), we have shown that for a larger number of
units our adaptation leads to an even larger improvement compared to echo state
learning without adaptation. A further investigation of statistical properties of
coding in the reservoir obtained by our adaptation may provide useful insights.
Moreover, other information-theoretic measures such as the active information
storage [15] may be useful to further improve the local adaptation rule.
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Abstract. The design of an Artificial Neural Network (ANN) is a difficult task 
for it depends on the human experience. Moreover it needs a process of testing 
and error to select which kind of a transfer function and which algorithm should 
be used to adjusting the synaptic weights in order to solve a specific problem. In 
the last years, bio-inspired algorithms have shown their power in different non-
linear optimization problems. Due to their efficiency and adaptability, in this 
paper we explore a new methodology to automatically design an ANN based on 
the Differential Evolution (DE) algorithm. The proposed method is capable to 
find the topology, the synaptic weights and the transfer functions to solve a 
given pattern classification problems.  

1   Introduction 

Differential Evolution (DE) is an algorithm based on the classical steps of the Evolu-
tionary Computation. However, it does not use binary encoding as an ordinary genetic 
algorithm; DE uses real number vectors, [1]. It does not use a probability density 
function to self-adapt its parameters as an Evolution Strategy [2]. Instead, DE per-
forms mutation based on the distribution of the solutions in the current population. In 
this way, search directions and possible step-sizes depend on the location of the indi-
viduals selected to calculate the mutation values [3]. 

A feed-forward artificial neural network (ANN) is a powerful tool widely used in 
the field of pattern recognition and time series analysis. However, despite their power 
in some practical problems, ANNs cannot reach an optimum performance in several 
non-linear problems. This fact is caused because the parameters, used during learning 
phase such as learning rate, momentums, among others, do not allow compute the 
best set of synaptic weights. 

Several works that use evolutionary strategies for training ANNs have been re-
ported in the literature. Refer for example to [4], [5] and [6]. In general, the authors 
present modified PSO algorithms as an alternative for training an ANN [7], [8] and 
[9]; however most of the research is focused only in the evolution of the synaptic 
weights and sometimes in the optimum selection of the number of neurons in hidden 
layers [10] and [11]. 
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DE algorithm has been less used in this kind of work. For example, in [12] and 
[13] the authors proposed a modified DE algorithm for the training of a multilayer 
neural network. In [14] three neural networks’ architectures with different training 
techniques are evaluated and trained with a DE algorithm applied to a forecasting 
weather problem. 

In this paper we explore a new methodology to automatically design an ANN based 
on a DE algorithm. This research includes not only the problem of finding the optimal 
set of synaptic weights of an ANN but also its topology and the transfer functions for 
each neuron. In other words, given a set of inputs and desired patterns, the proposed 
method will be capable to find the best topology, the number of neurons, the transfer 
function for each neuron and the synaptic weights in order to design an ANN that can 
be used to solve a given problem. Finally, the proposed method is tested with several 
non-linear problems and compared against PSO and back propagation algorithms.  

2   Basics on Feed-Forwards Neural Networks 

A neural network is a massively parallel-distributed processor made up from simple 

processing units.  Each value of an input pattern N∈A  is associated with its 

weight value N∈W , which is normally between 0 and 1. The output of the neu-
rons will be then performed as, 

1

N

i i
i

y f a w θ
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑  (1) 

where ( )f x  is the transfer function which generates the output from the neuron. 

Basically, learning is a process by synaptic weights W and bias levels θ  of a neu-
ral network are adapted through a continuing process based on a labeled set of train-
ing data made up of p  input-output samples: 

( ){ }, 1, ,N M pξ ξ ξ ξ= ∈ ∈ ∀ =T x d …  (2) 

where x  is the input pattern and d the desired response. 

Given the training sample ξT , the requirement is to compute the free parameters 

of the neural network so that the actual output ξy of the neural network due to ξx  is 

close enough to ξd for all ξ  in a statistical sense. In this sense, we might use the 

mean-square error given in eq. 3 as the objective function to be minimized: 

( )2

1 1

1 p M

i i
i

e d y
p M

ξ ξ

ξ = =

= −
⋅ ∑∑  (3) 

One of the most commonly used supervised ANN model is feed-forward network 
that uses backpropagation (BP) learning algorithm [15-16] to minimize the objective 
function given by eq. 3.  
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3   Basics on Differential Evolution  

In 1995 an adaptive and efficient scheme emerged: Differential Evolution (DE) algo-
rithm, proposed by Kenneth Price and Rainer Storn [17]. Due to its exploration capac-
ity over a search space of a given problem, the DE algorithm avoids staying in a local 
optimum. It has few parameters and it converges to the optimum faster than others 
evolutionary techniques (the solution’s representation is given by vectors of real 
numbers). All these characteristics convert the DE in an excellent algorithm for opti-
mization of a complex, non-differential and non-continuous problems. [18].  

The algorithm consists in randomly choosing a target vector and a base vector, in 
addition, two different members of the population must be randomly chosen. In order 
to realize the mutation is necessary to do a subtraction between these last two vectors. 
And then, the result is multiplied by a constant parameter denoted by F. Immediately 
after, the result of this operation and the base vector, chosen at the beginning of the 
algorithm, are summed. This new vector is called the mutated vector. At once, it is re-
alized the crossover operation which involves a comparison (variable by variable) be-
tween the mutated vector and the target vector, creating another vector called trial 
vector. The comparison consists of a simple rule: If a random number is either equal 
or higher than a crossover rate CR it is preserved the variable of the trial vector, oth-
erwise is preserved the variable of the target vector. Finally the last step is the selec-
tion of the vector that has to generate the new population: the trial vector or the target 
vector. Only the vector with the best fitness is selected. The pseudo code of 
“DE/rand/1/bin” is shown in the next algorithm, adapted from [3].  

 
1. Randomly select two vectors from the current generation. 
2. Use these two vectors to compute a difference vector. 
3. Multiply the difference vector by weighting factor F.  
4. Form the new trial vector by adding the weighted difference vec-

tor to a third vector randomly selected from the current popula-
tion.  

4   Design of an ANN Using DE  

In this section it is described how given a set of patterns T , the synaptic weights, the 
architecture and the transfer function of each neuron of an ANN can be automatically 
adjusted by means of a DE algorithm. 

In order to achieve this goal, we codify this information as follows: each vector 

will be represented by a matrix ( )2MNN MNN+ ×∈x composed by three parts: topol-
ogy, synaptic weights and transfer function.  

The topology of the ANN is codified based on the binary square matrix representa-

tion of a graph x  where each component ijx  represents the connections between 

neuron i  and neuron j  when 1ijx = . However, instead of evolving this binary in-

formation we decided to codify this information into its decimal base value and then 
evolve it. For example suppose that next binary code “01101” represents the connec-
tions of a i-th neuron to 5 neurons where only neurons 2, 3, and 5 are connected to i. 
This binary code is transformed into its decimal base value resulting in “13”, which 
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will be the number that we will evolve instead of the binary value. This scheme is 
much faster. Instead of evolving a string of MNN  bits, we evolve only a decimal 
base number. The synapses weights of the ANN are codified based on the square ma-

trix representation of a graph x  where each component ijx  represents the synaptic 

weight between neuron i  and neuron j .  Finally, the transfer function for each neu-

ron will be represented by an integer from 0 to 5 representing one of the 6 transfer 
functions used in this research: logsig, tansig, sin, gaussina, linear and hard limit. 
These functions were selected because they are the most popular and useful transfer 
functions in several kinds of problems. Figure 1 shows the individual representation 
of the ANN.  

 
 
 
 

 

Fig. 1. Individual representation of an ANN. Note that TC represents the topology of the net-
work, SW represents the synaptic weights and TF represents TF of each neuron. 

 

Another alternative to codify the topology could be based on the synaptic weights: 
values less than a given threshold means no connection. However, determining the 
best threshold could bring other kind of problems; that is why in this paper we will 
not focus in this scheme. 

The fitness function which measures the performance of an individual is given by 

eq. 3 where the output iy  of the ANN is computed as follows (note that the restric-

tion j i<  is used to avoid the generation of cycles in the ANN): 
 

1) For the first nfin neurons, the output i io a= . 

2) For each neuron in , , ,i nfin MNN= … . 

a) Get connections by using individual 
1,ix . 

b) For each neuron j i<  connected to in ,  ( )io f o=  where f  is a 

transfer function given by individual 
,nfout ix  and o  is compute 

using eq. 1. 

3) Finally, i iy o= , , ,i MNN nfouy MNN= − … . 

5   Experimental Results  

In order to evaluate the accuracy of the proposed method, several experiments were 
performed using 4 data sets [19]: XOR, iris plant, wine, and breast cancer.  

All data sets were partitioned into two sets: a training set and a testing set. For the 
iris plant data set, the first 120 examples were used for the training set, and the re-
maining 30 examples for the testing set. For the wine set, the first 90 examples were 
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used for training set, and the remaining 89 examples for the testing set. For the breast 
cancer, the first 600 examples were used for training set, and the remaining 83 for 
testing set. For the XOR problem, the first 4 examples of the 2-D version were used 
for training, and noisy versions of these examples were used for the testing set. 

The input features of all data set were rescaled in a range between[ ]0,1 . The out-

puts were encoded encoded by the 1-to- c  representations for c  classes. 

The parameters for the DE algorithm were set as follows: population size NP  was 
set to 50, the number of generations was set to 2000, the population was initialized in 

the range [ ]5,5− , 0.9CR = , and  [0.3,0.7]F rand= . 

Ten expertiments over each data set using the same parameters were performed. It 
is important to notice that the topology, the transfer functions for each neuron and the 
set of synaptic weights for each ANN were automatically determined by the DE algo-
rithm. Transfer functions were labeled as logsig (LS), tansig (HT), sin (SN), radbas 
(GS), pureline (LN) and hard limit (HL). 

Fig. 2 shows 2 ANNs generated with the proposed method for the XOR problem. 
Something important to metion about this set of experimets is that most of the gener-
ated ANNs had the same topology and transfer function. Fig. 3 shows 2 of the 10 
ANNs designed by the basic DE algorithm. As you can appreciate, the ANNs gener-
ated with DE algorithm use different transfer functions and the connections between 
neurons are completely different. Fig. 4 shows 2 ANNs generated with the proposed 
method for the wine data set. Finally, 2 of the 10 ANNs obtained by the basic DE al-
gorithm for the breast cancer data set are shown in Fig. 5.  

It is worth mentioning that topologies of the ANNs designed with the proposed 
method are different to the traditional feed-forward; the topologies obtained present 
lateral connections and connections between input and output layers. Moreover, in 
Fig. 5(a) we can observe that one of the features from the input pattern (neuron 7) 
does not contribute to the output of the ANN. This effect can be seen as a reduction of 
the dimensionality. 

Table 1 shows the average MSE found by four algorithms during the design of the 
ANN (topololy, synaptic weights and transfer functions): Basic PSO, second genera-
tion of PSO (SGPSO), a modified PSO (MPSO) algorithm [11] and the basic DE al-
gorithm. We can observe that the proposed methodology provides better results using 
the DE algorithm under the same conditions during training phases as equal as during 
testing phase. Compared against BP algorithm for an ANN composed by 3 layers, 
learning rate was of 0.1 for the same data sets and 2000 epochs. The proposed method 
provided comparable results. However, the advantage of our metodology is that we do 
not need to apriori select the architecture, transfer function and learning algorithm of 
the ANN; althoght the proposed method seems to require more epochs (2000x50) 
than BP (2000), it automatically designs the ANN by itself.  

Table 2 shows the classification error achieved by the proposed methodology using 
DE and MPSO which was the PSO algorithm that provides the best results. 

Based on the previous results we can consider DE algorithms as an alternative to 
automatically design an ANN using only a labeled set of training data. Furthermore, if 
we modify the individual coding scheme, the proposed methodology could generated 
other kinds of ANN as feed-forward networks (without lateral conections), radial ba-
sis NN and even recurrent NN.  
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Table 1. Comparision of different methods in terms of the minimum square error (MSE) 

DB Basic PSO 2GPSO MPSO BP DE/rand/1/bin 
 Tr. Er. Te. Er. Tr. Er. Te. Er. Tr. Er. Te. Er. Tr. Er. Te. Er. Tr. Er. Te. Er. 
XOR 0 0 0 0 0 0 0.0097 0.011 6.1E-9 0.0120 
Iris  0.202 0.237 0.182 0.092 0.057 0.173 0.0075 0.128 0.028 0.0146 
Wine 0.233 0.305 0.276 0.058 0.076 0.295 0.0001 0.016 0.072 0.0748 
Breast Cancer 0.032 0.018 0.325 0.013 0.035 0.316 0.0085 0.013 0.021 0.0068 

Table 2. Average accuracy of the proposed method in terms of the classification error (CER) 

DB MPSO DE/rand/1/bin 
 Tr. Er. Te. Er. Tr. Er. Te. Er. 
XOR 0.025 0.025 0 0.025 
Iris  0.043 0.0165 0.0425 0.0033 
Wine 0.201 0.268 0.0811 0.0764 
Breast Cancer 0.032 0.014 0.0225 0.0036 

 

            
(a)                                                              (b) 

Fig. 2. Two topologies obtained with their transfer function for each neuron using DE/rand/1/bin 
algorithm for the XOR problem 

             
(a)                                                                  (b) 

Fig. 3. Two topologies obtained with their transfer function for each neuron using DE/rand/1/bin 
algorithm for the Iris database 

                
(a)                                                                  (b) 

Fig. 4. Two topologies obtained with their transfer function for each neuron using DE/rand/1/bin 
algorithm for the Wine database 
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(a)                                                                 (b) 

Fig. 5. Two topologies obtained with their transfer function for each neuron using DE/rand/1/bin 
algorithm for the Cancer database 

6   Conclusions  

In this paper a methodology to automatically design an ANN was proposed. This new 
alternative is based on bio-inspired algorithms. Particularly in this paper, the Differen-
tial Evolution (DE) algorithm was addopted. The design of a neural network can be 
seen as an optimization problem, which consists on finding the best values of the syn-
apses, the best topology and the best transfer functions for each neuron which mini-
mize an error function. For that reason, DE algorithm is suitable to automaticly design 
the ANN bases on the optimization of an error function (minimization of an objective 
function).  

The accuracy of the proposal was tested using several non-linear problems and the 
results show a clear advantage over traditional schemes which involve the selection of 
a learning algorithm, a topology and the transfer functions. Compared against BP our 
proposed method provides comparable results. Moreover, the results achieved using 
the proposed methodology combined with DE were better compared to those obtained 
with PSO based algorithms. As was observed in the above figures, the proposed me-
thod generates different topologies with different transfer functions and in some cases 
is posible to reduce the dimentionality of the input patterns.  

Nowadays we are studying other kind of error measures such as fuzzy classifica-
tion error [20] in order to compare different algorithms and prove the robustness of 
the methodology. On the other hand, we are designing a new objective function based 
on these error measures. Moreover, we are implementing other bioinspired techniques 
such as bee colony optimization to automatically desing an ANN.  
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Abstract. In this paper the standard Echo State approach is combined

with a topography, i.e. it is assigned with a position which implies cer-

tain constraints of the mutual connectivity between these neurons. The

overall design of the network allows certain neurons to process new in-

formation earlier than others. As a consequence the connectivity of the

trained output layer can be analyzed; conclusions can be drawn regarding

which reservoir depth is sufficient to process the given task. In particu-

lar we look at connection strengths of different locations of the reservoir

as a function of the test error which can be influenced by using ridge

regression.

Keywords: Reservoir computing, topographic maps, recurrent neural

networks.

1 Introduction

Echo state networks (ESNs) have been an interesting subject for investigations
in the field of recurrent neural networks (RNN) in recent years [3]. In this type
of RNN the connectivitiy in the lower layers usually are chosen in a random
fashion, learning is done in a single layer similar to some types of preceptrons
and support vector machines [4]. It is no surprise that although in principle the
network is functional for almost all kinds of connectivity, certain schemes (i.e.
ortho-normal matrices in the recurrent layer) perform significantly better then
other, in particular for a given input statistics (see [1] for a general investigation
of different non-topological connectivity restrictions).

One possible version of such a scheme is to assign locations on a to the neu-
rons and restrict the connectivity in such a way that only nearby located neurons
can connect with each other. This concept has been successfully applied in var-
ious approaches (e.g. [5]). In the following a similar concept is discussed in the
framework of reservoir computers. The intention is have a look in which way the
topography affects the functionality and how it can be used for the analysis.

Deng and Zhang [2] investigate small world connectivity in ESNs which can
be seen as a very special type of topography. Naturally, ESNs with certain to-
pographies occur in distributed ESNs [7]. In this work a much simpler example

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 209–216, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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win
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adaptable weights

random weights

Input units Output units

Fig. 1. ESN networks: Principle setup

of a topology is used: A one dimensional chain, where the input is fed into the
reservoir in at the beginning of the chain, and propogates temporally to the end.
Here it is of particular interest to check at which point the highest weights to the
output layer result from the learning algorithm. It is also interesting in which
way the weights relate to the available information.

In the next section the general design of ESNs is described, then the spe-
cial restrictions for the one dimensional connectivity is introduced. A detailed
description of the simulation details follows. Finally results a reported and
discussed.

2 Model

2.1 Echo State Networks

Echo State Networks (ESN) are an approach to address the problem of slow
convergence in recurrent neural network learning. ESN consist of three layers (see
Fig. 1): a) an input layer, where the stimulus is presented to the network; b) a
randomly connected recurrent hidden layer; and c) the output layer. Connections
in the output layer are trained to reproduce the training signal. The network
dynamics is defined for discrete time-steps t , with the following equations:

xlin,t+1 = Wxt + winut (1)
xt+1 = tanh (xlin,t+1 ) (2)

ot = woutxt (3)
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where the vectors ut , xt , ot are the input and the neurons of the hidden layer and
output layer respectively, and win, W, wout are the matrices of the respective
synaptic weight factors.

Connections in the hidden layer are random but the system needs to fulfil
the so-called echo state condition. Jaeger [4] gives a definition; a slightly more
compact form of the echo state condition is repeated here:

Consider a time-discrete recursive function xt+1 = F (xt ,ut) that is defined
at least on a compact sub-area of the vector-space x ∈ Rn. and where xt are to
be interpreted as internal states and ut is some external input sequence, i.e. the
stimulus.

The definition of the echo-state condition is the following: Assume an infinite
stimulus sequence: ū∞ = u0,u1, . . . and two random initial internal states of the
system x0 and y0. To both initial states x0 and y0 the sequences x̄∞ = x0,x1, . . .
and ȳ∞ = y0,y1, . . . can be assigned.

xt+1 = F (xt ,ut ) (4)
yt+1 = F (yt ,ut ) (5)

Then the system F (.) fulfils the echo-state condition if independent from the set
ut and for any (x0,y0) and all real values ε > 0 there exists a δ(ε) for which

d(xt ,yt ) ≤ ε (6)

for all t ≥ δ. The ESN is designed to fulfil the echo state condition.

2.2 Design of the Connectivity Matrix

The connectivity of the hidden layer is restricted to

Wij,raw =
exp(−(i − j)2)

2σ2
Aij , (7)

where Aij = Rij − Rji is an anti-symmetric matrix constructed from the square
random matrix from white noise that is equally distributed in the range [−0.5, 0.5).
The resulting matrix was normalized after measuring its largest singular value
smax : Wij = Wij,raw/smax(Wij,raw).

The input matrix is defined as

win
i =

exp(−i2)
2σ2

ri, (8)

where ri is equally distributed noise in the same way as the values of Rij . An
example for the resulting matrix is illustrated in Fig. 2. It is important to note
that a signal that is presented to the network takes some time to propagate from
the lower indices to the higher indices. In this way, strong connectivity to higher
indexed neurons indicates higher relevance or older data.

Solving the equation
woutMlin = Vlin (9)
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Fig. 2. Input matrix win (top) and recurrent matrix W (bottom) as gray valued plots.

If a scalar valued input signal is presented to the network it propagates through the

ESN, where the neurons with the higher indices receive the information later then the

neurons with the lower indices.

yields the trained output matrix wout. In dependence on the given task values
of the matrix wout can have high values (i.e. the optimal solution of the mean
square error problem). In order to limit the weights, ridge regression is used. ridge
regression is realized by adding a square matrix m = λI, where I is the identity
matrix and λ indicates the strength of the force that keeps the absolute values
of wout small. The concatenated matrix Mlin,ridge = [Mlin, m] and Vlin,ridge =
[Vlin, 0..0]. The method is well known (see [8]). Instead Eq. 9 the system uses

woutMlin,ridge = Vlin,ridge. (10)

Small values of λ tolerate larger values in wout, whereas large values enforce
smaller values.

2.3 Measuring the Information Transfer in the Reservoir

For estimating the information between parts of the reservoir a probabilistic
approach [4,6] is used. Instead of training the output ωt ∈ Ω directly, we model
a probability that a specific event has occurred with regard to the output. In
other words: the aim is to train the network (or that particular part of it) is
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Fig. 3. Average connectivity of neurons at different positions. The graph shows results

from different values λ of the ridge regression constraint. The values of λ are 0.1 (full

line), 0.01 (long dashes), 0.001 (short dashes), 0.0 (normal linear regression, dotted).

The taught delay is 3 in this case.

trained in that way that each of the output units represents the probability of
an event. The simplest way to do this is to teach the output or of the network
to reproduce the probability that the as a range of the – statistical – output
variable Ωr ⊂ Ω that is of interest for the given task. The task of network is to
find p(Ωr|xt(ū∞)) in the following written short p(Ωr). We define the teaching
signal dr as:

if (ωt ∈ Ωr) dr = 1
else dr = 0

The mean square error (MSE) is the

Emse =< (dr,t − or)2 >= p(Ωr)(1 − or)2 + (1 − p(Ωr))o2
r (11)

The derivative ∂Emse/∂or set equal to zero yields the point at which Emse is
minimal:

or − p(Ωr) = 0 (12)

Thus, the MSE is reached when or = p(Ωr); we can assume

or → p(Ωr), (13)

for sufficiently long learning sequences. Since – with the common restrictions
of reservoir computing– the full information of the input history is encoded
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Fig. 4. The figure shows the reconstruction (probability) for different delays. The re-

sults were learned from different parts of the network. First, all neurons of the hidden

layer were used (full line), second the 15 neurons with the highest indices were used

(long dashes), third the 5 neurons with lowest indices were used (short dashes).

in the activity state of the reservoir. Thus, –without additional efforts in the
hidden layer– more information about statistical variables can be retrieved from
additional output units: Because the optimal solution (absolute minimum of
the MSE) can be derived, the network is going to find the true probability
as far as it is detectable by linear regression from the current state
of the reservoir. Usually, the quality of the network performance and the
learning progress can be checked by measuring Emse, where values close to zero
represent a good network performance. It should be noted that for the learning
rule outlined above the theoretical limit is above zero. Under the assumption
that the p(Ωr) is the true probability we get:

Emin(Ωr) = minor(Emse) = p(Ωr)(1 − p(Ωr)). (14)

However, since in fact the true value p(Ωr) is unknown, it is not a good idea to
use Emse −Emin as a measure. However, it can be used to find out if the output
node is deterministic (i.e. the output node takes either 0 or 1). In this case the
minimal error is in fact 0 again.

Instead one could go the following way in that we can get a set of outputs
that covers a complete range of the random variable in the way that for a range
r ∈ R:

∪r∈R Ωr = Ω, (15)
Ωi ∩ Ωj = ∅, (16)
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for all i �= j. Obviously, we have
∑

r∈R p(Ωr) = 1. We can test the constraint
in the network. We test the quality of the network output by testing measuring∑

r or which should be close to one if the network has adapted sufficiently. For
this particular task, instead of continuous values random sequences of 1 and 0
are used.

3 Results

A first test task (which has been already used by [4] is to let the network re-
construct the sequence of input values after a delay (in this case 4 steps. The
simulation was conducted as the initial states of the neurons in the hidden layer
were random numbers in the range [−0.5, 0.5). Throughout the simulation the
input of the network were random numbers in the range of [−0.5, 0.5). The net-
work of 30 neurons was then run in a transient phase of 500 cycles which was
followed by a training phase of 280 cycles. During the training the states xt of
the recurrent layer by using them as line vectors of a composed matrix Mlin.
Also a vector V is composed from the output that is trained output. The σ value
of the neighbourhood with had a value of 2.8.

Comparing ridge regression and unconstrained linear regression, one can see
significant differences between the areas on the reservoir with respect to strength
of connectivity (see Fig. 3). Whereas non-constraint regression tends to have
its largest output weights towards the higher indices, the examples of ridge
regression have larger connections to the lower indices with maximum around of
the taught delay. Preliminary test show that simulations with large constraint
factors λ tend to have its maximum values for the connectivity around the value
of the taught delay.

The second simulation was done with an array of 80 neurons, the neighbour-
hood width was σ chosen to be 15.5 , a small noise was added. Again the network
should reproduce the input sequence with various delays. For practical reasons
the range of the out put unit was not chosen between one and zero but between
-1 and 1, since this is a linear transformation arguments from section 2.3 still ap-
ply. Figure 4 shows results from the simulations for different delays and different
subsets of the hidden layer. The simulation showed that the 5 neurons with low-
est indices suffice to produce almost the same performance as the whole network.
The 15 neurons with the highest indices show a bad performance for small delays
since the information could not reach them in time. For a delay of around 3 a
maximum performance was reached. For higher delays the performance decayed
again.

4 Discussion

ESNs are interesting feature extractors because they project instaneous input
data into a potentially infite space of temporally persistent, random, and non-
linear ’echo’ feature reservoir. Applying topographies to reservoirs can provide
new insights into the relation between the input statistics and the learned task.
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Because ESN neurons in this scheme have a spatial or temporal location, their
relative contribution to solving an estimation problem can be interpreted. Con-
straining the network of recurrent interconnections may result in more a efficient
feature extraction. Although the estimation task in this case study was certainly
trivial, it is intended to represent a first step to attempting more complex spa-
tial and temporal topologies, than can then be applied to non-trivial estimation
tasks. Applicable real-world applications include distributed sensor networks and
short-term memory models of agent behaviour.
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Abstract. Computational DNA motif discovery is one of the major

research areas in bioinformatics, which helps to understanding

the mechanism of gene regulation. Recently, we have developed

a GA-based motif discovery algorithm, named as GAPK, which

addresses the use of some identified transcription factor binding sites

extracted from orthologs for algorithm development. With our GAPK

framework, technical improvements on background filtering, evolutionary

computation or model refinement will contribute to achieving better

performances. This paper aims to improve the GAPK framework by

introducing a new fitness function, termed as relative model mismatch

score (RMMS), which characterizes the conservation and rareness

properties of DNA motifs simultaneously. Other technical contributions

include a rule-based system for filtering background data and a “most

one-in-out” (MOIO) strategy for motif model refinement. Comparative

studies are carried out using eight benchmark datasets with original

GAPK and two GA-based motif discovery algorithms, GAME and

GALF-P. The results show that our improved GAPK method favorably

outperforms others on the testing datasets.

1 Introduction

Transcription factor binding sites (TFBSs or DNA motifs) are short and
subtle genomic segments that are usually found in promoter regions of
genes. The interaction between TFBSs and a specified group of proteins (e.g.
transcription factors) determines the transcriptional activity and dominates the
gene expression level. The study of DNA motifs refers to identify TFBS locations
from a set of co-regulated genes using experimental or computational approaches.
As a major complement to the traditional wet-lab identification methods,
computational algorithms have shown the good potential on the problem solving
in terms of time and cost [1]. Literature studies usually cluster the searching
algorithms into statistical approaches such as AlignACE [2] and machine learning
methods such as MEME [3]. According to the performance assessment from Hu
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et.al. [1] and Tompa et.al. [4], developing advanced algorithms remains as a
challenge to computational biologists.

In the domain of computational motif discovery, the concept of prior
knowledge (PK) has been investigated from different perspectives and
successfully applied to improve the system performances. Based on the ways
that the PK is interpreted and used, they can be classified into model-driven
and data-driven. The model-driven approaches concentrate on developing
appropriate motif models which interact with prior knowledge. To the best of our
knowledge, the term of prior knowledge in motif discovery was first introduced to
the work of MEME in [5]. Authors utilized the importance of motif palindrome:
the inverse complement of a DNA sequence is the same as its original sequence.
When given the prior knowledge of motif palindrome, the nucleotide appearances
of the corresponding position in the motif model are considered as consistent.
Also, the usage of Dirichlet mixture with the background letter distributions as
prior could help to estimate the probabilities of the possible pattern occurrences
in the expected motif positions. Results showed the chosen of appropriate prior
knowledge into MEME could improve prediction performance. In [6], the existing
poor motif models were considered as PK to iteratively optimize the model
quality by combing the ChIP sequences with a novel genetic algorithm. On
the other hand, the data-driven approaches specialize in extracting and parsing
the known biological features as prior knowledge to favor the prediction. By
undertaking the support from comparative genomic studies and the availability
of massive genomic sequences, the importance of motif evolutionary conservation
has draw more attention than usual. In [7], the conserved orthologous blocks in
the promoter regions of multiple species were treated as PK. The searching
of motifs then focused on those conserved blocks. According to the theory
that transcription factor binding sites usually have specific distances against
the specific biological landmarks (such as transcription start site), the authors
considered the localization information of possible true binding sites as prior
knowledge to improve the motif prediction accuracy [8].

Genetic Algorithm (GA) has been employed to resolve motif discovery
problem with some favorable results [9], [10]. Wei and Jensen [9] proposed
a GA-based motif discovery framework GAME with some unique features,
especially a Bayesian-based posterior distribution was developed as the fitness
function. Another GA approach named as GALF-P was presented in [10] that
employed a local filtering operation during the searching stage and an adaptive
model post-processing. In our previous work reported in [11], we developed a
GA-based motif discovery framework GAPK, which highlights the use of prior
knowledge on binding sites with the purpose of search space reduction and
population initialization. Results have indicated GAPK can achieve a better
prediction performance, comparing with GAME and GALF-P.

This paper aims to further improve the framework of GAPK with some
fundamental contributions. A relative model mismatch score (RMMS), which
measures the motif model by considering the help of background information, is
developed as the fitness function. Using the identified binding sites extracted
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from orthologs, we develop a PK based filtering mechanism to improve the
computing environment in terms of background kmers reduction. Also, a novel
model refinement scheme is proposed for optimizing the obtained motif models.
To assess the performance of the improved GAPK (iGAPK), we focus on
making comparisons among the original GAPK, GAME and GALF-P. Eight
benchmarked datasets are employed in the simulations. Results show that our
proposed iGAPK outperforms both GAME and GALF-P, and performs slightly
better than the original GAPK. Taking the number of system parameters into
consideration, iGAPK improves the original GAPK with better robustness.

2 Relative Model Mismatch Score and α-Ratio

Due to the significance of Position Frequency Matrix (PFM) in computational
motif discovery, we employ PFM as the motif model representation in this
study. Suppose we have a collection of subsequences denoted as S with length
k, each subsequence is considered as a k-mer, B1B2 · · ·Bk, where Bi ∈ Σ =
{A, C, G, T }, i = 1, 2, · · · , k. Then, the collection is denoted by {Kp : p =
1, 2, · · · }. To construct the PFM model of S, each k-mer is first encoded to
a binary matrix [12], that is, e(k-mer) = [aij ]4×k, aij = 1 if Bj = Vi, otherwise
aij = 0, where (V1, V2, V3, V4) = (A, C, G, T ). Then, the motif PFM model of S
can be given by:

M =
1
|S|

∑
Kp∈S

e(Kp), (1)

where |S| represents the cardinality of the set S.

2.1 Relative Model Mismatch Score

Wang and Lee recently proposed a Model Mismatch Score (MMS) as a quality
metric quantifying the conservation property of the motif model [12].

MMS =
1
|S|

∑
Kp∈S

d(Kp, M). (2)

where d(·, ·) defined in [12] is the generalized Hamming distance function that
measures the mismatch between a k-mer ∈ S and the PFM M of S.

The MMS score represents the conservation property of cognate binding sites
due to the evolutionary selection [12]. To reflect the rareness of true binding sites
with respect to the background k-mers, a relative model mismatch score (RMMS)
is developed recently in [13]. Experiments show that this quantitive metric for
measuring the quality of motif models works well, and its discrimination power
on motif models is at least comparable to some widely used metrics such as
the well-known information content (IC) [14]. The following gives the RMMS
expression:

RMMS =
1
|S|

∑
Kp∈S

R(Kp, Ms), (3)
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where

R(Kp, Ms) =
d(Kp, Ms)
d(Kp, Mb)

. (4)

Here,R(·, ·) denotes the relative mismatch score named as RMS of a k-mer, where
Ms is the PFM of the motif model S and Mb is the PFM of the background
model B. In this study, we construct Mb by using the whole input sequences.
A motif model with a small RMMS stands for a high degree of conservation
associated with the model rareness.

2.2 α-Ratio

By given the dataset D and the motif model S, we present a ratio based function
α-ratio to model a given k-mer K from D under a mixture of two components,
which are the relative mismatch score (RMS) and 3rd-order Markov background
model [15]:

α(K) =
log(p0(K))
R(K, Ms)

, (5)

where p0(K) is an estimated background probability evaluated by the 3rd-order
Markov model for a given K.

Intuitively, a given k-mer with a smaller α-ratio to the motif model indicates
it has a greater possibility to be a true binding site than others.

3 Improved GAPK Algorithm

The improved GAPK algorithm iGAPK is composed of three components: search
space reduction, evolutionary computations for identifying candidate motifs
and a model refinement for finalizing the outputs. Details are described in the
following subsections.

3.1 Search Space Reduction

Our filtering mechanism aims at narrowing down the entire search space
and increasing the signal-to-noise ratio by discarding noisy k-mers from the
background with the usage of PK.

Given the PK model Mpk that is made up of a set of true TFBSs associated
with the considered transcription factor, we first calculate the α-ratio of each
k-mer in the dataset D against Mpk. In here, a normalization process is applied:

αn(K) =
αmax − α(K)
αmax − αmin

, (6)

where K is a k-mer in D, α(K) is the α-ratio of K against Mpk, αmax and αmin

are the maximum and the minimum α-ratio from D, respectively.



Genetic Algorithm for Motif Discovery 221

The normalized α-ratio is regarded as the filtering score. For the k-mers in the
PK model Mpk, the maximum filtering score among them can be obtained by:

λ = max
Kp∈Mpk

αn(Kp). (7)

To decide whether a given k-mer from D should be eliminated, the filtering rule
is proposed as following:

If αn(K) > λ, Then, K is discarded, where K ∈ D. (8)

The reduced dataset composed of the remaining k-mers after filtering, denoted
by RD. Evolutionary computations will be only applied for the set RD rather
than the original set D.

3.2 Evolutionary Computations

Suppose that there are n sequences in the considered dataset and each sequence
consists of at least one binding sites. Let a chromosome be represented as a
vector (vc1, vc2, · · · , vcn), where vci is a k-mer extracted from the i-th input
sequence. Each chromosome indeed is regarded as a candidate of motif model,
which is composed of n kmers. By minimizing a defined fitness function, we can
obtain some potential motif models. The final motif model will be determined by
refinement step followed by a model ranking process. Therefore, the cardinality of
the final motif model can be larger than the number of sequence n. In our iGAPK,
the fitness function is taken as the relative model mismatch score RMMS.

The population is initialized with assistance of the prior knowledge. The
standard roulette-wheel method is employed to choose chromosomes as parents
for reproduction. Two genetic operators are used in iGAPK to reproduce children
chromosomes, which are Crossover and Replacement. The reproduction will not
be terminated until the size of the population is doubled. A combination of
winners-take-all selection and tournament selection are applied to maintain the
population size for each generation. Detailed explanations of the reproduction
process can be found in [11].

3.3 Model Refinement

In iGAPK, we proposed a model post-processing after the GA process [11]. To
enhance the prediction accuracy and system reliability, we further improve the
post-processing stage by proposing a novel model refinement approach which
consists of three components: Merging, Adding and Removing. The details are
given below.

A two-step process on model merging is applied. Firstly, an alternative
pattern for each candidate is generated by composing of the dominant nucleotide
(highest frequency) from each column in its PFM model. The merging starts
with populating new models by grouping candidates with the same alternative
pattern. Secondly, these merged models are ranked according to their RMMS
scores. Then, the model with lowest RMMS score is selected as a starting point
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to compare the IC values with the rest of models. All models with a limited IC
difference, i.e., (|ICa − ICb| ≤ δ), are merged together. This process is repeated
recursively until there is no model left for merging. In iGAPK, the default value
for the δ is set as 0.01. During the merging process, a k-mer might accidentally
appear more than one time in the merged model. It would cause negative effect
in the model quality. Therefore, we only keep one and remove the redundancies.

The Proposed MOIO Scheme for Model Refinement

BEGIN

Input: Model T =: MT , Reduced Dataset RD.

Set ΔIC∗
T =: 0.1; L = Null.

While ΔIC∗
T > 0

Set T ∗
(old) =: T .

Most One-In Step
For each k-mer k in RD

If(R(k, MT ) ≤ RMMS(T ))

Add k into L;

For each k-mer k in L
Calculate α-ratio of k;

Define kmin = arg min
k∈L

{α(k)};
Add the kmin into T temporarily;

ΔICT =: ICT (new) − ICT (old);

If ΔICT ≥ 0

Keep the kmin in T ;

Else remove the kmin from T ;

Empty L; ΔICT =: 0;

Most One-Out Step
Rank α-ratio values for all k in T ;

Define kmax = arg max
k∈T

{α(k)};
Remove the kmax from T temporarily;

ΔICT =: ICT (new) − ICT (old);

If ΔICT ≥ 0

The kmax will be removed permanently;

Else retain the kmax in T ;

Set T ∗
(new) =: T ;ΔIC∗

T =: ICT∗
(new)

− ICT∗
(old)

.

END

After Merging, we introduce an “Most One-In-Out” (MOIO) process to
further refine the candidates by employing the α-ratio. Given a candidate T ,
the “Most One-In” step intends to collect the weak true binding sites from the
reduced dataset RD that are missed out during the evolution process, while the
“Most One-Out” step follows the “Most One-In” step immediately, aiming to
eliminate some false-positives. Our proposed MOIO strategy is summarized in
the form of pseudo code.
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Model refinement will be terminated when the iterative “Most One-In-Out”
process is applied to each merged model. The final models are then ranked
according to their RMMS scores. The model with the smallest RMMS score will
be selected as a motif candidate for performance evaluation.

4 Performance Evaluation

4.1 Datasets

Eight benchmark datasets used in both [9] and [10] were employed in this study
to evaluate the performance of our iGAPK algorithm. By applying the same
datasets, it makes the comparisons more reasonable and convincing. Also the
datasets have been well purified, we assume no unknown binding sites existing
in the sequences. Statistical details of the datasets are shown in Table 1.

Table 1. Statistics of the 8 datasets

Prop. CREB CRP ERE E2F MEF2 MYOD SRF TBP

N 17 18 25 25 17 17 20 95

l 200 105 200 200 200 200 200 200

w 8 22 13 11 7 6 10 6

n 19 23 25 27 17 21 36 95

p 1.12 1.28 1 1.08 1 1.23 1.8 1

pk 16 212 12 10 58 15 46 21

N is num. of input sequences., l is the length of sequences., w is the expected width

of binding site (BS), n is the number of BSs in each dataset, p is the average number

of BSs per sequence, and pk is the number of known BSs from public domains.

4.2 Results with Comparisons

iGAPK is evaluated by carrying out the experimental comparisons with GAME
[9], GALF-P [10] and GAPK [11]. With the purpose of making a fair comparison
of the four applications, we first kept using their default parameters in the
first 5 runs. Then, for each of them, we adjusted the key parameters of GA:
probabilities of genetic operators (from 0.1 to 0.9 with the interval of 0.1),
the population size (from 100 to 500), the number of generation (from 100 to
1000) across another 15 runs. In [10], authors compared the prediction results
between GALF-P and GAME out of 20 runs. The promising strategy convinced
us that running each algorithm 20 times with some parameter adjustments could
provide sufficient evidences to support the performance comparisons. F -measure
is applied here to measure the prediction accuracy [11]. The average precision,
recall and F -measure along with the standard deviation (with the ± symbol) of
20-runs across 8 datasets are shown in Table 2.
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It can be seen that both iGAPK and GAPK shows comparable performance
against the other two GA tools. From the results, GAME obtains 2 best recalls
and F -measures, while GALF-P has 3 best recalls, and 2 best F-measures
respectively. Comparing with them, iGAPK achieves 5 best precision rates and 4
F -measures as well as 3 comparable best recalls. Also, the improvements against
GAPK are obvious. In average, iGAPK outperforms the other tools in terms
of precision, recall and F -measure. It is observed that both iGAPK and GAPK
have relatively low standard deviation rates in most of the datasets, which shows
our proposed framework can provide reliable performance with the changing of
parameters. We also notice that dataset “MYOD” contains subtle binding sites
along with many repetitive sequence patterns, which brings the poor prediction
results from both GAME and GALF-P. With the help of prior knowledge and
RMMS, iGAPK obtains very impressive improvements on MYOD. As a result,
iGAPK shows its advantage on prediction accuracy as well as stable performance
over the eight datasets.

Table 2. Comparisons among iGAPK, GAPK, GAME and GALF-P for 20 runs

Datasets
iGAPK GAPK

Precision Recall F-measure Precision Recall F-measure
CREB 0.68± 0.06 0.65 ± 0.06 0.66 ± 0.06 0.65 ± 0.04 0.68± 0.07 0.66 ± 0.04
CRP 0.90 ± 0.05 0.84 ± 0.03 0.87 ± 0.02 0.96 ± 0.06 0.80 ± 0.04 0.86 ± 0.04
ERE 0.73± 0.15 0.88 ± 0.03 0.79 ± 0.11 0.71 ± 0.15 0.89± 0.06 0.78 ± 0.10
E2F 0.69± 0.02 0.83 ± 0.06 0.75 ± 0.03 0.66 ± 0.02 0.92 ± 0.05 0.77 ± 0.02
MEF 0.87 ± 0.10 0.92 ± 0.04 0.89 ± 0.06 1.00 ± 0.00 0.77 ± 0.05 0.87 ± 0.03

MYOD 0.83± 0.06 0.92 ± 0.08 0.87 ± 0.05 0.68 ± 0.14 0.82 ± 0.06 0.74 ± 0.09
SRF 0.75± 0.04 0.81 ± 0.05 0.78 ± 0.03 0.63 ± 0.05 0.74 ± 0.05 0.67 ± 0.04
TBP 0.73 ± 0.10 0.83 ± 0.04 0.77 ± 0.06 0.83 ± 0.06 0.83 ± 0.06 0.83 ± 0.06

Average 0.77 0.84 0.80 0.77 0.81 0.79

Datasets
GAME GALF-P

Precision Recall F-measure Precision Recall F-measure
CREB 0.44 ± 0.31 0.43 ± 0.30 0.43 ± 0.32 0.47 ± 0.24 0.60 ± 0.29 0.53 ± 0.26
CRP 0.93 ± 0.05 0.84 ± 0.03 0.88 ± 0.03 0.95 ± 0.02 0.88± 0.05 0.91 ± 0.04
ERE 0.63 ± 0.07 0.84 ± 0.06 0.72 ± 0.06 0.65 ± 0.15 0.84 ± 0.04 0.72 ± 0.10
E2F 0.62 ± 0.05 0.86 ± 0.09 0.72 ± 0.06 0.67 ± 0.08 0.93± 0.05 0.78 ± 0.07
MEF 0.90 ± 0.05 0.96 ± 0.06 0.93 ± 0.04 0.85 ± 0.16 0.94 ± 0.06 0.89 ± 0.11

MYOD 0.24 ± 0.17 0.24 ± 0.16 0.24 ± 0.16 0.28 ± 0.24 0.51 ± 0.45 0.36 ± 0.32
SRF 0.67 ± 0.06 0.92 ± 0.06 0.78 ± 0.06 0.68 ± 0.12 0.88 ± 0.06 0.76 ± 0.09
TBP 0.67 ± 0.28 0.58 ± 0.24 0.62 ± 0.25 0.74 ± 0.12 0.86± 0.02 0.80 ± 0.09

Average 0.64 0.71 0.67 0.66 0.81 0.73

Values of standard deviation are symbolled as ±.

5 Conclusion

This paper further develops our previously proposed GAPK framework for
computational motif discovery. Our technical contributions mainly include: (i)
Define a new fitness function for evolutionary computations, which is indeed a
novel metric for measuring the quality of motif models; (ii) With the help of
prior knowledge, a ratio-based filtering system is developed to discard irrelevant
kmers so that the search space reduction can be achieved; (iii) An effective
model refinement strategy, termed as MOIO scheme, is proposed. In the proposed
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MOIO scheme, one parameter is used for merging models. This greatly improves
the original GAPK algorithm in terms of the system reliability, although the
prediction performance has slight improvement.

Our further research includes a comprehensive analysis on performance
robustness with respect to the system parameter setting. In addition, it is
significant to look into some ways to maximize the utilization of various prior
knowledge in algorithm development.
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Abstract. Automatic detection and identification of mammography masses is 
important for breast cancer diagnosis. However, it is challenging to differentiate 
masses from normal breast regions because they usually have low contrast and a 
poor boundary. In this study, we present a Computer-Aided Detection (CAD) 
system for automatic breast mass identification. A four-stage region-based 
procedure is adopted for processing the mammogram images, i.e. localization, 
segmentation, feature extraction, and feature selection and classification. The 
proposed CAD system is evaluated using selected mammogram images from the 
Mammographic Image Analysis Society (MIAS) database. The experimental 
results demonstrate that the proposed CAD system is able to identify 
mammography masses in an automated manner, and is useful as a decision 
support system for breast cancer diagnosis. 

1   Introduction 

Breast cancer is one of the major causes of mortality among women.  According to 
statistics from the American Cancer Society (ACS), it is expected that more than 200 
thousand new cases to occur among women in US during 2010 [1].  Early detection of 
breast cancer increases the chances of survival.  The earliest sign of breast cancer is 
an abnormality detected on a mammogram screening image. In this aspect, a 
Computer-Aided Detection (CAD) system can be developed as a useful decision 
support system for automatic detection of breast cancer, whereby the predictions from 
the CAD systems can be employed to enhance diagnoses from radiologists [2].  There 
are two types of CAD systems for breast cancer detection: one for microcalcifications 
detection and another for mass detection. In this study, we focus on developing a 
CAD system for automatic mass detection. A good review on automatic mass 
detection and segmentation in mammographic images with a quantitative performance 
comparison can be found in [3]. 

A general CAD system for automatic mass detection normally comprises two 
stages: detection of suspicious regions and classification of suspicious regions as a 
mass or a normal tissue.  In the first stage, pixel-based or region-based methods are 
normally adopted [2].  In pixel-based methods, image features are extracted from each 
pixel, and are used for classification as either a mass or a normal tissue.  For example, 
Liu et al. [4] proposed a multi-resolution scheme for lesion detection.  The image is 
                                                           
* Corresponding author. 
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first decomposed using wavelet transform.  Four features are then extracted for each 
pixel at each decomposition level.  A total of 19 mammograms containing masses are 
selected from the MIAS database [5] for evaluation. The results show 84.2% true 
positive detection at less than 1 false positive per image, and 100% true positive 
detection at 2.2 false positives per image. 

The second method for mass detection is based on Region Of Interest (ROI).  In this 
method, an ROI is first segmented.  Then, the features are extracted from each ROI.  A 
classifier is used to classify the region as a suspicious or a normal region.  Again, many 
region-based approaches have been proposed in the literature [6-14].  Mudigonda et al. 
[6] presented an approach which uses both gradient and texture features to distinguish 
normal masses from malignant ones. The Mahalanobis distance is employed to classify 
breast masses as benign or malignant. An accuracy rate of 73.7% with 38 MIAS cases 
is reported.  Hupse et al [7] used contextual information to identify suspicious regions. 
A neural network classifier is employed to detect the suspicious regions. .Classification 
performance has been evaluated using a database of 3262 normal mammograms (with 
9688 extracted images) and 636 abnormal mammograms (2180 images). The results 
show that the mean sensitivity is in the interval of 0.05–0.5 false positives/image, and 
increases to more than 6% with the use of context features. 

Recently, Gao et al [8] presented an automated method for detecting 
mammographic masses. The detection scheme is based on Morphological Component 
Analysis (MCA). First, a mammogram is decomposed into two: piecewise-smooth 
and texture components. The smooth component is used for extracting independent 
regions at different intensity layers. Four morphological features are calculated for 
each ROI. If the selected ROI has more than one concentric layer in the successive 
lower intensity layers, it is considered as a mass. The system has been evaluated with 
a total of 200 mammograms selected from the Digital Database for Screening 
Mammography (DDSM) [15], and 95.3% sensitivity and 2.83 false positive per image 
has been reported. 

In this study, we aim to develop an automatic region-based CAD system. The 
proposed CAD system consists of four stages: (i) localization of candidate ROI mass 
from a mammogram; (ii) segmentation of ROI masse; (iii) feature extraction of each 
ROI; and (iv) feature selection and classification using computational intelligence 
techniques. In the localization stage, a hybrid morphological erosion and reconstruction 
method is employed to mark the best 10 candidate regions.  Next, a level set 
segmentation algorithm, which is based on area minimization, is employed to extract the 
marked candidate regions. After that, wavelet transform is applied to extract a set of 
multi-resolution features. Finally, a hybrid intelligent model comprising the Genetic 
Algorithm (GA) and Support Vector Machine (SVM) is deployed for feature selection 
and classification. 

The organization of this paper is as follows. An overview of the proposed 
methodology is given in Section 2. The experimental results are presented and discussed 
in Section 3.  Concluding remarks are provided in Section 4. 

2   Methodology 

The CAD system developed in this work consists of the following stages: localization, 
segmentation, features extraction, as well as feature selection and classification, as 
shown in Fig.1. 
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Fig. 1. The proposed methodology of the CAD system  

Localization: The aim of this stage is to identify possible locations of candidate 
masses from the mammogram image. First, the intensity threshold value that separates 
the foreground regions from the background is identified using Otsu’s algorithm [16] 
as shown in Fig.2. The maximum foreground object is selected as the target area for 
further processing. The next step of localization is marking candidate masses. First, a 
morphological erosion operation is applied with an incremental disk structure element 
(start by 5 pixels and increment by 1 each iteration). Then, a morphological 
reconstruction algorithm guided by the result of erosion as a marker is used [17].  The 
maximum regional area is identified from the result of morphological reconstruction 
(i.e. using the imregionalmax matlab function). This operation is repeated until a 
maximum of ten objects have been marked, as shown in Fig.3. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. (a). Original image, (b). Threshold value (c). After background removal, (d). Selection 
of the maximum foreground object 

 
 
 
 
 
 

 

Fig. 3. (a). After erosion operation, (b). After reconstruction operation, (c-d). The resulting 
marked regions. 
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Segmentation: The aim of this stage is to extract the candidate masses from the 
mammogram image. A window around the candidate mass, which has to be large 
enough to include the whole mass boundary, is first taken. After many tests with 
several window sizes with the available MIAS images, the window size has been 
empirically chosen to be 900% with respect to the original mark size. Boxes are placed 
around each marked candidate masses. A schematic diagram of the segmentation stage 
is given in Fig. 4 and Fig.5. 
 

 
 
 
 
 
 

 

Fig. 4. (a).Original image, (b) Candidate mass locations are marked 

 
 

 
 
 
 
 

 

Fig. 5. (a) Boxes are placed around the localized candidate masses, (b-g). Each candidate mass 
is identified. 

Next, Chunming’s algorithm [18] is applied to extract the candidate mass within 
the window. The method is based on the active contour models, as it has the 
advantage of working in low homogeneity regions.  The scale parameter, σ, and the 
number of iterations (N) govern the growing of the contour.  For example, a large 
value of σ or N results in leakages in the mass border while a small value of σ or N 
results in a poor boundary.  These effects are shown in Fig.6.  

 

 
 
 
 

Fig. 6. Results of mass boundary with different scale parameter (σ) and number of iterations 
(N). (a). σ=5, N=100; (b) σ=15, N=100; (c) σ=30, N=100; (d) σ=15, N=30; (e) σ=15, N=100;  
(f) σ=15, N=300 

Feature Extraction: A series of shape and wavelet energy related features is 
computed for each ROI candidate mass. The shape features comprise area and 
boundary of the ROI. The boundary is calculated based on the Euclidean distance 
from the mass center to the boundary points, as shown in Fig.7(a). The radial 
Euclidean distance for the whole boundary is shown in Fig.7(b). 
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The stationary wavelet transform is computed for the 1-D radial distance for two 
levels of decomposition, and the statistical mean and standard deviation values are 
computed for each decomposition level.  A total of 10 features are computed from the 
ROI boundary.  Moreover, two decomposition levels of ROI candidate masses are 
computed using a 2-D quadratic spline wavelet transform.  Then, the statistical energy 
mean and standard deviation values are calculated for each wavelet sub-band.  As 
such, a total of 12 2-D wavelet features are extracted for each ROI candidate mass. 

 
 
 
 

 
 
 
 

Fig. 7. (a). The Euclidean distance from the mass center to the boundary; (b) 1-D equivalent 
boundary signal with 1024 boundary points 

Feature Selection and Classification: A hybrid GA-SVM model is employed for 
feature selection and classification, as depicted in Fig.8. The SVM classification 
accuracy rate is used as a fitness function for the GA. The length of the chromosome 
is equal to the length of the feature vector. A binary representation is used for each 
chromosome: 1 if the associated feature is selected and 0 if otherwise.  

 

 
 
 
 
 
 
 
 

 
 

Fig. 8. The GA-SVM model 

3   Results 

The proposed CAD system is evaluated using 19 mammogram images containing 
speculated lesions and 19 normal mammograms images selected from the MIAS 
database. The images are in an 8-bit gray resolution format, and the size is 1024 by 
1024 pixels. In the localization stage, a maximum of 10 ROIs are marked as the 
candidate masses.  After localization, a total of 281 ROIs, with 19 mass ROIs and 262 
normal ROIs, are available. 

In the segmentation stage, after several empirical trials, the parameters of 
Chunming’s algorithm are set as follows: scale parameter, σ=15, and number of 
iterations, N=100.  The GA is used with the following parameters: population 
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size=50, number of generation=50, probability of crossover=0.8, and probability of 
mutation=0.2. The non-linear kernel-based SVM was deployed with radial basis 
kernel functions. It was trained with a total of 38 ROIs, with 19 mass ROIs and 19 
normal ROIs (randomly selected from 262 normal ROIs). The SVM was trained using 
the 10-fold cross-validation technique. Table 1 shows the results with and without 
GA-based feature selection and SVM classification. 

Table 1. Eexperimental results 

 No. of 
Features 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Without feature selection 23 74.94 82.10 67.95 

With feature selection 6 91.57 87.65 95.54 

 
With the use of the GA for feature selection, the number of features is reduced 

from 23 to 6.  All three performance indicators, accuracy, sensitivity, and specificity, 
increase with the use of the reduced feature set.  This implies that most of the features 
are not useful in discriminating between normal and abnormal ROIs.  Note that the 
sensitivity rate is low because it is difficult to discriminate between normal and 
abnormal ROIs in some images. An example is shown in Fig.9.  Fig. 9(a, b) shows 
two abnormal ROI masses. The candidate masses detected by the CAD system are 
shown in Fig. 9(c, d). Fig. 9(e) shows the border of the abnormal mass of Fig. 9(a).  It 
appears to have similar border and intensity features like the normal candidate mass 
(no. 2) detected in Fig. 9(d), as shown in Fig. 9(f).   

 
 
 
 
 
 
 

Fig. 9. (a, b) Two abnormal masses; (c, d) Candidate masses marked by the CAD system; (e) 
The border of the actual abnormal mass from (a); (f) The border for the normal mass (no. 2) 
marked by the CAD system from (d). 

In another experiment, the CAD system was evaluated again with the same 
parameters except the maximum number of boxes in the localization stage was 3 
(instead of 10) and the window size was empirically chosen to be 400% with respect 
to the original mark size. After localization, a total of 93 ROIs, with 19 mass ROIs 
and 74 normal ROIs, were available. The SVM was trained with a total of 38 ROIs, 
with 19 mass ROIs and 19 normal ROIs (randomly selected from the 74 normal 
ROIs). Table 2 shows the results with and without GA-based feature selection and 
SVM classification. 

With a maximum of 3 boxes per image, only 39 images (from a total of 87 images 
that contain speculated masses) have been identified in the localization stage.  In the 
first experiment with a maximum of 10 boxes per image, 82 images that contain 
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speculated masses were identified.  Moreover, the window size was reduced from 
900% to 400% because the erosion structure element size and the marker size 
increased, as shown in Fig.10. 

Table 2. Eexperimental results 

 No. of 
Features 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Without feature selection 23 73.78 96.90 48.96 

With feature selection 5 90.99 92.14   89.40 

 
 
 
 
 
 
 
 

Fig. 10. Illustration of the marker size (a) Maximum of 10 candidate mass locations are 
marked; (b) Maximum of 3 candidate mass locations are marked 

To compare the results with other approaches, the trained SVM model from the 
second experiment was evaluated with 19 new images that contain masses. The 
results show 88.9% true positive detection at 0.79 false positives per image with GA-
based feature selection, and with a maximum of 3 boxes per image. Liu et al. [4] 
reported comparable results on the MIAS database with 84.2% true positive detection 
at less than 1 false positive per image, and 100% true positive detection at 2.2 false 
positives per image.  

4   Summary 

In this paper, we have presented a CAD system for automatic mammography mass 
identification. The proposed method consists of four stages, i.e., localization using 
hybrid of morphological operations, segmentation using Chunming’s algorithm, 
feature extraction using wavelet transform, and feature selection and classification 
using a hybrid GA-SVM model. Encouraging results have been obtained.  However, 
there is room for improvement. Future work will be focused on enhancing localization 
and segmentation of masses, as well as improving the classification performance with 
other computational intelligence models. 
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Abstract. Recently, some non-coding small RNAs, known as microRNAs 
(miRNA), have drawn a lot of attention to identify their role in gene regulation 
and various biological processes. The miRNA profiles are surprisingly 
informative, reflecting the malignancy state of the tissues. In this paper, we 
attempt to explore extensive features and classifiers through a comparative 
study of the most promising feature selection methods and machine learning 
classifiers. Here we use the expression profile of 217 miRNAs from 186 
samples, including multiple human cancers. Pearson’s and Spearman’s 
correlation coefficients, Euclidean distance, cosine coefficient, information 
gain, mutual information and signal to noise ratio have been used for feature 
selection. Backpropagation neural network, support vector machine, and k-
nearest neighbor have been used for classification. Experimental results indicate 
that k-nearest neighbor with cosine coefficient produces the best result, 95.0% 
of recognition rate on the test data.  

Keywords: microRNA, Human Cancer, Classification, Feature Selection, Machine 
Learning. 

1   Introduction 

High-throughput messenger RNA (mRNA) expression profiling with microarray has 
produced huge amount of information useful for cancer diagnosis and treatment [1]. It 
has also promoted the development of techniques to analyze the large amount of 
information using statistical and machine learning approaches [2]. Computational 
methods selects relevant subsets of thousands genes and classify samples into normal 
or tumor tissues. Clustering technology reveals the relevant modules of co-expressed 
genes that show similar behavioral patterns in gene regulation process [3]. There are 
several microarray databases accessible by public [4][5].  

Recently, small-non-coding RNAs, named microRNAs (miRNA) have drawn a lot 
of attention to identify their functional roles in biological processes [6][7]. Especially, 
researchers have investigated that the abnormal expression of miRNAs may indicate 
human diseases, such as cancers. Lu et al. collected 217 miRNAs expression profiles 
from 334 human and mouse samples using a bead based flow cytometric method [8]. 
They reported a down-regulation of miRNAs in cancer tissues compared with normal 
ones. In addition to the observation, they applied simple classification algorithms to 
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the samples which are not easily discriminated with mRNA expression profiles. Some 
researchers have been attempting to propose the optimal classification technique to 
work out this problem, especially dealing with predictive discrimination of multiple 
cancers [9][10]. 

Although there have been several comprehensive works to compare the possible 
methods with different feature selection and classification techniques for mRNA 
expression profiles [11], there have been still no work on the miRNA data. Like 
mRNA classification problems, there are a lot of possible choices on the combination 
of feature selection methods and classification algorithms resulting in different 
recognition accuracy. A through effort helps to find the best possible methods to 
classify human cancer using miRNA expression profiles. Also, it reveals the 
superiority of specific feature selection method and classification algorithm over 
alternatives for the problem.  

In this paper, we attempt to explore the features and classifiers that efficiently 
detect the malignancy status (normal or cancer) of the tissues. We have adopted seven 
feature selection methods widely used in pattern recognition fields: Pearson’s and 
Spearman’s correlations, Euclidean distance, cosine coefficient, information gain and 
mutual information and signal-to-noise ratio. We have also utilized four k-nearest 
neighbor methods with different similarity measures (Euclidean, Pearson and 
Spearman correlation, and cosine coefficient), multilayer perceptrons, and support 
vector machines with linear kernel.  

2   MicroRNA 

Recently, hundreds of small, non-coding miRNAs have been discovered [7] which are 
averaging approximately 22 nucleotides in length (Table 1). They are involved with 
cell proliferation and death, gene regulatory networks, RNA metabolism, auxin 
signaling and neuronal synapse formation [6][7]. Especially, the expression of 
miRNAs indicates human diseases such as cancers [8]. Lu et al. used k-nearest 
neighbor and probabilistic neural network to classify human cancer using miRNA 
expression profiles. In their work, they used human miRNA expression data for 
multiple cancers as training samples to predict the mouse lung cancer’s malignancy. 
They reported 100% accuracy for 12 mouse lung cancer tissues.  

Table 1. Examples of miRNA expression profiles [8] 

Description Sample 1 Sample 2 
hsa-miR-124a:UUAAGGCACGCGGUGAAUGCCA:bead_101-A 7.4204 6.931 
hsa-miR-125b:UCCCUGAGACCCUAACUUGUGA:bead_102-A 10.8391 11.7231 

hsa-miR-7:UGGAAGACUAGUGAUUUUGUU:bead_103-A 6.64631 6.78163 
hsa-let-7g:UGAGGUAGUAGUUUGUACAGU:bead_104-A 9.86267 10.4861 

hsa-miR-16:UAGCAGCACGUAAAUAUUGGCG:bead_105-A 10.6879 11.5479 
hsa-miR-99a:AACCCGUAGAUCCGAUCUUGUG:bead_107-A 8.39361 8.88749 
hsa-miR-92:UAUUGCACUUGUCCCGGCCUGU:bead_108-A 8.63981 9.06636 
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Xu et al. applied a neural based classifier, Default ARTMAP, to classify broad 
types of cancers based on their miRNA expression profiles [9]. In their work, particle 
swarm optimization (PSO) was used for selecting important miRNAs that contribute 
to the discrimination of different cancer types. Zheng et al. reported that discrete 
function learning algorithm (DFL) obtains better prediction performance than C4.5 
(decision tree) and RIP algorithms.  

3   MicroRNA Expression Classification 

Generally, the miRNA expression profile has high dimensionality with small number 
of samples because of the limitation of sample availability, cost, or other reasons. 
After acquiring the miRNA expression profile, prediction systems goes through two 
stages: feature selection and pattern classification stages. The high dimensionality is 
one of the major challenges to analyze the miRNA expression profiles decreasing 
classification accuracy. There are a lot of feature selection methods proposed based 
on statistical similarity, information theory and signal-to-noise ratio [12]. Feature 
selection methods select relevant miRNAs which contribute to the discrimination of 
the malignancy type. At prediction stage, classification algorithms learn models with 
the selected miRNAs to predict the category of each sample. Finally, their goodness 
of the classifier is evaluated on unseen samples, called test data.  

 

 

Fig. 1. Overview of miRNA classification system 

3.1   Features  

3.1.1   Similarity-Based Methods 
In these methods, the value of each miRNA is evaluated based on the similarity to 
ideal vectors. In case of positive ideal vectors, the value is 1 if the training sample is 
cancer and vice versa. On the other hand, in the case of negative ideal vectors, the 
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value is 1 if the training sample is normal. If there is a miRNA that shows the same 
behavior with the ideal vectors, this means that we can classify the training samples 
correctly with only the single miRNA. Because it is not common to classify samples 
correctly using only single miRNA, this vector is called as “ideal” one.  

We can sort the miRNAs in accordance with the similarity between the miRNA’s 
values for training samples and ideal vectors. Because we have the two ideal vectors, 
there are two different rankings based on positive and negative ideal vectors. Finally, 
half of the miRNAs are chosen from the rankings by the positive ideal vector, and 
others are from the one by the negative ideal vector. For example, if we decide to 
select 20 miRNAs, 10 miRNAs are very close to the positive ideal vectors and 10 
miRNAs are very close to the negative ones. There are four different similarity 
measures used: inverse of Euclidean distance measure, Pearson correlation, cosine 
coefficient and Spearman correlation.  

3.1.2   Information Gain 
In the following formula, k is the total number of classes, nl is the number of values in 
the left partition, nr is the number of values in the right partition, li is the number of 
values that belong to class i in the left partition, and ri is the number of values that 
belong to class i in the right partition. The information gain of a miRNA is defined as 
follows. The threshold for the portioning is a value to minimize class entropy. TN is 
the number of training samples. 
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3.1.3   Mutual Information 
Mutual information provides information on the dependency relationship between two 
probabilistic variables of events. If two events are completely independent, the mutual 
information is 0. The more they are related, the higher the mutual information is.  
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3.1.4   Signal-to-Noise Ratio 
If we calculate the mean μ and standard deviation σ from the distribution of miRNA 
expressions within their classes, the signal-to-noise ratio (SN) of miRNA gi is defined 
as follows: 
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3.2   Classifiers  

3.2.1   K-Nearest Neighbor (KNN) 
This is one of the most common methods for instance-based induction. Given an input 
vector, KNN extracts the k closest vectors in the reference set based on similarity 
measures, and makes a decision for the label of the input vector by using the labels of 
the k nearest neighbors. In this paper, many similarity measures were used such as the 
inverse of Euclidean distance (KNNE), Pearson correlation (KNNP), cosine 
coefficients (KNNC) and Spearman correlation (KNNS). If the k is not 1, the final 
outcome is based on the majority voting of the k nearest neighbors.  

3.2.2   Multi-Layer Perceptron (MLP) 
A feed-forward multilayer perceptron is an error backpropagation neural network that 
can be applied to pattern recognition problems. It requires engineering regarding the 
architecture of the model (the number of hidden layers, hidden neurons, and so on). In 
this classification problem, the number of output nodes is two (normal and tumor 
nodes). If the output from the normal node is larger than that from the tumor node, the 
sample is classified as normal.  

3.2.3   Support Vector Machine (SVM) 
This method classifies the data into two classes. SVM builds up a hyperplane as the 
decision surface in such a way as to maximize the margin of separation between 
positive and negative samples. In this paper, linear kernel (SVML) is used.  

4   Experimental Results 

We have used miRNA samples from Lu et al.’s work [8]. It contains expression 
values of 217 miRNAs from 186 samples including multiple cancer types (Table 2). 
In this work, we did binary classifications which classify samples as one of tumor or 
normal.  

The expression level of each miRNA is normalized to 0~1. For miRNAs, we found 
the maximum and minimum expression values. The miRNA expression value is 
adjusted to (g-min)/(max-min). In the feature selection, the number of top-ranked 
miRNAs is 25. There is no report on the optimal number of miRNAs, but our 
previous study on mRNA expression profiles indicates that 25 is reasonable [2]. For 
Information Gain feature selection, we implemented it based on the RANKGENE 
source code and our IG method showed the same results with the RANKGENE [13]. 
We used LIBSVM for the SVM classification [14]. The parameters of classification 
algorithms are summarized in Table 3. The final results are an average of 10 runs. For 
each run, the miRNA expression data are randomly separated to the training dataset 
(2/3) and test dataset (1/3). 
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Table 2. The number of samples for each cancer type 

Cancer Normal Tumor 
Stomach 6 0 

Colon 5 10 
Pancreas 1 9 

Liver 3 0 
Kidney 3 5 
Bladder 2 7 
Prostate 8 6 
Ovary 0 7 
Uterus 9 10 

Human Lung 4 6 
Mesothelioma 8 0 

Melanoma 0 3 
Breast 3 6 
Brain 2 0 

B Cell ALL 0 26 
T Cell ALL 0 18 

Follicular Cleaved Lymphoma 0 8 
Large B Cell Lymphoma 0 8 

Mycosis Fungoidis 0 3 
Sum 54 132 

Table 3. Parameters of classification algorithms 

Classifier Parameter Value 
# of input nodes 25 

# of hidden nodes 8 
# of output nodes 2 

Learning rate 0.05 
Momentum 0.7 

MLP 

Learning algorithm Back propagation 
KNN k 3 
SVM Kernel function Linear 

 
Table 4 shows the comparison of accuracy on test data for the 42 combinations of 

feature selection and classifications. It shows that the KNNS-CC combination is the 
best accuracy 95% among them. Figure 2 shows the comparison of average 
performance of feature selection and classification methods. In the feature selection 
methods, CC is the best one. However, in the classification algorithm, KNNE is the 
best one. This means that it is important to find the appropriate combination of feature 
selection and classification algorithm to get the best accuracy from the miRNA 
expression profiles. Table 5 shows relevant miRNAs selected by CC methods.  
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Table 4. Accuracy on test data 

 ED PC CC SC IG MI SN 
KNNE 92.7 92.4 91.7 90.0 91.7 93.0 90.8 
KNNP 93.3 86.4 94.1 87.5 92.9 91.7 93.2 
KNNC 92.2 85.9 93.2 87.7 90.6 90.6 90.9 
KNNS 93.0 85.3 95.0 87.9 89.5 90.9 91.2 
MLP 92.0 92.5 94.0 91.2 89.3 91.1 89.5 

SVML 91.6 91.7 92.2 91.7 90.9 92.9 90.6 

 

   
(a) Feature Selection                             (b) Classification Algorithms 

Fig. 2. Comparison of average performance of feature selection and classification methods 

Table 5. Relevant miRNAs selected by cosine coefficient 

Value Description 

0.814328 hsa-miR-146:UGAGAACUGAAUUCCAUGGGUU:bead_109-A 

0.812209 hsa-miR-296:AGGGCCCCCCCUCAAUCCUGU:bead_105-C 

0.808118 hsa-miR-21:UAGCUUAUCAGACUGAUGUUGA:bead_119-B 

0.805954 hsa-let-7a:UGAGGUAGUAGGUUGUAUAGUU:bead_159-B 

0.803176 hsa-miR-16:UAGCAGCACGUAAAUAUUGGCG:bead_105-A 

0.799869 hsa-let-7c:UGAGGUAGUAGGUUGUAUGGUU:bead_110-A 

5   Conclusions 

In this paper, we explore the feature selection and classification algorithms for miRNA 
expression profiles to classify human cancer. Compared to mRNA expression profile, 
there are few works using machine learning tools for miRNA data. In this work, we 
applied seven feature selection methods and six classification algorithms to find the 
best combination of them. Experimental results show that KNNS + CC method records 
the best accuracy 95%. For feature selection method, cosine coefficient is the best 
method. For classification algorithm, KNNE is the superior method. In conclusion, it is 
important to choose the proper combination of feature selection and classification 
algorithm to get the high accuracy for miRNA expression profiles.  
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Abstract. We present a clustering algorithm called Self-organizing Map

Neural Network with mixed signals discrimination (SOMIX), to discover

binding sites in a set of regulatory regions. Our framework integrates

a novel intra-node soft competitive procedure in each node model to

achieve maximum discrimination of motif from background signals. The

intra-node competition is based on an adaptive weighting technique on

two different signal models: position specific scoring matrix and markov

chain. Simulations on real and artificial datasets showed that, SOMIX

could achieve significant performance improvement in terms of sensitivity

and specificity over SOMBRERO, which is a well-known SOM based

motif discovery tool. SOMIX has also been found promising comparing

against other popular motif discovery tools.

Keywords: self-organizing map, regulatory elements discovery, hybrid

model.

1 Introduction

Identification of transcription factor binding sites (TFBS) is fundamental
to understand gene regulation. The binding sites or motif instances are
typically 10 ∼ 15bp and degenerated in some positions. They are often
buried in a large amount of non-functional background sequences which
cause low motif signal-to-noise ratio. Computational discovery of the TFBS
(that bind with common transcription protein) from the upstream DNA
sequences of co-regulated genes, is regarded as computational motif discovery.
Fundamental of these approaches is to search for motifs that are over-represented
(over-abundance) in the input sequences compared to the background sequences.
Algorithms based on various search strategies have been proposed to discover
those over-represented motifs. They include MEME [1], ALIGNACE[2] and
SOMBRERO[3]. In this paper, we aim to develop a self-organizing map (SOM)
neural network with a customized hybrid node’s model for motif discovery.

Standard SOM with weight vector as node model representation has been
widely used in biological sequences clustering[4,5]. This representation is
inappropriate for our purpose because it requires the input DNA sequences
� Corresponding author.
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to be encoded into numerical values, which might cause loss of essential
features and also no meaningful interpretation can be made after computations.
Kohonen [6] proposed SOM with a string based node model for protein family
clustering. Despite useful, the string representation has limited expressive power
to exemplify the probabilistic nature of protein binding sites recognition. As a
result, its discrimination ability is rather weak. Recently it is proposed to replace
the standard weight vector with position- specific-scoring-matrix (PSSM) which
is a signal based model in [3]. Despite some success in higher recall rates, it
suffers from higher false positive rates.

The critical weakness of the SOM based traditional methods for (DNA)
motif discovery is that they share a common assumption that, the motif and
the background signals can be analogously and efficiently modelled by using
a homogeneous node’s model. This assumption is rather weak because the
two classes of signals have some distinct statistical properties[7]. Forcing these
incompatible signals to be represented using a homogeneous model usually
produces high false positive rates as can be seen in [3]. Hence, it is necessary to
consider the use of node model that takes into consideration these two classes of
signals (i.e., motif and background) separately.

In this paper, we present a novel clustering framework based on SOM neural
network, termed SOMIX, for the identification of motifs in DNA sequences. We
propose a hybrid node model by combining/hybridizing PSSM[8] and markov
chain (MC)[9] model to address some of the limitations of current SOM
approaches. Then an adaptive weighting scheme is applied to control the soft-
competition of those two model components in representing the mixture of
signals in a node. We hypothesize that the fitness of each model’s component
with respect to the sequences in a node is a fuzzy indication of its signal class
composition. We evaluate our proposed algorithm with several motif discovery
tools using real and artificial DNA datasets.

The remainder of this paper is organized as follows: Section 2 presents
our signal discrimination system framework; Section 3 presents the learning
algorithm and data assignment; Section 4 reports the datasets used and results
from the comparative studies; Section 5 discusses some issues related to our
framework and offers a number of future directions.

2 System and Methods

2.1 Basic Concepts and Problem Formulation

The main idea of our system, called Self-organizing Map with mixed signals
discrimination (SOMIX), is to use a hybrid node’s model composed of
heterogeneous models:Position Specific Scoring Matrix(PSSM) and Markov
Chain(MC). We first give some notations used in this paper and then describe
the SOMIX structure. Denoted D = {S1, S2, . . . , SN}, a DNA dataset with
N sequences. Let a kmer Ki = (b1b2...bk) ∈ {A, C, G, T }k be a continuous
subsequence of length k in a DNA sequence and i = 1, . . . , Z, with Z is the
total number of kmers. For a length L DNA sequence, there are L− k +1 kmers
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in one of its strands. We also define a motif M as a collection of binding sites that
characterizes a specific type of DNA binding domain or module and background
B as non-functional random sequences.

A SOM neural network has two layers:input layer and output layer.
The input layer has 4 × k nodes that accept the encoded kmer as
follows: [(a1A, a2C , a2G, a2T ) , ..., (akA, akC , akG, akT )]. The output layer is a
2-dimensional (2d) lattice of R × C nodes, where R, C is the number of rows
and columns respectively. Each node Vij , i = 1, . . . , R and j = 1, . . . , C,
has a parametrized model Θ, representing the data points assigned to it. For
convenience, we use the notation Vl to represent a node, where 1 ≤ l ≤ (R×C).
The coordinate of a node Vl in the lattice is expressed as zl = (i, j).

2.2 Modeling the Motif Signals

We use the Position Specific Scoring Matrices (PSSM) to model the motif signals.
The PSSM of a motif M is a matrix W = [f(b, i)]4×k, b ∈ {A, C, G, T } and i =
1, ..., k, with each entry f(b, i) represents the probability of observing nucleotide
b in position i. Hence, each column adds up to a total of one. The PSSM’s
entries can be estimated from the kmers in a node using the maximum likelihood
principle, with a pseudo-count value added as under sample correction to the
probabilistic model. The PSSM entries are computed as follows:

f(b, i) = (c(b, i) + g(b)) /(N + 1), (1)

where N is the number of kmers, c(b, i) is the number of times nucleotide b
occurs at position i of a set of kmers in a node, g(b) = [n(b) + 0.25]/(N × k + 1)

and n(b) =
k∑

i=1

c(b, i).

2.3 Modeling the Background Signals

The MC model [9] assumes that the probability of occurrence of a nucleotide
bi at position i in a DNA sequence is dependent only on the occurrences of m
(i.e. the markov order) previous nucleotides. In our approach, the first order
MC (i.e. m = 1) is used because higher order model usually requires more input
data to avoid over-fitting. The maximum likelihood estimation of the conditional
probability p(bi|bi−m...bi−1) is given by[9]

p(bi|bi−m...bi−1) =
c′(bi−m...bi−1bi)

T∑
w=A

c′(bi−m...bi−1w)
, (2)

where c′(x) is the number of times sub-sequence x found in a set of kmers in a
node.

Denoted π(a, b), the conditional probability p(b|a) of the first order MC, where
a, b ∈ {A, C, G, T }. The MC transition matrix is given by T = [π(a, b)]4×4, where∑
b={A,C,G,T}

π(a, b) = 1.
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2.4 Similarity Metric

A similarity metric is needed for kmers assignment to the SOM’s nodes during
the learning process. The score of a kmer Kj = (b1b2 . . . bk) to the PSSM Wl of
a node is computed as follows [10]:

Wl(Kj) = − log(
k∏

i=1

f(bi, i)). (3)

Whereas, the score of a kmer Kj to the MC model with 1st-order transition
matrix Tl is computed as [9]:

Tl(Kj) = − log

(
p(b1)

k∏
i=2

π(bi−1, bi)

)
, (4)

where p(x) is the probability of observing nucleotide x, estimated from the set
of kmers in the node.

2.5 Hybrid Node Model

We use a simple linear weighting scheme to combine the PSSM and MC as
follows: Let WN denote the PSSM constructed from N kmers in a node and T N

is the 1st-order MC transition matrix constructed using the same set of kmers.
Define Θ to be βWN + (1 − β)T N for β ∈ [0, 1]. Θ is an entry-wise weighted
average of the matrices WN and T N , not a mixture of these two matrices. The
weight value β corresponds to the fitness of the constituent models to represent
kmers in a node. It is the likelihood of a node to be motif or background. The
score of a kmer to a node’s hybrid model Θl is given by

Θl(Kj) =

√
β

WN
l (Kj)

+
1 − β

T N
l (Kj)

. (5)

Note that, when β = 1, the hybrid model is simply a PSSM model; whereas
when β = 0, it is a MC model.

3 Algorithm

3.1 Adaptation Process

We associate each node with three computing components including: two
matrices ΔW, ΔT and a counter r. Let V ∗

l be BMU of an input kmer K.
Denoted ΔW = [Δf(b, i)]4×k for b ∈ {A, C, G, T } and i = 1, . . . , k. Similarly,
let ΔT = [Δπ(m, n)]4×4 for m, n ∈ {A, C, G, T }. We initialize all entries in both
matrices ΔW and ΔT as 0. Also let r = 0. Once a winning node for a kmer K
is found, the matrices of a node V ∗

l are updated as follows.

Δf(b, i) = Δf(b, i) + h(z∗l , zj, σ)abi, (6)
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Δπ(m, n) = Δπ(m, n) + h(z∗l , zj, σ)count(m, n)/(k − 1), (7)

where aib is an entry of the binary matrix e(K) as defined in Sub-section 2.1,
count(m, n) is the frequency of di-nucleotide (mn) in kmer K and h is a Gaussian
neighbourhood function. We also update r = r+1. Upon completion of an epoch,
all nodes’ model parameters will be updated as follows:

f(b, i)new = f(b, i) + η
Δf(b, i)

r
, (8)

π(m, n)new = π(m, n) + η
Δπ(m, n)

r
, (9)

where η is the learning rate and f(b, i) and π(m, n) is defined in Eq. (1) and
Eq. (2) respectively. Note that, in the computation of Eq. (8) and Eq. (9), we
first compute f(b, i) and π(m, n) using the current set of kmers assigned to the
node. It is also necessary to update the weighting parameters β. Assuming a set
of Nl kmers {K1, . . . , KNl

} is assigned to a node Vl at the end of an epoch, the
weighting parameters update equation is as follows:

βnew =

Nl∑
i=1

Wl(Ki)

Nl∑
i=1

(Wl(Ki) + Tl(Ki))
. (10)

4 Results

For comparisons purposes, we employ the precision(P), recall(R) and
F-measure(F) measure which are computed as [11]: P = TP/(TP + FP), R
= TP/Y, F = 2/(1/P + 1/R), where TP, FP, and Y are the numbers of true
positives, false positives and true sites in the dataset respectively. We consider
a predicted site a true hit if it overlapped the true site for x nucleotides; where
x depends on the length of the true motif consensus. To rank the motifs (i.e.
clusters) from the final map, we use the MAP score [12].

4.1 Performance on Real Datasets

We compared the performances of SOMIX with four popular motif discovery
tools, MEME, Weeder, SOMBRERO and AlignACE, on real biological datasets
with experimentally verified motif locations. The eight test datasets are
composed of seven datasets used in [13] and a dataset downloaded from the
Promoter Database of S. cerevisiae. Each sequence contains at least one true
binding site. SOMIX is run with map sizes that are arbitrarily selected as s× s,
with s ∈ {6, 8, ..., 20}. In each case, the SOMIX is trained for 100 epochs with a
motif length value in [l − 3, l + 3], where l is the expected known motif length.
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Table 1. Evaluation results with comparisons

SOMIX SOMBRERO MEME ALIGNACE WEEDER
R P F R P F R P F R P F R P F

CRP 0.91 0.89 0.9 0.83 0.43 0.56 0.59 0.88 0.69 0.83 0.98 0.9 0.75 0.83 0.79
GCN4 0.69 0.45 0.54 0.8 0.41 0.53 0.52 0.52 0.52 0.61 0.62 0.6 0.64 0.87 0.73
ERE 0.74 0.58 0.65 0.8 0.59 0.67 0.72 0.82 0.77 0.75 0.77 0.76 0.76 0.54 0.63
MEF2 0.81 0.99 0.89 0.35 0.22 0.27 0.92 0.8 0.85 0.86 0.87 0.86 0.88 0.88 0.88
SRF 0.84 0.74 0.79 0.67 0.83 0.74 0.87 0.72 0.79 0.83 0.71 0.77 0.83 0.71 0.76

CREB 0.89 0.67 0.77 0.83 0.43 0.56 0.59 0.88 0.69 0.52 0.66 0.57 0.79 0.71 0.75
E2F 0.82 0.64 0.71 0.76 0.67 0.71 0.68 0.64 0.65 0.75 0.68 0.71 0.89 0.67 0.76

MYOD 0.66 0.39 0.49 0.5 0.32 0.39 0.23 0.38 0.27 0.34 0.31 0.32 0.43 0.5 0.46
Average 0.80 0.67 0.72 0.69 0.49 0.55 0.64 0.71 0.65 0.69 0.70 0.69 0.75 0.71 0.72

The top 10 highest ranked motifs according to their MAP score are saved for
evaluation purpose. The background model used in the MAP scores computation
is a third-order markov chain model taken from [3]. The learning rate parameter
is fixed at 0.005 in all the experiments. Weeder, MEME and ALIGNACE were
rans online. Whereas, SOMBRERO is downloaded from the authors’ website.

Table 1 shows the results of the comparative study, showing recall (R),
precision(P) and F-measure (F) rates. The values in the table are computed
from an average of ten runs returned by each program. The map sizes used
in each dataset are: GCN:12x12-16x16, CREB:10x10-12x12, CRP:6x6-10x10,
E2F:12x12-20x20, ERE:12x12-16x16, MYOD:12x12-16x16, MEF2:12x12-16x16,
and SRF:12x12-14x14. In terms of recall rates, SOMIX performs better than
or equally to other tools in four of the eight (8) datasets. Compared with
SOMBRERO, SOMIX performs better in terms of recall rates in six (6) of
the datasets. Also, SOMIX has higher precision and F-measure (except ERE)
rates in six (6) and seven (7) of the test datasets respectively. Notably, for the
MEF2 dataset, SOMIX obtained a much higher precision rate (0.99 vs 0.32)
in comparison with SOMBRERO. The performances on all datasets show that
SOMIX achieves significant improvements in the average precision (26.9%) and
recall rate (13.8%) in comparison with SOMBRERO. This clearly shows that,
SOMIX with heterogeneous node model can represents the true distribution of
the DNA sequences better than homogeneous model.

It can be noticed that SOMIX performance is comparable or better than
ALIGNACE, MEME and Weeder. For example, in terms of F-measure rates,
SOMIX produces the best results for five (5) of the eight (8) datasets due to its
higher precision rates (it is to be noted that both SOMIX and ALIGNACE
achieve the same F-measure value for the CRP dataset). SOMIX’s average
F-measure value for all datasets (i.e. 0.72) is better than MEME, ALIGNACE
and SOMBRERO and equally good to Weeder.

4.2 Performance on Artificial Datasets with Planted Multiple
Motifs

We prepared five artificial DNA datasets with three planted distinct motifs in
each dataset, generated from Annotated regulatory Binding Sites (ABS, v1.0)
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Table 2. Evaluation results with comparisons for multiple motifs datasets

SOMIX SOMBRERO MEME WEEDER
R P F R P R R P F R P F

Dataset1 CREB 0.43 0.26 0.33 0.44 0.26 0.33 0.20 1.00 0.33 0.00 0.00 0.00
MYOD 0.48 0.23 0.31 0.20 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00

TBP 0.36 0.21 0.26 0.20 0.12 0.15 0.07 0.50 0.12 0.00 0.00 0.00
Avg 0.42 0.23 0.30 0.28 0.15 0.20 0.09 0.50 0.15 0.00 0.00 0.00

Dataset2 NFAT 0.39 0.27 0.31 0.36 0.21 0.26 0.44 0.78 0.56 0.00 0.00 0.00
HNF4 0.57 0.40 0.47 0.63 0.39 0.48 0.60 0.82 0.69 0.40 1.00 0.57

SP1 0.50 0.53 0.50 0.53 0.35 0.42 0.38 0.54 0.44 0.00 0.00 0.00
Avg 0.49 0.40 0.43 0.51 0.32 0.39 0.47 0.71 0.56 0.13 0.33 0.19

Dataset3 CAAT 0.43 0.21 0.25 0.32 0.17 0.22 0.29 0.80 0.42 0.00 0.00 0.00
SRF 0.70 0.40 0.50 0.59 0.28 0.38 0.29 0.57 0.38 0.00 0.00 0.00

MEF2 0.79 0.45 0.57 0.65 0.31 0.27 0.80 0.57 0.67 0.27 1.00 0.42
Avg 0.64 0.35 0.44 0.52 0.25 0.29 0.46 0.65 0.49 0.09 0.33 0.14

Dataset4 USF 0.68 0.39 0.48 0.73 0.48 0.57 0.41 0.88 0.56 0.00 0.00 0.00
HNF3B 0.47 0.25 0.31 0.26 0.13 0.17 0.15 1.00 0.27 0.00 0.00 0.00
NFKB 0.71 0.47 0.56 0.66 0.46 0.54 0.80 0.57 0.67 0.33 1.00 0.50

Avg 0.62 0.37 0.45 0.55 0.36 0.43 0.45 0.82 0.50 0.11 0.33 0.17
Dataset5 GATA3 0.61 0.37 0.46 0.49 0.33 0.36 0.40 0.75 0.52 0.40 1.00 0.57

CMYC 0.74 0.47 0.57 0.89 0.70 0.84 0.75 1.00 0.86 0.19 0.75 0.30
EGR1 0.66 0.36 0.47 0.47 0.26 0.33 0.64 0.81 0.72 0.00 0.00 0.00

Avg 0.67 0.40 0.50 0.62 0.43 0.51 0.60 0.85 0.70 0.20 0.58 0.29

Note: The best value for each evaluation measure is bolded. The motif names in each dataset are
listed in the second column.

database [14]. Every DNA dataset has twenty sequences and each sequence is
500 base-pairs in length. We run MEME, Weeder, SOMIX and SOMBRERO
five times on each dataset. We asked SOMIX and MEME to return the top 20
motifs for the evaluation purposes. Again, we evaluate all best motifs returned
by Weeder and SOMBRERO. Both SOMIX and SOMBRERO used the map size
40x20 for all datasets.

Table 2 shows the comparison between four algorithms on datasets with
multiple motifs. On overall, SOMIX has the best recall rates in seven(7) out
of fifteen(15) of the motifs. However, such higher recall rates come at the price
of having lower precision rates compared with MEME and Weeder. Compared
with SOMBRERO, SOMIX performs significantly better in most of the datasets
in all performance measures. For example, in terms of recall rates, SOMIX is
higher in ten(10) of the motifs; whereas, in terms of F-measure values, SOMIX
has better results in twelve(12) of the motifs. Hence, we can conclude that the
SOMIX hybrid model has better signal discrimination ability than SOMBRERO.
In terms of the average F-Measure, MEME performs slightly better than SOMIX
in four(4) out of five(5) of the datasets. Nevertheless, SOMIX has higher average
recall rates in all of the datasets compared to MEME. Weeder performs poorly
in most of the test datasets. This could be due to the weakness of its scoring
function used to rank more potential motifs.

5 Conclusion

In this paper, we proposed a self-organizing map neural network clustering
algorithm for simultaneous identification of multiple-motifs in DNA dataset.
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Unlike existing works, our method uses a hybrid node model for motif
and background signals discrimination based on their distinctive properties.
Simulation results have demonstrated that, this representation has improved
the false positive rates compared against SOMBRERO performances. Also, it
obtained average higher recall rates as compared with other motif discovery
tools. These results revealed that SOM with hybrid node’s model has
better representation of the kmers distribution in the input space. However,
reducing the false positive rates using appropriate map sizes, requires further
investigations. Some post-processing can be performed to reduce the false
positive rates due to the non-optimal map sizes.
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Abstract. The vast amount of data on gene expression that is now available 
through high-throughput measurement of mRNA abundance has provided a new 
basis for disease diagnosis.  Microarray-based classification of disease states is 
based on gene expression profiles of patients. A large number of methods have 
been proposed to identify diagnostic markers that can accurately discriminate 
between different classes of a disease. Using only a subset of genes in the 
pathway, such as so-called condition-responsive genes (CORGs), may not fully 
represent the two classification boundaries for Case and Control classes. 
Negatively correlated feature sets (NCFS) for identifying CORGs and inferring 
pathway activities are proposed in this study. Our two proposed methods (NCFS-
i and NCFS-c) achieve higher accuracy in disease classification and can identify 
more phenotype-correlated genes in each pathway when comparing to several 
existing pathway activity inference methods. 

Keywords: Microarray-based classification, pathway activity, negatively 
correlated feature sets, CORG-based, phenotype-correlated genes. 

1   Introduction 

Microarray technology is a powerful approach for genomics research. It is a general 
approach in gene expression profiling which offers a mean to study the molecular 
activities underlying a disease [1, 2]. As a result, microarray-based classification has 
become a widespread technique for identifying diagnostic markers of various disease 
states, outcomes, or responses to treatment especially in cancer [1, 3-6]. These markers 
are typically selected by scoring each individual gene for how well its expression 
pattern can discriminate between different classes of disease. However, finding reliable 
gene markers is a challenging problem, and several recent studies have questioned the 
reliability of many classifiers based on individual gene markers [7-9]. 
                                                           
* Corresponding author. 
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There are usually many pathways involved in the mechanism of complex diseases 
such as cancers. Many genes have been proposed to be involved in the mechanism of 
cancer but a far lower number of pathways have been determined to link with cancer 
[10]. KEGG, Kyoto Encyclopedia of Genes and Genomes, is a one of the most 
common public database which stores the information of pathways [11]. These 
pathways can be used to help determine the biological-relevant gene expression 
profile from microarray data. In order to utilize this information, pathway-based 
analysis has been developed to perform disease classification of expression profiles 
for more precision than using individual genes [12]. There are many ways to infer the 
activity of a given pathway based on expression levels of the constituent genes to be 
the pathway markers in classification [12-15]. Most of them would use all of the 
member genes in each pathway [12-13, 15]. One recent method proposed by Lee et al. 
[14] infers pathway activity using only a subset of genes in the pathway. This subset 
contains so-called condition-responsive genes (CORGs). The CORG-based method 
can effectively incorporate pathway information into expression-based diagnosis of 
disease to build more biologically defensible models to accurately discriminate the 
phenotype of interest. 

As an improvement of CORG-based method, the use of negatively correlated 
feature sets (NCFS) for identifying CORG set was incorporated in our previous study 
to increase the discriminative power of disease detection [16]. However, a potential 
shortcoming of this approach is that it only employs a small number of member genes 
in pathways for inferring its activity. It is possible that these member genes may not 
fully represent the differentiation between the two different aspects of classification 
boundary. In this paper, we propose a novel modification by using NCFS to separately 
identify CORG sets. Instead of using only one negatively correlated feature subset 
which represented only one differentiation pattern, two different gene subsets are used 
to infer pathway activities to ensure the maximization of difference in both up- and 
down-regulated fashion. We demonstrate the effectiveness of our proposed method by 
applying it to classify breast cancer metastasis and have compared its classification 
accuracy to several other pathway-based approaches. 

2   Previous Work 

There are a number of methods for inferring pathway activity that have been proposed 
recently [12-16]. The basic assumption sharing among these methods is that the 
classification system performs better if the markers are biologically relevant to the 
disease under study. All of these studies typically yield more reliable results compared 
to traditional gene-based classifiers. However, there are several shortcomings of the 
previous pathway activity inference methods. For example, Guo et al. [12] proposed 
methods to estimate the pathway activity by taking the mean or median of the gene 
expression values of the member genes. These methods cannot effectively capture the 
coherent gene expression patterns that may be present within a pathway. That is, much 
of the discriminative information contained in the respective gene expression values 
may be lost if we average them out. The PCA-based inference method can somewhat 
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relieve this problem [13]. In the PCA approach, the first basis vector captures the 
average expression pattern of the member genes, and the first principal component can 
estimate the presence and the strength of this pattern in a gene expression profile. 
However, not all the member genes in a perturbed pathway are typically altered at the 
mRNA level under different phenotypes in a consistent manner. In fact, some genes 
may have expression changes that are irrelevant to the change of phenotype of interest. 
To address this problem, Lee et al. [14] proposed a new pathway activity inference 
method that uses only a subset of member genes, called CORGs (condition-responsive 
genes). Pathway activities which inferred by this method are highly discriminative of 
the phenotypes. However, the CORG-based method may disregard member genes that 
have consistent, but not large, expression changes under different phenotypes. 

Instead of using only one subset of genes which represent one differentiation 
pattern, two different gene subsets are used to infer pathway activities to ensure the 
maximization of difference in both up- and down-regulated fashion. Sootanan et al. 
[16] proposed a pathway activity inferring method which used NCFS based on ideal 
markers – this is referred to as NCFS-i in this paper.  The use of NCFS was adopted 
from the work of Kim and Cho [17]. They used distance-based feature selection 
methods with NCFS to determine the genes that have cancer-related functions. Based 
on the ideal feature vectors for case and control, the feature selection measure can 
choose different feature subsets.  

3   Material and Method 

3.1   Dataset 

We obtained breast cancer datasets from large-scale gene expression studies by Wang 
et al. [18]. This dataset is chosen for comparison purposes because it is used in a 
number of previous studies [13, 15]. It contains the gene expression profiles of 286 
breast cancer patients from the USA, where metastasis was detected in 107 of them 
(referred as relapse class) while the remaining 179 were metastasis-free (referred as 
non-relapse class). In this study, we did not consider the follow-up time or the 
occurrence of distant metastasis. We retrieved this breast dataset ID GSE2034 from the 
public database of Gene Expression Omnibus (GEO) [19]. This dataset can be 
analyzed readily with their expression levels. For genes with more than one probe in 
one platform, we chose the probe with the highest mean expression value. 

To obtain the set of known biological pathways, we referred to the pathway 
information from KEGG (Kyoto Encyclopedia of Genes and Genomes) database [11]. 
We downloaded manually curated pathways containing 204 gene sets.  169 pathways 
with more than 10 member genes are selected. These gene sets are compiled by 
domain experts and they provide canonical representations of biological processes. 

3.2   Method 

Expression data is normalized to z-score form before mapping onto the member genes 
in each pathway. These data are then used to identify CORGs and their pathway 
activities with CORG-, NegTCORG- and the proposed NegSCORG-based methods.  
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Also, pathway activities (PACs) are obtained using mean- and median-based methods. 
A comparison of the classification performance with the above-mentioned inferring 
methods is then made. 

3.2.1   Normalizing Expression Data and Matching onto the Member Genes in 
Each Pathway 

Expression values gij are normalized to z-transformed score zij for each gene i and 
each sample j. To integrate the expression and pathway datasets, we overlay the 
expression values of each gene on its corresponding protein in each pathway. 

3.2.2   Inferring Pathway Activities 
Pathway activities (PACs) are the combined expression levels of all member genes or 
subset of genes of each pathway across the sample. Several inferring pathway activity 
methods have been proposed in previous studies. Five inferring methods are chosen 
for comparison in this study. First three inferring methods are based on CORG set, 
and the other two are based on simple statistics like mean and median [12]. Within 
each pathway, a subset of condition-responsive genes (CORGs) is searched. PACs 
inferred by using all member genes like mean and median approaches used in Guo et 
al. [12] are used to compare to those inferred by using subsets of member genes in 
pathway. A schematic diagram summarizing the steps to compute the pathway 
activities from CORGs using the three different methods is shown in Fig. 1.  

 
CORG-based method 
 

To identify the CORG set, member genes are first ranked by their t-test scores, in 
descending order if the average t-score among all member genes is positive, and in 
ascending order otherwise. For a given pathway, a greedy search is performed to 
identify a subset of member genes in the pathway for which the Discriminative Scores 
(DS, S(G)) is locally maximal. The individual zij of each member gene in the gene set 
are averaged into a combined z-score which is designated as the activity aj [14]. The 
activity vector a of the final CORG set is regarded as the pathway activity across the 
samples (see Fig. 1A). 

 
NCFS-i method 

 

In our previous work, we found that the results of using Pearson correlation 
coefficient as the feature selection method are comparable to the use of t-test for the 
correlation of negatively correlated ideal marker 1 (1,1,…,1,0,0,…,0) and ideal 
marker 2 (0,0,…,0,1,1,…,1) [16]. However, in the NCFS-i method, t-scores are used 
to determine the correlation with ideal markers (hence the denotation of “i” in the 
method name) to enable direct comparison to the CORG-based method. All member 
genes in each pathway are first ranked by their t-scores in descending and ascending 
orders if the average t-score among all member genes is positive and negative, 
respectively. Then, within each pathway, top ranked genes in these two different gene 
subsets are used to search for a subset of CORGs (see Fig. 1B). To derive activity aj, 
the activity aj1 is subtracted by activity aj2. The activity vector a of the final CORG set 
is regarded as the pathway activity across the samples. 
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Fig. 1. Schematic diagram of key gene identification and pathway activity inference steps 
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NCFS-c method 

This method is another modification from CORG-based method [14] by incorporating 
NCFS. The first set of CORGs is identified and the activity of the gene set is inferred 
using the CORG-based method. Then a second set of CORGs which are negatively 
correlated to the first set is identified and its activity is inferred. To derive activity aj 
for a given pathway, the activity aj inferred from the first CORG set is subtracted by 
the activity aj inferred from the second CORG set to contrast the extreme difference 
between the two gene sets. (The “c” in the method name denotes CORG-based.)  
This final activity vector a is regarded as the pathway activity across the samples (see 
Fig. 1C). 

Mean- and median-based method 

All of member genes for a given pathway are inferred activity vector a by measuring 
mean and median of their z-transformed score in each sample. This final activity 
vector a is regarded as the pathway activity across the samples. 

3.2.3   Classification Performance Evaluation Measure 
In this work, we evaluated the performance of a classifier based on the Area Under 
Curve (AUC) of the Receiver Operating Characteristic (ROC) curve. A final 
classification performance was reported as the ROC area using ten folds cross 
validation. WEKA (Waikato Environment for Knowledge Analysis) version 3.6.2 
[20] is used to build the classifier by using logistic regression (Logistic). The results 
in ROC Area are used to demonstrate the classification performance of different 
pathway activity inferring methods. 

4   Results and Discussion 

We computed the actual activity scores of all 169 pathways based on each pathway 
activity inference scheme, and ranked the pathways according to their discriminative 
score. The range of member genes in each pathway varies from 10 to 866, with the 
average being 62.  Table 1 shows the discriminative score using different percentages 
of top pathways. We compared five pathway activity inference methods, namely, 
CORG-based method [14], NCFS-i method [16], mean and median methods [12], and 
NCFS-c method proposed in this paper. All member genes are used in the mean and 
medium methods.  For the three different methods which used CORG set to infer the 
pathway activities, the average numbers are 5, 9, and 10, and the ranges are 1-12, 2-24, 
and 2-20 for CORG, NCFS-i and NCFS-c, respectively.  

As shown in Table 1, the two pathway activity inference schemes which use NCFS 
significantly improved the power of pathway markers to discriminate between 
metastatic samples (relapse) and non-metastatic samples (non-relapse). That is, the 
gene sets obtained using negative correlation resulted in higher correlation with the 
two phenotype classes of relapse and non-relapse. The improvement is consistent for 
all cases of pathways used. 
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Table 1. Discriminative score (DS) and classification performance (ROC Area) of different 
pathway activity inferring methods of all pathway markers as a function of the top percentage 
of pathways used 

Pathway activity inferring methods 

CORG NCFS-i NCFS-c Mean Median Percentage 

DS 
ROC 
Area 

DS 
ROC 
Area 

DS 
ROC 
Area 

DS 
ROC 
Area 

DS 
ROC 
Area 

Top 7.547 0.752 9.586 0.806 9.628 0.792 4.318 0.643 4.005 0.638 

20% 6.009 0.697 7.523 0.741 7.739 0.746 2.871 0.593 3.043 0.596 

40% 5.608 0.684 7.003 0.725 7.197 0.730 2.350 0.575 2.536 0.582 

60% 5.288 0.674 6.567 0.711 6.747 0.716 2.020 0.561 2.214 0.570 

80% 4.956 0.662 6.145 0.698 6.284 0.702 1.718 0.548 1.899 0.557 

100% 4.574 0.649 5.632 0.681 5.752 0.685 1.425 0.527 1.589 0.538 

 

 

Fig. 2. Heat map of pathway activities of the five different inferring methods – based on 20 
highest-ranked pathways by their discriminative score inferred by the CORG-based method 

Heat map of pathway activities inferred by the five different methods are shown in 
Fig. 2. The 20 highest ranked pathways by their Discriminative Score (DS) inferred by 
the CORG-based methods are selected and clustered before plotting on this figure.  
Our newly proposed NCFS-c method can determine these PACs similar to CORG-
based method but with higher discriminative power between the two classes. Both 
methods are different from NCFS-i which contains only up-regulated pathway markers 
in phenotype non-relapse group and down-regulated ones in phenotype relapse group, 
instead of a mixture of both up- and down-regulated ones. 

We also used the proposed pathway activity inference scheme for classification of 
breast cancer metastasis to evaluate its usefulness in discriminating different cancer 
phenotypes. For this breast dataset, we performed ten-fold cross-validation experiments. 
We evaluated all pathway activity inference methods using logistic regression (Logistic) 
and assessed the classification performance using the ROC area. Table 1 shows that our 
methods are better than CORG-based method of Lee et al. [14] which used only one 
characterized set of gene to infer pathway activities and methods of Guo et al. [12] 
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which used simple statistic like mean and median. Classification performance of  
our newly proposed NCFS-c method is also better than our previously proposed  
NCFS-i method except when only the top pathway is used to obtain the ROC area. 
Mean and median approaches for inferring pathway activities are not appropriate to 
discriminate phenotype of interest because of their low classification performance. 
These results show that our two proposed methods which use NCFS clearly outperform 
other pathway-based classifiers in terms of both ROC area and discriminative score 
(Table 1). Note that a Naïve Bayes (NB) classifier has also been used with very similar 
results to the Logistic classifier. The results from NB are not shown because it is 
somewhat redundant and resulted in lower classification performance. Also, additional 
performance measures are not shown for a similar reason. That is, these results are all 
similar and show that the proposed methods outperform the other methods. 

5   Conclusions 

In this study, a novel method for inferring pathway activities and identifying CORG 
sets with negatively correlated feature sets NCFS) is proposed. We have demonstrated 
that effectively incorporating pathway information into expression-based disease 
diagnosis and using NCFS can provide better discriminative and more biologically 
defensible models. Our new proposed method which uses NCFS is promising for 
disease classification and identifying more meaningful CORG sets which can be used 
to search for genes in pathways that are relevant to a disease of interest. However, a 
limitation of our method is that it is not applicable for pathway gene sets that do not 
contain NCFS. Further work is underway to address this issue. 
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Abstract. One of the major problems concerning information assurance is 
malicious code. In order to detect them, many existing run-time intrusion or 
malware detection techniques utilize information available in Application 
Programming Interface (API) call sequences to discriminate between benign 
and malicious processes. Although some great progresses have been made, the 
new research results of ensemble learning make it possible to design better 
malware detection algorithm. This paper present a novel approach of detecting 
malwares using API call sequences. Basing on the fact that the API call 
sequences of a software show local property when doing network, file IO and 
other operations, we first divide the API call sequences of a malware into seven 
subsequences, and then use each subsequence to build a classification model. 
After these building models are used to classify software, their outputs are 
combined by using BKS and the final fusion results will be used to label 
whether a software is malicious or not. Experiments show that our algorithm 
can detect known malware effectively.  

Keywords: Malware Detection; API Call Sequences; Multi-view Fusion; BKS 
Algorithm. 

1   Introduction 

With the improvement of the techniques used by malwares like virus, trojan and 
worm, traditional malware detection approaches based on signatures, were not 
effectively enough to detect variables of known malwares. In order to solve this 
problem, some researchers started to use the API call sequences of a program for 
detecting malwares and made much progress in this field[1]. Recently, the local 
property, a phenomenon that described the affinity between API functions in the 
network, file IO or other operations, has been discovered, but not taken into 
consideration to design better detection method. Using this property, we design a 
novel malware detection algorithm based on ensemble leaning methods and the 
experiments show that our algorithm has a better classification result. 
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The rest of the paper is organized as follows: in part 2, we briefly review previous 
approaches closely related to this paper; In part 3 , we deliver our core technical 
contribution include how to extract features  from the API call sequences of a 
program using information gain algorithm and design a malware detection algorithm 
based on a multi-modal fusion; in part 4, the experiment shows that our algorithm 
have a better classification results and can identify a malware type effectively whilst 
part 5 contains our concluding remarks. 

2   Related Work 

Forrest et al. proposed to use fixed-length system calls for distinguishing benign and 
malicious UNIX process [1]. Later on, Wepsiet al. improved the method using 
variable-length system calls[2]. In a recent work, the authors proposed to extract 
semantics information by annotating call sequences for malware detection [3]. Using 
flow graphs to model temporal information of system calls has been proposed in [4]. 
Faraz Ahmed proposed Using Spatio-Temporal Information for Malware Detection 
and Analysis [5], but the extracting method of temporal information leaved a 
backdoor for insidious malware author to fake API call sequences to cover up 
temporal information. 

The technology used by the malwares is improving continuously. The statistics 
showed that most of the malwares came from the modification of the old ones [6] and 
traditional signature based anti-malware technology is not effective enough to detect 
varieties of the known malwares. In order to solve this problem, some researcher had 
used machine learning technology for detecting the polymorphic malwares, for 
example, Konrad Rieck used SVM to classify the behavior of malwares [7]. Similar 
method went into finite automaton, HMM [8], data mining [9] and neural network 
[10]. Although simple and well performed, different classification method performed 
large differences to different type of malwares. Each classification method had its 
own emphasis. As a result, there was not a classification method which performs well 
for every kind of malwares. In [5], fusion of multiple classification method showed 
well performance. However, on the chosen of the fusion method, there is still 
improvement space. 

3   Multi-view Malware Detection Method Basing on API Call 
Sequences 

The system is divided into two parts: offline analysis and online analysis. The offline 
analysis part is responsible for constructing classification modal by training with the 
historical data. The online analysis part is responsible for three functions: getting the 
API call sequences of an unknown software, extracting features from the API call 
sequences, and verifying whether it is a malicious software. We are now going into 
details with the analysis. 
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3.1   Getting API Call Sequences 

APIs are interface functions that the Microsoft Windows operating system provides 
for users in dynamic link libraries. It can be run in user space or kernel space.  
Although there are many APIs in Microsoft Windows operating system, Naïve APIs 
are enough to show the characteristic of a program. As a result, we focus on the naïve 
APIs in this paper. There are over 900 naïve APIs in Microsoft windows operating 
system and we only consider the most important 229 ones. 

Table 1. API Category [5] 

API Category Numbers Description 

File Input/Output (I/O) 50 Interface functions of file input and output 

Dynamic-Link Libraries 7 Interface functions of DLL operations 

Network Management 16 Interface functions for managing network 

Memory Management 35 Interface functions for managing memory 

Processes & Threads 39 Interface functions of process operations 

Registry 41 Interface functions of registry operations 

Windows Socket 41 Interface functions of Windows Socket 

 
In order to catch the API call sequences produced by a running program, we design 

a hook program resident in memory to monitor the running of a program to catch the 
critical APIs listed above, which output the API call sequences.  

3.2   Characterization of API Call Sequences 

The API call sequences got from the hook program cannot be directly used as the 
input of a classification method. As a result, we design a feature extraction algorithm 
using N-Gram and information gain [11]. According to experience and experiment, 
we set the value of n as 2-6 in n-gram algorithm. After several comparative 
experiments, we find that 4-gram algorithm performs well and is reasonable in time 
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and resource. For the above reasons, we choose 4-gram algorithm. The feature 
extraction algorithm includes the following process: 

 

(1) Extracting the gram of every API call sequence. 

In 4-gram algorithm, the probability of an API appears only depends on the 3 
APIs before it. By doing sliding window operation in every API call sequence, we get 
a series of 4 length segment sequences. Each of the segment sequence is called a 
gram. What we need to do in this step is to count the probability of each gram appears 
in an API call sequence. After doing this operation to all the API call sequence, we 
get a series of 4-gram  recording the probability of a 4-gram appears in its 
corresponding API call sequence file. Figure 2 shows the 4-gram API sequences. 

(2) Calculating the value of information gain for each Gram 

The gram we get in step 1 can be treated as a feature. However, there are too 
many grams, normally over ten thousands and not all the grams are a valuable feature. 
As a result, we need to filter out the useful ones. We treat every gram as a feature t 
and calculate its information gain [15] using the formula   

2
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2 2
1 1
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The Ci represents a category. In our paper, there are 4 different categories, namely 
benign, virus, trojan and worm, so we have C1, C2, C3 and C4. P (Ci) means the 
probability of Ci appears. Similarly, P(t) represents the probability of feature t appears 
in all files. 

(3) Generating the final signature vector 

To sort the features from step 1 in the order of its information gain calculated in 
step 2. Choose the biggest n ones as signature vector S, namely: 

1 2{ , ... }nS gram gram gram=  ,Then every API call sequence file can be represent by a 

One-dimensional feature vector R of size n, namely: 

 

 

3.3   Classification Model 

We designed a multiple classification fusion algorithm (Figure 3) basing on the BKS 
(behavior knowledge space) proposed by Huang [12].It can be used to discriminate 
the benign and malicious programs, and it is also well enough for deeply classifying 
malicious program into virus, Trojan and worm. This algorithm’s process procedures 
were listed bellows: 

 

(1) Dividing the API call sequences of a software API call sequence into seven 
different sub-sequences according to the API category mentioned in 3.1.  

1 2

1,  if  exsits in file
{ , ... },

0, if  not exsit in file
i

n i
i
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R r r r r
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(2) Classifying them using machine learning algorithm and seven results can be 
got. 

(3) Fusing them with BKS algorithm or other ensemble methods, and using its 
fusion result as this software’s label. 
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Fig. 3. Multi-View Classification Algorithm 

4   Experiment 

4.1   Experiment Samples 

Totally, there are 817 sample programs in our experiment, including benign program, 
trojan, virus and worm. These programs can be downloaded from web[13]. We run 
Microsoft windows XP in VmWare and use API Monitor [14] reference as a “hook” 
program to catch API call sequences of a program. The constitution of the samples is 
shown in Table 2. 

Table 2. Constitution of Experiment Samples 

Program Category Numbers of Samples 
Benign 100 
Trojan 193 
Virus 289 
Worm 235 
Total 817 

4.2   Performance Index 

We use TP (true positive) Rate, FP (false positive) Rate, Precision, and Accuracy 
(number of correctly recognized samples/total number of samples) as the performance 
index to judge the classification modal. The terms true positives, true negatives, false 
positives and false negatives are used to compare the given classification of an item 
(the class label assigned to the item by a classifier) with the desired correct 
classification (the class the item actually belongs to). This is illustrated by Table 3. 
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Table 3. Shown of classification performance index 

  correct result / classification 

  E1   E2  

E1 tp(true positive) fp(false positive) obtained 
result / classification 

E2 fn(false negative) tn(true negative) 

 
The TP rate, FP rate, Precision, Recall, F-measure and Accuracy are then defined 

as: 
tp fp tp tp+tn

TP Rate= ,    FP Rate= ,   Precision= ,     Accuracy=
tp+fn fp+tn tp+fp tp+tn+fp+fn

. 

4.3   Performance 

We use LibSVM, Id3, J48, NaiveBayes and SMO to carry out our experiment. For we 
use 10-fold cross-validation, we don’t need to distinguish training samples and testing 
samples manually. First we check out the capability of these classifications modal to 
correctly distinguish a program as benign and malicious. The results are shown in 
Table 4. The “Five” in row API means that five types of api sequences, namely net, 
process, memory, reg and socket. The result shows that after fusion by BKS, most of 
the classification performance (the only exception is NaiveBayes) is improved. 
Specially, the Id3 and SMO reach a perfect result.  

Table 4. Result of Malicious-benign Classification 

Testing method API TP Rate FP Rate Precision Accuracy (%) Class 

0.998 0.104 0.984 malicious 
LibSVM All 

0.896 0.002 0.986 
98.424 

benign 

1.000 0.091 0.986 malicious 
BKS (LibSVM) Five 

0.909 0.000 1.000 
98.774 

benign 

0.984 0.117 0.982 malicious 
Id3 All 

0.883 0.016 0.895 
97.023 

benign 

1.000 0.000 1.000 malicious 
BKS (Id3) Five 

1.000 0.000 1.000 
100 

benign 

0.99 0.091 0.986 malicious 
J48 All 

0.909 0.01 0.933 
97.898 

benign 

0.994 0.039 0.994 malicious 
BKS  (J48) Five 

0.961 0.006 0.961 
98.949 

benign 
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Table 4. (continued) 

Testing method API TP Rate FP Rate Precision Accuracy (%) Class 

1.000 0.065 0.99 malicious 
SMO All 

0.935 0.000 1.000 
99.124 

benign 

1.000 0.000 1.000 malicious 
BKS (SMO) Five 

1.000 0.000 1.000 
100 

benign 

 
We also carry out experiments for other fusion method, namely Vote. The results 

are shown in Table 5. The performance of BKS is better than that of Vote except for 
using NaiveBayes as the base classifier. 

Table 5. Results of Different Fusion Method 

Base Classifier Fusion TP Rate FP Rate Precision Accuracy (%) Class 
0.998 0.104 0.984 malicious Vote 
0.896 0.002 0.986 

98.424 
benign 

1.000 0.091 0.986 malicious 
LibSVM 

BKS 
0.909 0.000 1.000 

98.774 
benign 

0.994 0.104 0.984 malicious Vote 
0.896 0.006 0.958 

98.074 
benign 

1.000 0.000 1.000 malicious 
Id3 

BKS 
1.000 0.000 1.000 

100 
benign 

0.986 0.117 0.982 malicious Vote 
0.883 0.014 0.907 

97.198 
benign 

0.994 0.039 0.994 malicious 
J48 

BKS 
0.961 0.006 0.961 

98.949 
benign 

1.000 0.078 0.988 malicious Vote 
0.922 0.000 1.000 

98.949 
benign 

1.000 0.000 1.000 malicious 
SMO 

BKS 
1.000 0.000 1.000 

100 
benign 

5   Conclusion and Future Work 

In this paper, we propose the multi-view classification algorithm basing on t the local 
property that described the affinity between API functions in the network, file IO or 
other operations, which was evaluated on a large corpus of malicious code . The experiment 
results show that our multi-view classification algorithm can effectively discriminate 
a program into benign and malicious and can improve most of the classifier. Future 
work will extend to extend the techniques described here to improve the detection of 
malicious code, especially the novel malicious code.  
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Abstract. System calls have been proved to be important evidence for

analyzing the behavior of running applications. However, application be-

havior analyzers which investigate the majority of system calls usually

suffer from severe system performance deterioration or frequent system

crashes. In the presented study, a light weighted analyzer is approached

by two avenues. On the one hand, the computation load to monitor the

system calls are considerably reduced by limiting the target functions

to two specific groups: file accesses and Windows Registry accesses. On

the other hand, analytical accuracy is achieved by deep inspection into

the string parameters of the function calls, where the proximity of the

programs are evaluated by the newly proposed kernel functions. The ef-

ficacy of the proposed approach is evaluated on real world datasets with

promising results reported.

Keywords: FTree, kernel on structured data, registry analysis, sequence

analysis, system call analysis.

1 Introduction

Information security are receiving more and more concern because of the increas-
ing iniquitousness and inter-connectedness of computer systems. Conventional
security solution systems, e.g., anti-virus software, SPAM email filters, etc., usu-
ally rely on extensive human effort to identity new threats, extract particular
characteristics, and update the system to treat with new threats [1,2,3]. Recent
research shows that this labor-intensive process can be more efficient by applying
machine learning algorithms.

In this paper, we present a study on application of pattern classification tech-
niques for identifying the status of a target operating system (OS). In particular,
we look into the activity of the running threads, which are the smallest unit of
processing that can be scheduled by an OS. According to recent research [4,5],
the behavior of a program can be represented by the sequence of system calls
during its life-time. However, because of its versatility, monitoring all system
calls will not only impose unnecessary cost but could give rise to unpredictable
conflicts and system crashes as well.
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Aiming at a lightweight monitoring and analysis system, we focus on a specific
type of system call – file access. File access has the following features that render
it very promising for program behavior characterizing. First, most programs
will make file access during their life time. Unlike other system resources the
status of which will get lost after a reset of the OS, e.g., memory block, socket
buffer, and network interface buffer, file modification is permanent and thus it
is employed by most programs to put on long term modification to the system.
Second, essential information with respect to the program identity and behavior
is presented as string parameters to the file access routine. Collective information
on the accessed files can significantly reduce the probability of miss identifying
a program and thus is of particular interest in this study. Finally, file-access
related routines are considerably fewer than all the system calls, which makes
the monitoring more light-weighted and the analysis more efficient.

In this study Windows OSes are of special interest because of their large
market-share and many disclosed system vulnerabilities, which motivated the
presented study – to detect suspicious running programs in the system by be-
havior analysis. Another interesting feature of Windows OS is the Registry, which
is a special file that shares similar characteristic of a file system, so it can be
treated similarly with an improvement on the system performance.

The rest of the paper is organized as follows. In Section 2, we introduce the
characteristics of the tree structures composed of file paths or Windows registry
keys. In Section 3, we describe the proposed kernels on the tree structures.
In Section 4, we evaluate the proposed approach on real world datasets. We
conclude the paper in Section 5.

2 Windows File System and Registry

In Windows File Systems (WFS), a drive letter abstraction is used to distinguish
different partitions. For example, a path ‘C:\WINDOWS\control.ini’ represents
a file ‘control.ini’ in directory ‘WINDOWS’ on the partition represented by letter
‘C’, with subsidiary directories divided by a backslash. Multiple paths can be
presented in a hierarchial structure as shown in Fig. 1(a).

A file of special interest in a Windows OS is the Windows Registry (WR). WR
is a hierarchical database that stores configuration settings and options on MS
Windows OSes. See an example of the WR in Fig. 1(b). Since its first introduc-
tion with Windows 3.1, the WR’s primary purpose have extended from storing
configuration information for COM-based components to store configuration set-
tings for all Windows programs. For now, most of the Windows programs make
use of the registry to store respective configuration settings.

Files, especially WR, are one of the major sources for a program to read
configuration settings or application data. Because the paths of the files (registry
item) tend to vary little for different versions of the same program but much for
different programs, they can be considered as signatures of the program and thus
can exploited to distinguish one program from another. As seen from Fig. 1, both
file paths and WR paths can be organized in a hierarchical tree structure. With



A Fast Kernel on Hierarchial Tree Structures and Its Applications 269

(a) Windows Registry (b) Windows File System

Fig. 1. Hierarchical structures of Windows file system and registry

duplicated leading paths merged, such a tree structure is conceptually much
easier to show the structure of the file system than a list of paths. Hereinafter,
we make no difference between a tree of file paths and a tree of registry keys,
and call such a structure a File Tree (FTree).

3 Kernels on Trees

To facilitate machine learning algorithms operating on structured data such as
the tree composed of file paths, we take the well known kernel based approach.
The key to this approach is the kernel function which defines the proximity
between the tree structures. With such a kernel function, most popular learning
algorithms such as SVM, Linear discriminant analysis, c-means clustering, can
be readily applied. In the following, we discuss how to operate efficiently on the
tree structures for such a kernel function.

3.1 Kernels on FTrees

In Figures 2(a), 2(b), and 2(c), we show three FTrees, each of which is generated
from a sequence of paths. In these figures, a shaded node denotes a path/file
appeared in the sequence and all the nodes, shaded or open, compose a complete
FTree associated with the superset of three sequences. Intuitively, FTree A is
closer to FTree B than it is to FTree C: as show in Fig. 2(d), A shares four nodes
with B, but it only has two common nodes with C. Then, the distance from A to
C is comparable with that from B to C: A and C have two common nodes and so
do B and C. Interestingly, this common-subtree based similarity measure, agrees
with our intuition of difference between tree structures. This gives rise to a our
proposed kernel functions on FTrees.

Definition 1. A FTree, denoted by T , for a sequence S of n unique file paths,
is a rooted directed multi-way tree. Each node, other than the root, is labelled
with a nonempty segment of the file paths, i.e., a substring of the key in between
two consequent backslashes. No two child nodes of a node can have the same
label. For any leaf node i, the concatenation of the node-labels on the path from
root to leaf together with necessary back-slashes, spells out the corresponding
file path. The depth of a node i, d(i), is the minimum number of edges along
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(a) (b) (c)

(d) (e) (f)

Fig. 2. FTrees and maximum common sub-trees

any path from this node to the root. A weighted FTree is a FTree that each of
its nodes is associated with a counter c(i) that counts the number of nodes in
the subtree underneath.

FTree is simply a rigid definition of the tree structures common found in Win-
dows OS, see the trees in Figures 1 and 2 for an example. The concept can be
simply perceived by noticing the fact that in Windows OS, it is illegitimate to
have two or more identical sub-folders under any folder.

Definition 2. A generalized FTree Tg of T1 and T2 is the FTree created from
the superset of the two file path sequences, Sg, where Sg = S1∪S2. A maximum
common sub-tree Tc between T1 and T2 is a FTree created from the intersection
of the two file path sequences, Sc, where Sc = S1 ∩ S2.

Here, a sequence of file paths are treated as a set, where the order of the paths
are not take into consideration. Apparently, generalized FTree and maximum
common sub-tree can be extended for cases of more than two FTrees. Based on
the above definitions, we are ready to define the kernel between two FTrees.

Definition 3. The FTree kernel between two FTrees T1 and T2, is computed as

k(T1, T2) =
∑

i∈Tc(T1,T2)
c1(i) · c2(i), (1)

where c1(i) and c2(i) are the counters of T1 and T2 associated with leaf i in Tc.
Similarly, we define the plain (FTree) kernel between two FTrees T1 and T2 as

kp(T1, T2) =
∑

i∈Tc(T1,T2)
1. (2)

From the definition, the plain kernel between T1 and T2 equal the number of
nodes in Tc, i.e., the number of common nodes between T1 and T2. The weighted
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kernel also takes the number of appearances of the node labels in the file path
sequence into consideration.

When computing the kernel between two trees, sometimes it is natural to take
the depth of a shared node into consideration. For example, for the two nodes a
and e in Fig. 2(d), Ta and Tb are sharing e indicates that a is also in the common
sub-tree of Ta and Tb; however, it is not true, vice versa. To assign larger weights
to nodes that are located deeper in the FTree, we introduce a decay parameter,
λ, and define the depth weighted kernel between T1 and T2 as

kdw(T1, T2) =
∑

i∈Tc(T1,T2)
c1(i) · c2(i)λd(i), (3)

where d(i) is the depth of node i. Finally, we add kernel normalization to prevent
the imbalance caused by FTrees created from too many or too few file paths.
Thus, we define the normalized depth weighted FTree kernel as

k′
dw(T1, T2) =

∑
i∈Tc(T1,T2)

c1(i) · c2(i)λd(i)√
kdw(T1, T1) · kdw(T2, T2)

, (4)

Similarly, we define the depth weighted plain kernel between T1 and T2 as

kdwp(T1, T2) =
∑

i∈Tc(T1,T2)
λl(i), (5)

and normalized depth weighted plain kernel between T1 and T2 as

k′
dwp(T1, T2) =

∑
i∈Tc(T1,T2)

λd(i)√
kdwp(T1, T1) · kdwp(T2, T2)

. (6)

3.2 Properties of the Kernels

To justify the correctness of the kernel function definitions we have to show
whether they satisfy the positive semi-definite criterion. This is answered by the
following proposition.

Proposition 1. The weighted kernel defined in Eq. (1) is positive semi-definite.

Proof: Let Σ be the set of all possible file paths with length m < C, where C is
an arbitrarily large natural number. Let Ψ be the FTree generated by Σ. Then,
as long as the alphabet is limited and C is limited, Ψ is comprised of a finite
set of nodes, H . Denote the number of nodes in Ψ as N . Then we can create
a dictionary from the H , so that each node in H is assigned a unique index in
the dictionary. Because Ti ⊂ Ψ and Ti ∩ Ψ = Ti, Ti can be presented as an N -
dimensional vector, where the weight of the hth dimension is assigned to ci(h) if
node h is in Ti and to zero otherwise. In this formulation, k(Ti, Tj) is equivalent
to the inner product between the two associated N -dimensional vectors. Because
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Table 1. Algorithm to Create a (Generalized) FTree

function [T ] = ExpandGFTree(T , S, j = 0)

Inputs: T : A generalize FTree previously obtained;

S: Sequence of registry keys;

j: index of the FTree in the generalized FTree;

Outputs: T : Expanded generalized FTree;

1 for m = 1 : |S|
2 L = Split(Si); // split a registry key into list of node labels;

3 Insert(T , L, j, 0); // insert the node labels into the tree;

4 return T ;

function [T ] = Insert(T , L, j, l)
Inputs: L: List of node labels;

l: level of the current tree node;

5 T .c[j] += 1; // increment the counter for the j-th FTree;

6 if ( l > len(L) ) return T ; // return when reach the leaf;

7 [f , p] = Locate(L[l]); // locate the insert position of the label;

8 if (f) // find an identical node with L[l];
9 Insert(child[p], L, j, l + 1); // insert into the pth brach;

10 else // the labels does not exist, create a new branch;

11 child[len(child)] = new node;

12 Insert(child[len(child)], L, j, l + 1); // insert into the new branch;

13 return T ;

the inner product of N -dimensional vectors are positive semi-definite, k(·, ·) is
positive semi-definite. �
Corollary 1. The depth weighted kernel in Eq. (4) and the normalized depth
weighted kernel in Eq. (3) are positive semi-definite.

Corollary 2. The plain kernel defined in Eq. (2), depth weighted plain kernel
in Eq. (5), and normalized depth weighted kernel in Eq. (6) are positive semi-
definite.

3.3 Algorithm

The algorithms to create a FTree from a list of file paths are shown in Table 1.
To create a FTree, simply input an empty root node to function ExpandGFTree
together with the sequence of registry keys S. The j parameter is to make differ-
ence between individual FTrees in the generalized FTree and is set to zero for a
single FTree. To expand an existing FTree to a generalized FTree, use parameter
j to represent the identity of the inserted FTree.

3.4 Computational Costs

Suppose the location of child node label in the list of all existing labels of a
parent node (line 7 in Table 1) can be solved in O(1) time, the computational
cost to create a FTree is linear to the weighted number of nodes in the tree, i.e.,
O(N), where N is the number of segments of file paths in S. To compute the
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Table 2. Benchmark datasets information

Dataset max

depth

Training Test Classes

Registry 12 1200 1330 15

File I/O 8 800 785 15

kernel between two FTrees, we need to first build a generalized FTree Tg from
the two registry key sequences and then traverse Tg to compute the kernel. The
time complexity is O(N1 + N2).

Assume sufficient storage, a time-efficient way for computing a kernel matrix
between a fixed number of FTrees is to implement a generalized FTree for all the
FTrees such that for each node in the generalized FTree a vector is deployed to
store all the counters for every sequence. In this way, a sequence is examined only
once for creating the generalized FTree. Then the cost to compute a row/column
of the kernel matrix, i.e., all kernels between a fixed FTree Ti with all the other
FTrees, will be O(M |Ti|), where M is the number of FTrees embedded in the
generalized FTree and |Ti| is the number of nodes in Ti.

3.5 Experiments

In this section, we evaluate the efficacy of proposed kernels on a Windows appli-
cation classification task. Records of WR and file accesses are exploited to classify
the Windows processes into known categories. The dataset is collected by the
memento system [6], which is a virtualization based Windows API monitor. To
record the API sequences, the programs are run within the guest Windows sys-
tem that is installed upon a virtual machine. In the guest OS, DLL injection and
filter drive insertion are employed to record all registry and file accesses during
the life time of the target processes. The captured data are instantly forwarded
to the host OS where processing and analysis are done on real time basis. The
category of a process is determined by its program/process name. Each process
are divided into multiple data instances by shifting time windows with fixed size.
See more information on the classification task in Table 2.

Because of its popularity and good generalization performance, SVM is chosen
as the classifier to incorporate with the proposed kernels. We compare the gen-
eralization ability between the proposed methods. All the necessary parameters,
namely, width parameter γ, margin parameter C, and the gap parameter λ for
FTree based kernels, are selected by 5-fold cross validation on the training set.
We use the LibSVM toolbox [7] to train the SVM classifiers. For comparison, we
also report the result for TF-IDF based features.

In Table 3, we compare the recognition rate of the TF-IDF representation and
the FTree kernel approach. As seen in the table, the proposed FTree based string
kernels for most of the cases have outperformed the TF-IDF feature based SVM.
For the registry dataset, normalized gap weighted kernel shows the best accuracy
of about 95%. And for the File access dataset, the normalize gap plain kernel
show the best accuracy. Although not significant, it seems that normalization



274 T. Ban, R. Ando, and Y. Kadobayashi

Table 3. Recognition Rate Comparison

Dataset TFIDF-

SVM

Nor.

W.FTree

W.FTree Nor.

U.FTree

U.FTree

Registry 93.31 95.17 94.28 94.72 93.44

File I/O 87.52 89.35 90.07 90.63 89.42

of the kernels can help to improve the recognition rate to some extent. Since
there is no significant difference between the generalization performance of a
weighted kernel and a plain kernel, it may be more convenient to neglect weight
information in the generalized FTree. And thus can lead to a considerable saving
on the storage to retain the counter for all FTrees.

From another point of view, it is quite promising that an accuracy above 90%
can be achieved using only such a small subset of the whole system call library.
By collecting more information on other categories of system calls could possibly
increase the accuracy to some extent and make system call analysis an powerful
tool for OS status monitoring.

4 Conclusion and Future Research

In this paper, we have presented a study on how to apply machine learning tech-
niques for realtime monitoring and analyzing application behaviors in a Windows
guest OS. A group of computationally efficient kernels function are proposed to
measure the proximity between programs and promising generalization perfor-
mance is achieved on two real world datasets with moderate size.

For future research, the proposed frameworkwill be evaluated on larger datasets
collected from different OSes. And we will also explore the possibility to treat Win-
dows security problems with this approach.
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Abstract. The new surge of interest in cloud computing is accompanied with the 
exponential growth of data sizes generated by digital media (images/audio/video), 
web authoring, scientific instruments, and physical simulations. Thus the 
question, how to effectively process these immense data sets is becoming 
increasingly urgent. Also, the opportunities for parallelization and distribution of 
data in clouds make storage and retrieval processes very complex, especially in 
facing with real-time data processing. Loosely-coupled associative computing 
techniques, which have so far not been considered, can provide the break through 
needed for cloud-based data management. Thus, a novel distributed data access 
scheme is introduced that enables data storage and retrieval by association, and 
thereby circumvents the partitioning issue experienced within referential data 
access mechanisms. In our model, data records are treated as patterns. As a result, 
data storage and retrieval can be performed using a distributed pattern recognition 
approach that is implemented through the integration of loosely-coupled 
computational networks, followed by a divide-and-distribute approach that allows 
distribution of these networks within the cloud dynamically. 

Keywords: Pattern Recognition, Neural Networks, Associative Computing, 
Single-Cycle Learning, Distributed Hierarchical Graph Neuron. 

1   Introduction 

Cloud computing encompasses a pay-per-use paradigm for providing services over 
the Internet in a scalable manner. Supporting data intensive applications is an 
essential requirement for the clouds.  However, dynamic and distributed nature of 
cloud computing environments makes data management processes very complicated, 
especially in the case of real-time data processing/database updating. According to 
Shiers [1], “it is hard to understand how data intensive applications, such as those that 
exploit today’s production grid infrastructures, could achieve adequate performance 
through the very high-level interfaces that are exposed in clouds”. In addition to this 
complexity, there are other underlying issues that need to be addressed properly by 
any data management scheme deployed for clouds. Some of these concerns are 
highlighted by Abadi [2] including: capability to parallelize data workload, security 
concerns as a result of storing data at an untrusted host, and data replication 
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functionality. Hence the existing data management schemes do not work well when 
data is partitioned among numerous available nodes dynamically [3].    

An approach towards application virtualization in cloud, which offers greater 
portability, manageability and compatibility of applications and data, has yet to be 
fully-explored. In this regard, the concept of universal data access for cloud 
computing can act as an alternative towards database-application integration while it 
can provide a common access mechanism through the use of fast and scalable data 
access framework within cloud.  With this in mind, in this research paper we would 
like to explore new possibilities to evolve a novel virtualization scheme that can 
efficiently partition and distribute data for clouds. For this matter, loosely-coupled 
associative techniques, not considered so far, can be the key to effectively partitioning 
and distributing data in the clouds.  Doing so will improve elastic scaling of system 
resources and remove one of the main obstacles in provisioning data centric software-
as-a-service (SaaS) for the clouds. Our approach will entail two-fold benefit. On one 
hand, applications based on associative computing models will efficiently utilize the 
underlying hardware to scale up and down the system resources dynamically and on 
the other hand, the main hurdle towards providing scalable partitioning and 
distribution of data in the clouds will be removed, bringing forth a vastly superior 
solution for virtualizing data intensive applications and the system infrastructure to 
support pay on per-use basis.  

2   Cloud Data Access Scheme 

The efficiency of the cloud system in dealing with data intensive applications through 
parallel processing, essentially lies in how complex data is partitioned among nodes, 
and how collaboration among nodes is handled to accomplish a specific task. Data 
access schemes for cloud infrastructure should be able to distribute data across 
different networks and provide data services for remote clients. As a result, and to 
address the aforementioned concerns in relation to data storage and retrieval in cloud, 
any data access scheme should aim to handle partitioning between processing nodes, 
as well as node collaborations in a robust manner. These two features are still lacking 
in the current data access mechanisms. Hence, new data management approaches 
need to be investigated for cloud computing environments. In this paper, a distributed 
neural network technique is proposed by redesigning data management architecture 
from a scalable associative computing perspective for creating a database-like 
functionality that can scale up or down over the available infrastructure without 
interruption or degradation, dynamically. It eliminates data imbalances and completes 
transition to cloud by replacing referential data access mechanisms with fast and 
highly distributable associative memory. 

3   Efficient Model Using Single-Cycle Learning 

Our proposal is based on a special type of Associative Memory (AM) model, which is 
readily implemented within distributed architectures. Our aim is to apply a data access 
scheme that enables data retrieval to be conducted across multiple records and data 
segments within a single-cycle utilizing a parallel approach.  
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3.1   Distributed Hierarchical Graph Neuron (DHGN) 

DHGN is a novel distributed associative memory (AM) algorithm for pattern 
recognition. The main idea behind this algorithm is that common pattern recognition 
approaches for various kinds of patterns would be able to be conducted within the 
body of a network. DHGN shifts the recognition algorithm paradigm from employing 
CPU-centric processing towards network-centric processing approach. It also adopts 
single-cycle learning with in-network processing capability for fast and accurate 
recognition scheme. The basic foundation of DHGN algorithm is based upon the 
functionalities and capabilities of two other associative memory algorithms known as 
Graph Neuron (GN) [4] and Hierarchical Graph Neuron (HGN) [5]. It eliminates the 
crosstalk issue in GN implementation, as well as reduces the complexity of HGN 
algorithm by reducing the number of processors required for its execution. DHGN is 
also a lightweight pattern recognizer that supports adaptive granularity of the 
computational network, ranging from fine-grained networks such as WSN to coarse-
grained networks including computational grid. Figure 1 depicts a GN array, which is 
capable of converting the spatial/temporal patterns into a simple graph-based 
representation in which input patterns are compared with the edges in the graph for 
memorization or recall operations. Recognition process within DHGN involves a 
single-cycle learning of patterns on a distributed processing manner. Among various 
applications of the GN based AM, an input pattern in GN pattern recognition may 
represent bit elements of an image [6] or a stimulus/signal spike produced within a 
network intrusion detection application [7]. In order to solve the  issue  of  the   
crosstalk  in  GN  model  due  to  the  limited perspective of GNs, the capabilities of 
perceiving GN neighbours in each GN was expanded in Hierarchical Graph Neuron 
(HGN) to prevent pattern interference [5]. We then extended the HGN by dividing 
and distributing the recognition processes over the network (See Figure 2) [6].  

 

 

Fig. 1. An eight node GN is in the process of storing patterns. P1 (RED), P2 (BLUE), P3 (BLACK), 
and P4 (GREEN) 
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Fig. 2. DHGN distributed pattern recognition architecture 

At macro level, DHGN pattern recognition algorithm works by applying a divide-
and-distribute approach to the input patterns. It involves a process of dividing a 
pattern into a number of sub-patterns and the distribution of these sub-patterns within 
the DHGN network as shown in Figure 2. This distributed scheme minimizes the 
number of processing nodes by reducing the number of levels within the HGN. Figure 
3 shows the divide-and-distribute transformation from a monolithic HGN composition 
(top) to a DHGN configuration for processing the same 35-bit patterns (bottom). The 
base of the HGN structure in Figure 3 represents the size of the pattern. Note that the 
base of HGN structure is equivalent to the cumulative base of all the DHGN 
subnets/clusters. This transformation of HGN into equivalent DHGN composition 
allows on the average 80% reduction in the number of processing nodes required for 
the recognition process. Therefore, DHGN is able to substantially reduce the 
computational resource requirement for pattern recognition process – from 648 
processing nodes to 126 for the case shown in Figure 3. 

Unlike other pattern recognition algorithms such as Hopfield Neural Network 
(HNN) [8] and Kohonen SOM [9], DHGN employs in-network processing feature 
within the recognition process. The test reveals that DHGN offers higher accuracy 
with minimum training data, in comparison to SOM. Furthermore, our distributed 
approach requires no training iteration, as it adopts a single-cycle learning 
mechanism. Comparatively, SOM requires high training iteration in order to achieve 
high classification accuracy. This processing capability of DHGN allows the 
recognition process to be performed by a collection of lightweight processors 
(referred to PEs). PE is an abstract representation of processor that could be in the 
form of a specific memory location or a single processing node. DHGN also 
eliminates the need for complex computations for event classification technique. With 
the adoption of single-cycle learning and adjacency comparison approaches, DHGN 
implements a non-iterative and lightweight computational mechanism for event 
recognition and classification. 
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Fig. 3. Transformation of HGN structure (top) into an equivalent DHGN structure (bottom) 

The results of our performance analysis have also shown that DHGN recognition 
time increases linearly with an increase in the number of processing elements (PEs) 
within the network. This simply reveals that DHGN’s computational complexity is 
also scalable with an increase in the size of the sub-patterns. DHGN allows the 
recognition process to be conducted in a smaller sub-pattern domain, hence 
minimizing the number of processing nodes which in turn reduces the complexity of 
pattern analysis. In addition, the recognition process performed using DHGN 
algorithm is unique in a way that each subnet is only responsible for memorizing a 
portion of the pattern (rather than the entire pattern). A collection of these subnets is 
able to form a distributed memory structure for the entire pattern. This feature enables 
recognition to be performed in parallel and independently. The decoupled nature of 
the sub-domains is the key feature that brings dynamic scalability to data management 
within cloud computing. 

4   Tests and Results 

An important contribution of our research work is the identification of novel DHGN 
usages for distributed information processing in clouds. For that purpose, a web-based 
DHGN is implemented to illustrate the fact that dynamic scalability of DHGN has the 
potential to remarkably empower virtualization in clouds and drive the future of data 
centre networking. Using this web-based DHGN, users can start drawing images 
based on provided image templates. For simplicity of our model, users are provided 
with three sample pattern templates of Apple, Banana and Leaf as depicted in Figure 
4. As a result, the user drawn image will be compared with these three master patterns 
using DHGN algorithm. The approach is not only capable of detecting the type of 
image but it also can provide users with various data analysis based on their drawn 
input patterns (See Figure 5). 

Having an image as an input pattern, the bitmap object built from the input pattern 
is re-sized to form a static size of 128x128. Then, DHGN model for this object is 
formed by using 128 HGNs. In fact, each individual HGN is assigned the task of 
processing a single line of image. Following that, a vertex of size 16K is constructed 
which includes total number of HGN nodes (16384 nodes). 
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Fig. 4. Three provided master patterns as image templates (Apple, Banana, and Leaf) 

 

 

Fig. 5. User drawn image is detected as an Apple with 62.6% distortion rate 

As it is clearly depicted in Figure 5, the input pattern is heavily distorted compared 
with the provided apple base pattern. However, the algorithm exhibits its remarkable 
strength by detecting the image as an apple, while its distortion rate is almost 62.6%. 
Comparing the input pattern with banana and leaf pattern templates, results in 
distortion rates of 87.8% and 82.7% respectively.  

Figure 6(a) illustrates total number of positive and negative matches between the 
input pattern nodes and all of the three pattern templates. Figure 6(b) represents 
distortion rates for each individual line of image (each HGN) when compared against 
three provided base patterns. Using simulated annealing technique and to minimize 
distortion rate, input image is also rotated within a pre-defined range of values. The 
rotation range for the example case depicted in Figure 5 is set to -2 to 2 degrees with a 
step of 1 degree. As a result, the image is rotated in steps of 1-degree and each time it 
is compared with all three master patterns using DHGN pattern matching technique. 
As can be seen from Figure 7, the minimum distortion rate is achieved with rotation 
degree of -2 (2 degrees anticlockwise). 
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(a) 

 

 
(b) 

Fig. 6. (a) Total number of positive and negative matches. (b) Distortion rates for each line of 
image (each constructed HGN).  

 

 

Fig. 7. Image distortion rates vs. rotation degrees 
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5   Remarks and Conclusion 

This paper heralds a new breed of innovative cloud applications by making data 
universally available within the network. The work presented here enables innovative 
cloud applications on two accounts. Firstly, it brings a content-based (associative) 
searching mechanism to Clouds where in complex data types such as images may be 
specified as keys. Secondly, DHGN is the only distributable associative memory 
approach that provides single-cycle learning and entails a large number of loosely 
coupled parallel operations to achieve vastly improved performance. In fact, strength 
of DHGN lies in the processing of non-uniform data patterns as it implements a finely 
distributable framework at the smallest (atomic) logical sub-pattern level. The results 
are easily obtained by summation at the overall pattern level. DHGN is also a highly 
scalable algorithm that incorporates content addressable memory within a clustered 
framework. This one-shot approach will allow real-time in-network data 
manipulation; essential feature for online processing. Our proposed technique is 
primarily focused for use within the clouds. However, this technique has the potential 
of wider use provided we can compare its characteristics with state-of-the-art 
techniques in data management using a pattern recognition scheme. Our approach is 
fundamentally different from all published approaches in data management. The large 
heterogeneous datasets created for our case studies can provide an excellent resource 
to compare and contrast the one shot learning, scalability, and accuracy of our 
approach with a number of well-established data management techniques. 
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Abstract. Classic MEB (minimum enclosing ball) models characteris-

tics of each class for classification by extracting core vectors through a

(1 + ε)-approximation problem solving. In this paper, we develop a new

MEB system learning the core vectors set in a group manner, called group

MEB (g-MEB). The g-MEB factorizes class characteristic in 3 aspects

such as, reducing the sparseness in MEB by decomposing data space

based on data distribution density, discriminating core vectors on class

interaction hyperplanes, and enabling outliers detection to decrease noise

affection. Experimental results show that the factorized core set from

g-MEB delivers often apparently higher classification accuracies than

the classic MEB.

Keywords: Minimum Enclosing Ball, Core Vector Machine, Group

Minimum Enclosing Ball.

1 Introduction

The minimum enclosing ball (MEB) problem is to compute a ball of minimum
radius enclosing a given set of objects (points, balls, etc) in Rd. It has been
wildly implemented for clustering applications, such as support vector clustering
[1]; classification applications, such as area gap tolerant classifiers [2], and core
vector machine (CVM) [3]; as well as approximation applications, such as 1-
cylinder problem approximation [4].

Classic MEB for classification computes a (1 + ε)-approximation [4] for a
minimum radius ball learning, and extracts those data points located at the
outer area of a MEB for classification modelling. The set of those extracted data
points characterize the given entire dataset, thus are called core vector set or
core set. For classification modelling, MEB can be used to approximate each
class data distribution, so that one class can be distinguished from another by
core set computing.

However in practice, such classic MEB has the following difficulties (1) MEB
encloses often sparseness together with data. To enclose an isolated outlier
points, a huge MEB is required, which makes the MEB include actually more
sparseness than the data occupation (2) MEB keens on enclosing data, thus dis-
ables the detection of any outliers despite that outliers produce the sparseness
of MEB.
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To mitigate the above problems, this paper proposes a novel group MEB (g-
MEB) approach to learning core set in a group manner. g-MEB sets MEBs in
different data distribution area, reducing the sparseness in MEB by decomposing
data space based on data distribution density, discriminating core vectors on
class interaction hyperplanes, and enabling outliers detection to decrease noise
affection. The rest of paper is structured as follows: Section 2 reviews the original
MEB algorithm. Section 3 presents the proposed g-MEB learning. In Section 4,
we cover experimentation and algorithm evaluation. Lastly, in Section 5 we draw
our conclusion and state future directions.

2 Classic MEB

Given a data matrix X ∈ R
n×d in l categories, X = [X1,X2, . . . ,Xl] where

Xi ∈ R
ni×d and

∑l
i=1 ni = n. An exact MEB over X is modelled as a smallest

hypersphere BX = {c, r,X}, where c, r are the center and radius of BX, respec-
tively. Alternatively, the MEB can be computed by (1 + ε)-approximation [5] as
a (1 + ε) MEB BX = {c, (1 + ε)r,S}, where ε > 0, and S ⊂ X, is the core set
of X that contains the instances located at the outer area. Alternatively, kernel
(1 + ε)-approximation MEB computing is conducted by 2 steps.

The first step is Kernel MEB initialization. Given data matrix X = ∪l
i=1Xi,

and 0 < ε < 1, we select subset S = {x1,xz | argmaxxz∈Xi ||xz − x1||,x1 ∈ Xi}
and have the (1 + ε)-approximation MEB over S as, BS = {ci, (1 + ε)ri,S}.
To adopt BS for kernel computing, we map S with an associated embedding ϕ
using kernel κ satisfying κ(x, z) = 〈ϕ(xa), ϕ(xb)〉. Then, we obtain ci and ri by
solving the following optimization problem: minci∈Rd maxxz∈S ||ci − ϕ(xz)||, or
more precisely

minci,ri r2
i

subject to ||ci − ϕ(xz)||2 = (ϕ(xz) − ci)′(ϕ(xz) − ci) ≤ r2

xz = S
, (1)

which can be solved by introducing a Lagrange multiplier αz ≥ 0 for each con-
straint

L(ci, ri, α) = r2
i +

|S|∑
z=1

αz

[
||ϕ(xz) − ci||2 − r2

i

]
. (2)

Calculating the derivative of ci and ri from Eq. (2),

∂L(ci,ri,α)
∂ci

= 2
∑|S|

z=1 αz(ϕ(xz) − ci) = 0, and
∂L(ci,ri,α)

∂ri
= 2ri

(
1 −

∑|S|
z=1 αz

)
= 0,

(3)

we have
∑|S|

z=1 αz = 1, and

ci =
|S|∑
z=1

αzϕ(xz), ri =
√

α′diag(K) − α′Kα. (4)



Factorizing Class Characteristics via Group MEBs Construction 285

Thus, with kernel definition, the above (1+ ε)-approximation MEB is renovated
to kernel MEB as BS = {ci, (1+ε)ri, ϕ(S)} in which ci and ri are obtained from
Eq. 4.

The second step is MEB expansion. Based on the above initialized S, we
update BS by adding the furthest point to BS, S = S∪x∗, x∗ = arg maxx∈Xi ||ϕ
(x) − ci||, where the distance of x to BS is evaluated in kernel space as:

‖ci − ϕ(x)‖2 =
∑

xa,xb∈S

αaαbκ(xa,xb) − 2
∑
xa∈S

αaκ(xa,x) + κ(x,x). (5)

The MEB expansion continues until Xi ⊂ BS. As a result, we obtain kernel
MEB for ith class data Xi.

For the overall dataset X = ∪l
i=1Xi, let Qi = ϕ(S) be the core set, then we

have the general MEB model ΩMEB as a set of kernel MEB,

ΩMEB =

⎛⎜⎜⎜⎝
c1, (1 + ε)r1, Q1

c2, (1 + ε)r2, Q2

...
...

...
cl, (1 + ε)rl, Ql

⎞⎟⎟⎟⎠ , (6)

and summarize the computation of MEB learning as Algorithm 1.

Algorithm 1. Kernel MEBs algorithm

Input: Set of points X = ∪l
i=1Xi ∈ R

d; parameter ε = 2−m

Output: Kernel MEB learning model ΩMEB

1: for each Xi ⊂ X do
2: Initialize Q0

i ← x1,p, where p ∈ Xi is the furthest instance to x1

3: Computer the initial MEB B0
i and its radius r0

i and center c0
i using equation 4

on Q0
i

4: for u ← 0 to m − 1 do
5: if Xi ⊆ Bu

i then
6: find x ← arg maxx∈Xi ||x − cu

i ||
7: Qu

i ← {Qu
i , ϕ(x)}

8: Computer MEB Bu
i and its radius ru

i and center cu
i using equation 4 on

Qu
i

9: else
10: ci ← cu

i , ri ← ru
i , and Qi ← Qu

i

11: Break for loop

12: end if
13: end for
14: ΩMEB ← ΩMEB

⋃
{ci, (1 + ε)ri,Qi}

15: end for

3 The Proposed g-MEB Learning

In terms of complex data distribution, a large MEB follows the sparseness of
the ball, thus is often unable to approximate a data distribution accurately. A
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single MEB for one class data is likely to encloses wrongly almost all data points
from another class, especially when data is zonally distributed. As a solution, a
number of smaller MEBs are able to drill into the details of any data distribution,
apparently allowing a more accurate approximation.

Motivated by this, the above kernel MEB is renovated for group manner
MEB computing (g-MEB). Instead of addressing a whole class data Xi with
one MEB BQi , g-MEB models class data using with a set of MEBs BQi =
∪k

j=1BQu
i,j

, where k is the number of MEBs. Consider that MEB learning is
an iterative learning process, we represent an individual kernel MEB here as
BQu

i,j
= {cu

i,j , (1 + ε)ru
i,j , ϕ(Qu

i,j)} with j as the index of MEB, and u as the
iteration number of MEB updating. In this way, given X = ∪l

i=1Xi as the
training dataset, the proposed g-MEB learning is described as follows.

Similar to kernel MEB, we initialize one MEB (i.e. BQ0
i,k

, k = 1) on one
class data Xi at very beginning. Here, we initialize the core set as Q0

i,1 =
{ϕ(xa), ϕ(xb)}, where xa is the furthest data point to a random x ∈ Xi and
xb is calculated as:

xb = xa +
xa − arg maxx∈X ||xa − x||

λ
, λ > 1. (7)

Then, we obtain BQ0
i,1

= {c0
i,1, (1 + ε)r0

i,1,Q
0
i,1} using Eq. 4.

Theorem 1. The first initialized MEB’s radius r0
i,1 ≈ Δ

2λ , where Δ denotes the
diameter of Xi.

Proof. Science Q0
i,1 = ϕ(xa,xb), xa is the furthest point to x1. Clearly, the

distance from xa to it’s furthest data point approximate to δ. Then, xb locates
about Δ/λ away from xa. According to the definition r0

i,1 is the radius of BQ0
i,1

,
we have r0

i,1 ≈ Δ
2λ .

If there has x ∈ Xi not contained in any MEB BQu−1
i,j

, (j = {1, 2, . . . , k}). It
results in one of the following 3 g-MEB updating cases.

In the first case, if MEB BQu
i,j

over the existed core set Qu−1
i,j with x (i.e.

Qu
i,j = Qu−1

i,j ∪ ϕ(x)) has radius ru
i,j , which is less or equal to the upper bound

value as 1 + ε2×η
16 , (η > 1) times of the existed radius ru−1

i,j . The existed MEB
BQu−1

i,j
is updated by replacing with BQu

i,j
. Note that, cu−1

i,j is the closest MEB
center to x.

Theorem 2. Given an upper bound of radius increment as ru
i,j ≤ (1+ ε2×η

16 )ru−1
i,j ,

the g-MEB expansion is between 32λ/ε2 to 128λδ/ε2times.

Proof. Science r0
i,j ≥ Δ/2λ, and each step we increase the radius by at least

(Δ/4)ε2/16 = Δε/64, it follows that we cannot encounter this case more than
64/ε times, as δ is an upper bound of the radius of the minimum enclosing ball
of Xi.
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In the second case, if radius ru
i,j is greater than the upper bound value (1 +

ε2×η
16 )ru−1

i,j , a new fragmentary core set Q0
i,k+1 = {ϕ(x)} is created as a completed

core set which has at least 2 vectors.
In the third case, if the distance from x to the closest fragmentary core set

Q0
i,j is less than Δ

λ , we add ϕ(x) into the fragmentary core set Q0
i,j as Q0

i,j =
{Q0

i,j, ϕ(x)}, in this way, the fragmentary core set Q0
i,j becomes completed. In

addition, a new MEB BQ0
i,k

= {c0
i,k, (1 + ε)r0

i,k,Q0
i,k}, (k = k + 1) is created

using Eq. 4. The threshold Δ
λ is also considered as the outliers threshold, as if a

single data point away from the rest data farther than the threshold, this data
point is treated as an outlier by g-MEB.

Theorem 3. The total number of g-MEB k equals to approximately λ/2.

Proof. Science we guarantee that the radius of each firstborn g-MEB r0
i,j , (j =

{1, 2, . . . , k}) is less than 1
2λ diameter of the given data Xi. Thus, the total

number of the g-MEB k approximates to λ/2.

The g-MEB updating is terminated once Xi ⊂ ∪k
j=1BQk

i,j
. For the overall dataset

X = ∪l
i=1Xi, let ki be the number of MEBs of i-th class, then we factorize the

core sets by abandoning these core vectors contained in just one MEB. As a
result, we have the g-MEB model ΩgMEB as the set of MEBs that constructed
by the above 3 g-MEB updating cases.

ΩgMEB =

⎛⎜⎜⎜⎜⎝
∪k1

j=1c1,j ∪k1
j=1(1 + ε)r1,j ∪k1

j=1Q1,j

∪k2
j=1c2,j ∪k2

j=1(1 + ε)r2,j ∪k2
j=1Q2,j

...
...

...
∪kl

j=1cl,j ∪kl

j=1(1 + ε)rl,j ∪kl

j=1Ql,j

⎞⎟⎟⎟⎟⎠ , (8)

and summarize the computation of MEB learning as Algorithm 2.

4 Experiments and Discussions

In this section, we give 2 experiments where we used g-MEB for benchmark UCI
data classification, and Face Membership Authentication (FMA) [6].

4.1 Classification Accuracy Comparison

To evaluate class factorization ability of g-MEB, MEB and g-MEB are com-
pared in terms of the classification performance achieved with 4 conventional
classification methods on 5 two-class and 5 multi-class benchmark datasets. For
each dataset, we conducted K folds cross validation, we set K = 10 as 10-fold
cross-validation is commonly used.

Table 1 presents the comparison results. For two-class datasets, MEB outper-
forms other 4 conventional classification methods for 3 out of 5 datasets, but
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Algorithm 2. g-MEB algorithm

Input: Set of points X ∈ R
d; parameter ε, λ, and η

Output: A g-MEB learning model ΩgMEB

1: for each Xi ⊂ X do
2: Initialize k ← 1, T = ∅, and Δ which is the diameter of x
3: Initialize Q0

i,j by equation 7

4: Computer the initial MEB B0
i,1 and its radius r0

i,1 and center c0
i,1 using

equation 4 on Q0
i,1

5: for each x ∈ Xi do
6: if x /∈ ∪k

j=1Bi,j then
7: Find t ← arg mint∈T ||x − t||
8: if ||x − t|| < Δ

2λ
then

9: Remove t from T
10: k ← k + 1

11: Q0
i,k = {ϕ(t), ϕ(x)}

12: Computer a new MEB B0
i,k and its radius r0

i,k and center c0
i,k using

equation 4 on Q0
i,k

13: else
14: Find cu

i,j ← arg minj∈{1:k} ||x − cu
i,j ||

15: Qu+1
i,j ← {Qu

i,j , ϕ(x)}
16: Update MEB Bu+1

i,j and its radius ru+1
i,j and center cu+1

i,j using equation

4 on Qu+1
i,j

17: if ru+1
i,j > ru

i,j × (1 + ε2×η
16

) then
18: T ← T ∪ x
19: Undo this update

20: end if
21: end if
22: end if
23: end for
24: ΩgMEB ← ΩgMEB

⋃
{∪k

j=1ci,j ,∪k
j=1(1 + ε)ri,j ,∪k

j=1Qi,j}
25: end for

MEB is defeated by g-MEB for all dataset except for ionosphore. For multi-class
datasets, again g-MEB wins for 4 out of 5 datasets. In comparison to MEB,
the g-MEB exhibits a more stable behavior in that g-MEB wins MEB in both
two-class and multi-class categories. The results indicate that g-MEB is worthy
to be noted as a perfect method for most of the selected datasets.

4.2 Class Factorization Evaluation

To evaluate class factorization ability of g-MEB, again we study the FMA prob-
lem [6] which is to distinguish the membership class from the non-membership in
a total group through a binary class classification. FMA involving different lev-
els of class overlapping which involves most discriminative class characteristics
[7] because class overlapping increases while the membership size is closing to
the non-membership size. The size of the membership group can be dynamically
changed which makes class characteristic of membership and non-membership
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Table 1. Classification accuracy comparison on 10 selected data sets

Dataset KNN Bayes MLP SVM MEB g-MEB

liver-disorder 64.92% 63.17% 71.28% 64.92% 59.13% 65.13%
breast-cancer 96.63% 95.97% 96.65% 97.07% 95.43% 97.07%

heart 82.59% 75.65% 83.33% 83.19% 83.67% 84.11%
ionosphere 64.11% 65.32% 89.16% 92.06% 92.73% 92.72%
web Spam 93.32% 84.13% 94.62% 94.60% 94.64% 94.89%

iris 94.67% 90.35% 95.97% 96.00% 96.66% 96.66%
wine 97.16% 71.31% 93.91% 74.85% 73.76% 83.12%

vehicle 71.04% 66.24% 77.78% 71.61% 71.61% 78.13%
vowel 96.89% 91.37% 98.08% 97.47% 97.45% 98.56%

KDD99 89.32% 75.21% 90.53% 90.42% 90.23% 94.95%

manually adjustable, the smaller size of membership group, the less discrimina-
tive class characteristics involved.

FMA is performed on MPEG-7 face dataset, which consists of 1355 face im-
ages of 271 persons (5 different face images per person are taken). We set the
membership size ranging from 35 to 230 with a 10 persons interval to achieve
datasets with dynamic class characteristics, and compared the proposed g-MEB
with MEB under the condition of dynamic distinctive class characteristics in
FMA.
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Fig. 1. (a) and (b) shows the comparison results of MEB and g-MEB on classification

accuracy and number of core vectors under the condition of different membership group

size, respectively

Fig. 1a and Fig. 1b illustrate the number of core vectors and classification
accuracy for MEB and g-MEB under the condition of different membership group
size respectively. As seen in Fig. 1a, the number of core vectors from MEB stays
constantly around 80, while the membership group size is growing from 35 to 135
(equals to 50% of total group size). However, the number of core vectors from
g-MEB has a spiking increase, but never going above the number of core vectors
from MEB. On the other hand, Fig. 1b shows that g-MEB achieves general
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higher FMA accuracy than MEB, and the difference becomes as significant as
8% when the member group size is ranged from 50 to 135. Recall that the number
of g-MEB core vectors is always smaller than the number of MEB core vectors,
which indicates that g-MEB core vectors are more discriminative than MEB for
FMA. In other words, g-MEB is more capable than MEB on factorizing the class
characteristics of membership and non-membership as fewer g-MEB core vectors
delivers often better FMA.

5 Conclusions and Future Work

In this paper, a novel g-MEB is proposed that learns characteristics of class
(i.e. core vectors) in a group manner. g-MEB factorizes class characteristics by
reducing the sparseness area, discriminating core vectors on class interaction hy-
perplanes, and enabling outliers detection. g-MEB is evaluated by conducting a
comparison of classification accuracy on 10 data sets with 5 conventional classi-
fication methods. g-MEB obtains 7 out of 10 highest classification accuracy and
compared to classic MEB, g-MEB wins on all the data sets except ionosphere.
To evaluate class factorization ability of g-MEB, we compare g-MEB with clas-
sic MEB on FMA, the result shows that g-MEB is more capable than MEB on
factorizing the class characteristics of membership and non-membership as fewer
g-MEB core vectors delivers often better FMA.

In our further work, we will address the optimization problem of the total
number of g-MEB required for optimal solution. It can only be determined using
cross validation method and by investigating on measuring the density of the
MEB, and further exploiting new models based on ‘group minimum enclosing
ball’.

References

1. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support vector clustering. J.

Mach. Learn. Res. 2, 125–137 (2002)

2. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data

Mining and Knowledge Discovery 2, 121–167 (1998)

3. Tsang, I.W., Kwok, J.T., Cheung, P.M.: Core vector machines: Fast svm training

on very large data sets. Journal of Machine Learning Research 6, 363–392 (2005)
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Abstract. This paper contributes in colour classification under dynami-

cally changing illumination, extending further the capabilities of our pre-

vious works on Fuzzy Colour Contrast Fusion (FCCF), FCCF-Heuristic

Assisted Genetic Algorithm (HAGA) for automatic colour classifier cali-

bration and Variable Colour Depth (VCD). All the aforementioned algo-

rithms were proven to accurately in real-time with a pie-slice technique.

However, the pie-slice classifier is the accuracy-limiting factor in these

systems. Although it is possible to address this problem by using a more

complex shape for specifying the colour decision region, this would only

increase the chances of overfitting. We propose a hybrid colour classifi-

cation system that automatically searches for the best colour space for

classifying any target colour. Moreover, this paper also investigates the

general selection of training sets to get a better understanding of the gen-

eralisation capability of FCCF-HAGA. The experiments used a profes-

sional Munsell ColorChecker Chart with extreme illumination conditions

where the colour channels start hitting their dynamic range limits.

1 Introduction

An exemplary colour classifier in colour-based object recognition system gen-
erally compensates for the effects of illumination changes in the exploratory
environment to accurately identify colours comprising an object and recognising
it. Real-time operation and automatic calibration are also one of the preferred
capabilities, and these are all embodied in the combination of FCCF [10], FCCF-
HAGA [13], VCD and VCD-LUT [14]. This work proposes an extension of these
previous algorithms aggregating into an FCCF-HAGA-VCD-VCD LUT system,
with automatic best colour space identification. The inclusion of the best colour
space identification appears almost trivial, but this easily complicates the colour
classifier extraction task as the search space grew seven times bigger. Per target
colour, there are 12 colour descriptors [13] to calibrate (classification angles
and radii, contrast angles, colour contrast operations and variable colour depth
sub ranges), 7 colour spaces to explore and 10 different illumination settings. It
also requires tweaking of the fitness function to accurately pick the best colour

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 291–299, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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classifiers across the many colour spaces. Due to the inherent limitations of the
camera, and the extreme illumination settings, the training sets are plagued
with duplicate colour pixels representing different colour classes. As depicted in
Figure 1, a camera would capture a pink colour patch, under dark illumina-
tion, with some red colour pixels along its border. While a red colour patch,
under bright illumination would be rendered with pink colour pixels along its
border. Such colour pixel duplications makes the colour classifier extraction task
extremely difficult.

Fig. 1. Example of Duplicate Colour Pixels. The left pane shows the test set image,

while the right pane shows the colour classification results for the Brute Force LUT

algorithm for target colour Red. On the right pane, the red pixels depict the correct

classifications for the red target colour. The green pixels denote the masks for the red

targets but was missed. The yellow pixels are duplicate colour pixels of the red targets

but they are actually representing another shade of red called ’moderate red’. These

duplications are due to changes in illumination conditions.

An earlier attempt at using a Fuzzy-Genetic approach to colour classifica-
tion [12] is using 4-inputs denoting proportional rgb colour values with a com-
ponent involving intensity for each input. This approach has the effect of simple
white-balancing on the inputs. In contrast to this research, a prototype colour
sensor was used in their system, and not a typical colour CCD camera. Their
classification system is using a conventional fuzzy inference system with 4 fuzzy
sets per rule, implemented by trapezoidal membership functions. Moreover, 4
parameters were used to describe each membership function. The Genetic Al-
gorithm (GA) was used solely for optimising these membership functions. On
the other hand, in our proposed research we are using the GA to calibrate not
just the membership functions. In the robot soccer framework [6] [5], there are
lots of evidences in the literature suggesting that working under uncontrolled
illumination settings is extremely difficult. In fact, in [8] it was reported that
in 2004, 24 robot teams around the world attempted to solve the problem, but
their approach failed to cope up when lights turned dimmer. It was also noted
that traditional colour segmentation usually works well only under one illumi-
nation condition and would become increasingly inaccurate at other illumina-
tion settings [8]. In order to compensate for the effects of dynamically changing
illumination conditions, others propose a GA-assisted hardware-calibration ap-
proach [4]. This approach, however, is hardware-specific as it alters the exposure,
iris, gain, saturation, white balance, etc. and requires full-access to these hard-
ware parameters. Therefore, this technique is limited by the hardware parameter
boundaries.
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2 Colour Spaces

Seven different colour spaces were transformed to work with the pie-slice colour
decision region [15]. By transformation here means that we had to extract only
the chromaticity components and disregard the brightness or lightness compo-
nent. In addition, we moved the origin at the position of an achromatic colour
(e.g. white, black, gray). Table 1 shows the colour spaces and transformation
formulae used.

Table 1. Colour Spaces Used in the Experiments

Colour Colour Base x y
Space Space Colour Component Component Origin

Identifier Name Space Transformation Transformation Position

0 RG RGB R
R+G+B

G
R+G+B

1
3
x, 1

3
y

1 CH L∗a∗b
∗a
127

∗b
127

0,0

2 CbCr Y ′CbCr CR CB 0,0

3 C′
ybC

′
rg oRGB C′

yb C′
rg 0,0

4 CM CMY(K) C
C+M+Y

M
C+M+Y

1
3
x, 1

3
y

5 C′
1C

′
2 oRGB C′

1 C′
2 0,0

6 HS HSV cos(H π
180

)S sin(H π
180

)S 0,0

Previously, we tested the modified RG chromaticity [10], CbCr chromaticity
based on Y ′CbCr (YUV) [11] and the LCH chromaticity based on L∗a∗b colour
space [7]. Three more new colour spaces were used in this work, apart from those
tested previously: the CM chromaticity, based on the CMY(K) colour space, the
C′

1C
′
2 and the C′

ybC
′
rg chromaticity colour spaces, based on the opponent colour

space called oRGB [1].

3 FCCF-HAGA Algorithm

FCCF, introduced in [10] is a colour correction and classification algorithm for
colour-based object recognition. It uses an unconventional fuzzy inference sys-
tem, not relying on a centroid formula for defuzzification. It is utilising a set of
novel fuzzy colour contrast operators, and rules, in conjunction with a pie-slice
decision region technique, and is proven to be better than just using the pure
pie-slice technique [11] . On the other hand, FCCF-HAGA, introduced in [13], is
an extension of FCCF, and is capable of fully-automatic colour classifier calibra-
tion, utilising a heuristic-assisted Genetic algorithm. Further improvements in
colour classification, came from VCD and VCD LUT [14], proposing a variable
colour depth representation of the colour tri-stimulus. This technique has the
effect of channel-level colour averaging, while conserving memory space.

3.1 Fitness Function

FCCF-HAGA adaptively evolves the colour classifiers, as represented by chro-
mosomes. They are automatically graded using a fitness function that is a slight
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modification of the fitness described in [13]. The new fitness function(Eqn. (1))
adaptively forgives false positive classifications and encourages finding classifiers
that return high true positives. Moreover, it tries to avoid getting trapped in lo-
cal maxima by reducing rewards in cases where true positives and false positives
are both very low. Two constants parameters in the fitness function were revised
from -10 to -7 and 0.5 to 0.7 in order to encourage more true positive results.

x =
true positive pixels count within the target area

total pixels in the target area

y =
false positive pixels outside target area

total pixels outside the target area

fitness =
1
2

[
1

e−7(y−0.7)
+

(
1 − 1

1+e−75(x−0.05)

1 + e−10(y−0.4)

)] (1)

4 Experiment Set-Up

A Munsell x-rite ColorChecker Image Reproduction Target was used for colour
classification. Figure 2 shows the image acquisition system, the source illumi-
nants and the Munsell colour targets.

Fig. 2. The image acquisition system, source illuminants and the Munsell ColorChecker

Image Reproduction Target chart

The light source is comprised of a combination of ambient fluorescent illu-
minants from the ceiling of the room, and two 500w halogen lamps. The exact
combined illumination condition was measured at 5620 lux, 0.2499u’, 0.5213v’,
0.4360x, 0.4043y, 6061X, 5620Y, 2220Z by a Minolta CL-200 Chroma Metre. For
training and testing the colour classifiers at varying illumination settings, 30 im-
ages of the same colour chart were taken at varying shutter speeds, from 2ms.
(1/500 sec.) to 1600ms. (1.6 sec.). The training images were divided into 7 groups,
each containing 10 different illumination settings, by changing the shutter speed
settings of the camera. Each training set generally represents a certain illumi-
nation condition. For example, training set 0 generally represents the medium
illumination condition range. Table 2 summarises the different groups of train-
ing images. On the other hand, Figure 3 shows all of the 30 training images put
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together as one. Any training set used at any one time is a subset of this image.
It is worth noting that at the extreme illumination sub ranges (topmost and
bottom rows), most of the colours are no longer distinguishable from each other
through the naked eye.

Fig. 3. Test target image containing 30 different illumination settings. The numbers

(in msec.) correspond to the shutter speed settings for producing the illumination

condition.

As can be viewed in Figure 2, there are 18 unique target colour patches in
the Munsell colour rendition chart. We trained the system to recognise these 18
target colours individually as well as to recognise 5 families of colours (i.e. blue
shades, green shades, skin colours ,etc.). Colour masks were used to define the
target colour regions. However, the 6 grey shades at the bottom of the colour
chart were all excluded because they are all achromatic. Table 3 lists all the
colours used for colour classifier extraction.

5 Results and Discussion

5.1 Colour Classification Results

Table 4 shows the best classification results for each target colour. A classification
score of more than 0.5 generally indicates a ‘good’ classifier that is effective for
colour classification tasks on spatially varying illumination settings. It can be

Table 2. Images used for traning

Training Shutter Speeds (ms) Remarks

Set

0 40, 50, 66.67, 76.92, 100, 166.67, 200, 250, 333.33, 400 Medium illumination

1 2.5, 5, 10, 20, 40, 76.92, 166.67, 133.33, 625, 1300 Mostly dark with few bright

2 2, 4, 8, 16.67, 33.33, 66.67, 125, 250, 500, 1000 Mostly dark with few medium

3 3.125, 6.25, 12, 25, 50, 100, 200, 400, 769.23, 1600 Balanced sampling across all illuminations

4 40, 50, 66.67, 76.92, 100, 625, 769.23, 1000, 1300, 1600 From medium to bright

5 10, 12, 16.67, 20, 25, 625, 769.23, 1000, 1300, 1600 Mostly bright with few dark

6 10, 12, 16.67, 20, 25, 166.67, 200, 250, 333.33, 400 From dark to medium

Test Set All of the above

Alternative

Test Set All of the above excluding 2, 2.5, 3.125, 4, 5 and 6.25 Excluding the darkest illumination range
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Table 3. Target colours used for classification. Patch numbers begin from the top-left

corner of the colour chart

Colour Name Patch Numbers Colour Name Patch Numbers Colour Name Patch Numbers

Dark Skin 1 Light Skin 2 Blue Sky 3

Foilage 4 Blue Flower 5 Blue Green 6

Orange 7 Puplish Blue 8 Moderate Red 9

Purple 10 Yellow Green 11 Orange Yellow 12

Blue 13 Green 14 Red 15

Yellow 16 Magenta 17 Cyan 18

Blue Shades 3, 8, 13, 18 as (19) Green Shades 4, 11 as (20) Orange Shades 7, 12, 16 as (21)

Red Shades 9, 15 as (22) Skin Colours 1, 2, 7 as (23)

observed by inspecting both Tables 4 and Table 2 that the majority of the best
colour classifiers were trained using Training sets 2, 1 and 3, which are generally
representing darker illumination settings.

Table 4. Colour Classification Results of the FCCF-HAGA using ’ALL’ 30 illumina-

tions. The colour names marked in bold scored more than 0.5. 12 out of 23 colours

scored more than 0.5.

Colour Colour Training Classification Colour Colour Training Classification

Name Space(s) Set(s) Score Name Space(s) Set(s) Score

Dark Skin 1,2,4,5,6 1,2,3,5 0.385116 Light Skin All 1,2,3,4 0.445318

Blue Sky 1 2 0.387193 Foilage 0 1 0.540411
Blue Flower 5 6 0.452554 Blue Green 5 2 0.742187

Orange All 1,2,3,4,5,6 0.444499 Puplish Blue 1 1 0.763247
Moderate Red All 1,2,3,5,6 0.44112 Purple 1 2 0.430284

Yellow Green 6 2 0.668154 Orange Yellow All 1,2,3,4,5 0.445107

Blue 1 3 0.672016 Green 6 1 0.767966
Red 3 2 0.545756 Yellow All 1,2,3,4,5,6 0.445099

Magenta 5 2 0.612172 Cyan 1 1 0.791258
Blue Shades 1 2 0.598744 Green Shades 0 2 0.667565
Orange Shades All 1,2,3,5,6 0.444901 Red Shades 3 1 0.569657
Skin Colours 0,1,2,3,4,5 1,2,3,5 0.429195

In contrast, interestingly, classifiers trained on relatively brighter training sets
did not do very well on the broader illumination test ranges. As an alternate
validation of the findings, we examined the classifiers on an alternative test
set which contains 24 different illumination settings derived from the original
test set. In this alternate set, we excluded the darker illumination settings used
during training (2, 2.5, 3.125, 4, 5 and 6.25ms). Consequently, we found that the
classifiers trained using darker illumination settings performed well on test sets
under bright illumination settings. Table 5 shows the classification results. Due
to the absence of the extreme dark illumination settings, it is noticeable that we
now have 3 more colour classifiers that yield higher than 0.5 classification scores
than the classifiers performance in the original test set(Table 4).

5.2 Comparison of the Different Colour Classification Algorithms

We have compared the performance of our proposed algorithm against two other
colour classifiers. The first one is simply exhaustively mapping all the pixels of
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Table 5. Colour Classification Results of FCCF-HAGA Algorithm using the Alternate

Test Set. Colour names marked in bold scored more than 0.5. 15 out of 23 colours

scored more than 0.5.

Colour Colour Training Classification Colour Colour Training Classification

Name Space(s) Set(s) Score Name Space(s) Set(s) Score

Dark Skin All 1,2,3,5 0.445445 Light Skin 0,1,2,4,5 0,1,2,3,4 0.445452

Blue Sky 0,2,4 2,5 0.44533 Foilage 0 1 0.695956
Blue Flower 5 6 0.596275 Blue Green 5 2 0.824066

Orange All 1,2,3,4,5,6 0.445452 Puplish Blue 1 1 0.899813
Moderate Red 3 1 0.574498 Purple 1 2 0.612651
Yellow Green 6 1 0.751064 Orange Yellow All 1,2,3,4,5 0.445452

Blue 1 3 0.835202 Green 6 1 0.862613
Red 3 2 0.683617 Yellow All 1,2,3,4,5,6 0.445452

Magenta 5 2 0.761289 Cyan 1 6 0.910595
Blue Shades 1 2 0.759713 Green Shades 0 2 0.757176
Orange Shades All 1,2,3,5,6 0.445452 Red Shades 3 1 0.699453
Skin Colours 0,1,2,3,4 1,2,3,5 0.445449

Table 6. Colour Classification Score Comparisons Between Brute Force Colour Clas-

sification Algorithm, Adaboost Classification Algorithm and FCCF-HAGA Algorithm.

Classifiers were tested against the original test set. Bold numbers denote best classi-

fication scores.

Brute Force Adaboost FCCF-HAGA Brute Force Adaboost FCCF-HAGA

Colour Name Classification Classification Classification Colour Name Classification Classification Classification

Score Score Score Score Score Score

Dark Skin 0.243974 0.436888 0.385116 Light Skin 0.230752 0.44346 0.445318
Blue Sky 0.248425 0.438708 0.387181 Foilage 0.370085 0.427861 0.540411

Blue Flower 0.227394 0.445371 0.452554 Blue Green 0.20612 0.444845 0.742188
Orange 0.360171 0.440933 0.444499 Puplish Blue 0.211463 0.444388 0.763247

Moderate Red 0.24944 0.445158 0.44112 Purple 0.21912 0.432815 0.430284

Yellow Green 0.325943 0.473285 0.66338 Orange Yellow 0.247082 0.442122 0.445107
Blue 0.210872 0.444174 0.672016 Green 0.216792 0.613775 0.767966
Red 0.314519 0.445063 0.545756 Yellow 0.289477 0.444601 0.445099

Magenta 0.205332 0.21068 0.612172 Cyan 0.237986 0.345114 0.791358
Blue Shades 0.255146 0.25223 0.598744 Green Shades 0.352426 0.149648 0.667565

Orange Shades 0.318534 0.0552074 0.444901 Red Shades 0.362675 0.104209 0.569657
Skin Colours 0.327321 0.0952789 0.429195

the colours from the training set and then storing its colour classification into
a look-up table, which we called a brute force approach. The second one used
a cascaded AdaBoost [3] [2], known to train faster than Neural Networks and
good at multi-dimensional feature space classification problems [9]. The training
targets were 98% of hit ratios with the lowest possible false detection, using a
maximum of 30 cascades, limiting the number of weak classifiers used by each
one of the final classifiers.

The comparison of the results can be viewed in Table 6. As evidenced by
the table, the brute force approach did not yield accurate results. AdaBoost
only outperformed FCCF-HAGA in 4 cases, and just by a small margin. This
is an indication that multiple duplicate colour pixels are representing different
colour categories (some training points appear as true positives as well as false
positives in the same training set). These duplicate colour pixels occur mostly
in the extreme dark and extreme bright settings, where colour clipping occurs.
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6 Conclusions

This research further broadens the colour classification capability of FCCF-
HAGA with the inclusion of the automatic best colour space selection. A profes-
sional standard Munsell colour test chart was used and results prove the proposed
algorithms efficacy, as compared to an AdaBoost colour classifier and a simple
brute force classifier.

This work also proposes a training set selection strategy for FCCF-HAGA.
Empirical results show that FCCF-HAGA performed better colour classification
when it was fed with training sets that were under relatively dark illuminations.
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Abstract. Large-scale wireless sensor networks (WSNs) require signif-

icant resources for event recognition and classification. We present a

light-weight event classification scheme, called Identifier based Graph

Neuron (IGN). This scheme is based on highly distributed associative

memory which enables the objects to memorize some of its internal criti-

cal states for a real time comparison with those induced by transient ex-

ternal conditions. The proposed approach not only conserves the power

resources of sensor nodes but is also effectively scalable to large scale

WSNs. In addition, our scheme overcomes the issue of false-positive de-
tection -(which existing associated memory based solutions suffers from)

and hence promises to deliver accurate results. We compare Identifier

based Graph Neuron with two of the existing associated memory based

event classification schemes and the results show that IGN correctly rec-

ognizes and classifies the incoming events in comparative amount of time

and messages.

1 Introduction

A wireless sensor network may contains tens to thousands of wireless trans-
ducer nodes capable of sensing, computing, storing and communicating various
environmental properties such as temperature, humidity or pressure; hence sen-
sory data are generally the measurements taken by the onboard sensors of the
sensor nodes. Global information from the sensed region is collected and anal-
ysed. The problem of analysing real time sensory data occurs in many impor-
tant wireless sensor network (WSN) applications such as security, surveillance,
climatic-change studies, and structural health monitoring. The most predomi-
nant model used for sensor network applications involves sending sensory data
to a base-station for analysis. Two fundamental problems arise here. First, com-
municating sensory data from the physical environment to centralized server
is an expensive task. Secondly, sending streams of raw data from each sensor
node to the centralized server may overwhelm the processing capacity of the
server. Moreover, in both the cases, sensory data may encounter delays that
could diminish its temporal value and significance. An efficient way to process
this huge data is through collaborative in-network processing where sensory data
are quasi-processed within the sensor network before reaching their destination.

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 300–309, 2010.
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Sensor networks present unique challenges: individual nodes are resource re-
stricted, radio communication between nodes is loss prone and a major energy
consumer [12], and the networks are tightly coupled to the physical environment.
That’s why sensor network application designs need to take into consideration
the application energy requirement, and incorporate energy awareness and en-
ergy conservation approaches. One of the main motives driving sensor network
research is the ability to operate sensor networks in an untethered and unat-
tended manner for long-term outdoor deployment. A sensor node continues to
provide sensory data from the physical environment until it depletes its own
on-board battery. Replacing or recharging batteries is not possible in sensor net-
works owing to the sheer number of deployed sensor nodes and the inaccessibility
of the physical environment. Therefore, incorporating energy saving techniques
is central to the design of sensor network applications.

Traditional pattern recognition methods [6] are not considered feasible on
wireless ad hoc infrastructure. These focus on minimizing the error rate by find-
ing the probability distribution of sensory data and creating feature vectors for
high dimensional sensory data, both of which consumes resources. Traditional
signal processing based event detection schemes also proves to be too complex
to use in WSN. Recognizing event patterns in a distributed manner is a chal-
lenging problem. We need to develop solution to transform the local pattern
match results into an accurate global pattern recognition through sensor node
collaboration while conserving the sensor nodes energy. This has actually been
our general motivation to carry out the research.

In this paper, we present a light-weight event classification scheme, called
Identifier based Graph Neuron (IGN). Through in-network processing, the sets
of GN nodes concurrently compare their sub patterns with the historical infor-
mation, which is locally available within each GN via associative memory. The
local state of an event is recognize through locally assigned identifiers. These
nodes run an iterative algorithm to coordinate with other nodes to reach a con-
sensus about the global state of the event. The main contribution of this paper is
in providing a solution on how a group of resource-limited sensor nodes can rec-
ognize physical world events in a distributed, real-time, and energy efficient way.
The proposed scheme accurately recognizes large-scale event patterns within the
network, thus reducing the dependency on base-stations. The proposed approach
not only conserves the power resources of sensor nodes but is also effectively scal-
able to large scale WSNs. We have also solved the low false positive rate issue
(also called as crosstalk problem) faced by earlier publications in an efficient and
simple way. We have also compared IGN with Graph Neuron (GN) and hierar-
chical Graph Neuron (HGN). We found that IGN correctly resolves the crosstalk
problem in comparative amount of time and messages.

2 Related Work

The main characteristic of an intelligent system is the capability of mimicking
human intelligence, such as memorizing, recognizing, understanding, and rea-
soning. These characteristics of AI have attracted researchers in WSN to use
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AI in their systems. Many systems, such as home care [13], target surveillance
system [14], and access control, have now been developed with such intelligent
capabilities. AI researchers hope that the focus on reduced energy consumption
by using AI inspired techniques [8] can improve the quality of WSN system. Not
only accurate, the approaches using AI can also work quickly and consume less
memory resources [4].

A well known application of AI is pattern recognition [5]. Not only quality
and performance is the target to improvement in pattern recognition, the focus
is also shifted to some new perspectives, algorithms, and architectures. As an
example, unsupervised learning methods for categorization of the sesory inputs
are presented by Kulakov and Davcev who proposed two possible implementa-
tions of the ART and FuzzyART neural-networks algorithms. They are tested on
a data obtained from a set of several motes, equipped with several sensors each.
Results from simulations of purposefully faulty sensors show the data robustness
of these architectures. The proposed neural-networks classifiers have distributed
short and long-term memory of the sensory inputs and can function as security
alert when unusual sensor inputs are detected.

Away from those recognising strategies, the development of Hopfields asso-
ciative memory [11] has given a new opportunity in recognizing patterns. As-
sociative memory applications provide means to recall patterns using similar or
incomplete patterns. Associative memory is different to conventional computer
memory. In conventional computer memory contents are stored and recalled
based on the address. In associative memory architecture, on the other hand,
contents are recalled based on how closely they are associated with the input
(probe) data. Khan [1] have replaced the term content-addressable, introduced
by Hopfield [9] as associative memory (AM). Hence, content addressable memory
is interchangeable with AM.

The spatio-temporal encoded, or spiking, neurons developed by Hopfield [11]
draw upon the properties of loosely coupled oscillators. However, the problem
of scaling up the AM capacity still remains. Izhikevich [7] states, though some
new capabilities at differentiating between similar inputs have been revealed,
however, there is no clear evidence to suggest their superiority over the classical
Hopfield model in terms of an overall increase in the associative memory capac-
ity. Hence, one of the motivations behind GN development was to create an AM
mechanism, which can scale better than the contemporary methods. Further-
more, we needed to create an architecture which would not be dependent for
its accuracy on preprocessing steps such as patterns segmentation [3] or train-
ing [1]. From the discussion of several pattern recognition techniques, it seems
that GN [2] is a promising AI architecture for recognising patterns in WSN.

3 System Model

In this section, we model the wireless sensor network. Table 1 provides the sum-
mary of notations used in this paper.

Let there are N sensor nodes in the wireless sensor network. Each sensor senses
a particular data from its surroundings. Let E = {e1, e2, . . . , eE} be a non-empty
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Table 1. Notation of proposed system model

Symbol Description

N number of sensors nodes
E set of all elements {e1, e2, . . . , eE}
E size of set E
L pattern length
P set of all patterns of length L over E
P size of set P and is equal to EL

G GN overlay, a two-dimentional array of E × L
n(ei, j) a node at i-th row and j-th column in G

Ls Local State of active node n(ei, j)

finite set of such data elements sensors sense from their surroundings. We find
it convenient to describe input data in the form of patterns. A pattern over E is
a finite sequence of elements from E . The length of a pattern is the number of
sensors in the system. We define P as a set of all possible patterns of length L
over E :

P = {p1, p2, . . . , pP },

where P is the total number of possible unique patterns in P and can be com-
puted as:

P = EL.

For example, if E = {x, y}, then P of length, say, 3 over E is:

P = {xxx, xxy, xyx, xyy, yxx, yxy, yyx, yyy}.

We model GN as a structured overlay G = {(E × L)} where L = {1, 2, . . . , L}:

G = {n(ei, j)} forall ei ∈ E , j ∈ L,

where n(ei, j) is a node in G at i-th row and j-th column. GN can be visualized
as a two dimensional array of L rows and E columns. Total number of nodes in
the G are E × L.

We refer all the nodes in the (j − 1) column as the left neighbors of any node
n(∗, j) in j-th column. Similarly, all the nodes in the (j + 1) column are called
as the right neighbors of n(∗, j).

4 Proposed Scheme

In a GN-based classifier, each node n(ei, j) is programmed to respond to only a
specific element ei at a particular position j in a pattern. That is, node n(ei, j)
can only process all those patterns in P such that ei is at the j-th position in
that pattern.
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Each node maintains an active/inactive state flag to identify whether it is
processing the incoming pattern or not. Initially all nodes are in inactive state.
Upon arrival of a pattern, if a node finds its programmed element ei at the given
position in the pattern, it switches its state to active otherwise it remains inac-
tive. Only active nodes participate in our algorithm and inactive nodes remain
idle.

At any time, there can be exactly L active nodes in a GN. Hence, there are
exactly one active left-neighbor and exactly one active right-neighbor of a node
n(ei, j) where j �= 0, l. Whereas terminal nodes n(ei, 0) and n(ei, L) has only
one active left and right neighbor respectively. Fig.1 shows how two characters
are being mapped into GN array and a simple GN-based classifier is explained
in Algorithm 1.

(a) (b)

Fig. 1. Execution time for selected patterns - (a) Character ”x” and ”O” mapped to

the GN nodes, (b) GN communication Scheme: Pattern store and recall in a typical

GN-based classifier.

5 Proposed Protocol

On arrival of an input pattern P , each active node n(ei, j) store ei in its jth

position. Each node n(ei, j) sends its matched element ei to its active neighbors
(j + 1) and (j − 1). The GNs at the edges will send there matched elements
to there penultimate neigbours only. Upon receipt of the message, the active
neighboring nodes update there bais array. Each active node n(ei, j) will assign
a local state Ls to the received (ei, ) value. The generated local state Ls will be
Recall if the the added value is already present in the bais array of the active
node and it will be a store if in-case its new value. An < ID > will be generated
against each added value. There are certain rules that need to be considered by
each active node n(ei, j) while creating states and assigning < IDS > against
those states. The rules are as under:
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Rule 1: Store(Si) > Recall(Ri). Store Si has a natural superiority over
Recall Ri i-e Store(Si) > Recall(Ri). If node n(ei, j) self local state Ls is Recall
but it receives a Store command from any of its neighbors, (j + 1) or (j − 1), it
will update its own state from Recall(Ri) to Store(Si).

Rule 2: All New Elements. If any of the elements presented to G is not
existing in the bais array of any of the active nodes n(ei, j) suggests that its a
new pattern. Each active node n(ei, j) will create a new <ID> by incrementing
the already stored maximum <ID> in there bias array by 1.

Rule 3: All Recalls with Same ID. If ei presented to G is the recall of
previously stored pattern with same <ID>, means that its a repetitive pattern.
The same <ID> will be allocated to this pattern.

Rule 4 : All Recalls with Different IDs. If all the ei of the pattern P
presented to G are the recall of already stored patterns with different <IDs>
indicates that it’s a new pattern. Each active node n(ei, j) will find out the
max(ID) in there bias array and will increment it by 1.

Rule 5: Mix of Store and Recall. If the end decision is to Store due to mix
of Store and Recall, each active node n(ei, j) will again find out the max(ID)
in there bais array and will increament it by 1.

After generating local <IDS> against generated states each active node n(ei, j)
will undergo phase transition mode. During first round of phase transition mode,
all the active nodes n(ei, j) will share locally generated <IDS> and Ls with there
(j +1) and (j − 1) neighbors. On receiving the values all the n(ei, j) will compare
the received values with there local values. If received value and self value is same
there won’t be any change in there state. If received value �= local value, the node
will upgrade its local value according to the rules listed below:

Transition Rule 1. If the active node n(ei, j) has received a greater value from
its left neighbor (j + 1), it will upgrade its local state and transfer this updated
value to its right (j − 1) neighbor only.

Transition Rule 2. Incase if the received value from both the neighbors (j+1)
and (j − 1) are smaller than the local value, node n(ei, j)will upgrade its value
and transfer this new value to both of its neighbors.

When the pattern is resolved, the generated <ID> will be stored in the bias
array of each active GN. Bias array wont be having duplicated <IDs>. It is also
not necessary that the <ID> in the bais array will be in ordered form. Once
the pattern has been stored, a signal is sent out within the network informing
all the IGN nodes that the pattern has been stored. This is called the pattern
resolution phase.

5.1 Discussion

The basic motivation behind GN development was to create an associative mem-
ory network that work more faster and is scalable compared to existing schemes.
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The GN array converts the spatial/ temporal patterns into a graph based rep-
resentation and then compares the elements of the graphs for memorization and
recall operations. The advantage of having a graph-like representation is that it
provides a mechanism for placing the spatial/ temporal information in a context.
Hence not only can we compare the individual data points but we may also com-
pare the order in which they occur. Also, the proposed graph based approach
allows us to explicitly model relationships between different objects, or parts
of the objects under consideration. This is a clear advantage over pattern clas-
sification based on feature vectors, which are restricted to using unary feature
values. Moreover, in our graph based approach we can use a variable number of
entities, i.e. nodes and edges, depending on the complexity of the object under
considerations.

It is a simple and light scheme that best suits the resource constrained nature
of WSN. Our proposed scheme is base station independent. Through in-network
processing we are efficiently utilizing the resources of sensor nodes. It is also not
dependent on preprocessing steps such as patterns segmentation or training for
its processing. Through parallel processing, the scalability issues in WSN are
catered well. GN provides an emergent property of real-time processing regard-
less the size of the network.

6 Simulation Work

For the purpose of ensuring the accuracy of our proposed IGN algorithm for
pattern recognition, we have conducted a series of tests involving random pat-
terns. We develop an implementation of IGN in Eclipse Java. We have performed
several runs of experiments each time choosing random patterns. We have con-
structed a database of stored patterns in which patterns can be added manually
and stored in the database too. The performance metrics are accuracy and time.

Fig. 2 shows the number of entries in the bias array of IGNs while processing
a database of 1000 patterns, in which each pattern is consisted of 7 elements
in 5 positions However, the percentage of recalls for each of the GNs is also
illustrated.

To estimate the communication overhead for HGN two factors are consid-
ered. 1). Bias array size and 2). time required by the HGN array to execute
the request. Incase, of IGN the number of bias array entries are significant but
they are not as high as in HGN as it doesnt have to create hierarchies and
secondly the execution time is also less as compared to HGN as it only has to
communicate to its immediate neigbours. In IGN the decision is not taken by
the top node as a result lot of processing and communication cost is saved and
the storage requirements within the bias array are not significantly extended
with the increase in the number of stored patterns from the scalability point of
view. It should be mentioned that the implementation of HGN requires asyn-
chronous communication and mutually exclusive processes while these features
can be easily implemented in Java, compared with other real-time programming
languages such as C or Ada.
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(a) (b)

Fig. 2. (a) Information about all the active nodes in IGN (b) Recall percentage of

active nodes in IGN

(a) (b)

Fig. 3. Execution time for selected patterns - (a) Average execution time for 1000

patterns in IGN, GN and HGN, (b) Average execution time for 2000 patterns in IGN

and GN.

The results in Fig. 3 also show that the pattern detection time in IGN is much
less as compared to HGN. This is mainly due to the fact that by increasing the
number of stored patterns, the search will be accomplished through higher layers
of HGN hierarchy which results in more delays in delivering the final outcome.

To investigate the impact of response time,Fig. 4 illustrates a comparison
between GN, IGN and HGN. It may be observed from the figures that the
response time for GN remains almost consistent however the HGN response
time increases due to fact that by increasing the pattern size, the number of
GNs within the composition will be increased drastically which in turn results
in excessive overheads owing to GNs intercommunicating. The response time for
IGN is also not consistent because of the overhead of message communication
that varies from pattern to pattern. A comparison between the response time of
GN and IGN for selected patterns have been made it Fig. 5.
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(a) (b)

Fig. 4. Execution time for selected patterns - (a) Average execution time for 500 pat-

terns in IGN, GN and HGN, (b) Average execution time for 5000 patterns in IGN and

GN.

(a) (b)

Fig. 5. Execution time for selected patterns - (a) Average execution time for six selected

patterns in IGN, GN and HGN, (b) Average execution time for six selected patterns

in IGN and GN.

7 Conclusion and Future Work

In this paper we have proposed an in-network based pattern matching approach
for providing scalable and energy efficient pattern recognition within a sensor
network. IGN algorithm works by locally generating Ids and states against each
incoming pattern element according to the set rules and then share these ids
to reach a common consensus. IGN algorithm not only provides a single-cycle
learning model which is remarkably suitable for real time applications but also
overcome the issue of crosstalk in normal GN approach by delivering accurate
results.



Identifier Based Graph Neuron 309

References

[1] Amin, A.H.M., Mahmood, R.A.R., Khan, A.I.: Analysis of pattern recognition

algorithms using associative memory approach: A comparative study between the

hopfield network and distributed hierarchical graph neuron (dhgn), pp. 153–158.

IEEE, Los Alamitos (2008)

[2] Basirat, A.H., Khan, A.I.: Building context aware network of wireless sensors

using a novel pattern recognition scheme called hierarchical graph neuron. In:

IEEE International Conference on Semantic Computing, ICSC 2009 (2009)

[3] Basirat, A.H., Khan, A.I.: Building context aware network of wireless sensors

using a novel pattern recognition scheme called hierarchical graph neuron. In:

ICSC 2009: Proceedings of the 2009 IEEE International Conference on Semantic

Computing, Washington, DC, USA, pp. 487–494. IEEE Computer Society, Los

Alamitos (2009)

[4] Brandl, M., Kellner, K.H., Posnicek, T., Kos, A., Mayerhofer, C., Fabian, C.: An

efficient source initiated on-demand data forwarding scheme for wireless sensor

networks. In: ICICS 2009: Proceedings of the 7th International Conference on

Information, Communications and Signal Processing, Piscataway, NJ, USA, pp.

1349–1355. IEEE Press, Los Alamitos (2009)

[5] Frank, J., Mda-c, N.U.: Artificial intelligence and intrusion detection: Current

and future directions. In: Proceedings of the 17th National Computer Security

Conference (1994)

[6] Gu, L., Jia, D., Vicaire, P., Yan, T., Luo, L., Tirumala, A., Cao, Q., He, T.,

Stankovic, J.A., Abdelzaher, T., Krogh, B.H.: Lightweight detection and classi-

fication for wireless sensor networks in realistic environments. In: SenSys 2005:

Proceedings of the 3rd International Conference on Embedded Networked Sensor

Systems, pp. 205–217. ACM, New York (2005),

http://doi.acm.org/10.1145/1098918.1098941
[7] Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitabil-

ity and Bursting (Computational Neuroscience), 1st edn. The MIT Press, Cam-

bridge (November 2006)

[8] Kim, J., Lim, J.S., Friedman, J., Lee, U., Vieira, L., Rosso, D., Gerla, M., Sri-

vastava, M.B.: Sewersnort: a drifting sensor for in-situ sewer gas monitoring. In:

SECON 2009: Proceedings of the 6th Annual IEEE Communications Society Con-

ference on Sensor, Mesh and Ad Hoc Communications and Networks, Piscataway,

NJ, USA, pp. 691–699. IEEE Press, Los Alamitos (2009)

[9] Kim, J., Hopfield, J.J., Winfree, E.: Neural network computation by in vitro tran-

scriptional circuits (2004). In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances

in Neural Information Processing Systems, vol. 17, pp. 681–688 (2007)

[10] Kulakov, A., Davcev, D.: Tracking of unusual events in wireless sensor networks

based on artificial neural-networks algorithms, vol. 2, pp. 534–539. IEEE Com-

puter Society, Los Alamitos

[11] McEliece, R.J., Posner, E.C., Rodemich, E.R., Venkatesh, S.S.: The capacity of

the hopfield associative memory. IEEE Trans. Inf. Theor. 33(4), 461–482 (1987)

[12] Pantazis, N.A., Vergados, D.D.: A survey on power control issues in wireless sensor

networks, vol. 9, pp. 86–107 (2007)

[13] Chung, N.H., Gu, T., Xue, W.: Context-aware middleware for pervasive elderly

homecare. IEEE Journal on Selected Areas in Communications, 510–524, IEEE

(2009)

[14] Wang, X., Wang, S., Bi, D.: Distributed visual-target-surveillance system in wire-

less sensor networks, vol. 39, pp. 1134–1146. IEEE Press, Los Alamitos (2009)

http://doi.acm.org/10.1145/1098918.1098941


Clustering Categorical Data Using an Extended
Modularity Measure

Lazhar Labiod, Nistor Grozavu, and Younès Bennani

LIPN-UMR 7030, Université Paris 13,
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Abstract. Newman and Girvan [12] recently proposed an objective

function for graph clustering called the Modularity function which al-

lows automatic selection of the number of clusters. Empirically, higher

values of the Modularity function have been shown to correlate well with

good graph clustering. In this paper we propose an extended Modularity

measure for categorical data clustering; first, we establish the connec-

tion with the Relational Analysis criterion. The proposed Modularity

measure introduces an automatic weighting scheme which takes in con-

sideration the profile of each data object. A modified Relational Analysis

algorithm is then presented to search for the partitions maximizing the

criterion. This algorithm deals linearly with large data set and allows

natural clusters identification, i.e. doesn’t require fixing the number of

clusters and size of each cluster. Experimental results indicate that the

new algorithm is efficient and effective at finding both good clustering

and the appropriate number of clusters across a variety of real-world

data sets.

1 Introduction

In the exploratory data analysis of high dimensional data, one of the main tasks
is the formation of a simplified, usually visual, overview of data sets. This can be
achieved through simplified description or summaries, which should provide the
possibility to discover most relevant features or patterns. Clustering is among the
examples of useful methods to achieve this task; classical clustering algorithms
produce a grouping of the data according to a chosen criterion. Most algorithms
use similarity measures based on Euclidean distance. However there are several
types of data where the use of this measure is not adequate. This is the case
when using categorical data since; generally, there is no known ordering between
the feature values. If the data vectors contain categorical variables, geometric
approaches are inappropriate and other strategies must be developed [4]. The
problem of clustering becomes more challenging when the data is categorical,
that is, when there is no inherent distance measures between data values. This is
often the case in many applications where data is described by a set of descriptive
or binary attributes, many of which are not numerical. Examples of such include
the country of origin and the color of eyes in demographic data. Many algorithms
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have been developed for clustering categorical data, e.g., (Barbara et al [3]., 2002;
Gibson et al [7]., 1998; Huang [9], 1998).

Modularity measure have been used recently for graph clustering [12] [13]
[1]. In this paper, we show that the Modularity clustering criterion can be for-
mally extended for categorical data clustering. We also establish the connections
between the Modularity criterion and the Relational Analysis (RA) approach
[10][11] which is based on Condorcet’s criterion. We then develop an efficient
procedure inspired from the RA heuristic to find the optimal partition for max-
imizing the Modularity criterion. Experiments demonstrate the efficacy and ef-
fectiveness of our approach.

The rest of the paper is organized as follows: Section 2 introduces some nota-
tions and definitions; Section 3 presents the Relational Analysis approach (RA),
Section 4 provides the extended modularity measure and its connection with the
RA criterion. Section 5 discusses the proposed optimization procedure; Section
6 shows our experimental results and finally, Section 7 presents our conclusions.

2 Definitions and Notations

Let be D a dataset with a set I of N objects (O1, O2, ..., ON ) described by the set
V of M categorical attributes (or variables) V 1, V 2., V m, .., V M each one having
p1, .., pm, .., pM categories respectively and let P =

∑M
m=1 pm denote the full

number of categories of all variables. Each categorical variable can be decom-
posed into a collection of indicator variables. For each variable V m, let the pm

values naturally correspond to the numbers from 1 to pm and let V m
1 , V m

2 , ..., V m
pm

be the binary variables such that for each j, 1 ≤ j ≤ pm, V m
k = 1 if and only if

the V m takes the j-th value. Then the data set can be expressed as a collection
of M N × pm matrices Km, (m = 1, .., M) of general term km

ij such as:

km
ij =

{
1 if the object i takes the categorie j of V m

0 otherwise (1)

which gives the N by P binary disjunctive matrix K = (K1|K2|...|Km|...|KM ).
Let us recall that each variable V m provides a similarity matrix Sm which

can be expressed as Sm = Km tKm and the global similarity matrix S = K tK
where tKm and tK are the transposed Km matrix respectively K matrix.

2.1 Undirect Graph and Data Matrices

An interesting connection between data matrices and graph theory can be estab-
lished,. A data matrix can be viewed as a weighted undirect graph G = (V, E),
where V = I is the set of vertices and E is the set of edges. The data matrix S
can be viewed as a weighted undirect graph where each node i in I corresponds
to a row. The edge between i and i′ has weight sii′ , denoting the element of the
matrix in the intersection between row i and column i′.
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2.2 Equivalence Relation

We set down some notations. Suppose that a set of N by P-dimensional binary
data vectors, K, represented as an N by P matrix, is partitioned into L classes
C = {C1, C2, ...CL} and we want the points within each class are similar to each
other. We view C as an equivalence relation X which models a partition in a
relational space, and must respect the following properties:⎧⎪⎪⎨⎪⎪⎩

xii = 1, ∀ii reflexivity
xii′ − xl′l = 0, ∀(i, i′) symetry
xii′ + xi′i′′ − xii′′ ≤ 1, ∀(i, i′, i′′) transitivity
xii′ ∈ {0, 1}, ∀(i, i′) binarity

(2)

3 The Relational Analysis Approach

The relational analysis theory is a data analysis technique that has been initiated
and developed at IBM in the 1970s, by F. Marcotorchino and P. Michaud [10]
[11]. This technique is used to resolve many problems that occur in fields like:
preferences, voting systems, clustering, etc. The Relational Analysis approach is
a clustering model that automatically provides the suitable number of clusters,
this approach takes as input a similarity matrix. In our context, since we want
to cluster the objects of the set I, the similarity matrix S is given, then we want
to maximize the following clustering function

RRA(S, X) =
∑

i

∑
i′

(sii′ − mii′)xii′ (3)

Where M = [mii′ = sii+sii′
4 ]i,i′=1,...,N is the matrix of threshold values. In others

words, objects i and i′ have chances to be in the same cluster providing their
similarity measure sii′ , is greater or equal to their threshold value of majority
mii′ . X is the solution we are looking for, it is a binary relational matrix with
general term xii′ = 1 if object i is in the same cluster as object i′; and xii′ =
0, otherwise. X represents an equivalence relation, thus it must respect the
properties in (2).

4 Extensions of the Modularity Measure

This section shows how to adapt the Modularity measure for categorical data
clustering

4.1 Modularity and Graphs

Modularity is a recently quality measure for graph clusterings, it has immedi-
ately received a considerable attention in several disciplines [12] [1]. As for the RA
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clustering problem, maximizing the modularity measure can be expressed in the
form of an integer linear programming. Given the graph G = (V, E), let A be
a binary, symmetric matrix whose (i, j) entry, aij = 1 if there is edge between
nodes i and j. If there is no edge between nodes i and j, aij is zero. We note that
in our problem setting, A is an input having all information on the given graph
G and is often called an adjacency matrix. Finding a partition of the set nodes V
into homogeneous subsets leads to the resolution of the following integer linear
programming:

max
X

Q(A, X) (4)

where

Q(A, X) =
1

2|E|

n∑
i,i′=1

(aii′ −
ai.ai′.

2|E| )xii′ (5)

is the modularity measure, 2|E| =
∑

i,i′ aii′ = a.. is the total number of edges
and ai. =

∑
i′ aii′ the degree of i. X is the solution we looking for wich must

satisfies the properties of an equivalence relation defined on I × I.

4.2 First Extension: Early Integration

The early integration consist in a direct combination of graphs from all variables
into a single dataset (graph) before applying the learning algorithm. Let us
consider the Condorcet’s matrix S where each entry sii′ =

∑M
m=1 sm

ii′ , which can
be viewed as weight matrix associated to graph G = (I, E), where each edge eii′

have the weight sii′ . Similarly to the classical Modularity measure, we define the
extension Q1(S, X) as follow:

Q1(S, X) =
1

2|E|

n∑
i,i′=1

(sii′ −
si.si′.

2|E| )xii′ (6)

where 2|E| =
∑

i,i′ sii′ = s.. is the total number of edges and si. =
∑

i′ sii′ the
degree of i.

4.3 Modularity Extensions as a Modified RA Criterion

This subsection shows the theoretical connection between the RA criterion and
the proposed extension of the modularity measure. We can establish a relation-
ship between the Modularity measure extension and the RA criterion, indeed the
function Q1(S, X) can be expressed as a modified RA criterion in the following
way:

Q1(S, X) as a modified RA criterion:

Q1(S, X) =
1

2|E| (RRA(S, X) + ψ1(S, X)) (7)
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where

ψ1(S, X) =
1

2|E|

n∑
i=1

n∑
i′=1

(mii′ −
si.si′.

2|E| )xii′ (8)

is the weighting term that depends on the profile of each pair of objects (i, i′).
This extension of the modularity measure allows to introduce a weighting scheme
depending on the profile of each data object.

5 Optimization Procedure

As the objective function is linear with respect to X and as the constraints
that X must respect are linear equations, theoretically wa can solve the problem
using an integer linear programming solver. However, this problem is NP-hard.
As a result in practice, we use heuristics for dealing with large data sets.

5.1 Modularity Decomposition

The extension of the modularity measure can be decomposed in terms of the
contribution of each object i in each clusters Cl of the searched partition as
follows:

Q1(S, X) =
L∑

l=1

N∑
i=1

cont(i, Cl) (9)

where
contQ1(i, Cl) =

1
2|E|

∑
i′∈Cl

(sii′ −
si.si′.

2|E| ) (10)

Using the transformations, sii′ =< Ki, Ki′ > and si. =
∑

i′′ < Ki, Ki′′ >, the
contribution expression becomes1,

contQ1(i, Cl) =
1

2|E|
∑

i′∈Cl

(< Ki, Ki′ >

−
∑

i′′ < Ki, Ki′′ >
∑

i′′ < Ki′ , Ki′′ >

2|E| ) (11)

=
1

2|E| < Ki, Pl > −
∑

i′∈Cl

δii′ (12)

where

δii′ =
∑

i′∈Cl

∑
i′′ < Ki, Ki′′ >

∑
i′′ < Ki′ , Ki′′ >

2|E| (13)

1 Let us recall that this new writing of the contribution formula allows to reduce

considerably the computational cost related to the square similarity matrix S and

to characterize each cluster Cl using his prototype Pl.
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The new contribution formula introduces an automatic weighting scheme, the
value of the new formula will be great, let or equal to the RA contribution
depending on the weight δii′ . The contribution formula contQ1 can be written
in term of the RA contribution contRA by adding a weighting term depending
on the profile of each objects pairwise (i, i′):

contQ1(i, Cl) =
1

2|E| [(< Ki, Pl > −
∑

i′∈Cl

mii′)

+
∑

i′∈Cl

(mii′ − δii′)] (14)

=
1

2|E| [contRA(i, Cl) +
∑

i′∈Cl

(mii′ − δii′)] (15)

The change in the contribution formula is interesting because it introduces a
weighting relative to the profiles of the data objects automatically, without re-
quiring the presence of an expert. There are three scenarios;

1. Taking δii′ = mii′ , ∀i, i′ we find the case of the RA algorithm.
2. If the weight δii′ is less than mii′ , ∀i, i′ the contribution formula contQ1 is

greater than the old contribution contRA, and therefore it is more likely to
be positive than contRA, the observation i is then found aggregated to an
existing cluster. the number of clusters will be smaller.

3. If the weight δii′ is great than mii′ , ∀i, i′, the contribution formula contQ1

is greater than the old contribution contRA, and therefore it is more likely
to be negative than contRA, the observation i is then found in a new cluster.
The number of clusters will be more important.

5.2 Relational Analysis Heuristic

The heuristic process starts from an initial cluster (a singleton cluster) and build
in an incremental way, a partition of the set I by increasing the value of Con-
dorcet’s criterion RRA(S, X) at each assignment. We give in (Algorithm1) the
description of the relational analysis algorithm which was used by the Relational
Analysis methodology (see Marcotorchino and Michaud for further details). The
presented algorithm aims at maximizing the criteria (RRA and Q1) given above,
based on the contribution computation.

We have to fix a number of iterations in order to have an approximate solution
in a reasonable processing time. Besides, it is also required a maximum number
of clusters, but since we don’t need to fix this parameter, we put by default
Lmax = N . Basically, this algorithm has O(Niter ×Lmax×N) computation cost.
In general term, we can assume that Niter << N , but not Lmax << N . Thus,
in the worst case, the algorithm has O(Lmax × N) computation cost.
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Algorithm 1. RA heuristic

Inputs:
Lmax= maximal number of clusters, Niter= number of iterations, N= number
of examples (objects)
- Compute the threshold matrix (δ or M)
- Take the first object as the first element of the first cluster.
- l = 1 where l is the current number of clusters
for t=1 to Niter do

for i = 1 to N do
for j = 1 to l do
Compute the contribution of object i : cont(i, j)

end for
l∗ = arg maxj cont(i, j),

where l∗ is the cluster id which has the highest contribution with the object i
cont(i, l∗) ← the computed contribution

if cont(i, l∗) < 0 and l < Lmax then
create a new cluster where the object i is the first element

l ← l + 1
else
assign object i to cluster Cl∗

endif
endfor

endfor
Output:
at most Lmax clusters

6 Experiments

A performance study has been conducted to evaluate our method. In this section,
we describe those experiments and the results. We ran our algorithm on real-
life datasets obtained from the UCI Machine Learning Repository to test its
clustering performance against the RA algorithm.

6.1 Performance Measures

There are many ways to measure the accuracy of clustering algorithm.

Cluster purity: One of the ways of measuring the quality of a clustering
solution is the cluster purity. Let there be L clusters of the dataset I and
size of cluster Cl be |Cl|. The purity of this cluster is given by purity(Cl)=
1

|Cl| maxk(|Cl|cluster=k) where |Cl|cluster=k denote the number of items for the
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cluster k assigned to cluster l. The overall purity of a clustering solution could
be expressed as a weighted sum of individual cluster purities

purity =
L∑

l=1

|Cl|
|I| purity(Cl) (16)

In general, if the values of purity are larger, the clustering solution is better.

Rand Index. This index (Rand, 1971) simply measures the number of pairwise
agreements between a clustering K and a set of class labels C, normalized so that
the value lies between 0 and 1:

RI(U, V ) =
a + b

a + b + c + d
(17)

where a denotes the number of pairs of points with the same label in U and
assigned to the same cluster in V , b denotes the number of pairs with the same
label, but in different clusters, c denotes the number of pairs in the same cluster,
but with different class labels and d denotes the number of pairs with a different
label in U that were assigned to a different cluster in V . The index produces a
result in the range [0,1], where a value of 1.0 indicates that U and V are identi-
cal. A high value for this measure generally indicates a high level of agreement
between a clustering and the annotated natural classes.

Jaccard Index. In this index (Jaccard, 1912), which has been commonly ap-
plied to assess the similarity between different partitions of the same dataset,
the level of agreement between a set of class labels U and a clustering result V
is determined by the number of pairs of points assigned to the same cluster in
both partitions:

JI(U, V ) =
a

a + b + c
(18)

The index produces a result in the range [0,1], where a value of 1.0 indicates
that U and V are identical.

Tanimoto Index. Similarity between different partitions of the same data set
can be measured as the ratio of their common elements to the number of all
different elements,

TI(U, V ) =
1
2 (a + d)

1
2 (a + d) + b + c

(19)

The index produces a result in the range [0,1].

6.2 The Datasets for Validation

In this section, we evaluate the performance of the RA heuristic on several
databases available at the UC Irvine Machine Learning Repository [2]. The de-
scription of the used data sets is given in Table 1:
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Table 1. Description of the data set

Data set # of Objects # of Attributes Classes

Soybean small 47 21 4

Zoo 101 16 7

Soybean large 307 35 19

SPECTF 267 22 2

Post-Operative 90 8 3

Balance Scale 625 4 3

Audiology Normalized 226 69 24

6.3 Results for the Early Integration

The proposed method is tested with data sets obtained from the UCI machine
learning data repository. As the proposed method is a modified RA approach, we
have compared the performance of the proposed algorithm with RA algorithm.
From the Table 2 and the Figure (Fig1: Purity measure), it is clear that the
performance of the proposed method based the extended modularity measure is
the best then the RA approach for all data sets. This means that the introduced
weighting scheme improves the purity clustering.

Table 2. Purity measure for RRA(S, X) criterion and the extended Modularity

Q1(S, X)

DB DB size RRA(S, X) Q1(S, X)

Soybean small 47x21 78 % 100 %

Zoo 101x16 83.17% 88.12 %

Soybean large 307x35 70 % 72.31 %

SPECTF 267x22 61.25 % 85 %

Post-Operative 90x8 71.11 % 73.33% %

Balance Scale 625x4 63.52 % 63.52 %

Audiology Normalized 226x69 50.50 % 58 %
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Table 3. Results on different datasets using Q1(S, X)

DB DB size RI JI TI

Soybean small 47x21 100 % 100 % 100 %

Zoo 101x16 94.2% 79.9 % 89.2 %

Soybean large 307x35 91.2 % 26.6 % 83.9 %

SPECTF 267x22 60.98 % 38.28 % 43.86 %

Post-Operative 90x8 50.75% 37.37% % 34.01%

Balance Scale 625x4 58 % 20 % 40 %

Audiology Normalized 226x69 82 % 20 % 69%

Table 4. Results on different datasets using RRA(S, X)

DB DB size RI JI TI

Soybean small 47x21 86.66 % 45.88 % 76.47 %

Zoo 101x16 72.9% 46.09 % 57.37 %

Soybean large 307x35 85.03 % 25.7 % 73.97 %

SPECTF 267x22 55.74 % 38.69 % 38.64 %

Post-Operative 90x8 54.44% 41.17% % 37.4%

Balance Scale 625x4 57 % 19 % 39 %

Audiology Normalized 226x69 82 % 20 % 69 %

In order to show the good performance of the proposed approach we use
several categorical data sets of different sizes and we indicate in the table 4
the RI, JI and TI index of clustering using the classical RA criterion and in
Table 3 the RI, JI and TI index using the extended modularity measure. The
results illustrate that the proposed technique increase the index value compared
to the classical RA and allows to introduce an automatic weighting scheme which
relates to the object profile in the data set.

7 Conclusions

In this paper, we studied the extensions of the Modularity-based criterion for
the categorical data clustering and we illustrate its relations with Condorcet’s
criterion. An efficient, iterative procedure for optimization is presented. The
experimental results indicate the effectiveness of the proposed early integration
method compared to the classical Relational Analysis approach. In future work,
we will propose a second extension called intermediate integration, the main
idea is to compute a combined Modularity objective measure from separate
Modularity on each variable, and then pass to the learning algorithm.
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Abstract. Recently the morphological associative memory proposed by Ritter 
attracts researcher's attention. The model is superior to other models in terms of 
memory capacity and perfect recall rate. However the conventional MAM has a 
problem that the correct pattern cannot be recalled if a pattern has inclusive 
relation to other stored pattern. In this paper, as one of the solutions, an 
effective MAM employing a reverse recall is proposed. In the proposed method, 
candidate patterns of an input can be estimated by reverse recall from the kernel 
image recalled by a given inclusion input pattern, and then the plausible recall 
pattern can be determined by comparing the candidates with input pattern. We 
confirm the validity of the proposed method through hetero association 
experiments for twenty six alphabet patterns with inclusion patterns. 

Keywords: morphological associative memory, reverse recall, perfect recall, 
pattern with inclusive relation. 

1   Introduction 

Associative memory is one of crucial brain functions. The researches of the 
associative memory have been studied especially from early in 80’s [1-4]. Hopfield 
network [4] is well known as the traditional model, which is used as not only the 
associative memory but also an optimization tool. However it has not been used for 
practical functional memory devices, despite the attractive features. It is resulting 
from the drawbacks that are low memory capacity in contrast to the number of 
memory units and instability in recall caused by the local minimum. 

As one of the improving models, Ritter proposed a morphological associative 
memory (MAM) using a concept of the morphology [5]. The MAM is superior to other 
models in terms of the memory capacity and perfect recall rate. The MAM, on the 
other hand, has a drawback that the kernel image used for a recall index becomes hard 
to design as the number of stored patterns increase. To overcome the problem, Hattori 
et al. proposed a high speed kernel designing method [6], and Ida et al. developed a 
MAM employing additional kernel images [7]. We proposed the block splitting type 
MAM (BMAM) which avoids spreading noises by splitting a pattern in several blocks 
[8]. In this method, the perfect recall rate was improved by about 8-10 % compared to 
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the MAM without the kernel image. We also proposed an effective kernel design 
method employing the kernel images independent to the corresponding stored pattern 
[9]. In this proposed method, the plausible kernel image can be determined by applying 
the BMAM method to the kernel images. The method employing the independent 
kernel image facilitated the design of the kernel image. However it remains as a 
problem that an associative memory is hard to recall the correct pattern if the recall 
pattern is inclusion pattern (e.g., "C and G", "E and F"). 

In this paper, we propose the effective method employing reverse recall to solve 
this problem. In the method, the kernel image can be represented with unique one bit 
by using the kernel design method that does not depend on the stored patterns. 
Finally, in the proposed MAM, the plausible recall pattern can be determined by 
comparing input pattern with patterns obtained by reverse recall. The correct recall 
pattern can be obtained by comparing input pattern with patterns obtained by the 
reverse recall. We confirm the validity of the proposed method through hetero 
association experiments for twenty six alphabet characters including patterns with 
inclusion relation to other stored patterns. 

2   Morphological Associative Memory: MAM 

2.1   Ritter’s MAM 

The MAM proposed by Ritter [5] has two-stage recall process using memory matrices 
“M” and “W” in the stages as shown Fig.1. In the recall process, a kernel image is 
used as an intermediate image. Here, let assume S pattern pairs ( ) ( )SS YXYX ,,,, 11  as the 

stored patterns. Respectively, ),,( 1
r
n

rr xxX = , ),,( 1
r
m

rr yyY = , S is the total number of 

the pattern pairs. The kernel image rZ  works as the index for recalling the stored 
pattern rY  and consists of partial units of the stored pattern rX . The memory matrices 
“M” and “W” are given as; 
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where 
ijm  and 

ijw  are (i, j)-th element of memory matrices “M” and “W”, 

respectively. The symbols ∧  and ∨  denote minimum and maximum operators, 
respectively. When an input pattern rX  is fed into the MAM, the output is obtained 
by two-stage recall process given by follows; 
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Fig. 1. Two-stage recall process in Ritter’s MAM 

2.2   MAM Using the Stored Pattern Independent Kernel Image 

Ritter’s MAM has a problem that the design of the kernel image becomes difficult as 
the number of stored patterns increase because the kernel image is created using a part 
of the stored pattern. In order to overcome the problem, we proposed a MAM using a 
stored pattern independent kernel image [9].  

The recall process of the MAM using the independent kernel image as shown Fig.2 
processes through the following steps; 
 
step1 An input pattern is divided evenly into sub blocks, 
step2 the first recall is executed every sub block independently, 
step3 the recalled patterns of all sub blocks are summed up, 
step4 the kernel image is determined by a majority logic for the kernel pattern 

obtained in step3, 
step5 finally the output pattern is recalled using the kernel image in the second 

recall stage. 
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Fig. 2. Recall process of the MAM using the independent kernel image 
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3   MAM Employing a Reverse Recall 

In the MAM using the independent kernel image, when a pattern is completely 
included with other stored pattern (a pattern in the pair is called “inclusion pattern”), 
overlapped kernel image corresponding to those patterns is recalled in hetero-
association for the pattern. Therefore, the overlapped output pattern is recalled as 
shown in Fig.3. 
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Fig. 3. Recall process of the MAM using the independent kernel image for the inclusion pattern 
in hetero-association.      denotes the pattern “C” completely included with the pattern “G”. 

As one of solutions, we propose an effective method employing a reverse recall. In 
the proposed method, overlapped kernel image is separated to individual kernel 
images. The stored pattern corresponding to each kernel image is reversely recalled 
for each separated kernel image, independently. Here, we introduce the feedback 
scheme proposed by Ritter [10] into the proposed method. The stored pattern 

( )r
n

rr xxX ,1=  reversely recalled for kernel images ( )r
m

rr zzZ ,1=  is given 

as: 
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where, r
jx  is j-th unit of the stored pattern rx , r

iz  is i-th unit of the kernel image rz . 

Hamming distance is calculated between an input pattern and patterns reversely 
recalled. The final kernel image corresponding to the input pattern is determined by 
the kernel image of the minimum Hamming distance. 

The recall process of the MAM employing a reverse recall is shown in Fig.4 and 
processes through the following steps: 
 

step1 The kernel image is determined by a majority logic, as same as the MAM 
using the independent kernel image, 

step2 when the overlapped kernel image is recalled, the kernel image is separated 
to individual kernel images, 

step3 the stored pattern corresponding to each kernel image is reversely recalled 
using each separated kernel image, independently, 

step4 Hamming distance is calculated between the input pattern and the reversely 
recalled  patterns obtained in step3, 

step5 The kernel image having the minimum Hamming distance is selected for the 
plausible kernel image, 

step6 finally, in the second recall stage, the output pattern is recalled using the 
kernel image determined in step5. 
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Fig. 4. Recall process of the MAM employing a reverse recall 

4   Experimental Results 

In order to evaluate the validity of the proposed method, hetero-association 
experiments are examined. The performance is evaluated with the perfect recall rate. 
Here the perfect recall rate is evaluated by an average of 10,000 trials in the 
simulation. The perfect recall is defined as recalling the correct pattern which is the 
pattern recalled by the noiseless input pattern.  

In the experiments, each pattern consists of 10 x 10 = 100 binary units. The unit of 
pattern takes ‘0’ or ‘1’, the ‘1’ represents black and ‘0’ white. The noise is assigned to 
change '1' into '0' at random and vice versa. 

4.1   Hetero Association Using Twenty-Six Alphabet Characters 

Firstly, we investigate the perfect recall rate of the MAM using the independent 
kernel image for twenty-one alphabet patterns excluding the inclusion patterns as 
shown in Fig.5. 

 

 

Fig. 5. Stored pattern: twenty-six alphabet capital letter patterns. Patterns surrounded by red 
square represent the inclusion patterns. 
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Fig.6 shows the noise tolerance of the MAM using the independent kernel image 
for twenty-one patterns illustrated in Fig.5. The perfect recall rate is investigated with 
changing the number of block splits. Here, sb represents the number of the block 
splits, and sb = 1 is the special case, which means no block split. 

In the case, pattern excluding the inclusion patterns are used. Therefore, good 
performance can be achieved. 
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Fig. 6. Noise tolerance of the MAM using the independent kernel image in hetero-association 
for twenty-one alphabet patterns 

Next, we investigate the perfect recall rate of the MAM using the proposed method 
and the MAM using the independent kernel image for twenty-six alphabet patterns 
including the inclusion patterns as shown in Fig.5. 

Fig.7 shows the noise tolerance of the MAM using the independent kernel image 
and the proposed method for twenty-six alphabet patterns including the inclusion 
patterns. In ordinary MAM using the independent kernel image, as shown in Fig.7 (a), 
the perfect recalling can not be achieved even if the input pattern does not include any 
noise. 
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(a)                (b) 

Fig. 7. Noise tolerance in hetero-association for twenty-six alphabet patterns. (a) is the result of 
the MAM using the independent kernel image, and (b) the proposed method. 

On the other hand, as shown in Fig.7 (b), in the proposed method, the perfect 
recalling can be achieved when the input pattern does not include any noise, 
differently from the result of ordinary MAM using the independent kernel image. 
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4.2   Hetero Association Using Sets of Threefold Inclusion Patterns 

Thirty patterns as shown in Fig.8 are used in the experiment.  

 

 

Fig. 8. Stored patterns: thirty patterns that consist of only sets of threefold inclusion patterns 

Fig.9 shows the noise tolerance of the MAM using the independent kernel image 
and the proposed method for thirty patterns in hetero-association. Even in the case of 
threefold inclusion patterns, Fig.9 (b) shows that the perfect recalling can be achieved 
when the input pattern does not include any noise.  
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Fig. 9. Noise tolerance in hetero-association for thirty patterns. (a) is the result of the MAM 
using the independent kernel image, and (b) the proposed method. 

5   Conclusion 

Conventional MAMs cannot achieve the perfect recall even if it is noiseless pattern 
when a pattern is completely included by other stored pattern. In order to overcome 
this problem, we proposed the MAM employing the reverse recall method available 
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for inclusive patterns. The validity of the proposed method was confirmed by hetero-
association experiments. Furthermore, we showed that the proposed method can 
handle even threefold inclusion patterns. On the other hand, the proposed method 
needs an additional calculation for the reverse recall. The additional time is 
approximately equal to recallip tS ××5.0 . Here 

ipS  is the number of included patterns 

and 
recallt  is the time of recall with no inclusive pattern. Parallel computation can be 

expected as one of the solutions for this problem because the reverse recall on each 
kernel image can be done individually. In the future works, we will improve 
calculation speed by refining the algorithm and tackle practical applications 
employing an associative memory. 
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Abstract. Recently, the spread of the Internet makes familiar to the in-

cident concerning the Internet, such as a DoS attack and a DDoS attack.

Some methods which detect the abnormal traffics in the network using

the information from headers and payloads of IP-packets transmitted

in the networks are proposed. In this research, we propose a method of

Pareto Learning SOM (Self Organizing Map) for IP packet flow analysis

in which the occurrence rate is used for SOM computing. The flow of the

packets can be visualized on the map and it can be used for detecting

the abnormal flows of packets.

1 Introduction
As for the popularization of computers and development of internet connections,
the incidents on the network are increasing. The purpose of this research is as
follows. From the network which uses the packet communication, the packets
are captured. After preprocessing, the occurrence rate of the each element in the
packets is calculated, and is learned by Pareto learning Self Organizing Map.
From, the result of learning, the traffics of the IP packets are visualized on the
map. Using this map, the changes of traffics are also visualized and it will be
applicable to detect network incidents.

Self Organizing map is the feed forward type neural network which consists
of 2 layers, competitive layer and input layer without hidden layers. The learn-
ing method is unsupervised learning. After learning SOM can map the multi-
dimensional data on the 2 dimensional plane. Pareto learning SOM (P-SOM) is
a variation of SOM which is proposed for the learning of multi-modal vectors.
The packet data consists of some types of attributes, so it will be effective to
apply P-SOM for this problem. As the previous work using SOM for network
traffic analysis, in [1] the large amount of logs from IDS system were analyzed
and the information of each packet was learned using SOM. In [2], the occur-
rence rate of the IP address in the list of IP address was analyzed by using
SOM. Our approach also uses the occurrence rate, however the occurrence rate

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 329–336, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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of each attributes of IP packets is counted, and not only IP address, but also
other attributes in IP-header and payload information are used for the learning.
The occurrence rates are often used for the learning of statistical information of
the large amounts of input data. For example, In [3], the occurrence rates of the
words in the documents are used for clustering the large amounts of document
data, and in [4], the occurrence rates of the tuples of the DNA sequences are
used for discovering the hidden properties of DNA sequences. The traffics of IP
packets also will be large amounts, so it will be effective to use occurrence rate
for learning the statistical information of the IP-traffics.

After learning the map, the packet traffics can be visualized and it can also
used for detecting the abnormal traffics. In this paper, the experimental results
of the detection of abnormal traffics, using supervised learning and using unsu-
pervised learning are shown.

2 Analysis of Packet Traffics Using Pareto Learning Self
Organizing Maps

2.1 Pareto Learning Self Organizing Maps

For the learning of multi-modal vectors using conventional Self Organizing Map
(SOM)s, the simply concatenated vectors are often used. But, the resulting maps
are dominated by the largely scaled vectors and are easily affected by unreliable
vectors. For this problem, the concatenated vectors with weight values are used.
But, the resulting maps heavily depend on the setting of weight values and
it is difficult to select optimal weight value for each vector. For this problem,
we proposed Pareto learning Self Organizing Map(P-SOM)s[5][6]. P-SOM orga-
nizes the input data composed of the multiple independent vectors based on the
Pareto optimal concept[5]. Additionally, we proposed Supervised Pareto learn-
ing SOM(SP-SOM) s to improve the accuracy of classification by adding the
supervised learning of category vector as feature vectors[5]. We applied P-SOM
and SP-SOM to the authentication problem using multi-modal behavior vectors
such as key typing features and pen drawing features on touch screen[5]. The
algorithm of P-SOM is as follows.

P-SOM Algorithm

1. Initialization of the map
Initialize the vector mij which are assigned to unit U ij on the map using the
1st and 2nd principal components as base vectors of 2-dimensional map.

2. Batch learning phase
(1) Clear all learning buffer of units U ij .
(2) For each vector xi, search for the pareto optimal set of the units P =
{Uab

p }. Uab
p is an element of pareto optimal set P, if for all units Ukl ∈ P−Uab

p ,
existing h such that eab

h ≤ ekl
h where

ekl
h =

∣∣xi
h − mkl

h

∣∣ (1)

(3) Add xi to the learning buffer of all units Uab
p ∈ P .
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3. Batch update phase
For each unit U ij update the associated vector mij using the weighted av-
erage of the vectors recorded in the buffer of U ij and its neighboring units
as follows.
(1)For all vectors x recorded in the buffer of U ij and its neighboring units
in distance d ≤ Sn, calculate weighted sum S of the updates and the sum of
weight values W.

S = S + ηfn(d)(x − mi′j′) (2)
W = W + fn(d) (3)

where U i′j′s are neighbors of U ij including U ij itself, η is learning rate,
fn(d) is the neighborhood function which becomes 1 for d=0 and decrease
with increment of d.
(2) Set the vector mij = mij + S/W .

Repeat 2. and 3. with decreasing the size of neighbors Sn for pre-defined
iterations.

As shown in step 2 of this algorithm, Pareto winner set for the integrated
input vector x are searched for based on the concept of Pareto Optimality using
the distance defined by (6) as objective function fh(x) for each element xh in
x. Thus, the multiple units become winners. The winners and their neighboring
units are modified in the update process in step 3. Overlapped neighbors are
updated multiply and the overlapped region will contribute to generalization
ability and integration ability of P-SOM.

2.2 Learning IP-Packets Using Occurrence Rate

As the input vector for learning IP-packets using P-SOM, the occurrence rates
of the elements in the packets are used as the statistical information of the group
of packets. This method is considered to be effective for handling large number of
packets. In our experiments, IP packets can be captured only in out laboratory
which is inside of the firewall. So, the packets concerning the attacks did not ap-
pear. So, we develop the algorithm which can visualize the time flow of the pack-
ets. This algorithm will be applicable for detecting illegal attacks which will be
mapped to the specific regions on the map. The calculation method of occurrence
rate is as follow. The occurrence rate of source and destination IP address is
counted for each 8 bits digit in 256 dimensions of vector. Fig. 1 shows an ex-
ample of counting IP address. For 192.168.36.18, the 192th element of the 1st
vector, 168th element of 2nd vector, 36th element of 3rd vector and 18th element
of 4th vector are counted up. The port number is described in 16 bits digit. The
port numbers which are often used for illegal accesses are concentrated to the
well known port numbers, TCP/25 for mail service, TCP/80 for web service
and UDP/53 for DNS(Domain Mail Service). The port numbers are counted in
5 elements, which represents these 3 port numbers and other well-known ports
and other ports which are temporally allocated for communication. The packet
length is counted in 2 elements which denote less than 100 and greater than 100.
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Fig. 1. Counting of IP Addresses

The payload data is counted in 256 elements which denote the occurrence of 8
bits numbers in payload data. Fig.2 shows the configuration of input vectors.
As shown in Fig.2, the dimension and scale of the input vectors are different
each other. P-SOM can integrate such vectors naturally based on the concept of
Pareto optimality.

Fig. 2. Configuration of input vector

2.3 Experiment of Mapping the Traffics of Packets

At first, we made the experiments using the small number of packet data cap-
tured in the laboratory. As mentioned before, the packets are already filtered by
firewall of university, so the packets concerning illegal access are not contained.
In this experiments, we examine how the traffics of the packets are mapped us-
ing P-SOM algorithm. We made some experiments with changing the number
of packets in a group. Number of the groups is set 100 for all cases. For each
group, the input vector is configured as shown in Fig.2 and the category vector
which represents the sequential number of the group is added. Fig.3 shows the
result for the size of the group set as 500 packets. This map is organized as
torus map. The number in each cell denotes the sequence number of the group
of packets which is derived from the category vector learned on the map. The
gray scale level also represents the sequence number. If the group of IP Packets
are mapped continuously depending on the sequence number of the groups, the
change of the color will be continuous on the map and it reflects the changes of
the traffics of IP packets in the time flow on the map. The IP communications
are performed using group of packets. Thus, the occurrence rate of the group of
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Fig. 3. Map of the occurrence rate vectors of 500 IP packets

the packets which are close in time scale become similar and mapped closely by
P-SOM and this map reflects the changes of the traffics of IP Packets in local
network.

3 Experiments for Detecting Abnormal Packets

3.1 Supervised Learning Method

Next, we examine the availability for detecting abnormal packets using super-
vised learning. For this experiments, the abnormal packet data including illegal
attacks is artificially generated from the captured data. An attack consists of
group of packets and the IP address fields and Port number fields of the packets
are modified as follows.

Random IP scan (IP-R). Assuming the IP scan to local network, the des-
tination IP address is set to random IP address in local network for each
packet.

Fixed IP attack (IP-F). Assuming the attack to a computer in local network,
the destination IP address is set to identical IP address in local network
during an attack and is set random for each attack.

Random Port scan (Port-R). Assuming the port scan to the computers in
local network, the destination port number is set to random number for each
packet.
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Fixed Port attack (Port-F). Assuming the attack to a fixed Port number
of the computers in local network, the destination Port number is set to
identical number during an attack and is set random for each attack.

For all cases, the source IP addresses and source port numbers are set identical
during an attack and is set random for each attack.

We made experiments with changing the combinations of the modifications
of IP and Port number. 500 groups of packets, which include 100 attacks, are
used for learning SP-SOM and 5000 groups of packets, which include 1000 at-
tacks, are used for test. Each attack consists of 100 packets. Fig.4 shows the
map for case4 (IP-R, Port-R) and Table 1 shows the sensibility and specificity
for classifying the groups including abnormal packets. Sensibility and specificity
means the rates for classifying the group of packets including abnormal packets
and the group not including abnormal packets correctly. In Fig.4, the groups of
packets including attacks are colored in red and clustered mostly in two clusters.
For the test data, specificity, which means the detection rate of non-attacking
packets, is high enough for all cases. Sensibility, which means the detection rate
of attacking packets, is about over 80% except in case 2. The sensibility can be
improved at the expense of specificity with changing the threshold of discrimi-
nation of SP-SIM, however, the specificity is considered to be more important
than sensibility is this experiments to avoid too sensitive detections which annoy
the administrator of the network.

Fig. 4. Map of the group of packets including attacks

3.2 Unsupervised Learning Method

In the previous subsection, the results of the experiments of detecting abnormal
packets using supervised learning is mentioned. But, for supervised learning, the
pattern of the attacks should be known and the patterns which are different
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from learned one can not be detected. In the recalling process of Pareto learning
SOM, the size of Pareto set becomes larger for the un-learned input vectors. In
the authentication system using SP-SOM, the unregistered users can be detected
using this feature. For the detection of abnormal packets, the size of the Pareto
set becomes larger for the group of packets including abnormal packets after
learning the map using the group of normal packets. Thus, the group of packets
including attacks can be detected with setting the threshold value for Pareto
set. The size of the Pareto set decreases and is adaptively adjusted during the
learning process of P-SOM. Thus, the average size of the Pareto set in the last
learning step(pslast) is used as the reference and the threshold value is set as
1.5 × pslast.

Table 1. Sensibility and specificity of attacks using supervised learning

Attacks Sensibility Specificity

Case 1 IP-F, Port-F 86.5 % 92.0 %

Case 2 IP-F, Port-R 68.9 % 96.2 %

Case 3 IP-R, Port-F 79.9 % 96.3 %

Case 4 IP-R, Port-R 96.2 % 98.9 %

The setting of the experiments is almost same with that mentioned in previous
section except that the map is learned using the 500 groups of normal packets.
Under this settings, both of the sensibility and specificity becomes 1.0 for all
cases of the attack patterns. The detection method based on the size of Pareto
set shows much superior results compared with those in the previous subsection.
To make severe the condition, the number of packets in an attack is decreased.
Fig.5 shows the results for sensibility. Specificity is almost 1.0 for all cases. From
these results, the packets concerning the attacks can be detected if more than 15

Fig. 5. Change of the sensibility with decreasing number of packets in an attack
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packets concerning the attacks are contained in a group sized 500 packets, thus
this detection method is considered to be very sensitive to abnormal traffics.

4 Conclusions

We propose a method for analysis of IP traffics based on Pareto learning SOM
(P-SOM). The map which reflects the change of IP traffics can be organized by P-
SOM and the simulated attacks can be detected using Supervised P-SOM. This
method will be available for monitoring IP traffics and detecting the attacks from
outside of local network. For detecting attacks, the unsupervised learning method
based on the size of Pareto set, which does not need the prior knowledge of the
attacks, shows much better results than those of supervised learning method. As
the feature works, we must examine this system in larger scale network and in
the environment of outside firewalls.
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Abstract. Recently server consolidation using virtualization leverages

cloud computing. In cloud computing, we can apply centralized logging

system using server consolidation. In this paper we propose a log anal-

ysis method in cloud computing environment using automated reason-

ing. On cloud computing providers, VM (virtual machine) monitoring is

important to detect security incident. We discuss how to monitor VM,

formatting and analyzing logs. Automated reasoning is more effective to

retrieves information from large amount of log string. In proposed sys-

tem, VM log is represented as clausal form and processed by FoL (First

order Logic) theorem prover. We also present the numerical output of

proposed system.

Keywords: Cloud computing, log analysis, automated reasoning, IaaS,

Internet Explorer.

1 Introduction

With the rapid advance of high speed Internet, high performance CPU and
virtualization technologies, cloud computing is possible. PaaS, IaaS and HaaS is
possible to be provided with by reasonable computing resources and price. At
the same time, our computing environment become sophisticated, diversified and
complicated. To detect security incidents, conventional signature matching and
stateful inspection is not enough. More fine-grained monitoring and sophisticated
analysis is necessary to cope with complicated cloud computing management.
In this paper we propose the application of automated reasoning processing log
strings from VM monitoring.
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2 Could Computing Environment

2.1 Cloud Computing

Cloud computing is a concept of Internet-based computing, which becomes fea-
sible by the rapid improvement of high performance network and virtualization
technologies. Cloud computing provides high usability thin client, more flexible
provisioning and effective server consolidation. On the other hand, cloud com-
puting yields complicated VM infrastructure where more sophisticated tracking
and analyzing system to achieve availability and security.

2.2 PaaS, SaaS and IaaS

Cloud computing is divided into three styles: PaaS, SaaS and IaaS. PaaS is plat-
form as a service to provide computing environment. SaaS is software as a service
to deliver application without installing on client side. IaaS is infrastructure as
a service to provide platform using virtualization technologies. In this paper we
cope with IaaS to obtain VM logs and apply automated reasoning for log strings.

2.3 Virtual Machine Monitor

VMM (virtual machine monitor) is a thin layer of software between the physical
hardware and the guest operating system. The rapid increase of CPU perfor-
mance enables VMM to run several operating system as virtual machine, mul-
tiplexing CPU, memory and I/O devices in reasonable processing time. Recent
VMM is a successful implementation of microkernels. Under the guest OS, VMM
runs directly on the hardware of a machine which means that VMM can provides
the useful inspection and interposition of guest OS.

3 Mechanized Reasoning

Mechanized reasoning is also called as automated reasoning in which fields re-
searchers cope with the creation of software which makes computers ”reason” in
the sense of mathematical aspects such as solving puzzle and proving theorems.
In this field, software such as FoL (first-order logic) or HoL (higher order logic)
theorem prover, SAT solver and model generator is created to automated the
mathematical process. In this paper we apply automated deduction system for
automated log analysis of infected Windows OS using mechanized reasoning.

3.1 Resolution

Basically, proposed system is based on resolution. If clause Cls1 and Cls2 have
literal L1 and L2, the clause CR is resolved below.

CR = (C1σ \ L1σ) ∪ (C2σ \ L̄2σ)

where σ is unifier which L1 and L2 equal. σ is sometimes could be most general
unifier. The resolution in Lit1 ∈ Cls1 is also possible as Litn ∈ Clsn. According
to the above formation, hyper resolution several clauses.
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Fig. 1. Figure1 show the resolution process in set of support strategy, where S={P and

Q and R, P and R, Q and R, R}.The restriction imposes the reasoning so that the

program do not apply an inference rule to a set of clauses that are not the complement

of set of support.

3.2 Set of Support Strategy

Set of support was introduced by L.Wos, S.Robinson and Carson in 1965[1]. If
the clause T is retrieved from S, SOS is possible with the satisfiability of S-T.
Set of support strategy enable the researcher to select one clause characterizing
the searching to be placed in the initializing list called SOS. For the searching
to be feasible and more effective, the resolution of more than one clauses not
in SOS is inhibited in order to prevent the prover go into abundant searching
place. Definition. H is satisfiable subset of S. T is set of support where

S = ∪H and H ∩ T = φ

Figure1 show the resolution process in set of support strategy, where S=P and
Q and R, P and R, Q and R, R. The restriction imposes the reasoning so that
the program do not apply an inference rule to a set of clauses that are not the
complement of set of support.

3.3 Hyperresolution

In generating encoder, we apply the inference rule called hyper resolution[2],
which is a kind of resolution that can do resolutions at once compared with
several steps in another rules. For hyperresolution, these must be the negative
or mixed clause with the remaining clauses equal to the number of literals in
the negative or mixed clause. The positive clause are described as satellites, the
negative clause nucleus. ”Hyper” means that in this resolution more process has
occur than another resolution such as binary resolution.
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3.4 Subsumption

Subsumption[4] is the process of discarding a specific statement. The clause that
duplicated or is less general is discarded in the already-existing information. As
a result, subsumption prevents a reasoning program from retaining clauses that
is obviously redundant, especially is logically captured by more general clauses.
Definition. The clause A subsumes the clause B when B is the instance that is
logically captured by B.

The clause P(X) Subsumes the clause P(a).

There are several paths and axioms that could be applied. Subsumption strategy
is effective when the same or more specific clause in the present of already-
existing clause is generated. The clause is crossed and the generated clauses on
the process of resolution is also eliminated. The effectiveness of this strategy is
presented in experimental results.

4 Logging Techniques of Windows OS

Windows modification OS consists of three steps: [1]inserting DLL into user
process, [2]inserting filter driver into kernel space. In this section we discuss
library insertion (DLL injection) and filter driver injection.

4.1 DLL Injection

DLL injection is the insertion of original library on userland. We apply DLL in-
jection for inspecting illegal resource access of malicious process. DLL injection
is debugging technology to hook API call of target process. Windows executable
applies some functions from DLL such as kernel32. dll. Executable has import
table to use the linked DLL. This table is called as import section. Among some
techniques of DLL injection, modifying import table is useful because this tech-
nique is CPU-architecture independent. Figure 5 show the modification of import
table. Address of function A on left side is changed to the address of inserted
function on right side. In code table, some original functions are appended to
executable. Modified address is pointed to code of inserted function. By doing
this, when the function A is invoked, the inserted function is executed.

4.2 Filter Driver

Filter driver is an intermediate driver which runs between kernel and device
driver. By using filter driver, we can hook events on lower level compared with
library insertion technique on userland. In detail, System call table is modified
to insert additional routine for original native API. In proposed system, filter
driver is implemented and inserted for hooking events on file system.
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505 [] fi le(type(PreRead),pid(1040),processName(IEXPLORE_EX),
fi lename(C__DOCUMENTSANDSETTINGS_ADMINISTRATOR_DESKTOP_WAR_FTPD_SYSMSG9_TXT)).
646 [] registry(pid(1040),processName(IEXPLORE_EXE),operation(SetValue),
regName(HKEY_LOCAL_MACHINE_SOFTWARE_MICROSOFT_CRYPTOGRAPHY_RNG)).
669 [] registry(pid(1040),processName(IEXPLORE_EXE),operation(EnumValue),
regName(HKEY_LOCAL_MACHINE_SOFTWARE_MICROSOFT_WINDOWSNT_
CURRENTVERSION_LANGUAGEPACK)).
733 [] registry(pid(1040),processName(IEXPLORE_EXE),operation(QueryValue),
regName(HKEY_LOCAL_MACHINE_SYSTEM_CONTROLSET001_CONTROL_NLS_LANGUAGEGROUPS)).
734 [] registry(pid(1040),processName(IEXPLORE_EXE),operation(QueryKey),
regName(HKEY_LOCAL_MACHINE_SOFTWARE_MICROSOFT_WINDOWSNT_
CURRENTVERSION_FONTLINK_SYSTEMLINK)).
2675 [] -fi le(type(PreRead),pid(x1),processName(x2),fi lename(C__DOCUMENTSANDSETTINGS_
ADMINISTRATOR_DESKTOP_WAR_FTPD_SYSMSG9_TXT))|
-registry(pid(x1),processName(y2),operation(QueryValue),regName(y4))|access1(pid(x1),
processName(y2),operation(QueryValue),regName(y4)).
2676 [] -fi le(type(PreRead),pid(x1),processName(x2),fi lename(C__DOCUMENTSANDSETTINGS_
ADMINISTRATOR_DESKTOP_WAR_FTPD_SYSMSG9_TXT))|
-registry(pid(x1),processName(y2),operation(EnumValue),regName(y4))|access2(pid(x1),
processName(y2),operation(EnumValue),regName(y4)).
2677 [] -fi le(type(PreRead),pid(x1),processName(x2),fi lename(C__DOCUMENTSANDSETTINGS_
ADMINISTRATOR_DESKTOP_WAR_FTPD_SYSMSG9_TXT))|
-registry(pid(x1),processName(y2),operation(SetValue),regName(y4))|access3(pid(x1),processName(y2),
operation(SetValue),regName(y4)).
2678 [] -fi le(type(PreRead),pid(x1),processName(x2),fi lename(C__DOCUMENTSANDSETTINGS_
ADMINISTRATOR_DESKTOP_WAR_FTPD_SYSMSG9_TXT))|
-registry(pid(x1),processName(y2),operation(QueryKey),regName(y4))|access4(pid(x1),
processName(y2),operation(QueryKey),regName(y4)).
2679 [] -access1(pid(x1),processName(x2),operation(x3),regName(x4))| -access2(pid(x1),
processName(x2),operation(y3),regName(y4))|
-access3(pid(x1),processName(x2),operation(y5),regName(y6))| -access4(pid(x1),
processName(x2),operation(y7),regName(y8))|ok.
2681 [] -ok.
2691 [hyper,646,2677,505] access3(pid(1040),processName(IEXPLORE_EXE),
operation(SetValue),regName(HKEY_LOCAL_MACHINE_SOFTWARE_MICROSOFT_
CRYPTOGRAPHY_RNG)).
2693 [hyper,669,2676,505] access2(pid(1040),processName(IEXPLORE_EXE),
operation(EnumValue),regName(HKEY_LOCAL_MACHINE_SOFTWARE_MICROSOFT_
WINDOWSNT_CURRENTVERSION_LANGUAGEPACK)).
2704 [hyper,733,2675,505] access1(pid(1040),processName(IEXPLORE_EXE),
operation(QueryValue),regName(HKEY_LOCAL_MACHINE_SYSTEM_CONTROLSET001_
CONTROL_NLS_LANGUAGEGROUPS)).
2705 [hyper,734,2678,505] access4(pid(1040),processName(IEXPLORE_EXE),
operation(QueryKey),regName(HKEY_LOCAL_MACHINE_SOFTWARE_MICROSOFT_
WINDOWSNT_CURRENTVERSION_FONTLINK_SYSTEMLINK)).
2832 [hyper,2705,2679,2704,2693,2691] ok.
2834 [binary,2832.1,2681.1] $F.

Fig. 2. Sample log output of proposed system. Internet Explore which is compromised

accessed illegal directory of FTP server. Also, related registry accesses are shown in

line 646, 669, 733 and 734.

4.3 Centralized Logging Architecture

One of the thrusts of virtualizaton technologies including VMM is the ability
of consolidation. Consolidation makes it possible for logging several virtualized
servers at the same time, on the same physical machine. In proposed system,
victim VM and attacker VM is running on the same physical machine with the
consolidation technologies.
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Fig. 3. Comparison of three resolution methods. About the number of clauses gener-

ated, UR (unit reference) is best effective with 2642.

5 Experimtal Results

5.1 Internet Explorer Aurora Attack: MS979352

In this paper we cope with an exploitation of the vulnerability of Internet ex-
plorer which is called Aurora attack. Aurora attack, Microsoft Security Advisory
(979352), is implemented for the vulnerability in Internet explorer which could
allow remote code execution. Reproduction of aurora attack is done by Java
script with attack vector on server side and Intenet explorer connecting port
8080, resulting in the shell code operation with port 4444.

5.2 Experimental Results

Figure 2 Sample log output of proposed system. Internet Explore which is com-
promised accessed illegal directory of FTP server. Also, related registry accesses
are shown in line 646, 669, 733 and 734. Figure 3 shows Comparison of three
resolution methods. About the number of clauses generated, UR (unit reference)
is best effective with 2642.

6 Conclusion

With the rapid advance of monitoring and filtering technologies of IT system,
we can cope with a variety of access logs to retrieve information of security in-
cidents. Particularly, recently server consolidation using virtualization leverages
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cloud computing. In cloud computing, we can apply centralized logging sys-
tem using server consolidation. In this paper we have proposed the log analysis
method in cloud computing environment using automated reasoning. On cloud
computing providers, VM (virtual machine) monitoring is important to detect
security incident. We have discussed how to monitor VM, formatting and ana-
lyzing logs. Automated reasoning is more effective to retrieves information from
large amount of log string. In proposed system, VM log has been represented as
clausal form and processed by FoL (First order Logic) theorem prover. We also
have presented the numerical output of proposed system.
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Abstract. A multidirectional associative memory (AM) is proposed. It

is constructed with three layer networks: an input layer, a memory layer,

and an associate layer. The proposed method is able to realize many-to-

many associations with no predefined conditions, and the association can

be incrementally added to the network without destruction of old associ-

ations. Experiments show that the proposed AM works well for real tasks.

Keywords: Incremental learning; Self-organizing incremental neural net-

work; Many-to-many association.

1 Introduction

An associative memory (AM) is a memory that stores data in a distributed
fashion and which is addressed through its contents. Traditional methods such
as the Hopfield network [1], the bidirectional associative memory (BAM) [2] and
their variants realize one-to-one association, i.e., according to one key vector,
only one stored vector is recalled. However, with a stimuli, we human beings
usually remember much things rather than one. We hope AM can simulate the
memory of human beings by realizing many-to-many association.

Another challenge is incremental learning of associations. We human beings
are capable of learning new knowledge without destruction of learned knowledge.
Therefore, AM should incrementally memorize new key-response information
without destroying stored key-response information.

Some neural models have been proposed for multidirectional AM or incremen-
tal learning. Recently published self-organizing incremental associative memory
(SOIAM) [3] incrementally stores new key-response pairs without destruction of
memorized information, however, to realize incremental learning, SOIAM spends
plenty of storage and computation cost. M. Hagiwara proposed a multidirectional
AM [4] for many-to-many association, but the association was not flexible. It
was necessary to preset the number of layers with the predetermined number of
associations.
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Fig. 1. Network structure of the proposed

multidirectional AM

Fig. 2. a) Delaunay triangulation (thick

lines) connects points having neighboring

Voronoi polygons (thin lines). b) Induced
Delaunay triangulation (thick lines): mask-

ing Delaunay triangulation with a data dis-

tribution (shaded)

In this paper, we propose a multidirectional AM to realize many-to-many
association and incremental learning. A three-layer network is adopted for our
targets (Fig. 1). The input layer inputs key vector, response vector, and associa-
tion into the AM system. The memory layer stores information coming from the
input layer. The associate layer builds the associative relation between the key
vector and the response vector. In associate layer, we incrementally construct
many-to-many associations.

2 Learning Algorithms

2.1 Memory Layer

Herein, we adopt a self-organizing incremental neural network (SOINN) [5] to
build the memory layer. SOINN is based on competitive learning. Neural nodes
are used to represent the data distribution of input data. The weights of such
nodes are used to store the input patterns. The memory layer comprises some
sub-networks, and each sub-network is used to represent one class. For each
class we adopt one SOINN to represent the distribution of that class. Algorithm
1 shows the learning algorithm of memory layer.

Algorithm 1. Learning of the memory layer
1: Initialize the memory layer network: node set A, sub-network set S, and connection

set C, C ⊂ A × A to the empty set: A = ∅, S = ∅, C = ∅.
2: Input a pattern x ∈ Rn to the memory layer, the class name of x is cx.

3: if There is no sub-network with name cx then
4: Add a sub-network cx to memory layer. This sub-network has a node c1

x, the

weight of c1
x is set as x.

5: Add node c1
x to the node set A, i.e., S = S ∪ {cx}, A = A ∪ {c1

x}.
6: else
7: Update the sub-network cx with SOINN (Algorithm 2.1 in [5]).

8: end if
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According to [6], to build connections among neural nodes, SOINN adopts
the competitive Hebbian rule [7]: for each input signal, connect the two clos-
est nodes with an edge. This rule forms a network whose edges are in the
area suggested by input data distributions. The network represents a subgraph
of the Delaunay triangulation (Fig. 2-a). Using the competitive Hebbian rule,
the resultant graph approximates the shape of the input data distributions
(Fig. 2-b). Hence, Algorithm 1 is capable of representing the input data distri-
bution well. The nodes of sub-networks are the centers of Voronoi regions. Such
nodes serve as the attractors for future recalling phase, the Voronoi regions form
the basins of attraction.

In Algorithm 1, each class is allocated a sub-network. It shows that, for dif-
ferent classes, the dimension of vectors might be different. On other words, the
memory layer is capable of memorizing data of different types (patterns with
any different dimensions).

Algorithm 2. Learning of the associate layer
1: Initialize the associate layer network: node set B, arrow edge set D ⊂ B × B to

the empty set: B = ∅, D = ∅
2: Input a key vector x ∈ Rn, the class name of x is cx.

3: Use Algorithm 1 to memorize key vector x in the memory layer.

4: if No node b exists in the associate layer representing class cx then
5: Insert a new node b representing class cx into the associate layer:

B = B ∪ {b}, cb = cx, mb = 0, Wb = x.

6: else
7: Increment the associative index of b: mb ← mb + 1;

8: Find node i that is most frequently being winner in sub-network cx.

9: Update the weight of node b in associate layer: Wb = Wci
x
.

10: end if
11: Input the response vector y ∈ Rm, the class name of y is cy .

12: Use Algorithm 1 to memorize the response vector y in the memory layer.

13: if No node d representing class cy in the associate layer then
14: Insert a new node d representing class cy into the associate layer:

B = B ∪ {d}, cd = cy , md = 0, Wd = y.

15: else
16: Find node i which is most frequently being winner in sub-network cy .

17: Update the weight of node d in associate layer: Wd = Wci
y
.

18: end if
19: if There is no arrow between node b and d then
20: Connect node b and d with an arrow edge.

21: Add arrow (b, d) to connection set D: D = D ∪ {(b, d)},
22: Set the mbth response class of b as cd: RCb[mb] = cd,

23: Set the weight of arrow (b, d) as 1: W(b,d) = 1.

24: else
25: Set the mbth response class of b as cd: RCb[mb] = cd,

26: Increment the weight of arrow (b, d) with 1: W(b,d) ← W(b,d) + 1.

27: end if
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2.2 Associate Layer

Associate layer is to build association between key vectors and response vectors.
We designate the class a “key class”, to which the key vector belongs, and call the
class the “response class”, to which the response vector belongs. In the associate
layer, nodes are connected with arrow edges. Each node represents one class:
the beginning of the arrow means the key class; the end of the arrow means the
response class.

For training of the associate layer, firstly, Algorithm 1 is used to memorize
information of both the key vector and the response vector. Then, the class name
of the key class and response class are sent to the associate layer. In the associate
layer, if there already exist nodes representing the key class and response class,
we connect the nodes of the key class and response class with an arrow edge. If
no node represents the key class (or response class) within the associate layer,
we add a node to the associate layer and use that node to express the new class
and then we build an arrow edge between the key class and response class.

Algorithm 2 gives details of learning associate layer. The building of the as-
sociate layer with Algorithm 2 discloses that it can realize many-to-many as-
sociations. The third layer of Fig. 1 presents an example of a many-to-many
association network.

In the associate layer, weight vector of every node is selected from the cor-
responding sub-network of memory layer. Step 8, 9, 16, and 17 in Algorithm 2
show that the node that is most frequently being winner is chosen as the typical
node of the sub-network in memory layer, and the weight vector of the typical
node is set as the weight of that class node in associate layer.

Algorithm 2 is able to realize incremental learning. For example, we presume
that Algorithm 2 has built the association of x1 → y1. We want to build x2 → y2

association incrementally. If cx2 and cy2 differ from class cx1 and cy1 , we need
only build a new arrow edge from class cx2 to class cy2 . This new arrow edge
has no influence to the arrow edge (cx1 , cy1). If one of cx2 and cy2 is the same as
cx1 or cy1 , for example, cx2 = cx1 , and cy2 	= cy1 , then Algorithm 1 memorizes
the pattern x2 in sub-network cx1 incrementally, and Algorithm 2 updates the
weight and associative index of node cx1 in the associate layer. Then Algorithm
2 finds or generates a node cy2 in the associate layer and build an arrow edge
from cx1 to cy2 , which differs from arrow edge (cx1 , cy1). In this situation, the
pair x2 → y2 is learned incrementally. For the situation cx2 	= cx1 , cy2 = cy1 , we
can give a similar analysis.

3 Recall and Associate

3.1 Recall in Auto-associative Mode

Figure 3 shows the basic idea for auto-associative task. There exists some at-
tractor, and every attractor has an attraction basin. If the key vector is located
in an attraction basin, the corresponding attractor will be the associated result.

According to Fig. 2, the memory layer separates input patterns to different
Voronoi regions, every Voronoi region acts as attraction basin for associative
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Fig. 3. Every attractor has an attraction

basin. If key vector is located in an attrac-

tion basin, the corresponding attractor is

the associated result.

Fig. 4. Humanoid robot HOAP-3. After

hearing the bell sound, HOAP-3 turns its

head to the bell and watches the bell; then

it points to the bell with its finger.

process, and the node in the Voronoi region acts as attractor. For the associative
process, if an input key vector lies in one Voronoi region Vi, we give the weight
vector Wi of the corresponding node i as the associative result. Algorithm 3
gives the detail for auto-associative recalling process.

Algorithm 3. Auto-associative: recall the stored pattern with a key vector
1: Assume there are n nodes in the memory layer, input a key vector x.

2: for i = 1, 2, ..., n do
3: Calculate the weight sum of input vector, and 1

2
||Wi||2 is a bias.

gi(x) = W T
i x − 1

2
||Wi||2 (1)

4: end for
5: Find the maximum gk(x) = maxi=1,2,...,n gi(x)

6: Output Wk as the recalling pattern.

7: Output the class of node k as the class of x.

By step 2-5, Algorithm 3 judges to which Voronoi region the input x most
likely belongs. It is because

||x − Wi||2 = ||x||2 − 2WT
i x + ||Wi||2 (2)

||x|| is the common item for all nodes, thus minimize ||x−Wi||2 is equivalent to
maximize WT

i x − 1
2 ||Wi||2, which is calculated in step 3 of Algorithm 3.

3.2 Associate in Hetero-associative Mode

With Algorithm 2, the proposed AM memorizes the x → y pair. To associate y
from x, firstly we use Algorithm 3 to recall the stored key class cx of key vector
x, the corresponding node for class cx in the associate layer is bx; then, we use
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Algorithm 4. Hetero-associative: associate stored patterns with a key vector
1: Input a key vector x.

2: Using Algorithm 3 to classify x to class cx.

3: In associate layer, find node bx corresponding to sub-network cx.

4: for k = 1, 2, ..., mbx do
5: Find the response classes cy[k]: cy [k] = RCbx [k].

6: Sort cy[k] with the order of W(cx,cy [k]).

7: end for
8: for k = 1, 2, ..., mbx do
9: Find node by [k] in the associate layer corresponding to sub-network cy [k].

10: Output weight Wby [k] as the associated result of key vector x.

11: end for

RCbx [k], k = 1, ..., mbx to obtain the response class cy and corresponding node
by. Finally, we output all Wby as the hetero-associative results for key vector x.
Algorithm 4 shows details of associating y from key vector x.

4 Experiment

4.1 Binary (Bipolar) Data

Here we use a binary text character dataset taken from the IBM PC CGA
character font. This dataset is adopted by some methods such as SOIAM [3],
BAM with PRLAB [8], Kohonen feature map associative memory (KFMAM)
[9], and KFMAM-FW [10] to test their performance. There are 26 capital letters
and 26 small letters. Each letter is a 7× 7 pixel image, and every pixel has only
-1 (black) or 1 (white) value. During memorization, capital letters are used as
the key vectors, and small letters are used as the response vectors, i.e., A → a,
B → b, ..., Z → z.

Firstly, we consider incremental learning. The patterns of A → a, B → b, ...,
Z → z are input into the system sequentially. At the first stage, only A → a
are memorized, then B → b are input into the system and memorized, and
so on. This environment is non-stationary, new patterns and new classes are
incrementally input to the system. Table 1 shows comparison results between
the proposed AM and other methods. For the proposed AM, 94 nodes in all
are needed for memorization. The correct recall rate is 100%. It is difficult for
BAM and KFMAM to realize incremental learning. Later input patterns will
destroy the memorized patterns. For SOIAM, it needs 99 nodes to represent the
association pairs; it recalls the associated patterns with a 100% correct recall
rate. For KFMAM-FW, if we adopt sufficient nodes (more than 36), it can
achieve perfect recalling results. We must mention that if the maximum number
of patterns to be learned is not revealed in advance, we do not know how to give
the total number of nodes for KFMAM-FW [3].

Then, we consider the many-to-many association. The BAM based and KF-
MAM based methods are unsuitable for this task. In fact, SOIAM can realize
many-to-many association. However, for SOIAM, if it incrementally learns a new
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Table 1. Comparison: recalling results of the proposed AM and other methods under

an incremental environment

Method Number of nodes Recall rate

Proposed AM 94 100%

SOIAM 99 100%

BAM with PRLAB - 3.8%

KFMAM 64 31%

81 38%

100 42%

KFMAM-FW 16 infinite loop

25 infinite loop

36 100%

64 100%

association pair, SOIAM will put together the key vector and response vector of
new pair to one combination vector and send it to SOIAM for clustering. In [3],
pairs such as (A, a), (A, b), (C, c), (C, d) (C, e), (F, f), (F, g), (F, h), and (F,
i) are used to test the one-to-many association. To realize this target, SOIAM
puts together A and b to produce vector A+b, C and d to produce vector C +d,
and so on, then clusters such combination vectors with new nodes: new nodes
different from A + a, C + c, and F + f are added into the system to represent
the associative relation between A → b, C → d, etc. With the proposed AM, we
need only add new associative relation (arrow edge) between nodes in the asso-
ciate layer without adding new nodes in both the memory layer and associate
layer. For example, to realize A → b association, we need only add an arrow
edge from node A to node b in the associate layer: no new nodes are generated.
Both the proposed AM and SOIAM can recall old associated patterns and new
added response vectors well (100% correct recall rate). However, SOIAM spends
new storage and computation time to cluster new association pairs and adds 81
new nodes. The proposed AM requires no new storage and nearly no additional
computation for building new associations, and it saves much more storage and
computation time than SOIAM.

4.2 Real Task for Robot with GAM

This experiment uses a humanoid robot with an image sensor and sound sensor
to test whether the proposed AM is applicable to real tasks. A humanoid robot
HOAP-3 (as depicted in Fig. 4) (Fujitsu Ltd.) is adopted for this experiment.

We show a bell to HOAP-3 and then push the button of the bell to present
the bell sound to HOAP-3. Sounds of the bell are served as key vectors and
images of the bell are served as response vectors. The associative action is set as
the instruction for HOAP-3 to point to the bell with its finger. The association
pairs are presented to the proposed AM, which is built in the brain of HOAP-3,
to build association between key-response pair vectors. For features of images
collected by the image sensor of HOAP-3, we do grayscale transformation and
adopt 36-dimension low-frequency DCT coefficients as the feature vector. For
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features of the sounds collected by sound sensor of HOAP-3, we extract the
15-dimensional spectrum feature on the 20 kHz – 50 ms sampling rate.

After the AM is trained, we show HOAP-3 the sound of the bell, and the
sound of the bell serves as the key vector. HOAP-3 recalls the image of the bell,
turns its head to the bell and watches the bell, then it points to the bell with
its finger, as depicted in Fig. 4.

This experiment demonstrates that the proposed AM is able to realize real
tasks with good performance. It is also noteworthy that, in this experiment, the
dimensions of image and sound are different and the proposed AM builds an
association between vectors with different dimensions quite well.
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Abstract. This paper presents a method using a particle filter (PF) and competi-
tive associative nets (CAN2s) for range image registration to fuse 3D surfaces on
range images taken from around an object by the laser range finder (LRF). The
method uses the CAN2 for learning to provide a piecewise linear approximation
of the LRF data involving various noise, and obtaining a coarse but fast pair-wise
registration. The PF is used for reducing the cumulative error of the consecutive
pair-wise registration. The effectiveness is shown by using the real LRF data of a
rectangular box.

Keywords: Range Image Registration, Particle Filter, Competitive Associative
Nets, Reduction of Cumulative Error by Loop Closing.

1 Introduction

This paper describes a method for range image registration to fuse three-dimensional
(3D) surfaces on range images taken from around an object by the laser range finder
(LRF). As shown in a survey of range image registration [1], the most common regis-
tration methods employ pair-wise registration, such as ICP (iterative closest point), and
they have the problem of propagation or cumulative error. To solve this problem, we in-
troduce the particle filter (PF), known as a sequential Monte Carlo method to estimate
hidden states from the observations [2]. Since the PF estimates the states sequentially,
the cumulative error also occurs, but we introduce a loop closing technique for reduc-
ing the error. Here, the loop closing means that the state comes back to a previous state
after experiencing other states and it is a problem to be solved in SLAM (simultaneous
localization and mapping) applications (see e.g. [3]).

On the other hand, the range images obtained by the LRF are characterized as involv-
ing lack of data called black spots, quantization errors owing to the range (distance)
resolution (e.g. 10mm), and a large number of data owing to high angular resolution
(e.g. 0.25◦). To deal with such data, we have developed a pair-wise registration method
using the CAN2 (competitive associative net) [4], where the CAN2 learns to extract
piecewise planner surfaces. This paper shows an improved method utilizing a distance
measure of range points and the piecewise planes extracted by the CAN2. Note that
the method using a distance measure of points and planes has shown a very good per-
formance in the comparative experiments shown in [1], and the present measure is a
simpler version.

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 352–359, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In the next section, we show the registration method using a PF and CAN2s, and
then the effectiveness of the method is evaluated in Sect. 3.

2 Range Image Registration Using PF and CAN2

We use the SICK LMS200 as a LRF for scanning the horizontal 2D plane to mea-
sure the distance to an object and a suspension unit for rotating the LRF vertically by
means of a geared stepping motor (see Fig. 1(a)). The yaw and pitch angle resolutions
are 0.25◦ and 0.05◦, respectively, and the range (distance) resolution is 10mm. Let
Z[polar]t = {p(i)

[polar]t = (θ(i)
t , φ

(i)
t , r

(i)
t ) | i = 1, 2, · · · } denote the tth range image

taken from around an object, where θ
(i)
t , φ

(i)
t and r

(i)
t , respectively, are the yaw and

pitch angles and the range of the ith scan data (see Fig. 1(b)), and t = 0, 1, 2, · · · , T −
1. From Z[polar]t, we have the Cartesian data p

(i)
[s]t as p

(i)
[s]t = (x(i)

[s]t, y
(i)
[s]t, z

(i)
[s]t)

T =

r
(i)
t (sin θ

(i)
t , cos θ

(i)
t sinφ

(i)
t , cos θ

(i)
t cosφ

(i)
t )T , where the subscript [s] indicates the

scan center coordinate because the z-axis of p
(i)
[s]t directs to the center of the LRF scan.

We denote this dataset as Z[s]t = {p(i)
[s]t = (x(i)

[s]t, y
(i)
[s]t, z

(i)
[s]t)

T | i = 1, 2, · · · }.
The registration from the tth image to the (t−1)th image is executed by the transform

p
(i)
[s]t−1,t = R[s]t−1,tp

(i)
[s]t + t[s]t−1,t, where the parameter ut = (R[s]t−1,t, t[s]t−1,t)

consists of the rotation matrix R[s]t−1,t and the translation vector t[s]t−1,t. By means of

applying this relation recursively, we can transform p
(i)
[s]t to the 0th LRF coordinate as

p
(i)
[s]0,t = R[s]0,tp

(i)
[s]t + t[s]0,t, where

xt = (R[s]0,t, t[s]0,t) = (R[s]0,t−1R[s]t−1,t, t[s]0,t−1 + R[s]0,t−1t[s]t−1,t). (1)

Note that xt indicates the pose, or the orientation R[s]0,t and the position t[s]0,t, of the
tth LRF w.r.t. the 0th LRF coordinate, and ut indicates the movement of the LRF.

LRF

stepping 
  motor

LRF

θ

φ

y
z

x

r

p

(a) (b)

Fig. 1. (a) The LRF with the stepping motor and (b) the LRF coordinate system
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2.1 Modeling of Range Image Registration for the PF

Mathematical formulation: Let xt be the current state or the pose of the LRF, ut the
control motion or the movement of the LRF, and zt = Z[s]t the measurement or the
scan dataset. In order to use PF, we employ two assumptions:

(A1) the probability of the current state xt only depends on the previous state xt−1 and
the control ut; or xt is a Markov process, and

(A2) the probability of the measurement zt = Z[s]t only depends on xt.

Then, the following recursive target distribution for PF becomes reasonable:

p(x0:t|u0:t, z0:t) = p(xt|x0:t−1, u0:t, z0:t)p(x0:t−1|u0:t, z0:t)
������������������������������������

conditional probability for p(x0:t−1, xt)

= p(xt|xt−1, ut, zt)
���������������

(A1) and (A2)

η p(zt|x0:t−1, u0:t, z0:t−1)p(x0:t−1|u0:t, z0:t−1)
�����������������������������������������

Bayes rule for p(x0:t−1|zt)

= η p(xt|xt−1, ut, zt) p(zt|x0:t−1, u0:t, z0:t−1)p(x0:t−1|u0:t−1, z0:t−1)
��������������������

x0:t−1 is independent to ut

, (2)

where η is the normalization coefficient and the initial distribution p(x0) for t = 0 is
supposed to be given. We make the recursive proposal distribution of particles, q(xt),
and the weight, wt, as

q(xt) := p(xt|xt−1, ut, zt) q(xt−1) (3)

wt := p(zt|x0:t−1, u0:t, z0:t−1) wt−1 (4)

for t = 1, 2, · · · from the initial q(x0) = p(x0) and w0 = 1. Then, wtq(xt) is propor-
tional to the target distribution given by the right-hand side of Eq.(2). Here, note that the
proposal distribution q(xt) involving the factor p(xt|xt−1, ut, zt) is not so usual but for-
mulated in several applications such as FastSLAM2.0 [2] for obtaining more accurate
state than using p(xt|xt−1, ut).

Algorithm: Let X
[k]
t = (x[k]

t , w
[k]
t ) be the kth particle, where x

[k]
t = (R[k]

[s]0,t, t
[k]
[s]0,t)

represents the state, and w
[k]
t the weight of the particle. The set of particles, Xt ={

X
[k]
t | k = 1, · · · , K

}
, represents the proposal distribution q(xt) updated recursively

for t = 1, 2, · · · , T by the following steps, where the initial values are set as X0 :=
{X [k]

0 = (R[k]
[s]0,t, t

[k]
[s]0,t, w

[k]
1 ) = (I,0, 1) | k = 1, 2, · · · , K}, where I is the unit

matrix, 0 the zero vector, and := indicates substitution. Furthermore, we use the initial
or the 0th range image at t = T for loop closing.

1. (Update of Proposal Distribution) Generate random samples of u
[k]
[s]t−1,t from

the pair-wise registration parameter, (R̂[s]t−1,t, t̂[s]t−1,t), obtained via the method
shown below (see Sect. 2.2),

u
[k]
[s]t−1,t = (R

[k]
[s]t−1,t, t

[k]
[s]t−1,t) := (R̂[s]t−1,tδR

[k], ξ̂[s]t−1 − R
[k]
[s]t−1,tξ̂[s]t + δt[k]

)

(5)
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Here, ξ̂[s]t indicates the center of rotation, and δR[k] is a random rotation matrix

made via Rodrigues’ formula from the rotation axis δr[k] = (δr[k]
x , 1, δr

[k]
z )T con-

sisting of δr
[k]
x and δr

[k]
z sampled randomly from the normal distribution N(0, σ2

r),
and the rotation angle δϕ[k] ∼ N(0, σ2

ϕ). The translation vector δt[k] is also with
the elements sampled from N(0, σ2

t ). From Xt−1 and Eq.(1), we have Xt involving

x
[k]
[s]0,t = (R[k]

[s]0,t, t
[k]
[s]0,t) := (R[k]

[s]0,t−1R
[k]
[s]t−1,t, R

[k]
[s]0,t−1t

[k]
[s]t−1,t + t

[k]
[s]0,t−1).

(6)

2. (Weight Update) Let ZROI
[s]t be the dataset in the ROI (see Sect. 2.2) generated from

zt = Z[s]t, and Z
ROI,[k]
[s]t−1,t be the dataset transformed from ZROI

[s]t by u
[k]
[s]t−1,t. Then, a

square distance (ΔZ
[k]
t−1,t)

2 between two images, Z
ROI,[k]
[s]t−1,t and ZROI

[s]t−1, is obtained

by Eq.(14) shown below. Assuming p(ΔZ
[k]
t−1,t) is Gaussian N(0, σ2

z) and the like-

lihood p(zt | x
[k]
0:t−1, u

[k]
0:t, z

[k]
0:t−1) is proportional to p(ΔZ

[k]
t−1,t), then we have

w
[k]
t := w

[k]
t−1 exp

(
−

(ΔZ
[k]
t−1,t)

2

2σ2
z

)
. (7)

3. (Loop Closing) Since the initial image is used at t = T , it is desirable that the joint
distribution p(x0:T |u0:T , z0:T ) ∝ p(xT |x0:T−1, u0:T , z0:T ) has the factor with the

mean at x
[k]
T = (R[k]

[s]0,T , t
[k]
[s]0,T ) = x

[k]
0 = (I,0). Thus, we modify the weight as

w̃
[k]
t := w

[k]
t exp

(
−

∥∥∥R[k]
[s]0,T − I

∥∥∥2

2σ2
R

)
exp

(
−

∥∥∥t[k]
[s]0,T

∥∥∥2

2σ2
t

)
. (8)

Here, note that this equation indicates a loop closing, where the loop closing in
the SLAM applications is not so easy as above, while it becomes easier in this
application owing that we can set the loop closing poses of the LRF offline.

After executing the above three steps, we transform the scan data p
(j)
[s]t ∈ Z[s]t weighted

by w̃
[k]
t at each t = 1, 2, · · · , T to the initial LRF coordinate by using the particles X

[k]
t .

The obtained weighted data represent the reconstructed shape of the object.

2.2 Pair-Wise Registration by the CAN2

In order to obtain the pair-wise registration parameter (R̂[s]t−1,t, t̂[s]t−1,t) and the

square distance (ΔZ
[k]
t−1,t)

2 of two images for the above steps, we utilize the piece-
wise planes extracted by the CAN2 as follows.

Plane extraction by the CAN2: Since the relation y = f(x) for y = z
(i)
[s]t and x =

(x(i)
[s]t, y

(i)
[s]t)

T cannot be a single valued function for the points on the floor plane parallel

to the z-axis, we rotate p
(i)
[s]t so that the new z-axis directs to the object center as

p
(i)
[o]t = RP (−φ

(0)
t )RY (−θ

(0)
t )p(i)

[s]t = R[o,s]tp
(i)
[s]t (9)
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where φ
(0)
t and θ

(0)
t are the yaw and pitch angles of the center of the object,

RY (θ) =

⎡⎣ cos θ 0 − sinφ
0 1 0

sin θ 0 cos θ

⎤⎦ and RP (φ) =

⎡⎣1 0 0
0 cosφ − sinφ
0 sin φ cosφ

⎤⎦ (10)

are the yaw and pitch rotation matrices, and R[o,s]t is the rotation matrix from the
scan center to the object center coordinate, where the subscript [o] indicates the object

center coordinate. Note that the reverse transform is given by p
(i)
[s]t = R[s,o]tp

(i)
[o]t =

RT
[o,s]tp

(i)
[o]t, so that we can easily transform each other.

Let us prepare the CAN2 with N units for each tth image. The jth unit has a weight
vector w

(j)
[o]t = (w(j)

[o]t,1, w
(j)
[o]t,2)

T and an associative matrix (row vector) M
(j)
[o]t =

(M (j)
[o]t,0, M

(j)
[o]t,1, M

(j)
[o]t,2). After learning Z[o]t = {p(i)

[o]t = (x(i)
[o]t, y

(i)
[o]t, z

(i)
[o]t)

T |i =

1, 2, · · · } as a function y = f(x) for x = (x(i)
[o]t, y

(i)
[o]t)

T and y = z
(i)
[o]t, the CAN2

divide the input space into Voronoi regions V
(j)
[o]t = {x|j = argmin

i
{‖x − w

(i)
[o]t‖} for

j = 1, 2, · · · , N , and performs linear approximation y = M
(j)
[o]tx in each region. As a

result, the range image is divided into piecewise planes given by (n(j)
[o]t)

T p[o]t = α
(j)
[o]t,

where the normal vector n
(j)
[o]t = (n(j)

[o]t,x, n
(j)
[o]t,y, n

(j)
[o]t,z)

T and the distance to the origin,

α
(j)
[o]t, are given by

((n(j)
[o]t)

T , α
(j)
[o]t) =

(−M
(j)
[o]t,1,−M

(j)
[o]t,2, 1, M

(j)
[o]t,0)√

(M (j)
[o]t,1)

2 + (M (j)
[o]t,2)

2 + 1
. (11)

Here, note that n(j)
[o]t,z > 0 or the normal vector directs forward from the origin or the tth

LRF. We use ZCAN2
[o]t = {q(j)

[o]t = (w(j)
[o]t, M

(j)
[o]t w̃

(j)
[o]t)

T |i ∈ IN} for rough registration

because it approximates Z[o]t and the normal vectors n
(j)
[o]t of q

(j)
[o]t can be utilized in

several ways as shown below.

ROI for registration: From ZCAN2
[o]t , we remove the following data and obtain the ROI

(Region of Interest) dataset ZROI
[o]t = {q(j)

[o]t|j ∈ IROI
[o]t }.

(i) (Remove floor) By means of the plane extraction method using the CAN2 [5], we
extract the floor plane from ZCAN2

[o]t , and remove the data within the distance θh(=
30mm) to the floor.

(ii) (Remove jump edge) The data on the jump edge hold n
(j)
[o]t)

T q
(j)
[o]t = 0. So, we

remove the data with |(n(j)
[o]t)

T q
(j)
[o]t|/‖q

(j)
[o]t‖ < cos(π/2 − θe), where θe(= 5◦)

indicates allowable error.
(iii) (Remove unreliable piecewise planes) remove the data in the Voronoi region of the

unit which involves less than 4 data because the plane is unreliable.

Let us consider the registration of the c(= t)th image ZROI
[o]c to the r(= t − 1)th image

ZROI
[o]r , where c and r represent the current and reference images, respectively.
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Registration using planes extracted by the CAN2: Suppose that the plane extraction
method [5] applied above has extracted the centers ξ

(j)
[o]t and the normal vectors ν

(j)
[o]t of

plane surfaces on the object for t = c and r, and there is a common plane surface on
both cth and rth images whose normal vector is not orthogonal to the rotation plane of
the LRF. Then, we can estimate the registration transform by the following steps, where
sj represents a correspondence of the planes such that the jth plane in the cth image
corresponds to the sj th plane in the rth image.

1. (Obtain registration parameters) For a correspondence sj , we obtain the yaw angle

of the corresponding planes by θ
(sj)

[s]r,c = atan2(ν(sj)

[s]r,z, ν
(sj)

[s]r,x)−atan2(ν(j)
[s]c,z, ν

(j)
[s]c,x).

where ν
(j)
[s]t = (ν(j)

[s]t,x, ν
(j)
[s]t,y, ν

(j)
[s]t,z) is the normal vector represented by the scan

center coordinate, and atan2(z, x) gives the angle of the point (x, z) from the posi-
tive x-axis. Then, the registration or the transform of the points in the cth image to
the rth image, q(j)

[o]r,c = R[o]r,cq
(j)
[o]c +t[o]r,c, is obtained, where (R[o]r,c, t[o]r,c) =

(R[o,s]rRY (θ(sj)

[s]r,c), ξ
(sj)

[o]r − R[o]r,cξ
(j)
[o]c).

2. (Transform and remove hidden data) Transform the cth data to the rth coordinate
by q

(j)
[o]r,c = R[o]r,cq

(j)
[o]c + t

(j)
[o]c, and let ZROI

[o]r,c = {q(j)
[o]r,c|j ∈ IROI

r,c } be the set
of all transformed data except the ones whose third elements of the normal vectors
n

(j)
[o]r,c = R[o]r,cn

(j)
[o]c are negative, because they are invisible from the origin of the

rth LRF.
3. (Evaluate the registration) Let q

(lj)

[o]r ∈ ZROI
[o]r be the closest point to q

(j)
[o]r,c ∈ ZROI

[o]r,c,

and ξ
(lj)

[o]r be the closest point on the tangent plane involving q
(lj)

[o]r, namely,

q
(lj)

[o]r = argmin
q
(l)
[o]r∈ZROI

[o]r

{
‖q(j)

[o]r,c − q
(l)
[o]r‖

∣∣∣∣ (n(j)
[o]r,c)

T n
(l)
[o]r > 0

}
(12)

ξ
(lj)

[o]r = q
(lj)

[o]r +
(
α

(lj)

[o]r − (n(lj)

[o]r)
T q

(j)
[o]r,c

)
n

(lj)

[o]r. (13)

Then, a distance of ZROI
[o]r,c and ZROI

[o]r is given by

(ΔZr,c)2 =
1

|ZROI
[o]r,c|

∑
q
(j)
[o]r,c

∈ZROI
[o]r,c

‖q(j)
[o]r,c − ξ

(lj)

[o]r‖
2. (14)

For all correspondences sj , let (R̂[o]r,c, t̂[o]r,c) be the parameter which achieves the
smallest (ΔZr,c)2. Then, from Eq.(9) we have the registration parameters for the scan
center data as follows,

(R̂[s]r,c, t̂[s]r,c) =
(
R[s,o]rR̂[o]r,cR[o,s]c, R[s,o]r t̂[o]r,c

)
. (15)

3 Experimental Results

In order to examine the effectiveness of the present method, we have conducted exper-
iments using four range images taken from around a rectangular box on the floor. The
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Experimental result using four range images taken from around a rectangular box, the
CAN2 with N = 2000 units and the PF with K = 5000 particles. (a),(b) and (c) indicate the
result of the pair-wise registration. (a) shows the over-head view, where the arc-heads colored
black, red, green, blue and pink indicate the registered poses (orientations and the positions) of
the tth LRF for t = 0, 1, 2, 3, 4, respectively, and the dots indicate the LRF data. (b) shows the
perspective view. (c) shows the top, front and side view of the registered object, where the range
data are digitized into 10mm3 cubic volumes in the 1m3 cubic area involving the object, and the
numbers of the data in the volumes are summed up orthogonally to the top, front and side planes,
respectively. (d) and (e) show the overhead view of the registration by the PF before and after the
loop closing, respectively. The arc-heads indicate the poses of the registered LRFs corresponding
to particles, and the dots represent the range data for the particle with the biggest weight. (f)
shows three side views of the registered and weighted range data.

result is shown in Fig. 2. From (a), (b) and (c), we can see the performance of the pair-
wise registration by the CAN2. Especially, from (a), we can see the cumulative error as
the difference of the LRF poses for t = 0 and t = 4 or the black and the pink arc-heads.
From (c), we can also see the cumulative error in the top view.

The registration by the PF is shown in (d), (e) and (f). From the over-head view
before (d) and after (e) the loop closing, we can see the effectiveness of the loop closing.
Namely, the broad distribution of the poses in (d) is reduced in (e) and the pink poses
for t = T (= 4) distributes around the initial pose at the origin (x, y, z) = (0, 0, 0). We
can also see the reduction of the cumulative error in the top view in (f).

The actual size of the box is 485×175×396 [mm3] in width×depth×height. From
the thick edges in (f), we obtain the size as 47×17×40 [(pixel/10mm)3]. Considering
that every surface of the rectangular box may have 10mm resolution error, the estimated
values seem to be very accurate.
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(a) (b) (c)

Fig. 3. Experimental result using (N, K) = (500, 500). (a) and (b) show the overhead view of
the registration before and after the loop closing, respectively, and (c) shows the three side views
of the registered range data.

The above result is obtained with the CAN2 using N = 2000 units and the PF us-
ing K = 5000 particles for an accurate registration and the computational cost was
904s by Intel Core2Duo 2.67GHz CPU. The result using (N, K) = (500, 500) is
shown in Fig. 3, where the computational cost was 107s, and we have obtained the
sise 46×18×41 [(pixel/10mm)3], which seems not so accurate but not so bad.

Incidentally, the distance measure of two images shown in Eq.(14) using the piecewise
planes extracted by the CAN2 has largely contributed to reducing the computational cost
from the simple distance measure of closest points on two images. Namely, the reduction
rate of the computational cost for the above two examples using (N, K) = (2000, 5000)
and (500, 500), respectively, is 0.087 904s/10332s and 0.094107s/1143s.

4 Conclusion

We have presented a method using a PF and CAN2s for range image registration to fuse
3D surfaces of range images taken from around an object by the LRF. The effectiveness
is shown and examined through the experimental results.

This work was partially supported by the Grant-in Aid for Scientific Research (C)
21500217 of the Japanese Ministry of Education, Science, Sports and Culture.
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Abstract. The Radon transform in combination with self-organizing

maps is used to build the rotation invariant systems for categorization of

visual objects. The first system has one SOM per the Radon transform

direction. The outputs from these directional SOMs that represent posi-

tions of the winners and related post-synaptic activities, form the input

to the final categorizing SOM. Such a network delivers robust rotation

invariant categorization of images rotated by angles up to around 12o. In

the second network the angular Radon transform vectors are combined

together and form the input to the categorizing SOM. This network can

correctly categorized visual stimuli rotated by up to 30o. The rotation in-

variance can be improved by increasing the number of Radon transform

angle, which has been equal to six in our initial experiments.

Keywords: Radon transform, Self-organizing maps, Rotation invariant

vision.

1 Introduction

Radon transform has a long history of application in computer tomography, and
relatively recently has been applied in a variety of image processing problems.
Typically, Radon transform is used in conjunction with other transforms, wavelet
and Fourier included. Magli et al. [1] and Warrick and Delaney [2] seem to
initiate the use of Radon transform in combination with wavelet transform. More
recently, a similar combination of transforms has been used in rotation invariant
texture analysis [3,4], and in shape representation [5]. Other approach to rotation
invariant texture analysis uses Radon transform in combination with Fourier
transform [6]. Chen and Kégl [7] consider feature extraction using combination
of three transforms: Radon, wavelet and Fourier. In [8], texture classification
is performed by using a feature descriptor based on Radon transform and an
affine invariant transform. Miciak [9] describes a character recognition system
based on Radon transform and Principal Component Analysis. Hejazi et al. [10]
present discrete Radon transform in rotation invariant image analysis. Close to
our considerations are object identification problems discussed by Hjouj and
Kammler in [11].
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In the above papers the reader can find many variants of detailed description
of Radon transform and its properties. Here, we can only reiterate the basic fact
that Radon transform, R(θ, r), is composed of sums of pixels along the line that
crosses the visual object under the angle θ at the distance r from the origin. It
can be noted that Radon transform of the image rotated be a known angle, θ,
can be easily inferred from the transform of the un-rotated image. This property
makes Radon transform attractive in rotation invariant vision systems.

In this paper we use combination of Radon transform and Self-Organizing
maps [12]. Our original idea was related to the way in which human vision could
possibly recognize rotated characters as in a process of reading. However, the
presented solutions can be used in a variety of systems of rotation invariant cat-
egorization of visual objects. We discuss two networks of self-organizing modules
that perform the above task in different way.

2 One SOM Per Direction

We start with the system presented in Figure 1in which there is one dedicated
self-organizing module, Dir, per Radon transform direction. The image is pre-
sented at the receptive field, RF, and is randomly sampled at the points symbol-
ically indicated as green dots. Each line crossing the receptive field symbolizes
the ‘dendritic’ summation of image pixels implementing a single point of Radon
transform for a given line, (θ, r). In the example of Figure 1 Radon transform
is calculated for m = 6 angles, along the n = 8 lines, hence, dimensionality of
each vector xD is n = 8, whereas the number of self-organizing modules, Dir, is
equal to m = 6, that is, the number of Radon transform directions, θ.

In our particular computational examples presented below the diameter of
the receptive field, RF, is n = 75 pixels normalised into a unity circle. We
use letters of the Latin alphabet in 28-point font as the set of the test images.
Each directional self-organizing module contain a randomly generated number
of neurons approximately equal to πr2, where r is selected to be equal to 16.
Hence that number of neurons varies around 804. Each module produces a 3-
dimensional output yD:

yD = g(xD) (1)

where xD and yD represent input and output signals, respectively, and g(·)
describes the Winner-Takes-All function of WDxD which produces a 2-D po-
sitional vector v and related postsynaptic activity d. Such 3-D outputs can be
thought of as low dimensional signatures, or labels, specific for each input to the
self-organizing modules. In this we follow our other works [13,14,15].

In Figure 2A we show the result of training one of the directional maps, Dir,
namely, the 60o map. Each map is excited with n-dimensional vectors (n = 75
in our example) representing the value of Radon transform for a given direction,
θ. Each Dir map encapsulates directional similarities of the letters capturing
features characteristic for a given direction. The 3-dimensional signatures, or
labels, yD, generated by directional maps are then applied to the combined map,
TrImg. An input vector xT is of dimensionality 3m, where m is the number of
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Fig. 1. The categorization network with one self-organizing module per Radon trans-

form direction

Radon transform directions. More formally, for the combined module, TrImg,
we can write:

yT = g(
m∑

i=1

WTiyDi) (2)

After training we obtain a combined map as presented in Figure 2B. It can
be observed that the combined map captures, as expected, visual similarities
between letter.

Now we test the responses of the trained network to the rotated images of
letters. The results are presented in Figure 3. We rotate the letters by 2o angles
varying from −12o to 12o as indicated in the map. Firstly, it can be noted
that majority of the rotated letters are correctly clustered. The quality of the
clustering is indicated by the right-hand side plots. The upper plot gives a relative
confidence level as measured by the inner products of respective weights and
input vectors (see sec. 4 for details). Since these are unity vectors, the maximum
of the inner products is equal to 1. The bottom-left plot gives the average size
of the rotated letter clusters. Again the radius of the neuronal circle is unity,
which gives an idea about the size of the clusters.
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Fig. 3. Categorization of rotated letter by the first network

Although it is encouraging that the above network deliverers categorization
invariance for relatively small angles, it would be interesting to find a solution
that was invariant to relatively large rotation angles. One possibility is pre-
sented in the next section. With reference to eqn (2) and Figure 1 we note that
if we rotate the image by the Radon transform angle, it is equivalent to shift-
ing responses, yDi, between the directional self-organizing modules. This gives
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the potential of the perfect rotation invariant behaviour. This potential is lost,
however, when we multiply yDi by the segments of the weight matrix WTi that
have been trained for non-rotated images.

3 The Single-SOM Network

In this solution we have replaced the directional SOMs by simple summations,
as shown in Figure 4. The circular ‘dendrites’ symbolize the summations of the
respective Radon transform rays. The resulting vectors xS are of dimensionality
n = 75 (8 in Figure 4), and are inputs to a single categorizing SOM, TrImg.
More formally, we can write:

xS =
m∑

i=1

R(θi, r) , yS = g(WT xS) (3)

where R(θ, r) is a Radon transform matrix for a given image and vectors θ, r
of all possible angles and lines, respectively. Summation over all Radon trans-
form angles does remove directional sensitivity, but, unfortunately, ignores the

RF

Sx

yS

n

v,d

x

3

TrImg
W V

Fig. 4. The categorization network with summed Radon transform and a single SOM
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Fig. 5. Categorization of rotated letter by the first network

richness of the image details contained in the full Radon transform. It is, how-
ever, expected that the network will correctly classify images rotated by larger
angles that in the network of Figure 1. The results of testing the behaviour of
the network of Figure 4 are presented in Figure 5. This times we rotate the test
images by angles varying from 5o to 30o. Comparing with the results presented
in Figure 3 we note that visually the letters are also well clustered despite of
larger rotation angles. This is reflected in the left hand side bottom plot of the
average location error, and is confirmed by the higher values of the confidence
level presented in the upper plot.

4 Some Implementation Remarks

All input vectors applied to the self-organizing modules, e.g., xD in eqn (1), or
xS in eqn (3), are normalised and projected on the unity hypersphere by adding
one additional dimension. Similarly, all weight vectors are kept on the unity
hypersphere. As a result of such an arrangement the inner products of weight
and input vectors are equal to the cosine of the angle between such vectors.
Working with unity vectors makes it possible to use the dot-product learning
law [12] which speeds up the training.

The neuronal lattice is organized in such a way that each neuron is assigned a
random position inside a unity circle (see Figure 2). By adding third dimension
the position vectors are projected on a 3-D unity sphere. All position vectors
are stored in the position matrix V of dimension N×3, where N is the total
number of neurons.
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5 Conclusion

We have described preliminary investigation of two networks combining Radon
transform and self-organizing maps that are used in categorization of rotated
images. Radon transform is easy to implement since it involves only summation
of image pixel values along the set of parallel lines crossing the image under a
specified set of angles. We have shown that such networks can produce a degree
of rotation invariance that can be attractive both in image processing tasks and
in analysis of aspects of human vision.
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13. Papliński, A.P., Gustafsson, L., Mount, W.M.: A model of binding concepts to

spoken names. In: Proc. 17th Int. Conf. Neural Inf. Proc., Sydney (submitted,

2010)
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Abstract. The Self-Organizing Map (SOM) is a popular algorithm to analyze
the structure of a dataset. However, some topological constraints of the SOM are
fixed before the learning and may not be relevant regarding to the data structure.
In this paper we propose to improve the SOM performance with a new algorithm
which learn the topological constraints of the map using data structure informa-
tion. Experiments on artificial and real databases show that algorithm achieve
better results than SOM. This is not the case with trivial topological constraint
relaxation because of the high increase of the Topological error.

1 Introduction

The Self-Organizing Map (SOM) [1] is a popular algorithm to analyze the structure of
a dataset. A SOM consist in a set of artificial neurons that represent the data structure.
Neurons are connected with topological (or neighborhood) connections to form a two
dimensional grid. Two connected neurons should represent the same type of data, two
distant neurons (according to the grid) should represent different data. These properties
are insured during the learning process by using neighborhood information as topologi-
cal constraints, i.e. each neuron is activated by data that are represented by this neuron,
but each neuron also responds in a less degree to data represented by its neighbors.

However, in the SOM algorithm, the topological information is fixed before the
learning process and may not be relevant regarding to the data structure. To solve this
problem, some works have been done in order to adapt the number of neurons during
the learning process, using informations from the database to analyze [2]. Results have
shown that the quality of the model is improved when the number of neurons is learned
from the data.

Despite of these results, there is very few works that address the problem of learning
the topological constraints from the data structure. However, at the end of the learning
process, some “neighbors” neurons may not represent the same data [3,4]. In this pa-
per we propose to improve the SOM performance with a new algorithm able to learn
the topology of the map using data structure information: the Data-Driven Relaxation –
SOM algorithm (DDR-SOM). The main idea is to associate to each topological connec-
tion of the map a value indicate how well the two connected neurons represent the same
type of data, then to use this values to reduce some topological constraint between neu-
rons that represent different data. These constraint relaxation are expected to improve
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the quality of the SOM, especially by reducing the quantization error of the map and
increasing the number of neurons that really participate to the data representation.

The remainder of the paper is organized as follow. Section 2 presents the Self-
Organizing Map algorithm. Section 3 describes the DDR-SOM algorithm based on
SOM. Section 4 shows experimental validations and discuss the obtained results. Fi-
nally, a conclusion is given in Section 5.

2 Self-Organizing Maps

A SOM consists in a two dimensional map of neurons which are connected to n inputs
according to a set of prototypes vectors and to their neighbors with topological connec-
tion [5,1].. The training set is used to organize these maps under topological constraints
of the input space. Thus, a mapping between the input space and the network space is
constructed ; two close observations in the input space would activate two close neurons
of the SOM. When an observation is recognized, the activation of an output neuron in-
hibits the activation of other neurons and reinforce itself. It is said that it follows the so
called “Winner Takes All” rule. The winner neuron updates its prototype vector, mak-
ing it more sensitive for later presentation of that type of input. To achieve a topological
mapping, the neighbors of the winner neuron can adjust their prototype vector towards
the input vector as well, but at a lesser degree, depending on how far away they are from
the winner.

The connectionist learning is often presented as a minimization of a cost function. In
most case, it will be carried out by the minimization of the distance between the input
samples and the map prototypes, weighted by the neighborhood function Kij . The cost
function to be minimized is defined by:

R̃(w) =
1
N

N∑
k=1

M∑
i=1

Kiu∗(x(k)) ‖ x(k) − wi ‖2

N represents the number of data in the database, M the number of neurons in the map,
u∗(x(k)) is the neuron having the closest weight vector to the input data x(k). The
relative importance of a neuron i compared to a neuron j is weighted by the value of
the kernel function Kij which can be defined as:

Kij =
1

λ(t)
× e

−d2
M (i,j)

λ2(t)

Where λ(t) is the temperature function modeling the topological neighborhood extent.
dM (i, j) is the Manhattan distance defined between two neurons i and j on the map
grid, i.e. the minimal number of topological connection between i and j.

3 Data-Driven Relaxation in Self-Organizing Map

3.1 Principle

In the DDR-SOM algorithm, we propose to associate each neighborhood connection a
real value v which indicates the relevance of the connected neurons. Given the organi-
zation constraint of the SOM, both closest neurons of each data must be connected by
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a neighborhood connection. A pair of neighbor neurons that are together a good rep-
resentative of a set of data should be strongly connected, whereas a pair of neighbor
neurons that don’t represent the same type of data should be weakly connected. Each
neighborhood connection is then associated to a value varying from 1 (strong connec-
tion) to 2 (week connection) using a logistic function depending on the number of data
well represented by both the two connected neurons.

These values are used to estimate a weighted Manhattan distance dWM (i, j) between
two neurons i and j. This distance is the minimal number of connections between i and
j weighted by the value associated to each connection (see fig. 1 for an example).

Fig. 1. Comparison of Manhattan distance and Weighted Manhattan distance between neurons
i and j for hexagonal topology. Here dM (i, j) = 3, it’s the minimal number of topological
connection between i and j, whereas dWM (i, j) = 1.52 + 1.09 + 1.3 = 3.91, it’s the minimal
path between i and j according to the connection values v.

For that purpose we use Johnson’s algorithm [6] to find:

– the shortest paths along neighborhood connection between all pair of neurons.
– the length of this path according to the values v associated to each connection.

In this way the distance between two neurons is expected to reflect the “true” neighbor-
hood of these neurons.

Connection values and distances between neurons are updated during the learning of
the map. Thus, the final quality of the SOM should be improved.

3.2 Algorithm

The DDR-SOM algorithm proceeds in tree steps :

1. Initialization step:
– Define the topology of the SOM.
– Initialize all prototypes vectors of the map w.
– Initialize all neighborhood connections values v to zero.
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2. Competition step:
– Find the first BMU u∗ and the second BMU u∗∗ for each input data x(k):

u∗(x(k)) = Argmin
1≤i≤M

‖ x(k) − wi ‖2

and
u∗∗(x(k)) = Argmin

1≤i≤M, i�=u∗
‖ x(k) − wi ‖2

– Update the neighborhood connections values v according to the following rule:

vi,j =
1 + 2e

Nth−N(i,j)
σNth

1 + e
Nth−N(i,j)

σNth

vi,j is a logistic function that grown from 1 (when i and j represent the same
data) to 2 (when i and j represent different data). N(i, j) is the number of
data (x) that have i and j in {u∗(x), u∗∗(x)}. Nth is the theoretical value for
N(i, j) under homogeneous hypothesis, i.e. Nth is the mean of N(i, j) over
all neighborhood connection.

3. Adaptation phase:
– Update the distance dWM (i, j) for all pair of neurons i and j according to the

neighborhood connections values v.
– Update the kernel function K according to the temperature λ(t) and dWM .
– Update prototypes vectors wi of each neuron i in order to minimize the cost

function:

wi =

∑N
k=1 Kiu∗(x(k)).x

(k)∑N
k=1 Kiu∗(x(k))

4. Repeat steps 2 and 3 until t = tmax

4 Experimental Results

4.1 Databases Description

In order to test the validity of the new algorithm we used 10 artificial and real databases
with different number of data and features.

Databases “Target”, “TwoDiamonds”, “Tetra” and “Hepta” come from Fundamental
Clustering Problem Suite (FCPS) [7]. They are artificial data in low dimensional space
with well known structure. They are often used as benchmark for clustering algorithms
[3,4,7]. Databases “Housing”, “Harot”, “Iris” and “Wine” are well known databases
in various dimensional spaces from the UCI repository [8]. Finally, “Cockroach” and
“Chromato” are very noisy real databases from biological experiments.

These databases are expected to reflect the diversity of the modeling problems that
are encountered by SOM’s users.



Learning Topological Constraints in Self-Organizing Map 371

4.2 Estimation of the Quality of the SOM

We use the following three usual quality indexes to evaluate the training performance
of SOM-based algorithms:

Quantization Error Qe:
This measures the average distance between each data vector and its BMU [1]. The
smaller is the value of Qe, the better is the algorithm.

Qe =
1
N

N∑
k=1

‖ x(k) − wu∗(x(k)) ‖2

Topographic Error Te:
Te describes how well the SOM preserves the topology of the studied data set [9]. It’s
the proportion of all data vectors for which first and second BMUs are not adjacent
neurons (i.e. are not connected with a topological connection). A small value of Te is
more desirable. Unlike the quantization error, it considers the structure of the map.

Neuron Utilization Ne:
Ne measures the percentage of neurons that are not BMU of any data in the database
[10]. A good SOM should have a small Ne, i.e. all neurons must be used to represent
the data.

In all following experiments, all indexes are normalized in order to compare efficiently
results on different databases. To represent the gain or the loss in comparisons to SOM,
each error index is divided to the value obtained with the SOM algorithm (the SOM’s
error is then alway equal to 1). For each experiments in this Section we used the SOM-
Toolbox [11] package, all parameters of the SOM have been set to default values (in
particular we use hexagonal grid as initial topology of the map).

4.3 Topological Relaxation in SOM

Basically, the main principle of the new algorithm is to decrease the topological con-
straint of the SOM by increasing the distance between neurons. These modifications are
data-driven to optimize the final quality of the SOM.

The first step in our experiment is to analyze how behave a SOM with a trivial relax-
ation of the topological constraint. We expect that smaller constraint leads to a better
modeling (i.e. smaller Quantification and Neuron Utilization errors), but also leads to
worst topological error, as the topological constraint’s function is to reduce the Topo-
logical error of the SOM.

We calculate the Quantification, Neuron Utilization and Topological error for each
databases from results of different versions of the SOM algorithm where each distance
between two neurons is multiplied by a constant value (see Fig. 2). The higher is this
value, the weaker is the topological constraints. For example, SOM(α) is similar to the
SOM algorithm, but d(i, j) = α× dM (i, j). We tested different values for this constant
from SOM(1), similar to SOM, to SOM(10), where neurons are almost independent (in
that case the algorithm behavior is similar to a K-means algorithm).
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As the gain in Ne and Qe is associated to a loss in Te, we propose to define a
General error that reflect the trade-off between Ne, Qe and Te:

Ge = Te2 × Ne × Qe

Ge is the product of two trade-off: Ne vs. Te and Qe vs. Te. The value of Ge is
smaller when the gain in Ne and Qe is higher than the loss of Te in comparison to the
SOM algorithm. Ge is bigger in the other case.

Fig. 2. Visualization of the mean value of Qe, Ne, Te and Ge over all databases

Result are summarized in Fig. 2, here we show the mean value of Qe, Ne, Te and
Ge over all databases for different values of α. As expected, Ne and Qe decrease when
topological constraint decrease, whereas Te highly increase. But the value of Ge shows
that under relaxation of the topological constraint the gain of Ne and Qe don’t over-
come the loss of Te. Thus, the best trade-off is to use the classical SOM algorithm!

Now the question is: can we use data to find some topological constraint relaxations
which are a better trade-off than the SOM.

4.4 Evaluation of DDR-SOM

To evaluate the quality of DDR-SOM, we compare SOM and different versions of DDR-
SOM with different values of the parameter σ. Fig. 3 shows means values of Qe, Ne,
Te and Ge over all databases. Table 1 show the Ge value for each databases and each
algorithms.

We can note the DDR-SOM mean topological constraint is similar to SOM(1.5). But
as we can see, the DDR-SOM algorithm performance is much better than SOM(1.5)
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Fig. 3. Visualization of the mean value of Qe, Ne, Te and Ge over all databases for different
values of σ in DDR-SOM

and SOM, i.e. the gain in Ne and Qe is higher than the loss in Te. Actually, with DDR-
SOM Qe is similar that with SOM(2) and Ne is very low, similar that with SOM(10),
whereas Te is similar that with the classical SOM algorithm.

Table 1. Ge value for each database and each algorithm

DDR(1) DDR(1/2) DDR(1/5) DDR(1/10)
Target 0,57 0,39 0,87 0,89

TwoDiamonds 0,22 0,27 0,22 0,11
Hepta 1,82 0,62 0,97 0,57
Tetra 1,17 0,53 1,61 1,12
Iris 0,09 0,21 0,29 0,28

Harot 0,79 0,17 0,06 0,38
Housing 0,83 0,54 0,35 0,55

Wine 0,51 0,14 0,13 0,33
Cockroach 0,62 0,42 0,52 0,54
Chromato 0,12 0,08 0,09 0,09

These results lead to two remarks:

1. The DDR-SOM quality is better than SOM for all values of σ, although a value of
σ = 1/2 seems to give better results for those databases.

2. The gain in Ge in comparison to SOM tend to be higher for databases in high
dimensional space (e.g. “Chromato”, “Wine”, etc . . . ).



374 G. Cabanes and Y. Bennani

5 Conclusion

In this paper we propose a new algorithm adapted from SOM, in order to improve the
quality of the model, using a data-driven relaxation of the topological constraints. We
defined a Global error that represent the trade-off between Topological error, Quantifi-
cation error and Neural Utilization error.

Experiments on artificial and real databases show that DDR-SOM model achieve
better results than the SOM algorithm. We also showed that this improvement is not
obtained with trivial topological constraint relaxation because of the high increase of
the Topological error. Data-driven relaxation seems to be a good solution to improve
the NeQe/Te trade-off of the SOM.
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Abstract. In this paper, we propose a new information-theoretic method

to interpret competitive learning. The method is called ”pseudo-network

growing,” because a network re-grows gradually after learning, taking into

account the importance of components. In particular, we try to apply the

method to clarify the class structure of self-organizing maps. First, the im-

portance of input units is computed, and then input units are gradually

added, according to their importance. We can expect that the correspond-

ing number of competitive units will be gradually increased, showing the

main characteristics of network configurations and input patterns. We ap-

plied the method to the well-known Senate data with two distinct classes.

By using the conventional SOM, explicit class boundaries could not be

obtained, due to the inappropriate map size imposed in the experiment.

However, with the pseudo-network growing, a clear boundary could be ob-

served in the first growing stage, and gradually the detailed class structure

could be reproduced.

1 Introduction

In this paper, we propose a new type of information-theoretic competitive learn-
ing method called ”pseudo-network growing.” The method is called ”pseudo”
because we try to reproduce a growing process after learning is finished. The
main objective is to interpret network configurations as well as input patterns
clearly by inspecting the reproduction of growing processes.

Neural networks have been applied to many practical problems, but one of the
major problems lies in the difficulty in interpreting final network configurations
[1]. There have been many methods to simplify network configurations and to
extract explicit rules for interpretation [2]. Unlike these conventional methods,
our method aims to reproduce as many network configurations as possible. The
method begins with the generation of the simplest configuration, with one input
unit, and gradually increases the complexity. This property enables us to inter-
pret final network configurations at different levels. This means that the overall
characteristics of input patterns can be extracted at the beginning, and detailed
characteristics can be detected gradually.

The pseudo-growing method can be applied to the self-organizing maps (SOM)
in particular, because it is easy to visually demonstrate the good performance of

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 375–382, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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our method with the SOM. In addition, we consider the SOM as one of the main
attempts to visually interpret internal representations. From our point of view,
one of the main contributions of the SOM lies in creating interpretable network
configurations with many visualization techniques. However, as is well known,
the conventional self-organizing maps have several shortcomings, for example,
the problem of predetermined map structure and class boundaries [3]. In the
self-organizing maps, the number of competitive units and map structure must
be fixed before learning. In addition, links among competitive units should also
be determined, which may degrade the extraction of class boundaries. When
the predetermined map structure is not appropriate to given input patterns,
obtained class structures may be degraded.

To overcome these shortcomings, network growing algorithms [4] have been
proposed. In those growing methods, it is not necessary to determine the map
size before learning. In addition, links between competitive units are gradually
generated in the course of learning, and class boundaries are gradually formed.
However, in growing networks, computational complexity is increased where ad-
ditional parameters should be introduced to insert or delete units [5]. This means
that, though the network growing seems to be promising, the process of network
growing needs many computational techniques to grow and stabilize learning
with additional parameters.

In our new method, we limit ourselves to the interpretation of obtained net-
work configurations by using the growing method. Then, the growing process is
reproduced when learning has already been finished. This assures computation-
ally inexpensive and stable learning processes. First, we compute the importance
of input units by using mutual information between competitive units and input
patterns. Thus, we produce feature maps by adding new input units according
to the importance of the input units by mutual information. We can expect that
the important features or class boundaries generated by the important input
units will be generated in a course of network growing.

2 Theory and Computational Methods

2.1 Concept of Pseudo-network Growing

The pseudo-network growing aims to reproduce learning processes after learning
in order to clearly show class boundaries and the main and detailed character-
istics of network configurations and input patterns. At the initial stage, com-
petitive learning is used to train connection weights. After learning is finished,
a network is decomposed and the importance of input units is evaluated. Then,
the network grows by recruiting a new input unit according to its importance. In
addition, we can expect that the number of competitive units will be increased
as the number of input units is increased.

2.2 Mutual Information and Information Enhancement

We have used information-theoretic competitive learning to realize competition
[6]. We have demonstrated that mutual information between competitive units
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and input patterns can be used to describe the competition processes of networks.
As the mutual information is increased, competition becomes more accentuated.
When the mutual information is completely maximized, only one competitive
unit is turned on, while all the other units are off. Thus, competitive processes
are realized by maximizing mutual information between competitive units and
input patterns. The output from the jth competitive unit can be computed by

us
j ∝ exp

{
−1

2
(xs − wj)T Σ(xs − wj)

}
, (1)

where xs and wj are supposed to represent L-dimensional input and weight
vectors. The klth element of the L × L scaling matrix [Σ]kl is defined by

[Σ]kl = δkl
p(k)
σ2

, (2)

where σ is a spread parameter. The probability p(k) denotes the firing probability
of the kth input unit, and at the initial stage,

p(k) =
1
L

, (3)

because we have no preference for input units at the initial stage.
To estimate the information of each input unit, we introduce the concept of

attention.” Attention has been one of the central themes in psychology [7], and
in neural computing, many neural models have been proposed so far [8], [9].
When attention is paid to the tth input unit, we have the firing probabilities of
input units

p(k; t) = δkt. (4)

Thus, we have competitive unit outputs focusing upon the tth input unit

us
j(t, σ) ∝ exp

{
−1

2
(xs − wj)T Σ(t)(xs − wj)

}
, (5)

where the klth element of the scaling matrix
[
Σ(t)

]
kl

is defined by

[
Σ(t,σ)

]
kl

= δkl
p(k; t)

σ2
. (6)

Because we use the self-organizing maps in the training mode, in the output layer,
all output units should cooperate with each other. To realize this cooperation,
we introduce a neighborhood kernel h between two units

hjc = exp
(
−‖ rc − rj ‖2

2σ2
rd

)
, (7)

where rc and rj , respectively, denote vectors representing the position of the
corresponding competitive unit. The spread parameter σrd is always set to one,
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because the final value of σrd in the training mode with the conventional SOM
is one. Then, cooperative outputs can be defined by

vs
j (t, σ) ∝

M∑
c=1

hjcu
s
c(t, σ), (8)

where M is the number of competitive units. Normalizing these outputs, we have

p(j | s; t, σ) =
vs

j (t, σ)∑M
m=1 vs

m(t, σ)
. (9)

The firing probability of the jth competitive unit is defined by

p(j; t, σ) =
S∑

s=1

p(s)p(j | s; t, σ). (10)

By using these probabilities, we have the mutual information of competitive
units I when attention is paid to the tth input unit:

I(t, σ) =
S∑

s=1

M∑
j=1

p(s)p(j | s; t, σ) log
p(j | s; t, σ)
p(j; t, σ)

. (11)

This mutual information shows how well the tth input unit contributes to a
process of competition among competitive units [6]. As this information gets
larger, the tth input unit plays a more essential role in realizing competitive
processes. Using this information, we estimate the firing probability of the kth
input unit

p(k; σ) =
I(k; σ)∑L
t=1 I(t; σ)

. (12)

Then, we define information in input units by

I(σ) =
L∑

k=1

p(k; σ) log Lp(k). (13)

We try to increase this information in input units as much as possible to make
the number of important input units as small as possible.

2.3 Pseudo-network Growing

Then, we reproduce self-organizing maps by increasing the number of input units
gradually. A new input unit is added according to the information or importance
of the input unit by changing the spread parameter σ. Now, let us formulate the
gradual change of mutual information by adding a new input unit to the existing
network. For this, we define ΦM

m to denote a set of m important units of total
M units, and defined by

q(k; ΦM
m , σ) =

{
p(k; σ) if k ∈ ΦM

m ,
0 otherwise.
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The firing probabilities of the kth input unit are defined

p(k; ΦM
m , σ) =

q(k; ΦM
m , σ)∑

t∈ΦM
m

q(t; ΦM
m , σ).

(14)

The competitive unit output is defined by

us
j(Φ

M
m , σ) ∝ exp

{
−1

2
(xs − wj)T Σ(ΦM

m )(xs − wj)
}

, (15)

where the klth element of the matrix
[
Σ(ΦM

m )

]
kl

is defined by

[
Σ(ΦM

m )

]
kl

= δkl
p(k; ΦM

m , σ)
σ2

. (16)

The cooperative firing probabilites can be defined by

p(j | s; ΦM
m , σ) =

∑M
c=1 hjcu

s
c(Φ

M
m , σ)∑M

l=1

∑M
c=1 hlcus

c(ΦM
m , σ)

. (17)

By using these probabilities, the information with the first m important input
units is computed by

I(ΦM
m , σ) =

S∑
s=1

M∑
j=1

p(s)p(j | s; ΦM
m , σ) log

p(j | s; ΦM
m , σ)

p(j; ΦM
m , σ)

. (18)

3 Results and Discussion

We present experimental results on the Senate data [10] to show the good per-
formance of our method. We used the SOM toolbox developed by Vesanto et
al. [11], because experimental results presented in this paper can thus be eas-
ily reproduced . The value of the spread parameter σ was determined so as to
maximize the information of input units (equation 13).

Figures 1(a), (b) and (c) show quantization errors, topographic errors and
mutual information, respectively, without any specific attention paid to input
units (equation 11) as a function of the number of input units. Figure 1(a) shows
quantization errors as a function of the number of input units. The quantization
errors are increased as the number of input units is increased. For comparison, we
used the random method in which a new input unit to be added was randomly
chosen. The final values of the random method are the averages over ten different
runs. With this random method, the final error becomes equivalent to that of the
conventional SOM, namely, 0.049, shown in Figure 1(a). On the other hand, the
network growing method produces the value of 0.042, which is lower than that
produced by the conventional method, again shown in Figure 1(a). Figure 1(b)
shows the topographic errors as a function of the number of input units. When
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Fig. 1. Quantification errors (a), topographic errors (b) and mutual information as a
function of the number of input unit (c).

the network growing method is used, at the initial phase, the error is zero, and
then it jumps to 0.4. Finally, the error becomes zero. Compared with the errors
produced by the random method, the errors produced by network growing are
reduced to zero faster. Figure 1(c) shows mutual information as a function of the
number of input units. At the initial stage, the mutual information is 0.015 with
the network growing method, while with the random method, the information is
less than 0.005. Even at the final stage, the mutual information is 0.004 with the
network growing method, while with the conventional method, the information
is 0.002.

Figure 2 shows a U-matrix (1) and labels (2) obtained by the conventional
SOM (a) and the network growing method (b)-(f). As already mentioned, this
data can be clearly divided into two classes by any conventional statistical
method, such as cluster analysis and principal component analysis. However,
as shown in Figure 2(a), the U-matrix obtained by the conventional SOM fails
to show the main class boundaries, because the map size is too large for extract-
ing appropriate class boundaries. On the other hand, with the network growing,
the number of input units is increased from one in Figure 2(b) to 19 in Figure 2
(f). In addition, the number of competitive units responding to input patterns
is increased from two in Figure 2(a) to 14 in Figure 2(f). These figures clearly
show that the pseudo-network growing method can realize a process of growing
that increases the number of input units as well as competitive units. When the
number of units is one, in Figure 2(b), a clear boundary in warmer color in the
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Fig. 2. U-matrix and labels obtained by the conventional SOM (a) and the network
growing method (b)-(f). Republicans and Democrats are represented in black and red,
respectively.

middle of the map can be seen. This means that input patterns can be classified
into two groups by this boundary in the middle of map. When the number of
input units is increased to two, shown in in Figure 2(c), the number of compet-
itive units is increased to three, of which one unit, corresponding to the 11th
input pattern, is separated from the others. When the number of input units
is increased to three, Figure 2(d) shows that two additional competitive units
corresponding to input patterns No. 2 and No. 8 are separated. In the course of
growing, the number of competitive units to be separated is gradually increased,
as shown in Figure 2(e). Finally, when the number of input units is 19, namely,
when all input units are used, we can still see a class boundary clearly in the
middle of the map in Figure 2(f).
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4 Conclusion

In this paper, we have proposed a new type of information-theoretic method to
interpret network configurations. We applied the method to the self-organizing
maps in particular, because it is thus easy to demonstrate the good performance
of our method visually. Contrary to the conventional approach to network grow-
ing, in our method a network re-grows after learning has been finished. In the
growing process a new input unit is added according to its importance or in-
formation content. In addition, the number of competitive units is expected to
be gradually increased. We applied the method to the well-known Senate data
with distinct classes. When the map size was too large, the conventional SOM
failed to produce appropriate class boundaries. However, the pseudo-network
growing method was able to gradually produce main boundaries classifying in-
put patterns into two groups and, later, detailed class boundaries. Though there
are some problems with this new method, such as how to stop growing in this
pseudo-growing, it certainly contributes to the interpretation problem of neural
networks.
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Abstract. In this paper, we propose an authentication system which

can adapt to the temporal changes of the behavior biometrics with accus-

toming to the system. We proposed the multi-modal authentication sys-

tem using Supervised Pareto learning Self Organizing Maps. In this pa-

per, the adaptive authentication system with incremental learning which

is applied as the feature of neural networks is developed.

1 Introduction

The most basic part of the computer security is authentication. The most popular
method for authentication is password authentication. But, password authenti-
cation has some issues. At first, anyone can login to the system if the password
is known because the password is simple text information. It may be possible
to obtain the password with peeping the login operation, guessing from the per-
sonal information like birthday or family name, getting the memo with password.
Furthermore, because identical password tends to be used for some different sys-
tems, the secure system can be logged in using the password obtained from week
system. For this problem, biometric authentication systems are often used[1].

Biometric authentication systems are classified to the system which uses bi-
ological characteristics and the system which uses behavior characteristics. As
the biological characteristics, the fingerprint, iris patterns and the vein patterns
are often used, and the accuracy of authentication is very high. But, the special
hardware for measuring the characteristics is required and it raises the cost of
computer system. Furthermore, it is possible to spoof a registered user using the
dummy of body parts because the biological characteristics is static informa-
tion. As the behavior characteristics, keystroke timings[2], sign and handwritten
symbols are often used. Some of these characteristics can be measured using
the devices equipped to the computer without adding special hardwares. It is
difficult to spoof because the behavior characteristics is dynamic information
even if the authentication process is seen by illegal user. However, the accuracy
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of authentication is lower than that using biological information, because the
behavior characteristics varies with the variation in each authentication action,
noises and changes by time with accustoming to the authentication action. Some
methods which can improve the accuracy of authentication with integrating mul-
tiple behavior characteristics are proposed[3].

For the integration of multiple behavior characteristics, Self Organizing Map
(SOM)s can be applied. Conventional SOM can integrate the multiple input vec-
tors with concatenating them with weight values. Using these features, SOM can
be applied to find the behavior characteristics effective for authentication and to
implement the authentication system using multiple behavior characteristics[5].
As an variation of SOM, Supervised Pareto learning SOM (SP-SOM), which can
integrate the multiple vectors without weight values and can perform supervised
learning, is proposed to improve the accuracy of authentication and applied for
the authentication system using multiple behavior characteristics[6].

As mentioned before, the behavior characteristics may change by time while
the users accustom to authentication method. Thus, the authentication system
should adapt the change of behavior characteristics by time. Neural networks
can adapt the change of environment with learning. The authentication systems
using SOM and SP-SOM, which are mentioned before, learn the behavior char-
acteristics while they register initial data. The adaptive authentication system
using the incremental learning ability of SP-SOM was proposed[7].

On the other hand, behavior characteristics is easily affected by variation of
behaviors and noises, and it decreases the accuracy of authentication. Neural
networks considered to be robust to the variation of input data. However, the
accuracy may be affected with incremental learning the input vectors including
noises. The affects of the noises to the learning using SP-SOM were examined
in [8].

In this paper, considering the implementation the authentication system, some
modifications and experimental results of adaptive authentication system which
is based on SP-SOM is mentioned. The experimental results under the environ-
ment adding both of the changes by time and noises in behavior characteristics
are shown. Furthermore, for the implementation of authentication system, the
algorithm of SP-SOM is modified. At first, the algorithm of incremental learn-
ing is modified as to use the input vector which are successfully authenticated
because it is impossible to distinguish the legal user who is failed to be authen-
ticated from illegal user who intend to spoof the legal user for authentication
system. However, this modification may affects the accuracy of authentication
and the affects are examined experimentally. Secondly, the algorithm of recall-
ing process is modified as to detect the unregistered user. The original SP-SOM
algorithm classifies the any input vector to one of the learned class, so the input
vector of unregistered user is also classified to one of the registered user. The
recalling algorithm is modified as to detect the unlearned data with introducing
the threshold values to the size of Pareto set and the magnitude of category
value. However, it may also affect the adaptation ability of incremental learning
and the affects are examined experimentally.
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2 Pareto Learning Self Organizing Maps

The Pareto learning SOM is proposed for the learning of multi-modal vectors,
such as multi-modal biometric data. Pareto learning SOM(P-SOM) uses the con-
cept of Pareto Optimality in the competitive phase of learning and the members
in the Pareto set becomes winners and the region of Pareto winners and their
neighbors are updated simultaneously. Fig.1 shows the difference of the learning
algorithm. With this updating method, the multi-modal vectors are organized

Fig. 1. Difference of the algorithm between SOM and P-SOM

naturally regardless to the magnitude of each vector in multi-modal vector. P-
SOM can integrate not only the vectors but also the objects for which metric can
be defined, for example graph models, images and other neural networks. As the
extensions of P-SOM, Supervised Pareto learning SOM (SP-SOM) , which uses
the input vectors with category vectors, is proposed to improve the accuracy of
classification using the category vectors for organizing the better clusters on the
map. And the adaptive learning algorithm for tuning the size of Pareto sets is
introduced. The details of the algorithm is mentioned in [7] and [8].

3 Experimental Results of Authentication Using
Keystroke Timings and Key Typing Sounds

The purpose of this paper is the development of authentication system which
can adapt to the changes of behavior characteristics by time. However, it is
almost impossible to obtain the behavior characteristics data changing by time
because it will need very long term and heavy load to the examinees to obtain
the behavior characteristics changing by time experimentally. Thus, the artificial
data changing by time are generated from measured data. The artificial data
will not make the experimental results any less justified because very severe
settings of the changes in data compared with actual changes of users are selected
and enough randomness is introduced in the change to avoid the advantages of
machine learning systems to the steady changing data. In this experiment, the
keystroke timings and key typing sounds data, which are obtained from 10 users,
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typing a phrase ”kirakira” in ten times for each user, are used. As a behavior
characteristics, each data contains 15 keystroke timing data, which is the key
pushing times and intervals between keys, and 8 key typing sound data, which is
the maximum amplitude of key typing sound for each key, and they are composed
as 2 feature vectors of behavior characteristics.

3.1 Experimental Results of Authentication Using Original Data

In this experiments, 5 data are used for learning and remaining 5 data are used
for testing for each user. All combinations of learning data and testing data were
examined, so the number of experiments is 10C5 = 2520, and the number of test
data for each user is 1260. As the authentication system, SP-SOM is used. The
size of map is 16x16, size of initial neighbor is 4, and initial learning coefficient
is 0.5. FRR and FAR denote the rate for rejecting the registered user and the
rate for accepting the wrong user respectively, and both of them should be small
enough. As the result, the averages are FRR=0.108 and FAR=0.012.

3.2 Experimental Results of Authentication Using the Data
Changing by Time

In this sub-sectuon, the authentication experiments using the data changing by
time are mentioned. As mentioned before, it is considered to be difficult to ob-
tain data for behavior characteristics changing by time, artificial data was used
for the experiments. In this experiment, Nci elements of the vector xi in test
data are randomly selected and multiplied by Rci before authentication and
substituted. where x1 is keystroke timing vector and x2 is key typing sound.
Because SP-SOM has no dynamics, constant multiply rate Rci does not give
advantage to machine learning process. All of the data are learned and and
are used as test data with change. For all data, the authentication experiments
are made in 20 times. Only average FRR is shown in the following graphs and
average FAR is 1/9 of FRR because the threshold for rejecting wrong user is
not used in this experiment. Fig.2 shows the results for changing key stroke
timings using the parameters Nc1 = 4,Rc1 = 0.8(right side) and for chang-
ing both of the keystroke timings and key typing sounds using the parameters
Nc1 = 4,Nc2 = 2, Rc1 = Rc2 = 0.8. 2 modes of incremental learning is examined,
supervised incremental learning which uses both the input vector with the user
label and unsupervised incremental learning which uses the input vector without
user label. These experiments simulate the situation that the key typing speed
becomes faster for each authentication and latter one also simulate the changes
of key typing sounds by time. For the case of changing key stroke timings, FRR
becomes worse as repeating the tests without incremental learning, because the
test data is changing. With incremental learnings, FRR does not becomes so
worse becausethe authentication system can adapt the change of test data. The
supervised incremental learning showsthe best result and the FRR is almost
kept to 0. For the case of changing both of keystroke timings and key typing
sound, FRR increases rapidly and becomes 0.9, which means the random selec-
tion without incremental learning because both of keystroke timing data and



The Adaptive Authentication System for Behavior Biometrics 387

Fig. 2. Experimental result of FRR for the case of changing the features by time.

Left:(Nc1 = 4, Rc1 = 0.8), Right:(Nc1 = 4,Nc2 = 2, Rc1 = Rc2 = 0.8).

key typing sounds becomes unusable for authentication. WIth supervised incre-
mental learning, FRR kept low enough, so the system is considered to adapt the
changes of the data by time.

3.3 Experimental Results of Authentication Using the Test Data
with Variations and Noises

As mentioned before, behavior characteristics may vary in each authentication
and it may be affected by noises especially for the case using key typing sounds.
With incremental learning, the noises and variations may affect more to the accu-
racy of authentication. Both noises and variations vary the test data temporally,
thus both of them can be modeled as noises. In this experiments, Nni elements of
the vector xi in test data are randomly selected and added the uniform random
noises which amplitudes are Rni times of current values in maximum. the test
data. The difference from the change by time is that the noise is temporal and
test data is not substituted. Fig.3 shows the results of authentication experi-
ments with adding the changes by time and noises simultaneously. In the left
figure, FRR becomes worse(0.2) even in the case with supervised incremental
learning because both changes by time and noises are too large. However, this
setting is too severe considering the actual variations. In the right figure, which
shows the results for adding the half amounts of variations, FRR is kept low
because the system can adapt the changes by time despite of adding noises. The
adaptation ability is affected by noises, however it can adapt to the changes by
time to some degree.

3.4 Experimental Results of Incremental Learning of Authenticated
User Data

As mentioned before, the incremental supervised learning is effective as the adap-
tive authentication system. However, some system may use the policy that the
user who can not be authenticated by behavior characteristics can not login to
the system using other authentication method. In this case, the data of failed
user is not used for incremental learning and it may lead to the deterioration of
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Fig. 3. Experimental result of FRR with changing inputs and adding noises(Left: Nc1 =

4, Nc2 = 2, Rc1 = Rc2 = 0.8, Nn1 = 8, Nn2 = 4, Rn1 = Rn2 = 0.5, Right: Nc1 = Nn1 =

4, Nc2 = Nn2 = 2, Rc1 = Rc2 = 0.9, Rn1 = Rn2 = 0.5)

adaptation. Fig.4 shows the results of incremental learning of the authenticated
user data. The other parameters are same as those of the right figure in the
right figure of Fig.3. Compared with the case of learning all data(all time), FRR

Fig. 4. Experimental result of FRR for the case of incremental learning at successful

authentication (Nc1 = Nn1 = 4, Nc2 = Nn2 = 2, Rc1 = Rc2 = 0.9, Rn1 = Rn2 = 0.5)

becomes worse with unsupervised incremental learning using authenticated data
only. With supervised incremental learning, FRR is almost same as that of the
case of learning all data, and this system can adapt the changes by time us-
ing authenticated data only. The authentication system can adapt the changes
by time and robust to the noises for the case with the incremental learning of
authenticated used data.

3.5 Experimental Results of Detecting Unregistered User Using
Threshold

In the experiments mentioned before, the threshold values which are used for
detecting unregistered users are not introduced. The unregistered user can be
detected using the threshold of size of Pareto set and magnitude of category
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Fig. 5. Result of the authentication experiments for the case rejecting unregistered

users

value. For the unlearned data, the size of Pareto set and magnitude of category
value tend to be large and small respectively. At first, the authentication exper-
iment using 9 of 10 users as registered user and remaining 1 user as unregistered
user without incremental learning is made. Fig.5 shows FRR and FAR of this
case. The Thresholds of Pareto size and category value are set as 10 and 0.5
respectively. FRR of the registered user is 2% in maximum and FAR is almost 0.
FAR for unregistered user is 2% in average and 4% in maximum. The unregis-
tered users are detected well without changes by time and noises. Fig.6 shows
averages of FRR and FAR with supervised incremental learning adding changes
by time and noises. FRR becomes gradually worse, however it kept under 10%.
FAR is kept low for both registered user and unregistered user. The authentica-
tion system can adapt the changes by time and robust to the noises for the case
of detecting the unregistered user.

Fig. 6. Result of the authentication experiments for the case rejecting unregistered

users with changing inputs and noises

4 Conclusions

In this paper, an adaptive authentication system which can adapt to the changes
of the behavior characteristics by time using incremental learning of Supervised
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Pareto Learning SOM is developed and the robustness of the incremental learn-
ing to the noises is examined. For the implementation of actual authentication
system, incremental learning of the authenticated user data and the authentica-
tion system using the threshold to detect the unregistered users are examined
and confirm the effectiveness of supervised incremental learning. In the exper-
iments, the amount of the changes by time and noises are set extremely large,
so it will be expected that the accuracy will be better than those shown in this
paper in the actual implementation.
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Abstract. In this paper, an action recognition system was invented by

proposing a compact 3D descriptor to represent action information, and

employing self-organizing map (SOM) to learn and recognize actions.

Histogram Of Gradient 3D (HOG3D) performed better among currently

used descriptors for action recognition. However, the calculation of the

descriptor is quite complex. Furthermore, it used a vector with 960 ele-

ments to describe one interest point. Therefore, we proposed a compact

descriptor, which shortened the support region of interest points, com-

bined symmetric bins after orientation quantization. In addition, the top

value bin of quantized vector was kept instead of setting threshold ex-

perimentally. Comparing with HOG3D, our descriptor used 80 bins to

describe a point, which reduced much computation complexity. The com-

pact descriptor was used to learn and recognize actions considering the

probability of local features in SOM, and the results showed that our

system outperformed others both on KTH and Hollywood datasets.

Keywords: Computer vision, Human action recognition, SOM.

1 Introduction

Generally, a variety of studies on action recognition concentrate on two impor-
tant issues. One is how to extract useful information from raw video data. While
the other is how to model different actions, then their similarities is measured
for recognition.

When extracting useful information from a video, there are mainly two cat-
egories, global feature and local feature extraction. We mainly consider local
feature extraction in this paper. For local feature, many spatial-temporal fea-
ture detectors[1,2,3,4,6,7] and descriptors[5,8,9,10] have been proposed in the
past few years. The detectors usually differ in the type and the sparsity of se-
lected points. While feature descriptors capture shape and motion information
in neighbor of the selected point by various image measurements, such as spatial
or spatio-temporal image gradients, optical flow, etc.

However, complicated descriptors were employed in previous methods. They
would suffer from high computation complexity and high memory requirement.
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For instance, although HOG3D[9] outperforms other currently used descriptors,
it employs a quite complex algorithm to calculate descriptor, and uses a vec-
tor with 960 bins to describe an interest point. It takes long time to compute
descriptors if there are a quantity of interest points. Generally, a considerable
quantity of points are required to represent human actions exactly. Thus it is
necessary to construct a simpler system with a compact descriptor.

In recognizing actions using local features, the representative learning algo-
rithms are Support Vector Machines(SVM)[8,9], Hidden Markov Model(HMM),
Near Neighbor(NN), Beyesian classifier, Fern classifier, etc. SOM[12] is a type of
artificial neural network that is trained using unsupervised learning to produce
a low-dimensional, discretized representation of the input space of the training
samples. It is certified to perform well in [11] for action recognition.

In this paper, inspired by [13], we detect corners spatially and temporally
to obtain information of action shape and motion. Features from Accelerated
Segment Test(FAST) corner detector[4] is extended to 3D space for detecting
spatio-temporal corners. Furthermore, we modify the HOG3D descriptor to be a
compact descriptor, which shortens the support region of interest points. In ori-
entation quantization, it combines symmetric bins after orientation quantization
by icosahedron, and keeps the top value bin of quantized vectors. In addition,
suitable parameters for the descriptor are determined experimentally. And the
first order gradient is chosen for descriptor calculation. The compact descrip-
tor reduces much calculation time, occupies less memory. In recognition, SOM
is adopted to learn and recognize different actions. In addition, the probability
of local features of each action class is considered in SOM to recognize actions
correctly.

The remaining parts of this paper are organized as follows. Detailed infor-
mation of 3D corner detection in ROI is shown in section 2. Then the modified
3D feature descriptor is introduced in detail in section 3. Section 4 is learning
and recognizing by SOM. The experiment results and comparison with other
researches are shown in section 5.

2 3D FAST Corner Detection in ROI

FAST[4] is a faster and more stable feature detector. Here, it is extended to 3D
space, detecting features spatially and temporally, to obtain shape and motion
information of human actions.

2.1 3D FAST Corner Detection

If x, y represent axes of spatial plane, and t is temporal axis, a video can be
regarded as a 3D space with axes x, y and t. The spatio-temporal corners in
videos can be obtained by detecting corners in xy, xt, yt planes. In addition, xt
planes in video compose xt channel, while yt planes compose yt channel. xy
plane is each frame in video.
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Fig. 1. (a) xt channel and its composition. The left part of (a) shows positions of xt
tangent planes in video, and the right part of (a) is the detailed structure of the second

xt plane, which is composed of the second row pixels of every frame in video; (b) yt
channel and its composition. The left part of (b) shows the positions of yt planes, and

the right part of (b) shows the structure of the second yt plane, which is composed of

the second column pixels of each frame.

xt planes are serial tangent planes in horizontal orientation of video as shown
in Fig.1(a), and axes of each plane are row x of frame and temporal axis t.
yt channel is also composed of serial tangent planes, but yt planes are vertical
tangent planes in video. The axes of every plane are the column y of frame and
temporal axis t. The sketch figure of yt channel is shown in Fig.1(b).

In this paper, FAST corner detection can be operated in two or three channels
to obtain 3D corners. At last, detection in two channels is chosen based on our
experiments. Furthermore, to achieve more efficient and representative corners,
3D corner detection is applied in original video and down sampled video. The
corners which are detected twice in these two steps are regarded as interest
corners and they are kept for the following processing.

2.2 ROI Extraction

Generally, human actions occur in rather complex surroundings than in experi-
mental backgrounds. When corner detection is operated on frames with a com-
plex background, many corners in the background will be included. It will largely
influence the following steps. To avoid the sad effect from them and to reduce
computation complexity, region of interest(ROI) extraction is performed.

The centroid of the detected corners and its neighbor are used to extract the
ROI of each frame in video. On each frame, the centroid of corner points is
calculated by obtaining the mean position of all corners in xt, yt channels.

And ROI is determined considering the distance from the centroid to the ROI
boundary. Denote that T is a threshold of distance from centroid to boundary
of ROI, which is experimentally decided. It is compared with the maximum and
minimum of corner coordinates. If the distance from centroid to the maximum,
minimum is less than T , ROI is established based on the maximum and minimum
coordinates. Otherwise, centroid ± T is decided to be the boundary of ROI.
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Fig. 2. Compact descriptor calculation. (a) the support region (2 × 2 × 2 cells) and

descriptor of one interesting point; (b) histogram calculation of one cell (2 × 2 × 2

points); (c) orientation quantization; (d) gradient calculation.

3 Compact Descriptor

Based on the original HOG3D[9] ,we have improved it to save computation time
and to provide more exact descriptors. First of all, the method of support region
division is changed to a simpler way. The support region of an interest point is
defined as a cuboid with the size of 4 × 4 × 4 pixels around the point, and the
cuboid is divided into 8 cells again, each with the size of 2 × 2 × 2 pixels. In
this case, each cuboid contains 8 cells, and each cell contains 8 neighbor points.
Our descriptor calculation is shown in Fig.2, and detailed explanation is in the
following parts.

3.1 3D Gradients and Orientation Quantization

In section 2.1, xt, yt planes are separated from videos. The gradients of x, t
orientations (gx, gt) can be obtained from calculating the gradients on xt planes,
while (gy, gt) can be obtained from calculating the gradients on yt planes. Then
each point is given a gradient vector of x, y, t orientations, (gx, gy, gt)T .

In [9], average gradient of each point calculated in support region was em-
ployed for orientation quantization. In this paper, we try the average gradient,
the second order gradient, and the original gradient (gx, gy, gt)T for orientation
quantization in the experiments. It is found that the original gradient performs
best. Denote gbx is gradient in x orientation of point b, the gradient of the point
for orientation quantization is gb = (gbx, gby, gbt), which is shown in Fig.2(d).

In the step of orientation quantization, we keep half elements of orientation
quantized gradient since elements of it are positive-negative symmetry. And we
keep the maximum element of quantized vectors obtained in above step instead
of setting threshold experimentally in [9]. After that, the quantized gradient
vectors are recorded as q̄b, as shown in Fig.2(c).

For each cell, the histogram h for the cell region is obtained by summing the
quantized gradient vectors q̄b of all elements. When q̄b(i, j) is the jth bin in
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the quantized gradient of element i, and there are total s elements in the cell,
each bin h(j) of h is calculated as shown in Fig.2(b):

h(j) =
s∑

i=1

q̄b(i, j) (1)

3.2 Descriptor Computation

As section 3.1 introduced, the support region of one interesting point is divided
into 8 cells. Then each cell is described by one histogram. The same with [9],
all histograms in support region of one interest point are finally concatenated to
one feature vector, as shown in Fig.2(a).

ds = (h1,h2, · · · ,h8) (2)

It is the final descriptor for one interesting point. Then the feature vectors for
all interesting points of one action class are given an action label action. So the
descriptor for one action class becomes

ds action = {ds1,ds2, · · · ,dsC , action} (3)

where C is the interesting point numbers of the action, and it varies on different
action classes because the quantity of corners detected from different videos is
always different.

4 Recognition by SOM

In our experiments, the basic theory of Batch learning[12] is employed to train
a map using descriptors of all action classes.

Supposing that {mi} are model vectors of neuron nodes in SOM map, where
i refers to neuron number. dslk(l = 1, · · · , L, k = 1, · · · , Cl)(={ds actionl}) are
input descriptors of all actions for training, where L refers to action classes and Cl

refers to interesting point numbers of action class l. mi has the same dimension
with feature vector dslk. In the first step, the map with model vectors {mi} is
trained based on Batch learning[12] using all descriptors dslk. Supposing that
Ri is the neighborhood set of nodes that lie up to a certain radius from node i
in the map, the procedure can be described as:

(1) Initialize the values of the {mi} in some proper way. (2) Input all the
dslk, one by one, and list each of them under the model mi that is closest to
dslk according to some distance, generally Euclidean distance. (3) Let Ui denote
the union of descriptors matched with model mi and those matched with nodes
in Ri. Compute the means of the vectors dslk in each Ui, and replace the old
values of mi by the respective means by formula (4). (4) Repeat from the second
step a few times until the solutions can be regarded as steady.

m∗
i =

∑
dslk∈Ui

dslk

n(Ui)
(4)

where, n(Ui) means the number of descriptors dslk that belong to Ui.
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Following that, all the descriptors {dslk} are input to the trained map one by
one again to match with mi. The number of dslk matching with mi is counted
and recorded as Nil. Then Nil is normalized by interesting point numbers Cl of
each action class using formula (5). The normalized Ncil represents the contribu-
tion on neuron i from action class l in the map, which is denoted as contribution
probability of action l.

Ncil = Nil/Cl = Nil/
∑

i

Nil (5)

So the trained map contains 2 components, and it is described as {mi, Ncil}.
The trained SOM map is employed to recognize actions of videos. Supposing

that there is a video with frame number F to be tested, and we detect corners
and calculate descriptors as section 2 and 3 introduced. The descriptor for the
video is recorded as {dsfk, f = 1, · · · , F, k = 1, · · · , K}, where K is number of
interesting points on frame f and it varies on different frame.

To recognize the action class of current video, the action of each frame is
determined firstly. On the fth frame, if dsfk matches with mi best, max(Ncil, l ∈
1, · · · , L) determines the action class of dsfk. Then statistic of labels of {dsfk}
on the frame f is recorded as Nfl, and l, corresponding to the max(Nfl), gives
us the action class of the frame. This process is repeated for all frames. The
maximum of the statistic of labels of all frames shows us the action class of the
tested video.

5 Experiment Results

The recognition in this paper are operated on KTH[14] and Hollywood[8]
datasets. Some sample figures are shown in Fig.3, where the top row figures
are from KTH, while the bottom row figures are from Hollywood.

As other researchers always do for KTH dataset, we divide the dataset samples
into training/validation set (8+8 persons) and test set (9 persons). With the
purpose of testing our descriptors in a living context, 4 types actions (“stand
up”, “sit down”, “hug” and “hand shake”) in the Hollywood dataset are selected
for recognition, and 9 video samples of each action for training and 9 samples
for testing are chosen.

In table 1, we compared the average recognition accuracy of our result with the
results of correlative algorithms. [15] gave an evaluation of local spatio-temporal
features on currently used detectors and descriptors. Based on it, algorithms of
HoF, HoG/HoF and HOG3D performed better than other algorithms, and the
average accuracy of HoF and HoG/HoF were 92.1%, 91.8%, respectively. In [9],
the average accuracy of HoF and HOG3D were recorded as 86.7% and 91.4%.
Here we compare our result with the best result of each algorithm. Results show
that our algorithm outperforms others. The first reason is that the compact de-
scriptor describes local features exactly. When descriptor is calculated, the top
value bin of quantized gradient is kept, which corresponds feature of a point. It
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Fig. 3. Sample figures of KTH and Hollywood dataset

Table 1. Average recognition accuracy comparison

Algorithm HoG[8] HoF[8] HoG/HoF[15] 3DHOG[9] Ours

KTH (%) 81.6 86.7 91.8 91.4 93

Hollywood(%) 30.55 22.55 - 25.52 36.1

makes descriptor representing feature of a cell more exactly. Frame match exper-
iment is performed using compact descriptor, and matching ratio reaches 88.9%.
Furthermore, we have tried recognition by SVM and SOM with the compact
descriptors, and result indicates that SOM provides better recognition result. It
can be said that the recognition system based on the probability of local features
in SOM provides more correct distinguish of action classes.

About Hollywood, our algorithm also performs better. However the accuracy
is much lower comparing with KTH because scene cut, scale change and lumi-
nance change always exist in a movie. In addition, the compact descriptor works
not so well when the action is in large size, for instance actions in Hollywood.
Another reason is that the actions in Hollywood are always incomplete because
of close shot.

6 Conclusion

A compact 3D descriptor and a new human action recognition system based
on the probability of local features in SOM are proposed in this paper, and
our results are compared with other researcher’s. As it is described above, our
system performs better in recognizing actions in both KTH and Hollywood.
However, our algorithm have some limitations. Firstly, the quantity of necessary
local features is not easy to determine. Then compact descriptor is not suitable
for close shot action, for instance, “hug” in Hollywood. In addition, the system
performs bad in describing actions of a few person interaction.

In our future research, we will try to look for efficient characters of actions,
and try to use less information to describe actions. At the same time, we will
devote on recognizing actions of a few person interaction.
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Abstract. Self-organizing map is usually used for estimation of a low

dimensional manifold in a high dimensional space. The main purpose of

applying it is to extract the hidden structure from samples, hence it has

not been clarified how accurate the estimation of the low dimensional

manifold is. In this paper, in order to study the accuracy of the statistial

estimation using the self-organizing map, we define the generalization

error, and show its behavior experimentally. Based on experiments, it is

shown that the learning curve of the self-organizing map is determined

by the order that are smaller than dimensions of parameter. We consider

that the topology of self-organizing map contributed to abatement of the

order.

Keywords: Self-organizing Map, Generalization Error, Statistical Learn-

ing, Information Extraction.

1 Introduction

The self-organizing map(SOM)[1]is an artificial neural network model proposed
by kohonen. There is information that corresponds to the topology of mathe-
matics between each node of SOM. This information shows whether each node
is near or is far.Because topology is defined, SOM can extract low dimensional
manifold from the high dimensional data space as information.

On the other hand, recent studies have suggested that Statistical models and
neural network models are different in a mathematical character;

(1) Competitive learning models and layered models aren’t regular models.
Hence, neural network models cannot be discussed by Fisher’s statistical asymp-
totic theory.
(2) Learning models that have layered structure and hidden state like neural net-
work models have many singularities. Learning models like neural network that
have layered structure and hidden state have many singularities. These models
can learn accurately and stably by bayesian learning.

These mathematical characters were derived by considering the behavior of the
generalization error.

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 399–406, 2010.
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Therefore, investigation of the generalization error is important for not only
model design and model selection but also showing that the neural network
models are significant in the information engineering. The behavior of the gen-
eralization error of SOM has not been researched enough. In this paper, we define
the generalization error, and demonstrate its behavior experimentally. We con-
sider that research of generalization error plays an important role in optimum
design of SOM and character clarification of SOM as statistical model.

2 Definition of Generalization Error

Because the self orgaizing map is not uniquely decided as the probabilistic model,
generalization error is not uniquely decided. Furthermore, various learning algo-
rithm of self-organizing map are proposed. Henceforth in this paper, we use
1-dimentional SOM to simplify description. But, this theory can be applied
similarly to multi-dimensional SOM. The following cases are assumed in this
paper.

2.1 Distribution of Data

Let,(x, y) is element of euclidean spaceR1 ×R1. The value x is a score from the
probability distribution q(x). The value y comes from conditional probability
distribution

q(y|x) =
1√

2πσ2
exp

(
− 1

2σ2
|y − f(x)|2

)
when the value x is given.where σ > 0 is standard deviation,f(x) is continuous
function. Let generate samples zi = (xi, yi)(i = 1, 2...n) independently from joint
probability distribution

q(z) = q(x)q(y|x),

where z = (x, y) ∈ R2. Let us call these samples training data. Here, we considers
one dimensional manifold

y − f(x) = 0

in two dimensional euclidean space to simplify description.

2.2 Learning Algorithms of Batch-Learning SOM (BL-SOM)

We present the definition of Self-organizing Map(SOM) and batch-learning algo-
rithm here. Let m be a natural number and let w1, w2, ..., wm ∈ R2 be weight
vectors of all nodes. These vectors are optimized to input data by learning al-
gorithms. The equation that show the winner node and the update rule are
described as follows:

c = arg max
i

‖ wi − zj ‖ (1)
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wi(t + 1) =

jmax∑
j=1

hcizj

jmax∑
j=1

hci

(2)

where hci is neighborhood function,jmaxis the number of samples, zj is input
vector.

The equation of neighborhood function are described as follows:

hci(t) = α(t) · exp
(
−‖ ri − rc ‖2

2σ2(t)

)
(3)

σ(t) = σf + (σi − σf ) exp
(
− t

τ

)
(4)

where α(t)is learning rate, ‖ ri − rc ‖is euclidean distance between winner node
c and i−th node defined by topology, σ(t)is a Neighborhood radius, σiis a initial
value of neighborhood radius, σf is a last value of neighborhood radius.

——————————————————————————————————-
The algorithms are described as follows:
(1) Weight vectors in self-organizing map(w1, w2, ..., wm) are initialized to ran-
dom values.
(2) This process is repeated for a number of cycles γ(usually large).
(2.1) Input vectors {(z1, z2, ..., zjmax)} are inputted to all the nodes at the same
time in parallel.
(2.1.1) Distances between zj and all the weight vectors are calculated. The win-
ner node, denoted by c, is the node with the weight vector closest to the input
vector zj(Eq.1).
(2.1.2) Neighborhood functions of all nodes, denoted by hcj ,are calculated to
datazj

(2.2) z1, z2, ..., zjmax is calculated by the update rule(Eq.2).
——————————————————————————————————-

in this study, we consider that probability distribution of self-organizing map is
represented by

p(z|b) =
1
m

m∑
k=1

1
(2πb2)

exp
(
− 1

2b2
|z − wk|2

)
, (5)

where b is a control parameter used when the generalization error is measured.
The definition of the distribution estimated by self-organizing map is not

unique. In this paper, we use Eq.5 as the distribution estimated by self-organizing
map. Information on topology is not included in this definition. It is future tasks
to define probability distribution including information of topology of SOM.
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2.3 Generalization Error

The generalization error is defined by Kullback Leibler distance

G =
∫

q(z) log
q(z)

p(z|b)dz,

where q(z) is true probability distribution, p(z|b) is probability distribution es-
timated by self-organizing map. G is approximately obtained by the empirical
Kullback information

G ≈ 1
N

N∑
j=1

log
q(zj)

p(zj |b)
,

where {z1, z2, ..., zN}independent and identical samples from the true distribu-
tion q(z).

2.4 Learning Curve

In general, it is known well that Learning Curve becomes

G(n) = L0 +
λ

n
+ o(

1
n

), (6)

where G(n) is the average generalization error,and is the function of N that is
size of training data, L0 and λ are constants decided by true distribution, model
and algorithm. In the learning theory, it is a key problem to clarify the relation

(TrueDistribution, Model, Algorithm) �→ (L0, λ). (7)

For example, If true distribution is included in the learning model and fisher in-
formation matrix is regular, L0 is entropy of true distribution and λ = d/2 where
d is dimention of parameter. And, it doesn’t depend on the learning algorithm.
If true distribution isn’t included in the learning model and fisher information
matrix isn’t regular, L0 and λ are depend on true distribution, model and algo-
rithm.Nevertheless, whether fisher information matrix is regular or not, Eq.(6)
is approved.

In this paper, we study the learning curve of self-organizing map that has not
been researched until now. In the data space of the p-dimension, self-organizing
map has parameter of mp-dimension. However, we predicted that because wk(k =
1, 2, ..., m) is a parameter that mutually influences when it is learning, degree of
freedom is lower than parameter of dimension.

3 Experiments

This section presents results of several experiments to examine behavior of gen-
eralization error of self-organizing map.
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Fig. 1. An example of data set sample

3.1 Experimental Setting

We conducted our experiment on the artificial data set generated by

q(x) =
1√
2πρ2

exp
(
− x2

2ρ2

)

q(y|x) =
1√

2πσ2
exp

(
− 1

2σ2
|y − sin(x)|2

)
.

In this experiment,we use next parameter set.

ρ = π/2
σ = 0.3
n = 50, 100, 150, ..., 950, 1000
m = 10, 20, 30

The schematic diagram of an example of data set sample(n=1000) is shown in
Fig.1.

3.2 Experimental Result

Learning result of SOM. An example of learning result of self-organizing
map is shown in Fig.2.
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(a) (b) (c)
Fig. 2. Learning results of Batch-Learning Self-Organizing Map for Target data.

(a)m=10. (b)m=20. (c)m=30.
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Fig. 3. Generalization error(m=10)

Fig. 4. Generalization error(m=20)

Fig. 5. Generalization error(m=30)

Generalization Error. The training data set was generated independently 25
times in each condition. After SOM independently learned each data set, we
calculated the average and the variance of each generalization error G.

Genrearization errors when number of nodes and control parameter are
changed are shown in Fig.3(m=10),Fig4(m=20) and Fig.5(m=30).

G = A +
B

n
+ noise

where A corresponds to L0,B corresponds to λ.
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Table 1. Coefficient of learning curve obtained from experimental result

m 10 20 30
A 0.549 0.271 0.164
B 5.192 12.949 18.304

(a) (b) (c)
Fig. 6. Generalization error. (a)m = 10, optimal parameter b = 0.47. (b)m = 20,

optimal parameter b = 0.34. (a)m = 30, optimal parameter b = 0.3.

G was fitted to the learning curveg that uses value of optimum b by least
squares method.

Table1 shows the calculation value of A and B obtained for m = 10, 20, 30.
fitted learning curves and generalization error is shown in Fig.6.

3.3 Discussion

In this experiment,when the number of nodes is m, the dimension of the param-
eter becomes 2m because SOM exists in two dimension space.

If self-organizinng map is statistical regular model, the relation between con-
stant m and λ is as follows.

m = 10, 20, 30,

λ = 10, 20, 30.

The relation between constant m and B estimated from the outcome of an
experimentis as follows(see Table1).

m = 10, 20, 30,

B = 5.192, 12.949, 18.304.

We consider that because the degree of freedom of SOM is lower than the
dimension of the parameter, B has become smaller than λ. Therefore, topolog-
ical structue of SOM influences the estimation of those parameters. Here,the
predictions of section2 were confirmed.
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4 Conclusions

In this paper,we defined the generalization error of self-organizing map, and
showed its behavior experimentally. The experimental results demonstrated that
the learning curve of the self-organizing map is determined by the order that are
smaller than dimensions of parameter. We consider that the topology of self-
organizing map contributed to abatement of the order.
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Abstract. The detection of approaching vehicles is a very important

topic on the development of complementary traffic safety systems. How-

ever, the majority of the proposed approaches are very complex and not

suitable for embedded applications. This paper proposes a new sound

approaching detection algorithm specifically intended for hardware im-

plementation. Experimental results show higher accuracy and earlier de-

tection when comparing to other methods.

Keywords: approaching detection, time before arrival, hardware imple-

mentation.

1 Introduction

Driving safety is one of the major concerns of the automotive industry nowadays.
Video cameras and movement sensors are used in order to improve the driver’s
perception of the environment surrounding the automobile [2][9]. These meth-
ods present good performance when detecting objects (e.g., cars, bicycles, and
people) which are in line of sight of the sensor, but fail in case of obstruction or
dead angles. Moreover, the use of multiple cameras or sensors for handling dead
angles increases the size and cost of the safety system. The human being audi-
tory system plays a major role in the surrounding environment perception. Not
only the recognition of potentially hazardous events but also the localization and
movement judgment (distance and speed) of such sounds is a very advanced abil-
ity [8]. If such ability could be reproduced by artificial systems, it would enable
the development of new security systems, man-machine interface and interactive
devices. In particular, to detect the approach of a sound emitting object without
depending on cameras or more complex sensors is a topic that has been studied
by several researches, usually aiming complementary traffic safety systems.

For instance, Hoshino [3] proposed an approaching detection method based
on heuristical relations of the level variation between time windows of sound
taken from two microphones. This algorithm can detect an approaching vehicle
2.2 seconds before its arrival, in average, although real experiments showed an

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 407–414, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



408 H. Tsuzuki et al.

average of 1.4 seconds with a large variance. Kodera, Itai and Yasukawa [4] intro-
duced a method of speed and arrival time estimation of vehicles using the signals
of a 4-microphone array. Their method calculates the average and medians of
a spectrogram constructed from the beam-forming of the Short-Term Fourier
Transform of each microphone signal. A Support Vector Machine then classi-
fies the extracted features in several categories, representing all combinations of
possible speeds and arrival times, with great accuracy.

These methods, however, fail in two important aspects: they are either too
complex to be implemented in embedded systems or only detect the approach-
ing shortly before the source arrival. This paper proposes a sound approaching
strategy specifically intended for hardware implementation. The new approach
is suitable for embedded applications, while presenting good performance on
real-environment experiments.

2 Proposed Method

Kugler et. al. [5,6] demonstrated a sound recognition system specifically devel-
oped for hardware implementation. This system can be divided in three main
blocks: signal processing, feature extraction and classification. The signal pro-
cessing block, inspired by the human hearing system, is composed by a bandpass
filter bank, a hair-cell non-linear function and a spike generator. The classifica-
tion consists of a Learning Vector Quantization (LVQ) neural network followed
by a integration layer named time potentials. These modules form a robust
framework for classifying real-time sound-related data, with the requirement
that the generated features must be binary. The proposed system is based on
the same framework, except for the feature generation module, and its main
structure is shown in Fig. 1.

Bandpass Filter
Hair-cell

Spike Generator

Feature
Extraction

LVQ Classification
& Time Potentials

sound
signal

N channels
spike trains

binary
feature
vector

approaching
result

Fig. 1. Proposed sound approaching system structure

The sound signal is sampled at 48kHz, converted to single-precision floating-
point representation and sent to the filter bank module, which divides it in N
frequency channels. For sound approaching detection, 5 channels between 1 kHz
and 2 kHz where used. The signals are compressed by a non-linear function corre-
sponding to the inner hair-cells of the hearing system. The hair-cells function[7]
is defined as:

f(x) =
{

x
1
3 x ≥ 0

1
4x

1
3 x < 0

(1)
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where x is the input value. The spikes are generated from the compressed signal.
The inter-spike period T is calculated as follow:

T = K
xmax − xmin

x − xmin
(2)

where xmax and xmin are limiting factors for the value of x and K is a constant.
After the period is calculated, the equivalent integer value it is compared with
the correspondent timer and, if it overflows the calculated period, a spike is
generated on the channel. All spike trains pn(t) (n = 1 . . .N) become the input
data of the feature extraction module.

In order to detect an approaching sound, it is necessary to measure the varia-
tion of the sound signal energy along time. If the variation is positive, the sound
source is approaching the subject, otherwise, it is either stopped or getting away
of it. Both later cases are not important for the current application and will be
considered as the negative category. This has to be performed for each of the
frequency channels generated by the signal processing module.

As the sound is already converted to spikes, the signal energy for each nth

frequency channel can be measured simply by counting the number of spikes in
a time window of W samples:

xn(t) =
W−1∑
i=0

pn(t − i) (3)

where pn(t) is the spike train value on time t, n = 1 . . .N .
A naive approach for determining if the sound is approaching would be just

calculating the difference of two consequent vectors xn(t) and xn(t + W ). How-
ever, in real situations, the sound signal contains noise from the environment
(e.g. wind) and also secondary sounds possibly moving in different directions.
Thus, S windows are used and the feature vector is calculated as follow:

F s
n(t) =

{
1 if xn(t + sW ) − xn(t + (s − 1)W ) > 0
0 otherwise

(4)

where F s
n represents the sth binary feature of the nth frequency channel and

s = 1 . . . S. If the difference of the two consecutive windows is too small, the
feature should represent a stationary sound. Hence, another vector with the
same number of features is defined as:

V s
n (t) =

{
1 if |xn(t + sW ) − xn(t + (s − 1)W )| > β
0 otherwise

(5)

where β is the minimal level threshold. Finally, the complete features vector is
formed by the concatenation of the two vectors F and V.

As stated before, the classification is performed by a standard LVQ neural
network [1]. As the patterns were reduced to simple binary vectors, they can be
compared by Hamming distance:
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d(z, ω) =
R∑

i=1

|zi − ωi| (6) ωb
n =

{
0 if ωn < 0.5
1 otherwise

(7)

where z represents the samples formed by the F and V vectors, ω are the ref-
erence vectors and R = 2NS is the number of dimensions of the final feature
vector. The elements of ω, during the training process, are converted to binary
values only for distance calculation.

It can be assumed that the sound sources will not present instant changes on
speed and direction, i.e. they keep the movement direction for periods of time
much larger than the size of the time windows. Thus, by the use of potentials
similar to the membrane potential of spiking neurons, one can remove the instant
errors from the LVQ neural network without modifying the training process. The
time potentials are defined as:

uk(t) =
{

min(umax, uk(t − 1) + γ) if k = y(t)
max(0, uk(t − 1) − 1) if k 	= y(t) (8)

where uk is the potential of the kth category, γ is the increment for the winner
category umax is the maximal potential and y(t) is the LVQ’s classification.
Hence, the winner category at time t is the one with higher uk(t) value.

3 Experiments

Fig. 2 shows experimental conditions. The microphone was fixed on the right
bottom car’s rear windshield. When recording the sound of approaching vehi-
cles, the reference car with the microphone was idling on the side lane. The fea-
ture extraction parameters were tuned experimentally. The LVQ neural network
labels the input vectors as “approaching” or “nothing” (stopped or departing
categories).

reference car approaching vehicle

microphone

sampling frequency 48kHz

frequency channels (N) 5

frequency range 1kHz ∼ 2kHz

window length (W) 15000

window number(S) 5

threshold (β) 5

LVQ codebook 50 clusters/class

Fig. 2. Experimental conditions
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3.1 Parameter Decision

The feature extraction parameters window length (W ),window number (S) and
threshold (β) were tuned in order to maximize the accuracy of the LVQ classifier.
Table 1 shows parameter candidates of the feature extraction process. Sounds
from an approaching scooter were taken in a test area and several signals from
approaching cars were taken in normal transit in the streets of Nagoya.

Table 1. Parameter candidate

window length (W) 5000, 7500, 10000, 12500, 15000, 17500
window number (S) 2, 3, 4, 5, 6
threshold (β) 2, 3, 4, 5, 6, 7

Fig. 3 shows the accuracy of the LVQ neural network. Accuracy is directly
proportional and very dependent on the window length and number of windows.
However, large number of wide windows increase system’s latency. The threshold
parameter is not critical when using wide windows.
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Fig. 3. Detection accuracy: (a) window length and window number, (b) threshold and

window length

From Fig. 3, the best parameter set was selected as shown in Fig. 2. For the
number of clusters greater than 50, accuracy does not change significantly.

3.2 Performance Evaluation

The experimental results of the scooter approaching at 30km/h and 40km/h are
shown, respectively, in Fig. 4(a) and 4(b). In the 30km/h case, the model detected
the approaching vehicle 4.3 seconds before the arrival, while in the 40km/h case,
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the approach was detected 3.6 seconds in advance. For these experiments, all
approaches were detected successfully.

Results from the sounds taken in normal traffic for a single approaching car
are shown in Fig. 5. The approaching vehicle could be detected 4.7 seconds be-
fore the arrival. The approaching vehicles were manually verified from a video
stream taken from the back of the car containing the microphones. Fig. 6 shows
the accuracy of detection as a function of time before arrival. For these measure-
ments, a margin of 5 seconds before and after each vehicle arrival was used, i.e.
only vehicles separated by more than 5 seconds from others were considered in
the accuracy calculation. Also, due to the use of non-directional microphones,
only cars on the same lane or on the immediate neighbor lanes were considered.
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Fig. 4. Scooter approaching detection result(test area): (a) 30 km/h, (b) 40 km/h
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3.3 Performance Comparison

The proposed method was compared with the approach described by Hoshino[3].
In this method, the features are extracted from sound level difference and classi-
fied based on heuristic rules. The sound signal is filtered by an octave-bandpass
filter which center frequency is 2 kHz. After the filtering, the average sound
pressure level of every 200 ms interval is calculated. The approaching vehicle
detection is defined as the three section increase of the level or two section con-
tinuous increase larger than 1.0 dB of the level.

Fig. 7 shows the accuracy of detection as a function of time before arrival
processed by this method. This experiments were performed using the same
data of the experimental results in Fig. 6.
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Fig. 7. Detection accuracy for single vehicle in normal traffic

The proposed method presents high accuracy for the same time before arrival,
i.e. vehicles can be detected earlier with similar accuracy. However, the false-
positive detection is also higher.
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4 Conclusions

This paper presented a new method for approaching vehicles detection. The
obtained algorithm is very robust, presenting high accuracy and a time detection
before arrival larger than other methods. The classifier consists of a standard
LVQ neural network, with simple learning and no critical parameters.

However, although the results for single vehicle approaching detection were
encouraging, multiples vehicles still presents a challenge and are the main focus
of the future steps of this research.

Acknowledgments. This research was partially supported by Toyota Motor
Corporation and Aisin Seiki Corporation.
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Abstract. We propose a ground penetrating radar system to integrate

mutimodal information of space- and frequency- domain textural fea-

tures in self-organization that is modulated by mutual information. We

use the MuSOM (mutual-information-based self-organizing map) archi-

tecture we proposed previously, in which the mutual information among

the data fed to multiple SOMs modulates the SOM dynamics. Experi-

ments demonstrate that our system makes meaningful clusters of land-

mine features clearer than a conventional non-MuSOM system does.

1 Introduction

Many ground penetrating radar (GPR) systems have been proposed for visual-
ization of plastic landmines [1] . We previously proposed an adaptive visualizer
based on a complex-valued self-organizing map (Complex-valued SOM, CSOM)
in which we focus on the textural features in the space and frequency domains
[2] [3] . We have been successful in visualization even for small plastic landmines
buried in heavily wet laterite soil where both the permeability and the permit-
tivity are very high [4] [5] . In the system, however, we had room of improve-
ment in the information integration of the textural features in the two different
domains.

In this paper, we propose a method to integrate the two different types of
information and generate a concept of ”plastic landmine” in a self-organizing
manner based on the observation data. The method modulates the bottom-up
dynamics of self-organization in multiple (complex-valued) SOMs in a top-down
manner.

Note that we may call the present network “mutual complex-valued self-
organizing map (MuCSOM).” Here in this paper, however, we call it simply
“MuSOM” since the dynamics modulation based on mutual information is not
limited to CSOM but applicable widely to SOM in general.

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 415–422, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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tion system [3]

2 Integration of Multimodal Information and Concept
Generation in the MuSOM

2.1 Basic Idea

The authors previously proposed a basic method of information integration and
concept generation based on mutual information among multiple self-organizing
maps (SOMs) by modulating SOM parameters in respective SOMs [6]. We named
the system architecture the MuSOM, meaning mutual-information-based SOM.
The MuSOM is applicable widely to various applications independent of the
types of information or situations under consideration.

In this paper, we apply the idea of MuSOM to our adaptive radar system
by showing the qualitative improvement of the performance to visualize plastic
landmines. In our recent ground penetrating radar (GPR) systems, we basically
extract two textural features, i.e., space- and frequency-domain textural features,
as a concatenation into a single feature vector, and feed them to a complex-valued
self-organizing map. However, since the two sets of features represent different
information essentially, there has been room for improvement in its integration.
This paper proposes the application of MuSOM to the integration of these two
qualitatively different types of information so that the system generates the con-
cept of landmine self-organizingly. We construct a radar system to demonstrate
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the meaningful clustering of features of plastic landmines based on the mutual
information among multiple self-organizing maps, i.e., in the MuSOM.

Figure 1 is the schematic diagram showing the mutual-information-based self-
organizing process in the MuSOM, in which each SOM is basically a conventional
one that maps input information into low dimensional information space. The
typical SOM dynamics is expressed as the weight updating process in terms of
the weights of neurons wk(t), at position k in the SOM space at time t (or
learning iteration number t), and a set of signal input vector xi fed to the SOM
as

wk(t + 1) = wk(t) + Θ(k, kc; t) α(t)
(
xi − wk(t)

)
(1)

where

kc = arg min
k

∣∣∣x(t) − wk(t)
∣∣∣ (Winner neuron position) (2)

α(t) ≡ α(0)
(

1 − t

T

)
(Learning coefficient) (3)

Θ(k, kc; t) = exp
(
−|k − kc|2

2δ2(t)

)
(Neighborhood function) (4)

δ(t) ≡ δ(0)
(

1 − t

T

)
(Inverse of sharpness of Θ) (5)

and T is the maximum time (maximum number of iteration) in the self-
organization.

However, in our MuSOM [6], the dynamics is modulated in accordance with
mutual information among input signals fed to a set of SOMs. That is, a SOM
finds correspondence of input information with another input signal fed to an-
other SOM by paying attention to mutual information. Each SOM changes the
stretch of its neighborhood according to the mutual information so that a set of
corresponding data makes a cluster through self-organization. For example, let’s
assume visual and audio data streams existing simultaneously. By referring to
the mutual information between the visual and audio data, we can segment the
visual stream commutatively with the audio data, and vice versa.

2.2 MuSOM: A Set of SOMs Modulated by Mutual Information

The MuSOM is a set of SOMs that realizes a clustering process taking into ac-
count the relationship among information in multiple modes [6]. The dynamics
in each SOM inside is modulated by mutual information quantity to realize a
mapping that takes the relationship among multiple-mode data sets into ac-
count. The detail is described as follows. We consider only two modes of data for
simplicity here, e.g., visual and audio data streams. We then prepare two SOMs.
Each SOM self-organizes by referring to the mutual information and changing
the neighborhood function used in the self-organization. We calculate the mutual
information between the visual and audio SOM neurons I(A; V ) as
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I(S; F ) =
∑

dS=0,1

∑
dF =0,1

p(dS , dF ) log
p(dS , dF )

p(dS)p(dF )
(6)

p(dS) =
m(dS)

M
, p(dF ) =

m(dF )
M

, p(dS , dF ) =
m(dS , dF )

M2
(7)

dS =

{
1, if

∣∣∣kSci − kScj

∣∣∣ ≤ rS

0, otherwise
, dF =

{
1, if

∣∣∣kFci − kFcj

∣∣∣ ≤ rF

0, otherwise
(8)

dS(k, kc)AdF (k, kc) where n(dA) and n(dV ) (or n(dA/V ) in short) denote the
number of the data that gives dA/V , N is the total number of the data in the set

(i.e., x1 = [xS1, xF1], x2 = [xS2, xF2], ···, xN = [xSN , xFN ] ),
∣∣∣kA/V cj−kA/V ci

∣∣∣
is the distance between the winners for data xi and xj in the audio / visual SOM
space, and rA/V denotes radius of a variable circle in the SOM space that gives
a boundary of the category represented by kA/V ci as shown in Fig.2. We vary
the values rA and rV to find a pair of rA and rV that maximize the mutual
information Imax. Then we modify the neighborhood function in accordance
with the Imax value as follows.

If the mutual information Imax is larger than a threshold H , we employ a
modified δ(t) in (5), namely δ̃(t) expressed as

δ̃(t) =

⎧⎪⎪⎨⎪⎪⎩
δ(0)

(
1 − t

T

)2
for kS/Fcj ∈ the circle of kS/Fci

δ(0)
(
1 − t

T

)
otherwise

(9)

That is, in the upper case in (9), the neighborhood is sharper. In other words,
if a winner position kA/V cj for a data xj falls within the circle, we employ a
smaller δ̃(t) in the neighborhood function Θ(k, kc, t) when the maximum mu-
tual information Imax exceeds the threshold H , which indicates a strong corre-
lation between the audio and video data xA and xV . Though a locally adaptive
threshold may improve the dynamics, we employ a fixed H for simplicity in the
experiment.

3 Experiment

3.1 Construction of the Adaptive Radar System to Visualize Plastic
Landmines

Figures 3(a) and (b) illustrate the constructions of our front-end and array an-
tenna of the radar system to visualize plastic landmines. It is a stepped-frequency
radar covering 8-12GHz band. We obtain complex-amplitude images of scatter-
ing / reflection at 10 frequency points with 0.4GHz interval. The antenna element
is the so-called walled linearly tapered slot array (walled LTSA) we proposed in
Ref. [3]. 12×12 elements form an array. The elements is so wideband and high
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gain that the system needs no aperture synthesis, and suitable for near field
imaging.

A vector network analyzer (VNA) generates microwave. Layered radio-
frequency (RF) switches lead the microwave to one of the antenna elements
(transmitter: Tx). Another element (receiver: Rx) receives scattered or reflected
wave. That is, they form a bistatic radar configuration. We obtain the ampli-
tude and phase of the received wave at the VNA. The switches realize various
combinations of Tx and Rx [4].

A personal computer (PC) controls the switches and the VNA, and performs
all the preprocessing such as signal normalization, feature extraction, and SOM
clustering as shown below. The data obtained at the VNA represent the ampli-
tude and phase values at position (lx, ly) and frequency fn. First we conduct
the preprocessing and the feature extraction inspired by the human early vision
system as follows.

3.2 Preprocessing and Feature Extraction

The preprocessing consists of the following four processes in series. 1)Subtraction
of the direct coupling between Tx and Rx by using calibration data obtained
in advance. 2)Subtraction of rotation phase value (in the phase domain) corre-
sponding to the rotation caused by the direct coupling. 3)Transformation of the
complex-amplitude itself into that in decibel (dB) representation, just like in the
way the human beings feel. 4)Normalization of the amplitude in dB in such a
manner that the minimum and maximum values in a single data-set acquisition
are transformed linearly to 0 and 1, respectively. Finally we obtained a set of
preprocessed data z(lx, ly, fn) (∈ C: complex domain).

Figure 4 shows the flowchart of the whole signal processing performed in the
landmine visualization system. Out of the data z(lx, ly, fn) obtained by the front-
end, we extract the local textural features as a feature vector x in a small local
window of L × L pixels.

x = [m, xs, xf ] (10)

m =
1

L2N

L∑
lx=1

L∑
ly=1

N∑
n=1

z(lx, ly, fn) (11)

xs = [xs(0, 0), xs(1, 0), xs(0, 1), · · ·] (12)

xs(i, j) =
1

L2N

L∑
lx=1

L∑
ly=1

N∑
n=1

z(lx, ly, fn)z∗(lx + i, ly + j, fn) (13)
xf = [xf (f1), · · ·, xf (fN−1)] (14)

xf (fn) =
1
L2

L∑
lx=1

L∑
ly=1

z(lx, ly, fn)z∗(lx, ly, fn+1) (15)

where (·)∗ denotes the Hermite conjugate of (·). That is, we represent the texture
by the mean m, space domain correlation xs, and frequency domain correlation



420 A. Hirose, A. Ejiri, and K. Kitahara

Wide frequency-band measurement

Space CSOM

Identification of landmine classes

Multiple-frequency complex amplitude images z

Segmented image

Spatial textural feature xs

Feature extraction

Freq  textural feature xf

Frequency CSOM

Mutual information
Multimodal information integration and total classification

MuSOM

(CSOM: complex-valued SOM)

Fig. 4. Flowchart of MuSOM signal processing for plastic landmine visualization

xf . Then we feed [m, xs] and [m, xf ] to the space and frequency SOMs, respec-
tively, in the MuSOM.

3.3 Results

The number of the feature vectors is �max=360, which is also the number of
the local windows which are set in an overlapping manner in the observation
land area. A feature vector x� = [m, xS�, xF�] represents the texture in a local
window. Among the elements of x�, we feed the space components with the
mean [m, xS�] to a space SOM that deal with the space domain information,
while we do the frequency components with the mean [m, xF�] to the frequency
SOM to treat the frequency domain information. During the self-organization in
the respective SOMs, we modulate the dynamics if we find correlation between
the two types of information.

In our previous system contrarily, we dealt with a single joint vector x� =
[m, xS�, xF�] in a single SOM. Even in such a case, we find meaningful self-
organization, and we are able to visualize landmines by the textural classification.
On the other hand, it is obvious that xS� is qualitatively different from xF� and
that the simple concatenation may be inappropriate. Rather the information
should be integrated naturally based on the information itself. This paper insists
on this point.
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Fig. 6. Winner neuron distributions in the MuSOM (a)space and (b)frequency SOMs

interacting with each other based on the mutual information: � shows the neurons

firing for landmine area, while • for other areas

Figure 5 displays the positions of the winner neurons that fire for the 360 input
vectors in the SOM space after the self-organization completed conventionally
without the MuSOM configuration, i.e., no modulation in the dynamics. The
data used was obtained for soil including a buried landmine but a little diffi-
cult for our conventional system to visualize [3]. In the present experiment, we
checked the landmine position beforehand, and we know the landmine position.
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In Fig.5, � shows the neuron position firing for a feature vector of the landmine
region, whereas • indicates that for another area such as just soil or stones.
Though � gathers, there is difficulty in distinction between landmine area and
others without any previous knowledge.

Figure 6 shows the result for the MuSOM, that is, the neuron positions that
fire for the 360 inputs in the SOM space after the self-organization occurred
with the dynamics modulation based on the mutual information. In the SOM
space, most of the � are separate from • positions, though some are within the
• regions. Further analysis is needed for the interpretation. It is also interesting
that the non-landmine neurons also tend to gather with one another. The results
demonstrates that a type of concept, corresponding to the gathering in the SOM
space to reflect the characteristic set of feature vectors, has been generated in
the MuSOM based on the mutual information.

4 Summary

We proposed a MuSOM-based method to integrate the multimodal information
of space- and frequency- domain textural features and to generate a concept of
landmines in a self-organization modulated by the mutual information. In the
system, multiple self-organizing maps dealing with different modes of information
interact with one another to modulate their dynamics in such a manner that the
neighborhood region is sharpened for larger mutual information. We conducted
experiments for buried plastic landmines and demonstrated that the information
is integrated effectively and the landmine concept is generated self-organizingly.
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Abstract. In this paper, we propose a new type of information-theoretic

method for competitive learning based, upon mutual information be-

tween competitive units and input patterns. In addition, we extend this

method to a case where cooperation between competitive units exists to

realize self-organizing maps. In computational methods, free energy is in-

troduced to simplify the computation of mutual information. We applied

our method to two problems, namely, the Senate data and ionosphere

data problems. In both, experimental results confirmed that better per-

formance could be obtained in terms of quantization and topographic

errors. We also found that the information-theoretic methods tended to

produce more equi-probable distribution of competitive units.

1 Introduction

In this paper, we propose a new information-theoretic method to realize com-
petitive learning, based upon our finding that mutual information between in-
put patterns and competitive units can be used to realize competitive processes
[1]. Information-theoretic methods have been successfully introduced in neural
networks and machine learning, because of their ability to deal with higher-
order statistics and non-linear problems [2]. One of the main shortcomings of
the information-theoretic method lies in its computational complexity when we
must compute mutual information. Though there have been several attempts
[3], [2] to reduce the complexity, the problem remain serious, even at the present
stage of research [3], [2]. To simplify the computation of mutual information,
we introduce a type of free energy by which we can replace the computation of
mutual information with that of the simple partition function [4].

The method can easily be extended to the generation of self-organizing maps
[5], where the good performance of our method can be shown visually and quan-
titatively. To realize the self-organizing maps, we introduce cooperation between
competitive units in addition to competition between the units. The cooperation
is realized by the weighted sum of all competitive units. Thus, one of the main
characteristics of our method is soft competition, where we can flexibly control
the degree of competition, between competitive units, while in the conventional
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SOM, the rigid winner-take-all algorithm is used. The winner-take-all operation
can be considered to be a specific case of our soft competition. Because this
flexibility in the control of competition is surely related to the performance of
competitive learning, we try to show in this paper that this flexible control of
competition is directly related to the better performance of our method.

2 Theory and Computational Methods

2.1 Two Types of Information

Our method presented here is based upon information-theoretic competitive
learning. Thus, we should summarize the results of information-theoretic com-
petitive learning [6], [1]. In this method, competition processes are supposed to
be realized by maximizing mutual information between competitive units and
input patterns.

Let us compute mutual information for a network shown in Figure 1(a). The
jth competitive unit output can be computed by

vs
j ∝ exp

{
−1

2
(xs − wj)T Σ−1(xs − wj)

}
, (1)

where xs and wj are supposed to represent L-dimensional input and weight
column vectors, where L denotes the number of input units. The L × L matrix
Σ is called a ”scaling matrix,” and the klth element of the matrix denoted by
(Σ)kl is defined by

(Σ)kl = δkl
σ2

p(k)
, (2)

where p(k) is greater than zero and initially set to 1/L, because we have no
preference in input units. The spread parameter σ is computed by

σ =
1
α

, (3)

where α > 1. The output is increased when connection weights become closer to
input patterns. The conditional probability of the firing of the jth competitive
unit, given the sth input pattern of the S input patterns, can be obtained by

p(j | s) =
exp

{
− 1

2 (xs − wj)T Σ−1(xs − wj)
}∑M

m=1 exp
{
− 1

2 (xs − wm)T Σ−1(xs − wm)
} , (4)

where M is the number of competitive units. The probability of the firing of the
jth competitive unit is computed by

p(j) =
S∑

s=1

p(s)p(j | s). (5)
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With these probabilities, we can compute two types of information, namely, the
first order and the second order information (mutual information) [7]. The first
order information is defined by

I1 =
M∑

j=1

p(j) log Mp(j). (6)

The first order information shows how far the distribution of competitive units
is from the equi-probable one. The second order information, or mutual infor-
mation, is defined by

I2 =
S∑

s=1

M∑
j=1

p(s)p(j | s) log
p(j | s)
p(j)

. (7)

When this second order information, or mutual information, is maximized, just
one competitive unit fires, while all the other competitive units cease to do so.

Finally, we should note that one of the main properties of this mutual infor-
mation is that it is dependent upon the scaling matrix, or more concretely, the
spread parameter σ. As the spread parameter is decreased, the mutual informa-
tion between competitive units and input patterns tends to be increased.

2.2 Free Energy Minimization

We can differentiate the mutual information and obtain update rules, but direct
computation of mutual information is accompanied by computational complex-
ity. To simplify the computation, we introduce free energy [4]. The free energy
F can be defined by

F = −2σ2
S∑

s=1

p(s) log
M∑

j=1

p(j) exp
{
−1

2
(xs − wj)T Σ−1(xs − wj)

}
. (8)

Here, we suppose the following equation

p(j | s) =
p(j) exp

{
− 1

2 (xs − wj)T Σ−1(xs − wj)
}∑M

m=1 p(j) exp
{
− 1

2 (xs − wm)T Σ−1(xs − wm)
} . (9)

Then, the free energy can be expanded as

F =
S∑

s=1

p(s)
M∑

j=1

p(j | s)‖xs − wj‖2

+2σ2
S∑

s=1

p(s)
M∑

j=1

p(j | s) log
p(j | s)
p(j)

. (10)

This equation shows that, by minimizing the free energy, we can decrease mu-
tual information as well as quantization errors. As already noted, the mutual
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information can be increased by decreasing the spread parameter σ. We usually
set p(j) into 1/M for simplification. Then, by differentiating the free energy, we
have

wj =
∑S

s=1 p(j | s)xs∑S
s=1 p(j | s)

, (11)

where

p(j | s) =
exp

{
− 1

2 (xs − wj)T Σ−1(xs − wj)
}∑M

m=1 exp
{
− 1

2 (xs − wm)T Σ−1(xs − wm)
} . (12)

2.3 Competitive and Cooperative Learning

We can easily extend the information-theoretic competitive learning to a case
where cooperation between competitive units must be taken into account,
namely, self-organizing maps.

In the training mode, we try to borrow the computational methods devel-
oped for the conventional self-organizing maps, and then we use the ordinary
neighborhood kernel used for SOM, namely,

hjc = exp
(
‖rj − rc‖2

2σ2
nh

)
, (13)

where rj and rc denotes the position of the jth unit on the output space. The
cooperative outputs can be defined by the summation of all neighboring com-
petitive units

ys
j =

M∑
c=1

hjc exp
{
−1

2
(xs − wj)T Σ−1

coop(x
s − wj)

}
, (14)

where the klth element of the scaling matrix (Σcoop)kl is given by

(Σ)kl = δkl

σ2
coop

p(k)
. (15)

The conditional probability of the firing of the jth competitive unit, given the
sth input pattern, can be obtained by

q(j | s) =
ys

j∑M
m=1 ys

m

. (16)

The free energy can be defined by

F = −2σ2
S∑

s=1

p(s) log
M∑

j=1

q(j|s) exp
{
−1

2
(xs − wj)T Σ−1(xs − wj)

}
. (17)

Now, it is easy to differentiate the free energy to have update rules. Suppose
that input patterns are given with the same probabilities, and then we have

wj =
∑S

s=1 p(j | s)xs∑S
s=1 p(j | s)

, (18)
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where

p(j | s) =
q(j | s) exp

{
− 1

2 (xs − wj)T Σ−1(xs − wj)
}∑M

m=1 q(j | s) exp
{
− 1

2 (xs − wm)T Σ−1(xs − wm)
} . (19)

In this paper, the most simplified version of the computational methods is used.
This means that we suppose that the probability p(j | s) is already equivalent
to q(j | s) before learning, and we have

p(j | s) = q(j | s). (20)

Then, update rules are simplified into

wj =
∑S

s=1 q(j | s)xs∑S
s=1 q(j | s)

. (21)

We use this simplified version because the final equation is very close to the
equation of the Batch learning in the conventional SOM [5]. With this simplified
computational method, we can easily use the values of parameters tuned for the
self-organizing maps.

3 Results and Discussion

We present two experiments, namely, the Senate data [8] and the ionosphere
data from the machine learning database1 to show the good performance of our
method. We use the SOM toolbox developed by Vesanto et al. [9], because it is
easy to reproduce final results in the present paper by using this package. In the
SOM, the Batch method is used, which has shown better performance than the
popular real-time method in terms of visualization, quantization and topographic
errors. The quantization error is simply the average distance from each data
vector to its BMU(best-matching unit). The topographic error is the percentage
of data vectors for which the BMU and the second-BMU are not neighboring
units [10]. Weights are linearly initialized along the greatest eigenvectors of the
covariance matrix of the data. The number of competitive units is heuristically
determined, and the normal size N is determined roughly by 5

√
S, where S is

the number of input patterns. The ratio of side lengths is determined by the ratio
between the two largest eigenvalues and vectors of the data. The product of two
side lengths is adjusted so as to be equal to the expected number of competitive
units.

3.1 Senate Data

First, we apply the method to the well-known Senate data [8]. The numbers of
input units and patterns are 19 and 15, respectively. With the use of the conven-
tional SOM, the quantization error is 0.218, while with the information-theoretic
1 http://archive.ics.uci.edu/ml/
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method, the error decreases to 0.193. With the conventional SOM, the topo-
graphic error is 0.133, while with the information-theoretic method, the error
decreases to zero. Figures 1(a) and (b) show the U-matrix and labels obtained
by the conventional SOM and the information-theoretic method, respectively.
Two characteristics can be pointed out to show the difference between the two
methods. First, the slim class boundary in warmer colors obtained by the con-
ventional SOM, shown in Figure 1(a1), becomes wider and stronger than the
one in Figure 1(b1), obtained by the information-theoretic method. In addition,
we can see that the number of competitive units responding to input patterns
increases from eight with the conventional method (Figure 1(a2) to 12 with the
information-theoretic method (Figure 1(b2)). Finally, we should note that the
mutual information is almost equal with the two methods, while the first order
information by the conventional SOM is larger than that by the information-
theoretic method.
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Fig. 1. U-matrices (1) and labels (2) obtained by the conventional SOM (a) and the

information-theoretic method (b)

3.2 Ionosphere Data

The second example is the ionosphere data from the well-known machine learn-
ing database. The radar data are classified as good and bad returns. The number
of input variables and patterns are 34 and 351, respectively. The data are nor-
malized to range between zero and one.

First, we examine quantization and topographic errors. The quantization error
gradually decreases to 0.131, while with the conventional SOM, the quantiza-
tion error is 0.134. The topographic error with the conventional SOM is 0.009,
while with the information-theoretic method, the quantization error decreases
to 0.005. Figure 2 shows the U-matrix and labels obtained by the conventional
SOM (a) and the information-theoretic method (b). Compared with the class
boundaries in warmer colors produced by the conventional SOM, those by the
information-theoretic method are clearer and stronger. Figure 3 shows the first
and the second order information obtained by the conventional SOM and by the
information-theoretic method. As can be seen in Figure 3(a), the second order
information is 1.622 with the conventional SOM, while with the information-
theoretic method, the information is 1.564, slightly below the level obtained by
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the conventional SOM. Figure 3(b) shows the first order information as a func-
tion of the parameter α. The first order information obtained by the conventional
SOM increases greatly and then decreases. In the later stage, the information
again increases. On the other hand, with the information-theoretic method, the
values of the first order information remain relatively constant and small.
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4 Conclusion

We have proposed a new information-theoretic competitive learning method that
includes a computational method for free energy. In particular, we have applied
the method to the self-organizing maps. One of the main differences is that the
degree of competition between competitive units is controlled flexibly by the
parameter in our model, while in the conventional method, the winner-take-all
algorithm is used. In our method, the winner-take-all operation is obtained as
an extreme case of our soft competition. Then, to simplify the computation of
mutual information, we have introduced a free energy concept that corresponds
to minimizing mutual information as well as quantization errors. In addition,
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we simplify the computation of the free energy so as to make the final update
rules closer to those of the conventional SOM to profit from the sophisticated
computational techniques developed for the conventional SOM.

We have applied the information-theoretic method to two well-known prob-
lems, namely, the Senate data and ionosphere data. In both problems, exper-
imental results showed that the information-theoretic method had better per-
formance than the conventional SOM in terms of quantization and topographic
errors. We have explored the main reason why the information-theoretic method
has shown better performance. We have found that the first order information
obtained by our method is much smaller than that by the conventional SOM.
As the first order information grows smaller, more equi-probable distribution of
competitive units can be obtained.

Though we have tried to use computational methods close to the conventional
SOM to facilitate the parameter tuning, there are a number of possible compu-
tational methods for the free energy. Thus, we should explore the possibility of
the free energy as a computational method more exactly.
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Abstract. We propose an approach to achieve early recognition of ges-

ture patterns. We assume that there are two people who interact with

a machine, a robot or something. In such a situation, a gesture of a

person often has a relationship with a gesture of another person. We ex-

ploit such a relationship to realize early recognition of gesture patterns.

Early recognition is a method to recognize sequential patterns at their

beginning parts. Therefore, in the case of gesture recognition, we can

get a recognition result of human gestures before the gestures have fin-

ished. Recent years, some approaches have been proposed. In this paper,

we expand the application range of early recognition to multiple people

based on the co-occurrence of gesture patterns. In our approach, we use

Self-Organizing Map to represent gesture patterns of each person, and

associative memory based approach learns the relationship between co-

occurring gestures. In the experiments, we have found that our proposed

method achieved the early recognition more accurately and earlier than

the traditional approach.

Keywords: Gesture Recognition, Early Recognition, Co-occurring Ges-

ture, Self-Organizing Map.

1 Introduction
A man-machine seamless interaction is an important tool for various interac-
tive systems such as virtual reality systems, video game consoles, human-robot
communication, and so on[5,6]. To realize such a interaction, the system has to
estimate human gestures in real-time. Generally, a gesture recognition result is
acquired after the gesture has finished. Therefore, if a long gesture is observed,
we have to wait for the response until the recognition result is determined. This
is a problem to realize a “real-time” man-machine interaction.

Recent years, a new approach called “early recognition” has been proposed
for gesture recognition[4,8,1]. The early recognition means that a system outputs
a recognition result before a gesture has finished. It is a very useful technique
to realize a real-time interaction. The most difficult problem of early recognition
is that when the system determines the recognition result. In other words, the
system has to ensure the recognition result before the observing gesture has fin-
ished. Most traditional approaches suffer from this problem since the gestures

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 431–438, 2010.
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comprehend ambiguity. Especially at the beginning part of them, it is very diffi-
cult to determinate the recognition result since enough input data has not been
observed yet. To solve this problem, we propose a new approach. The biggest
difference between traditional approaches and our approach is that we target not
only an individual person but also two or more people in the environment. It
means that there are two or more people who interact with a machine, a robot, or
so on, simultaneously. In such a situation, a gesture of a person is often related to
a gesture of another person. We call such a relationship “co-occurring gesture”,
and we use the information of co-occurrence for realizing early recognition.

Our approach uses Self-Organizing Map (SOM) and its sparse codes to rep-
resent gesture patterns. This approach is based on the approach proposed by
Shimada et al.[7]. In this research, we have modified their approach to adapt
for co-occurring gesture recognition. In addition, we introduce an associative
memory to describe a relationship between co-occurring gestures.

2 Definition of Early Recognition of Gesture Patterns

In this section, we give conceptual explanation about early recognition of indi-
vidual gesture and co-occurring gesture.

2.1 Typical Gesture Recognition

Let Ci = {ci
1, . . . , c

i
n} be a training gesture pattern which belongs to gesture

class i ∈ L. The L is a set of class labels. A gesture can be represented in a
sequential n-long posture patterns. Therefore, ci

n means the n-th posture of the
gesture. When an unknown gesture X = {x1 . . . , xl} is observed, the typical
gesture recognition problem is to find the most similar gesture from training
patterns by

p = argmin
i

{f(X, Ci)} (1)

where p is the class label and f() is a distance function which evaluate the
similarity between the gesture pattern X and Ci.

2.2 Early Recognition of Individual Gesture Patterns

The key issue of early recognition is to output a recognition result before ac-
quiring complete input pattern. In the case of gesture recognition, especially
individual gesture patterns, it corresponds to the following problem. When a
part of gesture pattern (unfinished gesture) X

′
= {x1 . . . , xk}, (k < l) is ob-

served, the recognition result is determined by

p = argmin
i

{f(X
′
, Ci) < THI} (2)

where THI is a threshold of distance which adjusts the timing of recognition
result. If the threshold is not introduced, a recognition result will be output
without concrete proof. Therefore, we set a threshold to ensure reliability for
the recognition result.
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2.3 Early Recognition of Co-occurring Gesture Patterns

Unlike the other recognition strategies mentioned above, the system has to ob-
serve gestures of two people simultaneously. Let Y

′
be a gesture pattern of

another person (the gesture has not finished yet). The output of the early recog-
nition of co-occurring gesture patterns can be defined as follows.

(p, q) = argmin
(i,j)∈M

{f(X
′
, Ci

A) + f(Y
′
, Cj

B) < THC} (3)

where M is a subset of L × L. The subscripts of C denote the person labels,
i.e, person A and person B. Note that the L × L is a set of all combination of
co-occurring gestures. Actually, the combination is restricted by the application,
environment or so on, and the co-occurrence is not always the all combination of
gestures. This is why we introduce the subset M . Fig. 1 shows an example of the
relationship between M and L×L. The rows denote the label of gesture of person
A, and the columns denote the one of person B. The “circle mark” indicates
that the corresponding gestures will be observed simultaneously. In the case of
Fig. 1(a), all gestures of person A would be observed at the same time with the
all gestures of person B. On the other hand, in the case of Fig. 1(b), some cells are
“blank”, which means that such co-occurrence will not be observed. Therefore,
the possible co-occurring gestures between person A and B are a subset of all
combination L × L, i.e., M = {(g1, g1), (g1, g2), (g2, g1), (g2, g3), (g3, g1)}.

g1 g2 g3
g1
g2
g3Pe

rs
on

 A

Person B
g1 g2 g3

g1
g2
g3Pe

rs
on

 A

Person B

(a) M = L × L (b) M ⊂ L × L

Fig. 1. Description of a set of co-occurring gesture

M . (a):all possible combination of co-occurring

gestures, (b):a subset of all combinations.

The THC is a threshold
which controls the timing of
early gesture recognition. The
difference between Eq. 2 and
Eq. 3 is that the latter de-
termines the output timing
based on two distance functions,
i.e, f(X

′
, Ci

A) and f(Y
′
, Cj

B).
Therefore, even if the system
does not have high confidence
in one person’s gesture recog-
nition, it can output the result
when another person’s gesture is recognized with higher confidence (i.e, very
smaller distance of f(Y

′
, Cj

B)).

3 Early Recognition Strategy

3.1 System Overview

First of all, we show the system overview in Fig. 2. The process can be di-
vided into two phases; training phase and test phase. In the training phase,
Self-Organizing Map (SOM) is used to learn postures, which are elements of
all gestures. The advantages of using SOM are 1) to reduce dimensionality of
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Gesture by 
Trained Map

Fig. 2. Processing Flow of Training/Recognition of Co-occurring Gesture Patterns

gesture patterns, 2) to reduce some redundant postures, 3) to represent a ges-
ture pattern by combination of smaller number of neurons and so on. Due to
space limitation, we skip the detailed explanation about SOM and how to learn
the postures (refer to the literature [7] for detail). After the training of all pos-
tures, element postures of each gesture are input to the map again. And then,
we can get a “Sparse Code” which represent a gesture pattern on the SOM (see
section 3.2). Finally, in the training phase, we associate one person’s gesture
pattern (sparse code) with another person’s gesture pattern based on teacher
signals given by the relationship as shown in Fig. 1. In this way, all possible
co-occurrence gestures are associated by “Associative Memory”(see section 3.3).

In the test phase, the system observes two people’s gesture simultaneously.
Then, each person’s parse code is generated/updated immediately whenever a
new observation is acquired. Finally, two sparse codes (person A and person
B) are examined whether or not they are co-occurring gesture by referring to
associative memory acquired in the training phase. Actually, the examination is
achieved by measuring the distance between sparse codes(see section 3.4).

3.2 Sparse Coding

When a posture xk is input to the SOM, one neuron will be selected as winner.
When a set of postures which consist of a gesture is sequentially input to the
SOM, some neurons will be activated. We regard such an activation pattern as
“Sparse Code”, which represents an input gesture. Here, we define the notation
of a sparse code. Let S be a sparse code which means a set of activated neuron
s. In the training phase, all training gestures are represented by using sparse
code Ci. Meanwhile, in the test phase, a sparse code of observing gesture is
represented by X

′
or Y

′
, which corresponds to Eq. 3.

Note that the sparse code described here has not an ability to distinguish the
gesture patterns whose elements are the same but the sequences are different.
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g0:grab g1:guard g2:jump g3:kick(L) g4:kick(R) g5:punch(L) g6:punch(R) g7:slap(L) g8:slap(R) g9:Uppercut

Fig. 3. Gestures used in our experiments

However, we can easily improve introduce temporal information into the system
by our previous study[7].

3.3 Associative Memory

To realize early recognition of co-occurring gesture patterns, we introduce an
associative memory. After the training of all gestures(actually, the training of
sequential postures by SOM), we get sparse code Ci

A and Cj
B which co-occur

with each other. The combination of i and j is restricted by (i, j) ∈ M which is
defined by application(see section 4 for our configuration). Our system memorize
these relationships between co-occurring gestures as “associative memory”. In
other words, the system has several combinations between Ci

A and Cj
B, which

will be observed as co-occurring gestures. Actually, in our implementation, we
stored each pair of sparse codes, which indicates the list of winner neurons’
indices for the corresponding gesture, in the memory storage of the computer
and used them as associative memory.

3.4 Similarity Measure

The number of elements in sparse code S is different from each other since
the number of activated neurons depend on the gesture length and the gesture
pattern. Therefore, we introduce the Hausdorff distance to measure the similarity
between two sets of sparse code. Let X and Y be two non-empty subsets of a
metric space. The Hausdorff distance f(X, Y ), which corresponds to the distance
function in Eq. 1, 2 and 3, is defined by

f(X, Y ) = max
i

{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)} (4)

where d(x, y) is the distance function. In our research, we use L2-distance be-
tween the coordinates of activated neurons.

4 Experimental Results

4.1 Condition

We demonstrate proposed early recognition of gesture patterns using motion
data prepared by ourselves. Each gesture consists of a sequence of postures, and
each posture is represented by 5 measured markers. Each marker is composed
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Fig. 4. Configuration of co-occurring gestures

of data of (x, y, z)-axis. We prepared 10 kinds of gesture patterns (|L| = 10, see
Fig. 3) from 7 examinees. Each person did each gesture 40 times. We used 20
patterns for training and other 20 patterns for test. We conducted the experiment
through cross-validation among examinees.

The co-occurring gestures used in the experiments are shown in Fig. 4. The
Fig. 4(a) shows the simple configuration that each gesture of person A corre-
sponds to unique gesture of person B. Meanwhile, in the case of Fig. 4(b), the
problem becomes more difficult since there are some gesture candidates(one-
to-five correspondence at maximum) which occurs at the same time. We can
investigate how the co-occurrence information is effective and helpful to deter-
mine the recognition result.

4.2 Early Recognition Result of Individual Gesture Patterns
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Fig. 5. Early Recognition Result of Individual

Gesture Patterns

Fig. 5 shows the result of early
recognition for an individual
person. The horizontial axis de-
notes the complete ratio of ob-
serving gesture pattern, and the
vertical axis denotes the recog-
nition accuracy. The bold curve
indicates the average ratio of ac-
curacy. For example, the recog-
nition ratio exceeded 90% when
more than 50% long gestures
had been observed on average.
We regards this result as base-
line in the following experiments.

4.3 Early Recognition Result of Co-occurring Gesture Patterns

As mentioned above, we investigated the recognition accuracy of co-occurring
gestures under two conditions(see Fig. 4). First, we examined the case 1 in
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5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
5 1.00 1.00 0.67 0.80 0.67 0.61 0.69 0.71 0.71 0.71 0.63 0.63 0.63 0.64 0.64 0.66 
10 1.00 1.00 0.67 0.65 0.66 0.69 0.70 0.69 0.69 0.65 0.61 0.58 0.58 0.58 0.62 0.60 
15 1.00 0.86 0.55 0.60 0.64 0.60 0.61 0.57 0.59 0.56 0.53 0.48 0.51 0.49 0.51 0.51 
20 0.83 0.72 0.55 0.65 0.73 0.71 0.72 0.74 0.74 0.73 0.74 0.72 0.73 0.73 0.73 0.73 
25 1.00 1.00 0.98 0.96 0.90 0.87 0.89 0.88 0.89 0.89 0.88 0.87 0.86 0.84 0.85 0.85 0.84 0.83 
30 1.00 1.00 1.00 0.65 0.82 0.95 0.92 0.91 0.91 0.92 0.92 0.92 0.93 0.92 0.91 0.92 0.91 0.91 0.90 0.89 
35 1.00 1.00 0.90 0.69 0.80 0.92 0.96 0.95 0.96 0.97 0.97 0.97 0.97 0.97 0.96 0.95 0.96 0.95 0.96 0.95 
40 1.00 1.00 0.88 0.66 0.86 0.93 0.95 0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.96 0.97 0.97 
45 1.00 1.00 0.92 0.72 0.89 0.94 0.96 0.94 0.97 0.97 0.98 0.97 0.97 0.98 0.98 0.97 0.98 0.98 0.98 0.98 
50 1.00 1.00 0.92 0.67 0.84 0.89 0.94 0.93 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 
55 0.86 0.94 0.89 0.67 0.85 0.91 0.95 0.94 0.97 0.98 0.97 0.97 0.97 0.98 0.98 0.97 0.98 0.98 0.98 0.98 
60 0.86 0.94 0.89 0.69 0.85 0.91 0.95 0.94 0.97 0.98 0.97 0.97 0.97 0.98 0.98 0.97 0.98 0.98 0.98 0.98 
65 0.86 0.94 0.89 0.69 0.86 0.91 0.95 0.94 0.97 0.98 0.97 0.97 0.97 0.98 0.98 0.97 0.98 0.98 0.98 0.98 
70 0.86 0.94 0.89 0.69 0.86 0.92 0.95 0.94 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 
75 0.86 0.95 0.85 0.71 0.85 0.92 0.95 0.94 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.98 0.98 0.98 0.98 
80 0.89 0.95 0.80 0.65 0.83 0.92 0.95 0.94 0.98 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.98 0.98 0.98 0.98 
85 0.90 0.95 0.83 0.70 0.85 0.91 0.95 0.94 0.97 0.98 0.97 0.97 0.97 0.98 0.98 0.97 0.98 0.98 0.98 0.98 
90 0.90 0.96 0.83 0.70 0.84 0.90 0.95 0.94 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.97 0.98 0.97 0.98 0.97 
95 0.89 0.94 0.82 0.70 0.83 0.90 0.95 0.94 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.97 0.98 0.97 0.98 0.98 

100 0.90 0.95 0.82 0.70 0.82 0.90 0.96 0.93 0.97 0.98 0.97 0.97 0.97 0.98 0.97 0.97 0.98 0.97 0.98 0.98 

Fig. 6. Early Recognition Result of Co-occurring Gesture Patterns

Fig. 4(a). We got about 100% accuracy when two people’s gesture had been
observed at least 15%. Due to limitations of space, we left out the detailed result
here, but we consider that we could get such good results because of the simple
co-occurrence rule between two people’s gesture patterns. In other words, the
system could narrow the recognition result easily with the help of co-occurrence
information.
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Fig. 7. Comparison between Individual and Co-

occurrence Recognition

Second, we examined the
case 2 in Fig. 4(b). The early
recognition results are shown in
Fig. 6. The vertical line shows
the complete ratio of observ-
ing gesture patterns of person
A and the horizontal line shows
the one of person B. Each cell
in the figure shows each recog-
nition result. The blank cell de-
notes that the system didn’t
output the recognition result
because the condition of early
recognition was not satisfied in Eq. 3. We gave each cell a color based on the
accuracy ratio. The red or yellow cell means a good result which exceeds 95%
accuracy. Most cells have a red-like or yellow-like color, which indicates higher
accuracy. For example, it was enough for the system to determine the recognition
result when the one person’s gesture patterns had been observed at least 25%.

To compare the early recognition accuracy between individual and
co-occurrence, we draw the accuracy curve as shown in Fig. 7. The bold red
curve is referred from the average accuracy in Fig. 5. In fact, though there are
two complete ratio axes in the case of co-occurring gesture patterns(i.e., person
A and person B), we marginalized with respect to one person’s complete ratio to
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represent in the same format with Fig. 5. We can see that the system achieved
gesture recognition much earlier than the baseline method. In particular, if one
person’s gesture had been observed at least 25%, the performance was very high
compared with the baseline method(see the bold blue line in Fig. 7).

5 Conclusion

We have proposed a new approach for early recognition of gesture patterns which
targets two people. When there is co-occurrence of gestures between two people,
the system can recognize the recognition result using its co-occurring informa-
tion. We have developed prototype of early recognition system using SOM and
the associative memory. Through experiments, we confirmed that our proposed
method performs well.

In a future work, we are going to use our proposed early recognition system
for actual man-machine interaction and investigate its effectiveness. Before that,
we will conduct further experiments; increasing the number of gesture classes,
the number of people and so on.
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A Dynamically Reconfigurable Platform for
Self-Organizing Neural Network Hardware

Hakaru Tamukoh and Masatoshi Sekine
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Abstract. In this paper, we propose a dynamically reconfigurable plat-

form for self-organizing neural network hardware. In the proposed

platform, a hardware unit can be handled as a hardware object in object-

oriented design. The hardware object is loaded into the FPGA’s virtual

hardware circuit space, and accelerates the calculation of self-organizing

neural networks. We design two types of the distance calculation, a

winner-take-all and a rough-winner-take-all virtual hardware circuit as

common parts of self-organizing neural networks. By combining them,

we realize four types of self-organizing neural network. Experimental

results show that the implemented self-organizing neural network hard-

ware achieves about 100 times faster than the software implementation.

Besides, the proposed platform can change its learning mode easily as

well as the software implementation. Therefore, the proposed platform

features both of the speed of hardware and the flexibility of software.

Keywords: Self-Organizing Map, Vector Quantization, hw/sw complex

system, FPGA, Digital Hardware Implementation.

1 Introduction

Self-Organizing Map (SOM) is widely used to various application areas such as
data analysis, classification and control tasks [1]. Besides, modified or advanced
algorithms of SOM also have been proposed such as Neural Gas (NG) [2], Self-
Organizing Relationship Network (SORN) [3] and so on.

A digital hardware implementation of self-organizing neural networks achieves
high-performance calculation, low-power consumption, and small area imple-
mentation, which are important properties to realize real-time applications and
embedded systems. Therefore, numerous special-purpose hardware architectures
have been proposed. Porrmann and Rückert et al., who are a pioneer of the
SOM hardware implementation, proposed a massively parallel architecture of
SOM and implemented into an Application Specified Integrated Circuit (ASIC).
Hikawa proposed SOM hardware in a pulse mode using a digital phase locked
loop to conserve the Field Programmable Gate Array (FPGA) resources [5].
Rovetta et al. proposed an efficient learning strategy of NG and its ASIC imple-
mentation in an analog mode [6]. We also proposed a FPGA implementation of
SOM [7] [8] and a parameter-less SOM with an adaptive learning rule [9], and
applied them to an image processing and a mobile robot controlling. However,

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 439–446, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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these implementations are realized into ASICs or specified FPGA boards. Thus,
a design-reuse or an applying the design to other applications is quite difficult.

In this paper, we propose a dynamically reconfigurable platform for self-
organizing neural network hardware. In the proposed platform, a hardware unit
can be handled as an object in object-oriented design. This hardware object can
be dynamically constructed, executed, and destructed from a user application
in software. The hardware object is loaded into the FPGA’s virtual hardware
circuit space, and accelerates the calculation of self-organizing neural networks.
This mechanism facilitates a rapid application prototyping, which allows the
design reuse and the combining existing hardware designs easily.

2 Self-Organizing Neural Networks

First, we introduce Kohonen’s SOM which is the basic algorithm for the other
self-organizing neural networks. The algorithm of SOM consists of the following
three calculation steps.

1. Distance calculation: An input vector x is compared with all the reference
vectors w i by following function.

di =‖ x − wi ‖, (1)

di is the distance between the input vector and the i-th reference vector. Eu-
clidean distance is usually used for the software implementation, and Manhattan
distance is often employed for the digital hardware implementation to conserve
the hardware resources.
2. Competition: A winner reference vector c is selected by winner-take-all
(WTA).

c = arg min
i

(di). (2)

3. Updating: The winner and its neighborhood reference vectors are updated by:

wnew
i = wold

i + hci · (x − wold
i ). (3)

hci is called as the neighborhood function, and the detailes is shown in the [1].

The various self-organizing neural networks have been proposed which is the
modified version of SOM. For instance, in order to enhance the vector quanti-
zation ability, NG [2] and rough WTA self-organizing neural network (RWTA
SONN) [10] have been proposed. In the algorithm of NG, the sorting and the
ranking function are used instead of the WTA and the neighborhood function.
Similarly, the algorithm of RWTA SONN employed rough WTA as the sub-
stitute of the ordinary WTA. Moreover, combining the fuzzy inference unit as
an output layer to the learned network, it can be used as an execution mode of
self-organizing relationship network [3] or radial basis function network (RBFN).

Table 1 summarizes the algorithm of self-organizing neural networks and
learning results shown in Fig.1. Among these algorithms, the distance calcula-
tion is used as the common component, i.e., SOM hardware’s distance calculation
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Table 1. Algorithm examples of self-organizing neural networks

Algorithm SOM NG RWTA SONN K-means

Distance calculation Euclidean / Manhattan

Competition WTA Sorting Rough WTA WTA

Updating manner Neighborhood Ranking Winner only Winner only

SOM NG RWTA SONN K-means

(1358.10) (1292.08) (1308.05) (1508.24)

Fig. 1. Learning results of self-organizing neural networks [10]. Parenthetic values are

the mean square error to evaluate the vector quantization ability. The squares and the

dots represent the data clusters and reference vectors, respectively. The lines between

reference vectors represents neighborhood in SOM. NG and RWTA SONN specialized

to the vector quantization ability while SOM can make the topological map.

unit can be reused to the other self-organizing neural networks. Currently, the
modified or advanced SOMs are continuously investigating. Therefore, the design
reuse is important to develop new self-organizing neural network hardware.

3 Dynamically Reconfigurable FPGA Platform

In order to realize a rapid-prototyping of a new self-organizing neural network
hardwareC we propose a hw/sw complex system based on a hardware object
model [11] and its platform FPGA board named “hwModule”. The abstract
model of hw/sw complex system is shown in Fig.2 (a). In this system, an object
processed by the Host Processor is termed “swObject”, an object processed by
the FPGA is termed “hwObject”, and a virtual hardware circuit in the FPGA
that processes a hwObject is termed “hwNet”.

The hw/sw complex system is composed of two essential units. The hardware
unit is constructed by the hwModule FPGA board which consists of a number of
FPGAs and a Local Memory SDRAMs. The hwNet is separated from peripheral
circuits through its corresponding I/F (Interface) circuits. It is also possible
to connect to external devices such as LAN and USB through GPIO (General
Purpose Input Output). By designing a hwNet that executes a very large scale
computing, we can develop a high-performance hw/sw complex system which
possesses both the speed of hardware and the flexibility of software. All of the
hardware unit’s components, excluding the hwNet space, are peripheral circuits
which are standardized for all hwModule FPGA board series. These peripheral
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Fig. 2. The hw/sw complex system. (a) A conceptual model of hw/sw complex system.

(b) A layers model from hwObject to hwModule Board.

Fig. 3. The hwModule FPGA board. Left: Photgraph of hwModuleVL. Right: Block

diagram of hwModule FPGA board.

circuits are provided in the system development kit to implement a new hardware
function easily.

The software unit is specialized for software processing, and is running on
the high-performance processor and the large-scaled main memory of the Host
PC. Since the hardware unit handling is abstracted in the software unit, the
software engineer accesses the hwNet through a hwObject. This achieves a tight
connection between the hardware and software units, and a high-performance
and flexible processing system.

The hierarchical diagram of the components supporting the hwObject’s oper-
ation is shown in Fig.2 (b). The user application calls the hwObject in the same
manner as it calls a swObject. The Object Manager includes an event-queue
and the management table of the objects. It controls multiple accesses from the
hwObjects to a hardware manager (hwManager). The hwNet Driver defines the
I/O of the hwNet, and is dynamically attached to the hwManager when the
hwObject is constructed in the user application. The hwManager and the hw-
Module Device Driver intermediates between a hwObject and the hwModule, in
such way, the details of the hardware are separated from the user application. In
particular, these two components translate the hwObject instruction to an I/O
access command. This command is then forwarded into the hwModule Device
Driver to be sent as physical signals to the corresponding hwNet via the PCI
Bus. Currently, the hwModule Device Driver is designed according to the Win-
dows Driver Model specifications and operates under Windows 2000/XP OS. By
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(a) (b)

Fig. 4. Block diagram of the self-organizing neural network hardware. (a) Top view.

C/S is control and status signals which are used for the communication between the

host PC and the controller. (b) Processing Element.

providing these various components as a System Development Kit, it is possible
to program the hwObject in the user application.

In order to realize the concept of hw/sw complex system, we have
developed hwModule FPGA board series shown in Fig.3. We have already devel-
oped practical hw/sw complex systems such as an image processing and a web
video streaming applications using this platform and hardware object model
[11] [12]. We employ hwModuleVL as a dynamically reconfigurable platform for
self-organizing neural network hardware in this paper.

4 Implementation of Self-Organizing Neural Network

Fig.4 (a) shows the block diagram of the developed hardware architecture which
consists of two essential units. PE Unit consists of 96 processing elements which
are executed in the massively parallel manner, and each PE calculates eqs. (1)
and (3). WTA Unit consists of a binary comparator tree which calculates eq. (2).
In this section, we introduce two types of PE Unit and two types of WTA Unit,
and four types of self-organizing neural networks are presented by combining
these units.

4.1 Distance Calculation Unit

Distance calculation unit calculates the distance d between the input vector x
and the reference vector w, and updates reference vector if the winner flag f = 1
is obtained. We have designed following two types of calculation unit.

Type 1: Manhattan type. This architecture widely used for the digital hard-
ware implementation of SOM because the required hardware resource is less
than Euclidean distance.

di =
∑

j

|xj − wij |. (4)

Type 2: Euclidean type. We employed the embedded multiplier of the FPGA
and the square root operation is not applied.

di =
∑

j

(xj − wij) × (xj − wij). (5)
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Both types of the distance calculation unit takes n clock cycle to calculate n-
dimensional vector’s distance. The proposed distance calculation unit is designed
as a parameterized verilog source code, i.e., the bit-width of vector’s element and
the vector’s dimension can be easily changed by the hardware designer. This idea
is similar to an automatic SOM VHDL code generation [13], which facilitates a
development of SOM hardware with various parameters.

4.2 WTA and Rough WTA Unit

WTA Unit selects the winner which has a minimum di. After WTA, the flag
f = 1 is assigned to only the winner. We employed a binary comparator tree for
the WTA Unit. It takes 7 clock cycles to select the winner when the number of
the input distance is 96. We have designed following two types of WTA unit.

Type1: Accurate type. This is an ordinary (normal) architecture which selects
accurate winner by eq.(2).

Type 2: Rough type. This is called as a rough comparison winner-take-all
(RWTA) [10] which selects winner by the following equation.

c = arg min
i

(di � r(t)). (6)

‘�’ means the logical right shift operation and r(t) represents a parameter of
the selection accuracy. The large r(t) causes the rough winner selection because
the shifted lower bits becomes the quantization error. To realize a good vector
quantization, r(t) should decrease with the learning iteration t.

r(t) = Da · T − t

T
, (7)

where, Da and T represent the number of the distance register bits and the total
number of the learning steps, respectively. This strategy leads a high quality
vector quantization as same as NG which shown in Fig.1.

4.3 Results and Discussion

We designed and synthesized four types of self-organizing neural networks using
velilog HDL and Xilinx tools. Memory Unit was designed based on a BRAM
(FPGA internal memory) and the neighborhood function hci was defined by a
look up table. We configured the input and reference vector which has 2,048
dimensions with 8 bits calculation accuracy. From the implementation results
shown in Table 2, all hardware can be implemented into the hwModuleVL and
operate in 66MHz. As the result, a theoretical maximum performance of the
designed hardware achieved 6,305 MCUPS (Mega Connection Update Per Sec-
ond). On the other hand, with a software implementation on a state-of-the-art
personal computer (Intel Core2Duo, 3.16GHz, Single thread programming) only
a performance of 62 MCUPS can be achieved.
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Table 2. Implementation results of four networks using xc3s4000 User FPGA

No. Distance WTA Slice BRAM MULT. Freq. (MHz)

1. Manhattan Accurate 5,442 (19.7 %) 96 (100 %) 0 ( 0 %) 74.43

2. Euclidean Accurate 6,665 (24.1 %) 96 (100 %) 96 (100 %) 74.43

3. Manhattan Rough 8,995 (32.5 %) 96 (100 %) 0 ( 0 %) 69.26

4. Euclidean Rough 12,681 (46.2 %) 96 (100 %) 96 (100 %) 69.26

Table 3. Comparison of the proposed platform with the other platforms

Reference Proposed [14] [9] [6]

Device XC3S4000 XC2V10000 XC3S1600E ASIC 0.8μm

Performance (MCUPS) 6,305 17,360 632 NA

Learning mode SOM, VQ SOM, RBFN, etc. parameter-less SOM NG

Reconfigurability Yes Yes No No

From the view point of application development which uses self-organizing
neural networks, the proposed platform allows several learning modes. For in-
stance, a data mining application requires topological map, thus, no.2 can be
selected to a new implementation. On the other hand, an image compression ap-
plication desires a high quality vector quantization and it not require the topo-
logical map. In such situation, the application designer can select no.4 hardware.
Moreover, if the pre- or post-processing requires much FPGA area, the designer
can select no.1 or no.3 to conserve hardware resources.

Table 3 summerizes the comparison result of the proposed platform. The
almost all of the platforms such as [9] and [6] does not have a reconfigurability.
On the other hand, both of the proposed and [14] have the reconfigurability
which can operate several learning mode. The performance difference between
the proposed and [14] platform was caused by the employed FPGA. The platform
[14] used Xilinx Virtex series which is a high-end FPGA. In our platform, we
employed Xilinx Spartan series, which is a low-end FPGA, to consider the system
cost. Currently, to overcome the system performance, we are developing a new
platform which consists of 128 XC3S4000 FPGAs. Further discussion of the
system performance will be a future task.

5 Conclusions

In this paper, we propose a dynamically recofigurable platform for the self-
organizing neural network hardware, which features both of the speed of
hardware and the flexibility of software. Currently, the proposed platform can
operate four learning mode. Building a useful hardware object library of the self-
organizing neural network and a development of practical applications would be
future tasks.
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Inversion of Many-to-one Mappings Using  
Self-Organising Maps 

Anne O. Mus 
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Abstract. Bidirectionally trained neural networks would be very useful in many 
circumstances. Often, we have data available for a prediction problem, but 
prediction of properties for unknown or new situations is only part of the story. 
In many cases we know the effect we wish to achieve on the output, but what 
we do not know is how to modify the inputs to achieve this goal. A basic 
problem in this area is the inversion of many to one mappings. Our work is 
based on the popular backpropagation neural network to predict the GDP of 
developing countries. These networks are integrated with a Self-Organising 
Map to allow the inversion of many to one mappings.  

Keywords: bidirectional training, backpropagation neural network, SOM. 

1   Bidirectional Backprogration 

Most neural networks can be applied to real world systems to perform classification, 
pattern recognition or prediction tasks on the basis of input data. Given the output 
data, however, these neural network models are not able to produce any plausible 
input data unless another network is trained specifically for that task. This is done 
easily by humans. For example, we can retrieve an image for an elephant from the 
word elephant, and when we see an elephant we will find the corresponding word.  

Networks which can produce plausible input values for a given output value have 
many applications. Bidirectional associative memories [1, 2] and the bidirectional 
version of counterpropagation networks [3] have been developed to learn 
bidirectional mappings. The problem with these approaches is their low capacity, low 
efficiency and multiple learning. By multiple learning we mean the different learning 
methods which are used in the first and second layer of bidirectional version of 
counterpropagation networks.  

1.1   Normal Backpropagation Training 

This network has no backward, lateral or layer-skipping connections. All processing 
neurons have a bias implemented as an extra input always on. Following the usual 
convention, input neurons are drawn, however these are not processing neurons, 
merely switch boxes distributing the single input xi to the hidden neurons.  
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1.2   Reverse Direction Training 

We have applied the error back-propagation technique [4] in both reverse and forward 
directions to adjust the weight matrix of the network. In our experiments we did not 
need to use more hidden units in training a bidirectional network in comparison to the 
case of training a network in the traditional unidirectional way [5]. 

When trained from left to right in Figure 1, the weights on the connections between 
layers are used normally, along with biases. Note that here input neurons are 
processing neurons when used in the reverse direction.  

 
Inputs

Outputs

Hidden

x1

x
N

y1

y
M

Bias

Bias

 

Fig. 1. Bidirectional network 

 
When training in the reverse direction, different biases are used as shown. This 

would be the case for multiple hidden layers also. Due to a flatter search space, 
sometimes a higher number of epochs may be necessary for the network to converge 
in comparison to traditional unidirectional networks.  

The remaining challenge is the case where the function relating inputs to outputs is 
not invertible, or there is a relation which is many-to-one between inputs and outputs. 

2   Data 

We use two data sets to demonstrate our techniques. These are a small synthetic data 
set, and a complex real world data set. These are described below. 

2.1   dh46  

This data set consists of 16 patterns, being all combinations of 4 binary elements  
[6, 7]. The single output is on when 3 out of 4 binary elements are on. This data set is 
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of the class of data sets such as xor which are beyond the power of single perceptrons, 
and require a hidden layer trained by algorithms such as the back-propagation training 
algorithm described in §1.2. At the same time, the data set is complex enough that in a 
4-6-1 back-propagation network, it shows a range of behaviour from immediate 
learning, learning after some time with little visible improvement (training plateau), 
and never learning (stuck on a plateau / local minimum). 

2.2   gdp 

The gdp data set is from the United Nations Conference on Trade and Development 
selected economic and social indicators of developing countries [8]. The data set 
includes the following 14 indicators: % population urban; size of total labour force; % 
of labour force in agriculture; % infant mortality; % public health expenditure; 
population per doctor; % access to water; illiteracy %; % public education 
expenditure; food production per capita; number of phones per capita; total 
population; average growth of population; density of population. The task is of course 
to predict the GDP of each country. 

3   Interactive Competition Model 

After training a back-propagation network, using as the input to the network the 
economic and social factors for a particular developing country, the network can quite 
accurately predict the GDP (given the quality of the data due to the difficulty of 
collection). But how is the network’s conclusion useful? 

In modelling the relationship between GDP and the selected socio-economic 
indicators, the real objective is not to predict GDP accurately as it can be measured 
directly, but to answer questions relating to change such as “If we wanted a higher 
GDP, how should (for example) general access to safe drinking water change,” or 
(more likely) “given the economic and social factors we are committed to politically, 
what factors can we change to achieve an effect on GDP or health or ...” etc. 

A predictive model such as the trained feed-forward network can be forced to this 
end by perturbing the input values into the network and examining the results. This is 
very inefficient, given the large number of inputs even in this relatively simple case. 

The causal index of each input to the feed-forward network to the GDP output 
value provides a significance measure of that input’s relationship to the output, and 
can be used as a weight in a simple interactive neural network model. That is, the rate 
of change of the output when the input is in the vicinity of its actual value in a pattern 
represents the significance in the context of the actual example. 

3.1   Iac   Model  

The interactive activation and competition (iac) model consists of a collection of 
processing units organised into some number of competitive pools. There are 
excitatory connections among units in different pools and inhibitory connections 
between units within the same pool. The excitatory connections between pools are 
generally bi-directional, thereby making the processing interactive in the sense that 
processing in each pool both influences and is influenced by processing in other 



450 A.O. Mus 

pools. Within a pool, the inhibitory connections run from each unit in the pool to 
every other unit in the pool implementing a kind of competition among the units such 
that the unit or units in the pool that receive the strongest activation tend to drive 
down the activation of the other units [9].  

The network is operated by turning on a number of units and allowing the network 
to cycle until state has been reached. It is also possible to clamp some of the unit on to 
serve as a constant stimulus to the network. 

 
wat1

wat2

gdp1

gdp2gdp0

ill1

ill2ill0

urb1

urb2urb0

Access to drinking water

Percentage Urban Dwelling

Iliterarcy Rate

GDP

wat0

 

Fig. 2. Simplified iac diagram showing pools 

 
A simplified diagram of an iac network is shown in Figure 2, with three sample 

input pools. Values within pools are sub-ranges of the input data to the back-
propagation net [10]. Weights between pools are bi-directional, set to the sum of 
causal indexes for each input / output sub-range pair. Note that not all sub ranges need 
to be indexed. 

3.2   Iac Results  

Testing the interactive network in its response to change, for an example we clamp 
the gdp6 unit on, being two GDP sub-ranges higher than the actual GDP. All of the 
input values are clamped on except for the % public health expenditure, and % public 
education expenditure. After the stable state of the network is reached, the values of 
the variables which were not clamped provide the solution. 

Validation of the solution was done by using the trained feed-forward network, by 
constructing a new input pattern consisting of the old values of the clamped variables, 
and the resulting values of the unclamped variables. The test is whether the value of 
GDP predicted by the feed-forward network based on the new pattern is similar to the 
value the GDP was clamped to in the interactive network. In the case of the 
prediction, the result of the new pattern is a GDP value of 0.47 which is an increase in 
the GDP of about 2% which is not insignificant. This confirms both the increase we 
have tried to produce, and at the same time the difficulty of increasing the GDP with 
only the flexibility allowed by the few variables left unclamped. This suggests there 
are one or more countries in the list which have similar relationships between their 
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public health and education expenditures and GDP. There is, however, a component 
of this approach which is still too simplistic, that of clamping values. The above 
strategy also assumes that, for example, the illiteracy rate will not be affected by the 
reduced public education expenditure, since the value was clamped. 

4   Hybrid SOM Model 

The key notion in solving the inversion of many to one (many to many) mappings is 
to recognise the different categories on input which may give rise to a particular 
output. For this purpose we will use a self-organising map, described below. 

4.1   The Hybrid Model  

The graphical description of the model is below, in Figure 3, with only a few 
connections shown for clarity. The model consists of a standard back-propagation 
trained feedforward neural network, a single dimension self-organising map (SOM), 
the output of which is used to create the training set for a single layer back-
propagation (or perceptron) network. This latter network uses (selected instances of) 
the activation values of the first network as its training input and produces the 
appropriate original input as its output. For use on unknown patterns, the output value 
is input to the SOM, mapped to the relevant SOM categories, and the appropriate 
SOM exemplars are used as inputs to the single layer to produce outputs. 

 
x1 xN

y1 yM

SOM

x1 xN 

Fig. 3. The hybrid model during training 

4.2   Input into SOM  

The activation values produced by each hidden neuron in the original back-
propagation network are used as input for the SOM.  

These activation values were used to create the neuron behaviour graphs, and used 
to determine when to stop training the back-propagation network. In this case, the 
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activation values from every tenth epoch were used. The SOM was trained using the 
algorithm described earlier, with an initial gain term of 0.9, initial neighbourhood of 
30%, and 16 SOM neurons for both data sets. The SOM results for the dh46 and gdp 
data sets are described below. 

 
SOM results -  dh46.  For each of the 16 patterns (labelled p00 to p15), the second 
row shows the index of the nearest SOM unit (ie its category). The third row shows 
the 4 patterns which satisfy the ‘3 out of 4’ condition. 

Table 1. Results on netork running the dh46 dataset 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 
1 1 2 5 3 4 4  8  1  6  6 13  4 11  9 15 

      1   1  1  1  

 
The four sets of patterns which have a 1 in the desired output in the original 

training set have been identified by a contiguous subset of the SOM indices. There is 
substantial redundancy in the indices for many of the remaining patterns. Note that 
the SOM did not have direct access to the original training set, only to the activations 
of neurons being trained on that data set. Thus, for example, the activations of the 
hidden neurons every ten epochs for a total of 2000 epochs on pattern p07 had clearly 
contained some indication of the significance of this pattern and that it had some 
relationship to the patterns p11, p13, and p14. It is clear that p15 is also somewhat 
related, being the only pattern with 4 out of 4 being on, and hence being somewhat 
more difficult to distinguish from the correct patterns. 

For comparison, the SOM was also run on the training pattern set. Clearly, there is 
only one set, which is repeated, to ensure the same total number of presentations of 
inputs to the SOM have taken place. The results were:  

Table 2. Results on dh46 dataset statically 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 
12  7 13  8 15  6 14  1 11 10 12  9 16  5 15  3 

      1  1  1  1  

 
There is no pattern to the 4 four on patterns, clearly the SOM on hidden neuron 

activations was discovering information which it is not able to discover directly from 
the original training set. This validates our use of the hidden neuron activations as the 
input to the SOM. 

 

SOM results -  gdp.  There are 143 patterns in the original gdp training set, so we can 
not readily show the pattern in the same way. Also, the target output is not symbolic 
and as easy to interpret as the dh46 data set. 

Some qualitative comparisons are possible. The developing countries most familiar 
to many in the West are the richest developing country. A test of the success of our 
technique would be whether these countries are sorted together. 
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The SOM grouped the following countries in category 16: Brunei, Qatar, and 
United Arab Emirates; and in category 4: Chile, Colombia, Fiji, Hong Kong, Malta, 
Mauritius, Panama, Saudi Arabia, Singapore, Uruguay, and Venezuela. While these 
are surprises in the latter group, the three richest are grouped together, and clearly 
Hong Kong and Singapore we would have expected to end up in the same group. 

Again we compare with the result of running the SOM on the original data set. The 
results are less good. The three richest countries are in three different groups. The 
second grouping identified above partially survives, with 3 different countries. The 
changes would be hard to justify, for example Saudi Arabia is now clustered with 
Ghana. Thus out method is significantly better than static analysis of the data set [11]. 

5   Conclusion 

We have introduced our technique for training a back-propagation network in the 
reverse direction by the use of a Self-Organising Map. This hybrid structure 
bidirectional neural network solves the previously identified problems of inverting 
many to one or many to many mappings. The steps in the process have been 
individually justified. The ability of such networks to provide suggestions for 
modification of input parameters to achieve the desired results will be useful in a 
number of application areas. 
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Abstract. The self-organizing mixture models (SOMMs) were proposed

as an expectation-maximization (EM) algorithm that yields topology

preserving maps of data based on probabilistic mixture models. Com-

pared to self-organizing maps, the SOMM algorithm has a clear inter-

pretation: it maximizes the sum of data log likelihood and a penalty term

that enforces self-organization. The object of this paper is to extend the

SOMM algorithm to deal with multivariate time series. The standard

SOMM algorithm assumes that the data are independent and identically

distributed samples. However, the i.i.d. assumption is clearly inappropri-

ate for time series. In this paper we propose the extension of the SOMM

algorithm for multivariate time series, which we call self-organizing hid-

den Markov models (SOHMMs), by assuming that the time series is

generated by hidden Markov models (HMMs).

1 Introduction

In the field of time series analysis [1], [2], it is often necessary to deal with
time series whose statistical properties are evolving over time. For example, the
statistical series, such as average temperature and precipitation vary cyclically
according to four seasons. In this paper, we propose a method for visualizing
states of such time series.

In recent years, self-organizing mixture models (SOMMs) [3], [4] have been
proposed as a multidimensional data visualization technique. The SOMM algo-
rithm yields the topology preserving maps by applying a modified EM algorithm
to mixture models [5]. The SOMM algorithm has the following advantages over
self-organizing maps [6]. First, since the SOMM algorithm is based on the EM
algorithm, it can be applied to any mixture models and can handle missing data
in a natural way. Second, the objective function that the algorithm optimizes
has a clear interpretation: it sums the data log likelihood and a penalty term
that enforces the topology preservation.

The object of this paper is to extend the SOMM algorithm to deal with
multivariate time series. The standard SOMM algorithm treats the data as in-
dependent and identically distributed samples. However, the i.i.d. assumption is
clearly inappropriate for time series. In this paper we propose the extension of
the SOMM algorithm for multivariate time series, which we call self-organizing
hidden Markov models (SOHMMs), by assuming that the time series is generated
by hidden Markov models (HMMs) [7].
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2 EM Algorithm

We begin by reviewing the EM algorithm as the basis for the proposed algo-
rithm. In this paper, we denote the set of all model parameters by θ, all of
the observed variables by X = (x′

1, · · · , x′
T )′, and all of the latent variables by

Z = (z1, · · · , zT )′. We call (X, Z) the complete data set. The object of the EM
algorithm is to find the parameters θ that maximize the log likelihood defined
as

L(θ) = ln p(X; θ) = ln
∑
Z

p(X, Z; θ).

To find the parameters, the EM algorithm introduces a distribution q(Z) defined
over the latent variables and maximizes a lower bound of the log likelihood
instead of the log likelihood itself. Considering the non-negativity of the KL
divergence, we can obtain the lower bound F(q, θ) as follows:

F(q, θ) = L(θ) − KL(q‖p) (1)
= Eq [ln p(X, Z; θ)] + H(q) (2)

where KL(q‖p) is the KL divergence between the distribution q(Z) and the
posterior distribution p(Z|X; θ) and H(q) is the entropy of the distribution
q(Z).

KL(q‖p) = Eq[ln
q(Z)

p(Z|X; θ)
]

H(q) = −Eq[ln q(Z)]

The equality of (2) is due to p(X; θ) = p(X, Z; θ)/p(Z|X; θ).
The EM algorithm finds the maximum likelihood estimate by maximizing the

lower bound F(q, θ). In order to maximize the lower bound, the EM algorithm
can be started by initializing the parameters θ to random values, and then iter-
ating E-step and M-step. Suppose that the parameters obtainded in the previous
M-step are θτ−1. In the E-step, the lower bound F(q, θτ−1) is maximized with
respect to q(Z) while holding θτ−1 fixed. Because the log likelihood L(θ) does
not depend on q(Z), the largest F(q, θτ−1) occurs when the KL divergence is
equal to 0, that is, the distribution q(Z) can be found by

E-step : qτ = argmax
q

F(q, θτ−1) = arg min
q

KL(q‖p(Z|X; θτ−1))

= P (Z|X; θτ−1).

In this case, the lower bound F(qτ , θτ−1) is equal to the log likelihood L(θτ−1)
since the KL divergence is equal to 0.

Suppose that the distribution obtained in the previous E-step is qτ . In the
M-step, the lower bound F(qτ , θ) is maximized with respect to the parameters
θ while holding qτ fixed. Because the entropy H(q) does not depend on θ, the
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largest F(qτ , θ) can be found by maximizing the expectation of the log likelihood
of the complete data.

M-step : θτ = argmax
θ

F(qτ , θ) = arg max
θ

Eqτ [ln p(X, Z; θ)]

In this case, the M-step increases the lower bound F(qτ , θ) and increases the
corresponding log likelihood L(θ) since the the lower bound F(qτ , θτ−1) is set
to equal the log likelihood L(θτ−1) in the E-step.

3 Self-Organizing Hidden Markov Models

3.1 Hidden Markov Models

In section 3.1 we briefly review HMMs, and then, in section 3.2 we will propose
an extension of the SOMM algorithm that yields topology preserving maps of
multivariate time series based on the HMMs. A HMM consists of a hidden state
sequence Z = (z1, · · · , zT )′ and a corresponding observation sequence X =
(x1, · · · , xT )′. Each state zt is a discrete random variable with possible values
1, 2, · · · , M . Transitions between the states are governed by a first order Markov
chain parameterized by the transition probabilities pij = P{zt = j|zt−1 = i},
while the initial state probabilities are ρi = P{z1 = i}. Of course, the transition
probabilities and initial state probabilities must sum to one:

M∑
j=1

pij = 1, i = 1, · · · , M, (3)

M∑
i=1

ρi = 1. (4)

On the other hand, each observation xt is generated by a distribution corre-
sponding to the state zt. For example, in the SOHMM algorithm, we choose the
distribution of xt to be a radially-symmetric Gaussian centered on μi having
variance β−1 so that

p(xt|zt = i; θi) =
(

β

2π

)d/2

exp
(
−β

2
‖xt − μi‖2

)
where d is the dimension of the observation vector xt and θ is the adaptive
vector composed of the μi, β, pij , and ρi.

3.2 Estimating HMM Parameters Using the Constrained EM
Algorithm

In this section, we propose the SOHMM that visualizes states of multivariate
time series. The SOHMM algorithm assumes that a time series is generated by a
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HMM, that is, the value of a time series at time t, xt, is generated according to
the normal distribution corresponding to the state zt and the state transitions
are governed by a first order Markov chains. In order to visualize the states, we
prepare a regular grid of M points g1, · · · , gM in visualization space. In addition,
calculating the probability p(zt = i|X; θ), we can visualize the state zt by the
corresponding point gzt

in the visualization space.
To yield the topology preserving maps, the SOHMM algorithm estimates the

HMM parameters by the constrained EM algorithm that uses a constrained
distribution q̃(Z; W ) instead of the distribution q(Z) in the EM algorithm.
By constraining the distribution q(Z), we can enforce a topological ordering of
the states in the sense that if the corresponding points gi are close together
the probabilities p(zt = i|zt−1, X; θ) are also close together. The constrained
distribution q̃(Z; W ) is defined by using the normalized neighborhood function
of Kohonen’s SOM as follows:

q̃(Z; W ) = q̃1(z1; w1)
T∏

t=2

q̃t,t−1(zt|zt−1; wt),

q̃1(z1 = i1; w1) =
exp(−λ‖gi1 − gw1

‖2)
M∑

j1=1

exp(−λ‖gj1 − gw1
‖2)

,

q̃t,t−1(zt = it|zt−1 = it−1; wt) =
exp(−λ‖git

− gwt,it−1
‖2)

M∑
jt=1

exp(−λ‖gjt
− gwt,it−1

‖2)

where w1 and wt,i are discrete parameters with possible value 1, · · · , M , wt =
(wt,1, · · · , wt,M )′, W = (w1, w

′
2, · · · , w′

T )′ and λ controls the width of the neigh-
borhood function. The q̃t,t−1(zt|zt−1; wt) is a distribution which decreases as the
distance between the point gzt

and gwt,zt−1
increases, and the q̃1(z1; w1) is also

a distribution which decreases as the distance increases.
The SOHMM algorithm estimates the parameters by maximizing the lower

bound F(q, θ) while constraining the q(Z) to be the distribution q̃(Z; W ).
Specifically, the SOHMM algorithm estimates the parameters θ by iterating
the following E-step and M-step:

E-step : W τ = arg max
W∈Q

F(q̃, θτ−1)

= arg min
W∈Q

KL(q̃(Z; W )‖p(Z|X; θτ−1)), (5)

M-step : θτ = argmax
θ

F(q̃τ , θ) = arg max
θ

Eq̃(Z;W τ ) [ln p(X, Z; θ)] (6)

where Q = {1, · · · , M}M(T−1)+1 and q̃τ = q̃(Z; W τ ).
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By maximizing the lower bound of the log likelihood, we can fit the HMM
parameters to the distribution of the time series. Further, according to (1), the
SOHMM algorithm can be interpreted as the maximum penalized likelihood
estimation in which the penalty term is −KL(q̃(Z; W )‖p(Z|X; θ)). The penalty
term can be expanded as the average of the KL divergences at each time t:

KL(q̃(Z; W )‖p(Z|X; θ)) = KL(q̃1(z1; w1)‖p(z1|X; θ))

+
T∑

t=2

M∑
it−1=1

q̃t−1(it−1; W t)KL(q̃t,t−1(zt|it−1; wt)‖p(zt|it−1, X; θ)),

q̃t(zt = it; W t) =
M∑

i1=1

· · ·
M∑

it−1=1

q̃1(i1; w1)
t∏

u=2

q̃u,u−1(iu|iu−1; wu)

=
M∑

it−1=1

qt−1(it−1; W t−1)qt,t−1(it|it−1; wt)

where W t = (w1, w
′
2, · · · , w′

t)
′. The objective function F(q̃, θ) prefers the q̃ for

which the penalty term are the largest, i.e. the q̃t,t−1 for which the distribution
p(zt|zt−1 = it−1, X; θ) is most similar to the normalized neighborhood function.
From this reason, we can enforce a topological ordering of the states in the
sense that if the corresponding points gi are close together the probabilities
p(zt = i|zt−1, X; θ) are also close together. And from the same reason, we can
enforce that the probabilities p(z1 = i|X; θ) are also close together.

3.3 E-step

In the E-step we estimates the parameters W by minimizing the KL divergence
in (5). However, there are MM(T−1)+1 numbers of combinations of the parame-
ters W and it is therefore difficult to find the optimal parameters from all the
combinations. In this section, we propose the method for finding the optimal
parameters W with less computational time.

First, we rewrite the KL divergence in (5) as the following recursive equations:

KL(q̃(Z; W )‖p(Z|X; θτ−1)) = r1(w1, w2, · · · , wT ),

r1(w1, w2, · · · , wT ) = KL(q̃1(z1; w1)‖p(z1|X; θτ−1))

+
M∑

i1=1

q̃1(i1; w1)r2(i1; w2, · · · , wT ),

rt(it−1; wt, · · · , wT ) = KL(q̃t,t−1(zt|it−1; wt)‖p(zt|it−1, X; θτ−1))

+
M∑

it=1

q̃t,t−1(it|it−1; wt)rt+1(it; wt+1, · · · , wT ),
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rT (iT−1; wT ) = KL(q̃T,T−1(zT |iT−1; wT )‖p(zT |iT−1, X; θτ−1)).

Suppose that the parameters that minimize the function rt(it−1; wt, · · · , wT ) for
all it−1 are wτ

t , · · · , wτ
T . Since the probabilities q̃t,t−1(zt = it|zt−1 = it−1; wt)

are nonnegative, the optimal parameters wτ
t+1, · · · , wτ

T except for wτ
t are equal

to the parameters that minimize the function rt+1(it; wt+1, · · · , wT ) for all it.
Hence, the optimal parameters wτ

t , · · · , wτ
T can be found by finding the parame-

ters that minimize the function rt+1(it; wt+1, · · · , wT ) for all it, and then finding
the parameters wτ

t that minimize the function rt(it−1; wt, w
τ
t+1, · · · , wτ

T ) for all
it−1. In the E-step, the optimal parameters W τ can be found by sequentially
optimizing the parameters wτ

t from t = T to t = 1, that is, by sequentially
iterating (7)C(8) and (9) from t = T to t = 1.

E-step : wτ
1 = arg min

w1∈{1,··· ,M}
r1(w1, w

τ
2 , · · · , wτ

T ) (7)

wτ
t,it−1

= arg min
wt,it−1∈{1,··· ,M}

rt(it−1; wt, w
τ
t+1, · · · , wτ

T ) (8)

wτ
T,iT−1

= arg min
wT,iT−1∈{1,··· ,M}

rT (iT−1; wT ) (9)

3.4 M-step

In the M-step, we update the parameters θ by maximizing the expected log
likelihood of the complete data in (6). The expected log likelihood of the complete
data can be written as

Eq̃(Z;W τ ) [ln p(X, Z|θ)] =
M∑

i1=1

· · ·
M∑

iT =1

q̃(z1 = i1, · · · , zT = iT ; W τ )

×
{

ln p(z1 = i1; θ)+
T∑

t=1

ln p(xt|zt = it; θ)+
T∑

t=2

ln p(zt = it|zt−1 = it−1; θ)
}

.

According to the Lagrange multiplier method, we can find the optimal parame-
ters subject to the constraints in (3) and (4) as follows:

ρτ
i =

q̃1(i; wτ
1 )

M∑
j=1

q̃1(j; wτ
1 )

, (10)

pτ
ij =

T∑
t=2

q̃t−1(i; W τ
t−1)q̃t,t−1(j|i; wτ

t )

T∑
t=2

q̃t−1(i; W τ
t−1)

, (11)
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μτ
i =

{
T∑

t=1

q̃t(i; W τ
t )

}−1 T∑
t=1

q̃t(i; W τ
t )xt, (12)

βτ =
dT

T∑
t=1

M∑
i=1

q̃t(i; W τ
t )‖xt − μτ−1

i ‖2

. (13)

In the M-step, we update the parameters θ by (10)C (11)C (12) and (13).

3.5 State Visualization

In order to visualize state and state transitions, we use the probability p(zt =
i|X; θ) computed in the Baum-Welch algortihm. The visualization is achieved
by using the mean of the points gi in visualization space:

ḡt =
M∑
i=1

p(zt = i|X; θ)gi.

4 Experimental Results

In this experiment, we used the data collected at the Tokyo meteorological sta-
tion in Japan during a period of 713 months from January 1951 to May 2010.
The meteorological data is issued by the Meteorological Agency of Japan, which
contains monthly mean temperature, precipitation, relative humidity, sea level
air pressure, station level pressure, and vapor pressure. For comparison we also
test the performance of SOMM. The SOMM and SOHMM models consist of a
8 × 8 grid of nodes in visualization space. The dimension of the visualization
space is fixed to 2 and the width of neighborhood function is λ = 0.3.

Fig. 1 shows the visualization of state zt using ḡt. The SOHMM exhibits
better separation of four seasons than the SOMM model. This is due to the fact
that, in the representation of the SOHMM model, the four clusters of seasons
are clustered. On the contrary, in the representation of the SOMM model, the
four clusters of seasons are more diffuse than those of the SOHMM models and
particularly the spring and autumn clusters have more overlap.

5 Conclusions

We have proposed an extension of the SOMM for multivariate time series by
assuming that the time series is generated by a HMM. Using this algorithm, we
can visualize the state of the multivariate time series. Experimental result shows
that the proposed algorithm provides better visualization of meteorological data
than the conventional SOMM algorithm.
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Fig. 1. (Left): States of meteorological data are visualized using SOHMM. (Right):

Visualization using SOMM.
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Abstract. Mild cognitive impairment (MCI) is considered as a transitional stage 
between normal aging and dementia. MCI has a high risk to convert into 
Alzheimer’s disease (AD). In the related research, the volumetric analysis of 
hippocampus is the most extensive study. However, the segmentation and 
identification of the hippocampus are highly complicated and time-consuming. 
Therefore, we designed a MRI-based classification framework to distinguish 
the patients of MCI and AD from normal individuals. First, volumetric features 
and shape features were extracted from MRI data. Afterward, Principle 
component analysis (PCA) was utilized to decrease the dimensions of feature 
space. Finally, a Self-organizing map classifier was trained for patient 
classification. By combining the volumetric features and shape features, the 
classification accuracy is reached to 86.76%, 66.67%, and 46.67% in AD, 
amnestic MCI (aMCI), and dysexecutive MCI (dMCI), respectively. In 
addition, with the help of PCA process, the classification result is improved to 
93.63%, 73.33%, and 53.33% in AD, aMCI and dMCI, respectively. 

Keywords: Alzheimer’s disease, Mild cognitive impairment, Magnetic resonance 
imaging, Shape descriptors, Self-organizing map, Principle component analysis. 

1   Introduction 

Mild cognitive impairment (MCI) is considered as a transitional stage between normal 
aging and dementia [1]. It can be divided into two categories: amnestic MCI (aMCI) 
and dysexecutive MCI (dMCI). The majority of MCI patients will develop 
Alzheimer’s disease (AD) [2]. Recent reports in the treatment or prevention of AD 
leads to a growing concerns in the early diagnosis. A thorough understanding of the 
conversion process is, therefore, of clinical interest and importance. 

Magnetic resonance imaging (MRI) is a very important tool in diagnosing MCI and 
AD. MRI demonstrats that volumetric atrophy appeared in the early stages of MCI 
and AD [3]. The image-based volumetric analysis of hippocampus draws a lot of 
attention in AD-related research in the past decade [4]. In addition, Pruessner et al. [5] 
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revealed that the medial temporal lobe structures, especially the entorhinal cortex and 
the hippocampus, have high relationship with AD. 

However, the segmentation and identification of hippocampus are usually sensitive 
to the subjective opinion of the operator and also time-consuming. On the other hand, 
the enlargement of ventricles is also a significant characteristic of AD due to neuronal 
loss [6]. Ventricles are filled with cerebro-spinal fluid (CSF) surrounded by gray 
matter (GM) and white matter (WM). The coverage of GM and WM structures are 
often affected by dementia diseases. As a result, measuring the ventricular 
enlargement, hemispheric atrophy rate reveals significant variation between normal 
individuals and the subjects with MCI and AD [4]. 

In this study, we have designed a MRI-based classification framework to 
distinguish the patients of MCI and AD from normal individuals. Section 2 explains 
the proposed framework comprising system flowchart and the shape features selected. 
Statistical analysis and experimental results are revealed in Section 3. Finally, 
conclusions are included in Section 4. 

2   Flow Chart and Feature Extraction 

Figure 1 illustrates the flowchart of the proposed system. First, each individual’s brain 
MRI is normalized to a T1-weighted MRI template for a spatially coherent purpose. 
Followed by a segmentation procedure, brain tissues are separated into GM, WM, 
CSF and cerebral ventricle. Volume-related and shape-related features are utilized for 
further classification. After extracting these features from a training data set, Mann-
Whitney U test is adopted to filter out the features which are with low discriminative 
power. Afterwards, principle component analysis (PCA) is applied to reduce the 
dimensions of feature space and then a self-organized map (SOM) is adopted to 
classify testing subjects into four categories comprising normal individuals, dMCI, 
aMCI, and AD patients.  Details are explained in the following sub-chapters. 

 

 

Fig. 1. Flowchart of the proposed image-aided diagnosis system 
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2.1   Spatial Normalization of MRI Data 

Spatial normalization is a procedure to register a MRI data set to a standard 
coordinate system [7]. Therefore, each voxel is thus comparable with the other 
registered MRI or a reference template. The normalization herein was performed by 
using a 12-parameter affine transform and a Bayesian framework to a T1-weighted 
MRI template, provided by ICBM, NIH P-20 project [8]. 

2.2   Volume Features 

The volumes of brain tissues such as GM, WM and CSF indicate important 
information, especially in brain degeneration diseases [9]. A clustering-based 
segmentation algorithm provided by SPM8 [10] is adopted to extract GM, WM and 
CSF probability maps from the original MRI data. The value of each voxel in the 
corresponding probability map indicates the posterior of the voxel belonging to the 
tissue by giving its gray intensity. As a result, we can calculate the volumes of GM, 
WM, CSF and the whole brain by the following equations:  

∑
∈∀

>≈
Ii

gray ifCP )5.0))(|((volumeGM
 

(1) 

∑
∈∀

>≈
Ii

white ifCP )5.0))(|((volumeWM
 

(2) 

∑
∈∀

>≈
Ii

CSF ifCP )5.0))(|((volumeCSF
 

(3) 

∑
∈∀

∨ >≈
Ii

WMGM ifCP )5.0))(|((volumeWhole
 

(4) 

where i is any pixel of the MRI data and f(i) stands for the gray level of i. 
Binary ventricle volume data, M(x, y, z), are extracted from MR images using a 

region growing algorithm with a threshold, which was estimated through a double 
threshold algorithm. After thresholding, the binary ventricle regions are obtained by 
using fill, erosion and dilation operations. The edges of the binary images are detected 
by Sobel operation on a slice-by-slice manner. The segmented region is then 
represented as a binary mask image M, where 1 stands for the ventricle pixel and 0 
stands for the non-ventricle pixel. Therefore, Eq. (5) is used to measure the cerebral 
ventricle, as shown in Fig. 2 (a) and (b). 

∑
∈∀

=≈
Mi

Ventricle ifCP )1))(|((volumeVentricle
 

(5) 

where i is any pixel of the mask data , M is mask image and f(i) stands for the gray 
level of i. 
 

       
         (a)             (b)             (c) 

Fig. 2. (a) CSF binary map, (b) ventricle mask image, and (c) edges of (b) 
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2.3   Shape Features 

Since the volume features extracted from the whole 3-D volume cannot capture the 
variation of the anatomical shape, Wang proposed a shape-based classification 
method [11]. The shape features comprises 3-D and 2-D shape features. 

In the feature of 3-D shape, we used a leave-one-out method to construct training 
set and testing set. Four sets of probability map were then built by using Eq. (6) and 
as shown in Fig. 3. 

∑
=

=
M

i

i
tt zyxI

M
zyxP

1

),,(
1

),,(
 

(6) 

Where t indicates the type of the subjects, comprising normal, AD, aMCI and dMCI. 
M is the number of training samples, and I stands for the grey level of the ventricular 
mask image. Next, we obtained a discriminate map - by subtracting the normal 
probability map from the patient probability map, as shown in Fig. 3 (c). Lastly, a 
matching coefficient (MC) between a testing input and the discriminate map can be 
calculated using Eq. (7). Where D( zyx ,, ) is the discriminate map and T stands for 

the testing ventricular mask image. 

∑
∀

=
zyx

i
Normal

i
patientNormal zyxTzyxDMC

,,
patientor  or  ),,(),,(  (7) 

 

       
(a)               (b)           (c) 

Fig. 3. (a) Probability of normal controls, (b) probability of patients and (c) discriminate map 

 
The 2-D shape features adopted herein are referred to the work of Lee et al. [12] 

and listed as follows: 
 

(1) Area: Binary image’s pixels belonging to the GM, WM, CSF, and ventricle. 
(2) Perimeter: Sobel edge detection algorithm is used to extract the boundary. 
(3) Compactness: Feature is calculated with the square of the perimeter. 
(4) Elongation: The ratio of the height and the width of a rotated minimal bounding 
box, as shown in Fig. 4(a), which can fit the ventricle. 
(5) Rectangularity: The ratios of an image object area and the area of the minimum 
bounding rectangle. 
(6) Distances: There are four important corner points on the brain ventricle shape, i.e. 
the points A, B, C and D as shown in Fig. 4(b). The centroid M of the ventricle is 
computed. Then, six different distances, i.e. d (A,M), d (B,M), d (C,M), d (D,M), d 
(A,C) and d (B,D) are obtained, respectively. 
(7) Minimum thickness: It is defined as the minimum distance between path (A, D) 
and path (B, C), as shown in Fig. 4(c). 
(8) Mean signature value: the mean value of the distances from each boundary pixel 
to the centroid. It starts with the corner point A and follows in the clockwise direction. 
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(a)              (b)               (c) 

Fig. 4. (a) Minimum bounding box, (b) corner and mass points, and (c) minimum thickness 

2.4   Self-Organizing Map Architecture 

A self-organizing map (SOM) is a type of artificial neural network that is trained by 
using unsupervised learning to produce a low-dimensional, discretized representation 
of the input space of the training samples. SOMs are different from other artificial 
neural networks in the sense that they use a neighborhood function to preserve the 
topological properties of the input space. SOMs divide into two parts: training and 
mapping. Training builds the map using input examples, called a Kohonen map [13]. 
Mapping automatically classifies a new input vector. 

In this study, SOM was adopted as a classifier. A 2*2 map topology was used. 
Iterative times were set as 1000 epochs. Ordering phase learning rate = 0.9, tuning 
phase learning rate = 0.5, and tuning phase neighborhood distance = 0.5. In order to 
verify the stability of SOM to generalize the correct tendency, the classifier was 
trained in 10 times to get reliable results. Thirty cases were chosen (AD = 10, Normal 
= 10, aMCI = 5, dMCI = 5) to be the training set randomly. Scaling of variables is of 
special importance in our model since the SOM algorithm uses Euclidean metric to 
measure distances between vectors. In order to solve this problem, we achieved this 
by linearly scaling all variables so that their variances were equal to one. 

3   Experimental Results 

3.1   Material 

According to the research [14], most patients with Alzheimer’s disease are aged at 65 
or older. Therefore, the whole data we choose is ranged over 65 years old. The image 
data used in this study were provided by Chang Gung Memorial Hospital, Lin-Kou, 
Taiwan. The whole dataset consists of four groups. Demographic information is 
provided in Table 1. 

The whole-brain MRI scans were obtained by a 3T MR scanner T1 MPRage series 
with TR = 2000ms and TE = 2.63ms. The results were represented as a 224×256 
matrix, and slice thickness = 1mm in 160 slices. 

Table 1. Demographic data and cognitive scores 

Group Normal 
control dMCI aMCI AD 

Individuals 
(Male/Female) 

28 (18/10) 15 (7/8) 17 (9/8) 24 (11/13) 

Mean age (yrs) 67 ± 5.67 70 ± 5.01 73 ± 5.13 71 ± 7.37 
Education time (yrs) 10 ± 4.8 8 ± 4.23 8 ± 5.24 6.96 ± 5.84 

MMSE scores 28 ± 1.24 28 ± 1.63 25 ± 4.05 14.38 ± 6.55 
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3.2   Statistical Analysis and Classification 

Mann-Whitney U test was performed on each feature to evaluate its discriminative 
power, as shown in Eq. (14). Uobt is the smaller one of the two calculated test statistics 
(U1 & U2), where n1 and n2 are the sample size for sample 1 and 2. 
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The p-values obtained from the tests providing a generally known and comparable 
criterion. It rejects the null hypothesis of equal distributions when p < 0.05. Table 2 
illustrates the statistical results of volume and shape features. In the experiment 
results, since circularity and rectangularity’s p-value > 0.05, they were excluded 
(circularity = 0.871, rectangularity = 0.628) in the following steps of classification. 

Table 2. Statistical analysis of features 

Features Mean volume in [mm] ± S.D.  
Volume Normal dMCI aMCI AD p-value 

VGM 849.5 ± 62.1 820.9 ±113.2 801.5 ± 47.6 776.6 ± 114.3 0.009 
VWM 621.6 ± 57.3 610.5 ± 82.1 599.7 ± 11.7 534.5 ± 71.9 0.027 
VCSF 849.6 ± 137.1 861.4 ± 125.4 916.2 ± 146.5 969.8 ± 117.8 0.011 

Shape Normal dMCI aMCI AD p-value 
Area 1581.1 ± 268.3 1732.4 ± 235.1 1968.5 ± 513.6 2206.4 ± 713.8 0.029 

Area (PR) 614.4 ± 112.1 746.5 ± 62.0 831.9 ± 128.1 901.7 ± 211.6 0.011 
Area (PL) 611.7 ± 118.4 739.2 ± 187.1 854.2 ± 199.4 907.9 ± 234.1 0.009 
Area (FR) 132.8 ± 98.5 189.8 ± 77.6 217.5 ± 134.2 253.9 ± 176.1 0.013 
Area (FL) 140.5 ± 76.9 201.2 ± 62.1 264.9 ± 164.3 276.4 ± 191.0 0.017 
Perimeter 214.3 ± 18.9 244.5 ± 11.4 263.7 ± 21.3 283.8 ± 36.3 0.021 
Circularity 43.9 ± 5.6 41.0 ± 2.1 38.5 ± 4.7 37.0 ± 3.1 0.013 
Elongation 1.2 ± 0.7 1.2 ± 1.1 1.3 ± 0.7 1.3 ± 0.1 0.019 

Rectangularity 0.5 ± 0.1 0.5 ± 0.8 0.6 ± 0.4 0.6 ± 0.1 0.020 
d(A,G) 34.7 ± 3.1 36.8 ± 2.5 39.7 ± 5.1 39.8 ± 6.4 0.016 
d(B,G) 35.1 ± 2.9 37.9 ± 6.7 41.1 ± 4.9 42.3 ± 5.8 0.030 
d(C,G) 37.3 ± 2.1 38.7 ± 3.2 40.6 ± 3.2 42.6 ± 5.1 0.026 
d(D,G) 35.1 ± 3.7 36.7 ± 3.1 39.2 ± 0.9 41.3 ± 4.6 0.021 
d(A,C) 73.2 ± 5.1 78.6 ± 10.3 83.6 ± 15.3 82.4 ± 12.9 0.008 
d(B,D) 69.5 ± 6.7 74.4 ± 6.1 79.5 ± 2.7 80.9 ± 10.4 0.004 

Min thickness 25.9 ± 2.1 25.7 ± 0.7 28.9 ± 3.1 29.5 ± 3.7 0.016 
Mean Sig. 24.5 ± 2.9 26.9 ± 1.8 27.4 ± 3.1 29.1 ± 2.8 0.007 

 
In fact, some of features may be redundant or have highly correlation. Therefore, 

PCA [15] was introduced to reduce the dimensions of the feature space. The principal 
components which contribute 95% to the total variation in data set were chosen 
herein. To train a volume-feature-based classification, all the volume features were 
adopted. To train a shape-feature-based classification, only the first five principal 
components which convey a large amount of information quantified by 95% energy 
were adopted. In the case of using both shape and volume features, the first six 
principle components were used. 

SOM was used to train a classifier. Table 3 shows the accuracy (proportion of all 
subjects correctly classified), sensitivity (proportion of individuals with a true positive 
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result) and specificity (proportion of individuals with a true negative result) with 
using different features. Obviously, incorporating with shape features, volume 
features, and PCA shows excellent classification ability than others. 

In AD, aMCI, and dMCI, the accuracy, sensitivity and specificity have been 
improved respectively. However, the classified results in aMCI and dMCI are not 
very well than AD. That is because aMCI’s characteristics are very similar with AD, 
and dMCI’s characteristics are very similar with normal control. Therefore, the results 
are relatively weak. 

Table 3. Classification results 

Proportion Volume 
features 

Shape 
features 

Volume + Shape 
features 

Volume + Shape 
features + PCA 

AD 
Accuracy 79.27% 72.43% 86.76% 93.63% 
Sensitivity 74.43% 78.33% 79.37% 80.91% 
Specificity 80.69% 74.28% 84.13% 88.63% 

aMCI 
Accuracy 53.33% 46.67% 66.67% 73.33% 
Sensitivity 66.67% 46.67% 53.33% 72.63% 
Specificity 73.33% 53.33% 53.33% 80.14% 

dMCI 
Accuracy 26.67% 40.00% 46.67% 53.33% 
Sensitivity 46.67% 53.33% 53.33% 60.33% 
Specificity 53.33% 46.67% 60.33% 72.67% 

4   Conclusions 

In this study, we design a classification framework for image-aided diagnosis for AD 
by using easy-extractable volume-related and shape-related features. The 
measurement of global GM, WM and CSF volumes and the local shape analysis on 
ventricle, especially in the properties of the ventricular area, perimeter and distances, 
provide atrophy information and show statistically discriminative power (p < 0.05). 
By combining the volumetric features and shape features, the classification accuracy 
is reached to 86.76%, 66.67% and 46.67% in AD, amnestic MCI (aMCI), and 
dysexecutive MCI (dMCI), respectively. In addition, with the help of PCA process, 
the classification result is improved to 93.63%, 73.33% and 53.33% in AD, aMCI and 
dMCI, respectively. 

Based on the testing results, we conclude that the volume features and shape 
features can be selected together because of their low computational complexity and 
classification ability. For the future work, we will increase the size of our dataset to 
support the outcome of our experiment. In addition, according to the classification 
results, aMCI and dMCI are similar with each other. Res-fMRI shows a new light to 
the understanding of neural network connectivity. DTI can be used to assess the fiber 
integrity. The information will help us to improve the outcome of diagnosing the 
neurodegenerative diseases. 
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Abstract. The Self-Organizing Maps (SOMs) are popular artificial neu-

ral networks that are often used for data analyses through clustering and

visualisation. SOM’s mathematical model is inherently parallel. However,

many implementations have not successfully exploited its parallelism be-

cause previous attempts often required cluster-like infrastructures. This

article presents the parallel implementation of SOMs, particularly the

batch map variant using Graphics Processing Units (GPUs) through the

use of Open Computing Language (OpenCL).

1 Introduction

The Self-Organizing Map (SOM) is popular artificial neural networks that can
produce a topology preserved mapping of a high-dimensional feature space.
When a feature vector is presented to the network, a search for the Best Match-
ing Unit (BMU) is carried out. Once found, the BMU c and neurons within its
neighbourhood on the lattice update their connection weight vector w according
to the following equation:

wi(t + 1) = wi(t) + hci(t)[x(t) − wi(t)], (1)

where wi is the weight vector of the neuron i, x is the input vector and t is a
variable in the discrete time index. The neighbourhood function hci is typically
a Gaussian function:

hci(t) = α(t).exp(−‖rc − ri‖2

2σ2(t)
), (2)

where α(t) is the learning rate and σ(t) is the neighbourhood radius and ri de-
notes the physical location of neuron i on the neural lattice. Both α(t) and σ(t)
are monotonically decreasing values. Moreover, the decreasing neighbourhood
has been argued to be a condition that is necessary for self-organizing to occur.
After training the network with input data over several iterations, the algorithm
produces a topologically ordered mapping of the data, such that dissimilar data
samples are mapped to distant locations on lattice. This characteristic has al-
lowed the SOM to be successfully used in a large number of applications, such
as geospatial analysis [1] and content-based image retrieval [2].
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While the above is a typical description of SOM’s incremental learning al-
gorithm, a batch training scheme also exists that can run faster and produce
similar results. In the batch training, all the feature vectors are presented to the
SOM and mapped to their BMU’s sublist of points at each iteration. The weight
vector of each neuron i is then updated to be the weighted mean of feature
vectors in the neighbourhood as:

m∗
i =

∑Ni

j njhjix̄j∑Ni

j njhji

, (3)

where Ni is the set of neurons within the neighbourhood of neuron i, nj is the
number of feature vectors x(t) in the Voronoi set Vj and x̄j is the mean of these
feature vectors.

This batch map variant is particularly suited to parallelization. However, ef-
forts to parallelize the SOM have mainly focused on the incremental learning
algorithm [3,4]. Despite the nature of parallelism in its mathematical model and
previous implementation efforts, not many SOM tools fully utilize the paral-
lelism. One of common reasons for this was the requirement of a cluster-like
high-performance computing infrastructure.

Recent advances in Computer Graphics resulted in commodity high-
performance Graphics Processing Units (GPUs). Although they are specially
design to facilitate fast graphics processing, they have been used as general pur-
pose computing devices (often called General Purpose GPU: GPGPU). There
have been some attempts toleverage the power of GPUs for training the neu-
ral network [5,6]. The work by Zhongwen et al. relied on the use of computer
graphics language (Cg) to implement their parallel SOM[5]. Since their imple-
mentation was based on Cg, they first needed to map SOM’s data structure
to data structures used in Computer Grahics. Moreover, they needed to em-
ploy multi-path algorithm due to the architecture of the graphics pipeline. Jang
et al. implemented a multilayer perceptron on both GPU and multi-core CPU
and evaluated the benefit of GPGPU programming for the neural information
processing[6].

In this article, we present re-visit the parallel implementation of the SOM
using GPGPUs. In particular, our focus is on the implementation of the batch
training algorithm. We chose the Open Computing Language (OpenCL) [7] li-
brary for this implementation is used where the resultant code is similar to
the C programming language and programmers would not require knowledge of
computer graphics and shading languages.

2 OpenCL

OpenCL (Open Computing Language) [7] is a framework that facilitates parallel
programming on GPUs as well as CPUs. An OpenCL application is executed
on a host that is connected to one or more OpenCL devices (such as a graphics
ship on a graphics card). An OpenCL device consists of compute units that are
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divided into processing elements as shown in Figure 1. Code that can be run in
parallel are written as kernels that are executed on the OpenCL devices, more
precisely on the processing elements. An instance of a kernel is known as a work-
item, which are organized into work-groups. Each work-item can be thought of
a thread, such that each work-item operates on a portion of the input data in
parallel. Furthermore, there are different levels of memories:

Fig. 1. Platform model of OpenCL architecture: one host and one or more compute

devices each with one or more compute units each with one or more processing elements.

While the host executes the main program, processing elements execute small kernel

program in parallel. [7]

– Global memory: It can be read and written by all work-items in all work-
groups.

– Constant memory: It is a read-only region of global memory that is constant.
Allocated and initialized by host.

– Local memory: It is a memory visible to all work-items in a single workgroup.
– Private memory: It is a memory that is visible to a single work-item.

The access to the global memory is typically very expensive and has the
largest latency while the access to the private memory is the fastest. It is strongly
encouraged to use local memory when there are instances of code that perform
many read/write operations to the same memory. Moreover, the transfer between
host and device memory can be very expensive (eg. through PCI express bus).
Consequently, such data transfers should be minimised. For more details on
OpenCL’s memory and execution model can be found in its specification[7].

3 Implementation of the Batch Training Process Using
OpenCL

The SOM, like other neural networks, consists of elements that are inherently
parallelisable. In this section, we describe how to parallelise the SOM algorithm
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Fig. 2. Memory model of OpenCL architecture with respect to the compute units and

device. There are four memory levels.[7]

for implementation with OpenCL. There are two main components of the batch
training algorithm that can be parallelised:

1. the mapping/projection of each feature vector onto the SOM, and
2. the adaptation of neurons’ connection weight vectors.

Essentially, our implementation uses data parallelism and the data sent from the
host to the GPU are 1) all the feature vectors, 2) initial weight vector values,
3) dimensionality of the data set and 4) the current update radius. Therefore,
data is only transferred between the host and GPU at most twice, once to send
the values for training and, if needed, another transfer to retrieve the results for
any processing that needs to be done on the host.

3.1 Finding the BMU

The implementation of the first component is rather trivial. The data set is
partitioned into so that each workgroup operates on one portion. Each work-item
deals with a single feature vector to find it’s corresponding BMU by calculating
the minimum distance between the feature vector and a neuron’s weight vector
on the SOM. As this computation requires accessing the values of the feature
vector for each neuron, its values are copied from global memory to local memory.
Each distance computation using this feature vector then reads the values from
local memory space. Furthermore, during this process, the variable representing
the current minimum distance value, and the index of the current BMU may be
updated up to M times, where M is the number of neurons. These values are
therefore also stored in local memory. Once the BMU has been found, its index
is stored in a table of indices that resides in global memory.
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3.2 Neuron Adaptation

Once the BMUs of all the feature vectors have been found, the algorithm can
proceed to update the weight vectors by calculating the weighted mean as per
Equation 3. However, in order to minimise the large latency memory access, we
will compute the weighted mean as:

m∗
i =

∑Ni

j hji

∑nj

k x(t)k∑Ni

j njhji

, (4)

where x(t)k is the kth feature vector in the Voronoi set Vj . Hence, rather than
calculating the sum of the feature vectors in Vj for all neurons i that need to be
updated, these sums and nj can be precomputed and stored in global memory
once all the feature vectors have been assigned to their BMUs.

Furthermore, the distance on the lattice for each pair of neurons i and j can be
calculated before training and stored on the device’s global memory as a distance
matrix. Otherwise, the position of each neuron on the lattice would need to be
stored. This would increase the number of memory access and increase the time
of computation when determining if a neuron lies within the neighbourhood set
Ni. Another optimisation that can be done to reduce memory access time is to
store the m∗

i in local memory so that updates to the weighted mean writes to
local memory. The final result can then be copied to global memory afterwards.

4 Results and Discussion

For our experiments, we implemented the Geodesic SOM [8] (a spherical SOM)
in C++ and using OpenCL. To make the comparisons more fair, some of the
optimisations discussed were also implemented in the C++ version. Namely, the
pre-computation of the sum of feature vectors at each neuron and the distance
matrix.

Table 1. The size of the data used: Iris, Ionosphere and Torus

Dataset # of Instances # of Attributes

Iris 150 4

Ionosphere 351 34

Torus 2000 3

We tested the performance of each SOM (C++ version and OpenCL version)
by training them using three datasets (Iris, Ionosphere and Torus). The Iris and
Ionoshphere data are from the UCI (University of California at Irvine) data
repository (http://archive.ics.uci.edu/ml/index.html) and the Torus dataset is
a set of 2000 three-dimensional points randomly sampled on the surface of a
torus. For each dataset, both SOMs were trained 10 times and recorded the
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computation time required for the training process. Experiments were conducted
on a commodity PC with an Intel Pentium 4 3.2 GHz processor, 1GB of RAM
and a NVIDIA GTS 250 (128 CUDA cores) graphics card.

Table 2 shows the mean computation time for each data set and implementa-
tion of the Geodesic SOM. A three-frequency geodesic dome (92 neurons) was
used, with an initial update radius of 9, initial learning rate of 1 and training
occurred over 1000 epochs. The initial weight vectors were linearly initialized. It
should be noted that the training time consists of the time took for finding the
BMUs and updating neurons’ connection weights.

Table 2. The mean time required to train the Geodesic SOM with each data and for

each implementation

Dataset Implementation Avg. Time (sec)

Iris C++ 1.386

OpenCL 0.316

Ionosphere C++ 21.314

OpenCL 1.707

Torus C++ 12.508

OpenCL 1.228

As shown in Table 2, when the small dataset (Iris: N=150, d=4) was used the
performance gain was not significant. However, when the number of attribute is
large or the number of instance is large, the computational cost saving on GPU
became apparent. This indicates that the process of finding BMUs costs more
than updating their weight vectors. The parallel implementation on the GPU
does not involve inter-process (or inter-processing element) communication like
often seen in the message-passing interface approach. Hence this approach seems
to be suited for a large SOM or a large-scale dataset.

5 Conclusion

This paper proposed parallel implementation of SOM’s batch training algorithm
on commodity graphics hardware. The OpenCL was used for the implementation
because it provides a C-like language and does not rely on data structures used
in Computer Graphics libraries. For the process of finding BMUs, one process-
ing element computes the distance between the given input vector against all
connection weight vectors. Hence, this was done simply partitioning the input
data so that they are mapped onto the array of processing elements. For updat-
ing the connection weight vectors of BMUs, each processing element computes
the weighted mean for each BMU. In order to minimise the memory access to
Host’s memory space (PC’s main memory), many intermediate values (such as
the sum of feature vectors and distance matrices) are precomputed and stored
in device’s global memory. The experiments evaluated the proposed implemen-
tation through standard datasets, and confirmed a significant speed-up on the
GPU compared to the execution of sequential algorithm on CPU.
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Abstract. In this paper, we propose a Fast Kohonen Feature Map Asso-

ciative Memory with Area Representation for Sequential Analog Patterns

(FKFMAM-AR-SAP). This model is based on the conventional Improved

Kohonen Feature Map Associative Memory with Area Representation for

Sequential Analog Patterns (IKFMAM-AR-SAP). The proposed model

can realize the one-to-many associations even when the first patterns are

same in the plural sequential patterns. And, it has enough robustness for

noisy input and damaged neurons. Moreover, the learning speed of the

proposed model is faster than that of the conventional model. We carried

out a series of computer experiments and confirmed the effectiveness of

the proposed model.

1 Introduction

Recently, neural networks are drawing much attention as a method to realize
flexible information processing. In the field of neural networks, although a lot
of models have been proposed, their learning and recall processes are divided,
and therefore they need all information to learn in advance. However, in the real
world, it is very difficult to get all information to learn in advance, so we need the
model whose learning process and recall process are not divided. As such model,
some models based on the Kohonen Feature Map (KFM) associative memory[1]
have been proposed[2]-[6]. For example, the KFM associative memory with area
representation for sequential analog patterns[5], the improved KFM associative
memory with area representation for sequential analog patterns[6] and so on
have been proposed. These models can deal with associations of sequential pat-
terns including common terms, and has enough robustness for noisy input and
damaged neurons. However, they can not realize the one-to-many associations
when the first patters are same in the plural sequential patterns.

In this paper, we modify the winner neuron selection method and the con-
nection weights update method of the conventional improved KFM associative
memory with area representation for sequential analog patterns[6], and propose
a Fast KFM Associative Memory with Area Representation for Sequential Ana-
log Patterns (FKFMAM-AR-SAP). The proposed model can realize the one-to-
many associations even when the first patterns are same in the plural sequential
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Fig. 1. Structure of Proposed Model

patterns. And, it has enough robustness for noisy input and damaged neurons.
Moreover, the learning speed of the proposed model is faster than that of the
conventional model.

2 Fast KFM Associative Memory with Area
Representation for Sequential Analog Patterns

Here, we explain the proposed Fast Kohonen Feature Map Associative Memory
with Area Representation for Sequential Analog Patterns (FKFMAM-AR-SAP).
The proposed model is based on the conventional IKFMAM-AR-SAP[6]. In the
proposed model, the winner neuron selection method and the connection weights
update method are modified, and realize the one-to-many associations even when
the first patterns are same in the plural sequential patterns. Moreover, the learn-
ing speed of the proposed model is faster than that of the conventional model.

2.1 Structure

Figure 1 shows the structure of the proposed model. As seen in Fig.1, it has two
layers; (1) Input/Output Layer and (2) Map Layer, and the Input/Output Layer
is divided into two parts; (1) Input Part and (2) Output Part as similar as the
conventional model. In this model, as shown in Fig.1, the Map Layer is treated
as torus.

2.2 Learning Process

Let Y (k,1) → Y (k,2) → · · · → Y (k,tk) be the kth temporal sequence to be stored,
where tk shows the length of the kth sequence.

In the sequential learning algorithm for the proposed FKFMAM-AR-SAP, the
connection weights are learned as follows:

(1) The initial values of weights are chosen randomly and the recurrent difference
vector is set to yi = 0.

(2) The recurrent difference vector of the neuron i in the Map Layer yi(t) is
calculate by
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yij(t) =

⎧⎪⎨⎪⎩
t∑

n=0

(1 − β)t−nX
(k,n)
j −

t∑
n=0

(1 − β)nWij(t), (j ≤ M/2)

X
(k,t)
j − Wij(t), (otherwise)

(1)

where M is the number of neurons in the Input/Output Layer, and β
(0.5<β<1) is the weighting factor determining the effect of the earlier dif-
ference vectors and the new input vector in the computation of yi(t).

(3) The winner neuron r is determined as follows:

r = argmin
i:1−sHlearn(dii∗ )<θr

(‖yi(t)‖ (1 − sH learn(dii∗))) (2)

where θr is the threshold for the winner neuron decision, s (0<s<1) is the
coefficient, dii∗ is the distance between the neuron i and the nearest weights
fixed neuron i∗.

In Eq.(2), H learn(dii∗ ) is given by

H learn(dii∗ ) =
1

1 + exp
(
−dii∗ − 2D

εt

) (3)

where D is the constant which decides area size and εt is the steepness
parameter. In the proposed model, the all area can be ensured as a circle
with radius D.

(4) The connection weights between the neurons in the Input/Output Layer and
the neuron i in the Map Layer except those of fixed neurons are updated by

Wij(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∑
n=0

(1 − β)t−nX
(k,n)
j

t∑
n=0

(1 − β)n

,

(θlearn
1 ≤ H(dri) and j ≤ M/2)

X
(k,t)
j , (θlearn

1 ≤ H(dri) and M/2 < j)

Wij(t) + H(dri)

⎛⎜⎜⎜⎜⎝
t∑

n=0

(1 − β)t−nX
(k,n)
j

t∑
n=0

(1 − β)n

⎞⎟⎟⎟⎟⎠
,

(θlearn
2 ≤ H(dri) < θlearn

1 and H(dii∗) < θlearn
1 and j ≤ M/2)

Wij(t) + H(dri)X
(k,t)
j ,

(θlearn
2 ≤ H(dri) < θlearn

1 and H(dii∗) < θlearn
1 and M/2 < j)

Wij(t), (otherwise)

(4)

where θlearn
1 and θlearn

2 are thresholds (θlearn
1 >θlearn

2 ). And, H(dri) and
H(dii∗) are given by Eq.(5).
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H(dij) =
1

1 + exp
(

dij − D

ε

) (5)

If there is no weight-fixed neuron, we use

H(dii∗) = 0 (6)

instead of Eq.(5).
(5) The connection weights of the winner neuron r are fixed.
(6) (2)∼(5) are iterated until t = tk − 1.
(7) (2)∼(6) are repeated when a new pattern sequence is given.

2.3 Recall Process

When the pattern X(t)(= (Y (t),0)T ) is given, the output of the neuron i in the
Map Layer at the time t, xmap

i (t) is given by

xmap
i (t) =

{
1, (i = r)
0, (otherwise) (7)

where r is selected randomly from the neurons which satisfy

‖ yi (t) ‖≤ θmap (8)

where yi(t) is the recurrent difference vector of the neuron i in the Map Layer
at the time t which is given by

yi(t) = (1 − β)yi(t − 1) + β(X − Wi) (9)

where θmap is the threshold of the neuron in the Map Layer and is given by

θmap = ymin + a(ymax − ymin) (10)
ymin = min

i
‖ yi (t) ‖ (11)

ymax = max
i

‖ yi (t) ‖ (12)

where a (0 < a < 1) is a coefficient.
The output of the neuron j in the Input/Output Layer at the time t, xio

j (t)
is given by

xio
j (t) = Wrj . (13)

3 Computer Experiment Results
Here, we show the computer experiment results to demonstrate the effectiveness
of the proposed model.

3.1 Association Result

In this experiment, two sequential analog patterns shown in Fig.2 were memo-
rized successively. Figure 3 shows the association result of the proposed model



FKFMAM-AR-SAP 481

when the training set (1) was memorized. As shown in Fig.3, the proposed model
could recall sequential analog patterns including a common term correctly.

We also examined the case when the first patterns are same in the two sequen-
tial patterns. Figure 4 (a) and (b) show the association results of the proposed
model. As shown in Fig.4 (a) and (b), the proposed model could recall the
desired patterns correctly. In contrast, the conventional IKFMAM-AR-SAP[6]

(a) Training Set (1) (b) Training Set (2)

Fig. 2. Stored Sequential Analog Patterns

(a) When “lion” was Given (b) When “hen” was Given

Fig. 3. Association Result of Proposed Model

(a) Proposed Model (1) (b) Proposed Model (2)

(c) Conventional Model[6]

Fig. 4. Association Result when “duck” was Given
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could not recall correct patterns (Fig.4 (c)) because the superimposed patterns
were recalled.

3.2 Learning Speed

Here, we examined the learning speed of the proposed model. In this experiment,
one random pattern sequence composed of four patterns was memorized. Table 1
shows the learning time of the proposed model and the conventional IKFMAM-
AR-SAP[6]. These results are average of 100 trials on the Personal Computer (In-
tel Pentium 4 (3.2GHz), FreeBSD 4.11, gcc 2.95.3). As shown in Table 1, the learn-
ing time of the proposed model is shorter than that of the conventional model.

3.3 Storage Capacity

Here, we examined the storage capacity of the proposed model. Figure 5 shows
the storage capacities of the proposed model and the conventional IKFMAM-AR-
SAP[6]. As shown in Fig.5, the storage capacity of the proposed model is smaller
than that of the conventional model. This is because the area sizes for the training
patterns in the Map Layer are almost same in the proposed model. In contrast,
some areas in the Map Layer are sometimes very small in the conventional model,
and as a result the number of stored patterns becomes large. In the proposed
model, if the parameter for area size D is small, many patterns can be memorized.

3.4 Recall Ability for Sequential Patterns Including Common Terms

Here, we examined the recall ability for sequential patterns including common
terms of the proposed model. Figure 6 (a) shows the recall ability of the proposed
model when two sequential patterns composed of N patterns (only first and last
patterns are different and the other N−2 patterns are common) were memorized

Table 1. Learning Time

Learning Speed (sec)

Conventional Model[6] 2.706

Proposed Model 0.180
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Fig. 6. Recall Ability for Sequential Patterns including Common Terms
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and the first pattern was given. Figure 6 (b) shows recall ability of the proposed
model when the three sequential patterns were memorized.

Figure 6 (c) shows the recall ability of the proposed model for the weighting co-
efficient β. As shown in this figure, the proposed model whose weighting coefficient
β is small can recall the sequential patterns including many common terms.
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3.5 Robustness for Damaged Neurons and Noisy Input

Here, we examined the robustness for damaged neurons and noisy input
of the proposed model and the conventional IKFMAM-AR-SAP[6]. In these
experiments, five random pattern sequences composed of four patterns were
memorized. Figure 7 shows the robustness of the proposed model and the con-
ventional IKFMAM-AR-SAP. As shown in these figures, the proposed model
has enough robustness for damaged neurons and noisy input as similar as the
conventional model.

4 Conclusions
In this paper, we have proposed the Fast Kohonen Feature Map Associative
Memory with Area Representation for Sequential Analog Patterns. We carried
out a series of computer experiments and confirmed that the proposed model
has following features.

(1) It can learn sequential patterns successively.
(2) It can deal with sequential analog patterns including common terms even

when the first patterns are same in some sequential patterns.
(3) Its learning speed is higher than that of the conventional Improved Kohonen

Feature Map Associative Memory with Area Representation for Sequential
Analog Patterns.

(4) It has large storage capacity.
(5) It has robustness for damaged neurons.
(6) It has robustness for noisy input.
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Abstract. With simple cost effective imaging solutions being widely

available these days, there has been an enormous rise in the number

of images consumers have been taking. Due to this increase, searching,

browsing and managing images in multi-media systems has become more

complex. One solution to this problem is to divide images into albums

for meaningful and effective browsing. We propose a novel automated,

expression driven image album creation for consumer image management

systems. The system groups images with faces having similar expressions

into albums. Facial expressions of the subjects are grouped into albums

by the Structural Similarity Index measure, which is based on the theory

on how easily the human visual system can extract the shape information

of a scene. We also propose a search by similar expression, in which the

user can create albums by providing example facial expression images.

A qualitative analysis of the performance of the system is presented on

the basis of a user study.

Keywords: Automatic album creation, Facial expression analysis, Ac-

tive Appearance Model, Structural Similarity Index, Image clustering.

1 Introduction

With the advent of low-cost and easy to use consumer level imaging solutions,
the number of consumer images has grown incredibly. With these increasing
numbers, the management of images has become increasingly cumbersome. Clas-
sification of images into albums is a potential solution to this problem. Semantics
based albums can be very helpful for effective browsing and retrieval. We pro-
pose a method for generating automatic emotion based image albums for better
image management and representation. Facial expressions convey powerful dis-
criminating information in facial images and hence form a strong criteria for
image clustering. The user can group images ’based’ on the emotions the faces
in the image convey, such as ‘happy’, ‘excited’ or ‘neutral’ albums. The proposed
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(a) Expression based albums (b) Album by similar expression

Fig. 1. Outputs of the system

system uses Active Appearance Models (AAM) [2], which have been widely used
for facial expression recognition and related applications in recent years. The
Structural Similarity Index Measure (SSIM) [15] is used to compare similar fa-
cial expressions. The SSIM is based on the theory of the human brain noticing
slight changes in the structure of a scene easily and fast. The user decides on the
number of clusters/albums. New images are then added to the existing albums
via facial expression comparison to the mean expression shapes of the albums.
Another option for the user is to input an example image, which depicts a spe-
cific facial expression. The system then searches for images, which match the
expression of the input image. We term this as ‘album creation by similar ex-
pression’. In the experiment section, we present a user study on the performance
of the facial expression based album creation.

1.1 Related Work

Of the manual/semi-automatic techniques, labelling has been used for long. How-
ever, as the image databases grow, managing labels becomes a complex and time
consuming task. In [7], time stamping techniques are used to link photographs
for effective browsing. In [3], the Media Browser exploits the metadata informa-
tion in the images for tagging faces. Face detection and automatic labelling are
used in the FotoFile system [9]. In [17], faces are detected and name labels are
suggested based on a Gaussian framework to the user to choose from. In [11],
the AutoAlbum uses time based clustering followed by a hidden Markov model
based probabilistic approach for content-based clustering.

Recently, image editing and management tools, such as Google Picasa [6],
have been used to manage and group images. The software uses robust face
detection and groups all the images of one specific person together, which are
then labelled by the user. In [1], face models based on AdaBoost are used to
extract facial features and semi-supervised clustering is used to group similar
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Fig. 2. Block diagram of the system

faces. [18] uses multiple representation spaces viz. faces, background and time
of capture as input for mean-shift clustering.

Facial expression recognition is a well researched field. [5] present extensive
surveys on facial expression recognition techniques. [10] use AAM for extracting
facial features post fitting and machine learning techniques to classify emotions
into FACS AU units [4].

Our contribution in this paper lies in creating albums from consumer images
on the criteria of human expressions. Emotion based album creation is a useful
feature for any image management system. Facial expressions are used to identify
similarity among images. We assume that the majority of images contain faces.
In existing systems, images of a specific person are grouped based on identity and
labelled as an album. We want to explore the emotion/mood aspect of images,
which can be a strong grouping criterion. The expression features can be used
with the existing date, time and face criteria for album creation. For example
a user may want to extract all the happy moments from a particular day’s
photographs or extracting the surprised expressions of people from an event.

Figure 1 depicts outputs of album by clustering similar expressions. The de-
tails of the technique are discussed in depth in the following sections. The paper
is divided as follows: Section 2 describes the system and its component, Section
3 shows experimental results and Section 4 provides the conclusions.

2 System

The system constitutes of four major steps, which are described in the following
sub sections. Figure 2 depicts the flow of the system.

2.1 Facial Feature Extraction

The face is localised using the Viola Jones [13] face detector, that gives the
location of the face. This is used as initialisation for AAM [2] tracking. The AAM
are a powerful generative class of methods for modelling and registering non-rigid
deformable objects. Their real benefit comes from its compact representation of
appearance, which comprises of shape and texture, as well as its rapid fitting to
unseen images. We used the AAM fitting method described in [12] for its speed
and accuracy.
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(a) Input (b) EI (c) Input (d) EI

Fig. 3. (a) and (c) are the input faces with red lines representing the landmark points,

which are static with respect to local facial moment and donot contribute to the expres-

sion. (b) and (d) are the corresponding Expression Images (EI), which are compared

for their structural similarity.

2.2 Expression Image Formation

The expression image is a visual map, which depicts the facial expression of the
face. AAM fitting gives the shape vectors of the tracked faces, which constitute
the landmark points. We then extract the eyes and mouth landmark positions
from the shape vector. The new vectors obtained from the shape vectors of
different images are then aligned to a common coordinate via translation, scaling
and rotation for comparison.

The normalisation of the shape vector is performed by taking the horizontal
Euclidean distance between the extreme end points of eye on the left and the
right side. And the vertical distance is the Euclidean distance between the nose
and upper eye brow. The choice for this normalisation is driven by the static
nature of these points with respect to the expressions. The new EI is formed via
drawing distance vectors among the new landmark points. The choice of specific
landmark points and its corresponding distance vector image is derived from two
motivations. One, choosing all points will bias the system towards similar faces.
But our aim is different; we wish to find similar facial expressions rather than the
images of the same person. Hence, a balanced number of landmark points, which
represent enough information for representing the facial expression are chosen.
The number and choice of landmark points was calculated with experimentation
as on how much person independent the SSIM comparison can become. Two,
SSIM works on images hence EI are created from the chosen landmark points.
Figure 3 depicts two faces with red lines depicting the static nature of the points
chosen for normalisation and their corresponding expression images.

2.3 Structural Similarity Index

We use Structural Similarity index (SSIM) [15] as the distance measure, it is
a technique of calculating similarity among two images. SSIM is based on the
theory that the human vision system is highly sensitive to changes in structure
of the view. Hence, a measure for calculating the structural information change
can provide valuable information. In our system, SSIM is used as a distance
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metric of similarity among EI images. The SSIM metric between two windows
w1 and w2 on the same size N×N is given by:

SSIM(w1, w2) =
(2μw1μw2 + c1)(2σw1w2 + c2)

(μw1
2 + μw2

2 + c1)(σw1
2 + σw2

2 + c2)
(1)

where μw1 and μw2 are the average of w1 and w2 respectively. σ2
w1

and σ2
w2

are
the variance of w1 and w2 respectively. σw1w2 is the covariance between w1 and
w2. c1 = (k1L)2 and c2 = (k2L)2 are the variables to stabilise the division with
weak denominator. L is the dynamic range of the pixel-values. We use this as a
comparison of two EI.

2.4 Album Creation and User Options

Semi-unsupervised Album Creation. For image album formation K-Means
algorithm is calculated over the expression data. K-means clustering algorithm
splits a set of observations into subsets by minimizing the intra-cluster variation.
The numbers of image albums k serves as the initial number of clusters for K-
Means clustering algorithm where the distance metric is SSIM. Therefore the
clustering becomes:

arg S min
k∑

i=1

∑
xj∈Si

SSIM(xj , μi) (2)

where (x1, x2, .., xn) are the Expression Images EI and μi in Si is the mean EI.
The clustering is done on the normalise landmark points of the shape vector,
which are used to construct the distance vectors of EI, this is done to keep low
dimensionality during clustering. Though the distance comparison is calculated
on EI. The mean EI representing each clusters are then compared using the SSIM
distance metric with pre-stored labeled EI. The pre-stored EI are labeled into
four expressions (Happy, Neutral, Sad, and Excited). This leads to automatic
labelling of the albums into the fundamental expression classes. Once a new
image arrives it is added to the exiting albums via comparing its closeness to
the mean image representing the respective albums.

Album by Example. A user may be interested in finding images, which have
the expression similar to a specific facial expression. In this case, the user provides
the system with one example image. The user also specifies the number of similar
images, which decides the size of this album. The system extracts the EI for the
example and the group of images. The example EI is then compared using SSIM
with all other images in the group. The similarity distances are then sorted and
the user desired number of similar images is selected as an album with respect
to the relevance. Figure 4 depicts two examples of this function.
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(a) Input (b) Similar Expressions

(c) Input (d) Similar Expressions

Fig. 4. “Album by similar expression” example, (a) and (c) are the input images. (b)

and (d) are the corresponding similar expressions.

3 Empirical Experiment and Outputs

Since different users may have different perception about an expression hence
analysing the correct clustering performance is a non trivial task. To validate
the performance we created a test set of sixty images from the FEEDTUM [14]
and LFW [8] databases. A total of fifteen human users were asked to judge
the album creation performance by figuring out the the images, which seem to
have a different expression and do not belong to the album created. The average
total error classification rate came out to be 13.7%. We also compare our system
with fuzzy clustering algorithm. Figure 5 shows the outputs of the systems. The
Figure 1 displays the experimental GUI of the system. In 1(a) the images are
from the FEEDTUM database [14]. The three sub windows in the figure are the
albums created after SSIM based clustering. Please note that the system groups
faces of similar facial expressions into one set.

Figure 4, is the experiment on images from the LFW database [8]. Figure
4(a)is the user example input with a happy expression. Figure 4(b) is the al-
bum of top matching expressions with decreasing relevance from left to right.
Similarly, Figure 4(c) is face with smiling expression and Figure 4(d) are the
similar expressions. Figure 1(b) depicts album by similar expression example.
The user inputs an image, which contains an example expression. The user also
specifies the number of similar images desired in the album. This input serves
as the number of similar images to be presented. The larger eclipse shows the
searched similar images and the upper one is the user input image.
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Fig. 5. Sample result on images from FEEDTUM [14] database after executing our

system and Fuzzy clustering algorithm in the upper and lower box respectively

4 Conclusions and Future Work

We propose a novel system, which can categorise images into albums on the
basis of facial expression analysis, for effective image browsing and searching.
It has applications in modern day image management systems such as Google
Picasa [6] and Flickr [16]. The system uses AAM for facial feature extraction, a
shape vector is extracted and normalised, and an EI is formed, which represents
the facial expression of the image. Then, the SSIM is used as a distance metric
for similarity, to cluster similar facial expression images together. The user also
has the option to search for a particular image and form an album based on it
(“creation by similar expression”). Future work is to add illumination invariance
before AAM fitting, so as to have more robust fitting. Experimenting with a
robust generic AAM tracker can also increase the performance of the system.
Another potential area is exploring robust methods for unsupervised clustering.
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Abstract. Age classification based on computer vision has widespread appli-
cations. Most of previous works only utilize texture feature or use contour and
texture feature separately. In this paper, we proposed an age classification system
that integrate contour and texture information. Besides, we improve the tradi-
tional Local Binary Pattern(LBP) feature extraction method and get pure texture
feature. Support Vector Machines with probabilistic output (SVM-PO) is used as
individual classifiers. Then we use combination mechanism based on fuzzy in-
tegral to merge the output of different classifiers. The experiment results show
pure texture feature outperforms other features and it can be well combined with
contour feature.

Keywords: Age Classification, Contour Feature, Texture Feature, Located Local
Binary Patterns, Fuzzy Integral.

1 Introduction

Age classification has a lot of applications, such as supervision of minors, demograph-
ics, commercial advertisement and so on. Most of previous researches only use texture
feature [1,2] or use contour features and texture features separately [3,4]. We find both
the shape of faces and skin roughness can help determine a person’s age. Fig. 1(a) shows
faces which can be discriminated by contour feature. All 8 images have soft skins, but
the upper four faces are close to circles while the lower four faces are close to ovals.
Fig. 1(b) are example of faces that can be distinguished by texture feature. We can see
wrinkles on the forehead and at the corner of eyes clearly.

Seeing the above example, it is natural to expect better performance by combining
contour feature and texture feature. Although [3] also use these two features, they didn’t
use them at the same time. First, contour feature is adopted to determine whether the
facial image is a child or not, then it’s classified as young people or elderly people
according to texture feature. In this paper, we propose an age classification system that
combing features together and achieve a performance which is comparable to humans.

The remaining part of the paper is organized as follows: in section 2, the age clas-
sification system we proposed is introduced in details. In section 3, we describe the
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(a) (b)

Fig. 1. Classify the facial image by different features: (a)Classify by contour feature; (b)Classify
by texture feature

features extraction method we use in our system. Experiments and analysis are con-
ducted in section 4, followed by conclusion and discussion in section 5.

2 Age Classification System

Fig. 2 shows the whole process of our system. Before feature extraction, we need pre-
process the images. The initial image is cropped into two sizes to accommodate two
feature extraction methods. To extract contour feature, the image should include the
whole face, because the position of chin is very important. To extract texture feature,
including the organs is enough, and the advantage is that we can avoid the impact of
backgrounds.

Feature extraction methods are very important in pattern recognition. Contour feature
is easy to modeling comparatively speaking, while there are many methods to describe
texture feature, like Local Binary Patterns, Gabor Feature, Local Gabor Binary Map-
ping Pattern(LGBP) [5]. We tried several methods of them and find LBP is the most
stable and efficient. Then several classifiers depend on different features are trained
with SVM-POs, for the preparation of classifier combination.

At last, we combine the output of SVM-POs and get the final result. Almost all
of the combination mechanisms belong to two categories of information integration
techniques. One is to combine the features before classification, the other is to combine
the results of classifiers. All the combination methods we use in our experiment belong
to the latter categories, for example, choquet fuzzy integral. The probabilistic outputs
are combined into a single composite score with trained fuzzy measure or hierarchical
classifiers, and the class with highest probability will be output.

Fig. 2. The proposed age classification system by combining contour and texture classifiers



Age Classification Combining Contour and Texture Feature 495

3 Feature Extraction

In this section, we will briefly introduce the feature extraction methods we use and
discuss their characteristic.

3.1 Contour Feature

Kwon and Lobo did researches on age classification first. They consulted studies in
cranio-facial research, art and theatrical makeup, plastic surgery and found with the
growth of a people, the shape of head turns from circle to oval. So they put forward
utilizing the proportion of distance between organs to decide whether a facial image
belongs to child or adult [3]. We also use this information in our experiment, but we do
not calculate the proportion, instead, we more accurately use 58 points to describe the
contour of a face.

To detect the contour, we adopt Active Appearance Model (AAM) [6], a statistical
model which derives from Active Shape Model (ASM) [7]. Before using AAM, we
should normalize the face, otherwise the detection result will be imprecise. We first
detect the position of two eyes [8], then rotate and scale the face to locate the eyes at
the same position. After normalization, AAM can easily find the contour with 58 points
P1, P2, . . . , P58, as show in Fig. 3. We don’t use AAM to find the position of calvaria
because it will be affected by hair seriously.

Then we just stretch the x and y coordinates and get a 116 dimension contour feature
vector {P1x, P1y, . . . , P58y}, which is also the base for texture feature extraction.

3.2 Texture Feature

Texture feature has better performance than contour feature under many circumstances.
Many researches have been done on this and LBP has been proved powerful on texture
description. The LBP operator value can be calculated as Fig. 4.

Fig. 3. AAM detection result Fig. 4. Illustration of the LBP value computation

We apply LBP operator on every pixel and divide the image into m non-overlapping
rectangular regions {R0, R1, . . . , Rm}, the histogram of j-th region is:

Hj = {h0,j, h1,j , . . . , h59,j} (1)
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where 59 is the number of bins for uniform LBP operator. At last, we concatenate all
Hj together and get the final LBP feature:

V = {H0, H1, . . . , Hm−1} (2)

There are two ways of dividing the image into regions. The traditional way is to cut
the image into n× n regions equally (and get the LBPn feature), as shown in Fig. 5(a).
This way of dividing is easy, because we do not need to know the position of organ and
it performs good too. However, it is not pure texture feature. As we can see the mouth of
right image is upper than that of the left one. So the same region doesn’t correspond to
the same part of face, and the final LBPn vector will also contains contour information.
We can extract texture feature more explicitly with the contour information, and we call
it Located Local Binary Patterns(LLBP).

Fig. 5(b) shows how we decompose the image in our experiment. Skin around eyes
is the most important part of face in age classification [2], so we first locate the regions
of eyes by points of canthi. Here we set a fixed height of eye regions to prevent from
getting too narrow region caused by squinting. The process of mouse and nose regions
is similar to that of eyes, and the remaining regions are divided averagely according
to the number of regions. We can certainly divide the image in a better way, but our
method has already surpassed all others in the experiment. Before classification, we
should zoom the regions to have same sizes, otherwise, the obtained feature will still
contain contour information.

Bin Xia proposed LGBP feature in [5]. They use gabor filters on image first [9], then
extract LBP feature on transformed images. Before classification, feature dimension
will be decreased on every region. We also implemented this method as a comparison.

4 Classifier Combination

Originally SVM only predict class labels, we can use strategies like Majority Voting
Rules or Borda Count to integrate the outputs, but it’s a rough estimation. In our exper-
iment, the SVM output probability for every class instead of single class label, and the
combination results are better. To get probabilistic output, our goal is to estimate

pi = p(y = i|x), i = 1, . . . , k (3)

where k is number of classes.

(a) (b)

Fig. 5. Two divide method
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Since we use one-against-one strategy, we can get the probability of multi-class prob-
lem from pairwise class probabilities rij ≈ p(y = i|y = i or j, x), which is estimated
as Eq. 4 proposed in [10].

rij ≈ 1
1 + eAf̂+B

(4)

where A and B are estimated by minimizing the negative log-likelihood function using
training data and decision values f̂ .

Then pi can be obtained from all the rij ’s solving the following optimization prob-
lem [11]:

min
P

1
2

k∑
i=1

∑
j:j �=i

(rjipi − rijpj)2 subject to
k∑

i=1

pi = 1, pi ≥ 0, ∀i. (5)

Noticing the equality

p(y = j|y = i or j, x) · p(y = i|x) = p(y = i|y = i or j, x) · p(y = j|x), (6)

then the objective function can be reformulated as

min
P

1
2
PT QP (7)

where

Qij =
{ ∑

s,s�=i r2
si if i = j,

−rjirij if i 	= j.
(8)

Simple combination rules like sum or product rule were proved efficient in [12].
There are a bit more complicated methods that need training, such as weighted sum,
hierarchical classifiers. Here we use another widely used combination strategy: fuzzy
integral.

Fuzzy integrals are integrals relies on the concept of fuzzy measures. Let X =
{x1, x2, . . . , xn} be a finite set and let P (X) indicates the power set of X. Then a
fuzzy measure g over set X is defined as:

Definition 1. g : P (x) → [0, 1] such that:
(1) g(∅) = 0, g(X) = 1;
(2) A ⊆ B ⇒ g(A) ≤ g(B)

The choquet fuzzy integral we use can be based on any fuzzy measure[13]. Given
an unknown sample T , the confidence of T belongs to class cj can be calculated by
Cg(hj(x1), . . . , hj(xn)), denoted as Cj

g(T ), where hj(xi) is the confidence of T be-
longs to class cj given by classifier xi. The calculation of g(hi) can be solved by
quadratic programming [14].

5 Experiments

Our experimental data come from frontal faces of BCMI-Omron age database. We set
18 years old as the boundary of adults and children, because laws in most countries do
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Table 1. Experimental data

Training data Test data
Age Group Number Age Group Number
≤18 215 ≤18 71
19∼23 221 19∼23 73
24∼50 219 24∼50 74
≥50 149 ≥50 50
Total 804 Total 268

like this. So this kind of set has practical value. The other two boundaries are set as 23
and 50 years old to make the database has a good distribution. (See Tab. 1). One-fifth
of the data are chosen randomly as testing data.

To have a comparison, we also asked three participants to classify the data. The par-
ticipants did the test twice. At the first time, they directly classify the image according
to their life experience. We find the two younger participants (22 years old both) didn’t
do well (with precision 67.16% and 70.52%), while the elder(50 years old) reached
76.12%, as expected [15]. So they were asked to do the test again. This time, they saw
the training data before classification and reached 81.72% on average.

Tab. 2 shows the accuracy of different feature extraction methods. The classifiers
are all SVM with RBF kernel and probability output. For Kwon’s system, we set 18
years old as the boundary between children and adults. From the results, we can see
the LLBP we proposed outperforms all other methods. LBP6 and LBP7 also performs
good, because they contain both texture and contour information, as mentioned before.
In addition, although contour feature get a low accuracy relatively speaking, it’s still
good than the easiest gray feature, so it’s still useful for combination.

Then, we take a look at the combination results. Besides fuzzy integral, weighted
sum, product rule and hierarchical classifiers are also chosen in our experiment. Tab. 3
shows 6 combinations of different classifiers. We first compare different combination
methods, we can see from the results that fuzzy integral is the best among them, slightly
better than weighted sum.

At last, we compare the combination results of different sets. From Tab. 2 and Tab. 3
we can see the integration of LBP6 and LBP7 doesn’t make much progress, the reason
is that these two features contain similar information, so they don’t complement each
others. To prove LLBP we propose is really better, we combine LLBP and LBP6 with
contour feature separately. As we expected, the raise of LLBP is greater than LBP6 on
fuzzy integral and weighted sum, but they both get decreased on hierarchical classifiers
and product rule. This is because the performance of contour classifier is not very good,
so it becomes a drag. We then combine LLBP with LBPn. This time, the precision get
increased a lot, because traditional LBP feature is nearly as strong as LLBP and it con-
tains contour information at the same time. Although it seems that the performance of
combination just get improved slightly, the best result which combines contour feature,
LBP and LLBP together through fuzzy integral achieves 80.23%, only a bit lower than
human’s decision, so we think it’s an encouraging result.
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Table 2. Accuracy of different feature extraction method

Methods Accuracy Methods Accuracy
Gray 60.82% Kown’s 74.63%
Contour 69.03% LGBP 76.12%
LBP6 77.24% LLBP 77.99%
LBP7 77.24% Human 81.72%

Table 3. Classifier combination results

Hierarchical Product Weighted Sum Fuzzy Integral
LBP6+LBP7 77.61% 77.61% 77.99% 77.99%

Contour+LBP6 76.49% 77.24% 77.61% 77.61%

Contour+LLBP 77.24% 77.61% 78.73% 78.73%

LBP6+LLBP 78.73% 79.10% 79.48% 79.48%

LBP7+LLBP 78.30% 79.10% 79.10% 79.48%
Contour+LBP6+LLBP 79.10% 79.48% 79.48% 80.23%

6 Conclusions and Future Work

We improve the traditional LBP feature extraction method in this paper, pure texture
feature is extracted by dividing the image more reasonably and it outperforms all the
baselines. Moreover,we integrate contour feature with texture feature by fuzzy integral
and the accuracy of age classification is increased. Here, we still divide the image into
rectangles. In fact, the regions can be irregular shape and will fit the shape of face
better. A further extension of our work is to utilize hair information, we plan to extract
the color and hairstyle information to get better performance.
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Abstract. The human visual cortex performs salient region detection,

a process critical to the rapid understanding of a scene. This is per-

formed on large arrays of locally interacting neurons that are slow to

simulate sequentially. In this paper we describe and evaluate a novel,

bio-inspired, cellular automata (CA) architecture for the determination

of the salient regions within a scene. This parallel processing architecture

is appropriate for implementation on a graphics processing unit (GPU).

We compare the performance of this algorithm against that of CPU im-

plemented salient region detectors. The CA algorithm is less subject to

variation due to changing scale, viewpoint and illumination conditions.

Also due to its GPU implementation, this algorithm is able to detect

salient regions faster than the CPU implemented algorithms.

Keywords: Cellular automata, Graphic Processing Units, Evolution,

Saliency, Low-level vision.

1 Introduction

The human vision system incorporates fast image processing algorithms that
are a function of low-level, local interactions between large quantities of parallel
processing neurons. These include orientation, frequency and color filters, edge,
as well as motion and salient region detection. We have had little success imi-
tating their function to a similar scale or speed on sequential systems[1]. New
parallel processing platforms such as the graphic processing unit (GPU) have
more comparable architectures to the biological visual cortex that may allow
us to simulate its function faster and on larger scales. However designing large-
scale, locally interacting parallel systems such that they perform some function
or display certain complex properties is computationally difficult.

Saliency is the measure of object conspicuity within the scene. This is de-
termined by the V4 region of the primary visual cortex and is used to direct
the rapid movements of the eye (saccades). In this paper we will show that a
large array of low-level processes can be effectively designed on, and for, a GPU
to determine the salient regions of any given scene. We will then compare the
speed and transformation invariance of this algorithm to that of three other

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 501–508, 2010.
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salient region detectors: the classic Itti and Koch algorithm[2] which uses a com-
bination of color, intensity and orientation filters, feature maps and local centre-
surround difference calculations; a directed, weighted graph-based visual saliency
(GBVS)[3] approach which uses a Markov chain analysis to detect conspicious
nodes; and a recently published algorithm that uses local entropy analysis to
determine regions for attention based on information maximization (AIM)[4].

2 Low-Level Architecture for Image Processing

One class of locally interacting arrays of small processors that have been used to
simulate biological computation is cellular automata. Cellular automata (CA)
are dynamic systems in which space and time are discrete. CA consist of a
number of identical cells in an array. Each cell can be in one of a number of states.
The next state of each cell is determined at discrete time intervals according to
the current state of the cell, the current state of the neighbouring cells and a
next-state rule that is identical for each cell.

Von Neumann developed CA to study self-reproducing systems. Since then
CA have been extensively used to study or mimic the capabilities of biological
systems [5]. CA have also been used to mimic some of the low-level capabil-
ities of biological vision systems. These include edge detection[6] and feature
extraction[7].

We propose to use a CA architecture with a set of bio-inspired image-
processing filters local to each cell. We will use an evolutionary algorithm to
determine how each cell calculates its next state from the output of these filters.

2.1 Proposed CA Architecture

The CA will be a bounded rectangular array that has the same dimensions as
the input image. The luminescence of each pixel of the input image is the initial
state (at time t = 0) of each cell.

Saliency is an output of the V4 region of the primary visual cortex. Between
this stage and the optic nerve are the V1 and V2 stages. These perform orienta-
tion, gradient and edge detection. We will use similar filters (applied locally to
a 10x10 neighbourhood about each cell) as inputs to each cell:

1. Orientation filters. Calculate the minimum,ψmin, maximum, ψmax, and stan-
dard deviation, ρψ , of the response of a bank of five Gabor filters defined by
the convolution kernel:

k(i, j) = e
−

i2 + j2

20 cos
(

2π

5
(i cos θ + j sin θ)

)
(1)

i, j ∈ [−5, 5], θ ∈ {0, 30, 60, 90, 120}
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2. Gradient filters. The mean response of ten gradient responses, �(x, y, θ)
about each cell cx,y.

� (x, y) =
√

(x′cx+x′,y+y′)2 + (y′cx+x′,y+y′)2 (2)

x′ = 5 cos(θ) y′ = 5 sin(θ)
θ ∈ {0, 18, 36, 54, 72, 90, 108, 126, 144, 162}

3. The standard deviation, ρc, and mean,c̄, state values within the cell neigh-
bourhood.

The scale and coefficients of each of these filters has been chosen for three
reasons: to maximise the difference in response to unique and common input
sources, to achieve an approximate conservation of sum pixel states across the
automata, and to achieve fast processing times. The first iteration (t = 1) will
be determined by a sum of five of these variables,λi (we exclude c̄ to improve
illumination invariance) weighted by various coefficients, ki. We are going to use
an evolutionary algorithm to choose values for ki.

ct=1,x,y =
∑

i

kiλi(ct=0,x,y) (3)

Further iterations are determined by the previous iteration, the six variables
and a decay function α.

ct+1,x,y = ct,x,y + α
∑

i

kiλi(ct,x,y), α = e−
t

2T (4)

Where T is the total number of iterations to be performed by the CA. The decay
function ensures the CA converges and the location of any output peaks is at the
centre of its corresponding inputs. By treating each cell in the neighbourhood
equally we ensure some degree of rotation invariance.

2.2 Implementation

As well as being an appropriate medium on which to mimic biological sys-
tems, CA are particularly suited for implementation on graphics processing units
(GPU). The GPU architecture allows us to execute many thousands of parallel
threads, but each thread must run the same code. This is comparable to a CA,
in which each of many thousands of cells run the same program synchronously.

3 The Evolutionary Design of Cellular Automata for
Image Processing

As saliency is such a subjective measure there may be one or more effective
solutions, making it an interesting task for evolutionary algorithms. We need
an evolutionary algorithm appropriate for exploring search spaces with many
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possible solutions. Here we describe the fitness function and mutation strategy
for the coefficients, ki, of equation (4).

3.1 Training Set and Fitness Function

To train our CA we create a set of test input grayscale images and use their
pixel saturations to set the initial states of each cell within the CA. We then
repeatedly iterate the CA, each cell using equations (3), (4) and evolved values
for ki to determine its next state. The final states ct=T,x,y of each cell within the
CA form a map of the salient regions in the image.

The test images we use are chosen for their different scale of features and
subject matter. For each image, I, in our training set we determine a saliency
map from Itti’s algorithm. The fitness of the evolved solution is determined as
a sum-of-squared differences between the final state of the CA and the saliency
map. Note that though this constrains the potential of our algorithm to detect
salient regions to that of the performance of Itti’s algorithm, we expect our
algorithm to outperform it by other metrics, such as speed, translation and
illumination invariance.

By loading the training images and their corresponding salient maps on the
device, we can test each solution with minimal host-device or device-host data
transfer; significantly speeding up the training stages of the evolution algorithm.

3.2 Mutation Algorithm

We use a variant of the HereBoy algorithm [8] for the mutation of this CA
because its version of constrained simulated annealing is particularly suited to
exploring search spaces with many possible solutions.

The HereBoy algorithm uses a population of two solutions: the best solution
so far and a mutation of this solution. In most cases, if the mutated solution
performs better than the current solution, the current is replaced with the mu-
tated. Otherwise the mutated solution is discarded and another mutation of the
best solution is evaluated.

The HereBoy algorithm first attempts to determine the general structure of
the solution with high mutation rates, then tries to refine it with lower mutation
rates. Thus the probability of mutating each coefficient ki is function of pre-
defined limits (pm,min, pm,max), the fitness of the solution and the expected
maximum fitness, fmax:

pm =
fmax − f

fmax
× (pm,max − pm,min) + pm,min (5)

In order to ensure the evolutionary algorithm doesn’t settle on local maxima of
the search space, occasionally the algorithm will select the sub-optimal solution
to mutate. The probability pr of this occurring is determined according to the
same formula for determining pm. We determine the limits of (5) by trial and
error.
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3.3 Evolved Solution

This algorithm took approximately three days1 to find the following maximum
in the search space:

ct=1,x,y = 0.95ρc + 0.1 � +0.75ψmin − 1.0ψmax − 0.9ρψ (6)
ct+1,x,y = ct + α(0.95ρc + 0.77c̄ + 0.1 � +0.75ψmin − 1.0ψmax − 0.9ρψ) (7)

Figure 1 shows the salient regions detected by this algorithm over 30 iterations.
Figure 2 compares the salient regions detected by this algorithm with those
detected by other salient region detectors. The input images for both figures are
from a set of images used to evaluate the performance of the AIM algorithm.
None of these images are part of the evolutionary algorithm training set.

Fig. 1. Example output of iterations t=5,10,15,20

Fig. 2. Input images from [4], then salient regions detected by Itti, GBVS, AIM and

CA algorithms

4 Performance of CA Salient Region Detectors

The salient regions detected by the CA are comparible in location and detail to
those of the Itti and GBVS algorithms; the detail returned by the AIM algorithm
is much greater than the others but at a cost to the speed of the algorithm. We
now need to test the sensitivity of this algorithm to transformations of the input,
that is, the salient regions of a scene should be the same regardless of the point
of view, illumination conditions and quality of the image capture device.
1 On an Intel Core 2, 2.8Ghz with an Nvidia C2050 GPU.
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4.1 Performance Metric

We test our salient region detector using a standard sequence of images provided
by Mikolajczyk[9]. This set includes various textured and structured images and
their transforms under illumination, scale, viewpoint, JPEG compression and
blur. This test was designed to compare detectors that return feature locations
and descriptions, so we have adapted the test to compare region detectors in-
stead.

Each set of images consists of the same scene subject to an increasingly large
transformation. Where this affects the image geometry this transformation is
described by a known affine transformation, (A, b̄). The error introduced by
the transformation is calculated as the sum-of-squared differences between the
salient regions detected in the original image and the transformed image.

1. The salient regions, s(I) of both the original image I0 and the transformed
image It are determined.

2. The affine transformation, xt = Ax + b, of It is used to correct for the
distortion of It, giving s(It)′.

3. The affine transformation of I will have affected the size and location of the
scene present in It. The part of I that is visible in It is calculated by taking
the inverse affine transform of the corners, c of the bounding box of I0:⎛⎝ ct

x

ct
y

1

⎞⎠ =
(

A−1 −A−1b
0 1

)⎛⎝ cx

cy

1

⎞⎠ (8)

4. The sum of squared differences,et between s(I0) and s(It)′ is calculated for
every pixel in this common part.

5. To compensate for the reduced area,at, (and thus potential error) of It, the
error introduced by the transformation,e is determined as e = eta0/at.

4.2 Results

Figure 3(a) shows the speed of this algorithm compared to that of the Itti,
AIM and GBVS algorithms. Note that the CA algorithm speed is primarily
executed on a GPU (Nvidia C2050) whereas the other algorithms are executed,
using MATLAB code provided by the authors, on a 2.8Ghz CPU. Figures 3(b-f)
compare the sensitivity of this algorithm to various input transformations. From
these results we can see the CA salient region detector performs well under
conditions of varying illumination, scale and viewpoint. However it does not
perform as well under compression and blur variance. We believe this is due to
the dependence of the algorithm on changes to local gradient and orientation
and might be corrected by the use of various de-blurring convolution filters.
Furthermore we believe the error due to viewpoint change could be improved by
the use of circular neighbourhoods about each cell, instead of the rectangular
neighbourhoods the algorithm currently uses. The speed of the CA algorithm
decreases relative to image size faster than the Itti and GBVS algorithm. This
is because as the CA gets larger, it also requires more iterations to distribute
feature information across the automata.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a) Speed vs Image size; (b-f) Error due to various input image transforms

5 Conclusions

The CA on a GPU architecture we propose is a biologically plausible emulation
of the architecture of the visual cortex and runs considerably faster than CPU
alternatives. With the assistance of an evolutionary design algorithm we have
designed this CA to perform salient region detection. This salient region detec-
tor has proved more invariant to illumination, scale and viewpoint transforms
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than three other salient region detectors (Itti, AIM and GBVS). However this
algorithm was more susceptible to variation under compression and blur trans-
formations.
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Abstract. We have examined Virtual Generalizing Random Access Memory 
Weightless Neural Networks (VG-RAM WNN) as platform for depth map 
inference from static monocular images. For that, we have designed, 
implemented and compared the performance of VG-RAM WNN systems 
against that of depth estimation systems based on Markov Random Field 
(MRF) models. While not surpassing the performance of such systems, our 
results are consistent to theirs, and allow us to infer important features of the 
human visual cortex. 

Keywords: Monocular depth perception, weightless neural networks. 

1   Introduction 

Humans perceive the world visually in three dimensions; however, the eye itself is 
blind to depth, capturing the environment around us in images as two-dimensional as 
a photograph. It is the brain that enables our sense of depth, inferring three-
dimensional world models from the two-dimensional visual data it receives [1]. 

The human visual system is extremely good at estimating depth from static 
monocular images [2]. To do so, it uses monocular cues such as texture gradient 
variations, occlusions, known object sizes, haze, etc [2, 3]. Saxena, through his 
research on machine-learning algorithms based on Markov Random Field (MRF) 
models, showed that it is possible to reliably estimate depth maps based solely on 
static monocular information [3]; however, his results lack biological plausibility, 
since, as far as we know, there is no relationship between MRF and the workings of 
the visual cortex. In this paper we examine Virtual Generalizing Random Access 
Memory Weightless Neural Networks (VG-RAM WNN) as a platform for depth map 
inference from static monocular images. 

VG-RAM WNN model the excitatory/inhibitory decoding performed by the 
dendritic trees of biological neurons [4]. As a machine-learning approach, they are 
more closely related to the biological domain than MRF. Previous success stories as 
computer vision tool (see, e.g. [5, 6]) also indicate its viability as a basis for 
production systems development, such as robot vision systems. Here, we introduce 
the VG-RAM WNN HoriZontal SlidEr MulTichannel Architecture (ZETA), designed 
for estimating depth from static monocular images. While not surpassing the 
performance of Saxena’s systems [3] – an objective for further research – our results 
with ZETA are consistent to his and allow us to infer important features of the human 
visual cortex. 
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2   Visual Cues for Depth Perception 

The visual system reconstructs a three-dimensional representation of the world around 
us from the two-dimensional images projected onto the retinas. This reconstruction is 
based on cues both monocular and stereoscopic. Monocular cues include some – such 
as motion parallax and defocus – that are better suited for depth estimation in 
continuous visual streams; others, such as texture differences, texture gradients, color 
distribution, and edges are more appropriate for depth estimation from static images. 
Stereoscopic cues are basically the binocular disparity caused by slight projection 
differences of the images on our two retinas (stereoscopic depth perception is out of 
the scope of this paper and is not discussed further). 

A surface’s texture “is related to periodical luminosity fluctuations in the image, 
which let us interpret the surface as a homogenous structure” [7]. The visual 
perception of a surface’s texture also varies with observer distance; as the point of 
view recedes over a surface, its texture’s features soften, eventually becoming 
undistinguishable. This is called a texture gradient [8]. For example, in Fig. 1(a), the 
street pavement’s stones become ever smaller and less defined as the point of view 
retreats, thus forming a texture gradient that produces a particular sensation of depth. 

Edges (i.e. the limits between differently colored or textured surfaces) and color 
information also provide important cues for depth estimation. Sudden depth variations 
often lie in the limits between scene objects, while surfaces filled with the same or 
very similar colors tend to belong to the same object and to possess constant depth. 

 

 
(a) (b) (c) 

 
(d) 

Fig. 1. (a) Monocular image with natural depth information. (b) Ground truth depth. (c) Best 
performing MRF estimation. (d) Best performing VG-RAM WNN estimation. 

3   Markov Random Field Approach for Monocular Depth 
Perception 

The Saxena’s [3] MRF-based depth estimators work by sectioning input images into 
rectangular patches and then calculating two sets of features (absolute and relative) 
for each patch. Those features attempt to capture three types of local visual cues: 
texture variations, texture gradients, and color. Also, in order to capture global 
features, the slicing is repeated at three different scales. Finally, summary features are 
calculated for each patch column. So, for each patch, a feature vector is constructed 
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from its own absolute and relatives features, plus those of its immediate neighbors at 
all three scales and the summary features of the column it belongs to [3].  

A patch’s absolute features are given by 
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where L1, ..., L9 are the nine Laws Filters [3], P1, ..., P6 are six oriented edge detectors 
spaced at 30o intervals [3], Hi, Si and Vi are the Hue, Saturation and Value (brightness) 
image channels (HSV image format) of the i-th input image patch, and 
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is the absolute and quadratic sum of the output of each filter over the i-th input image 
patch. Also, for each patch i taken from the image I(x, y) at spatial scale s, a 10-
column histogram is calculated for each filter output |I*F|, resulting in a 170-
dimensional feature vector 
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where L1, ..., L9 are the nine Laws Filters, P1, ..., P6 are the six Prewitt 
Filters, Hi, Si and Vi are the H, S and V channels of the i-th patch of the input image at 
the s-th spatial scale, and H10 is the filter output’s 10-dimensional histogram. Relative 
characteristics between two patches i and j are calculated as the difference between 
their histograms, i.e. yijs = yis - yjs.  

The absolute and relative feature vectors are fed to statistical models trained to 
maximize the probability P(d|X) (conditional probability of depth d, given the input 
feature vector X) using images and corresponding ground truth. Both Gaussian and 
Laplacian probability distributions were examined by Saxena according to the models 
below [3]: 
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The Gaussian distribution (4) has parameters θr and σ2
1r for patches on row r, 

and σ2
2rs for patches on row r at scale s. For the Lapacian distribution (5), the 

parameters are θr and λ1r for patches on row r, and λ2rs for patches on row r at 
scale s. On both cases, M is the total number of patches. See [3] to learn how these 
parameters are adjusted to minimize (4) and (5) for a set of images and corresponding 
ground truth. To compute the depth map of an input image, its patches are feed to (4) 
or (5) and the depth d that minimizes (4) or (5) for each patch is taken. 
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4   VG-RAM WNN Approach for Monocular Depth Perception 

VG-RAM WNN neurons work by associating, during the training phase, input bit-
arrays (collected from the input by the neurons synapses) to outputs (in our case, depth 
values); the pairs {bit-arrays, depth} seen during training are stored into the neurons’ 
RAM. During the test phase, when presented with a (potentially unseen) input, the 
neurons collect a bit-array from the input and respond with the output associated to the 
closest (according to the Hamming distance) learned pair. Despite its remarkable 
simplicity, VG-RAM WNN is a powerful machine learning tool [4, 5, 6, 9]. 

The ZETA VG-RAM WNN architecture (see Fig. 2) estimates, for images of 
dimension (n, m), depth maps of dimension (l, k), such that l < n and k < m. It is 
composed of z neural layers, each containing k VG-RAM WNN neurons, and an input 
window of dimensions (5σ, m) (we discuss σ below), which “slides along” input 
images horizontally. As the window advances in steps of n/l pixels, each neuron 
samples a patch of dimensions (5σ, m/k) using its set of synapses (Fig. 2(b)), whose 
size is determined by the ZETA parameter w. Before being sampled, each patch is 
decomposed across four dimensions – the (i) Hue, (ii) Saturation and (iii) Value 
channels of the HSV image format, plus the (iv) output of a Sobel Edge Detection 
filter applied to the Value channel (Fig. 2(c)). 

The section of the input window from which a neuron samples via its synapses is 
its receptive field. The receptive fields of neurons on the same layer are stacked 
contiguously as a column of height m, while the receptive fields of neurons of 
equivalent positions on different layers are coincident (Fig. 2 (b)). However, the latter 
sample their receptive fields through randomly-distributed synapses; therefore, even 
neurons looking at the same region will have different inputs. As a result, during 
testing, each image patch may be assigned as many as z distinct depth estimates (one 
for each neuron assigned to the patch). 

At setup time, a neuron’s synapses are randomly laid over its visual field according 
to a Gaussian distribution of mean (5σ/2, m/2k) and standard deviation σ – a 
connection pattern frequently found in biologic neural networks [1, 6] – and retain 
that layout for the remainder of the session. Further, in a way analogous to that of 
biological on center / off center retinal neurons, synapses convert their numeric inputs 
to bit outputs by forming pairs called minchinton cells [10]. In the ZETA architecture, 
each synapse wt forms a minchinton cell with the next synapse wt+1 (ww forms a cell 
with w1). Each minchinton cell returns the bit 1 if wt’s value is greater than wt+1’s, and 
0 otherwise [6]. 

ZETA’s input window and neuron layout are inspired by the fact that depth map 
value distributions often start with larger values at the image’s “top” (mostly due to 
far-off structures, such as the sky and distant buildings) and decrease towards the 
“bottom” (usually dominated by the scene’s ground or close-by objects). On the other 
hand, the patch decomposition is inspired in the human visual system, which has 
neural circuits to capture a scene’s luminance (HSV’s Value channel) and colors (Hue 
and Saturation), as well as to detect edges [1]. 

During training, the network scans input images horizontally and each neuron 
associates the multi-dimensional view of the input patch currently centered on its 
receptive field to the corresponding ground truth depth value; then the focus moves on 
to the next column. The testing process is very similar – the network scans the test 
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input horizontally, collecting neural depth estimations as it moves along – with the 
important difference that the Winner-Take-All algorithm is used to resolve a single 
depth estimate for each patch out of the possible z hypotheses (Fig. 2(d)). 

 

 

Fig. 2. Schematics of the ZETA VG-RAM WNN architecture. As the network’s view window 
(patch column i) slides across the input image (a) of dimension (n, m), each neuron N[1]...N[k] 
of each Layer 1...z is fed with an input patch P[i, 1…k] according to its position and host layer 
(b). Patches are decomposed into four dimensions (three HSV channels plus an edge map) 
which are sampled by the neuron’s synapses (c). After all input patches have been processed, 
the Winner-Take-All algorithm is used to collapse the multiple depth estimates into a single 
depth map (d). 

5   Methodology 

In order to enable direct quantitative comparison with Saxena’s results, we have 
adopted the same data base and metrics used in his work [3]. The data base contains 
425 samples, each composed by one input image and accompanying ground truth 
depth map, obtained with a high resolution camera and laser range scan SICK LMS-
291 mounted on a robot. Images have 1704x2272-pixel resolution and depth maps 
have 86x107-pixel size. 

Saxena employs the Mean Absolute Error (MAE) metric to evaluate his systems’ 
performance. In order to emphasize multiplicative rather than additive errors, all 
depth values are transformed to log10 scale prior to metric calculation. The resulting 
logarithmic MAE (logMAE) metric for a given estimated depth map Sk and ground 
truth depth map Rk, both of dimensions (m, n), can be defined as: 
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As previously mentioned, most depth maps display a value distribution in which 
values at the image’s “top” typically belong to far-off structures, while those at the 
“bottom” typically belong to the ground or close-by objects. In order to allow closer 
examination of the impact of this distribution on the overall estimation performance, 
we also calculate the logarithmic MAE of the i-th row (logMAEi): 
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6   Experiments 

To find ZETA’s optimal parameters, we executed several validation sessions, in 
which 190 (44%) of the 425 samples were used for training and 94 (22%) were used 
to evaluate the network’s performance. Once the optimal parameters were 
determined, all 284 validation cases (66%) were used to train the network, while the 
hold-out 141 cases (33%) were used to measure its performance in a final test session. 
Results of the validation phase are shown in Table 1. 

Table 1. ZETA’s performance in the validation phase. Cell values are the network’s logMAE 
performance as a function of synapse dispersion (σ) and number of synapses per neuron (w).  

W σ 
32 64 128 256 

5 0.193 0.190 0.188 0.186 
10 0.193 0.190 0.189 0.187 
20 0.190 0.190 0.188 0.186 
40 0.192 0.188 0.185 0.180 

 
For a fixed layer depth z = 10 (the maximum value supported by the machine 

employed in the experiments), the synapse dispersion factor (σ) was varied within the 
set of values {5, 10, 20, 40} and the number of synapses per neuron within the set of 
values {32, 64, 128, 256}. As Table 1 shows, ZETA’s performance improves as both 
the synapse count and field of view (σ) of each neuron increases. In fact, we were not 
able to find a point after which this trend would seem to weaken due to the limitations 
of the machine available for the experiments (an Intel machine with 2GB of RAM). 

Once the best parameters supported by our test environment were determined, we 
proceeded with the final test round, whose results are compared with Saxena’s in Fig. 
3 (see also Fig. 1 for a visual comparison with the depth map estimates for one image 
of the hold-out set). Additionally to overall logMAE results, we also plot mean 
logMAEi values to further illustrate ZETA’s performance; as Saxena has not 
published row-wise results for his MRF estimators, comparing row-wise ZETA’s 
performance with that of MRF is not possible.  

In the graph of Fig. 3, the y-axis is the logMAEi, while the x-axis is the line of the 
depth map. As the graph shows, ZETA’s performance is poorest around lines 30-60, 
which roughly corresponds to the "middle" of the images – not surprisingly, this is the 
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region where the most complex visual structures are found. ZETA’s performance 
improves near the “bottom” of the images (right side of the graph), which mostly 
depict the ground and close-by structures. It’s also noticeable that, while much more 
reliable than Saxena’s baseline MRF system, on average ZETA does not outperforms 
the best (Laplacian) MRF estimator. 

 

ZETA0,161

MRF Baseline
0,295

MRF Laplacian0,132

0

0,05
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0,15
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0,25
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0,35

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

 

Fig. 3. Comparison between ZETA’s and Saxena’s results. The dotted line plots ZETA’s 
logMAEi (y-axis) as a function of the depth map line (x-axis). Full lines in the graph represent 
the logMAE of ZETA and Saxena’s MRF for the whole hold-out set. 

7   Conclusions 

In this work we developed the ZETA VG-RAM Weightless Neural Network (WNN) 
architecture, which demonstrates one way how WNN neurons can be wired to learn – 
and from then on consistently estimate – relationships between visual inputs (in the 
form of static monocular images) and depth values. This is a novel approach since, to 
the best of our knowledge, WNN’s were not previously considered as a depth 
estimation tool; furthermore, it raises the question of whether – and if yes, where and 
how – biological neural circuits involved in depth perception employ architectural 
solutions similar to those adopted in our implementation of ZETA. 

In order to assess ZETA’s performance, its depth estimations were quantitatively 
compared to those of Saxena’s MRF systems [3] in terms of deviation from a laser-
produced ground-truth using the logarithmic Mean Absolute Error (logMAE) metric. 
While the VG-RAM WNN estimator did not outperform the best MRF estimator in 
average, their performances were similar; besides, the overall results are promising, 
and motivate further work on improving the VG-RAM WNN estimator. 

Since the input decomposition across the dimensions of color and edges – 
processes known to occur in the human brain – was found to enhance our network’s 
performance, we conjecture that adding other dimensions could further that trend. In 
particular, we believe that enabling the network to simultaneously “see” inputs across 
several scales, as well as enabling vertical image screening movements, could 
enhance our system’s generalization significantly. 



516 H.P. Filho and A.F. De Souza 

References 

1. Kandel, E., Schwartz, J., Jessell, T.: Principles of Neural Science, 4th edn. McGraw-Hill, 
New York (2000) 

2. Loomis, J.M.: Looking down is looking up. Nature 414, 155–156 (2001) 
3. Saxena, A., Chung, S.H., Ng, A.Y.: 3-D Depth Reconstruction from a Single Still Image. 

International Journal of Computer Vision 76(1), 53–69 (2008) 
4. Aleksander, I., De Gregorio, M., França, F.M.G., Lima, P.M.V., Morton, H.: A Brief 

Introduction to Weightless Neural Systems. In: 17th European Symposium on Artificial 
Neural Networks, pp. 299–305. d-side publications, Evere (2009) 

5. Rohwer, R., Morciniec, M.: A Theoretical and Experimental Account of n-Tuple Classifier 
Performance. Neural Computation 8(3), 629–642 (1996) 

6. De Souza, A.F., Badue, C., Pedroni, F., Dias, S.S., De Souza, H.O., De Souza, S.F.: Face 
Recognition with VG-RAM Weightless Neural Networks. In: Kůrková, V., Neruda, R., 
Koutník, J. (eds.) ICANN 2008, Part I. LNCS, vol. 5163, pp. 951–960. Springer, 
Heidelberg (2008) 

7. Krylov, A.S., Kutovoi, A., Leow, W.K.: Texture parameterization with Hermite functions. 
In: 5th International Conference on Computer Graphics & Vision, University of Nizhny 
Novgorod, Russia (2002) 

8. Krantz, J.H.: Texture Gradient,  
http://psych.hanover.edu/krantz/art/texture.html 

9. Carneiro, R.V., Dias, S.S., Fardim Júnior, D., Oliveira, H., Garcez, A.A., De Souza, A.F.: 
Improving VG-RAM Neural Networks Performance Using Knowledge Correlation. In: 
King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, vol. 4232,  
pp. 427–436. Springer, Heidelberg (2006) 

10. Mitchell, R.J., Bishop, J.M., Box, S.K., Hawker, J.F.: Comparison of Some Methods for 
Processing Grey Level Data in Weightless Networks. In: Austin, J. (ed.) RAM-Based 
Neural Networks, pp. 61–70. World Scientific, Singapore (1998) 



K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 517–524, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Semi-supervised Classification by Local Coordination 

Gelan Yang1, Xue Xu2, Gang Yang3, and Jianming Zhang4 

1 Hunan City University, Department of Computer Science, Yiyang, China 
2 University of Science and Technology of China, Department of Automation,  

Hefei, China 
3 Department of Power & Energy Systems, Ecole Supérieur d’Electricité  

(Supélec), Gif-sur-Yvette Cedex, Franc 
4 College of Computer and Communication Engineering  

Changsha University of Science and Technology, Changsha, China 
glyang@mail.ustc.edu.cn 

Abstract. Graph-based methods for semi-supervised learning use graph to 
smooth the labels of the points. However, most of them are transductive thus 
can’t give predictions for the unlabeled data outside the training set directly. In 
this paper, we propose an inductive graph-based algorithm that produces a 
classifier defined on the whole ambient space. A smooth nonlinear projection 
between the sample space and the label value space is achieved by local 
dimension reduction and coordination. The effectiveness of the proposed 
algorithm is demonstrated by the experiment.  

Keywords: mixture of factor analyzers; local linear coordinate; semi-supervised 
classification; manifold learning. 

1   Introduction 

Traditionally, the knowledge over labeled data is agglomerated and applied to new 
data. However, in many real life machine learning tasks, such as web page 
classification and document indexing, the acquisition of labeled data is costly, while 
large amount of unlabeled samples can be obtained easily. It means that, the structural 
information that can be inferred from the labeled data may be very limited; however, 
by taking advantage of the geometrical knowledge of both labeled and unlabeled data, 
it is possible to solve the problem. Semi-supervised learning context that learns from 
both labeled and unlabeled samples has drawn great attentions over the past few 
years. The relatively comprehensive surveys are given by [1] and [2], respectively. An 
older version can be found in [3], and a special discussion on inductive methods is 
presented in [4]. 

The graph-based technique provides a useful approach for modeling the 
relationship between labeled and unlabeled data. In this modeling scenario, data is 
represented by the nodes of a graph, and the edges in the graph are labeled with the 
pairwise distances of the incident nodes. The graph-based methods are based on the 
assumption that the nearby points are likely to have the close label. Most of them are 
intrinsically transductive, which means that they give predictions only for the 
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unlabeled data in the training set, and can’t be easily extended to the new test point. 
Several approximation methods have been proposed. Zhu et al. advised that the 
nearest neighbor label value could be used for the test example [5]. Similarly in [6], 
the affine transformation of the nearest neighbor was computed and applied to the test 
point. Chapelle et al [7] approximately represented the test points as a linear 
combination of training set in the feature space. These approximation methods are 
effective when the training set is large enough, but they can’t present a smooth 
projection on the ambient space. Natural out of sample extensions are realized by 
manifold regularization [8], where the graph is merely used to regularize an inductive 
kernel. Finding a linear mapping that minimizes the cost function of the nonlinear 
eigenmap can also produce an inductive classifier [9]. The harmonic mixture models 
that naturally handle the induction as standard mixture models are proposed in [10].  

Similar to harmonic mixture models, our method is also based on mixture models 
and graph technique. The main idea is to transform the sample space into a 1-
dimensional space under the label restriction. Mixture of Factor Analyzers (MFA) 
[11] is used to perform local dimension reduction, and local linear coordination [12] 
helps to achieve the smooth nonlinear transformation. Experiments on several data 
sets show the effectiveness of our method. 

2   Semi-supervised Local Coordination 

2.1   MFA for Local Dimension Reduction  

Many high-dimensional data in real-world applications can be modeled as data points 
lying close to a low-dimensional nonlinear manifold. The mixture of factor analyzers 
is used  here to capture the complex structure embedded in the sample data.  

In the factor analysis, a D  dimensional observed data x is modeled by a 
corresponding  zd  dimensional latent variable z . The generative model is represented 

as  μ+Λ= zx , where Λ  denotes the factor loading matrix and μ accounts for the 
independent noise. The probability models for factors z and random variable  μ  are 
separately assumed to be  ),0( IN , and  ),0( ΨN , where Ψ is set as a diagonal matrix. 
A natural extension of factor analysis on complex data is MFA, where the high-
dimensional data x  is modeled  as 
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redundancy. Similar to FA, the observed data  x  and the low-dimensional data z  are 

connected by  ),(),( ΨΛ+= zNzxP qqq μϖ , where qμ  and qΛ  are separately the mean 
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value and the loading matrix. MFA’s parameters  qπ , qΛ , qμ , Ψ ,  Qq ,,1=  can be 

obtained by EM algorithms[11]. As a result, the local counterpart of x  in the thq  
factor analyzer can be represented as  
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We take  [ ]TTzz 1ˆ =  as the augmented vector form of z . At last, the sampled 

high-dimensional data  }{ D
n RxxX ∈= ,,1  can be changed into  Q   set of low-

dimensional data. Let qiẑ  and qih  separately denote ix ’s counterpart in the thq  factor 

analyzer and the corresponding probability. 

2.2   Aligning Local Models by Local Coordination  

In the above part, the Q  sets of low-dimensional data are obtained by MFA. Next the 
local coordinate will be aligned together to recover a global parameterization of the 
manifold. Roweis et al[14] added a regularizing term to the standard maximum 
likelihood objective function to encourage the agreement of the internal coordinates. 
Brand [15] introduced a cost function that measured the amount of disagreements 
between the linear models on the global coordinates. Local coordination is proposed 
in [11] where affine transformation is used to align the local models. 

Local coordination is relatively easy to realize and is adopted here to align the Q  

sets of local coordinates. Let qT   denote the affine transformation to align the thq  

factor analyzer, the global coordinate can be represented as  
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Here, q  and m can be combined to form a new index as ),( mqjj = , Let 

mqiqiji zhz ,ˆ~ = , mqj TT ,

~
= . Then, the former representation is rewritten as   
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Its matrix form is ZTY
~~= . Here T

~
is composed by the local affine transformation qT . 

2.3   Label Smoothness 

Label smoothness is achieved by graph-based technique. Let iΓ  be a vector of indices 

of points in the )1( −k  neighbor of  ix , and ⎥
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Here, σ is a scale parameter set by  )1( −Γ−= ki i
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⋅ denotes the Frobenius norm, pB is a sparse matrix satisfying 
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information. Afterwards, the label constraints should be considered. Let L be the 

collection of indices of labeled points, and  is  is the flag to identify the labeled points 

satisfying 
⎩
⎨
⎧

∉
∈

=
Li

Li
si 0

1
, and  [ ]nffF ,,1=  denote the given label value. 

Then, the label error of  ix can be defined as  
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The loss function  )(YErrp  defined both on approximation error and label error can 

be written as 
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Here, ii s
n

l
a ))1(( ββ +−=  is the tradeoff parameter at  iy , l  is the number of 

labeled points, β  is the minimal weight coefficient set by the user, and 
{ }naadiagA ,,1=  is a diagonal matrix. When minimizing (11), the optimal 

solution can be easily obtained, shown in Eq. (12). 
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value. We take ∑
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ln

1γ as the decision threshold for classification. 

3   Experiment Results  

There are three different types of data sets used in our experiments. MNIST is a 
dataset of 60,000 handwritten digit images, and each 28 × 28 image is considered as a 
point in the 784-dimensional space. Every time, 2000 images of 2 classes are 
randomly selected for training, and rest of the images are used for testing. The final 
accuracy is averaged by all 45 combinations of the 10-class digits. The ADA and 
GINA datasets are both binary classification datasets. The ADA dataset originates 
from the marketing domain, and consists of 4,147 datapoints in a 48-dimensional 
space. The GINA dataset is a handwriting recognition dataset that has 3,153 
datapoints described by 970 features.  

In the experiments, SLC (Semi-supervised local coordinate) is compared with 
other three inductive methods: LPP, NPE [16] and LLTSA [17]. Here, LPP is 
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performed in semi-supervised manner [18]. NPE and LLTSA are semi-supervised 
extended with prior information [19]. The final results on all data sets are separately 
listed in tables 1, 2 and 3, and the best performance is shown in bold. The result in 
table 1 shows that SLC outperforms other methods on MNIST in all cases. Table 2 
demonstrates the superiority of SLC and LPP on ADA. In table 3, the classification 
accuracy reveals the benefits of both SLC and LLTSA. From these results, we can see 
that, SLC is a relatively robust classification algorithm, and achieves good 
performance on all the data sets.  

Table 1. Semi-supervised classification on MNIST dataset 

Classification Accuracy 
Label proportion 

LPP NPE LLTSA SLC 

0.1% 0.736 0.733 0.685 0.969 

0.3% 0.849 0.865 0.731 0.984 

0.5% 0.902 0.899 0.742 0.984 

1% 0.917 0.945 0.830 0.983 

3% 0.937 0.943 0.864 0.985 

5% 0.959 0.961 0.913 0.987 

10% 0.971 0.971 0.945 0.990 

20% 0.981 0.979 0.965 0.992 

Table 2. Semi-supervised classification on ADA dataset 

Classification Accuracy 
Label proportion 

LPP NPE LLTSA SLC 

0.1% 0.528 0.525 0.381 0.518 

0.3% 0.543 0.532 0.428 0.484 

0.5% 0.623 0.599 0.477 0.620 

1% 0.679 0.642 0.628 0.720 

3% 0.663 0.590 0.648 0.700 

5% 0.713 0.699 0.662 0.714 

10% 0.741 0.738 0.719 0.723 

20% 0.755 0.746 0.744 0.731 
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Table 3. Semi-supervised classification on gina dataset 

Classification Accuracy 
Label proportion 

LPP NPE LLTSA SLC 

0.1% 0.532 0.526 0.597 0.486 

0.3% 0.581 0.565 0.618 0.647 

0.5% 0.584 0.577 0.642 0.610 

1% 0.588 0.592 0.645 0.630 

3% 0.646 0.650 0.669 0.684 

5% 0.682 
0.692 

0.701 0.729 

10% 0.710 0.725 0.713 0.767 

20% 0.763 0.775 0.775 0.799 

4   Conclusions  

An inductive semi-supervised classification algorithm SLC is presented in this paper. 
It combines the label constraint and the graph-based constraint to establish a smooth 
nonlinear transformation for classification. Mixtures models are used here to handle 
the induction, and local approximation ensures the label smoothness on the graph. 
The experimental results demonstrate the effectiveness of the proposed approach. 
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Abstract. In this paper, a simple method for ellipse detection is pro-

posed and applied in central catadioptric camera calibration. It consists

of two phases. Firstly it locates ellipse center candidates using center

symmetry of ellipses, and the detected edge points are grouped into sev-

eral subsets according to the center candidates. Then all the ellipses are

fitted by performing RANSAC for each subset. We also present an ap-

proach for calibrating a central catadioptric camera based on the bound-

ing ellipse of the catadioptric image. Using the proposed ellipse detection

method, we can easily detect the bounding ellipse. As a result, a simple

self-calibration can be realized, which can be used in some applications

where high accuracy of the calibration is not required. Experiments show

the proposed method is effective.

Keywords: Ellipse detection, central catadioptric camera, camera cali-

bration.

1 Introduction

Detection of ellipses or circles from an image of a scene is very useful in many
vision applications such as object location, tracking, and camera calibration etc.
Hutter and Brewer [10] fit an ellipse to the image of the vehicle wheel for ve-
hicle pose determination. Kwolek [12] uses an ellipse model to approximate the
image of the human head in head tracking. Ying et al [16, 17] use the images
of spheres, which are ellipses, to calibrate central catadioptric cameras. For de-
tecting structures in images, Hough transform and RANSAC are generally used
robust techniques. However, an ellipse has five parameters which include loca-
tion, shape, and orientation. So directly applying Hough transform to ellipse
detection requires a five-dimensional accumulator. It is impractical because of
the huge computation and storage. On the other hand, it is well known that
RANSAC also needs a huge computation if the ratio of the inliers is low.

In papers[1,9],ellipse detection is decomposed into two stages. The first stage
detects the ellipse center, and the second stage determines the other parameters.
The method in [1] requires accurate calculation of the gradients and tangents of
the edge pixels, which is sensitive to the image noise and time-consuming. The

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 525–532, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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method in [9] firstly determines two symmetry axes by the Hough transform
following the horizontal and vertical scanning, whose cross is the ellipse center,
and then uses the geometry symmetry to determine the other parameters. Xu et
al.[15] develop the Randomized Hough Transform (RHT) which randomly selects
five points in each iteration and use them to vote on the ellipse parameters. The
accuracy and speed of this algorithm depend on the ratio of the inliers, which
is similar to RANSAC. If the ratio is low, the number of the random sampling
should be large, and then the computation is heavy.

Many computer vision applications expect a large field of view such as robot
navigation, surveillance, teleconferencing and virtual reality etc. One effective
way to enlarge the field of view is to combine mirrors with conventional cameras,
which is called a catadioptric imaging system [2]. A catadioptric system with a
unique viewpoint is called a central catadioptric system. A central catadioptric
system [2] can be built by setting a parabolic mirror in front of an orthographic
camera, or a hyperbolic, elliptical, planar mirror in front of a perspective camera,
where the single viewpoint constraint can be fulfilled via a careful alignment
of the mirror and the camera. Previous calibration methods [3,4,13,16,17] for
central catadioptric cameras are mainly based on the projections of lines. Nearly
all these approaches need conic fitting since a line in space is projected to a
conic in a central catadioptric image, and the accuracy of the calibration highly
depends on the accuracy of the conic fitting. The conic is called the line image. In
general, only a small segment of the conic is visible in the catadioptric image due
to the partial occlusion, which makes the conic estimation hard to accomplish.
Wu et al [14] present a calibration method of no conic estimation, but it is
mainly for para-catadioptric cameras. Moreover, there are few algorithms for self-
calibration. Kang[11] proposes a nonlinear self-calibration method to calibrate
a para-catadioptric system by tracking feature correspondences across multiple
views. Since the omni-directional images have large distortion, finding feature
correspondences is not a trivial task.

In this work, similar to several previous approaches, ellipse detection is de-
composed into two phases. Firstly ellipse center candidates are detected using
center symmetry of ellipses, and the detected edge points are grouped into sev-
eral subsets according to the center candidates. Then all the ellipses are fitted
by performing RANSAC for each subset. Using the proposed ellipse detection
method, we can easily detect the bounding ellipse of the catadioptric image. As
a result, a simple self-calibration method is presented, which can be used in some
applications where high accuracy of the calibration is not required or serve as a
good initial estimation. Section 2 shows the ellipse detection. Section 3 describes
the proposed calibration method. Experimental results are reported in Section
4, and followed are some conclusions in Section 5.

2 Ellipse Detection

An ellipse is a conic, and can be generally represented as follows:

ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0 (1)
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Given an image, the task of the ellipse detection is to decide whether the image
contains an ellipse, and to determine the ellipse equation (1) if an ellipse is
present. Similar to previous approaches [1,9], we decompose the ellipse detection
into two phases. The ellipse center candidates are detected in the first phase,
and other parameters are determined in the second phase.

It is well known that an ellipse is symmetrical on the ellipse center, and
the middle point of any two symmetric points is the ellipse center. For an image
containing ellipses, the edge map can be easily obtained using the Canny or other
edge operator. Since each pair of symmetric points of one ellipse will cast a vote
on its center, while each pair of dissymmetrical points casts a vote dispersedly,
ellipse center candidates can be detected by the voting from the middle point of
each two points. For each ellipse center candidate, there is an associated subset
of symmetric points.

In the second phase, we use RANSAC to estimate the ellipse equation (1)
for each ellipse candidate. RANSAC is an iterative method for robust fitting
of a model from a set of observed data which contains many outliers. Assume
that the ratio of the inliers is ρ, the minimal data set for determining the model
includes k data points, and the probability that there is a good sampling among
the M samplings is z, then [6]

M =
log(1 − z)
log(1 − ρk)

(2)

From the equation (2), we can see that the number M increases with the ratio
ρ decreasing and with the data number k increasing. Generally speaking, the
number k should be 5 for ellipse parameter estimation when using RANSAC
directly, since an ellipse has 5 parameters. So the sampling number M will be
very large and the computation is impractical if the ratio of inliers is very low.
However, here the point number of the minimal data set for determining the
ellipse is 3 because only three geometry parameters need to be determined. Since
the ratio of inliers in each subset is very high for each ellipse center candidate, the
sampling number will be very small in the propose method, and the parameters
can be detected accurately and quickly by RANSAC.

Finally, we need to verify whether each detected ellipse candidate is a real
ellipse since we use a threshold in detecting the center candidates. For each
ellipse candidate, we can determine the following parameters from equation (1):

E = ac − b2, F = a + c, H =

∣∣∣∣∣∣
a b d
b c e
d e f

∣∣∣∣∣∣ (3)

An ellipse should subject to the condition [15]:

H 	= 0, E > 0, FH ≤ 0 (4)

where, the ellipse is a circle if E = 0.
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3 Central Catadioptric Camera Calibration Based on the
Boundary Ellipse

3.1 Central Catadioptric Camera

Geyer and Daniilidis [8] show that the central catadioptric imaging process is
equivalent to the following two-step mapping by a sphere (see Fig. 1):

1) Under the viewing sphere coordinate system Oxyz, a 3D point X =
[x, y, z]T is projected to a point Xs on the unit sphere centered at the viewpoint
O by Xs = [x/r, y/r, z/r]T , r = ||X||.

2) The point Xs on the viewing sphere is projected to a point m on the image
plane Π by a pinhole camera through the perspective center Oc. The image plane
is perpendicular to the line going through the viewpoints O and Oc, and it is
also called the catadioptric image plane.

Fig. 1. Central catadioptric camera

In this camera system, the optical axes of the pinhole camera is the line
OcO, and thus its principal point is the intersection, p = [u0, v0, 1]T , of the line
OcO with the image plane Π. The distance from point O to Oc, ξ = ||O −
Oc|| is called the mirror parameter, which determines the mirror used in the
central catadioptric camera. The mirror is a paraboloid if ξ = 1, an ellipsoid or
a hyperboloid if 0 < ξ < 1 , and a plane if ξ = 0. The details can be found in
[8]. In this paper, we assume 0 < ξ ≤ 1, i.e. do not consider the case of plane
mirror. Let the intrinsic matrix of the pinhole camera be

K =

⎡⎣ rf s u0

0 f v0

0 0 1

⎤⎦ . (5)
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Where f is the effective focal length; r is the aspect ratio; p = [u0, v0, 1]T is the
principal point; s is the parameter describing the skew of the two image axes.
Then, the catadioptric image of a space point X is

m = λK[I, ξe]
[
Xs

1

]
= λK(Xs + ξe), (6)

with λ being a scalar, I the 3 × 3 identical matrix, and e = [0, 0, 1]T .
In the catadioptric camera calibration, there are totally six parameters {r, f, s,

u0, v0, ξ} to be determined.

3.2 Calibration Based on the Boundary Ellipse

It’s well known that the mirror boundary of the central catadioptric camera is
a circle and the projection of the mirror boundary is an ellipse (see Fig.2). The
optical axis is perpendicular to the plane containing the circle and goes through
the center of the circle, so the center of the bounding ellipse is the principal
point [u0, v0, 1]T . In [7, 11], partial intrinsic parameters of the camera can be
determined from the bounding ellipse of the catadioptric image. In fact, since
both the eccentricity ε of the mirror and the field of view (FOV) are usually
known, we can determine all intrinsic parameters from the bounding ellipse.
Here the mirror parameter ξ can be obtained from the eccentricity ε of the
mirror as [8]:

ξ =
2ε

1 + ε2
(7)

Let the distance from the optical center Oc to the center Ob of the boundary
circle be h and the radius of the circle be q. As Fig.2 shows, q and h can be
decided from FOV, i.e. q = sin θ, h = ξ + cos θ, θ = FOV

2 . Assume that the
coordinate of a point on the mirror boundary under the perspective coordinate
system Ocxcyczc is X = (x, y, h)T , and its image point is m = (u, v, 1)T . Then,

K−1m =
1
h
X,mTωm = mTK−TK−1m =

XTX
h2 = 1 +

q2

h2 (8)

Where ω = K−TK−1 is the image of the absolute conic (IAC) of the pinhole
camera. Then the bounding ellipse can be expressed as:

mTCm = 0. (9)

where,C ≈ (ω − λE3),ω11 = 1
rf ,λ = 1 + q2

h2 , E3 =

⎡⎣0 0 0
0 0 0
0 0 1

⎤⎦. In addition, the

catadioptric image of the 3D mirror point X0 = (q, 0, h)T is

m0 =
1
h
KX0 = (

rfq
h

+ u0, v0, 1)T (10)
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It is one intersection of the bounding ellipse and the line v = v0 on the image
plane. So we can determine the item ω11 of the IAC from the image point m0,
and the IAC can be uniquely determined by the item ω11 and the bounding
ellipse equation (9). Thus, all camera intrinsic parameters can be obtained by
using Choleskey decomposition of the IAC.

Fig. 2. Mirror boundary and its projection

4 Experimental Results

Fig.3a shows an image with a resolution of 2048×1536, which is taken by a
catadioptric system consisting of a perspective camera with a hyperbolic mirror.
The mirror is designed by the Center for Machine Perception, Czech Techni-
cal University, its FOV is 217.2 degree, and the eccentricity of the hyperbolic
mirror is 1.302, corresponding to ξ = 0.966. Fig.3b shows the edge map. The
detected ellipse center and the symmetrical point set are also shown in Fig.3b.
The boundary ellipse detected by RANSAC is shown in Fig.3a, and Fig.3c shows
the rectified image using the calibration result.

We can see from the figures that there are many outliers among the symmet-
rical point sets of the two images, and the ellipse detection using RANSAC is
very accurate. From the rectified images, we can see that the rectified lines are
roughly straight, which shows that the calibration approach is effective. Further-
more, we optimize the calibration results by using the constraint that a space line
is projected onto a great circle on the view sphere. The used line image points
are manually chosen. The rectified image using the optimizing results is shown
in Fig.3d. By comparing the rectified lines, we can see that the optimization
improves the calibration results and the calibration accuracy of the proposed
algorithm is not high. However, it realizes a simple self-calibration and can be
used in some applications where high accuracy of the calibration is not required
or serve as a good initial estimation.
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(a) (b)

(c) (d)

Fig. 3. The hypercatadioptric camera: (a) The image and the boundary ellipse. (b) The

edge map and the symmetrical point set. (c) The rectified image using the proposed

calibration. (d) the rectified image after optimization.

5 Conclusion

In this work, a simple method for ellipse detection is proposed and applied in
catadioptric camera calibration. Similar to several previous approaches, the el-
lipse detection is decomposed into two phases. Firstly ellipse center candidates
are detected using center symmetry of ellipses, and the detected edge points
are grouped into several subsets according to the center candidates. Then all
the ellipses are fitted by performing RANSAC for each subset. Using the pro-
posed ellipse detection method, we can easily detect the bounding ellipse of
the catadioptric image. As a result, a simple self-calibration method for central
catadioptric cameras is presented, which can be used in some applications where
high accuracy of the calibration is not required. Experiments demonstrate the
efficiency of the proposed method. Of course, the calibration accuracy can be
improved by an optimizing process automatically. This is our future work.
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Abstract. For a support vector machine (SVM) classifier applied to image 
annotation, if too many training samples are used, the training speed might be 
very slow and also bring the problem of declining the classification accuracy. 
Learning vector quantization (LVQ) technique provides a framework to select 
some representative vectors which can be used to train the classifier instead of 
using original training data. A novel method which combines affinity 
propagation algorithm based LVQ technique and SVM classifier is proposed to 
annotate images. Experimental results demonstrate that proposed method has a 
better speed performance than that of SVM without applying LVQ. 

Keywords: automatic image annotation, learning vector quantization, affinity 
propagation, support vector machine, training speed. 

1   Introduction 

Automatically describing images with some semantic words is the goal of automatic 
image annotation (AIA). In recent years, various methods of AIA have been proposed 
[1][2][3], among them, the most common method was to regard each annotation word 
as a category label, thus, classifiers could be used to annotate images. Besides, in 
AIA, one image is often divided into some blocks, and each block is regarded as a 
training sample for classifiers instead of segmented regions [2][3][4], because there is 
still no general method that can achieve perfect segmentation results at present. 

As a kind of efficient classifier, support vector machine (SVM) [5], which is 
especially dominant on small sample size data, has been widely used in AIA[3][4][6]. 
Among these studies, Shao et al [6] adopted SVM to implement image annotation by 
dividing the visual descriptors into different image categories. Chen et al [4] 
combined diversity density algorithm and SVM for image categorization, Cusano et 
al [3] randomly selected 1500 points from the training set to train SVM for AIA. In 
spite of the improvement of classification accuracy in those research works, the 
training set still has many samples, which does not satisfy the small sample size 
characteristics of SVM, and too many samples will slow the training process. 
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Therefore, if we select some representative samples rather than all samples (e.g. 
selecting hundreds of samples from tens of thousands of samples) for SVM training, it 
may not only speed up the training process observably, but also can accelerate the 
annotation process because of producing sparse support vectors. 

Learning vector quantization (LVQ) [7] is a framework to acquire a small number 
of representative vectors from the training data. Chang et al [8] adopted LVQ 
technique to initialize RBF network for texture image classification. In [9] and [10], 
LVQ was used to reduce the feature vector dimension, while Jiang et al [11] utilized 
LVQ to refine training data. However, in those works, LVQ was realized in a 
traditional way, namely, Self-Organizing Feature Map (SOM) [7]. SOM has two 
obvious shortcomings: low speed and poor robustness. As another realization of LVQ, 
affinity propagation (AP) algorithm [12] could overcome those shortcomings. Frey 
and Dueck [12][13] verified that AP algorithm achieves competitive classification 
performance and robust results in image categorization. Yang et al [14] applied AP 
algorithm to obtain Gaussian mixture model parameters in AIA. Considering the 
excellent performance of AP and the characteristics of SVM, we proposed a 
combination method of AP-based LVQ and SVM to speed up the training and 
annotation process of AIA. 

2   Background 

Here we briefly review the algorithms which are referred in this work. 

2.1   Learning Vector Quantization 

The basic idea of LVQ is to map k-dimensional vectors in the vector space Rk into a 
finite set of vectors Y={yi|i=1, 2, …, N}. Each vector yi is called a codeword. And the 
set of all the codeword is called a codebook. Thus, this idea can be realized by 
applying clustering algorithms to select codeword. The earliest realization of LVQ is 
achieved by using SOM algorithm [7]. 

SOM is a model of neural network, which consists of an input layer and a 
competitive layer, which is usually considered as output layer. It clusters the input 
vectors through a competitive learning process: First, it computes the distances 
between the input vector and all connection weights vectors. Then, the neuron closest 
to the input vector as the winning neuron is selected. Final result is achieved through 
adjusting the connection weight vectors iteratively. 

2.2   Affinity Propagation Algorithm 

AP algorithm [12] can be applied as a clustering algorithm. The similarity set between 
all pairs of data points is taken as input. Similarity s(i,k) indicates how well the data 
point k is suited to be the exemplar for point i. s(k,k) for each data point k is known as 
“preference”, it is a parameter required to input by user. The larger values of s(k,k), 
the more clusters will be generated.  
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Two kinds of messages are exchanged between data points. The responsibility 
r(i,k) reflects the accumulated evidence for how well-suited point k is to serve as the 
exemplar for point i. The availability a(i,k) reflects the accumulated evidence for how 
appropriate it would be for point i to choose point k as its exemplar. Messages are 
iteratively updated according to some rules until a set of exemplars emerges. 

2.3   SVM 

As a kind of efficient classifier, SVM [5] is known having good generalization 
capability, and it is especially suitable for the problem of small number amount of 
samples with high dimension setting.  

SVM distinguishes different classes through looking for their boundaries, which 
are determined by some points near boundaries known as support vectors. So, when 
training sample set is too large, it will need a lot of time to train, and many support 
vectors are generated. Consequently, generalization performance and classification 
accuracy may be degraded, and the speed of the classification will also be slow.  

3   Proposed Scheme 

The proposed scheme is illustrated as Fig. 1, which contains training stage and 
annotation stage. 

3.1   Training 

Feature Extraction. Each image is divided into a set of blocks for feature extraction, 
and feature extracted from each block is represented as a vector. 

LVQ-A (LVQ with AP algorithm). In this stage, a few representative feature points 
(i.e. codebook) are selected for each class from the full training sample set with AP 
algorithm, and these representative points compose a concise training set for SVM. 
Assuming there are C categories in the training set, M images for each class, K blocks 
of every image, and the number of representative points for each class is L (L<<K), 
thus, the original training set has M×C×K points, it can be decreased to L×C points, 
size of training set is reduced M×K/L times. 

Directly refining M×C×K points to L×C points would take huge memory space, 
also greatly increase the computational complexity, therefore, this stage should be 
further divided into following two sub-stages: 

1) LVQ applied to single-image. Empirically, for each training image, we select about 
30 representative points by AP from K feature points. So, the “preference” parameter 
should be determined in advance for the approximately fixed 30 points. Yang et al 
[14] found there was an approximately linear relationship between logarithm of the 
preference and logarithm of the cluster number. Corresponding preference parameter 
can be determined by that relationship. 
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Fig. 1. Framework of the proposed scheme 

2) LVQ applied to group-image. In the previous step, representative points have been 
selected for each image. Then, for selecting more general codebook for each class, 
the representative points chosen from the images of same class are gathered as the 
input of AP algorithm. After executing AP once more, codebooks for all categories 
can be obtained. According to result of experiments, we set 100 representative points 
for each class (i.e. let L≈100). Likewise, the preference parameter needs to be 
determined. At this point, the previous method is no longer applicable, because it is 
found that the number of clusters was sensitive to the preference parameter when 
L≥50, the preference value changed slightly could lead to significant changes in 
number of clusters. Via experiments, the empirical estimation of preference 
parameter can be obtained. 

Training SVM. The refined representative point set is adopted as training samples to 
train SVM with LIBSVM algorithm. 

3.2   Annotation 

For each test image, it will take the same method to extract the features as in training 
phase. Then, with the trained SVM, each block is classified into corresponding class. 
And for each class, we calculate the number of blocks which have been classified into 
it, and annotate the test image with the class label including most of blocks. 

4   Experimental Results 

In this section, we first describe the experiment setup, then analyze the experimental 
results on the three aspects: preference parameters setting for AP, selecting the size of 
codebook and comparative evaluation of the proposed method. 

4.1   Experimental Setup 

Image dataset are collected from two parts: 1) a subset of Corel Database downloaded 
from [15] , including almost 4,000 images belonging to 4 categories; 2) some pictures 
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from the Internet. We choose a subset of 500 images which covers 5 classes: “tiger”, 
“elephant”, “horse”, “car” and “airplane”. Each class contains 100 images, half of 
them is used for training and half of for testing. 

In following experiments, all images were rescaled to the size of about 100,000 
pixels. Then, each image was divided into a set of overlapping 32×32 blocks, with a 
sliding window moving by 16 pixels separately in the horizontal and vertical 
direction. Since all images contain roughly the same number pixels, they also contain 
approximately same number of blocks (about 350). Two types features are extracted 
for each block: Haralick feature [16] and Tamura feature [17]. Haralick feature is a 
kind of texture feature based on gray co-occurrence matrix, which leads to a 256-
dimensional feature vector. Tamura feature describes texture properties from 
psychological perspective, which lead to a 6-dimensional feature vector. In this work, 
we combine these two types of features, and a 262-dimensional vector can be 
acquired for each block. 

Notice that in description of the following three experiments, the values of training 
time does not contain the time on sub-blocks division and feature extraction, because 
it is the same for each compared algorithm. 

In addition, for the experiment an available SVM algorithm in MATLAB named 
LIBSVM was downloaded from [18]. 

4.2   Experiment 1: Preference Parameter Setting for AP 

To get the approximately fixed cluster number, we have to set the value of preference 
parameter for AP in advance. However, the method in [14] is no longer suitable for 
image-level clustering at which larger cluster number is desired. Especially, for data 
in different classes, setting the same preference parameter may result in a big 
difference in cluster number, and we found that the cluster number depends on the 
median of the input similarities. So, we assign  

pref = fac×medi ,                                                       (1) 

where pref denotes the value preference parameter, medi represents the median of the 
input similarities, and fac is a positive number. Apolynomial is adopted to describe 
the relationship between fac and the number of cluster, defined as: 

y=ax+b+cx-1+dx-2,                                              (2)ï

where x represents the number of clusters, y denotes fac value, a, b, c, d are the 
parameters need to be determined. In this experiment, we found that for the same 
cluster number, the fac values of tiger, elephant, car and airplane could be roughly 
equated, and the fac of horse was 1.1 times of others. Therefore, we  can use one 
polynomial to get the desired number of clusters for every class. Here, a=0.001,  
b=-0.25, c=130, d=-300 are set respectively. The fitting curve is shown in Fig. 2. 
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Fig. 2. fac vs. number of clusters 

4.3   Experiment 2: Selection the Size of Codebook 

To analyze the effect of the size of the codebook, we considered five codebook sizes 
of 50, 70, 100, 150 and 200 representative points for each class, respectively. The 
training time and classification accuracy of these sizes are listed in Table 1.  

Table 1. The training time and accuracy for different codebook size 

Codebook size 50 70 100 150 200 
Training time(sec) 362 372 388 426 499 
Accuracy (%) 73.5 76.5 79 77.8 79 

 
As shown in Table 1, the codebook size of 100 had the highest classification 

accuracy of 79%, and the training time was only a litter longer than the smallest size 
of 50. Therefore, the codebook size of 100 was selected as a standard size in the 
proposed method which compared with other methods in the following experiment.  

4.4   Experiment 3: Comparative Studies 

In order to evaluate the speed performance of the proposed method, we compared it 
with LVQ-B (i.e. LVQ realized by SOM neural network) preprocessing plus SVM 
[11], and the SVM trained by using original sample set. 

Owing to greatly reducing size of training sample set (e.g. 87462 points are 
reduced into 492, in this experiment, almost 180 times reduction) and high efficiency 
of the AP algorithm, proposed method (SVM combined with LVQ-A) win out 
obviously at training speed (shown as Fig.3.(a)). Fig. 3(b) illustrates LVQ based 
methods are also much faster than the SVM without LVQ on classification because of 
the reduction of support vector number. And proposed method performs more 
outstandingly with the more number of categories. 

As for the accuracy of classification, besides to the three methods above, the 
Quadratic Discriminant Analysis (QDA) [19] with LVQ-A and QDA without LVQ 
are compared also. QDA is another classifier deferent from SVM, it requires large 
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sample size with low dimensionality data. Here, the dimension of feature vectors was 
reduced to 30 by principal component analysis (PCA). In Table 2, we can see that 
there is no decline in accuracy when SVM is combined with LVQ, even the accuracy 
is improved in [11], while the relatively large accuracy loss of QDA is caused by a 
combination of LVQ. The results demonstrate that such a LVQ method is not 
applicable to those classifiers requiring large number of training samples, which in 
turn prove the feasibility of the LVQ method for SVM. 
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Fig. 3. The propose method is compared with LVQ-B +SVM and original SVM. (a) training 
time; (b) classification time. 

Table 2. The accuracy comparison for various algorithms 

Number of categories 2 3 4 5 
LVQ-A+SVM 100% 98.5% 85.1% 79% 
LVQ-B+SVM 99.7% 97.5% 82.6% 73.5% 

SVM 100% 99.3% 86.9% 82% 
LVQ-A+QDA 100% 99.2% 74.5% 68.5% 

QDA 98.8% 100% 82.5% 76% 

5   Conclusion 

In this paper, a fast image annotation method, which incorporates AP-based LVQ 
technique and SVM classifier, is proposed. In this method, AP algorithm based LVQ 
technique is used to reduce the size of the training set, and a general method for AP is 
suggested to get desired cluster number. Experimental results confirm that the 
proposed annotation method has an excellent acceleration performance both on 
training and annotation phrase compared with the SVM on original training set and 
the SVM combined with SOM-based LVQ. And the advantage of the proposed 
method is more obvious for more samples and categories. Moreover, the comparison 
of accuracy also shows the feasibility of the proposed method.  
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Abstract. We introduce new methods for creation of a dictionary of fea-

tures for a biologically inspired model of visual object classification that is

shown to handle the recognition of several object categories. We provide a

new method for creation of this features dictionary using non-supervised

cortex like methods. Different clustering approaches were experimented

and improved performance is achieved on image centers which results in

real time classification of images by HMAX model.

Keywords: Dictionary of features, hierarchical structure, biologically

inspired, clustering, HMAX.

1 Introduction

Object recognition in cortex is thought to be mediated by the ventral visual
pathway running from primary visual cortex, V1, over extrastriate visual areas
V2 and V4 to inferotemporal cortex, IT. Over the last decades, several phys-
iological studies in non-human primates have established a core of basic facts
about cortical mechanisms of recognition that seem to be widely accepted and
that confirm and refine older data from neuropsychology. A brief summary of
this consensus knowledge begins with the ground-breaking work of Hubel and
Wiesel first in the cat [1] and then in the macaque [2]. Starting from simple cells
in primary visual cortex, V1, with small receptive fields that respond preferably
to oriented bars, neurons along the ventral stream show an increase in receptive
field size as well as in the complexity of their preferred stimuli.

HMAX is a hierarchical computational model of object recognition in cortex
proposed by Riesenhuber and Poggio [3]. The standard model simulates the
feed-forward path of the visual cortex and has been used to classify animal vs.
non-animal images and paper clip images first and is similar to Neocognitron
[4] in using both simple and complex cells. This model is used to find a good
tradeoff between invariance and selectivity. A dictionary of features is created
� Corresponding Author.
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by randomly sampling over the images in the higher levels of this structure
and is used for performing classification of images in the supervised level of
the structure. In this paper, we investigate different non-random methods for
sampling and compare its performance with existing models.

In this paper, we introduce the HMAX model in Section 1.1. In Section 2
we introduce our implementation of the model and provide the experimental
results of our modifications to the dictionary of features created by the model
and discuss the achievements of modification followed by conclusion and future
works proposals in Section 3.

1.1 Related Work

The standard HMAX model consists of S1, C1, S2 and C2 layers, followed by
a classifier such as Support Vector Machine. The structure begins with a gray
scale input image which is fed into the S1 layer. In S1 layer a fixed size of Gabor
filters is implemented on different scales of the images which provides the same
invariance to scale for Gabor filters [5,6]. In this model, an image is fed into the
structure and 10 different scales of the image are created as input to S1 layer.
Gabor filters in 4 directions in their standard model, and 16 directions in their
extended model are created based on Eq. 1 and convolved on the images.

G(x, y) = exp
(
− (X2 + γ2Y 2)

2σ2

)
cos

(
2π

λ
X

)
(1)

These outputs are sent to C1 layer, which performs a local max operation on
both size and position of the filter responses. The response of a patch of pixels
X to a particular S1 filter G is given by Eq. 2

R(x, y) =

∣∣∣∣∣
∑

XiGi√∑
X2

i

∣∣∣∣∣ (2)

The output of this layer will be between 500-2000 different patches of size 4×4,
8×8, 12×12 and 16×16 depending on the size of the input image. In this level,
a dictionary of features is randomly sampled from these patch windows. One or
two samples are randomly sampled from each training image, and a feature’s
dictionary of size 4075 of prototypes is created. The response of a patch of C1
units X to a articular S2 feature/prototype P, of size n×n, is given by a Gaussian
radial basis function in Eq. 3.

R(x, P ) = exp
(
−‖ X − P ‖2

2σ2α

)
(3)

In order to train the SVM, the distance of each sample from each training image
with each entry on the dictionary is calculated and the max is taken in C2
layer. These features are sent to the SVM for training. For testing images the
same hierarchical procedure is repeated and the performance of the system is
calculated. They proposed a few modifications to improve the performance of
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the system such as creating sparse prototypes and take the max response from
all directions for each window. The other proposed modification is to run a SVM
normals method [7] to select the features with higher weights. SVM is run a few
times, and each time features with lower weights are dropped. In the previous
model proposed by Serre et.al [8] this hierarchical structure is repeated to create
S3 and C3 layers, and in another implementation, S2b and C2b layers are also
created to bypass S2 and C2 layers in creating the dictionary [9].

2 Implementation and Results

The use of random sampling to create the dictionary of features for the model,
was a prospective investigation possibility which motivated us to compare the
performance of a non random sampling method with random sampling and in-
vestigate the role of compressive sampling in this case. The image dataset used
for these experiments was Caltech101 [10], which includes 101 classes of objects
plus a background category. Each class contains between 35 to 800 color images,
in different sizes. Most categories have about 50 images. The size of each image
is roughly 300 x 200 pixels. We used 30 randomly chosen images for training
from each class and the rest of the images were used in the test phase. In [5,11]
random sampling is performed on each image, and one or two samples from each
image are added to a dictionary to create a dictionary of size 4075. Samples
are selected from each image in different positions and scales using a random
generator function with a Gaussian distribution, based on the number of images
per class and by taking a different number of samples from each image.

We performed different non-random sampling methods and compared their
performance in an extensive set of experiments. Clustering can be considered
the most important unsupervised learning problem; so, as every other problem
of this kind, it deals with finding a structure in a collection of unlabeled data. We
performed a K-means clustering after sampling more samples from each image
in different approaches. Different number of samples and different number of
clusters were tested in a series of approaches. For clustering we used a standard
K-means algorithm. Whenever an empty cluster was created in the batch update
phase, we created a new cluster consisting of the one point furthest from its
centroid. Squared Euclidean distance was chosen as the distance measure, so
that each centroid is the mean of the points in the corresponding cluster. We
used the K-means function in Statistical Toolbox of Matlab(R) for clustering.

2.1 Clustering over Images from All Classes

In the first approach, we sampled between 5 to 20 random samples per image
individually, to achieve a more dense sampling and added these samples to the
dictionary of features, resulting in a very big features dictionary of size 15000 to
60000. We then performed a clustering over the whole dictionary and created a
dictionary of sizes 1000 to 9000. We evaluated the performance of the system 8
times for each sample number and dictionary size and the average performance
on each size was calculated. The results can be seen in Fig. 1.
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Fig. 1. Sampling over all images and performing clustering over the whole samples to

create the dictionary of features

2.2 Performing Clustering on Images Individually

In another approach, we sampled all the possible positions of C1 features for
each image non-randomly and added between 3 to 10 clusters per image to the
dictionary and evaluated the performance of the system. Furthermore we per-
formed sampling on more features from each image in another set of experiments,
and performed another clustering on the whole dictionary again to reduce the
number of features to 4075. As can be seen in Fig. 2, the classification accuracy
achieved in this method, is around 52.69% in the best case.
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Fig. 2. Sampling over one single image and performing clustering in image level

2.3 Clustering over Images of Each Class and Investigating K-NN
Algorithm Performance

In the third approach, we performed sampling on images of each class separately.
Different number of samples were chosen for each image both randomly and
non-randomly. In the case of non-random sampling, a regular scanning over all
possible sizes and positions was conducted with a step size depending on the
ratio of number of possible positions for sampling over number of samples to be
sampled from each image. We sampled different numbers of samples from each
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Fig. 3. Sampling over each class of images

image and created 3 different categories. Small number of samples standing for
100-300 samples in each image, 300-600 samples per image for medium number
of sampling, and 600-2000 for large number of samples. For all the samplings
the ratio of the number of clusters over each class to number of samples per
image, was kept around 0.1 as it showed best performance. The results of these
experiments can be seen in Fig. 3 In another experiment, we tried skipping the
higher levels of the hierarchy to evaluate the performance of S2 dictionary in a K-
NN method. We created a dictionary of features as described above (sampling
over each class of images) and labeled each sample according to its class of
images. In the test phase, we sampled from each image 10-90 random samples,
and found the K-NN matches (K varying between 10 to 100) with the existing
dictionary of features, and assigned the image to the class based on a majority
voting of the minimum distance with dictionary prototypes. In the classification
phase, k is a user-defined constant, and an unlabeled vector (a query or test
point) is classified by assigning the label which is most frequent among the k
training samples nearest to that query point. Different approaches were taken
here such as sampling randomly, non-randomly, sampling more features from
each image, and performing a clustering afterwards, but none of them resulted
in a performance better than 10 percent, which is very low in comparison with
the 52+ % performance we achieved with the previous method.

The high performance achieved here, emphasizes on the role of attention and
selection of samples which have more information on each class. In another ex-
periment in this level, we used only images of one class, and created a dictionary
from those images, and used this dictionary to classify the whole dataset, and we
achieved high performances of correct classification. However, the performance
was slightly lower than sampling over all the classes, this suggests that these
features can be used to create a universal dictionary of features for classification
in this model.

2.4 Sampling over Center of Images

Since most of the images in Caltech101 are focused on the center, in another
approach we tried sampling from the center of images which we assumed there
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Fig. 4. Creating the dictionary of features from the center of images rather than the

whole image

exist more meaningful information related to objects, and less information re-
garding background. We tried different sizes of center of image from a quarter
to half, and tested it on two different modes. One is to create the dictionary of
features from the center of images, and in the testing and testing phase, work
with full size images. The results of this approach can be seen in Fig. 4. One
explanation to the reason of why clustering did not improve the performance
can be because the clusters created from images are both from background cat-
egories and object categories. Since in Caltech101 dataset, most objects are in
the center of the images, we tried clustering over only center of the images for
creating the dictionary of features. In this case, we sampled from the center
quarter of the image only, and created a dictionary of features from there. The
results of this approach can be seen in Table. 5. This approach did not beat the
performance of random sampling but we could achieve better performances with
smaller sizes for dictionary of features in comparison with random sampling.
All experiments were based on the GPU CUDA implementation code provided
in [5, 11] for hierarchical structures. In all samplings, the relationship between

1000 2000 3000 4000 5000 6000 7000 8000 9000
20

25

30

35

40

45

50

55

Number of Clusters

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Comparison of Random Sampling vs Clustering on Center of Images

 

 

Clustering Method
Random Sampling

Fig. 5. Comparing the Clustering method with Random Sampling on center quarter

of the images
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number of samples and number of clusters is kept reasonable. For instance in
the sampling of all the images, we sample 10 to 20 times more than number of
clusters. If the number of clusters is too high, the clustering has not much effect,
and if it is too low, the clustering performs an averaging on the features which
results in blurring and losing important information. Different number of clus-
ters were implemented and where the number of clusters were more than 10% of
number of samples, the performance was much lower, which with very low ratio,
we were getting good performances in the training set with over-fitting effect.

3 Discussion and Conclusions

As can be seen in Table 1, By sampling more features from each image and
clustering in image level, we achieve performances slightly higher than previ-
ous random sampling method. During the previous experiments, we came to
the point that with sampling only from the center of the images, a better per-
formance is acquired when clustering, in comparison with randomly sampling
from the images. The reason random sampling performs as good as clustering,
remains a matter of debate despite some similarities it has with compressive
sampling [12]. As shown in section 2.4, using clustering on the center quarter
of the image, gives much better classification performance in comparison with
random sampling. The lower performance of random sampling may be due to the
non-sparseness of the sampling domain, which is a requirement for the compres-
sive sampling. In compressive sampling, it is suggested that sampling randomly
over a sparse representation of a signal, will achieve the same performance with
dense sampling over the non-dense space, which results in less computational
costs.

Table 1. Comparison between Random method and Clustering Method Performance

(all numbers are the average of 8 random runs.)

Method Performance
Random Sampling 52.35
Clustering on each Image 52.69
Clustering on each Class 51.22
Clustering on all Images 48.62
Clustering on Center of Images 50.04

On the other hand, the averaging and blurring effects of clustering can be the
reason of equal performance with random sampling which are not necessarily the
best performance. The clusters created from images, are both from background
categories, and object categories, and clustering features of the center of the im-
ages, where most features are from objects rather than background, resulted in
better performance in comparison with random sampling on the same dictionary
size as can be seen in Fig. 5. This encourages us to find better interest points in
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images and perform this hierarchical structure on those interest points, rather
than random sampling or clustering. One prospective way is to use wavelet trans-
form to find points with higher information as interest points which are also used
in compressive sampling methods. Another possible approach will be selecting
Difference of Gaussian(DoG) function to generate interest points which are also
used in SIFT method [13].
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Abstract. Face recognition research still face challenge in some specific 
domains such as pose, illumination and Expression. In this paper, we proposes a 
highly robust method for face recognition with variant illumination, scaling, 
rotation, blur, reflection and expression. Techniques introduced in this work are 
composed of two parts. The first one is the detection of facial features by using 
the concepts of Trace Transform and Fourier transform. Then, in the second 
part, the Hausdorff distance is employed to measure and determine of similarity 
between the models and tested images. Finally, our method is evaluated with 
experiments on the AR, ORL, Yale and XM2VTS face databases and compared 
with other related works (e.g. Eigen face and Hausdorff ARTMAP). The 
extensive experimental results show that the average of accuracy rate of face 
recognition with variant illumination, scaling, rotation, blur, reflection and 
difference emotions  is  higher than 88%. 

1   Introduction 

Biometric identification system makes use of either physiological characteristics  
(such as a fingerprint, iris pattern, or face) or behavior patterns (such as hand-writing, 
voice, or key-stroke pattern) to identify a person. Because of human inherent 
protectiveness of his/her eyes, some people are reluctant to use eye identification 
systems. Face recognition has the benefit of being a passive, non intrusive system to 
verify personal identity in a “natural” and friendly way. In general, there are two 
approaches to face recognition systems: 1) Brightness-based, which make use of the 
pixel brightness directly or features in low dimensionality manifolds without shape 
information, such as PCA-based approaches, and 2) Feature-based, which involve the 
use of geometric features such as positions of facial features. The proposed method 
combines elements from both approaches. We compare its results with several 
traditional methods in typical experiments and demonstrate the superiority of the face 
representations proposed. The well-known approaches used for face recognition is 
based on the use of eigenfaces [1,2], elastic matching [3,4], neural networks [5, 6], 
waveletfaces [7], fisherfaces [8, 9], hausdorff ARTMAP [10] and trace transform 
[11,12,13]. This paper presents a face feature extraction and recognition method that 
employs the texture representation derived from the Trace transform. The rest of this 
paper is as follows. An introduction to the trace transform, its properties and its 
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relationship to other well known transforms are given in Section 2. The method of 
extracting the binary string and similarity measure are described in Section 3. Section 
4 presents the experimental results and then conclusions and some areas of further 
work are described in Section 5. 

2   Feature Extraction 

2.1   The Trace Transform 

Let  denote an image. A method to represent the characteristics of image  decided 
by ,  onto the horizontal axis  and the vertical axis , is called the trace 
transform [14]. The trace-line  is decided using the distance from the origin to  is 
denoted by , and the directional vector denoted by , as shown in Fig. 1(a). The 
trace-line  is represented by  , :     sin , and a function 
used in the trace transform is represented as : , , : , , . A matrix (or 
image) generated by the trace transform is called trace image as shown in Fig. 1 (b). 

 

 
 

(a)                                                  (b) 

Fig. 1. (a) Parameters of the trace transform. (b) A trace image visualized in 3D space. 

The trace image generated by the trace transform method has the following 
characteristics. If the original image rotates, its trace image shifts along the horizontal 
axis . If the original image translates to a certain vector, its trace image undergoes 
changes as follows. For convenience they are stated in terms of a trace matrix. 
Columns remain unchanged and stay in their places, though may shift up or down. A 
shift vector specifies numbers a and b such that a column with coordinate  shifts 
vertically to  cos .This is because of the characteristics, feature values 
extracted from an input image by trace transform are always invariant to transition 
and rotation.  

2.2   Robust Identifier  

The feature values for identifying face are calculated by the combination of values in 
a trace image decided by the trace transform using three functions called trace 
function , diametric function , and circus function . The trace function  is used 
to produce a trace image using an input image; the diametric function  is used to  
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produce a diametric matrix using the trace image; the circus function  is used to 
produce the final feature values using the diametric matrix. The procedural processing 
steps to extract the features are show in table below: 

Table 1. The processing steps for extract the values of  T, P and  

 
Step 1: Trace function, : , ,                                                                                 (1) 

• Trace transform is determined by the trace function . 
• Trace image is generated by the trace function. When rang of  is 0,2 , and the 

rang of  is , . 
 

Step 2: Diametric function, : , ,                                                                   (2) 
• The feature values are acquired by the diametric function P using the column values 

of the trace image. 
• The diametric is generated by the diametric function P using the parameter  of 

diametric moving direction. 
 

Step 3: Circus function, Φ Φ : , ,                                                                 (3) 
• The features are acquired by the circus function Φ using the diametric matrix and the 

parameter . 
 

 
For invariance to shift and amplitude scaling can be achieved by taking the Fourier 

transform of Eq. (3) Π Φ : , , ,                                            (4) 

then to exploiting the linearity identify and translation property of the Fourier 
transform give Π Φ  : , , .                                     (5) 

Taking the magnitude of Π Φ  gives |Π Φ | : , , .                                        (6) 

From Eq. (6) means that the original image and the modified image give equivalent 
descriptors except for the scaling factor .  

A binary string is acquired by taking the sign of the difference between neighboring 
coefficients, 0            |Π | |Π 1 | 0 1           .                                                         (7) 

The image identifier is then made up of these values , , … ,  for . 
The results are further improved by using different diametrical functionals to extract 
multiple component identifiers and concatenating them to obtain complete identifier 
as shown in Fig. 2. 
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                                 (a)                                         (b)                                           (c) 

Fig. 2. The binary identifier for an image (a) and its rotated version (b). The difference between 
the identifiers is show in (c). The identifier is 1D but has been mapped to 2D for presentation 
purposes only. 

3   Similarity Measure  

3.1   The Classical Hausdorff Distance 

Given two point sets A and B, the Hausdorff distance [15] between A and B is defined 
as , max , , , ,                                  (8) , max min ,                                (9) , max min ,                              (10) 

where ·  denotes some norm of points of A and B. This measure indicates the degree 
of similarity between two point sets. It can be calculated without an explicit pairing of 
points in their respective data sets. The conventional Hausdorff distance, however, is 
not robust to the presence of noise. Dubuisson et. al. [16] have studied 24 different 
variations of the Hausdorff distance in the presence of noise. A modified Hausdorff 
distance (MHD) using an average distance between the points of one set to the other 
set gives the best result. This measure is the most widely used in the task of object 
identification and defined as h B, A ∑ min a b ,                                  (11) 

with h(B,A) defined similarly. This modified Hausdorff distance is less sensitive to 
noise than the conventional one. It is possible, however, to end show the Hausdorff 
distance with even more attractive features as it is shown in the next section. 

3.2   The Hausdorff- Shape Context 

In this section, we propose an alternative way to find the minimum distance between 
point a and set B to overcome the above problem. Instead of finding the nearest 
distance, in our approach, the point descriptor, shape context, is used to find the best  
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Fig. 4. Some example of facial images in AR, ORL, Yale and XM2VTS  face databases 

In summary, our proposed method is robust to rotation, size variation and facial 
expression. From the inspection of the table 2, it was found that our proposed method 
performed better than the Eigen face method in all cases. Such robustness comes from 
the use of Trace transform, Fourier transform, Circle Function and matching measure 
in section 3. It also comes from the fact that only the flagged line is used rather than 
entire face representation which helps us maximize the matching between reference 
and test images. Another advantage of our approach is that, when new subjects are 
added to the system we do not need to retrain on the whole face database, in fact only 
images of the new subject are used to find the new optimal parameter of the 
algorithm. This may not be the case for Eigen face and Hausdorff ARPMAP: when 
new subjects are added to the face database, these systems must be retrained over the 
whole face database, which is a barrier for real applications. 

Table 2. Performance of our method 

Condition 
Success rate (%) 

Eigen face H-ARTMAP Our Method 

Normal case ≈90 ≈94 ≈96 

Scaling ± 50% ≈67 ≈58 ≈84 

Rotation ± 360o ≈54 ≈52 ≈96 

Scaling + Rotation ≈46 ≈49 ≈82 

Blur ±15% ≈70 ≈87 ≈81 

Illumination ≈67 ≈84 ≈85 

Reflection ≈90 ≈92 ≈96 

Smiling ≈82 ≈88 ≈89 

Angry ≈73 ≈82 ≈88 

Screaming ≈32 ≈31 ≈71 
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5   Conclusions 

This paper proposes a highly robust method for face recognition. Techniques 
introduced in this work are composed of two parts. The first one is the detection of 
facial features by using the concepts of Trace Transform, Fourier Transform and 
Circle Function.  Then, in the second part, the notions of Hausdorff distance and 
Image identifier algorithm are employed to measure and to determine the similarity 
between the models and the tested images. Our approach is evaluated by 
experimenting with 5,362 face images in the AR, ORL, Yale and XM2VTS face 
databases. The experimental result has shown that the average accuracy rate is higher 
than 88%. 
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Abstract. In this paper, we propose a novel feature processing approach based 
on fusion of noise and quantization residue features for detecting tampering or 
forgery in video sequences.  The evaluation of proposed residue features – the 
noise residue features and the quantization features, their transformation in 
optimal feature  subspace based on fisher linear discriminant features and 
canonical correlation analysis features, and their subsequent fusion for emulated 
copy-move tamper scenarios shows a significant improvement in tamper 
detection accuracy. 

Keywords: image tampering, digital forensics, feature selection, image fusion. 

1   Introduction  

Digital Image tampering or forgery has become major problem lately, due to ease of 
artificially synthesizing photographic fakes- for promoting a story by media channels 
and social networking websites. This is due to significant advances in computer 
graphics and animation technologies, and availability of low cost off-the-shelf digital 
image manipulation and cloning tools. With lack of proper regulatory frameworks and 
infrastructure for prosecution of such evolving cyber-crimes, there is an increasing 
dissatisfaction about increasing use of such tools for law enforcement, and a feeling 
of cynicism and mistrust among the civilian operating environments.  

Another problem this has lead to, is a slow diffusion of otherwise extremely 
efficient image based surveillance and identity authentication technologies in real-
world civilian operating scenarios. In this paper we propose a novel algorithmic 
framework for detecting image tampering and forgery based on extracting noise and 
quantization residue features, their transformation in cross-modal subspace and their 
multimodal fusion for intra-frame and inter-frame image pixel sub blocks in video 
sequences. The proposed algorithmic models allow detecting the tamper or forgery in 
low-bandwidth video (Internet streaming videos), using  blind and passive tamper 
detection techniques and attempt to model the source signatures embedded in camera 
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pre-processing chain. By sliding segmentation of image frames, we extract intra-
frame and inter-frame pixel sub-block residue features, transform them into optimal 
cross-modal subspace, and perform multimodal fusion to detect evolving image 
tampering attacks, such as JPEG double compression, re-sampling and retouching.  
The promising results presented here can result in the development of digital image 
forensic tools, which can help investigate and solve evolving cyber crimes.  

2   Background  

Digital image tamper detection can use either active tamper detection techniques or 
passive tamper detection techniques. A significant body of work, however is available 
on active tamper detection techniques, which involves embedding a digital watermark 
into the images when the images are captured. The problem with active tamper 
detection techniques is that  not all camera manufacturers embed the watermarks, and 
in general, most of the customers have a dislike towards cameras which  embed 
watermarks due to compromise in the image quality.  So there is a need for passive 
and blind tamper detection techniques with no watermark available in the images.  

Passive and blind image tamper detection is a relatively new area and recently 
some methods have been proposed in this area. Mainly these are of two categories  
[1, 2, 3, 4]. Fridrich [4] proposed a method based on hardware aspects, using the 
feature extracted from photos. This feature called sensor pattern noise is due to the 
hardware defects in cameras, and the tamper detection technique using this method 
resulted in an accuracy of 83% accuracy. Chang [5] proposed a method based on 
camera response function (CRF), resulting in detection accuracy of 87%, at a  false 
acceptance rate (FAR) of 15.58%. Chen et al. [6] proposed an approach for image 
tamper detection based on a natural image model, effective in detecting the change of 
correlation between image pixels, achieving an accuracy of 82%. Gou et al [7] 
introduced a new set of higher order statistical features to determine if a digital image 
has been tampered, and reported an accuracy of 71.48%.  Ng and Chang [8] proposed 
bi-coherence features for detecting image splicing. This method works by detecting 
the presence of abrupt discontinuities of the features and obtains an accuracy of 80%. 
Popescu and Farid [3] proposed different CFA (colour filter array) interpolation 
algorithms within an image, reporting an accuracy of 95.71% when using a 5x5 
interpolation kernel for two different cameras. A more complex type of passive 
tamper detection technique, known as “copy-move tampering” was  investigated by 
Bayram, Sencar, Dink and Memon [1,2] by using low cost digital media editing tools 
such as Cloning in Photoshop. This technique usually involves covering an unwanted 
scene in the image, by copying another scene from the same image, and pasting it 
onto the unwanted region. Further, the tamperer can use retouching tools, add noise, 
or compress the resulting image to make it look genuine and authentic. Finally, 
detecting tampers based on example-based texture synthesis scheme was proposed by 
Criminisi  et al[9] that is based on filling  in a region from sample textures. It is one of 
the state-of-the-art image impainting or tampering schemes. Gopi et al in [10] 
proposed a pattern recognition formulation and used auto regression coefficients and 
neural network classifier for tamper detection. 
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One of the objectives of the work reported here is development of robust and 
automatic tamper detection framework for low bandwidth Internet streamed videos 
where most of the fingerprints left by tamperer can be perturbed by heavy 
compression. However, by fusing multiple image tampering detectors, it could be 
possible to uncover the tampering in spite of the heavy compression, as different 
detectors use cues and artifacts at different stages of the image formation process. So 
if an image lacks certain cues, a complementary detector would be used for making a 
decision For example, a copy move forgery might have been created with two source 
images of similar quantization settings but very different cameras. In this case, the 
copy move forgery can be successfully detected by a different detector. We thus 
benefit from having several tamper detection modules at hand rather than only using 
the one type of detector. Another advantage of fusing several detector outputs to make 
a final decision is that, if one of the detector outputs noisy and erroneous scores, the  
other detectors could complement and enhance the reliability of the tamper decision. 
Therefore, the advantage of fusion is twofold: to handle images which were subjected 
to multiple, diverse types of tampering, and to boost the detection robustness and 
accuracy by making different modules work with each other. The challenge, however, 
lies in the synergistic fusion of diverse detectors as different detectors are based on 
different  physical principles and segmentation structures.  

We formulate the fusion problem in a Bayesian pattern recognition framework and 
use well known Gaussian Mixture Models for the task. The approach is based on 
detecting the tamper from the multiple image frames, by extracting noise and 
quantization residue features in intra-frame and inter-frame pixel sub blocks, 
transforming them into correlation subspace to extract the maximal correlation 
properties, and establish possible tampering of video. The approach extends the noise 
residue features reported by Hsu et al in [11] and is blind and passive, based on the 
hypothesis, that a typical tampering attacks such as double compression, re-sampling 
and retouching can inevitably disturb the correlation properties of the pixel sub-blocks 
within a frame (intra-frame) as well as between the frames (inter-frame) and can 
distinguish the fingerprints or signatures of genuine video from tampered video 
frames. The rest of the paper is organized as follows. Next Section describes the 
formulation of fusion problem. The details of the experimental results for the 
proposed fusion scheme is described in Section 4. The paper concludes in Section 5 
with some conclusions and plan for further work. 

3   Formulating the Fusion Problem  

The processing pipeline once the images or video is captured consists of several 
stages. First, the camera sensor (CCD) captures the natural light passing through the 
optical system. Generally, in consumer digital cameras, every pixel is detected by a 
CCD detector, and then passed through different colour filters called Color Filter 
Array (CFA). Then, the missing pixels in each color planes are filled in by a CFA 
interpolation. Finally, operations such as demosaicing, enhancement and gamma  
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correction are applied by the camera, and converted to a user-defined format, such as 
RAW, TIFF, and JPEG, and stored in the memory. 

Since the knowledge about the source and exact processing (details of the camera) 
used is not available for application scenarios considered in this work (low-bandwidth 
Internet streaming video), and which may not be authentic and already tampered, we 
extract a set of residual features for pixel sub-blocks within the frame and between 
adjacent frames from the video sequences. These residual features try to model and 
extract the fingerprints for source level post processing within any camera, such as 
denoising, quantization, compression, contrast enhancement, white balancing, image 
sharpening etc. In this work, we use only two types of residual features: noise residue 
features and quantization residue features.  

The  noise and quantization residue features were first extracted from 32 x 32 pixel 
intra-frame and inter-frame pixel sub-blocks of the video sequences. A feature 
selection algorithm was used to select those features that exhibit maximum 
correlation. We used feature selection techniques based on two different techniques:  
Fisher linear discriminant analysis (FLD), and canonical correlation Analysis (CCA). 
The details of the two feature selection techniques is described in [12] and [13].  

4   Experimental Results 

The video sequence data base from Internet streamed movies was collected and 
partitioned into separate subsets based on different actions and genres. The data 
collection protocol used was similar to the one described in [14]. Figure 1 shows 
screenshots corresponding to different actions, along with emulation of copy move 
tampered scenes and the detection of tampered regions with the proposed approach. 

Different sets of experiments were conducted to evaluate the performance of the 
proposed residue features in FLD (Fisher linear discriminant) and CCA( Canonical 
Correlation analysis)  sub-space and their fusion in terms of tamper detection 
accuracy. The experiments involved a training phase and a test phase. In the training 
phase a Gaussian Mixture Model for each video sequence from data base was 
constructed [15]. In the test phase, copy-move tamper attack was emulated by 
artificially tampering the training data. The tampered processing involved copy cut 
pastes of small regions in the images and hard to view affine artefacts. Two different 
types of tampers were examined. An intra-frame tamper, where the tampering occurs 
in some of the pixel sub-blocks within the same frame, and inter-frame tamper, where 
pixel sub-blocks from adjacent frames were used. However, in this paper, we present 
and discuss results for the intra-frame tamper scenario only.  

As can be seen from Table 1, which show the tamper detection results in terms  
of % accuracy, the performance of single mode noise residue and quantization residue 
features can be enhanced by using optimal feature selection subspace  and their 
subsequent multimodal fusion. Figure 1 shows some sample results for intra-frame 
tamper scenario.  We compared the performance of proposed feature selection 
techniques with features based on autoregressive coefficients and neural network 
classification proposed by Gopi et al in [10]. 
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Fig. 5. Row 1: Screenshots from Internet streamed video sequences; Row 2: Copy-move 
tamper emulation for the scene; Row 3: Detection of tampered regions in the scene 

Table 1. Evaluation of noise and quantization residue features for emulated copy-move tamper 

attack (% Accuracy); InterIntraf −
~

 (noise residue features); InterIntraf − (quantization residue 

features) 

Internet streamed movie data subset % Accuracy  

Different Residue features and their fusion CCA FLD ARC[10]  

 

Intraf  (Intra-frame noise residue features) 83.2 83.6 80.2 

Interf  (Inter-frame noise residue features) 83.8 83.4 83.1 

Intraf
~

(Intra-frame quant. residue features) 
77.28 76.23 74.33 

Interf
~

 (Inter-frame quant. residue features) 
72.65 71.44 69.45 

InterIntraf − (feature fusion- noise residue) 86.6 85.27 83.78 

InterIntraf −
~

 feature fusion- quant residue) 
80.55 79.66 77.22 

InterIntraf − + InterIntraf −
~

 (hybrid fusion) 
89.56 86.22 84.33 

 
As can be seen in Table 1, the single mode noise residue features perform better 

than quantization residue features. For both noise residue and quantization residue 
features, the CCA and FLD features perform better than ARC features. CCA features 
result in better accuracy as they are based on canonical correlation analysis that can 
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extract correlation properties better than features based on Fisher linear discriminant 
analysis. By fusing intra-frame and inter-frame pixel sub block features, we can see a 
better performance is achieved. This shows that better correlation information can be 
extracted when multiple frames are used for detecting tampers. In general 
quantization residue features perform worst compared to noise residue features. This 
can be expected as quantization artefacts for low-bandwidth video can significant 
damage tamper related correlation properties. However, by using a hybrid fusion of 
quantization and noise residue features, we can see a better performance is achieved.  

In a pattern recognition framework, the classifier is also equally important in 
addition to a feature selection technique. Hence the next experiment involved 
examining the performance of GMM classifier with neural network (NN) classifier 
proposed in [10]. The results from this experiment are shown in Table 2. Since the 
experiments reported in Table 1 resulted in CCA features as the best performing 
features, we used CCA features for experimental results shown in Table 2.   

Table 2. (% Accuracy) Performance for noise and quantization residue features and their fusion 
for GMM vs. NN classifier  

% Accuracy  

 

GMM  

Classifier 

NN  

Classifier [10] 

Different Residue features and their fusion CCA features  CCA features 

 

Intraf  (Intra-frame noise residue features) 83.2 81.4 

Interf  (Inter-frame noise residue features) 83.8 80.6 

Intraf
~

(Intra-frame quant. residue features) 
77.28 75.77 

Interf
~

 (Inter-frame quant. residue features) 
72.65 70.53 

InterIntraf − (feature fusion- noise residue) 86.6 83.22 

InterIntraf −
~

 feature fusion- quant residue) 
80.55 77.23 

InterIntraf − + InterIntraf −
~

 (hybrid fusion) 
89.56 83.45 

 
The GMM classifier performs better than NN classifier from the results shown in 

Table 2 suggesting Bayesian framework allows better modelling of tampering. 
Further experiments are in progress to model other type of tampers specially those 
corresponding to optical properties of cameras, and interlacing and de-interlacing 
processing in cameras. 
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5   Conclusions 

In this paper, we investigated a novel approach for video tamper detection in low-
bandwidth Internet streamed videos using residue features from intra-frame and inter 
frame pixel sub-blocks, their transformation in optimal correlation subspace, and 
subsequent multimodal fusion. The evaluation of two different residue features, the 
noise and the quantization residue features for emulated copy-move tamper scenario 
show the potential of proposed blind and passive tamper detection approach for 
applications where the establishing the identity of the camera source is not available. 
The feature transformation of residue features in  CCA and FLD subspace and their 
subsequent multimodal fusion of intra-frame and inter-frame features models the 
camera source signatures better, and allows blind and passive tamper detection. An 
accuracy of around 89.56 % was achieved for hybrid fusion of quantization and noise 
residue features extracted from intra-frame and inter-frame pixel sub blocks with a 
copy-move tamper emulation from low-bandwidth Internet streamed movie sequences.   
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Abstract. Recent physiological studies have reported Border-Ownership (BO) 
selective cells that signal the direction of figure along a contour, which appear to 
be a basis for figure-ground segregation. Surround modulation has been proposed 
as an underlying neural mechanism of BO determination. The crucial question to 
the model is its orientation specificity: whether BO could be determined only 
from iso-orientation (with respect to the preferred orientation of the classical 
receptive field) that has been reported dominant in the modulation. We 
investigated computationally the dependence of surround modulation on the 
orientation characteristics during the determination of BO with natural images. 
The results showed that, even when modulation was limited to iso-orientation, 
population responses obtained through integration were unchanged while the 
responses of individual cells were varied, indicating a dominant role of iso-
orientation suppression and an effectiveness of population coding in BO 
determination. 

Keywords: Figure/Ground Segregation, Surround Modulation, Border-Ownership. 

1   Introduction 

Recent physiological studies [e.g. 1] have reported that a number of neurons in early-
to-intermediate-level visual areas are selective to the direction of figural region along 
a contour. Such neurons are termed Border-Ownership (BO) selective neurons, as 
they signal which side of a border owns the contour. BO-selective cells are expected 
to play a crucial role in figure-ground segregation. Nishimura et al. [2] have proposed 
a computational model of BO-selective cells based on surround modulation apparent 
in early vision. 

Surround modulation that has been reported elsewhere in physiology is suppressive 
and facilitatory responses of cells during the presentation of a particular stimulus 
around its Classical Receptive Field (CRF) while another stimulus is presented onto 
the CRF. The spatial characteristics of surround modulation in V1 include 
suppression dominant over facilitation, asymmetry with respect to the CRF, and 
diversity among individual cells [3]. A recent study has also reported orientation 
dependence in modulation: iso-orientation suppression and cross-orientation 
facilitation with respect to the preferred orientation of the CRF [4]. 
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Watanabe et al. [5] considered that such characteristics of surround modulation 
were suitable for BO determination and hypothesized that the surround modulation 
underlay the selectivity of BO. These authors constructed a computational model of 
BO-selective cells applicable for natural images and evaluated the model response by 
the comparison with human perception for 100 natural images. The simulation results 
achieved 70% correct that was comparable with the human perception through a small 
window of the size same as the spatial extent of the model cells. 

The present study investigates the mechanisms of surround modulation during the 
determination of BO. Specifically, we focused on the orientation characteristics in 
surround modulation. Physiological studies have reported iso-orientation suppression 
and cross-orientation facilitation with respect to the preferred orientation of the CRF. 
However, since suppression is dominant over facilitation, cross-orientation facilitation 
may be less effective in BO determination. Asymmetry of surround modulation that is 
the basis of BO computation could be realized by the asymmetry of the strength of 
suppression rather than orientation-dependent facilitation and suppression. However, 
orientation is not exchangeable in essence, in contrast to that the suppression and 
facilitation are exchangeable, as the modulation is linear. Furthermore, the necessity 
of cross-orientation facilitation is not derived from the analysis of Gestalt factors that 
have been known as phenomenological rules for the perception of the direction of 
figure. Therefore, it is crucial for the BO models based on surround modulation to 
provide evidence of the orientation independence in modulation. As the orientation 
component for input changes, it is inevitable that responses of individual cells change. 
If orientation independence is observed, it must be apparent in a behavior of 
population. Thus, we investigated the population behavior as well as individual 
responses of BO-selective model cells, by controlling orientation characteristics of 
surround facilitation, to examine the crucial characteristics of surround modulation in 
BO determination. 

2   The Model of BO Selective Cells 

The direction of BO is determined from three consecutive stages: (i) contrast 
detection, (ii) surround modulation, and (iii) BO determination. This section describes 
the essence of each step, with Fig. 1 illustrating the overview of the model. 

 

Fig. 1. An overview of the proposed model 
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2.1   Contrast Detection 

The contrast detection stage consists of the following three steps: (i) detection of 
luminance contrast, (ii) contrast normalization and static nonlinearity, and (iii) 
integration of frequency channels. Detection of luminance contrast is achieved by 
Gabor filters that approximate the CRF of V1 neurons. To detect luminance contrasts 
of various orientations and frequencies in natural images, we use 48 types of Gabor 
filters with 8 preferred orientations in multiples of 45 deg and 6 frequencies in 

multiples of 5/1 3/7− between 3 and 7 cpd. Note that input images comprise 320x480 
or 480x320 pixel, and we set 35 pixel corresponding to 1 deg in visual angle. The 
luminance contrast detected by Gabor filters is half-wave rectified and passed through 
iterative, divisive normalization and static nonlinearity to reproduce contrast 
characteristics of V1 neurons [6]. We denote the output of this stage as: 
 

 Sori
freq (x0 , y0)  , (1) 

 

where 0x and 0y  indicate the center of a Gabor filter, and ori and freq denote its 

optimal orientation and frequency, respectively. Six frequency channels are integrated 
by weighted summation: 
 

  Cori (x0, y0) = k freqSori
freq (x0, y0)

freq

∑  , (2) 

 

where freqk is the weight according to human contrast sensitivity function [7]. 

2.2   Surround Modulation 

Physiological studies on monkey V1 have reported that surround modulation is 
orientation selective: suppression is specific to the iso-orientation component with 
respect to the preferred orientation of the CRF, and facilitation is specific to the other 
components. Spatial extent of surround modulation is diversely localized and 
asymmetric with respect to the CRF. It has been reported that neurons in 
intermediate-level visual areas including V2 exhibit similar structure in surround 
modulation. The magnitude of suppression in the model is given by pooling iso-
orientation contrasts detected by the previous stage, within one of pre-determined 
surround regions. To realize diversity of the surround regions, we use 40 distinct 
regions that are selected from a set of randomly generated regions. We use another 40 
regions for facilitation from the same randomly generated set. A pair of suppressive 
and facilitatory regions is comprised in a model cell. Surround suppression and 
facilitation are given, respectively, by: 
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where j
diriSR  and j

direSR  are inhibitory and excitatory regions (filters), respectively, 

for the convolution (*) with the contrast detected by the previous stage. Each pair of 
surround regions (j) is rotated in multiples of 45 degrees to obtain other sets that are 
denoted by dir. There are a total of 320 (40 pairs of surround (j) x 8 directions (dir)) 
sets of regions. The combination of equations 3 and 4 will be denoted as iso-cross 
condition. In this study, we investigate the orientation specificity of surround 
modulation. Specifically, we examine the replacement of cross-orientation with iso-
orientation for facilitation (iso-iso condition). An illustration of these combinations is 
shown in Fig. 2. The surround facilitation with iso-orientation contrast is given by: 
 

∑
±∈

=
90

),)(*(
dirori

j
dirori

j
dir yxeSRCExc  . (5) 

 
Note that the sets of surround regions are identical to those used in iso-cross 
condition.  

The modulation of CRF response is given by a linear combination of the surround 
modulations (Exc and Inh) and the CRF response (HM). As the detection of contours 
has been known as extremely difficult in natural images, we use Human Marked 
Contours (HMC) available in Berkeley Segmentation Dataset [e.g. 8, 9] that were 
drawn by ten human participants. Note that HMC are used only for the CRF response. 
Gray-scale natural images are used for surround modulation. The modulated response 
( HM + (Exc – Inh) ) is multiplied by the CRF response (HM) to realize the definition 
of CRF that the activity of a cell is zero if no stimulus is presented on the CRF. As the 
response is normalized and compressed, the response ranges between 0 and 1. Thus 
the activity of a cell (j) at a location ),( 00 yx  is given by: 
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j
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where oriHM  is the iso-orientation contrast detected by the CRF from HMC. 

Surround modulation is achieved by subtracting inhibitory modulation from 
excitatory modulation (Exc - Inh). ori is the orientation orthogonal to dir so that BO is 
examined only in the directions orthogonal to the preferred orientation of the CRF, 
with 40 sets of surround regions. We integrate the responses of 320 (40 pairs of 
surrounds x 8 directions) cells at each location for evaluating the direction of BO that 
is coded by the 320 cells. The difference of responses between cells with identical 
surrounds (j) but the opposite BO preferences (dir, dir + 180) is: 
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BOdir
j represents the strength of BO in the direction (dir) determined by the j-the cell. 

The strength of BO for each direction is defined by an arithmetic average among the 
cells with distinct surrounds: 
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where n (= 40) represents the number of surround regions for each BO direction. 
Finally, the direction of BO at a location, ),( 00 yx , is defined by: 
 

)),((),( 0000 yxBOvecsumyxBO dir=  , (9) 
 

where vecsum indicates a vector summation among 8 directions. 
 

 
Fig. 2. Comparison between iso-cross and iso-iso conditions 

3   Results 

To investigate the orientation specificity of surround modulation in realistic BO 
determination, we carried out simulations of the model cells with a number of natural 
images by varying the orientation specificity of facilitation and compared the results 
with human perception available in Berkeley Segmentation Dataset [e.g. 8, 9]. Fig. 3 
shows a few examples of the computed BO directions superimposed onto the original 
natural images. The overall consistencies for 100 natural images (517,718 locations) 
are given in Table 1. The results between the model and human perception for iso- 
cross (iso- and cross-orientations for suppression and facilitation, respectively) and 
iso-iso conditions were almost the same, with very similar variance (SD). The results 
indicate that the population response does not depend on orientation specificity in 
surround facilitation. 

It is expected that, although the responses of individual cells differed significantly 
between iso-cross and iso-iso conditions, the population responses obtained through 
an integration of individual cells are almost identical, as illustrated in Fig. 4. To 
examine this hypothesis, we computed the difference between the responses of 
individual cells and that between the overall responses after integration. Under iso-
cross and iso-iso conditions, we computed BO directions through vector summation 
of the responses of cells with the same set of surrounds from equation 7: 

)( j
dir

j BOvecsumBO =  , (10) 
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iso-cross iso-iso 

 

 

 
 

Fig. 3. Three examples of the comparison between human and model responses. White and 
black dots indicate points where the model response agreed with the human perception, and 
those without agreement, respectively, superimposed on the original images from Berkeley 
Segmentation Dataset [8, 9]. 

Table 1. Computed consistency and SD of iso-cross and iso-iso conditions 

 iso-cross iso-iso 
Consistency 67.1% 67.1% 

SD 14.2% 13.9% 
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Fig. 4. An example of the comparison between integrated and pair-wised BO responses. Gray 
arrows indicate the three strongest responses among eight orientations for surround types A and 
B. The direction of the arrows shows the preferred orientation of the cell. Although the 
responses of individual cells are different between iso-cross and iso-iso conditions, the 
integrated responses (black arrows) show similar responses (black arrows). 

 
Fig. 5. A scatter plot of correlation between indivisualBOΔ  (horizontal axis) and BOΔ (vertical 

axis). The inset is the enlargement near the origin as indicated by a square 

The difference in computed BO directions (in radian) between the conditions is 
defined by: 

thus, the mean difference among individual cells due to the conditions is given by: 

∑ −=Δ
j

j
iso-iso

j
iso-crossindivisual BOBOBO

40

1
 . (12) 

j
iso-iso

j
iso-cross BOBO −  , (11) 
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Similarly, the difference of the integrated BO between the conditions is given from 
equation 9: 

We computed the correlation between the difference in BO directions by individual 

cells ( individualBOΔ ) and the difference in overall BO directions computed by the 

population ( BOΔ ), at all locations along contours in 100 natural images. The results 
are shown in Fig. 5. About 90% of data were located below the unity line, indicating 
that individual cells show more difference in response depending on the orientation 
compared with the population responses computed through integration. Together with 
the overall consistency between the model and human responses, we conclude that 
BO determination does not depend on the orientation in surround facilitation, 
specifically as a population. 

4   Discussions 

The present simulation study showed almost no difference in BO determination 
between iso- and cross-orientation in modulation, indicating ineffectiveness of 
surround facilitation. Our result is consistent with physiological studies that have 
reported stronger suppression over facilitation. The result is interpreted as that iso-
orientation suppression cancels out cross-orientation facilitation and the resultant 
response as a population is not affected by the facilitation.  

The principle of the model based on surround modulation is that figure side tends to 
include more contrast than the other side, as contours likely to continue to the figure 
side. The asymmetric surround modulation is a good candidate to detect the side with 
more contrast. In this sense, the model needs neither orientation specificity nor 
facilitation. Unbalance of suppressive modulation with respect to the CRF would be 
sufficient. For instance, a model cell with strong and weak iso-orientation suppression 
on each side, respectively, can determine correctly BO side for stimuli with two 
vertical lines (no cross-orientation) and a C-shaped figure (cross orientation dominant). 
These arguments suggest that the unbalance of suppressive modulation with respect to 
the CRF (one side has stronger modulation than the other) could determine BO, instead 
of the combination of suppression and facilitation, with a similar consistency. 
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Abstract. The neocognitron is a hierarchical multi-layered neural net-

work capable of robust visual pattern recognition. It has been demon-

strated that recent versions of the neocognitron exhibit excellent

performance for recognizing handwritten digits. When characters are

written on a noisy background, however, recognition rate was not al-

ways satisfactory. This paper proposes several modifications, by which

the neocognitrons can be much more robust against background noise.

1 Introduction

The neocognitron is a hierarchical multi-layered neural network capable of ro-
bust visual pattern recognition [1]. It acquires the ability to recognize patterns
through learning.

It has been demonstrated that neocognitrons of recent versions exhibit ex-
cellent performance for recognizing handwritten digits [2,3]. Most of the experi-
ments for these neocognitrons have been made using characters written on back-
grounds containing little noise. When characters are written on a background
contaminated with noise (e.g., the input pattern in Fig. 4 or patterns in the
bottom of Fig. 5), however, the recognition rate of these neocognitrons is not
always satisfactory.

This paper proposes several modifications, by which the neocognitrons can be
much more robust against background noise. Main items of the modifications
reside in the characteristics of S-cells and C-cells in the neocognitron, and we
focus our discussion mainly on these improvements.

2 Architecture of the Network

The neocognitron is a hierarchical multi-layered network. It consists of layers
of S-cells, which resemble simple cells in the primary visual cortex, and layers
of C-cells, which resemble complex cells. These layers of S-cells and C-cells are
arranged alternately in a hierarchical manner. In other words, a number of mod-
ules, each of which consists of an S-cell layer and a C-cell layer, are connected
in a cascade in the network.

The new neocognitron proposed in this paper consists of four stages of S-
and C-cell layers: U0 → UG → US1 → UC1 → US2 → UC2 → US3 → UC3 →

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 574–581, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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US4 → UC4. Here we use notation like USl, for example, to indicate the layer of
S-cells of the lth stage.

Each layer of the network is divided into a number of sub-layers, called cell-
planes, depending on the difference in the features to which cells respond pref-
erentially. Incidentally, a cell-plane is a group of cells that are arranged retino-
topically and share the same set of input connections [1]. As a result, all cells in
a cell-plane have receptive fields of an identical characteristic, but the locations
of the receptive fields differ from cell to cell.

The stimulus pattern is presented to the input layer (photoreceptor layer)
U0. A layer of contrast-extracting cells (UG) follows layer U0. It consists of two
cell-planes: one consisting of cells with concentric on-center receptive fields, and
one consisting of cells with off-center receptive fields. The former cells extract
positive contrast in brightness, whereas the latter extract negative contrast from
the images presented to U0. The output of UG is sent to US1.

The S-cells of US1 extract edge components of various orientations from the
input image. To be more specific, layer US1 has 16 cell-planes, each of which
consists of edge-extracting cells of a particular preferred orientation.

The input connections of S-cells of higher stages are variable and are modified
through learning. After having finished learning, S-cells come to work as feature-
extracting cells. In higher stages, they extract more global features.

In each stage of the hierarchical network, the output of layer USl is fed to
layer UCl. C-cells, whose input connections are fixed, exhibit an approximate
invariance to the position of the stimuli presented within their receptive fields.
In other words, a blurred version of the response of USl appears in UCl. The
blurring operation is essential for endowing the neocognitron with an ability to
recognize patterns robustly, with little effect from deformation, change in size,
or shift in position of input patterns. The C-cells in the highest stage work as
recognition cells, which indicate the result of the pattern recognition.

3 Feature-Extracting S-cells

3.1 Response of an S-cell

Input Signals to an S-cell: To show the essence of the process of feature
extraction, we extract the circuit converging to a single S-cell and analyze its
behavior. Fig. 1(a) shows the circuit. The S-cell receives excitatory signals di-
rectly from a group of C-cells, which are cells of the preceding layer. It also
receives an inhibitory signal through a V-cell, which accompanies the S-cell.
The V-cell receives fixed excitatory connections from the same group of C-cells
as does the S-cell, and always responds with the average intensity of the output
of the C-cells.

In the new neocognitron, the inhibitory signal from the V-cell works in a
subtractive manner. (In old neocognitrons, the inhibitory signal worked in a
shunting or divisional manner). This means that the S-cell is almost the same as
the cells usually used in conventional artificial neural networks. What is different
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(a) Input connections converging

to an S-cell.
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(b) Response of an S-cell in a

multi-dimensional feature space.

Fig. 1. Feature extraction by an S-cell

from conventional artificial neural networks is that the V-cell calculates the
average, not by a linear summation, but by root-mean-square.

Let an be the strength of the excitatory variable connection to the S-cell from
the nth C-cell, whose output is xn. The output u of the S-cell is given by

u =
1

1 − θ
· ϕ
[∑

n

an xn − θ v

]
, (1)

where ϕ[ ] is a function defined by ϕ[x] = max(x, 0). The strength of the in-
hibitory connection is θ, which determines the threshold of the S-cell (0 < θ < 1).
The response of the V-cell is given by

v =
√∑

n

cn xn
2 , (2)

where cn is the strength of the fixed excitatory connection from the nth C-cell.
We now use vector notation x = (x1, x2, · · · , xn, · · · ) to represent the response

of all C-cells, from which the S-cell receive excitatory signals. We define weighted
inner product of arbitrary two vectors x and y by

(x, y) =
∑

n

cn xn yn , (3)

where the strength of the input connections to the V-cell, cn, is used as the
weight for the inner product. We also define the norm of a vector, using the
weighted inner product, by ‖x‖ =

√
(x, x).

Renewing Input Connections: For the training of S-cells of layer USl, the
response of C-cells of the preceding layer UCl−1 works as a training stimulus.
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When a training pattern is presented to the input layer U0 of the network, S-cells
of USl compete with each other, and several S-cells are selected as winners.

Although the methods of competition are slightly different from layer to layer,
the process of renewing input connections of the winners are the same for all
layers. We use winner-kill-loser rule to select winners for intermediate layers US2

and US3, and a supervised competitive learning for the highest stags US4. Since
they are almost the same as in the previous neocognitron [3], we discuss here
only the process of renewing input connections of the winners.

Each S-cell usually becomes a winner several times during the training phase.
Suppose an S-cell has become a winner at the tth time. We use vector X(t)

to represent the output of the C-cells presynaptic to this S-cell. Namely, X(t)

is the training vector for this S-cell at this moment. Connection an is renewed
through an auxiliary variable a′

n, which increases in proportion to X
(t)
n . Namely,

the amount of increase of a′
n is

Δa′
n = cnX(t)

n , (4)

where cn is the value of the fixed input connection to the inhibitory V-cell.
Let X be the sum of the training vectors that have made the S-cell a winner:

X =
∑

t

X(t) . (5)

After having become winners for these training vectors, the strength of the aux-
iliary variable a′

n of this S-cell becomes

a′
n =

∑
t

cnX(t)
n = cnXn . (6)

The excitatory connection an is calculated from the value of a′
n by

an = a′
n/b , (7)

where

b =

√√√√∑
n

a′
n

2

cn
= ‖X‖ . (8)

Response of an S-cell: Using weighted inner product defined by (3), we have∑
n

an xn =
(X, x)
‖X‖ . (9)

from (6), (7) and (8). We also have v = ‖x‖ from (2).
Hence the response of the S-cell, which is given by (1), can be expressed as

u = ‖x‖ · ϕ[s − θ]
1 − θ

, (10)
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where

s =
(X, x)

‖X‖ · ‖x‖ . (11)

In the multi-dimensional feature space, s shows a kind of similarity between
x and X (Fig. 1(b)). We call X, which is the sum of the training vectors,
the reference vector of the S-cell. Using a neurophysiological term, we can also
express that X is the preferred feature of the S-cell.

The second term ϕ[s − θ]/(1 − θ) in (10) takes a maximum value 1 if the
stimulus vector x is identical to the reference vector X, and becomes 0 when the
similarity s is less than the threshold θ. In the multi-dimensional feature space,
the area that satisfies s < θ becomes the tolerance area in feature extraction by
the S-cell, and the threshold θ determines the size of the tolerance area. In other
words, a non-zero response is elicited from the S-cell, if and only if the stimulus
vector x is within a tolerance area around the reference vector X.

S-cells of the Previous Neocognitron: In the previous neocognitron [3],
S-cells have divisional inhibition, and the response of an S-cell is given by

u =
ϕ[s − θ]
1 − θ

. (12)

Comparing (10) and (12), we can see that the response of an S-cell of the new
neocognitron is equal to that of the previous neocognitron multiplied by ‖x‖.

3.2 Effect of Noise on S-cells

If there is no background noise, the characteristics of (12) is desirable for feature-
extracting S-cells. The response of the S-cell is determined only by the similarity
s between the input stimulus x and the training feature X. It is not affected by
the strength of the input stimulus x. Hence S-cells can extract features robustly
without being affected, say, by a gradual non-uniformity in thickness, darkness
or contrast in an input pattern.

If an input character is written on a noisy background, like the pattern in
Fig. 2, however, interference from the background character becomes serious
when we use S-cells of (12). Features of the faint background character elicit
large responses from some S-cells whose receptive fields cover only background
features. This largely increases the recognition error of the neocognitron.

It is more desirable for S-cells to have characteristics like (10) under noisy
environment, because the strength of extracted features come to be proportional
to the intensity of input stimuli in the receptive fields, ‖x‖. The strength of
irrelevant features from the interfering pattern remains low, in proportion to the
weak intensity of the background noise in the input pattern.

4 C-cells: Blur by Root-Mean-Square Operation

A C-cell has fixed excitatory connections from a group of S-cells of the corre-
sponding cell-planes of S-cells. Through these connections, each C-cell averages
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Fig. 2. Responses of S-cells with subtractive and divisional inhibition

the responses of S-cells whose receptive-field locations are slightly deviated. The
averaging operation is important, not only for endowing neural networks with an
ability to recognize deformed patterns robustly, but also for smoothing additive
random noise contained in the responses of S-cells. This is another advantage of
the averaging operation over the MAX-operation [4], which is very vulnerable to
noise, because the output of a C-cell is determined by the response of a single
maximum-output S-cell only.

Fig. 3 shows a block diagram of a C-cell. In the new neocognitron, a C-cell
averages its input signals, not by a weighted linear summation, but by a root-
mean-square. To reduce the computational cost, the spatial density of S-cells in
a cell-plane is usually designed to be sparse, and a C-cell averages the responses
of a small number of S-cells. Hence the output of the C-cell fluctuates with the
shift in location of its preferred feature. The fluctuation can be made smaller by
the root-mean-square than by a linear summation or a MAX operation.
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Fig. 3. A block diagram of a C-cell, which calculate the root-mean-square of its inputs

Since a role of a C-cell is to detect whether any of its presynaptic S-cells is
active, it is better to have some saturation in the input-to-output characteristic.

In the previous neocognitron [3], in which C-cells calculate mean values by lin-
ear summation, the saturation is determined by a square root function, namely
v =

√
u. If input patterns do not contain background noise, saturation by square-

root works well. If input patterns contain some background noise, however, the
square-root nonlinearity is not desirable. A small background noise is exagger-
ated by the square-root nonlinearity, because dv/du = d

√
u/du → ∞ for u → 0.
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In the new neocognitron, the saturation is controlled adaptively by the max-
imum value of input signals to C-cells of the layer. In Fig. 3, u is the weighted
root-mean-square of the input signals to a C-cell. Let umax be the maximum
value of u among all C-cells of the layer, and let σ be a positive constant. The
output of a C-cell of the layer is given by

v =
u

σumax + u
. (13)

5 Computer Simulation

We tested the behavior of the new neocognitron by computer simulation. Fig. 4
shows a typical response of the network that has finished the learning. The
responses of layers U0, UG and layers of C-cells of all stages are displayed in series
from left to right. The rightmost layer, UC4, shows the final result of recognition.
The input character is written on a noisy background. In this example, character
‘4’ in the foreground is recognized correctly, although there is a faint disturbing
character ‘7’ in the background.

U0

   input

UG

contrast
 on- and
off-center

UC1

   edges

UC2

higher-order features

UC3
0
1
2
3
4
5
6
7
8
9

UC4

recognition

Fig. 4. An example of the response of the neocognitron. Character ‘4’ in the foreground,

which is disturbed by the faint background character ‘7’, is recognized correctly.

We measured recognition error using handwritten digits (free writing) ran-
domly sampled from the ETL1 database [5]. To be more specific, we measured
the recognition error for a blind test set of 5000 patterns, where we used 3000
patterns (300 patterns for each digit) for the learning. We made this experiment
twice for each condition, using different learning and test sets randomly sampled
from the ETL1, and averaged the results of the two experiments. Fig. 5 shows
how the recognition error changes with different levels of background noise.

We tested two different types of background noise. In one case, which is shown
in Fig. 5(a), the background noise is a faint image of a different digit, which is
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(a) The background noise is a faint

image of a different digit.
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(b) White noise is superimposed on

the test digit.

Fig. 5. Recognition error of the new and previous neocognitrons under different levels

of background noise

also sampled randomly from the ETL1 database. In the other case, which is
shown in Fig. 5(b), a white noise is superimposed on the test digit.

Although the recognition error of the new neocognitron under noiseless condi-
tion (1.47%) is slightly higher than that of the previous one (1.40%), the increase
in recognition error under noisy background is much smaller. Under noisy con-
ditions, the new neocognitron exhibits much better recognition rate than the
previous one.
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Abstract. Human facial expression is a complex process characterized of 
dynamic, subtle and regional emotional features. State-of-the-art approaches on 
facial expression recognition (FER) have not fully utilized this kind of features 
to improve the recognition performance. This paper proposes an approach to 
overcome this limitation using patch-based ‘salient’ Gabor features. A set of 3D 
patches are extracted to represent the subtle and regional features, and then 
inputted into patch matching operations for capturing the dynamic features. 
Experimental results show a significant performance improvement of the 
proposed approach due to the use of the dynamic features. Performance 
comparison with pervious work also confirms that the proposed approach 
achieves the highest CRR reported to date on the JAFFE database and a top-
level performance on the Cohn-Kanade (CK) database.  

Keywords: Facial expression recognition, Adaboost, support vector machine. 

1   Introduction 

Facial expression recognition (FER) is becoming an increasingly active research field 
in recent years due to its potential to be applied in many areas. FER supports many 
practical applications, such as human-computer interaction, patient and driver state 
detection. However, robust FER is still a challenging task as facial expression is a 
complex process, which is characteristic of different dynamic, subtle and regional 
facial changes (e.g. wrinkles) and is easy to be influenced by various environmental 
changes (e.g. illumination and occlusions). Therefore, an important step for FER is to 
accurately extract the useful dynamic, subtle and regional emotional features.  

Current FER approaches can be classified into 4 categories based on the used 
feature types: motion-based, feature-based, model-based and appearance-based. 
Appearance-based approach can analyze facial images using multi-resolution 
information and has shown a significant advantage over other approaches in terms of 
capturing subtle features. The features used include Gabor feature [1], local binary 
patterns (LBP) [2], Haar [3], discrete Fourier transform (DFT) [4] etc. However, 
Current appearance-based approaches suffer from the drawback of using point-based 
Gabor or DFT features, which lack the ability to capture regional features. At the 
same time, the LBP and Haar are essentially based on statistics and can not capture 
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the subtle features with pixel accuracy. In addition, appearance-based approaches in 
static images have yet considered the dynamic information of feature position, scale 
and shape changes, which also represent useful information for FER.  

This paper proposes an FER approach to improve the recognition performance 
based on patch-based ‘salient’ Gabor features. The novelty of our approach lies in the 
adoption of patch-based Gabor features and the definition of patch matching to solve 
point-based Gabor features’ limitation in capturing the dynamic, subtle and regional 
features. The experimental results demonstrate big performance improvements as well 
as the state-of-the-art performances of the proposed approach on both the JAFFE and 
the Cohn-Kanade (CK) databases. The rest of the paper is organized as follows. 
Section 2 presents the proposed approach. Section 3 gives the experimental results. 
The conclusions are drawn in Section 4. 

2   Proposed Approach 

Fig. 1 illustrates the proposed approach, which is composed of the pre-processing, 
training and test stages. At the pre-processing stage, facial regions are manually 
cropped to imitate rough face detection and scaled to a resolution of 48*48 pixels. 
Then multi-resolution Gabor images are attained by convolving Gabor filters with 
these scaled facial regions. 2D Gabor filter with 8-scale (5:2:19 pixels) and  
4-orientation (-45°, 90°, 45°, 0°) is used, and the other parameters are set based on 
[5]. During the training stage, a set of 3D patches are extracted from the Gabor 
images to represent the subtle and regional features. Patch matching operations are 
then performed to convert all extracted patches to distances for capturing the dynamic 
features of position, scale and shape changes. At the test stage, the distance features in 
a new image are attained by performing the same patch matching operations, and fed 
into support vector machine (SVM) to recognize 6 emotions: anger (AN), disgust 
(DI), fear (FE), happiness (HA), sadness (SA) and surprise (SU). The use of Gabor 
filter and SVM is due to their excellent performance reported in previous work [1]. 
Two SVMs with linear and radial basis function (RBF) kernels are used. 
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Fig. 1. Framework of the proposed approach 
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2.1   Patch-Based Feature Extraction  

Feature extraction generates a set of discriminating 3D patches, which have an 
advantage over point-based Gabor features to represent the subtle and regional 
emotional features. As shown in Fig. 2, the algorithm can be described as follows: (1) 
all training images are classified into 10 sets. For each emotion, each Gabor scale, and 
each patch size, one Gabor image is randomly selected from all images of the given 
emotion Ek. (2) Given one patch with the size of Pj*Pj*Onum, move this patch across 
the row and column pixels of this Gabor image, a set of patches can be extracted (the 
line a ). (3) Record the corresponding matching area and matching scale (the line b 
and c, details are explained in Section 2.2). (4) The final patch set can be constituted 
by concatenating the extracted patches of all emotions, all scales and all patch sizes.  

To reduce the feature dimension and increase the processing speed, we only extract 
part of all patches by moving the patch Pa with a step (i.e. Move_step in Fig.2). The 
patch sizes (width*height*orientation) and the corresponding moving steps are set to 
be 2*2*4, 4*4*4, 6*6*4, 8*8*4, and to be 1, 2, 3, 4 pixels respectively. Given 48*48 
images and 8-scale, 4-orientation Gabor filters, the final set contains 148,032 patches.  

 

Fig. 2. Pseudo code of patch-based feature extraction 

2.2   Patch Matching Operation 

Given the patch set obtained in feature extraction, the patch matching operation tends 
to convert it into distance features, which can capture the dynamic information of 
feature position, scale and shape changes. As shown in Fig. 3, the patch matching 
operation comprises of 4 steps for each patch and each training image: (1) matching 
area and matching scale are defined to provide a bigger matching space (Fig. 3 (c)). 
Based on this space, the emotional feature, which varies its position, scale and shape 
in different images, still can be captured provided that it is located within the space. 
(2) The distances are obtained by matching this patch with all patches within its 
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matching space in the training image. This step takes two patches as inputs and yields 
one distance value based on a distance metric (Fig. 3 (b,d,e)). (3) The minimum 
distance is chosen as the distance feature for this patch and this training image (the 
black block in Fig. 3 (f)). (4) The distance features of all patches are combined into 
the final set with 148,032 elements (Fig. 3 (f)). 

Height 

Width 
(c)                (d)     (e)    (f)

(a)                (b)

Height 

Width 

Distance SetArea 

Orientation 

Orientation 

 

Fig. 3. Patch matching operation. One patch (b) is extracted from Gabor images (a); the 
corresponding matching area ‘Area’(c); one distance (black block in (f)) is obtained by 
matching two patches (e). 

The definition of matching area and matching scale plays a key role in capturing 
the dynamic features of position, scale and shape changes. The idea of them stems 
from the observation that position and scale of one feature do not have big changes in 
different facial images once these images are roughly located by a face detector. Thus, 
the invariance to position and scale changes can be accomplished by defining one 
such matching space for each feature. In this paper, given a patch Pa with size 
Pj*Pj*Onum, its matching area is set 2 times of Pa in width and height, but with the 
same orientation number and centre point. That is Area = (2*Pj)*(2*Pj)*Onum. While 
the matching scale is the same scale as patch Pa because most cropped facial regions 
belong to the same scale. There are 4 distance metrics used: dense L1 (DL1), dense 
L2 (DL2), sparse L1 (SL1) and sparse L2 (SL2). Sparse distance uses the maximum 
value of all orientations, while dense distance uses all values of all orientations. 

2.3   Salient’ Patch Selection 

The feature extraction step produces a patch set that contains a big number of features 
and redundant information; therefore, this paper adopts the widely used and efficiency 
proved Adaboost for discriminative (called ‘salient’ here) patch selection. Since 
Adaboost was designed to solve two-class problems, in this research, the one-against-
rest strategy is used to solve the six-emotion-class problem. The training process stops 
when the empirical error becomes below 0.0001 with the initial error of 1. This 
setting is inspired by the stopping condition in [1] that the generalization error 
becomes flat. Regarding the training set, the JAFFE database includes all selected 
images, whereas the CK database is only composed of the peak frames.  
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To explore the relationship between the CRR and the number of features, a group 
of error thresholds as listed in Table 1 are used to control the number of ‘salient’ 
patches. These thresholds are set based on our experimental observation that the 
empirical errors of Adaboost decrease with a factor of 10 and its numbers are evenly 
distributed between decimal intervals (e.g. 0.01 to 0.02). Accordingly, 38 numbers of 
features with 38 CRRs can be obtained by selecting patches with empirical errors 
bigger than the corresponding error thresholds.  

Table 1. The 38 error thresholds used to control the number of patches 

Index Error thresholds 
1st -10th  (10, 9, 8, 7, 6, 5, 4, 3, 2, 1) * 0.1  

11th -19th  (9, 8, 7, 6, 5, 4, 3, 2, 1) * 0.01     
20th -28th  (9, 8, 7, 6, 5, 4, 3, 2, 1) * 0.001   
29th -38th  (9, 8, 7, 6, 5, 4, 3, 2, 1, 0) * 0.0001    

3   Experimental Results 

3.1   Databases 

The JAFFE database [6] contains 213 gray images of 7 expressions posed by 10 
Japanese females. Each object has 3 or 4 frontal face images for each expression and 
their faces are approximately located in the middle of the images. All images have 
been rated on 6 emotion adjectives by 60 subjects. The released portion of the Cohn-
Kanade (CK) database [7] includes 2105 digitized image sequences from 182 subjects 
ranged in age from 18 to 30 years. The 6 basic expressions were based on descriptions 
of prototypic emotions. Image sequences are shown from neutral to target emotion. 

In this paper, all the images of 6 expressions from JAFFE are used. For CK, 1,184 
images that represent one of the 6 expressions are selected, 4 images for each 
expression of totally 92 subjects. The images are chosen from the last image (peak) of 
each sequence, then one every two images. The face regions of all selected images are 
cropped by taking the nose as a center point, and scaled to 48*48 pixels. The resulting 
regions contain features with different positions, scales and shapes.  

3.2   Performance on the JAFFE Database 

Fig. 4 shows the relationship between the CRR and the number of features on the 
JAFFE database. The CRR is the average performance of 10-set cross-validation. As 
can be seen, the proposed approach achieves the highest CRR of 93.48% using DL2 
and linear SVM when the error threshold equals to 0.0001 and the number of features 
equals to 185. The overall performances of 4 distances grow up rapidly at the starting 
stage, however, the performances begin to level off when the number of features 
exceeds 150 for linear and 80 for RBF. For the performances of SVMs, linear 
performs better than RBF for all distances. Regarding the overall performances of 
distances, for both linear and RBF, the best performances are achieved by DL2, which 
is followed by SL2. On the other hand, SL1 and DL1 rank the last two.  
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Fig. 4. Relationship between the CRR and the number of features on JAFFE 

3.3   Performance on the CK Database 

Fig. 5 illustrates the relationship between the CRR and the number of features on the 
CK database. Seen from this figure, the proposed approach obtains the highest CRR 
of 94.48% using DL2 and RBF SVM when the error threshold is 0 and the number of 
features is 180. This may imply that a performance improvement can be achieved 
once using a larger number of features. The relationship is similar to that of JAFFE in 
that the CRR grows up rapidly at starting stage and L2 distances outperform L1 
distances for both linear and RBF. On the other hand, the CRR reaches a plateau with 
a speed quicker than that of JAFFE and DL1 performs better than SL1. Moreover, the 
performance difference between linear and RBF is smaller than that of JAFFE. 

  

Fig. 5. Relationship between the CRR and the number of features on CK 

3.4   Performance with and without Matching Area 

To evaluate the performance improvement rising from the use of the dynamic 
features, we compare the performances obtained with and without matching area. 
Note that the features obtained without matching area are supposed to not include 
dynamic information of position, scale and shape changes. Fig. 6 shows the 
comparison results when the error threshold equals to 0. The results of JAFFE (left) 



588 L. Zhang and D. Tjondronegoro 

and CK (right) are obtained using linear and RBF SVMs respectively. As can be seen, 
for JAFFE, the performances of 4 distance metrics are greatly boosted due to the use 
of matching area. There is a CRR increase of 11.41% using DL2. For CK, the CRRs 
of DL1 and DL2 are improved about 2.5% due to the use of matching area, while the 
CRRs of SL1 and SL2 does not benefit from using matching area. Considering the 
highest CRR of 4 metrics, we can see that dynamic features help to improve the 
performance. 
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Fig. 6. Recognition accuracy (%) obtained with and without matching area (MA) 

3.5   Comparison with State-of-the-Art Performance 

To evaluate the effectiveness of using dynamic, subtle and regional features, we also 
compare with previous approaches, which produce the state-of-the-art performances 
using the same databases and similar test strategies to our approach. As shown in 
Table 2, the proposed approach outperforms all 7 benchmarked approaches on 
JAFFE, and 2 out of the 4 benchmarked approaches on CK. The result using CK is 
0.62% lower than the result obtained in [2]. However, the approach in [2] normalizes 
facial images based on manually-labeled eye locations and improves the result by 
optimizing SVM parameters. The proposed approach is only based on rough face 
location and does not involve parameter optimization. The result using CK is 1.39% 
lower than the result in [8]. But the approach in [8] obtains the result based on 5-fold 
cross validation and 5 emotions, therefore, it uses more training images to classify 
less emotions compared to our approach. 

Table 2. Comparison with state-of-the-art performance 

 Emotion Number Feature JAFFE CK 
Proposed 6 patch-based Gabor 93.48% 94.48% 
[9], 2005 6 fuzzy integral 83.2% - 

[10], 2006 6 KCCA 77.05% - 
[11], 2008 7 WMMC 65.77% - 
[12], 2009 7 SFRCS 85.92% - 
[13], 2005 7 Gabor + FSLP 91.0% - 
[8], 2008 7(JAFFE), 5(CK) FEETS + PRNN 83.84% 95.87% 
[2], 2009 7(JAFFE), 6(CK) boosted-LBP 81.0% 95.1% 
[1], 2006 7 Gabor - 93.3% 

[14], 2008 7 Gabor + Haar - 93.1% 
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4   Conclusion 

The paper proposes a novel FER approach to improve the recognition performance 
using dynamic, subtle and regional features, which are obtained based on patch-based 
Gabor features and patch matching operations. The experimental results demonstrate 
good performances of the proposed approach on both the JAFFE and CK databases, 
and show big performance improvements due to the use of dynamic features. In 
addition, the comparison with previous approaches confirms the state-of-the-art 
performance using the proposed dynamic, subtle and regional features. The future 
work includes adopting real face detectors and testing on seven facial expressions.  
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Abstract. In this paper, we propose a novel multimedia sensor fusion approach 
based on heterogeneous sensors for biometric access control applications. The 
proposed fusion technique uses multiple acoustic and visual sensors for 
extracting dominant biometric cues, and combines them with non-dominant 
cues. The performance evaluation of the proposed fusion protocol and a novel 
cascaded authentication approach using a 3D stereovision database shows a 
significant improvement in performance and robustness. 

Keywords: Multimedia processing – Face and Speech signal analysis, Recognition 
and verification.  

1   Introduction  

Most of the currently deployed biometric access control systems for civilian 
applications are based on voice modality (also known as speaker recognition from 
telephone speech), and they are based on modeling a speaker based on unimodal 
information, i.e. either audio or acoustic features. Audio-based identification achieves 
high performance when the signal-to-noise ratio (SNR) is high. However, the 
performance degrades quickly as the test SNR decreases (referred to as a train/test 
mismatch), as shown in [1],[2], and [3]. Using heterogeneous sensors, such as set of 
video camera and microphone sensors for example, it is possible to capture the visual 
dynamics of the orafacial articulators during speech production, allowing inherent 
multimodality to be exploited. The information from two heterogeneous sensor sources 
(visual information in addition to voice information) can make the system robust 
against mismatch between training and test operating environments. It must be noted 
use of camera sensors along cannot result in much performance improvement, as the 
visual sensor data also could be highly susceptible to pose, illumination and expression 
variations. Several techniques have been proposed so far to address some of the above 
mentioned mismatch scenarios, [1], [2], and [3]. Many of the conventional techniques 
proposed so far were based on fusion of features extracted from dominant and 
discriminatory measurements from biometric sensor data corresponding to voice 
signals and 2D or 3D face images.  

However, several studies from cognitive psychology [4] and psychophysical 
analysis of human visual speech [5] suggest that, dominant biometric cues or the 
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primary identifiers on its own cannot model the identity of a person in its entirety. 
The non-dominant cues from weaker measurements can also contain the identity 
specific information. The secondary identifiers have weaker discriminatory power and 
hence cannot be used on their own for making decisions on the identity of the subjects 
in question. Nevertheless, they could be used to supplement the decision taken by 
identifier modules with higher discriminatory power. Some such important secondary 
cues could be subject’s demographic information such as gender, dialect, ethnicity, 
age or certain subtle individual nuances, such as facial expressions, lip gestures, 
eyebrow tweaks and raising and lowering of head during speaking or talking.  

One of the most significant finding by Hani et al in [6]and Kroos et al in [7],  
suggest  that a speaking face is a kinematic-acoustic system in motion, and the shape, 
texture and acoustic features during speech production are correlated in a complex 
way, and a single neuro-motor source controlling the vocal tract behavior is 
responsible for both the acoustic and the visible attributes of speech production. 
Hence, for a speaking face not only the facial motion and speech acoustics are 
inherently correlated multimedia signals, but contain contributions from non-
dominant secondary information such as the head motion and fundamental frequency 
(F0) produced during speech production (as shown in Figure 1).  

 

Fig. 1. Facial Muscles (source: http://en.wikipedia.org/wiki/Facial_muscles) 

These findings from face-speech anatomy provide clues that facial movements 
during speech involve highly complex biomechanics with depth, motion and 
correlation variations.  In this paper we propose a novel sensor fusion protocol and 
authentication technique to address some of the shortcomings of the current biometric 
access control systems for real world operating conditions.  

2   Multimedia Sensor Fusion  

The operation of proposed scheme, for an example access control scenario is described. 
For accessing a secure facility or building with a hallway and a door for example, the 
user would be verified first with the 2D face verification module (using the first video 
camera sensor) - unobtrusively without any user co-operation when approaching the 
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door. If the face verification module accepts the user, the door will open automatically 
when the users approaches the door. If it fails, the second module – 3D face verification 
module (using the 2nd video camera sensor) springs into action. If this module fails, the 
voice verification module comes into effect and the system asks the user some questions 
and expects voice response from users to establish the identity. 

The proposed authentication strategy provided by the cascaded authentication 
structure can provide several benefits. They can satisfy different performance 
measures: User acceptance measures and authentication accuracy measures-normally 
represented in terms of error rates, that is the false accept rates (FARs). false reject 
rates (FRRs) or Equal Error Rates (EERs). A system requiring a high level of security 
requires a lower FAR and the one requiring a high level of user acceptability requires 
as low FRR. A trade-off in general is needed to balance the two conflicting 
requirements.  

3   Multimedia Feature Processing 

In this Section, details of the multimedia processing of co-occurring audio and video 
signals from two cameras are described. It must be noted that the details of the complete 
processing modules is not discussed due to limited space in the paper. The detail 
treatment of the techniques used is described in [9], [10], [11], [12], [13] and [14].  

2D and 3D Face Modules 
These two face modules are the primary biometric identifier modules and use face 
images from single camera for the 2D  facial feature extraction, and face images from 
both the cameras for the 3D facial feature extraction. We used two different methods for 
extracting feature vectors  from face images  for these modules.  These methods are: 

i) ICA (Independent Component Analysis) features - a description of face images 
by their projection on independent base images,  and  

ii) AAM (Active Appearance Model) features – a description of face images by an 
Active Appearance Model which describes the shape and grey value variations of the 
face images. The extracted feature vectors were classified with a Gaussian Mixture 
Model (GMM) classifier for making the decision as a genuine client or impostor. The 
dimensionality of ICA/AAM feature vectors is reduced to keep 95% of the variations 
intact. The details of extracting ICA/AAM feature vectors are briefly described next. 

The positions of facial landmarks were manually labeled to provide normalized data 
to the feature extraction methods. 

Independent Component Analysis (ICA) 
The ICA feature extraction process used is describe in detail in [11].  

Active Appearance Models (AAM) 
The AAM process requires several facial landmarks (more than 100) along the several 
salient face regions such as lips, eyes, eyebrows and face contour. After adaptation of 
the model to a given face image, the resulting appearance parameters describing the 
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shape and the grey value distribution of a given face are used as feature vector for 
GMM classifier.  Further details on AAM are available in  [14].  

Audio Module 
This module is also used as a primary biometric identifier and comprises extraction of 
MFCC features from speech signal of the speaking face video sequences. The details 
of MFCC features is given in [10] and  [15]. 

Similar to the 2D and 3D face modules, each speaker based on MFCC acoustic 
feature vectors is represented by a GMM (Gaussian Mixture Model) model λ built for 
the client. We used three different types of feature vectors for building the speaker 
models. – audio only module, based on acoustic (MFFC) features vectors, and the AV 
module (based on fusion of MFFC + ICA+AAM features). The test speaker or the 
speaker utterance that is to be classified (the unknown pattern) is a sentence, 
represented by a sequence (OP) of MFCC speech feature vectors,  or ICA / AAM face 
feature vectors or AV feature vectors (fusion of ICA-MFCC-AAM) by, 

{ },,,, 21 PTtP ooooO =
                                    

 (1) 

where ot is the feature (speech/face observation (frame) at time t and TP denotes the 
number of observation vectors in the sentence. We obtain N class-conditional joint 
probabilities 

( )λλ
PTtP oooopOp ,,,,)( 21=

                              
(2) 

that the observation sequence OP was produced by the client speaker model λ.. 
p(OP|λ) is referred to as the likelihood that OP was caused by λ. For GMM classifiers, 
the output scores are in log-likelihood form, denoted by ll(OP|λ). 

Kinematic Features Module 
This module is used as a secondary biometric module (because on its own, the secondary 
features cannot ascertain the identity reliably), and consists of extraction of kinematic or 
motion features from several regions of the face – lip region, eye region and complete 
frontal face region. The details of this module is presented in detail in [10].   

The three types of visual features described above were concatenated to form a 24 
dimensional visual motion feature vector. This is shown in Eqn. (3) where fDCT, fGRD , 
fCTR represent the DCT, grid, and contour based motion features respectively from the 
lip region, and ot refers to the observation feature vector for the frame at time t. 

[ ]CTR
t

GRD
t

DCT
tt oooo ,,=                                                   (3) 

For entire sentence we have several visual frames and the secondary motion feature 
vector for the entire frame consists of several ot vectors with fDCT, fGRD, and  fCTR.  OS1,  
the kinematic feature vector for the first  secondary biometric module is denoted as:  

{ }
vTtS ooooo ,,,,, 211 =

                                         
 (4) 

The rest of the secondary modules for eye region and entire frontal face region is 
obtained in a similar fashion by deriving the observation feature vector  ot  from the 
explicit motion features - fDCT , fGRD , fCTR , and can be denoted as: 
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The audio-video sentence observation from a person’s talking face is decomposed 
into its primary and secondary constituent parts. 

As described before, the observations from primary and secondary biometric 
modules are processed by the independent GMM classifier modules to give individual 
sets of likelihoods, ll(OP1|λ), ll(OP2|λ), ll(OP3|λ), ll(OS1|λ), ll(OS2|λ, ll(OS3|λ) and used 
for making a decision on the identity of the person being a genuine client or impostor. 
By setting the thresholds appropriately for every stage, different user and security 
requirements can be addressed in terms of FARs (false accept rates), FRRs (false 
reject rates) and EERs (Equal Error Rates). For high security requirements, FAR has 
to be maintained low, at the cost of losing user acceptance, and for high user 
acceptance, FRR has to be maintained low at the cost of losing security requirements. 
EER is a measure, where threshold is set such that FAR equals FRR. Most the 
systems designed with EERs less than 5% are acceptable for moderate security 
applications and systems with EERs more than 10% are useless and cannot be 
deployed. We now describe the details of the experiments that were carried out. 

4   Experimental Results 

We evaluated the performance of the proposed fusion protocol and cascaded 
authentication approach with thorough experimental investigation. First we report the 
performance of primary biometric modules –2D face, 3D face, audio-2D face,  
(MFCC-Eigenface) only, and one of the secondary biometric module (lip region - 
visual speech) only module results, followed by the performance of the fusion of the 
primary and one secondary biometric module and then of three modules (one primary 
and two secondary biometric modules).  

A. Performance of Primary Biometric Module  

The audio-only module performs a  best EER of 2.4% was achieved at 48dB. At 21dB 
the EER dropped to worst possible EER of 50%. 
 

B. Performance of Secondary Biometric only Module  

To examine the inability of secondary biometric module to make reliable 
authentication decisions on its own, we show the performance of the secondary 
biometric module – lip region module performance here. In this set of single mode 
experiments, the effect of the GMM mixtures on the performance of the four lip 
features (visual speech feature types) - fDCT, fGRD, fCTR, and feature fused (concatenated 
fDCT-fGRD-fCTR) was tested initially. These tests were carried out using matched training 
and testing data sets, i.e., the original “clean” images. To examine whether the 
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dynamic lip motion features, such as the fGRD and fCTR, features, would perform better 
with a larger number of GMM mixtures, we increased the number of mixtures from 
one until a performance trend became apparent. For each lip feature type, a trend in 
the EERs with respect to the number of mixtures can be seen. The number of mixtures 
that maximised the visual speech features performance for each of the four feature 
types, are given in Table 1.   

Table 1. Number of gaussian mixtures that maximises the EER performance for each of the 
four types of secondary biometric (visual speech) features across ten levels of JPEG Q 

 

C. Performance of Fusion of  Secondary Biometric Module (2D Mouth-3D Face 
Features) 

In this Section the performance of fusion of two secondary biometric modules is 
examined to show that the secondary modules on their own or with fusion with each 
other yield a moderate improvement in authentication performance. The face gallery 
(training) set, comprising three images, was formed by arbitrarily extracting the first 
image frame from each of the first three training sentences from AVOZES module 6. 
These were used to form a face template for each of the N subjects.  

For extracting 3D facial features, we have explored a fairly exhaustive set of 
features that extract discriminative information from 3D faces. The detailed 
description of each of the 3D facial features in a review in [17]. The fusion of 3D 
features, TEX-GABOR for texture module and CURV-PD for the shape module was 
used in score-level fusion, and the performance of the 2D Mouth - 3D face fusion 
module w.r.t. JPEG QF is given in Table 2. 

Table 2. The mouth, face and face-mouth EERs for ten levels of JPEG QF 
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Fig. 2. Primary-Secondary Module Fusion Performance 

D. Performance of Primary and Secondary Biometric Module Fusion 

In this Section the performance of fusion of primary and two secondary biometric 
modules is examined to show that a significant robustness and enhancement in 
performance can be truly achieved by fusion of primary and several secondary 
biometric modules. For this set of experiments, we examined the performance of the 
fusion of primary biometric (Eigenface-MFCC), 2D mouth features ( fDCT-fGRD-fCTR 

and 3D face features (TEX-GABOR and CURV-PD) in a cascaded authentication 
strategy. The results for this set are shown in Figure 2. 

5   Conclusions 

In this paper, a novel sensor fusion technique for combining multiple heterogeneous 
sensors is proposed for biometric access control applications. The approach combines 
information from primary (dominant biometric cues) and several secondary biometric 
(non-dominant, subtle) modules, namely audio, face, visual speech, and 3D face 
information in an automatic unsupervised fusion, adapting to the local performance of 
each module, and taking into account the output-score based reliability estimates of 
each of the modules. The results as a whole are important for remote authentication 
applications, where bandwidth is limited and uncontrolled acoustic noise is probable, 
such as video telephony and online authentication systems.  
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Abstract. In content-based image retrieval, relevance feedback is often

adopted as the method of interactions to grasp user’s query concept.

However, since this method tasks the user, a small amount of relevance

feedback is desirable. For this purpose, Nakajima et al. have proposed

a method in which classifiers learned by using relevance feedback are

reused. In this paper, we improve the criterion for reuse of classifiers

so that retrieval becomes more accurate and quick. Experimental re-

sults show that our method performs much better than the conventional

methods.

Keywords: CBIR, support vector machine, image retrieval, relevance

feedback.

1 Introduction

Traditional image retrieval methods use indices which are made by manual anno-
tation. However, this approach becomes difficult with an increase in the number
of images by the development of digital technology. In addition, there is a con-
cern that subjective annotation influences retrieval results. Content-based image
retrieval (CBIR) is one of the systems which can solve these problems. In typical
CBIR, the system expresses information of an image by a feature vector, and
searches similar ones in an image database by comparing the degree of similarity
between the feature vectors.

In CBIR, there is a need for a user to inform an image retrieval system of
his or her desired output or query concept. In other words, an image retrieval
system must grasp a user’s intention for results of high quality. To address this
requirement, relevance feedback (RF) can be used as a query refinement scheme
to derive or learn a user’s query concept. In RF, the system displays a few image
instances and the user labels each image as “relevant” or “irrelevant”. Based on
the answers, another set of images are brought to the user for labeling. After some
such interactions, the system may grasp the user’s intention. The construction of
such a query refinement scheme can be regarded as a machine learning task, and
various machine learning techniques have been applied to CBIR. Among them,
Tong et al. have proposed the use of a support vector machine active learning
algorithm for RF [1]. The algorithm selects the most informative images to query
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a user and quickly learns a boundary separating the images that satisfy the user’s
query concept from the rest of the dataset. Although a classifier once learned is
discarded every time after retrieval is finished in Tong’s method, Nakajima et al.
have proposed a method to keep classifiers learned and to reuse them in future
retrieval [2]. They have shown better performance in comparison with Tong’s
method.

In this paper, we aim at improving the criterion used in Nakajima’s method so
that an appropriate classifier can be selected when reusing classifiers and retrieval
becomes more accurate and quick. Experimental results show effectiveness of the
proposed method.

2 Relevance Feedback

In a typical CBIR system, an image is expressed by a feature vector in which each
coordinate shows a visual content of the image. These include characteristics
such as color, texture, shape, color layout and so on. When a query image is
given, its features are extracted so that a group of similar images to the query
image can be retrieved. A retrieval by low-level concepts which are similar to
visual characteristics is achievable easily, and some systems such as QBIC [3]
and SIMPLIcity [4] have been developed.

On the other hand, when a user wants to retrieve images by high-level con-
cepts, for example, “beautiful flowers”, it is necessary to derive them from low-
level visual features. It is, however, usually quite difficult to do so because there
are various semantic concepts in an image. In order to solve this problem, rele-
vance feedback (RF) is often a critical component in CBIR. The typical process
of RF in CBIR is as follows:

(1) A CBIR system provides an initial retrieval result.
(2) The user provides feedback on the above result to sort out relevant ones and

irrelevant ones by high-level concepts.
(3) The user’s feedback is learned by the system.
(4) New results are shown. Then go back to (2).

Steps (2)-(4) are repeated till the user is satisfied with results. In this way, the
system can grasp high-level concepts of the user query in real-time by performing
such interactions repeatedly. It is, however, most preferable to reduce the number
of RF because this method tasks the user.

3 SVM Active Learning for CBIR

A support vector machine active learning (SVMActive) is an approach that queries
points so as to attempt to reduce the size of the version space as much as possible
[1]. A superior classifier is generated by acquiring only informative data to be
learned. Informative data for learning are labeled data which are distributed near
the separating hyperplane. The system can decide the ideal decision boundary
quickly by learning such data sequentially.
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The algorithm of SVMActive is summarized as follows:

(1) Given a relevant image and an irrelevant one as inquiry by a user (Query
Images in Fig.1).

(2) Learn an SVM on the current labeled data.
(3) Show the top-r most relevant images to the user (Return Set in Fig.1). If

the user satisfies with these images, terminate the retrieval. Otherwise, go
to the next step.

(4) Ask the user to label l images closest to the SVM boundary (Label Set in
Fig1). Return to (2).

Fig. 1. SVMActive for CBIR [1]

4 Reuse of Classifiers

Although a classifier learned in Tong’s method is destroyed after a user satisfies
retrieved images, Nakajima et al. have proposed saving classifiers once learned
and reusing one of them if it is promising for a new retrieval [2].

The following is the algorithm of the Nakajima’s method:

(1) Given a relevant image xR and an irrelevant one xIR as inquiry by a user.
(2) Choose a classifier which satisfies

fk(xR) > 0 ∩ fk(xIR) < 0 (1)

and has the greatest value of the following equation

|fk(xR)| + |fk(xIR)| (2)

where fk(x) shows the output of the kth classifier for input data x. If there
are no classifiers which satisfies Eq.(1), generate a new one.

(3) Learn an SVM on the current labeled data.
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(4) Show the top-r most relevant images to the user. If the user satisfies with
these images, terminate the retrieval and go to (6). Otherwise, go to the next
step.

(5) Ask the user to label l images closest to the SVM boundary. Return to (3).
(6) Save the classifier with support vectors.

They have shown that their method could grasp users’ intention more quickly
and could retrieve images with higher precision rate than Tong’s method [2].

5 Improvement of Criterion for Reuse of Classifiers

In general, the number of irrelevant images is far larger compared with that of
relevant images for a certain query. Therefore, an irrelevant image of a query has
a significant effect on a choice of a classifier in Nakajima’s method. When the
system reuses an inappropriate classifier, it may become an undesirable search
result for a user. In addition, there is a concern about depression of the original
performance of the classifier by learning inappropriate labeled data additionally.

Therefore, in order to choose a more appropriate classifier, we propose a novel
method which uses a kind of relevance feedback in a choice of classifiers. In the
proposed method, a classifier is chosen as follows:

Step 1. Calculate the following value for each classifier:

fk(xR) (3)

and choose classifiers which have the top-m largest values as candidates for
reuse.

Step 2. Obtain l/m positive support vectors randomly in each candidate clas-
sifier. In total, l images are obtained.

Step 3. Ask the user to label l images.
Step 4. Reuse the classifier which has the highest classification accuracy to the

labeled images if the number of the positive examples classified correctly
by it is more than N . When there are plural classifiers which satisfy these
requirements, reuse the classifier which has the largest value of the following
formula: ∑

i=1

fk(xRi) (4)

where each xRi shows an image labeled as relevant by the user out of l
images.

As shown in the above procedure, we apply a kind of RF to decide which classifier
to be reused. Moreover, the irrelevant image, xIR given by the user as inquiry
is not used to choose a classifier to be reused because it is much less reliable
than the relevant image, xR. Thus, we may choose more appropriate classifier
in comparison with Nakajima’s method.

In the proposed method, the above procedure is followed by (3)-(6) of Naka-
jima’s method described in 4.
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6 Experiments

For empirical evaluation of the proposed criterion, we used two image datasets.
One has 2,000 images which are categorized into 20 groups such as flower, dog,
sea, sky and so on. Each category contains 100 images of essentially the same
semantic concept. The other has 5,000 images categorized into 25 groups, and
each category contains 200 images. The source of both image sets is PHOTO
BIBLE 20,000 published by Datacraft Co., Ltd.

For each image, two classes of major visual features are used:

(1) Color features. Two kinds of color features are utilized in the experiments.
One is the 9-dimensional color moment. The other is the 120-dimensional
color coherence vector [5].

(2) Texture features. We performed 3D wavelet transform (WT) for each image
[6]. Thus, we extracted texture features by average and variance of horizontal,
vertical and diagonal direction. The dimension of WT was 18.

We applied Gaussian kernel and soft margin to SVM learners [7]. The same
parameters of SVMs were used for all experiments. To enable an objective mea-
sure of performance, we assumed that a query concept was an image category
[1]. Each image was picked up as a positive example of inquiry, and a negative
example of that was chosen randomly from other categories.

Parameters were set as follows: r = 20, l = 20, m = 5 and N = 2. Accuracy is
computed by looking at the fraction of the 20(= r) returned result that belongs
to the target image category. This is equivalent to computing the precision on
the top-20 images.

In the proposed method, the relevance feedback used for choosing classifier
was counted as one RF to make user’s task the same with the conventional
methods.

Fig. 2. (a) Average of precision for 2000 images. (b) Average of precision for 5000

images.
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6.1 Precision

Figures 2 (a) and (b) show the average of precision for the two different datasets
based on 10 trials. As shown in the figures, the proposed method performs much
better for both datasets than the conventional methods. Since the initial pre-
cision of the proposed method is quite high, we can say that more appropriate
classifiers were reused in the proposed method in comparison with the Naka-
jima’s method.

6.2 Leaning Time

Figures 3 (a)-(b) show the average of learning time for each method measured
by a PC with Core 2 Duo (3.0GHz) CPU and 2GB memory. Since the proposed
and Nakajima’s methods reuse classifiers and each reused classifier has support
vectors as labeled images to be learned, the learning time of them is longer than
Tong’s method. However, it is still of practical use. Moreover, the learning time of
the proposed method is almost comparable with that of the Nakajima’s method.

Fig. 3. (a) Average of learning time for 2000 images. (b) Average of learning time for

5000 images.

6.3 Searching Time

We made a comparison of searching time of classifiers between the proposed and
Nakajima’s method. For the proposed method, time to perform the first RF for
choosing classifier was included in learning time as shown in Fig. 3, so it was
omitted from searching time of classifiers. Table 1 shows the average based on
10 trials.

The result shows that searching time of both methods are almost the same
and the average is less than 0.1 (sec) even for 5000 images dataset.

Table 1. Average and maximum of searching time (sec.)

Nakajima’s method Proposed method

Dataset Average Maximum Average Maximum

2000 images 0.038 0.071 0.034 0.071

5000 images 0.088 0.175 0.094 0.185
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6.4 Reuse Rate

Here, we compared the number of classifiers generated and reuse rate. The reuse
rate is defined as follows:

reuse rate =
Q − NC

Q
(5)

where Q is the number of retrieval times in one trial that equals the number
of images in each dataset, and NC is the number of classifiers generated in one
trial.

Table 2. The number of classifiers generated and reuse rate

Nakajima’s method Proposed method

Data set classifiers reuse rate classifiers reuse rate

2000 images 391.2 0.804 134.1 0.932

5000 images 1060.8 0.788 712.2 0.858

Table 2 shows the average based on 10 trials. This result shows the proposed
method decreases the number of classifiers and improves the reuse rate. That
is, learning efficiency for each individual classifier was much improved in the
proposed method.

7 Conclusions

In this paper, we have proposed a novel method to reuse classifiers learned by
SVMActive for CBIR. In order to choose an appropriate classifier for reusing, we
have adopted a kind of relevance feedback for the choice of classifiers. Moreover,
we have proposed a criterion in which we don’t evaluate the given irrelevant
image, because irrelevant images are less reliable than relevant images. Experi-
mental results show that the proposed method performs much better than the
conventional methods. In addition, the proposed method reuses classifiers once
generated effectively, and as a result the number of classifiers generated is much
reduced in comparison with Nakajima’s method.
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Abstract. This paper describes a hand-based biometric system by using visible 
and infrared imagery. We develop an acquisition device which could capture 
both color and infrared hand images. We modify an ordinary web camera to 
capture the hand vein that normally requires specialized infrared sensor. Our 
design is simple and low-cost, and we do not need additional installation of 
special apparatus. The device can capture the epidermal and subcutaneous fea-
tures from the hand simultaneously. In specific, we acquire four independent, 
yet complementary features namely palm print, knuckle print, palm vein, and 
finger vein, from the hand for recognition.  As a low-resolution sensor is  
deployed in this study, the images quality may be slightly poorer than those ac-
quired using high resolution scanner or CCD camera. The line and ridge pat-
terns on the hand may not appear clear. Therefore, we propose a pre-processing 
technique to enhance the contrast and sharpness of the images so that the domi-
nant print and line features can be highlighted and become disguisable from the 
background. After that, we use a simple feature extractor called Directional 
Coding to obtain useful representation of the hand modalities. The hand fea-
tures are fused using Support Vector Machine (SVM). The fusion of these fea-
tures yields promising result for practical multi-modal biometrics system. 

1   Introduction 

With the advent of modern computing technology, there is increased reliance on bio-
metrics to provide stronger personal authentication. Among the variety of biometric 
solutions in the market, hand-based system is the oldest, and perhaps the most suc-
cessful form of biometric technology [1]. A number of features can be extracted from 
the human hand for recognition. The most prevalent identifiers used include hand 
geometry, fingerprint, palm print and hand vein. These hand properties are stable and 
reliable. Once a person has reached adulthood, the hand structure and configuration 
remain relatively stable throughout the person’s life [2]. These hand features (except 
fingerprints) can be captured using common off-the-shelf imaging devices. This ad-
vantage has greatly facilitated the deployment of hand-based biometrics in large-scale 
applications [1]. Apart from that, the hand-scan technology is generally perceived as 
nonintrusive as compared to iris- or retina-scan systems [3]. The users do not need to 
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be cognizant of the way in which they interact with the system. Therefore, it will be 
less likely for the users to have visceral fear or discomfort when they use hand-based 
system. 

This paper investigates the application of visible and infrared light technologies to 
capture the intrinsically different, yet complimentary, characteristics present on the 
hand. We design a hand device which could acquire a number of features, namely 
palm print, knuckle print, palm vein, and finger vein, from the hand simultaneously 
for recognition. Palm print refers to the smoothly flowing pattern formed by alternat-
ing creases (ridges) and troughs (valleys) on the palmar surface of the hand, while 
knuckle prints are characterized by the horizontal-like lines distributed on the palmar 
area of the knuckles (joints of the fingers). Several researches have been devoted to 
study palm print which include Eigenpalms [4], Fisherpalms [5], Fourier spectrum 
[6], Gabor phase [7]-[8], line features [9], and feature points [10]. Knuckle print is a 
relatively new biometric modality as compared to palm print. The works reported for 
knuckle print are eigenfinger [11], linear discriminant analysis [12], Radon and Haar 
wavelet [13], and also location and line features [14]. Palm print and knuckle prints 
can be imaged using visible light as they lie on the epidermal surface of the hand. 

On the other hand, palm vein and finger vein refer to the vascular or blood vein 
patterns recorded from underneath the human skin. Due to biological composition of 
the human tissues, the vein pattern can be observed under infrared light. In the entire 
electromagnetic spectrum, infrared refers to a specific region with wavelength typi-
cally spanning from 0.75μm to 1000μm. This region can be further divided into four 
sub-bands, namely near infrared (NIR) in the range of 0.75μm to 2μm, middle infra-
red in the range of 2μm to 6μm, far infrared (FIR) in the range of 6μm to 14μm, and 
extreme infrared in the range of 14μm to 1000μm. In the literature, the NIR [15]-[18] 
and FIR [19]-[20] sources were used to capture the vein images.  

2   Proposed Solution 

In this research, we endeavor to develop an online contactless acquisition device 
which can capture both the visible and infrared hand images. In specific, we want to 
acquire the different hand modalities, namely palm print, knuckle print, palm vein and 
finger vein images from the hand simultaneously without incurring additional sensor 
cost or adding user complication. We design the acquisition device in such a way that 
the users do not need to touch or hold on to any peripheral for their hand images to be 
acquired. We believe such setting helps to address the hygiene and social issues faced 
by contact-based biometric applications [21]. When a hand is presented above the 
acquisition device, the regions of interest (ROI) of the different hand features will be 
tracked and extracted. ROIs contain the important information of the hand which can 
be used for recognition.  The ROIs are pre-processed so that the print and vein tex-
tures become distinguishable from the background. After that, distinguishing features 
in the ROIs are extracted using a technique called directional coding [22]. The hand 
features are mainly made up of line-like texture. The directional coding technique 
encodes the discriminative information of the hand based on the orientation of the line 
primitives. The extracted hand features are then fused at score level to yield better 
recognition accuracy. The framework of our proposed system is shown in Fig. 1. 
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The contributions of this paper are two-fold. Firstly, we develop a hand scanner 
which is able to capture both color and infrared hand images. We modify an ordinary 
web camera to capture the hand vein that normally requires specialized infrared sen-
sor. Our design is simple and low-cost, and we do not need additional installation of 
special apparatus. The detail of such design will be presented in the subsequent dis-
cussion. Secondly, we propose a robust method to obtain good contrast hand images. 
This method is particularly useful for vein images. Due to the optical property of 
human tissue, the infrared light cannot penetrate very deeply under the human skin. 
Therefore, only superficial vein pattern can be detected by the sensor. Some users 
have thick skin (especially female), making it harder for the sensor to capture clear 
vein images. In this research, we deploy a novel image processing technique to obtain 
vivid line and ridge pattern from the hand. The proposed method removes illumina-
tion error while keeping good contrast between the line structure and the surrounding 
hand tissue. 
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Fig. 1. Framework of the proposed system 

3   Design and Implementation of Acquisition Device 

The design and implementation of an efficient real-time hand acquisition device must 
contend with a number of challenges. Firstly, the acquisition device must be able to 
provide sufficient contrasted images so that the hand features are discernable and can 
be used for processing. The arrangement of the imaging sensor and design of the 
lighting units also have great impact on the quality of the images acquired. Therefore, 
the capturing device should be carefully calibrated to obtain high contrasted images. 
Secondly, a single acquisition device should be used to capture multiple image 
sources (e.g. visible and infrared images). It is not efficient and economical for a 
multimodal biometric system to install multiple capturing devices. Therefore, an ac-
quisition device with low development cost is expected for a multimodal biometric 
system from the system application view.  

In this research, we design a capturing device that aims to fulfill the requirements 
above. The hardware setup of the capturing device is shown in Fig. 2a and 2b. Two 
low-cost imaging units are mounted side by side on the device. The first imaging unit 
is used to capture visible light images while the second for obtaining infrared images. 
The warm-white light bulbs are placed around the imaging units to emit yellowish light  
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source which helps to enhance the line patterns on the palm and fingers under visible 
light.  To acquire IR image, we modify the ordinary webcam to be an IR-sensitive 
camera. The webcam used for infrared imaging is fitted with an infrared filter. The 
filter blocks the visible (non-IR) light and allows only the IR light to reach the sensor. 
A number of infrared LEDs are arranged on the board to serve as the infrared cold 
source to illuminate the vein pattern. We have experimented with different types of 
infrared LEDs and those emitting light in the range of 880nm to 920 nm provide rela-
tively good contrast of the vein pattern. A diffuser paper is used to attenuate the IR 
source so that the radiation can be distributed more uniformly around the imaging unit. 

During image acquisition, we request the user to position his/her hand above the 
sensor with the palm facing the sensor (Fig. 2c). The user has to slightly stretch 
his/her fingers apart. There is no guidance peripheral to constraint the user’s hand. 
The user can place his/her hand naturally above the sensor. We do not restrict the user 
to place his/her hand at a particular position above the sensor nor limit them to pose 
his/her at a certain direction. Instead, we allow the user to move his/her hand while 
the images are being acquired. Besides, the user can also rotate his/her hand while the 
images are being taken. The optimal viewing region for the acquisition sensor is 20cm 
from the surface of the imaging unit. We allow a tolerable focus range of 20cm ± 4cm 
to permit more flexibility for the users to interact with the system. 
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Fig. 2. Hardware setup for the image acquisition device 

In this study, a standard PC with Intel Core 2 Quad processor (2.4 GHz) and 3072 
MB RAM is used. The program was developed using Visual Studio .NET 2008. The 
application depicted in Fig. 2d shows a live video of the hand image sequence re-
corded by the sensor. Both of the visible light and IR images of the hand can be cap-
tured simultaneously. The interface provides direct feedback to the user that he/she is 
placing his/her hand properly inside the working volume. After the hand is detected in 
the working volume, the ROIs of the palm and fingers will be captured and stored as 
bitmap format from the video sequence. The hand image was detected in real-time 
video sequence at 30 fps. The image resolution is 640 x 480 pixels, with color output 
type in 256 RGB (8 bits-per-channel). The delay interval between capturing the cur-
rent and the next ROI was 2 seconds. We used the setup described above in an office 
environment to evaluate the performance of the proposed multimodal hand-based 
biometric system.  We have recorded the hand images from 136 individuals. 64 of 
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them are females, 42 of them are less than 30 years old. The users come from differ-
ent ethnic groups such as Chinese, Malays, Indians, and Arabians. Most of them are 
students and lecturers from our university. Ten samples were captured for each user. 
The samples were acquired in two different occasions separated at a mean interval of 
two months. 

4   Imagery Pre-processing and Feature Representation 

4.1   Pre-processing  

We adopt the hand tracking algorithm proposed in [21] and [22] to detect and locate 
the region of interest (ROI) of the palm and fingers. After obtaining the ROIs, we 
enhance the contrast and sharpness of the images so that the dominant hand features 
can be highlighted and become distinguishable from the background. Gamma correc-
tion is first applied to obtain better image contrast [23]. To bring out the detail of the 
line and ridge patterns, we have investigated a number of well-known image en-
hancement methods like Laplacian filters, Laplacian of Gaussian, and unsharp mask-
ing method. Although these techniques work well for sharpening the images, the 
noise elements tend to be over-enhanced. For this reason, we propose a local-ridge-
enhancement (LRE) technique to obtain a sharp image without overly amplifying the 
noise. This method discovers which part of the image contains important lines and 
ridge patterns, and amplifies only these areas. 

The proposed LRE method uses a “ridge detection mask” to find the palm vein 
structures in the image. LRE first applies a low-pass filter, ( , )g x y , on the original 

image, ( , )I x y , shown in  Fig. 3a to obtain a blur version of the image, ( , )M x y , 

( , ) ( , ) ( , )M x y g x y I x y= ∗  (1) 

In this research, Gaussian filter with σ=60 is used for this purpose. After that, we use 
a high-pass filter, ( , )h x y , to locate the ridge edges from the blur image, 

' ( , ) ( , ) ( , )M x y h x y M x y= ∗  (2) 

Note that since the trivial/weak ridge patterns have already been “distilled” in the blur 
image, only the edges of the principal/strong ridges show up in ' ( , )M x y . In this work, 

the Laplacian filter is used as the high-pass filter. 
At this stage, ' ( , )M x y  exhibit the edges of the primary ridge structure (Fig. 3c). We 

binarize ' ( , )M x y  by using a threshold value, τ. Some morphological operators like 
opening and closing can be used to eliminate unwanted noise regions. The resultant 
image is the “mask” marking the location of the strong ridge pattern.  

We “overlay” ' ( , )M x y on the original image to amplify the ridge region, 

' ( , ) if '( , ) 1
( , )

( , ) otherwise

c I x y M x
I x y

I x y

⋅ =⎧= ⎨
⎩

 (3) 

where ' ( , )I x y is the enhanced image and c is the coefficient to determine the level of 

intensity used to highlight the ridge area. The lower the value of c, the more the ridge 
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pattern will be amplified (the darker the area will be). In this work, the value of c is 
empirically set to 0.9. Fig. 3f shows the result of the enhanced image. We wish to 
point out that more variations can be added to determine different values for c in order 
to highlight the different ridge areas according to their strength levels. For example, 
gray-level slicing can be used to assign larger weight, c, to stronger ridge pattern, and 
vice versa. We do not perform this additional step due to the consideration for compu-
tation overhead (computation time is a critical factor for an online application).  

 

   
   

(a) (b) (c) (d) (e) (f) 

Fig. 3. Processes involved in the proposed LRE method 

4.2   Feature Extraction 

We apply a scheme named Directional Coding method to extract the palm print and 
palm vein features. These hand features contain similar textures which are primarily 
made up of line primitives. For example, palm prints are made up of strong principal 
lines and some thin wrinkles, whilst knuckle prints comprise asymmetry creases and 
wrinkles. The patterning of the hand vein which contains vascular network also re-
sembles line-like characteristic. Therefore, we can deploy a single method to extract 
the discriminative line information from the different hand features. 

The proposed Directional Coding technique aims to encode the line pattern based 
on the proximal orientation of the lines. We first apply Wavelet Transform to decom-
pose the palm print images into lower resolution representation. The Sobel operator is 
then used to detect the palm print edges in horizontal, vertical, +45o, and -45o orienta-
tions. After that, the output sample, ( , )x yΦ , is determined using the formula, 

( )( , ) arg max ( ( , ))f Rx y x yδ ωΦ =  (4) 

where ( , )R x yω  denotes the responses of the Sobel mask in the four directions (horizon-

tal, vertical, +45o, and -45o), and {1,2,3,4}δ ∈  indicates the index used to code the orien-

tation of ( , )R x yω . The index, δ, can be in any form, but we use decimal representation 

to characterize the four orientations for the sake of simplicity. The output, ( , )x yΦ , is 

then converted to the corresponding binary reflected Gray code. The bit string assign-
ment enables more effective matching process as the computation only deals with plain 
binary bit string rather than real or floating point numbers. Besides, another benefit of 
converting bit string to Gray code representation is that Gray code exhibits less bit tran-
sition. This is a desired property since we require the biometric feature to have high 
similarity within the data (for the same subject). Thus, Gray code representation pro-
vides less bit difference and more similarity in the data pattern. Fig. 4b to 4e shows the  
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gradient responses of the palm print in the four directions. Fig. 4f is the result of taking 
the maximum gradient values obtained from the four responses. This image depicts the 
strongest directional response of the palm print and it closely resembles the original 
palm print pattern shown in Fig. 4a. The example of directional coding applied on palm 
vein image is also illustrated in Fig. 4g to 4l. 
 
 

      
(a) (b) (c) (d) (e) (f) 

      
(g) (h) (i) (j) (k) (l) 

Fig. 4. Example of Directional Code applied on palm print and vein image 

4.3   Fusion 

In this paper, Support Vector Machine (SVM) is adopted as the fusion mechanism to 
consolidate the matching scores produced by the palm print and knuckle print modali-
ties. Hamming distance is used to count the fraction of bits that differ between two 
code strings generated by Directional Coding. In this research, the Radial Basis Ker-
nel (RBF) function is explored. RBF kernel is defined as [24]-[25], 

2

2

( )
( , ) exp

2
i

i

x x
K x x

σ
⎛ ⎞−= −⎜ ⎟
⎝ ⎠

 
(5) 

where σ > 0 is a constant that defines the kernel width. 

5   Results and Discussion 

5.1   Verification Performance Using Directional Code 

An experiment was carried out to assess the effectiveness of the proposed Directional 
Coding technique applied on the different hand modalities. The performance of the 
proposed method is recorded in Table 1. The three common performance measures 
namely false acceptance rate (FAR), false rejection rate (FRR) and genuine accep-
tance rate (GAR) are used in this test. We also include the GAR without LRE for 
comparison.  The Directional Coding technique yielded satisfactory results by giving 
equal error rate (EER) of 1.96%, 2.5%, 0.73%, and 1.87% for palm print, knuckle 
print, palm vein, and finger vein, respectively. The result showed that the proposed 
method was able to encode the discriminative information on the hand well. The pre-
processing step had indeed helped to improve the overall performance by 5% over 
GAR without LRE. 
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Table 1. Applying Directional Coding on the different hand modalities 

Modalities FAR FRR GAR GAR without 
LRE 

Palm print 1.98 1.95 98.02 93.42 
Knuckle print 2.32 2.68 97.32 94.31 
Palm vein 0.51 0.95 99.05 94.89 
Finger vein 1.77 1.98 98.02 93.23 

5.2   Analysis of Biometric Features 

Correlation analysis of individual experts is important to determine their discrimina-
tory power, information complementary ability and data separability. A common way 
to identify the correlation which exists between the experts is to analyze the errors 
made by them. The fusion result can be very effective if the errors made by the classi-
fiers are highly de-correlated (with higher independency). In other words, the higher 
the de-correlation between the errors made by the classifiers, the more effective the 
fusion will become. This is due to the reason that more new information will be intro-
duced when the de-correlation between the errors increases [26]. 

 

 
(a) 

 
(b) 

Fig. 5. Visual representation of the correlation of the different hand modalities 

One way to visualize the correlation between two classifiers is to plot the distribu-
tion graph of the genuine and imposter populations. In the correlation observation 
shown in Fig. 5, the distribution of the genuine and imposter scores for the four hand 
features take the form of nearly independent clusters. This indicates that the correla-
tion between the individual hand modalities is low. In other words, we found that the 
biometrics are independent and are suitable to be used for fusion. 

5.3   Fusion of Biometric Features 

The scores obtained from the palm print, knuckle print, palm vein, and finger vein 
experts were fused using SVM. We assessed SVM with Gaussian Radial Basis Func-
tion (RBF) kernels. The bandwidth of the σ parameter in the RBF kernel had been 
evaluated in the range of 0.01 to 1. We determined the best parameter in the test using  
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the development set and applied it to our experiment set. EER of 0% was achieved 
when we fused the four modalities together. The receiver operating curves illustrated 
in Fig. 6 depicts the improvement gain when all the biometric traits are fused. 

 

 

Fig. 6. Receiver operating curve for the fusion of different hand modalities 

6   Conclusion 

The proposed system offers several advantages like low-cost, accuracy, flexibility, 
and user-friendliness. We describe how we design and implement a hand acquisition 
device to capture both the epidermal and subcutaneous hand features without the use 
of expensive infrared sensor. We modify a generic web camera to capture the hand 
vein pattern. The modified “infrared” sensor could even be used for liveliness test in 
which the sensor only detects the hand of a living person. It is easy to spoof a biomet-
rics system by using intensity images of the genuine user (e.g. using a facial photo-
graph to fake a face recognition system). However, infrared imaging could only detect 
a live sample when a living hand with incessant blood flow is presented to the sensor. 
Apart from this, we also introduce the LRE method to obtain good contrast print and 
vein images. To obtain useful representation of the hand modalities, we apply a tech-
nique called directional coding. This method represents the biometric features in bit 
string format which enable speedy matching and convenient storage. Extensive ex-
periments had been conducted to evaluate the performance of the system in terms of 
speed and accuracy. Our approach produced promising result to be implemented in a 
practical biometric application. 
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Abstract. We here propose a simple but highly potential algorithm

to detect a model object’s position on an input image by determining

the initially unknown transformational states of the model object, in

particular, size and 2D-rotation. In this algorithm, a single feature is

extracted around or at the center of the input image through 2D-Gabor

wavelet transformation, in order to find not only the most likely relative

size and rotation to the model object, but also the most appropriate

positional region on the input image for detecting the correct relative

transformational states. We also show the reliable function on the face

images of different persons, or of different appearance in the same person.

Keywords: Visual Object Detection, Gabor Filter Decomposition,

Transformation Specific Similarities, Feature Correspondence.

1 Introduction

In order to understand a whole visual object recognition process, we need to
know fundamental mechanisms to detect a position and transformational states
for size and 2D-rotation of a single object. This is because under general assump-
tion about the natural view conditions, the transformational state of the object
cannot be accessed in advance. Many of object recognition systems constructed
so far were under a restricted assumption that the transformations of the ob-
ject, in particular, the size and rotation, have already been known [1]. Little is
seen for recognition demonstrations without this unnatural assumption. How to
match the input image to the representation of the model reference is also still
unclear to specify the models position on an input image. So, understanding of
mechanisms for specifying the initially unknown transformational states of the
size, rotation as well as position is an important and requisite technical step to
a construct visual object recognition system.

In this work, we are importantly interested in understandings of a mechanism
how an uncertain position of one single object is specified on an input image,

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 616–624, 2010.
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Fig. 1. A system for detecting correct relative size and rotation transformations be-

tween two images of the input (I) and model (M) of the same object, 11×11 rectangular

grids are placed on the image I. On each grid point of the image I, the single Gabor

feature can be extracted for computing the similarity to a single Gabor feature M. It

can be dedicated to detect the most likely transformational states for each grid on the

image I.

simultaneously finding the other unknown transformational states for scale and
rotation. The information about such transformational states of the object is
frequently discarded when visual object recognition is achieved, but we address
that it is very valuable for the disambiguation of the visual object representation,
with developments of the visual object recognition system without discarding
such transformation information.

2 System Organizations

We assume that there exist two face images of the same or different person taken
at a different scale and/or orientation. Two domains (called input (I) and model
(M)) are set up for holding the images to be matched one to another (see, Fig.1).

For the I domain, Gabor features J I are extracted from N different grid
points, xI

p = (xI
p, y

I
p) with the square grid coordinate located at a center of the

image I. For the M domain, a single Gabor feature J I is extracted at a center of
the image M. The Gabor feature components are defined as convolution of the
image with a family of Gabor functions. The Gabor Function and its intrinsic
parameters are referred to [2,3] as usual Since the parameter values referred
previously are different from those in this work, we thus describe as follows:
kmax = 14.2, σ = 14.0, the orientation parameter, θ = πk/8 (k ∈ {0, 1, . . . , 7}),
and the spatial frequency parameter, (the scale factor a0 = 0.8, L = {I, M},
lI ∈ {0, 1, . . . , 11} and lM ∈ {2, . . . , 9} ), in order for the Gabor feature to be
sampled discretely over the image. As mentioned here, the frequency range on
the I domain is extended further to the fundamental frequency range of the M
domain for accounting for possible scaling up or down.

We will explain a basic concept of how initially unknown transformational
states of the face can be detected. Considering the image M as a reference model,
the size transformation can be interpreted as the radial shift of a face toward a
center or an edge of the image I, while the rotation transformation corresponds
to the circular shift at the center. To make a distinction between scaling up
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and scaling down of the face, we introduce a notion, s ∈ {−2,−1, 0, +1, +2}
with + or − for scaling up or down operations respectively, where every index
number indicate the scale of the image I relative to the image M with [1/a0]s (for
example, s = 0 means no change to the reference model). Similarly, the rotation
transformation is also given as followings: [r/8] × π and r ∈ 0, 1, . . . , 7.

3 Size and Rotation Transformation-Specific Similarities

Two images of the same or different face at different scale and/or orientation are
matched in the system. For this, it would be necessary to find a proper similarity
measure between both the images, specifying the most likely transformations ap-
plied to the I. We propose so-called transformation-specific similarities between
two domains. A set of two vectors in each domain are constructed for computa-
tion in terms of all given transformation parameters. Each is a gathered average
of the corresponding Gabor feature component. The similarity computations can
be performed by aligning the vectors relative to each other and taking the scalar
product for each transformation parameter. The similarities with the highest
value determine the most likely scale and rotation transformations.

3.1 Decomposition of Scale and Rotation

In order to explain the similarity computation, we use one single Gabor fea-
ture extracted from a center point of the M image. The M Gabor feature can
be compared to the other Gabor feature extracted from the image I, which is
systematically located around the preferred center. Spatial frequency and ori-
entation components are calculated, averaging over the respectively orientation
and spatial frequency components:

XL
k =

1
|lL|

∑
l∈lL

JL
p,l,k, (1)

Y L
l =

1
|k|

n−1∑
k=0

JL
p,l,k. (2)

where p is the position index for the Gabor feature extraction point. For L=M,
the position the center of the image. For L=I, p takes somewhere within a rectan-
gular coordinate with an arbitrary size around the center. The detail explanation
and result obtained by using these equations will be given in the next section.
We obtain two vectors in each domain, a scale group and a rotation group vector.
For the I domain, rotation group and scale group vectors are X I = (X I

0, . . . , X
I
7)

and Y I = (Y I
0 , . . . , Y I

11). For the M domain accordingly XM = (XM
0 , . . . , XM

7 )
and Y M = (Y M

2 , . . . , Y M
9 ). We normalized the respective group vector by an

L2-Norm.
Let us compute the scale-(S) and rotation-specific (R) similarities between

two images. All possible transformation-specific alignments of the vectors are
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generated to apply the scalar product operation. The similarity specific for the
scale transformation is given by:

SS
s (Y I, Y M) =

∑
l∈lM

Y I
l+sY

M
l√∑

l∈lM+s

(
Y I

l

)2∑
l∈lM

(
Y M

l

)2 .

Each shift alignment of the scale vectors corresponds to a scale parameter s,
making possible the computation of the scale specific similarity for this particular
parameter. In the similarity computation for the rotation transformation, the
specific similarity for a given rotation degree r between the I and M domains is
given by

SR
r (XI, XM) =

∑
r′∈k X I

r′−r+nXM
r′√∑

r′∈k(X I
r′)2

∑
r′∈k(XM

r′ )2
, (r′ − r) mod n.

This means, for example, that for the rotation r = 1, both the vectors are shifted
relative to each other so that kth component of the rotation vector for the M
matches against the (k + 1)th component of the rotation vector for the I. Doing
this for all given transformation parameter, we get all transformation specific
similarities to start the detection process of the face position and to determine
the initially unknown transformational states.

3.2 Similarity Computation and Transformation Detection

The group vectors established in Sec.3.2 give us representational basis on which
the transformation specific similarities are computed. To make the size and ro-
tation transformation detection more reliable, the computed similarities should
reflect the actual degree of similarity between the I and the M given their re-
spective specific transformation. So, the I image is scaled and/or rotated with an
arbitrary size in the range of [−2, 2] and an arbitrary rotation angle in the range
of [0, 7], in relation to the M object. A natural approach to estimate the com-
puted similarities is to look on the similarity values by presenting transformed
I object with the corresponding degrees within the continuous transformation
regions. We then expect transformation-specific similarities taking the highest
value for the corresponding transformation parameter. The similarity values fall
down when the transformed images are changed gradually from the correspond-
ing given parameter. The similarity values calculated in this way, tuning curves
for each transformation specific similarity can be constructed.

The tuning curves are constructed from similarity values for each scale and
rotation transformation sp and rp, centered on the value for the preferred trans-
formation parameter. Taking a glance at the tuning curves, the prominent peaks
marking the maximum similarities for the preferred transformation are obvious.
This should give enough discrimination basis for the competitive evaluation of
the likelihood for the rotation (Fig.2(a)) and the scale transformation (Fig.2(b)).

Let us return again to how the correct transformation in scale and rotation can
be detected. We have to notice that the uncertainty about the transformations
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(a) (b)

Fig. 2. Tuning curves based on specific similarities for (a) rotation and (b) size trans-

formation. The similarity tuning curves are plotted as functions of deviation from pre-

ferred transformation (scale (sp) and rotation (rp). The preferred scale and rotation

degrees are relative size and rotation to the degrees taking the maximum similarities.

Because of using 100 different identity comparisons between centers of the image, an

average over the similarities at each parameter and the error σ/
√

100 can be calculated

where s is the standard deviation.

come to be broken by selecting transformation parameters r0 and s0, which take
the maximum similarity value among all similarities computed from the group
vectors of both the domains:

r0 = arg max
r

{SR
r (XI, XM)}, (3)

s0 = arg max
s

{SS
s (Y I, Y M)}. (4)

The obtained observation about the discriminative power of the transforma-
tion specific similarities supports the idea of their utility in the competitive eval-
uation of the transformation parameters. We have elucidated that the specific
scale and rotation transformation similarities computed from group vectors have
an intimate relation to the corresponding scales and rotations of the object on
the image I, and constitute a suitable measure for estimating the transformation
parameters between the two images.

4 Simulation Results

In the section, we examine a general ability for transformation detection in scale
and rotation and find a good positional range of the correct transformation
detection to specify a model reference on the image I. We use photographic
images of human faces, rotated and scaled within the continuous range described
above. Depending on the outcome, the system performance can be considered as
correct, supposing the right transformation parameters, or incorrect, failing to
do so. Each task involves presentation of an arbitrarily transformed face image
of the I, while the M image (no scale and no rotation) of (1) the same face,
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(2) the same face in different appearance or (3) the different face is put on the
M domain. Employing this simple case, we can probe detection performance of
the system under various conditions.

4.1 Correct Transformation Detection on Facial Images

100 images with faces of different persons were prepared for the experiment.
Each image size is 256 × 256 [pixel]. Taking this image size on the I domain,
the object sizes, D2 = 83× 83, 104× 104, 130× 130 (standard scale), 163× 163
and 204× 204 [pixel] are set. The image can be additionally transformed with 8
different rotations. So, each of the 100 different objects has total 39 transformed
instances of its reference image.

Reference face positions on the I domain cannot be specified in advance.
We have to cope with such a positional uncertainty. A high probability cor-
rect against pixel positions of the I image is thus demanded. To probe for this
quality, we set up a center point for feature extraction in the reference image M,
while the Gabor feature on the image I is extracted from an arbitrary position
chosen within 60 × 60 square grid coordinate set around the domain’s center.
Alongside with the absolute coordinates, the position can also be expressed as
a distance from the center point computed relative to the size of the face on I.
For each position, the relative distance is thus d = D, where d is the distance
from the center measure in absolute pixel number. By measuring the rate of the
correct transformation detection for each point inside the region, we are able to
indicate correctness of transformation detection on pixel positions of the I image,
showing the gradually slow decrease of system performance with the increasing
distance from the original position.

In Fig. 3, for each object size the probabilities for the correct transformation
detection are plotted as functions of a relative distance (d = D). The perfor-
mance is above 95% level inside of the region as big as 0.147 of the object size,
which is a considerable amount of shift bearing in mind rather heterogeneous

Fig. 3. Correct transformation detection on positions over the relative distance (d =

D) from the reference location, independent of an object size in the I domain. The

probability is calculated for each shifted position by probing transformed face images

of 100 different persons for a detection of the correct transformation. During each single

detection trial, reference image of the person is put on the M domain while an arbitrary

transformed version of the same person is presented on the I.
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structure of a face image. Shifting towards longer relative distances will surely
disturb transformation detection still the system stays well above 85% transfor-
mation detection rate even for shifts larger than 20% of the object size.

So, taking a single feature as reference on an M domain does not require the
exact knowledge of the corresponding feature’s position on the I to detect correct
transformation parameters. Moreover, there seem to be a well-defined similarity
landscape which can be exploited by the system to locate the position of the
reference feature under initial uncertainty by moving in the direction of the
increasing similarity towards its maximum. The established correctness of the
transformation detection against pixel positions constitutes a basis for a further
development towards multiple reference feature approach, where each reference
feature will be able to find its transformed counterpart on the input on the basis
of transformation-specific similarities computed across multiple positions on the
input domain.

4.2 Detection Performance under Different Conditions

In the next experiment, we are trying to test the transformation detection ability
of our system under some different visual conditions on the face image compar-
isons: (A) Two same persons without any distinguishing appearance are respec-
tively located on the center of the I or M images. (B) The two same persons look
slightly different, for instance, one of them is smiling while the other is smiling.
But they are positioned on the center of each image. The relative size, rotation
and illumination between the two persons is approximately same. (C) One of the
two same persons in the different has already been under different image con-
ditions of the other. The conditions are different scaling, rotation, illumination
and position of the object. (D) The different persons on the I and M images.

For this, 100 different pairs of the same persons are prepared from the FERET
database [4]. There are hundreds of face image pairs. However in many of the
pairs, at glance, one of the pair is already scaled, inclined the head, or shifted
on the image, relative to the other. We should carefully realize even the case
for different illumination. For this, we should have selected 100 different pairs
with the same face size and the different looks from the FERET database in
the experiments of (A) and (B). In the experiment (C), the 100 different face
pairs without any consideration about transformation and translation should
randomly be picked up from the database.

When simulating one comparison, we extract a single feature from the center
point on each image. This is because as shown in the previous section, we have
demonstrated 100.00% probability of the correct transformation in terms of the
center-to-center comparison between the two images of the same person. This
result is just as the one of (A) in Table 1. In the (B) experiment, we have obtained
an acceptable value of the transformation detection rate, 93.00%, even though
the two persons in the pair look slightly different.

If a collection of the pairs should be repaired to involve cases with different
scaling, rotation and so on, the transformation detection performance gradually
becomes decreased to 79.00% as shown in the (C) in Table 1. One of the reasons
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Table 1. Detection performance for face image comparisons between the input and

model domains. (A) Two same persons without any distinguishing appearance located

on the center of each image. (B) The two same persons placed on the center of each

image look slightly different. The relative size, rotation and illumination between the

two persons are approximately same. (C) One of the two same persons has already

been under different image conditions such as different scaling, rotation, illumination

and position. (D) The different persons.

Item Probability Correct

A 100.00%
B 93.62%
C 79.00%
D 5.42%

why is apparently due to a relative shift of the face in the pair must be out of an
appropriate size of the higher robustness of the correct transformation detection.
Thus, if we should take a good care of transformational or translational difference
of the two images, even though they are slightly different in their look, this result
will suggest that our algorithm used here may possess a preliminary capability
for finding identity of a person.

Indeed, as shown in (D) of Table 1, we have obtained much less detection
performance, which presents a potential to support the functionality of finding
the personal identity. Of course, in this work, to use our proposed algorithm is
just at a fundamental step toward practicable application. So there still ample
discussion about the advanced utility of our algorithm to detect the correct
transformation in scale and rotation.

5 Discussions and Conclusions

If attempting to shed the light on mechanisms underlying invariant visual recog-
nition, the key point is to understand the general principles how invariance
is achieved, establishing the relevant computational recognition systems [5]. In
the current study, our main focus lies on the proof of a general principle for
a transformation-tolerant feature processing. In the processing, the most likely
relative transformation in scale and rotation can be detected under a natural
condition of its initial uncertainty.

A method proposed here has brought the useful ability that object recognition
can be achieved without loss of information about the initially uncertain trans-
formational states. We have shown that this computational method has a sup-
portive functionality for finding the correct transformation with a certain region
of feature extraction positions on an input image. Results of face detection per-
formance have given us an important step toward more practical application in
the future. In particular, the maximum operation of the transformation-specific
similarities may be a relatively powerful tool to construct an architecture for a
translation-invariant particular face recognition.
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This is because our position detection results on the object image allow us to
propose a concept of dealing with translation invariance analog to the detection
of the scale and rotation. The rough idea is to find the location corresponding
to the reference feature by maximum operation of its similarities over all pos-
sible positions in the image, determining the area where the model feature is
most likely to be found. We should not forget that making conclusions about
the identity of the object is also the case. We intend to establish a gallery of
different model objects in the model domain to be able to decide for a particular
object identity as well. This would require a substantial step in the detection
of transformation and recognition of the identity, achieving the coherent global
decision about the image presented on the input.
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Abstract. In this paper, we propose a hierarchical classifier structure for gender
classification based on facial images by reducing the complexity of the original
problem. In the proposed framework, we first train a classifier, which will prop-
erly divide the input images into several groups. For each group, we train a gen-
der classifier, which is called expert. These experts can be any commonly used
classifiers, such as Support Vector Machine (SVM) and neural network. The sym-
metrical characteristic of human face is utilized to further reduce the complexity.
Moreover, we adopt soft assignment instead of hard one when dividing the input
data, which can reduce the error introduced by the division. Experimental results
demonstrate that our framework significantly improves the performance.

Keywords: Hierarchical classifiers, Gender classification, Multi-view facial
images.

1 Introduction

Gender classification using facial images is widely used in human-computer interaction
and the applications depending on it, such as demographics and visual surveillance.
Most of the existing approaches do not consider, or design some features which are
claimed to be robust to the pose variation of faces. They will fail in practical use facing
unconstrained face poses, or say, multi-view faces.

To ease this multi-view problem, Toews and Arbel [1] proposed the idea of relative
location information of the organs, which is used to infer the most likely position of
the face. The result of gender classification was obtained by combining the results of
organs. Takimoto et al. [2] extracted the features around the eyes and mouths which
requires the positions of eyes and mouths to be exactly located in advance. In their work,
local information is used to facilitate multi-view problems. Lian and Lu [3] aligned the
facial images based on the position of eyes, and apply LBP [4] to feature extraction and
SVM to gender classification directly.

In this paper, we propose a framework which decomposes the multi-view problem
into several single-view subproblems and hence reduces the complexity. Under this
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Fig. 1. The pose is decomposed into three rotations: pitch, roll and yaw

framework, any traditional feature extraction methods and classifiers (e.g. SVM, neural
network) can be used. The pose is decomposed into three rotations: pitch, roll and yaw
(See Fig. 1). To simplify the problem and without lose of generality, we only consider
yaw rotation. The extension to the other two is trivial. The framework has two layers. In
the first layer, we discretize the continuous angle space into K bins. A classifier whose
output is in {1, . . . , K}, is trained to predict which bin the input facial image falls in. We
call it orientation classifier. One problem of the discretization process is the boundary
effect. It is unreasonable to simply put a image on a boundary to either side. Therefore
we adopt soft assignment, allowing the partitions overlap on the boundary. Moreover, to
reduce the number of categories the orientation classifier should deal with, we make use
of the symmetrical characteristic of human face, horizontally flipping the images whose
faces toward right. By doing so the accuracy of the orientation classifier is increased.
Then in the second layer, for each bin we train a classifier which specializes in gender
classification of images from that bin. These classifiers are called gender classifiers.

The rest of the paper is organized as follows: Section 2 describes the main idea in
the proposed hierarchical classifiers framework. Section 3 introduces some tricks to
improve the accuracy. Section 4 shows the gender classification procedure using our
framework. Experiment results are presented in Section 5. Some conclusions and future
work are outlined in Section 6.

2 Hierarchical Classifiers

Traditional gender classification algorithms always work well on images with the same
pose, since the alignment is easy. For multi-view facial images, the issue becomes much
more complex. The feature space is much larger and it is difficulty to design orientation-
invariant features. An efficient solution is to divide the feature space into several sub-
spaces according to face orientations, which decomposes the multi-view problem into
easier classification tasks on simpler subspaces.

In this paper we propose a two-layered classifier (See Fig. 2). The first layer includes
a classifier, which extracts the feature vectors from the original image and classifies it
into several categories according to its orientation. Then the task of gender classification
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Fig. 2. Hierarchical classifiers structure

is passed to the next layer where we make use of experts of gender classification for
certain orientations. It is obviously that the accuracy of the classifier in the first layer
is important for the whole problem. Classification error in the first layer leads to error
answers in the second layer. So this method is suitable when the initial classification
problem has a high precision.

3 Angle Categories Selection

In this section, we show some technologies that can be used in angle category selection
to improve the accuracy of gender classification.

Since the faces of human beings are bilaterally symmetric, the images in which the
persons face right turn to be the ones facing left after a horizontal flip. If we get the
information of the face direction in the images, the original space of input images should
be reduced by a half. An easy classifier is trained for the direction classification in this
paper to reduce the complexity.

The hierarchical classifiers structure is suitable for the problem whose initial classi-
fication problem has a high precision. Classification error of the initial separation leads
to error answers in the individual classification. We found in the experiment that the
images whose angles are near the dividing line of the two angle categories are easily
to be misclassified. The error answer caused by the misclassification is due to the lack
of information in the certain individual classifier. We get another trick which is to add
the samples whose angles are near the dividing line into the training data of the two
neighboring categories. The detail is refer to Section 5.2.

By using the combination of results generated in the gender classifiers, the risk in
the first classification layer is apportioned.

resulti =
K∑

k=1

pk
i × resultki (1)

resulti is the possibility of the ith sample to be a male, and resultki is the result from
the sub classifiers. pk

i means the possibility for the ith sample to belong to the category.
Moreover, Weighted Relevance Aggregation Operator(WRAO) [5] helps hierarchical
model with hierarchical fuzzy signatures to work better.

In our problem, the classification is the first layer is not so hard. Huang and Shao
[6] use SVM to achieve perfect performance on face pose classification problem on the
standard FERET data base. With tolerance on the dividing region of the neighboring
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Fig. 3. The gender classification process using hierarchical classifiers structure

categories, the uncertainty in the first layer won’t make trouble for the gender classifi-
cation.

4 Gender Classification Procedure

In this section, we introduce the whole hierarchical classifier based gender classification
system(See Fig. 3).

Alignment is important for gender classification based on facial images [7]. First,
faces are fixed in the center of the result pictures. Facial components are in the certain
places for feature extraction after alignment. To obtain the facial components, we adopt
Active Shape Model (ASM) [8], a statistical model of the shape of the deformable
object, to get the locations of eyes and mouth, and then cut the rectangle out of the
facial image.

The bilaterally symmetrical characteristic of human face is make use of. The im-
ages facing right are turned left. Then, the images will be classified into some classes
according to the angle of the face. Images in different angle classes are taken to their
own gender classifiers. Now we have converted the original problem to gender classifi-
cations based on facial images of fixed angle, a well-studied problem with many good
approaches.

Gender classification processes in the different categories are similar. The facial im-
ages are re-cutting, using the information of angles which is the label of the category,
in order to put most of the human face into the picture, and align the organ positions
precisely. Some information of hair is also taken into images for classification. Fea-
ture extraction is done in different categories and the suitable gender classification is
prepared for the facial images.
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5 Experiment

5.1 Data Set

To compare the performance, we select the gender classification problem based on
multi-view facial images in the CAS-PEAL face database [9](See Table 1). We take
all the images labeled ”PM” from the ”POSE” section. We put different people into the
training and test table, i.e., we partition the set according to people instead of single im-
ages so that two different images of a person cannot stay in both training or test set. This
would help avoid over-fitting, or the similarity of the two images will take unnecessary
information to the test set. The total 7273 different-pose facial images are so organized
into 11 groups, such that within each of them, the number of the training samples is
70% the number of female facial images, which are fewer than male images. We let the
percentage be 50% if there are not many in that group.

Table 1. Description of training and test data based on facial images

Data Set Description Total Male Female Training Test
PM-67 101 79 22 11*2 79
PM-45 1039 595 444 306*2 427
PM-30 938 516 422 295*2 348
PM-22 101 79 22 11*2 79
PM-15 938 516 422 295*2 348

CAS-PEAL PM+00 1039 595 444 306*2 427
PM+15 938 516 422 295*2 348
PM+22 101 79 22 11*2 79
PM+30 938 516 422 295*2 348
PM+45 1039 595 444 306*2 427
PM+67 101 79 22 11*2 79
TOTAL 7273 4165 3108 4284 2989

5.2 Implementation

The images in the data set are of many different angles. We want to use this prior
knowledge to separate them into some categories. However, as we have pointed out,
too many categories will introduce complexity to the division problem. So some of
the images in different angles must be put into one category. We use the symmetric
property of human face to reduce the total amount of angles from 11 to 6. In this case,
3 categories are enough.

The division illustrated in Fig. 4(a) looks quite natural. Given such a division, none
of the two corresponding classifiers would be able to solve the angle between the two
regions. For we use the structure of hierarchical classifiers, classification error in the
first layer probably leads to error answers in the second layer, especially near the di-
vision of the two neighboring regions. In this paper, we use the division in Fig. 4(b).
Images of PM00 and PM15 are used for training the first classifier. Images of PM15,
PM22 and PM30 are for the second classifier. And PM30, PM45 and PM67 are for the
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Fig. 4. Angle region division about gender classification: (a)naive way, 6 angles are divided
equally into three groups; (b)the way to get all angles in and improve accuracy

Table 2. Gender classification with or without symmetric process

Method Accuracy (RBF kernel) Accuracy (linear kernel)
Symmetric accuracy 99.63% 99.60%
With symmetric process 93.34% 92.64%
Without symmetric process 92.31% 91.50%

third. The training data of the division of the two neighboring regions are trained in
both corresponding classifiers. The images whose angles are near the division can be
classified correctly in both corresponding classifiers. This will also help to reduce the
risk of the accumulative error introduced by the classification error in the first layer.

For feature extraction, we use multi-resolution local Gabor binary pattern (MLGBP)
to extract the features of each facial image. The MLGBP [10] feature, which is the
input of the SVM classifiers, is derived by combining multi-resolution analysis, Gabor
characteristic and uniform LBP histograms [11]. All experiments were performed on a
Pentium fourfold CPU (2.83GHz) PC with 8GB RAM.

All the classifiers in this paper are Support Vector Machines, lib-svm v.2.86 in detail.
RBF kernel and linear kernel are used for comparison.

5.3 Result

The effect of symmetry is shown in Tab. 2. We make use of the symmetry of human
face to reduce the originally 11 angles to 6. The accuracy of the whole process including
symmetric transformation and gender classification is better than that without the pro-
cess. It means the symmetric transform provides the classification with less complexity
and more accuracy but less harm.

The classifications in small fields show great advantage over the one in the large
complex space(See Tab. 3). The result shows the additional classification step won’t

Table 3. Gender classification in different angle categories

Angle Category Accuracy (RBF) Total SV Accuracy (linear) Total SV
PM00,PM15 97.51% (1095/1123) 416 97.51% (1095/1123) 346
PM15,PM22,PM30 98.26% (1523/1550) 423 97.94% (1518/1550) 352
PM30,PM45,PM67 97.78% (1670/1708) 586 97.48% (1665/1708) 348
Classify directly 92.31% (2759/2989) 1480 91.50% (2735/2989) 840
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Table 4. Gender classification using hierarchical classifiers structure

Method Accuracy (RBF) Total SV Accuracy (linear) Total SV
Angle classify 98.43% (2942/2989) 1161 98.43% (2942/2989) 965
Classify directly 92.31% (2759/2989) 1480 91.50% (2735/2989) 840
Whole System 97.89% (2926/2989) – 97.59% (2917/2989) –

harm the accuracy but increase it(See Tab. 4). In the experiment, we find most of the
testing data which are misclassified in the angle classification are the facial images
laying near the dividing line and being classified into the neighboring category. The
selected classifiers are still suitable for these images and prepare better classification.
The angle categories selection helps to solve the main problem in hierarchical classifiers
framework. So the accuracy of the gender classification with symmetric process and
angle classification is close to the performance of the expert classifiers in their fields.

5.4 Complexity Analysis

As we know, the time complexity of a standard SVM QP solver is O(M3), where M
denotes the number of training samples. In our hierarchical classifiers framework, we
cut the training samples into K groups, where K is the number of classifiers in the
second layer of the structure. In each group, the corresponding classifier only needs to
deal with its own training samples, so they can be trained in parallel, meaning that the
running time could be improved to O((M

K )p). Even if we run the training in serial, it
will only take O(K(M

K )p). Thus time complexity is reduced in both situations.
During recognition, the time eater is to calculate the kernel of test and support vec-

tors especially in high dimension space. So we suppose the time complexity of SVM
is O(v), where v is the number of support vectors. The statistic shows that the sub-
problems need much less time than the original problem.

6 Conclusions and Future Work

We have proposed a novel framework for gender classification based on multi-view
facial images, i.e., hierarchical classifiers. The most important advantage of our frame-
work over traditional SVM is that prior knowledge is used to get the input image to
the expert of that field who can be easily get trained and give an answer. Experimental
results show the effectiveness of our framework. A future extension of our work is to
use the combination of some classifiers of organs or other parts to make our classifier
more robust and improve accuracy.
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Abstract. It has been well known that ICA can extract edge filters

from natural scenes. However, it has been also known that the existing

cumulant-based ICA can not extract edge filters. It suggests that the

simple ICA model is insufficient for explaining the properties of natural

scenes. In this paper, we propose a highly overcomplete model for natu-

ral scenes. Besides, we show that the 4-th order covariance has a positive

constant lower bound under this model. Then, a new cumulant-based

ICA algorithm is proposed by utilizing this lower bound. Numerical ex-

periments show that this cumulant-based algorithm can extract edge

filters.

1 Introduction

Independent component analysis (ICA) is a well-known technique in blind source
separation [1,2]. Besides, it has been known that ICA can extract edge filters
from natural scenes [3]. Therefore, ICA is also expected to give a general frame-
work for explaining both the characteristics of natural scenes and the early visual
system in the brains [4]. However, the ICA-based framework is still controversial
and has not been investigated thoroughly yet. In this paper, we pay attention
to the fact that the existing cumulant-based ICA algorithms can not extract
edge filters. Cumulants are the higher order statistics such as kurtosis, which are
estimated through the average of some polynomial functions of given signals.
The utilization of cumulants is one of the most basic approaches in ICA, and
many cumulant-based ICA algorithms have been proposed [5,6,7]. However, it
has been known empirically that cumulant-based ICA algorithms can not ex-
tract local edge filters from natural scenes, where the extracted components are
globally noisy patterns. The edge extraction requires highly nonlinear functions
such as tanh. The reason has not been clarified completely yet. One possibility
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is that cumulant-based ICA is not robust to outliers [6,7]. Although such effect
of outliers is reduced by giving a sufficiently large number of samples, the edge
filters can not be extracted by increasing the number of natural scenes. It indi-
cates that this hypothesis is inadequate. Another possibility is that the simple
ICA model is insufficient to completely explain the characteristics of natural
scenes and the early visual system. Some works have focused on the overcom-
pleteness [8,9,10], which means that the number of sources may be larger than
the dimension of the observed images. Though they suggest the significance of
the overcompleteness, they also have to use highly nonlinear functions instead
of cumulants.

In this paper, we assume a highly overcomplete ICA model and propose a
new cumulant-based ICA algorithm which can extract edge filters from natural
scenes. In this model, the number of sources is assumed to be much larger than
the dimension of observed images. Because the estimation of all the indepen-
dent components is difficult, we attempt to extract only a part of components
accurately. Under this highly overcomplete model, we derive a lower bound of
the 4-th order covariance. Then, a cumulant-based algorithm is derived by uti-
lizing the lower bound. In consequence, the new algorithm is an improvement
of the maximization of the 4-th order covariance with the Jacobi method. The
significant point is the employment of a lower bound condition in each pair opti-
mization of the Jacobi method. In this model, the reason why previous cumulant-
based algorithms can not extract edge filters can be explained by an over-fitting
problem.

This paper is organized as follows. In Section 2.1, a linear overcomplete ICA
model is defined and the concept of the partial estimation is described. In Section
2.2, we derive a lower bound of the 4-th order covariance under this model.
In Section 3, a new cumulant-based ICA algorithm with the Jacobi method is
proposed by utilizing the lower bound. In Section 4, numerical experiments show
that the proposed algorithm can extract edge filters from natural scenes. Lastly,
this paper is concluded in Section 5.

2 Model

2.1 Linear Overcomplete ICA Model and Partial Estimation

The linear ICA model is given as

X = AS (1)

where X = (xik), A = (aij), and S = (sik) correspond to known observed
signals (original natural images in the edge extraction), the mixing matrix (edge
filters), and independent source signals, respectively. X is an N × M matrix
where N and M are the number of signals and that of samples, respectively. S
is an L × M where L is the number of sources, and A is an N × L matrix. If
N = L, the separating model is given as follows:

Y = WX (2)
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where Y = (yik) and W correspond to the separated signals and the N × N
separating matrix. W = A−1 can be estimated by maximizing a measure of the
independence of Y (such as the sum of kurtoses of Y [6,7]). In the overcomplete
model (L > N), however, such simple estimation can not be employed because
A is not invertible. Here, the partial estimation is introduced. First, A is divided
as follows:

A =
(
ÃB

)
(3)

where Ã is a square N × N matrix and B = (bim) is the complementary N ×
(L − N) matrix. Ã can consist of arbitrary N columns of A by any permutation.
The partial estimation is defined as the estimation of Ã instead of A. The
optimal separating matrix is given as

W = ΛÃ
−1

(4)

where Λ = (λi) is a diagonal matrix for scaling. Note that Y = W X is no
longer the estimation of sources.

2.2 Lower Bound of 4-th Order Covariance in Partial Estimation

Here, a lower bound of the 4-th order covariance on Y is derived in the partial
estimation W = ΛÃ

−1
. In this paper, the following 4-th order covariance is

focused on:
cov4 (i, j) = ave

(
y2

iky2
jk

)
− 1 (5)

where i 	= j and ave () is the average operator over samples k. Besides, the
variance of each yik is normalized to 1 by choosing a suitable scaling matrix
Λ. The 4-th order covariance cov4 (i, j) is strongly related to kurtoses [11]. One
advantage of cov4 (i, j) is that both its true optimum and its lower bound are
supposed to be 0 in non-overcomplete ICA with super-Gaussian sources. By using
the independence of S and letting U = (uil) be WA, cov4 (i, j) is transformed
as follows (see [12]):

cov4 (i, j) =
∑

l

u2
ilu

2
jlγl + 2

(∑
l

uilujl

)2

(6)

where γl = ave
(
s4

lk

)
− 3 (the kurtosis of slk) and the variance of each slk is

normalized to 1. If Eqs. (3) and (4) hold, each element uil is given as

uil =

{
λiδil l ≤ N,∑

p wipbp(l−N) otherwise
(7)

where δil is the Kronecker delta. Then, Eq. (6) is rewritten as follows:

cov4 (i, j) =
L−N∑
m=1

(∑
p

wipbpm

)2(∑
p

wjpbpm

)2

γ(N+m)

+ 2

(
L−N∑
m=1

∑
p

wipbpm

∑
p

wjpbpm

)2

. (8)
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Besides, because the variance of each yik is normalized to 1, the following equa-
tion on uil holds:

∑
l

u2
il = λ2

i +
∑
m

(∑
p

wipbpm

)2

= 1. (9)

Now, the following assumptions are employed:

Assumption 1: wip and bpm (p = 1, · · · , N) are assumed to be indepen-
dent of each other. It approximately means that edge filters are assumed
to be independent of each other. Under this assumption, the following ap-
proximation holds: ∑

p

wipbpm 
∑

p wip

∑
p bpm

N
. (10)

Thus, Eq. (8) is approximated as follows:

cov4 (i, j) 

(∑
p wip

)2 (∑
p wjp

)2∑
m

(∑
p bpm

)4

γ(N+m)

N4

+
2
(∑

p wip

)2 (∑
p wjp

)2
(∑

m

(∑
p bpm

)2
)2

N4
. (11)

Besides, the following equation is derived from Eq. (9):(∑
p wip

)2∑
m

(∑
p bpm

)2

N2
= 1 − λ2

i . (12)

Assumption 2: bpm and γ(N+m) (m = 1, · · · , L − N) are independent of
each other. It means that the edge filters are independent of the kurtoses.
Then, the following approximation holds:

∑
m

(∑
p

bpm

)4

γ(N+m) 

∑
m

(∑
p bpm

)4∑
m γ(N+m)

L − N


∑
m

(∑
p

bpm

)4

γ̄ (13)

where γ̄ is the average of γ(N+m) over m.
Assumption 3: γ̄ is positive. It means that almost all of the sources are

super-Gaussian. Then, the following inequality on
∑

m

(∑
p bpm

)4

γ̄ holds:

∑
m

(∑
p

bpm

)4

γ̄ ≥

(∑
m

(∑
p bpm

)2
)2

γ̄

L − N
. (14)
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By Eqs. (12) and (14), a lower bound of Eq. (11) is given as

cov4 (i, j) ≥
(
1 − λ2

i

)2( γ̄

L − N
+ 2

)
. (15)

Assumption 4: The model is highly overcomplete. It means that L − N
is sufficiently large. Then, the first term of Eq. (15) is negligible. Therefore,
the following inequality holds:

cov4 (i, j) ≥ 2
(
1 − λ2

i

) (
1 − λ2

j

)
. (16)

Assumption 5: The characteristics of all the sources are similar. It
means that λi is approximately the same value λ irrespective of i. Then, Eq.
(16) is approximated as

cov4 (i, j) ≥ α (17)

where α = 2
(
1 − λ2

)2.
Eq. (17) gives a common lower bound α of cov4 (i, j) in the highly overcomplete
model, where α is the only parameter to be set manually in the range of [0, 2].
Because the lower bound of cov4 (i, j) is 0 in non-overcomplete cases, almost
all of the previous cumulant-based ICA algorithms are supposed to achieve the
optimal state where every cov4 (i, j) is equal to 0. However, Eq. (17) suggests
that such optimization may cause serious over-fitting problems under highly
overcompleteness.

3 Method

Because the partial estimation does not use the orthogonal constraints, the non-
orthogonal local pair optimization algorithm (which has been proposed in [12]
by the authors) is employed as the basic algorithm. It is a variation of the
Jacobi method, where cov4 (i, j) was optimized with respect to each pair (i, j).
By sweeping the simple optimization over all the pairs, the Jacobi method can
optimize all of cov4 (i, j)’s. In consequence, the following algorithm with the
lower bound α is proposed in this paper:

cumulant-based ICA algorithm using the lower bound α

1. (Initialization):
(a) Center each row of X (set its mean to 0).
(b) Let W be the N × N diagonal matrix which normalizes each row of X

(set its variances to 1).
(c) Let Y be WX.

2. (Sweeping all the pairs):
For each pair (i, j) of the rows of Y with cov4 (i, j) > α,
(a) Whiten yi and yj by the Gram-Schmidt method and update W

according to the whitening.
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(b) Calculate the following 4-th order statistics on Y : κY
iiii = ave

(
y4

ik

)
,

κY
iiij = ave

(
y3

ikyjk

)
, κY

iijj = ave
(
y2

iky2
jk

)
, κY

ijjj = ave
(
y1

iky3
jk

)
, and

κY
jjjj = ave

(
y4

jk

)
.

(c) Calculate θ̂1 and θ̂2 by repeating the following equations alternatively
until convergence:

θ1 = −atan2 (−B (θ2) ,−A (θ2))
2

and θ2 = −atan2 (−B (θ1) ,−A (θ1))
2

.

(18)
where

A (φ) = κY
jjjj (cos 2φ − 1) − 2κY

ijjj sin 2φ − 2κY
iijj cos 2φ

+ 2κY
iiij sin 2φ + κY

iiii (cos 2φ + 1) , (19)

B (φ) = κY
ijjj (2 − 2 cos 2φ) + 4κY

iijj sin 2φ + κY
iiij (2 + 2 cos 2φ) , (20)

and atan2 (v, u) is the arctangent function of v/u with the range of
(−π, π].

(d) Transform linearly the i-th and j-th rows of Y and W by the 2 × 2
matrix [cos θ1, sin θ1; cos θ2, sin θ2]

3. Repeat the above Step 2 until the number of the iterations of sweepings
reaches the maximum.

The linear transformation in each pair optimization minimizes κY
iijj (see [12]

for the details). It is crucial that the condition cov4 (i, j) > α on each pair
optimization is added in this paper. Though it does not guarantee that every
cov4 (i, j) > α, it can simply avoid the over-fitting.

4 Experiments

Here, the proposed algorithm is applied to the edge extraction from natural
scenes. 30000 samples of natural scenes of 12 × 12 pixels were used as X. The
lower bound α in the range of [0, 2] was set to 0, 1, 1.5, and 2. If α = 0, the method
is approximately equivalent to the previous cumulant-based ICA methods with
the non-overcomplete model. The maximum of iterations of sweepings was set to
5. For comparison, fast ICA algorithms with tanh and kurtosis [6] were applied to
the same data. Fig. 1 shows the extracted components in the partial estimation
of the mixing matrix A. In Figs. 1-(a) (α = 0) and 1-(b) (α = 1), noisy patterns
were dominant as in the previous cumulant-based ICA (Fig. 1-(f)). On the other
hand, local edge filters could be extracted by α = 1.5 in Fig. 1-(c) as in the
highly nonlinear tanh-based ICA (Fig. 1-(e)). If α = 2 (the maximum), no pair
optimization was carried out (Fig. 1-(d)). Those results verify that the proposed
cumulant-based ICA algorithm under the highly overcomplete assumption is
useful for extracting edge filters if the lower bound α is given appropriately.
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(a) α = 0. (b) α = 1.

(c) α = 1.5. (d) α = 2.

(e) fast ICA with tanh. (f) fast ICA with kurtosis.

Fig. 1. Extracted independent components from natural scenes: They show 144 ex-

tracted components from natural scenes of 12 × 12 pixels. (a) The proposed algorithm

with the lower bound α = 0. (b) α = 1. (c) α = 1.5. (d) α = 2. (e) fast ICA with a

highly nonlinear function tanh. (f) fast ICA with kurtosis.
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5 Conclusion

In this paper, we proposed a highly overcomplete model for natural scenes and
derived a lower bound of the 4-th order covariance under this model. Numerical
experiments verified that the proposed cumulant-based ICA algorithm with the
lower bound can extract edge filters in contrast to the existing ones. In order
to determine the lower bound appropriately, we are now planning to consolidate
the foundation of this model both theoretically and experimentally. Especially,
the validity of the assumptions in Section 2.2 should be investigated further.
One significant advantage of cumulants over highly nonlinear statistics is the
facility in the optimization. So, we are also planning to develop an efficient ICA
algorithm in image processing by this approach. Besides, we are planning to
utilize this model for other applications such as text analysis.
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Abstract. Image retrieval on large-scale datasets is challenging. Cur-

rent indexing schemes, such as k-d tree, suffer from the “curse of di-

mensionality”. In addition, there is no principled approach to integrate

various features that measure multiple views of images, such as color

histogram and edge directional histogram. We propose a novel retrieval

system that tackles these two problems simultaneously. First, we use ran-

dom projection trees to index data whose complexity only depends on

the low intrinsic dimension of a dataset. Second, we apply a probabilistic

multiview embedding algorithm to unify different features. Experiments

on MSRA large-scale dataset demonstrate the efficiency and effectiveness

of the proposed approach.

1 Introduction

Content-based image retrieval on large dataset has attracted a lot of attention
recently with the development of the Internet. A lot of practical systems [1][2]
and novel methods [3][4][5] have been developed which exploited different cues
of the images and various indexing techniques. However, the size of the dataset
and high dimensional image features present a great challenge for efficient image
retrieval. Conventional indexing schemes, e.g. k-d tree [6], can effectively reduce
the retrieval time by using a tree structure. Unfortunately, the complexity of k-
d tree grows rapidly with the feature dimensions, making it ineffective for high
dimensional features. On the same time, rich complementary information resides
in images. For instance, the sunset scene is better recognized by color while bi-
cycles may be easier classified by shape. Currently, there is no principled way to
incorporate these different features, or multiple views for better image retrieval.

We propose a novel image retrieval system that can deal with the two prob-
lems, respectively. First, to efficiently index high dimensional data, random pro-
jection trees [7] are used in our system. Compared with k-d tree, random pro-
jection tree can automatically adapt to the data distribution, thus achieve a
provably lower complexity. Second, to unify heterogeneous features, we present
a multiview embedding algorithm based on a probabilistic framework. Com-
pared with traditional manifold embelding methods [8][9], our algorithm can
learn different weightings for different features adapted to their contribution to
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Algorithm 1. Algorithm to Construct a Subtree

Procedure MakeTree(S)

if |S| < MiniSize then
return (Leaf)

else
Rule ← ChooseRule(S)

LeftT ree ← MakeTree({x ∈ S : Rule(x) = true})
RightT ree ← MakeTree({x ∈ S : Rule(x) = false})
return ([Rule, LeftT ree,RightT ree])

end if

Algorithm 2. Algorithm to Generate a Splitting Rule

Procedure ChooseRule(S) {c > 0 is a parameter}
if Δ2(S) ≤ cΔ2

A(S) then
Choose a random unit direction p
Sort projection values: a(x) = pT x,∀x ∈ S, generating a list a1 ≤ a2 ≤ · · · ≤ an

Compute μi1 = 1
i

∑i
j=1 aj , μi2 = 1

n−i

∑n
j=i+1 aj and

ci =

i∑
j=1

(aj − μi1)
2
+

n∑
j=i+1

(aj − μi1)
2

Find i that minimizes ci and set θ = (ai + ai+1)/2
Rule(x) := pT x ≤ θ

else
Rule(x) := ‖x − mean(S)‖ ≤ median{‖z − mean(S)‖ : z ∈ S}

end if
return (Rule)

the final embedding. In this way, useful information is promoted and noise is
suppressed. We note that our approach is related to hierarchical fuzzy trees with
fuzzy aggregation operators [10].

2 Random Projection Tree Indexing

In this section, we present random projection tree [7] for high dimensional feature
indexing, whose complexity only depends on the low intrinsic dimension of data.

2.1 Random Projection Tree Construction

Given a set of sample points A = {xi ∈ R
d}n

i=1, we first randomly choose a
unit vector p ∈ R

d and project the set of data points to obtain vi = pT xi.
Then, we choose an appropriate threshold t that partitions the set into two sets
B = {vi ≤ t} and C = {vi > t}. We go on to partition sets B and C until the
desired level is reached. In this way, we have created a random projection tree
from the sample set A.
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Detailed description on how to make a tree and choose the splitting rule is
summarized in Alg. 1 and Alg. 2.

After building a random projection tree, it can be used to find approximate
nearest neighbors. For a given query image represented by a high dimensional fea-
ture vector q ∈ R

d, we traverse down the tree to find the query’s corresponding
leaf node. All the data samples used to construct the tree that fall in the same leaf
node are the query’s nearest neighbors. Therefore, instead of comparing n data
points in the dataset, we only need to compute L inner products with the stored
random unit vectors and comparison operations, where L is the number of levels
of the tree which only depends on the low intrinsic dimension of the data.

2.2 Analytical Properties

The random projection tree can be viewed as a vector quantization technique
that represents the cells associated with the leaf nodes by their means. We
evaluate the quality of approximation by the diameters and averaged diameters
of the cells.

In detail, denote the set of data samples in a cell as S. Then the squared
diameter of S and the averaged squared diameter are

Δ2(S) = max
x,y∈S

‖x − y‖2, (1)

Δ2
A(S) =

1
|S|2

∑
x,y∈S

‖x − y‖2 =
2
|S|

∑
x∈S

‖x − mean(S)‖2, (2)

respectively, where |S| is the cardinality of the set.
Note that we use two different splitting strategies according to the relationship

between Δ2(S) and Δ2
A(S) in Alg. 2. The first one projects data in a random

direction and splits them so that the average squared interpoint distance is max-
imally reduced. We name it split by projection. The second strategy is designed
for data with very different scales, for example, large amount of data samples
center around the origin and others are spread out. This rule can effectively
separate these two distinct clusters and we call it split by distance.

We go on to define a statistical concept of dimension. For set S ⊂ R
d, denote

the sorted eigenvalues of its covariance matrix by σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
d. We say the

local covariance dimension of set S is (r, ε) if σ2
1 + · · ·+σ2

r ≥ (1−ε)(σ2
1 + · · ·+σ2

d).
That is, most of the variance is concentrated in a r-dimensional subspace.

With this concept, we now show the reduction rate of cell diameters in random
projection trees.

Theorem 1. There exist constants 0 < c1, c2, c3 < 1 with the following property.
Suppose a random projection tree is built with set S ⊂ R

d. Consider any cell C
for which S ∩ C has local covariance dimension (r, ε), where ε < c1. Select a
point x ∈ S ∩ C at random, and let C′ be the cell that contains it at the next
level down.

If C is split by distance then

E[Δ(S ∩ C′)] ≤ c2Δ(S ∩ C);
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If C is split by projection then

E[Δ2
A(S ∩ C′)] ≤ (1 − c3

d
)Δ2

A(S ∩ C).

In both cases, the expectation is over the randomization in splitting C and the
choice of x ∈ S ∩ C.

The proof of this theorem is in [11]. From this theorem, we can see the expected
average diameter of cells is halved in every O(d) levels.

3 Multiview Embedding

The formulationofouralgorithmisbasedonstochasticneighborembedding [12,13].
The key idea is to construct a probability distribution based on the pairwise dis-
tances. In detail, denote the set of original data points {xi ∈ R

d}n
i=1 and the nor-

malized distance matrix P ∈ R
n×n
+ , where pii = 0 and

∑
i,j pij = 1. The matrix

P encodes pairwise distance relationship between samples and can be interpreted
as a probability distribution. Similarly, we define the probability distribution Q in
the output feature space, with each element

qij =

(
1 + ‖yi − yj‖2

)−1∑
k �=l (1 + ‖yk − yl‖2)−1 , (3)

where yi ∈ R
r is the output data corresponding to xi.

To incorporate data with multiple views, we assume the probability distri-
bution on the original space is a linear combination of all the different views,
i.e.

pij =
v∑

t=1

αtpt
ij , (4)

where αt is the combination coefficient for view t and pt
ij is the probability

distribution under view t. The coefficient vector α =
[
α1, · · · , αv

]T lies on a
simplex in R

v, denoted as α ∈ Δv. This is the same as αt ≥ 0, t = 1, · · · , v
and

∑v
t=1 αt = 1. Obviously, pij is a probability distribution since

∑
i�=j pij =∑

t αt
∑

i�=j pt
ij =

∑
t αt = 1.

Finally, to learn the data embedding, we minimize the Kullback Leibler (KL)
divergence of the two probability distributions:

min
yi,α

f = min
yi,α

∑
i�=j

pij log
pij

qij
. (5)

We adopt alternating optimization to solve this problem. We fix α and learn
the output data points yi for i = 1, . . . , n. Then, we optimize over α with fixed yi.
These two steps are repeated until convergence or maximum number of iterations
is reached.
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Algorithm 3. Algorithm to Learn Weighting for Each View

initialize: γ, α0, t > 0

repeat
Set tk := t
while f (ptk(αk−1)) > gtk (ptk(αk−1), αk−1) do

Set tk := γtk

end while
Set t := tk and αk = ptk(αk−1)

until convergence

Optimization over yi is solved by gradient descent. The gradient with respect
to an output data point is

∂f

∂yi
= 4

∑
j

(pij − qij)(yi − yj)
(
1 + ‖yi − yj‖2

)−1
. (6)

Finding optimal α is a convex optimization problem and can be efficiently
solved. Here, we use an extended gradient descent approach. In iteration k, we
approximate the object function by its first order expansion plus a proximal
term

gtk
(α, αk−1) = f(αk−1) + 〈∇f(αk−1), α − αk−1〉 +

tk
2
‖α − αk−1‖2, s.t.α ∈ Δv,

(7)

where αk−1 is the iterate in iteration k − 1 and tk is the step size in iteration k.
We update the kth iterate to be

αk = ptk
(αk−1). (8)

where ptk
(αk−1) = argmin

α∈Δv

gtk
(α, αk−1).

This is a simple quadratic objective function with linear constraint. It can be
easily solved by many standard convex optimization toolkit.

In every iteration round, we make sure tk satisfy the following inequality:

f(αk) ≤ gtk
(αk, αk−1). (9)

In implementation, we employ a varying step size strategy: we repeatedly
increase the current tk by a multiplicative factor γ > 1 until the condition in
Eq. 9 is satisfied.

The algorithm is illustrated in Alg. 3. And it has been shown [14] that the
convergence rate of this algorithm is O(1/k2).

4 Experiments

We have conducted experiments on the object category of the second edition
MSRA MM (Microsoft Research Asia Multimedia) dataset [15], which was col-
lected by using Microsoft Live Image Search. The object category contains
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257,060 images in total with 295 concepts. Each concept has around 800 im-
ages and these images were manually labeled with 2, 1 and 0 according to the
relevance to the concept. In our experiments, we regarded relevant images, i.e.,
images with labels 1 or 2, as positive samples and irrelevant ones as negative
samples.

We adopted seven low level features: 1) 225-D block-wise color moment; 2)
144-D color correlogram; 3) 75-D edge distribution histogram; 4) 7-D face fea-
ture; 5) 64-D HSV color histogram; 6) 256-D RGB color histogram and 7) 128-D
wavelet texture feature. These features encode visual information from different
perspectives, such as color, shape and texture. Also, we can see that most fea-
tures have high dimensionality, which is difficult to build index with conventional
methods.

For every view, we built a random projection tree of 12 levels to index the
whole dataset, with each leaf node covering about one hundred images in the
dataset. For retrieval, we randomly sampled 50 images per concept as query
images. Every query image was associated with six to seven hundred retrieval
candidates by pooling nearest neighbors retrieved by random projection trees
from all views.

These retrieval candidates were diverse and provided complementary informa-
tion since they were obtained from different views. To obtain a unified represen-
tation, we then performed multiview embedding to these retrieval candidates and
the query image. Finally, we ranked the retrieval candidates by their Euclidean
distances to the query image in the learned embedding. The whole process is
illustrated in Fig. 1.
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Precision results were calculated for top 10 to top 100 retrieval images. For
comparison, we also evaluated other schemes: single view with best performance
(BSV), mean performance of single views (MSV), concatenating all the features
(CAT) and distributed approach of spectral embedding [16] (DSE). The proposed
multiview learning method is denoted by m-SNE. In Fig. 2, we demonstrate the
averaged precision curves for top 20 classes. It can be seen that our approach
performed better than or comparable to other approaches.
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Fig. 2. Averaged precision curves for top 20 classes. (a) face; (b) Lamborghini; (c)

newspaper; (d) orchid; (e) obstacle; (f) camaro; (g) mustang; (h) omelette; (i) trampo-

line; (j) aquarium; (k) clipart; (l) dress; (m) cactus; (n) dessert; (o) dvd; (p) sculpture;

(q) picture; (r) statue; (s) blog; (t) toy.
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5 Conclusion

We have introduced a novel system for large-scale image retrieval. We applied
random projection trees to efficiently index data with high dimensions. This
method can automatically adapt to the data distribution and thus its complexity
only depends on the low intrinsic dimension of the data. To unify and exploit
different features, we proposed a novel multiview embedding method based on a
probabilistic framework. Compared with ad-hoc concatenation of features, our
approach can learn different weightings for different views to promote important
features and suppress noise. Experiments on MSRA dataset demonstrate the
efficiency and effectiveness of our approach.
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Abstract. Recently, several smart phones are equipped with a 3D-accelerometer 
that can be used for gesture-based user interface (UI). In order to utilize the 
gesture UI for the real-time systems with various users, the diversity robust 
algorithm, yet having low training/recognition complexity, is required. 
Meantime, dynamic time warping (DTW) has shown good performance on the 
simple time-series pattern recognition problems. Since DTW is based on the 
template matching, its processing time and accuracy depend on the number of 
templates and their quality, respectively. In this paper, an optimized method for 
online gesture UI of mobile devices is proposed which is based on the DTW and 
modified k-means clustering algorithm. The templates, estimated by using the 
modified clustering algorithm, can preserve the time varying attribute while 
contain diversities of the given training patterns. The proposed method was 
validated on 20 types of gestures which are designed for the mobile contents 
browsing. The experimental results showed that the proposed method is suitable 
to the online mobile UI. 

Keywords: Accelerometers, gesture recognition, dynamic time warping, k-means 
clustering. 

1   Introduction 

Gestures are natural and easy means as user interfaces (UI) because they have been 
employed in daily life. Recently developed mobile devices have built-in accelerometers 
of micro-electro-mechanical systems (MEMS) which allows the gesture inputs. 
Previous gesture UI was limited to pivoting the display or game controls based on 
simple motions such as a tilt and rotation [1]. 

In order to extend the gesture UI applications with complex motions, many pattern 
classification techniques like a hidden Markov models (HMMs) and dynamic time 
warping (DTW) have been studied. Especially, DTW has been highlighted on the 
mobile gesture recognition systems since it requires few training data and can be 
easily updated by modifying the matching templates [2]. However, the length of 
patterns and number of templates increase the processing time of the DTW. Let N be 
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the number of templates. The time complexity of the algorithm is represented as 
follows: 

)(
1
∑

=

⋅
N

i
i nmO  (1) 

where mi is the length of the ith template and n is the length of the input sample. 
Therefore, it is difficult to apply DTW directly on the mobile devices because of the 
limitations of the resources. 

In order to address the problem, this paper proposes an optimized method for the 
online gesture recognition based on the DTW and modified k-means clustering 
algorithm. It estimates N templates by using the clustering algorithm that reduces the 
number of templates, while it preserves the generality of the patterns. Moreover, the 
proposed method adaptively modifies the training templates by combining them with 
the user’s input patterns. 

2   Related Work 

There were several studies on developing fast and accurate recognizer with more 
complex gestures. Pylvänäinen used continuous HMMs to recognize 10 gestures 
where he analyzed the correlation between accuracy and feature quantization [3]. Kela 
et al. quantized 3D-vectors acquired from a tri-axis accelerometer into 1D-symbols 
based on a k-means clustering algorithm and recognized them by using the HMMs 
[4]. Liu et al. proposed uWave that uses DTW as a matching algorithm, and validated 
it on the same gesture set with Kela’s [2]. Wu et al. utilized SVMs with the frame-
based features such as mean, energy, and correlation among the axes for classifying 
12 gestures [5]. The previous methods described so far, however, depended on 
complicated algorithms that require high computational power, or did not consider the 
users’ variations. 

3   Gesture Recognition for Online User Interface 

The proposed method is composed with three steps: pre-processing, local template 
estimation, and gesture matching. Fig. 1 shows the overall process of the proposed 
method. In the pre-processing phase, each gesture is segmented from the continuous 
input sequences based on the mean variations and the maximum values within a 
sliding window of 120ms that moves at a 60ms step. Here, we defined minimum 
length of the segment and assumed a movement shorter than the minimum as a noise. 
In pre-processing step, the quantization and smoothing are applied by averaging 
sequences within the sliding window. It reduces noises and the matching steps of the 
DTW algorithm. In order to minimize the affect of gravity, the initial acceleration 
(direction of the gravity) is subtracted from the input sequence. Remaining phases of 
the local template estimation and gesture matching are described in detail in the 
following subsections. 
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Fig. 1. The overview of the proposed method 

3.1   Diversity Modeling with Local Templates 

The accuracy of DTW based recognizer highly depends on the quality of its 
templates. Especially on the mobile environment, the templates should contain 
various patterns because of the dynamics of input gestures. If the hardware has 
enough computing resources, the accuracy of the recognizer could be increased by 
using huge amount of templates. Since the computational power of the mobile device, 
however, is limited, some representative templates have to be used which was chosen 
from the whole training set. Using k-means clustering algorithm is one of the simple 
and effective ways to model the local templates from the given set. Yet the 
acceleration data of varying length have to be converted into the fixed length patterns 
where some information would be lost. 

In order to resolve this problem, we modified the distance measurement and 
averaging process of the k-means clustering algorithm. In other words, the proposed 
method calculates the distance between an input pattern and each centroid by using 
DTW algorithm, while it estimates the centroid based on the resized patterns of 
averaged length for each cluster. The modified clustering process is represented as 
follows: 

 

1) Set randomly chosen samples as the clusters’ initial centroids, c1, c2, ..., ck. 
2) For each sample, calculate distances to the centroids by using DTW and assign 

its cluster as the nearest one. 
3) For each cluster, estimate the new centroid by: 

a) Calculate the average length of samples. 
b) Resize each sample to be the averaged length. 
c) Calculate the mean of the resized samples. 

4) If centroids were changed, go back to step 2. 
 

In step 3b, we resized samples based on a linear resampling algorithm. 

3.2   Dynamic Time Warping-Based Gesture Recognition 

DTW matches two time series patterns and gets the minimum distance in warped 
sequence from matching result [6-8]. In general, it is implemented by using a dynamic 
programming algorithm with two-dimensional matrix. Let d(Ri, Cj) be the cost 
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function of the two elements Ri and Cj where they are the ith and jth points of the 
input sequence R and the template sequence C, respectively. The distance between 
two sequences based on the 1st order warping method is calculated as follows: 
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where D(0, 0) = 0 and D(i, 0) = D(0, j) = max (the maximum distance) [9]. In this 
paper, Euclidean distance was used as the cost function because of its simplicity and 
high accuracy. 

The proposed method evaluates the similarities between an input sequence and the 
local templates using DTW algorithm. The input movement is then recognized as the 
most similar gesture based on k-nearest neighbor voting (k-NN) where k≥1. Since the 
unintended movement or outlier gestures can be sensed during the online gesture 
recognition, we defined certain threshold for each gesture. If the similarity is higher 
than the threshold, the gesture is accepted. Otherwise, it is rejected. Here the threshold 
is decided according to the average and standard deviation of the intra distances for 
each cluster. 

4   Experimental Result 

4.1   Gesture-Set Definition and System Implementation 

We defined 20 gestures which can be intuitively used for browsing mobile contents. 
Fig. 2 shows the gestures and corresponding commands for a media player scenario. 
When a user wants to listen to music with the mobile device, he or she firstly unlocks 
the gesture interface function by shaking the device left-to-right (wakeup). After 
browsing play-lists by snapping gestures, the user select the song by shaking the 
device forward-to-backward (accept). While playing a song, the user can bounce up 
or down to control the sound volume. Finally, he or she locks the gesture interface 
function by shaking the device left-to-right in order to prevent unintended gesture 
inputs. 

In order to validate the proposed method, the gestures were collected from four 
subjects of 25~29 years old over two days by using Samsung Omnia mobile phone 
(SCH-M490) with MS Windows Mobile 6.1 platform where the acceleration is 
sampled by 50Hz with +2g~-2g scale. On each day, the participants repeated each of 
the 20 gestures ten times (2,000 gestures in total) with an initial pose for browsing 
mobile contents. Fig. 3 shows a snapshot of the implemented application. It initializes 
the built-in accelerometer with the start button, and senses the acceleration while the 
user inputs the gesture. The proposed method automatically detects the start and end 
points of the gesture sequence, and identifies it. In order to confirm the recognition 
result, the application displays it at the top of the central box. Moreover, the user can 
register a new gesture or can modify existing templates manually with the setup menu. 
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Fig. 2. Gesture set and scenarios 

 

Fig. 3. The implemented gesture UI application 

4.2   Gesture Recognition Accuracy Test 

In order to evaluate the statistical accuracies of the proposed method, we implemented 
our algorithm on the PC platform of Core2 Duo 3GHz CPU as well. Here, we 
conducted experiments for the between-person variations and the day-to-day 
variations. Seven series of the experiments were considered according to the template 
generation approaches as follows: using whole learning data as templates (All), 
selecting three samples randomly for each gesture as its templates (Ran-3), generating 
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three templates based on the k-means clustering with Euclidean distance measure 
(Euc-3) or with DTW distance measure (DTW-3), and using five templates for each 
gesture with the same fashion by Ran-5, Euc-5, and DTW-5. Here, all of them use 
DTW algorithm for the gesture matching stage. In case of Euc-3 and Euc-5, the 
training gesture sequences were resized into the same length before calculating the 
Euclidean distance. For the between-person variation test, 30 samples were available 
as the templates per class for the ‘All’, while 20 samples were used for the day-to-day 
variation test. 

In order to calculate the recognition accuracy, we manually labelled the collected 
gestures which were automatically segmented as explained in Section 3. Accuracy 
and precision were calculated as follows: 

Accuracy = #correctly recognized gestures / #gestures (3) 

Precision = #correctly recognized gestures / #recognized gestures (4) 

As shown in Fig. 4 and Fig. 5, DTW-5 achieved comparative accuracy against to 
All-case although the DTW-5 uses fewer templates than it. Moreover, the proposed 
method yielded better performance than the other approaches which use the same 
number of templates with the proposed method. Fig. 6 shows the processing time of 
the algorithms which represents the efficiency of the proposed method. 
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Fig. 4 & 5. Averaged precision and accuracy for each case 
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Fig. 6. Recognition time per sample 
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4.3   Template Analysis 

We analysed the estimated templates and their matching results. Fig. 7 and Fig. 8 
show the examples of the templates and input samples of the tapping-top gesture (the 
most difficult type to identify correctly among the given gesture set), respectively. 
Since the gestures are conducted under personal variations, some of them such as Fig. 
8(d), (g), (i) and (j) are hard to recognize by using conventional algorithms like Euc-3 
and Ran-3. On the other hand, as shown in error table of Fig. 8, the proposed method 
(DTW-3) recognizes the new input gestures correctly since it includes various 
patterns of templates as illustrated in Fig. 7. 
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Fig. 7. Examples of the templates for tapping-top gesture 
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Fig. 8. Examples of the test samples belong to the tapping-top gesture (a~j), and the corresponding 
error table for the templates represented in Fig. 7. 
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5   Conclusion 

In the real world, the gestures have many dynamics such as variations and 
ambiguities. In order to address the problem, this paper proposed localized templates 
for gesture recognition algorithm. The localized templates are estimated by using 
modified k-means clustering algorithm where DTW is used for the distance measure 
which preserves the characteristics of the time series patterns. By using DTW as the 
gesture matching algorithm, the proposed system showed better performance than 
conventional algorithms in terms of its accuracy and processing cost. Since the 
performance of a clustering algorithm depends on the number of clusters, the 
localized template with a cluster validity method has to be investigated as our future 
work. In order to increase the accuracy, personalization based on template adaptation 
will be conducted as well. Finally, comparison experiments with other existing 
recognition approaches such as HMM and SVM have to be performed. 
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Abstract. Kernel Fisher Discriminant Analysis (KFDA) improves greatly the 
classification accuracy of FDA via using kernel trick. However, the final 
solution of KFDA is expressed as an expansion of all training examples, which 
seriously undermines the classification efficiency, especially in real-time 
applications. This paper proposes a novel framework to construct sparse KFDA 
using pre-image reconstruction. The proposed method (PR-KFDA) appends 
greedily the pre-image of the residual between the current approximate model 
and the original KFDA model in feature space with the local optimal Fisher 
coefficients to acquire sparse representation of KFDA solution. Experimental 
results show that PR-KFDA can reduce the solution of KFDA effectively while 
maintaining comparable test accuracy.   

Keywords: KFDA, pre-image reconstruction, sparse approximation framework, 
kernel method. 

1   Introduction 

Fisher Discriminant Analysis (FDA) is a classical classification method, but only fits 
for solving linear classification tasks. To adapt to nonlinear cases, the kernel version 
of FDA (KFDA) is introduced by S. Mika et al. in 1999 [1]. The main idea in kernel-
based methods, often called "kernel trick", is to map examples into a high dimensional 
feature space and then reformulate the problem into dot product form substituted by 
Mercer kernels [2].  

However, similar to most kernel methods, all the training patterns are responsible 
for constructing the final expression of KFDA, which prevents KFDA from solving 
massive testing tasks and real-time stream classifying occasions [3], which need fast 
response. Previous attempts at addressing this issue pay much attention to the training 
phase using low rank matrices greedy approximation [4] [5] [6]. Also, in previous 
related work [7], C.J.C. Burges et al. proposes a Reduced-Set method to approximate 
the final kernel expansion of SVM and then B. Schölkopf et al. [8] extends [7] using 
                                                           
* Corresponding author. 
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fix-point iteration method for RBF kernel function instead of standard mathematical 
programming approaches. However, as mentioned in [9], these methods are easy to 
suffer numerical instability and local minima. In this paper, we propose a novel 
framework for constructing sparse KFDA using pre-image reconstruction, which 
incorporates multidimensional scaling (MDS) based method [10] and local fisher 
coefficient generating strategy into the basic procedure in [8] applied for SVM.             

The rest of the paper is organized as follows: In section 2, KFDA is described 
briefly. The novel sparse KFDA method is proposed in section 3, followed by the 
experiments in section 4. The last section concludes this paper. 

2   KFDA 

Given a data set 1{ , , }nX x x= …  containing n  examples d

ix ∈R , where 1n  

examples belong to positive class denoted by 
1

1 1

1 1{ , , }nX x x= …  and 2n  negative 

examples as 
2

2 2

2 1{ , , }nX x x= … . The input data space dR can be mapped into a high 

dimensional feature space F  by a nonlinear mapping Φ . Then, KFDA constructs the 
Fisher criterion in F  by maximizing 
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= Φ∑ . The kernel trick is employed to compute the inner 

product ( ), ( )x yΦ Φ  in feature space by a kernel function  ( , )k x y  in original 

input space, e.g., RBF kernel function, 
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where ( )( )1 2 1 2
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identity matrix and 1
jn the matrix with all entries 1/ in . There are several equivalent 

ways to address equation (4), e.g., solving the general-ized eigenproblem 
M Nα λ α=  and then selecting the eigenvector α with the leading eigenvalue λ  or 

computing ( )1

1 2N M Mα −= − [1] directly. Finally, the projection of a test pattern 

onto the KFDA model is computed by  
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, ( ) ( , )
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i i
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w x k x xα
=

Φ =∑ . (5) 

As the dimension of the feature space is usually much higher than the number of 
training samples [11], some form of regularization [12] is necessary by adding Iμ  to 

N , where 0 1μ≤ ≤ . 

3   A Novel Framework for Constructing Sparse KFDA 

Now we suppose w  is our sparse solution of KFDA in F , which is expressed as 

 
1

1

( )
k

j j
j

w xβ
+

=
= Φ∑ , (6) 

and compute the residual for ( 1)k + -th iteration  
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where the w  is the original KFDA solution, as shown in (2) and k n . Finding the 

( 1)k + -th basis in (6) is equivalent to computing the pre-image of 1kRΦ
+  in F  via an 

inverse mapping 
1−

Φ  from feature space to input space, 
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The equation (9) above is obtained by a greedy iterative procedure, which is divided 
into two steps for each iteration in this framework: (1) "Basis-Generating-Step", for 
finding pre-images of residuals in F  between the current approximate sparse model 
and original KFDA model. (2) "Coefficient-Generating-Step", for producing the 
current sparse model in the subspace spanned by approximated pre-images of the 
residuals in F . 

In addition, this framework is capable of addressing any kernel-induced subspace 
vector approximation problems with any state-of-the-art techniques for pre-image 
computing and specified prior knowledge for the generation of effective coefficients.   

3.1   Basis-Generating-Step  

In this section, we pay much attention to how to find the inverse mapping 
1−

Φ  in 
equation (9). To address this issue, recently, [10] [13] provide non-iterative algebra 
techniques using prior knowledge of training data for KPCA denoising problem [14], 
which avoid the numerical instability or local minima appeared in [8]. This paper 
mainly employs the MDS-based algebra approach [10], which directly finds locations 
of pre-images based on distance constraints in original space and feature space. If 
necessary, the fixed-point iteration [8] is further performed to refine the solution 
obtained by the MDS-based method.  

According to [10], the distance constrained information by 1kRΦ
+  and its i -th 

neighbor ( )izΦ  in F  is computed firstly regarding our problem in ( 1)k + -th 

iteration as following: 
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Subsequently, we can obtain the distance relationship in input space by converting (9) 
in F  to input space under the connection between two spaces for BRF kernel 

 2 2 2
1 1

1
( , ) 2 ln 1 ( , ))

2k i k id R z d R zσΦ Φ
+ +

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

. (11) 

Then according to the multidimensional scaling (MDS) principle, the approximate 
location of the pre-image can be computed by the known coordinates system in input 
space with the similar distance constrains information in feature space. More specific-

ally, we construct the neighbor matrix [ ]1, , nZ z z= …  in input space and then use 

centering matrix H  to deal with it. Then by performing singular value decomposition 
(SVD) on ZH , firstly,    
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the new coordinates system in input space is established based on the column vectors 

of orthogonal matrix 1E . Thus, we can compute the pre-image by satisfying the 

distance constrains relationship [15] in both spaces [16], 
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R
c φ  is the coordinates in column space 

of 1E , z  is the mean of the columns of Z . Then, the location of the pre-image can 

be derived (in detail, see [10]), 
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If necessary, let the solution in (14) obtained by MDS-based approach as the 

starting point 1
1kx + , then carry out the fix-point iteration [8] to find the better solution 
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3.2   Coefficient-Generating-Step  

After the ( 1)k + -th basis 1kx +  obtained in (14) or (15), the simple and convenient 

way [17] to generate coefficients in ( 1)k + -th iteration is only to update the new 

coefficient by minimizing 
2

1 1( )k k kR xβΦ
+ +− Φ  and letting 
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In fact, for optimizing approximated KFDA model, minimizing the 2kRΦ
+  in F  for 

all previous coefficients will be more effective after a new basis is appended. The 
equation (9) can be formulated by a matrix form and we can obtain 
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The optimal coefficients [ ]1 1...
T

kβ β + can be acquired by the least square method, 

such that the new 2kRΦ
+  is orthogonal to the current constructed sparse model, 
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However, due to the pre-image of a new residual is not an exact solution [9], the 
procedure using (18) does not work when two sparse bases are linearly dependent, 
which deprive the further basis-generating step of acquiring new pre-image of a 
smaller residual. Moreover, for our work, the ultimate goal is the approximately 
optimal projection direction. Thus, we consider projecting the weight vector w  into 
the approximate subspace spanned by current sparse bases and then compute the 
coefficients by maximizing Fisher criterion in (4) in original feature space spanned by 
all training data for each iteration. This approach clearly guarantees the most 
approximate angle between the current sparse model and KFDA model by the optimal 
Fisher coefficients locally and the further opportunity to search a smaller residual in 
next iteration heuristically, directed by the whole KFDA model information globally.      
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4   Experiments 

4.1   Experimental Settings  

In the following experiments, we compare the performance of PR-KFDA on 6 
different datasets from UCI Repository [18] with KFDA and MPKFDA (T. Diethe  
et al., 2009) [5] as the sparse version of Regularized-KFDA by the idea of matching 
pursuit and low rank matrices approximation. The Gaussian RBF kernel is only used 
due to the convergence restriction [14] in fix-point method (15) and the procedure on 
each dataset is repeated 50 times over 50 different random splits of the dataset into 
“training” and “testing” parts as specified in Table 1. 

In Table 1, there are seven columns including Data Set, Dim, N-OPT, N-Training, 
N-Testing, N-Neighbors, RBF- σ , which represent different binary classification 
problems, the rounds of fix-point iteration, the numbers of training and testing 
patterns, the neighbors for computing of pre-image in both spaces, the parameter σ for 
BRF kernel in (3), respectively. 

The parameter σ for BRF kernel is selected by cross-validation, which is a little 
upper than the mean value to make the distance sensitive in both spaces for pre-image 
solving. Since there are no standard criteria for choosing optimal N-basis, the iteration 
of generating basis is stopped when the specified maximal iteration number or the 
given error threshold is reached. Here, we adopt the former way and set the same N-
Basis listed in Table 2, which is the corresponding basis number of the optimal results 
for PR-KFDA within maximal iteration, to MPKFDA in order to compare the 
performance at the identical sparsity conditions. The regularize-tion variable μ  in 

matrix N is chosen to be 0.001 and 0.0000001 for training and fisher coefficient 
generating phase, respectively. 

Table 1. Experimental Settings for 6 UCI Benchmark datasets 

Data Set Dim N-OPT N-Training N-Testing N-Neighbors RBF- σ  
Heart 13 ---- 162 108 15 7.07 
Breast-cancer 10 ---- 409 274 15 7.91 
Australian 14 200 414 276 15 17.32 
Diabetes 8 ---- 461 307 15 14.14 
Ionosphere 34 200 211 140 13 8.66 
Sonar 60 200 125 83 15 10.0 

4.2   Experimental Results 

The experimental results are listed in Table 2 and the performance on six datasets 
with incremental iterations procedure is given in Fig.1.a ~ f, respectively, whose y-
axis shows the accuracy for classification problem and x-axis is the numbers of bases 
acquired in the process of constructing PR-KFDA. 
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Table 2. Experimental Results for PR-KFDA compared with MPKFDA and KFDA 

          PR-KFDA  MPKFDA KFDA Data Set 
N-Basis Accuracy   Accuracy N-Basis Accuracy 

Heart 6 0.8139     0.8287 162 0.8267 
Breast-cancer 1 0.9685     0.9426  409 0.9714 
Australian 5 0.8207     0.8563 414 0.8551 
Diabetes 6 0.7299     0.7455 461 0.7298 
Ionosphere 5 0.9093     0.8484 211 0.9151 
Sonar 10 0.7299     0.7595 125 0.7807 

 

Fig. 1. The performance with incremental iterations procedure for constructing sparse KFDA 
on 6 UCI Benchmark datasets is given in Fig.1.a ~ f, respectively 
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4.3   Discussion 

According to Table 2, the average performance of PR-KFDA is competitive to KFDA 
with considerable reduction of the original bases while maintaining comparable test 
accuracy, especially for low dimensional datasets. Moreover, PR-KFDA as the sparse  
version of Standard-KFDA also achieves the similar results of Regularized-KFDA in 
its sparse version at the identical sparsity conditions. 

To further investigate the performance with incremental iteration procedure, we 
find that the proposed method has no homogeneous tendencies to the target KFDA 
accuracy line from Fig.1.a to Fig.1.f. This finding can be interpreted from the view of 
basis generating. Since the obtained pre-image is usually not an exact solution [10] 
[13] of the pattern in feature space, so the precision highly depends on the availability 
of effective prior knowledge of the training data, i.e., enough samples sensitive to the 
pre-image candidate in both spaces are needed. However, this prior knowledge is 
unknown in advance and changes with the transferred location of a new pre-image 
candidate in feature space dynamically. Thus, the effectiveness of this method may 
vary from diverse datasets or the same dataset in different iteration phrases, just as 
shown from Fig.1.a to Fig.1.f.             

5   Conclusions 

For many practical applications, the efficiency of a classifier is highly demanded [3]. 
To this end, this paper proposes a novel framework to construct sparse KFDA by 
taking advantage of the whole KFDA model information and using reconstruction of 
the pre-image of the residual between the current approximate model and the original 
KFDA model in feature space. Thus, this approach can adopt any vectors in original 
space to express the sparse solution, and eliminate the limitation of finite selection 
from only available training examples in input space. Moreover, any further 
techniques for pre-image computing can be incorporated into this framework as 
alternative modules. Experimental results demonstrate that PR-KFDA reduces the last 
solution of KFDA significantly while maintaining comparable test accuracy, 
especially for low dimensional datasets.  

However, the exact solution of the pre-image problem is related to the effective 
prior knowledge of the training data, so the proposed method could not perform well 
when the given dataset containing insufficient information sensitive to the pre-image 
candidate in both spaces [16]. Therefore, how to evaluate the usefulness of the prior 
knowledge for finding pre-image still needs to be further researched. 
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Abstract. In this paper, we propose a novel approach for adaptive con-

trol of robotic manipulators. Our approach uses a representation of in-

verse dynamics models learned from a varied set of training data with

multiple conditions obtained from a robot. Since the representation con-

tains various inverse dynamics models for the multiple conditions, adjust-

ing a linear coefficient vector of the representation efficiently provides

real-time adaptive control for unknown conditions rather than solving

a high-dimensional learning problem. Using this approach for adaptive

control of a trajectory-tracking problem with an anthropomorphic ma-

nipulator in simulations demonstrated the feasibility of the approach.

Keywords: Learning Basis Representation, Inverse Dynamics, Adap-

tive Control.

1 Introduction

The dynamics model is crucial for precise control of fast movements on robotic
manipulators [1]. However, the typical modeling of a robot as a rigid body dy-
namics system is not effective due to unknown friction and actuator dynamics.
In recent years, researchers have applied statistical machine learning methods to
this problem by dealing with it as a nonlinear regression problem [2,3,4]. This
approach has solved the above problems; however, the machine learning methods
require a certain amount of training data and have a large computational cost
due to the high dimensionality associated with the number of joints on a robot.
Also, since the training data for machine learning methods must be generated
from actual movements of the robot in a real environment, it requires a long
motion-execution time from the robot.

In the reality of our daily living environment, the dynamics of a robot can
change due to actions such as holding an object and putting loads on the links
that change inertial and kinematic parameters of the robot. We refer to such
a change as condition, thus, the robot in a real environment meets multiple
conditions.

The ultimate goal for such situations is to develop a learning method to rapidly
track the changes in the dynamics (e.g., within a few seconds) and execute given
tasks in the environment, that is, real-time adaptive control.

K.W. Wong et al. (Eds.): ICONIP 2010, Part II, LNCS 6444, pp. 668–675, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Some researchers attempted to use on-line tracking algorithms for changing
robot dynamics(e.g., [2,5]); however, this approach still needs a certain amount
of training data and a long motion-execution time due to high dimensionality.

While there are various changes in the robot dynamics in a real environment,
there are still common factors because its mechanical structure and some of its
characteristics (e.g., the length of most links) are invariant. If we could success-
fully extract such latent factors, it would simplify the adaptive control problem
for the changes in the robot dynamics to be suitable for real-time adaptation
even for unknown conditions.

In this paper, we propose a novel approach for adaptive control of robotic
manipulators. Our approach uses a representation of inverse dynamics models
learned from a varied set of training data with multiple conditions obtained from
a robot. Since the representation contains various inverse dynamics models for
the multiple conditions, adjusting a linear coefficient vector of the representa-
tion efficiently provides real-time adaptive control for unknown conditions rather
than solving a high-dimensional learning problem. Our approach is inspired by
a multi-task learning framework [6,7]. In that case, adaption to unknown con-
ditions requires solution of a nonlinear optimization problem with a large com-
putational cost, so it is an off-line process. Our approach focuses on real-time
adaptation. Using this approach for adaptive control of a trajectory-tracking
problem with an anthropomorphic manipulator in simulations demonstrated the
feasibility of the approach.

Section 2 introduces the dynamics model for robot control, and previous work
on machine learning adaptive control methods. Section 3 presents our proposed
method for achieving real-time adaptive control. Section 4 presents the effective-
ness of our method on a trajectory tracking problem with an anthropomorphic
manipulator in simulations. Section 5 presents our conclusion for this paper.

2 Learning Dynamics for Adaptive Control

In this section, we briefly review dynamics model-based control methods and
machine learning methods for dynamics models.

2.1 Computed Torque Control with Dynamics Model

A N -DoFs robotic manipulator attached to a base can be modeled by a rigid
body dynamics system denoted as u = f(q, q̇, q̈) where q, q̇, q̈ ∈ R

N are joint an-
gles, velocities, and accelerations, u ∈ R

N denotes the input torque (e.g., [1]). In
this paper, we call the model f(q, q̇, q̈) Inverse Dynamics Model (IDM). To ob-
tain torques u(t) needed at the joints to track a given trajectory [q(t), q̇(t), q̈(t)]
is often called inverse dynamics problem.

Computed torque control [1,3] is a popular solution for the problem with a
rigid body dynamics system, which can be achieved by u = f(q, q̇, q̈ref ) where
q̈ref = q̈d + Kpe + Kvė. q̈d, Kp and Kv are desired acceleration, position and
velocity feedback gains respectively. e denotes the error between qd and q. The
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feedback term of the error e with a proper choice of both gains Kp and Kv is
effective to compensate for modeling errors of the IDM. This approach requires
all physical parameters of the robot to be known for f . Based on the structure
of the rigid body dynamics, several schemes for efficient identification of the
parameters have been developed (e.g., in [1]).

2.2 Learning IDMs from a Training Data Set

As denoted by [2,3,4], the rigid body dynamics modeling approach is not of-
ten effective for real robotic manipulators due to modeling errors in the phys-
ical parameters and difficulties for dealing with complex friction and actuator
dynamics. For these difficulties, nonparametric regression techniques [2,4] can
be a reasonable choice. Since the IDM is a function as u(t) = f(x(t)) where
x(t) = [q(t)T , q̇(t)T , q̈(t)T ]T ∈ R

3N , it can be estimated from a training data
set D = {X,U} where X = [xT

1 , · · · ,xT
d ]T , U = [u1, · · · ,ud]T and d is the

number of data points. The effectiveness has been demonstrated by [2,4].
However, since such a training data set must be generated from actual move-

ments of the robot in a real environment, thus, it requires a long motion-
execution time from the robot. This problem is significant for real-time adaptive
control. The ultimate goal of this study is to develop a learning method to
rapidly track changes in the dynamics (e.g., within a few seconds) for daily use
of the robot in a real environment. In the next section, we present our suggested
approach focusing on this issue.

3 Learning Basis Representations of IDMs for Real-Time
Adaptive Control

This section describes our proposed method for adaptive control that makes the
adaptive control problem feasible in real time. In section 3.1, we first introduce
a novel basis representation of IDMs. Section 3.2 describes a novel learning
procedure for the basis representation from a varied set of training data. Section
3.3 shows a scheme for real-time adaptive control with the basis representation.

3.1 Basis Representation of IDMs

Our approach requires a varied set of training data D̄ = {D1, · · · ,DM} obtained
from M conditions with a large variety. For a robot, the conditions can be arti-
ficially generated, for example by putting weights on links or having an object
by the end-effector to generate a varied set of training data D̄. Then, by ex-
tracting a set of common factors {fe

1 , · · · , fe
J} from the data set, based on the

assumption that all dynamics models with multiple conditions share invariant
characteristics, a basis representation of IDMs is formed as

u = f̂(x;w) = wT fe(x) (1)
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ĉ

Learning Adaptation

2
ĉ
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Fig. 1. The concept of the PIDM

where fe = [fe
1 , · · · , fe

J ]T is referred to
as the Eigen Inverse Dynamics Models
(EIDMs), w = [w1, · · · , wJ ]T is its lin-
ear coefficient vector and the function
f̂ (f̂ : R

3N �→ R
N ) is referred to as

Parametric Inverse Dynamics Model
(PIDM).

We assume that the PIDM, spanned
by the EIDMs, contains various IDMs
suitable for adaptive control in un-
known conditions. If such an assump-
tion is proper, adaptive control even
for unknown conditions can be effi-
ciently achieved by estimating the lin-
ear coefficient vector ŵ from a modest
number of data set D̂ rather than directly solving a high-dimensional learning
problem. Fig. 1 depicts the schematic diagram of the proposed method.

3.2 Learning Procedure for PIDM

To obtain a compact representation of f̂ , the quantitative difference between
two IDMs must be defined. By considering the IDM as a function where the
input is x and the output is u, the difference of two models f1 and f2 can be
measured in the difference between the outputs corresponding to the same input
as ||f1(x)− f2(x)||. With the definition of this measure, we find EIDMs from D̄.
The learning procedure is composed of the following three steps:

(i)DataAlignment: Weassumea varied set of training data D̄ = {D1, · · · ,DM}
obtained from a robot with M conditions, where Dm = {Xm,Um}. As
pre-processing for subsequent steps, the data alignment procedure generates the
aligned torque matrix Uall ∈ R

M×NC from D̄, where N is the number of joints and
C is the number of contents. A content is an input x commonly included among all
conditions (in each Dm for all m). All the contents are represented by the con-
tent matrix Xc ∈ R

3N×C , that is also generated by the alignment procedure.
Thus, the (i, j) element of Uall is the torque U(i, j) generated by the robot with
i-th condition with ceil(j/N)-th content at mod(j/N)-th joint, that is, U(i, j) =
f i
mod(j/N)(xceil(j/N)). Note that, it is almost impossible to obtain such a data set di-

rectly because we can only apply u at the state [q, q̇] of the robot, that generates q̈.
It means that to obtain outputs with the same input for all conditions requires the
exact IDMs for all conditions in advance. To avoid such a “chicken-and-egg” prob-
lem, we present an alternative data alignment procedure using the Mahalanobis
distance in input space for approximately generating Uall from D̄. The algorithm
list is shown in Fig. 2.

(ii) Extraction of EIDMs: The extraction of EIDMs fe from Uall can be
achieved by a Singular Value Decomposition (SVD) based matrix factorization
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and a nonlinear regression technique. The SVD for Uall leads to the following
factorial representation as Uall = YΣVT ≈ WFbasis. Define the linear coeffi-
cient matrix W = [w1T · · ·wM T ]T ∈ R

M×J to be the first J(≤ M) rows of Y,

and the basis target matrix Fbasis = [f1
basis

T · · · fJ
basis

T ]
T
∈ R

J×NC to be the first
J columns of ΣVT . The dimension J can be determined with the singular value
spectrum. Typically J � M , if there would be certain similarity or correlation
among IDMs for all conditions included in the training. This yields a compact
and effective representation of the PIDM.

The EIDMs fe are then learned with the content matrix Xc as inputs and
Fbasis as corresponding outputs using a nonlinear regression technique. With
the success of the GPR in the learning IDMs [3,4], we utilize it for learning fe

i

as a smooth mapping from x to f j
basis independently for all j.

Input : D = {D1, · · · , DM }
Select the nominal condition number:

b ∈ {1, · · · , M}
for n=1 to the number of data in Db do

for m=1 to M do
for j=1 to the number of data in Dm do

Compute Mahalanobis distance d(j)
between xb

n and xm
j

end for
Find the index q that minimizes d(j):

q ← arg minj d(j)
Insert d(q) in the minimal distance vector a:

a(m) ← d(q)
Insert um(q) in the torque candidate vector uc:

uc(m) ← um(q)
end for
if max(a) < α then

Uall ← [Uall, uc]
Add new row of Xc :

Xc ← [Xc, xb(n)]
end if

end for

Output : Uall, Xc

Fig. 2. Algorithm for Data Alignment

(1-DoF system). um indicates m-th condi-

tions output. α is a threshold parameter.

(iii) Learning of PIDM: The
PIDM f̂ can be finally formed by the
weighted linear combination of fe as
û = f̂(x;w) = wT fe(x). By setting w
as a row of W, f̂ approximately repre-
sents the IDM corresponding to a par-
ticular condition used in the training.
Thus, the subspace contains a variety
of the IDMs, and it may be suitable to
achieve real-time adaptive control for
the robot even in unknown conditions.

Note that the learning procedure is
inspired by the studies referred to as
style content separation in several dif-
ferent contexts such as face recognition
[8], the synthesis of human-like graph-
ics [9] and learning stylistic movement
primitives [10]. Our learning procedure
can be interpreted as a modification of their methods to be particularly suitable
for real-time adaptive control.

3.3 Real-Time Adaptive Control Method with PIDM

Achieving real-time adaptive control with the PIDM requires an adaptation pro-
cess of the linear coefficient vector ŵ by a data set D̂ obtained from the robot
with an unknown condition. Based on the linearity of w in f̂(x;w), such a
process can be simply achieved by a least square method. A recursive least
square algorithm is suitable for real-time adaptive control since it is a fully-
recursive, computationally efficient method [11]. The linearity of w and its low
dimensionality may cause a rapid convergence of the adaptation. The effective-
ness of this approach is demonstrated in the next section through experiments.
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Table 1. The load specifications on each link for learning and test

Condition Number
Joint Number Training Test

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 c17 c18
1 0.0 2.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 2.0 1.0 2.0 1.0 0.0 0.0 0.5 0.0 0.0
2 0.0 0.0 2.0 0.0 0.0 0.0 0.0 2.0 2.0 2.0 1.0 2.0 0.0 1.0 0.0 0.5 0.0 2.25
3 0.0 0.0 0.0 1.0 0.0 0.5 0.5 0.5 0.0 1.0 0.5 0.0 0.0 0.0 0.0 0.25 1.25 1.25
4 0.0 0.0 0.0 0.0 1.0 0.5 0.0 0.0 0.5 1.0 0.5 0.0 0.0 0.0 0.5 0.25 1.25 1.5

(a) (b)

Fig. 3. Anthropomorphic manipula-

tor (4-DoFs Barrett WAM).(a) is the

real robot and (b) is that of simula-

tor with the figure-of-eight nominal

trajectory.

4 Experiments

In this section, we investigate the effec-
tiveness of our real-time adaptive con-
trol method through experiments with the
model of a 4-DoFs manipulator (Barrett
WAM in Fig. 3) in simulations. The simu-
lator is built with the aid of the Robotics
Toolbox [12] and its physical parameters
are set from specifications supplied by the
Barrett company. Section 4.1 describes data
generation for learning the PIDM. Section
4.2 shows the learning result of PIDM from
the generated data set and the feasibility
of the real-time adaptive control with the
PIDM for unknown conditions.

4.1 Data Generation

In this experiment, fifteen different conditions (as training conditions) on the
robot model for learning are produced by putting different weights of loads
in the center of mass of each link, thus, we focus on changes in the inertial
parameters of the robot in this experiment. Three conditions (as test conditions)
are additionally set by the same manner for evaluations. Table 1 shows the details
of loads for all conditions. The training conditions are denoted by {c1, · · · , c15},
{c16, c17, c18} indicates the test conditions, respectively.

Figure 3 (b) shows a figure-of-eight nominal trajectory, which is placed at
0.15m along with the x axis, at 0.5m in z-axis. For each condition, data were
captured at every 20ms under PD tracking control of the trajectory with seven
different periods (evenly set from 7.25s to 8.75s per 0.25s) from randomly selected
initial positions. 2800 data points were captured for each condition, that is, 42000
data points were prepared as a training data set D̄. The data alignment algorithm
presented in Fig. 2 was applied for generating the aligned torque matrix Uall

and Xc.

4.2 Evaluation of the Real-Time Adaptive Control

The feasibility and validity of our real-time adaptive control method was evalu-
ated. First, we applied our suggested procedure for learning PIDM f̃ from Uall
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Fig. 4. The result of the adaptive control by our proposed method with comparisons.

(a)-(c) correspond to the result with the conditions c16-c18, respectively. (d) shows the

tracking performance by a low-gain PD control for the condition c16. (e) indicates the

mean values of nMSE for all test conditions at each joint. (f) depicts the tracking errors

through 10 trials with randomly selected initial values for ŵ in the condition c16. Solid

lines are the mean values and error-bars are the standard deviations for all methods.

and Xc. As the result of SVD, the three dimensional bases explained more than
90% of Uall, thus we set J = 3 and formed the PIDM f̂(x;w).

Next, our real-time adaptive control method with the PIDM was evaluated
for three test conditions. Adaptive control for trajectory tracking was performed
by estimating the linear coefficient ŵ on-line from the incrementally observed
training data set D̂. The performance was measured by both the tracking error
and convergence time. To keep the position of the robot around the nominal
trajectory during a transient phase of the adaptation, PD control with low gains
was additionally applied with the adaptive control 1. D̂ was captured at every
40ms without PD control. The adaptation procedure by an iterative least square
method was achieved as ŵ(k+1) ← ŵ(k)+g(x(k),u(k)), where g(·) is a recursive
update rule [11].

The tracking performance is plotted with the nominal trajectory for all test
conditions in Fig. 4(a)-(c). For comparison, Figure 4(d) shows the tracking per-
formance by the low-gain PD-control. The tracking performance measured in
the normalized Mean Square Error (nMSE) is also plotted in Fig. 4(e) with the
ground truth, i.e., the result of computed torque control with the exact IDMs,
and the result of PD control. The time course of the tracking errors is depicted in
Fig. 4(f). Our method rapidly adapted to test conditions and resulted in precise
trajectory tracking for all cases. The tracking performance was very close to the
ground truth (computed torque method with the exact IDM and PD control)
and much better than just with the PD control. The linear coefficients quickly
1 In this experiments, PD gains were commonly set as kp = [45, 125, 30, 25]T and

kv = [1.5, 3.0, 1.5, 0.375]T , where kp is for position, kv is for velocity, respectively.



Learning Basis Representations of Inverse Dynamics Models 675

adapted and the converged vector was significantly different for all conditions.
Note that the adaptation mostly converged around 2.0s (with a data set cor-
rected until a quarter of the figure-of-eight), while the original robot dynamics
was a high dimensional system. These results demonstrate the feasibility of our
real-time adaptive control method even for unknown conditions.

5 Conclusion

In this paper, we have proposed a novel approach for adaptive control of robotic
manipulators. We have shown that our approach can achieve rapid adaptation
(around 2.0s) for a robotic manipulator in unknown conditions in simulation,
i.e., real-time adaptive control. Our suggested approach is applicable even in a
real environment, thus, our future work includes its application to real robotic
manipulators. An active selection of conditions for finding an effective subspace
will be also addressed in near future.
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Abstract. Insects use their antennae (feelers) as near range sensors for

orientation, object localization and communication. This paper presents

an approach for an active tactile sensor system. This includes a new

type of hardware construction as well as a software implementation for

interpreting the sensor readings. The discussed tactile sensor is able to

detect an obstacle and its location in 3D space. Furthermore the material

properties of the obstacles are classified by use of neural networks.

Keywords: Active Tactile Sensing, FFT, Material Classification, Ob-

ject Localization, Acceleration Measurement.

1 Introduction

Insects are a widespread group of animals, inhabiting a wide range of ecosystems
and hence being confronted with variate living conditions. One of the reasons
why insects are able to adapt to such different living conditions is their ability
for rapid and parallel object recognition and scene analysis. Researching the
sensor systems of insects helps to understand the complexity of nature, since in
animal near-range sensing, the active tactile sense is often of central importance.
Many insects actively move their antennae (feelers) and use them for orientation,
obstacle localisation, pattern recognition and even communication [1]; mammals
like cats or rats use active whisker movements to detect and scan objects in the
vicinity of their body. Here we use the antenna of the stick insect Carausius
morosus [2] as the biological model for a bionic sensor for reasons summarised
by Dürr and Krause [3]. This paper expands research efforts presented in [4] and
some results are validated by application of a larger, hence more reliable data
set. Furthermore, the algorithm is extended to provide even better results. While
[4] can be seen as a proof of concept, this paper aims at a practical application.

Beyond the understanding of nature’s principles, it offers a new type of sensor
for mobile robot systems. In particular, in environments where other sensors are
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not able to provide reliable data, e. g. vision sensors in dusty or dark environ-
ments, a tactile sensor is able to support such sensors by providing additional
data. To stick with the example, it is difficult for vision sensors to determine
material properties. The sensor described within this paper is able to provide
information about the material with additional spacial information.

This paper presents two different methods for processing the sensor readings
from the acceleration sensor. The first one is based on previous work in [4], where
it could be shown that the derived method works well for estimating the contact
position, and that it is able to classify two different kinds of material. Both was
shown on a small data set for which the start and end of the contact was given.
the known method has been improved to be able to deal with a continuous data
flow, as well as to classify an arbitrary set of materials.

Furthermore, a second method is presented, which reduces the pre-processing
steps by withdrawing some limiting constrains and allowing a neural network
to find the necessary information within the data. In that way, better results
for distance estimation are gained, especially for contact positions closer to the
antennal tip.

The next section presents a short overview of the field of tactile sensing. The
sensor hardware is introduced in section 3, while the software part is discussed
in section 4. Afterwards, experimental results are presented in section 5. Finally,
the work is concluded in section 6.

2 Previous Work

While thinking about scene understanding, particularly the understanding of
scene objects, the use of tactile sensors in the broadest sense plays an increas-
ing role [5,6]. Insect-like tactile sensors have been pioneered by Kaneko and
co-workers, who used either vibration signals [7] or bending forces [8], both mea-
sured at the base of a flexible beam, to determine contact distance. In contrast,
we use a single acceleration sensor located at the tip of the probe [9]. Contact
distance is determined using the peak frequency of the damped oscillations of the
free end. Beyond the focus on single antenna-like sensors, their integration with
vision has been researched, for example, in the AMouse project [10]. Instead of
antennae rat inspired whiskers are used. Different to the approach in this paper
the vibration is not measured at the tip of the sensor, but on its mounting point.
In contrast to these works, our system is able to detect 3d contact position with a
single antenna by measuring its vibration in two dimensions. The interpretation
of the sensor readings is done in a bio-inspired way using neural networks.

3 Sensor Hardware

The biological counterpart is equipped with a large number of sensors. Handling
such a large number of sensors is a challenging task. In particular, integrating
all types of sensors into a single antenna-like device still is demanding. Here,
we have decided to regard the antenna at a higher level of abstraction. One of
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the basic features of the biological archetype is the ability to detect the position
of potential obstacles and to analyse their properties. A first step to be able
to mimic these abilities is to use a two axis acceleration sensor (Analog Devices
ADXL210E), which measures the vibration characteristics during object contact.
The used sensor is mounted at the tip of a 33 cm poly-acrylic tube. The antenna
is designed in a way that the entire probing rod can be exchanged easily [4].

Fig. 1. The stick

insect inspired

walking robot

TARRY

The robotic feeler was based on major morphological char-
acteristics of the stick insect antenna, such as two rotary joints
that are slanted against the vertical plane. The scale is approx.
10:1 compared to the stick insect to match that of the Biele-
feld insectoid walking robot TARRY (Fig. 1). The actuator
platform consists of two orthogonal axes. Two 6V DC motors
(Faulhaber 1331T 006SR) were used rather than servo motors
to minimise vibrations of the probe due to discrete accelera-
tion steps. The linkage of the hinges was designed to mimic
the action range of the stick insect, amounting to 90◦ vertical
range, centred 10◦ above the horizon, and to 80◦ horizontal
range centred 40◦ to the side. Positioning accuracy is limited
by slack in the motors and amounts to approx. 5 mm at the tip of a 40 cm probe
(approx. 7◦).

Both hinges are equipped with a position sensor (muRata SV01A). Hence
the orientation of the sensor rod is known in two dimensions encoded in polar
coordinates. Since the the hinge axes are orthogonal, no additional coordinate
transformation is necessary. But, to describe the detected object’s position in
3D space an additional coordinate is missing. It is gained by determining the
contact position on the rod.

The control of the motion of the antenna as well as the sensor read out is
implemented on an embedded system (ATMEL AT90CAN128). The raw sensor
signal is available via RS232 for further processing.

4 Interpreting Sensor Readings

In the following two methods are described for the interpretion of the sensor
signals. For both methods the principle idea stays the same. Depending on the
position of contact, the free oscillating segment of the sensor tube differs. This
results in different kinds of damped oscillations. Those characteristic properties
of the damped oscillation are taken into account for estimating the position
of contact. As an intuitive example, one can image a guitar string gripped at
different position for playing different tone pitches.

In addition, the damped oscillation also carries information about the mate-
rial involved. Back to the guitar string analogy this might be compared to the
different tone caused by nylon or steel strings.

4.1 Method I: Constraint Based Input Dimension Reduction

The used acceleration sensor is able to measure the acceleration in two orthogonal
dimensions. Hence, the data coming from the sensor is the projection of the
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actual oscillation onto both dimension vectors. This leads to different sensor
readings, depending on the rotation of the antenna with respect to the axis
defined by it. To align the rotated oscillation with one of the axes PCA1 is
applied. PCA computes a set of eigenvectors which are oriented with respect to
the principle axes of the data distribution. The matrix of eigenvectors E can
directly be used as an affine transform matrix applied on the data X : Xrotated =
E · X . The first dimension of the rotated data Xrotated contains the part of the
data with the largest variance. Only this part is used for further processing.

As a next step, it is necessary to know at which time a contact occurred.
On a static system this is a trivial task, which can be solved with a simple
threshold. However, it becomes more challenging while the active tactile sensor
is in motion, since the motion induces an oscillation into the sensor rod as well.
At the moment we stick to the threshold, keeping in mind that our further
research will focus on that problem. For detecting the end of the oscillation the
local maxima over time are considered. The end point is defined as the time, at
which these maxima begin to drop below a dynamic threshold. The threshold is
chosen to be 10% of the global maximum of the current damped oscillation. The
window from the detected start to end point is taken into account for further
processing after removing the mean.

As described above the basic idea is to take into account the frequency char-
acteristics of the damped oscillation. Hence, the frequency spectrum of the time
series within the window is computed using Discrete Fourier Transform.

Distance Estimation: Assuming that the fundamental oscillation and first
harmonics are represented as significant peaks in the spectrum, two local maxima
are determined. In doing so, the spectrum is divided into two intervals defined
by the maximal and minimal occurring frequencies defined by the lengths of the
rod. The intervals are chosen to be (0Hz, 55Hz] and (55Hz, 250Hz]. For each of
the intervals their global maximum is derived, assuming to represent the funda-
mental oscillation and first harmonics respectively. Both values are presented as
input to a multi-layer perceptron. The network is a standard 2-layered network
with a sigmoidal output function in the hidden layer and a linear function in the
output layer using the Levenberg-Marquardt algorithm for training.

Material Classification: For material classification, the extracted frequencies
used for distance estimation are not sufficient. Different material properties result
in different decay characteristics of the damped oscillation. To extract these
characteristics reliably for the fundamental oscillation and first harmonic, we
remove disturbing frequencies first. For this, we apply two bandpass filters with
the same limits as the already discussed intervals: (0Hz, 55Hz] and (55Hz, 250Hz].
Both filtered spectra are transferred back into time domain. This results in two
damped oscillation with different frequency and decay rate. For both, all local
maxima are identified and an exponential decay function is fit:

f(t) = p0,j + p1,j · e
− t

p2,j
+p3,j (1)

1 Principle component analysis.
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Fig. 2. (a) An example for a frequency spectrum of the damped oscillation caused by

hitting an obstacle. Two dashed vertical lines indicate the intervals for the maximum

frequency search. The circles show the position of the fundamental oscillation and the

first harmonics. (b) The relation between the contact distance and the fundamental

oscillation (+) and the first harmonics (×) is shown.

where p0,j to p3,j denote offset, amplitude, time constant and delay, respectively,
computed for each of the filtered oscillations j ∈ {0, 1}. Those 8 parameters
together with the extracted frequencies of the fundamental oscillation and the
first harmonics are used as input for the neural classifier. As shown in [4], the
parameters of the decay function not only depend on the material property but
also on the position of contact. By also providing the two extracted frequencies,
the neural network is able to derive the necessary information.

4.2 Method II: Let the Neural Network Do the Work

For the second method, the pre-processing doesn’t go further as to calculate the
frequency spectrum. So, as well as for method I, the data is aligned using PCA
and the start and end point are derived. However, neither the search for the
significant peaks nor the exponential fit are calculated.

Instead of using only a two dimensional input vector for distance estimation
as it is done in method I, the network for method II gets a much higher di-
mensional input vector involving the entire spectrum. Experiments show that a
sub-sampled spectrum is sufficient to learn the mapping, reducing the number of
input dimensions. However, the network has to learn which part of the spectrum
is important to solve the distance estimation task. It is clear that the mapping
is more complex than for method I and thus a larger network is necessary. The
network showing best results is a 3-layer network with 20 neurons for the first
hidden layer and 5 for the second one.

Unlike method I, the input for material classification is the same as for the
distance estimation task. The network as well is a multi-layer perceptron with
20, 30, and 30 neurons for the 3 hidden layers.

5 Results

The experiments show, that the active tactile sensor is able to discriminate dif-
ferent types of material as well as to derive the position of contact. Hence, six
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(a) (b)

Fig. 3. Both plots show a regression plot, which indicates the relation between the

network output distance and the desired target distance (both in mm). Each data

sample is represented as a circle. An optimal solution would be located on the bisectrix

y = x. Figure (a) shows the results for method I possessing larger errors for positions

near the tip (d > 300) compared to the results of method II in Figure (b).

cylindrical objects with identical diameter were presented to the sensor, consist-
ing of different materials, namely aluminium, wood, copper, brass, POM2, and
acrylic glass. These materials were chosen to represent a wide spectrum of mate-
rials with different damping characteristics. The selection includes such that are
expected to be discriminated easily, e. g. aluminium and wood, as well as such
that are much harder to distinguish, e.g. the two kinds of plastic. The impact
occurred at 16 positions along the sensor tube, at 80mm to 360mm in steps of
20mm and at 375mm, as measured from the centre of rotation. Each impact was
repeated 100 times to provide a large data set for network training.

In order to test the optimal performance of the of the active tactile sensor, the
experiments in this paper are limited to a stationary case, i. e. all used data sets
are recorded with a stationary antenna. To do so, the antenna was mounted on
a working desk with the objects to be probed fixed in the desired distance. The
contact at different distances always occurred with the same angle of impact. In
the experiments presented here, the algorithm controlling the movement of the
antenna ensures that the antenna stops and keeps applying a constant pressure
to the probe, as soon as the probe has been hit. The application a constant
pressure is necessary to avoid the rebounding of the antenna.

The curve in Figure 2 suggests that the first harmonics (×) can not be used
any more from a distance of 200mm onwards. Even the fundamental oscilla-
tion (+) flattens for distant contacts. Since the network has to find a mapping
from frequency values to distance (which is the inverse function to one being
plotted). Performance is expected to deteriorate for contact distances beyond
300mm. This can be confirmed in the regression plot in Figure 3. The network
performance results in a root mean squared error (rmse) of 2.93 (about 0.7% of
the antenna length). In contrast, when using the entire spectrum instead of the
extracted frequencies performance improves to a rmse of 1.71. As a confirma-
tion, whether this effect is not due to the changed network size, only the lower

2 Polyoxymethylene.
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(a) (b)

Fig. 4. Confusion Matrix for material classification: The matrix summarizes the num-

ber of data samples assigned to a specific class by the network (output class) broken

down into their target classes. The diagonal entries (light grey) contains number of

the true positive classifications. The border columns and rows (dark grey) indicate the

percentage of the correct and incorrect classified elements per class, while entries in

the lower right right corner tells the overall performance. Figure (a) shows the results

for method I and (b) for method II.

band of the spectrum serves as input. The results are comparable with the ones
with extensive pre-processing. This can be explained by the fact that the upper
part of the spectrum provides redundant information which makes the decision
process more robust.

Furthermore, instead of using the entire spectrum a sub-sampled spectrum
containing only each 10th frequency used as input. The classification results
were not different from the ones using the entire spectrum, but the calculation
time for training was 5 times faster (340min vs. 79min under MatLab on a Intel
Core2Duo E8500).

In contrast to the experiments presented in [4] the material classification is
performed with more than two materials and at different contact positions. The
only restriction for the experiments on method I (Figure 4(a)) is to use only mea-
surements up to 240mm. This is done to avoid similar difficulties as for distance
estimation and to focus on the limits of material classification. Experiments show
that adding trials with larger distance leads to worse results and unstable con-
vergence. In contrast, method II (Figure 4(b)) is able to handle distances larger
than 240mm and even to obtain better results than method I. However, when
applying the same restrictions as for method I the results become even better
(97.2% correct classified trials).

6 Conclusion

In this paper, a bio-inspired tactile sensor was presented. The system is able to
detect the position of a possible obstacle and is furthermore able to classify its
material properties. We were able to extend the method presented in [4]. Beyond
this, a second method was introduced which leads to better results.

Experiments show that, if the contact position is close to the tip, both distance
estimation and material estimation are less reliable. To cope with this limitation
for a practical application, the search and detection strategy could be designed
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in an adequate way. This could be done, for example, by positioning the robot
after the first contact in a way that for the second contact the expected contact
position is below the critical distance.

However, before being able to include the antenna into a mobile robot, it is
necessary to extend the pre-processing algorithm in a way that is able to handle
self-induced noise by the motion of the robot.

Furthermore using only a tenth of the spectrum can be regarded as a first
proof of concept. A deeper study on which part of the spectrum is sufficient,
needs further investigations.

In this paper only simple multi-layer perceptrons were applied. Nevertheless,
the data being processed is data with temporal characteristics, what suggests to
apply recurrent neural network. Using recurrent networks would help to elimi-
nate the start/stop-detection, which is done as the first pre-processing step. In
that way distance estimation and material classification could run in an on-line
system.

As a further perspective, it is desired to integrate multiple sensors onto a
mobile platform. In doing so, a monocular vision-based system would benefit
from the additional use of tactile sensors. The hypotheses gained from the vision
system could be augmented with further information, like the detected material
or the object’s exact location in 3D Cartesian space. Additionally, the system is
able to verify the visual object detection hypotheses.
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Abstract. The use of hyperspectral data is limited, in part, by increased spectral 
noise, particularly at the extremes of the wavelength ranges sensed by scanners. 
We apply Gaussian Processes (GPs) as a preprocessing step prior to extracting 
mineralogical information from the image using automated feature extraction. 
GPs are a probabilistic machine learning technique that we use for suppressing 
noise in the spectral domain. The results demonstrate that this approach leads to 
large reductions in the amount of noise, leading to major improvements in our 
ability to automatically quantify the abundance of iron and clay minerals in 
hyperspectral data acquired from vertical mine faces.  

Keywords: Hyperspectral, Gaussian Processes, Machine Learning, Feature 
Extraction, Absorption Feature, Iron minerals. 

1   Introduction 

Technological and methodological developments over the past 25 years have enabled 
remote identification, quantification and mapping of geological and biological 
materials on the Earth’s surface using hyperspectral imagery. Hyperspectral imagery 
is most commonly acquired from airborne platforms. Continuing improvements in 
sensor technology have, however, enabled imagery to be acquired, cost-effectively, 
from field-based platforms for several applications including mapping of geology 
and mineraology [1]. Hyperspectral sensors typically measure reflected 
electromagnetic radiation in 10s to 100s of discrete, contiguous bands between  
400 nm and 2500 nm.  

Hyperspectral data enables absorption features, diagnostic of many biogeochemical 
materials, to be measured in a semi-continuous spectrum, enabling identification 
rather than mere separation of components [2] and [3].  Hyperspectral bands are 
narrow (< 6nm), and are often noisy in the spectral domain. Technological constraints 
mean that hyperspectral data are collected using different sensors to sample the 
Visible Near-InfraRed (VNIR; 400 – 1000 nm) and Short-Wave Infra-Red (SWIR; 
1000 nm – 2500 nm) parts of the spectrum. Decreasing solar irradiance towards 
longer wavelengths, means that SWIR data are often acquired at a coarser spatial 
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resolution than are VNIR, allowing light to be collected over a greater area of ground. 
This means that data from the VNIR and SWIR sensors have to be spatially-registered 
after acquisition. The separate image cubes are then merged in the spectral domain so 
that each image pixel describes a complete spectral signature between 400 nm and 
2500 nm.  

Merging of these data presents problems for their subsequent analyses: 1) 
decreasing sensitivity of the sensors causes increasing noise towards the extremes of 
the VNIR spectrum (< 480 nm; > 960 nm); 2) the reflectance at long-wavelength 
terminus of the VNIR spectrum may not exactly match that of the short-wavelength 
terminus of the SWIR data, causing abrupt positive or negative changes in reflectance 
at this join; 3) the spectral join is located in the same part of the spectrum as a 
diagnostic absorption feature associated with iron minerals (Fig. 1), making the 
quantification of this feature difficult.  

We propose a method based on Gaussian processes (GPs) [4] for suppressing noise 
in the spectrum at all wavelengths, with the primary objective of smoothing the 
spectrum across the wavelengths at, or close to, the junction of the data acquired by 
the two different sensors. This is a fully automated GP-based machine learning 
algorithm which uses the squared exponential covariance function [4] to learn the data 
provided by the sensors and suppress noise. Once spectral noise has been suppressed 
for each of the sensors, the algorithm compensates for the possible reflectance 
mismatch at the termini of VNIR and SWIR spectra, thus providing a single smoothed 
curve for all the wavelengths of interest. The smoothed spectral curve is then used to 
parameterize absorption features in the spectrum.  

2   Materials and Methods 

2.1   Hyperspectral Data 

Hyperspectral imagery was acquired from a vertical mine face in an open-pit iron ore 
mine in Hamersley Province, Western Australia. Scanning VNIR and SWIR sensors 
(Specim, Finland) were mounted adjacently on a rotating stage. A reflectance panel  
(~ 99% Spectralon ®) was placed within the field of view of the sensors.  

Data at each band, in each sensor, were corrected for dark current and converted to 
reflectance using pixel values over the calibration panel [5]. Data from the sensors 
were spatially-registered using multiple ground control points and merged into a 
single data-cube comprising 390 bands (400 – 2334 nm).  

2.2   Gaussian Processes for Machine Learning 

This section provides a brief introduction to GPs. Consider the supervised learning 
problem with a training set ( ),i iD x y= , 1:i N= , consisting of N  input points ix  and 

the corresponding outputs iy . The objective is to compute the predictive distribution 

( )f ∗x  at a new test point ∗x . The GP model uses a covariance function to place a  

 



686 A. Melkumyan and R.J. Murphy 

multivariate Gaussian distribution over the space of function variables ( )f x  mapping 

input to output spaces. This multivariate Gaussian distribution is then conditioned on 
the observed training dataset, resulting in a new predictive distribution for the 
points ∗x : ( ) ( )| , , ,p f X X N∗ ∗ ∗ ∗=y μ Σ

 
where ∗μ  is the predicted mean and ∗Σ  is the 

predicted covariance.  
During the learning stage GP model determines the hyper-parameters of the 

covariance function from the training dataset. In a Bayesian framework this can be 
performed by maximizing the log of the marginal likelihood (lml). The lml 
incorporates both data fit and complexity penalty to avoid possible overfitting of the 
dataset. This is a non-convex optimization task which can be performed using the 
gradient descent techniques with multiple starting points.  

For further information on GPs and detailed mathematical derivations refer to [4]. 
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Fig. 1. Reflectance spectra of Goethite from individual image pixels. The spectral regions 
sensed by the VNIR and SWIR sensors are shown (dotted vertical lines).  

2.3   Absorption Feature Extraction and Parameterization 

To determine if Gaussian smoothing improved outcomes of spectral analysis, we 
compared the results from an Automated Feature Extraction (AFE) technique applied 
to the original and GP-smoothed image data. AFE automatically identifies absorption 
features and describes them in terms of a small number of parameters including, 
wavelength position, depth and width [6]. In the case of minerals, wavelength position 
is indicative of mineral type, depth is indicative of the mineral abundance and width is 
indicative of both type and abundance.  

The basic concept of AFE is shown in Fig. 2 using a reflectance spectrum of 
goethite, acquired using a non-imaging field spectrometer (ASD, Boulder, Co.). In 
comparison to imaging spectrometers, field spectrometers produce relatively noise-
free spectra (cf. Fig. 2a, Fig. 1). Several absorption associated with Fe3+ are evident  
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(Fig. 2a). The first stage of AFE is to remove the spectral continuum by dividing the 
spectrum by its upper convex hull (dotted line, Fig. 2a), at each wavelength. The 
resulting hull-quotients spectrum places all absorptions on the same plane of reference 
(Fig. 2b) [7]. The second stage identifies the wavelength position of the centre of an 
absorption feature and its shoulders (where the spectrum reaches unity); from these 
the other parameters are calculated. This is repeated for all absorptions in the 
spectrum. 

 

500 750 1000 1250 1500 1750 2000 2250

R
ef

le
ct

an
ce

0

10

20

30

40

50

60

70

80

90

Fe3+

Fe3+

H20

a

H20

Wavelength (nm)
b

Wavelength (nm)

500 750 1000 1250 1500 1750 2000 2250

H
ul

l q
uo

tie
nt

s 
re

fle
ct

an
ce

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Depth
Width

Wavelength position

 

Fig. 2. Library spectrum of goethite: a) reflectance (solid line) showing 3 absorptions due to 
ferric iron (Fe3+). The continuum is fitted over spectral maxima (gray dashed line). Data near 
1400 nm and 1900 nm are not shown as they are affected by atmospheric water vapour. b) hull-
quotients spectrum. The parameters (wavelength position, depth and width), derived from each 
absorption feature are indicated. The spectral region used to process the image data is indicated 
(solid black line). 

Hyperspectral imagery from vertical mine faces can be used to determine their 
mineralogical composition and to separate ore from waste materials. Ore-bearing 
rocks have strong absorptions between 500 – 1300 nm. Some waste materials, mainly 
shale, can be distinguished by an absorption feature at 2208 nm caused by the clay 
mineral kaolinite. Parameterization of these absorption features using AFE enables 
ore to be separated from waste. Noise in image spectra strongly impacts all stages of 
AFE, making the determination of feature parameters inaccurate and imprecise.  

3   Results 

3.1   Effects on Image Spectra 

Individual pixel spectra from areas of goethite and shale were extracted from the 
original and GP-smoothed images (Fig. 3). The original image spectra show large 
variations in reflectance caused by noise (Fig. 3, top panel). GP smoothing produces a 
seamless spectrum which is similar to the library spectrum acquired by the field 
spectrometer (cf. Fig. 3a, Fig. 2a). The hull-quotients spectra (lower panel) from GP-
smoothed data are continuous and AFE now becomes straightforward.  
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Fig. 3. Reflectance (top) and hull-quotients (bottom) spectra from individual image pixels; a) 
goethite, b) shale. Original (circles) and GP-smoothed (solid line) spectra show large 
differences. The parameters of the strongest absorption feature are shown in the bottom graphs: 
wavelength position (λ); depth (D) and width (W). 

3.2   Effects on Parameter Images 

GP smoothing of the image in spectral domain had no effect on the spatial domain. 
There were, however, major spatial improvements in the parameter images derived 
from GP-smoothed data. Mapping in the field indicated that the mine face was made 
up of distinct geological zones (Fig. 4).  

An image of the depth parameter derived from the original image (Fig. 5a) shows 
greater depth, in zones 3 – 6, of the iron absorption at ~ 950-1000 nm. Some iron is 
present in the zones 1 & 2. There are no consistent changes in the depth of the feature 
among zones 3-6, indicating, incorrectly, that no single zone has more iron than 
another. The image of depth derived from the GP-smoothed image (Fig. 5b) showed 
an improved distinction between the ore and waste zones and zone 5 was correctly 
delimited from adjacent zones based on its iron content. Shales are distinguished by 
the presence of the ~2208 nm absorption due to kaolinite. The depth parameter of this 
feature, derived from the original image (Fig. 6a), showed increased amounts of 
kaolinite in zone 1 and, in particular, zone 2 but incorrectly quantified kaolinite in 
zones 3-6. In the less-noisy depth image, derived from GP-smoothed data (Fig. 6b), 
ore zones (3-6) are now accurately distinguished from the shales (1&2) and there is 
improved discrimination of linear variations in kaolinite in zone 2. 
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Fig. 4. Image of a mine face showing geological boundaries: 1) shale with moderate kaolinite; 
2) manganiferous shale with abundant kaolinite; 3) mixed shale and goethite; 4) goethite;  
5) martite-goethite; 6) martite and chert. Zones 1 & 2 are waste. Zones 3-6 are ore-bearing 
rocks, zone 5 being particularly abundant in iron. 
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Fig. 5a. Depth parameter from the original image, for the deepest absorption feature. Pixel 
brightness in all images is proportional to the depth of the absorption feature. 
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Fig. 5b. Depth parameter generated from the GP-smoothed image, for the deepest absorption 
feature. Zone 5, particularly iron-rich, is now distinguished. 
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Fig. 6a. Depth parameter generated from original image, for the deepest absorption feature 
between 2000 nm and 2500 nm.  
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Fig. 6b. Depth parameter generated from the GP-smoothed image, for the deepest absorption 
feature in the spectrum between 2000 nm and 2500 nm.  
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Fig. 7. Scatterplots of pixel values for each parameter, derived from the original and GP-
smoothed data, superimposed with average parameter values for 5 rock types derived from the 
spectral library (large symbols). The minimum and maximum of values for each parameter 
derived from the library are indicated by straight lines. 

3.3   Comparison of Parameters from the Image and Spectral Library 

The images of wavelength position, depth and width were compared with the same 
parameters derived from a spectral library of 5 rock types found at the mine site (Fig. 7). 
The depth parameter from the GP-smoothed data had most values within the minimum 
and maximum values of the library spectra. Greater than 50% of pixels in the original 
image had values much greater than the maximal depth derived from the library spectra. 
The average depth of the absorption derived from library spectra, fell within the range 
of the values measured from the image. This was not true for depth derived from 
original image, where the depth parameter for one rock type - manganiferous shale (◊) - 
was below the limits defined by the pixel values for the original, but not the GP-
smoothed data.  Similarly, most pixel values for the width parameter derived from the 
GP-smoothed data fell within the limits of the library spectra but many from the original 
image fell below the minimal library limit. The majority of pixel values representing 
wavelength position derived from the GP-smoothed data, were within the limits derived 
from the library spectra, but were incorrectly partitioned into 2 discrete groups when 
derived from the original image. This is entirely due to spectral noise.  
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4   Conclusions 

Noise in the spectral domain can have a deleterious impact on many techniques used 
to analyse hyperspectral imagery. The GP-smoothing method presented here greatly 
improved the discrimination and quantification of minerals in hyperspectral imagery 
of a vertical mine face. Used as a preprocessing step to AFE, the GP method enabled 
areas of abundant iron within the ore zones to be discriminated which were not 
distinguished in the original data. After application of GP-smoothing, absorptions 
indicative of kaolinite could be parameterized with high-specificity, enabling the 
separation of ore from waste materials and improving interpretation of the structure of 
the mine face. Further work is currently underway to improve results by incorporating 
spatial information. 
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Abstract. High-order neural networks can be considered as an expansion of 
Hopfield neural networks, and have stronger approximation property and faster 
convergence rate. However, in practice high order network is seldom to be used 
to solve combinatorial optimization problem. In this paper crossbar switch 
problem, which is an NP-complete problem, is used as an example to 
demonstrate how to use high order discrete Hopfield neural network to solve 
engineering optimization problems. The construction method of energy function 
and the neural computing algorithm are presented. It is also discussed the 
method how to speed the convergence and escape from local minima. 
Experimental results show that high order network has a quick convergence 
speed, and outperforms the traditional discrete Hopfield network.  

Keywords: Hopfield network, constraint satisfaction, crossbar switch problem. 

1   Introduction 

In 1985 Hopfield firstly used Hopfield neural network (HNN) to solve Traveling 
Salesman Problem which is a NP-complete combinatorial optimization problem [1].  
Since then, Hopfield network has been widely applied to solve different combinatorial 
problems, such as map coloring [2], maximum cut problems [3], bipartite subgraph 
problems [4], crossbar switch problem [5-7]. Because high-order neural networks 
have stronger approximation property, faster convergence rate, greater storage 
capacity, and higher fault tolerance than lower-order neural networks, they have been 
intensively considered by researchers in recent years. In particular, there have been 
extensive results on the problem of the existence and stability of equilibrium points 
and periodic solutions of high-order Hopfield neural networks (HHNNs), for 
example, the references [8-12] all derive different sufficient conditions to guarantee 
the convergence of high-order neural network under different parameter settings.  Due 
to the complexity of high-order network, the above researches mainly focus on the 
second-order continuous high-order Hopfield network. The reference [13] proves the 
stability of a special class of high-order discrete Hopfield neural network.  
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Compared with lower-order neural networks, high-order networks have their own 
advantages. However, in practice they are seldom used to solve combinatorial 
optimization problems. That is because constructing high order energy functions for 
optimization problems that satisfies the stability criteria of HHNNs is very difficult. 
So how to constructing high order energy functions for practical problems and 
whether using high-order HNN, instead of the first order HNN, to solve problems is 
valuable are two interesting questions. They are the research motivation of this paper. 
The rest of the paper includes the following parts.  Section 2 introduces high-order 
discrete Hopfield neural network (HDHNN).  In section 3, we propose the network 
construction method for the crossbar switch problem and compare its performance 
with the first order HNN and HHTN proposed by reference [5]. In this section we also 
discuss the strategy to escape from local minimum. The last section offers the 
conclusion of this paper. 

2   High-Order Discrete Hopfield Network 

Hopfield neural network has two models, continuous Hopfield neural network 
(CHNN) and discrete Hopfield neural network (DHNN). This paper focuses on 
DHNN. It is well known that DHNN operating in a serial mode will converge to a 
stable state which is corresponding to a local minimum of the Hopfield energy 
function if the connection weight matrix is symmetric and the diagonal elements of it 
are non-negative. However, DHNN can only handle optimization problem when the 
energy function can be expressed by a quadratic polynomial, if we want to deal with 
high-order problems, DHNN should be extend to high-order DHNN. Equation (1) is 
the energy function of high-order discrete Hopfield network [13].  Equation (2) is the 
state-evolving function of neurons [13]. 
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The connection weight of high-order DHNN is also symmetrical, that is, the value 
of 

niiiw ...21
 is independent of the ordering of the index, for example, 

...213132123 www == . As the energy function is a very complicated high-order 

polynomial, even if the weights are symmetrical, the convergence can’t be 
guaranteed. The reference [13] proves the stability of a special class of high-order 

DHNN operating in a serial mode when i
k
i xx =   is hold. In general )(yfh  is a binary 

function. If 0≤y , 0)( =yfh  otherwise 1)( =yfh . 
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3   Crossbar Switch Problem 

3.1   Problem Description 

Crossbar switch problem is an engineering problem in communication field; it is also 
an NP-complete problem. A NN × crossbar switch is a switch connecting a set of N 
inputs and N outputs where each input can be connected to any outputs as shown in 
fig.1. When there is a request from the input to output be satisfied the crosspoint 
switch will be closed. In each input line only one output line can be connected. 
Similarly, in each output line only one input line can be connected.  
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            Fig. 1. NN × crossbar switch                               Fig. 2. Network topology graph 

A NN × crossbar switch can be represented by a NN × binary request matrix R [5]. 
Rows and columns of the matrix R correspond to the inputs set and outputs set, 
respectively. There are two values 1 or 0 for each element in the matrix.  1r =ji  

means there is a request from thi  input line to the thj output line; 0r =ji expresses 

there is no request. The state of the switch can be represent by a NN × binary 

configuration matrix C, where 1c =ji  indicates the request from thi  input line to the 

thj output line is satisfied, 0c =ji  indicates that the request is discarded. For proper 

operation of the switch, there should be at most one request being satisfied in each 
row and each column. The throughput of the switch is optimal when the matrix C, 
which is a subset of the matrix R, contains at most a “1” in each row/column, and has 
a maximum overlap with R. this can be interpreted by the following example. 
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R is an input request matrix for a 44×  crossbar switch and its optimal 
configuration matrices will be 1C or 2C . There are 6 requests, however only 4 requests 

are satisfied and the others are discarded. 
Hopfield network and its variants [5]-[7] have been applied to solve this problem. 

These networks are all first order networks. The energy function used in these 
methods is described as Equation (3), where ijc is the output of neuron i,j. In this 

section we use the crossbar switch problem as an example to discuss how to construct 
the high order energy function of this problem, how to construct its network topology, 
and how about its performance. 
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3.2   Constructing Energy Function of Crossbar Switch Problem 

As mentioned above, a NN × crossbar switch can be represented by a NN × binary 
request matrix. Let neuron 

jiX ,
 corresponds the crosspoint switch at ith row and jth 

column(0≤i,j<N). ijc  is the output of the neuron 
jiX ,
 , The constraint for thi row is 

represented as (4). In (4) the first item is zero when at least one request is satisfied in 
thi  row; the second item is zero when at most one request is satisfied in thi  row. 

Equation (4) equals zero, if and only if there is only one request be satisfied in thi  
row. In (4) the first item is a high order item. The constraint for all rows is represented 
as (5). Equation (5) equals zero, if and only if there is only one request be satisfied in 
each row. Equation (6) is the energy function for all columns. It equals zero if and 
only if there is only one request be satisfied in each column. The energy function for 
crossbar switch problem is the sum of E1 and E2, which is shown in (7). When (7) 
takes the minimum value 0, all ijc  are the solution of the problem. 
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We can expand (7) and simplify it by combing like terms, notice in the simplified 
polynomial the exponent of each variable ijc is 1. For any item

nn jijiji ccAc ...
2211

, it can 

be transformed into
nn jijiji ccAcn ...)(

n

1
2211

−− , n is the number of variables in the term. 
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So the energy function (7) has the same form as (1). ijc satisfies ij
k
ij cc = . This proves 

that (7) is a high order energy function of DHHNNs. nA−  is the value of  one of high 
order weights among neurons 

11, jiX  ,…, 
nn jiX ,
.In this paper a high order weight 

nn jijijiw ,..., 2211
 represents the weight from neurons 

22 , jiX  ,…, 
nn jiX ,
  to  

11, jiX . The 

DHHNN that is constructed according to (7) and works in a serial mode converges to 
a stable a point.  However, in reality (7) is not required to be expanded, and can be 
directly used to construct the neural network. 

3.3   Constructing High Order Hopfield Neural Network 

In this paper the neurons are binary neurons; the state-evolving function of neurons is 
defined in (2). As discussed above if we do not expand E, there are two forms for any 
variable ijc in E, ijc and ijc−1 . So we expand the structure of neurons as following, 

each neuron has two outputs, one is the positive output ijc , the other is the negative 

output ijc−1 . The input of a neuron ijc is the sum of the following four parts: 
 

1) The product of the negative outputs of neurons that are in the same row as ijc ;  

2) The negative of the sum of the positive outputs of neurons that are in the same 
row as ijc ;  

3) The product of the negative outputs of neurons that are in the same column 
as ijc ; 

4) The negative of the sum of the positive outputs of neurons that are in the same 
column as ijc ; 

 

The first and third parts represent high order weights. Take the neuron 
1,1X as an 

example. Its input is shown in fig.2. In fig.2 the neural network is represented as a 
NN ×  neuron matrix. Each neuron has two outputs; the black dot represents the 

negative output. Π is a multiplier. 
1,1X  has two high order weights represented by the 

dot line, and their weight value is 1.  From fig. 2 we can see that the high order 
network is not a fully connected network, the number of high-order connections is 
2N2, the number of first order connections is 2(N-1)N2. The weight value of first order 
connections is -1. There is no the connection explosion problem that connections 
increase exponentially with the increase of neurons. The output of neurons is 0 or 1, 
so the output of the multiplier is 0 or 1, this shows the existence of high order weights 
do not affect the performance of the network. The neural computing algorithm 
working in serial mode is shown as following: 

 
0t =  

randomly initialize )0(ijc  to 1 or 0( 1,...1,0, −= Nji ) 

3: For 0=i  to 1−N  
For 0=j  to 1−N  
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{   )(/)(d tcEt ijij ∂−∂=  

   ))(()1( tdftc ijhij =+   

let all ) or (  ),()1( jnimtctc mnmn ≠≠=+  

1+= tt ; 
}  
if all )1()( −= tctc ijij   

return all )(tcij  

else  goto 3  
 
In the above algorithm the threshold function )(yfh  is defined in section 2. During 

the iteration process if all neurons’ states are not changed and the energy is not equal 
to zero, this means the network traps into local minimum.  

3.4   Strategy for Escaping from Local Minima 

As gradient descent network Hopfield-type network is easy to fall into local 
minimum; two methods are usually adopted to escape from local minima: stochastic 
approach and deterministic approach. The deterministic approaches include the 
“divide and conquer” method [13], the “rock and roll” perturbation method [14], and 
neurons’ competitive learning method [15].  Stochastic approaches include genetic 
algorithm [16], annealing theory [17], particle swarm optimization [18], and so on. 
Although theoretically stochastic approaches can reach the global optimum, 
practically it is very difficult to achieve.  It not only takes long running time, but also 
very difficult to determine the termination conditions. All methods are suitable for the 
high-order gradient descent network. However, our target is to compare the difference 
in performance caused by the topologies of the high order network and the lower 
order network, so in this paper we do not use any global optimization strategies to 
escape from the local minimum discussed on above. We use the following method: 
select some variables ji,c   randomly and reassign values to them, and then repeat the 

iteration process. This procedure is also called a disturbance. Every time only a small 
part of variables are selected and their values are changed to keep the energy value 
maintained at a relatively low level. 

3.5   Simulation Results 

In the experiments different NN × crossbar problems in which N ranges from 20 to 
100 were simulated. For each NN ×  crossbar switch problem, we simulated it 100 
times and in each simulation the request matrix was randomly initialized. Each 
simulation was terminated if a solution was found or the iteration step exceeded the 
maximum iteration step 1000. In this paper when all neurons are updated once, we 
call it an iteration step. For a simulation if a solution is found, the simulation is called 
a convergent simulation. In order to test the high order network’s performance, we 
compare it with the traditional discrete Hopfield neural network (DHNN) [19]. The 
energy function of DHNN is defined as Equation (3). The parameters A and B were 
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set to 1,1 == BA . We also compared our results with Hysteretic Hopfield network 

with dynamic tunneling (HHTN) proposed by [5]. Their performance is evaluated by 
the following 2 criteria: 
 

(1) Convergence rate: the ratio of the number of convergent simulations to the 
total number of simulations.  

(2) Average iteration steps: the averaged iteration steps required for each 
simulation. 

Table 1. Performance comparison for different size crossbar switch problems 

Avg. 
Iteration steps 

Converge 
Rate(%) 

 
N 

DHNN HHTN DHHNN DHNN HHTN DHHNN 
20 14 6 4 100 100 100 
30 17 8 4 100 100 100 
50 29 11 4 100 100 100 
80 45 23 3 100 100 100 
100 58 26 4 100 100 100 

 
The result is shown in table 1. From the experimental results, for the 

NN × crossbar switch problems, the performance of the DHHNN is better than both 
the other two networks, especially for a larger N the improvement of performance is 
significant.  It is because the high order network structure accelerates the convergence 
speed of the energy function. Furthermore, for DHHNN, the number of iteration steps 
is not increase greatly with the increase of N; it seems to be independent with N. 
However, the number of iteration steps of the other two networks is increased with the 
scale of the crossbar switch significantly. 

4   Summary 

In this paper NN × crossbar switch problem is used as an example to discuss how to 
construct high order networks to solve combinatorial optimization problems. In theory 
if we can find a high order energy function for any combinational optimization 
problem, which has the same form as (3), we can solve this problem by using a 
DHHNN. The experimental results show higher order network has a quicker 
convergence speed than the first order network and the number of its iteration steps is 
almost independent of the scale of the problem. It is valuable to construct high order 
network structures for applications. Our work is based on only one case study. 
Whether the result can be generalized to other problems is still need to be researched 
deeply.   
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Abstract. A constant aspiration to optimize electric arc steelmaking
process causes an increase of the use of advanced analytical methods for
the process support. Optimization of the production processes lead to
real benefits, which are, for example, lower costs of production. More
often computational intelligence methods are used for this purpose. In
this paper authors present three methods used for identification of liquid
state of scrap in electric arc furnace using analysis of signals of the current
of furnace electrodes.

Keywords: industrial application, process modeling, electric arc fur-
nace, signal processing, noise estimation, classification.

1 Formulation of the Problem

Electric arc furnaces (EAFs) are widely used in steelmaking and in smelting of
nonferrous metals. The electric-arc steelmaking process carried out in industrial
circumstances is very complicated. The process and the final properties of steel
depend on various, often difficult to precise factors. Hence, proper management
of each melting process and optimal control of the process parameters are very
important.

The liquefying of the charged materials is mainly performed by electric energy.
Steel scrap, alloys and fluxes are charged into the EAF furnace with baskets or
by means of charging barrows. After charging, the furnace is closed and melting
process begins. The roof and the electrodes handling device move down, the
roof is lowered and the furnace is switched on. The automation system predicts
the required set points for the electric control, basing on either the defined
production practice table for the steel grade or on a neural network controller [1].

This stage of the process is repeated by discharging additional baskets into the
furnace and meltdown of these materials until enough liquid steel is available to
reach the required tapping weight. Before tapping steel to the ladle, deslagging
of the bath through the opened furnace door in the arc furnace is done. After
deslagging, the liquid steel is tapped into the steel ladle and the EAF process
starts again (fig. (1)). Due to stochastic behavior of the EAF load and intensity
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Fig. 1. Diagram of the melting process

of the disturbances, there has been an ongoing need for accurate and reliable
predictors of the state of charge in the furnace (there is no possibility to control
the process visually)[2]. The prediction problem is further complicated by the
fact that the EAF characteristics are non-linear in most cases and fluctuation of
the voltage amplitude is random and depends on the load of the furnace and its
mode of operation. A number of non-linear influences and the temporary change
in the process must be taken into account. Due to the variability and complexity
of the EAF process, accurate optimization must be based on actual operating
data, which is often noisy and requires significant preprocessing. The steelmaking
process is continually changing, so is the charge of the furnace. Procedures and
raw materials are changing too. Conventional control and optimization methods
are not able to solve a task of controlling the EAF at the highest possible power
with a low variance.

The electrical energy transferred to the melting steel should be optimally
maintained during the entire melting process with the optimal distribution of
radiated heat within the furnace (for protection of the furnace roof and walls). On
the other hand, the scrap should be melted down in the shortest time possible.
It is very difficult to identify the moment of time when the basket is melted
down enough and discharging the next basket is possible. It is still uncertain to
determine the melting process parameters. Nowadays, a believable observation
of the process is almost impossible. This problem requires an adaptive data-
based modeling system [4]. Computational intelligence methods (CI) can solve
these difficulties and therefore, these methods are used for this kind of modeling
problems [5,6,7].

The method used in the paper for identification of scrap liquid state was based
on the observation that melted steel has a great impact on stabilizing electric
arc. It is caused by the fact that when most of steel is melted down the arc
burns calmly because the slag is more foamy and covers the arc. The covered
arc burns in a more stable way. The increase of plasma gases also stabilizes the
arc. Therefore, identification of scrap liquid state is equivalent to identification
of the furnace operation state, which we called "calm arc".

In the paper, three methods of identification of the calm arc state basing on
intelligent modeling are described. Section 2 presents our approach to prepro-
cessing of signals, section 3 presents performed experiments and the obtained
results and finally, section 4 presents discussion on the obtained results and
conclusions.
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2 Signal Preprocessing

As already has been described, an alternative approach for monitoring scrap
melting process in an EAF is analysis of electrical properties of electrodes. There
are three independent electrodes used for scrap melting, all powered by a single
source. The figure (2) presents the current of electrodes. In this chart, six phases

Fig. 2. Chart of the current of electrodes of the whole melting process, with marked
process stages

of the melting process, including refining phase (described in the introduction),
can be noticed. Each phase is marked by vertical lines separating the whole
process into subprocesses.

The goal of analysis of the signals is to predict the liquid state of scrap and
the beginning of the refining phase. Manual analysis of charts of the current of
the electrodes performed by process engineers proved that the most important
property, which distinguishes these individual phases is the level of noise of the
electric arc. High amplitude of the noise is related to the non-liquid state and
respectively low level of the noise is related to the liquid state. Assuming that the
measured signals can be defined as a smooth function f of some input variables
zi and additive noise n and then, the resulting signal y can be defined as:

y = f (t, z1, z2, . . . , zk) + n (1)

The next aim is to extract the noise and to use its amplitude as input fea-
ture/features for the classifier. Moreover, according to the previous paragraph,
the amplitude of the noise should be a monotonically decreasing function so the
obtained classifier could be a simple, threshold-based classifier (e.g. single node
decision tree).
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2.1 Estimation of Variance with Sliding Window

In our first and the simplest approach, we have assumed that the level of noise
is measured by the local variance of the signal of each independent current of
electrode. Due to the fact that analysis of variance required to be performed
simultaneously, sliding window estimation was used. In this approach the last
k samples (in our case the samples of the last 30s, because different sampling
frequencies may have appeared) were used to estimate desired value - in this case
it was the variance of the signal. Unfortunately, the sliding window estimation of
the noise has some drawbacks that can lead to incorrect prediction. According to
the definition (1): if the function f is not constant (f 	= const.) inside the given
window t = [t − 30s, t] the obtained variance is overestimated. This situation
appears especially in the beginning of the melting process and after each break
when high-voltage taps of the transformer are frequently changed, but also in
other cases when the current is linearly changed. Sudden increases of variance
value is another disadvantage of this method which can be observed during
sudden changes of signal values. In our application such situation appears during
the refining phase when the tap of transformer is changed radically reducing
power of electrodes. Both situations are presented in the figure (3).

Fig. 3. Drawbacks of estimation of variance with sliding window

2.2 Nonparametric Noise Estimation

Another approach tested in our experiments was based on the concept of non-
parametric noise estimation (NNE) [9,8], which allowed estimating the noise level
of the signal (of course, basing on assumption defined in (1) that the signal is
defined by a smooth function f of input variables zi and additive noise n (1)).
The goal of NNE is to estimate the variance of that noise var(n). It is usually
used to estimate the level of noise which disturbs the function f by calculating
the desired error rate (mean square error) of function f estimator

MSEtrue (M (zi)) = MSEestimated (M (zi)) − NNE(zi) (2)

Where MSEestimated (M (zi)) is the MSE of our model M trained by the
use of features zi, NNE(zi) is the variance of the noise (var(n)) and
MSEestimated (M (zi)) is the true MSE that should approach to zero without
apprehension of overfitting.
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The example of such simple noise estimator is so-called Delta-test. Delta-test
is defined as:

var(n) ≈ γ =
1

2M

M∑
i=1

(
yi − yN [i,1]

)2
, with var(γ) → 0 for M → inf (3)

where yN [i,1] is the first nearest neighbor to sample yi. Due to the assumption
that the NNE is additivity of the noise it could be directly applied to resolve
problems of estimation of the level of the noise in signals of the current of elec-
trodes. In this approach, we have also applied the sliding window in such a way
that the level of the noise was estimated in the given window.

The properties of NNE allow reducing or even removing one of the problems
that appeared during estimating the variance described in the section 2.1. As
NNE is insensitive to the function f , calculated noise level is not overestimated
and more accurately reflects in the true value of noise. The only existing problem
is the sensitivity to the step-like signal changes. None of already defined methods
can deal with it.

2.3 Analysis of Symmetry between Signals

None of the presented methods of noise estimation is able to face the problem
of non-continuous signal changes. To solve that problem we have considered
physical properties of the modeled object.

The scheme of electrical connections between the power transformer and the
electrodes is star-shaped (the receiver scheme). According to this connection
type, if scrap is melted down and is in liquid state, dispersing of current in the
receiver circuit does not change and should remain constant. According to what
has been presented above, if the symmetry is disturbed, scrap is not in a liquid
state. This allows replacing the noise estimation with the asymmetrical signals.
Instead of analysis of the noise component of current signal of each electrode,
we considered differences between current signals, what was less complex in
computations:

Ia = abs (I1 − I2)
Ib = abs (I1 − I3) (4)
Ic = abs (I2 − I3)

where Ia, Ib and Ic are new signals, and the I1, I2 and I3 are original currents
of these electrodes. The desired property of the new signals is insensitivity to
non-continuous signals that were described in the section (2.1). The plot of new
signal is presented in the figure (4).

3 Experiments and Results

3.1 Dataset Description

All methods described in (2) were used to construct datasets for training and
validating the final classifier. The datasets were created by concatenation of 24
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Fig. 4. Original current signals and asymmetrical signals

independent melting processes, each consisting of three phases described in the
introduction and processed according to the schemes presented above. The total
number of samples in the datasets used for training the classifiers was equal to
5501 and number of features was dependent on the preprocessing scenario.

Each melting process was performed independently with a different scenario.
The first scenario was designed in such a way that an average noise signal was
estimated for each electrode and then, the classifier had just one single input
variable n = avr (n1, n2, n3), where n1...3 were estimated noise of current signal
of each electrode I1 . . . I3 for given input signal. The second tested procedure
was designed in such a way that estimation of noise was independent for each
electrode. In that case the classifier had three input variables, each of them
represented the noise level related to each electrode. In the next two scenarios,
noise estimation was replaced by asymmetry analysis. As the input features for
the classifier average of Ia, Ib, Ic and the asymmetry signals without averaging
were used. The last tested scheme - called Meta Process - included combination
of all variables from the previous steps.

3.2 Test Procedure

All the methods of noise level estimation described in this paper: estimation of
variance with sliding window, the NNE approach and asymmetry analysis were
tested with different classifiers with the same scenarios for all datasets. This
allows determining the quality of the combination of noise extraction method
and a given classifier. The testing scheme consisted of 5 steps:

1. determining the window size
2. estimation of noise level for each sample (see next subsection)
3. labeling each sample as liquid or non-liquid
4. determining classifier properties
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5. estimating the classifier quality using 5 fold cross validation procedure
6. selecting the best parameters set (window size, classifier properties - C,

sigma)

3.3 Results

In our experiments Gaussian and linear SVM and CART decision tree were used.
The results collected in the table (1) represent only the best results obtained for
a given classifier.

Table 1. Comparison of the results obtained for different preprocessing procedures
and for different classifiers

Preprocessing Classifiers
Gaussian SVM Linear SVM C4.5

1 Sliding window variance (SWV) 96.8 95.7 97.2
2 Average of (SWV) signals 91.3 89.6 91.3
3 NNE preprocessing 96.8 96.7 96.7
4 Avarage of NNE signals 90.6 90.5 90.2
5 Asymmetry analysis 95.8 95.2 96.2
6 Average of asymmetry signals 96.0 96.0 95.8
7 Concatenation of 1,3,5 98.4 97.0 98.4

4 Discussion of the Obtained Results and Conclusions

Online determination of the state of scrap during the melting process is very
important and can bring measurable benefits, both economical and ecological,
by reducing energy consumption and speeding up the process. Moreover, it is
very crucial that the approach proposed in this paper does not incur any extra
expense or special equipment and uses only the information which is already
stored in databases.

In this paper we have compared three different approaches of preprocessing of
measured signals to create datasets used for training the classifier. Two of those
methods were based on statistical analysis and one was based on physical prop-
erties of the electric scheme of the heating system. In our experiments all three
methods were tested with two different scenarios. In the first one, estimated
values were the average ones, what simplified the classification model. Such sce-
nario was verified to check if that simplification could be applied without loss in
accuracy. The obtained results presented in the table (1) pointed out that such
simplification is not correct and leads to significant loss in accuracy (oscillating
in the region 6%). In our experiments two statistical approaches obtained better
results then the one based on asymmetry analysis. Surprisingly, the results ob-
tained by estimation of variance with sliding window were better then the ones
obtained by Delta-test. The best results of all classifiers were obtained by con-
catenation of all three preprocessing steps. In the Meta-Process scenario, each
method was able to bring their own benefits which could downgrade any possible
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drawbacks of other methods. The results of all tested methods show that C4.5
decision tree and Gaussian SVM were better than the linear model. Moreover,
C4.5 decision tree was usually slightly better then Gaussian SVM. This situation
can be explained by the fact that the input features were independent signals
(monotonically decreasing) and each of that signals could be thresholded.

Methodology proposed in this paper does not cover all possible statistical
tests. We are planing to extend our research by other, more advanced NNE
approaches. We are going to experiment with the Gamma test [9] that would
bring more detailed information about noise. We also intend to process other
measured and stored in the database signals, e.g. the voltage of electrodes.
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Abstract. Accurate modeling of wheat production in advance provides wheat 
growers, traders, and governmental agencies with a great advantage in planning 
the distribution of wheat production. The conventional approach in dealing with 
such prediction is based on time series analysis through statistical or intelligent 
means. These time-series based methods are not concerned about the factors 
that cause the sequence of the events. In this paper, we treat the historical wheat 
data in New South Wales over 130 years as non-temporal collection of map-
pings between wheat yield and both wheat plantation area and rainfall through 
data expansion by 2D interpolation. Neural networks are then used to define a 
dynamic system using these mappings to achieve modeling wheat yield with re-
spect to both the plantation area and rainfall. No similar study has been reported 
in the world in this field. Our results demonstrate that a four-layer multilayer 
perceptron model is capable of producing accurate modeling for wheat yield.  

Keywords: Neural networks, multilayer perceptron, interpolation, wheat yield, 
plantation area, rainfall, New South Wales. 

1   Introduction 

New South Wales (NSW) is an important wheat growing state in Australia. A dy-
namic simulating system that is able to accurately predict wheat yield in advance can 
provide a great advantage for wheat growers, traders, and governmental agencies in 
planning for distribution of wheat yield. The commonly used approaches to model 
such temporal events are based on time series analysis by statistics and/or intelligent 
means, such as the autoregressive moving average model (ARMA) [1], generalized 
linear autoregression (GLAR) [2], artificial neural networks (ANN) [3][4], and their 
combinations [5][6]. Time series analysis treats the most recent sequence of events 
more important than the earlier ones in modeling, and thus focuses on the appearances 
of consecutive events, from which forecasting is drawn. However, time series analysis 
is concerned little about the factors that cause the sequences of events in the analysis. 
For example, wheat yield is an annual time series, but the wheat yield in a year is 
more likely to be affected by many factors, such as plantation area, rainfall, quality of 
seeds, temperature variation, fertilization, and level of disease occurrence. Some of 
these factors, if not all, should be considered in wheat yield simulation. 
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To incorporate other factors that affect wheat yield in simulation, we treat the his-
torical data of annual wheat yield as an unknown function determined by the annual 
wheat plantation area and rainfall in wheat growing stage (mainly in autumn and win-
ter), two factors that have a broad impact to the wheat yield in a large region. To 
model such unknown and nonlinear function, we employ multilayer perceptron 
(MLP) neural networks to approximate the wheat yield in respect to plantation area 
and rainfall, irrespective to the time factor.  

Neural networks were used to map the nonlinear relation between wheat yield and 
plantation area without considering rainfall data [7]. However, there has been little in-
formation published in studies similar to what this research is brought in modeling 
wheat yield by incorporating both plantation area and rainfall together through neural 
networks. The purposes of this study are firstly to analyze the nonlinearity of this 
problem through statistical data analysis; secondly to approximate the nonlinear rela-
tion between wheat yield and both plantation area and rainfall using MLPs, through 
which their usability in wheat forecasting can be assessed; discussion and conclusion 
can then be made based on the outcomes for quantitative simulation of wheat yield. 

2   Data Pre-processing and Statistical Analysis 

The annual wheat plantation area in hectares and yield in tonnes in New South Wales 
(NSW) from 1861 to 2007 are available in the report of Australian Bureau of Statis-
tics [8]. Among the 135 data entries, the 132 datasets from 1876 to 2007 are consecu-
tive annual results and hence are selected for our study. The wheat yield over the 
years varies from tens of thousands to over eight million tones with correspondence to 
variations in plantation area ranging from tens of thousands to over four million hec-
tares. For the convenience of neural network training and modelling, both the wheat 
plantation area and yield are normalized to the range between 0 and 1 using 5 million 
hectares and 10 million tonnes as the normalizing factors respectively. After the neu-
ral network simulation, all results can be converted back to their original scales. Since 
we use relative absolute mean error (RAME) to assess the accuracy of wheat yield 
forecasting, backward conversion is actually not necessary in our discussion. 

Over these 132 years, in general, the wheat yield in NSW kept increasing, except 
two downward periods in the 1950s and the late 1980s to the early 1990s (Fig. 1). 
These variations correlate to the fluctuations in plantation area over the years. This 
shows that the wheat plantation area indeed largely affects the wheat yield. Correla-
tion analysis reveals a quadratic correlation between them with a coefficient of 
0.8967, and it is very useful in understanding the general relation between wheat yield 
and plantation area. However, it is too coarse to be used for quantitative prediction. 

In southern Australia, including NSW, wheat sowing occurs in April after autumn 
rain. If the soil is moist, it will sprout in 5-7 days and takes 5-7 months to mature. 
This spans the late autumn (April-May), entire winter (June-August), and early spring 
(September-October). While growing, wheat requires 200-380 mm of rain, particu-
larly in the early to middle growing stages. As a result, we also select the total rainfall 
of autumn and winter as another contributing factor to wheat yield in this study. Since 
the Australian Bureau of Meteorology (ABM) [9] keeps rainfall statistical data only 
from 1900 onwards, there are 108 rainfall datasets that can be mapped to the wheat 
yield records. Therefore, we have 108 entries for simulation with MLP.  
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Fig. 1. Sequence of annual wheat plantation and yield in NSW (1876-2007) 

The accuracy of nonlinear function approximation through MLPs requires a large 
base of training datasets that ideally covers the whole space of potential occurrences. 
If we choose both wheat plantation area and the rainfall in autumn and winter as the 
input to MLP to approximate wheat yield, the 108 entries from 1900 to 2007 are in-
sufficient for training a reliable MLP. The 2D interpolation is used to expand the 
training dataset.  

3   Expansion of Training Data Using 2D Interpolations  

Since one wheat yield value is associated with both a plantation area value and a rain-
fall value, we can explore the usefulness of some 2D interpolation methods for data 
expansion through creating a 3D surface constrained by the 108 known mappings. A 
number of interpolation algorithms are considered for achieving this goal.  

Bilinear interpolation approximates the value V(x, y) at a given point P(x, y) based 
on the known values at the four corner points of a unit square [10][11]. In the coordi-
nate system illustrated in Fig. 2, in which the four corner points are located at P(0, 0), 
P(0, 1), P(1, 0), and P(1, 1), this interpolation is then expressed as 
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Fig. 2. Illustration of coordinate system for 2D interpolation 
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More sophisticated interpolation algorithms use nonlinear functions to approximate 
the unknown values based on some known values [10]. Polynomial interpolations are 
examples of these algorithms. The 2D Lagrange polynomial interpolation [12], based 
on (n + 1)(m + 1) known points, is given by 
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Assuming the known values being at the four corners shown in Fig. 2, third-order 
polynomials can be used to interpolate a surface within the square by 
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where aij denotes the 16 coefficients that must be determined by the four equations 
yielded by the original values at the four corners, eight equations yielded from deriva-
tives in the x-direction and y-direction, and four equations resulted from the cross de-
rivative. This approach is called the bicubic interpolation [10][13]. 

 
Fig. 3. The 3D surface created using the bicubic interpolation for this study 

The 2D Lagrange polynomial requires (n + 1)(m + 1) known points to support the 
interpolating process and may lead to the significant loss of data in the marginal re-
gions, which is a disadvantage if it is applied to this problem with limited data avail-
able. As a result, the bicubic interpolation is chosen to expand the training data. 
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The 3D surface approximated using bicubic interpolation constrained by the 108 
known datasets is shown in Fig. 3. Note that the rainfall values are also normalized to 
the range of 0 to 1 by 500 mm. By excluding the mappings either close to the edges of 
this surface or overlapped with the 108 known datasets, there are 1050 datasets ex-
tracted from this surface for MLP training. The original 108 datasets will be used to 
test the trained MLP for wheat yield simulation. 

4   Simulating Wheat Yield Using Neural Networks 

To choose an appropriate neural system for this simulation, three-layer and four-layer 
multilayer perceptrons (MLPs) are selected for training and testing. We selected these 
MLPs because many successful applications using these MLPs have been reported in 
various fields [14-16].  

For the three-layer MLP (Fig. 4a), the first layer has two linear neurons for taking 
plantation area and rainfall as the input respectively. The two values are then fed to 
the hidden layer with a number of tansig neurons.  The output layer has one linear 
neuron for wheat yield. The output of this three-layer MLP can be written as 
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Fig. 4. Three-layer MLP (a) and four-layer MLP (b) used in this study 
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where xi is either the plantation area or rainfall; Aij is the weight from the input to the 
jth neuron in the hidden layer; Bj is the weight from the jth neuron in the hidden layer 
to the linear neuron as the output. 

The four-layer MLP has two hidden layers with different numbers and types of 
neurons (Fig. 4b). The first hidden layer is constructed using logsig neurons whereas 
the second hidden layer consists of tansig neurons. Both the input and output layers 
are the same as the three layer MLP. The output of this four-layer MLP is defined as 

))(log(tanh(
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where Bjk is the weight from the jth neuron in the first hidden layer to the kth neuron 
in the second hidden layer; Ck is the weight from the kth neuron in the second hidden 
layer to the linear neuron as the output. 

Many performance functions can be used to control the process of neural network 
training. The mean square error (MSE) defined below is chosen in this study: 
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where yo and ys are the original and simulated values, respectively. 
In this study, the Levenberg-Marquardt algorithm [17] is chosen to train the se-

lected MLPs because this algorithm has been reported to be the fastest method for 
training moderate-sized feedforward neural networks [18][19]. Our MLP models are 
built using the neural network tools in MATLAB® [20]. 

We choose three-layer and four-layer MLPs for simulating the wheat yield through 
plantation area and rainfall. The training is constrained by the 1050 expanded datasets 
and controlled by MSE. The 108 original datasets are then used to test the trained 
MLPs. Our experiments show that many MLPs can return consistent and satisfactory 
outcomes, with the four-layer MLP outperforming the three-layer MLP as illustrated 
in the cases shown in Fig. 5.  
 

    
(a) 3-layer MLP     (b) 4-layer MLP 

Fig. 5. Linear regressions between the target and simulated wheat yield 

Although most simulated results from the three-later MLP with a 2-200-1 structure 
are close to the original datasets, a few  outliers from the best fit resulted in a RMAE 
of 20% (Table 1). The simulated outcomes from the four-layer MLP with a 2-50-25-1 
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structure correlate more closely with the original data across the whole range, with a 
lower RMAE of <13% (Table 1).  

Table 1. Test results of MLP models  

MLP  Structure Training 
data 

Testing 
data 

Correlation RMAE 
(%) 

SD 
(%) 

MAX 
(%) 

3-layer 2-200-1 1050 108 0.9306 20.0 52.1 400.0 
4-layer 2-50-25-1 1050 108 0.9912 12.5 37.3 332.6 

5   Discussion and Conclusion  

Although the three-layer MLP has more neurons in the hidden layer than the total 
number of neurons in both hidden layers in the four-layer MLP, its relatively simple 
structure may not adequately establish an approximating mechanism for approaching 
accurate mappings between wheat yield and both plantation area and rainfall. On the 
other hand, the four-layer MLP is likely to approach the solution in a different man-
ner. In this four-layer structure, the outcomes from the first hidden layer are fed to the 
second hidden layer for further processing. The training in the second hidden layer us-
ing a different transfer function from that in the first hidden layer is able to distinguish 
the subtle variations passed from the first hidden layer. These subtle changes are fur-
ther enlarged in the second hidden layer. As a result, the four-layer MLP returns a bet-
ter solution in approximating wheat yield than the three-layer MLP does. 

Another interesting observation on the outcomes is that on average the simulation 
accuracy of our MLPs improves temporally forwards.  That is the simulation is more 
accurate for the wheat yields of recent years than for that of the earlier years. This is 
clearly shown in Table 2, in which for the four-layer MLP, the RMAE of the most re-
cent 20 years from 1988 to 2007 is 3.7% with a maximum error within 10%, much 
less than all other periods. This is indeed a very encouraging trend indicating a great 
potential for this MLP model to be used for wheat yield forecasting in the future, al-
though more study will be required to reveal and verify the actual causes behind this 
trend. 

Table 2. Temporal comparison of simulation accuracy of the four-layer MLP 

Period Year 
 

RMAE (%) SD (%) MAX (%) 

1988-2007 20 3.7 3.3 9.8 
1968-1987 20 8.4 11.5 37.8 
1948-1967 20 7.8 10.1 39.1 
1900-1947 48 19.8 54.5 332.6 
1900-2007 108 12.5 37.3 332.6 

 
In conclusion, through interpolation, we combine both plantation area and rainfall 

data together for simulating annual wheat yield using MLPs. This is the first time that 
such a non-temporal approach is applied to forecasting wheat production beyond con-
ventional time series analysis. The statistics indicates that it is able to quantitatively 
model the wheat production, particularly over the most recent 20 years, with an error 
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less than 4% on average. This MLP model can be further improved by taking into ac-
count other influential factors, such as temperature, soil nutrients, and diseases. Inclu-
sion of new wheat data will also improve the simulation. These are the topics of our 
next project. 
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Abstract. The main purpose of this paper is to propose a fuzzy approach for 
investment project valuation in uncertain environments from the aspect of real 
options. The traditional approaches to project valuation are based on discounted 
cash flows (DCF) analysis which provides measures like net present value 
(NPV) and internal rate of return (IRR). However, DCF-based approaches 
exhibit two major pitfalls. One is that DCF parameters such as cash flows 
cannot be estimated precisely in the uncertain decision making environments. 
The other one is that the values of managerial flexibilities in investment 
projects cannot be exactly revealed through DCF analysis. Both of them would 
entail improper results on strategic investment projects valuation. Therefore, 
this paper proposes a fuzzy binomial approach that can be used in project 
valuation under uncertainty. The proposed approach also reveals the value of 
flexibilities embedded in the project. Furthermore, this paper provides a method 
to compute the mean value of a project’s fuzzy expanded NPV that represents 
the entire value of project. Finally, we use the approach to practically evaluate a 
project. 

Keywords: Project valuation, Real options, Fuzzy numbers, Flexibility, 
Uncertainty. 

1   Introduction 

DCF-based approaches to project valuation implicitly assume that a project will be 
undertaken immediately and operated continuously until the end of its expected useful 
life, even though the future is uncertain. By treating projects as independent 
investment opportunities, decisions are made to accept projects with positive 
computed NPVs. Traditional NPV techniques only focus on current predictable cash 
flows and ignore future managerial flexibilities, therefore, may undervalue the 
projects and mislead the decision makers. 

Since DCF-based approaches ignore the upside potentials of added value that could 
be brought to projects through managerial flexibilities and innovations, they usually 
underestimate the upside value of projects [1, 2]. In particular, as market conditions 
change in the future, investment project may include flexibilities by which project 
value can be raised. Such flexibilities are called real options or strategic options. The 
real options approach to projects valuation seeks to correct the deficiencies of the 
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traditional valuation methods through recognizing that managerial flexibilities can 
bring significant values to projects. 

In DCF, parameters such as cash flows and discount rates are difficult to estimate 
[3]. These parameters are essentially estimated under uncertainty. With respect to 
uncertainty, probability is one way to depict whereas possibility is another. Fuzzy set 
theory provides a basis for the theory of possibility. By modeling the stock price in 
each state as a fuzzy number, Muzzioli and Torricelli [4] obtained a possibility 
distribution of the risk-neutral probability in a multi-period binomial model, then 
computed the option price with a weighted expected value interval, and thus 
determined a “most likely” option value within the interval. Muzzioli and Reynaerts 
[5] also addressed that the key input of the multi-period binomial model is the 
volatility of the underlying asset, but it is an unobservable parameter. Providing a 
precise volatility estimate is difficult; therefore, they used a possibility distribution to 
model volatility uncertainty and to price an American option in a multi-period 
binomial model. Carlsson and Fuller [3] mentioned that the imprecision in judging or 
estimating future cash flows is not stochastic in nature, and that the use of the 
probability theory leads to a misleading level of precision. Their study introduced a 
real option rule in a fuzzy setting in which the present values of expected cash flows 
and expected costs are estimated by trapezoidal fuzzy numbers. Carlsson et al. [6] also 
developed a methodology for valuing options on R&D projects, in which future cash 
flows were estimated by trapezoidal fuzzy numbers. 

In addition to the binomial model, the Black-Scholes model [7] is another way to 
evaluate the option’s value. Wu [8] applied the fuzzy set theory to the Black-Scholes 
formula. Lee et al. [9] adopted the fuzzy decision theory and Bayes’ rule as a basis for 
measuring fuzziness in the practice of option analysis. The Black-Scholes models are 
used to evaluate simple real option scenarios such as delay decisions, research and 
development, licenses, patents, growth opportunities, and abandonment scenarios [10]. 
Despite its theoretical appeal, however, the practical use of real option valuation 
techniques in industry has been limited by the complexity of these techniques, the 
resulting lack of intuition associated with the solution process, or the restrictive 
assumptions required for obtaining analytical solutions. On the other hand, Cox et al. 
[11] developed a binomial discrete-time option valuation technique that has gained 
similar popularity to evaluate real options due to its intuitive nature, ease of 
implementation, and wide applicability to variety of option attributes. In addition, 
analytical models such as the Black-Scholes formula focus on a single option and 
cannot deal with multi-option situations. 

2   The Valuation Approach 

In considering option value, the traditional NPV can be expanded as: expanded NPV
＝static NPV＋value of option from active management [1]. The expanded NPV is 
also called strategic NPV. Static NPV is the NPV obtained using the traditional 
discount method; it is also called passive NPV. In this study, a fuzzy binomial 
valuation approach is proposed to evaluate investment projects that are embedded 
with real options. The value of the project is represented by its expanded NPV, which 
can be evaluated by the valuation approach. However, the parameters are estimated 
by fuzzy numbers when the expanded NPV is estimated; thus, the expanded NPV is 
called fuzzy expanded NPV (FENPV) in this study. 
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The proposed valuation approach is based on Cox et al. [11]. Assuming there is a 
call option with the present value of underlying asset S0 and exercising price K, the 
value of the underlying asset has Pu probability to rise to uS0 or Pd probability to drop 
to dS0 in the next period. The factors u and d represent the jumping up and down 
factors of the underlying asset’s present value, respectively. The option will be 
exercised at period t = 1 if the underlying value is higher than K, and forgone if the 
underlying value is lower than K. The dynamics of the option value is shown in Fig. 1. 

 

 
Fig. 1. The dynamics of option value 

If the option is sold at price C0, then the pricing approach is generally based on the 
assumption of replicating portfolio and can thus be determined by the following 
expression 

 
(1) 

in which r is risk-free interest rate, and Pu and Pd are risk-neutral probabilities, which 
are determined by the following formulas. 

 
(2) 

 
(3) 

Therefore, the price or present value of the call option is the discounted result of 
the option values C1u and C1d with risk-neutral probabilities. Also, under the 
assumption of no arbitrage opportunities, the condition 0<d<1<(1+r)<u must be 
satisfied. Furthermore, the expected return of the underlying asset should be zero based 
on the no-arbitrage assumption: 
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That is 
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From (1), (2) and (3), we know that the main factors affecting the call option value are 
jumping factors u and d; it is not easy, however, to estimate their values in a precise 
manner due to the uncertainty of the underlying volatility.  

The cash flow models applied to many financial decision making problems often 
involve some degree of uncertainty. In the case of deficient data, most decision makers 
tend to rely on experts’ knowledge of financial information when carrying out their 
financial modeling activities. The nature of this knowledge often tends to be vague 
rather than random. Hence, this study considers possibilistic uncertainty rather than 
probabilistic uncertainty and employs fuzzy numbers instead of statistics to estimate 
the parameters. For lightening computation efforts, we utilize the triangular fuzzy 
numbers  and  to represent the jumping factors of the 
underlying asset. Therefore, the risk-neutral probabilities equations can be rewritten as 

 

(7) 

where  and . Thus, we have 

 

(8) 

which are 

. 
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It can be solved by considering the following relationship. 

 
(10) 

 
(11) 

Since the risk-free interest rate r and the exercising price K are usually known, they 
are crisp values, whereas, the option values C1u and C1d become fuzzy numbers as a 
result of the jumping factors being fuzzified. That is,  and 

. The ranking of two triangular fuzzy numbers  and 
 can be derived from . Thus, 

the pricing formula for the fuzzy call option is 

. 
(12) 

In practical application, the present value of the underlying asset is determined by the 
NPV of the investment project; the exercising price is the additional outlay to exercise 
the embedded option. 
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Managerial flexibility to adopt future actions introduces an asymmetry or skewness 
in the probability distribution of the project NPV [2]. In the absence of such 
managerial flexibility, the probability distribution of project NPV would be 
considerably symmetric. However, in the existence of managerial flexibility such as 
the exercising of options, enhanced upside potential is introduced and the resulting 
actual distribution is skewed to the right. 

In essence, identical results are obtained in the case of possibilistic distribution 
which is adopted by this study to characterize the NPV of an investment project. In 
other words, the characteristic of right-skewed distribution also appears in the FENPV 
of an investment project when the parameters (such as cash flows) are characterized 
with fuzzy numbers. Although many studies have proposed a variety of methods to 
compute the mean value [12, 13] and median value [14] of fuzzy numbers, these works 
did not consider the right-skewed characteristic present in the FENPV. Therefore, this 
study proposes a new method to compute the mean value of the FENPV based on its 
right-skewed characteristic. This mean value can be used to represent the FENPV with 
a crisp value. Moreover, different FENPVs can be compared according to their mean 
values. 

Let  be a fuzzy number and . Then, the mean value of  
is defined as 

 
(13) 

The weighted index λ is called the pessimistic-optimistic index in [15], but the index is 
determined by a subjective decision in [15]. However, this study considers that the 
index can be determined objectively. Fig. 2 illustrates a case in which the FENPV is 
represented by a right-skewed triangular fuzzy number. The right-skewed 
characteristic of FENPV—meaning that the more skew to the right, the more optimistic 
the payoff of the project—provides a clue to determining λ with , where 

AL and AR are the left-part area and right-part area of the FENPV, respectively. Thus, 
when λ is determined objectively and substituted into (13), the mean value of the 
FENPV can be computed as follows 

(14) 

 

 
Fig. 2. A FENPV with right-skewed distribution 
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3   Illustrative Examples 

An enterprise must continually develop new products and introduce them into the 
market to create profit. Therefore, evaluating projects of new product development is 
a crucial task that should be an ongoing effort of an enterprise. In this case, a local 
biotechnology company in Taiwan proposes a new product development project that 
needs evaluation. The project must go through two stages before the new product can 
be introduced into the market. Stage one of the project will require two years and an 
investment of I1 = 40 (million NT$) toward product development. When this is done, 
the project will proceed to the second stage, which will require one year and an outlay 
of I2 = 80 (million NT$) to acquire the equipment and raw material for mass 
production. Experts estimate that the project will create cash inflows with a present 
value of 100 (million NT$). If we use the biannual risk-free interest rate r = 3% as the 
discounting rate and frame six months as one period, the NPV of the project can be 
calculated as follows: 

 
(15) 

This negative NPV suggests that the project should be rejected. 
The above results are obtained under the assumption that cash inflows can be 

generated with certainty. However, this assumption is unrealistic. In fact, the cash 
inflows will vary with fluctuations in market conditions, such as the market demand 
of the new product. According to experts’ estimation, the new product may have a 
rate of 20% × (1 ± 5%) fluctuation per year with regard to its market demand. Since 
the volatility is estimated under uncertainty, a triangular fuzzy number is employed to 
characterize the possibilistic uncertainty of the volatility. Based on the estimation, the 
triangular fuzzy number  is 
used to express the fuzzy volatility. From the fuzzy volatility , the fuzzy jumping 

factors and can be determined as , where τ is the 
chosen time interval expressed in the same unit as  and exp denotes the 
exponential function. In this case, the value of τ is 0.5 because there are  
six months (0.5 year) in each period. As a result, we have  

and . The fuzzy risk-neutral probabilities are 

 and , respectively. With 
the above conditions, a binomial tree of the project’s cash inflows can be established, 
as shown in Fig. 3. (For simplicity, the numbers in the binomial tree are represented 
to two digits after the decimal point.) 

Nevertheless, the project may have some decision flexibilities when the project is 
undertaken. For instance, when the market conditions are unfavorable, the project can 
be deferred one period to undertake or the project can abandon its second stage 
investment to prevent losses from mass production. Therefore, the project with 
deferring option and abandoning option will be evaluated in the following subsections, 
respectively. Moreover, the project with a sequential multiple options which is 
combined with deferring option and abandoning option will also be evaluated. 

)million(08.11
)03.01(

80
40100NPV

4
−=

+
−−=

]21.0,2.0,19.0[]2.0)05.01(,2.0,2.0)05.01([~ =×+×−=ρ
ρ~

u~ d
~

udρu ~/1
~

and)~(exp~ =τ⊗=
ρ~

]1601.1,1519.1,1438.1[~ =u

]8743.0,8681.0,8620.0[
~ =d

]5962.0,5704.0,5448.0[
~ =uP ]4552.0,4296.0,4038.0[

~ =dP



722 S.-H. Liao and S.-H. Ho 

 
Fig. 3. Binomial tree of the project’s cash inflows 

3.1   Option to Defer 

First of all, considering the situation that decision maker defers one period to 
undertake the first stage investment and commits to undertake the second stage 
investment. In this case, the project’s total outlay that discounted to period one is 
calculated as follows: 

 
(16) 

The decision tree is shown in Fig. 4, where V=100,  

and . The root value in Fig. 4 is the FENPV of the project with deferring 
option and can be calculated as follows: 

 (17) 

The mean value of the FENPV is 0.46 (million), and the value of the option to defer the 
first stage investment is 0.46 - (-11.08) = 11.54 (million NT$). 

 

 

Fig. 4. The decision tree of the project with the option to defer 
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3.2   Option to Abandon 

Furthermore, when the decision maker only possesses the option to abandon the 
second stage investment, this implies that the decision maker has already completed 
the first stage investment without deferring. 
 

 

Fig. 5. The decision tree of the project with the option to abandon 

The decision tree is shown in Fig. 5, in which . From the root value 
in Fig. 5, we can conclude that the FENPV of the project with option to abandon the 
second stage investment is FENPV = [22.95, 30.37, 39.69] - = [-17.05, -9.64, -

0.31], where . In this case, the mean value of the FENPV is -8.68 
(million), and thus, the value of the option to abandon the second stage investment is -
8.68 - (-11.08) = 2.4 (million). 

3.3   Sequential Multiple Options 

Finally, when the project involves these two options but with different expiration 
days, these two options form a sequential multiple options. The decision tree of the 
sequential multiple options is shown in Fig. 6. 

In the sequential multiple options, decision makers have the options not only to 
abandon the second stage investment but also to defer the first stage investment. 
Therefore, the decision in period one is  and , where 

 and  are the project values in the up and down cases, respectively, during 

period one. Based on the values at period two, we can find that 
 and . The FENPV of the project with 

sequential multiple options is FENPV = [0, 1.28, 7.21], its mean value is 3.60 
(million), and the value of the sequential multiple options is 3.60 - (-11.08) = 14.68 
(million). 
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Fig. 6. The decision tree of the project with sequential multiple options 

4   Discussion and Conclusion 

In Table 1, we summarize the evaluation results of the new product development 
project that embedded with three different real options, respectively. 

Table 1. A summary of the results (in million NT$) 

Type of option FENPV of the project Mean value of the FENPV Option value 
Option to defer [0, 0.43, 0.92] 0.46 11.54 
Option to abandon [-17.05, -9.635, -0.31] -8.68 2.4 
Multiple options [0, 1.28, 7.21] 3.60 14.68 

 
From the evaluation results, we can observe that if the project does not have any 

decision flexibility, the project’s NPV is -11.08 (million NT$) and the project should 
therefore be rejected. However, when the project is embedded with some decision 
flexibilities, the decisions will be different. Confronting uncertain market conditions, 
the decision flexibilities, such as deferring investment in the first stage or abandoning 
investment in the second stage, have specific values. In this paper, we have verified the 
values of these flexibilities from the aspect of fuzzy real options. 

When the project involves the option to defer investment in the first stage, the mean 
value of the project’s FENPV is 0.46 (million NT$). The overall value of the project is 
positive, thus, the project become acceptable. Moreover, the value of the option to 
defer is 11.54 (million NT$). The option value stems from the flexibility that decision 
maker can defer investment in the first stage to avoid the downward losses at project 
initiation. 

Moreover, when the project includes the option to abandon the second stage 
investment, the mean value of the project’s FENPV is -8.68 (million NT$). Although 
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this mean value is negative, it is still greater than the original NPV=-11.08 (million 
NT$). This reveals that the second stage option can still prevent losses when the 
market conditions are downward and can retain the upside potential of profit when the 
market conditions are upward. Therefore, this option to abandon the second stage 
investment has a value of 2.4 (million NT$)－lower than the value of option to defer. 
The reason is that the first stage investment has been completed without deferring, no 
matter what the market conditions are. Thus, even though the market conditions are 
downward at the initiation of the project, the decision maker will only be able to 
prevent losses at the second stage. Due to the smaller extent of hedging, the second 
stage option has a lower option value than the first stage option. 

Lastly, when both options form a sequential multiple options, the mean value of the 
project’s FENPV is 3.60 (million NT$), which represents the total value of the project. 
Since this value is positive, the project is acceptable. The value of the sequential 
multiple options is 14.68 (million NT$). This option value is higher than the value of a 
single option. This result shows that the multiple options provide greater value than a 
single option because multiple options provide more flexibility. However, the value of 
multiple options does not equate directly to the addition of the values of both options. 
The value cannot be raised linearly because of the nonlinear operations in the valuation 
model and the trade-off between both options in the hedging process. 

In an uncertain economic decision making environment, information such as cash 
flows, interest rate, cost of capital, and so forth possess some vagueness but not 
randomness [16]. Consequently, this study has proposed the fuzzy binomial valuation 
approach to evaluate investment projects with embedded real options in uncertain 
decision making environments. 
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Abstract. This paper studies how an optimal Neural Network (NN) can be 
selected that is later used for constructing the highest quality delta-based 
Prediction Intervals (PIs). It is argued that traditional assessment criteria, 
including RMSE, MAPE, BIC, and AIC, are not the most appropriate tools for 
selecting NNs from a PI-based perspective. A new NN model selection criterion 
is proposed using the specific features of the delta method. Using two synthetic 
and real case studies, it is demonstrated that this criterion outperforms all 
traditional model selection criteria in terms of picking the most appropriate NN. 
NNs selected using this criterion generate high quality PIs evaluated by their 
length and coverage probability. 

Keywords: Neural network, prediction interval, model selection. 

1   Introduction 

The learning capacity of NNs intimately hinges on the number of hidden layers and 
the number of neurons per layer. A NN model with many hidden units may have the 
capability to memorize the input patterns, however its generalization error often 
becomes large. Also, if the number of hidden layers and their neurons is very low, the 
training error will be large, which may result in even worse generalization error (over-
fitting and under-fitting problems) [1]. While training NNs is well documented and 
practically straightforward in literature, there is no concrete rule of thumb for finding 
the optimal configuration of NNs. Generally, modelers use one of the following 
techniques for developing NN models using available data: heuristic constraint, trial 
and error, constructive, pruning, resampling, and evolutionary techniques [2] [3]. 
None of these techniques can guarantee satisfactory results in all cases. As there is no 
simple clear-cut technique for finding the optimal number of layers and neurons per 
layer, they have regarded NN design as more of an art than a science [4]. 

A common problem related to the point prediction (regardless of predictor type) is 
that predictions convey no information about different kinds of uncertainty affecting 
the prediction process [5]. Therefore, their application as a decision aiding tool for 
operation planning practically becomes unreliable. Researchers have tried to 
incorporate uncertainties into NN predictions with the aim of improving the reliability 
of NN point predictions. Calculating confidence intervals for point prediction of NNs 
or constructing PIs are alternative solutions proposed in literature. The delta [6], 
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bootstrap [7], Bayesian [1], and mean-variance estimation methods [8] have been 
proposed in the last two decades for PI construction. Applications of NN-based PIs 
are still rare compared to the NN application for point predictions. However, 
implementation of the delta techniques for PI construction has proliferated in recent 
years in different fields, such as load forecasting [9] [10], manufacturing [11], and 
material handling systems [12].  

Unfortunately, literature is not rich in the field of NN-based PI construction and 
requires more attention from both academia and industry. One basic problem is to 
how select NNs that will yield the highest quality PIs. Selection criteria for NN point 
predictors are often concentrated on error terms. One should make note of the fact that 
for PIs, there are other factors that are not covered by traditional model selection 
criteria, such as BIC, AIC, and RMSE. Furthermore, no discussion has been made on 
the quality of PIs for training and test samples. This study aims at assessing 
performance of some traditional model selection criteria and coming up with a more 
efficient criterion that outperforms its traditional rivals. The proposed method will be 
tailored based on the specific features of delta technique for constructing PIs. 

The rest of this paper is as follows. Section 2 briefly introduces the delta method 
and its extension for constructing PIs. The new criterion for selecting NN models is 
described in Section 3. Simulation results are demonstrated in Section 4. Section 5 
concludes the paper with some remarks. 

2   Theory and Background 

In this paper, constructing PIs for outputs of NNs is done through implementation of 
the delta method [6]. The motivations for using this technique are its lower 
computational requirements as well as its mathematical foundation. Considering NNs 
as nonlinear regression models, one may represent them as below, 

εθ += ),( *xfy  (1) 

where y  is the output of NN, 1×mx represent the inputs, and *
1×pθ  are the true values of 

NN parameters. The term ε  is error associated with the modeling function and its 

misspecification. θ̂ , an estimate of  *θ , is obtained through minimization of the sum 
of squared error (SSE) cost function. Point prediction for the i-th sample is obtained 
using θ̂ , 

)ˆ,(ˆ θii xfy =  (2) 

Taylor expansion of (2) around the true values of model parameters ( *θ ) can be 
expressed as, 

),,1()(),(ˆ *
0

* nifxfy T
ii …=−+≈ θθθ  (3) 

Tf0
in (3) is a matrix containing derivatives of 

iŷ  with respect to the network 

parameters. With the assumption that ε  in (1) is independently and normally 

distributed ),0( 2σN , the )%1(100 α−  PI for iŷ  is, 
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where s and F are the standard deviation estimate and the Jacobian matrix of NN 

outputs with respect to its parameters, respectively. Also 
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,
α

pn
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Student t cumulative distribution function with pn−  degrees of freedom. 

De Veaux et al. [13] developed PIs for the case that NNs are trained using weight 
decay cost function, 
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where λ  is a constantan determined by modeler. The procedure for calculation of s in 
(5) is different with the one used in (4). Detailed discussion on these issues can be 
followed in [13]. 
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Fig. 1. The critical value of t distribution versus degrees of freedom and level of confidence 

3   Proposed Model Selection Criterion 

The traditional model selection criteria are either error-based (e.g., MSE and AMPE) 
or error-complexity-based (e.g., BIC, AIC, and AICC). They do not address all 
aspects required for selecting suitable NNs, which will later be used for constructing 
PIs. One can count the followings affecting the quality of PIs constructed using (5): 

a) 
2

,
α

pn
t

−
: Figure 1 represents evolution of t distribution critical values versus 

level of confidence and degrees of freedom. For a fixed α, the value of t 
quickly rises as complexity of the network increases. Therefore, it is 
reasonable to avoid using complex networks with many parameters. 

b) s : This term is one of the main factors with a high impact on the lengths of 
PIs. Usually, the smaller the prediction errors, the narrower PIs. All 
aforementioned model selection criteria use a measure of this term for 
evaluating NNs’ performance. 
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c) 11 )()( −− ++ IFFFFIFF TTT λλ : This long term totally depends on the 

training samples. As the Jacobian matrix of NN is evaluated for the training 
data, one should take care of its entries’ magnitudes. Large entries of this 
matrix for the training samples later are translated to wide PIs for the test 
samples. None of the previous model selection criteria considers magnitude of 
this term and its impact on the lengths of PIs. 

d) Tf 0
: This term relates to the derivatives of NN outputs with respect to the 

network parameters evaluated for out of sample data. Similarity between in 
and out of sample data results in small magnitude for entries of this 

p×1 vector. Generally there is no guarantee that the training and test data will 

have similar patterns. Due to this, there is not much control on this vector. 
However, this term can be effectively kept small through minimizing the size 
of NN parameters by using a weight decay training algorithm. 

With regard to the above discussion, any new criterion for selecting NN models must 
include the first three items. The proposed model selection criterion is called Error-
Complexity-Magnitude-based Criterion (ECMC) covering all these aspects, 

( )( )KSSEECMC lnln×=  (6) 

where K is the norm of 11 )()( −− ++ IFFFFIFF TTT λλ , and SSE is the sum of 

squared errors. )ln(⋅  is the natural logarithm used to deal with SEE and K , which 

differ over several orders of magnitude. Presence of SSE and )ln(⋅ terms in (6) is a 

direct result of the above discussions. 
It is noteworthy to mention that the Jacobian matrix implicitly carriers some 

information about network complexity. From one side, as the network complexity is 
increased through hiring more hidden layers and neurons, dimension of the Jacobian 
matrix goes up. This simply results in a bigger K value, which has a negative effect on 
the narrowness of PIs. Therefore, ECMC will give more priority to the networks with 
smaller size. From the other side, NN learning capacity is usually improved as its 
dimension increases. ECMC looks for a tradeoff between these two contrasting issues.  

ECMC also addresses effects of t-distribution on the length of PIs. This is done 
through managing the size of the Jacobian matrix. The degree of freedom in t 
distribution has an inverse relation with the network complexity and dimension of 
Jacobian matrix. As ECMC votes in favor of networks with smaller size, it is almost 
guaranteed that degrees of freedom of t-distribution remain large. 

In practice, several NNs with different structures will be trained using training data 
and then ranked based on ECMC. These networks then will be used for constructing 
PIs for test samples. After projecting the test samples to the trained networks, PI 
Coverage Probability (PICP) will be first calculated, 

∑
=

=
n

i
ic

n
PICP

1

1  (7) 
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iLPI  and iUPI are lower and upper bounds of the PI constructed for i-th sample. it is 

the i-th target value of the test samples. Delta-based PIs are computed at 
)%1(100 α−  confidence level. Therefore, any NN model that its PICP is less than 

)%1(100 γα −−  will be discarded. γ  can be a small multiple of α  (e.g., α
2

1 ). For 

those networks that satisfy this condition, Normalized Mean PI Length (NMPIL) is 
then calculated: 

∑
= −

−=
n

i

ii

tt

LPIUPI

n
NMPIL

1 minmax

1  (9) 

where mint  and maxt  represent minimum and maximum values of targets. NMPIL is 

an indication of the narrowness of PIs. The narrower the PIs are, the more useful they 
are. The remained networks are then ranked based on NMPIL. If the best network 
based on ECMC yields the smallest NMPIL, we conclude that ECMC has picked the 
best NN model for constructing PIs. This algorithm is summarized in Figure 2. 

 
Step  

1 Begin 

2 Train the NN model using training data. 

3 Rank trained NNs based on ECMC. 
4 Calculate PICP for all NNs. 
5 If )%100( PICP γα −−< , then discard the NN. 

6 Calculate NMPIL for the remaining NNs. 
7 Rank NNs based on NMPIL. 

8 If 11
NMPIECMC RankRank = , then ‘Good Selection’. 

9 If 11
NMPIECMC RankRank ≠ , then ‘Bad Selection’. 

10 End 

Fig. 2. Algorithm for evaluating performance of ECMC 

4   Simulation Results and Discussion 

Two synthetic and real case studies are implemented to assess the usefulness of 
ECMC. In both case studies, different structures are examined for developing NN 
models. For a two layer NN with n1 and n2 neurons in the 1st and 2nd hidden layers, the 
representation will be In-n1-n2-Out. In the experiment, we first fix the number of 
neurons in the second layer and then vary the number of neurons in the first layer. The 
procedure described in Figure 2 is then implemented on these networks for assessing 
practicality of the proposed model selection criterion. PIs for each sample are then 
constructed using (5). The procedure of training and comparing NNs is repeated 100 
times to avoid any subjective judgment due to the misspecification of NNs in the 
training stage. For the purpose of comparison, RMSE, MAPE, BIC, AIC, and AICC 
criteria for NN model assessment and selection are exploited in a similar manner. PIs 

are constructed with 90% confidence ( 1.0=α ).γ is considered to be 
2

α for 
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evaluating PICP. For both cases, data samples were separated into two training (75%) 
and test (25%) subsets. Training and test samples are scaled to have zero mean and 
unit variance.  

4.1   Synthetic Case Study 

A two-dimensional test problem, named Rastrigin's function, is used as the synthetic 

experiment in this paper: επ ++−=∑
=

2

1

2 ]10)2cos(10[)(
i

ii xxxf , where 12.512.5 ≤≤− ix . 

ε is additive noise with normal distribution )5,0(N . Four hundred samples are 

randomly generated for further analysis. A two layer NN is considered for modeling 
this function. The number of neurons in the first (n1) and second (n2) layer are varied 
in the range of one to ten. A summary of results is presented in Table 1. The last 
column includes the average results of the good NN model selection for each 
criterion. For instance, BIC selects the optimal model (best model selected based on 
the training data yields the narrowest PIs for the test data) only in 15% of all cases 
(totally 10000 cases).  

The results clearly show that ECMC is more effective than BIC, AICC, RMSE, 
and MAPE. With the exception of one case, there is always a big difference between 
performance of ECMC and these criteria. The only serious rival of ECMC is AIC, 
which shows a good performance amongst traditional criteria. In four out of 10 cases, 
it does better than ECMC, in four cases it shows performance lower than ECMC, and 
in two cases, its performance is equal to ECMC performance. AIC performance is less 
than the proposed ECMC criterion in total average of performance. 

Table 1. Model selection results for case study one 

Number of neurons in the 2nd layer Model Selection 
Criterion 1 2 3 4 5 6 7 8 9 10 

Average 

BIC 14 12 14 19 23 15 19 11 10 10 15 
AIC 52 39 40 38 50 39 52 44 45 52 45 

AICC 40 30 32 26 40 24 28 25 15 16 28 
RMSE 78 50 37 34 25 30 38 38 48 52 43 
MAPE 1 10 12 12 6 8 11 11 9 16 10 
ECMC 82 53 40 39 26 32 41 39 51 52 46 

4.2   Real Case Study 

The data in the 2nd case study comes from a real world baggage handling system. 
Time required for processing 70%, 80%, and 90% of bags are considered as targets. 
These three variables are hereafter referred to as B70, B80, and B90 respectively.  

Table 2, Table 3, and Table 4, respectively, report the average model selection 
results for B70, B80, and B90. Comparing the results for these targets and different 
NN structures reveals that in all cases, the proposed model selection criterion 
(ECMC) outperforms the traditional model selection criteria, especially BIC and AIC. 
The summary of all results and difference between results of ECMC and other model 
selection criteria are shown in Table 5. It is observed that in more than 66% of cases, 
models selected based on ECMC show the best performance for test sample as well. 
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Apart from ECMC, RMSE is the best model selection criteria among others. This is 
mainly due to the presence of SSE in (5). The result difference between RMSE and 
ECMC is 6.83%, demonstrating the superiority of ECMC over RMSE. 

Table 2. Model selection results for B70 

Number of neurons in the 2nd layer Model 
Selection Criterion 3 4 5 6 7 8 

Average 

BIC 33 27 20 29 20 30 27 
AIC 74 72 56 62 50 55 62 

AICC 58 49 35 41 25 35 41 
RMSE 86 88 80 79 68 54 76 
MAPE 43 52 49 51 50 44 48 
ECMC 86 90 81 87 69 58 79 

Table 3. Model selection results for B80 

Number of neurons in the 2nd layer Model 
Selection Criterion 3 4 5 6 7 8 

Average 

BIC 29 23 25 23 20 10 22 
AIC 70 55 52 50 44 32 51 

AICC 55 35 32 28 27 19 33 
RMSE 84 70 66 54 36 30 57 
MAPE 36 46 38 36 31 28 36 
ECMC 85 73 74 62 60 41 66 

Table 4. Model selection results for B90 

Number of neurons in the 2nd layer Model 
Selection Criterion 3 4 5 6 7 8 

Average 

BIC 20 18 19 20 19 20 19 
AIC 58 56 41 36 38 33 44 

AICC 44 34 30 24 25 23 30 
RMSE 66 66 45 32 35 30 46 
MAPE 27 33 30 19 15 18 24 
ECMC 65 68 53 48 53 39 54 

Table 5. Total average of model selection results 

Model Selection Criterion Total Average Difference with ECMC 
BIC 22.50 43.72 
AIC 51.89 14.33 

AICC 34.39 31.83 
RMSE 59.39 6.83 
MAPE 35.89 30.33 
ECMC 66.22 - 

5   Conclusion 

This study proposes a novel model selection criterion for neural networks used for 
constructing prediction intervals. In a comparative study, usefulness of different 
traditional model selection criteria was examined. An error-complexity-magnitude-based 
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criterion was developed for selecting the optimal structure of neural networks. This 
criterion is based on elements used for constructing prediction intervals using the delta 
method. For the purpose of evaluation and comparison, two synthetic and real case 
studies were implemented. The obtained results showed that models selected using the 
proposed model selection criterion yield the highest quality prediction intervals for the 
majority of the cases.  
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Dürr, Volker II-676

Ebrahimpour, Reza I-470

Ejiri, Ayato II-415

Elfwing, Stefan I-215

Elsayed, Saber M. I-585

Essam, Daryl L. I-585

Eto, Masashi I-290

Fehervari, Tamas I-171

Feng, Dagan I-239

Filho, Hélio Perroni II-509

Fogassi, Leonardo II-17

Foon, Neo Han II-606

Fooprateepsiri, Rerkchai II-549

Fujita, Kazuhisa I-148

Fukushima, Kunihiko II-574

Fukuzaki, Ryutaro I-82

Funase, Arao II-74

Fung, Chun Che II-152

Furber, Steve I-58

Furuhashi, Takeshi II-50



736 Author Index

Galluppi, Francesco I-58

Garro, Beatriz A. II-201

Gedeon, Tom I-298, II-66, II-124

Ghaemi, Mohammad Sajjad I-470

Glette, Kyrre I-540, I-642

Goecke, Roland II-485

Goodwin, Julian II-590

Grozavu, Nistor II-310

Gunasekara, Nuwan II-91

Guo, Ping II-525, II-533

Guo, Shanqing II-143, II-259

Guo, William W. II-708

Hada, Takahiro I-405

Hamada, Toshiyuki I-223

Hara, Satoshi I-422

Hara, Shigeomi II-329, II-383

Harada, Hidetaka II-321

Hasegawa, Mikio I-49, I-66

Hasegawa, Osamu II-344

Hattori, Motonobu II-598

Hawick, Ken A. I-438

Hellbach, Sven II-676

Herwik, Stanislav II-17

Higashi, Hiroshi II-26

Hirayama, Jun-ichiro I-371

Hirose, Akira II-415

Ho, Shiu-Hwei II-716

Høvin, Mats I-540, I-642

Hoogendoorn, Mark I-196, I-270

Horiguchi, Yasuhito II-668

Horio, Yoshihiko I-49

Hoshino, Eiichi I-255

Hosino, Tikara I-446

Hosoya, Haruo I-1, I-33

Hsu, Wen-Chuin II-462

Huang, Chung-Hsien II-462

Huang, Kaizhu I-494

Hyon, Sang-Ho I-347

Hyvärinen, Aapo I-371

Ichisugi, Yuuji I-33

Ijichi, Hirofumi I-107

Ikeguchi, Tohru I-116

Imam, Tasadduq II-116

Imran, Nomica II-300

Inoue, Daisuke I-290

Iqbal, Ahmad Ali I-307

Ishii, Shin I-371

Ishikawa, Masumi I-609

Islam, Tanvir I-82

Itoh, Susumu I-679

Itou, Shinsuke II-383

Iwasa, Kaname I-74

Iwasaki, Yuishi I-17

Iwata, Akira I-74, II-407

Iwata, Kazunori I-478

Jalali, Sepehr II-541

Jang, Young-Min I-207

Jaruskulchai, Chuleerat I-559

Jeatrakul, Piyasak II-152

Jeong, Sungmoon II-185

Jezzini, Ahmad II-17

Ji, Yanli II-391

Jin, Andrew Teoh Beng II-606

Jitsev, Jenia II-616

Jones, David Huw II-501

Jung, Chanwoong II-185

Kabashima, Takaru II-329

Kadobayashi, Youki II-143,

II-267, II-337

Kambara, Hiroyuki II-1

Kamei, Keiji I-609

Kamimura, Ryotaro II-375, II-423

Kaneko, Kunihiko I-155

Kasabov, Nikola I-163, II-91, II-283

Kashimori, Yoshiki I-124

Kato, Hideyuki I-116

Kawahara, Yoshinobu I-422

Kawamura, Tetsuo I-49

Kawashima, Manabu II-431

Kawata, Hiroshi II-42

Khan, Asad I. II-275, II-300

Khosravi, Abbas II-727

Kidode, Masatsugu II-668

Kim, Hyung Chan I-290

Kim, Kyung-Joong II-234

King, Irwin I-397, I-669

Kisban, Sebastian II-17

Kitahara, Kunio II-415

Kitamura, Takuya II-108

Klein, Michel C.A. I-270

Kobayashi, Takumi I-462, II-99

Koike, Yasuharu II-1

Kondo, Keiichi II-565

Kong, Qi I-601
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