

Lecture Notes in Computer Science 6511
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Pedro J. Marron
Thiemo Voigt
Peter Corke
Luca Mottola (Eds.)

Real-World
Wireless
Sensor Networks

4th International Workshop, REALWSN 2010
Colombo, Sri Lanka, December 16-17, 2010
Proceedings

13

Volume Editors

Pedro J. Marron
University of Duisburg-Essen
47057 Duisburg, Germany
E-mail: pjmarron@uni-due.de

Thiemo Voigt
Swedish Institute of Computer Science
16440 Kista, Stockholm, Sweden
E-mail: thiemo@sics.se

Peter Corke
Queensland University of Technology
4000 Brisbane, QLD, Australia
E-mail: peter.corke@qut.edu.au

Luca Mottola
Swedish Institute of Computer Science
16440 Kista, Stockholm, Sweden
E-mail: luca@sics.se

Library of Congress Control Number: 2010939946

CR Subject Classification (1998): C.2, I.2, D.2, C.2.4, I.6, I.2.11

LNCS Sublibrary: SL 5 – Computer Communication Networks
and Telecommunications

ISSN 0302-9743
ISBN-10 3-642-17519-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-17519-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Welcome to the proceedings of REALWSN 2010, the 4th Workshop on Real-
World Wireless Sensor Networks!

After three meetings in Europe we decided to hold REALWSN in exciting Sri
Lanka. We want to thank the local organizers as well as the authors, attendees
and members of the technical Program Committee, Demo and Poster Chairs for
making this event possible.

As the name of the workshop suggests, REALWSN is a forum for people
interested in real-world issues in the fascinating research area of wireless sensor
networks. Despite many years of research the deployment of real sensor networks
is still a challenging task. The behavior of real deployed networks differs substan-
tially from the behavior of the same network in a simulator. The main objective
of REALWSN is to bring together researchers and practitioners to understand
these differences and boost the state of the art in this exciting field.

This year the program consisted of 11 full papers and five short papers care-
fully selected from over 34 submissions. Since REALWSN 2010 was a stand-alone
two-day event, the attendees could also look forward to a poster and demo ses-
sion with more than 10 contributions. The technical program covered topics
from low-level communication and software development to a variety of real-
world sensor network applications, some of them tailored to Asian wildlife which
we think is particularly interesting.

Thanks again to all people who contributed to the workshop: the Technical
Program Committee, the demo and poster chairs Kameswari Chebrolu and Adam
Dunkels, the Publication Chair Luca Mottola and our sponsors that include the
University of Colombo, the Uppsala VINN Excellence Center for Wireless Sensor
Networks WISENET, InterBlocks Ltd. and the Sustainable Computing Research
Group at the University of Colombo. The local Organizing Committee provided
tremendous help that made REALWSN possible.

December 2010 Thiemo Voigt
Pedro José Marrón

Peter Corke
Kasun De Zoysa

Organization

REALWSN was organized by the University of Colombo, School of Computing.

General Chair

Thiemo Voigt Swedish Institute of Computer Science,
Sweden

TPC Co-chairs

Pedro José Marrón University of Duisburg-Essen, Germany
Peter Corke Queensland University of Technology, Australia

Poster and Demo Co-chairs

Kameswari Chebrolu IIT Bombay, India
Adam Dunkels Swedish Institute of Computer Science,

Sweden

Local Organizers

A.R. Weerasinghe UCSC, Sri Lanka
T.N.K. De Zoysa UCSC, Sri Lanka
C.I. Keppitiyagama UCSC, Sri Lanka
K.M. Thilakarathna UCSC, Sri Lanka

Publication Chair

Luca Mottola Swedish Institute of Computer Science,
Sweden

Program Committee

Muneeb Ali Princeton University, USA
Björn Andersson Polytechnic Institute of Porto, Portugal
Jan Beutel ETH Zürich, Switzerland
Torsten Braun University of Bern, Switzerland
Nirupama Bulusu Portland State University, USA
Rachel Cardell-Oliver University of Western Australia, Australia

VIII Organization

Kasun De Zoysa University of Colombo, Sri Lanka
Carlo Fischione KTH Stockholm, Sweden
Richard Gold Ericsson, Sweden
Per Gunningberg Uppsala University, Sweden
Wen Hu CSIRO, Australia
Polly Huang National Taiwan University, Taiwan
Raja Jurdak CSIRO, Australia
Chamath Keppitiyagame University of Colombo, Sri Lanka
Purushottam Kulkarni Indian Institute of Technology Bombay, India
Koen Langendoen TU Delft, The Netherlands
Hock Beng Lim Nanyang Technological University, Singapore
Luis Orozco University of Castilla la Mancha, Spain
Gian Pietro Picco University of Trento, Italy
Utz Roedig University of Lancaster, UK
Christian Rohner Uppsala University, Sweden
Kay Römer ETH Zürich, Switzerland and University of

Lübeck, Germany
Jochen Schiller FU Berlin, Germany
Cormac Sreenan UC Cork, Ireland
Arno Wacker University of Duisburg, Germany
Tim Wark CSIRO, Australia

Referees

Mikhail Afanasyev
Markus Anwander
Jose Araujo

Piergiuseppe Di Marco
Olaf Landsiedel
Luca Mottola

Pangun Park
Stefano Tennina
Gerald Wagenknecht

Sponsoring Institutions

InterBlocks Ltd.
Sustainable Computing Research Group at the University of Colombo
Swedish Institute of Computer Science
University of Colombo
Uppsala VINN Excellence Center for Wireless Sensor Networks WISENET

Table of Contents

Applications I

K2: A System for Campaign Deployments of Wireless Sensor
Networks . 1

Doug Carlson, Jayant Gupchup, Rob Fatland, and Andreas Terzis

TigerCENSE: Wireless Image Sensor Network to Monitor Tiger
Movement . 13

Ravi Bagree, Vishwas Raj Jain, Aman Kumar, and Prabhat Ranjan

Motes in the Jungle: Lessons Learned from a Short-Term WSN
Deployment in the Ecuador Cloud Forest . 25

Matteo Ceriotti, Matteo Chini, Amy L. Murphy, Gian Pietro Picco,
Francesca Cagnacci, and Bryony Tolhurst

Deploying Wireless Sensor Networking Technology in a Rescue Team
Context . 37

Ben McCarthy, Socrates Varakliotis, Christopher Edwards, and
Utz Roedig

OS Support and Programming

Visibility Levels: Managing the Tradeoff between Visibility and
Resource Consumption . 49

Junyan Ma and Kay Römer

Flexible Online Energy Accounting in TinyOS . 62
Simon Kellner

TikiriDev: A UNIX-Like Device Abstraction for Contiki 74
Kasun Hewage, Chamath Keppitiyagama, and
Kenneth Thilakarathna

Applications II

Location Based Wireless Sensor Services in Life Science Automation 82
Benjamin Wagner, Philipp Gorski, Frank Golatowski, Ralf Behnke,
Dirk Timmermann, and Kerstin Thurow

Hallway Monitoring: Distributed Data Processing with Wireless Sensor
Networks . 94

Tobias Baumgartner, Sándor P. Fekete, Tom Kamphans,
Alexander Kröller, and Max Pagel

X Table of Contents

senSebuddy: A Buddy to Your Wireless Sensor Network 106
Adi Mallikarjuna Reddy V, Kumar Padmanabh, and Sanjoy Paul

Communication and MAC

Evaluation of an Electronically Switched Directional Antenna for
Real-World Low-Power Wireless Networks . 113

Erik Öström, Luca Mottola, and Thiemo Voigt

Implementation and Evaluation of Combined Positioning and
Communication . 126

Paul Alcock, James Brown, and Utz Roedig

SPIDA: A Direction-Finding Antenna for Wireless Sensor Networks 138
Martin Nilsson

Testing Selective Transmission with Low Power Listening 146
Morten Tranberg Hansen, Roćıo Arroyo-Valles, and Jesús Cid-Sueiro

An Experimental Study on IEEE 802.15.4 Multichannel Transmission
to Improve RSSI–Based Service Performance . 154

Andrea Bardella, Nicola Bui, Andrea Zanella, and Michele Zorzi

Poster and Demonstration Abstracts

Multicasting Enabled Routing Protocol Optimized for Wireless Sensor
Networks . 162

Tharindu Nanayakkara and Kasun De Zoysa

GINSENG – Performance Control in Wireless Sensor Networks 166
Ricardo Silva

LynxNet: Wild Animal Monitoring Using Sensor Networks 170
Reinholds Zviedris, Atis Elsts, Girts Strazdins, Artis Mednis, and
Leo Selavo

Demo Abstract: Bridging the Gap between Simulated Sensor Nodes
and the Real World . 174

Tobias Baumgartner, Daniel Bimschas, Sándor Fekete,
Stefan Fischer, Alexander Kröller, Max Pagel, and Dennis Pfisterer

A Mote-in-the-Loop Approach for Exploring Communication Strategies
for Sensor Networks . 178

Minyan Hong, Erik Björnemo, and Thiemo Voigt

The Deployment of TikiriDB for Monitoring Palm Sap Production 182
Asanka P. Sayakkara, W.S.N. Prabath Senanayake, Kasun Hewage,
Nayanajith M. Laxaman, and Kasun De Zoysa

Table of Contents XI

Cooperative Virtual Memory for Sensor Nodes . 186
Torsten Teubler, Jan Pinkowski, and Horst Hellbrück

GinConf: A Configuration and Execution Interface for Wireless Sensor
Network in Industrial Context . 190

José Cećılio, João Costa, Pedro Martins, and Pedro Furtado

EdiMote: A Flexible Sensor Node Prototyping and Profiling Tool 194
Rinalds Ruskuls and Leo Selavo

Virtual Sensor WPAN on Demand . 198
Meddage S. Fernando, Harie S. Bangalore Ramthilak,
Amiya Bhattacharya, and Partha Dasgupta

TikiriAC: Node-Level Equally Distributed Access Control for Shared
Sensor Networks . 202

Nayanajith M. Laxaman, M.D.J.S. Goonatillake, and
Kasun De Zoysa

Author Index . 207

K2: A System for Campaign Deployments of
Wireless Sensor Networks

Doug Carlson, Jayant Gupchup, Rob Fatland , and Andreas Terzis

Johns Hopkins University Department of Computer Science
Microsoft Research

{carlson,gupchup,terzis}@cs.jhu.edu,Rob.Fatland@microsoft.com

Abstract. Environmental scientists frequently engage in “campaign-
style” deployments, where they visit a location for a relatively short
period of time (several weeks to months) and intensively collect mea-
surements with a combination of manual and automatic methods. We
present K2, a mote-based system which brings high-quality automated
monitoring to deployments of this nature. We identify key application
requirements, describe the design and evolution of K2, and present per-
formance results from two field deployments (the largest lasting ∼ 5
weeks and including 50 sensing nodes). Our results indicate that K2 is
a viable scientific tool, achieving data yield > 99% and producing accu-
rately time-stamped data, even in the absence of a persistently available
reliable clock source. These results point a path towards WSN deploy-
ments managed by non-CS specialists.

1 Introduction

In this paper, we present the design, deployment, and performance results of
K2 (Kampaign Koala), an evolution of the Koala [10] environmental monitor-
ing system for “campaign-style” deployments. In this application space, domain
scientists (in our case soil ecologists and atmospheric scientists) perform several
weeks to several months of monitoring, frequently in remote and inaccessible
regions. WSNs for campaign deployments face the problems common to most
sensor networks: they must be energy-efficient and cope with lossy communi-
cations. However, for WSNs to be useful for this class of deployments, they
must also be able to achieve a very large fraction of their intended data yield,
timestamp all measurements accurately and be resilient to periods of unattended
operation without a central basestation or persistent global clock source.

K2 combines a low-power collection protocol, post-mortem timestamp recon-
struction system, and delta compression to meet these goals. Over the course of
two field deployments (one with 20 nodes for 2 weeks and another with 50 nodes
for ∼ 5 weeks), >99% of the intended data volume was collected and accurately
timestamped. We were able to achieve energy efficiency which projects to a me-
dian battery lifetime above 900 days and storage capacity above 100 days with
off-the-shelf TelosB motes and commercially available batteries.

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

∗

∗

The remainder of this paper is structured as follows. In Section 2 we give an
overview of related systems and approaches. Section 3 outlines the key system
requirements and describes our designs. We discuss our experience with two field
deployments of K2 in Section 4. In Section 5 we explore the performance of the
individual subsystems in detail and conclude with Section 6.

2 Related Work

Campaign deployments must achieve high yields, even if disconnection is com-
mon. Most WSN protocols for continuous data collection, such as CTP [3] and
the protocol used for the Harvard volcano-monitoring system [15] rely on a con-
tinuously present data sink and suffer from reduced data yield and network
efficiency when the sink is absent. Early efforts such as the Macroscope in the
Redwoods project [14] suffered from low data yields. More recent work continues
to show that high yields can be difficult to achieve in deployments [5].

The Suelo system [12] is also designed for campaign deployments, but the au-
thors focus on how humans can complement computational techniques for fault
detection, while we focus on how to ensure high data yields without infrastruc-
ture or reliable maintenance visits.

Due to the higher data rates demanded of it, Luster [13] incorporates dedi-
cated storage nodes in the network to prevent losses due to space limitations. In
our application domain, sensors need only be sampled at a modest rate (from
every 30 seconds to every 10 minutes), so we can simplify matters with a ho-
mogeneous network in which individual nodes are fairly storage-efficient. Delta
compression for sensor samples has been suggested before [2, 8]. We have not
found descriptions of an implementation exactly like ours (where a pre-defined
set of training data-derived “record types” indicate how many bits per-channel
are available for records). Techniques such as those described by Li et al. [7]
exploit the spatial correlation between data streams, while ours only exploits
the temporal correlation of data within a single stream. These techniques seem
highly promising, but we have not evaluated their impact on the complexity and
performance of a system such as ours, and a simpler technique suffices to achieve
our goals.

FTSP [9] can provide an accurate shared time frame for all nodes in the
network, but we do not know how well it will work in a heavily duty-cycled
network which may lack strong connectivity. Previous experience [4] suggested
that a postmortem approach would deliver the desired accuracy and would be
unlikely to fail in a partitioned network with unstable motes. Postmortem time
reconstruction was described previously in [15], but their methodology is not
tolerant to a missing global clock source.

K2 improves upon the previous Koala [10] system for environmental moni-
toring by incorporating Phoenix [4] for time reconstruction, delta compression,
and other improvements to the data storage system (to reduce the data trans-
ferred by radio and stored in flash). This paper also presents results from field
deployments of Koala and Phoenix, rather than from simulations and testbeds.

2 D. Carlson et al.

Our work shares common ground with that of Barrenetxea et al. [1] and
Langendoen et al. [6] in its descriptions of the “nuts and bolts” engineering
and deployment problems which can be as decisive in a deployment’s success or
failure as the technology in use. This paper focuses on the lessons learned from
a different application space and complements these earlier works.

3 K2 Design

3.1 K2 Requirements

There are several key requirements which define campaign deployments:
Disconnection-Tolerance. Maintainers will visit the deployments according
to their fieldwork schedules and no basestation is available between visits. Loca-
tions of interest may not necessarily form a well-connected network.
Scientifically Usable Data. Sensor measurements should be taken at reg-
ular intervals (not necessarily synchronously between motes), at a rate that is
meaningful to the target application. The samples must be accurately placed in
a single global time scale and post-deployment calibration should be supported.
Very High Data Recovery Rates. While low latency is not critical, the vast
majority of data must be recovered eventually.

3.2 K2 Architecture Overview

Multiple sensor nodes, each made up of a TelosB mote [11], external antenna,
battery, and sensor multiplexer board form the bottom tier of the system. Nodes
take ADC samples from up to four external sensors at a fixed frequency, compress
them, and store them in local flash. Nodes periodically exchange local time
references with each other, but otherwise keep their radios off to save energy
when not participating in downloads.

When the researchers’ schedules permit it, they bring the basestation laptop
to the field site. The basestation wakes up the sensor nodes, builds a centralized
view of the network topology, and downloads any new data from nodes it can
reach over multi-hop source-routed paths.

If an Internet connection is available, researchers upload the data from the
basestation to the back-end server. This machine hosts an SQL database of the
data collected thus far and performs the necessary translations from compressed
data in motes’ local time scales to physical values in the global time scale.

3.3 Functional Subsystems

Storage Subsystem. The storage subsystem is tailored to the requirements of
campaign deployments. We want to record sensor measurements with the highest
possible fidelity (i.e., raw ADC measurements), but we also want to ensure that
the data recovery rate is loosely coupled with the rate of site visits: we don’t
want to lose data because the researcher couldn’t make it to the field for a day.

K2: A System for Campaign Deployments of Wireless Sensor Networks 3

Values at t0 [100, 200]
Values at t1 [101, 193]
Δ1 [1, -7]
Space required per-channel (in bits) [2, 4]
All Record Types 0:[2, 2], 1:[2, 5], 2:[5, 2], 3:[4, 4]
Smallest Feasible Record Type 1

Table 1. Delta compression example

To achieve these goals, we added two layers to the TinyOS LogStorage stack and
built a data-centric delta compression component.

At time tk, a mote reads its sensors and calculates the difference from the
measurements taken at tk−1. It then uses the smallest pre-defined “record type”
which can fit the delta. See Table 1 for an example of this procedure. Lossless
compression is critical to maintaining scientifically-usable data, and delta
compression is a simple way to achieve this in motes. Defining record types
which correspond to the most-commonly-observed sets of field lengths allows us
to save space over individually specifying the field lengths in every measurement.

K2 buffers these deltas in RAM before writing them to flash in order to reduce
the 1-byte-per-record overhead imposed by the TinyOS LogStorage implementa-
tion. These space-saving measures improve data recovery and disconnection
tolerance by extending the time to fill the nodes’ flash and consequently reduce
the frequency of site visits required to prevent data loss. We further improve con-
fidence in data recovery by including a checksumming layer in the LogStorage
stack. This writes a 16-bit CRC to the log every 1 KB of data and recomputes
a CRC over the last 1 KB of data after every reboot.
Collection Subsystem. The data is collected with a modified version of Koala
[10]. K2 differs from Koala in its use of a weighted (rather than thresholded)
link selection scheme and random breadth-first download order (which favors
“fresh” over “stale” link information). This approach supports disconnection-
tolerance by quickly adapting to the basestation’s location as the researcher
takes it to different locations in the network (e.g., if the network does not form
a single connected component). The Phoenix beacons described below also serve
as LPP beacons for the wakeup procedure described in detail in [10].

In contrast to many collection protocols which assume a persistent base sta-
tion and routing tree, K2 nodes maintain a low duty-cycle when there is no
basestation (one transmission every 20 seconds). We support data recovery by
building reliable delivery on top of the unreliable data stream primitive offered by
Koala: each download attempt consists of the primary download of buffered data
followed by a data gap-recovery phase during which the basestation re-requests
data that was not received during the first phase.
Timestamping Subsystem. We use Phoenix [4] to assign timestamps to
measurements in post-processing. Nodes broadcast their local time state every
20 seconds (current clock value and number of reboots since installation). Once
per hour, nodes keep their radio on and log the beacons that they receive, along

4 D. Carlson et al.

Site Nodes Start End Sensors Clock Source
Brazil 50 11/13/2009 12/18/2009 Air temp., Rel. Humidity GPS, VM clock
Ecuador 20 05/22/2010 06/07/2010 Soil Temp., Moisture, CO2 Laptop clock

Table 2. Summary of Deployments

This mechanism addresses the requirement for scientifically-usable data,
by providing measurements in a meaningful time frame. It also provides good
disconnection-tolerance: we require neither full network-wide connectivity
nor a continuous global clock presence, as long as there is some limited access
to the global clock and a modest degree of pairwise node connectivity.
Data-processing Subsystem. The data retrieved from the motes is first col-
lected into a preliminary dataset in the field and is later uploaded to a database
and processed into a science-ready dataset.

The preliminary dataset uses a single calibration curve for all sensors of the
same type and uses only the basestation-to-mote time references to do timestamp
reconstruction. This setup requires minimal configuration on the part of the field
scientists, but still gives them enough information about the data being collected
to adapt the deployment (e.g., by replacing or moving hardware). This approach
promotes data recovery by identifying problems with data collection before
the end of the deployment.

At the end of the deployment, we use Phoenix [4] to assign timestamps to the
data1 and per-sensor calibration curves to convert measured values to physical
values.

4 Deployments

4.1 Brazil

Setup. This deployment gathered data for atmospheric scientists to use in
improving their models of weather development at the Nucleo Santa Virginia
research station in the Atlantic coastal rain forest near São Paulo, Brazil. Previ-
ous models were based on measurements taken in a few vertical columns, while
this dataset provides a 2-dimensional mesh of temperature and relative humidity
measurements at the canopy, taken every 30 seconds. With two temperature and
two humidity sensors per mote, this campaign produced 5,418,074 data points
over its duration.

40 nodes were deployed along a series of cables and towers approximately
30 meters above the forest floor and 10 were deployed in a transect along the
ground. The footprint of the deployment area was approximately 100 m by 100
m. The deployment location was a valley with no line-of-sight to permanent
structures, 6 km by jeep to permanent power and 17 km more to a reliable
Internet connection. The research staff were able to visit the site every weekday,
1 This can be done during the deployment as well, but better results are obtained if

timestamp reconstruction is performed when all possible references are available.

K2: A System for Campaign Deployments of Wireless Sensor Networks 5

with their current time state. This procedure produces a chain of references
which are used to map the nodes’ clocks to a global time scale after the fact.

barring weather. Following the deployment, we uniformly converted the ADC
values to temperatures, and our colleagues calibrated each sensor individually
to obtain sensor-specific readings from these.
Experience and Observations. We built two motes fitted with GPS re-
ceivers, which were planned to provide an accurate global clock source during
the deployment. However, due to lithium battery shipping/sourcing problems,
these were not available until December 9, a full 22 days into the deployment.
We planned to use the basestation laptop’s clock in cases such as this. However,
to ease development, the basestation scripts were running in a virtual machine,
which ran with a much more irregular clock than the host OS clock. While the
VM clock gave poor global time, the local clock references (collected throughout
the deployment) and GPS data (from the last nine days) were sufficient to assign
timestamps to nearly all the measurements. This vindicated the timestamping
subsystem and taught us a valuable lesson in cross-border research: budget as
much lead time as possible between the equipment’s arrival and its deployment
and test your backup systems rigorously.

After the deployment, we found a few cases in which data from one mote
exhibited a time offset in its data (e.g., its daily temperature peak was consis-
tently a few minutes earlier than collocated motes). Closer inspection revealed
that missing blocks of data were the cause: we assumed that samples were 30
seconds apart, so missing records shift the assumed timestamps of later samples
earlier. We were able to detect these problems through the CRCs, but without
a sequence number or timestamp in the records, we were not able to recover
from it until the mote rebooted and reset its clock. This example highlights an
important lesson in designing data storage systems: error-detection is not the
same thing as error-recovery. We were able to download these sections correctly
over a serial connection at the end of the deployment.

4.2 Ecuador

Setup. This deployment collected data for a study on soil respiration: it mea-
sured soil CO2, soil temperature, and soil moisture every 30 seconds. Rather
than blanketing an area, the deployment was made up of several widely-spread
clusters of nodes: one in a pristine forest site, the other in a section of forest that
had previously been clear-cut. The study site was accessible by a hiking trail
from a research station in Ecuador’s Yasuni National Park, which had perma-
nent power and an intermittent satellite Internet connection.

The sensors used in this deployment added a layer of logistical problems.
Their high cost limited the number that could be deployed, and their high power-
consumption necessitated frequent battery replacement.
Experience and Observations. Access to preliminary data was introduced
in this deployment. With access to this data, researchers could see when sensors
were behaving erratically or operating outside of their effective measurement
range and address these problems. They were also able to distinguish “interest-
ing” and “uninteresting” locations and reposition sensors to get better measure-
ments of the most valuable data. Data quality should be matched to its expected

6 D. Carlson et al.

use: in the field, it’s more important to get data quickly and in a manageable
form than it is to get publication-quality data.

This brings up the issue of rapid hardware reconfiguration. We require re-
searchers to keep track of the associations between sensors and nodes manually.
If this mapping is not accurately captured, we are unable to convert from ADC
measurements to physical values in post-processing. This will be impractical for
larger or more dynamic deployments. We plan to build self-identifying sensors in
the future which will allow nodes to record this metadata automatically. “Mun-
dane” problems such as efficient metadata management must be addressed in
order for WSNs to be adopted as useful scientific tools.

In K2, the basestation requests all data which the nodes have stored that
hasn’t been downloaded yet, and the database requests data which has been
downloaded but hasn’t been processed yet. The logs of two nodes became un-
readable to the compression routine in such a manner that the basestation could
collect the data, but the database couldn’t process it. We transfer all outstand-
ing data from the basestation to the back-end in a single file, and this file grew
in size with each network download. Eventually, it grew large enough that we
couldn’t reliably transfer it over the poor Internet connection. While we were
able to log in remotely to fix this problem, it brought two important lessons
to light. In campaign deployments, the basestation-to-back-end link should not
be presumed to be reliable, and “fate-sharing” at any point in the data pipeline
should be avoided. In the future, we plan to conduct separate uploads for each
node, and break these into smaller units to address each of these issues.

5 Results and Observations

5.1 Storage

For the evaluation of the storage subsystem, we consider the size of the sample
data and the overhead required to record it. These results are from the Brazil
deployment: we did not have training data for Ecuador and not all channels were
populated, so the results are not as informative.

Figure 1(a) shows the per-node space savings from compression (1− sizecompressed
sizeuncompressed

)
for Brazil. The “Optimum” and “Achieved” compression assume four bits of
overhead per record to identify the format at the decompressor2. “Optimum”
assumes that each sensor’s delta is represented with the fewest number of bits
required to represent it: the only waste is from unused bits in the last byte.

We used two weeks of 30-second temperature and humidity data from a
nearby weather station to choose the record types. In general, for m record types
and n example records, we order the examples by the number of bits required
to represent their first field, and put then put them into m equally-sized buckets
(bucket 1 containing the first n

m records, and so on). We assign one record type
to each of these buckets, and set the width of its first channel to the largest
2 In practice, “Optimum” requires many more than 16 record types to represent, so

this calculation overestimates “Optimum”’s performance.

K2: A System for Campaign Deployments of Wireless Sensor Networks 7

Node

S
pa

ce
 S

av
in

gs
 (

%
)

Optimum
Achieved

70
74

78
82

0 10 20 30 40 50 60

(a) Per-node space savings with com-
pression. Node IDs reordered for clarity. on Y axis.

Buffer length (bytes)

B
yt

es
 O

ve
rh

ea
d

0 50 100 150 200 250

10
2

10
3

10
4

10
5

Log Record Headers
Incomplete Pages

(b) LogStorage overhead. Note log scale

Fig. 1. Compression space savings and log overhead

first-channel width in its bucket. We then combine the buckets with the same
first-channel width, and repeat this process recursively for the next channel. For
example, if 50% of the records require 3 bits for channel 0, 8 of the 16 record
types set aside 3 bits for channel 0. If 25% of this subset of records require 4
bits on channel 1, then 2 of the records would set aside 4 bits for channel 1. We
had to hand-tune record types after this process to respect byte boundaries and
account for the duplicated sensors.

Figure 1(a) shows that our settings achieved between 90 and 94% of optimum,
even without adaptive behavior in the field or per-device customization. Adding
the ability to install new settings at runtime would be a straightforward way to
improve flexibility without significantly complicating the sensing node logic.

Figure 1(b) demonstrates the savings achieved by buffering data in RAM
before writing it to flash. Writes can not span page boundaries, so buffer-flushes
that would extend past the edge of a page waste up to buffer-length-minus-
one bytes. Every write incurs one byte of “Log Record Overhead.” This figure
averages results from all nodes in Brazil.

In the field, we used a buffer size of 200 bytes, which worked fairly well. A
shorter buffer would have reduced waste on incompletely-filled pages and de-
creased data lost from the RAM buffer during crashes. We recovered 99.5% of
the expected data, part of the missing data is no doubt due to these lost RAM
buffers. A cross-layer approach where the buffering layer is aware of page bound-
aries (and preemptively flushes when needed) would reduce waste on incomplete
pages without increasing the overhead from log records, but this optimization
did not seem worth the increase in code space and complexity to us.

5.2 Timing

Figure 2 presents the distribution of per-node timestamped data yields from the
deployments. In both deployments, over 95% of the motes lost less than 1% of
their data, the remainder lost less than 6% of their data. In Brazil, 99.2% of
the expected data volume was assigned scientifically-useful timestamps (99.7%
of the recovered data). The yield for Ecuador was comparable at 99.1% (99.4%

8 D. Carlson et al.

B
ra

zi
l

E
cu

ad
or

Fraction of motes

0.0 0.2 0.4 0.6 0.8 1.0

<=0.1% <=1% <=6% Non−timestamped data

Fig. 2. Per-node data loss during timestamping

1 2 5 10 100 1000 10000

0

0.2

0.4

0.6

0.8

1

GlobalTime Reference−Point Residual [ms]

P
ro

ba
bi

lit
y

Brazil−VM
Brazil−GPS
Ecuador−PC

Fig. 3. Residuals of fits with global time references

of the expected data volume was collected, 99.7% of the collected data was
timestamped). This is enough to satisfy the domain scientists with whom we
work. In general, loss occurs when nodes reboot before they exchange enough
references with neighbors to establish a mapping (due to some combination of
mote instability and poor network connectivity). This was fairly rare in practice.
These reboots were most likely due to transient software faults and the inability
in TinyOS to place hard constraints on how often the watchdog-reset task runs.

We cannot measure the accuracy of our mechanism for assigning timestamps
since we do not have ground truth. Nevertheless, we can compare the relative
quality of three different clock sources. Figure 3 shows the CDF of residuals
for the fits between the different global time sources and the local clock ref-
erences. Low residuals indicate a good linear fit between mote clocks and the
reference clock. Unsurprisingly, we see the lowest residuals for the GPS motes:
these references should only deviate from a perfectly linear fit due to the effect
of temperature on the mote clock and some non-deterministic delays in handling
interrupts from the GPS module. The Ecuador laptop references are worse by
an order of magnitude, likely due to non-deterministic delays between the time
that a timestamp is put into a packet to the time that is received at the base sta-
tion, forwarded over the USB, and finally timestamped in user space. The Brazil
VM was another order of magnitude worse. In addition to non-deterministic

K2: A System for Campaign Deployments of Wireless Sensor Networks 9

Total Duty Cycle (%)

P
ro

ba
bi

lit
y

0.0 1.0 2.0 3.0 4.0

0.00

0.25

0.50

0.75

1.00

Collection

Brazil
Ecuador

(a) CDF of per-node radio duty cycles.
Vertical lines mark collection duty cycle.

1 2 3 4 5

Depth

N
od

es

0
5

10
15

20
25

30

Brazil
Ecuador

(b) Node depths (median over deploy-
ment).

Fig. 4. Network characteristics of the two deployments

havior from the host-to-VM translation, the VM clock continuously drifts and
resynchronizes to the host clock, sometimes experiencing offsets on the order of
seconds from the host clock’s time. These experiences indicate to us that, as has
been demonstrated before ([9]), removing as many layers as possible between
clock references is essential to maintaining high accuracy.

Figure 4(a) shows the CDFs of per-node radio duty cycles in Ecuador and
Brazil. The curves show the combined contributions of collection and Phoenix,
the vertical lines show the contribution from collection alone. The median Phoenix
duty cycle is 1.8% in Ecuador and 0.96% in Brazil. The main reason for this is
that in Ecuador, we attempted to collect references from 10 neighbors every time
that a node listens for beacons, while in Brazil we only attempted to listen for 5
before turning off the radio. In the end, this did not impact the reconstruction
rate, so we will probably use lower values in the future to save energy.

5.3 Collection

The duty cycle due to data collection is 2.0% in Brazil and 1.3% in Ecuador
(vertical lines in Figure 4(a)). This assumes that all nodes are active for the entire
download and wakeup period. The greater efficiency in downloads in Ecuador is
primarily due to the shallower and smaller network (see Figure 4(b)).

Extrapolating from these duty cycles, we can expect a node lifetime of be-
tween 930 and 1,023 days with a 19 Ah battery, which is well beyond our target
lifetime of weeks or months. This could also be translated as 31-34 one-month
field deployments between battery replacements3.

The gateway doesn’t necessarily reach every node on every download. Fig-
ure 5(a) shows the distribution of the number of network downloads required
before a sample was received. For both deployments, more than 90% of the data

3 This estimate assumes that 75% of the battery’s total capacity is usable, and that
the largest power consumer is the radio, at ∼ 20mA when active.

10 D. Carlson et al.

be

Downloads Required

P
ro

ba
bi

lit
y

0 2 4 6 8 10

0.
0

0.
4

0.
8

Brazil
Ecuador

(a) CDF of required download attempts
to retrieve samples.

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

Packets Received

T
im

e(
s)

50 200 1000 5000 20000

0
10

00
30

00
50

00

● Brazil
Ecuador

(b) Download duration as a function of
data packets received. Note log scale on
the X axis.

Fig. 5. Download performance

was retrieved within six downloads. In a näıve setting, this implies that site vis-
its must occur roughly once every two weeks to safely retrieve 90% of the data.
However, researchers may perform more than one download per visit, and can
generally move to multiple locations to improve performance. This was the case
in Ecuador, where the network layout required researchers to visit two physical
locations to reach all nodes.

Our primary goal with improving storage efficiency is to prevent data loss,
but this also clearly reduces the total data volume that must be transferred. By
reducing data volume, we lower radio duty cycle and prolong battery life. While
we can’t fully separate all sources of overhead from the effect of data volume
on download duration, Figure 5(b) clearly shows that the download duration is
positively related to the number of data packets received, and the techniques
described above will reduce the number of data packets required.

6 Conclusion

In this paper, we have described the design and deployment of the K2 environ-
mental monitoring system and shown it to be suitable for short-term deploy-
ments of moderately-sized wireless sensor networks. Our results indicate that
K2 is a viable system which can achieve high data yields, scientifically-usable
results, and good battery and storage lifetimes. We have discussed how we have
identified and addressed the specific challenges of remote deployments and given
suggestions for future researchers in this area. In the future, we hope to improve
usability and performance with automatic metadata management, more robust
validation, and more effective use of the basestation’s mobility.

Acknowledgments. We would like to thank Juliana Salles of Microsoft Re-
search for project planning and Humberto Ribeiro da Rocha and his team at the
University of São Paulo for field support.

K2: A System for Campaign Deployments of Wireless Sensor Networks 11

References

12 D. Carlson et al.

1. Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M.: The hitchhiker’s guide to
successful wireless sensor network deployments. In: Proceedings of the 6th ACM
Conference on Embedded Networked Sensor Systems (SenSys), pp. 43–56 (2008)

2. Ganesan, D., Ratnasamy, S., Wang, H., Estrin, D.: Coping with irregular spatio-
temporal sampling in sensor networks. SIGCOMM Comput. Commun. Rev. 34(1),
125–130 (2004)

3. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection Tree Proto-
col. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems (SenSys), pp. 1–14 (November 2009)

4. Gupchup, J., Carlson, D., Musaloiu-E, R., Szalay, A., Terzis, A.: Phoenix: An
epidemic approach to time reconstruction. In: Silva, J.S., Krishnamachari, B.,
Boavida, F. (eds.) EWSN. LNCS, vol. 5970, pp. 17–32. Springer, Heidelberg (2010)

5. He, Y., Mo, L., Wang, J., Dong, W., Xi, W., Chen, T., Shen, X., Liu, Y., Zhao, J.,
Li, X., Dai, G.: Poster: Why Are Long-Term Large-Scale Sensor Networks Difficult?
Lessons Learned from GreenOrbs. In: Proceedings of ACM MobiCom (2009)

6. Langendoen, K., Baggio, A., Visser, O.: Murphy loves potatoes: experiences from
a pilot sensor network deployment in precision agriculture. In: Proceedings of the
Parallel and Distributed Processing Symposium (IPDPS) (April 2006)

7. Li, J., Deshpande, A., Khuller, S.: On computing compression trees for data col-
lection in wireless sensor networks. In: Proceedings of IEEE INFOCOM (2010)

8. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless Sen-
sor Networks for Habitat Monitoring. In: Proceedings of ACM International Work-
shop on Wireless Sensor Networks and Applications (September 2002)

9. Marot, M., Kusy, B., Simon, G., Ledeczi, A.: The flooding time synchronization
protocol. In: Proceedings of the 2nd ACM Conference on Embedded Networked
Sensor Systems (SenSys), pp. 39–49 (November 2004)

10. Musaloiu-E R., Liang, C.J., Terzis, A.: Koala: Ultra-low power data retrieval in
wireless sensor networks. In: Proceedings of the 7th International Symposium on
Information Processing in Sensor Networks (IPSN), pp. 421–432 (April 2008)

11. Polastre, J., Szewczyk, R., Culler, D.: Telos: Enabling Ultra-Low Power Wireless
Research. In: Proceedings of the 4th International Conference on Information Pro-
cessing in Sensor Networks: Special track on Platform Tools and Design Methods
for Network Embedded Sensors (IPSN/SPOTS) (April 2005)

12. Ramanathan, N., Schoellhammer, T., Kohler, E., Whitehouse, K., Harmon, T.,
Estrin, D.: Suelo: human-assisted sensing for exploratory soil monitoring studies.
In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor Sys-
tems, pp. 197–210 (2009)

13. Selavo, L., Wood, A., Cao, Q., Srinivasan, A., Liu, H., Sookoor, T., Stankovic,
J.: Luster: Wireless Sensor Network for Environmental Research. In: Proceedings
of the 5th ACM Conference on Embedded Networked Sensor Systems (SenSys)
(November 2007)

14. Tolle, G., Polastre, J., Szewczyk, R., Turner, N., Tu, K., Buonadonna, P., Burgess,
S., Gay, D., Hong, W., Dawson, T., Culler, D.: A Macroscope in the Redwoods. In:
Proceedings of the 3rd ACM Conference on Embedded Networked Sensor Systems
(SenSys) (November 2005)

15. Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and yield
in a volcano monitoring sensor network. In: Proceedings of the 7th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI) (November 2006)

TigerCENSE: Wireless Image Sensor Network to
Monitor Tiger Movement

Ravi Bagree, Vishwas Raj Jain, Aman Kumar, and Prabhat Ranjan�

Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhinagar, India - 382007

{ravi bagree,vishwas jain,aman kumar,prabhat ranjan}@daiict.ac.in

Abstract. Wireless Sensor Network (WSN) in combination with image
sensors opens plethora of opportunities in the wildlife tracking. It pro-
vides a glimpse into previously unseen, remote and inaccessible world of
some of the most endangered species on earth. tigerCENSE 1is such an
attempt to put sensor network technology in conserving one of the rarest
and most elusive big cat species. The node, triggered by the Passive In-
frared (PIR) sensor, captures the image of tiger using a CMOS image
sensor and stores it in an external memory chip. To avoid any disturbance
to animal, the node uses an Infrared (IR) flash, instead of white flash,
to illuminate the target at night. The stored images get transferred to
the base station via radio transceiver. This is transferred to the database
server through Internet links for analysis by wildlife researchers. A solar
energy harvesting system for recharging node’s batteries is being added
to avoid frequent human visit to change the batteries, making it highly
non-intrusive system.

Keywords: Camera Trap; Wireless Sensor Network; Image Sensor Net-
work; wildlife tracking; Intrusion detection; CMOS camera; IR flash;
image sensor.

1 Introduction

Most of the WSN applications have depended on sensors such as light and tem-
perature etc., which produce small amount of data per sample. However, in
recent years, technological advances, especially in CMOS, have made it possible
to have very small, low powered and cheap image sensors integrated to WSN,
enabling us to collect valuable visual information of the target object and its
surroundings. These image sensors produce large data per sample based on im-
age size. Due to this Wireless Image Sensor Network (WiSN) has emerged as a
new field with its own application areas as well as challenges. One of its most
promising applications is monitoring wildlife species.

� Corresponding author.
1 This project is partially funded by Wildlife Institute of India, Dehradun.

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 13–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

14 R. Bagree et al.

Traditional methods of wildlife monitoring are largely based on statistical
methods and data collected by ground surveys [1]. Though these methods usu-
ally yield extensive data for a given animal and its habitat, they are time con-
suming, expensive and unauthenticated. Some methods, such as the traditional
pugmark census, are not even reliable enough[2]. Above all, most of the en-
dangered or critically endangered species live in remote, arid and inaccessible
landscape. Monitoring them, their behavior, their status and distribution be-
comes life threatening. tigerCENSE is an attempt in this direction to make such
tracking more authentic, automated, non-intrusive, less expensive and safe. Un-
der tigerCENSE project we are primarily focusing on collecting images of tigers
along with its time/date and location to identify their movement patterns and
making it available to the researchers in an easy manner.

Tiger is the largest of all the Asian big cats and one of the most threatened
species [3]. Throughout their range in Asia tiger populations are threatened,
either directly from poaching, or from habitat and prey loss [4]. Once having
the population count above one million is now struggling for its survival with
the mere population of 3,402-5,140 across the world [4]. In last few decades
number of conservation programs have been proposed by various countries and
other international organizations. They have been working on many possible
solutions like restoring habitat, monitoring populations, anti-poaching laws etc,
and millions of dollars have been invested for the same [5]. But common to all
the solutions is monitoring the status and population distribution information
of the tigers.

2 Available Technology

The advent of advance camera trap technology has revolutionized conservation
plans for wildlife. It helped to uncover invaluable information about rare species
and their habitats, which can be shared with local governments when mak-
ing land-use decisions, anti-poaching activities etc. Most of the available cam-
era traps use independent commercially available camera modules, that may be
digital or film-based usually triggered by a motion detector.

In the very old days trip wires and pressure pads were used to trigger cameras
[2]. Modern motion detectors are based on infrared and may be active or passive.
Active infrared based motion detectors send out an infrared beam to a receptor
located some distance away. When any object obstructs this beam’s path, the
detector triggers and camera captures the photograph. Whereas a PIR sensor
tracks heat change in the surrounding. When any infrared emitting object passes
in front of the detector, it detects the motion. Also, the modules that aim for
night photography usually come equipped with either white or infrared flash.
Some of the commercial cameras use almost 64 LEDs making them much bigger
and consume lot of power.

These systems usually use strobes and wires to interconnect the motion detec-
tor, the independent camera and to setup an automatic image capturing system.
This makes their size quite bulky and difficult to camouflage making it highly
prone to stealing by people or being damaged by animals. Also, presently most

TigerCENSE: Wireless Image Sensor Network 15

of the commercially available traps do not have a local wireless network link. Al-
though few of the traps do communicate with satellite but because of the leased
satellite link, they cost heavily.

In this paper we are proposing the system, tigerCENSE, which has been able to
resolve many of the problems faced by these traditional camera traps. Here we will
be discussing the hardware and software design architecture of the tigerCENSE
system at the node, base and network levels. In particular, the paper embodies the
issues and constraints, which were met during the design and testing of the system.

Section 3 of the paper discusses the design parameters taken into account
for tigerCENSE. Overview of the system is described in Section 4 covering the
hardware and software aspects of the system. Experience gained, system perfor-
mance and our field testing results are covered in Section 5. Finally we conclude
by enumerating the challenges and experience gained from inception to trials.

3 tigerCENSE

To make an informed decision, researchers need to know the status and distri-
bution pattern of tigers in the area of interest. They collect information using
pugmark, DNA technique or through camera traps. As human beings have fin-
gerprints as their unique identity, characteristic stripe patterns on cat’s body
differ from one individual to another and from one side of the cat’s body to
the other [6]. In fact, there are no tigers with identical markings. Wildlife re-
searchers are mainly interested in these unique stripes pattern. It allows them to
extract potential information on the presence of species, their home range sizes,
individual recognition and density estimates, activity cycles, behavior, seasonal
variation in movement and abundance and also allows for comparisons to be
made between areas [2].

tigerCENSE is an attempt in the similar direction and provides images in an
inexpensive, power and time efficient manner. Nodes are setup by researchers
along each bifurcation of the tiger trail to help figure out the path taken by
tiger. Whenever a tiger gets in the field of view of PIR sensor, an interrupt is
generated and the image sensor will capture the photograph. As tiger moves
mostly in night, an infrared flash is integrated in the system. The photograph
is time stamped and gets stored on a micro-SD card along with node ID. Once
the communication with gateway or next hop neighbor is available, it would
transfer the image wirelessly using a radio transceiver. As the memory size of
the micro-SD card can be increased, the upper limit of photographs that can be
saved is adjustable. Also, wireless connectivity and solar recharging for battery,
help in minimum anthropogenic disturbance, which otherwise would have been
required for data collection and to change the power battery.

Though camera traps technology have been in use for quite long time but
still it is not fully explored and suffer some major drawbacks. Besides having
all the pros of old traps, tigerCENSE has been designed keeping the following
drawbacks, explained further, as its prime design challenges.

16 R. Bagree et al.

Response Time. The time delay between PIR interrupt and capturing the
photograph is very critical. Because of large response time of many traditional
traps, fast moving animals do not get captured. tigerCENSE system needs to
reduce this time to around one second to overcome the said drawback.

Size and Cost. Traditional traps were bulky and costly. Developing a cus-
tomized system with an integrated image sensor is desirable as this will drasti-
cally reduce the size and the cost. Also, presently the number of LEDs used to
illuminate the animal is very high. We could make an illuminator with fewer but
brighter and more efficient LEDs.

Disturbance to Animals. To allow night photography IR flash is recom-
mended as white flash will startle the animal resulting in the abandonment
of the path. Also, mechanical shutter produces a click sound, while taking a
photograph. This needs to be avoided as this makes the animal cautious of its
surrounding and to behave abnormally.

Automated Data Transmission and Local Storage. A wireless connectiv-
ity is required which allows the nodes to be deployed in very remote areas and it
will also reduce human visit to the forest to a great extent. Also, to compensate
for any link failure due to environment or other failures, the node should have
sufficient external memory to store the data for a month.

Remote Configuration. Researchers need to go to the field each time they
need to change any parameter, like number of shots in burst mode, delay between
two adjacent shots etc. of the traps. Remotely changing of parameter further
reduces the visit and labor of researchers.

Fail-Proof against False Interrupts. In spring when many trees shed their
leaves in preparation for new foliage, active IR sensor gives lot of false interrupts.
Each momentary break in the beam caused by a leaf floating across the path
may result in a useless picture being taken. tigerCENSE needs to take care of it
as this may consume large amount of power for no good reason.

Health Information of Traps. Presently, once the trap is deployed in the
field, there is no way to know about its health and other parameters. The film or
the battery might have been exhausted long back but the researchers would not
know. Also, the camera might stop working because of some technical problems,
it might get stolen or may have been damaged by an animal, but it will remain
unknown until someone visits it. This makes the trap highly inefficient as it may
loose important information.

Energy Harvesting. Present traps consume enormous power and need the
battery replacement at regular interval. This not only leads to frequent visit
of the researchers but also the maintenance cost goes up. This requires for an
efficient power supply with a recharging mechanism. The Solar recharging system
could be an excellent solution to it. With careful energy management policy,
supplemented by harvesting, the energy requirements can be met.

TigerCENSE: Wireless Image Sensor Network 17

Fig. 1. tigerCENSE Hardware setup depicting various components, their interfacing
and power supply

4 System Overview

Broadly the tigerCENSE system is divided like any other traditional WSN in the
hardware, related system software and drivers, middle-ware servers with data log-
ging and web hosting services and finally the browser based visualization software.
We plan to use radio transceivers capable of communicating over 1.5 km in the free
space. The range may get affected due to surroundings but would still be sufficient
to allow node to node communication and multihopping of data. Most of the nodes
would be in the valley but to provide link to Internet, we would need to use GPRS
links using mobile communication infrastructure. As mobile signals would not be
available in the valley, we would need to setup a 4-5 km directional link between
a gateway in the valley and that on the hills. Using mobile signal available on the
hills, we would be able to transfer the data to servers using GPRS. Our focus in
this paper is more on the node development and not on the rest of the system,
where standard existing technology can be used.

This section describes the platform developed and used for our experiments.
Hardware system architecture of tigerCENSE node is as depicted in Figure 1.
While describing the hardware used, we will also discuss the flow of the software
and the challenges faced during its development.

When the system is in idle state with no movements of animal, all the hard-
ware components will be in power saving or sleep mode except the PIR sensor.
When an intrusion is detected PIR sends an interrupt to the micro-controller
and the system gets into its active state. The PIR Sensor is a pyro-electric device
that detects the motion by measuring changes in the infrared levels emitted by
surrounding objects.

PIR. We use Parallax INC #555-28027[8] PIR sensor, which works from 3.3 to
5V and draws less then 100 μA current. Also, it is less prone to false triggers,

18 R. Bagree et al.

when compared to active beam interrupted motion detectors. Active beam based
system may get triggered by a very small object(e.g. leaves falling of a tree). It
has the Fresnel lens with the viewing angle of 90 degree and a range of approxi-
mately 20 feet. At start-up the PIR requires a ‘warm-up’ time in order to learn
its environment or in other words creating the heat map of the environment. This
start-up time could be anywhere from 10-60 seconds. After this, whenever PIR
sensor detects any sudden change in its heat map, in other words it detects an
intrusion; it pulls up its output pin giving an interrupt to the micro-controller.

The interrupt from the PIR wakes up the micro-controller and it initializes the
image sensor to take the photograph. The initialization of image sensor happens
in two steps. In the first step the micro-controller enables the power to the
image sensor using a power switch TPS2092 [9]. The power switch is being used
to conserve the power which otherwise would be wasted as the quiescent power
of the image sensor. In the second step the micro-controller sends commands to
the image sensor to customize setting and to capture the image.

Image Sensor. COMedia Ltd.’s C328R [10] image sensor module is used, which
performs as a JPEG compressed, low cost, low powered still camera. It interfaces
with the micro-controller using the serial communication. It works on 3.3V with
60mA of current. As we are using IR flash to illuminate the object, we use a lens
without IR filter. CMOS image sensors are typically sensitive to 1000 nm and
use of IR LED in 850 nm to 950 nm range to illuminate the target is possible.
The lens configuration can also be altered to vary the Field of View (FOV) of
the camera [11]. Currently, we are using the lens with FOV of 60 degree.

Before taking the photograph the micro-controller reads the output of a photo-
resistor, interfaced to its ADC pin, to sense whether the ambient light is sufficient
for the image or if flash is required. Depending on the need, micro-controller
switches on the high intensity Infra-Red Flash using a power MOSFET.

All the photographs need to be time stamped along with the node ID. To
keep track of time on the node, we are using a Real Time Clock (RTC). When
the node is powered on for the first time, it needs to be in the range of a base
station to synchronize with the system time. Once the time is set, the battery
backed RTC keeps the timing information for years and corrects any drift each
time node communicates with the base.

Real Time Clock (RTC). We use DS3231[12] as RTC, which is one of the
industry’s most accurate RTC. Its power consumption is 110 μA at 3.3V. It
has integrated temperature compensated crystal oscillator (TCXO) and I2C
interfacing.

A radio transceiver has been used to transfer the collected photographs and
other data/health information of the node to the gateway/base station for on-
ward transmission to the server.

Radio-Transceiver. Communication module XBee Pro[13] from Digi-Key is
used, which is based on ZigBee/IEEE 802.15.4 standard. It operates at 2.4 GHz
(only freely available ISM band in India), providing a range of more than a
kilometer. Its RF data rate is 250 Kbps. While using this frequency results in

TigerCENSE: Wireless Image Sensor Network 19

higher power consumption for same range compared to 900 MHz, we gain in
terms of much higher data rate and smaller compact antenna. Low cost, low
power and ease of use are among the other advantages. It also provides five sleep
modes to meet various needs of different applications. We use lowest power sleep
mode as it is not a time but power critical system. Recently introduced, XBee
Pro 2.5 version supports multihop transfer of data.

The image can be transferred using multihop facility provided by XBee Pro
2.5. But there are chances, because of bad weather or some other technical
problem, establishing a communication link is not always possible for a sensor
node especially those deployed in remote areas. So the captured image needs to
be stored in some storage device. Typically the size of a photograph is 60KB. So
we cannot use an internal memory and need an external storage.
Micro-SD Card. We have used micro Secure Digital (SD)[14] card, commonly
used in mobile phones, which can be interfaced with micro-controller using SPI
bus. The card can be manually removed and the images can be transferred into a
computer, phone or even a digital camera for viewing. The conventional method
of writing data into external flash memory restricts the user from viewing the
images with such ease. The storage capacity of the micro-SD card is adjustable
depending on the activity of the animal at the location. Currently we are using
a 2GB card.

All the decision making and controlling of components on the node is done
centrally by the micro-controller.
Micro-controller. ATMega1281V [15], with 128Kbytes programmemory, is the
core processing unit of our design. It has 4K bytes of EEPROM and 8K bytes of
SRAM. The availability of 2 USART ports enables independent communication
of Camera and Radio transceiver with the core processing unit. The internal res-
onator is not accurate enough for serial communication, so an external crystal of
1.83728 MHz is used. (Limiting baud error to zero percent [15]).

An efficient energy power supply and management policy has been designed to
achieve true non-intrusive nature of tigerCENSE. Energy efficiency is achieved
by using very low loss DC/DC converter and other components such as power
switch to switch off all the devices, whose sleep mode power consumption is not
sufficiently low. All the peripherals are switched off or kept in sleeping mode,
except PIR sensor, in normal mode. The system is powered by a re-chargeable
Li-poly battery. Solar energy harvesting is being added to further enhance the
node life. The battery’s capacity should be sufficient enough to power the node
for at least one month. We are carrying out tests to determine node’s actual life
time in working environment.

Battery. We are using a 6AH Li-poly battery[16]. These are very slim, extremely
light weight batteries based on the new Polymer Lithium Ion chemistry. Its output
voltage is 3.7V with 2.7V cut-off voltage. Also it has 2C discharge rate.

Designing a simple power supply for such complex system was a challenge. All
components and sensors were carefully selected to have low energy consumption
profile and almost similar input supply range with 3.3V as the common voltage.
The decision of using a common voltage (3.3V) not only made the power supply

20 R. Bagree et al.

for the node simple but also saved energy, which otherwise, would have been
wasted in regulating it for different voltages. With time the battery voltage will
reduce from 3.7V to 2.7V. But the node needs a constant voltage supply of 3.3V
so we need a buck-boost DC converter to regulate the battery voltage.

Buck Boost Converter. To utilize the battery power to the maximum, a
DC/DC converter, TPS63001[17] buck boost converter from Texas Instruments,
is used. It provides a constant 3.3V output with a maximum of 1.8A of current;
being rated up to 96% efficient.

The same battery will be used to power the IR LEDs. These LEDs will be
used in pulse mode with high time of 30ms. To get high intensity rays, we need to
supply very large current (approx. 3.0 A) for this pulse duration . As a battery
may not supply such large current, we need buffer storage of electric charge
in between. Super-capacitor is the best option for this task. We are using two
super-capacitors in series to get the required voltage.

Super-Capacitor. Super-capacitor TS12S-R[18] is used, which is highly com-
pact and high density capacitor with capacity of 10F at 2.5V. Its self discharge
rate is very low and can supply maximum of 4.5A of current.

To switch on the LEDs for such a short time, we need a Power MOSFET with
very small ON time resistance. ON time resistance is of particular importance as
we are drawing very high current of 2.5A. Even few milliohms of ON resistance
can result in significant voltage drop across LEDs, which will reduce its intensity
severely.

Power MOSFET. The Power MOSFET STB100NF03L[19] from ST Micro-
electronics has been used for the said task. Its ON-resistance is less than 3.2 mΩ
with Gate threshold voltage is as low as 1.7V.

Tigers mostly move in night time and to illuminate the animal, we are using
IR LEDs. But since the size of the trap is of much concern, we need to use
least no. of LEDs possible. This requires very high radiant intensity, low forward
voltage LEDs.

IR LED. We use TSHG5210[20], which is the strongest high intensity IR LED
available in the market from Vishay Semiconductors. This is an infrared, 850nm
emitting diode with forward voltage of 1.5V. In pulse mode its radiant power is
2300mW/sr. Its angle of half intensity is +/- 10 degree. However, one may need
wider beam angle than what this provides.

Right now the system uses 12 LEDs in parallel. We are working on the ways to
reduce the number of LEDs to about 5-6 by improving the charge buffer system.
We selected parallel configuration as it is easy to provide a large current instead
of high voltage. Also, in such configuration each LED is independent of the other
and failure of one LED does not disturb the function of whole flash.

Learning from the experience for wildCENSE[21] project the node has been
designed employing numerous noise reduction techniques. To reduce the ADC
noise, a LC filter (L=10mH and C=0.1μF) has been added to the ADC pins
of the micro-controller. Also, the AVcc is connected to the main power supply

TigerCENSE: Wireless Image Sensor Network 21

Fig. 2. tigerCENSE node, Front and Rear view

without any in between fan out lines, to reduce noise [22]. The whole PCB has
copper pouring to keep the noise at a minimum level as also to dissipate any
heat generated by the node. Figure 2 depicts the PCB made for the node. The
size of the populated PCB is 3.8 x 5.6 x 3.1cm3, weighing only 43 gms excluding
power supply and enclosure.

5 Experimental Results

Based on the expected speed of movement and width of walkways(assumed 10
feet) and distance of node from walkway to be 10 feet, a delay of 1.8 sec is kept

Fig. 3. Prototype box used for testing

22 R. Bagree et al.

Fig. 4. Photograph clicked using IR Flash in dark night

between the PIR interrupt and capturing a photograph of the object. Minimum
delay achievable seems to be 250 ms. It is extremely small time as compared
to the response time of traditional traps which ranges into few seconds. Also,
minimum delay between two continuous shots has been found out to be 1s. It is
dictated by the time to transfer the data from Image Sensor to Micro-SD card
and can be reduced by buffering it in a fast memory, if one needs to collect a
burst of images.

To find out the minimum suitable ON time for the IR flash to capture the
stripes clearly on its body, we deployed a prototype box, as shown in Figure 3,
near the cage of a tiger in Kankaria Zoo, Ahmedabad, Gujarat. We programmed
the node to take pictures with increasing ON time starting from 10ms to 70ms
with an increment of 10ms. Figure 4 shows some of the photographs taken by
the node in the dark using an IR Flash. From the experiments we concluded
that an ON time of 30ms is sufficient to get a reasonable quality image with
clear stripes. We need flash time to be as low as possible to reduce blur due to
motion. Some commercial digital cameras use 125 ms flash time, which leads to
significant blare to the extent of image being useless.

6 Conclusion

This paper presents an operational prototype for wildlife monitoring using WiSN.
tigerCENSE is compact, non-intrusive, energy efficient and reliable sensing de-
vice. It not only has all the capabilities of traditional traps but has also addressed
most of the drawbacks of them. Integrated development has led to minimum de-
lay of 250 ms. The software protocols and the hardware implementation have

TigerCENSE: Wireless Image Sensor Network 23

all been carefully crafted to optimize the systems energy requirement. Further,
utilizing the solar recharging mechanism, node lifetime would be enhanced.

In future, we can also add some micro-climatic sensors in order to collect
ambiance information. Also, to reduce the amount of wireless data transfer, we
can deploy in-situ digital signal processing technique. This will help us save both
power and time which is highly crucial for the success of the system.

tigerCENSE has been mainly developed to help in the research and conserving
tigers. Besides the use for conducting a census, camera traps can be very useful
for many management tasks. It can be used for human surveillance as well. In
the past, traps have photographed poaching parties. Although due to latency in
collecting the photograph target animal prey were not saved but it eventually
led to the arrest and conviction of known offenders.

Acknowledgment

We would like to thank Bharat Jethwa of GEER foundation (Gandhinagar) for
always being available when needed. Discussion with WII researchers P R Sinha
(Director), S P Goyal, K Sankar, B Pandav, Q Qureshi and others have been
very helpful. We would also like to thank R K Sahu(Superintendent) and others
of Kankaria Zoo, Ahmedabad for giving us permission to carry out trials as
well as helping in the process. We would also like to acknowledge tremendous
contribution made by earlier team members of tigerCENSE, especially Amrit
Panda, Rigveda Kadam, Dheeraj Kota and Hemant Kavadiya.

References

1. Yasuda, M., Kawakami, K.: New method of monitoring remote wildlife via the
Internet. Ecological Research 17, 119–124 (2002)

2. Nath, L.: Camera Trap in Conservation, http://www.nfwf.org/AM/Template.cfm?
Section=Home&TEMPLATE=/CM/ContentDisplay.cfm&CONTENTID=8749

3. http://www.panda.org/what_we_do/endangered_species/tigers/
4. http://www.iucnredlist.org/details/15955/0
5. Staving Off Extinction: A Decade of Investments to Save the World’s Last Wild

Tigers (1995-2004),
http://www.nfwf.org/Content/ContentFolders/NationalFishandWildlife
Foundation/ConservationLibrary/ProgramEvaluations/Staving off
Extinction.pdf

6. McDougal, C.: The Face of the Tiger. Rivington Books, London (1977)
7. http://www.panda.org/what_we_do/endangered_species/tigers/tiger_

solutions/
8. PIR Parallax 555-18017 Datasheet, http://www.parallax.com/detail.asp?

product_id=555-28027
9. Texas Instrument TPS2092 Datasheet, http://www.ti.com/lit/gpn/tps2092

10. COMedia Ltd’s C328RS User-Manual, http://www.electronics123.net/amazon/
datasheet/C328R_UM.pdf

11. Lens of camera, http://www.electronics123.net/amazon/datasheet/C328R.pdf

http://www.nfwf.org/AM/Template.cfm?Section=Home&TEMPLATE=/CM/ContentDisplay.cfm&CONTENTID=8749
http://www.nfwf.org/AM/Template.cfm?Section=Home&TEMPLATE=/CM/ContentDisplay.cfm&CONTENTID=8749
http://www.panda.org/what_we_do/endangered_species/tigers/
http://www.iucnredlist.org/details/15955/0
http://www.nfwf.org/Content/ContentFolders/NationalFishandWildlifeFoundation/ConservationLibrary/ProgramEvaluations/Staving_off_Extinction.pdf
http://www.nfwf.org/Content/ContentFolders/NationalFishandWildlifeFoundation/ConservationLibrary/ProgramEvaluations/Staving_off_Extinction.pdf
http://www.nfwf.org/Content/ContentFolders/NationalFishandWildlifeFoundation/ConservationLibrary/ProgramEvaluations/Staving_off_Extinction.pdf
http://www.panda.org/what_we_do/endangered_species/tigers/tiger_solutions/
http://www.panda.org/what_we_do/endangered_species/tigers/tiger_solutions/
http://www.parallax.com/detail.asp?product_id=555-28027
http://www.parallax.com/detail.asp?product_id=555-28027
http://www.ti.com/lit/gpn/tps2092
http://www.electronics123.net/amazon/datasheet/C328R_UM.pdf
http://www.electronics123.net/amazon/datasheet/C328R_UM.pdf
http://www.electronics123.net/amazon/datasheet/C328R.pdf

24 R. Bagree et al.

12. DS3231 RTC Datasheet, http://www.maxim-ic.com/quick_view2.cfm/qv_pk/
4627

13. XBee-PRO OEM RF Modules Product manual, http://www.maxstream.net/
products/XBee/product-manual_XBee_OEM_RFModules.pdf

14. micro-SD Card Datasheet, http://www.sparkfun.com/datasheets/Prototyping/
microSD_Spec.pdf

15. Atmel ATMega1281 Datasheet, http://www.atmel.com/dyn/resources/prod_
documents/doc2549.pdf

16. Polymer Lithium Ion Batteries 6Ah Datasheet, http://www.sparkfun.com/
datasheets/Batteries/UnionBattery-2000mAh.pdf

17. Texas Instruments TPS63001 Datasheet, http://www.ti.com/lit/gpn/tps63001
18. Suntan Super-capacitor TS12S-R Datasheet, http://www.sparkfun.com/

datasheets/Components/TS12S-R.pdf
19. ST microelectronics Power MOSFET STB100NF03L Datasheet, http://www.st.

com/stonline/products/literature/ds/9307.pdf
20. Vishay Semiconductor IR LEDs TSHG5210 Datasheet, http://www.vishay.com/

docs/81810/tshg5210.pdf
21. Jain, V.R., Bagree, R., Kumar, A., Ranjan, P.: wildCENSE: GPS base Animal

Tracking System. In: International Conference on Intelligent Sensors, Sensor Net-
works and Information Processing, Sydney, December 15-16 (2008)

22. Innovative Techniques for Extremely Low Power Consumption with 8-bit Micro-
controllers,
http://www.atmel.com/dyn/resources/prod_documents/doc7903.pdf

http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4627
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/4627
http://www.maxstream.net/products/XBee/product-manual_XBee_OEM_RFModules.pdf
http://www.maxstream.net/products/XBee/product-manual_XBee_OEM_RFModules.pdf
http://www.sparkfun.com/datasheets/Prototyping/microSD_Spec.pdf
http://www.sparkfun.com/datasheets/Prototyping/microSD_Spec.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf
http://www.sparkfun.com/datasheets/Batteries/UnionBattery-2000mAh.pdf
http://www.sparkfun.com/datasheets/Batteries/UnionBattery-2000mAh.pdf
http://www.ti.com/lit/gpn/tps63001
http://www.sparkfun.com/datasheets/Components/TS12S-R.pdf
http://www.sparkfun.com/datasheets/Components/TS12S-R.pdf
http://www.st.com/stonline/products/literature/ds/9307.pdf
http://www.st.com/stonline/products/literature/ds/9307.pdf
http://www.vishay.com/docs/81810/tshg5210.pdf
http://www.vishay.com/docs/81810/tshg5210.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc7903.pdf

Motes in the Jungle: Lessons Learned from a Short-Term
WSN Deployment in the Ecuador Cloud Forest

Matteo Ceriotti1, Matteo Chini2, Amy L. Murphy1,
Gian Pietro Picco2, Francesca Cagnacci3, and Bryony Tolhurst4

1 Fondazione Bruno Kessler—IRST, Trento, Italy
{ceriotti,murphy}@fbk.eu

2 Dip. di Ingegneria e Scienza dell’Informazione (DISI), Univ. of Trento, Italy
matteo.chini@gmail.com, gianpietro.picco@unitn.it

3 Edmund Mach Foundation—IASMA, S. Michele all’Adige, Italy
francesca.cagnacci@iasma.it

4 Biology Division, School of Pharmacy and Biomolecular Sciences, Univ. of Brighton, UK
bryonytolhurst@live.co.uk

Abstract. We study the characteristics of the communication links of a wireless
sensor network in a tropical cloud forest in Ecuador, in the context of a wildlife
monitoring application. Thick vegetation and high humidity are in principle a
challenge for the IEEE 802.15.4 radio we employed. We performed experiments
with stationary-only nodes as well as in combination with mobile ones. Due to
logistics, all the experiments were performed in isolation by the biologists on
our team. In addition to discussing the characteristics of links in this previously
unstudied environment, we also discuss the lessons we learned from operating
under peculiar constraints in a peculiar deployment scenario.

1 Introduction

Wireless sensor networks (WSNs) are applied in many scenarios, each with unique
characteristics in terms of connectivity. Assessing the specifics of a target environment
is usually complex, and often entails a preliminary pilot deployment.

Application context and motivation. In this paper we report about such a pilot deploy-
ment, which took place in the cloud forest of the North-Western slopes of Ecuadorian
Andes during March 29–April 3, 2010, and whose details are provided in Section 2.

The work described here is part of a larger research effort targeting the monitoring of
biodiversity in community-based primary cloud forest reserves in this Andean region.
Indeed, this area is at the confluence of two of the world’s hottest biological hotspots:
the Chocó-Darién Western Ecuadorian and the Tropical Andes. Available checklists of
vertebrates likely miss most reptile and mammal species, including medium-to-large
ones. The knowledge about these species’ use of space and community interactions is
essential to ascertain their susceptibility to environmental changes and guide conser-
vation measures. Available information is extremely sparse and based on discontinu-
ous observations and occasional surveys. Direct observation of animals is not a robust
method, due to the very dense vegetation, while traditional indirect methods, such as
capture-mark-recapture or radio-tracking are extremely effort-demanding as these areas
are secluded. Recent advancements in wildlife studies, e.g., the use of GPS devices, are
expensive and therefore applicable to a small number of species and sample size. WSNs

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 25–36, 2010.
© Springer-Verlag Berlin Heidelberg 2010

26 M. Ceriotti et al.

provide a new, exciting option in such challenging environmental conditions, especially
for long-term monitoring. Advantages include the need for only a single capture (to fit
the node) and the possibility to study a large sample thanks to the relatively low equip-
ment and deployment cost. However, an essential step in seizing this opportunity is the
evaluation of the node performance in the target environment.

The envisioned WSN application will encompass nodes permanently deployed in
the environment at known locations as well as attached with collars to the animals
themselves. We intend to use motes functionally equivalent to Moteiv’s TMote Sky [3],
arguably the most popular platform today. However, the 2.4 GHz band used by the
CC2420 radio chip on these motes is known to be highly sensitive to foliage and
water—essential ingredients of a cloud forest. Therefore, the primary motivation be-
hind the study described here was to assess the connectivity characteristics of the target
environment to determine the feasibility of our WSN architecture and guide its design.

Related work. A few real-world deployments focus on forests [5], but with character-
istics different from ours. Despite the importance of understanding the connectivity of
the environment targeted by a WSN, this information is rarely reported in the litera-
ture. Instead, the problem is usually tackled with studies targeting either static [4] or
mobile [1] scenarios. All the reported works, however, leverage the possibility to pro-
gressively refine the investigation based on the findings. Our need to define a priori the
entire experimentation pushed us towards a more general methodology, something still
not available in the literature. To design our study we leveraged our prior expertise in
comparing the network characteristics of a tunnel against the vineyard environment [2].
However, the differences in the application scenario, involving mobile nodes, and the
inability to access the experiment site demanded a significant revision of our techniques.

Challenges. The deployment itself presented non-trivial logistical difficulties due to
the geographical distance and the harshness of our target environment. Things were
further complicated by the fact that the WSN experiments were “piggybacked” on the
biologist’s trip to Ecuador for other research purposes.

As a consequence, we faced rather unusual requirements. In the literature, similar
experiments are typically run by the WSN developers, often in rather controlled en-
vironments. Instead, in our case the experiments had to be run by the biologists, and
in isolation. Remote WSN configuration was not an option, due to the absence of data
connectivity from the experiment location—the jungle. Similarly, a multi-phase deploy-
ment, where the output of one experiment guides the setup of the next, was also not an
option due to the distance between the experiment location and the closest Internet ac-
cess, and to the duration of the experiments. The latter was limited by the biologist’s
already-established trip schedule, further reduced by the inevitable lost baggage.

Simply put, this meant that our hw/sw WSN setup had to work out of the box for
the entire duration of the experimental campaign, and had to be simple enough to be
operated by someone without expertise with this technology.

Contributions and findings. The details about our cloud forest experiments are pro-
vided in Section 3. The main contributions of this paper are the following:

1. Low-power wireless in the jungle environment. In Section 4 we analyze the gath-
ered data. The depth of the analysis is somewhat limited by the aforementioned
logistic problems, as we did not have a second chance to investigate the source
of unexpected behaviors. However, we are not aware of other studies investigating

Motes in the Jungle 27

low-power wireless communication in an environment similar to ours and therefore,
even with these limitations, we believe our study can be of value for the research
community. Moreover, some of our findings are somewhat surprising. For instance,
we expected links to be rather short and unreliable, due to foliage, water, and hu-
midity. Instead, our data show that 30-meter links are common, and in some cases
reliable communication occurs up to 40 m.

2. Mobile nodes as a connectivity exploration tool. The inclusion of experiments with
mobile nodes was initially motivated by the animal-borne nodes in our envisioned
application. We expected to draw the bulk of our considerations from stationary-
only experiments. Instead, mobile nodes played a much more relevant role in our
study. On one hand, the stationary-only experiments did not deliver the amount
of data we expected. The connectivity patterns were not known in advance, and a
multi-phase deployment was not an option, as already discussed. Mobile experi-
ments provided a data set complementing the stationary ones. On the other hand,
with hindsight, the use of mobile nodes is an effective way to explore connectiv-
ity, regardless of mobility requirements. Intuitively, a broadcasting node moving
through a single, well-designed path yields a wealth of information, more varied
and fine-grained w.r.t. stationary-only experiments, even considering the interfer-
ence introduced by the person executing the experiments. This enables a more
precise “connectivity map” of the environment, that can be used for instance to
guide node placement. We believe the use of mobile nodes can become an essential
element of studies aimed at characterizing connectivity in WSN environments.

3. When WSN developers are not in charge. Our experiments were run by someone
other than the WSN developers because of opportunity. There may be other reasons,
e.g., the necessity to require authorizations or safety concerns related to the target
deployment area. In any case, for WSN to become truly pervasive, end-users must
be empowered with the ability to deploy their own system. The lessons we learned,
distilled in Section 5, can be regarded as a contribution towards this goal.

2 Deployment Scenario

Location. The community-based reserve of Junin, in the Intag region of the Imbabura
province in Ecuador (0o16’19.09”N; 78o39’28.92”W) is between 1,200 and 2,800 m
above sea level of the North-Western slopes of the Ecuadorian Andes. Significant
portions of these mountain areas are primary cloud tropical forests, almost permanently
cloudy and foggy. According to the United Nation’s World Conservation Center, cloud
forests comprise only 2.5% of the world’s tropical forests, and approximately 25% are
found in the Andean region. Therefore, they are considered at the top of the list of threat-
ened ecosystems. The climate is tropical, and the flora and fauna incredibly rich, with
about 400 species of birds and 50 known mammal species (including 20 carnivores),
many probably still unchecked or even unknown. The small human community of about
50 people is 20 km from the closest village, and a 7 hour dirt-road drive from the closest
town. The vegetation is made by relatively scattered mature trees, constituting the canopy,
and a dense undergrowth of shrubs and epiphites. During the rainy season (November-
May), when we ran our experiments, it rains every day for nearly the entire day.

WSN Equipment. Our experiments used 18 TMote Sky nodes, equipped with the Chip-
Con 2420 IEEE 802.15.4-compliant, 2.4 GHz radio and on-board inverted-F micro-strip

28 M. Ceriotti et al.

Fig. 1. Packaging

Stationary Node

Video Camera

Mobile Node

Fig. 2. In the jungle with mobile nodes

omni-directional antenna. The choice of this popular platform is motivated both by our
intended use of a similar platform in our own wildlife application, and to enable com-
parison with similar experiments in different environments reported in the literature.
Alternate hardware would significantly modify the results, e.g., an external antenna
would likely dramatically increase the observed connectivity. Moreover, these motes
are provided with an external flash memory, enabling storage of the experiment data.

As stationary motes were intended to be attached to trees in a very humid environ-
ment, under heavy rain, we used IP65 water-proof boxes with a transparent cover, en-
abling the sampling of the light as requested by the biologists. Inside each box we glued
a USB female connector to easily anchor and replace the node as needed. Each box also
contained a battery holder with two size D batteries and desiccant bags to protect the
node against humidity. The packaging is shown in Figure 1 in the same orientation as it
was attached to the trees. In contrast, the mobile node was simply a TMote Sky powered
by 2 AA batteries, wrapped in a plastic bag.

3 Experiment Design

The WSN was composed of 8 nodes, placed in a cross configuration, as shown in Fig-
ure 3(a). The placement was determined as part of the stationary experiments, described
next. Node 0 served as the experiment coordinator, broadcasting a message indicating
the start time and configuration of each experiment. All communication took place on
channel 18. Since no computer was available in-field, we used the motes’ LEDs to visu-
alize the node functionality. For example, toggling the yellow LED indicated message
transmission, while toggling together the other two LEDs indicated message reception.
At node boot time, a visual code for the battery voltage was shown to advise for battery
replacement in case of values below 2.7 V, the minimum required to write to the flash
memory. To start an experiment, the biologist pressed the user button.

(a) Node placement.

(5
,7

)

(2
,7

)
(6

,7
)

(1
,6

)
(3

,7
)

(5
,6

)
(1

,3
)

(1
,7

),
(4

,5
)

(2
,6

),
(3

,5
)

(0
,7

),
(4

,6
)

(0
,6

)
(2

,3
)

(2
,4

),
(3

,4
)

(1
,5

)
(0

,3
)

(0
,5

)
(4

,7
)

(1
,2

)
(1

,4
)

(0
,2

)
(0

,1
),

(0
,4

)
(2

,5
)

(3
,6

)

64
 m

55
 m

52
 m

49
 m

47
 m

44
 m

42
 m

40
 m

39
 m

38
 m

35
 m

33
 m

31
 m

30
 m

28
 m

26
 m

24
 m

22
 m

20
 m

17
 m

14
 m

10
 m7
m

0
m

(b) Link Distances.

Fig. 3. Deployment of stationary nodes; each color corresponds to about 1 m difference

Motes in the Jungle 29

The software was built on TinyOS and without any MAC protocol, given our goal
of characterizing physical connectivity. Packet collision was avoided by an appropriate
transmission schedule sent at the beginning of each experiment by node 0. For each
experiment, and for each link i → j, we recorded in the flash the following metrics:

– Packet Delivery Ratio (PDRi→j), the number of packets received at node j over
the total number of packets sent by node i;

– Received Signal Strength Indicator (RSSIi→j), the signal strength of the packets
transmitted by i, as observed by the radio of j;

– Link Quality Indicator (LQIi→j), the correlation index between the symbol re-
ceived at j, sent by i, and the one to which it is mapped after radio soft decoding.

3.1 Preliminary Tests

Goals. Given the lack of reported experiences in scenarios similar to ours, the primary
goal of these tests was to determine the communication range, to properly place nodes in
the next experiments. These experiments also investigated different power transmission
levels as well as the impact of direct tree obstruction.

Implementation. The experiments exploited only node 0 and 3 in Figure 3(a). We
implemented two experiments, one to determine the range of communication, and the
other to investigate the effect of signal power and tree obstruction. In the former, each
node sent 600 messages with an inter message interval (IMI) of 2 s. All messages were
sent with −1 dBm transmission power. The LED visual feedback was used to guide
the identification of the maximal communication range. In the latter experiment, each
node sent a sequence of 3000 messages with a 2 s IMI, interleaving sending between the
involved nodes. These messages are logically divided into 5 tests of 600 messages each,
3 at −1 dBm, commonly used in WSN deployments, and 2 at −8 dBm, to investigate
the effect of reduced power. For each 600-message set we stored the aggregated average
RSSI (RSSI), average LQI (LQI) and PDR values over all received messages.

Deployment. In all experiments node 0 was attached to a tree at 1 m height, while
node 3 was placed on a chair. In the first experiment, the two nodes were in line of sight
(LoS) and the biologist gradually moved the chair away from the tree while monitoring
the LEDs for determining a safe communication range, which she established at 28 m.
The second experiment with different power levels was run a first time with nodes in line
of sight, and then again with node 0 directly behind the tree, creating a link obstruction.

3.2 Tests with Stationary Nodes

Goals. The purpose of these tests was to investigate connectivity among nodes at dif-
ferent distances, over a long time interval, and at different node heights.

Implementation. These experiments used the nodes as in Figure 3(a) and, as in the pre-
liminary tests, relied on node 0 for disseminating the start time and transmission sched-
ule. In each experiment, each node sent 215 messages with an IMI of 8 s, resulting in an
interval of 1 s between nodes adjacent in the transmission schedule. The experiments
were batched and ran for an entire day, interleaving 23 experiments at −1 dBm with 22
experiments at −8 dBm. Before this batch, a 1-hour setup experiment (with LEDs en-
abled) was performed, to verify connectivity and thus node placement. At the end, each
node computed and stored the overall PDR, RSSI , and LQI w.r.t. all other nodes.

30 M. Ceriotti et al.

Deployment. Node 0 and 3 were left in place after the preliminary tests. During the
setup experiment, all the others were moved one by one away from node 0 in small
steps. Based on high-level instructions, the LEDs blinking, and the communication
range of 28 m determined in the preliminary tests, the biologists determined the fi-
nal placement shown in Figure 3(a), yielding the set of distances covered as shown in
Figure 3(b). The experiments were executed twice for a total of 2 days.

Our original idea was to deploy the nodes in a flat area, placing them first at ground
level, then at 1 m from the ground, and finally at various, possibly higher heights. The
rationale was to determine node placement in the least favorable connectivity condi-
tions, close to the ground. Unfortunately, due to the delayed arrival on site (caused by
lost luggage), the biologists decided to eliminate the first experiment. Moreover, due to
the available terrain, highly irregular and on a sort of hill as shown in Figure 3(a), the
second and third deployments were reversed. Therefore, the deployment was setup in
the connectivity conditions most favorable, which affected the subsequent experiments.
Indeed, undergrowth interfered significantly during the second test, making its results
unusable. Also, node 2 failed to start some tests and its data has been excluded.

3.3 Tests with Stationary and Mobile Nodes

Goals. These experiments were initially motivated by our wildlife application, combin-
ing fixed and animal-borne nodes. When interpreting the results, however, we realized
the importance of these tests in enabling exploration of connectivity at many more dis-
tances w.r.t. the static deployment, yielding more spatial continuity to data points.

Implementation. In these experiments, node 0 was carried by the biologist, who moved
throughout the deployment area. Stationary nodes only listened, while node 0 broadcast
messages at −1 dBm for 15 min, with an IMI of 500 ms, yielding 1,800 messages per
experiment. Unlike stationary experiments, which recorded only one aggregate value
for each link, in the mobile tests statistics about each individual message were recorded.
This allowed us to treat each message separately, by considering the distance between the
mobile node and each stationary node at the moment it was sent. Offline data correlation
across nodes was enabled by timestamping the message at the sender, and saving this
along with the RSSI and LQI values at the receiver. During experiments the biologist
moved freely, her path recorded by a video camera carried by a second team member
(Figure 2), allowing us to visualize the movements and correlate the timings.

Deployment. The placement of stationary nodes was the same as in Section 3.2, but the
nodes were physically replaced as their (pre-loaded) software was different. The nodes
were placed at 1 m from the ground. The mobile node was either held in the biologist
hands (as in Figure 2) with the antenna parallel to her shoulders and the board facing
the sky or carried chest height inside a pouch, unfortunately with undefined orientation.
First, the biologist stood near a stationary node (node 2) and made simple movements of
approximately 1 m amplitude along the horizontal plane at the node height and along the
tree, approaching the node from four directions—front, back, right, and left. Then, the
biologist moved back and forth between node 1 and 3, then between 2 and 5. Although
these experiments focused on movement between a subset of the available nodes, all
nodes in the network recorded message reception, thus we gathered a large amount of
data. Finally, the biologist composed a path visiting all stationary nodes. Each path was
repeated 4 times. In total, these experiments produced 116,448 data points. We excluded
the data collected by node 7 as we verified that its short-range reception was abnormal.

Motes in the Jungle 31

Table 1. Results from the preliminary tests

Link TX power PDR RSSI LQI
LoS Tree LoS Tree LoS Tree

0 → 3 −1 dBm 86.7% 79.5% −87 dBm −91 dBm 99 90
3 → 0 −1 dBm 84.4% 69.7% −88 dBm −92 dBm 98 88
0 → 3 −8 dBm 24.2% 1.3% −92 dBm −93 dBm 80 77
3 → 0 −8 dBm 11.8% 0.5% −92 dBm −94 dBm 77 75

4 A Mote’s Life in the Jungle

4.1 Preliminary Tests

The results of the tests on transmission power and tree influence are shown in Table 1.
As discussed in Section 3.1, these involved only node 0 and 3. At −1 dBm, both PDR
and LQI are high. This is expected as these results are at the distance of 28 m the
biologists chose as the border of good connectivity. Interestingly, our initial guess for
a safe communication distance was much lower, around 10-15 m, given the presence
of thick vegetation and high humidity. RSSI is low but, given the absence of radio
interference in the forest, it does not significantly affect PDR. The presence of a tree
right in front of a node may cause link asymmetries. With nodes in line of sight, the
PDR difference between the two link directions is only 2%, but with the tree in between
this increases to 10%, indicating a weaker link when communication originates near the
tree. RSSI and LQI do not show marked asymmetries, although they decrease when the
tree obstructs the link. With lower transmission power, PDR is non-negligible but more
heavily influenced by the tree. The low LQI is consistent with the next experiments
showing that 28 m is well outside the good-connectivity range at −8 dBm.

4.2 Tests with Stationary Nodes

Long-Distance, High-Quality Links. We expected the dense jungle foliage to signif-
icantly limit communication. Instead, Figure 4(a) shows that communication is almost
perfect up to 20 m, although the high PDR at 19.8 m occurs with a relatively low signal
strength (Figure 4(b)). Further, although the 38 m link falls well beyond the region with
perfect communication, analysis over time (Figure 5) shows that this link was also per-
fect for more than half of the experiment duration. While this is clearly an anomaly of
the setup, it clearly demonstrates that connectivity in the jungle is much different than
expected. At −8 dBm, the area with perfect links is only slightly reduced to 14 m.

Fluctuations and Asymmetries of Mid-Range Links. Figure 4(a) and 4(b)) show that
links with mid-range distances of 20–40 m have highly-variable quality and low RSSI.
The PDR large standard deviation is best viewed over time in Figure 5, where each

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50 60

PD
R

(%
)

Distance (m)

(a) PDR vs Distance.

-90
-80
-70
-60
-50
-40

 0 10 20 30 40 50 60

RS
SI

 (d
Bm

)

Distance (m)

(b) RSSI vs Distance.

 0
 20
 40
 60
 80

 100

 60 70 80 90 100 110

PD
R

(%
)

LQI

(c) PDR vs LQI .

Fig. 4. Average and standard deviation of the results from stationary tests with power −1 dBm

32 M. Ceriotti et al.

 5 10 15 20 25 30 35 40
 5

 10
 15

 20

 0
 20
 40
 60
 80

 100

PD
R

 (%
)

Link Length (m)

Time
 (hours)

PD
R

 (%
)

 0
 50

 100

 5 10 15 20
Time (hours)

Link (7,4), 24m 0
 50

 100 Link (3,0), 28m 0
 50

 100

PD
R

 (%
)

Link (5,1), 30m 0
 50

 100 Link (4,3), 31m 0
 50

 100 Link (7,0), 38m

5 10 15 20
Time (hours)

Link (4,7), 24m

Link (0,3), 28m

Link (1,5), 30m

Link (3,4), 31m

Link (0,7), 38m

Fig. 5. PDR over time with power −1 dBm from stationary tests

 5 10 15 20 25 30 35 40
 5

 10
 15

 20

 0
 20
 40
 60
 80

 100

PD
R

 (%
)

Link Length (m)

Time
 (hours)

PD
R

 (%
)

(a) PDR.

 5 10 15 20 25 30 35 40
 5

 10
 15

 20

-90

-80

-70

-60
R

SS
I (

dB
m

)

Link Length (m)

Time
 (hours)

R
SS

I (
dB

m
)

(b) RSSI .

Fig. 6. Results over time with power −8 dBm from stationary tests

point describes the result of one 30-min experiment for a given link. From the detail on
the right-hand side of the figure, one can see that the variability is unpredictable. For
example, around hour 15 some links improve while others decline. Further, some links
such as (3, 0) show transient asymmetries. Weather could be the culprit, and indeed it
rained during the majority of these tests. Although one would expect a global decay of
link quality, it is possible that humidity, rain, and pools of collected water affect com-
munication in local, unpredictable ways, although we do not have direct observations
confirming this. In any case, mid-range links clearly cannot guarantee connectivity, but
they can certainly be exploited transiently by adaptive routing algorithms.

Long-Range Interference with Reduced Power. At −8 dBm, links outside the perfect
communication range disappear for long periods of time (Figure 6). While these links
are basically unusable, they can cause long-range interference. For example, Figure 6(b)
shows messages received with very low RSSI even at 40 m. Although these distant
transmissions rarely succeed, they could easily disrupt overlapping shorter-range ones.

4.3 Tests with Stationary and Mobile Nodes

“Omnidirectional” Antenna. Figure 7 shows the effect of a node approaching a sec-
ond one fixed to a tree, as described in Section 3.3. Based on the biologist’s 1-meter
horizontal movements, the different shapes of the Front, Left, and Back curves clearly
show the well-known fact that the used antenna is not perfectly isotropic. Interestingly,
the flat tops in Right do not correspond to a movement pause, rather to the “saturation”
of RSSI for very short links. Tree obstruction is clearly evident in the Back curve.

Influence of Body, Tree, and Ground. In Figure 8 the biologist, holding the mobile
node in front of her chest, looped four times around nodes 1 and 3. We decomposed the

Motes in the Jungle 33

-90
-80
-70
-60
-50
-40
-30

 12

RS
SI

 (d
Bm

)

Time (minutes since beginning of experiment)

Front

Average

Left

 13

Back

 14

Right

Fig. 7. Node 0 approaching node 2, attached to a tree, from different directions

data trace to distinguish the possible obstructions. For example, when walking from 1
to 3, the tree obstructed communication received at 3 (Figure 8(b)), and the body ob-
structed receptions at 1 (Figure 8(c)). As a reference, we chose the line-of-sight case:
reception at 1 when walking from 3 to 1 (Figure 8(a)). The same experiment was run
with the mobile node held a few centimeters from the ground (Figure 8(d)).

Trees induce a reduction up to 20% on RSSI in short links (< 20 m), while longer
links are not affected. The body also reduces RSSI in short links, but more signifi-
cantly, up to 40%. Moreover, the body reduces the maximum communication range by
10 m, as denoted in Figure 8(c) by a nearly-zero PDR beyond 30 m. As expected, the

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50

PD
R

(%
)

Distance (m)

-100
-90
-80
-70
-60
-50
-40
-30

 0 10 20 30 40 50

RS
SI

 (d
Bm

)

Distance (m)

 60
 70
 80
 90

 100
 110

 0 10 20 30 40 50

LQ
I

Distance (m)

(a) Line-of-sight at 1 m height.

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50

PD
R

(%
)

Distance (m)

PDR

-100
-90
-80
-70
-60
-50
-40
-30

 0 10 20 30 40 50
-60
-40
-20
 0
 20
 40
 60

RS
SI

 (d
Bm

)

De
lta

 w
rt

Lo
S

(%
)

Distance (m)

RSSI
Delta

 60
 70
 80
 90

 100
 110

 0 10 20 30 40 50

LQ
I

Distance (m)

LQI

(b) Tree obstruction.

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50

PD
R

(%
)

Distance (m)

PDR

-100
-90
-80
-70
-60
-50
-40
-30

 0 10 20 30 40 50
-60
-40
-20
 0
 20
 40
 60

RS
SI

 (d
Bm

)

De
lta

 w
rt

Lo
S

(%
)

Distance (m)

RSSI
Delta

 60
 70
 80
 90

 100
 110

 0 10 20 30 40 50

LQ
I

Distance (m)

LQI

(c) Body obstruction.

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50

PD
R

(%
)

Distance (m)

PDR

-100
-90
-80
-70
-60
-50
-40
-30

 0 10 20 30 40 50
-60
-40
-20
 0
 20
 40
 60

RS
SI

 (d
Bm

)

De
lta

 w
rt

Lo
S

(%
)

Distance (m)

RSSI
Delta

 60
 70
 80
 90

 100
 110

 0 10 20 30 40 50

LQ
I

Distance (m)

LQI

(d) Line-of-sight at ground level.

Fig. 8. Effect of tree, body, and ground on communication. The line in the RSSI plots shows the
delta in percent w.r.t. the line-of-sight shown in (a).

34 M. Ceriotti et al.

simultaneous obstruction of tree and body, not shown for space reasons, yields a com-
bination of previous results: a shorter communication range and RSSI reductions up to
60%. This bears an important implication for our wildlife application, where we need
to estimate the distance between animals upon contact: RSSI-based distance approxi-
mation schemes may have a significant error, induced by trees, the body of animals, and
the direction the animal approaches the tree, as discussed previously.

Placing the sender near the ground produces a different combination of effects.
Specifically, the line-of-sight communication range is much shorter than in Figure 8(a),
but the RSSI is affected by at most 20%. As this scenario is the closest to our target
deployment with tagged animals, it warrants additional study.

4.4 An Evaluation of Mobile Nodes as Connectivity Probes

We take a step back from the data analysis to consider our data collection methodology,
specifically, comparing the results of stationary test against those with mobile ones.

Aggregated Mobile Tests vs. Stationary Tests. Thus far we have looked only at ex-
cerpts of the mobile traces, extracting cases with specific characteristics. Here, we ag-
gregate all data points collected over all node movements, with the results shown in
Figure 9(a)–9(c). To plot PDR, we calculate the distance between the mobile and each
stationary node, then plot the number of messages received over those sent at each dis-
tance. RSSI and LQI are instead shown as the average and standard deviation over all
the messages received along links of a specific length. We then compare these data to
those collected in the stationary tests of Figure 4, by plotting the percentage difference
in Figure 9(d), only for the points studied in the stationary scenario.

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50 60

PD
R

(%
)

Distance (m)

(a) PDR.

-90
-80
-70
-60
-50
-40

 0 10 20 30 40 50 60

RS
SI

 (d
Bm

)

Distance (m)

(b) RSSI .

 60
 70
 80
 90

 100
 110

 0 10 20 30 40 50 60

LQ
I

Distance (m)

(c) LQI .

-100
-80
-60
-40
-20

 0

 0 10 20 30 40 50 60

PD
R

De
lta

 (%
)

Distance (m)

-40
-20

 0
 20
 40

 0 10 20 30 40 50 60

RS
SI

De
lta

 (%
)

Distance (m)

-40
-20

 0
 20
 40

 0 10 20 30 40 50 60

LQ
I

De
lta

 (%
)

Distance (m)

(d) Comparison of mobile with stationary tests.

-80
-40

 0
 40
 80

 0 10 20 30 40 50 60

PD
R

De
lta

 (%
)

Distance (m)

-40
-20

 0
 20
 40

 0 10 20 30 40 50 60

RS
SI

De
lta

 (%
)

Distance (m)

-40
-20

 0
 20
 40

 0 10 20 30 40 50 60

LQ
I

De
lta

 (%
)

Distance (m)

(e) Comparison of mobile (no body shielding) with stationary tests.

Fig. 9. Aggregated results over all 11 mobile experiments. In (d) and (e), the difference in PDR
for the links longer than 38 m is outside of the chart range.

Motes in the Jungle 35

In the mobile scenario, the reduction of RSSI on short links (< 15 m) is likely at-
tributable to body interference as observed in Figure 8(c). From the PDR comparison
in Figure 9(a), we note that at all distances, the mobile scenario produces worse results,
meaning that the PDR at a given distance is lower in the mobile scenario than in the
stationary. To understand the implications, consider that we intend to use the results of
this study to plan a future deployment. If we base this deployment only on the results of
the mobile study, all stationary nodes in our future deployment would certainly be con-
nected. Instead, if we base our fixed node placement on the stationary results, we would
erroneously expect to communicate with mobile nodes carried by animals at the same
distance. In other words, the mobile case underestimates the communication potential
of stationary nodes while the stationary overestimates communication to mobile nodes.

Interestingly, Figure 9(c) shows better quality links in the mobile scenario. While
this is opposite from the observations of PDR, the stationary experiments showed that
LQI varied significantly throughout the day. Instead, the mobile experiments were con-
centrated in less time, and may have taken place in favorable connectivity conditions.

Figure 9(e) accounts only for the data recorded in conditions similar to those of
the stationary only tests, i.e. removing the body shielding and using the data from Fig-
ures 8(a) and 8(b), namely LoS and tree-only obstruction. For short links (< 20 m), val-
ues are in agreement while longer links are hampered by interference from the ground
and dense low-level foliage in the mobile scenario. In the stationary tests, nodes were
always within LoS, therefore the undergrowth had minimal effect.

 500
 1500
 2500
 3500

 0 10 20 30 40 50 60

#m
sg

s p
er

 h
ou

r

St
at

ion
ar

y
Distance (m)

 500
 1500
 2500
 3500

M
ob

ile

Fig. 10. Number of messages sent per hour
along links of a given distance by stationary
and mobile tests

Statistical Relevance of Mobile Tests. The
experiments run with a mobile node made
it possible to explore the physical space
in a continuous fashion, spreading the col-
lected data points over more distances w.r.t.
stationary-only tests. To understand the effec-
tiveness of this approach, Figure 10 compares
the average number of messages received in
1 hour for each distance covered in the mo-
bile case, to the number of messages that the
stationary experiment would receive with the
same IMI as the mobile nodes, i.e. 500 ms.
Recall that to avoid collisions, our stationary experiments used a 1 s IMI. The distribu-
tion of the tested distances is naturally biased by the executed movements. Nonetheless,
even without a guided motion plan, all distances less than 40 m have been tested by at
least 400 messages, i.e., 25% of the messages sent by the stationary tests for each link.
The ability of the mobile node to cover so many distances clearly motivates its use as a
probe to characterize connectivity.

5 Lessons Learned and Future Work

Our experiments were run in a challenging scenario by biologists without WSN exper-
tise, with limited equipment, and in isolation. We have never faced this combination in
our previous real world deployments, and we learned interesting lessons.

Mobile Nodes: Application Insights or Connectivity Probes? It was the biologists
who requested experiments with mobile nodes, to concretely understand what WSNs

36 M. Ceriotti et al.

could offer them. Nevertheless, we learned that the use of mobile nodes, despite the
inherent imprecision, is useful for characterizing an unknown environment and guiding
the actual deployment. Further work is needed to explore the opportunities of this tech-
nique and understand its limitations, e.g., the difficulty to capture long-term variations.

The Role of LEDs. In our study, the node output had to be simple yet informative
enough to guide the biologists. Our solution, based on giving a visual clue only about
send/receive operations, contributed to the creation of very long links between station-
ary nodes which in turn contributed to the failure of the second set of stationary exper-
iments, as mentioned in Section 4.2. A visual representation of the RSSI values (e.g.,
represented by a “histogram” using the three LEDs), would have led to shorter links,
which would have produced meaningful data even in the second set of experiments.

Testing Blindly. Our experimental campaign involved many decisions taken blindly.
We did not have an understanding of the environment based on previous studies. We
did not have a well-defined methodology for performing this kind of experiments, and
none yet exists in the WSN field. Finally, we could not modify experiments based on
intermediate results. We partially reduced the unknowns by breaking down experiments
into phases with well-defined outputs. Examples are the preliminary tests (Section 3.1)
and the 1-hour setup phase preceding the stationary tests (Section 3.2). These enabled
the biologists to take informed decisions autonomously, partially obviating the absence
of WSN experts in-field. Nevertheless, this did not avoid incorrect decisions, and could
not provide answers for unanticipated questions (e.g., the cause of high time variance
of links). How much can we reconcile the autonomous execution of experiments and
the depth of the resulting analysis? To what extent can we automate the process? These
are interesting research questions and the subject of our ongoing work.

Acknowledgments. This work has been partially supported by the EU Cooperating
Objects Network of Excellence (CONET: FP7-2007-2-224053) and by Martin Stan-
ley (Holly Hill Trust). We are also indebted to the Junin community, in particular
Rosario Piedra, Victor Hugo Ramirez, Olga Cultid, for logistical support, and
exceptional hospitality.

References

1. Miluzzo, E., Zheng, X., Fodor, K., Campbell, A.T.: Radio characterization of 802.15.4 and its
impact on the design of mobile sensor networks. In: Verdone, R. (ed.) EWSN 2008. LNCS,
vol. 4913, pp. 171–188. Springer, Heidelberg (2008)

2. Mottola, L., Picco, G., Ceriotti, M., Guna, S., Murphy, A.: Not All Wireless Sensor Networks
Are Created Equal: A Comparative Study on Tunnels. ACM Transactions on Sensor Networks
(TOSN) 7(2) (2010)

3. Polastre, J., Szewczyk, R., Culler, D.: Telos: Enabling ultra-low power wireless research. In:
Proceedings of the 5th International Conference on Information Processing in Sensor Net-
works, IPSN (2005)

4. Srinivasan, K., Dutta, P., Tavakoli, A., Levis, P.: An empirical study of low-power wireless.
ACM Transactions on Sensor Networks (TOSN) 6(2), 1–49 (2010)

5. Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S., Dawson, T.,
Buonadonna, P., Gay, D., Hong, W.: A macroscope in the redwoods. In: Proceedings of the
3rd International Conference on Embedded Networked Sensor Systems, SenSys (2005)

Deploying Wireless Sensor Networking
Technology in a Rescue Team Context

Ben McCarthy1, Socrates Varakliotis2, Christopher Edwards1, and Utz Roedig1

1 Computing Department, Infolab 21, Lancaster University,
London, WC1E 6BT, UK

{b.mccarthy,ce,u.roedig}@comp.lancs.ac.uk
2 Computer Science Department, University College London,

Lancaster, LA1 4WA, UK
s.varakliotis@cs.ucl.ac.uk

Abstract. The computing department at Lancaster University are cur-
rently involved in the ongoing deployment of an advanced communica-
tions system designed to support the requirements of search and rescue
teams. This system is based around the concept of using an all IP in-
frastructure to provide multi-functional data communications (such as
group voice calling, live video streaming and location updates) to highly
mobile vehicles and personnel in challenging environments. In addition
to these types of data communications there is also a requirement to
reliably transmit different types of sensor data information from the in-
dividual rescue team members, their vehicles and the casualties they
locate and rescue. In this paper we describe the work we have carried
out to incorporate an IP based sensor networking approach into our ex-
isting communications system deployment that we have in place with
the Morecambe Bay Search and Rescue Team, in order to support Mo-
bile Sensor Networks. In addition, we present results from our experi-
mentation with our deployment that is specifically focused on the issue
of wireless interference that our Mobile Sensor Networking solution is
potentially subjected to.

1 Introduction

In general, search and rescue services have an inherent reliance on their commu-
nications solutions because their success is often closely related to their ability
to accurately exchange information about a rescue situation between their team
members. However, most search and rescue teams are still vastly under provi-
sioned with regards to their communications equipment, with most teams still
relying purely on push-to-talk radio solutions. Lancaster University are currently
involved in an on-going effort to develop a powerful new communications solu-
tion that leverages Internet technologies to provide search and rescue teams
with advanced functionality such as real-time localisation and mapping, real-
time video streaming from vehicles and individuals, advanced voice services (i.e.
tailored group calling, rather than indeterminate broadcasting of voice calls) and

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 37–48, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

38 B. McCarthy et al.

real-time delivery of sensor data from the field of operation. In this paper we
specifically focus on the experiences we have gained from incorporating an all IP
sensor networking solution into our current mobile communications deployment
with the Morecambe Bay Search and Rescue team (UK) [1]. In particular we
provide an overview of the design of our solution as a whole and its reliability
for delivering timely health statistics in challenging environments about individ-
ual rescue team members and the casualties they locate, as well as environmental
data recorded by rescue team vehicles.

Our efforts with the Morecambe Bay Search and Rescue team demonstrate
a real world deployment of Mobile Sensor Networking (MSN) technology and
illustrate how sensor networks deployed in this context may often have to be
considered as a component of a bigger overall system that has the potential to
cause interference to their ability to deliver timely sensor data. From our de-
ployment experience we have encountered scenarios where radio communication
in over-lapping frequencies has caused sensor data delivery to be affected and
in a critical scenario such as search and rescue the loss of reliable health statis-
tics about a specific team member could be extremely damaging. The issue of
radio interference arises because of our system’s joint reliance on multiple wire-
less communication technologies that each transmit in the 2.4GHz ISM band
of radio frequencies, namely the 802.11g, Bluetooth and 802.15.4 protocols. To
investigate this problem further we constructed a number of tests designed to
identify the real effects on sensor data delivery that are experienced with our
system when used in the rescue team’s operational environment.

The rest of this paper is presented as follows: In Section 2 we detail the nature
of the rescue services deployment we are currently involved with and highlight
how our system architecture maps onto their operational model. In Section 3
we focus on the way we have provisioned for sensor networking in the mobile
context the rescue team operate in. In Section 4 we outline the specific hardware
we used, as well as present the in-field interference experimentation we carried
out. In Section 5 we provide an overview of related work that has been carried
out in this field. Finally, in Section 6 we conclude with a discussion about our
findings and overall experience of incorporating sensor networking into our search
and rescue system deployment.

2 Trial Deployment

The Morecambe Bay Search and Rescue Team are a non-profit organisation that
operate search and rescue missions primarily on and around the Morecambe Bay
area in the North-West of the UK. In total their team consists of 16 operational
members, all of whom are voluntary workers, devoting their time and effort for
free. The Morecambe Bay area is the largest expanse of inter-tidal mudflats
and sand in the United Kingdom and in total covers an area of 310 km2. At
low tide the sea retreats leaving a massive expanse of open sand that people,
vehicles and animals use to walk/travel on and even work on (picking shellfish).
In this state the bay area is deceptive and appears safe to access, but in reality

Deploying Wireless Sensor Networking Technology 39

it is peppered with treacherous pockets of quicksand and hidden channels that
quickly fill areas with sea water when the tide returns. Due to these conditions
many unsuspecting people (sometimes with vehicles) and animals get trapped,
at which point their lives are immediately in extreme danger. For this reason
the Morecambe Bay Search and Rescue team was created, to be able to cope
with the specific requirements of rescuing people in the bay area’s adverse and
dangerous environment. More recently, the Morecambe Bay Search and Rescue
team now also provide official support services to the area’s fire brigade in land
based situations which require their specialist expertise and equipment.

2.1 Rescue System Deployment

The rescue team currently have four primary vehicles that they use in their res-
cue operations (shown in Figure 1): 2 Hagglund BV206 All Terrain Emergency
Rescue Vehicles, 1 Landrover 4x4 ambulance and 1 high-speed airboat. These
vehicles carry out search operations (in incidents where a casualty’s location is
not already known), transport the rescue team members to an incident area and
also act as a mobile command post for operation coordination. The communi-
cations system we have deployed is based around the notion of interconnecting
wireless Vehicle Area Networks projected in and around each of the rescue team
vehicles with wireless Personal Area Networks projected by each of the indi-
vidual team members. Into each vehicle we have fitted a ruggedized, bespoke,
vehicle specification Mobile Router (MR) which is powered from the vehicle’s
main power supply but that also trickle-charges a dedicated battery pack for
use when the vehicle’s own power supply is cut off. Each vehicle mounted MR
has a number of wireless interfaces (each fitted with a dedicated external roof
mounted antenna) including 2 802.11b/g interfaces (1 for interconnecting with
other MRs, 1 for projecting a connectivity hotspot around the vehicle) and a
cellular data modem capable of connecting to GPRS, EDGE and HSDPA ser-
vices. In addition, we have also fitted the airboat vehicle with an INMARSAT
BGAN vehicle terminal which is capable of maintaining a consistent connection
to INMARSAT’s broadband data service while the vehicle is in motion.

Fig. 1. Morecambe Bay Search and Rescue Team Vehicles

40 B. McCarthy et al.

Fig. 2. Communications Model

In our model, as well as each vehicle containing a MR, each individual team
member also carries a similar device designed in a suitable form factor for per-
sonal use. In particular, apart from being physically smaller than the vehicle
mounted MRs the personal MRs also have a completely self-contained recharge-
able Li-ion power supply and an additional 802.15.4 wireless interface. Once
operational all of the MRs attempt to establish their own direct connection to
the Internet via their cellular interface whilst simultaneously forming connec-
tions with other MRs via 802.11g. This process results in an interconnected
Mobile Ad hoc Network (MANET) like the one illustrated in Figure 2 where
any nodes capable of communicating directly with each other do so via multi-
hop 802.11 and all other communication is performed using the Internet as a
backbone. Using the Unified MANEMO Architecture (UMA) routing approach
(discussed in further detail in the following section) allows us to provide un-
changing, globally reachable IPv6 addresses to every node in the network, i.e.
both the MRs and any host devices that subsequently connected to them, irre-
spective of how the topology of the network changes. This in turn allows data
to be transmitted between every member of the rescue team, whether they are
located at the headquarters, in one of the vehicles or out in the field, permit-
ting communication such as group voice calls, streaming video delivery, location
plotting and real-time sensor data monitoring. In the following section we focus
in on how we have achieved this real-time sensor data delivery by incorporating
Wireless Sensor Networking (WSN) technologies into our system to produce a
fully functioning Mobile Sensor Networking (MSN) deployment.

Deploying Wireless Sensor Networking Technology 41

3 Rescue System Sensor Networking

The term “Mobile Sensor Network” (MSN) is loosely used to describe WSN so-
lutions which are capable of moving freely, potentially utilising different points
of attachment to the Internet to continuously transmit real-time data about an
entity or its surrounding environment as it changes location. This type of net-
work of sensors is therefore ideally suited to gathering a broad range of data about
a specific mobile entity, such as a vehicle or person, allowing their status to be
continually monitored irrespective of their movement. In essence what we have
achieved by incorporating our sensor networking solution into our search and res-
cue team deployment is a fully integrated real-world example of vehicle and per-
son based MSNs. From a communications perspective, our approach achieves this
by integrating the use of two key network layer technologies. Firstly the Unified
MANEMO Architecture (UMA) [2] is used to provide the inter-communication
capabilities of the rescue system, and therefore ensures that any IPv6 communi-
cation can be transmitted to any remote data sink in the Internet. Secondly, the
6LoWPAN adaptation protocol [3] is used to permit the efficient transfer of IPv6
packets to and from the resource constrained sensor nodes that are connected to
the vehicle/person area networks via their low power 802.15.4 links.

The common features of WSNs are low bandwidth, constrained memory and
limited computational power. Initially manufacturers introduced proprietary
protocols to drive WSNs with customised link-layer solutions, assuming that IP
was too resource-intensive to be scaled down to operate on the micro-controllers
and low-power wireless links used in WSN settings. The 6LoWPAN protocol
has addressed this situation and is what we use to provide the individual sensor
nodes with IPv6 connectivity[3]. With 6LoWPAN, packet transfer from a sensor
node to the network via a gateway is achieved by first fragmenting large IPv6
packets into chunks of 127 bytes or less. Once all fragments reach the gateway,
packet re-assembly takes place and the composed IPv6 packet is subsequently
routed to the Internet. The most commonly used header fields of the original IP
packet may also be compressed as they are not required for routing within the
sensor network, if layer 2 meshing is used. This compression and header stacking
along with cross-layer optimisations result in low overheads, which translate to
efficient transmission of IPv6 datagrams over low power networks. The overall
savings can reduce the complete standard IPv6 packet (40 byte headers) down
to an optimised few bytes only (around 2 bytes, at best, in typical uses) for
Wireless Sensor Networks.

Fundamentally, UMA is a technique designed to enable mobile networks to
perform persistent, uninterrupted IPv6 communication over the Internet, re-
gardless of their potentially changing location and Internet access connection.
In addition, UMA also ensures that mobile networks of devices can intercon-
nect and communicate directly or share their Internet connections with other
networks that cannot obtain their own Internet access connection, thus prolif-
erating the availability of Internet access over a greater area. UMA achieves
this by employing a technique that leverages the global connectivity character-
istics of the NEtwork MObility Basic Support (NEMO BS) protocol [4] with the

42 B. McCarthy et al.

localised multihop communication support provided by MANET protocols. With
UMA, every Mobile Router is registered with a corresponding Home Agent (HA)
that records the its changing point of attachment to the Internet. This HA is
located in the home network of the Mobile Router (i.e. the location it originates
from, such as rescue team’s headquarters) and intercepts packets destined for
the mobile network whenever it is not directly attached to the home network. As
the Mobile Router moves and potentially roams across different access networks
or in-directly utilises another Mobile Router’s Internet connection, it updates
the HA with its new attachment point to the Internet. The HA then forwards
all packets destined for the Mobile Router’s network (either directly to it or
in-directly via any other Mobile Router that is providing it with an Internet
connection) via a bi-directional tunnel. This approach therefore keeps the mo-
bility of the network transparent to any nodes it communicates with other than
the HA and also prevents the traffic it generates from being Ingress Filtered in
the access networks it visits. In total, this ensures that packets sent to and from
the mobile network can use the same persistent IP address range to communi-
cate regardless of its underlying mobility, and provides a highly robust solution
because redundant, heterogeneous links to the Internet can be established and
utilised if/when existing links fail.

4 Hardware/Software Setup and Experimentation

In one of our previous studies [5] we presented results from our initial lab based
experimentation that acted as a proof of concept for our MSN solution and
demonstrated the early potential of our approach. In this paper we confirmed
the successful implementation of our solution using a Lippert Embedded Sys-
tems [6] CoolMoteMaster device, augmented to operate as a UMA Mobile Router
also. This device however was not suitable for actual deployment in our scenario
due to its form factor (too bulky and power hungry for personal use) and its
non-ruggedized design. So instead we set about incorporating the concept we
had proven in a lab environment into our existing ruggedized Mobile Router de-
vices that we had already designed for real world deployment. To achieve this we
needed to successfully incorporate an 802.15.4 interface into our Mobile Router
design that could also perform the role of a 6LoWPAN gateway node and handle
the packets sent too and from the sensor nodes appropriately. Both the gateway
node and the sensor nodes are based on the popular Tmote Sky device (Telos
Rev.B hardware platform, or ‘mote’), the gateway node is directly attached to
the Mobile Router board and powered via USB, whereas the sensor nodes are
powered by battery. In each case we run the Contiki open-source operating sys-
tem [7] which features the uIP network stack for IP communication with the
motes. The uIP stack on the sensor nodes was further extended with a sensor-
side implementation of the 6LoWPAN adaptation layer. On each sensor node
there is a running measurement software component that upon initialisation
performs basic IPv6 address auto-configuration by using a predefined network
prefix known to the gateway. The measurement component then records infor-
mation from the appropriate sensors, for the vehicle it records environment data

Deploying Wireless Sensor Networking Technology 43

Fig. 3. SmartLife Technology “HealthVest”

including light, humidity and temperature measurements from the Tmote’s em-
bedded sensors. For the rescue team members we have interfaced the Tmote
board to a prototype intelligent garment made by SmartLife Technology [8].
Their garment, known as the “HealthVest” (shown turned inside out in Figure
3) is a close fitting undergarment that incorporates their patented woven sensor
technology to continuously monitor heart rate and electrocardiography (ECG)
information.

In both cases, once this data is captured it is then placed in IPv6 packet
payloads and transported with UDP to our remote sink application (a remote
server located at the headquarters which provides the end user with combined
mapping and personnel/vehicle localisation and sensor monitoring) in the follow-
ing way. First, IPv6 packets larger than 127 bytes are appropriately fragmented
by the 6LoWPAN sensor-side module on the source node for transport within
the sensor network. The global IPv6 addresses in the headers are compressed as
the sensor network only uses 16-bit link-layer identifiers. Once all related packet
fragments reach the gateway, the corresponding gateway-side 6LoWPAN module
re-assembles them into a full IPv6 packet and adds the decompressed destination
IPv6 address of the target sink. The complete IPv6 packet is then passed to the
kernel for further processing (i.e. IP routing using UMA, towards the data sink).

One final hardware device that is significant to our deployment and the ex-
perimentation presented in this paper is the Nonin Onyx II 9560 pulse oximeter
[9]. This device is the world’s first wireless enabled fingertip pulse oximeter and
it works by periodically transmitting heart rate and blood oxygen level informa-
tion over a paired Bluetooth connection. The ability to remotely monitor pulse
oximetery data related to a casualty was a requirement specifically requested by
the Morecambe Bay Search and Rescue team. This device offered us the perfect
solution to this requirement but unfortunately operates over a different wireless
technology to the others we already support and therefore its integration into
the rescue system introduced further considerations about the wireless spectrum
availability.

4.1 In-Field Experimentation

In total, at any one time in our rescue team communications system there can be
up to 5 different wireless interface types operating at once. Whilst the satellite

44 B. McCarthy et al.

and GSM wide-area backhaul connections that we use in the system operate in
distinct frequency ranges that do not cause interference with any of the other ra-
dios (INMARSAT BGAN receivers transmit and receive between 1525.0–1559.0
MHz and 1626.5–1660.5 MHz, O2 UK 3G service operates between 2125–2135
MHz), the 802.11g, Bluetooth and 802.15.4 interfaces all operate in the 2.4 GHz
ISM band of frequencies. Each of these radio technologies transmitting in the
2.4GHz band have the potential to create contention with each other for access
to the radio medium and therefore cause communications disruptions. This fact
is further exacerbated by the proximity to each other that these interfaces can be
expected to naturally operate in during a typical mission. To further elaborate
on this statement we must first consider the primary purpose of these interfaces
and then consider the context in which they are used. For example, in a typical
rescue scenario, the 802.11g interface may be used extensively to carry multiple
different types of communication (voice, video and location/sensor data). At any
given time it may be relied upon to transmit relatively bandwidth intensive com-
munication streams, therefore occupying one or two channels of the 802.11 radio
spectrum which in turn can equate to potential interference across around 8 of
the 802.15.4 channels. This type communication will also be relatively long lived
in comparison to periodic sensor data transmission, and so it is extremely likely
that sensor data transmission will occur at the same time as intensive 802.11
activity. One further communications consideration in our scenario occurs when
a casualty is located and is transported back to safe ground and then hospital
for treatment. As described in the previous section we have provisioned for the
use of wireless pulse oximeters with our system during in-field operation that
permit pulse rate and blood oxygen levels to be transmitted to awaiting hospital
staff. To support this we auto-establish a serial-over-Bluetooth connection be-
tween the pulse oximeter and the onboard Bluetooth interface integrated in the
rescue team member’s Mobile Router. This means that from the moment the
pulse oximeter is placed onto the casualty’s finger, a third (periodic) transmis-
sion is introduced to the 2.4GHz ISM band. What this overview of the wireless
communications landscape created by our rescue system shows is that it is there-
fore extremely important to ensure that radio interaction in our system operates
fairly and that wireless transmissions do not unacceptably affect one another to
the detriment of the entire system.

In order to test the interference effects experienced by the sensor network-
ing data transmitted in our deployment we setup a series of experiments that
involved the use of a number of different sensor networks and a number of dif-
ferent Mobile Routers in a range of different wireless configurations. In each test
we deployed 1 Vehicle Mobile Router and then between 1 to 3 Personal Mobile
Routers (introducing one after another to incrementally increase the level of in-
terference experienced), with a simple hierarchical topology where all Personal
Mobile Routers connected directly to the vehicle. We then connected a wireless
802.11 webcam to each of the personal area hotspots that each team member
projected from their Personal Mobile Router. We then drove traffic over both
wireless interfaces of the Personal Mobile Routers by streaming live video from

Deploying Wireless Sensor Networking Technology 45

the webcams up to the vehicle cabin. Finally, we activated the data sink in the
vehicle also (in our deployment, all vehicles and the headquarters accept and
display location and sensor data to the coordinators) and then configured each
specific test. We configured the devices in each of our tests to forcibly create
three different levels of combined interference: High, Medium and Low. These
interference levels refer to our manipulation of channel selection for each of the
802.11g interfaces and the 802.15.4 interfaces, where:

– High: 2 802.11g on channel 7, 802.15.4 gateway/nodes on channel 18.
– Medium: 2 802.11g on channel 7, 802.15.4 gateway/nodes on channel 20.
– Low: 2 802.11g on channel 7, 802.15.4 gateway/nodes on channel 26.

In keeping with the focus of this paper on real deployment experience we decided
to present our findings based on the most important aspect to the end user, i.e.
the data arrival rate at the data sink. In our deployment (as with any other)
the rescue team coordinators are interested in whether they are receiving sensor
data correctly or whether they are not. As our sensor networking approach is
fully IP compatible we opted to measure packet arrival rate using the Wireshark
network protocol analyser which provides the ability to filter out specific packet
types, offers accurate packet arrival times and also has additional tools for overall
analysis. For each test, the sensors periodically transmitted their data once every
second for a duration of 1000 seconds and we repeated the motions of the test 5
times over to gain average packet loss rates. Then at the end of each test run we
connected a Bluetooth pulse oximeter to one of the rescue team member’s Mobile
Router and began transmitting casualty health statistics over each resulting
network topology to observe whether the pulse oximetry data was affected.

The percentage loss experienced at the data sink in each of the configura-
tions we tested can be seen in Figure 4. What is immediately evident from
these results is the obvious correlation between the high level of sensor data loss
and the high level of radio interference present. When operating on completely
none-overlapping radio frequencies the level of packet loss experienced was en-
couragingly low. When operating in rescue missions, team members originating
from one vehicle often work together in a designated area. Each vehicle will tend
to carry around 4 rescue team members, 3 that will alight at given locations and
1 driver that remains in the vehicle at most times. With this operational model
it would be straightforward to devise a suitable channel separation scheme be-
tween each of the team members belonging to one vehicle that would ensure their
radio communications were not in over-lapping frequencies for the bulk of their
time in the field of operation. Less encouraging however were the levels of loss
we recorded at the “medium” level of interference. In a planned frequency alloca-
tion model like the aforementioned channel separation scheme based on vehicle
assignment, this configuration effectively represents the encroachment of radio
transmissions from devices outside of the planned model, i.e. when other vehicles
converge in a single location. This scenario is not atypical and must therefore be
expected to occur, in which case our results show the level of successful delivery
of sensor data really begins to suffer.

46 B. McCarthy et al.

Interference Level: 1 Mobile Router 2 Mobile Routers 3 Mobile Routers
Low: 1.4% 1.3% 1.8%

Medium: 4.6% 16.7% 27.1%
High: 42.6% 44.5% 46.0%

Fig. 4. Percentage loss in each configuration

One interesting result was the negligible effect that adding additional radio
interference to the already high level of over-lapping 802.11 transmissions had
when further Mobile Routers were introduced. The radio interference effectively
appeared to reach a saturation point that it never rose significantly above. One
explanation for this behaviour could be the specific webcam hardware used in
our deployment. At present we use Panasonic webcams (because of their native
IPv6 support) these webcams stream their video captures using TCP and as a
result will aggressively back off under heavy interference conditions. Away from
the average loss rates entirely, we also observed that during the “High” level
of interference sensor data packet loss was rarely consecutive. When a sensor
data packet was lost, in most cases the following packet in the transmission (i.e.
the next 1 second interval) could be expected to arrive. This was observed with
noticeable consistency to the point where in tests that yielded almost 50% loss,
packets could be seen to arrive in an almost a 1 on, 1 off fashion.

5 Related Work

At present we are unaware of any successful deployment attempts that have
aimed to provide IP based Mobile Sensor Networking in a challenging environ-
ment such as search and rescue. However, whilst work related to our system
deployment as a whole is scarce at the moment, there is a lot of existing re-
search related to the radio interference experienced between 802.11 and 802.15.4
which is a subject we focused on in this paper. One of the closest studies to
the analysis we carried out in our deployment was a recent paper specifically
focusing on the interference properties experienced between two sensor nodes
communicating with one another in a Body Area Network (BAN) [10]. The au-
thors of this paper provide a very complete and thorough analysis of the effects
of interference on a point-to-point 802.15.4 link when it encounters 802.11 traffic
in a similar radio frequency. They are able to draw stark parallels between an
increased successful transmission rate and increases in the transmit power that
the sensor nodes operate at.

Additional work that is related to the particular sensor data that we transmit
in our deployment has also been carried out from the perspective of medical
applications in hospitals [11]. In this study the authors set out to determine the
suitability of 802.15.4 for the purpose of carrying health statistics information in
a typical hospital environment. However whilst the sensor data and end devices
discussed in this study is related, the operational environment is naturally very
different and the authors attained their results through simulation.

As well as studies analysing the impact of 802.11 on 802.15.4, there also
exists studies that have considered this problem from the opposite angle of how

Deploying Wireless Sensor Networking Technology 47

802.15.4 can impact on 802.11’s overall capability. Interestingly there are papers
with conflicting conclusions in this research space [12] [13] with studies finding no
effect and another recent study finding effects on 802.11 in specific circumstances.
In our deployment any effect on 802.11 by 802.15.4 was not noticeable and will
unlikely ever be if we continue to operate a model of 1 second sampling times and
single sensor gateway/node pairings between each individual Mobile Router. For
the foreseeable future it seems that this model is sufficient for our requirements
and at that node density the 802.15.4 transmissions simply are not frequent
enough to cause significant disruption to any 802.11 communications.

6 Conclusion

In this paper we have provided an overview of our mobile networking deployment
activities with the Morecambe Bay Search and Rescue Team. We have focused
in particular on our recent work related to incorporating an innovative all-IP
sensor networking technique into the existing IP infrastructure established by
our rescue system communications solution. Apart from detailing the technolo-
gies and hardware/software components we have used to achieve these outcomes
we have also provided an insight into some of the experiences we have gathered
so far. Building on these experiences we have also outlined some in-field testing
we performed to ascertain the suitability of our approach for reliably transmit-
ting important sensor data information throughout the rescue team network.
Specifically, this testing concentrated on the potential negative effects of radio
interference that can be experienced in large, multi-function communication sys-
tems like the one we have deployed.

In particular, we found radio interference from intensively used 802.11g wire-
less interfaces did have a negative impact if channel overlap existed with the
802.15.4 spectrum that was utilised. However, what we also observed was that
even in very high levels of interference there would often be little consecutive
loss. Therefore when a packet of sensor data was lost, in all but the worst cases
the next packet could statistically be expected to be delivered. This means that
the importance of the data being carried must be taken into consideration, and
more specifically, the criticality of every single reading produced. If we take
our deployment for example, the significance of every single sensor data reading
is debatable. Certainly from the perspective of an environmental reading from
a vehicle the levels of loss experienced are unimportant, but this can even be
said of the health data of the individual rescue workers. During an operation
a team coordinator will monitor the progress of their team looking at location
and movement, if the weather is bad or worsens they may casually maintain a
watch on the overall health statistics of their members, but any data loss would
most probably go unnoticed. However, if a team member was identified as going
overboard into deep water in Winter this interaction could quickly change and
every reading could become extremely important. Related to this is the critical-
ity of a casualty’s health statistic data, however whilst this data is seen as being
extremely important the use of Bluetooth and its Adaptive Frequency Hopping
Algorithm in this case suitably addresses this problem.

48 B. McCarthy et al.

Finally in this paper we showed that the effects of radio interference between
these technologies have been researched before, however not in a mobile com-
munications system as comprehensive as our deployment. This has additional
significance because in our system we can potentially control each of the sources
of interference and attempt to minimise its negative effects through collaborative
channel selection. Using our understanding of the interference problem domain
we can now attempt to develop a channel selection scheme that attempts to iden-
tify radio spectrum in the 2.4GHz ISM band that is already saturated and then
dynamically adapt its use. This concept in itself is potentially very challenging,
bringing additional pitfalls because of the highly mobile nature of our deploy-
ment, but if solved correctly could provide an effective tool for other mobile
networking solutions of this nature as and when they start to be deployed.

References

1. Morecambe Bay Search and Rescue, http://baysearchandrescue.org.uk/
2. McCarthy, B., Edwards, C., Dunmore, M.: Using NEMO to Support the Global

Reachability of MANET Nodes. In: Proceedings of Twenty Eighth Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM
2009), Rio de Janeiro, Brasil, April 19–24 (2009)

3. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 Packets
over IEEE 802.15.4 Networks. IETF RFC 4944 (September 2007)

4. Thubert, P., et al.: NEMO Basic Support Protocol. IETF RFC 3963 (January
2005)

5. McCarthy, B., Edwards, C., Varkliotis, S., Kirstein, P.: Incorporating mobile sensor
networks into the internet - an all ip approach. In: Proceedings of the 4th Interna-
tional Workshop on Mobility in the Evolving Internet Architecture (MOBIARCH
2010). ACM, Chicago (2010)

6. Lippert embedded systems homepage,
http://www.lippertembedded.de/index.php

7. The Contiki operating system, http://www.sics.se/contiki
8. Smartlife technology homepage, http://www.smartlifetech.com/
9. Nonin mdical inc, onyx ii 9560 wireless pulse oximeter homepage,

http://nonin.com/PulseOximetry/Fingertip/Onyx9560
10. Handziski, V., Hauer, J., Wolisz, A.: Experimental study of the impact of wlan

interference on ieee 802.15.4 body area networks. HotEmNets (2010)
11. Cypher, D., Golmie, N., Rebala, O.: Performance analysis of low rate wireless

technologies for medical applications. Computer Communications 28(10), 1255–
1275 (2005)

12. Howitt, I., Gutierrez, J.: Ieee 802.15.4 low rate - wireless personal area network
coexistence issues. In: Wireless Communications and Networking, WCNC 2003,
vol. 3, pp. 1481–1486. IEEE, Los Alamitos (2003)

13. Pollin, S., Hodge, B., Tan, I., Chun, C., Bahai, A.: Harmful coexistence between
802.15.4 and 802.11: A measurement-based study. In: 3rd International Conference
on Cognitive Radio Oriented Wireless Networks and Communications, CrownCom
2008, pp. 1–6 (May 2008)

http://baysearchandrescue.org.uk/
http://www.lippertembedded.de/index.php
http://www.sics.se/contiki
http://www.smartlifetech.com/
http://nonin.com/PulseOximetry/Fingertip/Onyx9560

Visibility Levels: Managing the Tradeoff between
Visibility and Resource Consumption�

Junyan Ma1,2 and Kay Römer2,3

1 School of Computer Science, Northwestern Polytechnical University, China
2 Institute for Pervasive Computing, ETH Zurich, Switzerland

3 Institute of Computer Engineering, University of Lübeck, Germany

Abstract. Pre-deployment tests of sensor networks in indoor testbeds can only
deliver a very approximate view of the correctness and performance of a deployed
sensor network and it is therefore common that after deployment problems and
failures occur that could not be observed during pre-deployment tests. Finding
and fixing such problems requires visibility of the system state, such that an en-
gineer can identify causes of misbehavior. Unfortunately, exposing the internal
state of sensor nodes requires resources such as communication bandwidth and
energy: the better visibility of system state is required, the more resources are
needed to extract that state from the sensor network. In this paper we propose a
concept and tool that give the user explicit control over this tradeoff. Essentially,
the user can specify a resource budget and our tool strives to provide best possible
visibility while not exceeding the resource budget. We present the design of our
vLevels framework and report the results of a case study demonstrating that the
overhead of our approach is small and that visibility is automatically adjusted to
meet the specified resource budget.

1 Introduction

Being deeply embedded into the real world, the function of sensor networks is heavily
affected by their interaction with the environment. Therefore, pre-deployment tests in
testbeds can only deliver a very approximate view of the correctness and performance of
a deployed sensor network and it is therefore common that after deployment problems
and failures occur that could not be observed during pre-deployment tests. Finding and
fixing such problems is difficult due to limited access to the deployed network – both
physically and due to constrained resources.

A key requirement for debugging deployed sensor networks is visibility of the system
state, i.e., the ability of an engineer to observe the internal program state of the sensor
nodes. Unfortunately, there is a fundamental tradeoff between visibility and resource
consumption. As visibility requires communication to expose internal node states to
an external observer, increasing visibility requires more resources. Since resources are

� This work has been partially supported by the Swiss National Science Foundation (NCCR-
MICS, 5005-67322), the European Commission (CONET, FP7-2007-2-224053), and the
National Key Technology R&D Program of China (2007BAD79B00).

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 49–61, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

50 J. Ma and K. Römer

scarce in sensor networks, a balance between a sufficient level of visibility and a toler-
able consumption of resources needs to be found. This is especially true for situations
where the system state needs to be observed over a long period of time in order to collect
enough evidence to make an informed decision about the causes of observed problems.

While there exist a number of tools to give an observer visibility into internal node
states, they do not offer a turning knob to the user to select a reasonable balance between
visibility and resource consumption. With these existing tools, the user can define which
states should be visible, and the resource consumption is implied by these requirements.
However, it is very difficult for the user to predict the resulting resource consumption
and hence almost impossible to exert fine-grained control over the permissible amount
of resource consumption.

The goal of our work is to provide the user with an explicit turning knob to bal-
ance visibility and resource consumption. With our approach, the user can specify both
visibility requirements and a resource budget and our system will provide best possi-
ble visibility while not exceeding the given resource budget. Here, visibility means the
creation of traces of the system state that are either logged into memory for later post-
mortem analysis, or transmitted over the wireless channel for online inspection. The
resource budget is therefore defined in terms of available storage space or communica-
tion bandwidth. Our approach is embodied in a software framework called vLevels. The
paper continues with the design of vLevels in Sect. 2, implementation aspects in Sect.
3, a case study in Sect. 4, and with a summary of related work in Sect. 5. Finally, we
provide our conclusions in Sect. 6.

2 Design

vLevels offers visibility into the system state by creating snapshots of user-defined
slices of the system state. The key innovation in vLevels is that it provides a turning
knob for the user to specify a resource budget such that best possible visibility is of-
fered while not exceeding this budget.

To realize this turning knob, vLevels offers three core abstractions: visible objects are
slices of system state that should be made visible to an observer. When a user-define
event occurs (such as changes of variable values or invocations of certain functions),
a snapshot of the state of the visible object is logged. For each visible object, the user
can define an ordered set of visibility levels. A visibility level is a user-defined lossy
compression function that compresses a snapshot of the state of a visible object. Higher
visibility levels result in more accurate snapshots which also consume more resources.
Lower visibility levels result in less accurate snapshots which consume less resources.
Finally, an observation scheme defines a resource budget and assigns priorities to visible
objects, such that a scheduler can automatically select a visibility level for each visible
object so as to maximize visibility while not exceeding the resource budget. We con-
tinue with an overview of the architecture of vLevels, before discussing the components
of the architecture in detail.

2.1 System Architecture

We assume a traditional node-centric programming model, where developers write code
in an imperative programming language such as C that is compiled, uploaded, and

Visibility Levels 51

preprocessor

Visible object declarations
Defined visibility levels
Observation scheme

.oscm file.oscm file

Scheduler

Log entriesLog entries

Instrumented application

Visibility levels
Observation

scheme

vLevels runtime

)

Visible objects

Application
source code

Visible object declarations
Defined visibility levels
Observation scheme

OS
&

Application

Resource (RF channel, external flash,

Traces decoder
Recontructed

traces
Trace analysis

Fig. 1. System architecture of vLevels

executed at the sensor nodes. With vLevels, the user creates an additional .oscm input
file that contains the specification of visible objects, visibility levels, and observation
schemes. As illustrated in Fig. 1, both the source code and the .oscm file form the input
to a preprocessor that modifies the source code such that snapshots of the state of vis-
ible objects are generated when certain events occur. The resulting source code is then
compiled, linked with a vLevels runtime library, and uploaded to the sensor nodes.

When the application is executing on the sensor node, the instrumented code gen-
erates snapshots of the state of visible objects. These timestamped snapshots are then
passed to a scheduler that dynamically selects an appropriate visibility level for each
snapshot such that the resource budget specified in the observation scheme is not ex-
ceeded. The resulting compressed snapshots that constitute the traces of the system
state are then either stored in (flash) memory or sent over the wireless channel. Using
the compressed traces (that include timestamps and the chosen visibility levels) down-
loaded from the flash memory or received over the wireless channel, the original un-
compressed traces of visible objects can be approximately reconstructed and analyzed
by the user. The lower the visibility levels used for compression, the less accurate the
reconstructed states will be. For the reconstruction, the compression schemes defined
by the visibility levels are compiled by the preprocessor into appropriate decompression
code that can be executed on the user’s computer.

As the above discussion indicates, vLevels builds upon a number of fundamental
services such as storage management (e.g., Contiki’s Coffee filesystem [15]), times-
tamping and synchronization services as well as data collection (e.g., as described in
[12]). Due to space constraint we focus on the innovative aspects of vLevels in this
paper, rather than re-iterating those fundamental and well-understood services.

2.2 Visible Objects

The complete state of a program is typically too large to make it visible in its entirety.
Therefore, a user has to specify which part of the program state is of interest to him.
In vLevels, the visible object abstraction allows a user to specify the interesting state.
Essentially, a visible object specifies an event and a set of program variables, with the

52 J. Ma and K. Römer

semantics that whenever the event occurs a snapshot of the variables should be created
and logged together with a timestamp of the event occurrence.

vLevels offers a simple declarative language to define visible objects. We opted to
separate the specification of visible objects from the program source code to avoid mix-
ing the two different aspects of program logic and visibility, which is inspired by aspect
oriented programming [6] in general, and Declarative Tracepoints [2] and LIS [14] in
particular.

In the following we illustrate different types of visible objects in vLevels by example
using our specification language. In general, a visible object is specified by a keyword
that defines the event which is followed by parameters detailing the event and variables
as in the following examples:
1 var tracking.c::m state
2 fvar tracking.c:sample light process:light
3 fhdr reports mngmt.c:leader report update:reading x y
4 tpoint tracking.c:tp leader cycle:report nr
5 var estate as example.c::m state

The var keyword in line 1 defines a single global variable as a visible object, the event
being any assignment of a different value to that variable. The parameters specify the
name of the source file (tracking.c) and the name of the variable (m state). The
fvar keyword in line 2 is similar, but refers to a local variable (light) of a given
function (sample light process) in the given source file.

Keywords fhdr (function header) in line 3 and fftr (function footer) also refer
to local variables of a function including in particular the function parameters, but the
triggering event is the invocation of the function (fhdr) or the return from the func-
tion (fftr). In the example in line 3 the parameters reading, x, and y of function
leader report update are logged just before the first instruction of the function
is executed.

The keyword tpoint (trace point) in line 4 generalizes this concept, where the trig-
gering event is when control flow reaches a given point in the program. As the specifica-
tion of line numbers is very error prone, we opted for inserting a marker comment into
the source code, such that the snapshot of a given set of variables is generated whenever
the control flow reaches this marker in the code. The code below shows such a marker
comment, which has to follow the format @visible tpoint followed by the name
of the tracepoint. This name (tp leader cycle) is also given in the specification of
the visible object, followed by the names of the variables.
...

target pos estimation(&target);
/* @visible tpoint tp leader cycle */
member reports clear();

...

For keywords var and fvar, variable names are used as their corresponding visible
object names by default. Likewise, function names and tracepoint names are used as
names of visible objects defined with fhdr, fftr and tpoint. The as keyword in
line 5 is used to rename a visible object when there is a conflict.

2.3 Visibility Levels

Visibility levels are user-defined compression schemes to reduce the size of traces gen-
erated by visible objects. In particular, a set of visibility levels can be defined for each

Visibility Levels 53

visible object. The levels in each set are ordered and numbered with small integers. Ev-
ery level implements a specific tradeoff between accuracy of the snapshot of a visible
object on the one hand, and size of the snapshot and therefore resource consumption
on the other hand. Assuming there are N levels, then level N gives maximum visibility
but also maximum resource consumption. By definition, level 0 produces empty output
and thus gives zero visibility at zero cost. That is, both visibility and resource consump-
tion monotonically increase with increasing level numbers. We will explain later in the
paper how the visibility levels of a set of visible objects can be automatically selected
such that a given resource budget is not exceeded.

Each visibility level essentially constitutes a lossy compression function that is de-
fined by the user in a declarative manner using a number of basic operators. Moreover,
the visibility levels of a visible object form a pipeline: The output of level k forms the
input of level k −1. Level N is typically the raw snapshot of a visible object. The ratio-
nale for this design will become clear in Sect. 2.5, where we describe the scheduler that
selects the visibility levels. The basic operation of the scheduler is to incrementally de-
crease the visibility levels of a snapshot by one. The pipelined design of visibility levels
makes this a very efficient operation as the raw snapshot does not have to be saved in
order to change the visibility level later.

The left part in Table 1 shows the definition of a set of three visibility levels for a
program variable light that has been declared a visible object as described in Sect.
2.2 (line 2 in the example there). The example declares three visibility levels, the dec-
larations of which are separated by blank lines. Each visibility level consists of zero or
more compression operations (one per line) followed by a single output operation log
to produce the output.

Visibility level 3 is declared first in line 3, followed by level 2 in lines 5 and 6,
and finally level 1 in line 8. Level 3 just outputs the raw snapshot of variable light
using the log operator. Level 2 uses the filter compression operator to ignore all
snapshots where the light value is ≤ 200. The remaining light values are output
with log. Level three takes the output of level 2 as input, but instead of outputting the
light value, it just creates an empty log entry using log without parameters whenever
a new value > 200 is assigned to variable light. As log entries do also contain a
timestamp, this is an indicator of when the variable has been assigned new values > 200,
but not which values. As we can observe in this example, the visibility of the light
variable as well as the size of the generated log entries are monotonically increasing
with increasing level number.

Besides log and filter, vLevels also provides remapper and bits. Operator
bits (bits selector) selects a subset of the bits of its input using a bit mask. bits is
often used to deal with network messages to extract the relevant protocol fields. Opera-
tor remapper remaps a set of integer values to a new set of integer values. Essentially,
this operator reduces the precision of a scalar value to a smaller number of bits.

We conclude this section with a discussion of the design rationale behind visibility
levels. Essentially, with vLevels a user can define custom lossy compression schemes,
allowing him to exploit his domain knowledge about what is important state (and should
not be lost during compression) and what is not. This is especially important for the
compression of systems logs containing very different data types (e.g., outputs of

54 J. Ma and K. Römer

Table 1. Visibility levels and observation scheme

Visibility Levels Observation Scheme
1 oscheme leader algorithm
2 {

1 vlevels lreading for light 3 budget = 60 BPS
2 { 4
3 log light 5 light@levels = lreading
4 6 light@priority = 2
5 filter light > 200 7 light@rpolicy = DEE
6 log light 8
7 9 election timeout@levels = electmout
8 log 10 election timeout@priority = 1
9 } 11 election timeout@rpolicy = DEE

12 }

different sensor types, program state variables). An alternative design could use general
purpose compression algorithms. However, they are often optimized for specific data
types and do not allow to use to incorporate domain knowledge during compression.

2.4 Observation Schemes

An observation scheme specifies how to select the visibility levels of a set of visible
objects such that a certain resource budget is not exceeded. In addition to the resource
budget itself, the observation scheme also defines policies how to prioritize visible ob-
jects among each other, and how to prioritize different snapshots of a single visible
object among each other. In the case that the resource budget is not sufficient to log all
snapshots of all visible objects at maximum visibility level, these policies control the
selection of visible objects whose visibility level needs to be lowered. Let us consider
the observation scheme named leader algorithm in the right part of Table 1.

The budget keyword is used to define a bandwidth budget of 60 bytes per second
(BPS), meaning that the log data is transmitted online over a communication channel
and the log data bandwidth should not exceed 60 BPS. Based on the application require-
ments, the user decides how much resources can be spent for monitoring and selects the
budget appropriately. The budget can also be changed later during runtime. As the radio
is the dominating energy sink, with a simple calibration step it is possible to map band-
width to approximate energy consumption, such that instead of specifying a bandwidth
budget, one can also specify an energy budget. The system also supports storage of log
data in flash memory for later offline analysis. In the latter case, a storage budget is
specified in units of bytes (B), kilobytes (KB), or megabytes (MB).

The example observation scheme considers two visible objects: light and elec-
tion timeout. By assigning the name of a visibility level set to the @levels at-
tribute, a visibility levels set can be selected for a visible object as in lines 5 and 9. The
@priority attribute (lines 6 and 10) defines the relative importance of the visible ob-
jects, where smaller values mean more importance. If there are not enough resources to
log both objects at maximum visibility level, then preference (i.e., higher level) will be
given to the object with the smallest priority (here, the election timeout object).

However, the visibility level can also change dynamically among different snapshots
of the same visible object. The @rpolicy attribute (lines 7 and 11) defines the policy
how to prioritize different snapshots of the same visible object among each other. For

Visibility Levels 55

example, the DEE (Drop Earliest Entry) default policy specifies that priority should be
given to the latest snapshots, i.e., the earliest snapshot should be dropped first if the bud-
get is not sufficient. Other supported policies are DLE (Drop Latest Entry) and MMTIU
(Minimize Maximum Time Interval between Updates). The latter policy drops the snap-
shot that results in the minimum increase of time gap between successive snapshots in
the trace, which is suitable for signal reconstruction if the visible object represents the
output of a sensor.

2.5 Scheduler

The scheduler is the component in our system that dynamically selects visibility levels
for visible objects such that the given bandwidth/energy or storage budget is not ex-
ceeded. It should be noted that in our system the budget is considered a user-defined
constant and the scheduler assumes this budget is always available during runtime. The
key idea is that the scheduler maintains a buffer of a fixed size and enters new log entries
at the end of the buffer. If the remaining space in the buffer is not sufficient to hold the
new entry, then one or more existing log entries in the buffer are selected for reduction
of their visibility level.

A2 B1 A2 C2 C2 C2 A2

C1 C1 C1A2 B1 A2 A2

Priority: A > B > C

Fig. 2. Examples of the scheduler algorithm

In case of logging into (flash) memory for later offline analysis, this buffer equals the
storage space in the memory. An efficient file system such as Coffee [15] is required to
manage access to the flash. In case of online monitoring, the contents of the buffer are
sent over the communication channel at regular intervals, such that this interval equals
the buffer size divided by the bandwidth budget. As transmission of the buffer contents
is not instantaneous, a second buffer is used. While one of the buffers is being filled
with log entries, the contents of the other buffer are transmitted in the background.

Both in the online and offline modes the basic operation of the scheduler is as fol-
lows. When appending a new log entry to the buffer, it is initially inserted with the
current visibility level of the visible object. If the available space in the buffer is not
sufficient to hold the new entry, then the visibility level of the object with the lowest
priority is reduced by one until there is enough space in the buffer to hold the new en-
try. The core operation of the scheduler is hence to reduce the visibility level of a log
entry in the buffer by one until it eventually reaches zero, i.e., the log entry disappears.
This is also the reason for the pipelined design of the visibility levels as described in
Sect. 2.3, since reducing the visibility level of an entry in the buffer from k to k − 1 is
then efficiently implemented by applying the compression function of level k −1 to the
entry. If the lowest priority object is the object associated with the new log entry and its
level is already 1, then a log entry is selected to be replaced with the new one according
to the replacement policy. Figure 2 gives an example of how the scheduler works. The
notation A2 stands for a log entry of visible object A with visibility level 2. As shown

56 J. Ma and K. Römer

in the figure, a new entry A is added but there is not enough space in the buffer. As C is
the visible object with the lowest priority, the visibility level of all C entries is reduced
from 2 to 1.

3 Implementation

Our prototype implementation of vLevels on the Contiki operating system consists of
two main parts: a preprocessor and a runtime system.

The preprocessor reads the C source files and the .oscm file containing the speci-
fication of visible objects, visibility levels, and observation schemes. In particular, the
preprocessor assigns a unique identifier to every visible object to identify log entries;
source code is instrumented to log snapshots of visible objects; compression functions
are generated for visibility levels; parameters from the observation schemes are ex-
tracted and passed to the scheduler; and a trace decoder is also generated for recon-
structing traces from the collected logs. The instrumentation part is implemented using
CIL (C Intermediate Language) [9]. Operating on the intermediate representation of C
programs generated by CIL, code analysis and transformation are performed, such as
code injection after an assignment to a visible variable.

The runtime mainly consists of the scheduler and a module for storage or wireless
transmission of buffers containing log entries. The runtime maintains a separate thread
for sending off buffers with log entries in the background.

In our current implementation, changing .oscm file requires to preprocess and com-
pile the code and to upload the new image to the sensor nodes. However, through bi-
nary instrumentation techniques [2] and run-time dynamic linking [3], it would also be
possible to insert new visible objects, update modules and load new modules into an
executing program without losing its state. We leave this aspect for future work.

4 Case Study

To verify the feasibility of our design, we conduct a preliminary experiment on apply-
ing vLevels to a target tracking application similar to EnviroTrack [1]. We investigate
memory overhead, runtime overhead, as well as the impact of buffer size on observation
accuracy and bandwidth throttling. We choose Tmote sky as our sensor node hardware
platform and Contiki [4] for the operating system running on the nodes. The experiment
is carried out using the cycle-accurate COOJA/MSPSim simulator [5].

4.1 Tracking Application

We consider a simplified single-target tracking application where sensor nodes can
sense the proximity of the target (e.g., using an IR light sensor to detect the presence of
living beings). If the sensor reading is above threshold the target is considered detected.
One of the nodes close to the target is elected as the leader and all detecting nodes send
messages with their sensor values and locations to the leader which computes the target
location and notifies a sink. When the target moves away from the the leader, the leader
role is handed over to a closer node. The tracker is implemented as a state machine with

Visibility Levels 57

states idle (no target detected), leader, candidate (target detected but not a neighbor of
the leader), member (target detected and neighbor of a leader), sentry (no target detected
but neighbor of leader), or temporary (a leader that lost the target). A candidate turns
into leader if it did not receive an announcement from another leader during a certain
timeout.

4.2 Visibility Specification

In our experiment, four visible objects are declared to observe the execution of the ap-
plication. The first visible object is the state m state of the tracker with three visibility
levels: level 3 (the original value of every assignment to the variable), level 2 (one bit
indicating if the state is unstable (i.e., candidate or temporary) or stable (i.e., remaining
states)), level 1 (empty log entries indicating the assignment of the state variable). The
second visible object is the local variablelight in functionsample light proce-
ss, holding the most recent sensor reading. There are three visibility levels: level 3
(original variable values), level 2 (values greater than the detection threshold), level 1
(empty log entries indicating assignment of values greater than the threshold). The third
visible object is the invocation of election timeout, the timeout callback function
for leader election. There is only one visibility level (empty log entries indicating the
invocation of the function). The last visible object is tp leader cycle, a tracepoint
in the target estimation function of the leader creating snapshots of four variables: the
number of report messages received from members, the average sensor reading com-
puted by leader, and the estimated (x, y) location of the target. There are four visibility
levels: level 4 (values of all variables), level 3 (number of reports, the most significant
4 bits of the target position (x, y), the most significant 8 bits of the average sensor
reading), level 2 (number of reports), level 1 (empty log entry indicating the hit of the
tracepoint).

The observation scheme specifies a bandwidth budget of 4 bytes/s. The priorities
of visible objects m state and election timeout are set to 1, the priority of
tp leader cycle is set to 2, and the priority of light is set to 3. DDE is selected
as replacement policy for all objects.

4.3 Memory Overhead

We investigate the memory (RAM, ROM) overhead of vLevels by compiling the output
of the preprocessor with msp430-gcc version 3.2.3 with the -Os optimization switch
using a June 18, 2010 CVS snapshot of Contiki.

Table 2 shows memory footprint a) without vLevels, b) with vLevels and 0 byte
buffers and no visible objects, and c) with vLevels and 50 byte buffers and all four vis-
ible objects, respectively. b) results in an increase of RAM by 70 bytes and an increase
of ROM by 2608 bytes. As vLevels maintains two buffers, the two 50 byte buffers in c)
result in an increase of RAM by 100 bytes. Besides buffer overhead, an additional 10
bytes of RAM are required for each visible object. Additional visibility levels result in
extra ROM consumption. Also, instrumentation for snapshot creation results in ROM
overhead. One logging instrumentation for a 16-bit variable consumes about 40 bytes.
The tracker state variable is assigned at 15 places, resulting in a ROM overhead of 600

58 J. Ma and K. Römer

Table 2. vLevels memory footprint for Contiki on Tmote sky

Binary RAM (bytes) ROM (bytes)
Tracking application 5956 29510
+vLevels 0B 6026 32118
+vLevels 50B 6166 33808

bytes. In summary, the overhead of vLevels is about 2% of the total RAM and 8% of the
total ROM of a Tmote Sky for the studied application, which we find to be acceptable.

4.4 Runtime Overhead

To evaluate the runtime behavior of vLevels, we run the application with vLevels in the
COOJA/MSPSim simulator (CPU speed 3.9 MHz). We only consider a single tracking
node. The experiment lasts 300 seconds, the target appears at 50 seconds, remains static,
and disappears at 250 seconds. We measure the vLevels overhead in terms of CPU
cycles for initialization (call to vlevel init), logging (invocation of vlevel log),
the buffer management thread (buf proc), and the send thread excluding the actual
transmission of the data (logcast proc).

Table 3. Average cycle counts of different parts of vLevels

buffer size vlevel init vlevel log buf proc logcast proc total ratio
12 1716 1056 803 1803 489378 0.04%
24 1716 821 799 1775 413061 0.04%
48 1716 866 791 1723 390942 0.03%

Table 3 shows the average cycle counts of these parts of vLevels during the ex-
periment for different buffer sizes. vlevel log is invoked 130 times in total and its
cycle count varies with buffer size. Small buffers result in higher overhead as the sched-
uler must downgrade visibility levels more frequently to fit everything into the buffer.
The overheads of buf proc and logcast proc are independent of the buffer size,
but buf proc is called more often for smaller buffers. The number of invocations to
logcast proc is proportional to the bandwidth constraint given by users. Finally, we
calculated the aggregate overhead introduced by vLevels during the complete experi-
ment and the ratio of the aggregate overhead to the total CPU cycles as shown in Table
3, which we find to be acceptable.

4.5 Accuracy and Bandwidth

Observation is the more accurate, the higher the selected visibility levels. Figure 3 de-
picts the visibility levels selected by the scheduler over time for the four visible objects
for different buffer sizes. The figure shows that the visibility level of light degrades
as log entries for objects with higher priority (i.e. m state, election timeout are
generated between time 50 and 250 seconds. Note that higher-priority objects are as-
signed higher visibility levels in case of larger buffer sizes as there is a bigger set of log
entries to pick from when reducing visibility levels. Hence, larger buffers result in more

Visibility Levels 59

a b

Fig. 3. Accuracy of collected data for different buffer sizes

Table 4. Throttled bandwidth and reporting latency by buffer sizes

original data 48B buffer 24B buffer 12B buffer
bandwidth [bytes/sec] 5.53 3.5 3.24 3.94
latency [sec] - 12 6 3

accurate observations at the cost of a longer reporting latency for the same bandwidth
budget.

Table 4 shows the bandwidth of the uncompressed raw logging data and the band-
width throttled by vLevels for different buffer sizes during the experiment. The numbers
show that the throttled bandwidth is always lower than the bandwidth budget specified
in the observation scheme (i.e., 4 bytes/s).

5 Related Work

In the recent past, several techniques and tools for monitoring and debugging deployed
sensor networks have been proposed. Initial efforts towards debugging sensor networks
are Sympathy [10] and Memento [13], both of which support the detection of a fixed
set of problems. To improve repeatability of distributed event-driven applications, En-
viroLog [8] provides an event recording and replay service that helps users to debug
problems that are difficult to reproduce. Tools such as Marionette [17] support log-
ging and retrieval of runtime state for fault diagnosis. Clairvoyant [18] is an interactive
source-level debugger for sensor nodes. Declarative Tracepoints [2] implements a lan-
guage abstraction for insertion of tracepoints into binary program images that bears
some similarity to our notion of visible objects. To minimize the interference with de-
bugged sensor networks, tools such as SNIF [11] that diagnose networks by analyzing
sniffed messages can detect many failure symptoms, but visibility is limited to network
messages. By allowing nodes to broadcast program state, Passive Distributed Assertions
[12] support the detection of bugs caused by the incorrect interaction of multiple nodes.
By optimizing log collection, LIS [14] enables users to extract detailed execution traces
from resource-constrained sensor nodes. In [16], visibility is regarded as an important
metric for protocol design and is improved by creating an optimal decision tree so that
the energy cost of diagnosing the cause of a failure or behavior can be minimized. Un-
like providing a principle for protocol design, our approach creates a mechanism to tune
the visibility of internal node states. Outside the context of debugging, Energy Levels

60 J. Ma and K. Römer

[7] provides a programming abstraction to meet user-defined lifetime goals while max-
imizing application quality, which inspires the idea behind visibility levels. However,
to our knowledge none of these approaches explicitly supports managing the tradeoff
between visibility and resource consumption as vLevels does. Hence, we believe that
vLevels is complementary to these previous techniques.

6 Conclusions

Debugging deployed sensor networks requires visibility of the node states. However,
increasing visibility also incurs a higher resource consumption in terms of commu-
nication bandwidth or storage space. Especially for long-term monitoring of a sensor
network it is hence crucial to find the right balance between sufficient visibility and
tolerable resource consumption. Existing monitoring tools lack the ability to explicitly
manage this tradeoff. We address this limitation by proposing vLevels, a framework
that allows the user to specify a resource budget and the runtime provides best possible
visibility into the system state while not exceeding the resource budget. By means of a
case study of a tracking application we showed that the memory and runtime overhead
of vLevels is reasonably small and that vLevels can automatically adjust visibility to
meet the resource budget.

References

1. Abdelzaher, T., Blum, B., Cao, Q., Chen, Y., Evans, D., George, J., George, S., Gu, L., He,
T., Krishnamurthy, S., Lou, L., Son, S., Stankovic, J., Stoleru, R., Wood, A.: Envirotrack:
Towards an environmental computing paradigm for distributed sensor networks. In: Proc.
ICDCS 2004, pp. 582–589. IEEE Computer Society, Washington (2004)

2. Cao, Q., Abdelzaher, T., Stankovic, J., Whitehouse, K., Luo, L.: Declarative tracepoints: a
programmable and application independent debugging system for wireless sensor networks.
In: Proc. SenSys 2008, pp. 85–98. ACM, New York (2008)

3. Dunkels, A., Finne, N., Eriksson, J., Voigt, T.: Run-time dynamic linking for reprogramming
wireless sensor networks. In: Proc. SenSys 2006, pp. 15–28. ACM, New York (2006)

4. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system
for tiny networked sensors. In: Proc. LCN 2004, pp. 455–462. IEEE Computer Society,
Washington (2004)

5. Eriksson, J., Österlind, F., Finne, N., Tsiftes, N., Dunkels, A., Voigt, T., Sauter, R.,
Marrón, P.J.: Cooja/mspsim: interoperability testing for wireless sensor networks. In:
Proc. SIMUTools 2009, pp. 27–27. ICST, Brussels (2009)

6. Kicales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:
Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, Springer, Heidelberg (1997)

7. Lachenmann, A., Marrón, P.J., Minder, D., Rothermel, K.: Meeting lifetime goals with en-
ergy levels. In: Proc. SenSys 2007, pp. 131–144. ACM, New York (2007)

8. Luo, L., He, T., Zhou, G., Gu, L., Abdelzaher, T.F., Stankovic, J.A.: Achieving repeatability
of asynchronous events in wireless sensor networks with envirolog. In: Proc. INFOCOM
2006, pp. 1–14. IEEE Press, New York (2006)

9. Necula, G.C., Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate lan-
guage and tools for analysis and transformation of c programs. In: Parra, G. (ed.) CC 2002.
LNCS, vol. 2304, pp. 209–265. Springer, Heidelberg (2002)

Visibility Levels 61

10. Ramanathan, N., Chang, K., Kapur, R., Girod, L., Kohler, E., Estrin, D.: Sympathy for the
sensor network debugger. In: Proc. SenSys 2005, pp. 255–267. ACM, New York (2005)

11. Ringwald, M., Römer, K., Vitaletti, A.: Passive inspection of sensor networks. In: Aspnes, J.,
Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007. LNCS, vol. 4549, pp. 205–222.
Springer, Heidelberg (2007)

12. Römer, K., Ma, J.: PDA: Passive distributed assertions for sensor networks. In: Proc. IPSN
2009, pp. 337–348. IEEE Computer Society, Washington (2009)

13. Rost, S., Balakrishnan, H.: Memento: A health monitoring system for wireless sensor net-
works. In: IEEE SECON 2006, pp. 575–584. IEEE Press, New York (2006)

14. Shea, R., Srivastava, M., Cho, Y.: Lis is more: Improved diagnostic logging in sensor
networks with log instrumentation specifications. Tech. Rep. TR-UCLA-NESL-200906-01
(June 2009)

15. Tsiftes, N., Dunkels, A., He, Z., Voigt, T.: Enabling large-scale storage in sensor networks
with the coffee file system. In: Proc. IPSN 2009, pp. 349–360. IEEE Computer Society,
Washington (2009)

16. Wachs, M., Choi, J.I., Lee, J.W., Srinivasan, K., Chen, Z., Jain, M., Levis, P.: Visibility: a
new metric for protocol design. In: Proc. SenSys 2007, pp. 73–86. ACM, New York (2007)

17. Whitehouse, K., Tolle, G., Taneja, J., Sharp, C., Kim, S., Jeong, J., Hui, J., Dutta, P., Culler,
D.: Marionette: using rpc for interactive development and debugging of wireless embedded
networks. In: Proc. IPSN 2006, pp. 416–423. ACM, New York (2006)

18. Yang, J., Soffa, M.L., Selavo, L., Whitehouse, K.: Clairvoyant: a comprehensive source-level
debugger for wireless sensor networks. In: Proc. SenSys 2007, pp. 189–203. ACM, New York
(2007)

Flexible Online Energy Accounting in TinyOS

Simon Kellner

System Architecture Group
Karlsruhe Institute of Technology

kellner@kit.edu

Abstract. Energy is the most limiting resource in sensor networks. This
is particularly true for dynamic sensor networks in which the sensor-net
application changes its hardware utilization over time. In such networks,
offline estimation of energy consumption can not take into account all
changes to the application’s hardware utilization profile and thus invari-
ably returns inaccurate estimates. Online accounting methods offer more
precise energy consumption estimates. In this paper we describe an online
energy accounting system for TinyOS consisting of two components: An
energy-estimation system to collect information about energy consump-
tion of a node and an energy-container system that allows an application
to collect energy-consumption information about its tasks individually.
The evaluation with TinyDB shows that it is both accurate and efficient.

Keywords: energy accounting policy tinyos.

1 Introduction

Energy still is the most critical resource in sensor networks. Limitations on en-
ergy supply as well as on other resources have led to operating system designs
that offer only minimalistic hardware abstractions. The core of TinyOS, for ex-
ample, is an event-based system that helps application developers in dealing with
asynchronous hardware requests, and little else. One effect of this design decision
is to make developers more considerate about hardware usage and therefore en-
ergy consumption. TinyOS makes it hard to actively wait for a hardware event
to occur, while making it easy to react to the same event, which is the more
energy-efficient approach in most situations.

One approach to designing sensor-net applications that meet pre-defined en-
ergy consumption requirements is to develop an application whose hardware
utilization pattern is simple enough to allow predictions on the application’s en-
ergy consumption. Global parameters of such applications can then be changed
to accommodate energy consumption requirements. But the lack of convenient
hardware abstractions does not necessarily limit developers in creating complex
applications. A sensor network running the TinyOS-based TinyDB application,
for example, allows users to issue (SQL-like) queries to the sensor network at a
time of their choosing. Planning the energy consumption of nodes in this net-
work can not be done a-priori, because the energy consumption characteristics
of a node running TinyDB change with the queries it processes.

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 62–73, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Flexible Online Energy Accounting in TinyOS 63

Control of energy consumption in this scenario is only feasible using online
energy accounting on the sensor nodes. Information on the energy consumption
of whole nodes, however, does not offer much information. An energy-intensive
query might, for example, be only revealed by comparing node energy consump-
tion before and after a query was sent into the network. Energy consumption of
queries, on the other hand, can be readily used to decide if a query consumes too
much energy and has to be canceled before it wears down the energy supplies of
the sensor network.

This paper makes the following contributions:

– An online energy-estimation system for TinyOS that allows sensor nodes to
become aware of their energy consumption.

– An energy container system for TinyOS that allows application developers
to collect energy-consumption information about control flows in the appli-
cation.

– A set of accounting policies that can be used to adapt the energy-container
system to its purpose as set by the application developer.

The paper is structured as follows: After presenting related work in Sect. 2 we
define a usage scenario in Sect. 3 that will be referenced later on. Then we present
the design and selected implementation issues of the energy estimation system
(Section 4) and the energy container system (Section 5). Section 6 details several
accounting policies of our energy-container system. Following an evaluation of
our systems in Sect. 7 we conclude with an outline of future work in Sect. 8 and
closing remarks in Sect. 9.

2 Related Work

Management of energy in sensor networks has received significant attention in
research over the last years, as it concerns the primary resource of such networks.

PowerTOSSIM[7] is similar to our own energy estimation system. It instru-
ments OS components or simulations thereof to track power states and uses an
energy model to compute energy consumption for one or more sensor nodes.
PowerTOSSIM, however, targets off-line simulation, whereas our instrumenta-
tion and model are designed to be used in on-line energy accounting.

AEON [5] is the energy model used in the Avrora [8] simulator. It models the
hardware’s power states of a MICA2 node. Our energy model is based primarily
on the MICAz node and additionally considers transitions between hardware
states.

Schmidt, Krämer et al. [6] present another energy model used to make existing
simulators energy-aware. Although they mention the potential to use their energy
model in online energy estimation, they do not elaborate on that option further.

Dunkels et al. [2] present an energy-estimation system for the Contiki OS. This
system is used to estimate energy consumption per hardware components. We
employ a similar energy-estimation system and extend it with energy containers
to a full energy-accounting system that is able to account energy based on control
flows, which may span multiple hardware components.

64 S. Kellner

Quanto [3] is an energy profiling mechanism for TinyOS that accounts energy
consumption information of activities in an application. It employs a hardware
energy meter to measure the total energy consumption of a sensor node, and tries
to break this information down to energy consumption of individual hardware
components. Our energy estimation system does not require any hardware in-
strumentation. It also provides more options for accounting policies, facilitating
more use cases than energy profiling.

Resource Containers [1] are an abstraction in an operating system (OS) intro-
duced by Banga, Druschel and Mogul providing flexible, fine-grained resource
accounting on web-servers. The main idea is to separate execution (processes)
from resource accounting, so that an application itself can define the entity being
subject to accounting. In operating systems featuring CPU abstractions such as
threads or processes, Resource Containers give administrators and users the abil-
ity to account all activity connected to a user request, which usually has a higher
significance than process-based accounting. We adapt this concept to TinyOS
and focus solely on energy as a resource. Consequently, we call our containers
energy containers.

3 Scenario

In this paper we use the following reference scenario. A network of sensors is pro-
grammed with a dynamic application like TinyDB. We assume multiple users
of the sensor network who periodically retrieve data from the network. They
retrieve data by injecting queries into the network, which are then periodi-
cally processed by the application on the sensor nodes until a user stops them.
The sensor-net application can process multiple queries concurrently over a long
period of time.

Network operators and users should be able to intervene in the query process-
ing to save energy.

4 Online Energy Estimation

An important part of the energy accounting system is the on-line estimation of
a sensor node’s energy consumption.

We recognize a sensor node as a collection of simple, independent hardware
components controlled by one microcontroller (MCU). Therefore, we model a
node’s energy consumption using a collection of small state machines, one for
each independent hardware component.

These state machines have a state for each distinguishable hardware power
state, i.e., a hardware state exhibiting a characteristic current draw. Each state s
is annotated with this current draw Is. Transitions t in this state machine are
annotated with the amount of electric charge Qt they consume.

To compute an estimation of the energy a hardware component has consumed,
we record the time Ts the hardware spent in each state s as well as the number
of times Nt each transition t occurred and compute the estimated consumed
energy E as

Flexible Online Energy Accounting in TinyOS 65

E

V
=

∑
s

TsIs +
∑

t

QtNt . (1)

This is the same idea Dunkels et al. [2] use in their online energy estimation for
the Contiki operating system.

We implemented the online energy estimation method presented above in
TinyOS 2 for the MICAz platform. At the time of writing, we have energy
estimation implementations for the ATmega128 microcontroller, the CC2420
radio chip, the LEDs, and the magnetometer on the MTS300 sensor board.

5 Energy Container System

To store the estimated energy usage per query, we employ a hierarchy of energy
containers. With multiple energy containers in the system (e.g., for concurrent
queries), we need some help from the application (e.g., TinyDB) to map activities
to energy containers. Our energy-container system keeps this association intact.

In this section we will first present energy-container types and their structure
in our system. We then will describe the way in which the application should
interact with the energy container system. Afterwards we will detail how our
system keeps energy-container associations intact.

5.1 Energy Container Structure

In our system, energy containers are hierarchically structured, as shown in Fig. 1.
Most containers in our energy container system are under the control of the

application developer. They can be allocated, read, and released at the applica-
tion’s discretion. The application can also switch between containers, indicating
that subsequent computations should be accounted to a different container.

In addition to these normal containers, the root container holds the energy
consumption of a whole sensor node: All energy consumption is accounted both
to the container selected by the application and to the root container. Together,
these two types of containers form a flat hierarchy.

Fig. 1. Hierarchy of energy containers

ec_id newContainer();
void attachToContainer(ec_id id);
void switchToContainer(ec_id id);
uint32_t getContainer(ec_id id);
uint32_t getRootContainer();
void stopMonitoring(ec_id id);

Fig. 2. Interface tothecontainer system

66 S. Kellner

As a special case, a temporary container is used in cases where the application
cannot know (yet) to which container the current energy consumption should be
accounted. On a sensor node such a situation only occurs whenever a message
is received by the radio: The message can belong to the query currently active,
lead to the creation of a new query, or it could not be associated to query
processing at all. For these cases we use one extra container that is activated
upon reception of a message and is treated in a special way: When the message
is found to belong to a known query, or creates a new one, the application has
to attach the temporary container to the normal container used for that query.
In this case the contents of the temporary container are added to the normal
container, the currently active container is set to the normal container, and
the temporary container is deactivated. If the application does not attach the
temporary container to a normal one, our container system apportions the energy
accounted to the temporary container among all currently active containers at
the end of the message reception handler routine.

5.2 Energy Container Interface

Figure 2 shows the interface an application should use to work with our en-
ergy container system. The commands are ordered as they would be used in an
application.

Upon reception of a query message, the application attaches itself to a known
container (attachToContainer) or to a newly created one (newContainer). Be-
fore an application starts a processing step of a query, it switches to the container
created for that query (switchToContainer). When creating a query response
message, the application may choose to include the contents of one or more
energy containers (get{,Root}Container). If a query should no longer be pro-
cessed (i.e., removed from the system), it invokes stopMonitoring to completely
deactivate the indicated container.

The presented interface intentionally does not provide full control over energy
containers. For instance, there is no command to deactivate the currently active
container without either removing it completely from the system or switching
to another container. In our opinion, every action on a sensor node should be
accountable to a request made by a user of a sensor network. Nevertheless it is
possible to create new containers, for example, to account a maintenance task
that is run on a sensor node and is independent of any queries.

Also intentionally absent from the energy container interface are commands
to operate on the contents of the energy containers. We separate operations
on energy containers within our energy container system from the operations
on energy values in the application. It is the responsibility of the application
to make network-wide use of these locally obtained energy values. Our energy-
container system can not automatically handle all cases of aggregation that an
application may perform on energy values.

Flexible Online Energy Accounting in TinyOS 67

5.3 Energy Container Implementation

As the previous section on the energy container interface shows, the application
has to be modified to use energy containers. Naturally we strive to require as
few changes to the application as possible, which means that our system has to
keep associations to energy containers intact.

Resource containers in UNIX are attached to threads, so thread control blocks
would be used to store references to associated resource containers, and the
reference to the currently active thread would be used to access the currently
active resource container. TinyOS, however, does not provide a CPU abstraction
such as threads. TOSthreads, a TinyOS library providing threads, is optional
and many applications do not require it, including TinyDB. TinyOS at its core
therefore lacks a structure like a thread control block and a reference to the
currently active thread.

In the absence of threads, we have to implement container associations in a
different way: We use a set of TinyOS components to track the control flow of
an application and to keep an energy container associated to this control flow.
By control flow we mean a series of actions (instruction execution, hardware
operation) where every action is a direct consequence of the actions preceding
it. For example, a control flow to sample a value from a sensor can comprise:
issuing a read() call, turning on the sensor, configuring it, reading it, turning
the sensor off, and returning the value to the application in a readDone event.

A control flow can be suspended several times during its course through
TinyOS, but all these suspensions stem from two cases: software queues and
hardware operations. We say that a control flow is suspended when a piece
of code performs an enqueue operation, and that it is resumed on the related
dequeue operation. Similarly, we say that a control flow is suspended when it
starts a hardware operation, and that it is resumed when the hardware causes
an interrupt handler to be executed.

Software queues are frequently used in TinyOS. For example, instances of
software queues are the queue of timer events in virtual timers, message output
queues of communication modules, access request queues of shared resources,
and the scheduler queue.

We instrumented several TinyOS components to send information about
enqueue-, dequeue-, and hardware operations to our subsystem for control flow
tracking. For software queues we implemented shadow queues of energy contain-
ers. During the enqueue operation, the shadow queue enqueues a reference to the
currently active energy container, thereby associating the object being enqueued
with this energy container. When an object is dequeued, the corresponding en-
ergy container from the shadow queue is activated, resuming the control flow
with the energy container association intact. Control flow tracking over software
queues is illustrated in Fig. 3.

Figure 4 shows that control flow tracking in hardware is handled differently.
Not only is there just one energy container association that has to be stored,
but, more importantly, the concurrency of hardware operations and program
execution on the microcontroller means that there can be multiple active energy

68 S. Kellner

Fig. 3. Control flow tracking of
software queues

Fig. 4. Control flow tracking of
hardware operations

containers on one node, each one associated with a different hardware com-
ponent. Thus, our control-flow subsystem copies the current energy container
association from the microcontroller to the hardware, and copies the association
back when a hardware signal is received.

Altogether, the control flow tracking components ensure that an application
has to switch containers only inside its own components, and only on switching
query processing from one query to another.

6 Accounting Policy

Energy consumed during use of a hardware component is accounted to the energy
container associated with the active control flow on the hardware. But energy is
also consumed by the hardware before and after use: On startup, on shutdown,
and between uses. We call this kind of energy consumption collateral.

There are many ways in which collaterally consumed energy can be accounted.
The choice between these ways depends on the hardware usage pattern of the
operating system, as the usage pattern defines whether collaterally consumed
energy can be shared or not. It also depends on the reason why energy accounting
is used: For energy profiling purposes, for example, an application developer
might prefer not to account collaterally consumed energy at all, or account it to
a separate container. A provider of a TinyDB network, however, might prefer to
have all energy consumption accounted to TinyDB queries in a fair manner. As
energy profiling systems already exist, we focus on a fair energy accounting in
the TinyDB scenario. We identify hardware usage patterns and choose a suitable
apportioning policy.

6.1 Single Use

The hardware usage pattern of the microcontroller (MCU) is simple: Its startup
overhead is negligible, and then there is only one active control flow at a time.
The apportioning policy used on energy consumed by the MCU is equally simple:
Account energy consumption to the active energy container, or, if there is no
active energy container, distribute it evenly among all normal energy containers
in the system.

Flexible Online Energy Accounting in TinyOS 69

6.2 Shared Use

If the startup overhead of a hardware component is not negligible, other appor-
tioning policies must be used. A policy suited for most devices is to share the col-
laterally consumed energy among all containers which were associated in the time
interval between startup and shutdown of a hardware component. The collaterally
consumed energy could either be apportioned evenly to these containers, or pro-
portionally to their hardware usage. We use an evenly apportioning policy for the
magnetometer sensor on the MTS300 sensor board, which has a large startup over-
head (waiting 100ms for the sensor to stabilize) and negligible use costs (taking an
A/D converter sample is done in a few clock cycles of the MCU). The implemen-
tation is integrated into the ICEM[4] framework for shared devices in TinyOS, so
that other devices may easily be instrumented as well.

We use the same policy to account the energy consumption of the radio chip
in the “low-power listening” mode offered by TinyOS. In this mode, TinyOS
repeats the transmission over a configurable time interval, until it either receives
an acknowledgment, or a timeout occurs. A node that should receive messages
can thus settle on periodically checking for transmissions and keeping the radio
chip turned off between checks. The repeated attempts at sending a message
can be viewed as a form of synchronization: Barring radio noise, if more mes-
sages are sent to the same receiver immediately after one transmission attempt
succeeded, those messages will arrive on their first transmission attempt. We
treat all transmission attempts but one (the successful one) as synchronization
overhead to be accounted to all energy containers of successive messages to the
same receiver.

6.3 Continuous Use

Yet another different policy is needed for the radio chip if the application is
not configured to use energy-saving mechanisms such as low-power listening. In
this case, TinyOS keeps the radio powered on continuously. The absence of use
intervals makes it difficult to assign a fair share of collaterally consumed energy
to a container. We employ a log of all energy containers that were used to send or
receive messages, and apportion collaterally consumed energy of the radio chip
to all these containers using a geometric distribution, so that containers using
the radio more often will bear most of the energy consumption.

7 Evaluation

We evaluated our energy container system using TinyDB. As a first step, we
ported TinyDB to TinyOS 2.1.0. TinyDB is a large sensor-net application con-
sisting of over 140 files with a total of over 25,000 lines. It does not fit in the
program memory of a TelosB node (48 kBytes) and uses nearly all program mem-
ory of a MICAz node (∼ 60 of 64kBytes), even with several features such as
query sharing and “fancy” aggregations deactivated. The output file of the nesC

70 S. Kellner

compiler comprises nearly 40,000 lines of code when TinyDB is compiled for
MICAz nodes.

TinyDB is a dynamic sensor-net application in that it allows users to inject
queries at run-time, and allows to run a limited number of different queries
simultaneously. This makes it an ideal application to benefit from our flexible
online energy accounting system.

We evaluated our system with regard to the following aspects:

– Ease of use: The work required to add energy containers to TinyDB.
– Overhead: The additional costs of using energy containers.
– Accounting fairness: Fairness of energy consumption distribution.
– Accuracy: Accuracy of the energy estimation system.

7.1 Experimental Setup

In our evaluation we used two TinyDB applications: TinyDB-noec is a regular
TinyDB application.

In TinyDB-full, which is based on TinyDB-noec, we create an energy con-
tainer for each new query, and send the energy consumption information in this
container back to the base station.

To measure the estimation error of our energy estimation system, we addi-
tionally modified TinyDB-full to include a new field in status messages. In this
field TinyDB-full reports the difference of the current root container contents to
its contents when the first query injection message arrived. Immediately after
terminating the last active query on our measured sensor node, we sent a status
request message and recorded the energy reported in the status message. Differ-
ences between the reported energy values and the measured energy consumption
are caused by errors in the energy estimation system.

We used three queries that exhibit different hardware usage. Each of these
queries is periodically processed by TinyDB in so-called epochs, each epoch being
about 750ms in length by default. At the begin of an epoch, result values are
computed for each query, and at the beginning of the next epoch, they are sent
out in a query result message. The queries run until they are stopped by a user.

One query, select nodeid, qids, uses only information already present in
the microcontroller, namely the ID of the node and the IDs of the currently
active queries. We used two versions of this query, one using default settings
(sample period 1024) and one having an epoch length of double the default
value (sample period 2048).

The third query used, select nodeid, mag x, samples the x-direction of the
magnetometer on a MTS300 board, which makes this query consume signifi-
cantly more energy than the first one.

7.2 Ease of Use

To provide energy containers in TinyDB-full, we had to add 59 lines of code
and to make small changes to 5 lines of code. About half of these changes were
straightforward changes, like adding fields to message structures and filling them.

Flexible Online Energy Accounting in TinyOS 71

7.3 Overhead

We measured two kinds of overhead in our test application: One is the increased
code size and memory usage, the other one is additional energy consumption.

As Table 1 shows, adding energy containers to TinyDB caused close to 4000
lines of code to be included in the C file generated by the nesC compiler (which
contains the whole application).

Table 1. Sizes of the applications used in our evaluation. Lines of (C) code as reported
by cloc (cloc.sourceforge.net), Program size and Memory usage as reported by the
TinyOS build system.

Application Lines of code Program size Memory usage Avg. current draw
[byte] [byte] [mA]

TinyDB-noec 39175 57382 3292 23.375
TinyDB-full 42971 63552 3449 23.312

We also measured the energy consumption overhead caused by our energy
container system. To this end we ran one query (select nodeid, mag x) for
about 40 seconds on each of our applications multiple times and measured the
current draw. The average current draw is also shown in Table 1. The difference in
current draws is 63.1�A, which is only slightly larger than the standard deviation
of the average current draws (which was 31.1�A for TinyDB-noec and 45�A for
TinyDB-full).

7.4 Accounting Fairness

As an example of how energy containers could be used, we issued two queries
with different hardware usage: Both queries requests only information about the
software, which is available at virtually no cost (select nodeid, qids), but at
different sample rates. Query 2 (sample period 1024) should send at double
the rate of Query 1 (sample period 2048). Query 2 is injected after Query 1
and stopped before Query 1, so that energy is accounted first to one, then two,
and again one container.

When both queries are active and synchronized, the radio should be used
alternately by one and two queries. We configured the sensor node to use the low-
power listening mode of TinyOS, and used a shared policy to account collaterally
consumed energy on the two energy containers of the queries.

The energy container contents of the queries are reported in the query result
messages. Figure 5 shows these energy values plotted as they are sampled at the
sensor node. Also shown in the figure is the sum of the most recent energy values
of both queries, which should closely resemble the measured energy consumption.

Figure 5 shows that query 2 draws more power than query 1, which can be
explained by its higher message sending rate. Query 1 profits from Query 2 in
that it is charged with less energy consumption when Query 2 is active.

cloc.sourceforge.net

72 S. Kellner

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350

E
ne

rg
y

co
ns

um
pt

io
n

[J
]

Time [s]

Measured energy consumption
Sum of reported energy consumption

Query 1 (sample period 2048)
Query 2 (sample period 1024)

Fig. 5. Energy consumption reported by queries

7.5 Accuracy

To determine the accuracy of our energy estimation system, we measured the real
energy consumption of our node and compared the measurements to the contents
of the node’s root energy container in all of the tests involving TinyDB-full, i.e.,
some of the overhead tests and the previous example.

The energy consumption recorded in the root container was within 3% of the
measured energy consumption.

8 Future Work

In further work, we plan to improve our implementation to support a greater
variety of hardware. Preliminary measurements indicate that the supply voltage
has an effect on current draw that varies between chips. We are looking on how
best to capture this behavior appropriately in our energy model.

We also plan to incorporate distributed energy management into TinyDB that
makes use of our energy-container system.

9 Conclusion

In this paper, we described a flexible online energy accounting system for TinyOS,
the basis of which is an online energy estimation system. We introduced energy
containers in TinyOS as specialized resource containers, allowing us to account
energy consumption of parts of a sensor-net application separately. Evaluation of
our implementation shows it to be accurate and to have a low energy overhead.

Flexible Online Energy Accounting in TinyOS 73

References

1. Banga, G., Druschel, P., Mogul, J.: Resource containers: A new facility for resource
management in server systems. In: Proceedings of the Third Symposium on Oper-
ating System Design and Implementation (OSDI 1999), pp. 45–58 (February1999),
http://www.cs.rice.edu/~druschel/osdi99rc.ps.gz

2. Dunkels, A., Österlind, F., Tsiftes, N., He, Z.: Software-based on-line energy estima-
tion for sensor nodes. In: Proceedings of the 4th workshop on Embedded networked
sensors (EMNETS 2007), pp. 28–32. ACM, New York (2007)

3. Fonseca, R., Dutta, P., Levis, P., Stoica, I.: Quanto: Tracking energy in networked
embedded systems. In: Proceedings of the 8th USENIX Symposium on Operating
System Design and Implementation (OSDI 2008), pp. 323–338. USENIX Associa-
tion (December 2008),
http://www.usenix.org/events/osdi08/tech/full_papers/fonseca/fonseca.pdf

4. Klues, K., Handziski, V., Lu, C., Wolisz, A., Culler, D., Gay, D., Levis, P.: Integrat-
ing concurrency control and energy management in device drivers. In: Proceedings of
the twenty-first ACM SIGOPS Symposium on Operating Systems Principles (SOSP
2007), pp. 251–264. ACM, New York (2007)

5. Landsiedel, O., Wehrle, K., Götz, S.: Accurate prediction of power consumption
in sensor networks. In: Proceedings of the second IEEE Workshop on Embedded
Networked Sensors (EmNetS-II), pp. 37–44 (May 2005)

6. Schmidt, D., Krämer, M., Kuhn, T., Wehn, N.: Energy modelling in sensor networks.
Advances in Radio Science 5, 347–351 (2007),
http://www.adv-radio-sci.net/5/347/2007/ars-5-347-2007.pdf

7. Shnayder, V., Hempstead, M., Chen, B., Werner-Allen, G., Welsh, M.: Simulating
the power consumption of large-scale sensor network applications. In: Proceedings of
the 2nd International Conference on Embedded Networked Sensor Systems, SenSys
2004, pp. 188–200. ACM Press, New York (2004)

8. Titzeri, B.L., Lee, K.D., Palsberg, J.: Avrora: scalable sensor network simulation
with precise timing. In: Proceedings of the 4th International Symposium on Infor-
mation Processing in Sensor Networks, IPSN 2005, p. 67. IEEE Press, Piscataway
(2005)

http://www.cs.rice.edu/~druschel/osdi99rc.ps.gz
http://www.usenix.org/events/osdi08/tech/full_papers/fonseca/fonseca.pdf
http://www.adv-radio-sci.net/5/347/2007/ars-5-347-2007.pdf

TikiriDev: A UNIX-Like Device Abstraction for
Contiki

Kasun Hewage, Chamath Keppitiyagama, and Kenneth Thilakarathna

University of Colombo School of Computing, Sri Lanka
{kch,chamath,kmt}@ucsc.cmb.ac.lk

Abstract. Wireless sensor network(WSN) operating systems have re-
source constrained environments. Therefore, the operating systems that
are used are simple and have limited and dedicated functionalities. An
application programmer familiar with a UNIX-like operating system has
to put a considerable effort to be familiarized with WSN operating sys-
tems’ Application Programming Interface(API). Even though, UNIX-like
operating systems may not be the correct choice for WSNs, some of their
powerful, yet simple abstractions such as file system abstraction can be
used to overcome this issue.

In this paper, we discuss a UNIX-like file system abstraction for Con-
tiki. File system abstraction is not the panacea. However, it adds to the
repertoire of abstractions provided by the Contiki, thus easing the task
of the application programmers.

Keywords: Sensor Networks, Device Abstractions, File Systems.

1 Introduction

With the advancements of WSNs, several operating systems have been invented
with different features to make the programming easier. Popular WSN operating
systems such as TinyOS [1], Contiki [2], SensOS [3] and MantisOS [4] provide
location and sensor type dependent access methods. Several concepts such as
treating the WSN as a database [5] and a file system [6] have been proposed
over the years to ease the application development for WSNs. Other approaches
such as SensOS, Contiki and MantisOS provide access to only locally attached
devices.

Developing applications for WSN operating systems is a challenging task when
compared to general purpose operating systems. One of the main reasons is that
the lack of familiar abstractions in WSN operating systems. We observed that
an application programmer who is familiar with UNIX-like operating system
has to put a considerable effort to be familiarized WSN operating systems’ API.
In UNIX-like operating systems, devices are accessed as files. It has proven to
be a simple, yet powerful abstraction. While UNIX-like operating systems may
not be the correct choice for WSNs, some of their powerful abstraction concepts
can be incorporated into popular WSN operating systems to overcome above
mentioned issue.

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 74–81, 2010.
� Springer-Verlag Berlin Heidelberg 2010

TikiriDev: A UNIX-Like Device Abstraction for Contiki 75

Sensor NetworkComm-
multiplexer

Applications

TikiriDev API

Device
Drivers

Hardware

Device Manager

Node A

Comm-
multiplexer

Applications

TikiriDev API

Device
Drivers

Hardware

Device Manager

Node B

Ad-hoc routing

Fig. 1. Communication between two nodes

In this paper, we present the design and implementation of an extension to
Contiki operating system which we named TikiriDev. The extension allows ap-
plication programmers to access local and remote devices in a WSN as files which
are named under a single network wide namespace. To be precise, every sensor
node in a particular WSN see the same file system abstraction regardless of
the application that they use. API calls that are similar to file handling system
calls in UNIX-like operating systems such as open(), read(), write(), close() and
ioctl() are used to manipulate the devices of a particular WSN in a location and
network transparent manner. In addition to the sensors, nodes may consist of
several other components such as actuators and storage media.

2 Design and Implementation

Since TikiriDev is an extension for Contiki to access devices, it is essential to
explore the existing device accessing methods in Contiki. Contiki uses three func-
tions, status(), configure() and value() to access sensor devices. These functions
have to be implemented in the device driver of each sensor device. In addition,
an event based mechanism is also used to notify the availability of asynchronous
data. Event is posted to running processes according to the device driver imple-
mentation whenever asynchronous data are available.

TikiriDev is composed of three main components: Device Manager, Comm-
multiplexer and Device Drivers. For illustration purposes, we have generalized
the entire WSN into a network consisting of two nodes(figure 1).

2.1 Device Manager

In TikiriDev, Device Manager provides the illusion of a file system by hiding
the underlying complexity. The devices seen by the applications are mapped
to the real devices through TikiriDev. Device Manager provides five API calls,
td open(), td pread(), td pwrite(), td ioctl() and td close() to access these devices.

TikiriDev API. Typically, UNIX file handling system calls block the calling
threads until the requested resource is available. Applications in Contiki are

76 K. Hewage, C. Keppitiyagama, and K. Thilakarathna

implemented as processes called protothreads. To implement blocking calls inside
protothreads, we used protothread spawning method as shown in the listing 1.1.

Listing 1.1. Implementing blocking calls inside a protothread
#define td_open (name , flags , fd) \

PROCESS_PT_SPAWN(&((fd)->pt), \
td_open_thread(name , flags , fd))

Since a function which is used as a protothread has only protothread specific
return values, as in UNIX open() system call, file descriptor cannot be re-
turned. Therefore, the file descriptor is given as a reference type argument to
the td open() API call. The prototypes of the five TikiriDev API calls are shown
in the listing 1.2.

Listing 1.2. The prototypes of TikiriDev API
td_open (char *name , int flags , fd_t *fd);
td_close (fd_t *fd);
td_pread (fd_t *fd, char *buffer, unsigned int count ,

unsigned int offset , int *r);
td_pwrite(fd_t *fd, char *buffer , unsigned int count ,

unsigned int offset , int *r);
td_ioctl (fd_t *fd, int request , void *argument , int *r);

The API calls td pread() and td pwrite() are analogous to the UNIX read() and
write() system calls respectively. However, TikirDev API calls take an extra ar-
gument offset. The argument offset provides adequate amount of information
for the device drivers to perform an operation like lseek() itself. Therefore, we do
not provide specific API call to increase/decrease the file pointer when accessing
a storage medium. When reading a device like a temperature sensor which has
an unbounded data stream, the argument offset is discarded.

The API call td ioctl() is used to configure the devices. Moreover, this API
can also be used to receive notifications when asynchronous data is available.

Device tables. Two tables are used to keep the information about the devices.
Local Device Table is used to keep the information about locally attached devices
whereas Remote Device Table is used for the devices on remote nodes. Figure 2
shows the structure of both tables.

File Descriptors. In UNIX-like operating systems, there is a file descriptor
table per process. In TikiriDev, instead of a per process file descriptor table, a
global table is being used. Further, instead of using integer type file descriptors
used in UNIX-like systems, we defined a C structure as the file descriptor as
shown in the listing 1.3.

Since blocking functions in Contiki are protothreads, we have to use it to
implement blocking context in our API calls. TikiriDev transparently spawns a
protothread when an application calls its API calls. Therefore, we embodied the
required control structure into the file descriptor itself. However, the member
variable fd can be used similarly as UNIX file descriptors.

TikiriDev: A UNIX-Like Device Abstraction for Contiki 77

Index Type Sensor/Transducer
Name

Function pt

0 1 door-temp

1 2 door-light

2 3 door-relay

Driver functions

Index Type Sensor/Transducer
Name

Remote
index

Node address

0 1 /room/door-temp 0 10.21

1 2 /room/door-light 1 10.02

2 3 /kitchen/door-relay 2 05.07

4 3 /kitchen/fan-relay 2 05.10

Local Device Table

Remote Device Table

Fig. 2. Local and Remote device tables

Listing 1.3. The C structure which is used as the file descriptor
typedef struct fd {

struct pt pt; /* handler for the newly spawned child protothread */
int fd; /* Actual file descriptor. */

} fd_t;

2.2 Comm-multiplexer

Comm-multiplexer handles all inter-node communications related to device ma-
nipulation. This component is built on top of Rime [7] communication stack
which is the default radio communication stack of Contiki. Since this compo-
nent handles multiple device requests from Device Manager, we extended some
of the Rime’s communication primitives to multiplex several requests via same
connection instead of having a connection per request.

2.3 Device Drivers

Device Manager does not access devices directly. Instead it uses device drivers
to access devices. For any device, the device driver can be represented using a
simple data structure as listed in the listing 1.4. Device driver provider must
implement five driver functions which correspond to the API calls td open(),
td close(), td read(), td write() and td ioctl().

Listing 1.4. The device driver representation in TikiriDev
struct dev_driver {

int (* init)(void);
int (* read)(void *buf, unsigned int count , unsigned int offset);
int (* write)(void *buf, unsigned int count , unsigned int offset);
int (* ioctl)(int request , void *data);
int (* close)(void);

};

78 K. Hewage, C. Keppitiyagama, and K. Thilakarathna

2.4 Naming Devices

Most of the sensor networks are managed by a single administrative authority.
Therefore, we opted to use a single network wide namespace to name the devices
of nodes. To reduce the overhead, we assumed sensor nodes are grouped in such a
way that each group member of a particular group is only a single hop away from
others and groups are assigned and managed by the administrative authority.
In addition to that, we assume that the nodes do not move. That is, group
membership of a device does not change over the time unless it is explicitly
altered by the administrator.

In TikiriDev, there is a root folder which is denoted by the symbol “/ ”. Each
group is represented as a sub folder under the root folder. All the devices in the
network are represented as files under the sub folders of the root folder. For an
example, “/room1/door-temp” represents the temperature sensor mounted on
some node located in room 1.

It is not possible to share a name between two members of the same group(i.e:
There cannot be two files with the same name in a particular folder). In the same
way, two folders also cannot have the same name. This implies two groups cannot
share the same name. Any application running on any sensor node sees the same
file system abstraction as described above.

3 Evaluation

To test the implementation of TikiriDev, we used Scatterweb MSB430 sensor
node platform and Sky sensor node simulation of Cooja simulator [8].

The cost of accessing remote devices is higher than that of local devices due
to radio communication. Table 1 shows the additional data transmitted during
each API call when accessing a remote device. The API call td open() has the
biggest data overhead when compared to other API calls since the group name
and the device name are included in device discovery request messages.

Table 1. Additional data transmitted during the each API call when accessing a remote
device

API call Size(bytes)
td open() 31
td pread() 8
td pwrite() 8
td ioctl() 10

As shown in Table 2, the code size of TikiriDev (program memory usage) is
just 24384 bytes and RAM usage is 3307 bytes.

We also measured stack usage of TikiriDev (including Contiki) when access-
ing local and remote devices. To measure the stack usage, we implemented an
application that writes/reads LED on/off state to/from local/remote node in
response to a button click event.

TikiriDev: A UNIX-Like Device Abstraction for Contiki 79

Table 2. Memory footprint of TikiriDev with Contiki OS in bytes for MSB430 platform

Program memory Static memory
Contiki OS(without TikiriDev) 18880 2579
TikiriDev with Contiki OS 24384 3307

The stack memory usage for that application when accessing the local LED
is shown in the figure 3. The spike shown in the figure 3 indicates the maximum
stack memory usage. According to the test results, the maximum stack memory
usage is about 140 bytes. The figure 4 shows the stack memory usage of a node
when accessing a LED on a remote node while figure 5 shows the stack memory
usage of the node whose device is being accessed.

The maximum stack memory reported during a remote LED access is less
than 250 bytes. Therefore, the maximum memory consumed is summed up to
3557 bytes. Though this is a significant amount of memory for a MSB430 node
which has a RAM of 5 kilobytes , it is an insignificant amount for a node similar
to Sky which has a RAM of 10 kilobytes.

The syntax of TikiriDev API is not mapped directly to the syntax of the UNIX
file handling system calls. The main reason behind that is the implementation
differences of the blocking function calls in Contiki and UNIX-like operating
systems.

4 Related Work

Plan 9 was the first distributed operating system that used a file centric approach
to view the entire system [9]. In Plan 9, the application’s view of the network is
a single, coherent namespace that appears as a hierarchical file system but may
represent local or remote resources. FISN [10] and the file system abstraction
proposed by Tilak et al. [11] are two approaches inspired by Plan 9 and use file
system servers to map the WSN into files. LiteOS is another file system based
approach which provides a wireless shell interface to interact with the WSN using

Fig. 3. Stack memory usage when accessing the local LED

80 K. Hewage, C. Keppitiyagama, and K. Thilakarathna

Fig. 4. Stack memory usage of the node in which the application runs

Fig. 5. Stack memory usage of the remote node whose LED is being accessed

UNIX style commands [6]. These approaches provide the file system abstraction
only at a special (usually a resource rich) node connected to the WSN. SensOS [3]
and MantisOS [4] provide access to only locally attached devices. However, the
file system abstraction provided by TikiriDev is available on all the sensor nodes.

5 Conclusion

We presented the design and implementation of an extension to Contiki operat-
ing system. The extension allows application programmers to access local and
remote devices in the WSN as local files which are named under a single network
wide namespace. The evaluation results show that the overhead imposed by the
file system abstraction provided by TikiriDev is minimum. Though file system
abstraction may not be the right choice for all kinds of applications, it adds to
the repertoire of abstractions provided by the Contiki, thus easing the task of
the application programmers.

TikiriDev: A UNIX-Like Device Abstraction for Contiki 81

References

1. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for networked sensors. In: Architectural Support for Programming
Languages and Operating Systems, pp. 93–104 (2000)

2. Dunkels, A., Gr̈ınvall, B., Voigt, T.: Contiki - a lightweight and flexible operating
system for tiny networked sensors. In: Proceedings of the First IEEE Workshop on
Embedded Networked Sensors (Emnets-I), Tampa, Florida, USA (November 2004)

3. Yang, M., So, S.S., Eun, S., Kim, B., Kim, J.: Sensos: A sensor node operating
system with a device management scheme for sensor nodes. In: Proceedings of the
International Conference on Information Technology, pp. 134–139 (2007)

4. Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker, B., Gruen-
wald, C., Torgerson, A., Han, R.: Mantis os: An embedded multithreaded operating
system for wireless micro sensor platforms. In: ACM/Kluwer Mobile Networks and
Applications (MONET), Special Issue on Wireless Sensor Networks, pp. 263–279
(2005)

5. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: An acquisitional
query processing system for sensor networks. ACM Trans. Database Syst. 30(1),
122–173 (2005)

6. Cao, Q., Abdelzaher, T., Stankovic, J., He, T.: The liteos operating system:
Towards unix-like abstractions for wireless sensor networks. In: Proceedings of
the 7th International Conference on Information Processing in Sensor Networks
(ACM/IEEE IPSN), pp. 233–244 (2008)

7. Dunkels, A.: Rime — a lightweight layered communication stack for sensor net-
works. In: Proceedings of the European Conference on Wireless Sensor Networks
(EWSN), Poster/Demo session, Delft, The Netherlands (January 2007)

8. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level simulation
in cooja. In: Proceedings of the European Conference on Wireless Sensor Networks
(EWSN), Delft, The Netherlands (January 2007)

9. B, H.: Reinventing unix: an introduction to the plan 9 operating system. Library
Hi Tech

10. Horey, J., Tournier, J.C., Widener, P., Maccabe, A.B., Kilzer, A.: A filesystem
interface for sensor networks. Technical report, Department of Computer Science
in University of New Mexico and Department of Computer in Science Gonzaga
University (2008)

11. Tilak, S., Pisupati, B., Chiu, K., Brown, G., Abu-Ghazaleh, N.: A file system
abstraction for sense and respond systems. In: Proceedings of the 2005 Workshop
on End-to-end, Sense-and-Respond Systems, Applications and Services, pp. 1–6
(2005)

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 82–93, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Location Based Wireless Sensor Services in Life Science
Automation

Benjamin Wagner1, Philipp Gorski1, Frank Golatowski2, Ralf Behnke1,
Dirk Timmermann1, and Kerstin Thurow2

1 Institute of Applied Microelectronics and Computer Engineering
University of Rostock, Germany

{benjamin.wagner,philipp.gorski,dirk.timmermann}@uni-rostock.de
2 Center for Life Science Automation, CELISCA

Rostock, Germany
{frank.golatowski,kerstin.thurow}@celisca.de

Abstract. Over the last years Wireless Sensor Networks (WSN) have been
becoming increasingly applicable for real world scenarios and now production
ready solutions are available. In the same period the upcoming combination of
Service-oriented Architectures and Web Service technology demonstrated a
way to realize open standardized, flexible, service component based, loosely
coupled and interoperable cross domain enterprise software solutions. But those
solutions have been too resource-intensive and complex to be applicable for
limited devices like wireless sensor nodes or small-sized embedded systems.
Thus, more and more research investigations have been launched to bring the
aspect of cross domain interoperability to the field of embedded battery
powered devices. The proposed laboratory assistance solution in this paper
demonstrates the benefits of Web Service enabled WSNs for process
monitoring and disaster management by extending an existing system in the
Life Science Automation domain. Especially, the capability to provide location
based services in industrial automation environment represents a beneficial
feature of the presented integration approach and results in high-quality
information delivery bundled with specific data about the locational origin of
the capturing sensor.

Keywords: Devices Profile for Web Services (DPWS), Disaster Management,
Laboratory Information Management System, Life Science Automation (LSA),
Sensor Web Enablement (SWE), Sensor Observation Service (SOS), Service-
oriented Architecture (SOA), Web Services.

1 Introduction

In the domain of Life Science Automation (LSA) the experimental setups, laboratories
and appliances, needed for complex automated chemical and/or biological screening
analysis typically consists of closed proprietary and highly specialized solutions. These
solutions are mainly configured to obtain a high throughput and satisfy the required
environmental constraints for the experiments. Such closed process chains are especially

 Location Based Wireless Sensor Services in Life Science Automation 83

designed to solve characteristic classes of analysis problems with high efficiency. The
available integrated sensors/actors are wired and have fixed positions at the laboratory
appliances. This makes it a hard challenge to extend or adapt them dynamically without
high efforts. Using wireless sensors instead offers the needed flexibility. The additional
equipment of localization capabilities for those wireless sensor nodes will enable
locational tagged measurement data in combination with sensing/acting services.
Furthermore, these capabilities will provide an easy reconfiguration of wireless sensor
network appliances. However, today´s wireless sensor nodes are not equipped with
sensors needed in life sciences, e.g. CO and H2. In this paper we introduce wireless
sensor nodes addressing the needs of life sciences.

Another important challenge relies on the handling and usability of those appliances
for non-technical employees. The typical scientist, who utilizes the laboratory for the
experiments, is not skilled enough on the technical domain to setup, reconfigure,
maintain or extend the existing workflow.

The integration of Wireless Sensor Networks (WSNs) in enterprise systems will be
the right way for the future to realize a flexible and extendable system to overcome
these above mentioned deficiencies. Especially, those enterprise solutions with a tight
coupling of higher software layers for enterprise process management and data
processing to the underlying control of industrial production processes can benefit
from the flexible integration of WSNs. Web Service technology has a great potential
to support a seamless integration of WSNs and to achieve an advanced applicability.
Moreover, especially the benefits for usability and abstraction of a technical system
providing services will be focused by our presented work.

An existing web based Laboratory Information Management System (LIMS) at the
CELISCA laboratories and the corresponding appliances are extended with the WSN
(see Fig. 1). The LIMS maps the workflow of an existing analysis process chain and
supports the evaluation of data measured. We will show, that the WSN based service
infrastructure, developed in this work, increases the flexibility, extensibility and
usability of a given wired laboratory setup. Furthermore, we provide new interaction
concepts for system control, setup and configuration.

Fig. 1. Integration points of the Wireless Sensor Network into the existing Laboratory
Information Management System at the CELISCA laboratories

84 B. Wagner et al.

This paper is organized as follows. In section 2 we briefly review WSN technology,
service-infrastructures, and technologies for disaster management. In section 3 we give
an overview of the developed system, based on Devices Profile for Web Services
(DPWS) and Sensor Web Enablement (SWE) middleware, to realize disaster prevention
system for LSA. In Section 4 we describe user interaction with wireless sensor network
and section 5 provides concrete application scenarios for our solution. We emphasize
our Laboratory Assistance WSN and its innovations, at different levels of abstraction
with a detailed overview, due to our integration and deployment concepts and details
about the hardware of WSN. Finally the article ends with a conclusion.

2 State of the Art

2.1 Wireless Sensor Networks

Recent technological advances enabled the development of tiny wireless devices
which are referred to as Wireless Sensor Nodes. Those devices usually consist of a
number of physical sensors, gathering environmental data like temperature or light, a
microcontroller, processing the data, and a radio interface to communicate with other
nodes. These devices are typically battery driven to allow autonomous work and
wireless deployment. Wireless Sensor Networks are interconnected assemblies of
such devices [1]. In recent years, much work has been done on the various aspects of
the wireless sensor networks, especially on the communication level and has result in
standardized communication interfaces, like ZigBee, Bluetooth Low Energy,
6LoWPAN, Wireless HART, and SP100. However, developing wireless sensor nodes
with low powered sensors measuring typical gases, which are used in life sciences, is
still a challenging task. We have developed wireless sensor nodes which can measure
carbon monoxide (CO) and hydrogen (H2), two very dangerous gases. In the industrial
domains WSNs become more and more attractive due to its flexibility, sizing
dimensions and ease of use [2,3,4]. The main focus relies on process control and
monitoring applications. In contrast to traditional wired sensors, WSN nodes can be
easily placed, as close as possible to the process, without costly wiring and in
combining those with actuators, reactions to measurement events can be initiated
immediately. This work especially covers the benefits of WSN applications for the
industrial domain of LSA.

2.2 Service-Oriented Architecture

Over the last years, Service-oriented Architectures (SOA) tried to renew Enterprise
Software Systems in a flexible, open standardized, interoperable and component
based manner. The preferred implementation technology for SOA is the Web Service
approach. But the heavy weighted first generation of upcoming standard technologies
were not suitable for mobile and limited embedded devices like wireless sensor nodes.
Thus, more and more research investigations were launched to bring the aspect of
cross domain interoperability to the field of embedded battery powered devices
[5,6,7]. The results were combined in the Devices Profile for Web Services (DPWS)
[8], which represents the official OASIS standard for the seamless integration of

 Location Based Wireless Sensor Services in Life Science Automation 85

embedded mobile systems into the Web Service concepts. In the domain of sensor
applications the Open Geospatial Consortium (OGC) founded the initiative for Sensor
Web Enablement (SWE) and released a collection of open standards [9]. These
standards realize the high level management of sensor data and networks, accessible
via Web Service technologies. Especially the Sensor Observation Service (SOS) is
highly relevant for our research investigations. Our solution builds up on the above
mentioned standards to realize the interoperable device connectivity and the
management of sensor data.

2.3 Managing Disasters and Incidences

An automated and autonomous solution for the process observation and disaster
management represents an essential part in our integration concept for WSNs. While
the WSN is responsible for the data delivery another instance has to evaluate
measured data and must decide if defined constraints for the processes are met.
Further, correct reaction must be initiated to guarantee the behavioral correctness of
an observed process. Most commonly disaster management is used as a synonym for
emergency management. It deals with natural and human based disasters, like earth
quakes or explosions. The four phases of emergency management are 1. mitigation,
2. preparedness, 3. response and 4. recovery [10]. The mitigation phase focuses on
the prevention of that hazards will become disasters. The preparedness phase contains
the development of plans for the treatment of occurring disasters. The response phase
includes mobilization and coordination of emergency services, e.g. police and
ambulance. Recovery treats restoring of affected areas and infrastructures. An actual
example of an emergency management system (EMS) is SAHANA [11]. It
impressively shows that a main purpose of EMS is to deal with a kind of resource
management, planning and coordination in the case of present disasters. Another
project, dealing with that topic, called SoKNOS, is further described in [12].

In contrast to the above mentioned description for disaster management, the
solution of this paper focuses on the mitigation phase. The goal is to detect incidences
and hazards as soon as possible to prevent disasters in observed LSA environment to
ensure a correct analysis procedure. Therefore an observation service has been
implemented, which analyses actual sensor readings to initiate alarm chains and react
on abnormal environmental parameters.

2.4 Localization Systems

Numerous technologies and methods for locating objects were developed in the past.
They differ in accuracy and reliability of the measurements, and the susceptibility to
other systems or physical obstructions. Localization algorithms can be classified by their
use of different parameter as inputdata for their calculation of sensor node locations
[14]. The inputdata will be approximated parameters like geometric distances, locational
angles and areas, topological hop counts and neighbourhood relations between sensor
nodes. Furthermore, a various number of different methods like the measurement of
received signal strengths (RSS), time difference of arrival (TDoA) or angle of arrival
(AoA) enables the estimation of those needed parameters to calculate the sensor
location [15]. Because there is often a tradeoff between the accuracy of location

86 B. Wagner et al.

approximations and the energy consumption the algorithms need for the parameter
extraction, localization methods can be classified into coarse-grained and fine-grained
[14]. For the presented approach we decided to use the commercial Ubisense system.
This is a real-time localization system based on UWB radio technology, and especially
delivers the needed accuracy for indoor localization [16].

3 System Overview

The following section includes an overview of our WSN infrastructure, summarizes
the basic architecture and gives detailed descriptions of the used hardware, service
components, workflow and the WSN itself. The core components of the solution are
illustrated in the architecture overview below (see Fig. 2.).

Fig. 2. Schematic overview for the complete system architecture and its components

3.1 Hardware

The required hardware for our WSN infrastructure consists of the wireless sensor
nodes itself and a gateway to enable service based interaction with the WSN. Both
elements are optimized for energy aware processing.

Wireless Sensor Nodes. The wireless sensor nodes have to fit requirements like high
robustness, autonomous acting, small sizing dimensions and a long battery life. To
meet these requirements we build up a WSN node based on the eZ430-RF2480
platform for wireless communication via ZigBee technology, from Texas Instrument
and extended this platform with the needed modules for additional measuring,
communication and energy supply capabilities. To meet the special requirements in

 Location Based Wireless Sensor Services in Life Science Automation 87

LSA, the needed sensor add-ons for measuring phenomena like temperature, gas
concentrations (CO and H2), light intensity, battery voltage and vibration were
integrated. Thus, the WSN node can be integrated in typical data capturing scenarios
of the LSA domain. The gas sensors are based on the electro-chemical measurement
principal. This avoids the necessity for active heating and only a small current is
needed, depending on the gas concentration. The figure below shows the resulting
WSN node in combination with different sensor modules (see Fig. 3).

Fig. 3. Illustration of the customized wireless sensor node used at the CELISCA labs

This WSN node has a sizing dimension of 38 x 38 x 48 mm³. The energy source of
the node consists of an internal lithium-polymer accumulator with a capacity of 100
mAh. Through an integrated mini-USB connection this accumulator can be recharged.
To configure or update the software of a wireless sensor node, the ZigBee or the mini-
USB interface can be utilized. For this purposed WSN node we have evaluated the
runtime behavior and the energy profile to enable an optimal sensor lifetime
prediction and adaption for experimental setups. Thus, the sensor nodes can be
configured to fit the needs of an experiment regarding the accruing amounts of
measurement data and the expected total runtime. First, the total runtime/lifetime of
the WSN node (with acceleration sensor add-on) over a variation of the sampled-data
period was evaluated (see Fig. 4 left data plot). The result fully fits the needs of data
capturing of the experimental setups at the CELISCA laboratories. Furthermore, the
energy profile for the variation of the data transmission period was evaluated for our
sensor platform including additional add-ons for CO and acceleration measurements

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200

To
ta

l r
u

n
ti

m
e

t to
ta

l
[d

]
@

 1
00

 m
A

h

Sampled-data period TS [ms]

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

To
ta

l r
un

ti
m

e
t to

ta
l
[d

]
@

 1
00

m
A

h

Transmission period TTX [s]

Sensor node with acceleration sensor
Sensor node with CO sensor

Fig. 4. The left data plot contains the total runtime capability of the customized wireless sensor
node over the variation of the sampled-data period. The right data plot illustrates sensor lifetime
over the variation of the data transmission period for the two different sensor add-ons.

88 B. Wagner et al.

(see Fig. 4 right data plot). Both data series show that the used sensor platform is best
suited for short-term experiments with high data capturing rates and long-term
experiments with the need for continuous observations of environmental parameters.

WSN Gateway. The Fox Board LX832,produced by Acme Systems, is a compact
embedded Linux server system and represents the service gateway for the WSN nodes
in our solution. This board is suited with integrated interfaces for USB 1.1, Ethernet
10/100, IDE and RS232. For the WSN nodes this gateway represents the collector for
their measured observation data. A sensor node registers at the gateway via ZigBee
and this will make the measurement data available for the upper service instances by
serving them through defined interfaces.

3.2 Service Components

The implemented service components of our WSN infrastructure represent the core
concept for an easy self organized integration and deployment by abstracting the
hardware and connection details through devices services.

LabManager. This service component represents the core of the disaster prevention
and the process monitoring. It includes a service for notification events, a
DesasterManager for the process observation and the needed functionalities to interact
with the other basic system service components. The LabManager runs observation
tasks, which were configured via the LabAssistant component, and is able to perform
several of those tasks in parallel. An observation task consists of the following
configuration subset:

− A set of observations which represents the abstract WSN measurement data and
delivers the input parameter for the observation rules.

− A set of observation rules (rule set) which describes system reactions triggered by
the input of the WSN observation data.

− A set of notification events (SMS, Mail, Beep or combined alarm action) that will
be triggered if a violation of the corresponding observation rule takes place.

The behavior of the LabManager Service is comparable to a specialized workflow
engine, which has multiple inputs and controls the firing of alarm events. The requests
for sensor observations will be done via a combination of Service Discovery and
Publish/Subscribe mechanism, included in the SWE/SOS Service and the Gateway
Service. The realization of the Web Service connectivity was implemented using the
Axis2 engine of the Apache Software Foundation.

SWE/SOS Service. This service component provides the sensor measurement data of
the heterogeneous WSN combined with additional metadata through a standardized
Web Service interface as WSN observation offerings. The used SOS server is based
on a reference implementation of the 52°North initiative and to avoid the complicated
generating/parsing of XML requests, the corresponding OX Framework is used to
access and configure the SOS Services (see Fig. 5). The OX Framework offers a
simplified access to SOS server via method calls. The input parameters for these

 Location Based Wireless Sensor Services in Life Science Automation 89

methods will be send as JSON formatted set over HTTP. Defining new sensor
observations and the SWE/SOS Service configuration will be realized via the SOS
Assistant web frontend. The SOS Service includes three core functionalities to request
all metadata about the SOS Service and its offerings, the specified observation data
and the corresponding metadata, and to get detailed information about the specified
sensor, which provides the observation data. Additional transactional operations
enable the registration of new sensors and insertion of new observations.

Fig. 5. Exemplary schematic block diagram to illustrate the functionality of the OX Framework
in combination with the GWT frontend of the Lab Assistant

Gateway Services. The Fox Board Gateway is abstracted through Web Services,
implemented using the DPWS technology stack WS4D-gSOAP [13]. These services
enable WSN nodes to dynamically discover and connect to the gateway, forward the
WSN observation data to the SWE/SOS Service, discover sensors, register new sensor
nodes, request locally stored sensor data and let other services subscribe for defined
WSN observation events. Several Fox Board gateways and its services can run in
parallel to provide a scalable and reliable access to the WSN, without concurrent
behavior.

3.3 LabAssistent and SOS Assistant

The LabAssistant is a web based frontend to configure the WSN, the Gateway and the
LabManager Service. It is realized as fat client web application using the AJAX
technology of the open source Google Web Toolkit (GWT) and its support for
Remote Procedure Calls. Additionally, the assistant guides a user through the
integration and deployment process of the WSN. The SOS Assistant is similar to the
LabAssistant. It provides a web based frontend to configure the SWE/SOS Service of
our solution. This includes the management of sensors, observations and the graphical
illustration of observation requests/data.

LabAssistant. This component represents a web application realized with a GWT
frontend, which provides the main interface for managing monitoring processes and
observation tasks. The setup is divided into two subsequent flows. First of all, the
setup of the sensor network in the specific observation environment has to be
executed. Afterwards, the rule sets and additional data for the observation tasks have
to be defined. The LabAssistant guides the user through this procedure and abstracts
the underlying technological processes. Furthermore, there is no need for the user to
edit configuration files or other formats, because the LabAssistant will generate them
itself in a XML format.

90 B. Wagner et al.

DesasterManager. The DesasterManager is a web service component, which provides
the monitoring/observation functionality. It is implemented upon the Axis2 Framework
of the Apache Software Foundation. This service component provides four methods
with a specific set of parameters to control the integrated multi-threaded rule engine
(JRuleEngine). The START-method initializes a monitoring thread. This thread starts a
new instance of the rule engine when new measurement events of defined sensor nodes
arrive. The STOP-method finishes the defined observation tasks when a running
experiment ends. Finally, it generates a summarizing log file that contains all
executed/processed server actions. After stopping a monitoring this log file can be
deleted by calling the DELETE-method. The PROTOCOL-method enables the access
to the log file of currently running or stopped observation tasks.

4 Integration and Deployment

The deployment and integration strategy of our laboratory assistance solution raises
the functionality, flexibility and usability of the existing LIMS system to a new level,
results in cost efficient workflow turnarounds and reduces setup times. Especially the
usability advantage for non-technical skilled users is a real innovation of our solution.
The user now handles services of the WSN and is able to place the sensors where he
needs them for his experiment. Without our WSN infrastructure the user had to be or
to call a specialist, if changes in the appliances of the experiment had to be made.
Especially when changing the wired sensors in their positions or measurement
services. They have to be rewired, tested or recalibrated, and their new services had to
be implemented. With our solution the user is able to change the hardware, replace or
relocate sensors, without the need to change the software or anything else, because the
setup of an experiment is bound to services of the WSN and not to the sensor
hardware itself. This makes it possible to work with components-of-the-shelf WSN
nodes suited with defined sensors.

Deployment. Setting up a new WSN deployment for an experiment becomes a simple
procedure. Before creating a new experiment, the sensors have to be placed/plugged
at the laboratory appliances and the existing sensors must be checked out. The
wireless sensor nodes register themselves and their observation offerings at the
Gateway Service nearest to them.

Integration. The user initiates a new experiment via the LabAssistant and creates the
needed observation tasks for the process monitoring. These tasks will be suited with
the necessary observation rules and the corresponding input parameter from the
previously installed sensor observations. Each rule violation will be bound to a
specific notification. The available observation offerings of the WSN nodes will be
discovered automatically by the LabManager and the user has to pick the right ones
from a list to assign them to the observation rules. If different sensor data should be
combined to new observations, the user is able to create those combinations through
the SOS Assistant. Assigning sensor observations to an experiment includes an
automated subscription of the LabManager for observation events at the SWE/SOS or
Gateway Service. The location assignment for the WSN nodes by the user will be

 Location Based Wireless Sensor Services in Life Science Automation 91

realized through the use of the Ubisense localization tag. This tag will be placed near
to the WSN node and over a push button on it the user initiates the position
measurement by the wall mounted sensors. Afterwards, the calculated WSN node
position will be send to the LabManager service and the user has to assign it to the
right WSN node instance in the experimental setup.

After the successful deployment procedure the experiment will be started and runs
now with our integrated disaster prevention. While the experiment runs external
applications are able to request the corresponding observation time series via the Web
Service interface of the SOS server. When the experiment ends the WSN nodes will be
picked up by the user and recharged at a charge station. The complete observation data
is stored in an SOS server database and will be served through a Web Service for the
post data processing. The existing LIMS runs in parallel to our solution and is not
affected.

5 Application Scenarios

There exist three main scenarios the proposed solution will be used for at the CELSICA
laboratories (see Fig. 6). These scenarios differ in the granularity of objects that have to
be observed (rooms, devices or experiments), and in the associativity that the WSN
nodes will have to the experiments or how the nodes will be involved in the
experimental process flow (static and dynamic conditions). Furthermore, the WSN node
can provide actor services to regulate or control the observed environmental conditions.

Fig. 6. Three major application scenarios for the proposed solution: room, device and process
based observation strategies

5.1 Room Based Monitoring

The room based monitoring focuses the observation of environmental parameters
independent of the experimental setups and appliances the room contains. Thus,
multiple laboratory environments will be supported and the WSN represents the
hazard/risk detection system to prevent dangerous situations regarding the laboratory
personal or appliances. At the CELISCA laboratories this scenario is used to observe
gas concentrations (H2 or CO) and the room temperature.

5.2 Device Based Monitoring

The device based monitoring scenario associates WSN nodes directly to single
instances of laboratory appliances (climatic chamber or incubators) for specified

92 B. Wagner et al.

observation tasks. This scenario introduces the possibility to enhance devices with
new sensing/acting services or to refine existing measuring capabilities to achieve a
higher measurement accuracy, sampled-data rate or observation density.

5.3 Process Based Monitoring

The third scenario type is represented by the process based monitoring. This
observation strategy focuses on the process flow of a single experimental setup. The
WSN nodes are tagged directly to single experimental probes (like a titer plate or
other samples) without a fixed position and will pass through all experimental stages.
Thus, a completely closed observation of the process chain can be guaranteed, and
parameter variations or environmental changes for single instances of an experiment
can be observed at an early stage.

6 Conclusion and Future Work

In this paper we have presented a SOA to integrate wireless sensor networks into an
existing laboratory information management system (LIMS). The architecture uses
DPWS based Web Services for the collaboration and orchestration of devices,
abstracted as service instances. Thus, a decoupling of the hardware and higher
functionalities were reached, with the additional benefit of a higher usability and
flexibility. Furthermore, the functionality of SWE/SOS is now available to the Life
Science Automation domain, which is very beneficial, because measurement data will
be handled on a higher level and new combinations of different sensor data can be
easily created. Using a WSN in the presented application ensures flexibility necessary
to construct future Life Science Laboratories. Using information from WSN in an
easy way inside today’s application is very challenging and this will be supported by
our services over different layers.

References

1. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer
Networks 52, 2292–2330 (2008)

2. Jiang, P., Ren, H., Zhang, L., Wang, Z., Xue, A.: Reliable Application of Wireless Sensor
Networks in Industrial Process Control. In: The Sixth World Congress on Intelligent
Control and Automation, WCICA 2006, pp. 99–103 (2006)

3. Bonivento, A., Carloni, L., Sangiovanni-Vincentelli, A.: Platform-Based Design of
Wireless Sensor Networks for Industrial Applications. In: Proceedings of the Design
Automation & Test in Europe Conference, pp. 1–6 (2006)

4. Antoniou, M., Boon, M., Green, P., Green, P., York, T.: Wireless sensor networks for
industrial processes. In: 2009 IEEE Sensors Applications Symposium, pp. 13–18 (2009)

5. Jammes, F., Mensch, A., Smit, H.: Service-oriented device communications using the
devices profile for web services. In: Proceedings of the 3rd International Workshop on
Middleware for Pervasive and ad-hoc Computing, p. 8. ACM, New York (2005)

6. Leguay, J., Lopez-Ramos, M., Jean-Marie, K., Conan, V.: Service oriented architecture for
heterogeneous and dynamic sensor networks. In: Proceedings of the Second International
Conference on Distributed event-based Systems DEBS 2008, p. 309 (2008)

 Location Based Wireless Sensor Services in Life Science Automation 93

7. Zeeb, E., Bobek, A., Bohn, H., Golatowski, F.: Service-Oriented Architectures for
Embedded Systems Using Devices Profile for Web Services. In: 21st International
Conference on Advanced Information Networking and Applications Workshops, AINAW
2007, Niagara Falls, Canada (2007)

8. Driscoll, D., Mensch, A.: Devices Profile for Web Services Version 1.1. OASIS (2009)
9. Simonis, I.: OGC Sensor Web Enablement Architecture. Open Geospatial Consortium,

Inc. (2008)
10. Petak, W.J.: Emergency Management: A Challenge for Public Administration. Public

Administration Review 45, 3–7 (1985)
11. Currion, P., de Silva, C., de Walle, B.: Open source software for disaster management.

Commun. ACM 50, 61–65 (2007)
12. Doeweling, S., Probst, F., Ziegert, T., Manske, K.: Soknos - An Interactive Visual

Emergency Management Framework. GeoSpatial Visual Analytics, pp. 251–262 (2009)
13. Zeeb, E., Bobek, A., Bohn, H., Prüter, S., Pohl, A., Krumm, H., Lück, I., Golatowski, F.,

Timmermann, D.: WS4D: SOA-Toolkits making embedded systems ready for Web
Services. In: Open Source Software and Productlines 2007 (OSSPL 2007), Limerik,
Ireland (2007)

14. Reichenbach, F.: Ressourcensparende Algorithmen zur exakten Lokalisierung in
drahtlosen Sensornetzwerken. PhD thesis, University of Rostock, Rostock (2007)

15. Yang, Z., Liu, Y.: A Survey on Localization in Wireless Sensor networks. Hong Kong
University (2005)

16. Steggles, P., Gschwind, S.: The Ubisense Smart Space Platform. A Ubisense White Paper.
Dortmund (May 2005)

Hallway Monitoring: Distributed Data
Processing with Wireless Sensor Networks

Tobias Baumgartner, Sándor P. Fekete, Tom Kamphans, Alexander Kröller,
and Max Pagel

Braunschweig Institute of Technology, IBR, Algorithms Group, Germany
{t.baumgartner,s.fekete,t.kamphans,a.kroeller,m.pagel}@tu-bs.de

Abstract. We present a sensor network testbed that monitors a hallway.
It consists of 120 load sensors and 29 passive infrared sensors (PIRs), con-
nected to 30 wireless sensor nodes. There are also 29 LEDs and speakers
installed, operating as actuators, and enabling a direct interaction be-
tween the testbed and passers-by. Beyond that, the network is heteroge-
neous, consisting of three different circuit boards—each with its specific
responsibility. The design of the load sensors is of extremely low cost
compared to industrial solutions and easily transferred to other settings.
The network is used for in-network data processing algorithms, offering
possibilities to develop, for instance, distributed target-tracking algo-
rithms. Special features of our installation are highly correlated sensor
data and the availability of miscellaneous sensor types.

Keywords: Sensor Networks, Testbeds, Data Processing, Target Track-
ing, Load Sensors.

1 Introduction

In the research field of wireless sensor networks, a tremendous amount of funda-
mental work over the past years has focused on protocol design and algorithm
development. This has led to a high availability of common routing [3], time-
synchronization [17], localization [4], and clustering [1] algorithms—often de-
signed for general sensor network topologies. Similarly, many testbeds [9,15,18]
were built during that time to run these algorithms on real sensor nodes. This
became possible due to both dropping hardware costs and the maturing of oper-
ating systems running on the nodes, simplifying the development process. Due
to the mainly common demands of the algorithms, most of the available testbeds
were also held generic; the main focus was on the principal functionality of the
algorithms and protocols, the aim being real-world communication behavior and
implementations on tiny micro-controllers.

With the ongoing progress of algorithmic methods and system technology,
it becomes possible as well as important to apply the previously designed ba-
sics to real application areas—thereby often adapting a generic solution to the
specific needs of a single deployment. Such application areas for wireless sensor
networks are quite dispersed. Deployments vary from monitoring environmental

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 94–105, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Hallway Monitoring: Distributed Data Processing with WSNs 95

areas such as volcanos or mountain sides, over personal area networks in medical
applications, to home automation systems.

Building such real-world applications with actual sensor data processing is still
a challenging task. First, the installation of specialized sensors often requires a
significant amount of additional work. Second, such sensors may also cost much
more than the nodes themselves—and thus are often not affordable for ordinary
sensor network testbeds.

The design, development, and evaluation of higher-level algorithms in real de-
ployments in which sensor nodes can share their local knowledge to obtain global
goals requires appropriate sensor data. To carry out such tests, we developed a
hallway monitoring system, consisting of 120 load sensors deployed beneath the
hallway floor, and 29 passive infrared sensors (PIRs) for motion detection. The
construction of the load sensors has already been demonstrated in [5]. The sen-
sors are connected to nodes, which in turn can then exchange the measured
values. The data is highly correlated, therefore serving as an ideal testbed for
any algorithm performing data aggregation or in-network data analysis, such as
distributed tracking algorithms.

The floor consists of square floor tiles with a side length of 60 cm each, which
are installed on small metal columns. The setup is shown in Fig. 1.

We installed one load sensor on each of these columns. Therefore the corners
of four floor tiles rest on each sensor, and vice versa each floor tile is monitored
by four sensors. Every four load sensors are connected to a sensor node, which
is also installed beneath the floor. Altogether, the setup consists of 120 load
sensors, 29 PIR sensors, and 30 sensor nodes. The hallway has a width of 3
meters (corresponding to 5 tiles), and a length of 21.6 meters.

We designed the load sensors ourselves, with a surprisingly cheap construction.
One load sensor costs about 25 Euros—as opposed to around 200 Euros for
industrial manufactured load cells. The lower price comes with a loss of accuracy,
but this loss can be compensated by sophisticated algorithms for sensor networks,
where the nodes do in-network processing of the highly correlated data.

The rest of the paper is structured as follows. Section 2 describes similar
constructions and related work. In Section 3, the hallway monitoring system is
presented in detail. In Section 4, we report on how the sensor network can be
accessed by the public. Section 5 describes first experimental results with the
load sensors. We conclude the paper in Section 6.

2 Related Work

The development of a sensing floor has been proposed by other authors, but not
in the context of a senor network, which is crucial for high-level methods and
applications. Addlesee et al. [2] present a design with 3x3 tiles placed on load
cells. Similarly, Orr and Abowd [13] designed the Smart Floor, also based on
load cells. Neither of the authors considered a sensor network scenario.

While the above approaches make use of expensive load cells, Yiu and Singh
[19] and Kaddoura et al. [10] presented designs based on force sensors. Like in

96 T. Baumgartner et al.

(a) The installation site.

(b) Floor tiles rest on columns.

Fig. 1. Hallway monitoring scenario

the other cases, there is no distributed data processing, and the system allowed
only for presence detection, as opposed to more complex information such as the
fine-grained resolution of a single step.

Mori et al. [11,12] present both a sensing room with pressure sensors on the
floor and also the furniture, and a sensing floor, which they use to identify people

Hallway Monitoring: Distributed Data Processing with WSNs 97

via their gaits. The latter, gait recognition for people identification, has also been
done by Qian et al. [14]. Again, there is no distributed in-network analysis by
small devices like sensor nodes. In contrast to the previous descriptions, we
present a both simple and highly affordable solution for hallway monitoring.
In addition, our construction allows for the design of sophisticated algorithms
running on tiny sensor nodes.

In general, the possibility of target tracking in indoor environments is espe-
cially interesting in the field of Ambient Assisted Living (AAL). Elderly, im-
paired, or disabled people are to be supported by technical solutions integrated
in their homes. Gambi and Spinsante [7] present a localization and tracking sys-
tem based on multiple cameras. In [8], Jin et al. analyze the performance of using
accelerometers for AAL. However, having multiple cameras at home comes with
a certain discomfort, as well as the need of constantly wearing sensors when at
home. Our approach can work fully transparent for inhabitants, by offering the
same features as above.

3 Hallway Construction

We have built a hallway monitoring system in our institute. To this end, we
designed 120 load sensors, which were installed beneath the floor tiles in our
hallway. A single load sensor and an exemplary section of the installation are
shown in Fig. 2. There are also 29 PIR sensors on the walls to allow combin-
ing different kinds of sensor values in one distributed application. The sensors
are connected to a total of 30 iSense [6] nodes, which can communicate over
their radio. Finally, there are also actuators installed—29 light-emitting diodes
(LEDs) and speakers to play sound samples—that are controlled by the sensor
nodes, and thus enhance debugging possibilities of newly designed algorithms.
A schematic diagram of the whole hallway construction with the interconnec-
tions of the several components is shown in Fig. 3. In the following, each part is
described in detail.

3.1 Load Sensors and PIRs

We present a simple—and most notably low-cost—mechanism of building a sin-
gle load sensor for our application. We use strain gauges, which are able to
measure minimal strains in the objects to which they have been glued to. These
strain gauges are supplied with a voltage of a few Volts, whereby they provide
an output voltage of just a few millivolts. Whenever the attached material is
strained or deformed, even by a few nanometers, the output current changes.
Such sensors cost only a few Euros (around 10 Euros apiece in our case).

The strain gauges are attached to small steel plates with a size of approx.
10x4 cm. We used spring steel for the base construction. The advantage of spring
steel is that it is flexible enough to be strained by the weight of a person, but
also solid enough not to be permanently deformed. Installing the steel plates
under the floor is surprisingly difficult. Strain gauges measure strains in different

98 T. Baumgartner et al.

(a) A single load sensor.

(b) Load sensors attached to iSense node.

Fig. 2. Load sensor installation

directions. If strain is applied from perpendicular directions, they annihilate
each other, and the sensor does not measure any force. Hence, we enhanced the
construction to deal with this issue. We use two additional steel plates, each with
a spacer. The final construction is shown in Fig. 2(a). Like the strain gauges,
the steel construction is surprisingly cheap. We paid around 15 Euros apiece.

Hallway Monitoring: Distributed Data Processing with WSNs 99

Finally, the load sensors were installed in the hallway. The floor consists of
square floor tiles with a side length of 60 cm each, which rest on small metal
columns. We installed one load sensor on each of these columns—resulting in a
total of 120 sensors beneath the floor. The sensor data is highly correlated, since
the corners of four floor tiles rest on each sensor, and vice versa each floor tile
is monitored by four sensors. The setup is shown in Fig. 2(b), where three floor
tiles were removed to provide a view of the installation beneath the floor.

In addition to the load sensors beneath the floor, we installed 29 PIR sensors
for motion detection on the walls. Each sensor is placed in a height of 2.5m,
directed approx. 45� downwards. There are always two sensors face to face with
each other, enabling the observation of a section of the hallway.

This facilitates identifying people by weight, but also by their motion when
passing through the hallway. The different kinds of sensor values can then be com-
bined to allow for the development of algorithms for heterogeneous sensor types.

3.2 Actuators

In contrast to the load sensors and PIRs, we have also added actuators to the hall-
way. There is a total of 29 lights and speakers installed on the walls. Each actua-
tor consists of a so-called media board, which is an extra circuit consisting of an
Atmega48, nine LEDs (three red, three green, three blue) attached to a cooling
element, a speaker connected to the PWM output of the microcontroller, and a
4 GB microSD card for storing sound samples played through the speaker. Each
media board is connected via UART to one sensor node beneath the floor, and can
thus be used as an actuator for direct interaction with people passing the floor.

3.3 Sensor Nodes

Since the strain gauges have an output of just a few millivolts, they cannot be
measured using ordinary ADCs. We use an additional amplifier circuit, to which
up to six strain gauges can be attached. The circuit can power the sensors,
and also read out and amplify the sensor output. It bears an Atmega48, which
provides multiple ADC ports to read out the sensor values. The circuit has
been designed to be used directly with our iSense sensor node platform [6], and
communicates with the Atmega48 on the amplifier circuit via SPI. Even though
it is iterated over up to six ADCs on the Atmel, and the data is additionally
transmitted via SPI, we achieve a data transfer rate of 800 Hz per load sensor.
This allows for highly fine-grained data-processing, and can lead to analyzing
even single steps of passing people.

In addition to the connection to the load sensors, the iSense nodes are also
wired to the PIR sensors and actuators on the wall. The whole setup is shown in
Fig. 3. Each wireless sensor node is connected to four load sensors, one PIR, and
one actuator unit—due to a diverging corridor one wall installation is missing,
resulting in one iSense node without a PIR and LED/speaker unit connected.

100 T. Baumgartner et al.

Fig. 3. Hallway construction with different kinds of sensors and actuators

The iSense nodes can then be used for the implementation of high-level data
processing algorithms. For example, by exchanging actual data over the radio,
the nodes can track people walking through the hallway.

For debugging purposes, the iSense nodes are connected via USB to a back-
bone of several PCs. The nodes are powered via this connection. In addition,
they can be re-programmed, and debugging data can be collected continuously
and reliably.

4 Software Access

There are two possibilities of accessing the sensor nodes in the hallway: First,
there is an open API offered via web services. Second, we implemented a Java-
based GUI for simple and fast algorithm development offering a central view on
the network.

4.1 WISEBED API

The testbed was built in the context of the EU-project WISEBED [16], which
aims at the interconnection of different sensor network testbeds spread over
Europe. One goal of the project is to allow the connection of several testbeds
and make them appear as only one testbed for a user. Moreover, we aim at
allowing users to connect their own testbeds to one that is part of WISEBED.
Therefore, all APIs that are needed to access a testbed and its sensor nodes are

Hallway Monitoring: Distributed Data Processing with WSNs 101

open to the public. Sensor nodes can be re-programmed, messages can be sent
to the nodes, and debugging output can be collected. All APIs are based on web
services for platform independence.

Since our testbed is part of the WISEBED project, our hallway monitoring
system will be made available for the public—there is, of course, also a user
management and reservation system offered.

4.2 CoCoS - Java-Based GUI

To facilitate the access to the sensor floor and enable users to develop their
own software, we developed a simple to use Java API which gives access to the
hallway. The so-called “Corridor Control System” (CoCoS) consists of a client-
server solution which allows multiple clients to access the floor simultaneously.
The server is embedded as a pluggable module in the WISEBED API and is
able to fully control the floor.

CoCoS provides a real-time global view of the sensor floor, which can be easily
accessed to program custom extensions, evaluate sensor data, or send commands
to the sensor floor. Another feature is to write out sensor data traces, which can
be played back later to run different algorithms on the same data, or work off-line
without a connection to the hallway. The server does not provide a graphical user
interface, but it is possible to connect a GUI-client to the server via TCP/IP that
offers a graphical visualization of the current floor status, see Fig. 4. It is also
possible to start an extension from the client to remotely control the corridor,
which makes it possible to work with the testbed from anywhere.

Fig. 4. CoCoS, a Java-based GUI for accessing the hallway data

102 T. Baumgartner et al.

(a) Data of all sensors.

(b) Detailed view on sensor 1.

Fig. 5. Data samples of four load sensors installed beneath one floor tile

Hallway Monitoring: Distributed Data Processing with WSNs 103

The advantage of CoCoS is that it offers a global view of the whole network
and all sensor data. This simplifies the development process tremendously, since
new ideas can be implemented and evaluated easily by a centralized algorithm
written in Java, and then later translated to a distributed one working directly
on the hallway nodes.

5 Experimental Study

We recorded data of four sensors that are installed beneath one floor tile to show
the correlation of the values, and to have a look into the data of one sensor in
detail. The data was collected with 8 Hz (we can also take samples with 800 Hz),
since it was recorded over several hours. One data sample is the value read at the
ADC of the Atmel connected to the iSense node, and hence the already amplified
strain gauge value in voltage. When there is no load produced, the sensor value
stays constant. Whenever there is load detected, the value drops by a certain
amount. The results for the four sensors are shown in Fig. 5(a).

The zero value of the sensors differs significantly—from around 400 up to ap-
prox. 1300. This is due to the self-construction of the sensors, since the zero value
depends on the force the strain gauge is glued on the steel plate. Analogously,
the amplitude is different from sensor to sensor. Issues arising from differences
in zero value or amplitude can be overcome using appropriate distributed algo-
rithms. The important observation is the high correlation in the data, which can
be seen in the synchronous amplitude changes of the four sensors.

Fig. 5(b) shows the trace of one sensor in detail. The data is the raw output from
the strain gauge, and thus basic noise can be seen even when there is no force put
on the sensor. However, one can clearly distinct an amplitude from the noise.

6 Conclusion and Future Work

We presented a hallway monitoring system based on load and PIR sensors, which
are connected to wireless sensor nodes. The sensor data is highly correlated, and
enables the design of sophisticated distributed algorithms for target tracking or
gait recognition. The nodes can collaborate to substitute the merely imprecise
data of the load sensors. The inaccuracy of the sensors is outweighed by the
extremely low cost—about 25 Euros per sensor, in contrast to more than 200
Euros for industrial solutions.

In addition, we also added actuators to the testbed. We installed 29 lights
and speakers on the walls to enable the possibility of interaction between the
sensor network and passing people. Both lights and speakers can be controlled
by the sensor nodes beneath the floor, and can thus be directly integrated in
distributed applications.

The whole design also deals with heterogeneity. We have 30 iSense sensor
nodes that can communicate wirelessly. Each node is connected to a circuit board
equipped with an Atmel Atmega48, responsible for amplifying and receiving the

104 T. Baumgartner et al.

load sensor data. This board is in turn wired to a circuit board at the walls,
controlling the lights and speakers.

At this point, we finished the construction of the hallway. All sensors are
installed, and the nodes are connected via USB to a backbone for reliable re-
programming and data collection. We have also evaluated the output of the load
sensors. In the next step, we will develop algorithms for more challenging tasks,
such as accurate target tracking, identification of the number of people in the
hallway, or the study of different gaits when the available sample rate of 800 Hz
per load sensor is considered.

Acknowledgement. This work has been partially supported by the European
Union under contract number ICT-2008-224460 (WISEBED). We thank Marcus
Brandenburger, Peter Degenkolbe, Henning Hasemann, Winfried Hellmann,
Björn Henriks, Roland Hieber, Peter Hoffmann, Hella-FranziskaHoffmann, Daniel
Houschka, Rolf Houschka, Andreas König, Christiane Schmidt, Nils Schweer,
Stephan Sigg, and Christian Singer for their assistance in the construction of the
hallway.

References

1. Abbasi, A.A., Younis, M.: A survey on clustering algorithms for wireless sensor
networks. Computer Communications 30(14-15), 2826–2841 (2007)

2. Addlesee, M., Jones, A., Livesey, F., Samaria, F.: The ORL active floor [sensor
system]. IEEE Personal Communications 4(5), 35–41 (1997)

3. Akkaya, K., Younis, M.: A survey on routing protocols for wireless sensor networks.
Ad Hoc Networks 3(3), 325–349 (2005)

4. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38, 393–422 (2002)

5. Baumgartner, T., Fekete, S.P., Kröller, A.: Hallway monitoring with sensor net-
works. In: Proceedings of the 7th ACM Conference on Embedded Network Sensor
Systems, SenSys 2009, pp. 331–332. ACM, New York (2009)

6. Buschmann, C., Pfisterer, D.: iSense: A modular hardware and software platform
for wireless sensor networks. Technical report, 6. Fachgespräch Drahtlose Sensor-
netze der GI/ITG-Fachgruppe Kommunikation und Verteilte Systeme (2007)

7. Gambi, E., Spinsante, S.: Multi-camera localization and tracking for ambient as-
sisted living applications. In: AALIANCE Conference, Malaga, Spain (March 2010)

8. Jin, A., Yin, B., Morren, G., Duric, H., Aarts, R.: Performance evaluation of a
tri-axial accelerometry-based respiration monitoring for ambient assisted living.
In: Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, EMBC 2009, pp. 5677–5680 (September 2009)

9. Johnson, D., Stack, T., Fish, R., Flickinger, D.M., Stoller, L., Ricci, R., Lepreau,
J.: Mobile emulab: A robotic wireless and sensor network testbed. In: INFOCOM.
IEEE, Los Alamitos (2006)

10. Kaddoura, Y., King, J., Helal, A.S.: Cost-precision tradeoffs in unencumbered floor-
based indoor location tracking. In: 3rd International Conference on Smart Homes
and Health Telematics, From smart homes to smart care: ICOST (2005)

Hallway Monitoring: Distributed Data Processing with WSNs 105

11. Mori, T., Sato, T., Asaki, K., Yoshimoto, Y., Kishimoto, Y.: One-room-type sens-
ing system for recognition and accumulation of human behavior. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (2000)

12. Mori, T., Suemaou, Y., Noguchi, H., Sato, T.: Multiple people tracking by inte-
grating distributed floor pressure sensors and WID system. In: IEEE International
Conierence on Systems, Man and Cybernetics (2004)

13. Orr, R.J., Abowd, G.D.: The smart floor: a mechanism for natural user identi-
fication and tracking. In: Extended Abstracts on Human Factors in Computing
Systems, CHI 2000, pp. 275–276. ACM, New York (2000)

14. Qian, G., Zhang, J., Kidané, A.: People identification using gait via floor pressure
sensing and analysis. In: Roggen, D., Lombriser, C., Tröster, G., Kortuem, G.,
Havinga, P. (eds.) EuroSSC 2008. LNCS, vol. 5279, pp. 83–98. Springer, Heidelberg
(2008)

15. Raychaudhuri, D., Ott, M., Secker, I.: Orbit radio grid tested for evaluation of
next-generation wireless network protocols. In: Proceedings of the First Interna-
tional Conference on Testbeds and Research Infrastructures for the DEvelopment
of NeTworks and COMmunities, TRIDENTCOM 2005, Washington, DC, USA,
pp. 308–309. IEEE Computer Society Press, Los Alamitos (2005)

16. Seventh Framework Programme FP7 - Information and Communication Technolo-
gies. Wireless Sensor Networks Testbed Project (WISEBED), ongoing project since
(June 2008), http://www.wisebed.eu

17. Sundararaman, B., Buy, U., Kshemkalyani, A.D.: Clock synchronization for wire-
less sensor networks: a survey. Ad Hoc Networks 3(3), 281–323 (2005)

18. Werner-Allen, G., Swieskowski, P., Welsh, M.: Motelab: a wireless sensor network
testbed. In: Proceedings of the 4th International Symposium on Information Pro-
cessing in Sensor Networks, IPSN 2005, USA, IEEE Computer Society Press, Los
Alamitos (2005)

19. Yiu, C., Singh, S.: Tracking people in indoor environments. In: Okadome, T.,
Yamazaki, T., Makhtari, M. (eds.) ICOST. LNCS, vol. 4541, pp. 44–53. Springer,
Heidelberg (2007)

http://www.wisebed.eu

senSebuddy: A Buddy to Your Wireless Sensor
Network

Adi Mallikarjuna Reddy V, Kumar Padmanabh, and Sanjoy Paul

SETLabs, Infosys Technologies Ltd., Bangalore, India, 560 100
{adi vanteddu,kumar padmanabh,sanjoy paul}@infosys.com

Abstract. The sensor data are used by end users using various IT appli-
cations. The typical application for monitoring, querying and controlling
the deployed Wireless Sensor Network is complex in nature from appli-
cation development point of view, owing to various resource limitations.
Post-deployment nuances like firmware update, addition of new nodes
or replacement of others are not so easy task, either. In recent past, ef-
forts have been made to minimize the complexity of end user through
desktop and web-based application. However, so far, instant messaging
has not been tried for communication between an end user and physical
mote, where an individual sensor node (or group of them) appearing as
a buddy in the instant messaging contact list and one can talk to it. In
this paper we are describing a system that we developed recently with
the name senSebuddy, based on instant messaging technique to monitor,
query and control the deployed WSN applications. We also describe the
functionality of the prototype implementation of the system with Smack
XMPP API and Openfire XMPP server [7]. We have carried out series
of experiments to prove that one can chat with sensor mote like a nor-
mal human being, and mote can be programmed using gtalk without
experiencing any delay.

1 Introduction

The wireless sensor network (WSN) has been graduated from the research labs
and is being used in daily life now. The individual sensors are connected to the
outside world via a base station. The data generated by the motes are ultimately
used by end users. The application software are either available in base station
itself or in the server connected to it depending upon the complexity of appli-
cation and footprint of final code. The components of the applications can be
broadly classified into two categories: the monitoring applications and the con-
trol applications. Mostly these applications are either standalone for one user
or they are available as web applications. Web applications are used to access
the same application remotely by one or more users. These applications can be
accessed either through the conventional network (LAN or internet) or through
mobile applications. Visualization part of the application is more bulky in na-
ture. Some of the examples of such applications are Mote-view [1], SpyGlass
NOSY [2], and SESAME [3]. These user applications have following limitations:

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 106–112, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

senSebuddy: A Buddy to Your Wireless Sensor Network 107

1. The control application of WSN is complex. Changing the operating param-
eter and to update the firmware and other communication stack inside the
mote requires special skill set.

2. The access of complex web applications through mobile phone is not always
feasible.

3. All base station cannot be connected to mobile phone. Thus complex appli-
cation cannot run on mobile application.

For remote operation of the sensor network, researchers have tried only web
application method.In this paper, a method for enabling a WSN application to
converse with an instant messaging client is presented. Such method may help
in establishing communication between the sensor nodes and a user, to either
get live updates of data monitored by the sensor nodes or for controlling the
functionality of sensor nodes. This method may help in querying with the sensor
nodes to ascertain the status of the sensor nodes.

Rest of the paper is organized in the following way. Section 2 presents Instant
Messaging Technology. The senSebuddy system is detailed in section 3 with its
architecture and constituting subcomponents. Section 4 presents implementation
details of senSebuddy with experimental results. Conclusion along with future
work is presented in section 5.

2 Instant Messaging

Though Instant Messaging (IM) has come into existence in early 1990s, it had
only chat rooms on web servers where group of people could interact with each
other privately, until, ICQ in 1996 has come up with public instant messaging
server that anyone could use. In 1997 with AOL entry into this market gave its
users the true power of instant messaging. ICQ has been the most successful and
it is the basis for most of the modern instant messaging utilities.

Most of the IM service providers use proprietary protocols for communication.
Interoperability is one of the most promising features of the IM services. Gtalk
allows communicating with AOL users, while Yahoo messenger allows commu-
nicating with MSN messenger users. Instant messaging can be broadly classified
into two categories according to the use: Public Instant Messaging and Enter-
prise Instant Messaging. Unlike public instant messaging where the service pro-
vided is free of cost and open to all, enterprise instant messaging is meant for
an organization where employees can chat, transfer files, and have voice-chat to
collaborate on a project. Some of the enterprise IM service platforms are: IBM
Lotus same time, item Oracle Beehive and Microsoft Office Communications Live
Server. These platforms provide server software and client software installed on
every user PC. Microsoft integrated its IM server capabilities into Microsoft ex-
change server to leverage the users information such as credentials etc.

2.1 Instant Messaging Bot

IM bot is a program that uses Instant Messaging as an application interface. IM
users can add IM bot to their buddy list the same way they add friends, relatives,

108 M.R.V. Adi, K. Padmanabh, and S. Paul

family and co-workers. These bots can be used to provide some lookup information
by connecting to database or on regular basis they can update users with informa-
tion like stock quotes, weather reports and any other relevant information. Most
of the services are being “IMified” now.

2.2 Instant Messaging Bot vs. Web Based Applications

Traditional web applications have no means to convey the end user whether the
web page displayed is changed or new content is added to it. Because of this, user
may have to visit to see if the page has been changed wasting unnecessary network
bandwidth. An IM bot, on the other hand has the power to notify the end user of
changes to the content.

A web server has no knowledge of the users who are currently accessing a web
page and there is no way to contact the user back. An IM bot, on the other hand
knows who are currently accessing the application and can send the information
instantly as it is updated. This would save bandwidth because the unnecessary
requests are eliminated.

3 senSebuddy : The Proposed IM Messenger for Sensor
Nodes

senSebuddy works along the lines of IM bot principles. It is more than just a bot
in terms of its functionality. System architecture of senSebuddy is depicted in
Fig. 1. This figure shows how different components are interconnected to each
other in the system. Deployed wireless sensor network is interfaced with the senSe-
buddy server consisting of different software components which in turn connected
to the IM Server. On the other side, users are connected to the IM server.

Fig. 1. senSebuddy Architecture

3.1 senSebuddy System

senSebuddy consists of three different software components. First one is senSe-
buddy middleware, second one is senSebuddy client and the last one is senSebuddy
administration.

senSebuddy: A Buddy to Your Wireless Sensor Network 109

senSebuddy Middleware. senSebuddy Middleware is responsible for extract-
ing the sensor data from the packets coming out of the WSN. Its architecture is
depicted in Fig. 2. Once a packet is arrived at either serial/USB/Ethernet adap-
tor, the packet listener queues it for further processing. Filtering layers extracts
the packet from the queue and decides whether it is a data packet or network re-
lated packet. If it is a control packet, then the network information is extracted out
otherwise the packet is passed onto interpretation layer to decide upon what kind
of sensor data it is having. Once the sensors information is deciphered, engineering
conversion formulae are then applied on the raw data to extract the sensor read-
ings. This is a one way communication from sensor network to the middleware.
In some cases, user might want to send some data to the sensor network, in this
case reverse communication layer plays a major role. Based on the user request
it prepares a packet understood by the sensor network and sends it to the WSN
through adaptor abstraction layer of middleware [8].

Fig. 2. senSebuddy Middleware Architecture diagram and a typical senSebuddy Client
user interface

senSebuddy Client. senSebuddy client interacts with IM server to send and
receive messages to/from users. This intercepts instant messages addressed to the
deployed WSN nodes, based on the request type the corresponding reply message
will be sent back to the user. Once the request is received, senSebuddy intercepts
the messages, depending on the request type, the corresponding packet is formed
and is sent to the middleware for further transmitting packet to the network. Once
the response for the request is generated at the middleware, it further processes the
packet and generates meaningful information out of it. Subsequently, senSebuddy
client transforms the results into format understood by IM clients of users and
sends the results to the corresponding request.

110 M.R.V. Adi, K. Padmanabh, and S. Paul

senSebuddyAdministrator. An administration module is used for monitoring
the administrating activity of the users interacting with the WSN. The validation
process of the administration module may be used by an owner of the WSN to pro-
vide an administrative access to the WSN. The owner (herein also referred as “au-
thorized user”) may need to provide the consent for adding the messaging buddy
of WSN with its unique identifier name by other users in their IM. The authorized
user may register number of other users; those are entitled for accessing the WSN
network through their IM. The process of adding the messaging buddy may in-
clude enabling the messaging buddy made available for communication with the
other users through their instant messaging client. Administration module also
provides selective access restriction to other user for communication with the one
or more sensor nodes/one or more functionalities of the WSN.

3.2 senSebuddy Operation

Once the network is deployed, a unique user name is assigned in the IM server (e.g.
sensebuddy@gmail.com). Depending on the requirement, the identity can be given
to a single sensor node or collectively to entire network. Users can add the corre-
sponding unique identity in their buddy list as they do with their conventional
buddy name. Once the senSebuddy administrator module identifies that the user
is authorized, it will add the user to its buddy list. Administrator can also set ac-
cess control rights on a particular user. Once the setup is done, the users will be
able to interact with WSN buddy with their requests to get corresponding results.

4 Implementation and Experiments

Though there are different IM standards and protocols exist in the literature, we
have taken Extensible Messaging and Presence Protocol (XMPP) [4] into
consideration. The different software components of senSebuddy system are im-
plemented in the following way: senSebuddy middleware and senSebuddy admin-
istrator components are implemented using Java programming language.
senSebuddy client is implemented using smack Java API [5]. Smack API is based
on XMPP standard and can be used to connect to any IM server that supports
XMPP standard. The screen shot of the same is depicted in Fig. 2. The developed
senSebuddy client can be used to connect to GTalk as it supports the standard
XMPP protocol for authentication, presence, and messaging [6].

We have deployed 10 XBow MicaZ motes with MDA300 sensor board in the
conference rooms at our office premises. These sensor nodes sense room tempera-
ture and humidity at periodical intervals and communicate the same to the base
station deployed at one of our cubicles. The data is logged in to the MySQL
database at the server. We have implemented different request types and are ex-
plained below. Current Data: Request sent to know the current sensor readings.
Actuation Request : Request sent to control the operation of appliances being
monitored, Node Configuration (Data Rate) and History data Request : To know
the history of sensor readings. Out of the four mentioned request types, except

senSebuddy: A Buddy to Your Wireless Sensor Network 111

Fig. 3. Delay vs. No. Of Nodes for Option 1 and 2

the last one the other three requests have to be sent to the network for the results.
The last request can be served with history of data logged in at the server.

We have used Openfire [7] XMPP Server as an IM Server. senSebuddy client
developed using Smack API can be used to connect this IM server. We have given
a unique id wsn.infy@blrkec84309d.ad.infosys.com to the deployed network and
the same has been added by the fellow colleagues to their buddy list. We have not
added any access restriction rules to this deployment and the users can access all
the features of the network through their senSebuddy IM client.

Fig. 4. Delay vs. No. Of Nodes for Option 3

We have conducted experiments with the above mentioned setup and the re-
sults are presented in the following figures. Option 1 refers to current data of a
node in the network, option 2 refers to actuation request sent to a node in the net-
work, and option 3 refers to altering the data rate of the node. Fig. 3 depicts the
graph of option 1 and option 2 respectively with varying number of nodes in the
network and the delay is plotted in the graph. Similarly fig 4 represents option 3.
The 100 node experimentation is done by increasing the numbers of packets that
a node sends in unit time. The above results indicate that with the increase in the
number of nodes, the delay varies because of the latency involved in the network.

112 M.R.V. Adi, K. Padmanabh, and S. Paul

However, even with 100 nodes, the latencies are in milisecond which would not let
the users to feel any deliberate delay.

5 Conclusion and Future Work

We have used only the basic feature of IM protocol i.e. exchanging messages. But,
IM protocol offers advanced features such as file sharing, voice and video chat. We
are currently working on remote updates to software running on the nodes through
file sharing option of IM; this would ease the reprogramming process for end user
also reduces the post-deployment maintainence activities. We are also planning
to work on the voice feature of IM protocol as well so that users can interact with
deployed WSN in very interactive manner.

References

1. Turon, M.: Mote-view: a sensor network monitoring and management tool. In: Pro-
ceedings of the 2nd IEEE workshop on Embedded Networked Sensors, EmNets 2005,
pp. 11–17. IEEE Computer Society, Washington (2005)

2. Buschmann, C., Pfisterer, D., Fischer, S., Fekete, S.P., Kröller, A.: Spyglass: a wire-
less sensor network visualizer. SIGBED Rev. 2(1), 1–6 (2005)

3. S. Al-Omari, W. Shi, and C. J. Miller, Sesame: Sensor system accessing and moni-
toring environment, Wayne State University, Tech. Rep. MIST-TR-2004-018, 2004.
[Online]. Available: http://www.cs.wayne.edu/ safwan/papers/sesame.pdf

4. XMPP, Xmpp foundation, http://www.xmpp.org
5. Smack, Smack api, http://www.igniterealtime.org/projects/smack/
6. Google Talk, Google talk,

http://code.google.com/apis/talk/opencommunications.html
7. Openfire, Openfire, http://www.igniterealtime.org/projects/openfire/
8. Padmanabh, K., Malhotra, L., Reddy, A.M., Kumar, A.: MOJO: A Middleware that

converts Sensor Nodes into Java Objects. In: IEEE ICCCN-2010 CON-WIRE, Zurich
Switzerland (2010)

http://www.xmpp.org
http://www.igniterealtime.org/projects/smack/
http://code.google.com/apis/talk/opencommunications.html
http://www.igniterealtime.org/projects/openfire/

Evaluation of an Electronically Switched Directional
Antenna for Real-World Low-Power Wireless Networks

Erik Öström, Luca Mottola, and Thiemo Voigt

Swedish Institute of Computer Science (SICS), Kista, Sweden

Abstract. We present the real-world evaluation of SPIDA, an electronically swit-
ched directional antenna. Compared to most existing work in the field, SPIDA is
practical as well as inexpensive. We interface SPIDA with an off-the-shelf sensor
node which provides us with a fully working real-world prototype. We assess the
performance of our prototype by comparing the behavior of SPIDA against tra-
ditional omni-directional antennas. Our results demonstrate that the SPIDA pro-
totype concentrates the radiated power only in given directions, thus enabling
increased communication range at no additional energy cost. In addition, com-
pared to the other antennas we consider, we observe more stable link perfor-
mance and better correspondence between the link performance and common link
quality estimators.

1 Introduction

The use of external antennas is a common design choice in many deployments of low-
power wireless networks [13]. Indeed, an external antenna often features higher gains
compared to the antennas found aboard mainstream devices, enabling increased relia-
bility in communication at no additional energy cost. To implement such design, re-
searchers and domain-experts have hitherto borrowed the required technology from
WiFi networks [22, 10]. This holds both w.r.t. scenarios requiring omni-directional
communication [22], and where the application at hand allows directional communica-
tion [10]. Although this implementation choice already enables improved performance,
it is still sub-optimal in many respects, e.g., w.r.t. the significant size of the resulting
devices, which complicates their installation. Unfortunately, as illustrated in Section 2,
currently there are no practical solutions to address these issues, particularly in scenar-
ios where some form of directional communication would be applicable.

To address this challenge, Nilsson designed SPIDA [11], an electronically switched
directional antenna, shown in Figure 1. The SPIDA antenna is intended primarily for
real-world low-power wireless networking, targeting scenarios that benefit from direc-
tional communication and sensor node localisation. We build a version of SPIDA that
interfaces to a commercial sensor node—the popular TMote Sky platform [12]—and
design and implement the software drivers necessary to dynamically control the direc-
tion of maximum gain. Section 3 describes the hardware/software integration of SPIDA

with the sensor network platform.
We evaluate the performance of our SPIDA prototype in a real-world setting, as de-

scribed in Section 4. We compare the SPIDA behavior against two omni-directional

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 113–125, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

114 E. Öström, L. Mottola, and T. Voigt

Fig. 1. SPIDA prototype, connected to a TMote Sky node

antennas: an on-board micro-strip antenna and an external whip antenna for WiFi net-
works. We study the packet delivery rate and link quality using various network layouts,
to assess communication ranges and directionality. To assess the dynamic abilities of
SPIDA, we also run experiments by changing at run-time the direction of maximum
gain. The results demonstrate that our SPIDA prototype behaves according to the in-
tended design, and provides significant improvements in all metrics compared to the
other antennas we consider.

The availability of a practical, inexpensive solution for dynamically controllable di-
rectional communication in low-power wireless networks raises interesting research
questions and opens up a wealth of opportunities. We elaborate on this in Section 5,
pointing to the network-level mechanisms that may leverage such antenna technology,
and illustrating the expected performance gains.

We end the paper in Section 6 with brief concluding remarks.

2 Related Work

Nilsson identifies three candidate classes of directional antennas for low-power net-
works [11]: the adcock-pair antenna, the pseudo-doppler antenna, and the electronically
switched parasitic element antenna. As described in Section 3, the SPIDA is an example
of the latter class. At present, we could not find descriptions of other prototypes in any
of these classes in the literature, let apart real-world experimental studies like ours.

The work closest to ours is that by Giorgietti et al. [8], who describe a prototype
of four-beam patch antenna integrated with TMote Sky nodes, and related real-world
experimental results. The direction of maximum gain is software-controlled, as in our
SPIDA prototype. The size of the antenna, however, is much bigger than SPIDA. Gior-
getti et al. leverage the experimental data to define analytical models for simulations. A
similar activity using SPIDA is underway.

Evaluation of an Electronically Switched Directional Antenna 115

As already mentioned, antennas with fixed directions of maximum gain are em-
ployed in real-world applications [22, 10], but also as deployment tools. For instance,
Saukh et al. [14] use “cantennas”—simple cylinder-shaped directional antennas—for
node localisation and selective communication to a group of nodes.

Despite the lack of real-world prototypes of dynamically controllable directional
antennas, the benefits they provide motivated research efforts at both MAC and routing
layer [4, 5, 7, 15, 21], in low-power as well as mobile wireless networks. Most times,
these leverage simulations or analytical studies based on abstract models of dynamically
controllable directional antennas. Therefore, their behavior tends to be fairly idealized.

Advocating a top-down approach, some works provide guidelines for the design of
dynamically controllable directional antennas based on the requirements imposed by
higher-layer protocols [23,19]. On the contrary, our research activity around the SPIDA

antenna leverages a bottom-up approach, starting from a practical real-world antenna
prototype, and then aiming at designing networking mechanisms leveraging its features,
as discussed in Section 5.

3 Hardware/Software Design

In this section we describe the SPIDA hardware and the related control software.

Fig. 2. SPIDA schematics without control electronics [11]

116 E. Öström, L. Mottola, and T. Voigt

3.1 Hardware

The SPIDA antenna, developed at SICS by Nilsson [11], operates in the 2.4 GHz ISM
band. SPIDA is a switched parasitic element antenna [18], i.e., it consists of a cen-
tral active element surrounded by “parasitic” elements, as shown in Figure 2. The for-
mer is a conventional quarter-wavelength whip antenna. The parasitic elements can be
switched between ground and isolation. When grounded, they work as reflectors of ra-
diated power, and when isolated they work as directors of radiated power. The SPIDA

is equipped with six parasitic elements, yielding six possible “switches” to control the
direction of transmission.

A distinguishing feature is the SPIDA’s smoothly varying radiation pattern. The an-
tenna gain is designed to vary as an offset circle from approximately 7 dB to -4 dB
in the horizontal plane, with the highest gain in the direction of the isolated parasitic
elements. Although one may desire more selective transmission patterns, this choice
simplifies the construction and use of the device, as we discuss in Section 5. In prin-
ciple, such antenna behavior is obtained without any significant side lobes even when
using simplistic on-off control [11]. The antenna is straightforward to manufacture, and
its most expensive part is the SMA connector costing about 5 ECU in single quantities.

The circuitry to control the parasitic elements aims at reducing interference and sup-
pressing noise from the sensor node digital circuitry. The schematics to control an in-
dividual parasitic element is shown in Figure 3. The available I/O lines on the TMote
Sky are used to control the parasitic elements, using two LC filters for each I/O line to
prevent noise from entering the RF section. Each parasitic element is controlled by an
ADG902 SPST RF solid state switch. The control circuit is soldered onto a strip-board
with an attached 10-pin IDC connector that fits onto the TMote Sky expansion pins.

2

4

6

8

10

1

3

5

7

9

1

2

3

4

5

6

654321

1

1

GND

VDD

CTRL

RF1

RF2

GND2

GND3

GND4

Vcc GND

I/O

SPIDA base board

x7

0.
1

C
2

0.
1

C
4

10 L
2 10 L
3

ADG902_1

deflector

parasitic
element

10

L1

10

L4

0.1

C1

0.1

C2

GND

Vcc

I/O

U2 TMote Sky

SPIDA leg

Fig. 3. SPIDA control electronics for a single parasitic element

Evaluation of an Electronically Switched Directional Antenna 117

Function Input Description
spida init() N/A Initialize the driver.
spida activate(int) 1-6 Isolate one of the six individual parasitic elements.
spida deactivate(int) 1-6 Ground one of the six individual parasitic elements.
spida configure(int) 0-6 Configure all parasitic elements at once to set a specific direction of maximum gain.

(0 causes the SPIDA to behave as an omni-directional antenna).

Fig. 4. SPIDA driver API

Fig. 5. Test environment and antenna orientation on probe nodes

3.2 Software

We design and implement the software drivers necessary to control the six parasitic ele-
ments aboard the SPIDA, targeting the Contiki operating system [6]. The API provided
to programmers is simple, as shown in Figure 4. The first function initializes the driver.
The following two functions are used to isolate or ground specific parasitic elements
on the SPIDA, enabling individual fine-grained control. Nevertheless, we expect the
common use of the SPIDA to involve only one isolated element at a time, to direct the
transmission in a specific direction. The last function in Figure 4 configures all parasitic
elements at once to set a specific direction of maximum gain. Giving 0 as input makes
the SPIDA isolate all parasitic elements, corresponding to omni-directional behavior.
For instance, this may be useful for neighbor discovery.

4 Real-World Evaluation

We present the real-world evaluation we perform with our SPIDA prototype. Our ob-
jective is to investigate the SPIDA performance at the physical layer compared to the
TMote Sky embedded microstrip antenna [20] and an external whip antenna for WiFi

118 E. Öström, L. Mottola, and T. Voigt

networks. The latter is connected to the node through a standard SMA connector and
features a nominal gain of 2 dB.

4.1 General Setting

We deploy the nodes in an open grass field, shown in Figure 5. The location we choose
has no interference coming from other networks working in the ISM band. We

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

P
D

R
 (

%
)

Probe distance (mt)

SPIDA (avg)
SPIDA (stdDev)

Whip (avg)
Whip (stdDev)

Microstrip (avg)
Microstrip (stdDev)

(a) PDR

-100

-95

-90

-85

-80

-75

-70

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R
S

S
I (

dB
m

)

Probe distance (mt)

SPIDA (avg)
SPIDA (stdDev)

Whip (avg)
Whip (stdDev)

Microstrip (avg)
Microstrip (stdDev)

(b) RSSI

 20

 40

 60

 80

 100

 120

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

LQ
I

Probe distance (mt)

SPIDA (avg)
SPIDA (stdDev)

Whip (avg)
Whip (stdDev)

Microstrip (avg)
Microstrip (stdDev)

(c) LQI

Fig. 6. The SPIDA antenna extends the radio
range and enjoys better correspondence be-
tween LQI and PDR compared to the other
antennas

verify this condition by taking periodic noise
floor measurements during the experiments,
also with the TMote Sky’s CC2420 radio
chip. We install the nodes atop 1 m tall card-
board pillars to avoid signal reflections from
the ground [3], and power them through the
USB connector to factor out the influence
of the battery discharge. All antennas we
consider are oriented with the radiating el-
ement orthogonal to the ground, as shown at
the bottom right of Figure 5. We carry out
all experiments in comparable conditions of
humidity and temperature. We check these
conditions during the experiments by period-
ically querying the TMote Sky’s integrated
SHT11 sensor.

The various scenarios we investigate dif-
fer in the network layout, as described next.
In every case, however, one node transmits
using different antennas, while the others
operate as passive probes, logging the re-
ceived packets. The probes employ the ex-
ternal whip antenna shown in Figure 5. The
SPIDA is always configured with only one
parasitic element isolated: the configuration
that yields the highest degree of directional
transmission. For each experiment, the trans-
mitter sends 1000 packets with an inter-
packet interval of 500 ms. We use the lowest
power setting, which enables easier logistics.
The experiment code is implemented on top
of the Contiki [6] operating system, and uses
channel 26 for the transmissions.

As performance metrics, we consider av-
erages over all probe nodes of the following
figures: i) the packet delivery rate (PDR),
defined as the average number of packets
received at a probe over those sent by the
transmitter, ii) the received signal strength

Evaluation of an Electronically Switched Directional Antenna 119

(RSSI), and iii) the link quality indicator (LQI). We obtain the two latter for every
received packet directly from the CC2420 radio chip. Because of this, the charts for
RSSI and LQI do not show regions where no packets were received. The results de-
scribed next are averages over at least 5 repetitions of every experiment.

4.2 Network Layouts and Results

We describe next the specific network layout in every experiment and report on the
corresponding results.

Range experiments. We compare the communication range of the SPIDA antenna
against the other antennas we consider. To do so, we use only one probe node, placed
at varying distances from the transmitter. In the first round of these experiments, the
SPIDA has the isolated parasitic element pointing towards the probe.

Figure 6 illustrates the results. As shown in Figure 6(a), in the direction of maximum
gain the SPIDA reaches much farther than the other two antennas. Using the SPIDA,
the “connected” region [24] with PDR above 90% is about twice that of the whip an-
tenna, and four times the case of the microstrip one. This is a key metric, as it indicates
the portion of space characterized by reliable communication. The SPIDA also extends
the “grey area” [24], characterized by highly varying performance and no predictable
behavior. This is also an effect of the extended communication range.

The result above is reflected in the trends for RSSI and LQI , shown in Figure 6(b)
and 6(c). Moreover, within the connected region the SPIDA shows better correspon-
dence between LQI and PDR than the other antennas. Thus, with comparable link
performance in PDR, link quality estimators based on LQI [17] are likely to perform
better with the SPIDA.

We also repeat the experiment with the isolated parasitic element of the SPIDA point-
ing in the direction opposite to the probe. Using this setting, the probe always receives
less than 10 packets at 0.5 m from the transmitter, and then nothing beyond 1 m. This
is a first evidence that the SPIDA does direct the transmitted power in a given direction.
We investigate these aspects further in the following experiments.

1 m

transmitter

S
P

ID
A

m
ax g

ain

/3

0

2 /3

- /3

-2 /3

±

probe

(a) Coarse-grained experiments.

1 m

transmitter

S
P

ID
A

m
ax g

ain

0
- /6 /6

/3

probe

/2

- /3

- /2

(b) Fine-grained experiments.

Fig. 7. Network layout for directional experiments

120 E. Öström, L. Mottola, and T. Voigt

 0

 20

 40

 60

 80

 100

 120

 140

-π -2π/3 -π/3 0 π/3 2π/3 π

P
D

R
 (

%
)

Probe displacement

SPIDA (avg)
SPIDA (stdDev)

Whip (avg)
Whip (stdDev)

Microstrip (avg)
Microstrip (stdDev)

(a) PDR

-95

-90

-85

-80

-75

-70

-65

-π -2π/3 -π/3 0 π/3 2π/3 π

R
S

S
I (

dB
m

)

Probe displacement

SPIDA (avg)
SPIDA (stdDev)

Whip (avg)
Whip (stdDev)

Microstrip (avg)
Microstrip (stdDev)

(b) RSSI

 75

 80

 85

 90

 95

 100

 105

 110

 115

 120

-π -2π/3 -π/3 0 π/3 2π/3 π

LQ
I

Probe displacement

SPIDA (avg)
SPIDA (stdDev)

Whip (avg)
Whip (stdDev)

Microstrip (avg)
Microstrip (stdDev)

(c) LQI

Fig. 8. The coarse-grained directional exper-
iments demonstrate the directionality of the
SPIDA antenna

Coarse-grained directional experiments.
We aim at a first, coarse grained characteri-
zation of the spatial characteristics of SPIDA

transmissions compared to the other two an-
tennas. To this end, we place the transmitter
in the center of a circle of six probe nodes,
as shown in Figure 7(a). Based on the re-
sults of the range experiments, we place the
probes at 1 m from the transmitter, corre-
sponding to the connected region for all an-
tennas. We place the probes with the TMote
Sky’s USB connector pointing towards the
transmitter. When using the SPIDA, every
probe is aligned with a parasitic element.

We show the results in Figure 8. As de-
picted in Figure 8(a), the SPIDA achieves
about 100% PDR only along the direction
of maximum gain, corresponding to the iso-
lated parasitic element. We also observe that
the transmission pattern forms a lobe large
enough to cover the probes at ±π

3 as well,
which still receive a significant number of
packets. Nevertheless, the probes at ± 2π

3 and
±π receive no packets at all. This behav-
ior largely corresponds to the simulation re-
sults reported earlier [11]. Thus, despite its
simplicity, the electronics we built have very
little influence on the antenna performance.
As expected, the whip antenna shows an al-
most perfect omni-directional behavior. On
the other hand, the microstrip antenna suf-
fers from the co-location with the node base
board, showing a drop in PDR around π

3 .
Such behavior is consistent with previous
findings [20].

Figure 8(b) and 8(c) illustrate the trends
in RSSI and LQI , respectively. The SPIDA

shows a maximum in RSSI along the direc-
tion of maximum gain, confirming the correct functioning of the electronics to control
the parasitic elements. The same observation applies to the trends in LQI . Both points
of maxima also show less variability in the results than at ±π

3 , indicating a more stable
link performance in the direction of maximum gain. On the other hand, both the whip
antenna and the microstrip antenna show no clear trend in RSSI or LQI . When using
omni-directional antennas, these metrics are known not to show a clear correspondence
with PDR in most cases [16].

Evaluation of an Electronically Switched Directional Antenna 121

 0

 20

 40

 60

 80

 100

 120

 140

-π/2 -π/3 -π/6 0 π/6 π/3 π/2

P
D

R
 (

%
)

Probe displacement

SPIDA (avg)
SPIDA (stdDev)

Whip (avg)
Whip (stdDev)

Microstrip (avg)
Microstrip (stdDev)

(a) PDR

-95

-90

-85

-80

-75

-70

-65

-π/2 -π/3 -π/6 0 π/6 π/3 π/2

R
S

S
I (

dB
m

)

Probe displacement

SPIDA (avg)
SPIDA (stdDev)

Whip (avg)
Whip (stdDev)

Microstrip (avg)
Microstrip (stdDev)

(b) RSSI

 75

 80

 85

 90

 95

 100

 105

 110

 115

 120

-π/2 -π/3 -π/6 0 π/6 π/3 π/2

LQ
I

Probe displacement

SPIDA (avg)
SPIDA (stdDev)

Whip (avg)
Whip (stdDev)

Microstrip (avg)
Microstrip (stdDev)

(c) LQI

Fig. 9. The fine-grained directional experi-
ments again demonstrate SPIDA’s direction-
ality w.r.t. all metrics

Fine-grained directional experiments. We
investigate the transmission pattern of the
SPIDA antenna at a finer grain around the di-
rection of maximum gain. We deploy seven
probes in a half-circle configuration, as in
Figure 7(b). The other parameters are as in
the previous coarse-grained experiments.

The results we obtain this time are shown
in Figure 9. Figure 9(a) demonstrates the
smoothly varying radiation pattern of the
SPIDA. The PDR gradually decreases be-
tween 0 degrees—which is aligned with the
isolated parasitic element—and ±π

3 , until it
drops to zero at ±π

2 . Again the whip an-
tenna behaves in an omni-directional man-
ner, whereas the microstrip shows a larger
drop around π

3 , due to the higher spatial res-
olution of these experiments.

The trends in RSSI and LQI , shown in
Figure 9(b) and 9(c), confirm our observa-
tions. With the SPIDA, the decrease in both
metrics is gradual around the direction of
maximum gain, and the variability is reduced
along this direction compared to both the
other two antennas and the other directions
with the SPIDA.

Dynamic experiments. We also test the
SPIDA’s ability to change the direction of
maximum gain at run-time. We use again
the network layout in Figure 7(a). How-
ever, this time we program the transmitter
to switch the isolated parasitic element after
every packet, moving the direction of maxi-
mum gain clockwise in the horizontal plane.
We repeat this experiment 10 times.

Figure 10 illustrates the trends in the met-
rics we consider as a function of a given
probe, against the current direction of max-
imum gain. All results are remarkably consistent no matter which probe we examine.
For instance, Figure 10(a) shows that all probes observe the same behavior in PDR as
the direction of maximum gain changes, with the only difference of a variable offset
due to a probe’s relative displacement. It also appears that the SPIDA slightly favors
the PDR at the probe to the left of the direction of maximum gain. This behavior is
presumably due to some little imperfections in the construction process, which can be
easily rectified.

122 E. Öström, L. Mottola, and T. Voigt

The same observations apply to the results in RSSI and LQI , depicted in Figure
10(b) and 10(c). Both show a peak at the probe aligned with the current direction of
maximum gain, and a reasonably symmetric decrease of the same metric at the two
adjacent probes. The variability of both RSSI and LQI (not shown in the charts) is
comparable to the other experiments.

5 Outlook

 0

 20

 40

 60

 80

 100

 120

 140

-π -2π/3 -π/3 0 π/3 2π/3 π

P
D

R
 (

%
)

Direction of maximum gain

Probe at -2π/3
Probe at -π/3

Probe at 0
Probe at π/3

Probe at 2π/3
Probe at π

(a) PDR

-90

-85

-80

-75

-70

-π -2π/3 -π/3 0 π/3 2π/3 π

R
S

S
I (

dB
m

)

Direction of maximum gain

Probe at -2π/3
Probe at -π/3

Probe at 0
Probe at π/3

Probe at 2π/3
Probe at π

(b) RSSI

 75

 80

 85

 90

 95

 100

 105

 110

 115

 120

-π -2π/3 -π/3 0 π/3 2π/3 π

LQ
I

Direction of maximum gain

Probe at -2π/3
Probe at -π/3

Probe at 0
Probe at π/3

Probe at 2π/3
Probe at π

(c) LQI

Fig. 10. The dynamic experiments demon-
strate that the trends in PDR, RSSI , and
LQI follow the changes in the direction of
maximum gain

From a networking perspective, the avail-
ability of a SPIDA-like prototype raises
interesting research questions and opens up
several opportunities.

For instance, we believe that there may
be significant advantages by leveraging
a SPIDA-like antenna are at the routing
layer. Consider the classical multi-hop, con-
vergecast scenario using tree-shaped routing
topologies. By using directed transmissions
towards the parent node, one may diminish
the probability of collisions due to simul-
taneous transmissions along parallel paths.
This would provide greater reliability and re-
duce energy consumption by decreasing the
number of necessary retransmissions.

However, achieving this functionality is
not necessarily trivial. For instance, one may
devise directionality-aware parent selection
mechanisms, or re-use existing schemes and
simply use directional transmissions when
sending to the parent. In the latter case,
the increase in communication range, which
we also observed with the SPIDA in Sec-
tion 4, may allow transmissions to reach non-
parent nodes that are however closer to the
sink. Significant trade-offs are involved in
devising similar functionality, e.g., complex-
ity vs. communication overhead, which de-
serve careful investigation.

Another example is related to the use
of dynamically controllable directional an-
tennas in TDMA-like MAC protocols.
Doing so may enable spatial diversity in ad-
dition to time diversity. In this context, the
few existing solutions tend to be very com-
plex [21]. However, the SPIDA’s radiation

Evaluation of an Electronically Switched Directional Antenna 123

pattern, characterized by a simple offset circle, may greatly simplify the problem at the
cost of slightly increased contention on the wireless medium. Here again, the trade-off
between the degree of directional communication and the simplifications in the MAC
operation shall be analyzed thoroughly.

Even staple networking mechanisms such as neighbor discovery may benefit form
the use of dynamically controllable directional antennas. How to leverage this function-
ality, however, is an open question. If the antenna also provides omni-directional behav-
ior, as in the case of SPIDA, one may re-use existing mechanisms. However, when the
antenna turns to directional mode, the increased transmission range may reach nodes
that were previously not recognized as neighbors. This would impact the operation of
MAC protocols, as topology information would suddenly become inconsistent. Topol-
ogy control schemes [9] may decrease the transmission power to maintain the same
neighboring relations when the antenna is operating in directional mode. However, this
would partly defeat the increased reliability obtained with directional transmissions.

On the other hand, one may use directional mode for neighbor discovery as well,
rapidly sweeping all possible directions. However, by doing so, the link quality to dif-
ferent neighbors would be sampled at slightly different times, which might affect the
operation of higher-level mechanisms, especially multi-hop routing protocols [1]. Most
existing works in this area assume a priori knowledge on node positions. Even though
directional antennas like the SPIDA are used for localization based on angle-of-arrival
information [2], we do need much better integration of these functionality.

6 Conclusion

In this paper we reported on real-world experiments with SPIDA, an electronically
switched directional antenna for low-power wireless networks. We showed that SP-
IDA concentrates the radiated power only in given directions. Based on a comparison
with the on-board micro-strip antenna of the TMote Sky node and an external whip an-
tenna, we observed increased communication range, improved link stability, and better
correspondence between link performance and common link quality estimators. As we
illustrated, this opens up several opportunities for improved network-level mechanisms
that leverage the characteristics of SPIDA-like antennas.

Acknowledgements. We thank Martin Nilsson (SICS) who designed the SPIDA an-
tenna and advised us on interfacing SPIDA to a TMote Sky sensor node. This work was
supported by VINNOVA, the Uppsala VINN Excellence Center for Wireless Sensor
Networks WISENET, also partly funded by VINNOVA, and CONET, the Cooperating
Objects Network of Excellence, under EU-FP7 contract number FP7-2007-2-224053.

References

1. Al-Karaki, J., Kamal, A.E.: Routing techiniques in wireless sensor networks: A survey. IEEE
Wireless Communications 11(6) (2004)

2. Amundson, I., Sallai, J., Koutsoukos, X., Ledeczi, A.: Radio interferometric angle of ar-
rival estimation. In: Silva, J.S., Krishnamachari, B., Boavida, F. (eds.) EWSN 2010. LNCS,
vol. 5970, pp. 1–16. Springer, Heidelberg (2010)

124 E. Öström, L. Mottola, and T. Voigt

3. Anastasi, G., Borgia, E., Conti, M., Gregori, E., Passarella, A.: Understanding the real be-
havior of Mote and 802.11 ad hoc networks: An experimental approach. Elsevier Pervasive
and Mobile Computing Journal 1(2), 237–256 (2005)

4. Bazan, O., Jaseemuddin, M.: On the design of opportunistic MAC protocols for multi-hop
wireless networks with beamforming antennas. IEEE Transactions on Mobile Computing 99
(2010) (prePrints)

5. Cho, J., Lee, J., Kwon, T., Choi, Y.: Directional antenna at sink (DAaS) to prolong network
lifetime in wireless sensor networks. In: Proc. of the European Wireless Conf. - Enabling
Technologies for Wireless Multimedia Communications (2006)

6. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - A lightweight and flexible operating system
for tiny networked sensors. In: Proc. of 1st Wkshp. on Embedded Networked Sensors (2004)

7. Dunlop, J., Cortes, J.: Co-design of efficient contention mac with directional antennas in
wireless sensor networks. In: Proc. of the International Wireless Communications and Mobile
Computing Conference (2008)

8. Giorgetti, G., Cidronali, A., Gupta, S., Manes, G.: Exploiting low-cost directional antennas
in 2.4 GHz IEEE 802.15.4 wireless sensor networks. In: Proc. of the European Conf. on
Wireless Technologies (2007)

9. Hackmann, G., Chipara, O., Lu, C.: Robust topology control for indoor wireless sensor net-
works. In: Proc. of the 6th Int. Conf. on Embedded Networked Sensor Systems, SenSys
(2008)

10. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.: Health mon-
itoring of civil infrastructures using wireless sensor networks. In: Proc. of the 6th Int. Conf.
on Information Processing in Sensor Networks, IPSN (2007)

11. Nilsson, M.: Directional antennas for wireless sensor networks. In: Proc. of the 9th Scandi-
navian Workshop on Wireless Adhoc Networks, Adhoc (2009)

12. Polastre, J., Szewczyk, R., Culler, D.: Telos: Enabling ultra-low power wireless research. In:
Proc. of the 5th Int. Conf. on Information Processing in Sensor Networks, IPSN (2005)

13. Raman, B., Chebrolu, K.: Censor networks: a critique of ”sensor networks” from a systems
perspective. SIGCOMM Comput. Commun. Rev. 38(3) (2008)

14. Saukh, O., Sauter, R., Meyer, J., Marrón, P.: Motefinder: A deployment tool for sensor net-
works. In: Proc. of the Workshop on Real-World Wireless Sensor Networks, REALWSN
(2008)

15. Shihab, E., Cai, L., Pan, J.: A distributed, asynchronous directional-to-directional MAC pro-
tocol for wireless ad hoc networks. IEEE Trans. on Vehicular Technology 58(9) (2009)

16. Srinivasan, K., Dutta, P., Tavakoli, A., Levis, P.: An empirical study of low power wireless.
ACM Transactions on Sensor Networks (2010) (to appear)

17. Srinivasan, K., Levis, P.: RSSI is under-appreciated. In: Proc. of the 3rd Int. Workshop on
Embedded Networked Sensors, EmNets (2006)

18. Thiel, D., Smith, S.: Switched parasitic antennas for cellular communications. Artec House,
London (2002)

19. Tian, Q., Bandyopadhyay, S., Coyle, E.J.: The effect of directional antennas on spatiotempo-
ral sampling in clustered sensor networks. J. of Internet Technology (JIT) 8(1) (2007)

20. TMote Sky Datasheet,
www.snm.ethz.ch/pub/uploads/Projects/tmote_sky_datasheet.pdf

21. Vilzmann, R., Bettstetter, C.: A survey on MAC protocols for ad hoc networks with direc-
tional antennas. In: Networks and Applications Towards a Ubiquitously Connected World,
EUNICE 2005, vol. 196(1) (2006)

www.snm.ethz.ch/pub/uploads/Projects/tmote_sky_datasheet.pdf

Evaluation of an Electronically Switched Directional Antenna 125

22. Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., Welsh, M.: Fidelity and yield in a vol-
cano monitoring sensor network. In: Symp. on Operating Systems Design and Implementa-
tion, OSDI (2006)

23. Wu, Y., Zhang, L., Wu, Y., Niu, Z.: Interest dissemination with directional antennas for wire-
less sensor networks with mobile sinks. In: Proc. of the 6th Int. Conf. on Embedded Net-
worked Sensor Systems, SenSys (2006)

24. Zhao, J., Govindan, R.: Understanding packet delivery performance in dense wireless sensor
networks. In: Proc. of the 3rd Int. Conf. on Embedded Networked Sensor Systems, SenSys
(2003)

Implementation and Evaluation of Combined
Positioning and Communication

Paul Alcock, James Brown, and Utz Roedig

Lancaster University, UK
{p.alcock,j.brown,u.roedig}@lancaster.ac.uk

Abstract. A new generation of communication transceivers are able to support
Time of Flight (TOF) distance measurements. Transceiver manufacturers envi-
sion that communication and positioning features are used separately and one at
a time. However, we have demonstrated that such separation is unnecessary and
that TOF measurements can be obtained during data communication. Thus, dis-
tance measurements required by positioning services can be collected both energy
and bandwidth efficiently. In this paper we describe the modification of an exist-
ing low power wireless sensor network (WSN) medium access control (MAC)
protocol called FrameComm to include collection of distance measurements.
We describe the implementation of the modified FrameComm protocol (called
FrameCommDM) on a Nanotron DK development kit comprising of an Atmel
ATmega128 MCU and a Nanotron NA5TR1 transceiver. The performance of the
FrameComm and FrameCommDM implementation on the Nanotron platform is
evaluated and compared. It is shown that the collection of distance measurements
has no significant impact on communication performance. Furthermore, the dif-
ference in energy consumption used to perform the additional ranging tasks of
FrameCommDM is examined and quantified.

1 Introduction

Many positioning systems have been developed which use the existing communication
transceiver of a sensor node. Positioning systems relying on conventional low-power
communication transceivers typically make use of either the received signal strength
(RSS) or the measured time-of-flight (TOF) of a signal as input for a positioning algo-
rithm. Both methods can be used to determine the distance between transceivers and
ultimately the position of all transceivers in relation to each other. These methods of
distance measurements have been investigated at length and reports show that using
current transceivers yield unreliable and inaccurate results. Patwari et al. [1] present
an in-depth report of their findings, which show that multipath signals and shadowing
obscure distance measurements.

The recent development of low-power, ultra wideband (UWB) transceivers for use
in sensor nodes, overcomes the aforementioned ranging inaccuracies. The physical sig-
nal properties of UWB communication make it possible to accurately determine the
time-of-arrival (TOA) of signals. By utilizing either clock synchronization or two-way-
ranging it is therefore possible to accurately determine the time of flight (TOF) of the
signal. Thus, the distance between communicating transceivers and node positions can

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 126–137, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Implementation and Evaluation of Combined Positioning and Communication 127

be determined. The IEEE 802.15.4a physical layer specification [2], standardized in
2007, defines the use of UWB transceivers for use in wireless personal area networks
and the functionality of positioning. The Nanotron NA5TR1 [3] transceiver is an exam-
ple of one such transceiver which adheres to this standard.

UWB transceiver manufacturers envision that communication and positioning fea-
tures are used separately and one at a time. Either the transceiver is used to transfer data
packets between sender and receiver or the transceiver is used to send ranging pack-
ets to determine the TOF between nodes. This leads to inefficient transceiver usage as
excess packets might be generated unnecessarily. If an exchange of data packets is cur-
rently taking place between two nodes using a send and acknowledge scheme, the same
packets can also be used to measure TOF between the nodes. Therefore the distance can
be estimated using the existing data packets, alleviating the need to transmit specialized
ranging packets.

We have shown in our previous, simulated work [10] how standard low power MAC
protocols for WSNs can be modified to perform ranging while transmitting data. In
particular, our previous work shows how the existing FrameComm MAC protocol [4]
can be extended to support positioning tasks. In this paper we take our work one step
further and describe a real world implementation of the modified FrameComm MAC
protocol (called FrameCommDM) for the Nanotron NA5TR1 transceiver. This paper
has the following specific contributions:

– Implementation Details: A detailed description of the FrameCommDM implemen-
tation for the Nanotron platform is given. We identify potential hardware changes
to the Nanotron platform which would allow us to implement combined positioning
and communication more efficiently.

– Prototype Evaluation: A comprehensive evaluation of the prototype system is given.
In particular the impact of positioning on communication performance and system
power consumption is quantified.

The prototype evaluation supports our previous results obtained via simulation (see
[10]). Positioning features can be integrated into a low power WSN MAC protocol
without significant impact on communication performance.

The next Section gives an overview on related work. Section 3 describes FrameComm
and FrameCommDM. Section 4 details the implementation of FrameCommDM on the
Nanotron platform. Section 5 outlines the evaluation setup and explains the obtained
measurement results. The paper then concludes in Section 6 and describes proposed
future work.

2 Related Work

There is a large body of work which has focused on exploiting UWB for either com-
munication or positioning in wireless sensor networks. However, there is little research
on how to tightly integrate both positioning and communication functions.

Correal et al. [5] present a method of positioning using UWB transceivers in which
a packet sent by a node is followed by acknowledgements which can be used to derive
round-trip times. This method provides a compelling proof-of-concept for our proposed

128 P. Alcock, J. Brown, and U. Roedig

system. However, the method discussed by Correal et al. differs from our method in that
ranging is not formally integrated into the protocol, and there is no analysis of how their
methods of positioning and communication functions affect one another.

Cheong and Oppermann [6] describe a positioning-enabled MAC protocol for UWB
sensor networks. First, their solution differs from our work as data packets them-
selves are not used to support positioning; positioning and communication are handled
completely separately by the MAC layer. Second, Cheong’s work proposes a TDMA
protocol, while the modified FrameComm protocol presented in this paper is a
contention-based protocol.

The IEEE 802.15.4a physical layer specification [2], standardized in 2007, defines
the use of UWB transceivers in wireless personal area networks. The standard defines
positioning and communication as separate functions but does not discuss their integra-
tion. However, modern packet-based transceivers conforming to the 802.15.4a standard
could potentially be used to support the MAC protocol defined in this paper.

The use of packetized radios requires a fresh approach of implementing asyn-
chronous duty cycles in WSNs. Some schemes use the same concept of framelet trails
as used by the FrameComm [4] MAC protocol used for the work presented in this pa-
per. The current default energy saving protocol in TinyOS is based on the Low Power
Listening component of BMAC [7], but employs message retransmission instead of
a long preamble in order to accommodate packet-based radios. X-MAC [8] also uses
framelets to establish rendezvous between sender and receiver but only retransmits the
message header. The payload is sent only after one of the headers has been acknowl-
edged by the destination. These and other existing framelet based MAC protocols can
potentially be used in conjunction with UWB transceivers to integrate positioning and
communication. Hence, the basic mechanisms described in this paper are not limited to
the particular MAC protocol we have chosen (FrameComm).

3 FrameComm and FrameCommDM

This section describes the most important aspects of FrameComm and the rang-
ing enabled variation FrameCommDM. A detailed description of FrameComm and
FrameCommDM can be found in [4] and [10] respectively.

SENDER
N1

RECEIVER
N2

RADIO OFF RADIO ON RADIO OFF

DATA DATA DATA

ACK

RADIO OFFRADIO ON

SENDER
N1

RECEIVER
N2

RADIO OFF RADIO ON RADIO OFF

DATA DATA DATA

ACK

RADIO OFFRADIO ON

RADIO OFF RADIO ON RADIO OFF

OVERHEARING
NODE N3

Ranging
ACK

Distance
N1-N3 Known

Distance
N1-N3 Known

a) b)

Fig. 1. FrameComm and FrameCommDM comunication mechanism

Implementation and Evaluation of Combined Positioning and Communication 129

3.1 FrameComm

FrameComm, like many wireless contention based MAC protocols, performs duty
cycling of node transceivers. To ensure that rendezvous between transceivers occur,
Frame-Comm deploys a method in which a trail of identical packets of data, called
framelets, is transmitted by the sender with gaps between each. The receiver sends an
acknowledgement to the source after successfully receiving a framelet. Upon the recep-
tion of this acknowledgement, the sender may then cease sending and yield control of
the channel (See Figure 1).

Assumptions and Definitions : It is assumed that the clocks of the transmitter and re-
ceiver operate at approximately the same rate. Note that this does not imply time or
sleep cycle synchronization; rather the clock drift between any two nodes is insignifi-
cant over a short period. It is also assumed that a fixed rate radio duty cycle is used, i.e.,
each node periodically activates its radio for a fixed time interval to monitor activity in
the channel. The duty cycle period is represented as P = �+�0, where � is the time
the radio remains active and �0 is the time the radio is in sleep mode. The duty cycle
ratio is defined as:

DutyCycle =
�
P

=
D

�+�0
(1)

Rendezvous using Framelets : Framelets are small, fixed-sized frames that can be trans-
mitted at relatively high speeds. Successful duty cycle rendezvous require a sequence of
identical frames to be repeatedly transmitted from the source node; each frame contains
the entire payload of the intended message as depicted in Fig. 1. If the receiver captures
one of these, the payload is delivered. The trail of framelets is defined by three param-
eters: Number of transmissions: n ; time between framelets: δ0 ; framelet transmission
time: δ .

To achieve successful rendezvous a relationship must be established between the
parameters �, �0, n, δ , and δ0. First, the listening phase of the duty cycle � must
be such that: � ≥ 2 · δ + δ0. This ensures that at least one full framelet will be inter-
cepted during a listen phase. Furthermore, to ensure overlap between transmission and
listening activities, the number of retransmissions n needs to comply with the following
inequality when �0 > 0 : n ≥ [�0 + 2 ·δ + δ0/(δ + δ0)]. This ensures that a framelet
trail is sufficiently long enough to guarantee rendezvous with the listening phase of the
receiver, and ensures that at least one framelet can be correctly received. The duration
of � determines message delay, throughput and energy savings.

Message Acknowledgments : Between framelet transmissions, the source node switches
its radio to a listening state. Upon successful reception of a frame at the destination
node, this receiving node should respond with an acknowledgement transmitted during
the framelet transmission gaps δ0. After reception of this acknowledgment the sender
should terminate transmission of its framelet trail as communication has been success-
ful. The use of acknowledgments reduces the amount of framelets needed for each
transmission, and as a result, transmissions will occupy the channel for a shorter period
of time, reducing contention whilst increasing throughput and energy efficiency.

130 P. Alcock, J. Brown, and U. Roedig

3.2 FrameCommDM

The basic principle of FrameComm is ideally suited for the integration of position-
ing functions. The method of exchanging packets and acknowledgements mirrors that
of two-way-ranging methods used to determine the round-trip-time, and ultimately the
TOF of signals. If the sender records the time of transmission of its last framelet, and
the time upon receiving its acknowledgement, the distance between nodes can be deter-
mined. Furthermore, a sender may derive not only the distance to its intended recipient,
but potentially the distance to any node within transmission range. During the exchange
of framelets between the sender and receiver, a third node may enter its listening pe-
riod, overhear a framelet and respond with a so called ranging acknowledgement (See
Figure 1.b.).

Basic Ranging : To determine the distance between two communicating nodes the time-
of-flight (TOF) of exchanged signals needs to be measured. To avoid the need of tight
clock synchronization between both nodes two-way-ranging can be performed using the
existing FrameComm data exchange. The sender of a message keeps track of the time
tt when a framelet is transmitted. If an acknowledgement is received, its arrival time ta
is recorded. The TOF can be determined using tt and ta if the processing time tp at the
message receiver is known. The processing time tp is the time required by the message
receiver to respond with an acknowledgement to the received framelet. It is assumed
that the processing time tp is constant and thus known by the message transmitter. The
TOF can be calculated as: TOF = (tt − ta − tp)/2. The distance between the two nodes
is proportional to the measured TOF.

It has to be noted that a transmitter of a message can determine the distance to the
message receiver without consuming additional energy for ranging as existing mes-
sages are used. Likewise, network performance in terms of achievable throughput and
message transfer delay is not degraded by introducing ranging.

Ranging Acknowledgements : The previously outlined basic ranging mechanism can
be improved by introducing ranging acknowledgements. The improvement exploits the
fact that nodes not directly involved in the message transport might overhear framelets.

During regular communication a source node will generate data and begin transmit-
ting its framelet trail, and await an acknowledgement. It is possible for nodes whom
the packet is not the intended recipient to overhear framelets of the transmission. Nor-
mally, a node overhearing a packet not addressed to it would simply ignore the received
packet and enter its sleep cycle. However, to improve ranging we propose that a node
sends a ranging acknowledgement packet before entering the sleep state. Thus, a sender
of a message does not only obtain the distance to the communication partner, but will
potentially also collect distance information to nodes overhearing the communication
(See Figure 1.b.).

This ranging acknowledgement is not sent immediately after the framelet is received.
The transmission of the ranging acknowledgement is delayed by a time δR which is
greater than the time needed to transmit a message acknowledgement. Thus, collisions
between ranging acknowledgements with the message acknowledgement are avoided
(See Figure 1.b.). In some cases, ranging acknowledgements transmitted by several

Implementation and Evaluation of Combined Positioning and Communication 131

overhearing nodes in response to the same framelet might collide. However, this will
only reduce the effectiveness of the positioning function of FrameComm but will not
have an impact on message transmission or network performance.

Ranging acknowledgements are transmitted within the gaps of an existing framelet
trail. Thus, the introduction of ranging acknowledgements has no immediate impact
on the network performance in terms of message transfer delay or network throughput
(See experimental evaluation in Section 5). Energy consumption of nodes may vary
by the introduction of ranging acknowledgements as additional messages need to be
transmitted. However, our experiments show that this variance is acceptably small.

4 Prototype Implementation

Our choice of an UWB transceiver type was determined by our needs for implementing
FrameCommDM. More specific, the transceiver hardware must provide a programming
interface which allows us to implement FrameCommDM. Furthermore, we took power
consumption of available transceivers into account. A low power consumption is im-
portant to make the system viable for most WSN deployment scenarios. Of the possible
candidate systems the Nanotron NA5TR1 [3] best fitted these requirements.

4.1 Prototype Platform

For the FrameCommDM implementation we used the nanoLOC development board
which comprises an of ATMega 128L microcontroller with 128kb flash memory and 4kb
of SRAM, driving a nanoLOC EVR module; the main components of which being the
NA5TR1 transceiver. Although it would be possible to port a common sensor network
operating systems such as TinyOS or Contiki to the nanoLOC platform, we decided to
implemented our own simple OS solely for testing MAC protocol performance.

The Nanotron NA5TR1 transceiver uses chirp spread spectrum (CSS), which is in-
cluded as an alternate physical layer specification in the IEEE 802.15.4a. CSS is sim-
ilar to other spread spectrum techniques in that it uses the entire allocated bandwidth
to transmit a signal, however, CSS uses Linear Frequency Modulation (LFM), called
chirp pulses, which fill the allocated bandwidth over a predefined duration. This makes
CSS modulation resilient against channel noise, and also robust against multipath sig-
nals, allowing for increased accurate estimation of the Time-Of-Arrival (TOA) of the
Line-Of-Sight (LOS) signal, which therefore results in greater accuracy of range esti-
mations. The transceiver operates in the 2.45GHz ISM band at programmable data rates
of between 125Kbps and 2Mbps, with typical current consumptions of 35mA while
transmitting, 33mA in a receiving state, and 2µA in a shutdown state. These figures
compare to those of the Texas Instruments CC2420 transceiver [9] commonly used in
WSN platforms as 17.4mA transmitting, 19.7mA receiving, and 20µA when shutdown.

4.2 Nanotron Ranging API

To facilitate distance estimations the transceiver hardware provides two types of rang-
ing, defined as normal and as fast ranging. Nanotron’s normal ranging technique allows

132 P. Alcock, J. Brown, and U. Roedig

both participating nodes to perform range estimations and the initiating node to aver-
age the estimations for increased accuracy (see [3]). Nanotron’s fast ranging mode is
similar to that of the two-way ranging method of range estimation, only one round trip
measurement is used for range estimation. It has to be noted however that 2 acknowl-
edgments are used. The first is a hardware generated acknowledgement (also called
ranging pulse), having a fixed payload which cannot carry user data. If the receiver
intends to report data in the acknowledgement a second data transmission must fol-
low the ranging pulse (see Figure 2). Essentially the acknowledgement is split into two
packet transmissions. Despite the additional ranging pulse, the fast ranging implemen-
tation closely resembles that of the packet exchange of the FrameCommDM protocol.
Therefore, the fast ranging capability of the Nanotron hardware was used to implement
FrameCommDM.

a) b)

Fig. 2. a) Fast Ranging. Node 1 Generates a packet, sends to Node 2. Node 2 returns a hardware
generated ack, followed by a data packet to transmit user data. Node 1 estimates distance to Node
2; b) Packet format the Nanotron NA5TR1.

The data packet format of the transceiver consists of a 30bit preamble, a 64bit sync
word, a 4bit tail, and a MAC frame with a header size of 176bits and a maximum data
payload field size of 8192bytes (see Figure 2). This is an increase of 50% in header size
when compared to the frame format of the CC2440; assuming the same 48bit addressing
scheme.

Obviously the efficiency of our FrameCommDM implementation is limited due to
hardware constraints. Packets are relatively large and an additional short ranging pulse
has to be transmitted for each message exchange. However, these issues could be ad-
dressed with hardware re-design. The header size could be reduced and the ranging
pulse could carry user data.

4.3 FrameCommDM Implementation

Parameter Settings: The implementation values for various FrameComm parameters,
as outlined in Section 3, have to be selected. The maximum framelet size is 578bit
in length, consisting of a 274bit of frame header, 136bit of FrameComm header, and a
maximum payload size of a simple 8bit sensor reading, and four times a structure of 8bit
node ID and 32bit range estimation. This allows each node to forward a sensor reading
with attached range estimation of a maximum of four neighbours to the sink for each

Implementation and Evaluation of Combined Positioning and Communication 133

message. We assume the sink is collecting ranging information and executes a position-
ing algorithm. This equates to a Framelet transmission time δ = 2.3ms. We implement
a 2% duty cycle using a framelet transmission period of P = 600ms with a listen period
� = 12ms and a sleep period �0 = 588ms. To satisfy the FrameComm specifications
that � ≥ 2 · δ + δ0, where δ0 is the time between framelets, and δ the framelet trans-
mission time, we determine the Framlett interval to be δ0 ≤ 7.37ms. Given that it takes
under 2ms to generate a data ack of the required size of 410bit, we can safely assume
that after δR = 4ms, overhearing nodes may choose to send ranging acknowledgements
which will not collide with the data acknowledgements, and still arrive in adequate time
to be received and processed before the next framelet transmission.

Fast Ranging: The implementation uses nanotron’s fast ranging mechanism. Thus, an
acknowledgement is split in two parts: ranging pulse and acknowledgement (see Fig-
ure 3). As previously explained, δR prevents collision of ranging acknowledgement and
data acknowledgement, however, the collision of ranging pulses cannot be avoided with
the existing hardware. Therefore a ranging measurement must be discarded if ranging
acknowledgement and data acknowledgement are received after framelet transmission
as it indicates a ranging pulse collision.

SENDER
N1

RECEIVER
N2

RADIO OFF RADIO ON RADIO OFF

DATA DATA DATA

A
C
K

RADIO OFFRADIO ON

RADIO OFF RADIO ON RADIO OFF

OVERHEARING
NODE N3

R
a
n
g
i
n
g

A
C
K

Distance
N1-N3 Known

Distance
N1-N3 Known

R
a
n
g
i
n
g

P
u
l
s
e

R
a
n
g
i
n
g

P
u
l
s
e

Fig. 3. FrameCommDM implementation on the Nanotron NA5TR1 using fast ranging

MAC Address Handling: For the NA5TR1 transceivers to facilitate the fast ranging
mode, a sender must initiate a transmission with the 3bit Frame Control Field of the
MAC frame set to 0x04 and the frame must be addressed to a unicast address. A
transceiver which is listening within communication range will check the frame control
flag and reply with a ranging pulse to complete the TOF measurement, should this node
have the destination address. The MAC layer may then retrieve the received data from
the transceiver and return a ranging acknowledgement following the ranging pulse.

To implement our concept of ranging acknowledgements on the Nanotron hardware,
all receiving nodes must have the same physical layer address, otherwise the transceiver
would determine a packet not to be destined for this node, and therefore not send a
ranging pulse. Ranging cannot be successful on this hardware if a node sends to its
own physical address. Therefore, after a node has sampled the channel, before sending
its framelet trail, it first sets its physical layer address to a different address to that
of the global receive address. Once communication is successful, the node switches

134 P. Alcock, J. Brown, and U. Roedig

its physical layer address back to the predetermined global receive address. To uniquely
identify a node sending an acknowledgement the payload uses the previously mentioned
FrameComm header. Overhearing nodes can respond with a hardware pulse, followed
by a ranging acknowledgement containing the node’s FrameComm address.

4.4 Findings

The given hardware features of the NA5TR1 limit efficient implementation of
FrameCommDM. However, these inefficiencies can be addressed by redesigning the
NA5TR1 hardware. In particular, we recommend the following changes to allow effi-
cient combined communication and positioning: (i) Ranging pulses should be able to
carry user data. This would remove the necessity to send ranging pulses followed by a
separate acknowledgement. (ii) It should be possible to define a ranging pulse transmis-
sion delay in order to avoid acknowledgement collisions. (iii) The transceiver should be
able to respond to ranging requests not addressed to the transceiver. This would allow
overhearing nodes to respond to ranging requests without MAC address modification.

5 Evaluation

The evaluation of this work considers the performance of FrameComm against that of
FrameCommDM, in terms of network throughput, transmission delay and energy con-
sumption. Furthermore, we analyze the ability of FrameCommDM to collect ranging
measurements.

5.1 Experimental Setup

The system is evaluated using 5 nodes where 3 nodes are sending data via a forwarding
node to a sink node. The sink nodes transceiver is always on while all other nodes use a
2% duty-cycle. The three leaf nodes and the forwarding node generate traffic destined
for the sink. The setup is tested using different message generation frequencies λ as
a parameter to vary traffic load. Each node generates messages every 1/λ (1s ≤ λ ≤
20s) with an induced random jitter of ±100ms; thus nodes do not generate messages
synchronously. Each experiment run is 5 minutes in length, and is repeated three times.

For each experiment nodes are configured with a buffer size of b = 15. A node can
hold 15 messages in its forwarding buffer in addition to one that might currently be in
the sending buffer. Messages are placed in this buffer when generated or received for
forwarding. This value has been used to ensure messages are not dropped due to lack of
buffer space in our experimental setup. Messages remain in the send buffer and will re-
transmit indefinitely until successfully acknowledged. If a node has multiple messages
in its buffer, it sets a flag in packets of a framelet trail to indicate that it has multiple
messages to send to the same receiver. When the destination node acknowledges the re-
ception of the first packet, it examines this flag and stays awake to receive the remaining
packets.

Implementation and Evaluation of Combined Positioning and Communication 135

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12

T
hr

ou
gh

pu
t [

pa
ck

et
s]

Traffic Rate λ [s]

Throughput

FrameCommDM
FrameComm

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0 2 4 6 8 10 12 14 16 18 20

D
el

ay
 (

m
s)

Traffic Rate λ [s]

End-To-End Delay

FrameCommDM
FrameComm

FrameCommDM Trend
FrameComm Trend

a) b)

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 2 4 6 8 10 12 14 16 18 20

A
ct

iv
e

T
im

e
(%

)

Traffic Rate λ [s]

Active Transceiver Time

FrameCommDM
FrameComm

FrameCommDM Trend
FrameComm Trend

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20

T
ot

al
 D

is
ta

nc
e

U
pd

at
es

Traffic Rate λ [s]

Distance Updates

Node 1
Node 2
Node 3
Node 4

c) d)

Fig. 4. a) Average throughput; b) Average message end-to-end delay; c) Average transceiver duty
cycle of all nodes; d) Average number of distance measurements obtained by forwarding node
and leaf nodes during experiment.

5.2 Communication Performance

To quantify the cost of implementing ranging into the FrameComm protocol, we use
the experiment setup to determine throughput, delay and energy costs for FrameComm
and FrameCommDM. Throughput is measured by determining the number of messages
received at the sink over the duration of an experiment run. Delay is the end-to-end
message delay for each message successfully delivered to the sink. Energy cost is de-
termined by recording the time the transceiver of a node is active (listening, receiving,
sending) during the experiment run.

Figure 4 a) shows the achieved throughput for FrameComm and FrameCommDM.
From this figure it can be determined that the ranging enhancements introduced in
FrameCommDM have no significant impact upon throughput. From the data collected
it is found that throughput of FrameCommDM is reduced by a maximum of 0.9% and
an average of 0.2%.

The results for the average delay for all nodes are shown in Figure 4 b). These show
that, despite anomalous fluctuations in the real world results, the average increase in
delay of adding ranging to the standard FrameComm protocol is a maximum of 4ms,
however FrameCommDM can frequently be seen to yield lower delays than that of
the standard protocol. This trend shows that the implementation of FrameCommDM
has little impact upon message delay. We believe that prolonged testing in controlled
environments will reduce the impact anomalies seen here to produce results closely
resembling those of the trend lines shown.

136 P. Alcock, J. Brown, and U. Roedig

Figure 4 c) depicts the average energy consumption of all nodes for both
FrameComm versions. These results show that for high traffic rates where nodes fre-
quently determine the channel to be busy 5 ≥ λ , there is an energy increase of around
5% for FrameCommDM. During periods of lower traffic 6 ≤ λ rates there is a lower
increase of around 1.5%. These increases, relative to the standard protocol, are due to
the small durations in which FrameCommDM must keep the transceiver active while
sending the ranging acknowledgements and are therefore relative to the amount of times
a node samples the channel, either during its duty cycle period or during CCA, and de-
termines it to be busy. For both variations of the FrameComm protocol we observe that
during times of high traffic rates when the wireless channel is saturated, energy con-
sumption is less than the average. This is caused by the more frequent backing off and
sleeping of the transceiver when the channel is determined to be busy.

The results shown in all three measurements complement those of our previous, sim-
ulated work. This provides proof that the implementation of combined communication
and ranging has no significant impact upon throughput or delay, and yields an accept-
able increase in energy consumption, which would be more efficient than utilizing com-
munication and ranging as separate functions.

5.3 Ranging Update Frequency
The evaluation of this work does not examine the ranging accuracy of FrameCommDM,
as this is determined by the accuracy of range estimations of the NA5TR1 hardware. In
accordance with the NA5TR1 data sheet [3], the accuracy of this particular transceiver
is claimed to be within ±2m indoor, and ±1m in open space.

The evaluation of ranging of this work is to determine how frequently nodes estimate
the distance to neighbouring nodes. For each new message generated, the node appends
the data of its ranging table to the message payload. This data can then be examined by
each intermediate node to update its local ranging table, and examined by the sink when
the message reaches this destination. It has to be noted that during the experiments the
sink does not respond with ranging acknowledgements. As the sink does not duty cycle
the transceiver it would respond to every single message in the network with a ranging
ack which is unnecessary.

Figure 4 d) portrays the total number of range measurements determined by each
node. As expected, when traffic rates are high, nodes receive more frequent range esti-
mations in the form of acknowledgements from their destination node for each message.
Nodes also receive more overhearing acknowledgements during times of high traffic,
as neighboring nodes more frequently sample the channel, and upon determining it to
be busy, send ranging acknowledgements. Intermediary nodes, such as the forwarding
node for this topology, receive more ranging estimations. These nodes not only gather
range estimations from their generated messages and subsequent ranging acknowledge-
ments, but also from the acknowledgements of the packets which they forward and from
the ranging acknowledgments for these.

6 Conclusion

We have demonstrated that combined positioning and communication is implementable
within low power MAC protocols, if the sensor platform provides a state of the art

Implementation and Evaluation of Combined Positioning and Communication 137

communication transceiver. We have found that implementing ranging into the
FrameComm protocol has insignificant impact upon network performance, and that we
can transport ranging data within the network at no extra cost. We have also shown how
currently provided hardware interfaces of transceivers such as the NA5TR1 should be
altered to support combined ranging and positioning more efficiently.

We believe that MAC protocol modifications as described in the paper can be ap-
plied to most power efficient sensor network MAC protocols. Thus, most existing MAC
protocols can be augmented to include efficient positioning services if adapted to new
transceiver hardware.

References

1. Patwari, N., Ash, J.N., Kyperountas, S., Hero, A.O., Moses, R.L., Correal, N.S.: Locating
the nodes. IEEE Signal Processing Magazine 22(4), 54–69 (2005)

2. IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a (TG4a),
http://ieee802.org/15/pub/TG4a.html.

3. Nanotron nanoLOC TRX Data Sheet (2007), http://www.nanotron.com
4. Benson, J., O’Donovan, T., Roedig, U., Sreenan, C.: Opportunistic Aggregation over

Duty Cycled Communications in Wireless Sensor Networks. In: Proceedings of the IPSN
Track on Sensor Platform, Tools and Design Methods for Networked Embedded Systems
(IPSN2008/SPOTS2008), April 2008, IEEE Computer Society Press, St. Louis (2008)

5. Correal, N.S., Kyperountas, S., Shi, Q., Welborn, M.: An uwb relative location system. In:
IEEE Conference on Ultra Wideband Systems and Technologies, pp. 394–397 (2003)

6. Cheong, P., Oppermann, I.: An Energy-Efficient Positioning-Enabled MAC Protocol
(PMAC) for UWB Sensor Networks. In: Proceedings of IST Mobile and Wireless Com-
munications Summit, Dresden, Germany, pp. 95–107 (June 2005)

7. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor net-
works. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor
Systems, SenSys 2004, pp. 95–107. ACM Press, New York (2004)

8. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-mac: a short preamble mac protocol for
duty-cycled wireless sensor networks. In: Proceedings of the 4th International Conference on
Embedded Networked Sensor Systems, SenSys 2006, pp. 307–320. ACM Press, New York
(2006)

9. Chipcon Products From Texas Instruments, CC2420 - Data sheet,
http://focus.ti.com/lit/ds/symlink/cc2420.pdf

10. Alcock, P., Roedig, U., Hazas, M.: Combining Positioning and Communication Using UWB
Transceivers. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds.) DCOSS
2009. LNCS, vol. 5516, pp. 329–342. Springer, Heidelberg (2009)

11. PulsOn 200 Evaluation Kit from Time Domain, PulsOn P220 - Evaluation Kit,
http://www.timedomain.com/products/P220aEVK.pdf

http://ieee802.org/15/pub/TG4a.html.
http://www.nanotron.com
http://focus.ti.com/lit/ds/symlink/cc2420.pdf
http://www.timedomain.com/products/P220aEVK.pdf

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 138–145, 2010.
© Springer-Verlag Berlin Heidelberg 2010

SPIDA: A Direction-Finding Antenna for Wireless
Sensor Networks

Martin Nilsson

Swedish Institute of Computer Science (SICS),
Box 1263, SE-164 29 Kista, Sweden

Abstract. This paper presents the design, signal processing, and field
measurements of SPIDA, a direction-finding antenna for the 2.4 GHz ISM band,
intended for both communication and localization in wireless sensor networks.
The main design goals for the antenna were small size, low production cost, low
power consumption, low signal processing requirements, and low interfacing
complexity. The most expensive part of SPIDA is its SMA connector. The RF-
stage power consumption is the same as for a whip antenna. The angle-of-arrival
can be computed from received-power measurements through a simple formula
using on the order of ten multiplications. Controlling the direction of the antenna
by a microprocessor requires only a pair of digital output pins. When field tested
with the TI CC2500 radio chip, the RMS error for the uncalibrated antenna was
less than 12° up to 100 m distance, covering nearly the full receiving range of the
antenna at 1 mW transmitter output power. A distinguishing feature of the SPIDA
antenna is the absence of side lobes, despite using a manufacturing-friendly and
cost-conscious sparse ground plane.

Keywords: direction finding, antenna, parasitic elements, angle of arrival,
localization, wireless sensor network.

1 Introduction

There are many potential uses for directional antennas in wireless sensor networks
(WSN). For instance, the directivity can be used for economizing transmitted power,
and it can also be used for localization, where a useful piece of information is the
angle of arrival (AOA, a.k.a. direction-of-arrival, DOA) of a transmission. Many
direction finding (DF) antennas have been proposed, including loop, Adcock-pair,
pseudo-Doppler, and phased-array antennas [1, 2, 3], but they often have properties
unsuitable for WSN applications, which demand small and inexpensive antennas, but
are not allowed any complex circuitry nor computationally heavy signal processing.

In this paper, we describe SPIDA, Sics Parasitic Interference Directional Antenna,
which satisfies the basic requirements of electronically steerable directional antennas
for WSN (fig. 1). SPIDA was primarily developed for localization applications (i.e.
concurrent communication and AOA measurements), but it can also be used for

 SPIDA: A Direction-Finding Antenna for Wireless Sensor Networks 139

Fig. 1. (Left). The SPIDA antenna. In this setup, the rightmost parasitic element is isolated,
while the others are grounded. The central element is a conventional monopole. (Right). The
main lobe of SPIDA is quite smooth, as computed by 4Nec2 simulation.

enhancing transmission and reception in software-controllable directions. This paper
focuses on the direction finding aspects of the antenna.

Radio direction finding antennas can compute AOA by measuring either the
amplitude (power) of the incoming signal, or the phase (or both). An advantage of
measuring the phase is that it is less affected by noise, compared to amplitude.
However, RF phase measurement needs more advanced electronics with a highly
stable timebase. Since this is presently difficult to achieve for an inexpensive WSN
node, we have restricted the scope to amplitude measurements.

This paper is organized as follows: In the next section, we describe the design of
SPIDA. In the following section, we describe how AOA data can be extracted from
RSSI readings. In section 4, we describe the experimental setup and the measurement
results. Section 5 concludes the paper.

2 The SPIDA Design

One of the major requirements of an antenna for WSN is small size. A fundamental
fact of antenna theory says that an antenna cannot be much smaller in diameter than
the wavelength [4]. If smaller, the efficiency drops dramatically. Since the 2.4-GHz
ISM band can probably be considered a representative standard frequency for WSN
applications, corresponding to a wavelength λ of approximately 120 mm, we can
expect the antenna to be of roughly this size as well.

SPIDA, first conceived in [3], is a kind of Electronically-Switched Parasitic-
Element (ESPE) antenna.. The ESPE principle was first published in 1979 [5], and
has subsequently been developed further [6, 7]. An ESPE antenna consists of a central
monopole, surrounded by a number of monopole-like parasitic elements spaced
approximately λ/4 apart. In its simplest form, the parasitic elements are switched
between ground, when they operate as reflectors, and isolation, when they operate as

140 M. Nilsson

directors. In a more adva
controlled. This can be do
voltage.

An attractive property o
involved in the active RF c
be added as a sleeve around
controlled by a digital mic
WSN applications, thanks t

Fig. 2. (Left). Dimensions
controlled by isolating one el
gain pattern computed by 4Nec

Physical construction. Th
ground plane. After extens
gives the antenna a smoot
counter-intuitive from the v
lobes is highly desirable f
amplitude (RSSI) readings

SPIDA consists of a 3c
FR-4 circuit board, on whic
soldered as ground plane.
mounted centrally on the
connector, eliminating the f

The parts cost for SPIDA
quantities). The antenna can

anced form, the reactance between the elements can
one by biasing a capacitance diode with a controlled

of the ESPE antenna is that the parasitic elements are
chain. The ring of parasitic elements on a ground plane
d an existing monopole, and each parasitic element can
croprocessor output. The ESPE antenna is well suited
to its small size and simplicity.

of SPIDA. Measures are in wavelengths. The directivity
lement (A) in the preferred direction. (Right). Horizontal pl
c2. The pattern has the desirable rounded shape.

he main distinguishing feature of SPIDA is its spa
sive simulations it was found that this sparse ground pl
th main lobe without significant side lobes, which see
viewpoint of classical antenna design. The absence of s
for the purpose of efficiently extracting AOA data fr
(cf. section 3 below).
m-diameter hexagonal disc made of ordinary copper-c
ch six legs made of standard 1-mm copper wire have b
. No solid ground skirt is used. An SMA-connector

disc. The WSN node can be attached directly to
feed line.
A is dominated by the SMA connector (~10 USD in sin
n be built in a short time, and can be easily tuned, thank

n be
DC

not
can

n be
d to

y is
lane

arse
lane
ems
side
rom

clad
been
r is
this

ngle
ks to

 SPIDA: A Direction-Finding Antenna for Wireless Sensor Networks 141

the active and passive elements being ordinary copper wires, which can be bent and
cut with good precision after soldering. The antenna does not require any additional
amplifier beyond that needed by the central monopole. The parasitic elements can be
switched at low frequency, without consuming DC power.

Nominal characteristics. The antenna was initially developed and optimized using
the 4Nec2 antenna simulation package [8, 9]. The nominal performance, as indicated
by this program, is an antenna gain of approximately 4 dBi and a front-to-back ratio
of 11 dB. The main lobe is smooth (fig. 1, right) and the gain (in dB) in the horizontal
plane is nearly an offset circle (fig. 2, right). Since the antenna is supposed to be
useful throughout the 2.4-GHz band (2400-2480 MHz), the antenna impedance varies,
and it is not possible to design a fixed impedance matching circuit perfect throughout
this frequency range. On the other hand, since the distance between the antenna and
the RF output amplifier is normally much shorter than the wavelength in a WSN
node, the need for precise impedance matching is relaxed.

Interfacing. The SPIDA antenna measured uses a fixed directing element and fixed
reflecting elements, but normally, the elements are switched between ground and
isolation under program control.

An advantage of ESPE antennas greatly simplifying implementation is that the
control of this switch is not part of the RF path, and can be done arbitrarily slowly.
There are three common methods for implementing the switch [10]. The traditional
method uses PIN diodes, consuming a bias current, and a fair number of additional
components. A more recent approach uses GaAs pHEMT transistors, requiring fewer
discrete components, but such transistors are relatively expensive. Recently, however,
inexpensive CMOS RF switches have become available, e.g. ADG902 from Analog
Devices and BGS12A from Infineon, rendering the interfacing of SPIDA close to
trivial. The CMOS switches consume practically no quiescent DC current and require
no additional components. An interface for SPIDA using ADG902 was built and
evaluated by Öström et al. [11].

In order to control the switches from a microprocessor, one digital output is
required for each switch. If an external shift register is used, a pair of digital outputs
suffices, one for data and one for clock output.

3 Signal Processing

A WSN node possesses only limited resources in terms of time and power for signal
processing in order to extract AOA data from a transmission. For this reason, it is
crucially important that the lobes can be formed so that efficient signal processing
algorithms can be applied. The ideal pattern in this respect is an offset circle, since the
received power then approximates a cosine as a function of the AOA, and the AOA
can be estimated as the phase of that cosine. For this case, there is a highly efficient
computational method, which extracts the phase of a sine wave with a known

142 M. Nilsson

frequency [12]. Suppose that , is the power measured when

parasitic element is isolated (i.e. becomes a director). Let

 (1)

Then, for the estimate of AOA,

 . (2)

Fig. 3. Measurement setup. The receiver is in picture. The transmitter is located in the upper
right corner, at the street sign at the end of the road.

kP 0 (6)k N≤ < =

1

0

1

0

2 2

2
sin

2
cos

N

k
k

N

k
k

k
S P

N

k
C P

N

A S C

π

π

−

=
−

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= +

∑

∑

sin /

cos /

C A

S A

α
α

=
= −

 SPIDA: A Direction-Finding Antenna for Wireless Sensor Networks 143

4 Results

4.1 Test Setup

We measured SPIDA in outdoor and indoor experiments. For measurements, we used
Texas Instruments’ CC2500DK development kit [13]. This kit contains two
microcontroller boards and two CC2500 radio daughter boards, together with
software that can transmit test packets, and collect RSSI measurements from the
CC2500 chips. SPIDA was attached to one radio board used as a receiver, while a
conventional monopole was attached to the other board used as transmitter. The test
software SmartRF Studio 7 was executed on two PC laptops, each connected to its
own microcontroller board.

The transmitter was placed on a chair, giving the antenna a height approximately
0.5 m above ground. The transmitter was set up to continuously send packets of 24
bytes including preamble, at 2.4 kBaud on 2440 MHz. Other frequencies were also
tested, but the choice of frequency appeared not to affect measurements. The
transmitter output power was 1 mW. The receiver was placed on a rotating table
(fig. 3), which was then placed on a chair at about the same height as the transmitter.
The rotating table was rotated manually, and the average RSSI for 16 packets was
recorded at 22 positions around the table. For each distance, three such series were
measured and the median of the readings were taken as the final RSSI measurement.
The reference direction was set by eyesight. The antenna was not calibrated or tuned
in any way before measurements.

We performed a total of four experiments, measuring outdoors at distances of 20m,
50m, and 100m between transmitter and receiver, and indoors at a distance of 7m. At
100m distance, the received power was nearly down to the noise floor (~ -105 dBm)
and there was considerable packet loss.

4.2 Measurement Results

The AOA estimates showed reasonably linear responses for all four experiments
(fig. 4, top). The RMS error was less than 12° in all cases (table 1). The performance
appears to deteriorate slowly with distance, but remains reasonable throughout the
receiving range of around 100m (fig. 4, bottom). Part of the explanation for the offset
error is probably the manual zero adjustment, which was not very precise.

Table 1. RMS error and received power for the test settings

Setting AOA RMS error Average received power
Outdoor, 20m 11.97° -70 dBm
Outdoor, 50m 6.14° -86 dBm

Outdoor, 100m 10.49° -99 dBm
Indoor, 7m 11.67° -63 dBm

144 M. Nilsson

Fig. 4. (Top) AOA values show linear behavior for all distances. (Bottom) Error deteriorates as
distance increases, but remains reasonable throughout receiving range.

 SPIDA: A Direction-Finding Antenna for Wireless Sensor Networks 145

5 Conclusions

We did not make great efforts to find noise-free locations for measurements, but the
indoor measurements did require an adjustment in order to avoid a noisy location in
the neighborhood of a WLAN access point. In general, one should expect indoor
AOA measurements to be difficult and require redundancy. We first tried outdoor
measurements in a soccer field, which failed, probably because a surrounding metal
fence created a nearly homogeneous radiation pattern. Anyway, the RMS error of 12°,
which must be considered low for the circumstances, indicates that the simple SPIDA
approach may indeed be viable in many situations.

Acknowledgments. This work was carried out within the SICS Center for Networked
Systems, funded by VINNOVA, SSF, KKS, ABB, Ericsson, Saab Systems, TeliaSonera
and T2Data.

References

1. American Radio Relay League: The ARRL Handbook for Radio Communications (2009)
ISBN 0-87259-146-8

2. Carr, J.J.: Practical Antenna Handbook, 4th edn. McGraw-Hill, New York (2001) ISBN 0-
07-137453-3

3. Nilsson, M.: Directional antennas for wireless sensor networks. In: Proc. 9th Scandinavian
Workshop on Wireless Adhoc Networks (Adhoc 2009), Uppsala, Sweden, May 4-5 (2009)

4. Hansen, R.C.: Electrically Small, Superdirective, and Superconducting Antennas. John
Wiley, Chichester (2006) ISBN 978-0-471-78255-1

5. Harrington, R.F.: Switched Parasitic Antennas for Cellular Communications. IEEE Trans.
Antennas and Propagation AP-26(3), 390–395 (1978)

6. Thiel, D.V., Smith, S.: Reactively controlled directive arrays. Artec House, Inc., Boston
(2002) ISBN 1-58053-154-7

7. Schlub, R., Lu, J., Ohira, T.: Seven-Element Ground Skirt Monopole ESPAR Antenna
Design From a Genetic Algorithm and the Finite Element Method. IEEE Trans. Antennas
and Propagation 51(11) (2003)

8. Voors, A.: 4Nec2: Nec-based antenna modeler and simulator (2010),
http://home.ict.nl/~arivoors/

9. Burke G.J., Poggio, A.J.: Numerical Electromagnetics Code (NEC): Method of
Moments.Lawrence Livermore Laboratories, USA. Technical Report UCID-18834 (1981)

10. RF CMOS SPDT Switches. Infineon Application Note No. 175 (2009)
11. Öström, E., Mottola, L., Voigt, T.: Evaluating an Electronically Switched Directional

Antenna for Real-world Low-power Wireless Networks. In: Proc. Int. workshop Real-
world wireless Sensor Networks, Colombo, Sri Lanka, December 17-19 (2010)

12. Rauch, L.L.: On Estimating the Phase of a Periodic Waveform in Additive Gaussian Noise
- Part I. NASA DSN Progress report 42-45 (1978)

13. CC2500DK Development Kit User Manual 1.4 (Rev. C). Texas Instruments (2007)

Testing Selective Transmission with Low Power
Listening

Morten Tranberg Hansen1, Roćıo Arroyo-Valles2, and Jesús Cid-Sueiro�

1 Aarhus University,
Aabogade, 34, 8200 Aarhus, Denmark

mth@cs.au.dk
2 Universidad Carlos III de Madrid,

Av. de la Universidad, 30, 28911 Leganés-Madrid, Spain
{marrval, jcid}@tsc.uc3m.es

Abstract. Selective transmission policies allow nodes in a sensor net-
work to autonomously decide between transmitting or discarding packets
depending on the importance of the information content and the ener-
getic cost of communications. The potential benefits of these policies
depend on the capability of nodes to estimate its current energy con-
sumption patterns. As a case study, this paper tests the performance of
a particular selective transmission algorithm over a simple network using
a low power listening MAC protocol on real sensor node hardware.

Keywords: selective transmission, implementation, energy-aware.

1 Introduction

To overtake the energy limitations in sensor networks, selective transmission
strategies allow nodes to discard messages if the energy cost of transmission is
not compensated by the importance of message content. This is used as a basis
for censoring sensors in decentralized detection [1] and other schemes [5,2]. A
common assumption in these proposals is that the energy consumption of the
sensors and their battery level are known. Thus, free parameters of the selec-
tive algorithms can be directly related to the energy consumption [2] or depend
on them [6]. Moreover, to increase the benefits of discarding messages, selec-
tive transmission strategies assume that the cost of transmission is much higher
than that of reception. These assumptions are not trivially satisfied. The average
power consumption of transmission and reception depends not only on protocol
design at all levels of the communication stack but also on the specific network
deployment. As a consequence, the configuration of the free parameters in se-
lective transmission algorithms cannot be done in advance and hence adaptive
techniques must be applied.

This paper analyzes the problem of estimating the free parameters of a selec-
tive transmitter by correctly estimating the energy spent in each of its respective
� This work was partially funded by projects TEC2008-01348 from the Spanish MCI,

and SensoByg (http://sensobyg.dk/english) at Aarhus University.

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 146–153, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Testing Selective Transmission with Low Power Listening 147

states. Our work can be taken as a case study: we have tested the implementation
of the selective transmission strategy proposed in [2] using TinyOS with its Low
Power Listening (LPL) MAC layer running on a number of Tmote Skys (motes).

2 Selective Transmission

The selective transmission model in [2] defines the state of any given node at time
k by two variables: the energy reserve, ek, and the importance of the message
to be transmitted, xk. This importance value may reflect, e.g., the priority, the
relevance or the quality of the information conveyed, and it is assumed to be
provided by the application layer to the node carrying the message. Furthermore,
we assume that the network routing algorithm (whatever it is) has defined a set
of neighbors for each node, in such a way that any sensor node holding a message
at time k has to make a decision about sending or not the message to one of its
neighbors. The decision rule is a function of the node state.

We consider four energy expenses that deplete batteries: data collection by a
sensing device, eS, reception of a message from other node, eR, message trans-
mission, eT and idle state eI . After receiving (or sensing) a message, the battery
level decreases eR (or eS) if it is not transmitted, and eR + eT (or eS + eT) if
it is transmitted. If no messages are received, the node consumes eI . In general,
eS , eR, eT and eI may depend on k.

A selective transmitter is allowed to discard low graded messages with the
expectation of transmitting more important upcoming messages later. Optimal
policies to maximize the expected importance sum of all messages transmitted
during the node lifetime have been derived [2]. If the importance sequence, xk,
is stationary, it turns out that, for large values of the available energy, ek, the
optimal decision rule is: to transmit the message at time k iff the importance
value is higher than some threshold, μ, which is given by the solution of

μ = ρE{max{xk − μ, 0}|xk > 0}. (1)

Though (1) cannot be solved in closed form, we derive the following stochastic
rule which provides a simple estimate that converges to μ for large k,

μk =
(

1 − 1
k

)
μk−1 +

ρ

k
· max{xk − μk−1, 0}. (2)

Parameter ρ depends on the average node statistics as

ρ =
(1 − PI)ET

PIEI + PRER + PSES
, (3)

where ES = E{eS}, ER = E{eR}, ET = E{eT }, EI = E{eI}, and PI , PR and PS

are the probability of a node being in idle, receive or sensing mode, respectively1.
The estimation of all these energetic statistics is discussed in the following.
1 Actually, the model in [2] does assume ES = ER. We have generalized the model to

assume different costs for sensing and receiving, which is more realistic.

148 M. Tranberg Hansen et al.

3 Implementation

We implemented the selective transmission algoritm in TinyOS 2.x using its
default CC2420 radio stack with its Carrier Sense Multiple Access (CSMA)
channel access mechanism below its X-MAC [3] variant of a Low Power Listening
(LPL) MAC layer. We used the component-based structure of TinyOS to add
local modifications to the radio stack in order to support energy estimation
according to the radio states and mote statistic according to the LPL layer
states. Fig. 1 gives an overview of our implementation.

3.1 Energy Consumption

To measure the energy consumption online at a sensor we use software-based
on-line estimation [4] based on the radio and sensor state to deplete a virtual
battery. We neglect the energy consumed by the micro-controller. The energy
measurements are based on the reported current consumptions from the data-
sheets (19.6 mA during reception, 17.04 mA during transmission, 1 mA by the
SHT11 Temperature sensor) multiplied by the amount of time spent in each
state, measured with a 32 kHz timer. Battery is depleted according to the
last state at every state change. The physical layer (PHY) of the radio stack
was modified to report the off, receive, or transmit radio states to the energy
measurement component (Fig. 1).

3.2 Mote Statistics

Using an asynchronous LPL MAC layer, sensor node lifetime is divided into
three states: idle, receive, and transmit, from which we estimate the energy costs
EI , ER, and ET , and the probabilities PI and PR. These estimations are done
in the mote statistic components based on the idle, receive, and transmit states
together with all packet reception events and timer wake-ups reported from the
MAC layer (see Fig. 1, which also shows how the mote statistics component uses
the changing battery level from the energy measurement component).

Fig. 2 illustrates the definition of idle, receive, and transmit states reported
from the MAC layer to the mote statistic component. Fig. 2(a) shows how the
MAC layer handles receptions. After sleeping for a fixed period of time, it wakes
up the radio, samples the channel for energy, and only stays awake if energy is
detected. Otherwise, it is an idle state. Energy might be detected due to noise,
which we also refer to as an idle state, or due to an actual packet reception, which

MAC Layer PHY LayerNetwork Layer

Mote Statistics Energy ConsumptionSelective Transmission

Forward?

Get PI, PR

Radio states

Send

Receive

Get
batteryEI, ER, ET

Send

Receive
MAC states
and events

Fig. 1. Embedded Software Architecture

Testing Selective Transmission with Low Power Listening 149

(a) Idle and receive states without the
influence of overlapping transmit states.

(b) Overlapping transmit states which
takes over the idle or receive states.

Fig. 2. States of the LPL MAC layer. The dashed lines indicate what would have
happened in case of no overlapping transmissions.

we refer to as a receive state. The length of a receive state varies with the number
of received packets. To guarantee that a receiver is awake during transmission
and acknowledges a successful reception, a transmitter repeatedly sends the same
packet for a duration longer than the sleep interval. The transmission of a packet
(referred to as transmit state) can interfere with the idle and receive states (see
Fig. 2(b)). First, the transmission may happen during a sleep period, where the
radio is then turned on and the next wake-up is ignored (an overlap). Second,
the transmission may happen when the radio is already on so that the current
receive (or idle) state is cutoff once the transmission starts (a take-over).

On top of normal packet receptions during a receive state and wake-ups, the
MAC layer also reports free receptions. As packet transmission includes a waiting
period for acknowledgments (ACKs) a sensor might receive a packet from another
neighbor during transmission. We refer to these receptions as free in the sense
that they do not imply any cost (the radio is in receive mode already).

Parameters EI , ER and ET can be adaptively estimated as the sample aver-
ages of eI , eR and eT , respectively, during the node lifetime. The idle state costs
is the simplest case. If eI is the energy consumption of the k-th idle state, the
average idle energy is computed iteratively as EI(k) =

(
1 − 1

k

)
EI(k − 1) + 1

k eI .
If m packets are received during a single receive state, then ER(k + m − 1) =(
1 − m

k+m−1

)
ER(k−1)+ 1

k+m−1eR. The computation of the transmit state cost

ET is analogous to EI , ET (k) =
(
1 − 1

k

)
ET (k − 1)+ 1

k eT . However, the compu-
tation of eT after each transmit state is quite involved. To understand it, note
that eT represents the cost overhead of deciding to transmit. If transmit, receive
and idle states did not overlap, this would be equivalent to the energy of the
transmit state. In general, however, this is not the case, and eT must be com-
puted as the difference between the cost of the transmit state (denoted as eTr)
and the energy the node would have expended if the packet had been discarded.
Therefore, a transmit state may take place in a non-interfering way (Fig. 3(a)),
interfere with the idle and receive states by overlapping (Fig. 3(b)) or taking
them over (3(c)). We analyze these three cases to compute eT .

Case 1: Non-interfering transmissions (Fig. 3(a)). If no free receptions happen
during the transmission, eT is simply the cost of the transmit state eTr. However,
if n free receptions happen, the overhead depends on the next state. If it is idle,
it would have been a receive state in case we had not transmitted, so that

150 M. Tranberg Hansen et al.

(a) A non-interfering
transmission.

(b) A transmission
overlapping an idle
or receive state.

(c) A transmission
taking over an idle
or receive state.

Fig. 3. The three cases of a transmission

eT = eTr + EI − nER. But if it is a receive state receiving m packets, it would
have been a receive state receiving m+n packets in case we had not transmitted,
and eT = eTr +mER − (m+n)ER = eTr −nER. We will later refer to the stored
eTr and n as the pending transmission cost and pending free receptions.

Case 2: Overlapping transmissions (Fig. 3(b)). An overlapping transmission can
be detected by the number of canceled wake-ups, w, according to the LPL MAC
layer. If no free receptions happens, the cost needs to be compensated with w idle
states. However, if n free receptions uniformly distributed during transmission
happen, some of the idle states would have been turned into receive states. Then,
the overhead is eT = eTr − nER − max{w − n, 0} + EI .

Case 3: Taking-over transmissions (Fig. 3(c)). The transmission will shorten
the idle or receive and then, it will be handled as a non-interfering transmission.
Defining the measured energy cost of the taken over idle or receive state as dI

and dR, respectively, the expected remaining energy cost of the taken over idle
or receive state, if the transmission did not take place, is subtracted from the
measured transmission cost eTr. Thus, the overhead of transmission is eT =
eTr − (EI −dI) if the previous state was idle and eT = eTr − (ER −dR) if it was
a receive state. In this case, we do not update EI and ER.

Furthermore, several successive (but still independent) transmissions may hap-
pen after each other. This has a consequence for the non-interfering transmis-
sion with free receptions as the overhead cannot be estimated until the next
idle or receive state. In Fig. 4(a), the second transmission does not overlap with

(a) Two non-interfering transmissions. (b) A transmission followed by another
that overlaps with a number of wake-ups.

Fig. 4. Two different scenarios of a successive transmission following a non-interfering
transmission with free receptions

Testing Selective Transmission with Low Power Listening 151

any wake-ups. If it does not contain any free receptions, it can be handled as
a non-interfering transmission. Instead, if the successive transmission contains
free receptions, we have two pending transmissions whose overhead can not be
estimated until the next idle or receive state. As ET measures the average trans-
mission overhead, we let the pending transmission costs and free receptions be
an average of the two. In Fig. 4(b), the successive transmission does overlap with
some wake-ups. The free receptions from the first transmission should be trans-
ferred to these wake-ups. The first wake-up is then handled as a non-interfering
transmission with no free receptions and the second is handled as an overlapping
transmission with the free receptions from both transmissions.

Since the local data captured by the sensing device runs in parallel with the
states of the MAC layer, the specific sensing cost cannot be separated from
the communication costs. Consequently, parameters EI , ER, and ET become
overestimated. However, it can be shown that by underestimating the sensing
cost as ES = 0, we have compensated for this overestimation.

Conventional frequency-based estimates are used to compute PI and PR (we
have no need for PS when ES = 0), and to save memory all energy and prob-
ability estimates for k < 100 are based on a limited Exponential Weighted
Moving Average (EWMA). For k ≥ 100, EI , ER and ET are replaced by
Ex(k) = 0.99Ex(k − 1) + 0.01ex, which allows the estimate to adapt to changes
in the environment.

3.3 Selective Transmission

The selective transmission component is called by the network layer (see Fig. 1)
whenever the sensor node needs to make a decision about a packet transmission.
It makes use of ET , EI , ER, PI , and PR from the mote statistics to estimate ρ
in (3), which is then used in (2).

4 Experiments and Evaluation

We ran the selective transmission implementation on top of the TinyOS CC2420
LPL layer on a number of Tmote Sky platforms. All experiments average 5
similar runs with an LPL interval of 500ms, a data rate of one packet per 2s,
and a delay to turn off the radio after packet reception of 30ms (which is used as a
mechanism in TinyOS to allow a transmitter to send a number of packets without
a receiver turning off its radio). To avoid data periods from multiple transmitters
to be synchronized, the data timer is set to a random time during the second half
of the interval. Importance values of messages, which should be provided by the
application layer to source nodes, are assigned according to random samples of
a long ramp distribution (1,2,4,8,16,32) with decreasing probabilities. Moreover,
messages are sent immediately after generated or received. The initial battery
of sensor nodes is set to 200mAh, and a sensor node is considered dead once
its battery depletes. In the following, we compare the implementations based on
the total importance sum of messages sent throughout the sensor node lifetime.

152 M. Tranberg Hansen et al.

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

Im
po

rt
an

ce
 S

um

Lifetime [s]

1: Non−selective

16

2 32

4

8

VAR

(a) Local Data

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

Im
po

rt
an

ce
 S

um

Lifetime [s]

1: Non−selective

16

2
32

4

8 VAR

1: Non−selective

16

2
32

4 8 VAR

(b) Forward Data

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

Im
po

rt
an

ce
 S

um

Lifetime [s]

1: Non−selective

16

2

32

4

8

VAR

(c) Free Receptions

Fig. 5. Importance sum and lifetime for variable and all fixed thresholds

To test the benefits of selective transmission based on locally sensed data
we deployed two motes, a transmitter and a receiver, within radio range. The
transmitter periodically senses data and makes a transmit or discard decision.
Fig. 5(a) shows the average importance sum and its standard deviation, and the
(average) transmitter lifetime, for the adaptive threshold (based on (2) and the
energy estimates, labeled as VAR) and for all fixed thresholds (1,2,4,8,16 and
32, where the number indicates the minimum importance value that is trans-
mitted). Selective transmission policies outperform the non-selective transmit-
ter (threshold 1). Moreover, the adaptive threshold performance is close to the
best threshold, 16. The slight differences can be explained by some suboptimal
decisions during the initial steps, when the energy estimates are not accurate.

To test the selective transmission when the node receives data, we deployed
three motes on a line: a non-selective transmitter, a selective forwarder, and a
receiver. The transmitter periodically generates and sends packets through the
forwarder (which does not sense data) to the receiver. Fig. 5(b) (black plot)
shows that the importance sum of the adaptive threshold is closer to 8 than
to the best constant threshold, 16. A further analysis of this case showed that
the suboptimal behavior can be explained by the randomness of the importance
sequence. Further tests with a periodical importance sequence (still keeping the
same frequencies of each importance values), which reduce randomness, demon-
strate that the variable threshold behaves optimally (Fig. 5(b), gray plot).

To test selective transmission with free receptions we placed three motes on
a line again, but this time with both the transmitter and the forwarder peri-
odically generating data and sending them to the receiver. Free receptions may
happen at the forwarder when it starts to transmit local generated packets be-
fore it receives a packet from the transmitter. Fig. 5(c) shows that the adaptive
threshold accurately predicts the best constant threshold in this case as well.

Fig. 6 (left) shows the final probability estimates PI and PR for all thresh-
olds in the free reception scenario. The lower the threshold is, the higher the
probability of reception is, because the node is less selective and therefore, PI

decreases. Fig. 6 (right) shows the final energy estimates for all thresholds in
the free reception scenario. Although the current consumption during reception
is slightly higher than that of transmission (see Sec. 3.1), ET is much higher
than ER because of the longer time spent by nodes during transmission states.
This explains the considerably superior performance of the selective transmission

Testing Selective Transmission with Low Power Listening 153

1 2 4 8 VAR 16 32
0

10

20

30

40

50

60

70

Threshold

P
ro

ba
bi

lit
y

[%
]

Idle
Reception

1 2 4 8 VAR 16 32
0

1

2

3

4

5

6

7

8

Threshold

E
ne

rg
y

[m
C

]

Idle
Transmission
Reception

Fig. 6. Probability (left) and energy (right) estimates for all thresholds in a free
reception scenario

policies with respect to a non-selective transmission in the chosen scenario. The
correctness of the energy and probability estimates is implied by the fact that
the adaptive threshold correctly predicts the best constant threshold. As sanity
check, we can compare the energy estimates to the expected maximum trans-
mission cost (assuming current consumption of 20mA) of 10mC and see that on
average it is a bit above 50% which is expected for a LPL MAC protocol.

5 Conclusion

The implementation of a selective transmission policy on top of a real LPL MAC
protocol using a specific procedure to estimate energy consumption of the node
states has shown how this kind of strategies can be used to extend the network
lifetime and maximize the total importance sum of the transmitted messages.
Future work includes the performance analysis in a larger testbed and more
complex scenarios (e.g. interferences, link quality, etc).

References

1. Appadwedula, S., Veeravalli, V., Jones, D.L.: Decentralized detection with censoring
sensors. IEEE Transactions on Signal Processing 56(4), 1362–1373 (2008)

2. Arroyo-Valles, R., Marques, A.G., Cid-Sueiro, J.: Optimal Selective Transmission
under Energy Constraints in Sensor Networks. IEEE TMC 11(8), 1524–1538 (2009)

3. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-mac: a short preamble mac
protocol for duty-cycled wireless sensor networks. In: 4th Int. Conf. on Embedded
Networked Sensor Systems, SenSys 2006, New York, NY, USA, pp. 307–320 (2006)

4. Dunkels, A., Osterlind, F., Tsiftes, N., He, Z.: Software-based on-line energy esti-
mation for sensor nodes. In: Procs. of the 4th Workshop on Embedded networked
sensors, EmNets 2007, pp. 28–32. ACM, New York (2007)

5. Lei, J., Yates, R., Greenstein, L.: A generic model for optimizing single-hop trans-
mission policy of replenishable sensors. IEEE TWC 8(2), 547–551 (2009)

6. Quek, T., Dardari, D., Win, M.: Energy efficiency of dense wireless sensor networks:
To cooperate or not to cooperate. IEEE JSAC 25(2), 459–470 (2007)

An Experimental Study on IEEE 802.15.4
Multichannel Transmission to Improve

RSSI–Based Service Performance

Andrea Bardella1, Nicola Bui1,2,3, Andrea Zanella1, and Michele Zorzi1,2,3

1 Dep. of Information Engineering, University of Padova, Italy
2 Patavina Technologies, Padova, Italy

3 Consorzio Ferrara Ricerche, Ferrara, Italy

Abstract. In Wireless Sensor Networks (WSNs) the majority of the de-
vices provide access to the Received Signal Strength Indicator (RSSI),
which has been used as a means to enable different services and appli-
cations like localization, geographic routing and link quality estimation.
Notwithstanding the popularity of using RSSI for localization, academic
research showed that RSSI-based distance estimate is rather unreliable
due to the random attenuation experienced by the radio signals, as the
multipath fading. In this paper we propose a simple way to improve the
RSSI reliability, averaging samples collected at different frequencies by
a CC2420 radio, which implements the IEEE 802.15.4 standard, both
in real indoor and outdoor scenarios. For this purpose, we introduce
a simple communication protocol to coordinate data exchange between
nodes, that exploits multichannel transmission in order to mitigate the
multipath effect that hampers ranging estimation as well as wireless
communication.

1 Introduction and Related Work

Ever since the beginning of radio communication, linking the communication
distance to the received signal power in a reliable way has been a hot research
topic. Solving this issue would open the path for accurate localization appli-
cations [1], precise geographic routing [7], trustful self-driven robots [8] and a
whole set of other context–aware systems [9].

The availability of a Received Signal Strength Indicator (RSSI) in most of
commercial off-the-shelf radio transceivers has promoted the design of several
RSSI-based ranging techniques that, however, suffer two major drawbacks. On
the one hand, inferring the transmitter-receiver distance from the received signal
strength requires a rather accurate channel propagation model [12,18]. On the
other hand, the relation between distance and received signal power is very
noisy due to the random attenuation phenomena that affect the radio signals,
as multipath fading and shadowing [19,15].

In this paper we address these two issues in the case of radio systems based
on the common IEEE 802.15.4 standard. We observe that many works focus

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 154–161, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Experimental Study on IEEE 802.15.4 Multichannel Transmission 155

on IEEE 802.15.4 channel characteristics [18] and investigate the feasibility of
using RSSI measures for ranging purposes [16]. In general, results show that
RSSI-based ranging is quite poor, in particular in indoor environments [17], so
that accurate localization is possible only using large number of RSSI samples [8]
and/or sophisticated filtering processes to reduce the localization error [10,11].

However, to the authors’ knowledge, no previous work has yet considered the
possibility of exploiting the frequency diversity provided by the standard to en-
hance the ranging performance. In this paper, we advocate that the RSSI-based
ranging accuracy can be significantly improved by considering a more accurate
channel propagation model and a slightly more sophisticated communication
protocol that enables the collection of RSSI samples on different frequency chan-
nels. More specifically, we first propose an Extreme Value Distribution model for
the received power, which fits our empirical data better than the most common
Gaussian model, both in indoor and outdoor scenarios. Second, we prove that
averaging the RSSI samples collected at different carrier frequencies will mit-
igate the multipath fading effect, thus potentially improving the RSSI-based
distance estimate at a price of a limited increase in the communication protocol
complexity.

2 Channel Characterization

An extremely accurate channel model would require perfect knowledge of the
environment. Clearly, such a model would lack in generality and reusability.
Therefore, it is generally preferable to consider more general models that can fit
a much wider set of scenarios, though with lower accuracy. A very common radio
channel model that binds the received power Prx to the distance d between the
transmitter and the receiver is the following:

Prx dBm = Ptx dBm + K dB − 10η log10

(
d

d0

)
+ Ψ , (1)

where Ptx is the transmitted power in dBm, K is a unitless constant that depends
on the enviroment, d0 is the reference distance to be in far field conditions, η
is the path loss coefficient and Ψ is a random variable that takes into account
fading effects. Characterizing these parameters to the specific environment makes
it possible to use the same model in different scenarios.

For instance, in a free–space environment we typically have η = 2 and K dB =
20 log10

λ
4πd0

, with λ the wavelength at the carrier frequency. For other common
environments (in office, open space, urban and so on), K and η can be retrieved
from the literature [6] or, alternatively, jointly determined minimizing the mean
square error (MSE) between the model and the empirical measurements.

The characterization of the random term Ψ is, instead, more arguable. A
common practice is to model Ψ as a Gaussian random variable, with zero mean
and standard deviation σψ . In this paper we advocate that, for the technology
and the environments considered in this study, the model of Ψ that statistically
best fits with our empirical data is the Extreme Value random variable. This

156 A. Bardella et al.

model arises if we consider a received signal composed of clusters of multipath
waves propagating in a non-homogeneous environment. In this case, the envelope
of the received signal turns out to be Weibull distributed [13,14], with probability
density function (pdf)

fZ(z) = (β/Ωβ)zβ−1e−(z/Ω)β ,

where the power parameter β expresses the fading severity. In dB scale, the
received signal power Prx = 10η log10(Z) turns out to have an Extreme Value
distribution fX(x) with pdf

fPrx(x) =
A

σ
e(Ax−μ)/σe−e(Ax−μ)/σ

where A = ln 10
10η , μ = ln(Ω) and σ = 1/β. As a result, the term Ψ in (1) is also

described by an Extreme Value distribution with pdf

fΨ (x) = βAMeβAxe−MeβAx = σ−1
ψ e(x−μψ)/σψe−e(x−μψ)/σψ (2)

with parameters σψ = (Aβ)−1 and μψ = −(Aβ)−1 ln M , M =
(

P 1/η
r

Ω

)β

, and Pr

denoting the mean received power (in mW).
The Maximum Likelihood estimation for d based on (1), is given by

d̂ = d010
Ptx+K−Prx+μψ

10η = d10
Ψ

10η . (3)

It might be worth remarking that the estimated distance d̂ is biased. Though
it is possible to correct this bias, for space constraints we do not provide any
further detail on this respect. Instead, we report the relation between Ψ and the
ranging error εd = d̂ − d, which is proportional to the distance itself d whose
cumulative distribution function (cdf) turns out to be given by

Fεd(α) = FΨ

(
ψ̃

)
=

{
1 − exp

(
−e(ψ̃−μψ)/σψ

)
, if α > −d

0, if α ≤ −d
(4)

where
ψ̃ = 10η log10

(
1 +

α

d

)
.

3 Multi-channel RSSI Sampling

As known, the impact of multipath on the received signal depends on the delay
spread Trms and the signal bandwidth B. If Trms � B−1 we can describe the
radio propagation with a narrowband fading model, so that the received signal
can be expressed as

r(t) = �
{

u(t)ej2πfmt

(∑
n

an(t)e−jφn(t)

)}
(5)

An Experimental Study on IEEE 802.15.4 Multichannel Transmission 157

where u(t) is the complex envelope of the transmitted signal, an(t) and φn(t) =
2πfmτn are the amplitude and the phase associated with the n–th multipath
component, respectively, and fm is the carrier frequency. We observe that the
phase difference between the Line of Sight (LOS) path and a reflected path is
given by

Δφm = 2πfm
δ

c
(6)

where δ is the difference between the length of the two paths and c is the prop-
agation speed of the electromagnetic wave.

Now, the IEEE 802.15.4 standard entails a transmission pulse with band-
width of 3 MHz which can be modulated over 16 different channels, with carrier
frequencies equal to1

fm = 2405 + 5(m − 11) [MHz] , m = 11, . . . , 26 .

Furthermore, typical indoor values of Trms, which can be found in [5], are gen-
erally less than 100 ns, so that we can safely assume that IEEE 802.15.4 signals
are affected by narrowband fading.

Nonetheless, we notice that the phase difference (6) between the direct and
reflected signal components may vary significantly for sufficiently different values
of m. For instance, if we consider a reflect path δ = 3 m longer than the direct
path, the phase difference between the two signal components that we observe in
channel m = 11, i.e., Δφ11 differs from Δφ21 of approximately π. This suggests
that the stochastic component that affects the RSSI measures may be averaged
out by taking the mean value of samples collected at different frequency channels.

To sustain this claim, we designed an extremely simple communication pro-
tocol that enables the collection of RSSI samples between any pair of nodes on
different channels. Basically, when a node wants to initiate the data exchange
it transmits a request packet over the default channel (26 in our case). Such a
packet carries a field with the next channel to be used for that communication.
If the node receives a reply then the next data fragment will be sent over the
new scheduled frequency. Otherwise, it assumes that the communication link is
lost and returns to the default channel.

4 Experimental Campaign

This section describes the thorough experimental campaign that has been per-
formed to collect the RSSI measurements we used to validate the channel model
(1) with the Extreme Value statistical distribution for the multipath fading (2)
and to sustain our claim regarding the reduction of the RSSI variations when
averaging the samples collected in different channels.

For all the experiments we used Tmote Sky sensor nodes [4] mounting an
isotropic antenna of known gain. These devices are equipped with the Chip-
con wireless transceiver CC2420 [2] implementing the IEEE 802.15.4 standard
1 We here respect the standard numeration of the IEEE 802.15.4 channels that

conventionally goes from 11 to 26.

158 A. Bardella et al.

that specifies 16 channels with carrier frequencies fm = 2405 + 5(m − 11) MHz,
m = 11, ..., 26. We considered three scenarios for the experimental campaign,
that provide different environmental conditions. The collected data can be down-
loaded from the SIGNET group website [3].

0 100 200 300 400 500 600 700
−50

0

50

100

150

200

250

300

350

400

450

x coordinate [cm]

y
co

or
di

na
te

 [c
m

]

objects
path
start point
end point

(a) Setup #1.

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

x coordinate [cm]

y
co

or
di

na
te

 [c
m

]

objects
path
start point
end point

(b) Setup #2.

Fig. 1. Paths for experimental setups

Setup #1. The sensor nodes were deployed on boxes at 50 cm from the
floor. Initially we collected RSSI samples from motes deployed on a grid (24
different positions), afterwards we deployed seven nodes at known positions into
the room and with another mote we moved along a pre–planned path, collecting
RSSI samples in 50 locations (see Fig. 1 for node positioning in indoor setups).

Setup #2. Five sensor nodes were deployed on cones at 30 cm from the floor
in an aisle and another mote was used to collect RSSI samples every 50 cm along
the path. In this environment there was no furniture so that the reflections of
the transmitted signal are due mainly to the floor, walls and ceiling.

Setup #3. With the same devices used for setup #2 we deployed five of
them uniformly into a 15 m x 8 m area, at 80 cm from the floor, outdoor. We
collected RSSI samples by each pair of nodes and then we used another node to
gather some more measurements over the area from the five static nodes.

5 Results

Exploiting the collected RSSI measurements and the relative node distance infor-
mation, we adopted a least mean square error criterion to obtain the channel pa-
rameters, i.e., K and η, and the standard deviation σψ while we set d0 = 10 cm.

With reference to setup #1 we conducted a measurement campaign to vali-
date the channel model (1) and to evaluate the effect of multipath fading. Our
experiments pointed out that it is not always necessary to estimate K and η. In
fact, if the LOS condition is verified, their values are very close to those of the
free–space case (K 	 −20 dB and η = 2). Moreover, performing the estimation
over a single channel gives us quite the same results, regardless of the particular
carrier frequency, as shown in Table 1.

An Experimental Study on IEEE 802.15.4 Multichannel Transmission 159

Table 1. Parameter estimation performed on single channels

ch11 ch12 ch13 ch14 ch15 ch16 . . . ch21 ch22 ch23 ch24 ch25 ch26
K dB −21.7 −21.6 −21.7 −21.7 −22 −21.8 . . . −21.3 −21.4 −22.1 −22 −22 −21.9

η 2.03 2.03 2 1.98 1.93 1.93 . . . 1.92 2.02 2.01 1.96 2 1.98
σψ dB 4.8 4.4 4.5 4.4 4.3 4.5 . . . 4.2 4 4.1 4.3 4.4 4.2

0 1 2 3 4 5 6 7
−90

−80

−70

−60

−50

−40

−30

−20

Distance [m]

R
ss

i [
dB

m
]

rssi samples
path−los model
free−space model

(a) Parametric model

−40 −20 0 20 40
0

0.02

0.04

0.06

0.08

0.1

Ψ [dB]

P
df

empirical pdf
extreme value pdf
normal pdf

(b) pdf of Ψ

Fig. 2. Channel models of Setup #2

Fig. 2 validates the statistical channel model of Section 2: part (a) shows the
collected RSSI samples (in blue), the model in (1) with parameters estimated
from the samples (solid red line) and with the free–space parameters (dash–
dotted black line). In addition, part (b) verifies that Ψ has an Extreme Value
distribution, hence the received power (expressed in mW) is Weibull distributed.
We obtained similar results for the outdoor scenario (setup #3), though in this
case we observed that the multipath fading has less impact (σψ = 3.5 dB).

To evaluate the gain achieved with multichannel transmission, we collected
RSSI samples from several couples of nodes, changing carrier frequency every
100 ms and sweeping all the available channels. This routine was repeated 10
times, maintaining the same experimental setup. We observed, for a particular
channel and for the same link, that the RSSI samples collected at different times
are quite similar, with a standard deviation less than 2 dB. Conversely, the RSSI
samples collected by a pair of nodes over the 16 different channels show a high
variability, with standard deviation often greater than 4 dB. Thus, as confirmed
by the comparison between Fig. 3(a) and Fig. 3(b), the standard deviation of the
RSSI mean reduces when samples are collected over different frequency channels
in a short time period, rather than on a single channel but over a longer time
interval. The experimental results, in fact, returned K = −19.8 dB and η = 2.1 in
the two cases, whereas σψ varied from 2.8 dB (frequency–average) to 4.85 (time–
average), with a gain of approximately 2 dB. Instead, in outdoor environment
we revealed about 1 dB of improvement. Furthermore, we observed that the
same gain can be obtained by considering just four samples taken at maximum
distance frequencies.

160 A. Bardella et al.

0 2 4 6 8
−90

−80

−70

−60

−50

−40

−30

−20

Distance [m]

R
ss

i [
dB

m
]

time−averaged rss samples
path−los model

(a) Time–averaged

0 2 4 6 8
−65

−60

−55

−50

−45

−40

−35

−30

−25

Distance [m]

R
ss

i [
dB

m
]

freq−averaged rss samples
path−los model

(b) Frequency–averaged

Fig. 3. Time– and Frequency–averaged RSSI samples

6 Conclusions

In this paper, we studied the properties of the radio signal propagation in WSNs
using the IEEE 802.15.4 standard. In particular, we showed that a Weibull dis-
tribution accurately fits the signal fluctuations due to multipath fading for both
indoor and outdoor scenarios. We designed and developed a simple multichan-
nel communication protocol in order to validate our analytical framework with
a thorough experimental campaign. To such extent, we collected RSSI samples
in different network setups, that represent typical real wireless sensor network
deployments. Our results show that significant performance improvements can
be obtained averaging RSSI samples over frequency.

As a final consideration, not only the channel randomness, but also physical
factors such as the antennas anisotropy, the actual device sensitivity, the channel
asymmetry and topology aspects impact the RSSI reliability. Thus, the network
design and the device characteristics must be taken into account for proper
RSSI–based service realization.

Acknowledgments

This work has been supported in part by the FP7 EU projects “SENSEI” G.A.
no. 215923, http://www.ict-sensei.org, “SWAP” G.A. no. 251557, and “IoT-A”
G.A. no. 257521, and by the CaRiPaRo Foundation, Italy, within the WISE-WAI
project, http://cariparo.dei.unipd.it

References

1. Patwari, N., Ash, J.N., Kyperountas, S., Hero, A.O., Moses, R.L., Correal, N.S.:
Locating the nodes: cooperative localization in wireless sensor networks. IEEE
Signal Processing Magazine 22(4), 54–69 (2005)

2. Chipcon AS SmartRF CC2420 Datasheet. Texas Instruments Inc., (June 2004)

An Experimental Study on IEEE 802.15.4 Multichannel Transmission 161

3. Indoor and Outdoor 802.15.4 RSSI and LQI measurements,
http://telecom.dei.unipd.it

4. Tmote sky datasheet. MoteIv Corporation, www.moteiv.com
5. Indoor Propagation at 2.4 GHz, www.wirelesscommunication.nl
6. Goldsmith, A.: Wireless Communications. Cambridge University Press, New York

(2005)
7. Zorzi, M., Rao, R.R.: Geographic random forwarding (GeRaF) for ad hoc and sen-

sor networks: multihop performance. IEEE Transactions on Mobile Computing 2,
337–348 (2003)

8. Menegatti, E., Zanella, A., Zilli, S., Zorzi, F., Pagello, E.: Range-only SLAM with
a mobile robot and a Wireless Sensor Networks. In: IEEE International Conference
on Robotics and Automation (ICRA 2009) (July 2009)

9. Xueli An, R., Prasad, V., Wang, J., Niemegeers, I.G.M.M.: OPT: online person
tracking system for context-awareness in wireless personal network. In: Proceedings
of the 2nd International Workshop on Multi-hop ad hoc Networks: from Theory to
reality, pp. 47–54 (2006)

10. Nakamura, K., Kamio, M., Watanabe, T., Kobayashi, S., Koshizuka, N., Sakamura,
K.: Reliable ranging technique based on statistical RSSI analyses for an ad-hoc prox-
imity detection system. In: IEEE International Conference on Pervasive Computing
and Communications, PerCom 2009 (May 2009)

11. Chuan-Chin, P., Wan-Young, C.: Mitigation of Multipath Fading Effects to Im-
prove Indoor RSSI Performance. IEEE Sensors Journal 8, 1884–1886 (2008)

12. Hashemi, H.: The Indoor Radio Propagation Channel. Proc. IEEE 81(7), 943–968
(1993)

13. Jacoub, M.D.: The α–μ distribution: A general fading distribution. In: Proc.
IEEE Int. Symp. Personal, Indoor, Mobile Radio Communication, Lisbon,
Portugal (September 2002)

14. Sagias, N.C., Karagiannidis, G.K.: Gaussian Class Multivariate Weibull Distribu-
tion: Theory and Applications in Fading Channels. IEEE Trans. on Information
Theory 51(10) (October 2005)

15. Lymberopoulos, D., Lindsey, Q., Savvides, A.: An Empirical Characterization of
Radio Signal Strength Variability in 3–D IEEE 802.15.4 Networks Using Monopole
Antennas. ENALAB Technical Report 050501 (2005)

16. Li, X.: RSS–based location estimation with unknown pathloss model. IEEE Trans.
Wireless Communications 5(12), 3626–3633 (2006)

17. Zanca, G., Zorzi, F., Zanella, A., Zorzi, M.: Experimental comparison of RSSI-
based localization algorithms for indoor wireless sensor networks. In: Proceedings
of the Workshop on ACM Real-world Wireless Sensor Networks (REALWSN 2008),
Glasgow, Scotland, pp. 1–5 (2008)

18. Puccinelli, D., Haenggi, M.: Multipath Fading in Wireless Sensor Networks: Mea-
surements and Interpretation. In: IWCMC 2006, Vancouver, Canada (July 2006)

19. Lindhe, M., Johansson, K.H., Bicchi, A.: An experimental study of exploiting mul-
tipath fading for robot communications. In: Proc. Robotics: Science and Systems,
Atlanta, GA (2007)

http://telecom.dei.unipd.it
www.moteiv.com
www.wirelesscommunication.nl

Multicasting Enabled Routing Protocol
Optimized for Wireless Sensor Networks

Tharindu Nanayakkara and Kasun De Zoysa

University of Colombo School of Computing, Sri Lanka
tharudn@gmail.com, kasun@ucsc.cmb.ac.lk

Abstract. TikiriMC is a wireless ad-hoc routing protocol, designed for
resource constrained networking environments. It provides application
programming interfaces to easily implement unicasting, broadcasting
and multicasting. Flexible configuration of TikiriMC allows one to easily
adopt it into a desired platform. TikiriMC uses tree network topology,
where there can be many such trees in a single network. Root nodes of
these multiple trees form a separate mesh network. Performance tests
conclude that TikiriMC has a very low routing delay compared to other
implementations.

Keywords: TikiriMC, Wireless Ad-hoc Routing, Wireless Sensor Net-
works, Wireless Multicast Routing.

1 Introduction

Wireless ad-hoc networking is vital on deploying Wireless Sensor Networks
(WSN). Developing network protocols for WSN should be carefully designed
by considering the resource constraints while providing necessary features such
as multicasting. Even though there are many wireless ad-hoc routing protocols,
most of them do not address the communication requirements of resource con-
straint WSN environments, such as low power consumption. It is a fact that,
network communication is the most power consuming activity in a WSN.

It should be mentioned that, there are wireless ad-hoc routing protocols, which
can be used in resource constraint environments. However there are situations
where most of those protocols cannot be used because, most of them are not
easily configurable to meet specific needs. For example, protocols designed for a
particular hardware platform may have predefined memory and processing power
limitations. The same configuration may not work with a different hardware
platform even if it runs the same operating system. In addition to that, there may
be application specific requirements such as memory configurations. TikiriMC
is designed as a configurable ad-hoc routing protocol where a programmer can
simply change some variables and create a fully customized version of it which
then can be used for intended hardware platform or application.

Consequently, this research is focused on the design and development of a
flexible, configurable ad-hoc routing protocol which would solve above mentioned
problems while improving the efficiency of network routing.

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 162–165, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Multicasting Enabled Routing Protocol Optimized for WSN 163

2 Background

Research on wireless ad-hoc routing protocols has begun to be used with wire-
less devices with high computation power such as laptops and PDAs. With the
dawn of wireless sensor networking these ad-hoc routing approaches have been
adopted to use in low resource utilized environments. Nevertheless, as the orig-
inal design was to be used with devices with high resources, most of them fails
to work in a sensor networking environment. However, new routing protocols,
such as Lightweight Ad-Hoc Routing Protocol [1], have been developed using
the concepts and features of the existing ad-hoc routing protocols but supports
low resource utilized environments.

Multicast protocols are often used to communicate with a selected subset of
a large set of nodes. Existing wireless ad-hoc multicast protocols can be divided
to two categories. First category forms a shared multicast tree to route packets.
This approach is efficient when the nodes are static and the network topology
hardly changes. Duplication of packets in the network can be reduced by us-
ing multicast trees. Adhoc Multicast Routing (AMRoute) protocol [2] and Ad
hoc Multicast Routing Protocol Utilizing Increasing Id-numbers (AMRIS) [3]
are examples to this category. Second category forwards multicast packets via
flooding or via a mesh network. This approach is efficient when there are mobile
nodes in the network. In networks with high mobility multicast trees cannot be
maintained properly. Flooding ensures the packet delivery, but increases packet
duplication as well. On-Demand Multicast Routing Protocol (ODMRP) [4] and
Core-Assisted Mesh Protocol (CAMP) [5] are examples to this category.

3 TikiriMC Design

TikiriMC is a more efficient and effective solution for handling the unique com-
munication requirements of resource constraint wireless sensor networks. This
section includes details of the design of functionalities of TikiriMC routing
protocol.

TikiriMC routing protocol has a multiple tree-based network topology. Each
tree starts from its own Root node, and can span for multiple levels of descendent
nodes. In a particular tree, nodes without any descendent nodes (child nodes)
are called Leaf Nodes. Apart from the Root node and Leaf nodes, the rest is
called Sub-Root nodes.

There can be several trees in a particular network. In such a scenario the
Root nodes of those trees create a mesh network among themselves, so that
inter-tree communication is possible. Intra-tree communication is handled by
the Root node and relevant Sub-Root nodes of a tree. If the receiver node of a
transmission is in the same tree as the sender, the packet can be routed inside
the intra-tree network, if not, the root node of the sender’s tree should forward
data packets to the inter-tree mesh network, which will then should be received
by the root node of the tree of the receiver.

TikiriMC is designed as a configurable protocol. Depending on the resource
constraints of the nodes, a single tree can be configured to be varied from a single

164 T. Nanayakkara and K. De Zoysa

Root node to a tree with multiple levels of descendent nodes. So as a result, the
whole network topology can be changed from a forest of trees to a single tree.
Furthermore, it can also be changed to a complete mesh topology.

4 Implementation and Evaluation

TikiriMC is a protocol optimized for sensor networks, so it was decided to imple-
ment it on top of the Contiki [6] real time operating system specially designed
for sensor networks. Each node is implemented to run two separate processes for
beaconing and controlling. Networking primitives of the Rime communication
stack [7] was used to implement packet routing. Beacon process was implemented
using the announcement primitive, which can be configured to broadcast a 16
bit value periodically.

We decided to do the preliminary tests of the protocol using COOJA [8]
network simulator which was also a part of Contiki operating system. A node
arrangement of 25 nodes were used to test the protocol and same arrangement
was used in all evaluations and comparisons with other protocols.

First TikiriMC was tested for network convergence. It is a vital part of the
protocol as a duly converged network can route packets more effectively and ef-
ficiently. However the network convergence was found out to be time consuming.
It took 260 seconds on average to converge a network of 25 nodes.

Fig. 1. Comparison of packet routing time of TikiriMC protocol with other protocols

Then TikiriMC was compared with four other protocols with respect to av-
erage time taken to broadcast a packet. It was tested by capturing the time
taken to broadcast a 10 byte packet to all 25 nodes in the network. The results
of these tests are illustrated in Fig. 1. As we can see, TikiriMC has only taken
a fraction of time compared to other protocols. Nevertheless it was observed
that noticeable number of duplicate packets are created in the inter-tree mesh
network when sending packets. This is due to the flooding-like nature of the
inter-tree mesh network.

Multicasting Enabled Routing Protocol Optimized for WSN 165

5 Conclusions

Here, we present a new routing protocol, TikiriMC, for WSN which is capa-
ble of handling unicast, broadcast and multicast routing in resource constrained
environments. This protocol uses a multiple tree topology where root of the
trees form a mesh network. One interesting feature of TikiriMC is the ability
to adapt it to the requirements of different hardware platforms and applications
just by changing a simple configuration. TikiriMC multicasting is going to be
implemented using both tree based and flooding mechanisms. This protocol is
implemented on Contiki real time OS on top of Rime communication stack and
preliminary tests were conducted using the COOJA network simulator. Perfor-
mance evaluations convinced that the broadcasting delay of TikiriMC is very
low when compared to other protocol implementations on Rime.

Acknowledgements

We appreciate the contributions by Nayanajith Laxaman (UCSC) and Kasun
Hewage (UCSC). We also thank Kenneth Manjula (UCSC) for helpful comments
and suggestions. We would also like to thank the anonymous reviewers for their
valuable comments.

References

1. Nanayakkara, T.D., Priyadarshana, B.L., Embuldeniya, L.C., Wattegedara, R.P.,
Madhushanka, D.G.P., Jayawardena, C.: Lightweight ad-hoc routing protocol. In:
Proceedings of the 5th SLIIT Research Symposium, PSRS 2009, Malabe, Sri Lanka,
vol. 3, pp. 74–79 (December 2009)

2. Xie, J., Talpade, R.R., Mcauley, A., Liu, M.: Amroute: ad hoc multicast routing
protocol. Mob. Netw. Appl. 7(6), 429–439 (2002)

3. Wu, C., Tay, Y., Toh, C.K.: Ad hoc multicast routing protocol utilizing increasing
id-numbers (amris) functional specification. Internet-Draft draft-ietf-manet-amris-
spec-00.txt, Internet Engineering Task Force (November 1998) work in progress

4. Lee, S.J., Gerla, M., Chiang, C.C.: On-demand multicast routing protocol. In: IEEE
WCNC 1999, pp. 1298–1302 (September 1999)

5. Garcia-Luna-Aceves, J., Madruga, E.: The core-assisted mesh protocol. IEEE Jour-
nal on Selected Areas in Communications 17(8), 1380–1394 (1999)

6. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating
system for tiny networked sensors. In: Proceedings of the 29th Annual IEEE In-
ternational Conference on Local Computer Networks, LCN 2004, Washington, DC,
USA, pp. 455–462 (2004)

7. Dunkels, A., Österlind, F., He, Z.: An adaptive communication architecture for wire-
less sensor networks. In: Proceedings of the Fifth ACM Conference on Networked
Embedded Sensor Systems, SenSys 2007 (2007)

8. Eriksson, J., Österlind, F., Finne, N., Tsiftes, N., Dunkels, A., Voigt, T., Sauter, R.,
Marrón, P.J.: Cooja/mspsim: interoperability testing for wireless sensor networks.
In: Proceedings of the 2nd International Conference on Simulation Tools and Tech-
niques, Simutools 2009, ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), Brussels, Belgium, pp. 1–7 (2009)

GINSENG - Performance Control in Wireless
Sensor Networks�

Ricardo Silva

University of Coimbra, University College Cork, University of Cyprus, Lancaster
University, TUBS, SAP, SICS, GALP

Abstract. Real deployments of wireless sensor networks (WSN) are
rare, and virtually all have considerable limitations when the application
in critical scenarios is concerned. On one side, research in WSNs tends to
favour complex and non-realistic mechanisms and protocols and, on the
other side, the responsible for the critical scenarios, such as the industry,
still prefer well-known but expensive analog solutions. However, the aim
of the GINSENG Project is to achieve the same reliability of WSNs that
the conventional analog systems provide, by controlling the network per-
formance. In this paper we present the GINSENG architecture and the
platform that have been implemented in a real scenario, considered one
of the most critical in the world: an Oil Refinery.

1 Introduction

Traditionally, monitoring and control systems are analog and wired. Consti-
tuted by basic hardware and requiring complex and expensive deployments and
upgrades, these systems are reliable and companies trust them. Nevertheless,
wireless solutions have evolved and their low cost are making them more at-
tractive. The idea of avoiding the deployment of thousands of cables, most of
them located underground in long and inaccessible ditches, together with the
amount of money that could be saved, have attracted large companies to these
technologies. However, in critical scenarios, present in most industries, the only
the use of reliable systems is permitted and therefore it is necessary to assure
performance control of the deployed wireless systems, making them as reliable
and trustworthy as the wired solutions.

In the scope of the European Project GINSENG (http://www.ict-ginseng.eu/),
the consortium has been developing a tightly controlled WSN to operate in critical
and unstable environments. Currently, the consortium has successfully deployed a
WSN in an oil refinery in Portugal , which is used as an indicator system (sensing,
no actuation) in a critical zone.

The Ginseng project focuses on controlling wireless system performance, and
has targeted a set of different monitoring scenarios within the oil refinery. When
� FP7-ICT-2007-2 GINSENG: J. Sa Silva, A. Cardoso, P. Gil, J. Cecilio, P. Furtado,

A. Gomes, C. Sreenan, T. O Donovan, M. Noonan, A. Klein, Z. Jerzak, U. Roedig, J.
Brown, R. Eiras, J. O, L. Silva, T. Voigt, A. Dunkels, Z. He, L. Wolf, F. Bsching, W.
Poettner, J. Li, V. Vassiliou, A. Pitsillides, Z. Zinonos, M. Koutroullos, C. Ioannou.

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 166–169, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

GINSENG - Performance Control in Wireless Sensor Networks 167

Fig. 1. GINSENG software modules

monitoring tank levels, pipes pressure, product flows or employees health , the
project aims to provide a trustworthy wireless system.

To deploy a performance controlled WSN the consortium defined and imple-
mented the architecture shown in Fig. 1.

The GINSENG architecture is based on the GINSENG MAC [1], which main
function is to provide addressing and channel access control mechanisms to allow
GINSENG nodes that are within radio range to communicate. It is a multi-hop
system that uses an exclusive TDMA for channel access with a pre-dimensioned
virtual tree topology and hierarchal addresses. The Overload Control module
operates over GINSENG MAC and is responsible to drop packets that have ex-
pired or cannot be sent due to low capacity. It may also increase the priority
of low priority packets, and reorder packet queues. The Topology Control is re-
sponsible for managing the tree topology, implemented by the GINSENG MAC.
Performance Debugging [2] is a cross-layer module and is main function is to
determine whether performance requirements are being met by the wireless sen-
sor network. The GINSENG middleware connects the wireless sensor nodes to
the high-level business applications in the backend such as ERP systems, data
warehouses and advanced visualization tools. The GINSENG WSN is supported
by the Contiki Operating System.

2 Real Deployment

At this stage, we have deployed a 15 nodes Wireless Sensor Network, in the re-
finery, in order to monitor pipe pressure and products flow in a specific critical
area. From the first deployment, many lessons have been learnt. Industrial en-
vironments, such as refineries, are truly challenges for wireless communications.
Besides, in critical areas, hardware components that might behave as ignition
must be compliance with the ATEX directive. Therefore, each deployed mote
was inserted in an ATEX compliance box and external antennas were included
as inside the ATEX box standard antennas become inoperable. Fig. 2 shows the
mote inside the box with the external antenna.

168 R. Silva

Fig. 2. TelosB motes in ATEX Boxes and 9dB Antennas

Fig. 3. Photos taken from our WSN deployed in the Petrogal oil refinery

The hardware chosen to deploy in the refinery was the TelosB mote, using
the available ADC and DAC connectors to make the interface with the local
pressure and flow sensors.

As previously mentioned, we used external 9dB antennas. Other models were
evaluated, such as 1dB and 5dB external antennas. Scanning all available chan-
nels in different locations of the refinery, we concluded that the 9dB was the best
option to assure the desired reliability. In the same study, we also concluded that
channel 15 would be, in general, the best option for the location of the current
network. However, any industrial environment has different patterns regarding
radio communication. Reflections, refractions, absorptions, diffractions or scat-
tering may occur in different levels, not only from place to place, but also from
time to time. From our first deployment we have learnt that radio spectrum
analysis is fundamental to assure a good and stable wireless communication. In
Fig. 3 we can see the scenario aspect and part of the deployed network.

The deployed network is being controlled from a portable office, located near
the network, in which the sink is installed. All data is received through the sink
and processed locally. To analyze the system accuracy, we have compared the
data received via the WSN with the data received in the Petrogal control room,
via the conventional wired solution. Despite the signal noise, we realized that
the sensors are quite accurate and our solution is operating as desired (Fig. 4).

GINSENG - Performance Control in Wireless Sensor Networks 169

Fig. 4. Comparison of data received via the two different systems, wired (PT5170) and
wireless (ADC0), from the same sensor at the same time

As mentioned before, the GINSENG middleware is responsible to provide
data from the sensor network to the applications. At this stage, the middleware
supports a local application responsible for locally present the real time infor-
mation through an interface based on the local synoptic. The same synoptic is
also provided through a web-service and therefore, remotely accessible.

Future work comprises the extension of the GINSENG network to cover other
scenarios and areas in the refinery. Furthermore, all the software modules running
in the motes are still under development, aiming to provide motes with more
intelligence while keeping the requirements as low as possible.

References

[1] ODonovan, T., Brown, J., Roedig, U., Sreenan, C.J., Doo, J., Dunkels, A., Klein,
A., Sa Silva, J., Vassiliou, V., Wolf, L.: GINSENG: Performance Control in Wire-
less Sensor Networks. In: Proceedings of SECON 2010 7th annual IEEE SECON
Conference (2010)

[2] Pejovic, V., Sreenan, C.: PerDB: Performance Debugging for Wireless Sensor
Networks. In: Proc. Of European Conference on Wireless Sensor Networks (EWSN),
Poster/Demo session (2009)

LynxNet: Wild Animal Monitoring Using Sensor
Networks

Reinholds Zviedris1, Atis Elsts1,2, Girts Strazdins1,2,
Artis Mednis1,2, and Leo Selavo1,2

1 Faculty of Computing, University of Latvia,
19 Raina Blvd., Riga, LV 1586, Latvia

2 Institute of Electronics and Computer Science,
14 Dzerbenes Str, Riga, LV 1006, Latvia

reinholds@zviedris.com, {aelsts,gstrazdins,selavo}@acm.org,
artis.mednis@edi.lv

Abstract. Monitoring wild animals, especially those that are becoming
endangered (for example, lynxes and wolves) is important for biology
researchers. Solutions for the monitoring already exist; however, they all
have drawbacks, such as limited range or lifetime, sensing modality, re-
porting delays, unreliability of operation. In this work we describe our
experiences in designing an improved animal monitoring sensor system
and low-level software for sensor node control and communication. The
target animals for this particular research are wild lynxes or canines,
however it can be extended to other animal species. The LynxNet sys-
tem is based on tracking collars, built around TMote Mini sensor nodes,
sensors, GPS and 433MHz radio, and stationary base stations, placed at
the locations that are frequented by the animals. We present preliminary
field results of our radio communication range tests.

Keywords: Animal monitoring, Low power sensing, Sensor networks,
Delay-tolerant networks.

1 Introduction

Monitoring the wild animal behavior and whereabouts is a challenge because the
animals avoid human beings. The commercially available solutions provide mon-
itoring devices that have limited sensing capabilities, communications requiring
cellular coverage or have long data report delays [1]. We propose LynxNet sys-
tem with extended sensing modality and multi hop delay tolerant communication
approach. Our collaborators - biology scientists[3] aim to track Eurasian lynx
(Lynx lynx) migration in Latvian forests. Our challenge is to achieve long-term
operation with a single set of batteries in the forest environment with no energy
harvesting. Our contribution includes design of simple yet persistent animal mon-
itoring architecture for resource-constrained mobile sensor systems, development
of efficient PHY and MAC layer radio communication protocols and analysis of
radio communication range in field tests.

This work has been partially supported by ESF under grants Nr. 2009/0219/
1DP/ 1.1.1.2.0/APIA/VIAA/020 and Nr. 2009/0138/1DP/1.1.2.1.2/09/IPIA/
VIAA/004.

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 170–173, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

LynxNet: Wild Animal Monitoring Using Sensor Networks 171

2 Related Work

Anumber of animal monitoring sensor systems havebeen developed in the past few
years [7][6][2][4]. The most common to our hardware is ZebraNet [7] animal track-
ing collar. However, not enough solar energy is available for harvesting, and lynx
is smaller animal than a zebra requiring a more compact and lightweight solution.

Commercial products for GPS-based tracking are available, such as Tellus col-
lars[1]. In comparison, LynxNet employs a wide modality of sensors in addition
to GPS location, that also provide data about the surrounding environment and
help to detect patterns of activities of the animal.

3 System Architecture

LynxNet is mobile sensing and sparse radio connectivity network (see Figure 1).
The architecture offers animal-centric paradigm for sensing at the edge of the
Internet using an opportunistic sensor networking approach.

LynxNet nodes are producing two types of packets. First type contains GPS
location and fix quality information, temperature, relative humidity and amount
of ambient light. One packet is formed once every hour. Second type packet
contains data from 3D accelerometer and 2D gyroscope that can be used to
calculate motion vector. Every 5 minutes 5 samples of data are gathered, stored
in 5 packets to help with the lynx activity classification.

3.1 Hardware

LynxNet system hardware is organized as three tiers of devices: the animal col-
lar devices (see Figure 2), the base station devices and the client devices. All
devices use TMote Mini sensor nodes with TI MSP430F1611 micro-controller.
Additionally LINX TRM-433-LT 433MHz transceiver (TRM) has been chosen
due to its long-range characteristics.

The collar device has a radio antenna with annular operation directional di-
agram, GPS receiver and sensors. The prototype uses 1100 mAh 3.7V Li-Ion
battery.

The base station uses four stacked half-wave dipole collinear antennas.

Fig. 1. LynxNet system architecture Fig. 2. LynxNet collar device

172 R. Zviedris et al.

3.2 Software

All devices were programmed using MansOS [5] operating system for networked
embedded devices developed at University of Latvia. MansOS supports unix-like
abstractions, programming in C and easy portability to new hardware platforms.
LynxNet software extends MansOS with API for flash memory access, humidity
and light sensor drivers, GPS readings parser, DCO recalibration support, the
TRM chip driver, and a design of a MAC-layer communication protocol.

One of the most labor-intensive parts in the project was the development of
the transceiver chip driver and PHY level communication protocol. The TRM
chip has high receive sensitivity and supports symbol rates up to 10 kBdps, but
provides only the simplest programming interface, and does not come with any
software libraries or sample code. The chip uses OOK modulation, suitable for
our project, because interference and high background noise levels are not likely
in remote areas, where the system will be deployed. We implemented a packet
encoding and decoding algorithm based on Manchester encoding (ME). Using
ME decreases the maximal date rate to 5000 bps, but allows to decode frames
with fewer errors.

On top of the physical level communication, a design for MAC protocol is
build. We are going to use a CSMA-based MAC – this method is proven to work
well in sparse networks where collision probability is small. The MAC protocol
works differently on base stations, which are continuously listening, and mobile
nodes, which have low duty cycle. All communication is initiated by the mobile
nodes, which periodically poll for nearby base stations.

4 Evaluation

The LynxNet hardware field tests were performed in two locations: Rumbula
airfield and Sampeteris forest, Latvia. A dog was used instead of a lynx for the
better control. The animal, equipped with LynxNet collar device, was moving
away from the base station. The amount of received packets was measured after
every 50 meters. The collar device was sending out 22 byte packets as in real
deployment situation using encapsulation described in Section 3.2.

First, we tested the hardware with TRM radio and then for comparison with
CC2420 radio. Once the TRM reception tests started to fail due to the distance,
we attached headphones to the base station device and listened for the carrier
(beep) signal.

The results of the tests are shown in Table 1. At the distance of 300 meters
we received no more packets but were still able to hear the beeping sound for up
to 500 meters in the line of sight. In comparison, CC2420 tests received packets
up to 165 meters. The forest base station antenna was attached to a tree. At the
distance of 300 meters we stopped receiving the packets, but were still able to
hear the carrier signal up to 350 meters.

TRM tests showed, that our collar antenna has a significant directional be-
havior. The best reception was achieved when the animal was standing with a

LynxNet: Wild Animal Monitoring Using Sensor Networks 173

Table 1. Radio field test results Table 2. Collar energy consumption

Distance % of packets RSSI
(m) received (max = 4095)

Airfield Forest Airfield Forest
50 80-100% 80-100% 2700 2800-3000
100 80% 80-100% 2200 2200-2500
150 80% 70-90% 1900-2000 2300
200 40-80% 10-50% 1600-1800 1600-1800
250 10-80% 20-50% 1600-1800 1600-1800

Mode Active mW
sec/hour mW daily

Sleep 3527.123 0.033 0.78
GPS 60.0 218.79 87.52

Sensors 12.0 37.62 3.01
Radio RX 0.246 31.68 0.05
Radio TX 0.631 52.14 0.22

Total: 91.57

side towards the base station. As expected, at 433MHz frequency the radio was
less affected by the obstacles than at 2.4GHz.

We also measured energy consumption by the collar device and estimated
savings with respect to the duty cycle as seen in Table 2. Based on this informa-
tion and the current configuration of the prototype the lifetime is 1.5 months.
Changing the GPS to MN5010HS and using a battery with greater capacity such
as Enix Energies 800040 of 6800mAh 3.75V the lifetime would be extended up
to 15 months.

5 Conclusion and Future Work

In this paper, we have presented our experiences designing LynxNet – an animal
monitoring system in the wild. We have created a hardware prototype of a
highly mobile, energy-efficient monitoring system that gathers accurate GPS
position and multimodal sensor data and disseminates it through the system of
delay tolerant network nodes to the consumer. Our field tests show that radio
communication range of 200-250m is achievable and should be considered in
further system design.

The future work includes further evaluation of collar device after longer
deployments, selection of optimal components and robust packaging design.

References

1. Followit Wildlife, http://www.followit.se/wildlife/
2. GPS GSM lynx tracking in the Bavarian Forest National Park,

http://www.environmental-studies.de/projects/24/GPS-lynx-tracking/
gps-lynx-tracking.html

3. Latvian State Forest Research Institute Silava, http://www.silava.lv
4. POST - Pacific Ocean Shelf Tracking Project, http://postcoml.org/
5. Strazdins, G., Elsts, A., Selavo, L.: MansOS: Easy to Use, Portable and Resource

Efficient Operating System for Networked Embedded Devices. In: Proc. SenSys 2010
(2010)

6. Wark, T., Crossman, C., Hu, W.,et al.: The design and evaluation of a mobile
sensor/actuator network for autonomous animal control. In: Proc. IPSN 2007, pp.
206–215 (2007)

7. Zhang, P., Sadler, C., Lyon, S., Martonosi, M.: Hardware design experiences in
ZebraNet. In: Proc. SenSys 2004, pp. 227–238 (2004)

Demo Abstract: Bridging the Gap between
Simulated Sensor Nodes and the Real World

Tobias Baumgartner1, Daniel Bimschas2, Sándor Fekete1, Stefan Fischer2,
Alexander Kröller1, Max Pagel1, and Dennis Pfisterer2

1 Braunschweig Institute of Technology, IBR, Algorithms Group, Germany
2 Institute of Telematics, University of Lübeck, Germany

{t.baumgartner,s.fekete,a.kroeller,m.pagel}@tu-bs.de,
{bimschas,fischer,pfisterer}@itm.uni-luebeck.de

Abstract. We present an architecture for the interconnection of simu-
lated sensor nodes and real node hardware. The simulator is therefore
running in real-time, and the simulated nodes are able to exchange mes-
sages with real sensor nodes as if they were sent over the radio. This runs
fully transparent for the application—and is well suitable for debugging
purposes and general algorithm development. It is even possible to use
exactly the same algorithm implementation for both simulated nodes
and real sensors.

Keywords: Sensor Networks, Simulation, Testbeds, Virtual Links.

1 Introduction

Algorithm development for wireless sensor networks (WSNs) is still a challeng-
ing task. It involves embedded programming on tiny micro-controllers with well-
known problems such as alignment issues, unpredictability of interrupt service
routines (ISRs), and a general lack of debugging possibilities. Furthermore, algo-
rithms are mostly distributed, and thus potential errors may only occur in spe-
cific situations and are unreproducible due to oscillator variances on the nodes
or message loss. A common approach is to run algorithms in simulators before
testing on a real testbed. However, results from simulation are often not com-
parable with real-world experiments, especially when different implementations
are used for the simulated nodes and real sensor nodes.

Different solutions have been presented over the past years to obviate these
problems. With TOSSIM [5], it is possible to run the same code in a simulator
and on real nodes. A similar approach has been presented by Wittenburg and
Schiller [9], who extended the ns-2 simulator to run ScatterWeb applications—
again, without changing any line of application code. With COOJA [6], it is
possible to run Contiki applications before flashing them onto a sensor node. The
common denominator of these approaches is that code is either run in a simulator
or on hardware—without having a link between simulation and experiment, and
thus without appropriate debugging possibilities when an error occurs in the
testbed. To overcome these drawbacks Österlind et al. [7] presented an approach

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 174–177, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Bridging the Gap between Simulated Sensor Nodes and the Real World 175

with sensor network checkpointing. The state of all nodes in a testbed can be
saved, and put into a simulator for further debugging. In addition, the nodes’
states can also be transferred from the simulator back to the testbed.

In our demonstration, we go one step further. We enable simulated nodes to
directly communicate with real sensor nodes, whereby it is possible to run the
same application code in the simulator and on the nodes. The architecture is
based on so called virtual links [1,3], which enable the connection between two
nodes that are not in direct communication range. Messages that are sent by a
node are automatically passed to a gateway, which in turn injects the message in
the simulator, where it is received by a simulated node. The other way around,
messages can also be sent from the simulator to a real node over the same
connection.

The technique allows for embedding real sensor nodes into arbitrary topolo-
gies. Nodes can be placed at critical sections in the network, e.g. to evaluate the
behavior of real nodes when being the bottleneck of a complex algorithm that
is run in a large-scale simulation.

In Section 2, the architecture of the system, which allows to connect simulated
nodes to real sensor nodes is presented. Section 3 describes the mode of operation
of our demonstration.

2 System Architecture

The overall architecture has been developed in the context of the EU-project
WISEBED [8], which aims at the interconnection of multiple testbeds scattered
around Europe. These interconnected testbeds can be configured to behave like a
single testbed, hiding the actual distribution to the sensor node application. This
is achieved by establishing the aforementioned virtual links between individual
nodes. In addition to linking real testbeds, a simulator can be integrated into
the testbed—with virtual links between simulated and real nodes, see Fig. 1(a).

(a) Testbed architecture. (b) Virtual radio on node.

Fig. 1. Wisebed Architecture for Virtual Links

176 T. Baumgartner et al.

Application code can be developed using the Wiselib [2], a platform indepen-
dent C++ algorithm library for heterogeneous sensor networks. Applications
using the Wiselib can be compiled for several platforms such as iSense, Contiki,
or even simulators. Furthermore, the Wiselib comes with built-in support for
virtual links.

Virtual Links. With virtual links, one can connect different sensor node testbeds,
appearing to the user as only one large testbed. Nodes in the different testbeds
are linked to each other, behaving as if they were in direct communication range.
A virtual link transparently tunnels messages between these nodes through the
Internet, injecting the message at the destination node as if it was received
via the radio. As shown in Fig. 1(b), we use a virtual radio that in turn uses
both the real hardware radio and a serial connection to a gateway to be able to
send/receive either via radio or a gateway. This happens transparently to the
application, depending on the current set of virtual links that are configured for
the individual node.

Simulation Environment. We extended the simulator Shawn [4] to be integrated
in a virtual topology. First, we added the ability for real-time simulation, so that
applications are executed at the same speed as on real sensor nodes. Second,
basic multi-threading capability was added to be able to inject messages from
real nodes at run-time. Finally, the Wisebed Web Service API was implemented
to allow the connection to a real testbed—this way, nodes are not aware whether
they communicate with a simulated node or with a real one.

Testbed Access. For the interconnection of a testbed with either other testbeds
or a simulator, we developed a Java-based gateway software, which connects
itself to the nodes inside the testbed and exposes them via the Wisebed Web
Service APIs to the outside. These APIs provide a set of operations that allow
researchers to manage the testbed nodes and run experiments. These include
but are not limited to re-programming the nodes, collecting debug messages and
sending commands to them. In addition, we added virtual link support, so that
messages can be received via the Web Service API, or sent to other testbed
instances via the Internet. In order to allow higher message rates than possible
using the Web Service interface, we furthermore integrated a much more efficient
message-based interface that uses direct TCP socket connections.

3 Demonstration

In our demonstration, we present a connection between the Shawn simulator and
real sensor nodes. We use the visualization module of Shawn, where nodes can be
drawn at run-time, providing a live representation according to their current state.

We have also three types of nodes: Sensors, actuators, and bridges. The sensor
and a bridge node are linked to one Shawn instance, the same bridge node and
the actuator to another Shawn instance. Whenever the sensor—a light sensor—
detects an event (darkness or lightness), it sends a message to the actuator. The
message is thereby routed through the first Shawn instance to the bridge node,

Bridging the Gap between Simulated Sensor Nodes and the Real World 177

which passes it to the second Shawn instance. From there, it is routed to the
actuator—a light, which is turned on or off.

Acknowledgement. This work has been partially supported by the European
Union under contract number ICT-2008-224460 (WISEBED).

References

1. Baumgartner, T., Chatzigiannakis, I., Danckwardt, M., Koninis, C., Kröller, A.,
Mylonas, G., Pfisterer, D., Porter, B.: In: Silva, J.S., Krishnamachari, B., Boavida,
F.L. (eds.) EWSN 2010 LNCS, vol. 5970, pp. 210–223. Springer, Heidelberg (2010)

2. Baumgartner, T., Chatzigiannakis, I., Fekete, S.P., Koninis, C., Kröller, A.,
Pyrgelis, A.: Wiselib: A generic algorithm library for heterogeneous sensor net-
works. In: Silva, J.S., Krishnamachari, B., Boavida, F. L.(eds.) EWSN 2010 LNCS,
vol. 5970, pp. 162–177. Springer, Heidelberg (2010)

3. Bimschas, D., Danckwardt, M., Pfisterer, D., Fischer, S., Baumgartner, T., Fekete,
S.P., Kröller, A.: Topology virtualization for wireless sensor network testbeds. In:
Proceedings of the 6th International ICST Conference on Testbeds and Research
Infrastructures for the Development of Networks and Communities (TridentCom
2010), Berlin, Germany. ICST (May 2010)

4. Kröller, A., Pfisterer, D., Buschmann, C., Fekete, S.P., Fischer, S.: Shawn: A new
approach to simulating wireless sensor networks. In: Proceedings of the 3rd Sym-
posium on Design, Analysis, and Simulation of Distributed Systems (DASD 2005),
pp. 117–124 (2005)

5. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation
of entire tinyos applications. In: Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems, SenSys 2003, pp. 126–137. ACM, New York
(2003)

6. Österlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level sensor
network simulation with cooja. In: Proceedings of the First IEEE International
Workshop on Practical Issues in Building Sensor Network Applications (SenseApp
2006), Tampa, Florida, USA (November 2006)

7. Österlind, F., Dunkels, A., Voigt, T., Tsiftes, N., Eriksson, J., Finne, N.: Sensor-
net checkpointing: Enabling repeatability in testbeds and realism in simulations.
In: Roedig, U., Sreenan, C.J. (eds.) EWSN 2009. LNCS, vol. 5432, pp. 343–357.
Springer, Heidelberg (2009)

8. Seventh Framework Programme FP7 - Information and Communication Technolo-
gies. Wireless Sensor Networks Testbed Project (WISEBED), ongoing project since
(June 2008), http://www.wisebed.eu

9. Wittenburg, G., Schiller, J.: Running real-world software on simulated wireless sen-
sor nodes. In: Proceedings of the ACM Workshop on Real-World Wireless Sensor
Networks (REALWSN 2006), Uppsala, Sweden, pp. 7–11 (June 2006)

http://www.wisebed.eu

A Mote-in-the-Loop Approach for Exploring
Communication Strategies for Sensor Networks

Minyan Hong1, Erik Björnemo1, and Thiemo Voigt2

1 Uppsala University, Sweden
2 Swedish Institute of Computer Science (SICS), Kista, Sweden

1 Introduction

Sensor networks are being deployed in a range of different environments, such as indus-
try plants, rainforests and offices. Each environment has its own characteristics and the
appropriate communication strategy will differ accordingly – packet sizes, retransmis-
sion schemes, error correcting codes, etc. It is, however, difficult to investigate the most
appropriate communication strategies for the environment of an intended deployment.
On the one hand, simulations are seldom realistic enough as they do not model the
environment in every intricate detail. On the other hand, real-world experiments with
deployed nodes are important but time-consuming, difficult to repeat, and to some ex-
tent dependent on hardware and software. For example, a bug in the software might
make measurements collected during an extensive time useless. We need an easier
way of testing which still captures realistic communication environments and provides
repeatability.

We propose a new approach to investigate communication strategies. Our approach
uses a combination of on-site radio channel and interference measurements, real sensor
network hardware as well as a signal analyser and a signal generator. The advantage of
our approach is that once the channel measurements are made, we have a deterministic
and repeatable way of investigating the most suitable communication strategy in the lab
and for different sensor node hardware. Additionally, we can quickly test new hardware
and new implementations by simply recording new packets.

2 Approach

The setup consists of two motes, a vector signal analyser (VSA) and a vector signal
generator (VSG)1, see Figure 2.

A modern vector signal analyser/generator is an advanced instrument with the fol-
lowing typical characteristics: Large frequency range; Large signal bandwidth; Accu-
rate power reading/setting. These features render the instrument flexible and facilitate
tests outside the reach of mote-to-mote communication such as the transmission of
recorded signals at very precisely set power levels.

The motes are TmoteSky sensor nodes [3] which feature a CC2420 radio and run
the Contiki operating system. The sending mote sends one or more packets that the

1 In our case the 2810 VSA and the 2910 VSG from Keithley.

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 178–181, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Mote-in-the-Loop Approach for Exploring Communication Strategies 179

Vector signal
generator (VSG)

Vector signal
analyser (VSA)

Sensor node
sender

Vector signal
analyser (VSA)

Sensor node
receiver

Vector signal
generator (VSG)

PC

Measured
channel
dataPacket recording via cable for

very good signal quality
Imposing channel (variations, noise, etc.) in PC,

transmitting at desired power level with VSG,
sensor receiving through cable connection

Fig. 1. Experimental setup for repeatable testing of communication strategies using real channel
data

signal analyser resolves to in-phase and quadrature (IQ) values that can be stored on
the PC, for example, using Matlab. The radio communication between mote and signal
analyser is via a cable to avoid external interference and achieve large signal-to-noise
ratio (> 60 dB). With software on the PC, we can instruct the signal generator to replay
the packets received by the signal analyser and transmit them to the mote as depicted
in Figure 2. We can further vary the output power of the signal generator, e.g. accord-
ing to measured channel gains. Moreover, we can modify the outgoing signals by e.g.
adding measured or simulated interference and noise. In particular, we are able to col-
lect measured channel data from different environments to emulate the impact of the
environment on communation. This way, we expect to be able to find communcation
strategies tailored to the environment. At the receiving mote we can measure e.g. packet
reception rate but also retrieve the received signal strength indicator (RSSI), the link
quality indicator (LQI) and noise floor values from the on-board radio.

3 Evaluation and Proof of Concept

3.1 Basic RSSI Experiment

We verify the CC2420’s RSSI readings by repeatedly replaying a recorded packet at
increasing power levels. Figure 2 shows the results over the power range in which the
motes actually receives the packets and can hence measure and report the RSSI (down
to approximately -95 dBm). The figure shows the expected overall linear relationship,
with a small variance in the RSSI readings. However, we specifically note two regions
– at output powers of -40 dBm and -25 dBm – where the linear relationship between
RSSI and VSG output power is disturbed and the sample variance is larger. This re-
flects an inaccuracy of in the RSSI reading mechanism that also Chen and Terzis have
observed [2]. Note that this inaccuracy thus confirms the correctness of our approach.

3.2 Repeatable Test of Communication in Fading Channels

While real world deployments in one respect constitute the ultimate test of a sensor
network and its communication strategies, it can be very difficult to compare results for

180 M. Hong, E. Björnemo, and T. Voigt

-90 -80 -70 -60 -50 -40 -30 -20 -10 0
-90

-80

-70

-60

-50

-40

-30

-20

-10

0
Measured RSSI [dBm]

Signal generator output power [dBm]

Fig. 2. RSSI from the CC2420 as a function of the VSG signal output power. The mean ± 3 stan-
dard deviations are given together with the ideal straight-line response. The curves are based on
10000 RSSI readings per power setting.

different deployments at different times. One reason is that variations in link quality
– channel fading – are different at different times and locations. During research and
development, it is therefore desirable to have a repeatable approach which still is much
more realistic than simulation. Our proposed approach is a step in this direction, and
we here show an example of the results we can achieve using real-world channel data.
The channel characteristics used here consists of traces that we have collected in office
and forest environments [1].

In Figure 3 the general procedure for including fading and interference is depicted.
Note that there is a choice when it comes to the thermal noise as it can either be intro-
duced artificially in the PC, as part of n(τ, t), or by using the real receiver noise and
a scaled output power from the VSG. We used the latter approach and studied only
the channel impact without interference for illustrative purposes. By the use of 10000
packets for each received average signal-to-noise ratio, we obtained packet error rate
curves for three cases: No fading, measured office fading and measured forest fading.
The channel data was applied so that block fading was achieved, that is a fairly constant
channel during packet transmissions.

The results in Figure 4 show how the fading introduces error floors, starting at packet
error rates of around 3 percent. The difference between the fading channels is not as
extreme as one might expect, but it should be noted that the terms ”line of sight” and
”non line of sight” are inadequate to describe the difference. In fact, the office setting
allowed some penetration through walls which resulted in ”partial line of sight” (non-
Rayleigh fading). Additionally, the forest setting was not pure line of sight because of
the antennas being very close to the ground.

A Mote-in-the-Loop Approach for Exploring Communication Strategies 181

Measured channel

Recorded
packet

h(τ,t)x(τ) +

Recorded
interference

y(τ) y(τ)+n(τ,t) Vector signal
generator (VSG)

Sensor node
receiver

n(τ,t)

Fig. 3. Introduction of fading channel and interference. The packet x(τ), the channel h(τ, t) and
the interference n(τ, t) are all complex-valued to contain both amplitude and phase information.
The variable t shows that the channel and the interference can have time-varying characteristics.

−5 0 5 10 15 20 25 30 35
10

−3

10
−2

10
−1

10
0

Signal noise Ratio (SNR)

P
ac

ke
t E

rr
or

 R
at

e
(P

E
R

)

PER vs. SNR

Gaussian channel (no fading)

Non line of sight 2400 MHz Office

Line of sight 2400 MHz Forest

Fig. 4. Packet error rate (PER) for a range of signal-to-noise ratios (SNR). The channel was block
fading, that is to say roughly constant during a packet but changing on an inter-packet time scale.

4 Conclusions

We have presented Mote-in-the-Loop, a new approach for communication strategy ex-
ploration. With some further extensions such as feedback from the sensor node to the
VSG in order to trigger retransmission we believe that Mote-in-the-Loop will become
a powerful and useful tool.

Acknowledgements. This work was funded by the Uppsala VINN Excellence Center
for Wireless Sensor Networks WISENET, partly funded by VINNOVA.

References

1. Björnemo, E.: Energy Constrained Wireless Sensor Networks: Communication Principles and
Sensing Aspects. Institutionen för teknikvetenskaper, Uppsala University (2009)

2. Chen, Y., Terzis, A.: On the Mechanisms and Effects of Calibrating RSSI Measurements for
802.15. 4 Radios. In: European Conference on Wireless Sensor Networks, Coimbra, Portugal
(February 2010)

3. Polastre, J., Szewczyk, R., Culler, D.: Telos: Enabling ultra-low power wireless research. In:
Proc. IPSN/SPOTS 2005, Los Angeles, CA, USA (April 2005)

The Deployment of TikiriDB for Monitoring
Palm Sap Production

Asanka P. Sayakkara, W.S.N. Prabath Senanayake, Kasun Hewage,
Nayanajith M. Laxaman, and Kasun De Zoysa

University of Colombo School of Computing,
No. 35, Reid avenue, Colombo 7, Sri Lanka

{asanka.code,prabathws}@gmail.com,kch@ucsc.lk,{nml,kasun}@ucsc.cmb.ac.lk
http://score.ucsc.lk

Abstract. Nowadays, the industry of harvesting palm sap in Sri Lanka
is facing many problems due to theft and environmental affects. In this
paper, we propose a solution for the particular problem by using a wire-
less sensor network based system to monitor the palm sap production of
a large plantation area. We are using an enhanced version of TikiriDB
which provides a database abstraction on the sensor network to make
the process of data collecting and analyzing more efficient. TikiriDB can
be used to reduce restrictions on accessing traditional sensor networks
by enabling the user to access the sensor network using multiple queries
through multiple access points simultaneously.

Keywords: Wireless Sensor Networks, Database Abstraction, Liquid
level Sensor , Multiple User Access, Palm Sap.

1 Introduction

Palm sap production is a traditional industry in Sri Lanka which has a huge
demand in the local market. It is obtained from different types of locally available
palm trees. Owners of large palm tree estates employ rural people for tapping
palm trees to collect the essence of palm flowers. The tappers climb to tree tops
to slice palm tree flower and hang a special container to collect the liquid. They
have to climb again to collect the containers with the liquid. Some times they
use small bowser to transport the collected palm sap to main storage. Palm
plantations may span over many acres of land area.

Therefore it is challenging to manage such plantations. Owners are facing the
the difficulty of protecting the product from theft. Not only outsiders, but also
employed tappers may involve in palm sap theft. It’s practically very difficult to
monitor the production by employing watchers due to the size of the land area.
It’s even hard to track the thefts done by the tappers who are employed in a
particular palm state. In addition to that there are several more requirements
to fulfill when deploying a system to solve above mentioned problem. Produc-
tivity of palm trees may depend on different environmental conditions such as
temperature and humidity. Therefore, monitoring such conditions is necessary

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 182–185, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://score.ucsc.lk

The Deployment of TikiriDB for Monitoring Palm Sap Production 183

to arrange necessary measures to increase productivity. This requires consider-
able amount of environmental data with relate to a particular palm tree and
tree’s productivity measures. Therefore the people in this industry, specially the
owners of palm states, are seeking for a feasible and effective solution to monitor
and protect the palm sap production.

2 Our Approach

We propose a solution to the mentioned problem by deploying a sensor network
where each palm tree have sensors. A palm sap liquid level measuring sensor
is fixed to each and every sap collecting container. Thereby, we can track the
changes of palm sap liquid level in regular time intervals. Sensors to measure the
environmental conditions such as humidity and temperature are also fixed to
the sap containers in each palm tree. However, to analyze and produce required
reports regarding the collected measures, it is required to collect these informa-
tion into a central location. Since, the palm tree plantations can be spread over
many acres of land area, its not effective and feasible to use wired communica-
tion. Hence, using a wireless sensor network would be an effective way of solving
the problem.

Wireless sensor networks (WSN) have emerged a new wave in the community
of researchers of various fields such as computer science, health care, habitat
monitoring, military and disaster management etc. Since most of the devices
used for WSN applications are so small, researchers have been able to obtain
information from environments where they couldn’t reach before. These scare
resourced devices are networked through special protocols to communicate with
similar motes in the network and with external computers. Therefore, using
WSN requires a considerable amount of technical knowledge about the devices,
protocols used, sensors, etc. However, most of the users of wireless sensor net-
works are not technical people i.e. zoologist, military personal, medical doctors,
etc. Therefore it is better to provide them with an abstraction to the sensor
network which would hide technical details from the user and at the same time
provide facilities to interact with the WSN in an easier and efficient way. For
example a WSN can be viewed as a file system or a database. Since, there are
no WSN literal personal in the plantation, using such abstraction would be an
added advantage.

File system abstractions for WSN use read and write operations to commu-
nicate with WSN where database abstractions use specific Structured Quarry
Languages(SQL). Researchers from University of California, Berkeley have de-
veloped a solution called tinyDB [1] which gives a database abstraction to sensor
networks using TinyOS. A similar approach has been followed by the researchers
at University of Colombo School of Computing in Sri Lanka called tikiriDB [2]
which also gives a database abstraction layer to sensor networks using Contiki
OS. We opted to use database abstraction technologies because, palm planta-
tions have different kinds of people who have different interests regarding the
information related to the palm plantation, and database abstraction gives a
flexible way to develop applications to meet the vague requirements.

184 A.P. Sayakkara et al.

For example, a botanist in the plantation may require sensor readings in an
increased sample rate to measure the correlation between environmental factors
and palm sap productivity for a particular tree. One solution would be to set
sensors to take readings at the maximum rate they can perform. This would
increase the battery consumption of sensors and hence would wear out the bat-
teries very quickly. However, if we use a database abstraction to WSN, it is
possible to specify what data required in which rate in the query. This would
save a considerable amount of power with regard to previous situation. If a file
system abstraction is used, implementation would be more complicated than
issuing a query.

It is a requirement that the solution provides access to the WSN at any
location for different parties. For an example when a bowser collects the liquid
from the containers which were hanged on palm trees, wireless node in the bowser
should be able to gather the information about the amount of liquid in each
container of palm trees by sending a query to each tree. Therefore, the solution
should be able to handle multiple concurrent access. TinyDB, doesnt allow a
user to query the WSN by accessing it from any sensor node. It is only allowed
to access though a defined root node for a particular WSN. However, TikiriDB
database abstraction supports shared WSN system with multiple access points.
Therefore, we opted tikiriDB as the database abstraction when providing the
solution for palm tree plantation.

3 Implementation

We have done several enhancements to TikiriDB to adapt it into our solution
such as functionality to create storage pointers, and enhancing querying language
to handle event queries [3]. Storage points is a concept to store data temporarily
in the nodes itself until that stored data are collected. Event queries let the user
to set a query to be executed when a special event is triggered.

According to the figure 1, the system has a very modular architecture with
fully distributed components over the WSN. All sensor nodes are embedded in

Fig. 1. High Level Overview of the System

The Deployment of TikiriDB for Monitoring Palm Sap Production 185

specifically designed container which is capable of measuring the liquid level,
temperature, humidity, and pressure caused due to the weight of the liquid. A
combination of sensor values are used to come to a conclusion on palm theft.
In addition to the automated data collection, the sensor network provides func-
tionalities to send queries and retrieve data in real time.

At the calibration stage of the device which we are creating to get information
about the collected palm sap, we identified a requirement of obtaining external
variables which affects the rate of flow of palm sap. The flow of palm sap may
depend on temperature, humidity, and some other factors which controls the
productivity of palm sap such as the age of a particular tree. However, tem-
perature, humidity can be obtained from the sensor nodes at trees and other
factors can be obtained from external sources of data. These, data can further
be used to make predictions on future productivity of a tree and total palm sap
production.

4 Conclusions and Future Works

Real world deployment of WSN applications involves a lot of effort in calibrating
sensors and configuring hardware components to meet the required functionality
from the sensor network. Therefore the approaches to simplify the complexity by
giving different abstractions can play a major role in real world deployments of
WSN systems. Even though WSN based systems can show good results in exper-
imental level, they can be inapplicable in real world implementations. Therefore
the best way to evaluate a WSN system is applying it in real world problems.
The initial works on palm sap production monitoring system has taught us a lot
about real WSN.

By working on this palm sap production monitoring system, we realized that
tikiriDB can be a part of many real world WSN deployments which has similar
requirements to this project. From its original design, it has the flexibility that
most of the WSN applications in the real world needs. Currently, tikiriDB devel-
opers are working on further enhancements and developments of it to provide a
comprehensive database abstraction for Contiki based WSN. Therefore we can
expect that it will appear in more and more real world applications in the future.

References

1. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: An acqusitional
query processing system for sensor networks (2005)

2. Laxaman, N.M., Goonatillake, M.D.J.S., Zoysa, K.D.: Tikiridb: Shared wireless
sensor network database for multi-user data access (2010)

3. Madden, S., Franklin, M.J., Hellerstein, J.M.: Design of an acquisitional query pro-
cessor for sensor networks (2003)

Cooperative Virtual Memory for Sensor Nodes

Torsten Teubler, Jan Pinkowski, and Horst Hellbrück

Lübeck University of Applied Sciences
����������	
�����������������	���

����	�������������������	���

�������������������������	���

Abstract. Wireless sensor networks (WSN) have unique challenges and
constraints. Sensor nodes e.g. have tough memory limitations. However,
the latest advances in WSN research direct for an implementation of
lightweight versions of Internet protocols like IPv6, TCP, and HTTP
on sensor nodes. These protocols have challenging requirements. Espe-
cially, memory consumption of these protocols is often higher than the
physical RAM that microcontrollers have integrated. Therefore, we sug-
gest an approach for virtual memory providing more memory than the
available RAM. As microcontrollers do not include a memory manage-
ment unit the usage of memory is implemented in cooperative fashion
based on the C standard library function malloc and free. We suggest
an underlying file system and a hardware abstraction layer to support
various external or internal memory devices like Flash or EEPROM. In
this work in progress we present an API, some implementation details
and preliminary results including future work.

Keywords: Wireless Sensor Networks, Virtualization, Application.

1 Introduction

The progress of research in sensor networks for the last ten years is remarkable
and driven by new protocols, enhanced algorithms and more powerful appli-
cations. Todays WSN Operating Systems provide lightweight web servers and
reduced functional TCP/IP stacks with IP Version 6 support [1]. When the
community started with assumptions of hardware size of 2kB RAM and some
30kB of program memory today some platforms provide 10 times more memory
and even more powerful CPUs. However, this is by far not enough to keep large
routing tables, neighborhood lists, or allow for buffering of messages for aggrega-
tion. In our studies with IPv6 we continuously hit the memory limit problem as
protocols degraded because some buffered messages that are needed later must
be dropped as the memory was needed for fresh incoming messages. There are
many more situations where additional memory could enhance the performance
of the system significantly.

Additionally, for many applications the energy resources remain the major
limiting factor whereas delay is not a critical aspect. The reason for the accept-
able sensing delay is that WSNs are designed for duty cycle of nodes less than

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 186–189, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cosa.fh-luebeck.de

Cooperative Virtual Memory for Sensor Nodes 187

10% typically 1% to guarantee a tolerable lifetime of the nodes. As a result in-
formation that crosses a large multi-hop sensor network cannot be transferred
in a single active cycle resulting in a large delay.

The basic idea is that we provide larger virtual memory in our system by
using RAM and unused existing Flash and EEPROM memory in parallel. In that
way, an API provides access to the memory for the user in a transparent way
independent from the location of the data in the RAM, in Flash or EEPROM.
As the access to EEPROM or Flash is slower compared to RAM we expect an
increase in access delay which we project to be tolerable as sensor nodes need to
be designed delay tolerant any way as argued in the beginning of this section.

The rest of the paper is organized as follows: In Section 2 we discuss related
work. Section 3 introduces our approach and discusses the implementation. The
paper will conclude after presenting preliminary results in Section 4.

2 Related Work

File systems and virtual memory are considered as components in modern oper-
ating systems (OS). However, OS for resource constrained embedded devices like
sensor nodes lack these functionalities. A survey of WSN OS and their charac-
teristics can be found in [2]. We examined the most prominent operating systems
like TinyOS [5], SOS [4], MANTIS [6] and Contiki [1]. None of the above OS
reported support for virtual memory.

A small size WSN OS called t-kernel and published in [3] is most related
to our approach as it also provides virtual memory. However, virtual memory
in t-kernel is integrated into the OS and thereby hardcoded to Flash memory
whereas our approach is more flexible using a mix of Flash and EEPROM on
top of a file system.

3 Concept and Implementation

Our approach can be classified as cooperative virtual memory (CVM) in the sense
of cooperative multitasking. CVM offers the following advantages compared to
RAM only solutions: CVM provides additional memory on demand with intuitive
elegant API. CVM includes a hardware abstraction layer and can compensate
insufficient size of RAM. Additionally, we can expand functionality to hibernate
mode in future.

However, in technical systems many improvements are not for free. In our
approach we introduce some overhead in the RAM to manage the virtual mem-
ory. Additionally, the access to the virtual memory is more complex and will be
slower. We will try to minimize these drawbacks by future optimizations.

The API of CVM consists of not more than four functions. A typical scenario
of the usage of cooperative virtual memory is depicted in Fig. 1. We will introduce
the functions in the typical order they are called by the user of CVM.

void* cvm malloc(size t size) returns a pointer to an allocated memory area
on the heap. The size of the allocated space is passed as parameter. If there is no

188 T. Teubler, J. Pinkowski, and H. Hellbrück

Fig. 1. Typical usage of Cooperative Virtual Memory

continuous block of memory with the specified size in RAM available, released
memory blocks will be swapped out. If swap space is used completely which
means no memory available, a null pointer is returned.

uint16 t cvm release(void* pBlock) marks an allocated memory block as swap-
pable. It returns a temporary handle for managing the swapped out data. After
a call to this function the corresponding data might not be in the heap anymore
and the pointers to the data are invalid.

void* cvm lock(uint16 t handle) takes a handle as parameter. If the memory
block for this handle is in the heap the pointer to the data is returned immedi-
ately. Otherwise the memory block is swapped in again. Then memory is locked.

void cvm free(uint16 t handle) frees the memory block that has been allocated
with cvm malloc() and has been released.

Fig. 2. Implementation Stack of Cooperative Virtual Memory

The software structure of CVM is shown in Fig. 2. CVM is based on standard
C library functions malloc() and free() for allocating RAM in the heap section.
We have implemented an optimized file system for EEPROM and Flash memory.

4 Preliminary Results and Summary

Due to space restrictions we present access delay measurements in Fig. 3 ex-
clusively. Measurements have been performed on our TriSOS hardware based on
Atmega Microcontroller using the worst case setup with external I2C EEPROM.
Fig. 3 demonstrates that time for swapping out (writing) RAM to the EEPROM
is quite large whereas swap in (reading from the EEPROM) is much faster. In
WSN protocols where round trip time is up to several seconds between sender

Cooperative Virtual Memory for Sensor Nodes 189

Block size [Byte]
Time [ms]

free swap out swap in
100 15 52 7
400 18 95 19
1024 21 186 46

Fig. 3. Time Measurements for CVM Implementation and the TriSOS Sensor Node

and receiver internal access delay of 50 ms is tolerable. Internal EEPROM or
Flash is expected to be much faster as I2C-Bus introduces a substantial delay.

In this ongoing work we have introduced a novel API for virtual memory
for sensor nodes together with preliminary results which provides elegant han-
dling of memory that can be flexibly distributed to secondary storage Flash and
EEPROM. An important step for improvement is decreasing the access delay
for the swapping operation. Therefore, we will develop and implement an asyn-
chronous swap in and swap out based on usage prediction.

We will implement the CVM into standard Internet protocols like routing,
http in order to demonstrate the feasibility of this concept. In the future we
plan to extend this concept for hibernation and post failure analysis.

Acknowledgments. This work was funded by the Federal Ministry of Education
& Research of the Federal Republic of Germany (Förderkennzeichen 01BK0905,
GLab). The authors alone are responsible for the content of the paper.

References

1. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a lightweight and flexible operating
system for tiny networked sensors. In: Proceedings of the First IEEE Workshop on
Embedded Networked Sensors (Emnets-I), Tampa, Florida, USA (November 2004)

2. Dwivedi, A.K., Tiwari, M.K., Vyas, O.P.: Operating systems for tiny networked
sensors: A survey. Int. Journal of Recent Trends in Engineering 1, 152–157 (2009)

3. Gu, L., Stankovic, J.A.: t-kernel: providing reliable os support to wireless sensor net-
works. In: Proceedings of the 4th International Conference on Embedded Networked
Sensor Systems, SenSys 2006, pp. 1–14. ACM, New York (2006)

4. Han, C.-C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: Sos: A dynamic op-
erating system for sensor networks. In: Proceedings of the Third Int. Conference
on Mobile Systems, Applications, And Services (Mobisys). ACM Press, New York
(2005)

5. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D.,
Hill, J., Welsh, M., Brewer, E., Culler, D.: Tinyos: An operating system for sensor
networks. In: Weber, W., Rabaey, J.M., Aarts, E. (eds.) Ambient Intelligence, pp.
115–148. Springer, Heidelberg (2005), doi:10.1007/3-540-27139-2 7

6. Of, M.N., Abrach, H., Carlson, J., Dai, H., Rose, J., Sheth, A., Shucker, B., Han,
R.: Mantis: System support for. In: 2nd ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA), pp. 50–59 (2003)

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 190–193, 2010.
© Springer-Verlag Berlin Heidelberg 2010

GinConf: A Configuration and Execution Interface for
Wireless Sensor Network in Industrial Context

José Cecílio, João Costa, Pedro Martins, and Pedro Furtado

University of Coimbra,
Coimbra, Portugal

jcecilio@dei.uc.pt, jpcosta@dei.uc.pt,
pmom@student.dei.uc.pt, pnf@dei.uc.pt

Abstract. Wireless sensor networks (WSNs) are deployed to sense, monitor
and act on the environment. Some applications of these networks, especially in
industrial sense and react scenarios, require high performance and guaranties.
Our work is focused on building a system that allows configuring/reconfiguring
alarms, actions or closed-loop techniques in the context of GINSENG project –
wireless sensor networks with performance control guarantees. We propose an
approach for interaction with real-world devices through a web services
interface, allowing users to configure and apply various operations, including
complex closed-loop techniques that monitor and act over any actuator in the
WSN. To allow the interaction between a client application and the motes we
implemented an API to access services of the motes.

Keywords: WSN, Configuration/Reconfiguration, Industrial application.

1 Introduction

Sensor Networks are used nowadays in many application contexts, with quite different
characteristics. One application scenario of these networks consists on industrial
environments. In an industrial setting for monitoring-and-control applications, easy
configuration and reconfiguration capabilities become important during deployment and
tests, where issues such as latencies may dictate modification. During the lifetime of the
network, a deployment may not meet all requirements. It is important to check if all
requirements are guaranteed, if not, it is needed to change something in the network.

Closed-loop control is an important issue in industrial settings. Since sensor motes
have limited computation capability and control computations may require operation
on values coming from multiple sensors, immediate sensor-triggered control will
typically be only for emergency actuation (e.g. opening a valve if pressure goes
beyond an emergency level). More complex closed-loop control computations can be
done in a control workstation, subject to larger latencies and more data (e.g. multiple
samples, inputs from multiple sensors).

In this paper, we present an approach to connect wireless sensor or actuator nodes
to a web services interface for configuring and applying various operations, including
complex closed-loop control techniques. This work is done in the context of a
European GINSENG project – wireless sensor networks with performance control

 GinConf: A Configuration and Execution Interface for Wireless Sensor Network 191

guarantees. Sensors and actuators are represented as resources of the corresponding
node and are made accessible using a web service interface that establishes the
communication with the nodes. Our main goal is to enable a flexible architecture
where sensor networks data can be accessed by users to configure the system,
including configuration of alarms, sending rates, closed-loop control and actions. We
present our system architecture and show a user interface called GWeb.

2 GinConf System Architecture

As devices of WSN have limited computation capabilities and may connect with
different sensors and actuators, manual configuration/reconfiguration (by programming)
is infeasible if a large number of sensor nodes are used. Based on web services, we
introduce a plug-and-play approach, that allows configuring/ reconfiguring any mote in
the WSN.

We designed the GinConf to offer the configuration and execution interface for the
wireless sensor network. Our approach also allows connecting multiple concurrent
applications to share sensing resources in a flexible way. Figure 1 shows the system
architecture.

Fig. 1. System Architecture

As shown on Figure 1, we propose to use GinConf as an interface that allows
configuring and executing controllers in wireless sensor networks.

GinConf abstracts the proprietary communication protocols of motes and offers
their functionalities through an Application Programming Interface (API). It is based
on a web service interface that allows connecting any applications to the WSN. For
instance, if we consider an action coming from the closed-loop software via API to a
sensor node, GinConf maps this request to a specific request for the mote and
transmits it to the WSN. The API provides a set of resources that can be identified
using a request of web service.

The architecture’s key components of GinConf are the I/O Adapter, wsnDB and the
Rule Processor. The I/O Adapter is a module that allows establishing the connection
between GinConf and the dispatcher to obtain sensor data streams, submit data queries

192 J. Cecílio et al.

to the sensors, or access sensor characteristics. The dispatcher implements sensor-
specific methods to communicate with the sensor.

The wsnDB is an internal memory database used to store information about the
network. This module is subdivided in two sub-modules: catalog, and senseData. The
catalog is responsible for indexing the sensor characteristics and other shared
resources in the system, in order to enable applications to discover what is available
for use. The catalog information is maintained up-to-date by the Monitoring module
that collects status information from the network. To guarantee that the catalog has
up-to-date information, the sensor node may periodically send status messages to the
monitoring module. The senseData stores data messages during a time window. When
an application needs data from overlapping space–time windows, senseData uses
stored messages to get the data. This allows a client to request data from any past
instant. For instance, if a client requests all values in the last 10 minutes to compute
an appropriate action, GinConf extracts data from the memory, streams it and sends it
to the application.

Lastly, the Rule Processor is a module that allows establishing the interaction
between different clients over the network in order to exchange data or to trigger
certain actions. The Rule Processor is composed by a web service interface that
allows using the resources of remote devices. In addition, GinConf provides, through
the API, a push-based mechanism to subscribe the data received from the WSN. This
functionality allows any client to receive periodically a data stream with the readings
transmitted by each sensor.

3 Application Programming Interface

GinConf offers an API that includes a set of functionalities required by applications
that need to interact with wireless sensor networks for industrial environments. The
API offers functionalities for:

• Activate / deactivate nodes;
• Activate / deactivate sensors and actuators connected to each node;
• Gather sensed value data at different frequencies;
• Change the sampling rate;
• Request node status;
• Reset a node;
• Change node configuration parameters;
• Send controller code to nodes;
• Start a controller;
• Stop a controller ;
• Set parameters, allow changing parameters of a controller;
• Define actions, conditions and rules.

4 User Interface

In this section, we describe the implementation of GWeb, an interactive application
built on top of GinConf. GWeb (Figure 2) demonstrates how to create and send
queries to the WSN.

 GinConf: A Configuration and Execution Interface for Wireless Sensor Network 193

Fig. 2. GWeb Interface

Fig. 3. Layout of deployment

Fig. 4. Temperature’s chart

This application allows users to, for example, define a set of rules which trigger
certain actions based on a specified event. A typical rule may have the format “if the
pressure level in sensor A is greater than 5 bar, open valve X and send a notification
to server”.

GWeb is an application that combines configuration and display of sensor streams
obtained using GinConf. Figure 3 shows the layout of an example of deployment and
Figure 4 shows the chart of temperature for mote 3. This application can be used by
all deployers to configure or reconfigure the network.

5 Demo Roadmap

In this demo we aim to present a tool that allows configuring and executing
controllers in a WSN specifically designed for industrial scenarios. In the scope of the
GINSENG Project and based on the architecture presented above, we aim to
demonstrate how to configure the network to operate in critical scenarios. We will
deploy some nodes in a tree hierarchy topology, where all nodes sense the
temperature and we will demonstrate how to change the sampling rates, create alarms
in motes and/or in PC, how to trigger actions based on events and how to change a
threshold level.

EdiMote: A Flexible Sensor Node Prototyping
and Profiling Tool

Rinalds Ruskuls1 and Leo Selavo2

Institute of Electronics and Computer Science,
14 Dzerbenes Str, Riga, LV 1006, Latvia

rinalds.ruskuls@edi.lv,selavo@acm.org

1 Introduction

Designing hardware for wireless sensor network (WSN) systems is a time con-
suming process. Quite often new systems are designed from scratch and there is
lack of support for the design, prototyping and debugging beyond the CAD tools.
Therefore, many WSN systems are based on available platforms such as MicaZ,
TelosB, EPIC [1] [7] [4]. Although these platforms offer a degree of flexibility, the
hardware setup is limited to the predesigned sensor or extension modules. How-
ever, many WSN applications have specific requirements regarding the sensing
types and fidelity while are very sensitive to the current draw by these sensors
and waste by the unused components. Therefore, we propose a WSN hardware
prototyping test bench EdiMote developed with the flexibility of prototyping,
performance monitoring and hardware and software debug assistance in mind
(Figure 1).

Our approach offers fast prototyping for virtually any hardware. The users
new prototype is made from modules that are microcontrollers, communications
transceivers, sensors, storage, any other electronic components or the combina-
tion of them. Each module is on a board with predefined interface with analog
and digital signals and is either available from a hardware library of modules or
custom designed by the user for the specific task. The boards are interconnected
using a configurable digital and analog interconnect that allows fast reconfigura-
tion, monitoring of the signals for debugging purposes and power consumption
monitoring per module.

In addition, the EdiMote bench is capable of emulating any of the existing
hardware such as Tmote Sky or MicaZ with the additional benefit of low level
monitoring and signal debugging support. For example, an analog sensor value
that is going to the ADC port of a controller can also be monitored and logged
by the test bench along with the digital signals for profiling or a scenario replay
purposes. Once the new system is tested, profiled and debugged enough, the user
may proceed to create a standalone version of the unit from the final version of
the hardware configuration where most problems have been resolved using the
EdiMote prototyping tool.

This Demo intends to show the capabilities and usefulness of the EdiMote
prototyping and profiling system. We show the tool in action, using various

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 194–197, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

EdiMote: A Flexible Sensor Node Prototyping and Profiling Tool 195

Fig. 1. EdiMote prototyping and profiling board

modules and configurations, including the emulation of a TelosB mote or another
well known sensor node.

2 System Architecture

The high level block diagram of the test bench architecture is shown in Figure 2.
Main idea of this system is to use reconfigurable analog and digital inter-

connect between the Test MCU and Modules. Note, that the system does not
restrict to a single MCU, but can have multiple MCUs on several modules. The
interconnect configuration is loaded from a computer via USB port. The Test
MCU module is a daughter board with 80 pins for power, digital and analog
signals. Several MCU daughter boards are available and more can be designed
by the user, for example, based on MSP430, Atmel, Nordic Semiconductors and
ARM controllers. The Modules typically have sensors, RF transceiver, extra con-
troller or other application specific devices on them. The system supports up to

196 R. Ruskuls and L. Selavo

Fig. 2. Development board architecture

three modules with two supporting 4 analog and 10 digital signals, while the
third module connector has 8 analog and 22 digital signals. Sensor modules like
RF and MCU can be connected to those connectors.

2.1 Implementation

The digital signal matrix interconnecting GPIO and programming signals includ-
ing JTAG is implemented with Altera MAXII EPM1270T144C5N CPLD [2] .
The interconnect can perform digital level translation for systems where differ-
ent levels are used. In addition the CPLD implements the monitoring of digital
lines and dynamic reconfiguration of the interconnect. Advanced user might even
take advantage of the CPLD reprogramming to implement custom profiling or
debugging functions. The CPLD can be controlled by USB interface (FT4232) or
by the EdiMote management MCU (MSP430F5437). The analog signal intercon-
nect is implemented using AD75019 analog matrix(AMAT), which can connect
16x16 analog signals [3]. The analog matrix supports signal voltage levels from
4.5V to 4.5V. It is configured by the management MCU via SPI interface. The
analog channels can be monitored by the management MCU ADC channels us-
ing operational amplifiers for offset implementation and gain correction. The
management MCU controls the whole development board (Figure 3).

Besides the functionality described before, the MCU controls the power sup-
ply distribution. Another feature is 4 channel energy consumption monitoring
system, based on the SPOT design [6]. The power consumption is monitored as
needed for each attached module and the whole system. EdiMote system com-
municates the configuration, debugging and profiling information to a computer
when attached to USB port. The system also has a standalone operation mode
while storing the profiling data to a SD memory card for offline processing. The
USB communication is implemented using FT4232 device featuring 4 UART

EdiMote: A Flexible Sensor Node Prototyping and Profiling Tool 197

Fig. 3. EdiMote board management

ports operating as two UART/Bit-Bang ports plus two MPSSE engines used to
emulate JTAG, SPI, I2C, Bit-bang or other synchronous serial modes [5]. Two
JTAG interfaces are used for CPLD and in-system Test MCU programming. The
management MCU is programmed via BSL. The last channel of the USB is used
for CPLD configuration and data monitoring using Bit-bang interface. EdiMote
software tool is used for the development board configuration and monitored
data visualization.

References

1. MicaZ datasheet, http://courses.ece.ubc.ca/494/files/MICAz_Datasheet.pdf
2. Altera: MaxII Daasheet,

http://www.altera.com/literature/hb/max2/max2_mii5v1_01.pdf
3. Analog Devices: AD75019 datasheet,

http://www.analog.com/static/imported-files/data_sheets/AD75019.pdf
4. Dutta, P., Taneja, J., Jeong, J., Jiang, X., Culler, D.: A building block approach

to sensornet systems. In: Proceedings of the 6th ACM Conference on Embedded
Network Sensor Systems, SenSys 2008, pp. 267–280. ACM, New York (2008)

5. Future Technologies: FT4232H datasheet, http://www.ftdichip.com/Documents/
DataSheets/DS_FT4232H.pdf

6. Jiang, X., Dutta, P., Culler, D., Stoica, I.: Micro Power Meter for Energy Monitoring
of Wireless Sensor Networks at Scale. In: The Sixth International Conference on
Information Processing in Sensor Networks (IPSN 2007) Track on Sensor Platforms,
Tools, and Design Methods (SPOTS 2007), Berkeley, California, p. 10 (2007)

7. Moteiv: TelosB datasheet, http://www.willow.co.uk/TelosB_Datasheet.pdf

Virtual Sensor WPAN on Demand

Meddage S. Fernando, Harie S. Bangalore Ramthilak,
Amiya Bhattacharya, and Partha Dasgupta

School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, Tempe, AZ 85287-8809, USA

{saliya,harie,amiya,partha}@asu.edu

Abstract. Virtualization of wireless sensor PANs would be useful for
general purpose networked sensing with application concurrency, for
community-based sensor sharing, and for supporting platform hetero-
geneity as well as robustness. This abstract presents a snapshot of the
preliminary design and implementation of a middleware for lightweight
sensor network virtualization that makes use of the latest developments
in TinyOS.

Keywords: Wireless PAN, multithreading, virtualization, TinyOS.

1 Introduction

Wireless sensor networks (WSN) are often deployed as mesh-connected wireless
personal area networks (WPAN) of low-power sensor nodes (commonly known
as “motes”), hanging off of an Internet gateway. WSN deployments are mostly
application-specific, typically operated under a single administrative domain.
Changing this norm, however, can bring forth interesting usage scenarios such
as time-shared virtual WSN infrastructure [2] or sharing sensors across a com-
munity [3]. But these possibilities remained severely limited by initial OS design
choices dictated by resource-poor hardware and the need for preserving bat-
tery power. Recent design breakthroughs in mote OS, such as preemptive mul-
tithreading and dynamic linking of program modules, bring forth lightweight
WPAN virtualization towards provisioning these goals.

2 Virtual Sensor WPAN

Here we introduce a technique for spanning a virtual sensor WPAN formation on
top of several existing host WPAN substrates. Earlier notions of virtual sensor
network have restricted the virtual WPAN nodes to a proper subset of a larger
substrate network, thereby creating smaller subnets for different dedicated ap-
plications [2]. Augmenting the spanning capability, our design even allows the
virtual sensor network to grow even larger than any of its hosts so as to instan-
tiate sensing applications work across domains.

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 198–201, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Virtual Sensor WPAN on Demand 199

2.1 Underlying Platform

Implementation of this middleware is done on TinyOS, an event-driven embed-
ded operating system for networked sensing. TOS 2.x, the current TinyOS code
base, provides the following vital components essential for forming this virtual
WPAN over the hosting physical WPANs:

1. First, concurrency is one of the most important requirements for supporting
more than one sensing/actuating application. Introduction of a fully pre-
emptive threads package (TOSThreads) in TOS 2.1 has been leveraged to
support concurrency in our system [4]. Each sensing application, including
the native application of the host sensor networks, is treated as a thread.
The TinyOS operating system itself runs as the high-priority kernel thread,
which is liable for handling all tasks posted by application threads.

2. In order for running a different networked sensing application per virtual
WPAN, the corresponding application thread must assume distinct network
identities (a common PAN-id over the entire span of the virtual network,
along with unique node-id within each WPAN). Capability of setting both
PAN and node id’s dynamically, a feature in rare use in the WSN research
community, has however been available even in earlier versions of TinyOS.

3. To alleviate the burden of pre-loading sensing applications to motes and to
preserve the flexibility of injecting new application modules on demand to
virtual sensor networks, we also need a dynamic loading and linking mech-
anism for threads. We have used the new addition to the TinyOS library,
namely TinyLD [5], which links the program code to the TinyOS kernel
dynamically, either from the flash or the RAM.

2.2 Establishment of the Virtual WPAN

The formation of the virtual network is done on the respective host networks in
the following three phases:

1. First a message for enabling a new PANID is broadcast to all nodes in the
host network. While there are several protocol choices for this in TinyOS,
our prototype uses DHV [1]. Once this PANID ADDITION control packet
reaches a node, it adds that PANID to its own PANID list. A node is sup-
posed to listen to all the PANID’s listed in its PANID list. Subsequently, a
unicast message containing the newly assigned virtual node id is to be sent
to each participating node.

2. In the second phase, application code modules are to be multicast to the
motes selected to participate in the virtual WPAN. Since there is currently
no efficient implementation of multicast over WPANs under TinyOS, our
prototype assumes a dense participation, and thereby substitute multicast
with a controlled flooding. Under sparse participation, it may be efficient
to substitute it with multiple unicast routes. The middleware augments the
TinyOS kernel thread to receive the packets destined to multiple network
incarnations (combination of PAN and node id’s) associated with the running

200 M.S. Fernando et al.

application threads, and demultiplexing to their respective input queues. On
successful completion of the first two phases, each participating mote must
send a cumulative acknowledgment (acknowledging the receipt of the code,
virtual PANID and the virtual node id) to their respective gateways.

3. Finally, in the gateway selection phase, a virtual gateway has to be desig-
nated out of the participating host gateways. Our current implementation
elects the host gateway that donates the largest number of motes to the
virtual WPAN. Figure 1 provides a visual representation of how the net-
works look like after the formation of the virtual PAN. After the selection,
the elected gateway sends a welcome message to all the nodes in the vir-
tual WPAN (using the virtual WPAN’s new PAN id). Gateway assignment
can be changed on the fly, but we are yet to find the behavior of collection
protocols (such as CTP) in response to that.

Fig. 1. Virtual WPAN formation

2.3 TinyOS Modifications

While the middleware is designed to run on top of TinyOS preserving all of its
documented functionalities, a few changes to the existing TinyOS libraries were
necessary. To be more precise, WPAN virtualization is implemented on a patched
version of TinyOS. The TinyOS “receive” interface is one of the main parts in
the library that needed to be patched. In the unmodified version, each wireless

Virtual Sensor WPAN on Demand 201

PAN has a unique network id (called PANID) associated with it. This unique
id allows each node on a WPAN to filter the packets so that a particular node
can ignore the packets flowing in a different WPAN. Since the virtual WPAN in
our design is a full-fledged WPAN in its own right, we must associate a unique
PANID with it. By doing this, we are introducing new PANIDs in the host
substrate network dynamically. We have changed the receive interface in such a
way that a node listens to only a list of valid PANIDs instead of listening to just
one.

3 Ongoing and Future Work

In its current stage of an initial prototype, the middleware for WPAN virtualiza-
tion uses a simple controlled flooding protocol for incremental dissemination of
application code modules. While the code dissemination is left outside the scope
of the middleware by design, a robust and efficient code dissemination protocol
is a complementary part of research in progress. In addition, being unaware of
the fact that motes may spend their life in multiple incarnations, stock routing
protocols are not expected to port onto virtual sensor WPANs without necessary
modifications. Porting common routing protocols in TinyOS would follow once
the middleware prototype becomes stable. Maintaining and secured sharing of
code modules over the virtual WPAN nodes based on the tradeoff between trust
and radio transmission cost constitutes another direction of future work.

Acknowledgment

This material is based upon work supported in part by the National Science
Foundation under Grant No. CNS-1011931. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the NSF.

References

1. Dang, T., Bulusu, N., Feng, W., Park, S.: DHV: A code consistency maintenance
protocol for wireless sensor networks. In: Proceedings of the 6th European Confer-
ence on Wireless Sensor Networks (EWSN 2009), Cork, Ireland (February 2009)

2. Jayasumana, A.P., Han, Q., Illangasekare, T.: Virtual sensor networks: A resource
efficient approach for concurrent applications. In: Proceedings of the 4th Interna-
tional Conference on Information Technology—New Generations (ITNG 2007), Las
Vegas, Nevada, USA (April 2009)

3. Kansal, A., Nath, S., Liu, J., Zhao, F.: SenseWeb: An infrastructure for shared
sensing. IEEE Multimedia 14(4), 8–13 (2007)

4. Klues, K., et al.: TOSThreads: Thread-safe and non-evasive preemption in TinyOS.
In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor Sys-
tems (SenSys 2009), Berkeley, California, USA (November 2009)

5. Musăloiu-E R., Liang, C.M., Terzis, A.: A modular approach for WSN applications.
HiNRG Technical report 21-09-2008, Johns Hopkins University (2008)

TikiriAC: Node-Level Equally Distributed
Access Control for Shared Sensor Networks

Nayanajith M. Laxaman, M.D.J.S. Goonatillake, and Kasun De Zoysa

University of Colombo School of Computing
No. 35, Reid avenue, Colombo 7, Sri Lanka

{nml,jsg,kasun}@ucsc.cmb.ac.lk
http://www.ucsc.cmb.ac.lk/wasn

Abstract. In this paper, we propose an access control mechanism that
can be used to overcome challenges and problems related to access con-
trolling in a shared Wireless Sensor Network (WSN) databases with com-
plex connectivity topologies.

Keywords: Distributed Access Control, Shared Wireless Sensor Net-
works, Privilege Management Infrastructure, Public Key Infrastructure.

1 Introduction

Researchers and organizations from various disciplines are interested in using
WSN for their research and applications. Deploying a sensor network of their
own is a time consuming, infeasible, and a complicated task for companies and
organizations such as universities, research groups, small business groups, and
other interested individuals due to high cost of the devices, not authorized to
deploy, etc. Therefore, the concept of Shared Wireless Sensor Networks (SWSN)
is getting popular among these communities [1]. However, providing shared ac-
cess for WSN has given rise to a different set of problems. An important issue
which we consider in this paper is controlling access among SWSN users.

A considerable amount of research has been carried out in the area of con-
trolling access of users within a SWSN. There have been mainly four approaches
found in related research literature for authentication and authorization of users
for SWSNs. 1) Centralized, 2) Selectively distributed within SWSN, 3) Equally
distributed within SWSN, 4) Client side [2], [3], [4]. However, there are pros and
cons of each of these approaches depending on the topology used to access the
SWSN. For example, access controlling measures of a SWSN with single entry
point would be different from the measures considered in a SWSN with multiple
entry points. Therefore, it is challenging to come up with a solution that can
address the issues which would arise in any SWSN topology. In this paper we
propose a solution which addresses all these SWASN topologies. TikiriDB is a
database abstraction which enables sharing sensor network whilst supporting all
these topologies of user connectivity [1]. Therefore, we developed our solution as
a module to the TikiriDB.

P.J. Marron et al. (Eds.): REALWSN 2010, LNCS 6511, pp. 202–205, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.ucsc.cmb.ac.lk/wasn

TikiriAC: Node-Level Equally Distributed Access Control 203

2 Our Approach

Since, a particular user may have the total control over the client application,
client side authentication and authorization would be the least preference when
giving a solution to the mentioned problem. Centralized approach has the limi-
tation of single point of failure. Therefore, a distributed access controlling mech-
anism is preferable where the failure of several SWSN nodes may have a limited
impact on total access controlling system. However, if access controlling has been
distributed to handle individually by the nodes themselves, probability of failure
can further be reduced. Therefore, in our proposed access controlling solution
for SWSN, we opted to handle access controlling at node level, individually. In
our approach, we opted to use public key certificates and attribute certificates
to implement authentication and authorization in SWSN. Researchers have suc-
cessfully implemented public key infrastructures on top of WSN using Elliptic
Curve Cryptography (ECC) [5]. ECC scheme provides 1024 bit RSA equivalent
security only by using 160 bit certificates. Therefore, many researchers in sensor
network discipline have opted ECC as their primary cryptographic system [5],
[6], [2]. Public key cryptography is used for initial secure communication and
a shared key is exchanged between source and destination nodes to continue
further communication using symmetric key cryptography.

2.1 TikririAC Module for TikiriDB

TikiriAC is developed as a module for TikiriDB. TikiriAC module has two main
components where one is at the node and other is with the user. Enabling
TikiriAC in TikiriDB pass the optimized query generated by TikiriDB client
to TikiriAC. Then, TikiriAC handles authentication and authorization of users.
The result of successful authorization process passes requested query to TikiriDB
query processor at nodes. TikiriAC also ensures the security of the query results
when they transferred back to the user.

2.2 TikiriAC Public Key Infrastructure

Figure 1 illustrates proposed public key infrastructure in TikiriAC. Public key
certificates are issued by a Certification Authority (CA) and attribute certifi-
cates are issued by an Attribute Authority (AA). However, considering the re-
source limitation in sensor nodes we propose using common certificates for both
AA and CA by forming a Hybrid Authority (HA). Furthermore, since network
communication consumes a considerable amount of power of a sensor node, we
further reduced the size of attribute certificate and public key certificate by
removing several attributes from the certificates to reduce number of data pack-
ets propagated in WSN when initializing the security algorithm. Therefore, it
should be mentioned that the certificates used in TikiriAC are not fully com-
pliant with X.509 standard. In addition to that, for the time being, certificate
revocation protocols have not been incorporated. Hence, the user certificate ex-
piration time has been set to a very short period to make sure users renew their

204 N.M. Laxaman, M.D.J.S. Goonatillake, and K. De Zoysa

Fig. 1. TikiriAC public key infrastructure

Fig. 2. TikiriAC Protocol

certificates frequently. Public key certificates are used to authenticate the users
and to share a symmetric key between data requesting user and destined sensor
nodes. Attribute certificates are to manage authorization of the users [7]. Every
authenticated user of the SWSN has a public key certificate and an attribute
certificate issued by the owner of the SWSN or a trusted coordination party. The
public key certificate of the hybrid authority (HA root certificate) is burned in
to each node at the time of deployment.

2.3 TikiriAC Protocol

Figure 2 illustrates TikiriAC protocol. First, the user who accesses the SWSN
generates a nonce (a time stamp) for the current message to be sent with the
message (1). The query and nonce is signed using requesters private key (2). The
content is then sends to the destination node with the signature, and requesters
public key certificate and attribute certificate (3). At the destination node, to
verify the authenticity of the requester, node use ECC algorithms to verify re-
questers public key certificate using HA’s root certificate (4). Then the public

TikiriAC: Node-Level Equally Distributed Access Control 205

key certificate of the user is used to decrypt the encrypted content and reveals
nonce and the query (5). Newly received nonce is used to prevent replay attacks
(6). If the message possess a valid nonce, the attribute certificate is verified using
the HA’s root certificate (7). A valid attribute certificate is providing the accessi-
bility constrain information for a particular user such as; which sensors the user
can access, how long he can execute a query, what is the maximum frequency
that the user can obtain information, etc. Within the TikiriAC protocol, if the
message fails at any step of verification or validation, the request is discarded.
After successfully completing the above process, node generates a session key to
be used for the communication between the user and node itself (8). The session
key is then encrypted with users public key and sends back to the user (9). Then
the user decrypts the encrypted session key by using his/her private key and
keeps the session key until this query execution finishes (10). Any further com-
munication or new session key exchange is done through an encrypted channel
between the user and the node. It should also be mentioned that it is required
to encrypt the messages in certain situations such as for in-network aggregation
of sensor data. For example, calculating the average temperature of given set
of nodes. A group key generation and manipulation algorithm is introduced to
overcome this issue.

3 Conclusions

Here, we have introduced a solid architecture to overcome the access control
problem arising in shared sensor networks with complex topologies. High secu-
rity was guaranteed in the use public key cryptography. We considered several
measures to reduce the resource consumption caused due to public key cryptog-
raphy in the sensor network. Finally we explained the appropriate architecture
and technologies to implement our design as a module for TikiriDB.

References

1. Laxaman, N.M., Goonatillake, M.D.J.S., Zoysa, K.D.: Tikiridb: Shared wireless
sensor network database for multi-user data access (2010)

2. Wang, H., Sheng, B., Li, Q.: Elliptic curve cryptography-based access control in
sensor networks. Int. J. Security and Networks

3. Benenson, Z.: Authenticated queries in sensor networks. In: Molva, R., Tsudik, G.,
Westhoff, D. (eds.) ESAS 2005. LNCS, vol. 3813, pp. 54–67. Springer, Heidelberg
(2005)

4. Networks, W.S., Karlof, C.: Tinysec: A link layer security architecture for wireless
sensor networks

5. Liu, A., Ning, P.: Tinyecc: A configurable library for elliptic curve cryptography in
wireless sensor networks

6. Gupta, V., Wurm, M., Zhu, Y., Millard, M., Fung, S., Gura, N., Eberle, H., Shantz,
S.C.: Sizzle: A standards-based end-to-end security architecture for the embedded
internet. Technical report (2005)

7. Johnston, W.: Authorization and attribute certificates for widely distributed access
control (1998)

Author Index

Alcock, Paul 126
Arroyo-Valles, Roćıo 146

Bagree, Ravi 13
Bardella, Andrea 154
Baumgartner, Tobias 94, 174
Behnke, Ralf 82
Bhattacharya, Amiya 198
Bimschas, Daniel 174
Björnemo, Erik 178
Brown, James 126
Bui, Nicola 154

Cagnacci, Francesca 25
Carlson, Doug 1
Cećılio, José 190
Ceriotti, Matteo 25
Chini, Matteo 25
Cid-Sueiro, Jesús 146
Costa, João 190

Dasgupta, Partha 198
De Zoysa, Kasun 162, 182, 202

Edwards, Christopher 37
Elsts, Atis 170

Fatland, Rob 1
Fekete, Sándor P. 94, 174
Fernando, Meddage S. 198
Fischer, Stefan 174
Furtado, Pedro 190

Golatowski, Frank 82
Goonatillake, M.D.J.S. 202
Gorski, Philipp 82
Gupchup, Jayant 1

Hansen, Morten Tranberg 146
Hellbrück, Horst 186
Hewage, Kasun 74, 182
Hong, Minyan 178

Jain, Vishwas Raj 13

Kamphans, Tom 94
Kellner, Simon 62
Keppitiyagama, Chamath 74
Kröller, Alexander 94, 174
Kumar, Aman 13

Laxaman, Nayanajith M. 182, 202

Ma, Junyan 49
Martins, Pedro 190
McCarthy, Ben 37
Mednis, Artis 170
Mottola, Luca 113
Murphy, Amy L. 25

Nanayakkara, Tharindu 162
Nilsson, Martin 138

Öström, Erik 113

Padmanabh, Kumar 106
Pagel, Max 94, 174
Paul, Sanjoy 106
Pfisterer, Dennis 174
Picco, Gian Pietro 25
Pinkowski, Jan 186

Ramthilak, Harie S. Bangalore 198
Ranjan, Prabhat 13
Roedig, Utz 37, 126
Römer, Kay 49
Ruskuls, Rinalds 194

Sayakkara, Asanka P. 182
Selavo, Leo 170, 194
Senanayake, W.S.N. Prabath 182
Silva, Ricardo 166
Strazdins, Girts 170

Terzis, Andreas 1
Teubler, Torsten 186
Thilakarathna, Kenneth 74

208 Author Index

Thurow, Kerstin 82
Timmermann, Dirk 82
Tolhurst, Bryony 25

V., Adi Mallikarjuna Reddy 106
Varakliotis, Socrates 37
Voigt, Thiemo 113, 178

Wagner, Benjamin 82

Zanella, Andrea 154
Zorzi, Michele 154
Zviedris, Reinholds 170

	Title
	Preface
	Organization
	Table of Contents
	Applications I
	K2: A System for Campaign Deployments of Wireless Sensor Networks
	Introduction
	Related Work
	K2 Design
	K2 Requirements
	K2 Architecture Overview
	Functional Subsystems

	Deployments
	Brazil
	Ecuador

	Results and Observations
	Storage
	Timing
	Collection

	Conclusion
	References

	TigerCENSE: Wireless Image Sensor Network to Monitor Tiger Movement
	Introduction
	Available Technology
	tigerCENSE
	System Overview
	Experimental Results
	Conclusion
	References

	Motes in the Jungle: Lessons Learned froma Short-Term WSN Deployment in the Ecuador Cloud Forest
	Introduction
	Deployment Scenario
	Experiment Design
	Preliminary Tests
	Tests with Stationary Nodes
	Tests with Stationary and Mobile Nodes

	A Mote's Life in the Jungle
	Preliminary Tests
	Tests with Stationary Nodes
	Tests with Stationary and Mobile Nodes
	An Evaluation of Mobile Nodes as Connectivity Probes

	Lessons Learned and Future Work
	References

	Deploying Wireless Sensor Networking Technology in a Rescue Team Context
	Introduction
	Trial Deployment
	Rescue System Deployment

	Rescue System Sensor Networking
	Hardware/Software Setup and Experimentation
	In-Field Experimentation

	Related Work
	Conclusion
	References

	OS Support and Programming
	Visibility Levels: Managing the Tradeoff between Visibility and Resource Consumption
	Introduction
	Design
	System Architecture
	Visible Objects
	Visibility Levels
	Observation Schemes
	Scheduler

	Implementation
	Case Study
	Tracking Application
	Visibility Specification
	Memory Overhead
	Runtime Overhead
	Accuracy and Bandwidth

	Related Work
	Conclusions
	References

	Flexible Online Energy Accounting in TinyOS
	Introduction
	Related Work
	Scenario
	Online Energy Estimation
	Energy Container System
	Energy Container Structure
	Energy Container Interface
	Energy Container Implementation

	Accounting Policy
	Single Use
	Shared Use
	Continuous Use

	Evaluation
	Experimental Setup
	Ease of Use
	Overhead
	Accounting Fairness
	Accuracy

	Future Work
	Conclusion
	References

	TikiriDev: A UNIX-Like Device Abstraction for Contiki
	Introduction
	Design and Implementation
	Device Manager
	Comm-multiplexer
	Device Drivers
	Naming Devices

	Evaluation
	Related Work
	Conclusion
	References

	Applications II
	Location Based Wireless Sensor Services in Life Science Automation
	Introduction
	State of the Art
	Wireless Sensor Networks
	Service-Oriented Architecture
	Managing Disasters and Incidences
	Localization Systems

	System Overview
	Hardware
	Service Components
	LabAssistent and SOS Assistant

	Integration and Deployment
	Application Scenarios
	Room Based Monitoring
	Device Based Monitoring
	Process Based Monitoring

	Conclusion and Future Work
	References

	Hallway Monitoring: Distributed Data Processing with Wireless Sensor Networks
	Introduction
	Related Work
	Hallway Construction
	Load Sensors and PIRs
	Actuators
	Sensor Nodes

	Software Access
	WISEBED API
	CoCoS - Java-Based GUI

	Experimental Study
	Conclusion and Future Work
	References

	senSebuddy: A Buddy to Your Wireless Sensor Network
	Introduction
	Instant Messaging
	Instant Messaging Bot
	Instant Messaging Bot vs. Web Based Applications

	senSebuddy: The Proposed IM Messenger for Sensor Nodes
	senSebuddy System
	senSebuddy Operation

	Implementation and Experiments
	Conclusion and Future Work
	References

	Communication and MAC
	Evaluation of an Electronically Switched Directional Antenna for Real-World Low-Power Wireless Networks
	Introduction
	Related Work
	Hardware/Software Design
	Hardware
	Software

	Real-World Evaluation
	General Setting
	Network Layouts and Results

	Outlook
	Conclusion
	References

	Implementation and Evaluation of Combined Positioning and Communication
	Introduction
	Related Work
	FrameComm and FrameCommDM
	FrameComm
	FrameCommDM

	Prototype Implementation
	Prototype Platform
	Nanotron Ranging API
	FrameCommDM Implementation
	Findings

	Evaluation
	Experimental Setup
	Communication Performance
	Ranging Update Frequency

	Conclusion
	References

	SPIDA: A Direction-Finding Antenna for Wireless Sensor Networks
	Introduction
	The SPIDA Design
	Signal Processing
	Results
	Test Setup
	Measurement Results

	Conclusions
	References

	Testing Selective Transmission with Low Power Listening
	Introduction
	Selective Transmission
	Implementation
	Energy Consumption
	Mote Statistics
	Selective Transmission

	Experiments and Evaluation
	Conclusion
	References

	An Experimental Study on IEEE 802.15.4 Multichannel Transmission to Improve RSSI–Based Service Performance
	Introduction and Related Work
	Channel Characterization
	Multi-channel RSSI Sampling
	Experimental Campaign
	Results
	Conclusions
	References

	Poster and Demonstration Abstracts
	Multicasting Enabled Routing Protocol Optimized for Wireless Sensor Networks
	Introduction
	Background
	TikiriMC Design
	Implementation and Evaluation
	Conclusions
	References

	GINSENG - Performance Control in Wireless Sensor Networks
	Introduction
	Real Deployment
	References

	LynxNet: Wild Animal Monitoring Using Sensor Networks
	Introduction
	Related Work
	System Architecture
	Hardware
	Software

	Evaluation
	Conclusion and Future Work
	References

	Demo Abstract: Bridging the Gap between Simulated Sensor Nodes and the Real World
	Introduction
	System Architecture
	Demonstration
	References

	A Mote-in-the-Loop Approach for Exploring Communication Strategies for Sensor Networks
	Introduction
	Approach
	Evaluation and Proof of Concept
	Basic RSSI Experiment
	Repeatable Test of Communication in Fading Channels

	Conclusions
	References

	The Deployment of TikiriDB for Monitoring Palm Sap Production
	Introduction
	Our Approach
	Implementation
	Conclusions and Future Works
	References

	Cooperative Virtual Memory for Sensor Nodes
	Introduction
	Related Work
	Concept and Implementation
	Preliminary Results and Summary
	References

	GinConf: A Configuration and Execution Interface for Wireless Sensor Network in Industrial Context
	Introduction
	GinConf System Architecture
	Application Programming Interface
	User Interface
	Demo Roadmap

	EdiMote: A Flexible Sensor Node Prototyping and Profiling Tool
	Introduction
	System Architecture
	Implementation

	References

	Virtual Sensor WPAN on Demand
	Introduction
	Virtual Sensor WPAN
	Underlying Platform
	Establishment of the Virtual WPAN
	TinyOS Modifications

	Ongoing and Future Work
	References

	TikiriAC: Node-Level Equally Distributed Access Control for Shared Sensor Networks
	Introduction
	Our Approach
	TikririAC Module for TikiriDB
	TikiriAC Public Key Infrastructure
	TikiriAC Protocol

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

