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Abstract. An orientation of an undirected graph G is a directed graph
D on V (G) with exactly one of directed edges (u, v) and (v, u) for each
pair of vertices u and v adjacent in G. For integer k ≥ 3, we say a directed
graph D is k-cyclic if every edge of D belongs to a directed cycle in D of
length at most k. We consider the problem of deciding if a given graph
has a k-cyclic orientation. We show that this problem is NP-complete
for every fixed k ≥ 3 for general graphs and for every fixed k ≥ 4 for
planar graphs. We give a polynomial time algorithm for planar graphs
with k = 3, which constructs a 3-cyclic orientation when the answer is
affirmative.

1 Introduction

Let G be an undirected graph with vertex set V (G) and edge set E(G). An
orientation of edge e of G between vertex u and v is a directed edge (u, v) or
(v, u). An orientation of G is a directed graph on V (G) that has exactly one of
the two orientations of each edge of G.

Robbins [7] shows that G has a strongly connected orientation if and only if G
is 2 edge-connected. Given this fact, it is natural to be interested in the “quality”
of an orientation that we may obtain for a given graph [1,5,2,3,6]. Chvátal and
Thomassen [1] show that there is a polynomial function f such that every graph
with diameter d has a strongly connected orientation with directed diameter at
most f(d). They also show that it is NP-complete to decide, given graph G and
integer d, if G has an orientation with diameter at most d, even if the diameter
of G is 2. This decision problem can be solved in linear time when the given
graph is planar [3]. Dankelmann et al. [2] study the relationship between the
average distance between a pair of vertices in a graph and the average directed
distance from a vertex to another in an orientation of that graph. Motivated by
applications to traffic control in market places and factories, Ito et al. [6] study
some optimization problems where, given a graph and a collection of st-pairs in
the graph, we are to find an orientation of the graph such that the st-pairs are
connected by short directed paths. They consider both the min-max problem,
where the objective function is the maximum of the lengths of those directed
paths, and the min-sum problem, where the objective function is the sum of the
lengths of those directed paths.
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In this paper, we introduce the notion of k-cyclic orientations of graphs. For
integer k ≥ 3, we call an orientation D of graph G k-cyclic if the orientation
of every edge of G belongs to a directed cycle of length k or smaller in D.
This notion captures the local quality of an orientation as opposed to the global
quality captured by directed diameters or average directed distances. Observe
that D is a k-cyclic orientation of G if and only if D has a directed path form u
to v of length k − 1 or smaller for every pair of vertices u and v adjacent in G.
Thus, the question of finding the minimum value of k such that G has a k-cyclic
orientation is equivalent to the special case of the min-max problem of [6], where
(s, t) is in the specified collection of st-pairs if and only if s and t are adjacent
in G. This special case is important, especially for small values of k, since the
solution for this special case is a (k − 1)-approximate solution for an arbitrary
collection of st-pairs on the same graph.

We show that the problem of deciding if a graph G has a k-cyclic orientation
is NP-complete for every fixed k ≥ 3 for general graphs. We also show that this
problem remains NP-complete for planar graphs if k ≥ 4.

On the positive side, we give a polynomial time algorithm that solves this
problem for planar graphs with k = 3. This algorithm constructs a 3-cyclic
orientation of the given graph, when the answer to the decision problem is af-
firmative. This algorithm is based on the following observation. Consider the
special case where G is a plane embedded graph such that every cycle of G with
length k or smaller bounds a face. In this case, G has a k-cyclic orientation if
and only if the planar dual of G has a proper 3-coloring, using colors white,
red, and blue, such that every dual vertex of degree greater than k is colored
white. The correspondence between a feasible orientation and a feasible color-
ing can be obtained by the following rule: if a face is bounded by a cycle of
length k or smaller that is oriented clockwise (counterclockwise) around the face
then color the corresponding dual vertex red (blue); otherwise color the corre-
sponding dual vertex white. This observation rather straightforwardly leads to a
polynomial time algorithm for 3-cyclic orientation for this special case of planar
graphs. The extension of this result to general planar graphs, however, is not sim-
ple, because of the existence of non-facial 3-cycles. We overcome the difficulty
by replacing the standard planar dual of the given graph by some variant, in
which the structures internal to non-facial 3-cycles are replaced by appropriate
gadgets that depend on the “types” of those cycles. These types are determined
by recursive applications of the main algorithm. See Subsection 3.2 for details.

The rest of this paper is organized as follows. In Section 2 we prove the NP-
completenes of the problem for genral graphs. In Section 3 we study the problem
for planar graphs and give the negative and positive results stated above.

2 General Graphs

In this section, we consider our orientation problem for general graphs. We first
define some notation and terms that we use throughout the paper.

In this paper, all graphs are simple, unless otherwise stated. For graph G,
we denote by V (G) the set of vertices and E(G) the set of edges of G. The set
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of vertices adjacent to v in G is denoted by NG(v) and the degree |NG(v)| of
each vertex v of G is denoted by dG(v). For U ⊆ V (G), we let NG(U) denote⋃

v∈U{NG(v)}\U . We may omit the subscript when no confusion may arise. For
each vertex set U ⊆ V (G), we denote by G[U ] the subgraph of G induced by U .
We denote G[V (G) \U ] by G \U and, for each A ⊆ E(G), a spanning subgraph
of G with edge set E(G) \ A by G \ A.

We call a cycle C of G a k-cycle, ≤ k-cycle, or > k-cycle if the number of
vertices on C is k, at most k, or larger than k, respectively. Let G be a graph
and D an orientation of G. For each subgraph H of G, we denote by D|H the
restriction of D on H , i.e., the orientation of H that is a sub-digraph of D. We
say that an orientation D of G extends an orientation D′ of subgraph H of G, if
D′ = D|H . We say that a cycle C of G is cyclic in D if D|C is a directed cycle.
We say that an edge of G is k-cyclic if e belongs to some ≤k-cycle of G that is
cyclic in D. Thus, a k-cyclic orientation of G is an orientation in which every
edge of G is k-cyclic.

Theorem 1. The problem of deciding if a given graph has a k-cyclic orientation
is NP-complete for every fixed k ≥ 3.

The fact that this problem is in NP is trivial. We prove the hardness by a
reduction from Not All Equal 3SAT (NAE-3SAT), which is known to be NP-
complete (see [4]). In NAE-3SAT, given a boolean formula φ in CNF with a
set X = {x1, x2, . . . , xn} of variables and a set S = {c1, c2, · · · , cm} of clauses,
each of which consists of exactly three literals, we are to decide whether φ has a
not-all-equal assignment, that is, a truth assignment on X in which each clause
of φ has at least one true literal and at least one false literal.

We describe the reduction for k = 3. A generalization for k > 3 is not difficult.
(An alternative is to use the NP-hardness of the problem on planar graphs
for k ≥ 4 proved in the next section.) Given an instance φ of NAE-3SAT, we
construct a graph Gφ as follows. For each clause cj we have a clause gadget Gj

that is isomorphic to K4 and has vertices v0
j , v1

j , v2
j , and wj . We interpret the

superscript k in vk
j modulo 3, so that v3

j = v0
j . Let Cj be the 3-cycle of Gj on v0

j ,
v1

j , and v2
j . For each 0 ≤ k < 3, we say that the orientation (vk

j , vk+1
j ) of edge

{vk
j , vk+1

j } is positive and the inverse orientation is negative. See Figure 1(a). A
key observation in our reduction is that, for each orientation D of Cj , D can
be extended into an orientation of Gj in which every edge incident with wj is
3-cyclic if and only if D orients at least one edge of Cj positively and at least one
edge of Cj negatively. This property of the clause gadget leads us to associate
the kth literal of cj with edge {vk

j , vk+1
j }, for 0 ≤ k < 3.

For each variable xi of φ, we have an edge ei = {yi, zi}. We call the orientation
(yi, zi) of ei positive and the other negative. We connect ei with each edge e in
clause gadgets that is associated with literal xi or x̄i as in Figure 1(b) or (c).
Observe that, in any 3-cyclic orientation of Gφ, the signs of the orientaions of
ei and e are identical when the literal is positive and distinct when the literal is
negative.
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Fig. 1. A clause gadget and its connections with a variable gadget

From this observation and the one above, it should be clear that the set of
orientations of Gφ \ {wj | 1 ≤ j ≤ m} that can be extended into a 3-cyclic
orientation of Gφ is in one-to-one correspondence with the set of not-all-equal
assignments of φ and therefore that the reduction is correct.

3 Planar Graphs

In this section, we consider our orientation problem for planar graphs. In the
first subsection, we prove the NP-completeness for k ≥ 4. In the next subsection,
we develop a polynomial time algorithm for k = 3.

We need some notation and terms. Let G be a plane graph, that is, a planar
graph with a fixed embedding in the plane. The dual of a plane graph G, for
our purposes, is a graph on the set of faces of G where two faces are adjacent if
and only if they share an edge in G. In this paper, we do not need the planar
embedding of the dual and hence regard it as a simple graph even if two faces
of G are adjacent across more than two edges. We call a cycle C of G facial if it
bounds a face of G. We denote by B(G) the unique facial cycle of G that bounds
its infinite face. A face of G is a k-face, ≤ k-face, or > k-face, if the cycle that
bounds it is a k-cycle, ≤k-cycle, or >k-cycle, respectively. We call a plane graph
G k-facial, if every ≤k-cycle of G is facial.

A 3-coloring χ of graph G, for our purposes, is an assignment of one of the
colors red, blue, and white to each vertex of V (G). We say 3-coloring χ is proper
if it colors two vertices with different colors whenever those vertices are adjacent.

As observed in the introduction, the problem of finding a k-cyclic orientation
of a given biconnected plane graph G can be formulated, provided that G is
k-facial, as that of finding a proper 3-coloring of the planar dual of G that colors
all >k-faces white.

In our NP-hardness proof for k ≥ 4, the plane graphs we construct for the
reduction are k-facial and we use the observation above in our reasoning on
those graphs. In our polynomial time algorithm for k = 3, we extend this equiv-
alence of the 3-cyclic orientation problem with a 3-coloring problem to a similar
equivalence for general biconnected plane graphs.
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3.1 NP-Completenes for k ≥ 4

Theorem 2. The problem of deciding if a given planar graph has a k-cyclic
orientation is NP-complete for every fixed k ≥ 4.

Our reduction is from planar 3SAT, which is known to be NP-complete (see [4]).
In planar 3SAT, we are given a formula φ in CNF with a set X = {x1, x2, . . . , xn}
of variables and a set S = {c1, c2, . . . , cm} of clauses each of which contains at
most three literals, such that the bipartite graph Bφ between X and S, in which
xi is adjacent to cj if and only if xi appears in cj , is planar. The question is
if φ has a satisfying assignment, that is, an assignment of true or false to each
variable in X that makes at least one literal of each clause in S true. We assume
that each variable appears positively in at least one and at most two clauses
and negatively in exactly one clause. The reduction from the general planar
3SAT to this restricted form of planar 3SAT is straightforward using a standard
technique.

We describe the reduction for k = 4. A generalization to k > 4 is straightfor-
ward.

Suppose we are given a planar 3SAT instance φ with the above restriction.
We construct a plane graph Gφ such that Gφ has a 4-cyclic orientation if and
only if φ has a satisfying assignment.

The clause gadget for clause cj is shown in Figure 2. It has three designated
edges e1

j , e2
j , and e3

j , where ek
j for each k is associated with the kth literal of

cj and is identified with a certain edge in the variable gadget representing the
variable of the literal. Except for this identification of the edges associated with

Fig. 2. (a) Clause gadget for cj , variable gadget for xi, (b) shown with the coloring for
xi = true and (c) for xi = false, where shaded faces are red and hatched faces are blue
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literals, each clause gadget has no connection with other parts of Gφ. Observe
that each shaded 4-face in Figure 2 must be colored red or blue in any 3-coloring
that corresponds to a 4-cyclic orientation of Gφ, since it contains edges incident
with a > 4-face. Therefore it is impossible to color all the 4-faces incident with
e1

j , e2
j , and e3

j red or blue since then an odd dual cycle would be colored in two
colors. This means that for at least one k ∈ {1, 2, 3}, the face across ek

j , in a
variable gadget, must be colored red or blue. The variable gadget for xi is shown
in Figure 2. It has designated edges a1

i , a2
i , and bi. Edge ak

i for each k = 1 or
2 is identified with an edge in a clause gadget that is associated with a positive
literal xi and edge bi is identified with an edge associated with a negative literal
x̄i. Since Bφ is planar, these identifications for all variable occurrences can be
done in such a manner that the resulting graph Gφ is a plane graph. We also
note that Gφ is 4-facial and every 4-cycle of Gφ is contained in some single clause
or variable gadget.

The proof of the following lemma that states the correctness of the reduction
can be found in the full paper.

Lemma 1. φ is satisfiable if and only if Gφ has a 4-cyclic orientation.

3.2 Polynomial Time Algorithm for Finding 3-Cyclic Orientations
of Planar Graphs

In this subsection, we develop a polynomial time algorithm for the 3-cyclic ori-
entation problem for planar graphs. This is done by reducing our problem to a
certain 3-coloring problem for graphs.

Let G be a graph. A white-purple constraint, or simply a constraint on G, is
a pair (W, P ) of disjoint vertex sets of G. We say a 3-coloring χ of G respects
constraint (W, P ), if χ colors each vertex in W white and each vertex in P red
or blue.

We say that a constraint (W, P ) on G is strongly admissible if every v ∈ V (G)
with dG(v) ≥ 4 is in W and dG\W (v) ≤ 2 for every v ∈ P . As we saw earlier,
the 3-cyclic orientation problem for 3-facial plane graphs can be reduced to the
problem of deciding, given a graph G and a strongly admissible constraint (W, ∅)
on G, if G has a proper 3-coloring that respects this constraint. Our reduction
for general planar graphs requires a slightly more general constrained 3-coloring
problem.

Let (W, P ) be a constraint on G and A ⊆ V (G). We say (W, P ) is A-admissible
if the following conditions hold.

A1 W �= ∅.
A2 A ⊆ P .
A3 dG(v) ≤ 3 for each v ∈ V (G) \ W .
A4 dG\W (v) ≤ 2 for each v ∈ P \ A.

We say that constraint (W, P ) on G is admissible if it is A-admissible for some
A ⊆ V (G) with |A| ≤ 1. The proof of following theorem can be found in the full
paper.
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Theorem 3. Given a graph G and an admissible constraint (W, P ) on G, we can
in polynomial time decide if G has a proper 3-coloring respecting this constraint
and construct such a coloring if the answer is affirmative.

Our reduction of the orientation problem for general plane graphs to this con-
strained 3-coloring problem is inductive on the nesting structure of non-facial
3-cycles.

Let G be a biconnected plane graph with an infinite 3-face and D an orienta-
tion of G. We call D near 3-cyclic, if every edge e ∈ E(G) \ E(B(G)) is 3-cyclic
in D.

Let G be a biconnected plane graph. We call a cycle of G internal if it does
not bound the infinite face of G. Let C be an internal 3-cycle of G. We denote
by G〈C〉 the subgraph of G induced by the set of vertices lying on C or drawn
inside of C. Since G is simple, G〈C〉 is obtained by removing all vertices and
edges of G lying in the infinite face of C. We say that C is relevant if G〈C〉 has
a 3-cyclic orientation in which C is cyclic. Otherwise C is irrelevant. Note that
each internal facial 3-cycle of G is relevant in G.

The following notion of skeletons is crucial in our reduction of the orientation
problem to the constrained coloring problem. Let G be a biconnected plane
graph. A skeleton S of G is a biconnected subgraph of G that satisfies the
following conditions.

S1 B(S) = B(G)
S2 Every internal facial cycle of S is either a facial >3-cycle of G or is a relevant

3-cycle of G.
S3 Every non-facial 3-cycle of S is irrelevant in G.

Every biconnected plane graph G has a unique skeleton, which can be iden-
tified as follows. Let R be the set of all the relevant internal 3-cycles of G and
let R′ be the set of maximal elements of R with respect to containment in the
drawing of G. The skeleton S of G is obtained by removing vertices that lie in the
inside of cycles of R′ and thus making each cycle of R′ facial in S. We denote by
G̃ the skeleton of G. It will turn out that the skeleton of G can be constructed in
polynomial time but this is shown in the whole inductive proof that the 3-cyclic
orientation problem for a plane graph can be solved in polynomial time.

To describe the use of skeletons in our reduction, we need some more defini-
tions.

Let G be a biconnected plane graph, C an arbitrary internal 3-cycle of G,
and D an arbitrary orientation of G or of G〈C〉. When C is not cyclic in D,
D orients two edges of C in the same direction along C and the other in the
opposite direction. We call the former two edges the major edges of C and the
latter the minor edge of C with respect to D. Let e ∈ E(C). We say that C is
e-majored in D, if C is not cyclic in D and e is one of the major edges of C with
respect to D. We say that C is e-minored in D, if C is not cyclic in D and e is
the minor edge of C with respect to D. We say that C is e-minored in G, without
reference to a particular orientation, if there is some near 3-cyclic orientation D
of G〈C〉 in which C is e-minored.
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For each relevant internal 3-cycle C of G, let MG(C) denote the set of edges
e ∈ E(C) such that C is e-minored in G. Observe that, if C is relevant and
|MG(C)| = 3, then for any prescribed orientation of C, G〈C〉 has a near 3-cyclic
orientation that extends the prescribed orientation of C. Because of this, we call
an internal 3-cycle C of G universal in G if it is relevant and |MG(C)| = 3.
Otherwise, C is non-universal in G. We call a relevant internal 3-cycle C of G
normal in G if either C is universal or

N1 MG(C) �= ∅ and
N2 for each e ∈ MG(C), there is an e-minored near 3-cyclic orientation D of

G〈C〉 in which each e′ ∈ E(C) \ {e} is 3-cyclic.

We call a biconnected plane graph G normal if every internal facial 3-cycle of G̃ is
normal in G. We later prove that every biconnected plane graph is normal. This
proof is inductive and we need some lemmas that assume a given biconnected
graph to be normal. These lemmas are also used in proving the main result of
this subsection.

Suppose C is a universal 3-cycle of G. We call an edge e of C internally
coverable for C in G if there is a near 3-cyclic orientation of G〈C〉 in which C
is e-majored and e is 3-cyclic. For each universal 3-cycle C of G, we denote by
IG(C) the set of internally coverable edges of C.

For each biconnected plane graph G that is not a cycle, we define graph RG

as follows. RG is similar to the planar dual of G̃ and our plan is to reduce the
problem of finding a 3-cyclic orientation of G to a constrained coloring problem
on RG. We assume that G is normal in this construction.

To construct RG, we first construct a graph RG(C) for each facial cycle C of G̃,
including the cycle B(G) bounding the infinite face. Here we neglect the distinc-
tion between finite and infinite faces of G̃ and pretend that B(G) is relevant and
universal if B(G) is a 3-cycle, although this property has been defined only for
internal 3-cycles. For each such C and an edge e of C, we also define a vertex ve

C

of RG(C), which we need in the description of the entire graph RG. If C is a >3-
cycle, a universal 3-cycle, or a non-universal cycle with |MG(C)| = 1 then RG(C)
consists of a single vertex vC . We let ve

C = vC for every e ∈ E(C) in this case.
Otherwise, i.e., if C is a non-universal cycle with |MG(C)| = 2, RG(C) consists of
five vertices, tC , a1

C , a2
C , b1

C , and b2
C , and five edges {tC , a1

C}, {tC , a2
C}, {a1

C , a2
C},

{a1
C , b1

C}, and {a2
C , b2

C}. We let ve
C = tC for e ∈ E(C) \ MG(C), ve1

C = b1
C for

one edge e1 ∈ MG(C), and ve2
C = b2

C for the other edge e2 ∈ MG(C). We call
the graph RG(C) in this case a hut, tC the top, a1

C and a2
C the eaves, and b1

C

and b2
C the bases of the hut. We combine these graphs into one graph RG as

follows. Let e be an arbitrary edge of G̃ and let C1 and C2 be the two facial
cycles containing e. Then, RG has an edge, denoted by e∗, between ve

C1
and ve

C2

if and only if neither of the following conditions hold.

O1 For i = 1 or 2, MG(Ci) = {e}.
O2 For i = 1 or 2, Ci is universal in G and e ∈ IG(Ci).

We remark that RG may not be simple, that is, may have parallel edges. The
following simple property of a hut is essential.
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Lemma 2. Let H be a hut. Then, every proper 3-coloring of H either colors all
of the top and the two bases of H red, colors all of the top and the two bases
of H blue, or colors one base of H red and the other base blue. Moreover, all of
these three types of proper 3-colorings of H do exist.

The following lemma is at the heart of our reduction.

Lemma 3. Let G be a biconnected plane graph that is not a cycle. Suppose G
is normal. Then, G has a 3-cyclic orientation if and only if RG has a proper
3-coloring that respects constraint (W, P1 ∪ P2), where W is the set of vertices
vC such that C is a facial >3-cycle of G̃, P1 is the set of vertices vC such that
C is a facial 3-cycle of G̃ that is non-universal in G with |MG(C)| = 1, and
P2 is the set of vertices b1

C and b2
C such that C is a facial 3-cycle of G̃ that is

non-universal in G with |MG(C)| = 2.

Proof. We only prove the “only if” part. The other direction can be found in
the full paper.

Suppose G has a 3-cyclic orientation D. We say that D is skeleton-maximal if
the set of facial 3-cycles of G̃ that are cyclic in D is maximal subject to D being
3-cyclic. We assume that D is skeleton-maximal in the following.

We define a 3-coloring χ of RG as follows. Let C be a facial cycle of G̃. If C
is a >3-cycle then χ colors vC white. Suppose C is universal in G. If C is cyclic
in D, then χ colors vC red or blue: red if the orientation is clockwise around
the face C bounds and blue otherwise. Otherwise, χ colors vC white. Suppose
C is non-universal in G and |MG(C)| = 1. If C is cyclic in D, then χ colors
vC in the same manner as when C is universal. Otherwise, if D orients the two
major edges of C clockwise around the face C bounds, then χ colors vC red and
otherwise χ colors vC blue.

Finally, suppose C is non-universal in G and |MG(C)| = 2. Let e0 be the edge
in E(C) \ MG(C). By the construction of RG, ve0

C is the top of the hut RG(C)
and ve

C for each e ∈ MG(C) is a base of the hut. For each e ∈ E(C), χ colors
ve

C red if D orients e clockwise around the face C bounds and blue if D orients
e counterclockwise. This determines the colors of the top and the bases of the
hut. Note that either the colors of the top and the bases are all identical or
the colors of the two bases are distinct, since if the colors of the two bases are
identical and that of the top is different, this means that C is e0-minored in D,
contrary to the assumption that e0 �∈ MG(C). The eaves of the hut are colored
appropriately, one white and the other red or blue, so that χ is locally proper on
this hut, which is possible due to Lemma 2. This completes the description of χ.

It is immediate from the definition of χ that χ colors every vertex in W
white and every vertex in P1 ∪ P2 red or blue and therefore respects constraint
(W, P1 ∪ P2). We show that χ is proper. For each C such that RC(G) is a hut,
that χ is proper on the hut is already insured by the coloring rule above. Let e be
an arbitrary edge of G̃ and let C1 and C2 be the two facial cycles of G̃ containing
e. We need to show that, if e∗ is present in RG, then χ colors ve

C1
and ve

C2
with

different colors. Suppose χ colors both ve
C1

and ve
C2

red. We claim that at least one
of C1 and C2 is e-minored in D. Suppose each of C1 and C2 is either cyclic in D
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or e-majored in D. Then, since χ colors both ve
C1

and ve
C2

red, e must be oriented
clockwise around both of the faces bounded by C1 and C2, a contradiction. So,
either C1 or C2, say C1, is e-minored. If |MG(C1)| = 1 then e∗ is missing from
RG, so the color conflict does not arise. If |MG(C1)| = 2, that χ colors ve

C1
red

means, from the definition of χ above, that e is oriented clockwise around the face
bounded by C1, again contradicting the orientation of e around C2. Therefore,
ve

C1
and ve

C2
cannot be colored both red as long as e∗ is present in RG. Similarly,

ve
C1

and ve
C2

cannot be colored both blue as long as e∗ is present in RG.
Suppose that ve

C1
and ve

C2
are both colored white. Then, for i = 1, 2, either

Ci is a >3-cycle or a 3-cycle that is universal in G and not cyclic in D. Since e
is 3-cyclic in D, there is some 3-cycle C of G that is cyclic in D and contains e.
This C is relevant and therefore must be contained in G〈C1〉 or G〈C2〉, by the
definition of the skeleton. We say Ci covers e, if G〈Ci〉 contains such a C, for
i = 1, 2. Suppose first that both C1 and C2 covers e. We cannot have both C1 and
C2 e-minored in D, since if we had then we would be able to flip the orientation
of e in D, replace the orientation of G〈Ci〉 by a near 3-cyclic orientation in which
Ci is cyclic, for i = 1, 2, and obtain a 3-cyclic orientation D′ of G such that the
set of facial 3-cycles of G̃ that are cyclic in D′ is a proper superset of the set of
those cyclic in D, contradicting the skeleton-maximality of D. Therefore, Ci is
e-majored in D for either i = 1 or 2, and therefore e ∈ IG(Ci) and e∗ is missing
from RG. Next suppose that exactly one of C1 and C2, say C1, covers e. Then C1

must be e-majored in D, since otherwise D would not be skeleton-maximal sim-
ilarly as above, and therefore e ∈ IG(C1) and e∗ is missing from RG. Therefore,
ve

C1
and ve

C2
cannot be colored both white as long as e∗ is present in RG. ��

We need the following variants of this lemma.

Lemma 4. Let G be a biconnected plane graph that is not a cycle such that its
infinite face is bounded by a 3-cycle C0. Suppose G is normal. Then, G has a 3-
cyclic orientation in which C0 is cyclic if and only if RG has a proper 3-coloring
that respects constraint (W, P1 ∪ P2 ∪ {vC0}), where W , P1, and P2 are as in
Lemma 3.

Proof. Given a skeleton maximal 3-cyclic orientation of G in which C0 is cyclic,
we construct a proper 3-coloring χ of RG that respects (W, P1∪P2) as described
in the proof of Lemma 3. It is immediate from the construction that χ colors vC0

red or blue and hence respects (W, P1 ∪ P2 ∪ {vC0}). Given a proper 3-coloring
of RG that colors vC0 red or blue, we construct a 3-cyclic orientation of G as
described in the proof of Lemma 3. It is immediate from the construction that
C0 is cyclic in D. ��
We note that the constraint (W, P1 ∪ P2) in Lemma 3 is ∅-admissible and con-
straint (W, P1 ∪ P2 ∪ {vC0}) in Lemma 4 is {vC0}-admissible. The parameter A
in the definition of admissibility, which is the source of most complications in
the proof of Theorem 3, comes from the need of Lemma 4.

For each biconnected plane graph G with an infinite 3-face that is not a cycle,
we consider the following variant of RG. Let C0 be the 3-cycle bounding the



k-cyclic Orientations 83

infinite face of G with C0 = {e1, e2, e3} and let Ci be the internal cycle of
G̃ which contains ei for i = 1, 2, 3. We replace in RG the subgraph RG(C0),
which is a single vertex vC0 , by three vertices u1, u2, and u3, let vei

C0
= ui for

i = 1, 2, 3, and connect vei

C0
with vei

Ci
in the same manner as RG. Let R′

G denote
the resulting graph. We say that an orientation D and a 3-coloring χ of R′

G

are boundary-consistent with each other if, for i = 1, 2, 3, D orients ei clockwise
(counterclockwise) around the infinite face if and only if χ colors vei

C0
red (blue).

The following variant of Lemma 3 is the basic tool for analyzing the subgraph
G〈C〉 in our inductive proofs.

Lemma 5. Let G be a biconnected plane graph with an infinite 3-face. Suppose
G is normal. Then, for each near 3-cyclic orientation D of G, there is a proper
3-coloring χ of R′

G that respects constraint (W, P1 ∪ P2 ∪ {ve1
C0

, ve2
C0

, ve3
C0

}) and
is boundary-consistent with D. Conversely, for each proper 3-coloring χ of R′

G

that respects constraint (W, P1 ∪ P2 ∪ {ve1
C0

, ve2
C0

, ve3
C0

}), there is a near 3-cyclic
orientation D of G that is boundary-consistent with χ.

Proof. From a near 3-cyclic orientation D of G, we construct a coloring χ of R′
G

in the same manner as in the proof of Lemma 3, except that the color of vei

C0
,

i = 1, 2, 3, is determined by the single edge ei. The inverse translation is exactly
the same as in the proof of Lemma 3. ��
We are ready to prove the following statement announced earlier, which allows
us to apply Lemmas 3, 4, and 5 without the assumption that G is normal.

Lemma 6. Every biconnected planar graph G is normal.

The proof of this lemma is by induction on the nesting structure of G and
uses Lemma 5 for the induction step, can be found in the full paper. What
we have developed so far, together with Theorem 3 allows us to decide if a
given biconnected plane graph G has a 3-cyclic orientation in polynomial time,
provided that we know, for each non-facial 3-cycle C of G

(1) whether C is relevant or not, so we can identify the skeleton of G,
(2) when C is relevant, for each e ∈ E(C), whether C is e-minored or not, so we
can determine MG(C) and whether C is universal or not, and
(3) when C is universal, for each e ∈ E(C), whether e is internally coverable for
C in G or not.

We call these characteristics of faces and edges of G the skeleton characteristics
of G.

Lemma 7. Let G be a biconnected plane graph and let M(G) be the set of
containment maximal internal 3-cycles of G: an internal 3-cycle of C of G is in
M(G) if and only if there is no internal 3-cycle C′ �= C of G such that G〈C′〉
contains C. Given the skeleton and the skeleton characteristic of G〈C〉 for each
C ∈ M(G), we can compute in polynomial time the skeleton and the skeleton
characteristics of G.

The proof of this lemma can be found in the full paper.
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We are ready to describe our algorithm for finding a 3-cyclic orientation of a
given biconnected plane graph G. It uses a recursive algorithm Analyze whose
input is an internal 3-cycle C of G. The task of Analyze is to decide if C is relevant
in G and, if it is, then compute the set MG(C). Moreover, if |MG(C)| = 3, that is,
if C is universal, then it also computes the set IG(C). If C is facial in G then this
task is trivial. Otherwise, Analyze computes the set M(G〈C〉) of containment-
maximal internal 3-cycles of G〈C〉 and recursively analyze each C ∈ M(G). This
gives the skeleton and the skeleton characteristics of G〈C〉, using which Analyze
completes its task by the method described in the proof of Lemma 7. Given this
procedure Analyze , our main task is simple. Given a biconnected plane graph G,
we compute the skeleton and the skeleton characteristics of G applying Analyze
to 3-cycles in M(G). Then, we decide if G has a 3-cyclic orientation applying
Lemma 3 and Theorem 3. When the answer is affirmative, we can extract a
3-cyclic orientation of G using the proofs of these lemmas and theorem.
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