

Lecture Notes in Computer Science 6507
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Otfried Cheong
Kyung-Yong Chwa
Kunsoo Park (Eds.)

Algorithms
and Computation

21st International Symposium, ISAAC 2010
Jeju Island, Korea, December 15-17, 2010
Proceedings, Part II

13

Volume Editors

Otfried Cheong
KAIST
Department of Computer Science
Daejeon 305-701, Korea
E-mail: otfried@kaist.edu

Kyung-Yong Chwa
KAIST
Department of Computer Science
Daejeon 305-701, Korea
E-mail: kychwa@jupiter.kaist.ac.kr

Kunsoo Park
Seoul National University
School of Computer Science and Engineering
Seoul 151-742, Korea
E-mail: kpark@snu.ac.kr

Library of Congress Control Number: 2010939852

CR Subject Classification (1998): F.2, I.3.5, E.1, C.2, G.2, F.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-17513-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-17513-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the proceedings of the 21st Annual International Sym-
posium on Algorithms and Computations (ISAAC 2010), held in Jeju, Korea
during December 15–17, 2010. Past editions have been held in Tokyo, Taipei,
Nagoya, Hong Kong, Beijing, Cairns, Osaka, Singapore, Taejon, Chennai, Taipei,
Christchurch, Vancouver, Kyoto, Hong Kong, Hainan, Kolkata, Sendai, Gold
Coast, and Hawaii over the years 1990-2009.

ISAAC is an annual international symposium that covers the very wide range
of topics in algorithms and computation. The main purpose of the symposium
is to provide a forum for researchers working in algorithms and the theory of
computation where they can exchange ideas in this active research community.

In response to the call for papers, ISAAC 2010 received 182 papers. Each
submission was reviewed by at least three Program Committee members with
the assistance of external referees. Since there were many high-quality papers,
the Program Committee’s task was extremely difficult. Through an extensive
discussion, the Program Committee accepted 77 of the submissions to be pre-
sented at the conference. Two special issues, one of Algorithmica and one of
the International Journal of Computational Geometry and Applications, were
prepared with selected papers from ISAAC 2010.

The best paper award was given to “From Holant to #CSP and Back:
Dichotomy for Holantc Problems” by Jin-Yi Cai, Sangxia Huang and Pinyan Lu,
and the best student paper award to “Satisfiability with Index Dependency” by
Hongyu Liang and Jing He. Two eminent invited speakers, David Eppstein from
University of California, Irvine, and Matt Franklin from University of California,
Davis, also contributed to this volume.

We would like to thank all Program Committee members and external ref-
erees for their excellent work, especially given the demanding time constraints;
they gave the conference its distinctive character. We thank all who submitted
papers for consideration; they all contributed to the high quality of the con-
ference. We also thank the Organizing Committee members for their dedicated
contribution that made the conference possible and enjoyable. Finally, we thank
our sponsor SIGTCS (Special Interest Group on the Theoretical Computer Sci-
ence) of KIISE (The Korean Institute of Information Scientists and Engineers)
for the assistance and support.

December 2010 Otfried Cheong
Kyung-Yong Chwa

Kunsoo Park

Organization

Program Chairs

Otfried Cheong KAIST, Korea
Kyung-Yong Chwa KAIST, Korea
Kunsoo Park Seoul National University, Korea

Program Committee

Lars Arge University of Aarhus, Denmark
Takao Asano Chuo University, Japan
Danny Chen University of Notre Dame, USA
Rudolf Fleischer Fudan University, China
Satoshi Fujita Hiroshima University, Japan
Mordecai Golin Hong Kong UST, Hong Kong
Seok-Hee Hong University of Sydney, Australia
Oscar Ibarra University of California - Santa Barbara, USA
Giuseppe Italiano University of Rome “Tor Vergata”, Italy
Tao Jiang UC Riverside, USA
Mihyun Kang Humboldt University Berlin, Germany
Ming-Yang Kao Northwestern University, USA
Tak-wah Lam University of Hong Kong, Hong Kong
Gad Landau University of Haifa, Israel
Peter Bro Miltersen Aarhus University, Denmark
David Mount University of Maryland, USA
Ian Munro University of Waterloo, Canada
Yoshio Okamoto Tokyo Institute of Technology, Japan
Frank Ruskey University of Victoria, Canada
Kunihiko Sadakane National Institute of Informatics, Japan
Steven Skiena Stony Brook University, USA
Takeshi Tokuyama Tohoku University, Japan
Ryuhei Uehara Japan Advanced Institute of Science

and Technology, Japan
Peter Widmayer ETH Zurich, Switzerland
Chee Yap Courant, NYU, USA
Hsu-Chun Yen National Taiwan University, Taiwan
Afra Zomorodian Dartmouth College, USA

Host Institute

KAIST (Korea Advanced Institute of Science and Technology)

VIII Organization

Organizing Committee

Joon-Soo Choi Kookmin University, Korea
Kyung-Yong Chwa KAIST, Korea
Seung Bum Jo KAIST, Korea
Hyunseob Lee KAIST, Korea
Jung-Heum Park The Catholic University of Korea, Korea

Referees

Mohammad Abam
Peyman Afshani
Hee-Kap Ahn
Laila El Aimani
Toru Araki
Abdullah Arslan
Ilia Averbouch
Laszlo Babai
Christian Bachmaier
Jeremy Barbay
Amir Barghi
Peter van Beek
Renévan Bevern
Binay Bhattacharya
Danny Breslauer
Gerth Stølting Brodal
Joshua Brody
Jonathan Buss
Ho-Leung Chan
Kun-Mao Chao
Ho-Lin Chen
Ming-Yang Chen
Minkyoung Cho
Marek Chrobak
David Cohen
Amin Coja-Oghlan
Maxime Crochemore
Pooya Davoodi
Yann Disser
Reza Dorrigiv
David Doty
Scot Drysdale
Vida Dujmovic
Robert Elsaesser
Guy Even

Arash Farzan
Sandor Fekete
Andreas Feldmann
Holger Flier
Mathew Francis
Robert Fraser
Sorelle Friedler
Hiroshi Fujiwara
Oliver Gableske
Joachim von zur Gathen
Petr Golovach
Martin Golumbic
Joachim Gudmundsson
Prosenjit Gupta
Gregory Gutin
Carsten Gutwenger
Michel Habib
Kristoffer Arnsfelt

Hansen
Sariel Har-Peled
Masud Hasan
Mohammad Khairul

Hasan
Meng He
Pinar Heggernes
Danny Hermelin
Tomio Hirata
Christian Hoffmann
Ming-Deh Huang
John Iacono
Keiko Imai
Toshimasa Ishii
Takehiro Ito
Kazuo Iwama
Li Jian

Jiongxin Jin
Shinhaeng Jo
Daniel Johannsen
Naoyuki Kamiyama
Tom Kamphans
Iyad Kanj
Bruce Kapron
Akinori Kawachi
Daniel Keren
Shuji Kijima
Hyo-Sil Kim
Jae-Hoon Kim
Masashi Kiyomi
Jan Willem Klop
Koji Kobayashi
Darek Kowalski
Kasper Dalgaard Larsen
Hyunseob Lee
Lap-Kei Lee
Mira Lee
Taehyung Lee
Avivit Levy
Chun-Cheng Lin
Maarten Loeffler
Daniel Lokshtanov
Alejandro Lopez-Ortiz
Vadim Lozin
Jun Luo
Thomas Mølhave
Khalegh Mamakani
Maurice Margenstern
Dimitri Marinakis
Tomomi Matsui
Yusuke Matsumoto
Yuichiro Miyamoto

Organization IX

Matthias Mnich
Morteza Monemizadeh
Petra Mutzel
Hiroshi Nagamochi
Shin-Ichi Nakano
C. Thach Nguyen
Patrick Nicholson
Takao Nishizeki
Martin Noellenburg
Katsuyuki Okeya
Hirotaka Ono
Yota Otachi
Konstantinos

Panagiotou
Daniel Panario
Eunhui Park
Jeong-Hyeon Park
Jung-Heum Park
Anders Sune Pedersen
Benny Pinkas
Greg Plaxton
Sheung-Hung Poon
Sanguthevar

Rajasekaran
Jörg Rambau

Bala Ravikumar
Iris Reinbacher
Daniel Roche
Juanjo Rué
Daniel Russel
Toshiki Saitoh
Jagan Sankaranarayanan
Ignasi Sau
Saket Saurabh
Joe Sawada
Dominik Scheder
Akiyoshi Shioura
Michiel Smid
Aaron Sterling
Mizuyo Takamatsu
Kenjiro Takazawa
Nicholas Tran
Xuehou Tan
Siamak Tazari
My Thai
Hing-Fung Ting
Alexander Tiskin
Etsuji Tomita
Lorenzo Traldi
Amitabh Trehan

Rahul Tripathi
Shi-Chun Tsai
Kostas Tsakalidas
Takeaki Uno
Yushi Uno
Leslie Valiant
Antoine Vigneron
Bow-Yaw Wang
Haitao Wang
Osamu Watanabe
Oren Weimann
Joel Wein
Renato Werneck
Aaron Williams
Peter Winkler
Alexander Wolff
Prudence Wong
Prudence W.H. Wong
Mutsunori Yagiura
Katsuhisa Yamanaka
Koichi Yamazaki
Deshi Ye
Xiao Zhou
Binhai Zhu
Anna Zych

Table of Contents – Part II

Session 6A. Data Structure and Algorithm II

D2-Tree: A New Overlay with Deterministic Bounds 1
Gerth Stølting Brodal, Spyros Sioutas, Kostas Tsichlas, and
Christos Zaroliagis

Efficient Indexes for the Positional Pattern Matching Problem and Two
Related Problems over Small Alphabets . 13

Chih-Chiang Yu, Biing-Feng Wang, and Chung-Chin Kuo

Dynamic Range Reporting in External Memory . 25
Yakov Nekrich

A Cache-Oblivious Implicit Dictionary with the Working Set
Property . 37

Gerth Stølting Brodal, Casper Kejlberg-Rasmussen, and
Jakob Truelsen

Session 6B. Graph Algorithm II

The (p, q)-total Labeling Problem for Trees . 49
Toru Hasunuma, Toshimasa Ishii, Hirotaka Ono, and Yushi Uno

Drawing a Tree as a Minimum Spanning Tree Approximation 61
Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and
Henk Meijer

k-Cyclic Orientations of Graphs . 73
Yasuaki Kobayashi, Yuichiro Miyamoto, and Hisao Tamaki

Improved Bounds on the Planar Branchwidth with Respect to the
Largest Grid Minor Size . 85

Qian-Ping Gu and Hisao Tamaki

Session 7A. Computational Geometry II

Maximum Overlap of Convex Polytopes under Translation 97
Hee-Kap Ahn, Siu-Wing Cheng, and Iris Reinbacher

Approximate Shortest Homotopic Paths in Weighted Regions 109
Siu-Wing Cheng, Jiongxin Jin, Antoine Vigneron, and Yajun Wang

XII Table of Contents – Part II

Spanning Ratio and Maximum Detour of Rectilinear Paths in the L1

Plane . 121
Ansgar Grüne, Tien-Ching Lin, Teng-Kai Yu, Rolf Klein,
Elmar Langetepe, D.T. Lee, and Sheung-Hung Poon

Session 7B. Graph Coloring II

Approximation and Hardness Results for the Maximum Edge q-Coloring
Problem . 132

Anna Adamaszek and Alexandru Popa

3-Colouring AT-Free Graphs in Polynomial Time . 144
Juraj Stacho

On Coloring Graphs without Induced Forests . 156
Hajo Broersma, Petr A. Golovach, Daniël Paulusma, and Jian Song

Session 8A. Approximation Algorithm II

On the Approximability of the Maximum Interval Constrained Coloring
Problem . 168

Stefan Canzar, Khaled Elbassioni, Amr Elmasry, and Rajiv Raman

Approximability of Constrained LCS . 180
Minghui Jiang

Approximation Algorithms for the Multi-Vehicle Scheduling Problem . . . 192
Binay Bhattacharya and Yuzhuang Hu

On Greedy Algorithms for Decision Trees . 206
Ferdinando Cicalese, Tobias Jacobs, Eduardo Laber, and
Marco Molinaro

Session 8B. Online Algorithm

Single and Multiple Device DSA Problem, Complexities and Online
Algorithms . 218

Weiwei Wu, Wanyong Tian, Minming Li, Chun Jason Xue, and
Enhong Chen

The Onion Diagram: A Voronoi-Like Tessellation of a Planar Line
Space and Its Applications (Extended Abstract) . 230

Sang Won Bae and Chan-Su Shin

Improved Online Algorithms for 1-Space Bounded 2-Dimensional Bin
Packing . 242

Yong Zhang, Jingchi Chen, Francis Y.L. Chin, Xin Han,
Hing-Fung Ting, and Yung H. Tsin

Table of Contents – Part II XIII

On the Continuous CNN Problem . 254
John Augustine and Nick Gravin

Session 9A. Scheduling

Policies for Periodic Packet Routing . 266
Britta Peis, Sebastian Stiller, and Andreas Wiese

Increasing Speed Scheduling and Flow Scheduling . 279
Sebastian Stiller and Andreas Wiese

A Tighter Analysis of Work Stealing . 291
Marc Tchiboukdjian, Nicolas Gast, Denis Trystram,
Jean-Louis Roch, and Julien Bernard

Approximating the Traveling Tournament Problem with Maximum
Tour Length 2 . 303

Clemens Thielen and Stephan Westphal

Session 9B. Data Structure and Algorithm III

Alphabet Partitioning for Compressed Rank/Select and Applications . . . 315
Jérémy Barbay, Travis Gagie, Gonzalo Navarro, and Yakov Nekrich

Entropy-Bounded Representation of Point Grids . 327
Arash Farzan, Travis Gagie, and Gonzalo Navarro

Identifying Approximate Palindromes in Run-Length Encoded
Strings . 339

Kuan-Yu Chen, Ping-Hui Hsu, and Kun-Mao Chao

Session 10A. Graph Algorithm III

Minimum Cost Partitions of Trees with Supply and Demand 351
Takehiro Ito, Takuya Hara, Xiao Zhou, and Takao Nishizeki

Computing the (t, k)-Diagnosability of Component-Composition
Graphs and Its Application . 363

Sun-Yuan Hsieh and Chun-An Chen

Why Depth-First Search Efficiently Identifies Two and Three-Connected
Graphs . 375

Amr Elmasry

Beyond Good Shapes: Diffusion-Based Graph Partitioning is Relaxed
Cut Optimization . 387

Henning Meyerhenke

XIV Table of Contents – Part II

Induced Subgraph Isomorphism on Interval and Proper Interval
Graphs . 399

Pinar Heggernes, Daniel Meister, and Yngve Villanger

Session 10B. Computational Geometry III

Testing Simultaneous Planarity When the Common Graph Is
2-Connected . 410

Bernhard Haeupler, Krishnam Raju Jampani, and Anna Lubiw

Computing the Discrete Fréchet Distance with Imprecise Input 422
Hee-Kap Ahn, Christian Knauer, Marc Scherfenberg,
Lena Schlipf, and Antoine Vigneron

Connectivity Graphs of Uncertainty Regions . 434
Erin Chambers, Alejandro Erickson, Sándor Fekete,
Jonathan Lenchner, Jeff Sember, Srinivasan Venkatesh, Ulrike Stege,
Svetlana Stolpner, Christophe Weibel, and Sue Whitesides

π/2-Angle Yao Graphs Are Spanners . 446
Prosenjit Bose, Mirela Damian, Karim Doüıeb, Joseph O’Rourke,
Ben Seamone, Michiel Smid, and Stefanie Wuhrer

Identifying Shapes Using Self-assembly (Extended Abstract) 458
Matthew J. Patitz and Scott M. Summers

Author Index . 471

Table of Contents – Part I

Invited Talks

Regular Labelings and Geometric Structures (Abstract) 1
David Eppstein

Algorithmic Aspects of Secure Computation and Communication
(Abstract) . 2

Matt Franklin

Session 1A. Approximation Algorithm I

Faster Algorithms for Feedback Arc Set Tournament, Kemeny Rank
Aggregation and Betweenness Tournament . 3

Marek Karpinski and Warren Schudy

A 3/2-Approximation Algorithm for Generalized Steiner Trees in
Complete Graphs with Edge Lengths 1 and 2 . 15

Piotr Berman, Marek Karpinski, and Alexander Zelikovsky

Approximate Periodicity . 25
Amihood Amir, Estrella Eisenberg, and Avivit Levy

Approximating the Average Stretch Factor of Geometric Graphs 37
Siu-Wing Cheng, Christian Knauer, Stefan Langerman, and
Michiel Smid

Session 1B. Complexity I

Satisfiability with Index Dependency . 49
Hongyu Liang and Jing He

Anonymous Fuzzy Identity-Based Encryption for Similarity Search 61
David W. Cheung, Nikos Mamoulis, W.K. Wong, S.M. Yiu, and
Ye Zhang

Improved Randomized Algorithms for 3-SAT . 73
Kazuo Iwama, Kazuhisa Seto, Tadashi Takai, and Suguru Tamaki

Quantum Counterfeit Coin Problems . 85
Kazuo Iwama, Harumichi Nishimura, Rudy Raymond, and
Junichi Teruyama

XVI Table of Contents – Part I

Session 2A. Data Structure and Algorithm I

Priority Range Trees . 97
Michael T. Goodrich and Darren Strash

Should Static Search Trees Ever Be Unbalanced? . 109
Prosenjit Bose and Karim Doüıeb

Levelwise Mesh Sparsification for Shortest Path Queries 121
Yuichiro Miyamoto, Takeaki Uno, and Mikio Kubo

Unit-Time Predecessor Queries on Massive Data Sets 133
Andrej Brodnik and John Iacono

Session 2B. Combinatorial Optimization

Popularity at Minimum Cost . 145
Telikepalli Kavitha, Meghana Nasre, and Prajakta Nimbhorkar

Structural and Complexity Aspects of Line Systems of Graphs 157
Jozef Jirásek and Pavel Klav́ık

Neighbor Systems, Jump Systems, and Bisubmodular Polyhedra 169
Akiyoshi Shioura

Generating Trees on Multisets . 182
Bingbing Zhuang and Hiroshi Nagamochi

Session 3A. Graph Algorithm I

Seidel Minor, Permutation Graphs and Combinatorial Properties 194
Vincent Limouzy

Simultaneous Interval Graphs . 206
Krishnam Raju Jampani and Anna Lubiw

Unbalanced Graph Partitioning . 218
Angsheng Li and Peng Zhang

On the Intersection of Tolerance and Cocomparability Graphs 230
George B. Mertzios and Shmuel Zaks

Flows in One-Crossing-Minor-Free Graphs . 241
Erin Chambers and David Eppstein

Session 3B. Complexity II

From Holant to #CSP and Back: Dichotomy for Holantc Problems 253
Jin-Yi Cai, Sangxia Huang, and Pinyan Lu

Table of Contents – Part I XVII

Computing Sparse Multiples of Polynomials . 266
Mark Giesbrecht, Daniel S. Roche, and Hrushikesh Tilak

Fractal Parallelism: Solving SAT in Bounded Space and Time 279
Denys Duchier, Jérôme Durand-Lose, and Maxime Senot

Interpretation of Stream Programs: Characterizing Type 2 Polynomial
Time Complexity . 291

Hugo Férée, Emmanuel Hainry, Mathieu Hoyrup, and
Romain Péchoux

New Upper Bounds on the Average PTF Density of Boolean
Functions . 304

Kazuyuki Amano

Session 4A. Computational Geometry I

An Optimal Algorithm for Computing Angle-Constrained Spanners 316
Paz Carmi and Michiel Smid

Approximating Minimum Bending Energy Path in a Simple Corridor . . . 328
Jinhui Xu, Lei Xu, and Yulai Xie

Session 4B. Graph Coloring I

Analysis of an Iterated Local Search Algorithm for Vertex Coloring 340
Dirk Sudholt and Christine Zarges

Bounded Max-colorings of Graphs . 353
Evripidis Bampis, Alexander Kononov, Giorgio Lucarelli, and
Ioannis Milis

Session 5A. Fixed Parameter Tractability

Parameterized Algorithms for Boxicity . 366
Abhijin Adiga, Rajesh Chitnis, and Saket Saurabh

On Tractable Cases of Target Set Selection . 378
André Nichterlein, Rolf Niedermeier, Johannes Uhlmann, and
Mathias Weller

Combining Two Worlds: Parameterised Approximation for Vertex
Cover . 390

Ljiljana Brankovic and Henning Fernau

Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time . . . 403
David Eppstein, Maarten Löffler, and Darren Strash

XVIII Table of Contents – Part I

Session 5B. Optimization

Lower Bounds for Howard’s Algorithm for Finding Minimum
Mean-Cost Cycles . 415

Thomas Dueholm Hansen and Uri Zwick

Solving Two-Stage Stochastic Steiner Tree Problems by Two-Stage
Branch-and-Cut . 427

Immanuel Bomze, Markus Chimani, Michael Jünger, Ivana Ljubić,
Petra Mutzel, and Bernd Zey

An Optimal Algorithm for Single Maximum Coverage Location on
Trees and Related Problems . 440

Joachim Spoerhase

A Faster Algorithm for the Maximum Even Factor Problem 451
Maxim A. Babenko

Author Index . 463

D2-Tree: A New Overlay with Deterministic
Bounds

Gerth Stølting Brodal1, Spyros Sioutas2,
Kostas Tsichlas3, and Christos Zaroliagis4

1 MADALGO (Center for Massive Data Algorithmics, a Center of the Danish

National Research Foundation), Aarhus University

gerth@madalgo.au.dk
2 Ionian University, Department of Informatics

sioutas@ionio.gr
3 Aristotle University of Thessaloniki, Department of Informatics

tsichlas@csd.auth.gr
4 CTI and Dept. of Computer Engineering & Informatics, University of Patras

zaro@ceid.upatras.gr

Abstract. We present a new overlay, called the Deterministic Decentral-
ized tree (D2-tree). The D2-tree compares favourably to other overlays for

the following reasons: (a) it provides matching and better complexities,

which are deterministic for the supported operations; (b) the manage-

ment of nodes (peers) and elements are completely decoupled from each

other; and (c) an efficient deterministic load-balancing mechanism is pre-

sented for the uniform distribution of elements into nodes, while at the

same time probabilistic optimal bounds are provided for the congestion

of operations at the nodes.

1 Introduction

Decentralized systems and in particular Peer-to-Peer (P2P) networks have be-
come very popular of late and are widely used for sharing resources and store very
large data sets. Data are stored at the nodes (or peers) and the most crucial op-
erations are data search (identify the node that stores the requested information)
and updates (insertions/deletions of data). Searching and updating is typically
done by building a logical overlay network that facilitates the assignment and
indexing of data at the nodes. Sometimes, we distinguish between the overlay
structure per se and the indexing scheme used to access the data.

Following the typical modeling, a decentralized communication network is
represented by a graph. Its nodes correspond to the network nodes, while its
edges correspond to communication links. We assume constant size messages
between nodes through links and asynchronous communication. It is assumed
that the network provides an upper bound on the time needed for a node to
send a message and receive an acknowledgment. The complexity of an operation
is measured in terms of the number of messages issued during its execution.
Throughout the paper, when we refer to cost we shall mean number of messages
(internal computations at nodes are considered insignificant). The overlay is

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 G.S. Brodal et al.

another graph defined over the communication network. The nodes of the overlay
correspond to nodes of the original network, while its edges (links) may not
correspond to existing communication links, but to communication paths.

With respect to its structure, the overlay supports the operations Join (of a
new node v; v communicates with an existing node u in order to be inserted
into the overlay), and Departure(of an existing node u; u leaves the overlay
announcing its intent to other nodes of the overlay). The overlay is used to
implement an indexing scheme for the stored data. Such a scheme supports
the operations search for an element, insert a new element, delete an existing
element, and range query for elements in a specific range.

In terms of efficiency, an overlay network should address the following issues:

– Fast queries and updates: updates and queries must be executed in a minimal
number of communication rounds and using a minimal number of messages.

– Ordered data: keeping the data in order facilitates the implementation of
various enumeration queries when compared to a simple dictionary that can
only answer membership queries, including those arising in DNA databases,
location-based services, and prefix searches for file names or data titles. In-
deed, the ever-wider use of P2P infrastructures has found applications that
require support for range queries (e.g., [6]).

– Size of nodes (peers): the size of a node is the routing information (links and
related data) maintained by this node and it is not related to the number of
data elements stored in it. Keeping the size of a node small allows for more
efficient update operations, but in general reduces the efficiency of access
operations while aggravating fault tolerance.

– Fault Tolerance: the structure should be able to discover and heal failures
at nodes or links.

– Congestion: it refers to the distribution of the load of search (access) op-
erations per node, aiming at distributing this load equally across all nodes.
The congestion is an expected quantity defined as the maximum, among all
nodes, of the fraction of the expected number of accesses of a node due to a
random sequence of operations on the structure.

– Load Balancing: it refers to the distribution of data elements on the nodes.
The goal of load balancing is to distribute equally the n elements stored in
the N nodes of the network (typically N � n). That is, ideally each node
should carry approximately k elements, where �n/N� ≤ k ≤ �n/N�+ 1.

There has been considerable recent work in devising effective distributed search
and update techniques. Existing structured P2P systems can be classified into
two broad categories: distributed hash table (DHT)-based systems and tree-
based systems. Examples of the former, which constitute the majority, include
Chord [11], Pastry [14], Symphony [12], and Tapestry [17]. DHT-based systems
support exact match queries well and use (successfully) probabilistic methods
to distribute the workload among nodes equally. DHT-based systems work with
little synchrony and high churn (the collective effect created by independent
burstly arrivals and departures of nodes), a fundamental characteristic of the

D2-Tree: A New Overlay with Deterministic Bounds 3

Internet. Since hashing destroys the ordering on keys, DHT-based systems typi-
cally do not possess the functionality to support straightforwardly range queries,
or more complex queries based on data ordering (e.g., nearest-neighbor and string
prefix queries). The most recent effort towards range queries is reported in [16].

Tree-based systems are based on hierarchical structures. They support range
queries more naturally and efficiently as well as a wider range of operations, since
they maintain the ordering of data. On the other hand, they lack the simplicity
of DHT-based systems, and they do not always guarantee data locality and load
balancing in the whole system. Important examples of such systems include Skip
Graphs (SG) [4,7], NoN SG [13], SkipNet (SN), Deterministic SN [9], Bucket SG
[3], Family Trees [15], Skip Webs [1], BATON [10], Rainbow Skip Graphs (RSG)
[8], and Strong RSG [8].

In this work, we focus on tree-based overlay networks that support directly
range and more complex queries. Let N be the number of nodes present in the
network and let n denote the size of data (N � n). Let M be the size of each
node, Q(n, N) be the cost of a single query, U(n, N) be the cost of an update,
C(n, N) be the congestion per node (measuring the load) incurred by search
operations, and let L(n, N) be the cost for load balancing the overlay w.r.t.
element updates. With respect to congestion, each node issues one operation,
while the destination node of the operation is assumed to be selected uniformly at
random among all nodes of the network. Congestion depends on the distribution
of elements into nodes as well as on the topology of the overlay. It provides hints
as to how well the structure avoids the existence of hotspots (i.e., nodes which
are accessed multiple times during a sequence of operations – the root of a tree
is usually a hotspot in decentralized tree structures).

A comparison of the aforementioned tree-based overlays is given in Table 1.
We would like to emphasize that w.r.t. load balancing, there are solutions in the
literature either as part of the overlay (e.g., [10]) or as a separate technique (e.g.
[3,7]). These solutions are either heuristics, or provide expected bounds under

Table 1. A comparison between previous methods and the D2-tree. By Ô we represent

expected bounds, by Õ we represent amortized bounds, and by O expected amortized

bounds. All other bounds are worst-case. Typically, N � n.

Methods N M Q(n, N) U(n, N) C(n, N) L(n, N)

SG [4,7] ≤ n O(log N) Ô(log N) w.h.p. Ô(log N) w.h.p. Ô(log N
N) Õ(log N)

NoN SG [13] n O(log2 n) Ô(log n
log log n) Ô(log2 n) Ô(log2 n

n) –

Determ. SN [9] n O(log n) O(log n) O(log2 n) O(n0,32
n) –

BATON [10] ≤ n O(log N) O(log N) O(log N) – O(log n)

Family Trees [15] n O(1) Ô(log n) Ô(log n) Ô(log n
n) –

Bucket SG [3] ≤ n O(n
N + log N) Ô(log N) Ô(log N) Ô(1

N + log N
n) No Bounds

Skip Webs [1] n O(log n) Ô(log n
log log n) Ô(log n

log log n) Ô(log n
n) –

Rainbow SG [8] n O(1) Ô(log n) w.h.p. O(log n) w.h.p. Ô(log n
n) –

Strong RSG [8] n O(1) O(log n) Õ(log n) Ô(nε

n) –

D2-tree ≤ n O(1) O(log N) Õ(log N) Ô(log N
N) Õ(log N)

4 G.S. Brodal et al.

certain assumptions, or amortized bounds but at the expense of increasing the
size per node (see [5] for a detailed discussion).

Our Contribution. In this paper we present a new tree-based overlay, called
the Deterministic Decentralized tree or D2-tree. The D2-tree (see also Table 1)
uses O(1) space per node, achieves a deterministic O(log N) query bound and a
deterministic (amortized) O(log N) update bound for elements as well as for node
joins and departures, achieves optimal congestion, and exhibits a deterministic
(amortized) O(log N) bound for load-balancing. Moreover, it supports ordered
data queries optimally, and tolerates node failures.

The D2-tree is an overlay consisting of two levels. The upper level is a perfect
binary tree, while the lower level consists of buckets (sets of nodes), where each
bucket is structured as a doubly linked list. Each bucket contains O(log N) nodes.
Since N changes, the size of buckets is dynamically maintained by the overlay.

In the D2-tree, we separate the index from the overlay structure using the
load-balancing mechanism. The number of elements per node is dynamic w.r.t.
node joins and departures and it is controlled by the load-balancing mechanism.
Moreover, the number of nodes of the perfect binary tree is not connected by any
means to the number of elements stored in the structure. The overlay structure
supports the operations of node join and node departure, while at the same time
it tackles failures of nodes whenever these are discovered.

Our load-balancing technique distributes almost equally the elements among
nodes by making use of weights. Weights are used to define a metric of load-
balance, which shows how uneven is the load between nodes. When the load is
uneven, then a data migration process is initiated to equally distribute elements.

Our load-balancing technique is quite general and can be applied to any hi-
erarchical decentralized overlay (e.g., BATON, Skip Graphs) with the following
specifications: (i) The overlay structure must be a tree with height O(log N) with
each node having O(1) children. (ii) Nodes at level i having the same father have
approximately (within constant factors) the same weight, which is Ω(i4). (iii)
Updates are performed at the leaves. Alternatively, if each node has access to a
leaf in O(1) messages then this is enough, since the update is simply forwarded
to this leaf.

We discuss the load balancing technique in Section 2, and present the D2-tree
in Section 3. We conclude in Section 4. Due to space constraints, some details
and proofs are deferred to the full version [5].

2 Deterministic Load Balancing

The load-balancing mechanism distributes almost equally the elements among
nodes by making use of weights, which are used to define a metric showing
how uneven is the load between nodes. When the load is uneven, then a data
migration process is initiated to equally distribute elements.

A few definitions are in place. Assume that the overlay structure is a tree T .
Based on T ancestor-descendant relationships are defined. There is a node that
has no ancestor (the root) and there are nodes with no descendants (the leaves).

D2-Tree: A New Overlay with Deterministic Bounds 5

All nodes which are not leaves are called internal. The subgraph induced by the
descendants of node v (including v) in T is the subtree of v. The weight w(v) of
node v is equal to the number of elements stored in its subtree. The term weight
will also be used to express other similar quantities at some parts of the paper,
in which case we explicitly say so. The number of elements residing in node v
is represented by e(v). The height of node v is the length of the longest path
from v to one of its leaves. The depth (or level) of node v is the length of the
path from v to the root. Two nodes are called brothers when they have the same
father and they are consecutive in his child list.

We describe the load-balancing mechanism in two steps. First, we provide a
mechanism that allows for efficient and local update of weight information in
a tree when elements are added or removed at the leaves. This is necessary to
avoid hotspots. Then, we describe the load-balancing scheme in a tree overlay.

2.1 A Technique for Amortized Constant Weight Updating

We provide a technique that lazily updates the weights on the nodes of a tree.
When an element is added or removed to/from a leaf u in T the weights on the
path from u to the root must be updated. If the height of T is H , then the cost
of the weight updating is O(H). Assume that node v lies at height h and its
children are v1, v2, . . . , vs at height h − 1. We relax the weight of a node and
its recomputation. We define the virtual weight b(v) of v as the weight stored in
node v. In particular, for node v the following invariants are maintained

Invariant 1. b(v) > e(v) + (1 − εh) (
∑s

i=1 b(vi))

Invariant 2. b(v) < e(v) + (1 + ε′h) (
∑s

i=1 b(vi))

where εh and ε′h are appropriate constants. These invariants imply that the
weight information is approximate, at most by a multiplicative constant.

Assume that an update takes place at leaf u. Apparently, only the weight of its
ancestors need to be updated by ±1 and no other node is affected. We traverse
the path from u to the root until we find a node z for which Invariants 1 and 2
hold. Let v be its child for which either Invariant 1 or 2 does not hold on this
path. We recompute all weights on the path from u to v. In particular, for each
node z on this path, we update its weight information by taking the sum of the
weights written in its children plus the number of elements that z carries.

The following lemma states how frequently the weight information in each
node changes. Its proof follows from the fact that the update of node v is a
result of the violation of either of Invariants 1 or 2 and by taking into account
that 1

2 · w(v) < b(v) < 2 · w(v), if we choose εh = ε′h = 1
h2 [5].

Lemma 1. The minimum number of updates in the subtree of v, causing a
weight update at v, is Θ(εhw(v)).

The above lemma states that if we make εhw(v) update operations then the
maximum number of weight changes at node v is 1, implying that the amortized
cost per update operation at height h is 1

εhb(v) . Since a node on the path at

6 G.S. Brodal et al.

height i has (by assumption) virtual weight Ω(i4), it is not hard to see that the
weight updating mechanism is efficient in an amortized sense.

Theorem 1. The amortized cost of the weight update algorithm is O(1).

2.2 Updates and Load Balancing

We now investigate how load balancing is realized on the balanced tree structure
T . For clarity of exposition, we assume that T is a binary tree. The following
discussion can be easily generalized for trees with O(1) maximum degree, simply
by looking between brother nodes.

First, bear in mind that this mechanism does not tamper with the structure
of T . An update operation (either insertion or deletion of an element) is initiated
at node v. Node v issues a search for the involved element and the appropriate
node u is returned. Then, the update request is forwarded from v to u. Node u
executes the update operation and signals v for the status of the update. The
load balancing mechanism redistributes the elements among nodes when the load
between nodes is not distributed equally enough.

Assume that node v at height h has child p and its right brother q at height
h − 1. Let |v| denote the number of nodes of the subtree of v (including v) in
the overlay structure. The density d(v) = w(v)

|v| of node v represents the mean

number of elements per node in the subtree of v. The criticality c(p, q) = d(p)
d(q) of

two brother nodes p and q represents their difference in densities. The following
invariant guarantees that there will not be large differences between densities.

Invariant 3. For two brothers p and q, it holds that 1
c ≤ c(p, q) ≤ c, 1 < c ≤ 2.

For example, choosing c = 2 we get that the density of any node can be at most
twice or half of that of its brother. In the more general case where the number
of children of node v is O(1), we get that no child of v has more density than a
constant factor w.r.t. the other children of v.

When an update takes place at leaf u, weights are updated by using the
mechanism described in Section 2.1. In this way, we guarantee that no hotspot
exists w.r.t. weight updating as implied by Lemma 1. Then, starting from u, the
highest ancestor w is located that is unbalanced w.r.t. his brother z, meaning
that Invariant 3 is violated. Finally, the elements in the subtree of their father
v are redistributed uniformly so that the density of the brothers becomes equal;
this procedure is henceforth called redistribution of node v. Assume that the
redistribution phase has a cost of O(f(w(v))), for some increasing function f :
N → N. The following theorem provides amortized bounds for the redistribution.

Theorem 2. The load balancing has an amortized cost of O
(
H f(n)

n

)
.

3 The D2-Tree

In this section we design and analyze the D2-tree overlay. We first describe the
overlay structure, then move to the description of the index, and finally discuss
efficiency issues regarding congestion and fault-tolerance.

D2-Tree: A New Overlay with Deterministic Bounds 7

3.1 The D2-Tree Structure

The D2-tree is a binary tree, where each node maintains an additional set of
links to other nodes apart from the standard links which form the tree. Each
node v in the tree maintains the following links:

1. Links to its father (if there is one) and its children.
2. Links to its adjacent nodes based on an inorder traversal of the tree.
3. Links to nodes at the same level as v. These links facilitate an exponential

search on the nodes of the same level. Assume that node v lies at level �.
In a binary tree, the maximum number of nodes at level � is equal to 2�.
Node v maintains at most 2� links: � links to nodes to the right and � links
to nodes to the left. The links are distributed in exponential steps, that is
the first link points to a node (if there is one) 20 positions to the left (right),
the second 21 positions to the left (right) and the i-th link 2i−1 positions to
the left (right). These links constitute the routing table of v.

The next lemma captures some important properties of the routing tables w.r.t.
their construction. It follows immediately from the aforementioned link structure
and the fixed distances between successive links in the routing tables.

Lemma 2. (i) If a node v contains a link to node u in its routing table, then
the parent of v also contains a link to the parent of u, unless u and v have the
same father. (ii) If a node v contains a link to node u in its routing table, then
the left (right) sibling of v also contains a link to the left (right) sibling of u,
unless there are no such nodes. (iii) Every non-leaf node has two adjacent nodes
in the inorder traversal, which are leaves.

A Weight-Balanced Overlay. The overlay consists of two levels. The upper
level of the overlay is a Perfect Binary Tree (PBT). The lower level of the overlay
are the leaves of this tree, which are sets of nodes called buckets containing
O(log N) nodes. Each bucket is structured as a doubly linked list. Each node
of the bucket points to the node which is a leaf of the PBT and is called the
representative of the bucket. Additionally, it maintains its routing table w.r.t.
the nodes of all buckets.

When a node z makes a join request to v, then this node is forwarded to its
adjacent leaf u w.r.t. the inorder traversal. Then, node z is added to the doubly
linked list representing the bucket of u by manipulating a constant number of
links. The routing table of z is updated by using Lemma 2(ii). When a node v
leaves the network, then it is replaced by its right adjacent node u (if there is no
right adjacent node then we choose the left one) which in turn is replaced by its
first node z in its bucket. Link and data information are copied from v to u and
from u to z. When a node v is discovered to be unreachable, its adjacent node u
is first located. This is accomplished by traversing the path to the rightmost or
leftmost leaf starting from the left or right child respectively. Node u fills the gap
of v and the first child z in the bucket of u fills the gap left by u. The contents
of u are not moved to another node except from the navigation data (routing

8 G.S. Brodal et al.

tables and other links) which are moved to node z that take its place. Node u
has its routing tables recomputed.

The join and departure of nodes may cause the size of the buckets to be
uneven, which in the long run renders the structure unbalanced (imagine a bucket
holding almost all nodes). To control the size of the buckets we employ a weight-
based approach. Each node v of the PBT maintains its weight |v|, which is
equal to the number of nodes in the buckets of its subtree. The size control is
accomplished by using the method introduced in Section 2.1, in order to avoid
the existence of hotspots.

The node criticality ncv of a node v at level � with left and right children w

and z at level �+1, respectively, is defined as ncv = |w|
|v| . The following invariant

bounds the criticality of nodes.

Invariant 4. The node criticality of all nodes is in the range
[

1
4 , 3

4

]
.

Invariant 4 implies that the number of nodes in buckets in the left subtree of
a node v is at least 1/3 and at most threefold the corresponding number of its
right subtree (this definition can be easily generalized when v has a O(1) number
of children). When an update takes place at bucket x, then we locate the highest
ancestor v of x whose node criticality is out of bounds, w.r.t. Invariant 4, and we
redistribute the nodes in its subtree. The redistribution phase is described in [5].
The redistribution guarantees that if there are z nodes in total in the y buckets
of the subtree of v, then after the redistribution each bucket maintains either
�z/y� or �z/y� + 1 nodes. However, the following discussion still holds (with
minor changes) even if the redistribution phase guarantees that the minimum
and maximum size of the buckets is within constant factors. The cost for the
redistribution we propose for node v is f(|v|) = O(|v|).

We guarantee that each bucket contains O(log N) nodes when subject to joins
or departures of nodes by employing two operations on the PBT, the contraction
and the extension. When a redistribution takes place at the root of the PBT,
we also check whether any of these two operations can be applied to the PBT.
The extension operation adds one more level of nodes at the PBT from existing
nodes in the buckets, thus increasing its height by one. The contraction operation
removes one level of nodes from the PBT and puts them into the buckets, thus
decreasing its height by one. In order to decide whether the PBT needs extension
or contraction we compare the size of the buckets B after the redistribution with
the height of the PBT. Note that after redistribution, the sizes of all buckets
may differ by at most 1. If the size is larger by at least 1 then an extension
takes place. If the size of the bucket is smaller than the height of the PBT by at
least 1 then a contraction takes place. The height of the PBT can be deduced
by the size of the routing table in the nodes of the last level of the PBT. These
two operations involve a reconstruction of the overlay which rarely happens as
shown in the following lemma.

Lemma 3. If a redistribution operation is performed at a node with weight s,
then this node will be redistributed again after Ω(s) joins or departures have been
performed in its subtree.

D2-Tree: A New Overlay with Deterministic Bounds 9

Lemma 3 states that the expensive operations of extension and contraction take
place when the number of nodes has at least doubled or halved. Assuming that
the redistribution of v has O(f(|v|)) cost, it follows by Lemma 3 that the amor-
tized cost for join/departure of a node v at height h is O

(
f(|v|)
|v|

)
. Since the PBT

has height H , we establish the following.

Lemma 4. The amortized cost of join/departure of a node v is O
(
H f(N)

N

)
.

O(1) Space per Node. The routing tables require O(log N) space for each
node. To make the space consumption constant, one could apply on the overlay
the schemes described in [8,15]. However, on the one hand the complexities will
not be deterministic while on the other hand even in the case of the strong
rainbow graphs [8] with deterministic bounds our congestion for searching is
much better than theirs. To achieve constant space we distribute the routing
tables to many nodes doing the same also for nodes in the buckets. A set of nodes
with constant degree is grouped together and a routing table is distributed on all
these nodes, such that each node uses constant space. Thus, a node can recreate
approximately its routing table by accessing nodes inside the same group. We
call each such group a hypernode.

A hypernode at level � consists of at most � nodes, numbered from left to right
1, 2, This number is the rank of the node within the hypernode. A node v
with rank i maintains two links to the nodes that are approximately 2i positions
to the right and to the left. In particular, node v either points to a node z in
the same hypernode whose distance is 2i or to a node z′ whose rank is i and lies
in a different hypernode than that of v which contains a node whose distance
is 2i from v. The concatenation of all such links constitutes the routing table
for the hypernode. Additionally, each node with rank i maintains two links to
nodes with ranks i−1 and i+1, if there are such nodes. Finally, each node with
rank i in the hypernode maintains a link to the node with the largest rank. The
following lemma translates Lemma 2(ii) in the setting of hypernodes.

Lemma 5. If node v contains a link to node u, then the left (right) sibling of v
also contains a link to the left (right) sibling of u, unless � such nodes.

Using Lemma 5 we can update the links of a node v by simply looking at the links
of its siblings u and w and update the links of v by pointing to the adjacent nodes
of the nodes pointed to by u and w. Hypernodes are static in the overlay and
only in the case of contraction we destroy the hypernodes of the last level while
in the case of extension we create new hypernodes for the new level. A faulty
node inside a hypernode will not disconnect it since by accessing the parents we
can find its siblings and reconstruct the missing routing information.

3.2 The Index Structure of the D2-Tree

The overlay provides the infrastructure for the index to efficiently support various
operations. The overlay is used as a node-oriented tree. The range of all values
stored in the overlay is partitioned into subranges each one of which is assigned

10 G.S. Brodal et al.

to a node of the overlay. An internal node v with range [xv, x′
v] may have a left

child u and a right child w with ranges [xu, x′
u] and [xw, x′

w] respectively such
that xu < x′

u < xv < x′
v < xw < x′

w. Thus, if an element x ∈ [xv, x′
v] then it

must be stored at node v. Ranges are dynamic in the sense that they depend on
the values maintained by the node.

Search and Range Queries. The search for an element α in the overlay may
be initiated from any node v at level �. Let z be the node with range of values
containing α. Assume O(log N) space per node and assume that w.l.o.g x′

v < α.
Then, by using the routing tables we search at level � for a node u with right
sibling w (if there is such sibling) such that x′

u < α and xw > α unless α is
in the range of u and the search terminates. This step has O(�) cost, since we
simulate a binary search. If the search continues, then node z will either be an
ancestor of u or in the subtree rooted at u. If u is a leaf, then we move upwards
(or in its corresponding bucket) until we find node z in O(log N) steps. If u is an
internal node, by following the respective link we move to the left adjacent node
y of u which is certainly a leaf (inorder traversal). If x′

y > α then an ordinary
top down search from node u will suffice to find z in O(log N) steps (or in its
bucket). Otherwise, node z is certainly an ancestor of u and thus we can move
upwards from u until we find it in O(log N) steps. The case with O(1) space per
node, along with the proof of the following lemma, are given in [5].

Lemma 6. The search for an element α in a D2-tree of N nodes is carried out
in O(log N) steps.

A range query [a, b] reports all elements x such that x ∈ [a, b]. A range query
[a, b] initiated at node v, invokes a search operation for element a. Node u that
contains a returns to v all elements in this range. If all elements of u are reported
then the range query is forwarded to the right adjacent node (inorder traversal)
and continues until an element larger than b is reached for the first time.

Updates and Load Balancing. Assume that an update operation is initiated
at node v involving element α. By invoking a search operation we locate node u
with range containing element α. Finally, the update operation is performed on
u. The main issue is how to balance the load to all nodes of the overlay as much
equally as possible. To do that we employ the machinery developed in Section 2.
Details can be found in [5].

The cost for the redistribution of a node v is O(|v| log N) for the case of
O(log N) space per node or O(|v|) for the case of O(1) space per node. This
is because, during the transfer of elements the routing tables must be recon-
structed. The following lemma states that the load balancing is efficient in an
amortized sense when the structure is subject to insertions and deletions of ele-
ments. It is a direct implication of Theorem 2 and the space used by the nodes.

Lemma 7. The load rebalancing operation of the index has an amortized cost
of O(log N).

One final comment is that the redistribution of elements may be affected by the
redistribution of nodes in the weight-balanced overlay. In order to avoid such a

D2-Tree: A New Overlay with Deterministic Bounds 11

phenomenon, the redistribution of nodes in the subtree of node v in the overlay
is preceded by a redistribution of elements.

3.3 Other Efficiency Issues and the Main Result

We are now ready to tackle the congestion and the fault-tolerance of the D2-tree
overlay, and to present the main results of this work.

Congestion. We assume that a sequence of searches s1, s2, . . . , sN is initiated
from each of the N nodes of the overlay. Assume that si is looking for an element
residing in a node zi (target node for si). The target nodes z1, z2, . . . , zN are
chosen independently and uniformly at random from all nodes of the overlay.
There are two phases in the search. The first is the horizontal search, which
makes use of the routing tables, and the second is the vertical search on a path
from a node either towards the root or towards a leaf. The following theorem,
whose proof can be found in [5], establishes the congestion bound.

Theorem 3. The congestion due to the search operations is O(log N
N) expected

in a D2-tree with N nodes, where each node uses O(1) space.

Fault Tolerance. If a node v discovers (during the execution of an operation)
that node u is unreachable, then it contacts a sibling of u through the routing
tables of the siblings of v (by making use of Lemma 2(ii)). This sibling of u
is able by Lemma 2(ii) (or Lemma 5) to reconstruct all links of node u and a
node departure for u is initiated, which resolves this failure. A more extensive
discussion can be found in [5].

Main Result. We are now ready to establish the main results of this work
stated in the Introduction and in Table 1. In particular, space usage is O(1)
by construction. The search cost follows from Lemma 6, which also dominates
the cost for updating a data element. Node join and departures are O(log N)
amortized by Lemma 4 and the fact that f(n) = O(N). The congestion bound
comes from Theorem 3. Finally, the load-balancing bound comes from Lemma 7.

4 Conclusions and Discussion

The load-balancing scheme can be applied straightforwardly to BATON [10].
BATON is a balanced tree-like overlay that satisfies the specifications set in the
Introduction. The same goes also for Skip Graphs [4] with the exception that the
specifications hold probabilistically and thus the bounds are also probabilistic.
Additionally, it provides a mechanism to control the bucket size of [3].

We provide a technique that lazily updates the weights on the nodes of a
tree. This technique is interesting by itself and can be straightforwardly applied
to weighted balanced trees [2] in the Pointer Machine model of computation
for single processor internal memory machines. In this manner, the update of
balancing information is supported in O(1) amortized time.

12 G.S. Brodal et al.

References

1. Arge, L., Eppstein, D., Goodrich, M.T.: Skip-Webs: Efficient Distributed Data

Structures for Multidimensional Data Sets. In: Proc. of the 24th PODC, pp. 69–76

(2005)

2. Arge, L., Vitter, J.: Optimal External Memory Interval Management. SIAM Jour-

nal on Computing 32(6), 1488–1508 (2003)

3. Aspnes, J., Kirsch, J., Krishnamurthy, A.: Load-balancing and Locality in Range-

Queriable Data Structures. In: Proc. of the 23rd PODC, pp. 115–124 (2004)

4. Aspnes, J., Shah, G.: Skip Graphs. In: Proc. of the 14th SODA, pp. 384–393 (2003)

5. Brodal, G.S., Sioutas, S., Tsichlas, K., Zaroliagis, C.: D2-Tree: A New Overlay with

Deterministic Bounds (September 2010), http://arxiv.org/abs/1009.3134

6. Li, D., Cao, J., Lu, X., Chan, K.C.C.: Efficient Range Query Processing in Peer-

to-Peer Systems. IEEE Transactions on Knowledge and Data Engineering 21(1),

78–91 (2009)

7. Gasenan, P., Bawa, M., Garcia-Molina, H.: Online Balancing of range-Partitioned

Data with Applications to Peer-to-Peer Systems. In: Proc. of the 13th VLDB, pp.

444–455 (2004)

8. Goodrich, M.T., Nelson, M.J., Sun, J.Z.: The Rainbow Skip Graph: A Fault-

Tolerant Constant-Degree Distributed Data Structure. In: Proc. of the 17th SODA,

pp. 384–393 (2006)

9. Harvey, N., Munro, J.I.: Deterministic SkipNet. In: Proc. of the 22nd PODC, pp.

152–153 (2003)

10. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: BATON: a Balanced Tree Structure for Peer-

to-Peer Networks. In: Proc. of the 31st VLDB, pp. 661–672 (2005)

11. Karger, D., Kaashoek, F., Stoica, I., Morris, R., Balakrishnan, H.: Chord: A Scal-

able Peer-to-Peer Lookup Service for Internet Applications. In: Proc. of the SIG-

COMM, pp. 149–160 (2001)

12. Manku, G.S., Bawa, M., Raghavan, P.: Symphony: Distributed hashing in a small

world. In: 4th USENIX Symp. on Internet Technologies and Systems (2003)

13. Manku, G.S., Naor, M., Wieder, U.: Know thy Neighbor’s Neighbor: the Power of

Lookahead in Randomized P2P Networks. In: Proc. of the 36th STOC, pp. 54–63

(2004)

14. Rowstron, A., Druschel, P.: Pastry: A Scalable, Decentralized Object Location,

and routing for large-scale peer-to-peer systems. In: Liu, H. (ed.) Middleware 2001.

LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

15. Zatloukal, K.C., Harvey, N.J.A.: Family trees: An Ordered Dictionary with Optimal

Congestion, Locality, Degree and Search Time. In: Proc. of the 15th SODA, pp.

301–310 (2004)

16. Zhang, Y., Liu, L., Li, D., Liu, F., Lu, X.: DHT-Based Range Query Processing

for Web Service Discovery. In: Proc. of the 2009 IEEE ICWS, pp. 477–484 (2009)

17. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:

Tapestry: A Resilient Global-scale Overlay for Service Deployment. IEEE Journal

on Selected Areas in Communications 22(1), 41–53 (2004)

http://arxiv.org/abs/1009.3134

Efficient Indexes for the Positional Pattern
Matching Problem and Two Related Problems

over Small Alphabets�

Chih-Chiang Yu, Biing-Feng Wang, and Chung-Chin Kuo

Department of Computer Science, National Tsing Hua University

Hsinchu, Taiwan 30013, Republic of China

{littlejohn,bfwang,cckuo}@cs.nthu.edu.tw

Abstract. In this paper, we study the following three variants of the

classical text indexing problem over small alphabets: the positional pat-

tern matching problem, the position-restricted pattern matching prob-

lem, and the indexing version of the variable-length don’t care pattern

matching problem. Let n be the length of the text, p be the length of a

query pattern, and Σ be the alphabet. Assume that |Σ| = O(polylog(n)).

For the first and third problems, we present O(n)-word indexes with O(p)

query time. For the second problem, we show that each query can be an-

swered in O(n logε n) space and O(p + occ) time, or in O(n) space and

O(p+ occ logε n) time, where occ is the number of outputs. When the al-

phabet size is O(polylog(n)), the indexes presented in this paper improve

the results in [6,10,11,22].

1 Introduction

In this paper, we first consider a variant of the classical text indexing problem,
called the positional pattern matching problem, which is to construct an index
for a text T so that the first occurrence of a pattern P in T at or after a given
position s can be found efficiently. This problem was firstly considered by Keller
et al. [11] as an application of the range successor problem [6,11,14,22]. For the
positional pattern matching problem, Keller et al. [11] had an O(n log n)-word
index with O(p + log log n) query time; Crochemore et al. [6] had an O(n1+ε)-
word index with O(p) query time; and Yu et al. [22] had an O(n)-word index
with O(p + log n/ log log n) query time, where n is the length of the text, p is
the length of a query pattern, and ε > 0 is an arbitrary small constant. For
real world applications, the alphabet size of a string to be indexed is usually
small so that there are many researches concerning string matching over small
alphabets [19,20]. For instance, nucleotide sequences are strings over an alphabet
of size 4 [19]; amino acid sequences are strings over an alphabet of size 20 [20]; and
the standard ASCII characters have values between 0 and 127 [20]. This inspires
us to study the positional pattern matching problem over small alphabets. In

� This research is supported by the National Science Council of the Republic of China

under grant NSC-98-2221-E-007-081.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 13–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

14 C.-C. Yu, B.-F. Wang, and C.-C. Kuo

particular, for |Σ| = O(polylog(n)), we present an O(n)-word index with O(p)
query time. This is the first result which uses O(n) space while achieving O(p)
query time. Table 1 summarizes the above results. Our model of computation is
a unit-cost RAM with word size of log n bits.

Table 1. Indexes for positional pattern matching

Space Query time Remarks

[11] O(n log n) O(p + log log n)

[6] O(n1+ε) O(p)

[22] O(n) O(p + log n/ log log n)

Ours O(n) O(p) |Σ| = O(polylog(n))

A problem closely related to the positional pattern matching problem is called
the position-restricted pattern matching problem, introduced by Mäkinen and
Navarro [14]. The problem is to construct an index for a text T so that all
occurrences of a pattern P in T within a given interval [s, t] can be reported
in sorted order efficiently. For this problem, Mäkinen and Navarro [14] had an
O(n)-word index with O(p + occ log n) query time; Keller et al. [11] had an
O(n log n)-word index with O(p+occ log log n) query time; Crochemore et al. [6]
had an O(n1+ε)-word index with O(p + occ) query time; and Yu et al. [22] had
an O(n)-word index with O(p + occ log n/ log log n) query time, where occ is the
number of outputs. In addition, Mäkinen and Navarro [14] had an O(n logε n)-
word index with O(p + log log n + occ) query time, yet the occurrences are not
delivered in sorted order. In this paper, for |Σ| = O(polylog(n)), we show that
a position-restricted query can be answered in O(n logε n) space and O(p + occ)
time, or in O(n) space and O(p+occ logε n) time. Table 2 summarizes the results.

Table 2. Indexes for position-restricted pattern matching

Space Query time Sorted Remarks

[11] O(n log n) O(p + occ log log n) �
[6] O(n1+ε) O(p + occ) �
[22] O(n) O(p + occ log n/ log log n) �
[14] O(n logε n) O(p + log log n + occ)

Ours O(n) O(p + occ logε n) � |Σ| = O(polylog(n))

Ours O(n logε n) O(p + occ) � |Σ| = O(polylog(n))

In a Unix-like system, we may use ? or * in a directory listing command
and the famous search engine, Google, allows keywords containing *, where ?
denotes a don’t care symbol that can match any single character and * denotes a
variable-length don’t care symbol that can match any number of characters. This
feature not only facilitates the search of an approximate keyword in a text, but
also benefits the search of DNA or amino acid patterns [12]. Therefore, pattern
matching with don’t care and variable-length don’t care symbols has received
much attention in the literature [2, 12, 13, 17]. Given a text T and a pattern P

Indexes for the Positional Pattern Matching Problem and Related Problems 15

that may contain variable-length don’t care symbols, the variable-length don’t
care pattern matching problem is to determine whether the pattern P occurs in T .
For this problem, efficient sequential and parallel algorithms had been proposed
in [2,12,17]. For the indexing version of this problem, Inenaga et al. [10] had an
index that supports each query in O(p) time, using O(n2) space; and Crochemore
et al.’s index in [6] can be used to answer each query in O(p) time, using O(n1+ε)
space. In this paper, we also consider the indexing version of the variable-length
don’t care pattern matching problem. For |Σ| = O(polylog(n)), we give an O(n)-
word index with O(p) query time. Table 3 summarizes the above results.

Table 3. Indexes for pattern matching with variable-length don’t care symbols

Space Query time Remarks

[10] O(n2) O(p)

[6] O(n1+ε) O(p)

Ours O(n) O(p) |Σ| = O(polylog(n))

2 Preliminaries

Let X be a string over an alphabet Σ. The length of X is denoted by |X |. The
substring of X containing X [i], X [i + 1], . . . , X [j], where 1 ≤ i ≤ j ≤ |X |, is
denoted by X [i, j]. For 1 ≤ i ≤ |X |, the substring X [1, i] is called a prefix of X ,
whereas the substring X [i, |X |] is called a suffix of S. A string Y occurs in X at
position i if Y is equal to X [i, i+ |Y |−1]. If a string Y occurs in X at a position
i, we call i an occurrence of Y in X .

Let A be a sequence of numbers. The successor of a number x in A, denoted
by succ(A, x), is the smallest number in A whose value is greater than or equal
to x. Let succ−1(A, x) be the position of the successor of x in A.

The improvement of our indexes stems from (1) a simple classification of
patterns into types according to length, which in turn motivates the use of a
different strategy for each type, and (2) a novel application of rank and select
indexes [5, 16] on the suffix tree and the segment tree to facilitate the search.
Suffix trees, segment trees, and rank and select indexes are introduced as follows.

Let T be a text of length n over an alphabet Σ. The suffix tree [15] of T ,
denoted by ST , is a compact trie of all suffixes of T , where each edge is labeled by
a non-empty substring of T . For each node v in the suffix tree, the concatenation
of the edge labels along the path from the root to v is called the path label of v.
The path label of each leaf is exactly a suffix of T , and we label a leaf by i if
its path label is the suffix T [i, n]. For a pattern P , its locus μ(P) is the node v,
nearest from the root, whose path label has the prefix P . Let Lv be the set of
leaf labels in the subtree of ST rooted at v. We have the following.

Lemma 1 ([15]). If μ(P) exists, all occurrences of P in T are those in Lμ(P).

The set Lv is not explicitly stored. Rather, an array L is used to store the labels
of the leaves of ST , from left to right, and each node v maintains only two indices

16 C.-C. Yu, B.-F. Wang, and C.-C. Kuo

bv and ev, so that Lv is equal to the set of numbers in L[bv, ev]. The maximum
out-degree of each internal node v in ST is |Σ|. To facilitate the traversal of the
tree, hash tables [9] can be used to achieve the following result.

Lemma 2 ([9, 11]). Given a string T over an alphabet Σ, the suffix tree ST
occupies O(|T |) space. For any pattern P , μ(P) can be determined in O(|P |)
time, and all occurrences of P in T can be found in O(|P | + occ) time, where
occ is the number of occurrences.

The segment tree GT of interval [1, n] is an ordered balanced binary tree with
n leaves, where the ith leaf represents the elementary interval [i, i], and each
internal node v represents the union of the intervals represented by its descendant
leaves. All intervals represented by the nodes in the segment tree are standard
intervals. We have the following.

Lemma 3 ([1]). The segment tree GT of interval [1, n] can be constructed in
O(n) time and O(n) space. Any interval [i, j], 1 ≤ i ≤ j ≤ n, can be decomposed
into a collection of O(log n) standard intervals in O(log n) time.

Let S[1, n] be a character string of length n over an alphabet Σ. For any c ∈ Σ
and any position i, a rank query rankc(S, i) reports the number of symbols c in
S[1, i]. A select query selectc(S, j) returns the position of the jth occurrence of c
in S. For instance, if T = 231131321, then rank3(S, 6) = 2 and select3(S, 2) = 5.
We have the following.

Lemma 4 ([5,16]). For a binary string S of length n, using O(n) preprocessing
time and O(n) bits of space, rank and select queries can be answered in O(1) time.

Lemma 5 ([7]). For a character string S of length n over an alphabet Σ of size
O(polylog(n)), we can construct an index for S using O(n log |Σ|) bits of space
which supports rank and select queries in O(1) time.

3 The Positional Pattern Matching Problem

Let T be a text of length n and P be a pattern of length p. Our idea is to classify
patterns into two types: short patterns and long patterns, and develop a different
index for each of them. Let δ be a threshold to be specified later. A pattern P
is short if p ≤ δ, and is long otherwise. A positional pattern matching index is
abbreviated as a PPM index, and a positional pattern matching query with a
pattern P and position s is abbreviated as a PPM query (P, s).

In Section 3.1, we first assume |Σ| = O(1) and present a basic version of our
PPM index, which uses O(n) words and supports O(p) query time. Then, in
Section 3.2, we show how to extend the result to |Σ| = O(polylog(n)).

3.1 An Index for Finite Alphabets

Throughout this subsection, we assume that |Σ| = O(1) and set δ = log n.

Indexes for the Positional Pattern Matching Problem and Related Problems 17

2 5 6 8 10 13 A

2 6 10 13 B

Fig. 1. An illustration of bridges

3.1.1 An Index for Short Patterns
Given a text T , we first construct a suffix tree ST of T . For ease of discussion,
we assume that ST is a binary tree. In case it is not true, since the out-degree
of each internal node is a constant, we simply transform ST into a binary tree.
Recall that the set of all occurrences of a given pattern P in T is Lμ(P). For
each node v, define Av to be the sequence obtained by sorting the labels in Lv

increasingly. Then, given a PPM query (P, s), the desired answer for the query is
succ(Aμ(P), s). The locus μ(P) in ST can be determined in O(p) time. Therefore,
to complete our index for short patterns, it suffices to show how to compute
succ(Aμ(P), s) in O(p) time using O(n) space. The main idea is based on the
bridging technique [18]. Let A and B be two increasing sequences. The bridges
from A to B are pointers from the elements of A to their respective successors in
B. An example is given in Fig 1. As will be seen later, in our application, bridges
are constructed only from a sequence to its subsequences. Assume that B is a
subsequence of A. Then, it is easy to see that for any given number s, succ(B, s)
can be obtained in O(1) time by using the bridge of succ(A, s). Consider the
example in Fig 1. Given that succ(A, 7) = 8, we can obtain succ(B, 7) = 10
immediately by following the bridge of the element 8.

Now, we are ready to describe our index for short patterns, which is obtained
by augmenting the suffix tree ST with additional data structures. Let r be the
root of ST . We define the depth of a vertex v in ST , denoted by d(v), to be
the number of edges on the path from the root r to v. For each node v with
d(v) < log n, bridges are constructed from Av to Au for each child u of v. As
mentioned, a PPM query (P, s) can be answered by determining the value of
succ(Aμ(P), s). Let (v1 = r, v2, . . ., vg = μ(P)) be the path from the root r
of ST to μ(P). At the root vertex v1 = r, since Lr = {1, 2, . . . , n}, we have
succ(Av1 , s) = s trivially. When going downwards from vi to vi+1, 1 ≤ i < g, we
compute succ(Avi+1 , s) in O(1) time by using the bridge of succ(Avi , s). In this
way, when we reach the node μ(P), succ(Aμ(P), s) is obtained. Thus, a PPM
query can be answered in O(p) time for a short pattern P .

A straightforward implementation of the above index requires O(n log n)
space, as we need to store the sequences Av and the bridges. In the following,
we show that the bridges can be maintained with smaller space. More specifi-
cally, we show that rank indexes can be used to serve the function of bridges.
Our scheme is motivated by the wavelet tree [8, 14] and thus has a similar fla-
vor. However, as will be discussed in Remark 1 in Section 3.1.2, our index is
essentially different from the wavelet tree.

18 C.-C. Yu, B.-F. Wang, and C.-C. Kuo

2 5 6 8 11 13 A

2 6 11 13 A0

10

5 8 10 A1

0 1 0 1 0 0 B 1

Fig. 2. An illustration of bit-vector B

Lemma 6. Let A0 and A1 be two sorted sequences and let A be the sorted se-
quence obtained by merging A0 and A1. The bridges from A to A0 and A1 can
be maintained using O(|A|) bits of space.

Proof. Rather than storing a pointer from each element of A to its successor in
A0, we employ binary rank query to serve the function of bridges. The details are
as follows. We create a bit-vector B of size |A| to indicate whether each element
of A belongs to A0 or A1. Precisely, B[i] = 0 if A[i] belongs to A0 and B[i] = 1
otherwise. An example is illustrated in Fig 2. We preprocess B for binary rank
queries. Consider a fixed element A[i]. If B[i] = 0, the successor of A[i] in A0

is itself and the successor of A[i] in A1 is the first number A[i′] with B[i′] = 1
in A[i, |A|]. Similarly, if B[i] = 1, the successor of A[i] in A1 is itself and the
successor of A[i] in A0 is the first number A[i′] with B[i′] = 0 in A[i, |A|]. Thus,
for each element A[i], the position of its successor in Aj , j ∈ {0, 1}, can be
obtained as follows: if B[i] = 0, we compute succ−1(A0, A[i]) = rank0(B, i) and
succ−1(A1, A[i]) = rank1(B, i) + 1; otherwise, we compute succ−1(A0, A[i]) =
rank0(B, i)+1 and succ−1(A1, A[i]) = rank1(B, i). By Lemma 4, it takes O(|A|)
bits for supporting binary rank queries. Thus, the lemma holds. �	

Given a node v and its two children left(v) and right(v), by Lemma 6 we can
construct bridges from Av to Aleft(v) and Aright(v) using O(|Av|) bits. The sorted
sequences Av, Aleft(v), and Aright(v) are only needed for constructing the bridges.
Thus, we carry out the construction level by level in a bottom-up fashion, keeping
the sorted sequences only in two adjacent levels, so that the space remains O(n)
during the construction. For the bridge structures, we spend O(n) bits at a fixed
level l < log n of ST , resulting in O(n log n) bits of space in total.

For a PPM query (P, s), by following the bridges we can determine k =
succ−1(Aμ(P), s) in O(p) time. However, what we need is the value of Aμ(P)[k].
In order to obtain Aμ(P)[k], our intent is not to store all the sequences Av in
advance but to follow the bridges back to the root. In other words, given a node
v and a position k in Av, our problem is to identify the number Av[k] without
storing Av. As shown in [8], this identification can be done efficiently by applying
binary select indexes. To make this paper self contained, we give the following.

Lemma 7 ([8]). Let A0 and A1 be two sorted sequences and let A be the sorted
sequence obtained by merging A0 and A1. We can maintain a data structure of
O(|A|) bits, so that given a position k in A0 (or A1), the corresponding position
of A0[k] (or A1[k]) in A can be determined in O(1) time.

Indexes for the Positional Pattern Matching Problem and Related Problems 19

Proof. Similar to the proof of Lemma 6, we create a bit-vector B of size |A|
to indicate whether each number in A belongs to A0 or A1. We preprocess B
for binary select queries. Then, for any position k in Aj , j ∈ {0, 1}, we have
Aj [k] = A[selectj(B, k)]. Therefore, the lemma holds. �	

To identify Av[k] for some given node v and position k with d(v) ≤ log n, we
construct the structure of Lemma 7 for each node v of ST with 1 < d(v) ≤ log n
in a bottom-up fashion to facilitate the identification. It takes O(n log n) bits in
total. Then, by Lemma 7, we can determine the position of Av[k] in Ar in O(d(v))
time by backtracking from v to the root r. Since Ar[i] = i for i = 1, 2, . . . , n, the
value of Aμ(P)[k] can be found in O(d(v)) time.

In summary, given a PPM query (P, s), we first locate μ(P) in ST . By follow-
ing the bridges the value k = succ−1(Aμ(P), s) is also determined. Then, tracing
from μ(P) back to the tree root r, we compute k′ as the position of Aμ(P)[k] in
Ar. Finally, we report k′ as the answer. We have the following.

Theorem 1. We can construct an O(n)-word index for a string T over a finite
alphabet, so that a positional pattern matching query can be answered in O(p)
time for any short pattern P .

3.1.2 An Index for Long Patterns
In this section, we present an O(n)-word PPM index with O(p + log n) = O(p)
query time for a long pattern. Recall that in the suffix tree, we maintain an
array L and two indices bv, ev at each internal node v such that Lv is the set
of numbers in L[bv, ev]. Thus, given a PPM query (P, s), the desired answer is
succ(L[bμ(P), eμ(P)], s). And therefore, our problem is to preprocess the array L,
so that succ(L[i, j], s) can be efficiently answered for any interval [i, j] and num-
ber s. Before presenting our index, we remark that this problem can be solved
in the desired time and space bounds by employing the range successor indexes
in [14,22]. However, our scheme has the advantage that it can be extended to ob-
tain more efficient indexes for the position-restricted pattern matching problem
over an alphabet of size O(polylog(n)), as will be discussed in Section 4.

We build an index for the finding of succ(L[i, j], s) as follows. First, construct
the segment tree GT of [1, n]. Consider a fixed internal node v in GT . Let [bv, ev]
be the interval represented by v, and define Av to be the sequence obtained by
sorting the elements in L[bv, ev]. Next, for each internal node v of GT , construct
the bridge structure of Lemma 6 from Av to Aleft(v) and Aright(v), where left(v)
and right(v) are, respectively, the left and right children of v. We also maintain
the structure of Lemma 7 so that the position in Av of an element in Aleft(v) or
Aright(v) can be found in O(1) time. Since GT is a binary tree and its height is
O(log n), the structures of Lemmas 6 and 7 take O(n log n) bits of space.

With the above constructed data structure, succ(L[i, j], s) is found as follows.
By traversing downwards from the root r, we find a set C of O(log n) nodes
which represent the O(log n) canonical pieces of the interval [i, j]. Then, we have
succ(L[i, j], s) = min{succ(L[bv, ev], s) | v ∈ C} = min{succ(Av, s) | v ∈ C}. Let
CT be the subtree of GT that is induced by the nodes in C and their ancestors.

20 C.-C. Yu, B.-F. Wang, and C.-C. Kuo

The size of CT is O(log n). For each node v ∈ C, the position kv = succ−1(Av, s)
can be obtained in O(log n) time by using bridges. After the values of all kv,
where v ∈ C, are available, the task becomes to identify the minimum among
all Av[kv], without explicitly storing the sorted sequences Av. From the proof
of Lemma 7, using binary select queries, each Av[kv] can be found in O(log n)
time by tracing from v back to the root. However, finding all Av[kv] requires
O(log2 n) time in total. Fortunately, the finding of all Av[kv] is unnecessary,
since only their minimum is required. Consequently, at each internal node u of
CT , we can abandon the finding of Av[kv] for all of its descendant leaves v that
are impossible to induce the answer. For example, let v1, v2 ∈ C be two nodes
and u be their parent. In addition, let s1 and s2 be the positions of Av1 [kv1] and
Av2 [kv2] in Au. If s1 > s2, then the finding of Av1 [kv1] can be ruled out, since
Av1 [kv1] is not possible to be the final answer. Similarly, if s2 > s1, the finding
of Av2 [kv2] can be ruled out. Therefore, with a bottom-up traversal on CT , we
can compute min{succ(Av, s) | v ∈ C} in O(log n) time. Combining Theorem 1
and the above result, we obtain the following.

Theorem 2. We can construct an O(n)-word index for a string T over a finite
alphabet, so that a positional pattern matching query can be answered in O(p)
time for any pattern P .

Remark 1. Similar to the wavelet tree [8], our segment tree structure for long
patterns is a complete binary tree augmented with binary rank and select in-
dexes. But, it is essentially different from the wavelet tree. Consider the array L.
In our segment tree structure, the ith leaf represents L[i] and each internal node
v represents the sorted sequence of the numbers in L[bv, ev]. However, in the
wavelet tree of L, the ith leaf represents i and each internal node v represents
the subsequence of L containing only the numbers in Σv, where Σv is the set
of numbers represented by the descendant leaves of v, which corresponds to a
subinterval of [1, n]. For example, if L = (3, 8, 2, 5, 4, 1, 7, 6), the root represents
L and the node v with Σv = {5, 6, 7, 8} represents the subsequence (8, 5, 7, 6).

3.2 An Index for |Σ| = O(polylog(n))

In this section, the threshold δ is set to be log|Σ| n. By definition, a long pattern
P has length p > log|Σ| n and thus p = Ω(log n/ log log n). Therefore, we can
apply Yu et al.’s O(n)-word index [22] to achieve O(p + log n/ log log n) = O(p)
query time for long patterns. In the following, we sketch how to obtain an O(n)-
word index for short patterns with O(p) query time, which in turn completes
our index for |Σ| = O(polylog(n)). (Due to the page limitation, the details are
deferred to the full version of this paper.) Recall that our PPM index for |Σ| =
O(1) relies on binary rank and select indexes with O(1) query time to facilitate
the traversal on a binary tree. With some effort, we can apply Lemma 5 to
obtain generalized results of Lemmas 6 and 7, which are beneficial for traversing
a tree structure with branching factor O(polylog(n)). The generalized results
can then be employed on each node v in ST with d(v) ≤ log|Σ| n. Since the
out-degree of each internal node in ST is O(|Σ|) = O(polylog(n)), the space

Indexes for the Positional Pattern Matching Problem and Related Problems 21

usage is O(n log |Σ|) bits for a fixed level. In total, our index takes O(n log |Σ|×
log|Σ| n) = O(n log n) bits. The query process is similar to that of the index in
Section 3.1.1. In summary, we have the following.

Theorem 3. We can construct an O(n)-word index for a string T over an al-
phabet of size O(polylog(n)), so that a positional pattern matching query can be
answered in O(p) time for any pattern P .

4 The Position-Restricted Pattern Matching Problem

For ease of exposition, we only present indexes for T that report all occurrences
of P in T [s, n] in sorted order for any pattern P and position s given later. It is
easy to modify our solutions to report all occurrences of P in T in sorted order
within a given query interval [s, t].

The indexes are adapted from the index in Section 3. We classify patterns
into three types: short patterns, medium patterns, and long patterns. A pattern
P of length p is short if p ≤ log|Σ| n and is long if p > log n. If log|Σ| n < p ≤
log n, then P is a medium pattern. Using O(n log n) space, we first show how to
answer each query for each type of patterns in O(p + occ) time. Next, the space
requirement is reduced to the desired bounds.

An Index for Short Patterns. Our index for short patterns is the same
as that in Section 3.2, except that we explicitly store Av for each node v in
ST with d(v) ≤ log|Σ| n. Given a PPM query (P, s), it is easy to see that
Aμ(P)(succ−1(Aμ(P), s), |Aμ(P)|) is the sorted occurrences of P in T [s, n]. There-
fore, the query time is O(p + occ) and the space usage is O(n log|Σ| n).

An Index for Medium Patterns. Similar to the index for short patterns,
we explicitly store Av for each node v in ST with log|Σ| n < d(v) ≤ log n,
so that all occurrences of P in T [s, n] can be easily reported in sorted order
once succ−1(Aμ(P), s) has been determined. To save space, we do not construct
bridges for those nodes v with log|Σ| n < d(v) ≤ log n. Instead, for medium pat-
terns we employ two dominance queries to determine succ−1(Aμ(P), s). Given
an array A, a dominance query asks to return the number of elements in A[1, i]
that are less than or equal to s, where both i and s are specified in the query
stage. We index the array L for dominance queries, so that we can obtain
succ−1(Aμ(P), s) by determining the numbers of elements in L[1, bμ(P) − 1] and
in L[1, eμ(P)], respectively, that are less than or equal to s. Since L consists
of integers in [1, n], we use the O(n)-word index in [3] to support each domi-
nance query in O(log n/ log log n) time. In summary, we answer the query of a
medium pattern as follows. First, locate the locus μ(P). Then, invoke two dom-
inance queries to compute succ−1(Aμ(P), s). Finally, output the subsequence
Aμ(P)(succ−1(Aμ(P), s), |Aμ(P)|). The total space is O(n log n) and the query
time is O(p + log n/ log log n + occ) = O(p + occ).

An Index for Long Patterns. Our index for long patterns is the same as
that in Section 3.1.2, except that we explicitly store Av at each node v of the

22 C.-C. Yu, B.-F. Wang, and C.-C. Kuo

segment tree GT . Let U be the sorted sequence of the occurrences of P in T [s, n].
Recall that to answer a PPM query, the interval [bμ(P), eμ(P)] is decomposed
into O(log n) canonical pieces. Let C be the set of the O(log n) nodes that
represent the pieces. Then, U can be obtained by merging the |C| sequences
Av(succ−1(Av, s), |Av|), where v ∈ C. Here, we use Willard’s Q∗-heap [21] for the
merge. The Q∗-heap maintains a set S of O(polylog(n)) integers in {1, 2, . . . , n}
using O(|S|) space and supports each insertion, deletion, and find-min operation
in O(1) time, where a find-min operation returns the smallest element in the
heap. With the Q∗-heap, the numbers in U can be reported one by one with
constant delay between two successive outputs. The total query time is O(p +
log n + occ) = O(p + occ).

Reducing the Space Usage. So far, we have obtained an O(n log n)-word
index with O(p+ occ) query time. The O(n log n) space requirement comes from
maintaining the sorted sequences Av on the suffix tree ST and the segment tree
GT . To save the space, we utilize the following result by Chazelle [4].

Lemma 8 ([4]). Let BT be a binary tree of height O(log n) with n leaves, where
each leaf is associated with a number. For each internal node v, denote by Sv

the sorted sequence of all numbers associated in its descendant leaves. Then, we
can construct a data structure so that the retrieval of an arbitrary element in a
sequence Sv can be accomplished in (1) O(n logε n) space and O(1) time; or (2)
O(n) space and O(logε n) time.

In the indexes for short patterns and medium patterns, we explicitly store the
sorted sequence Av at each node v in ST with d(v) ≤ log n, which requires
O(n log n) space. Our intent is to apply the result in Lemma 8 to store the
sequences Av. More specifically, we intend to build a binary tree BT of height
O(log n) with n leaves such that for each node v in ST with d(v) ≤ log n, there
exists a corresponding node v′ in BT with Lv = Lv′ . The tree BT is obtained
from ST as follows. First, we create BT as a copy of ST . Then, for each internal
node v with d(v) = log n, we remove all other internal nodes in the subtree
rooted at v and then connect v to each of its descendant leaves, making BT a
tree of height log n + 1. There is still a problem. The out-degree of each node in
BT can be as large as |Σ|, whereas the result of Lemma 8 holds only for binary
trees. To resolve this problem, we transform BT into a binary tree by using
the technique in [18] as follows: for each interval node v with k > 2 children
v1, v2, . . . , vk, we replace v and its children by a weight-balanced binary search
tree with root v and leaves v1, v2, . . . , vk, in which node vi has weight equal to
its number of descendant leaves. The above transformation increases the tree
height by O(log n) [18]. Thus, we can apply Chazelle’s data structures on BT to
store the sorted sequences Av, where v is a node in ST with d(v) ≤ log n. For
long patterns, Chazelle’s data structures can be directly applied on GT to store
the sorted sequences Av. Consequently, we obtain the following.

Theorem 4. We can construct an index for a text T over an alphabet of size
O(polylog(n)), so that each position-restricted query is answered in (1) O(n logε n)
space and O(p + occ) time; or (2) O(n) space and O(p + occ logε n) time.

Indexes for the Positional Pattern Matching Problem and Related Problems 23

5 Variable-Length Don’t Care Pattern Matching Problem
Let T be a text over an alphabet Σ and P = P1∗P2∗ . . . ∗Pm be a pattern
such that each Pi is a string over Σ. Pinter [17] had a linear-time algorithm for
determining whether P occurs in T . His algorithm is based upon the following
observation: if P1 does not occur in T , then neither does P ; otherwise, P occurs
in T if and only if P2∗ . . . ∗Pm occurs in T [k1 + |P1|, n], where k1 is the first
occurrence of P1 in T . Consider the example in Fig 3. The first occurrence of P1

is at position 3. Thus, our problem reduces to determining whether P2∗P3 occurs
in T [8, n]. Similarly, since the first occurrence of P2 in T [8, n] is at position 11, the
problem further reduces to determining whether P3 occurs in T [15, n]. Finally,
since P3 occurs in T [15, n], we conclude that P occurs in T .

T CACAATCAATCACAATCACACATGGCCTGCT
P1 CAATC
P2 CACA
P3 GC

Fig. 3. Finding a pattern P1∗P2∗P3 in a text T

Inspired by Pinter’s work, we construct the O(n)-word PPM index in Theo-
rem 3 for T and then answer a query pattern P = P1∗P2∗ . . . ∗Pm as follows. Ini-
tially, set i = 1 and s = 1. Then, iterate as follows. First, find the first occurrence
k of Pi in T [s, n] by a PPM query. Next, if k does not exist, report that P does
not occur in T . Otherwise, do the following: if i = m, report that P occurs in T ;
and otherwise, increase i by one, set s = k+|Pi|, and then proceed to the next it-
eration. It is easy to see that the query time is O(|P1|+|P2|+. . .+|Pm|) = O(|P |).
We obtain the following.

Theorem 5. We can construct an O(n)-word index for a string T over an al-
phabet Σ of size O(polylog(n)), so that we can determine in O(p) time whether
a pattern P over Σ ∪ {∗} occurs in T .

6 Concluding Remarks

Mäkinen and Navarro [14] had an O(n)-word index with O(p+log n) query time
for the following problem: preprocess a text T , so that for any pattern P and
integer k, the kth occurrence of P in T can be found efficiently. Using the result
in [3], the query time can be improved to O(p + log n/ log log n). We remark
that when |Σ| = O(polylog(n)), using our data structure in Section 3.2, the
query time can be further improved to O(p). One direction for further study is
to investigate more pattern matching problems which can be solved efficiently
based on the idea in this paper.

References

1. Bentley, J.L.: Solutions to Klee’s rectangle problems. Department of Computer

Science, Carnegie Mellon University (1977) (manuscript)

2. Bertossi, A.A., Lodi, E.: Parallel string matching with variable length don’t cares.

J. Parallel Distrib. Comput. 22(2), 229–234 (1994)

24 C.-C. Yu, B.-F. Wang, and C.-C. Kuo

3. Brodal, G.S., Jørgensen, A.G.: Data structures for range median queries. In: Dong,

Y., Du, D.-Z., Ibarra, O.H. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 822–831.

Springer, Heidelberg (2009)

4. Chazelle, B.: A functional approach to data structures and its use in multidimen-

sional searching. SIAM J. Comput. 17(3), 427–462 (1988)

5. Clark, D.: Compact pat trees. PhD Thesis, Univ. Waterloo (1996)

6. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rahman, M.S., Walen, T.: Improved

algorithms for the range next value problem and applications. In: 25th Annual

Symposium on Theoretical Aspects of Computer Science, pp. 205–216 (2008)

7. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations

of sequences and full-text indexes. ACM Transactions on Algorithms 3(2) (2007)

8. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:

14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 841–850 (2003)

9. Hagerup, T., Miltersen, P.B., Pagh, R.: Deterministic dictionaries. J. Algo-

rithms 41(1), 69–85 (2001)

10. Inenaga, S., Takeda, M., Shinohara, A., Hoshino, H., Arikawa, S.: The minimum

DAWG for all suffixes of a string and its applications. In: Apostolico, A., Takeda,

M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 153–167. Springer, Heidelberg (2002)

11. Keller, O., Kopelowitz, T., Lewenstein, M.: Range non-overlapping indexing and

successive list indexing. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007.

LNCS, vol. 4619, pp. 625–636. Springer, Heidelberg (2007)

12. Kucherov, G., Rusinowitch, M.: Matching a set of strings with variable length don’t

cares. Theor. Comput. Sci. 178(1-2), 129–154 (1997)

13. Lam, T.-W., Sung, W.-K., Tam, S.-L., Yiu, S.-M.: Space efficient indexes for string

matching with don’t cares. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835,

pp. 846–857. Springer, Heidelberg (2007)

14. Mäkinen, V., Navarro, G.: Rank and Select Revisited and Extended. Theor. Com-

put. Sci. 387(3), 332–347 (2007)

15. McCreight, E.M.: A space-economical suffix tree construction algorithm. J.

ACM 23(2), 262–272 (1976)

16. Munro, J.I.: Tables. In: 16th Conference on Foundations of Software Technology

and Theoretical Computer Science, pp. 37–42 (1996)

17. Pinter, R.Y.: Efficient string matching with don’t-cares. Combinatorial Algorithms

on Words 12, 11–29 (1985)

18. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.

Springer, Heidelberg (1985)

19. Sustik, M.A., Moore, J.S.: String searching over small alphabets. Technical Report

TR-07-62, Department of Computer Sciences, University of Texas at Austin (2007)

20. Thathoo, R., Virmani, A., Lakshmi, S.S., Balakrishnan, N., Sekar, K.: TVSBS:

A fast exact pattern matching algorithm for biological sequences. Current Sci-

ences 91(1), 47–53 (2006)

21. Willard, D.E.: Examining computational geometry, van Emde Boas trees, and hash-

ing from the perspective of the fusion tree. SIAM J. Comput. 29(3), 1030–1049

(2000)

22. Yu, C.-C., Hon, W.-K., Wang, B.-F.: Efficient data structures for the orthogonal

range successor problem. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609,

pp. 96–105. Springer, Heidelberg (2009)

Dynamic Range Reporting in External Memory

Yakov Nekrich

Department of Computer Science

University of Bonn

yasha@cs.uni-bonn.de

Abstract. In this paper we describe a dynamic external memory data

structure that supports range reporting queries in three dimensions in

O(log2
B N+ k

B
) I/O operations, where k is the number of points in the an-

swer and B is the block size. Our data structure uses O(N
B

log2
2 N log2

2 B)

blocks of space and supports updates in O(log3
2 N) amortized I/Os. This

is the first dynamic data structure that answers three-dimensional range

reporting queries in log
O(1)
B N + O(k

B
) I/Os.

1 Introduction

The orthogonal range reporting problem is to maintain a set of points S in a
data structure so that for an arbitrary axis-aligned query rectangle Q all points
in Q∩S can be reported. This is a fundamental problem with several important
applications, such as geographic information systems, computer graphics, and
databases. In this paper we present a dynamic external-memory data structure
that supports three-dimensional range reporting queries in O(log2

B N + k
B) I/O

operations and updates in O(log3
2 N) I/O operations, where k is the number of

reported points and N is the number of points in the data structure.
In the external memory model the data is stored in disk blocks of size B, a

block can be read into internal memory from disk (resp. written from internal
memory into disk) with one I/O operation (I/O), and computation can only be
performed on data stored in the internal memory. The space usage is measured in
the number of blocks, and the time complexity is measured in the number of I/O
operations. A more detailed description of the external memory model can be
found in e.g. [22] or [4]. Since we are interested in minimizing the number of I/O
operations, an efficient data structure should support queries in logO(1)

B N+O(k
B)

I/O operations.
In the RAM computation model, there are both static and dynamic data struc-

tures that use N logO(1)
2 N space and support d-dimensional orthogonal queries

in O(logO(1)
2 N+k) time for any constant d; see e.g., [3] for a survey of previous re-

sults. In the external memory model, these results can be matched only in two di-
mensions (dynamic data structure) and three dimensions (static data structure).
The dynamic data structure of Arge et al. [9] uses O((N/B) log2 N/ log2 logB N)
blocks of space and supports two-dimensional range reporting queries and up-
dates in O(logB N + k

B) and O(logB N(log2 N/ log2 logB N)) I/O operations re-
spectively. The static data structure of Vengroff and Vitter [23,22] supports

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 25–36, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

26 Y. Nekrich

Table 1. Upper bounds for orthogonal range reporting in RAM and external memory

models in two and three dimensions. Only dynamic results in the RAM model are listed.

For comparison, the space usage of data structures in the RAM model is specified in

blocks of size B. We denote by ω and ε arbitrary constants such that ε > 0 and ω > 7/8;
our result is marked with an asterisk.

Model Ref. Query Space Update

d = 2:

RAM [13] O(log2 N/ log2 log2 N + k) O((N/B) logω N) O(logω N)

IO [9] O(logB N + k
B

) O((N/B) log2 N/ log2 logB N) O(logB N log2 N/ log2 logB N)

d = 3

RAM [13] O((log2 N/ log2 log2 N)2 + k) O((N/B) logω+1 N) O(logω+1 N)

IO [23] O(logB N + k
B

) O((N/B) log4
2 N) -

IO [1] O(logB N + k
B

) O((N/B) log3
2 N) -

IO [2] O(logB N + k
B

) O((N/B)(log2 N/ log2 logB N)3) -

IO [2] O(logB N(log2 N/ log2 logB N) + k
B

) O((N/B)(log2 N/ log2 logB N)2) -

IO [9]+[5] O(logB N(log2 N/ log2 log2 N) + k
B

) O((N/B) log
2+ε
2 N) O(logB N log

1+ε
2 N)

IO * O(log2
B N + k

B
) O((N/B) log2

2 N log2
2 B) O(log3

2 N)

three-dimensional range reporting queries in O(logB N + k
B) I/Os and uses

O((N/B) log4
2 N) blocks of space. The space usage of a three-dimensional data

structures was improved by Afshani [1] and Afshani, Arge, and Larsen [2] to
O((N/B) log3

2 N) and O((N/B)(log2 N/ log2 logB N)3) blocks respectively; see
Table 1. The query cost can be improved if all point coordinates are positive in-
tegers bounded by a parameter U [15,16,1], and the space usage can be reduced
for some special cases of orthogonal queries, such as dominance queries; we refer
the reader to [1,2] for a more detailed description of special cases and to [7] for
an extensive description of previous results.

Using range trees with fan-out logε N [5], we can transform a two-dimensional
data structure into a data structure that supports d-dimensional orthogonal
queries, so that the cost of queries increases by a O(log2 N/ log2 log2 N) factor
for each dimension, while the space usage and update cost increase by a factor of
O(log1+ε

2 N) for each dimension. The recent (static) dimension reduction tech-
nique of [2] increases the cost of queries by a O(log2 N/ log2 logB N) factor and
the space usage also by a O(log2 N/ log2 logB N) factor. These techniques can
be used to obtain three-dimensional data structures that support queries with
O(logB N(log2 N/ log2 log2 N) + k

B) and O(logB N(log2 N/ log2 logB N) + k
B)

I/Os respectively; see Table 1. However, these data structures do not achieve
O(logc

B N) query bound for any B and a constant c. In the case when B =
Ω((log2 N)f(N)) for some function f(N) = Ω(1), we need Ω(f(N) log2

B N) +
O(k

B) I/O operations to answer queries using the combination of [9] and [5] or
the result of [2]. We also don’t know if there are efficient (static or dynamic)
data structures for range reporting in d ≥ 4 dimensions that report all points in
logO(1)

B N + O(k
B) I/O operations.

In this paper we describe a data structure that uses O(N
B log2

2 N log2
2 B)

blocks of space, supports updates in O(log3
2 N) amortized I/Os, and answers

three-dimensional orthogonal range reporting queries in O(log2
B N + k

B) I/Os.
Thus our result “matches” the query complexity of the dynamic RAM data
structure of [13]. Moreover, the space usage of our data structure differs by a

Dynamic Range Reporting in External Memory 27

O(log2
2 B(log2 logB N)3/ log2 N) factor from the best previously known external

memory static data structure [2]. Hence, when B is not very large, i.e., when
log2 B = o(

√
log2 N/(log2 logB N)3), our dynamic data structure uses less space

than the static data structure of [2].
In section 2 we describe a dynamic data structure that supports dominance

queries in O(k
B) I/Os when the set S contains O(B4/3) points. Our data structure

maintains O(log2 B) t-approximate boundaries of [23], that will be defined in
section 2. We show that each t-approximate boundary can be constructed with
O(B log2 B) I/O operations for ≥ B and a small set S. The cost of re-building
the data structure is distributed among O(B4/3) updates with the lazy updates
approach: the newly inserted and deleted points are stored in two buffers for each
t-approximate boundary, and each t-approximate boundary is re-built when one
of its buffers contains the sufficient number of points. We further improve the
update time by showing how to store only two buffers for all boundaries. The
trick of storing inserted (deleted) points for different boundaries in the same
buffer may be of independent interest. Using standard techniques, more general
orthogonal range queries can be reduced to dominance queries as described in
section 2.1.

In section 3 we describe a data structure that supports (2, 1, 2)-sided queries
Q = [a, b] × [c, +∞) × [d, e] on a set of points S such that p.z = O(Bf) for a
small constant f and for any p ∈ S. Here and further we denote by p.x, p.y, and
p.z the x-, y-, and z-coordinates of a point p. The main idea of section 3 is to
store points in a data structure T that is similar to the external memory priority
search tree, but contains three-dimensional points. The data structure for small
sets from section 2.1 is used to guide the search in each node of T . The data
structure that supports arbitrary (2, 1, 2)-sided queries is described in section 4.
The data structure is based on a range tree with fan-out Θ(Bf) for a small
constant f that is built on z-coordinates of points. The main idea of section 4 is
to store the data structure Fv of section 3 in every node v of the range tree. The
z-coordinate of each point p in Fv is replaced with an index bounded by Θ(Bf)
that indicates which child of the node v contains p. We show how a general
(2, 1, 2)-sided query can be reduced to O(logB N) queries to data structures Fv.
Finally, we can obtain a data structure for general three-dimensional queries
from the data structure for (2, 1, 2)-sided queries using standard techniques.

Thus our approach is based on a combination of some previously known
techniques with some novel ideas. In particular we believe that the data struc-
tures described in sections 3 and 4 and the general decomposition of the three-
dimensional range reporting problem into subproblems are new.

2 Dominance Reporting for Small Sets

A point q dominates a point p if all coordinates of q are greater than or equal to the
respective coordinates of p. The dominance reporting query is to report all points
p ∈ S that dominate a query point q. A three-dimensional dominance reporting
query is equivalent to reporting all points in a product of three half-open inter-
vals. In this section we describe a dynamic data structure that contains O(B4/3)

28 Y. Nekrich

elements and supports dominance reporting queries and updates. The main idea
of this data structure is that the t-approximate boundary [23] for a small set of
elements can be efficiently maintained under insertions and deletions.

Overview. A three-dimensional t-approximate boundary was introduced by
Vengroff and Vitter [23]. A t-approximate boundary for a three-dimensional set
S is a surface V that satisfies the following properties: (1) V divides the space, i.e.
every point either dominates a point on V or is dominated by a point of V ; (2) ev-
ery point of V is dominated by at least t and at most 3t points of S. An example
of a t-approximate boundary constructed with the algorithm of [23] is shown on
Fig. 1. There are O(|S|) points on V called inward corners, such that every point
on V dominates an inward corner and an inward corner does not dominate any
point on V (except of itself). There is a linear space data structure that finds an
inward corner c of V that is dominated by a query point q, if such inward corner
c exists, and reports all points of S that dominate c in O(logB(|S|)+ t/B) I/Os.
We maintain (log2 B)/6 t-approximate boundaries V1,V2, . . . ,Vs, where Vi is a
B · 22i-approximate boundary. Given a query point q, we examine V1,V2, . . . ,Vi

and find the minimal index i, such that q dominates an inward corner cj of Vi

using the method described in [23]. We can test each Vi in O(logB B4/3) = O(1)
I/Os and thus find the index i in O(i) I/Os. If q dominates an inward corner cj

of Vi but does not dominate any point on Vi−1, then q is dominated by Θ(22iB)
points of S. Since q dominates cj , all points that dominate q also dominate cj .
Hence, we can examine the list of points that dominate cj and report all points
that dominate q in O(22i) = O(k

B) I/O operations. Thus the total query cost is
O(k

B). See [23] for a more detailed description.
We can construct a t-approximate boundary Vi with O(B) I/O operations

if S contains O(B4/3) points and t ≥ B; the algorithm is described in the full
version of this paper [17]. In the next part of this section we show how the
data structure for a small set of points can be dynamized by distributing the
construction cost among Θ(B) updates. This is achieved by storing buffers with
newly inserted and deleted points and periodically rebuilding the data structure.
Then, we show that we can support updates in O(1) amortized I/Os on the
data structure that consists of O(log2 B) boundaries by storing one buffer with
recently inserted points and one buffer with recently deleted points for all t-
approximate boundaries.

Deletion-only Data Structure. A t-approximate boundary Vi supports lazy
deletions in O(1) amortized I/O operations. When a point p is deleted, we simply
add it to a list D of deleted elements that may contain up to 22i−1B points.
Let T be the list of points that dominate a query point q; we can obtain T

in O(|T |
B) I/Os as described in the beginning of this section. We can sort T

in O(|T |
B logB |T |) = O(22i logB(22iB)) = O(22i) I/Os (we assume that each

point in S has a unique integer identifier). We can also sort D in O(22i) I/Os.
Then, we traverse T and D and remove from T all points that occur in D in
O(|T |+|D|

B) = O(22i) I/Os. Since we use Vi when k
B = Ω(22i), the query cost

remains unchanged. When the number of deleted points in D equals to B ·22i/2,

Dynamic Range Reporting in External Memory 29

X

Y

R

R’ R

R

y

x

z

D

2R’

E

W
5

4

Z

1

2R

R’

4

3

A

B

C

3R’

Fig. 1. An example of a t-approximate boundary. The points of the set S are not shown.

Ridges R′
2, R′

3, R′
4, and R′

5 are drawn with dotted lines. Ridges R1, R2, R3, and R4

are drawn with solid lines. A, B, C, D, E are examples of inward corners. X, Y, Z, and

W are examples of in-corners; X belongs to ridge R1, and Y , Z, and W belong to

ridge R3.

we re-build the data structure for Vi without deleted points in O(B) I/Os and
empty the list D.

Supporting Insertions. Insertions can be supported with a similar technique.
Inserted points are stored in the list of new points I that may contain up to
22i−1B points. When a point p is deleted, we add it to a list D of deleted points
as described above. If a point p stored in I is deleted, we simply remove p from
I. When I contains 22i−1B points, we re-build the data structure for Vi. To
answer a query, we examine all points from T that do not belong to D in O(k

B)
I/Os as described in the previous paragraph. Then, we traverse the list I and
report all point that dominate the query point in O(22i−1) = O(k

B) I/Os.

Updates with O(1) Amortized Cost. Since our data structure consists of
O(log2 B) boundaries Vi, the total cost of an update is O(log2 B). We can reduce
the amortized update cost to a constant by storing newly inserted points for all
boundaries in one list I and newly deleted points for all boundaries in one list
D. An array D stores pointers to elements of D, such that all elements between
D[i] and the end of D are removed from the data structure for Vi. An array I
stores pointers to elements of I, such that all elements between I[i] and the end
of I are new elements that are not yet inserted into the data structure for Vi.
The pointer end(D) (end(I)) points to the last (in chronological order) deleted

30 Y. Nekrich

(inserted) element stored in D (I). Both D and I also contain one additional
dummy element lD (resp., lI) that follows end(D) (resp., end(I)). When a new
point p is inserted, we store p in the lI , set the pointer end(I) so that it points
to lI , and append a new dummy element after end(I). A deleted element is
appended at the end of D with the same procedure. After 22i−1B deletions we
rebuild the data structure for Vi without deleted elements and change D[i] so
that it points to lD. After 22i−1B insertions we rebuild the data structure for
Vi with new elements and change I[i] so that it points to lI . After Θ(log2 B ·B)
updates, we re-build the data structures for all Vi as well as the lists I and D.
This incurs an amortized cost O(1). The total cost of re-building data structures
and (pointers to) lists D and I in a sequence of B4/3 update operations is
O(

∑r
j=0 2r−jB) = O(B4/3), where r = log2 B/6 + O(1) is the index of the last

t-approximate boundary Vs. We can report all points that dominate an inward
corner of Vi in O(22i) I/Os as described above. Hence, dominance queries can
be supported in O(k

B) I/Os. This result is summarized in the following Lemma.

Lemma 1. Elements of a set S such that |S| = O(B4/3) can be stored in a
data structure that uses O(|S|

B log2 |S|) blocks of space and supports dominance
queries in O(k

B) I/O operations and updates in O(1) I/O operations amortized.

2.1 (1, 1, 2)- and (2, 1, 2)-Sided Queries for Small Sets

Suppose that bx, by, and bz are natural constants such that 1 ≤ bx, by, bz ≤ 2.
We say that a query Q is a (bx, by, bz)-sided query if the projection of Q on the
x-axis is bounded on bx sides, the projection of Q on the y-axis is bounded on
by sides and the projection of Q on the z-axis is bounded on bz sides. Thus the
projection of Q on the x-axis (resp., y- or z-axis) is a an infinite half-open interval
if bx (resp., by or bz) equals 1, and the projection of Q on the x-axis (resp., y- or
z-axis) is a finite closed interval if bx (resp., by or bz) equals 2. Dominance queries
considered in section 2 are equivalent to (1, 1, 1)-sided queries. Using a standard
reduction [11,21], we can transform a O(s(N)) space data structure that supports
(1, 1, 1)-sided queries in O(t(N) + k/B) time and updates in O(u(N)) time into
a O(s(N) logm

2 N) space data structure that supports (bx, by, bz)-sided queries in
O(t(N)+ k

B) time and updates in O(u(N) logm
2 N) time; here m = bx+by+bz−3.

Applying this transformation to the external memory data structure of Lemma 1,
we obtain the following result.

Lemma 2. Let 1 ≤ bx, by, bz ≤ 2 and m = bx + by + bz − 3. Elements of
a set S such that |S| = O(B4/3) can be stored in a data structure that uses
O(|S|

B logm+1
2 |S|) blocks of space and supports (bx, by, bz)-sided queries in O(k

B)
I/O operations and updates in O(logm

2 (|S|)) I/O operations amortized.

In particular, we can support (2, 1, 2)-sided queries in O(k
B) I/Os and updates in

O(log2
2 B) I/Os on a set S that contains Θ(B4/3) points using a data structure

that needs O(B1/3 log3
2 B) blocks of space.

Dynamic Range Reporting in External Memory 31

3 Extended Three-Sided Queries

In this section we describe a data structure that supports (2, 1, 2)-sided reporting
queries when z-coordinates of all points are positive integers bounded by Θ(Bf),
p.z = Θ(Bf) for all points p ∈ S. Here f is a constant such that f ≤ 1/6.

Data Structure. Our data structure is a modification of the external memory
priority search tree [9]. The (external) priority search tree is a tree built on
x-coordinates of two-dimensional points. A point stored in a leaf is associated
with an ancestor of l or with l itself, so that the following property is guaranteed:
points associated with a node v have larger y-coordinates than points associated
with descendants of v. The main idea of our modification is to maintain this
property for every possible value of the z-coordinate. Thus, we maintain the
data structure of section 2.1 in each tree node and use it to guide the search,
i.e., to decide which descendants of a node must be visited.

We construct a tree T with fan-out Θ(Bf) on the set of x-coordinates of
all points. We store Θ(B1+f) values, i.e., x-coordinates of Θ(B1+f) consecutive
points of S, in each leaf node. The range of an internal node v is an interval
rng(v) = [av, bv], where av and bv are the smallest and the largest values stored
in the leaf descendants of v.

We associate a set of points Sv with each node v of T . Sets Sv can be con-
structed by visiting nodes of T in pre-order. For the root r of T , let Lr be the
set of all points in S sorted in increasing order by their y-coordinates, and let
Lr[j] be the set of all points p ∈ S, p.z = j, sorted in increasing order by their
y-coordinates. The set Sr[j] contains the last B points of Lr[j], i.e., B points
with largest y-coordinates. For each non-root node v of T , the list Lv contains
all points p such that p.x belongs to the range of v and p does not belong to any
Sw, where w is an ancestor of v; points in Lv are sorted in increasing order by
their y-coordinates. The list Lv[j] contains all points p ∈ Lv such that p.z = j.
If v is an internal node, the set Sv[j] contains the last B points of Lv[j]. If v
is a leaf, then Sv[j] contains all points from Lv[j]. Note that Lv[j] and Sv[j]
may contain less than B points or even be empty for some j. The set Sv is the
union of all sets Sv[j], Sv = ∪jSv[j]. For any node v, |Sv| = O(B1+f) The set S′

v

contains at most one point from each set Sv[j]. If |Sv[j]| = B, then S′
v contains

the point p ∈ Sv[j] with minimal y-coordinate; otherwise S′
v contains no points

from Sv[j].
We store data structures Dv and D′

v, implemented according to Lemma 2,
in each internal node v of T . The data structure Dv contains all points of Svi

for every child vi of v, and the data structure D′
v contains all points of S′

vi
for

every child vi of v. Thus Dv contains O(B1+2f) points, and D′
v contains O(B2f)

points. By Lemma 2, Dv and D′
v can be stored in O(B2f log3

2 B) and O(log3
2 B)

blocks respectively and support (2, 1, 2)-sided queries in O(1) I/O operations.
In every node v of T , we also store a data structure Ev that contains all points
of Sv and supports (2, 1, 2)-sided queries. Note that lists Lv and Lv[j] and sets
Sv[j] are not stored in the data structure; we only use them to simplify the
description.

32 Y. Nekrich

Search Procedure. Given a query Q = [a, b]×[c, +∞)×[d, e], we identify leaves
la and lb: la contains the smallest value that is greater than a and lb contains
the largest value that is smaller than b. Let πa and πb denote the paths from the
root of T to la and lb respectively. Let π = πa ∪πb denote the set of all nodes of
T that belong to πa or πb. Every point p ∈ S such that p.x ∈ [a, b] is stored in
some set Sv such that either v belongs to π or v is a descendant of a node that
belongs to π.

We can visit all nodes v ∈ π and report all points in Sv∩Q in O(logB N) I/Os
using data structures Ev (we ignore the time needed to output points). Points
in descendants of v ∈ π can be found using the following property.

Fact 1. Let v′, v′ �∈ π, be a child of a node v ∈ π, and let w be a descendant of
v′. If Sw[j] ∩ Q �= ∅, then |Spar(w)[j] ∩ Q| = B where par(w) denotes the parent
of a node w.

Proof : Recall that Q = [a, b]×[c, +∞)×[d, e]. For a child v′ of v, such that v′ �∈ π,
either rng(v′) ∩ [a, b] = ∅ or rng(v′) ⊂ [a, b]. Hence, Fact 1 is non-trivial only in
the case when j ∈ [d, e] and rng(v′) ⊂ [a, b]. In this case a point p ∈ Sw[j] (resp.,
p ∈ Spar(w)[j]) belongs to Q if and only if p.y ≥ c. Suppose that some p ∈ Sw[j]
belongs to Q. Since p.y ≥ c and p′.y > p.y for any point p′ ∈ Spar(w)[j], all points
p′ ∈ Spar(w)[j] belong to Q. The set Spar(w)[j] contains B points because Sw[j]
is not empty. �

Consider a node v, such that v ∈ πa and v �∈ πb. Suppose that the i-th child vi

of v belongs to πa and rng(vi+1) = [a′, b′]. We define the query Qv = [a′, b] ×
[c, +∞)× [d, e]. For any point p stored in a descendant w of v, such that w �∈ πa,
queries Qv and Q are equivalent: p belongs to Q if and only if p belongs to
Qv. Points in Sw ∩ Q = Sw ∩ Qv for all descendants w of v, w �∈ πa, can be
reported with the following recursive procedure. We report all points in Qv ∩Svi

for all children vi of v using the data structure Dv. All children vi of v, such that
Qv ∩ Svi [j] contains at least B points for at least one j, can be identified using
D′

v. We visit all such non-leaf nodes vi and recursively call the same procedure.
Our procedure reports all points in Sw ∩ Qv: Suppose that Sw[j] ∩ Qv �= ∅

for some w and j. Then Spar(w)[j] ∩ Qv contains B points by Fact 1. Let w′ be
ancestor of w that is a descendant of v, i.e., w′ is situated on the path from w to
v. By the same argument, Sw′ [j]∩Qv also contains B points. Hence, the parent
of w will be visited and all points in Sw ∩ Qv will be reported by querying the
data structure Dpar(w). If kv is the total number of points in Sw ∩ Qv for all
w, then the search procedure takes O(kv

B) I/O operations: Queries answered by
Dw and D′

w in every visited node w take O(1) I/O operations and a node w is
visited only if |Sw[j] ∩ Qv| = B for at least one value of j.

All points in Sw ∩ Q for all descendants w of a node v, such that v ∈ πb

but v �∈ πa or v is the lowest common ancestor of la and lb, can be found
with the same procedure. The only difference is that the query Qv is defined
differently: if v ∈ πb, v �∈ πa, and the i-th child vi of v belongs to πb, then
Qv = [a, b′] × [c, +∞) × [d, e] where rng(vi−1) = [a′, b′]. If v is the lowest com-
mon ancestor of la and lb, then v ∈ πa and v ∈ πb. Suppose that vi ∈ πa and

Dynamic Range Reporting in External Memory 33

vl ∈ πb where vi and vl are the children of v. Then Qv = [a′, b′′]× [c, +∞)× [d, e]
where rng(vi+1) = [a′, b′] and rng(vl−1) = [a′′, b′′]. Hence, a query Q can be
answered with O(logB N + k

B) I/O operations.

Space Usage and Updates. Every data structure Dv contains O(B1+2f)
points and can be stored in O(B2f log3

2 B) blocks of space. Every D′
v contains

O(B2f) points and can be stored in O(log3
2 B) blocks. There are O(N

B1+2f) inter-
nal nodes in T ; hence, all Dv and D′

v use O(N
B log3

2 B) blocks. Every data struc-
ture Ev contains O(B1+f) points. Since the total number of nodes is O(N

B1+f),
all Ev can be stored in O(N

B log3
2 B) blocks.

When a point p is inserted into S, we identify the leaf lp in which p.x must be
stored and traverse the path πp from lp to the root until we find a node v such
that p.y < mv.y and mv is the point with maximal y-coordinate in Sv[p.z]. Then,
we insert p into Sv[p.z]. Now Sv[p.z] may contain B+1 points; if |Sv[p.z]| = B+1,
the point sv with the smallest y-coordinate must be removed from Sv[p.z]. We
insert the point sv into Svi [p.z] where vi is the child of v such that vi belongs
to πp. If Svi [p.z] contains B + 1 points, we move the point with the smallest
y-coordinate from Svi [p.z] to Su[p.z] where u is the child of vi, u ∈ πp. The
procedure continues until Su[p.z] contains at most B points or the leaf lp is
reached. In every node u visited by the insertion procedure, one point is inserted
into Su and at most one point is deleted from Su. Hence data structures Eu,
Dw, and D′

w, where w denotes the parent of u, can be updated in O(log2
2 B)

I/Os. Since O(logB N) nodes are visited, insertion takes O(log2 N log2 B) I/O
operations. Deletions can be supported with a similar procedure.

It remains to show how the tree T can be re-balanced after update operations,
so that the height of T remains O(logB N). We implement the base tree T
as a WBB-tree [10] with leaf parameter nl = B1+f and branching parameter
nb = Bf . In a WBB-tree with this choice of parameters the following invariants
are maintained: each leaf contains between B1+f and 2B1+f − 1 values and for
each internal node v on level h (counting from the lowest level) there are between
B1+(h+1)f/2 and 2B1+(h+1)f −1 values stored in leaf descendants of v. It is also
shown in [10] that internal node has between Bf/4 and 4Bf children. Hence,
the height of T is O(logB N).

If the invariants of a WBB-tree are violated after an insertion, i.e., if a node
v on level h contains 2B1+(h+1)f values (resp., v contains 2B1+f values if v is
a leaf), then we split the node v into v′ and v′′ that contain B1+(h+1)f (B1+f)
values each. Splitting a node does not affect the children of v, i.e., every child
of v becomes the child of v′ or v′′ after splitting. It can be shown [10] that a
node v on level h is split at most once when a sequence of B1+(h+1)f/2 values
has been inserted into leaf descendants of v. See [10] for a complete description
of the splitting procedure.

When a node v is split into v′ and v′′, data structures in nodes v′, v′′, and
in their descendants may change. Since Sv[j] = Sv′ ∪ Sv′′ for each j after the
split procedure, at least one of Sv′ [j] and Sv′′ [j] contains less than B points.
Suppose that for some j, the set Sv′ [j] contains less than B points. If Svi [j] �= ∅
for at least one child vi of v′, then some points must be moved from sets Svt [j]

34 Y. Nekrich

into Sv[j], where vt is a child of v′. Let dv = min(| ∪ Svt [j]|, B − |Sv|). We can
identify dv points with largest y-coordinates in ∪Svt , using Dv′ and insert those
points into Sv′ [j]. Data structures Ev′ , Dw, and D′

w where w is a parent of v′ are
updated accordingly. If dv > 0, we recursively check sets Svt for all children vt of
v′. Data structures stored in the node v′′ and the descendants of v′′ are processed
in the same way. Each point is moved only once and the total number of moved
points does not exceed the total number of values stored in leaf descendants of
v′ and v′′. When a point is moved, each affected data structure can be updated
in O(log2

2 B) I/Os. The number of values stored in a node v on level h and all
its descendants is Θ(B1+(h+1)f). Since v is split at most once after B1+(h+1)f/2
update operations, the amortized cost for splitting a node is O(log2

2 B). Every
leaf has O(logB N) ancestors; hence, the total amortized costs of splits incurred
by an inserted point is O(log2 B log2 N). Thus the total cost of an insertion is
O(log2 N log2 B).

We implement deletions with the lazy deletions approach. Suppose that a
point p such that p.x is stored in a leaf lp is deleted from S. Then we mark the
value p.x as deleted in lp. When N/2 values stored in leaves of T are marked
as deleted, we rebuild the tree T and all secondary data structures. This can be
done in O(N log2

2 B) I/O operations. Hence, rebuilding after deletions incurs an
amortized cost of O(log2

2 B).
The result of this section is summed up in the following Lemma.

Lemma 3. Suppose that z-coordinates of all points are bounded by O(Bf).
There exists a O(N

B log3
2 B) space data structure that supports (2, 1, 2)-sided

queries in O(logB N + k
B) I/O operations and updates in O(log2 N log2 B) amor-

tized I/O operations.

4 Range Reporting in Three Dimensions

Using range trees with fan-out Θ(Bf), we can transform the result of section 3
into a data structure for (2, 1, 2)-sided queries. For completeness, we sketch the
data structure below.

We construct an external memory range tree on z-coordinates of the points
in a set S: z-coordinates of all points are stored in leaves of the tree; each leaf
contains Θ(B) values and each internal node has Θ(Bf) children. We denote
by Rv the set of points whose z-coordinates are stored in leaf descendants of
the node v. The data structure Fv contains one point for each point p ∈ Rv. If
p = (p.x, p.y, p.z), p ∈ Rv, is also stored in the i-th child vi of v, then Fv contains
the point p′ = (p.x, p.y, i). In other words, we replace the z-coordinate of each
point p ∈ Rv with an index i ∈ [1, Θ(Bf)], such that p ∈ Rvi . Fv supports
(2, 1, 2)-sided queries as described in Lemma 3.

For each internal node v, let int(v, i, j) denote the interval [mini, maxj] where
mini denotes the minimal value stored in a leaf descendant of the i-th child of
v, and maxj denotes the maximal value stored in a leaf descendant of the j-th
child of v. For a query Q = [a, b]× [c, +∞)× [d, e], we can represent the interval

Dynamic Range Reporting in External Memory 35

[d, e] as a union of O(logB N) intervals int(v, i, j). Hence, Q can be answered by
answering O(logB N) queries of the form [a, b]× [c, +∞)× int(v, i, j). Every such
query can be answered by the data structure Fv. Hence, a (2, 1, 2)-sided query
can be answered with O(log2

B N + k
B) I/O operations. Since each point is stored

in O(logB N) data structures Fv, the space usage and update cost increase by a
factor O(logB N) compared with the data structure of Lemma 3.

Lemma 4. There exists a O(N
B log2 N log2

2 B) space data structure that supports
(2, 1, 2)-sided queries in O(log2

B N + k
B) I/Os and updates in O(log2

2 N) I/Os
amortized.

Finally, we apply the reduction described in section 2.1 and obtain the main re-
sult of this paper. The space usage and update cost increase by a factor O(log2 N)
in comparison with Lemma 4.

Theorem 1. There exists a O(N
B log2

2 N log2
2 B) space data structure that sup-

ports three-dimensional orthogonal range reporting queries in O(log2
B N + k

B)
I/O operations and updates in O(log3

2 N) amortized I/O operations.

5 Conclusion

In this paper we presented the first dynamic data structure that supports three-
dimensional orthogonal range reporting queries in O(log2

B N +K/B) I/O opera-
tions. This query cost “matches” the query bound of the fastest internal memory
data structure. The space usage of our data structure is quite comparable with
the most space-efficient static external memory data structure [2]. It is an in-
teresting open question, whether the O(log3

2 N) update cost can be significantly
improved.

Using our approach, we can also obtain data structures that support spe-
cial cases of range reporting queries; these data structures answer queries in
O(log2

B N) I/Os, but use less space and support faster update operations than
the data structure of Theorem 1. In particular, we can obtain:

(i) The data structure for (1, 1, 1)-sided queries (three-dimensional dominance
queries) that uses O((N/B) log2 N) blocks of space and supports updates in
O(log2

B N) I/Os.
(ii) The data structure for (1, 1, 2)-sided queries that uses O((N/B) log2 N log2 B)
blocks of space and supports updates in O(log2 N logB N) I/Os.
(iii) The data structure for (2, 1, 2)-sidedqueries that uses O((N/B) log2 N log2

2 B)
blocks of space and supports updates in O(log2

2 N) I/Os.

The data structure (iii) is the result of Lemma 4. We obtain the results (i) and (ii)
by replacing the data structures Dv, D′

v, and Ev in the proof of Lemma 3 with
data structures that support (1, 1, 1)-sided queries (resp. (1, 1, 2)-sided queries)
on a set with O(B4/3) points. Details will be given in the full version of this
paper.

36 Y. Nekrich

References

1. Afshani, P.: On Dominance Reporting in 3D. In: Halperin, D., Mehlhorn, K. (eds.)

ESA 2008. LNCS, vol. 5193, pp. 41–51. Springer, Heidelberg (2008)

2. Afshani, P., Arge, L., Larsen, K.D.: Orthogonal Range Reporting in Three and

Higher Dimensions. In: Proc. FOCS 2009, pp. 149–158 (2009)

3. Agarwal, P.K., Erickson, J.: Geometric Range Searching and its Relatives. In:

Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Compu-

tational Geometry, pp. 1–56. AMS Press, Providence (1999)

4. Aggarwal, A., Vitter, J.S.: The Input/Output Complexity of Sorting and Related

Problems. Communications of the ACM 31(9), 1116–1127 (1988)

5. Alstrup, S., Brodal, G.S., Rauhe, T.: New Data Structures for Orthogonal Range

Searching. In: Proc. FOCS 2000, pp. 198–207 (2000)

6. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked Ancestor Problems. In: Proc. FOCS

1998, pp. 534–544 (1998)

7. Arge, L.: External Memory Data Structures. In: Meyer auf der Heide, F. (ed.) ESA

2001. LNCS, vol. 2161, pp. 1–29. Springer, Heidelberg (2001)

8. Arge, L.: The Buffer Tree: A Technique for Designing Batched External Data

Structures. Algorithmica 37, 1–24 (2003)

9. Arge, L., Samoladas, V., Vitter, J.S.: On Two-Dimensional Indexability and Op-

timal Range Search Indexing. In: Proc. PODS 1999, pp. 346–357 (1999)

10. Arge, L., Vitter, J.S.: Optimal External Memory Interval Management. SIAM J.

Comput. 32(6), 1488–1508 (2003)

11. Chazelle, B., Guibas, L.J.: Fractional Cascading: II. Applications. Algorith-

mica 1(2), 163–191 (1986)

12. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On Data Structures and Asym-

metric Communication Complexity. J. Comput. Syst. Sci. 57, 37–49 (1998)

13. Mortensen, C.W.: Fully Dynamic Orthogonal Range Reporting on RAM. SIAM J.

Computing 35(6), 1494–1525 (2006)

14. Nekrich, Y.: A Data Structure for Multi-Dimensional Range Reporting. In: Proc.

SoCG 2007, pp. 344–353 (2007)

15. Nekrich, Y.: External Memory Range Reporting on a Grid. In: Tokuyama, T. (ed.)

ISAAC 2007. LNCS, vol. 4835, pp. 525–535. Springer, Heidelberg (2007)

16. Nekrich, Y.: I/O-Efficient Point Location in a Set of Rectangles. In: Laber, E.S.,

Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp.

687–698. Springer, Heidelberg (2008)

17. Nekrich, Y.: Dynamic Range Reporting in External Memory, arXiv: 1006.4093v1

18. Overmars, M.H.: Efficient Data Structures for Range Searching on a Grid. J. Al-

gorithms 9(2), 254–275 (1988)

19. Pǎtraşcu, M.: (Data) Structures. In: Proc. FOCS 2008, pp. 434-443 (2008)

20. Pǎtraşcu, M., Thorup, M.: Time-space Trade-offs for Predecessor Search. In: Proc.

STOC 2006, pp. 232–240 (2006)

21. Subramanian, S., Ramaswamy, S.: The P-range Tree: A New Data Structure for

Range Searching in Secondary Memory. In: Proc. SODA 1995, pp. 378–387 (1995)

22. Vitter, J.S.: External Memory Algorithms and Data Structures: Dealing with Mas-

sive Data. ACM Computing Surveys 33(2), 209–271 (2001)

23. Vengroff, D.E., Vitter, J.S.: Efficient 3-D Range Searching in External Memory.

In: Proc. STOC 1996, pp. 192–201 (1996)

A Cache-Oblivious Implicit Dictionary
with the Working Set Property

Gerth Stølting Brodal, Casper Kejlberg-Rasmussen, and Jakob Truelsen

MADALGO�, Department of Computer Science, Aarhus University, Denmark

{gerth,jakobt,ckr}@madalgo.au.dk

Abstract. In this paper we present an implicit dictionary with the work-

ing set property i.e. a dictionary supporting insert(e), delete(x) and pre-
decessor(x) in O(log n) time and search(x) in O(log �) time, where n is

the number of elements stored in the dictionary and � is the number

of distinct elements searched for since the element with key x was last

searched for. The dictionary stores the elements in an array of size n
using no additional space. In the cache-oblivious model the operations

insert(e), delete(x) and predecessor(x) cause O(logB n) cache-misses and

search(x) causes O(logB �) cache-misses.

1 Introduction

In this paper we consider the problem of creating an implicit dictionary [9] with
the working set property. An implicit dictionary maintains a set of n distinct keys,
and encodes a data structure supporting fast insertions, deletions, predecessor
queries and searches in the permutation of these keys as they are laid out in
an array [9]. Between operations no additional space usage is allowed, while
during an operation only a constant number of word registers may be used. The
number of elements n is assumed externally maintained. Computation is done
in a machine with a constant number of registers with a word size of Θ(log n)
bits. All operations are unit cost, similar to the RAM model. Extensive research
has been done in the implicit/in-place model, from as early as binary heaps [11],
to an in-place 3-d convex hull algorithm [4]. Implicit dictionaries have been the
topic of several papers culminating in a dictionary supporting all operations in
O(log n) time [5]. For a more extensive overview see [8].

The working set property states that the time to search for an element e with
key x must be O(log �), where � is the number of distinct elements searched
for since e was last searched for. This property has been achieved by numer-
ous structures. The splay tree [10], a skip list variant [2], and the working set
structure [7], all achieve the property in the amortized, expected or worst-case
sense. The unified access bound, which is a generalization of the working set
bound, is achieved in [1]. The unified access bound states that, if �(g) is the

� Center for Massive Data Algorithmics, a Center of the Danish National Research

Foundation.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 37–48, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

38 G.S. Brodal, C. Kejlberg-Rasmussen, and J. Truelsen

Table 1. The operation time, and space overhead of important structures for the

dictionary problem

Reference Insert/Delete Search Predecessor
Additional
space (words)

[5] O(log n) O(log n) O(log n) None

[7] O(log n) O(log �) O(log �) O(n)

[3, Sec. 2] O(log n) O(log �) exp. O(log n) O(log log n)

[3, Sec. 3] O(log n) O(log �) exp. O(log �) exp. O(
√

n)

This paper O(log n) O(log �) O(log n) None

number of distinct elements accessed since g was last accessed, and d(g, e) de-
notes the rank distance between g and e, then the search time for e must be
O(ming log(�(g)+d(g, e)+2)). In [3] two structures with low space overhead are
presented, achieving the working set property in the expected sense, see Table 1.

The dictionary in [5] is, in addition to being implicit, also designed for the
cache-oblivious model [6] where all the operations imply O(logB n) cache-misses,
where B is the cache-line length that is unknown to the algorithm.

1.1 Our Results

We present an implicit dictionary with the working set property that supports in-
sertions, deletions, and predecessor queries in O(log n) time and search queries in
O(log �) time. Our result improves the construction of [3, Section 2] by requiring
no additional space. Furthermore our structure is cache-oblivious and supports
insert, delete and predecessor operations in O(logB n) cache-misses and search
in O(logB �) cache misses.

Our implicit cache-oblivious dictionary makes essential use of the notion of an
implicit moveable dictionary, i.e. a dictionary stored in a consecutive sub-array
that can be moved to the left or the right, one position at a time. We construct a
moveable dictionary from a constant number of the implicit and cache-oblivious
dictionaries from [5], achieving a dictionary inheriting the same properties, but
which is also moveable. The moveable dictionary is in itself an interesting result
because it is a general transformation, that can be applied to any data structure
that can be laid out in an array and grows/shrinks in one end and supporting
insertions and deletions. Hence we can plug in say a binary heap, and get a
moveable binary heap.

In the literature the working set property is often stated in terms of the num-
ber of operations. We note that if we perform a search for an element whenever
it is inserted, we will also satisfy these kinds of bounds.

This paper is organized as follows. In Section 2 we present our implicit
moveable dictionary. In Section 3 we show how our implicit working set dic-
tionary structure is constructed by composing O(log log n) implicit moveable
dictionaries.

A Cache-Oblivious Implicit Dictionary with the Working Set Property 39

2 A Moveable Dictionary

In this section we describe an implicit moveable dictionary which can be laid
out in an array in the range [i; j], where n = j − i + 1 is the number of elements
in the dictionary. When deleting an element from the dictionary we are allowed
to shrink the dictionary from the left or the right end, such that the structure
now lies in the range [i + 1; j] or [i; j − 1], respectively. Likewise we can insert
and expand the dictionary at the left or right end such that the structure now
lies in the range [i − 1; j] or [i; j + 1], respectively. The structure also supports
search and predecessor operations. All operations run in O(log n) time. The
moveable dictionary is implicit except for O(log n) extra bits that need to be
stored/encoded externally (in the Di structures in Section 3).

The dictionary supports the following operations:

– Insert-left(e) and insert-right(e): inserts an element e into the dictionary which
grows in the left and right side, respectively.

– Delete-left(x) and delete-right(x): deletes the element with key x from the
dictionary which shrinks in the left and right side, respectively.

– Search(x): returns the element e with key x in the dictionary if such an
element exits, otherwise none is returned.

– Predecessor(x): is given a key x and returns the element e in the dictionary
with the largest key less than x.

An amortized solution can be obtained using two of the dictionaries by
Franceschini and Grossi [5] (in the following denoted FG dictionaries). Let r
be an index in the range i ≤ r ≤ j. One FG dictionary denoted R is located
in the range [r; j] and grows to the right as normal, and one FG dictionary de-
noted L is located in the range [i; r − 1] and grows to the left, i.e. for L we have
inverted all the indexes of the original FG dictionary. The insert-left and insert-
right operations insert elements into L and and R, respectively. The delete-left
operation searches for the element e to be deleted in L and R. If e is in L it is
deleted from L and we are done. Otherwise e is deleted from R and an arbitrary
element is deleted from L and inserted into R – provided L is non-empty. If L is
empty we first rebuild the data structure such that L and R differ in size by at
most one, by repeatedly reinserting into new L and R structures starting from
the new index r =

⌈
i+j
2

⌉
. The delete-right operation is handled symmetrically.

To search for an element with a given key we search in L and then in R; to find
the predecessor element of a given key we find the predecessor in L and R and
return the largest of the two. Since [5] supports all operations in O(log n) time,
all operations run in O(log n) amortized time, which e.g. can be seen using the
potential function Φ = | |L| − |R| |.

In the following we describe how to deamortize the above construction using
incremental rebalancing of L and R. An additional FG dictionary C is placed
between L and R (see Figure 1). In the following we w.l.o.g. assume that n ≥ 24,
such that all intervals stated below are guaranteed to include an integer. If L or
R get outside the range [3

24n, 7
24n], say L is getting too big/small, we initialize an

incremental job to make L smaller/bigger by transferring elements to/from C.

40 G.S. Brodal, C. Kejlberg-Rasmussen, and J. Truelsen

RL C

or

Fig. 1. We have three FG dictionaries L, C and R, where L always grows/shrinks in

the left direction, and R grows/shrinks in the right, and C will change direction during

the execution of the jobs to shrink or grow L or R

Each time an insert and delete operation is executed we perform a constant
number of steps of the current job. While resizing L there might be a pending
job waiting for resizing R, and vice versa. During the execution of a job we have
a temporary FG dictionary, which can be one of either L′, C′ or R′, depending
on how far we are in the execution of the job (see Figure 2).

2.1 Methods and Jobs

The insert-left and delete-left operations, and the grow-left and shrink-left jobs
described here have analogous right-versions.

Search(x). We always have the structures L, C and R, and possibly one of the
structures L′, C′ or R′. We search each of the at most four structures. If we find
an element e with key x we return e, otherwise we return none.

Predecessor(x). As in search we search for the predecessor in each of the struc-
tures L, C, R and possibly one of L′, C′ or R′, and return the largest of the four
candidates found.

Insert-left(e). We insert e into L. If |L| > 7
24n we initialize a shrink-left job unless

a left job is already running/pending.

Delete-left(x). We delete the element with key x from L. We can do this even
though the element we want to delete resides in L′, C, C′, R or R′ by swapping the
element we want to delete with one from L. We can swap elements by performing
two deletions and two insertions. If |L| < 3

24n we initialize a grow-left job unless
a left job is already running/pending.

Grow-left. The job consists of the following steps to be performed incrementally
(see Figure 2 (left)). Notice that during the incremental work, deletions and
insertions are performed on L and R by the update operations. We let ninit

denote the size of the dictionary when the job is initialized, and assume that
ninit is remembered when the job is initialized.

1) If C is not growing to the left then turn C around so it grows toward L. We
turn C around by creating a new C′ in the growing end of C which grows
towards C, into which we insert all the elements of C, one element at a time.

2) Construct L′ of size
⌈

2
24ninit

⌉
at the beginning of L, growing to the right, by

deleting elements from C and inserting them into L′.

A Cache-Oblivious Implicit Dictionary with the Working Set Property 41

RL C

RL C

RL C

RL C

1)

2)

3)

4)

5)

RL C

RL C

G
ro
w
-l
ef
t

S
h
ri
n
k
-l
ef
t

RL C

RL C

RL C

RL C

RL′ C

RL C

L′

L′

L′

L′

L′

L′

L′

L

1)

2)

3)

4)

5)

Fig. 2. The steps of the two operations grow-left and shrink-left, notice that they are

almost each other’s inverse. (Left) The five steps of the grow-left operation, notice that

in step 4) the arrow at the top means that we have split L up into two by use of

address-mapping. (Right) The five steps of the shrink-left operation, in step 3) we have

again used address-mapping to split L in two.

3) Turn L′ around so it faces L, like we turned C in step 1).
4) Continue deleting an element from C and inserting it into L′, so L′ expands

into L. The element overridden in L is moved into the empty place in C
where we took the element to place in L′. We do this by splitting L into two
pieces by address-mapping, see steps 3) and 4) in Figure 2 (left). When we
have moved L completely to the right of L′, we swap the names of L and L′.

5) Merge L′ back into C, by deleting an element from L′ and inserting it into C
until L′ is empty.

Shrink-left. The job consists of the following steps (see Figure 2 (right)). Notice
the similarity to grow-left.

1) If C is not growing to the left then turn C around so it grows toward L.
2) Create L′ by deleting

⌈
5
24ninit

⌉
elements from C, one element at a time and

inserting them into L′, which we create to the left of C.
3) Swap the names of L and L′. Delete an element from L′ and insert it into C so

it expands into L, then move the element overridden in L to the empty space
to the left of L′, do this one element at a time until L is moved completely
to the left of L′.

4) Turn L′ around so it faces C.
5) Merge L′ back into C.

42 G.S. Brodal, C. Kejlberg-Rasmussen, and J. Truelsen

2.2 Correctness

The correctness of the search and predecessor operations follows directly from
the fact that the dictionary consists of at most four FG dictionaries. Similarly
the insert-left and insert-right operations insert a single new element into an FG
dictionary and otherwise only moves elements between the FG dictionaries. The
only operations remaining to be considered are the delete-left and delete-right
operations. In the following we only consider the delete-left operation (delete-
right is symmetric). The only technical detail we need to argue about is that
there always is a non-empty FG dictionary L oriented to the left that has its
leftmost element stored in the leftmost entry in the subarray.

In the following when considering a job, we let ninit, n0, nfinish denote the size
of the moveable dictionary: when the job was initialized, when the execution of
the job started, and just after it is finished, respectively.

By performing the incremental work sufficiently fast, we will be able to per-
form the job during at most βn0 moveable dictionary updates, for any constant
β > 0. An upper bound on the number of primitive steps (that is movement
of one element from one FG dictionary to another one, and possibly move in
memory) per update is: During the execution of the job at most βn0 insertions
can take place, i.e. the dictionary always has size at most (1 + β)n0. Therefor
each of the five steps of a job require at most (1 + β)n0 primitive steps. In total
there are at most 5(1 + β)n0 primitive steps. By performing at least 5(1 + β)/β
primitive steps per update, the job finishes within βn0 updates.

To relate ninit and n0 we make the observation that any job under execution
will finish during the next βn updates, where n is the current number of elements
in the dictionary. To see this, observe that a job that has run for d updates needs
to be executed for at most βn0 − d ≤ β(n0 − d) ≤ βn further updates, provided
β ≤ 1. From this it follows that when a job is initialized, it at most takes βninit

updates before the current job finishes and the new job starts being executed,
i.e. (1 − β)ninit ≤ n0 ≤ (1 + β)ninit.

Let tfinish denote the number of updates between the initialization of a job
until it it is finished. We have tfinish ≤ βninit + βn0 ≤ βninit + β(1 + β)ninit =
(β2 + 2β)ninit. We get nfinish ≤ ninit + tfinish ≤ (1 + β2 + 2β)ninit and nfinish ≥
ninit − tfinish ≥ (1 − β2 − 2β)ninit.

During the lifetime of a job, i.e. between its initialization and its the time it
finish, there are always at least 3

24ninit − tfinish ≥ (3
24 − β2 − 2β)ninit elements

that still can be deleted from the leftmost FG dictionaries which shrink the
subarray from the left. By selecting β sufficiently small such that β2 + 2β < 3

24 ,
this number is always non-zero.

What remains to be argued is that i) 3
24nfinish ≤ |L| ≤ 7

24nfinish when a left
job is finished, ii) |C| ≥

⌈
2
24ninit

⌉
when a grow job starts its execution, and iii)

|L| ≥
⌈

5
24ninit

⌉
immediately before step 3) in a shrink job. We need i) to ensure

that 3
24n ≤ |L| ≤ 7

24n holds just before a job is initialized, and ii) and iii) to
ensure that grow-left and shrink-left are well defined, respectively.

The above can be shown by the following observations: i) After a shrink or
grow job |L| ≤ 5

24ninit + 1 + tfinish ≤ 6
24ninit + tfinish which is less than 7

24nfinish

A Cache-Oblivious Implicit Dictionary with the Working Set Property 43

for β2 + 2β ≤ 1
31 . Similarly after a shrink or grow job |L| ≥ 5

24ninit − tfinish

which is greater than 3
24nfinish for β2 + 2β ≤ 2

27 . ii) Before grow-left |C| ≥
n0−|L|−|R| ≥ (ninit−βninit)−(7

24ninit+βninit)− 7
24ninit(1+β) which is greater

than 3
24ninit ≥

⌈
2
24ninit

⌉
for β ≤ 7

55 . iii) In shrink-left |L| ≥ 7
24ninit− tfinish which

is greater than 6
24ninit ≥

⌈
5
24ninit

⌉
for β2 +2β ≤ 1

24 . We note that setting β = 1
63

will satisfy all the stated constraints.
The O(log n) time bounds for the operations follow from the O(log n) time

bounds of the FG dictionaries. In the cache-obliviousmodel we notice that because
the FG dictionary is cache-oblivious and we only use a constant number of FG dic-
tionaries, where we split at most one of them into two parts by address-mapping
then we only multiply the bound on the cache-misses from the FG dictionary by
a constant factor. Hence all operations cause O(logB n) cache-misses.

We notice that we can make the moveable dictionary implicit such that we do
not need to store O(log n) bits between operations. We do this by introducing
a block D of O(log n) elements to the left of L which pair-encodes the O(log n)
bits. With pair-encoding we mean that each consecutive pair of elements encodes
a bit. If the key of the first element is lower than the key of the second, the pair-
encodes a 0 bit. If on the other hand the key of the first element is greater
than the key of the second, the pair-encodes a 1 bit. As we need to read this
block to get the O(log n) bits, we can maintain (and possibly move) D when
we perform insert-left, insert-right, delete-left and delete-right operations. From a
cache-oblivious viewpoint this does also not change the asymptotic bound on
the number of cache-misses.

3 Construction of the Working Set Dictionary

In the following we describe our working set dictionary archiving insertions,
deletions and predecessor searches in O(log n) time and searches in O(log �).
We first describe the overall structure leaving the details of the memory layout
to be handled in Section 3.3. The structure is composed of O(log log n) blocks,
where the i’th block Bi stores O(22i

) elements. The main design goal is to have
elements that have been searched for within the last � distinct searches located
in one of the first O(log log �) blocks.

Block Bi consists of a list Di of size wi where wi = α2i for some appro-
priate constant α, and three implicit moveable dictionaries, Li, Ci and Ri. We
use Di to pair-encode O(2i) bits, used for memory management in the working
set dictionary and storing data needed between operations in the moveable dic-
tionaries Li, Ci and Ri. Block Bi contains exactly 2 · 22i

+ wi elements, except
for the last block Bm that might contain less than 2 · 22i

+ wi elements, as this
is the block that grows or shrinks when we insert or delete, respectively.

When an element e is searched for it is moved from its current block Bj to
the first block B0. To make room for this in B0, we move an element from each
block Bi to Bi+1 until we reach the block Bj where e was originally located.
We move elements from Ri to Li+1, for i = 0, . . . , j − 1 (see Figure 3). Once Ri

44 G.S. Brodal, C. Kejlberg-Rasmussen, and J. Truelsen

D0

L0 C0 R0

B0

D1

L1

B1

. . .

Rj−1

Dj

Lj Cj Rj

Bj

Dm

Lm Cm Rm

Bm

. . .

Bj−1

Fig. 3. Layout of the data structure. The arrows indicate the movement of elements

after an element in Rj has been searched for. The dotted lines in block Bm indicate

that the strucutres do not necessarily exist.

is empty we move Ci to Ri, and Li to Ci. Doing this we can guarantee that at
least 22i

distinct elements have been searched for since any element in Ri was
last searched for. We can give this guarantee because an element will be located
in Ci at least until searches for 22i

other elements have been performed.

3.1 Invariants

Our data structure satisfies the invariants below. Here I.1 to I.4 are about the
sizes of data structures and are important for memory management. On the
other hand I.5 to I.8 are about the location of elements according to when they
were last searched for and are important for achieving the working set property.

I.1 |Ci| ≤ 22i

and |Ri| �= 0 ⇒ |Ci| = 22i

, for all i.
I.2 |Di| ≤ wi and |Li| + |Ci| + |Ri| �= 0 ⇒ |Di| = wi, for all i.
I.3 |Li| + |Ri| = 22i

, for all i < m, and |Lm| + |Rm| ≤ 22m

.
I.4 |Li| < 22i

, for all i.
I.5 All elements searched for since Li was last empty are contained in Li, Di

or Bj for some j < i.
I.6 For any e in some Ci either at least |Li| distinct elements have been searched

for after e was last searched for or e has never been searched for.
I.7 For any e in some Ri either at least 22i

distinct elements have been searched
for after e was last searched for or e has never been searched for.

I.8 For any e in Di, Li or Ci, for i > 0, either at least 22i−1
distinct elements

have been searched for after e was last searched for, or e has never been
searched for.

From the invariants we make the following observations:

O.1 |Di| = wi for all i < m (from I.2 and I.3).
O.2 |Ri| > 0 for all i < m (from I.3 and I.4).
O.3 |Ci| = 22i

for all i < m (from I.1 and O.2).
O.4 |Bi| = wi + 2 · 22i

for all i < m (from O.1, O.3, and I.3).
O.5 For i > 0 and any e in Bi, either at least 22i−1

distinct elements have been
searched for after e was last searched for or e has never been searched for
(from I.7 and I.8).

A Cache-Oblivious Implicit Dictionary with the Working Set Property 45

3.2 Operations

Our data structure uses the operations shift and find internally, and supports the
operations insert, delete, predecessor and search. Below is a detailed description
of all operations.

Shift(j) handles the case when |Rj | = 0 and |Lj| = 22j

, i.e. I.4 is violated for
block Bj . This is done by discarding Rj , renaming Cj to Rj , renaming Lj to Cj ,
and creating a new empty Lj . After shift(j) finishes I.4 also holds for Bj .

Find(x) finds the data structure Si containing the element with key x or returns
none if no such element exists. Here Si will be either Di, Li, Ci or Ri for some i.
This is done by searching for x in the blocks starting with B0 and going in an
incremental linear fashion towards Bm. Within each block, x is searched for in
Di using a linear scan, and the implicit moveable dictionaries Li, Ci and Ri

are searched for x using their built-in search operation. As soon as x is found,
a reference to the data structure Si containing the element is returned, and no
further blocks are considered. In the case when x is not found in any of the
blocks none is returned.

Predecessor(x) returns the element e in the data structure with the largest key
less than x. This is done for B0, . . . , Bm by a linear scan of Di and invoking
the built-in predecessor operation on Li, Ci and Ri and returning the element
among the results with the highest key.

Insert(e) inserts the element e into the data structure. This is done by inserting e
into one of the data structures in Bm. It is inserted into Dm if |Dm| < wm.
Otherwise, if |Cm| < 22m

it is inserted into Cm, else it is inserted into Rm. If this
makes |Lm|+ |Rm| = 22m

, then a new block Bm+1 is initialized by incrementing
m by one.

Delete(x) deletes the element with key x from the data structure. We first check
if x is in the dictionary by performing a find(x) operation. If x is not found
we return. Here Sj will be one of Dj, Lj , Cj or Rj . If Bm is empty, m is
decremented by one. An arbitrary element e is deleted from the first of the
structures Rm, Cm, Lm and Dm that is non-empty. If e has key x we return,
else the element with key x is deleted from Sj and e is inserted into Sj .

Search(x) returns the element e with key x or none if such an element does
not exist. This is done by performing a find(x) operation, finding the data struc-
ture Sj containing x. If x is not in the data structure then none is returned.

If x is found in a data structure Sj then the element e with key x is found by
running the built-in search method on Sj . If Sj is either D0 or L0 we return e im-
mediately. If Sj = Cj and |Rj | > 0, an arbitrary element g is removed from Rj , e
is removed from Cj and g is inserted in Cj . In the other case where Sj �= Cj

or |Rj | = 0, the element e with key x is deleted from Sj.
In all cases we then proceed by deleting an arbitrary element h from Ri−1 and

inserting it into Li, for i = j, . . . , 1. In the special case where i = j and Sj = Dj

we insert h into Dj instead of Lj.

46 G.S. Brodal, C. Kejlberg-Rasmussen, and J. Truelsen

We then insert e into L0. Now for i = 0, . . . , j we check whether |Li| = 22i

,
and if this is the case we perform a shift(i) operation. Finally we return e.

3.3 Memory Management

From O.4 we know that any block except the last will contain a fixed number of
elements, namely 2 ·22i

+wi. This implies that we can lay out the blocks sequen-
tially in the array, and then we only have to worry about memory management
inside each block. The last block Bm can vary in size, and is located at the end
of the array where growing and shrinking must occur.

By I.2 we know that Di will be completely constructed before the other struc-
tures are needed, therefore we lay it out sequentially in the beginning of the block.
The remaining structures will be laid out sequentially in the order: Li, Ci, Ri.

Right before we insert an element into Li, we move Ci and Ri one position to
the right to make room. We can move Li, Ci or Ri to the right by performing a
delete-left operation on an arbitrary element e followed by an insert-right(e). This
moving will take time O(2i). We do the same when inserting into Ci, but here
we only move Ri one position to the right. We never need to move structures to
the left.

To perform queries on the substructures in a block Bi we need to store various
information in Di. We need nLi , nCi and nRi : the size of Li, Ci and Ri, respec-
tively. We store nCi and nRi in Di explicitly using 2i bits each, whereas nLi can
be computed as nLi = |Bi| − wi − nCi − nRi . Furthermore we store in Di the
Θ(2i) bits we allow the moveable dictionaries Li, Ci and Ri to maintain between
operations, denoted dataLi , dataCi and dataRi .

We maintain all these bits in Di, using pair-encoding. The fields are stored
in the following order: dataLi , nCi , dataCi , nRi , dataRi . Whenever we add an
element to or remove an element from Di we maintain the ordering of the pair
by performing a swap if needed.

To perform an operation on block Bi we need to know the index bi of the
first element, which can be computed as b0 = 0, and bi = bi−1 + 2 · 22i−1

+ wi−1.
We may also need |Di| which can be computed as |Di| = min(wi, n − bi), and
|Bi| which can be computed as |Bi| = wi + 2 · 22i

if i < m and |Bm| = n − bm

otherwise.
Whenever we want to perform an operation on Ci, we first extract nLi , nCi ,

nRi and dataCi from the pair-encoding in Di and put them into registers. From
the sizes and the value of bi we can compute the index of the first element
in C. Using that information we can run the operation on the implicit moveable
dictionary. Once that is done we dataC write back to the pair-encoding in Di.
Totally this requires O(2i) time. We do similarly if we perform an operation on
Li or Ri.

When performing a shift operation we override nRi and dataRi with nCi and
dataCi and we override nCi and dataCi with nLi and dataLi . This renames the
data structures, initiating a new empty Li before the old full one, and “deletes”
the old empty Ri.

A Cache-Oblivious Implicit Dictionary with the Working Set Property 47

During an insert operation, when Di increases to wi, we initialize nLi , dataLi ,
nCi , dataCi , nRi and dataRi . Finally we calculate m when it is needed as the
minimal value where

∑m
j=0 2 · 22j

+ wj > n.

3.4 Analysis

To see that the invariants are maintained for the operations we need to show
that each invariant is maintained for each operation. In general this is tedious
but trivial. As an example below we give the proof for the shift operation to give
a taste of how the proofs go. In the following Si refers to a data structure before
the shift operation and S′

i refers to the same data structure after the operation,
similarly for m.

We now prove that shift is correct. We assume that Bj satisfies all invariants
except I.4 before shift(j). Since the shift operation requires that |Lj| = 22j

and
C′

j = Lj I.1 holds for j after the shift operation. Because |Lj | = 22j

and I.2 holds
before the operation we know that |Dj | = wj . Since the shift operation did not
change Dj , I.2 also holds for j after the operation. When verifying I.3 we have
two cases: if j = m, then from I.1 we know that |Cm| ≤ 22m

so |L′
m| + |R′

m| =
0 + |Cm| ≤ 22m

so I.3 holds. Else if j < m then by O.3 we know that |Cj | = 22j

.
Now since L′

j is empty and R′
j = Cj , then I.3 holds for j < m after the operation.

Since L′
j is empty, no elements have been accessed after it was last empty thus

I.5 trivially holds for j. Likewise because
∣∣L′

j

∣∣ = 0, then I.6 is maintained for j.
Because shift(j) assumed |Lj | = 22j

, and because R′
j = Cj , then I.6 immediately

implies that I.7 holds for j after shift(j). Lastly, since all elements in L′
j and C′

j

come from Lj , and D′
j contains the same elements as Dj then I.8 held for j since

it holds before the shift(j) operation.
The core of the analysis of the running times of the predecessor and search

operations stems from the find operation. Let � be the number of distinct ele-
ments searched for since we last searched for some element e in some block Bj .
By O.5 we know that at least 22j−1

elements have been searched for after e
was last searched for so � ≥ 22j−1

, i.e. 2j = O(log �). For each block we use
constant time to calculate bi, |Di|, and whether i = m. This can be done since
we have already computed bi−1 once bi is needed. The time used for the find
operation in block Bi is O(2i), plus the time for doing the linear scan in Di,
and O(log 22i

) = O(2i) for doing searches in Li, Ci and Ri from the bounds on
the moveable dictionary. The total time for doing searches in all blocks 0, . . . , j is
then O(

∑j
i=0 2i) = O(2j) = O(log �) which becomes the time for the search op-

eration. Since predecessor queries need to access all blocks, they require O(log n)
time. Similarly insertions and deletions require O(log n) time.

From the cache-oblivious viewpoint we incur O(2i/B) cache-misses when
searching Di and O(logB 22i

) = O(2i/ logB) cache-misses when searching in
Li, Ci and Ri. Since the blocks B0, . . . , B�log log B� in total store O(B) elements
and are stored consecutively in the array, the accesses to these blocks imply a to-
tal of O(1) cache-misses. For the remaining blocks 22i ≥ B and in total we incur
O(

∑j
i=�log log B�+1 2i/ log B) = O(logB �) cache-misses for the find operation. It

48 G.S. Brodal, C. Kejlberg-Rasmussen, and J. Truelsen

follows that search implies O(logB �) cache-misses, and predecessor queries, insert
and delete operations imply O(logB n) cache-misses.

Acknowledgements

We would like to thank Mark Greve and Freek van Walderveen for their help on
proofreading this paper.

References

1. Bǎdoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on

comparison-based dynamic dictionaries. Theoretical Computer Science 382(2), 86–

96 (2007)

2. Bose, P., Doüıeb, K., Langerman, S.: Dynamic optimality for skip lists and B-trees.

In: SODA 2008, pp. 1106–1114. SIAM, Philadelphia (2008)

3. Bose, P., Howat, J., Morin, P.: A distribution-sensitive dictionary with low space

overhead. In: Dehne, F., et al. (eds.) WADS 2009. LNCS, vol. 5664, pp. 110–118.

Springer, Heidelberg (2009)

4. Chan, T.M.Y., Chen, E.Y.: Optimal in-place algorithms for 3-d convex hulls and

2-d segment intersection. In: SoCG 2009, pp. 80–87. ACM, New York (2009)

5. Franceschini, G., Grossi, R.: Optimal worst-case operations for implicit cache-

oblivious search trees. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003.

LNCS, vol. 2748, pp. 114–126. Springer, Heidelberg (2003)

6. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-

rithms. In: FOCS 1999, pp. 285–297. IEEE, Los Alamitos (1999)

7. Iacono, J.: Alternatives to splay trees with O(log(n)) worst-case access times. In:

SODA 2001, pp. 516–522. SIAM, Philadelphia (2001)

8. Mortensen, C.W., Pettie, S.: The complexity of implicit and space-efficient priority

queues. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS,

vol. 3608, pp. 49–60. Springer, Heidelberg (2005)

9. Munro, J.I., Suwanda, H.: Implicit data structures for fast search and update.

Journal of Computer and System Sciences 21(2), 236–250 (1980)

10. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–

686 (1985)

11. Williams, J.W.J.: Algorithm 232: Heapsort. Communications of the ACM 7(6),

347–348 (1964)

The (p, q)-total Labeling Problem for Trees

Toru Hasunuma1, Toshimasa Ishii2, Hirotaka Ono3, and Yushi Uno4

1 Department of Mathematical and Natural Sciences, The University of Tokushima,
Tokushima 770–8502 Japan

hasunuma@ias.tokushima-u.ac.jp
2 Department of Information and Management Science, Otaru University of Commerce,

Otaru 047-8501, Japan
ishii@res.otaru-uc.ac.jp

3 Department of Economic Engineering, Kyushu University, Fukuoka 812-8581, Japan
hirotaka@en.kyushu-u.ac.jp

4 Department of Mathematics and Information Sciences, Graduate School of Science,
Osaka Prefecture University, Sakai 599-8531, Japan

uno@mi.s.osakafu-u.ac.jp

Abstract. A (p, q)-total labeling of a graph G is an assignment f from the vertex
set V(G) and the edge set E(G) to the set of nonnegative integers such that | f (x)−
f (y)| ≥ p if x is a vertex and y is an edge incident to x, and | f (x) − f (y)| ≥ q if
x and y are a pair of adjacent vertices or a pair of adjacent edges, for all x and
y in V(G) ∪ E(G). A k-(p, q)-total labeling is a (p, q)-total labeling f : V(G) ∪
E(G) → {0, . . . , k}, and the (p, q)-total labeling problem asks the minimum k,
which we denote by λT

p,q(G), among all possible assignments. In this paper, we
first give new upper and lower bounds on λT

p,q(G) for some classes of graphs G,
in particular, tight bounds on λT

p,q(T) for trees T . We then show that if p ≤ 3q/2,
the problem for trees T is linearly solvable, and give a complete characterization
of trees achieving λT

p,q(T) if in addition Δ ≥ 4 holds, where Δ is the maximum
degree of T . It is contrasting to the fact that the L(p, q)-labeling problem, which
is a generalization of the (p, q)-total labeling problem, is NP-hard for any two
positive integers p and q such that q is not a divisor of p.

1 Introduction

In the channel/frequency assignment problems, we need to assign different frequencies
to ‘close’ transmitters so that they can avoid interference. The L(p, q)-labelings of a
graph have been extensively studied as one of important graph theoretical models of
this problem. An L(p, q)-labeling of a graph G is an assignment f from the vertex set
V(G) to the set of nonnegative integers such that | f (x)− f (y)| ≥ p if x and y are adjacent
and | f (x) − f (y)| ≥ q if x and y are at distance 2, for all x and y in V(G). A k-L(p, q)-
labeling is an L(p, q)-labeling f : V(G) → {0, . . . , k}, and the L(p, q)-labeling problem
asks the minimum k, which we denote by λp,q(G), among all possible assignments.
Notice that we can use k + 1 different labels when λp,q(G) = k since we can use 0 as a
label for conventional reasons. We can find a lot of related results on L(p, q)-labelings
in comprehensive surveys by Calamoneri [3] and by Yeh [25]. From the applicational
point of view, we assume that p ≥ q ≥ 1 unless otherwise stated. Also, we assume
that p and q are relatively prime, since otherwise, an L(p, q)-labeling is equivalent to an
L(p/�, q/�)-labeling, where � = gcd(p, q).

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 49–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

50 T. Hasunuma et al.

(p, q)-total labeling and a conjecture. In [24], Whittlesey et al. studied the L(2, 1)-
labeling number of incidence graphs, where the incidence graph of a graph G is the
graph obtained from G by replacing each edge (vi, v j) with two edges (vi, vi j) and (vi j, v j)
after introducing one new vertex vi j. Observe that an L(p, q)-labeling of the incidence
graph of a given graph G can be regarded as an assignment f from V(G) ∪ E(G) to
the set of nonnegative integers such that | f (x) − f (y)| ≥ p if x is a vertex and y is an
edge incident to x, and | f (x) − f (y)| ≥ q if x and y are a pair of adjacent vertices or a
pair of adjacent edges, for all x and y in V(G) ∪ E(G). Such a labeling of G is called a
(p, q)-total labeling of G, while the case of q = 1 was first introduced as a (p, 1)-total
labeling by Havet and Yu [15,16]. In particular, a k-(p, q)-total labeling is a (p, q)-total
labeling f : V(G) ∪ E(G) → {0, . . . , k}, and the (p, q)-total labeling problem asks the
minimum k among all possible assignments. We call this invariant, the minimum k, the
(p, q)-total labeling number, which is denoted by λT

p,q(G).
We notice that a (1, 1)-total labeling of G is equivalent to a total coloring of G.

Generalizing the Total Coloring Conjecture [2,22], Havet and Yu [15,16] conjectured
that

λT
p,1(G) ≤ Δ + 2p − 1 (1)

holds for any graph G, where Δ denotes the maximum degree of a vertex in G. They
also investigated bounds on λT

p,1(G) under various assumptions and some of their results

are described as follows: (i) λT
p,1(G)≥Δ+p−1, (ii) λT

p,1(G)≥Δ+p if p≥Δ, (iii) λT
p,1(G)

≤ min{2Δ+ p−1, χ(G)+χ′(G)+ p−2} for any graph G where χ(G) and χ′(G) denote
the chromatic number and the chromatic index of G, respectively, and (iv) λT

p,1(G) ≤
n + 2p − 2 if G is the complete graph where n = |V(G)|. In particular, it follows by (iii)
that if G is bipartite, then λT

p,1(G) ≤ Δ+p holds (by χ(G)≤2 and König’s theorem), and if

in addition, p≥Δ, then λT
p,1(G) = Δ+ p by (ii) [1,15,16]. Also, Bazzaro et al. [1] showed

that λT
p,1(G)≤Δ+ p+ s for any s-degenerated graph (by χ(G)≤ s+1 and χ′(G)≤Δ+1),

where an s-degenerated graph G is a graph which can be reduced to a trivial graph
by successive removal of vertices with degree at most s, that λT

p,1(G) ≤ Δ + p + 3 for

any planar graph (by the Four-Color Theorem), and that λT
p,1(G) ≤ Δ + p + 1 for any

outerplanar graph other than an odd cycle (since any outerplanar graph is 2-degenerated,
and any outerplanar graph other than an odd cycle satisfies χ′(G) = Δ [9]). Also, there
are many related works about bounds on λT

p,1(G) [6,14,19,20]. From the algorithmic
point of view, Havet and Thomassé [17] recently showed that for bipartite graphs, if (i)
p ≥ Δ or (ii) Δ = 3 and p = 2, then the (p, 1)-total labeling problem is polynomially
solvable and otherwise it is NP-hard.

In [7,18,21], the (r, s, t)-coloring problem which is a generalization of the (p, q)-total
labeling problem was studied, while results in the cases corresponding to the (p, q)-
total labeling problem (actually, the cases of t ≥ r = s) are limited to paths, cycles,
stars or the complete graph with some p and q. To our best knowledge, there are quite
few studies about (p, q)-total labelings other than these. In this paper, we focus on the
(p, q)-total labeling problem for some classes of graphs, especially for trees.

L(p, q)-labelings and (p, q)-total labelings of trees. Let T be a tree. As for the L(2, 1)-
labeling problem, Griggs and Yeh [12] showed that λ2,1(T) ∈ {Δ + 1, Δ + 2}. More-
over, Chang and Kuo [5] showed that λ2,1(T) can be computed in polynomial time, and

The (p, q)-total Labeling Problem for Trees 51

recently Hasunuma et al. [13] gave a linear time algorithm for this problem. However, a
characterization of trees T achieving λ2,1(T) is still open. Also, it was shown in [4] that
λp,1(T) ≤ min{Δ+ 2p− 2, 2Δ+ p− 2} and that L(p, 1)-labeling problem for trees can be
solved in O((p+ Δ)5.5n) = O(λp,1(T)5.5n) time by extending the algorithm in [5], where
n = |V(G)|. On the other hand, Fiala et al. [8] showed that the L(p, q)-labeling problem
for trees is NP-hard for any two positive integers p and q such that q is not a divisor of p.
Concerning bounds on λp,q(T), Georges and Mauro [11] gave the exact value of λp,q(T)
for the infinite regular trees T , which gives tight upper bounds on λp,q(T); following
their results, we have λp,q(T) ≤ p + (2Δ − 2)q.

As for the (p, q)-total labeling problem, the above algorithms can also be applied to
the case of q = 1, since the incidence graph of a tree is also a tree. Moreover, due to
the structure of the incidence graph of a tree, it can be observed that λT

p,1(T) becomes
much smaller than λp,1(T). By bounds for bipartite graphs in [1,15,16], it follows that
λT

p,1(T) ∈ {p + Δ − 1, p + Δ}, and that if p ≥ Δ, then λT
p,1(T) = p + Δ. Recently, Wang

and Chen [23] gave a characterization of trees T achieving λT
2,1(T) in the case of Δ = 3.

Our contributions. In this paper, we mainly focus on (p, q)-total labeling problem for
trees for general p and q, and obtain the following results:

– (Upper bounds on λT
p,q(T)) If p = q + r for r ∈ {0, 1, . . . , q − 1} and Δ > 1 (resp.,

Δ = 1), then λT
p,q(T) ≤ p + (Δ − 1)q + r holds and this bound is tight (resp.,

λT
p,q(T) = p + q). If p ≥ 2q, then λT

p,q(T) ≤ p + Δq holds and this bound is tight. In
particular, if p ≥ Δq, then λT

p,q(T) = p + Δq.
– (Lower bounds on λT

p,q(T)) If q ≤ p < (Δ − 1)q, then λT
p,q(T) ≥ p + (Δ − 1)q holds

and this bound is tight. If p = (Δ − 1)q + r for r ∈ {0, 1, . . . , q − 1}, then λT
p,q(T) ≥

p + (Δ − 1)q + r holds and this bound is tight. If p ≥ Δq, then λT
p,q(T) = p + Δq.

– The (p, q)-total labeling problem with p ≤ 3q/2 for trees can be solved in linear
time. In particular, if Δ ≥ 2, we have λT

p,q(T) ∈ {p + (Δ − 1)q, p + (Δ − 1)q + r}. If
p > q and Δ ≥ 4, then λT

p,q(T) = p + (Δ − 1)q holds if and only if no two vertices
with degree Δ are adjacent.

– In the case of p = 2q, the condition that no two vertices with degree Δ are adjacent
is sufficient for λT

p,q(T) = p + (Δ − 1)q, while in the case of p > 3q/2 and p � 2q,
this condition is not sufficient.

– For any two nonnegative integers p and q, the L(p, q)-labeling problem for trees
can be solved in polynomial time if Δ = O(log1/3 |I|) where |I| = max{|V(T)|, log p}.
Particularly, if Δ is a fixed constant, it is solved in linear time.

The first and second results provide tight upper and lower bounds on λT
p,q(T) for all pairs

(p, q) with p ≥ q. The first statement in the third result indicates that as for the (p, q)-
total labeling problem for trees, there exists a tractable case even if q is not a divisor of
p, in contrast to the NP-hardness of the L(p, q)-labeling problem. The second and third
statements in the third result completely characterize trees T achieving λT

p,q(T) in the
case of p ≤ 3q/2 and Δ ≥ 4 (note that if p = q, we have λT

p,q(T) = p+(Δ−1)q by the first
and second results). This is also contrasting to the fact that no simple characterization
of trees T achieving λ2,1(T) is known even for the L(2, 1)-labeling problem.

52 T. Hasunuma et al.

Organization of the paper. The rest of this paper is organized as follows. In Section 2,
after giving some basic definitions, we show several properties about bounds on λT

p,q(G).
In Sections 3 and 4, we focus on the cases where a given graph is a tree. Section 3
provides tight upper and lower bounds on λT

p,q(T) for trees T . In Section 4, we propose
a linear time algorithm for solving the (p, q)-total labeling problem with p ≤ 3q/2 for
trees, and give a characterization of trees T achieving λT

p,q(T) in the case of p > q and
Δ ≥ 4. Also, we discuss the case of p > 3q/2. Finally, we give concluding remarks in
Section 5. Some parts of the detailed analyses are omitted due to space limitation.

2 Bounds on λT
p,q(G)

In this section, we investigate several properties on (p, q)-total labelings of a graph G.
For this, we first define some terminology. A graph G is an ordered set of its vertex set
V(G) and edge set E(G) and is denoted by G = (V(G), E(G)). We assume throughout
this paper that a graph is undirected, simple and connected unless otherwise stated.
Therefore, an edge e ∈ E(G) is an unordered pair of vertices u and v, which are end
vertices of e, and we often denote it by e = (u, v). Let NG(v) denote the set of neighbors
of a vertex v in G; NG(v) = {u ∈ V | (u, v) ∈ E(G)}. The degree of a vertex v is |NG(v)|,
and is denoted by dG(v). A vertex v with dG(v) = k is called a k-vertex. We use Δ(G)
(resp., δ(G)) to denote the maximum (resp., minimum) degree of a vertex in a graph
G. A Δ(G)-vertex is called major. We often drop G in these notations if there are no
confusions. For a (p, q)-total labeling f : V(G)∪E(G)→ {0, 1, . . . , k} of G and an edge
e = (u, v) ∈ E(G), we may denote f (e) by f (u, v). Let f denote the labeling such that
f (z) = k− f (z) for each z ∈ V(G)∪E(G). Note that f is also a (p, q)-total labeling of G.

We have the following lemmas about upper and lower bounds on λT
p,q(G), some of

which are extensions of those discussed in the case of q = 1 [16].

Lemma 1. (i) λT
p,q(G) ≥ p + (Δ − 1)q.

(ii) If G has a major vertex whose neighbors are all major, then λT
p,q(G) ≥ p + Δq holds

for p ≥ 2q, and λT
p,q(G) ≥ p + (Δ − 1)q + r holds for p = q + r (r = 0, 1, . . . , q − 1).

(iii) λT
p,q(G) ≥ p +min{p, Δq}. Hence, λT

p,q(G) ≥ p + (Δ − 1)q + r holds where r = q if
p ≥ Δq and r = p − (Δ − 1)q otherwise. 	

Lemma 2. (i) λT

p,q(G) ≤ p + q(χ(G) + χ′(G) − 2).
(ii) λT

p,q(G) ≤ p + (2Δ − 1)q.
(iii) Let G be the complete graph. Then, λT

p,q(G) ≤ min{p + (2Δ − 1)q, 2p + Δq − 1}. In
particular, λT

p,q(G) = p + (2Δ − 1)q if p ≥ 2Δq + 1 and |V(G)| ≥ 3. 	

In the case where G is a path (resp., cycle), the incidence graph of G is also a path
(resp., cycle). The following lemma is obtained directly from Georges and Mauro’s
results about L(p, q)-labeling of paths or cycles [10].

Lemma 3. (i) Let G be a path. We have λT
p,q(G) = p + q (resp., p + 2q, resp., 2p) if

|V | = 2 (resp., |V | ≥ 3 and p ≥ 2q, resp., |V | ≥ 3 and p ≤ 2q).
(ii) Let G be a cycle. We have λT

p,q(G) = p + 2q if (a) |V | is even and p ≥ 2q or (b)
2|V | � 0 mod 3 and p ≤ 2q, λT

p,q(G) = p+ 3q if |V | is odd and p ≥ 3q, and λT
p,q(G) = 2p

otherwise. 	

The (p, q)-total Labeling Problem for Trees 53

Similarly to the arguments in Section 1, we can see that the following properties hold,
where a graph is called a series-parallel graph or a partial 2-tree if it contains no
subgraph isomorphic to a subdivision of the complete graph with four vertices. Notice
that an outerplanar graph is series-parallel.

Corollary 1. (i) If G is bipartite, then λT
p,q(G) ≤ p + Δq. In particular, if p ≥ Δq, then

λT
p,q(G) = p + Δq.

(ii) If G is s-degenerated, then λT
p,q(G) ≤ p + (Δ + s)q.

(iii) If G is planar, then λT
p,q(G) ≤ p + (Δ + 3)q.

(iv) If G is series-parallel, then λT
p,q(G) ≤ p + (Δ + 1)q. 	

3 Tight Bounds on λT
p,q(G) for Trees

In this section, we show the following properties about tight upper and lower bounds
on λT

p,q(T) for trees T .

Theorem 1. Let T be a tree. Then the following properties hold.
(i) If p ≥ Δq, then λT

p,q(T) = p + Δq.
(ii) If p = (Δ − 1)q + r (r = 0, 1, . . . , q − 1), then λT

p,q(T) ≥ p + (Δ − 1)q + r and this
bound is tight.
(iii) If p ≥ 2q, then λT

p,q(T) ≤ p + Δq and this bound is tight.
(iv) If p = q+r (r = 0, 1, . . . , q−1) and Δ > 1 (resp., Δ = 1), then λT

p,q(T) ≤ p+(Δ−1)q+r
and this bound is tight (resp., λT

p,q(T) = p + q).

Since trees are bipartite, the statement (i) and the former part of the statement (iii) follow
from Corollary 1 (i). The former part of the statement (ii) follows from Lemma 1 (iii),
and it is not difficult to see that a star T achieves λT

p,q(T) = p+ (Δ−1)q+r. Lemma 1 (ii)
indicates that a tree T which has a major vertex whose neighbors are all major achieves
λT

p,q(T) = p + Δq (resp., p + (Δ − 1)q + r) if p ≥ 2q (resp., if p = q + r (< 2q), Δ > 1,
and the former part of the statement (iv) is true). The case of Δ = 1 in the statement (iv)
follows from Lemma 3.

In the rest of this section, we give a proof of the former part of the case of Δ > 1 in
the statement (iv) to complete the proof of this theorem. For this, we assume that Δ ≥ 2
and give an algorithm for finding a (p+(Δ−1)q+r)-(p, q)-total labeling of T if p = q+r
for r ∈ [0, q − 1]. For simplicity of description, assume that T = (V, E) is a tree such
that all non-leaves are major.

From [10, Lemma 2.1], it follows that there exists a λT
p,q(T)-(p, q)-total labeling of T

which consists of labels with form αp + βq where α, β ∈ Z+. Here we can assume that
λT

p,q(T) ≥ p+(Δ−1)q+r by Lemma 1(ii) and the assumption on T . Considering these two
properties, we will seek a (p+ (Δ−1)q+ r)-(p, q)-total labeling of T with form αp+βq.
Then, it is not difficult to see that the candidates of labels of such a form to be assigned
for each non-leaf vertex (i.e., major vertex) are 0, p + (Δ − 1)q + r (= 2p + (Δ − 2)q),
or p + iq for some i ∈ [0, Δ − 2]. In particular, if a major vertex v has label p + iq for
i ∈ [0, Δ−2], then the set of labels for edges incident to v is { jq | j ∈ [0, i]}∪{p+ jq+ r |
j ∈ [i+1, Δ−1]}. Based on these observations, we regard T as a rooted tree by choosing

54 T. Hasunuma et al.

a major vertex vr as the root, and assign labels with form αp+βq to V ∪E from the root
vr in the breadth-first-search order, as shown in Algorithm (p, q)-LABEL. Actually, we
use labels 0, p, (Δ − 1)q + r (= p + (Δ − 2)q), and p + (Δ − 1)q + r for vertices, and
repeat applying essentially four types of labelings to each scanned vertex, its incident
edges, and its children. In the description of the algorithm, p(v) denotes the parent of v
(if exists) and C(v) denotes the set of children of v for each vertex v.

Algorithm 1. Algorithm (p, q)-LABEL
Input: A tree T = (V, E) with Δ ≥ 2 such that all non-leaves are major, and two positive integers

p and q with p = q + r and r ∈ [0, q − 1].
Output: A (p, q)-total labeling f : V ∪ E → {0, 1, . . . , p + (Δ − 1)q + r} of T .
1: Assign label 0 to the root vr; let f (vr) := 0. For each i ∈ [0, Δ − 2], let f (vr , ci(vr)) := p + iq

and f (ci(vr)) := p+ (Δ− 1)q+ r, where C(vr) = {ci(vr) | i = 0, 1, . . . , Δ− 1} (i.e., assign labels
p + iq and p + (Δ − 1)q + r to the edge (vr , ci(vr)) and the child ci(vr) of vr , respectively). Let
f (vr , cΔ−1(vr)) := p + (Δ − 1)q + r and f (cΔ−1(vr)) := (Δ − 1)q + r.

2: while there exists a non-leaf v ∈ V − {vr} such that f (v) has been determined but no label is
assigned to any child of v where C(v) = {ci(v) | i = 0, 1, . . . , Δ − 2} do

3: if (Case-1) f (p(v), v) ∈ {p + iq | i ∈ [0, Δ − 2]} and f (v) = p + (Δ − 1)q + r then
4: Let f (ci(v)) := 0 for each i ∈ [0, Δ − 3], f (cΔ−2(v)) := p, and f (v, cΔ−2(v)) := 0. Assign

labels in {p+iq | i ∈ [0, Δ−2]}−{ f (p(v),v)} injectively to edges {(v, ci(v)) | i ∈ [0, Δ−3]}.
5: else if (Case-2) f (p(v), v) = p + (Δ − 1)q + r and f (v) = (Δ − 1)q + r then
6: Let f (ci(v)) := p + (Δ − 1)q + r and f (v, ci(v)) := iq for each i ∈ [0, Δ − 2].
7: else if (Case-3) f (p(v), v) ∈ {iq | i ∈ [0, Δ − 2]} and f (v) = p + (Δ − 1)q + r then
8: Let f (ci(v)) := (Δ − 1)q + r for each i ∈ [0, Δ − 3], f (cΔ−2(v)) := 0, and f (v, cΔ−2(v)) :=

(Δ − 1)q + r. Assign labels in {iq | i ∈ [0, Δ − 2]} − { f (p(v), v)} injectively to edges
{(v, ci(v)) | i ∈ [0, Δ − 3]}.

9: else if (Case-4) f (p(v), v) ∈ {iq | i ∈ [0, Δ − 2]} and f (v) = (Δ − 1)q + r then
10: Let f (ci(v)) := p+(Δ−1)q+r for each i ∈ [0, Δ−3], f (cΔ−2(v)) := 0, and f (v, cΔ−2(v)) :=

p + (Δ − 1)q + r. Assign labels in {iq | i ∈ [0, Δ − 2]} − { f (p(v), v)} injectively to edges
{(v, ci(v)) | i ∈ [0, Δ − 3]}.

11: else if (Case- j′) f (p(v), v)) and f (v) satisfy the conditions of Case- j for j ∈ [1, 4] then
12: After determining labels for f (ci(v)) and f (v, ci(v)) according to the above (Case- j)

based on f (p(v), v)) and f (v), let f (ci(v)) := p+ (Δ− 1)q+ r− f (ci(v)) and f (v, ci(v)) :=
p + (Δ − 1)q + r − f (v, ci(v)) for each i ∈ [0, Δ − 2].

13: end if
14: end while
15: Output f as a (p, q)-total labeling of T .

We prove the correctness of Algorithm (p, q)-LABEL. Note that whenever a vertex v
is chosen in line 2, f (p(v), v) has also been already determined. Also note that the labels
assigned in each step do not violate the feasibility. Hence, it suffices to show that as a
result of line 1 (resp., each iteration of the while loop in lines 2–14), each ci(vr) ∈ C(vr)
(resp., ci(v) ∈ C(v)) satisfies the conditions of Case- j or Case- j′ in lines 2–14 for some
j ∈ {1, 2, 3, 4}. As for the children of vr, ci(vr) for i ∈ [0, Δ − 2] satisfies the conditions
of Case-1 and cΔ−1(vr) satisfies those of Case-2. Also as for the children of v in each case

The (p, q)-total Labeling Problem for Trees 55

of lines 2–14, we can prove this as follows, where Case- j′, j′ ∈ {1, 2, 3, 4} is omitted by
symmetry of labelings:

(Case-1) ci(v), i ∈ [0, Δ−3] satisfies the conditions of Case-1′ and cΔ−2(v) satisfies those
of Case-2′.
(Case-2) ci(v), i ∈ [0, Δ − 2] satisfies the conditions of Case-3.
(Case-3) ci(v), i ∈ [0, Δ− 3] satisfies the conditions of Case-4 and cΔ−2(v) satisfies those
of Case-1′.
(Case-4) ci(v), i ∈ [0, Δ− 3] satisfies the conditions of Case-3 and cΔ−2(v) satisfies those
of Case-3′.
Notice that in Case-1, ci(v) for i ∈ [0, Δ − 3] satisfies the conditions of Case-1′ because
{p + iq | i ∈ [0, Δ − 2]} = {p + (Δ − 1)q + r − (p + iq) | i ∈ [0, Δ − 2]} by p =
q + r. Consequently, the correctness of the algorithm is proved and hence the proof of
Theorem 1 is completed.

Also, we remark that Algorithm (p, q)-LABEL can be implemented to run in linear
time.

4 Algorithms for (p, q)-total Labelings of Trees

In this section, we consider an algorithm for finding an optimal (p, q)-total labeling
(i.e., a λT

p,q(T)-(p, q)-total labeling) of trees T . Here, we focus on the cases of Δ ≥ 3 and
p > q since the case of Δ ≤ 2 has been shown as Lemma 3, and in the case of Δ ≥ 3
and p = q, we have λT

p,q(T) = p + (Δ − 1)q by Lemma 1 (i) and Theorem 1 and such a
labeling can be found in linear time by Algorithm (p, q)-LABEL. We discuss the case
of p ≤ 3q/2 in Subsection 4.1 and other cases in Subsection 4.2.

4.1 Case: p ≤ 3q/2

Assume that p ≤ 3q/2. We show that the problem can be solved in linear time, and we
give a complete characterization of trees T with Δ ≥ 4 achieving λT

p,q(T); namely, we
have the following theorem.

Theorem 2. Let T be a tree with p ≤ 3q/2.
(i) An optimal (p, q)-total labeling (i.e., a λT

p,q(T)-(p, q)-total labeling) of T can be
found in linear time.
(ii) In the case of Δ ≥ 2, we have λT

p,q(T) ∈ {p+(Δ−1)q, p+(Δ−1)q+r}where r = p−q.
(iii) In the case of p > q and Δ ≥ 4, λT

p,q(T) = p + (Δ − 1)q if and only if

no two major vertices are adjacent in T . (2)

First we consider the case of Δ ≥ 4. In this case, for proving Theorem 2, it suffices to
show the following two lemmas. Note that the first lemma holds for an arbitrary graph.

Lemma 4. Let G be a graph. If p ≤ 3q/2 and λT
p,q(G) < p+(Δ−1)q+r where r = p−q,

then the condition (2) is satisfied. 	

Lemma 5. If p ≤ 3q/2, the condition (2) is satisfied, and Δ ≥ 4, then λT

p,q(G) = p +
(Δ − 1)q holds, and such a labeling can be found in linear time.

56 T. Hasunuma et al.

Recall that by Lemma 1 (i) and Theorem 1, we have p+(Δ−1)q ≤ λT
p,q(T) ≤ p+(Δ−1)q+

r where r = p− q. Hence, Lemmas 4 and 5 indicate that either λT
p,q(T) = p+ (Δ− 1)q or

λT
p,q(T) = p+(Δ−1)q+r holds, and that the former case is characterized by the condition

(2). Furthermore, in both cases, an optimal labeling can be found in linear time by
Lemma 5 and Algorithm (p, q)-LABEL. Thus, these two lemmas show Theorem 2 in
the case of Δ ≥ 4.

On the other hand, in the case of Δ = 3, there exist instances T with λT
p,q(T) >

p + 2q even if the condition (2) holds. For example, consider a tree T which contains
the configuration (a) in Fig. 1 in which each major vertex is drawn by a black circle, and
assume for contradiction that T admits a (p + 2q)-(p, q)-total labeling f . Without loss
of generality, let f (u) = 0 and f (u, v) = p (note that the set of labels for edges incident
to u is {p, p + q, p + 2q}). By the feasibility of f , we have f (v) ∈ [2p, p + 2q]. Since
w is major, it follows that f (w) = 0, however, we cannot assign any label to the edge
(v,w). Similarly, we can observe that any tree which contains the configuration (b) in
Fig. 1 cannot admit a (p + 2q)-(p, q)-total labeling. We can observe that there are many
other such instances, and it seems difficult to characterize instances T achieving λT

p,q(T)
in the case of Δ = 3.

Fig. 1. Configurations that any tree T with λp,q(T) = p+ 2q does not contain in the case of Δ = 3,
where each major vertex is drawn by a black circle.

Nevertheless, we can prove that the case of Δ = 3 is linearly solvable and λT
p,q(T) ∈

{p + 2q, p+ 2q + r} in another way. The following lemma shows Theorem 2 in the case
of Δ = 3.

Lemma 6. If Δ = 3, then λT
p,q(G) ∈ {p + 2q, p + 2q + r} holds, and such a labeling can

be found in linear time. 	

The latter part of Lemma 6 can be proved in a more general setting as the following
theorem.

The (p, q)-total Labeling Problem for Trees 57

Theorem 3. Let |I| = max{|V(T)|, log p}. For any nonnegative integers p, q, the L(p, q)-
labeling problem for trees (hence, the (p, q)-total labeling problem for trees also) can
be solved in polynomial time, if Δ = O(log1/3 |I|) for general p, or if Δ = O(log1/2 |I|) for
p = Ω(Δq). In particular, it can be solved in linear time, if Δ is bounded by a constant.

	

Due to space limitation, we omit the proofs of Lemmas 4 and 6 and Theorem 3. We
here give a proof of Lemma 5.

Proof of Lemma 5. Assume that a tree T = (V, E) satisfies the condition (2) and Δ ≥ 5,
while the case of Δ = 4 is omitted due to space limitation. Also assume that the every
non-major and non-leaf vertex in T is a (Δ − 1)-vertex for simplicity of description.
Then, we prove this lemma by showing that we can find a (p + (Δ − 1)q)-(p, q)-total
labeling of T according to Algorithm (p, q)-OPTLABELΔ5. The algorithm starts with
choosing a major vertex vr as the root and assign labels to V ∪ E in the breadth-first-
search order in a similar way to Algorithm (p, q)-TREE. Let M denote the set of major
vertices.

Observe that the labelings in each step do not violate the feasibility (note that 3q−p ≥
p and 2q ≥ p by p ≤ 3q/2). Hence, for proving the correctness of the algorithm, we
show that as a result of line 1 (resp., the while-loop in lines 2–19), each ci(vr) ∈ C(vr)
(resp., ci(v) ∈ C(v)) satisfies the conditions of Case- j or Case- j′ of lines 2–19 for some
j ∈ {1, 2, . . . , 6}. Notice that by the condition (2), all children of each major vertex are
non-major. Hence, ci(vr), i ∈ [1, Δ − 1] satisfies the conditions of Case-2 and c0(vr)
satisfies those of Case-5. Similarly, we can observe that the children of v in Case-1 of
lines 2–19 satisfy the conditions of Case-2 or Case-5. As for children of v in other cases,
we can prove this as follows:

(Case-2) ci(v) satisfies the conditions of Case-1, Case-3, or Case-4.
(Case-3) ci(v) satisfies the conditions of Case-1, Case-1′, Case-2, or Case-2′.
(Case-4) ci(v) satisfies the conditions of Case-1, Case-1′, Case-2, Case-5, or Case-6.
(Case-5) ci(v) satisfies the conditions of Case-1, Case-1′, Case-2, or Case-6.
(Case-6) ci(v) satisfies the conditions of Case-1 or Case-2.

Also, it is not difficult to see that Algorithm (p, q)-OPTLABELΔ5 can be imple-
mented to run in linear time. 	

We remark that since the procedure of Case-4 needs the assumption of Δ ≥ 5, Algorithm
(p, q)-OPTLABELΔ5 cannot be applied to the cases of Δ < 5.

4.2 Case: p > 3q/2

First we consider the case of p = 2 and q = 1. In this case, the condition (2) is sufficient
for λT

2,1(T) = Δ + 1, as described in the following lemma.

Lemma 7. Let T be a tree. If Δ ≥ 4 and the condition (2) is satisfied, then λT
2,1(T) =

Δ + 1 and a (Δ + 1)-(2, 1)-total labeling of T can be found in linear time. 	

This lemma can be proved in a similar way to the proof of Lemma 5.

58 T. Hasunuma et al.

Algorithm 2. Algorithm (p, q)-OPTLABELΔ5
Input: A tree T = (V, E) satisfying the condition (2) and Δ ≥ 5 such that the degree of all

non-major and non-leaf vertices is Δ − 1, and two integers p and q with p ≤ 3q/2.
Output: A (p, q)-total labeling f : V ∪ E → {0, 1, . . . , p + (Δ − 1)q} of T .
1: Assign label 0 to the root vr; let f (vr) := 0. For each i ∈ [1, Δ − 1], let f (vr , ci(vr)) := p + iq

and f (ci(vr)) := q, where C(vr) = {ci(vr) | i = 0, 1, . . . , Δ − 1}. Let f (vr , c0(vr)) := p and
f (c0(vr)) := 3q. {Note that the root vr is major.}

2: while there exists a non-leaf v ∈ V − {vr} such that f (v) has been determined but no label is
assigned to any child of v do

3: {Let M denote the set of major vertices. Denote C(v) by {ci(v) | i = 0, 1, . . . , |C(v)|−1} such
that d(c0(v)) ≥ d(c1(v)) ≥ · · · ≥ d(c|C(v)|−1(v)) and let j be an index such that M ∩ C(v) =
{ci(v) | i ∈ [0, j]} if M ∩C(v) � ∅, and j = −1 otherwise.}

4: if (Case-1) v is major, f (p(v), v) ∈ {p + iq | i ∈ [0, Δ − 1]} and f (v) = 0 then
5: Assign labels in {p+ iq | i ∈ [0, Δ− 1]} − { f (p(v), v)} injectively to edges {(v, ci(v)) | i ∈

[0, Δ − 2]} so that f (v, c0(v)) < f (v, c1(v)) < · · · < f (v, cΔ−2(v)), and let f (ci(v)) := q for
each i ∈ [0, Δ − 2]. Only if f (v, c0(v)) = p, then relabel c0(v) as f (c0(v)) := 3q.

6: else if (Case-2) v is non-major, f (p(v), v) ∈ {p + iq | i ∈ [1, Δ − 1]} and f (v) = q then
7: Assign labels in {p + iq | i ∈ [1, Δ − 1]} − { f (p(v), v)} injectively to edges {(v, ci(v)) |

i ∈ [0, Δ − 3]} so that f (v, c0(v)) < f (v, c1(v)) < · · · < f (v, cΔ−3(v)), let f (ci(v)) := 0 for
each i ∈ [0, j] and f (ci(v)) := 2q for each i ∈ [j + 1, Δ − 3]. Only if f (v, c0(v)) = p + q
and M ∩ C(v) = ∅, then relabel c0(v) as f (c0(v)) := 4q.

8: else if (Case-3) v is non-major, f (p(v), v) ∈ {p + iq | i ∈ [2, Δ − 1]} and f (v) = 2q then
9: Assign labels in {p + iq | i ∈ [2, Δ − 1]} − { f (p(v), v)} injectively to edges {(v, ci(v)) |

i ∈ [1, Δ − 3]}, and let f (ci(v)) := 0 for each i ∈ [1, j], f (ci(v)) := q for each i ∈
[max{1, j+1}, Δ−3], and f (v, c0(v)) := 0. If M∩C(v) � ∅, then let f (c0(v)) := p+(Δ−1)q
and otherwise let f (c0(v)) := p + (Δ − 2)q.

10: else if (Case-4) v is non-major, f (p(v), v) = p + q and f (v) = 4q then
11: Let f (v, c0(v)) := 0, f (v, ci(v)) := p + (i + 2)q for each i ∈ [2, Δ − 3], f (ci(v)) := 0 for

each i ∈ [2, j] and f (ci(v)) := q for each i ∈ [max{2, j + 1}, Δ − 3]. If |M ∩ C(v)| ≥ 2,
then let f (c0(v)) := f (c1(v)) := p + (Δ − 1)q, and f (v, c1(v)) := q. If |M ∩ C(v)| = 1,
then let f (c0(v)) := p + (Δ − 1)q, f (c1(v)) := 3q, and f (v, c1(v)) := p. If M ∩C(v) = ∅,
then let f (c0(v)) := 2q, f (c1(v)) := 3q, and f (v, c1(v)) := p.

12: else if (Case-5) v is non-major, f (p(v), v) = p and f (v) = 3q then
13: Let f (v, c0(v)) := 0, f (v, ci(v)) := p + (i + 2)q for each i ∈ [1, Δ − 3], f (ci(v)) := 0 for

each i ∈ [1, j], and f (ci(v)) := q for each i ∈ [max{1, j + 1}, Δ − 3]. If M ∩ C(v) � ∅,
then let f (c0(v)) := p + (Δ − 1)q and otherwise let f (c0(v)) := 2q.

14: else if (Case-6) v is non-major, f (p(v), v) = 0 and f (v) = 2q then
15: Let f (v, ci(v)) := p+ (i+ 2)q for each i ∈ [0, Δ− 3], f (ci(v)) := 0 for each i ∈ [0, j], and

f (ci(v)) := q for each i ∈ [j + 1, Δ − 3].
16: else if (Case- j′) f (p(v), v)) and f (v) satisfy the conditions of Case- j for j ∈ [1, 6] then
17: After determining labels for f (ci(v)) and f (v, ci(v)) according to the above (Case- j)

based on f (p(v), v)) and f (v), let f (ci(v)) := p + (Δ − 1)q − f (ci(v)) and f (v, ci(v)) :=
p + (Δ − 1)q − f (v, ci(v)) for each i.

18: end if
19: end while
20: Output f as a (p, q)-total labeling of T .

The (p, q)-total Labeling Problem for Trees 59

On the other hand, the condition (2) is not necessary for λT
2,1(T) = Δ + 1, in contrast

to the case of p ≤ 3q/2. For example, a tree T which consists of two adjacent major
vertices and 2(Δ − 1) leaves satisfies λT

2,1(T) = Δ + 1, and there are many other such
instances.

We also remark that the case of p = 2 and q = 1 is linearly solvable by Hasunuma et
al.’s algorithm for the L(2, 1)-labeling problem [13], while the algorithm proposed in the
proof of this lemma is much simpler (though it can be applied only to some restricted
cases). Here we omit the details about this algorithm.

Consider the case of p > 3q/2 and p � 2q. In this case, the condition (2) is not even
sufficient for λT

p,q(T) = p+ (Δ−1)q, i.e., if p > 3q/2 and p � 2q, then for an arbitrary Δ,
there exist instances T with λT

p,q(T) > p + (Δ − 1)q even if the condition (2) holds. For
example, a tree which contains the configuration (a′) is one of such instances, where the
configuration (a′) denotes one obtained from (a) in Fig. 1 by replacing each vertex with
degree 3 (resp., degree 2) with a vertex with degree Δ > 0 (resp., degree Δ − 1) (note
that v has Δ − 1 major vertices as its neighbors).

5 Concluding Remarks

In this paper, we have discussed the (p, q)-total labeling problem for general p and q.
By extending known results about the case of q = 1, we have derived upper and lower
bounds on λp,q(G) for some classes of graphs G. In particular, we provided tight bounds
on λp,q(T) for trees T for all possible p and q. Also, in the case of p ≤ 3q/2, we showed
that the (p, q)-total labeling problem can be solved in linear time, and characterized
trees T achieving λT

p,q(T) if Δ ≥ 4, in contrast to the counterparts of the L(p, q)-labeling
problem. On the other hand, in the case of 3q/2 < p ≤ Δq− 1 and p � 2q, it is left open
whether the (p, q)-total labeling problem for trees is polynomially solvable or not.

It is also challenging to derive a tight upper bound on λT
p,q(G) for a general graph G,

where even the case of q = 1 is open. We here give the following conjecture, which is a
generalization of Havet and Yu’s conjecture (1).

Conjecture 1. λT
p,q(G) ≤ 2p + Δq − 1.

By Lemma 2, Corollary 1, and the fact that λT
1,1(G) ≤ Δ+1 for any series-parallel graph

G [26], this conjecture is true if p > (Δ−1)q holds or G is the complete graph, a bipartite
graph, or a series-parallel graph.

Another interesting issue might be to investigate the case p < q. We actually obtain
tight bounds on λT

p,q(T) for trees T about the case, though we omit the details.

References

1. Bazzaro, F., Montassier, M., Raspaud, A.: (d,1)-total labelling of planar graphs with large
girth and high maximum degree. Discr. Math. 307, 2141–2151 (2007)

2. Behzad, M.: Graphs and their chromatic numbers. Ph.D. Thesis, Michigan State University
(1965)

60 T. Hasunuma et al.

3. Calamoneri, T.: The L(h, k)-labelling problem: A survey and annotated bibliography. The
Computer Journal 49, 585–608 (2006) (The L(h, k)-Labelling Problem: A Survey and Anno-
tated Bibliography,
http://www.dsi.uniroma1.it/˜calamo/PDF-FILES/survey.pdf , ver. October 19,
2009)

4. Chang, G.J., Ke, W.-T., Kuo, D., Liu, D.D.-F., Yeh, R.K.: On L(d, 1)-labeling of graphs.
Discr. Math. 220, 57–66 (2000)

5. Chang, G.J., Kuo, D.: The L(2, 1)-labeling problem on graphs. SIAM J. Discr. Math. 9, 309–
316 (1996)

6. Chen, D., Wang, W.: (2,1)-Total labelling of outerplanar graphs. Discr. Appl. Math. 155,
2585–2593 (2007)

7. Dekar, L., Effantin, B., Kheddouci, H.: [r, s, t]-coloring of trees and bipartite graphs. Discr.
Math. 310, 260–269 (2010)

8. Fiala, J., Golovach, P.A., Kratochvı́l, J.: Computational Complexity of the Distance
Constrained Labeling Problem for Trees. In: Aceto, L., Damgård, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS,
vol. 5125, pp. 294–305. Springer, Heidelberg (2008)

9. Fiorini, S.: On the chromatic index of outerplanar graphs. J. Combin. Theory Ser. B 18,
35–38 (1975)

10. Georges, J.P., Mauro, D.W.: Generalized vertex labeling with a condition at distance two.
Congr. Numer. 109, 141–159 (1995)

11. Georges, J.P., Mauro, D.W.: Labeling trees with a condition at distance two. Discr. Math. 269,
127–148 (2003)

12. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Discr.
Math. 5, 586–595 (1992)

13. Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: A linear time algorithm for L(2, 1)-labeling of trees.
In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 35–46. Springer, Heidelberg
(2009)

14. Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: A tight upper bound on the (2,1)-total labeling
number of outerplanar graphs. In: CoRR abs/0911.4590 (2009)

15. Havet, F., Yu, M.-L.: (d,1)-Total labelling of graphs. Technical Report 4650, INRIA (2002)
16. Havet, F., Yu, M.-L.: (p,1)-Total labelling of graphs. Discr. Math. 308, 496–513 (2008)
17. Havet, F., Thomassé, S.: Complexity of (p,1)-total labelling. Discr. Appl. Math. 157, 2859–

2870 (2009)
18. Kemnitz, A., Marangio, M.: [r, s, t]-Colorings of graphs. Discr. Math. 307, 199–207 (2007)
19. Lih, K.-W., Liu, D.D.-F., Wang, W.: On (d, 1)-total numbers of graphs. Discr. Math. 309,

3767–3773 (2009)
20. Montassier, M., Raspaud, A.: (d,1)-total labeling of graphs with a given maximum average

degree. J. Graph Theory 51, 93–109 (2006)
21. Villà, M.S.: [r,s,t]-colourings of paths, cycles and stars. Doctoral Thesis, TU Bergakademie,

Freiberg (2005)
22. Vizing, V.G.: Some unsolved problems in graph theory. Russian Mathematical Surveys 23,

125–141 (1968)
23. Wang, W., Chen, D.: (2,1)-Total number of trees maximum degree three. Inf. Process.

Lett. 109, 805–810 (2009)
24. Whittlesey, M.A., Georges, J.P., Mauro, D.W.: On the λ-number of Qn and related graphs.

SIAM J. Discr. Math. 8, 499–506 (1995)
25. Yeh, R.K.: A survey on labeling graphs with a condition at distance two. Discr. Math. 306,

1217–1231 (2006)
26. Zhou, X., Matsuo, Y., Nishizeki, T.: List total colorings of series-parallel graphs. J. Discr.

Algorithms 3, 47–60 (2005)

http://www.dsi.uniroma1.it/~calamo/PDF-FILES/survey.pdf

Drawing a Tree as a Minimum Spanning Tree
Approximation

Emilio Di Giacomo1, Walter Didimo1, Giuseppe Liotta1, and Henk Meijer2

1 Dip. di Ingegneria Elettronica e dell’Informazione, Università degli Studi di Perugia
{digiacomo,didimo,liotta}@diei.unipg.it

2 Roosevelt Academy, The Netherlands
h.meijer@roac.nl

Abstract. We introduce and study (1 + ε)-EMST drawings, i.e. planar straight-
line drawings of trees such that, for any fixed ε > 0, the distance between any
two vertices is at least 1

1+ε
the length of the longest edge in the path connecting

them. (1 + ε)-EMST drawings are good approximations of Euclidean minimum
spanning trees. While it is known that only trees with bounded degree have a
Euclidean minimum spanning tree realization, we show that every tree T has a
(1+ ε)-EMST drawing for any given ε > 0. We also present drawing algorithms
that compute (1 + ε)-EMST drawings of trees with bounded degree in polyno-
mial area. As a byproduct of one of our techniques, we improve the best known
area upper bound for Euclidean minimum spanning tree realizations of complete
binary trees.

1 Introduction

The Euclidean minimum spanning tree of a set points in 2D and in 3D is among the
most fundamental and hence most studied geometric structures (see, e.g. [14]). In their
seminal paper, Monma and Suri [13] initiated the investigation of the combinatorial
properties of the Euclidean minimum spanning trees in the plane. This investigation
naturally leads to the following question: Which are those trees that have an EMST
drawing, i.e. a straight-line drawing that is also a Euclidean minimum spanning tree of
the set of its vertices?

Besides their relevance in geometric graph theory, EMST drawings are also interest-
ing for graph drawing applications. Namely, an EMST drawing satisfies some aesthetic
requirements that are fundamental for the readability of a tree visualization: No two
edges cross each other, groups of closely related vertices visually cluster together, and
less related vertices are relatively far apart from each other [1,4,7,11].

Unfortunately, not all trees have an EMST drawing. Monma and Suri [13] proved
that every tree with maximum vertex degree at most five admits an EMST drawing,
while no tree with a vertex of degree greater than six admits this type of representation.
As for trees having maximum degree equal to six, Eades and Whitesides [5] showed
that it is NP-hard to decide whether such trees admit an EMST drawing. In order to
enlarge the family of representable trees, the computation of EMST drawings in three-
dimensional space was initiated in [12]. The authors of [12] proved that all trees with
maximum vertex degree nine admit an EMST drawing in 3D-space, while no tree with

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 61–72, 2010.
© Springer-Verlag Berlin Heidelberg 2010

62 E. Di Giacomo et al.

vertex degree larger than twelve has an EMST drawing. King [10] reduced the gap
between upper and lower bound by showing that all trees with vertex degree up to ten
admit an EMST drawing in 3D-space.

In this paper we want to compute planar straight-line drawings of trees where groups
of adjacent vertices be relatively close to each other while non-adjacent vertices be
relatively far apart from one another. In order to overcome the vertex degree limitations
imposed by EMST drawings, we define a new type of drawing that “approximates” an
EMST drawing. Given a constant ε > 0 and a tree T , a (1+ ε)-EMST drawing of T is
a planar straight-line drawing Γ of T that satisfies the following proximity constraint:
For any two vertices u and v, d(u, v) ≥ 1

1+ε |eT (u, v)|, where d(u, v) is the Euclidean
distance between u and v in Γ , and |eT (u, v)| is the maximum length of an edge of Γ
in the path from u to v in T .

One of the leading motivations behind our study is to investigate the area require-
ments of “good approximations” of EMST-drawings. Perhaps the most longstanding
open problem about EMST-drawings is due to Monma and Suri [13], who conjecture
that there exists a tree T of maximum degree five and a constant c > 1 such that any
two-dimensional EMST drawing of T requires Ω(cn×cn) area. Recently, Kaufmann [8]
and Frati and Kaufmann [6] have made some significant progress on this problem dis-
proving the conjecture of Monma and Suri for vertex degree up to four. In [6,8] an
area bound of O(n21.252) is proved for trees having vertex degree at most four and of
O(n11.387) for those having vertex degree at most three. In the same papers it is also
shown that these bounds can be significantly improved when the input tree has loga-
rithmic height: For example, an area bound of O(n4.3) is proved for EMST drawings
of complete binary trees. However, the question whether all trees having vertex degree
at most five admit an EMST drawing of polynomial area remains to date unanswered.

An overview the results in this paper is as follows.

– We study the relationships between (1 + ε)-EMST drawings and Euclidean mini-
mum spanning trees. We show that the sum of the lengths of the edges in a (1 + ε)-
EMST drawing is within a (1 + ε)-factor of the sum of the lengths of the edges
of a Euclidean minimum spanning tree of the points representing the vertices (Sec-
tion 2).

– We present a drawing algorithm that, for any given ε > 0 and any tree T , computes
a two-dimensional (1 + ε)-EMST drawing of T (Section 3).

– We describe polynomial area approximation schemes for (1 + ε)-EMST drawings:
Any tree with n vertices and degree bounded by a constant admits a (1 + ε)-EMST
drawing whose area is O(nc+f(ε)), where c is a positive constant and f(ε) is a
polylogarithmic function of ε that tends to infinity as ε tends to zero (Section 4).

– We study ad-hoc polynomial area approximation schemes for families of trees that
have logarithmic height. We obtain area bounds that significantly improve the gen-
eral case. These techniques are also extended to the 3D-space (Section 5.1).

– Finally, as a variant of our techniques, we are able to compute an EMST drawing
of a complete binary tree of n vertices in O(n3.802) area. This result improves the
best previously known upper bound of O(n4.3) proved by Frati and Kaufmann [6]
(Section 5.2).

For reasons of space, some proofs are sketched or omitted.

Drawing a Tree as a Minimum Spanning Tree Approximation 63

2 (1 + ε)-EMST Drawings

Let T = (V, E) be a tree and let Γ be a straight-line drawing of T . We denote by |e|
the length of edge e in Γ and we call |Γ | =

∑
e∈E |e| the weight of Γ . For any pair of

vertices u, v ∈ V , d(u, v) is the Euclidean distance between u and v in Γ , πT (u, v) is
the path from u to v in T , and eT (u, v) is the longest edge of Γ along the path πT (u, v).

Given a set of points P , a Euclidean minimum spanning tree of P is a geometric tree
spanning all points of P and having minimum total weight. In this paper we denote by
EMST (P) a Euclidean minimum spanning tree of P , and by |EMST (P)| its weight.
Let Γ be a straight-line drawing of a tree T and let P be the set of points corresponding
to the vertices of T in Γ . If Γ is a Euclidean minimum spanning tree of P , we say that
Γ is an EMST drawing. We recall that a drawing Γ is an EMST drawing if and only if
it satisfies the following condition: ∀u, v ∈ V, d(u, v) ≥ |eT (u, v)|. Also, every EMST
drawing is planar, i.e., it does not contain edge crossings (see, e.g., [14]).

Let ε > 0 be a given constant and let T be a tree. A (1 + ε)-EMST drawing of T
is a planar straight-line drawing of T such that for any two vertices u and v, d(u, v) ≥

1
1+ε |eT (u, v)|. This last condition will be referred to as the proximity constraint of Γ .

The next theorem establishes a relationship between (1 + ε)-EMST drawings and
Euclidean minimum spanning trees. Its proof is omitte dfor reasons of space.

Theorem 1. Let ε > 0 be a given constant. Let T be a tree, let Γ be a straight-line
drawing of T , and let P be the set of points corresponding to the vertices of T in Γ . If
Γ is a (1 + ε)-EMST drawing of T , then |Γ | ≤ (1 + ε)|EMST (P)|.

3 Computing (1 + ε)-EMST Drawings of General Trees

In this section we consider the problem of computing a (1+ε)-EMST drawing of a tree.
We start by remarking that the converse of Theorem 1 does not hold, which is a major
difference to take into account between the problem of computing an EMST drawing
and the one of computing a (1 + ε)-EMST drawing. Namely, every planar straight-
line drawing of a tree having minimum weight satisfies the property that ∀u, v ∈
V, d(u, v) ≥ |eT (u, v)|; for a contrast, it is not true that every planar straight-line draw-
ing of a tree whose weight is (1 + ε) times the weight of a Euclidean minimum span-
ning tree satisfies the proximity constraint. Hence, a simple construction like the one
illustrated in Fig. 1 (suitably fix the length of and edge according to the desired approx-
imation factor and make all other edge lengths negligible) computes a drawing whose
weight can be made arbitrarily close to the one of a minimum spanning tree, but it does
not guarantee that for any two vertices u and v, d(u, v) ≥ 1

1+ε |eT (u, v)|. The proof of
the next theorem is in fact based on a different technique.

Theorem 2. Let ε > 0 be a given constant. Any tree admits a (1 + ε)-EMST drawing
that can be computed in O(n) time in the real RAM model of computation.

Sketch of Proof: Let T be a tree. Root T at an arbitrary vertex v. We describe a recursive
algorithm that computes a drawing of T contained in a disc Cv of radius r, for any
given value of r > 0. A high-level description of the algorithm is as follows. Vertex

64 E. Di Giacomo et al.

e

Fig. 1. By making edge e sufficiently long, the weight of the drawing can arbitrarily approximate
the weight of a Euclidean minimum spanning tree of its vertex set. However, the resulting drawing
may not be a (1 + ε)-EMST drawing.

v is drawn at the center of Cv; each neighbor u of v is drawn at an arbitrary point of
a distinct circle centered at v and of radius smaller than r. The subtree rooted at each
neighbor u of v is recursively drawn inside a sufficiently small disc Cu centered at u
and such that Cu ⊂ Cv . The radii of the concentric circles hosting the neighbors of v
and the radius of each Cu are chosen in such a way that the resulting drawing satisfies
the statement. See also Fig. 2.

More formally, let n be the number of vertices of T , let r > 0 be a given value
and assume that any tree with at most n − 1 vertices admits a planar drawing con-
tained in a disc of radius r′ for any r′ > 0 and satisfying the proximity constraint (the
base case with n = 1 is trivially true by representing T as the center of this disc).
Denote with deg(v) the degree of the root v of T . We prove that T admits a planar
drawing Γ that satisfies the proximity constraint and that is contained in a disc of ra-
dius r centered at v. Compute a real number c such that c ≥ max{ε, 1+ε

ε }; note that,
this also implies that c−1

c ≥ 1
1+ε and c > 1. Choose λ to be a real number such that

λcdeg(v)+1 = r. Let u1, u2, . . . , udeg(v) be the neighbors of v. Draw v at the origin
of the plane and draw ui at polar coordinates (λci, (i − 1) · θ), where θ = π

deg(v)−1 .
Clearly, no two edges (v, ui) and (v, uj) of T overlap. The subtree rooted at each uh

(h = 1, 2, . . . , deg(v)) is recursively drawn in the disc centered at uh and having radius
r′ = min{ ε

1+ελc, (d(u2, u1)−λ(c2−c1))/2}. This drawing exists by inductive hypoth-
esis. Also, it is easy to see that (d(u2, u1)−λ(c2− c))/2 ≤ (d(ui, uj)−λ(ci− cj))/2,
for 1 ≤ j < i ≤ deg(v).

v

u1

u2
udeg(v)

λc

λc3

λcdeg(v)

r′

λc2

u3

r

Fig. 2. The drawing construction described in the proof of Theorem 2

Drawing a Tree as a Minimum Spanning Tree Approximation 65

We prove that the computed drawing Γ of T is contained in the disc of radius r
centered at v. The distance between v and the vertex that is farthest from v is at most
λcdeg(v) + r′. We need to prove that such a distance is at most λcdeg(v)+1 = r, i.e.
that λcdeg(v)+1 − λcdeg(v) ≥ r′. We have λcdeg(v)+1 − λcdeg(v) = λcdeg(v)(c − 1)
and (c − 1) ≥ c

1+ε . Thus, λcdeg(v)+1 − λcdeg(v) = λcdeg(v)(c − 1) ≥ λc cdeg(v)

1+ε . By

definition of c, cdeg(v) > c ≥ ε; since r′ ≤ ε
1+ελc, we have λcdeg(v)+1 − λcdeg(v) ≥

λr cdeg(v)

1+ε ≥ λc ε
1+ε ≥ r′.

We now prove that Γ satisfies the proximity constraint. Let u and w be any two
vertices of Γ and assume they are not adjacent, because otherwise the statement is
trivially satisfied. If u and w are in the same subtree rooted at ui, then they satisfy the
statement by induction. If u is in a subtree rooted at uh and w is in a subtree rooted at uk

with h > k we have d(u, w) ≥ d(uh, uk)−2r′ ≥ d(uh, uk)−(d(u2, u1)−λ(c2−c)) ≥
d(uh, uk) − (d(uh, uk) − λ(ch − ck)) = λ(ch − ck) ≥ λ(ch − ch−1) = λch c−1

c ≥
1

1+ε |eT (u, w)|. If u is in a subtree rooted at uk and w = v we have d(u, w) = d(u, v) ≥
d(v, uk)−r′ = λck−r′ ≥ λck− ε

1+ελc ≥ λck− ε
1+ελck = 1

1+ελck = 1
1+ε |eT (u, w)|.

Since Γ is a planar drawing by construction, we conclude that Γ is a (1 + ε)-EMST
drawing.

The algorithm spends O(deg(v)) time for each vertex v, which implies an O(n) time
complexity. �	

It may be worth recalling that no tree having vertex degree higher than six can be rep-
resented as a Euclidean minimum spanning tree of a set of points and that it is NP-hard
deciding whether a tree of degree six admits an EMST drawing [5,13]. Theorem 2 pro-
vides a tool to construct a drawing that is as close as possible to an EMST drawing
for those trees that have degree larger than five. We observe however that the drawing
algorithm of Theorem 2 may lead to drawings whose area1 is exponential in n. For
example, let T be a star-tree with n vertices (i.e., T consists of a vertex connected to
n−1 leaves). The algorithm of Theorem 2 computes a drawing of T inside a disc whose
radius is r = λcn, and therefore the area of the smallest axis-parallel rectangle includ-
ing this disc is O(c2n). Computing (1 + ε)-EMST drawings of polynomial area is the
subject of the next two sections.

4 Polynomial Area Approximation Schemes for Bounded Degree
Trees

In this section we show that a tree with n vertices and bounded degree admits a (1+ ε)-
EMST drawing whose area is O(nc+f(ε)), where c is a positive constant and f(ε) is a
polylogarithmic function of ε that tends to infinity as ε tends to zero.

The very general idea of our approach is similar to that used in many papers that
compute compact drawings of trees: Recursively compute the drawing by composing
subdrawings of subtrees; if each composition increases the area of the current drawing

1 The area of a drawing Γ is the area of the smallest axis-aligned rectangle enclosing Γ , for a
given vertex resolution rule. A vertex resolution rule defines the minimum distance between
any two vertices.

66 E. Di Giacomo et al.

by a constant factor and if the number of recursive steps is a logarithmic function of the
input size, then the total area is polynomial (see, e.g. [3,9]).

Based on this idea one could think of approaching the construction of (1+ε)-EMST
drawings in polynomial area by using the edge-separator theorem of Valiant [15].
Namely, every tree T with n vertices and vertex degree at most Δ has an edge (called
edge-separator) whose removal leaves two components, each containing at most Δ−1

Δ ·n
vertices. Therefore, one might think of drawing each of the components recursively, and
add the removed edge back with a sufficient length that guarantees the proximity con-
straint. Because of the size of each component, the number of levels in the recursion
is O(logb n), with b = Δ

Δ−1 and hence the area of the resulting drawing is polynomial
in n. Unfortunately, it is not clear how this simple approach could lead to drawings
without edge crossings. We therefore follow a different approach.

In order to guarantee a logarithmic number of recursive steps, we decompose the
tree into subtrees of smaller size by means of a greedy path decomposition. Let T be
a rooted tree such that each vertex has at most k children, and let v0 be the root of
T . A greedy path of T is a path v0, v1, . . . , vk connecting the root v0 to a leaf vk and
such that vi is the root of the largest subtree rooted at vi−1 (1 ≤ i ≤ k). A greedy
path decomposition of a rooted tree T consists of recursively identifying greedy paths
and on removing them so to decompose the tree into rooted subtrees of smaller size.
The decomposition ends when the tree is a path (possibly consisting of a single vertex).
Greedy paths decompositions of rooted trees have, for example, been used by Chan [2]
to compute compact drawings of binary trees, and by Kaufmann [8] to prove polynomial
area bounds for EMST drawings of ternary trees.

Let T be a tree with a given greedy path decomposition and let T ′ be a subtree
of T . The greedy depth of T ′ (with respect to the given decomposition) is denoted as
γ(T ′), and defined as follows: (i) If T ′ is a path, γ(T ′) = 1; (ii) otherwise, γ(T ′) =
maxi{γ(Ti)} + 1, where each Ti is a tree obtained from T ′ by removing its greedy
path for the given decomposition. Intuitively, the greedy depth of a tree for a given
greedy path decomposition is the depth of the recursion in the decomposition process.
If T has n vertices, the size of a subtree of T having greedy depth i is at most n

2i . This
immediately implies the following property.

Property 1. Let T be a tree with n vertices and a given greedy path decomposition.
Then, γ(T) ≤ �log2 n�.

Theorem 3. Let ε > 0 be a given constant. Let Δ > 2 be a positive integer. Let
T be a tree with n vertices and vertex degree at most Δ. T admits a (1 + ε)-EMST

drawing whose area is O(n4+2 log2(
cΔ+1+cΔ+c2−3c

c−1)), where c is a constant such that
c ≥ max{ 1+ε

ε , 1
sin π

2(Δ−1)
}. Furthermore, such a drawing can be computed in O(n)

time in the real RAM model of computation.

Sketch of Proof: We describe a drawing algorithm assuming that T is rooted and each
internal vertex of T has exactly Δ − 1 children. This assumption is not restrictive.
Indeed, if T is a tree of degree at most Δ, we can always root T at a leaf and add to any
internal vertex of degree k < Δ − 1 a set of Δ − 1 − k dummy children. In this way,
the number of vertices of the augmented tree is at most (Δ−1)n, and hence, still linear
in n.

Drawing a Tree as a Minimum Spanning Tree Approximation 67

The drawing algorithm applies a recursive construction based on a greedy path de-
composition. Let T ′ = (V ′, E′) be a subtree of T such that γ(T ′) = i (1 ≤ i ≤
�log2 n�). Let Π be the greedy path of T ′. The algorithm constructs a drawing Γ ′ of
T ′ by composing the drawings of all trees obtained from T ′ by removing Π . Denote by
n(T ′) the number of vertices of T ′. The algorithm will maintain the following invariants
for drawing Γ ′ (see Fig. 3(a) for an illustration):

(I1) ∀u, v ∈ V ′, d(u, v) ≥ 1
1+ε |eT ′(u, v)|.

(I2) Γ ′ is completely contained in the north-east quadrant of a disc C′ such that C′ is
centered at the root v′ of T ′ and the radius of C′ is r′ = n(T ′)(2c(b+1))log2 n(T ′)+1

where b = (cΔ−1 + 2 cΔ−1−1
c−1).

(I3) Γ ′ is planar.

We now prove that Γ ′ exists. The proof is by induction on the greedy depth i of T ′.
The base case is for i = 1. Since Δ > 2, each internal vertex of T ′ has Δ − 1 ≥ 2
children, and therefore in the base case T ′ consists of a single vertex. T ′ is drawn as a
single point centered at a disc of radius 2c(b + 1) and thus Γ ′ satisfies all invariants.

By inductive hypothesis, each subtree with greedy depth i − 1 admits a drawing
satisfying Invariants (I1), (I2), and (I3). We construct Γ ′ as follows (see also
Fig. 3(b)).

v′

r′

(a)

vj

�j,1

rj,3

vj+1

�j,2

�j,3

rj,2

rj,1

Lj

uj,3

uj,2

uj,1

δ

d(uj,2, uj,3)− rj,2 − rj,3

θ

�j,3 sin θ

(b)

Fig. 3. The drawing construction in the proof of Theorem 3

Denote by v1, v2, . . . , vh the vertices of Π , and let uj,1, uj,2, . . . , uj,Δ−2 the children
of vj that are not in Π (1 ≤ j ≤ h − 1). The vertices v1, v2, . . . , vh are drawn on
a horizontal line, in this order from left to right. The distance between vj and vj+1

(1 ≤ j ≤ h − 1) is denoted by Lj and its value will be specified later. Denote by
Γuj,k

the drawing of each subtree rooted at uj,k (1 ≤ j ≤ h − 1, 1 ≤ k ≤ Δ − 2).
By Invariant (I2) each Γuj,k

is contained in a disc of suitable radius; we denote this
radius as rj,k and we assume that the children of vj are ordered so that rj,k < rj,k+1

(1 ≤ k ≤ Δ − 3).

68 E. Di Giacomo et al.

For 1 ≤ k ≤ Δ− 2, drawing Γuj,k
is placed in such a way that the polar coordinates

of uj,k with respect to the position of vj are (�j,k, (k + 1)θ), where θ = π
2(Δ−1) and

�j,k is defined as follows:

�j,k =

{
crj,0 k = 0
c(�j,k−1 + rj,k−1 + rj,k) k > 1

The value of Lj is set to Lj = c(�j,Δ−2 + �j+1,Δ−2 + rj,Δ−2 + rj+1,Δ−2).
For reasons of space, the proof that the Invariants (I1), (I2) and (I3) are main-

tained is omitted. From Invariants (I1) and (I3) it follows that Γ is a (1 + ε)-
EMST drawing of T . Also, by Invariant (I2), Γ is contained in a disc of radius
n(2c(b + 1))log2 n+1 = (2c(b + 1))n2+log2(c(b+1)). Hence, the area of the drawing

is O(n2+log2(c(b+1))) which, by the definition of b, is O(n4+2 log2(
cΔ+1+cΔ+c2−3c

c−1)).
The algorithm spends O(deg(v)) time for each vertex v, i.e., O(n) time in total. �	

We recall that it is not known how to draw in polynomial area a tree of degree five as
a Euclidean minimum spanning tree in the plane [13]. Theorem 3 implies that, for any
given constant ε > 0, an approximation of an EMST drawing with polynomial area
exists for trees with degree five vertices.

5 Trees with Logarithmic Height

We devote this section to trees having small vertex degree and logarithmic height. We
describe ad-hoc algorithms that compute (1 + ε)-EMST drawings of these trees by
using significantly less area than the one given by Theorem 3. As a byproduct of this
study, we show how to realize a complete binary tree with n vertices as a Euclidean
minimum spanning tree in area O(n3.802), which improves the best previously known
upper bound of O(n4.3) proved by Frati and Kaufmann [6].

5.1 Trees with Vertex Degree at Most Six

In the next theorem we exploit the maximum vertex degree six and the logarithmic
height of the input tree to design a recursive algorithm that does not use the greedy path
decomposition. In the statement, if a rooted tree T has degree Δ, each internal vertex
of T has at most Δ − 1 children.

Theorem 4. Let ε > 0 and h > 0 be given constants. Let Δ be a positive integer
such that 3 ≤ Δ ≤ 6. Let T be a rooted tree with n vertices, vertex degree at most
Δ, and height at most h logΔ−1 n. T admits a (1 + ε)-EMST drawing whose area is
O(n2h logΔ−1(c+2)), where c = 2+ε

ε . Furthermore, such a drawing can be computed in
O(n) time in the real RAM model of computation.

Sketch of Proof: We describe an algorithm that constructs a drawing of T and prove that
this drawing satisfies the properties in the statement. For any vertex v of T , denote by
Tv the subtree of T rooted at v. If i is the level of v (0 ≤ i ≤ h logΔ−1 n), the algorithm

Drawing a Tree as a Minimum Spanning Tree Approximation 69

recursively constructs a drawing Γv of Tv inside a disc Cv centered at v, with a suitable
radius ri. Γv will be such that the following invariants hold:

(I1) ∀u, w ∈ Tv, d(u, w) ≥ 1
1+ε |eTv (u, w)|;

(I2) There exists a ray of Cv departing from v that does not cross any edge of Γv; in
the following we call this ray the free ray of Γv.

(I3) Γv is planar.

We show how to construct Γv by induction on the level of v, going from the highest
level of T to level 0. Level 0 is the level of the root of T .

A vertex v at the deepest level of T is a leaf; in this case Tv is drawn as a single point
centered at a disc of radius 1, so that Invariants (I1)-(I3) trivially hold for Γv .

Suppose by induction that for any vertex v′ at level i > 0, a drawing Γv′ of Tv′

that satisfies Invariants (I1)-(I3) exists. Let v be a vertex at level i − 1 and let
u1, u2, . . . , ud be its children. Note that, if v is not the root of T then d ≤ Δ − 1; if
v is the root of T then d ≤ Δ. Drawing Γv is constructed by combining the drawings
Γuj of Tuj (1 ≤ j ≤ d). Namely, Γv is drawn inside a disc Cv of radius ri−1, such
that v is placed at the center of Cv and the drawings Γuj are distributed around v. More
precisely, if we assume (without loss of generality) that v is placed at the origin of the
plane, then each uj is placed at a point of polar coordinates ((ri−1 − ri), j 2π

k), and
Γuj is rotated so that its free rays has the direction of the segment connecting v to uj .
Finally, the radius of Cv is set to ri−1 = (c + 2)ri, where c = 2+ε

ε . See also Fig. 4(a).
We first prove that Invariant (I1) holds for Γv. Let u and w be two arbitrary vertices

of Tv. Three cases are possible. If u and w are both in the same Tuj (1 ≤ j ≤ d) then
d(u, w) ≥ 1

1+ε |eT (u, w)| by the inductive hypothesis.
If u ∈ Tuj and w ∈ Tul

, with 1 ≤ j < l ≤ d, we have that d(u, w) ≥ d(uj , ul)−2ri.
Denote as δ be the distance between the discs containing two consecutive drawings Γuj

and Γuj+1 around v (see also Fig. 4(a)). We have that d(u, w) ≥ d(uj , ul) − 2ri ≥
d(uj , uj+1)−2ri = δ; also eTv (u, w) = (v, uj) and therefore |eTv (u, w)| = ri−1− ri.
Hence, it suffices to show that δ ≥ 1

1+ε(ri−1 − ri). By simple trigonometry, δ
2 + ri =

(c + 1)ri sin(π/Δ). It follows that δ ≥ 1
1+ε (ri−1 − ri) can be rewritten as 2((c +

1) sin(π/Δ) − 1)ri ≥ 1
1+ε(c + 1)ri, which is verified for c ≥ 1+2(1+ε)(1−sin(π/Δ))

2(1+ε) sin(π/Δ)−1

and 2(1 + ε) sin(π/Δ) − 1 > 0. Note that for 3 ≥ Δ ≥ 6 we have both 2+ε
ε ≥

1+2(1+ε)(1−sin(π/Δ))
2(1+ε) sin(π/Δ)−1 and 2(1 + ε) sin(π/Δ) − 1 > 0 .
If u coincides with v and w is in Tuj (1 ≤ j ≤ d), we have that d(u, w) ≥

ri−1 − 2ri; also eTv (u, w) = (v, uj) and therefore |eTv(u, w)| = (ri−1 − ri). To
show Invariant (I1) it suffices to prove that ri−1 − 2ri ≥ 1

1+εri−1 − ri. By construc-
tion, ri−1 − 2ri = cri and ri−1 − ri = (c + 1)ri. It follows that the previous inequality
can be rewritten as cri ≥ 1

1+ε(c + 1)ri, which is verified since c = 2+ε
ε .

We now prove that Invariant (I2) also holds for Γv. Since the distance δ between
the discs containing two consecutive drawings Γuj and Γuj+1 around v is at least

1
1+ε(ri−1 − ri), it follows that δ is positive. Hence, a free ray of Γv is any ray from
v passing between the discs containing Γuj and Γuj+1 .

Finally, by construction, it is easy to see that Invariant (I3) holds.
It follows that, if v is the root of T , drawing Γ = Γv is a (1+ε)-EMST drawing. The

bound on the area of the drawing is proved by observing that the radius r0 of the disc

70 E. Di Giacomo et al.

containing Γ is related to the radius ri by the following equation: r0 = (c+2)iri. Since
the height of T is at most h logΔ−1 n we have r0 ≤ (c+2)h logΔ−1 n = nh logΔ−1(c+2),
which implies an area bound of O(n2h logΔ−1(c+2)).

The algorithm spends O(deg(v)) time for each vertex v, i.e., O(n) time in total. �	

It could be interesting to compare the bounds of Theorem 3 with those of Theorem 4.
Suppose that T is a complete rooted tree with n vertices such that every internal vertex
has five children. Assume that we wish to be within a factor ε = 0.5 of having an
EMST drawing of T , i.e. we want to compute a 1.5-EMST drawing of T . By using the
construction of Theorem 3 the area of the drawing is O(n26.17); by using Theorem 4,
we can compute a 1.5-EMST drawing of T in O(n2.42) area.

v

uj uj+1

ri−1
cri

ri riδ

2π/Δ

(a)

v

uj

u′l

�

ri−1 − ri

ri − ri+1

2π
3

ri+1

1
2(ri − ri+1)

(b)

Fig. 4. (a) The drawing construction in the proof of (a) Theorem 4 (b) Theorem 6

One may wonder whether Theorem 4 can be extended to trees of degree larger than

six. Notice however that the function 1+2(1+ε)(1−sin(π
Δ))

2(1+ε) sin(π
Δ)−1 used in Theorem 4 is finite

and positive for every ε > 0 only when 3 ≤ Δ ≤ 6. If Δ > 6 the argument in the proof
of Theorem 4 cannot be applied. This motivates us to look at (1 + ε)-EMST drawings
in three dimensions. The proof of the next theorem is omitted.

Theorem 5. Let ε > 0 and h > 0 be given constants. Let Δ be a positive integer such
that 3 ≤ Δ ≤ 12. Let T be a rooted tree with n vertices, vertex degree at most Δ, and
height at most h logΔ−1 n. T admits a (1+ ε)-EMST in three dimensional space whose
volume is O(n3h logΔ−1(c+2)), where c = 2+ε

ε . Furthermore, such a drawing can be
computed in O(n) time in the real RAM model of computation.

Finally, we observe that it is possible to use the drawing technique of Theorem 4 to
compute (1+ε)-EMST drawings of trees of degree higher than six, provided that (1+ε)
approximation factor is not required to be arbitrarily close to 1, but it depends on the
vertex degree.

5.2 EMST Drawings of Complete Binary Trees

Frati and Kaufmann [6] prove that a complete binary tree can be drawn as a Euclidean
minimum spanning tree in area O(n4.3). In this section we improve this bound as an

Drawing a Tree as a Minimum Spanning Tree Approximation 71

application of the techniques in the proof of Theorem 4. Namely, we show that if Δ = 3
the condition cri ≥ 1

1+ε (c+1)ri does not need to be verified for proving the correctness
of the geometric construction of Theorem 4. An implication of this observation is that
for Δ = 3 the proof of Theorem 4 also works by setting ε = 0.

Theorem 6. Let T be a rooted complete binary tree with n vertices. T admits an EMST
drawing in area O(n3.802). Furthermore, such a drawing can be computed in O(n) time
in the real RAM model of computation.

Sketch of Proof: As already observed, a straight-line two-dimensional drawing of a tree
T is a Euclidean minimum spanning tree of the points representing its vertices if and
only if that the following property holds:

∀u, w ∈ V, d(u, w) ≥ |eT (u, w)| (1)

Let z be the root of T . We draw the two edges incident to z as segments of the same
length and forming an angle of 2π

3 . By applying the drawing technique described in the
proof of Theorem 4, we recursively construct a drawing where for each internal vertex
v different from z any two consecutive edges around v form an angle of 2π

3 . Let v be
an internal vertex of height i − 1 > 0 and let u1 and u2 be its children. According to
our drawing technique the segment connecting v to u1 forms an angle of 2π

3 with the
positive x-axis, and the segment connecting v to u2 forms an angle of − 2π

3 with the
positive x-axis. Hence the positive x-axis is a free ray for Tv; this free ray is used to
connect the drawing of Tv to the parent of v after suitable rotation.

It remains to prove that the computed drawing satisfies Property (1). The proof is
by induction. Let u and w be any two vertices of Tv. If u and w are vertices of the
same subtree Tuj (1 ≤ j ≤ 2), then Property (1) holds by induction. If u is in the
subtree Tu1 and w is in Tu2 then d(u, w) ≥ d(u1, u2) − 2ri = δ and therefore it is
sufficient to guarantee δ ≥ (ri−1 − ri). We have that δ

2 + ri = (c + 1)ri sin(π/3) =
(c + 1)

√
3

2 ri. Thus, it must be
√

3(c + 1)ri − 2ri ≥ (c + 1)ri, from which we obtain

c ≥ 3−√
3√

3−1
> 1.732. If u coincides with v and if w is in the subtree Tuj (1 ≤ j ≤ 2),

then assume that w does not coincide with uj (otherwise Property (1) is trivially true)
and let u′

1 and u′
2 be the children of uj . Vertex w is a vertex of Tu′

l
(1 ≤ l ≤ 2). We

have that d(u, w) ≥ d(v, u′
l)− ri+1 (see Fig. 4(b)). Let � be the straight-line orthogonal

to the segment representing edge (v, uj) passing through uj . The distance from u′
l to �

is (ri − ri+1) sin(π
6) = 1

2 (ri − ri+1) = 1
2 (c + 1)ri+1, that is larger than ri+1 for any

c > 1. Thus, for every c > 1, the disc containing Tu′
l

and v are on opposite sides of �,
which means that d(u, w) > |eT (u, w)| = |(v, uj)| = ri−1 − ri.

Therefore we can choose ri−1 = (c + 2)ri with c = 1.733, which implies that
the radius of the disc enclosing the whole drawing is r0 = (c + 2)log2 n+1 = (c +
2)nlog2(c+2) = (c + 2)nlog2(3.733) < (c + 2)n1.901 and the area of the drawing is
O(n3.802).

The algorithm spends O(deg(v)) time for each vertex v, i.e., O(n) time in total. �	

72 E. Di Giacomo et al.

6 Open Problems

The study of (1+ε)-EMST drawings and of their variants opens interesting perspectives
both from the theoretical and from the practical point of view. For example, one can ob-
serve that drawings of trees computed by using spring embedder heuristics seem to be
(1+ε)-EMST drawings in many cases (see, e.g., [4]). It would be nice to experimentally
study this possible correlation. Also, extending the concept of “approximated drawing”
to other types of proximity rules and/or to other families of graphs is a promising re-
search subject. For example, does every triangulated planar graph admit a straight-line
drawing whose weight is at most (1+ε) times the weight of the Delaunay triangulation
of its vertex set?

References

1. Bose, P., Di Battista, G., Lenhart, W., Liotta, G.: Proximity constraints and representable
trees. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 340–351. Springer,
Heidelberg (1995)

2. Chan, T.M.: A near-linear area bound for drawing binary trees. Algorithmica 34(1), 1–13
(2002)

3. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper
Saddle River (1999)

4. Eades, P., Whitesides, S.: The realization problem for euclidean minimum spanning trees in
NP-hard. Algorithmica 16(1), 60–82 (1996)

5. Eades, P., Whitesides, S.: The realization problem for Euclidean minimum spanning trees is
NP-hard. Algorithmica 16, 60–82 (1996)

6. Frati, F., Kaufmann, M.: Polynomial area bounds for MST embeddings of trees. RT-DIA-
122-2008, Dept. of Comput. Sc. Univ. Roma Tre (2008)

7. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proc.
IEEE 80(9), 1502–1517 (1992)

8. Kaufmann, M.: Polynomial area bounds for MST embeddings of trees. In: Hong, S.-H.,
Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 88–100. Springer, Heidelberg
(2008)

9. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg
(2001)

10. King, J.: Realization of degree 10 minimum spanning trees in 3-space. In: Canadian Confer-
ence on Computational Geometry (CCCG 2006) (2006)

11. Liotta, G.: Proximity drawings. In: Tamassia, R. (ed.) Handbook of Graph Drawing and
Visualization. CRC Press, Boca Raton (to appear)

12. Liotta, G., Di Battista, G.: Computing proximity drawings of trees in the 3-dimemsional
space. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955,
pp. 239–250. Springer, Heidelberg (1995)

13. Monma, C., Suri, S.: Transitions in geometric minimum spanning trees. Discrete Comput.
Geom. 8, 265–293 (1992)

14. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction, 3rd edn. Springer,
Heidelberg (October 1990)

15. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Computers 30(2),
135–140 (1981)

k-cyclic Orientations of Graphs

Yasuaki Kobayashi1, Yuichiro Miyamoto2, and Hisao Tamaki1

1 Meiji University, Kawasaki, Japan 214-8571

{yasu0207,tamaki}@cs.meiji.ac.jp
2 Sophia University, Chiyoda-ku, Tokyo, Japan 102-8554

miyamoto@sophia.ac.jp

Abstract. An orientation of an undirected graph G is a directed graph

D on V (G) with exactly one of directed edges (u, v) and (v, u) for each

pair of vertices u and v adjacent in G. For integer k ≥ 3, we say a directed

graph D is k-cyclic if every edge of D belongs to a directed cycle in D of

length at most k. We consider the problem of deciding if a given graph

has a k-cyclic orientation. We show that this problem is NP-complete

for every fixed k ≥ 3 for general graphs and for every fixed k ≥ 4 for

planar graphs. We give a polynomial time algorithm for planar graphs

with k = 3, which constructs a 3-cyclic orientation when the answer is

affirmative.

1 Introduction

Let G be an undirected graph with vertex set V (G) and edge set E(G). An
orientation of edge e of G between vertex u and v is a directed edge (u, v) or
(v, u). An orientation of G is a directed graph on V (G) that has exactly one of
the two orientations of each edge of G.

Robbins [7] shows that G has a strongly connected orientation if and only if G
is 2 edge-connected. Given this fact, it is natural to be interested in the “quality”
of an orientation that we may obtain for a given graph [1,5,2,3,6]. Chvátal and
Thomassen [1] show that there is a polynomial function f such that every graph
with diameter d has a strongly connected orientation with directed diameter at
most f(d). They also show that it is NP-complete to decide, given graph G and
integer d, if G has an orientation with diameter at most d, even if the diameter
of G is 2. This decision problem can be solved in linear time when the given
graph is planar [3]. Dankelmann et al. [2] study the relationship between the
average distance between a pair of vertices in a graph and the average directed
distance from a vertex to another in an orientation of that graph. Motivated by
applications to traffic control in market places and factories, Ito et al. [6] study
some optimization problems where, given a graph and a collection of st-pairs in
the graph, we are to find an orientation of the graph such that the st-pairs are
connected by short directed paths. They consider both the min-max problem,
where the objective function is the maximum of the lengths of those directed
paths, and the min-sum problem, where the objective function is the sum of the
lengths of those directed paths.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 73–84, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

74 Y. Kobayashi, Y. Miyamoto, and H. Tamaki

In this paper, we introduce the notion of k-cyclic orientations of graphs. For
integer k ≥ 3, we call an orientation D of graph G k-cyclic if the orientation
of every edge of G belongs to a directed cycle of length k or smaller in D.
This notion captures the local quality of an orientation as opposed to the global
quality captured by directed diameters or average directed distances. Observe
that D is a k-cyclic orientation of G if and only if D has a directed path form u
to v of length k − 1 or smaller for every pair of vertices u and v adjacent in G.
Thus, the question of finding the minimum value of k such that G has a k-cyclic
orientation is equivalent to the special case of the min-max problem of [6], where
(s, t) is in the specified collection of st-pairs if and only if s and t are adjacent
in G. This special case is important, especially for small values of k, since the
solution for this special case is a (k − 1)-approximate solution for an arbitrary
collection of st-pairs on the same graph.

We show that the problem of deciding if a graph G has a k-cyclic orientation
is NP-complete for every fixed k ≥ 3 for general graphs. We also show that this
problem remains NP-complete for planar graphs if k ≥ 4.

On the positive side, we give a polynomial time algorithm that solves this
problem for planar graphs with k = 3. This algorithm constructs a 3-cyclic
orientation of the given graph, when the answer to the decision problem is af-
firmative. This algorithm is based on the following observation. Consider the
special case where G is a plane embedded graph such that every cycle of G with
length k or smaller bounds a face. In this case, G has a k-cyclic orientation if
and only if the planar dual of G has a proper 3-coloring, using colors white,
red, and blue, such that every dual vertex of degree greater than k is colored
white. The correspondence between a feasible orientation and a feasible color-
ing can be obtained by the following rule: if a face is bounded by a cycle of
length k or smaller that is oriented clockwise (counterclockwise) around the face
then color the corresponding dual vertex red (blue); otherwise color the corre-
sponding dual vertex white. This observation rather straightforwardly leads to a
polynomial time algorithm for 3-cyclic orientation for this special case of planar
graphs. The extension of this result to general planar graphs, however, is not sim-
ple, because of the existence of non-facial 3-cycles. We overcome the difficulty
by replacing the standard planar dual of the given graph by some variant, in
which the structures internal to non-facial 3-cycles are replaced by appropriate
gadgets that depend on the “types” of those cycles. These types are determined
by recursive applications of the main algorithm. See Subsection 3.2 for details.

The rest of this paper is organized as follows. In Section 2 we prove the NP-
completenes of the problem for genral graphs. In Section 3 we study the problem
for planar graphs and give the negative and positive results stated above.

2 General Graphs

In this section, we consider our orientation problem for general graphs. We first
define some notation and terms that we use throughout the paper.

In this paper, all graphs are simple, unless otherwise stated. For graph G,
we denote by V (G) the set of vertices and E(G) the set of edges of G. The set

k-cyclic Orientations 75

of vertices adjacent to v in G is denoted by NG(v) and the degree |NG(v)| of
each vertex v of G is denoted by dG(v). For U ⊆ V (G), we let NG(U) denote⋃

v∈U{NG(v)}\U . We may omit the subscript when no confusion may arise. For
each vertex set U ⊆ V (G), we denote by G[U] the subgraph of G induced by U .
We denote G[V (G) \U] by G \U and, for each A ⊆ E(G), a spanning subgraph
of G with edge set E(G) \ A by G \ A.

We call a cycle C of G a k-cycle, ≤ k-cycle, or > k-cycle if the number of
vertices on C is k, at most k, or larger than k, respectively. Let G be a graph
and D an orientation of G. For each subgraph H of G, we denote by D|H the
restriction of D on H , i.e., the orientation of H that is a sub-digraph of D. We
say that an orientation D of G extends an orientation D′ of subgraph H of G, if
D′ = D|H . We say that a cycle C of G is cyclic in D if D|C is a directed cycle.
We say that an edge of G is k-cyclic if e belongs to some ≤k-cycle of G that is
cyclic in D. Thus, a k-cyclic orientation of G is an orientation in which every
edge of G is k-cyclic.

Theorem 1. The problem of deciding if a given graph has a k-cyclic orientation
is NP-complete for every fixed k ≥ 3.

The fact that this problem is in NP is trivial. We prove the hardness by a
reduction from Not All Equal 3SAT (NAE-3SAT), which is known to be NP-
complete (see [4]). In NAE-3SAT, given a boolean formula φ in CNF with a
set X = {x1, x2, . . . , xn} of variables and a set S = {c1, c2, · · · , cm} of clauses,
each of which consists of exactly three literals, we are to decide whether φ has a
not-all-equal assignment, that is, a truth assignment on X in which each clause
of φ has at least one true literal and at least one false literal.

We describe the reduction for k = 3. A generalization for k > 3 is not difficult.
(An alternative is to use the NP-hardness of the problem on planar graphs
for k ≥ 4 proved in the next section.) Given an instance φ of NAE-3SAT, we
construct a graph Gφ as follows. For each clause cj we have a clause gadget Gj

that is isomorphic to K4 and has vertices v0
j , v1

j , v2
j , and wj . We interpret the

superscript k in vk
j modulo 3, so that v3

j = v0
j . Let Cj be the 3-cycle of Gj on v0

j ,
v1

j , and v2
j . For each 0 ≤ k < 3, we say that the orientation (vk

j , vk+1
j) of edge

{vk
j , vk+1

j } is positive and the inverse orientation is negative. See Figure 1(a). A
key observation in our reduction is that, for each orientation D of Cj , D can
be extended into an orientation of Gj in which every edge incident with wj is
3-cyclic if and only if D orients at least one edge of Cj positively and at least one
edge of Cj negatively. This property of the clause gadget leads us to associate
the kth literal of cj with edge {vk

j , vk+1
j }, for 0 ≤ k < 3.

For each variable xi of φ, we have an edge ei = {yi, zi}. We call the orientation
(yi, zi) of ei positive and the other negative. We connect ei with each edge e in
clause gadgets that is associated with literal xi or x̄i as in Figure 1(b) or (c).
Observe that, in any 3-cyclic orientation of Gφ, the signs of the orientaions of
ei and e are identical when the literal is positive and distinct when the literal is
negative.

76 Y. Kobayashi, Y. Miyamoto, and H. Tamaki

v0
j

v1
j

v2
j

wj

(a) clause gadget Gj , with

arrows showing positive

orientations

yi

zi

vk
j

vk+1
j

(b) the kth literal of cj is

xi

yi

zi

vk
j

vk+1
j

(c) the kth literal of cj is

x̄i

Fig. 1. A clause gadget and its connections with a variable gadget

From this observation and the one above, it should be clear that the set of
orientations of Gφ \ {wj | 1 ≤ j ≤ m} that can be extended into a 3-cyclic
orientation of Gφ is in one-to-one correspondence with the set of not-all-equal
assignments of φ and therefore that the reduction is correct.

3 Planar Graphs

In this section, we consider our orientation problem for planar graphs. In the
first subsection, we prove the NP-completeness for k ≥ 4. In the next subsection,
we develop a polynomial time algorithm for k = 3.

We need some notation and terms. Let G be a plane graph, that is, a planar
graph with a fixed embedding in the plane. The dual of a plane graph G, for
our purposes, is a graph on the set of faces of G where two faces are adjacent if
and only if they share an edge in G. In this paper, we do not need the planar
embedding of the dual and hence regard it as a simple graph even if two faces
of G are adjacent across more than two edges. We call a cycle C of G facial if it
bounds a face of G. We denote by B(G) the unique facial cycle of G that bounds
its infinite face. A face of G is a k-face, ≤ k-face, or > k-face, if the cycle that
bounds it is a k-cycle, ≤k-cycle, or >k-cycle, respectively. We call a plane graph
G k-facial, if every ≤k-cycle of G is facial.

A 3-coloring χ of graph G, for our purposes, is an assignment of one of the
colors red, blue, and white to each vertex of V (G). We say 3-coloring χ is proper
if it colors two vertices with different colors whenever those vertices are adjacent.

As observed in the introduction, the problem of finding a k-cyclic orientation
of a given biconnected plane graph G can be formulated, provided that G is
k-facial, as that of finding a proper 3-coloring of the planar dual of G that colors
all >k-faces white.

In our NP-hardness proof for k ≥ 4, the plane graphs we construct for the
reduction are k-facial and we use the observation above in our reasoning on
those graphs. In our polynomial time algorithm for k = 3, we extend this equiv-
alence of the 3-cyclic orientation problem with a 3-coloring problem to a similar
equivalence for general biconnected plane graphs.

k-cyclic Orientations 77

3.1 NP-Completenes for k ≥ 4

Theorem 2. The problem of deciding if a given planar graph has a k-cyclic
orientation is NP-complete for every fixed k ≥ 4.

Our reduction is from planar 3SAT, which is known to be NP-complete (see [4]).
In planar 3SAT, we are given a formula φ in CNF with a set X = {x1, x2, . . . , xn}
of variables and a set S = {c1, c2, . . . , cm} of clauses each of which contains at
most three literals, such that the bipartite graph Bφ between X and S, in which
xi is adjacent to cj if and only if xi appears in cj , is planar. The question is
if φ has a satisfying assignment, that is, an assignment of true or false to each
variable in X that makes at least one literal of each clause in S true. We assume
that each variable appears positively in at least one and at most two clauses
and negatively in exactly one clause. The reduction from the general planar
3SAT to this restricted form of planar 3SAT is straightforward using a standard
technique.

We describe the reduction for k = 4. A generalization to k > 4 is straightfor-
ward.

Suppose we are given a planar 3SAT instance φ with the above restriction.
We construct a plane graph Gφ such that Gφ has a 4-cyclic orientation if and
only if φ has a satisfying assignment.

The clause gadget for clause cj is shown in Figure 2. It has three designated
edges e1

j , e2
j , and e3

j , where ek
j for each k is associated with the kth literal of

cj and is identified with a certain edge in the variable gadget representing the
variable of the literal. Except for this identification of the edges associated with

Fig. 2. (a) Clause gadget for cj , variable gadget for xi, (b) shown with the coloring for

xi = true and (c) for xi = false, where shaded faces are red and hatched faces are blue

78 Y. Kobayashi, Y. Miyamoto, and H. Tamaki

literals, each clause gadget has no connection with other parts of Gφ. Observe
that each shaded 4-face in Figure 2 must be colored red or blue in any 3-coloring
that corresponds to a 4-cyclic orientation of Gφ, since it contains edges incident
with a > 4-face. Therefore it is impossible to color all the 4-faces incident with
e1

j , e2
j , and e3

j red or blue since then an odd dual cycle would be colored in two
colors. This means that for at least one k ∈ {1, 2, 3}, the face across ek

j , in a
variable gadget, must be colored red or blue. The variable gadget for xi is shown
in Figure 2. It has designated edges a1

i , a2
i , and bi. Edge ak

i for each k = 1 or
2 is identified with an edge in a clause gadget that is associated with a positive
literal xi and edge bi is identified with an edge associated with a negative literal
x̄i. Since Bφ is planar, these identifications for all variable occurrences can be
done in such a manner that the resulting graph Gφ is a plane graph. We also
note that Gφ is 4-facial and every 4-cycle of Gφ is contained in some single clause
or variable gadget.

The proof of the following lemma that states the correctness of the reduction
can be found in the full paper.

Lemma 1. φ is satisfiable if and only if Gφ has a 4-cyclic orientation.

3.2 Polynomial Time Algorithm for Finding 3-Cyclic Orientations
of Planar Graphs

In this subsection, we develop a polynomial time algorithm for the 3-cyclic ori-
entation problem for planar graphs. This is done by reducing our problem to a
certain 3-coloring problem for graphs.

Let G be a graph. A white-purple constraint, or simply a constraint on G, is
a pair (W, P) of disjoint vertex sets of G. We say a 3-coloring χ of G respects
constraint (W, P), if χ colors each vertex in W white and each vertex in P red
or blue.

We say that a constraint (W, P) on G is strongly admissible if every v ∈ V (G)
with dG(v) ≥ 4 is in W and dG\W (v) ≤ 2 for every v ∈ P . As we saw earlier,
the 3-cyclic orientation problem for 3-facial plane graphs can be reduced to the
problem of deciding, given a graph G and a strongly admissible constraint (W, ∅)
on G, if G has a proper 3-coloring that respects this constraint. Our reduction
for general planar graphs requires a slightly more general constrained 3-coloring
problem.

Let (W, P) be a constraint on G and A ⊆ V (G). We say (W, P) is A-admissible
if the following conditions hold.

A1 W �= ∅.
A2 A ⊆ P .
A3 dG(v) ≤ 3 for each v ∈ V (G) \ W .
A4 dG\W (v) ≤ 2 for each v ∈ P \ A.

We say that constraint (W, P) on G is admissible if it is A-admissible for some
A ⊆ V (G) with |A| ≤ 1. The proof of following theorem can be found in the full
paper.

k-cyclic Orientations 79

Theorem 3. Given a graph G and an admissible constraint (W, P) on G, we can
in polynomial time decide if G has a proper 3-coloring respecting this constraint
and construct such a coloring if the answer is affirmative.

Our reduction of the orientation problem for general plane graphs to this con-
strained 3-coloring problem is inductive on the nesting structure of non-facial
3-cycles.

Let G be a biconnected plane graph with an infinite 3-face and D an orienta-
tion of G. We call D near 3-cyclic, if every edge e ∈ E(G) \ E(B(G)) is 3-cyclic
in D.

Let G be a biconnected plane graph. We call a cycle of G internal if it does
not bound the infinite face of G. Let C be an internal 3-cycle of G. We denote
by G〈C〉 the subgraph of G induced by the set of vertices lying on C or drawn
inside of C. Since G is simple, G〈C〉 is obtained by removing all vertices and
edges of G lying in the infinite face of C. We say that C is relevant if G〈C〉 has
a 3-cyclic orientation in which C is cyclic. Otherwise C is irrelevant. Note that
each internal facial 3-cycle of G is relevant in G.

The following notion of skeletons is crucial in our reduction of the orientation
problem to the constrained coloring problem. Let G be a biconnected plane
graph. A skeleton S of G is a biconnected subgraph of G that satisfies the
following conditions.

S1 B(S) = B(G)
S2 Every internal facial cycle of S is either a facial >3-cycle of G or is a relevant

3-cycle of G.
S3 Every non-facial 3-cycle of S is irrelevant in G.

Every biconnected plane graph G has a unique skeleton, which can be iden-
tified as follows. Let R be the set of all the relevant internal 3-cycles of G and
let R′ be the set of maximal elements of R with respect to containment in the
drawing of G. The skeleton S of G is obtained by removing vertices that lie in the
inside of cycles of R′ and thus making each cycle of R′ facial in S. We denote by
G̃ the skeleton of G. It will turn out that the skeleton of G can be constructed in
polynomial time but this is shown in the whole inductive proof that the 3-cyclic
orientation problem for a plane graph can be solved in polynomial time.

To describe the use of skeletons in our reduction, we need some more defini-
tions.

Let G be a biconnected plane graph, C an arbitrary internal 3-cycle of G,
and D an arbitrary orientation of G or of G〈C〉. When C is not cyclic in D,
D orients two edges of C in the same direction along C and the other in the
opposite direction. We call the former two edges the major edges of C and the
latter the minor edge of C with respect to D. Let e ∈ E(C). We say that C is
e-majored in D, if C is not cyclic in D and e is one of the major edges of C with
respect to D. We say that C is e-minored in D, if C is not cyclic in D and e is
the minor edge of C with respect to D. We say that C is e-minored in G, without
reference to a particular orientation, if there is some near 3-cyclic orientation D
of G〈C〉 in which C is e-minored.

80 Y. Kobayashi, Y. Miyamoto, and H. Tamaki

For each relevant internal 3-cycle C of G, let MG(C) denote the set of edges
e ∈ E(C) such that C is e-minored in G. Observe that, if C is relevant and
|MG(C)| = 3, then for any prescribed orientation of C, G〈C〉 has a near 3-cyclic
orientation that extends the prescribed orientation of C. Because of this, we call
an internal 3-cycle C of G universal in G if it is relevant and |MG(C)| = 3.
Otherwise, C is non-universal in G. We call a relevant internal 3-cycle C of G
normal in G if either C is universal or

N1 MG(C) �= ∅ and
N2 for each e ∈ MG(C), there is an e-minored near 3-cyclic orientation D of

G〈C〉 in which each e′ ∈ E(C) \ {e} is 3-cyclic.

We call a biconnected plane graph G normal if every internal facial 3-cycle of G̃ is
normal in G. We later prove that every biconnected plane graph is normal. This
proof is inductive and we need some lemmas that assume a given biconnected
graph to be normal. These lemmas are also used in proving the main result of
this subsection.

Suppose C is a universal 3-cycle of G. We call an edge e of C internally
coverable for C in G if there is a near 3-cyclic orientation of G〈C〉 in which C
is e-majored and e is 3-cyclic. For each universal 3-cycle C of G, we denote by
IG(C) the set of internally coverable edges of C.

For each biconnected plane graph G that is not a cycle, we define graph RG

as follows. RG is similar to the planar dual of G̃ and our plan is to reduce the
problem of finding a 3-cyclic orientation of G to a constrained coloring problem
on RG. We assume that G is normal in this construction.

To construct RG, we first construct a graph RG(C) for each facial cycle C of G̃,
including the cycle B(G) bounding the infinite face. Here we neglect the distinc-
tion between finite and infinite faces of G̃ and pretend that B(G) is relevant and
universal if B(G) is a 3-cycle, although this property has been defined only for
internal 3-cycles. For each such C and an edge e of C, we also define a vertex ve

C

of RG(C), which we need in the description of the entire graph RG. If C is a >3-
cycle, a universal 3-cycle, or a non-universal cycle with |MG(C)| = 1 then RG(C)
consists of a single vertex vC . We let ve

C = vC for every e ∈ E(C) in this case.
Otherwise, i.e., if C is a non-universal cycle with |MG(C)| = 2, RG(C) consists of
five vertices, tC , a1

C , a2
C , b1

C , and b2
C , and five edges {tC , a1

C}, {tC , a2
C}, {a1

C , a2
C},

{a1
C , b1

C}, and {a2
C , b2

C}. We let ve
C = tC for e ∈ E(C) \ MG(C), ve1

C = b1
C for

one edge e1 ∈ MG(C), and ve2
C = b2

C for the other edge e2 ∈ MG(C). We call
the graph RG(C) in this case a hut, tC the top, a1

C and a2
C the eaves, and b1

C

and b2
C the bases of the hut. We combine these graphs into one graph RG as

follows. Let e be an arbitrary edge of G̃ and let C1 and C2 be the two facial
cycles containing e. Then, RG has an edge, denoted by e∗, between ve

C1
and ve

C2

if and only if neither of the following conditions hold.

O1 For i = 1 or 2, MG(Ci) = {e}.
O2 For i = 1 or 2, Ci is universal in G and e ∈ IG(Ci).

We remark that RG may not be simple, that is, may have parallel edges. The
following simple property of a hut is essential.

k-cyclic Orientations 81

Lemma 2. Let H be a hut. Then, every proper 3-coloring of H either colors all
of the top and the two bases of H red, colors all of the top and the two bases
of H blue, or colors one base of H red and the other base blue. Moreover, all of
these three types of proper 3-colorings of H do exist.

The following lemma is at the heart of our reduction.

Lemma 3. Let G be a biconnected plane graph that is not a cycle. Suppose G
is normal. Then, G has a 3-cyclic orientation if and only if RG has a proper
3-coloring that respects constraint (W, P1 ∪ P2), where W is the set of vertices
vC such that C is a facial >3-cycle of G̃, P1 is the set of vertices vC such that
C is a facial 3-cycle of G̃ that is non-universal in G with |MG(C)| = 1, and
P2 is the set of vertices b1

C and b2
C such that C is a facial 3-cycle of G̃ that is

non-universal in G with |MG(C)| = 2.

Proof. We only prove the “only if” part. The other direction can be found in
the full paper.

Suppose G has a 3-cyclic orientation D. We say that D is skeleton-maximal if
the set of facial 3-cycles of G̃ that are cyclic in D is maximal subject to D being
3-cyclic. We assume that D is skeleton-maximal in the following.

We define a 3-coloring χ of RG as follows. Let C be a facial cycle of G̃. If C
is a >3-cycle then χ colors vC white. Suppose C is universal in G. If C is cyclic
in D, then χ colors vC red or blue: red if the orientation is clockwise around
the face C bounds and blue otherwise. Otherwise, χ colors vC white. Suppose
C is non-universal in G and |MG(C)| = 1. If C is cyclic in D, then χ colors
vC in the same manner as when C is universal. Otherwise, if D orients the two
major edges of C clockwise around the face C bounds, then χ colors vC red and
otherwise χ colors vC blue.

Finally, suppose C is non-universal in G and |MG(C)| = 2. Let e0 be the edge
in E(C) \ MG(C). By the construction of RG, ve0

C is the top of the hut RG(C)
and ve

C for each e ∈ MG(C) is a base of the hut. For each e ∈ E(C), χ colors
ve

C red if D orients e clockwise around the face C bounds and blue if D orients
e counterclockwise. This determines the colors of the top and the bases of the
hut. Note that either the colors of the top and the bases are all identical or
the colors of the two bases are distinct, since if the colors of the two bases are
identical and that of the top is different, this means that C is e0-minored in D,
contrary to the assumption that e0 �∈ MG(C). The eaves of the hut are colored
appropriately, one white and the other red or blue, so that χ is locally proper on
this hut, which is possible due to Lemma 2. This completes the description of χ.

It is immediate from the definition of χ that χ colors every vertex in W
white and every vertex in P1 ∪ P2 red or blue and therefore respects constraint
(W, P1 ∪ P2). We show that χ is proper. For each C such that RC(G) is a hut,
that χ is proper on the hut is already insured by the coloring rule above. Let e be
an arbitrary edge of G̃ and let C1 and C2 be the two facial cycles of G̃ containing
e. We need to show that, if e∗ is present in RG, then χ colors ve

C1
and ve

C2
with

different colors. Suppose χ colors both ve
C1

and ve
C2

red. We claim that at least one
of C1 and C2 is e-minored in D. Suppose each of C1 and C2 is either cyclic in D

82 Y. Kobayashi, Y. Miyamoto, and H. Tamaki

or e-majored in D. Then, since χ colors both ve
C1

and ve
C2

red, e must be oriented
clockwise around both of the faces bounded by C1 and C2, a contradiction. So,
either C1 or C2, say C1, is e-minored. If |MG(C1)| = 1 then e∗ is missing from
RG, so the color conflict does not arise. If |MG(C1)| = 2, that χ colors ve

C1
red

means, from the definition of χ above, that e is oriented clockwise around the face
bounded by C1, again contradicting the orientation of e around C2. Therefore,
ve

C1
and ve

C2
cannot be colored both red as long as e∗ is present in RG. Similarly,

ve
C1

and ve
C2

cannot be colored both blue as long as e∗ is present in RG.
Suppose that ve

C1
and ve

C2
are both colored white. Then, for i = 1, 2, either

Ci is a >3-cycle or a 3-cycle that is universal in G and not cyclic in D. Since e
is 3-cyclic in D, there is some 3-cycle C of G that is cyclic in D and contains e.
This C is relevant and therefore must be contained in G〈C1〉 or G〈C2〉, by the
definition of the skeleton. We say Ci covers e, if G〈Ci〉 contains such a C, for
i = 1, 2. Suppose first that both C1 and C2 covers e. We cannot have both C1 and
C2 e-minored in D, since if we had then we would be able to flip the orientation
of e in D, replace the orientation of G〈Ci〉 by a near 3-cyclic orientation in which
Ci is cyclic, for i = 1, 2, and obtain a 3-cyclic orientation D′ of G such that the
set of facial 3-cycles of G̃ that are cyclic in D′ is a proper superset of the set of
those cyclic in D, contradicting the skeleton-maximality of D. Therefore, Ci is
e-majored in D for either i = 1 or 2, and therefore e ∈ IG(Ci) and e∗ is missing
from RG. Next suppose that exactly one of C1 and C2, say C1, covers e. Then C1

must be e-majored in D, since otherwise D would not be skeleton-maximal sim-
ilarly as above, and therefore e ∈ IG(C1) and e∗ is missing from RG. Therefore,
ve

C1
and ve

C2
cannot be colored both white as long as e∗ is present in RG. ��

We need the following variants of this lemma.

Lemma 4. Let G be a biconnected plane graph that is not a cycle such that its
infinite face is bounded by a 3-cycle C0. Suppose G is normal. Then, G has a 3-
cyclic orientation in which C0 is cyclic if and only if RG has a proper 3-coloring
that respects constraint (W, P1 ∪ P2 ∪ {vC0}), where W , P1, and P2 are as in
Lemma 3.

Proof. Given a skeleton maximal 3-cyclic orientation of G in which C0 is cyclic,
we construct a proper 3-coloring χ of RG that respects (W, P1∪P2) as described
in the proof of Lemma 3. It is immediate from the construction that χ colors vC0

red or blue and hence respects (W, P1 ∪ P2 ∪ {vC0}). Given a proper 3-coloring
of RG that colors vC0 red or blue, we construct a 3-cyclic orientation of G as
described in the proof of Lemma 3. It is immediate from the construction that
C0 is cyclic in D. ��

We note that the constraint (W, P1 ∪ P2) in Lemma 3 is ∅-admissible and con-
straint (W, P1 ∪ P2 ∪ {vC0}) in Lemma 4 is {vC0}-admissible. The parameter A
in the definition of admissibility, which is the source of most complications in
the proof of Theorem 3, comes from the need of Lemma 4.

For each biconnected plane graph G with an infinite 3-face that is not a cycle,
we consider the following variant of RG. Let C0 be the 3-cycle bounding the

k-cyclic Orientations 83

infinite face of G with C0 = {e1, e2, e3} and let Ci be the internal cycle of
G̃ which contains ei for i = 1, 2, 3. We replace in RG the subgraph RG(C0),
which is a single vertex vC0 , by three vertices u1, u2, and u3, let vei

C0
= ui for

i = 1, 2, 3, and connect vei

C0
with vei

Ci
in the same manner as RG. Let R′

G denote
the resulting graph. We say that an orientation D and a 3-coloring χ of R′

G

are boundary-consistent with each other if, for i = 1, 2, 3, D orients ei clockwise
(counterclockwise) around the infinite face if and only if χ colors vei

C0
red (blue).

The following variant of Lemma 3 is the basic tool for analyzing the subgraph
G〈C〉 in our inductive proofs.

Lemma 5. Let G be a biconnected plane graph with an infinite 3-face. Suppose
G is normal. Then, for each near 3-cyclic orientation D of G, there is a proper
3-coloring χ of R′

G that respects constraint (W, P1 ∪ P2 ∪ {ve1
C0

, ve2
C0

, ve3
C0

}) and
is boundary-consistent with D. Conversely, for each proper 3-coloring χ of R′

G

that respects constraint (W, P1 ∪ P2 ∪ {ve1
C0

, ve2
C0

, ve3
C0

}), there is a near 3-cyclic
orientation D of G that is boundary-consistent with χ.

Proof. From a near 3-cyclic orientation D of G, we construct a coloring χ of R′
G

in the same manner as in the proof of Lemma 3, except that the color of vei

C0
,

i = 1, 2, 3, is determined by the single edge ei. The inverse translation is exactly
the same as in the proof of Lemma 3. ��

We are ready to prove the following statement announced earlier, which allows
us to apply Lemmas 3, 4, and 5 without the assumption that G is normal.

Lemma 6. Every biconnected planar graph G is normal.

The proof of this lemma is by induction on the nesting structure of G and
uses Lemma 5 for the induction step, can be found in the full paper. What
we have developed so far, together with Theorem 3 allows us to decide if a
given biconnected plane graph G has a 3-cyclic orientation in polynomial time,
provided that we know, for each non-facial 3-cycle C of G

(1) whether C is relevant or not, so we can identify the skeleton of G,
(2) when C is relevant, for each e ∈ E(C), whether C is e-minored or not, so we
can determine MG(C) and whether C is universal or not, and
(3) when C is universal, for each e ∈ E(C), whether e is internally coverable for
C in G or not.

We call these characteristics of faces and edges of G the skeleton characteristics
of G.

Lemma 7. Let G be a biconnected plane graph and let M(G) be the set of
containment maximal internal 3-cycles of G: an internal 3-cycle of C of G is in
M(G) if and only if there is no internal 3-cycle C′ �= C of G such that G〈C′〉
contains C. Given the skeleton and the skeleton characteristic of G〈C〉 for each
C ∈ M(G), we can compute in polynomial time the skeleton and the skeleton
characteristics of G.

The proof of this lemma can be found in the full paper.

84 Y. Kobayashi, Y. Miyamoto, and H. Tamaki

We are ready to describe our algorithm for finding a 3-cyclic orientation of a
given biconnected plane graph G. It uses a recursive algorithm Analyze whose
input is an internal 3-cycle C of G. The task of Analyze is to decide if C is relevant
in G and, if it is, then compute the set MG(C). Moreover, if |MG(C)| = 3, that is,
if C is universal, then it also computes the set IG(C). If C is facial in G then this
task is trivial. Otherwise, Analyze computes the set M(G〈C〉) of containment-
maximal internal 3-cycles of G〈C〉 and recursively analyze each C ∈ M(G). This
gives the skeleton and the skeleton characteristics of G〈C〉, using which Analyze
completes its task by the method described in the proof of Lemma 7. Given this
procedure Analyze , our main task is simple. Given a biconnected plane graph G,
we compute the skeleton and the skeleton characteristics of G applying Analyze
to 3-cycles in M(G). Then, we decide if G has a 3-cyclic orientation applying
Lemma 3 and Theorem 3. When the answer is affirmative, we can extract a
3-cyclic orientation of G using the proofs of these lemmas and theorem.

References

1. Chvátal, V., Thomassen, C.: Distances in orientations of graphs. Journal of Combi-

natorial Theory, Series B 24(1), 65–75 (1978)

2. Dankelmann, P., Oellermann, O.R., Wu, J.-L.: Minimum average distance of strong

orientations of graphs. Discrete Appl. Math. 143(1-3), 204–212 (2004)

3. Eggemann, N., Noble, S.D.: Minimizing the oriented diameter of a planar graph.

Electronic Notes in Discrete Mathematics 34(1), 267–271 (2009)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company, New York (1979)

5. Louis Hakimi, S., Schmeichel, E.F., Young, N.E.: Orienting graphs to optimize reach-

ability. Information Processing Letters 63, 229–235 (1997)

6. Ito, T., Miyamoto, Y., Ono, H., Tamaki, H., Uehara, R.: Route-enabling graph

orientation problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,

vol. 5878, pp. 403–412. Springer, Heidelberg (2009)

7. Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic

control. The American Mathematical Monthly 46(5), 281–283 (1939)

Improved Bounds on the Planar Branchwidth
with Respect to the Largest Grid Minor Size

Qian-Ping Gu1 and Hisao Tamaki2

1 Simon Fraser University, Burnaby BC Canada, V5A 1S6

qgu@cs.sfu.ca
2 Meiji University, Kawasaki, Japan 214-8571

tamaki@cs.meiji.ac.jp

Abstract. For graph G, let bw(G) denote the branchwidth of G and

gm(G) the largest integer g such that G contains a g × g grid as a

minor. We show that bw(G) ≤ 3gm(G) + 1 for every planar graph

G. This is an improvement over the bound bw(G) ≤ 4gm(G) due to

Robertson, Seymour and Thomas. Our proof is constructive and im-

plies quadratic time constant-factor approximation algorithms for planar

graphs for both problems of finding a largest grid minor and of finding

an optimal branch-decomposition: (3 + ε)-approximation for the former

and (2+ ε)-approximation for the latter, where ε is an arbitrary positive

constant. We also study the tightness of the above bound. A k×h cylin-

der, denoted by Ck,h, is the Cartesian product of a cycle on k vertices

and a path on h vertices. We show that bw(C2h,h) = 2gm(C2h,h) = 2h
and therefore the coefficient in the above upper bound is within a factor

of 3/2 from the best possible.

1 Introduction

Results

Let G be a graph. An ordered pair (A, B) of edge sets of G is called an edge
separation, (or simply separation in this paper) of G if A ∪ B = E(G) and
A ∩ B = ∅. The middle set of this separation is V (A) ∩ V (B), where V (E) for
E ⊆ E(G) denotes the set of vertices incident with some edge in E. The order of a
separation is the cardinality of its middle set. A branch-decomposition is a system
of separations represented by a ternary tree. Formally, a branch-decomposition
of G is a pair (T, φ), where T is a tree each internal node of which has degree 3
and φ is a bijection from the set of leaves of T to E(G). Then, each edge of T
is naturally associated with a bipartition (L1, L2) of the set of leaves of T and
hence with a separation (φ(L1), φ(L2)) of G. The width of branch-decomposition
(T, φ) is the maximum of the orders of the separations associated with the edges
of T or 0 if |E(G)| ≤ 1 and hence T does not have any edge. The branchwidth
of G is the minimum width over all branch-decompositions of G. We denote by
bw(G) the branchwidth of G.

Let G and H be graphs. H is a minor of G if H can be obtained from some
subgraph of G through a possibly empty sequence of edge contractions. We

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 85–96, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

86 Q.-P. Gu and H. Tamaki

denote by gm(G) the largest integer g such that G contains a g × g grid as a
minor. Since the branchwidth of a g × g grid is g and bw(G) ≥ bw(H) holds if
H is a minor of G, gm(G) is a lower bound on bw(G). Our main result is the
following:

Theorem 1. For every planar graph G, we have bw(G) ≤ 3gm(G) + 1.

This improves on the previously best known bound of bw(G) ≤ 4gm(G) due to
Robertson, Seymour and Thomas [18]1.

We also show that the coefficient in the bound cannot be improved to below
2. Let k ≥ 3 and h ≥ 1 be integers. A k × h cylinder, denoted by Ck,h, is the
Cartesian product of a cycle on k vertices and a path on h vertices: it has a
vertex (u, v) for each vertex u of the cycle and each vertex v of the path and
(u, v) is adjacent with (u′, v′) if and only if u = u′ and v is adjacent with v′

on the path or v = v′ and u is adjacent with u′ on the cycle. We show that
bw(Ck,h) = min{k, 2h} and:

Theorem 2. For every integer h ≥ 2, we have gm(C2h,h) = h.

Therefore, for G = C2h,h, we have bw(G) = 2gm(G).
The proof of Theorem 1 uses an extension of some known upper bounds on

the branchwidth of planar graphs and hypergraphs. These upper bounds are
based on the “radius” of planar graphs [16], which roughly corresponds to the
outerplanarity [1], and are first observed for the treewidth of planar graphs [16,2]
and later for the branchwidth of planar graphs [21,3] and of planar hypergraphs
[21]. Although our results are on planar graphs, our proof of Theorem 1 involves
hypergraphs and requires a non-trivial extension of the bound of [21], which is
embodied by Theorem 4 described in Section 2. This extension may be of an
independent interest.

Background and consequences

The notions of branch-decompositions and branchwidth are introduced by
Robertson and Seymour [17] and are related to tree-decompositions and
treewidth which play central roles in their graph minor theory. For an arbitrary
graph G, the treewidth tw(G) of G and the branchwidth of G are linearly related
by inequalities bw(G) ≤ tw(G)+1 ≤ � 3bw(G)

2 � and there are simple translations
between tree- and branch-decompositions that prove these inequalities.

One of the key ingredients of the graph minor theory is the fact that bw(G)
is upper-bounded by some function of gm(G), which is a straightforward lower
bound of bw(G). For general graphs, the known upper bound is huge (bw(G) ≤
202(gm(G))5 [18]), while we have a linear bound on planar graphs as stated above.
This type of relations between bw(G) and gm(G) have important algorithmic
1 Their statement of the bound is that every planar graph with a tangle of order 4g−3

has a g × g grid minor. Equivalently, since G does not have a g × g grid minor with

g = gm(G)+1, every planar graph does not have a tangle of order 4(gm(G)+1)−3 =

4gm(G)+1, which implies that G admits a branch-decomposition of width 4gm(G).

Planar Branchwidth and Grid Minor Size 87

applications which are extensively studied in the recent development of algorith-
mic graph minor theory and bidimensionality theory [5,6,7,8]. In such algorith-
mic applications, we typically use either a large grid minor of the given graph
to find a desired structure in the graph or a small-width branch-decomposition
to solve the problem by dynamic programming. The constant c in the bound
bw(G) ≤ c · gm(G) is important as it appears in the exponent of the running
time of those algorithms.

These bounds on the branchwidth of planar graphs imply similar bounds
on the treewidth through the linear relation mentioned above. In particular,
the bound bw(G) ≤ 4gm(G) of [18] implies tw(G) ≤ 6gm(G). Thomas [20] and
Grigoriev [10] independently improve the constant in this bound to 5. Theorem 1
gives a better constant 4.5.

Grigoriev et al. [11] study the tightness of these bounds for treewidth. Their
best construction is a graph G for which 3

2gm(G)− 1 ≤ tw(G) ≤ 3
2gm(G) holds.

They give some candidate graphs, including one similar to a cylinder, for which
tw(G) ≥ 2gm(G) − 1 is expected to hold. Theorem 2 verifies a variant of their
expectation since tw(C2k,k) = 2k = 2gm(C2k,k).

Computing a large grid minor of planar graphs have many important algorith-
mic applications. It is not known whether a largest (gm(G)×gm(G)) grid minor
of a planar graph can be found in polynomial time. The above mentioned bound
of [18] implies a 4-approximation algorithm for this largest grid minor problem
on planar graphs. Bodlaender, Grigoriev and Koster give an O(n2 log n) time
algorithm with the same approximation ratio for this problem [4], where n is the
number of vertices of G. Our proof for Theorem 1 is constructive and implies
an O(n2) time (3 + ε)-approximation algorithm, where ε is an arbitrary positive
constant.

Theorem 1 is a consequence of a slightly more general result.

Theorem 3. Let G be a planar graph and k, h be integers with k ≥ 3 and
h ≥ 1. Then G has either a minor isomorphic to a k × h cylinder or a branch-
decomposition of width at most k + 2h − 2.

Setting h = k in this theorem gives Theorem 1 since a k × h grid is a subgraph
of a k × h cylinder. Another interesting case is when h = �k/2�. As we show in
Section 4, the branchwidth of Ck,�k/2� is k. This motivates us to define another
lower bound on the branchwidth: cm(G) is the largest k such that G contains
Ck,�k/2� as a minor. Then, our theorem implies that bw(G) ≤ 2cm(G) + 1 for
planar graph G. Thus, cm(G) is a better lower bound on bw(G) than gm(G) in
the sense that it is provably tight within a factor of approximately 2 for planar
graphs.

In a related paper [13], based on the construction in Theorem 3, we develop
efficient approximation algorithms for the largest grid minor and the optimal
branch-decomposition of planar graphs. These algorithms give a trade-off be-
tween the running time and the approximation ratio. At one end, they run in
O(n2) time and give a (3 + ε)-approximation for the largest grid-minor and a
(2 + ε)-approximation for the optimal branch-decomposition. At the other end,
they run in O(n1+ε) time and give constant-factor approximations where the

88 Q.-P. Gu and H. Tamaki

constant is, roughly speaking, inversely proportional to ε. Although this ap-
proximation algorithm for branch-decomposition is less important than that for
grid-minor construction, as an O(n3)-time algorithm for exact optimal decom-
position [19,12] is known, it is still significantly faster than the exact algorithm.

Organization of this paper

In the next section, we prove Theorem 3, assuming a radius-based upper bound
on the branchwidth of a planar hypergraph. In Section 3, we sketch the proof of
this radius-based upper bound. In Section 4, we informally discuss the branch-
width and the grid minor size of the cylinder. Due to space limitations, we omit
the proofs of many lemmas: they can be found in technical reports [14,15] and
in the forthcoming full paper.

2 Main Result

We prove Theorem 3 by induction: to obtain a branch-decomposition of G, we
find an appropriate separation, construct the branch-decompositions of the two
separated parts, and then combine them into a branch-decomposition of G. As
will be clear, in each of these “parts”, we need to regard the other part as
a hyperedge in order for this approach to work. Thus, we need to work on
hypergraphs.

The definitions of separations and of branch-decompositions given earlier for
graphs work for hypergraphs without any change. A plane embedding of a hy-
pergraph is also a straightforward generalization of that of a graph, where edges
are drawn as discs having vertices on its boundary.

Let G be a hypergraph and (A, B) a separation of G. We define ∂G(A) =
∂G(B) = V (A) ∩ V (B). We denote by G|A the hypergraph obtained from G
by replacing its subgraph induced by A by a single hyperedge ∂G(A) (and thus
ignoring all the vertices in V (A)\V (B)). The following lemma is straightforward
from the definition of branch-decompositions and is implicit in the literature [19].

Lemma 1. Let G be a hypergraph and (A, B) a separation of G. Let TA be a
branch-decomposition of G|A of width wA and TB a branch-decomposition of G|B
of width wB . Let tree T be the result of concatenating TA and TB by identifying
the leaf ∂G(A) of TA and the leaf ∂G(B) of TB and then ignoring the identified
node to join the two incident edges into one. Then, T is a branch-decomposition
of G of width max{wA, wB}.

For the base case of the induction, we use an upper bound on the branchwidth of
a hypergraph with respect to the radius of the radial graph of the hypergraph. Let
G be a plane hypergraph (a planar hypergraph with a fixed plane embedding).
The radial graph of G is a bipartite graph between the set of vertices of G and
the set of faces of G, where each edge represents a vertex-face incidence of G. If
G is a plane graph, then the branchwidth of G is upper-bounded roughly by the
radius of the radial graph of G. This type of radius-based upper bounds are first

Planar Branchwidth and Grid Minor Size 89

observed for the treewidth of planar graphs [16,2], and later for the branchwidth
[21,3]. Tamaki [21] generalizes the bound to plane hypergraphs and gives a linear
time algorithm for constructing a branch-decomposition achieving the bound.

In this paper, we prove and use the following upper bound for hypergraphs
which extends the bound of [21]. We say that a hypergraph is totally 2-connected
if it is both 2 vertex-connected and 2 edge-connected (note that the former
condition does not imply the latter for general hypergraphs). The order of an
edge of a hypergraph is the number of vertices it is incident with.

Theorem 4. Let k ≥ 2 be an integer and d ≥ 2 an even integer. Let G be a
totally 2-connected plane hypergraph of maximum edge order at most k. Suppose
there is an edge e0 ∈ E(G) such that, for every face r of G there is a face s of
G incident with e0 such that the distance between r and s in the radial graph of
G is at most d. Then, we have bw(G) ≤ k + d.

We sketch a proof of this theorem in the next section. We remark that the
algorithm implied by the proof runs in linear time and is of practical value, as are
the above mentioned radius-based bounds which have found many applications
in approximation algorithms.

For the induction step, we are given a plane hypergraph whose radial graph
has radius greater than d and look for a separation of order smaller than k. A
key observation is that, when we fail, we find a cylinder minor of the original
graph G that certifies bw(G) ≥ k. To formalize this observation, we need some
preparations.

Let G be a plane hypergraph. We say that a curve μ on the sphere Σ is
G-normal if μ does not intersect itself and intersects G only at its vertices. We
call a closed G-normal curve that is not self-intersecting a G-noose. We use a
G-normal curve mainly to represent a walk in the radial graph of G. In this
paper (not necessarily in consistence with the literature), the length of a G-
normal curve μ, denoted by lengthG(μ), is the number of incidences between
the segments of μ \ V (G) and vertices in μ ∩ V (G). Equivalently, lengthG(μ)
is the length of the walk in the radial graph that μ represents. For vertices or
faces x, y ∈ V (G) ∪ F (G), G-distance between x and y, denoted by distG(x, y),
is the length of the shortest G-normal curve connecting x and y, or equiv-
alently the length of the shortest path in the radial graph of G between x
and y. We extend this notion of distance between sets of vertices/faces: for
X, Y ⊆ V (G) ∪ F (G): distG(X, Y) = minx∈X,y∈Y distG(x, y). We also write
distG(x, Y) for distG({x}, Y) and distG(X, y) for distG(X, {y}).

For each set of faces F ⊆ F (G) and an integer i ≥ 0, we denote by contG(F, i)
the subgraph of G induced by the set of edges e ∈ E(G) such that e is incident
to both a face r with distG(r, F) = 2i and a face r′ with distG(r′, F) = 2i+2. We
denote by −−→contG(F, i) the directed version of contG(F, i) in which each edge is
oriented so that the face r′ with distG(r′, F) = 2i+2 is on the right with respect
to the orientation. We omit the proof of the following lemma in this conference
version.

Lemma 2. Let G be a plane graph, F ⊆ F (G), and i ≥ 0 an integer. Then,
contG(F, i) consists of edge-disjoint cycles.

90 Q.-P. Gu and H. Tamaki

The following lemma formalizes the above stated observation.

Lemma 3. Let G be a plane graph and k ≥ 3, h ≥ 2 integers. Let r1 and r2 be
two faces of G such that the following conditions are satisfied.

1. There is no separation (A, B) of G of order smaller than k such that VG(r1)⊆
VG(A) and VG(r2) ⊆ VG(B).

2. distG(r1, r2) ≥ 2h.

Then, G contains a k × h cylinder as a minor.

Proof. For i ≥ 0, by Lemma 2, contG({r1}, i) consists of edge-disjoint cycles.
Moreover, since distG(r1, r2) ≥ 2h, if i < h then contG({r1}, i) is non-empty and
has a unique cycle ci that separates r1 from r2; one of the connected components
of Σ \ ci contains r1 and the other contains r2. The h cycles ci for 0 ≤ i < h
are mutually vertex-disjoint, for otherwise a vertex would be incident to two
faces, say t1 and t2, with distG(t1, r1) = distG(t2, r1)+ 4, which is impossible by
definition.

We claim that there are k vertex-disjoint paths between V (c0) and V (ch−1).
Suppose otherwise. Then by Menger’s theorem, there must be a separation (A, B)
of G of order smaller than k such that V (c0) ⊆ VG(A) and V (ch−1) ⊆ VG(B)
and hence VG(r0) ⊆ VG(A) and VG(r1) ⊆ VG(B), contradicting the assumption.

These k vertex-disjoint paths, together with the h vertex-disjoint cycles we
have found above, constitute a minor of G isomorphic to a k × h cylinder. ��

The induction would be straightforward if this lemma held not only for plane
graphs but also for plane hypergraphs. This unfortunately is not the case and
we need a more elaborate structure of induction in which we work on hyper-
graphs that are almost graphs. An appropriate generalization of Theorem 3 for
an induction proof is as follows.

Theorem 5. Let G be a plane hypergraph with at least one edge and k ≥ 3 and
h ≥ 2 be integers. Suppose that every edge of G except for one edge e0 is of order
2 and e0 is of order k or smaller. Then G has either a minor isomorphic to a
k × h cylinder or a branch-decomposition of width at most k + 2h − 2.

To prove this theorem, we need the following technical lemma.

Lemma 4. Let G be a plane hypergraph and d a positive integer. Let S ⊆ F (G)
be a set of faces of G. Let c0 and c1 be edge disjoint cycles of G such that, for
each i = 0, 1, ci contains all the faces of S and c1−i in one side of it. Suppose
further that, for i = 0, 1 and for each v ∈ V (ci), distG(v, S) = d.

For i = 0, 1, let (Bi, E(G)\Bi) be a separation of G induced by some G-noose
that satisfies the following conditions.

1. E(ci) ⊆ Bi and EG(S) ⊆ E(G) \ Bi.
2. The order |∂G(Bi)| of this separation is the smallest subject to condition (1).
3. Bi is minimal subject to conditions (1) and (2).

Then, either E(c0) ⊆ B1, E(c1) ⊆ B0, or B0 ∩ B1 = ∅.

Planar Branchwidth and Grid Minor Size 91

Proof (of Theorem 5). We assume that G is connected, as otherwise the proof
may be applied to each connected component of G.

The proof is by induction on the number of edges of G. The base case |E(G)| ≤
2 is trivial.

Suppose |E(G)| > 2. First suppose that |VG(e0)| < k. Let e ∈ E(G) be an
edge distinct from e0 with VG(e)∩ VG(e0) �= ∅. Let A = {e0, e} and X = ∂G(A).
Since |VG(e)| = 2, |X | ≤ k. Therefore, we may apply the induction hypothesis
to G|A and obtain either a minor isomorphic to a k × h cylinder or a branch-
decomposition T of G|A of width ≤ k + 2h− 2. In the former case, we are done.
In the latter case, we add two leaves e and e0 to the leaf X of T obtaining a
branch-decomposition of G of width ≤ k + 2h − 2.

Therefore, suppose |VG(e0)| = k. Let G′ be the plane subhypergraph of G
induced by the edge set E(G) \ {e0}. By our assumption on G, G′ is a graph.

Let r0 denote the face of G′ that contains e0 of G and c0 the cycle of G′ that
bounds r0. By Lemma 2, contG′({r0}, h− 1) consists of edge disjoint cycles. Let
m ≥ 0 be the number of those cycles and c1, . . . , cm the list of those cycles.

For each i, let (Ai, Bi) be a separation of G′ of the smallest order such that
V (ci) ⊆ VG′(Ai) and V (c0) ⊆ VG′(Bi). Suppose first that the order of separation
(Ai, Bi) is ≥ k for some 1 ≤ i ≤ m. Let ri denote the connected component of
Σ \ ci that does not contain r0. Let Gi denote the graph obtained from G′

by removing edges and vertices drawn in ri. Applying Lemma 3 to Gi with
faces r0 and ri, we obtain a minor of G isomorphic to a k × h cylinder and are
done.

So, suppose |∂G′(Ai)| < k for every 1 ≤ i ≤ m. Let A = {Ai | 1 ≤ i ≤ m}.
By Lemma 4, we may choose these subsets in A so that, for each pair 1 ≤ i <
j ≤ m, Ai ∩ Aj = ∅ unless E(ci) ⊆ Aj or E(cj) ⊆ Ai. If E(ci) ⊆ Aj then
we remove Ai from the collection; if E(cj) ⊆ Ai then we remove Aj from the
collection. In this manner, we obtain a subcollection A′ of subsets of E(G′) such
that

1. for each A ∈ A′, |∂G(A)| < k,
2. for each 1 ≤ i ≤ m, there is some A ∈ A′ such that E(ci) ⊆ A and

E(c0) ⊆ E(G′) \ A, and
3. for each pair of distinct elements A, B ∈ A′, we have A ∩ B = ∅.

Let A′ = {A′
1, . . . , A

′
m′}. Let G0 = G and, for 1 ≤ i ≤ m′, Gi = Gi−1|A′

i.
Let F0 be the set of faces of G incident with e0. Since these faces are contained

in face r0 of G′ and hence not bounded by an edge of any A′
i, F0 is also a

set of faces of Gm′ . By construction, each face r of Gm′ has distGm′ (r, F0) ≤
h − 1. Therefore, Gm′ satisfies the assumptions of Theorem 4 and hence has
branchwidth ≤ k + 2h − 2. By the induction hypothesis, for each i, 1 ≤ i ≤ m′,
either G|A′

i has a k × h cylinder as a minor or has branchwidth ≤ k + 2h − 2.
If none of them has a k × h cylinder as a minor, then by a repeated application
of Lemma 1, G has branchwidth ≤ k + 2h − 2. This completes the proof of
Theorem 5.

��

92 Q.-P. Gu and H. Tamaki

3 An Upper Bound on the Branchwidth of a Plane
Hypergraph

In this section, we sketch a proof of Theorem 4. For a technical reason, we
prove a dual version of this theorem, in which the roles of vertices and faces are
interchanged. In an early version of this paper [14], a slightly weaker bound of
k + d + 1 is proved using the rat-catching characterization of the branchwidth
of planar hypergraphs [19]. This previous proof is not fully constructive in the
sense that, to construct a branch-decomposition achieving the bound, we need
to invoke the O(n3) time optimal branch-decomposition algorithm for planar
graphs [19,12]. Here we give an independent constructive proof, that leads to
a linear-time algorithm for constructing a branch-decomposition achieving the
bound.

The branch-decompositions we construct for the proof of Theorem 4 is of a
special type, called sphere-cut branch-decompositions [9], which we define below.

Let G be a plane hypergraph and Σ the sphere on which G is drawn. Recall
that G consists of discs representing edges and points on the boundary of edges
representing vertices. Recall also the definition of G-normal curves, G-nooses,
and their length.

Let ν be a G-noose. Of the two connected components of Σ \ ν, we regard
the one to the right of ν with respect to its orientation the inside of ν. Let
Eν(G) denote the set of edges that lie inside of ν. Then, ν induces a separation
(Eν(G), Erev(ν)(G)), where rev(ν) denotes the reversal of ν. The middle set of
this separation is the set of vertices on ν. A sphere-cut branch-decomposition of
a plane hypergraph G is a branch-decomposition of G in which each separation
associated with an edge of the decomposition tree is induced by some G-noose. It
is known that every plane hypergraph G has an optimal branch-decomposition
(of width bw(G)) that is a sphere-cut branch-decomposition [19,9].

Let G be a plane hypergraph. We say that a G-noose is simple if its intersection
with each face of G is a single segment.

Let d be a positive integer, G a plane hypergraph, ν a simple G-noose, and
X a set of vertices and faces of G that appear on ν consecutively. We say that
ν is d-compact for G with center X , if dist′G|Erev(ν)(G)(v, X) ≤ d for every v ∈
V (Eν(G)), where dist′H(v, X) is defined to be distH(v, X∩V (H)) if X∩V (H) �= ∅
and distH(v, X) + 1 otherwise.

The following lemma essentially shows that the part of a plane hypergraph of
maximum edge order k that is bounded by a d-compact simple G-noose, with
some additional conditions, has a sphere-cut branch-decomposition of width at
most k + d.

Lemma 5. Let k, d be positive integers. Let G be a plane hypergraph with max-
imum edge order k. If there is a simple G-noose ν, that is d-compact for G with
some center X with |X | ≤ k + 1 and has length lengthG(ν) ≤ 2(d + k), then
G|Erev(ν)(G) has a sphere-cut decomposition of width at most d + k.

The proof is by induction on the number of edges in Eν(G). We omit the de-
tails. We remark that this lemma generalizes the bound in [21] and implies all

Planar Branchwidth and Grid Minor Size 93

previously known radius-based upper bounds, both on treewidth [16,2] and on
branchwidth [21,3].

Roughly speaking, the proof of Theorem 4 consists in showing that each plane
hypergraph G satisfying the condition of the theorem can be decomposed into
two or three parts such that (1) each of these parts are bounded by a d-compact
G-noose and hence has a sphere-cut branch-decomposition of desired width by
Lemma 5 and (2) the decomposition of G into these parts can be represented by
a sphere-cut branch-decomposition of desired width. Thus, applying Lemma 1
twice or thrice, we obtain a sphere-cut branch-decomposition of G of desired
width.

The following lemma formalizes this idea.

Lemma 6. Let d, k be positive integers, with k ≥ 2. Let G be a totally 2-
connected plane hypergraph, with maximum edge order k and with at least two
vertices. Suppose there is an edge e0 ∈ E(G) such that distG(v, V (e0)) ≤ d for
every vertex v ∈ V (G). Then, there are G-nooses νj, 1 ≤ j ≤ t, where t = 2 or
3, sets of vertices and faces Xj, 1 ≤ j ≤ t, and an edge e1 ∈ E(G) such that the
following conditions are satisfied.

1. The insides of νj for 1 ≤ j ≤ t are mutually disjoint.
2. For 1 ≤ j ≤ t, the vertices and faces in Xj appear consecutively on νj, νj is

d-compact for G with center Xj, |Xj | ≤ k + 1, and lengthG(νj) ≤ 2(k + d).
3. E(G) = {e0, e1} ∪

⋃
1≤i≤t Eνi(G).

4. Let Gj , 0 ≤ j ≤ t, be defined by G0 = G and Gj = Gj−1|Eνj (G) for
0 < j ≤ t. Then, Gt has a sphere-cut decomposition of width at most k + d.

The ideas behind the proof of this lemma are as follows. We consider the radial
graph of G and construct a breadth-first search tree T0 in this radial graph,
rooted at e0. Then we consider the medial graph of G [19], which is the planar
dual of the radial graph of G, and construct a spanning tree T of the medial
graph deleting all the edges intersected by the edges of T0. On this tree T , we
perform a fine-tuned balancing argument to find an appropriate hyperedge e1.
Given these two lemmas, the proof of Theorem 4 is fairly straightforward. We
omit the details of the proofs.

The algorithm implied by this proof runs in linear time. It can be shown that
the upper bound in Theorem 4 is tight.

4 The Branchwidth and Grid-Minor Size of a Cylinder

In this section, we study the branch-width and the grid-minor size of the cylinder.
Recall a k×h cylinder Ck,h is the Cartesian product of a cycle on k vertices and
a path on h vertices. We call each of the h images of the cycle in Ck,h a row of
Ck,h and each of the k images of the path a column of Ck,h.

Theorem 6. For arbitrary integers k ≥ 3 and h ≥ 1, we have bw(Ck,h) =
min{k, 2h}.

94 Q.-P. Gu and H. Tamaki

The upper bound can be exhibited by simple “linear” branch-decompositions,
whose trees is a caterpillar: leaves directly hang on internal nodes arranged in a
single path (“spine”). The order of the edges of Ck,h appearing at the leaves along
the spine is either row-major or column-major, depending on whether k ≤ 2h
or not. The lower bound can be established using a variant of the standard
obstructions to branch-decompositions, namely tangles [17].

Theorem 2 states that gm(C2h,h) = h. One direction, gm(C2h,h) ≥ h, is trivial
as an h×h grid is clearly a subgraph of C2h,h. The other direction, gm(C2h,h) ≤ h,
may be the most difficult result to prove in this work. We describe some ideas
here.

For contradiction, let h ≥ 2 and suppose C2h,h had a minor isomorphic to
an (h + 1) × (h + 1) grid. Fix the embedding of C2h,h. Let H be the subgraph
of C2h,h contracted into the grid minor and ψ be the mapping that maps each
vertex v of H to the vertex of the grid into which v is contracted. We extend this
mapping to each subgraph of H ′ of H : ψ(H ′) is the subgraph of the grid into
which H ′ is contracted. We assume an embedding of ψ(H) naturally induced
by the mapping ψ and the embedding of C2h,h, where each vertex v of ψ(H)
is represented by a disc containing all the vertices in ψ−1(v) and each edge of
ψ(H), say between u and v, is a segment of an edge of H between some vertex
in ψ−1(u) and some vertex in ψ−1(v).

Then, H must have a cycle B such that ψ(B) bounds the large face of ψ(H)
(usually drawn as the outer face). We define the outside of B to be the region of
the sphere bounded by B and contains the large face of ψ(H); the other region
bounded by B is the inside of B.

We call the two faces of C2h,h bounded by the cycles of length 2h at the ends
of the cylinder end faces of C2h,h. The easy case is when both of the two end
faces of C2h,h lie outside of B. Then, by “unfolding” C2h,h, we can show that
a k × h grid with sufficiently large k has a subgraph isomorphic to H . This is
a contradiction, since the branchwidth of such a grid is h no matter how large
k is.

So suppose one of the end faces of C2h,h (we call it the bottom face and the
other the top face) lies inside of B. We call a subpath of ψ(B) a side of ψ(H) if
it is between two distinct “corner vertices” (vertices of degree 2) and does not
contain any other corner vertex. Let B0, B1, B2, and B3 be the subpaths of B
such that ψ(B0), ψ(B1), ψ(B2), and ψ(B3) are sides of ψ(H) and concatenating
them in this order comprises ψ(B). Note that V (Bi) ∩ V (Bi+1 mod 4) for each
0 ≤ i < 4 is nonempty and is mapped to a single corner vertex of ψ(H). We
call a pair of vertices u and v of B antipodal if there is some i, 0 ≤ i < 4, such
that u ∈ V (Bi) and v ∈ V (Bi+2 mod 4). A basic fact we use in order to derive a
contradiction is that, for antipodal u, v ∈ V (B), the length of each C2h,h-normal
curve between u and v that stays inside of B must be at least 2h, for otherwise
their would be a ψ(H)-normal curve between ψ(u) and ψ(v) of length strictly
smaller than 2h. This is impossible for the (h + 1) × (h + 1) grid ψ(H).

We define a certain notion of visibility from the bottom face and show that, for
each antipodal pair to respect the above condition, there must be some “hidden”

Planar Branchwidth and Grid Minor Size 95

subpath Bhid of B that is long in the sense that ψ(Bhid) is not contained in any
two sides of the grid ψ(H). Moreover, the endvertices of Bhid can be connected
by a C2h,h-normal curve, called a slit, that stays inside of B and intersects each
row of C2h,h at most once. The slit divides the grid ψ(H) into two parts: we
call the one bounded by ψ(Bhid) and the slit the hidden part and the other one
visible part. A crucial observation is that the hidden part is the more essential
part of the grid and is almost as difficult to embed in C2h,h (as a minor) as the
entire grid. In particular, we can show that the hidden part must contain the
top face of C2h,h in one of its internal faces, just as we have shown above that
ψ(H) must contain at least one of the end faces of C2h,h. To show this, let Hhid

be the subgraph of H such that ψ(Hhid) is the hidden part of ψ(H). Since the
bottom face of C2h,h is contained in the visible part of ψ(H) and not in the
hidden part, if the top face is not contained in the hidden part either then we
can unfold C2h,h and obtain a k × h grid for sufficiently large k that contains a
subgraph isomorphic to Hhid. If we augment this grid by attaching the visible
part of ψ(H) at the slit, the resulting graph contains ψ(H) as a minor. This is a
contradiction since the branchwidth of the augmented grid is still h. Therefore,
B contains both of the end faces in its inside.

Now we view B from the top face and find another slit. We can derive a
contradiction by considering a k × h grid for sufficiently large k augmented by
two subgraphs of ψ(H): the part visible from the bottom face attached at the
first slit and the part visible from the top face attached at the second slit. This
augmented grid still has branchwidth h while containing an (h + 1) × (h + 1)
grid as a minor.

References

1. Baker, B.S.: Approximation algorithms for NP-complete problems on planar

graphs. J. ACM 41, 153–180 (1994)

2. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-

oretical Computer Science 209, 1–45 (1998)

3. Bodlaender, H.L., Feremans, C., Grigoriev, A., Penninkx, E., Sitters, R., Wolle,

T.: On the minimum corridor connection problem and other generalized geometric

problems. Computational Geometry: Theory and Applications 42, 939–951 (2009)

4. Bodlaender, H.L., Grigoriev, A., Koster, A.M.C.A.: Treewidth lower bounds with

brambles. Algorithmica 51(1), 81–98 (2008)

5. Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan structures and dynamic program-

ming in H-minor-free graphs. In: Proc. of the 2008 Symposium on Discrete Algo-

rithms, SODA 2008, pp. 631–640 (2008)

6. Demaine, E.D., Hajiaghayi, M.T.: Graphs excluding a fixed minor have grids as

large as treewidth, with combinatorial and algorithmic applications through bidi-

mensionality. In: Proc. of the 2005 Symposium on Discrete Algorithms, SODA

2005, pp. 682–689 (2005)

7. Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality, map graphs, and grid minors,

arXiv:Computer Science, DM/052070, v1 (2005)

8. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.: Algorithmic graph minor

theory: decomposition, approximation, and coloring. In: Proc. of the 2005 IEEE

Symposium on Foundation of Computer Science, FOCS 2005, pp. 637–646 (2005)

96 Q.-P. Gu and H. Tamaki

9. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms

on planar graphs: exploiting sphere cut branch decompositions. In: Brodal, G.S.,

Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg

(2005)

10. Grigoriev, A.: Tree-width and large grid minors in planar graphs (2008) (submitted

for publication)

11. Grigoriev, A., Marchal, B., Usotskaya, N.: On planar graphs with large treewidth

and small grid minors. Electronic Notes in Discrete Mathematics 32, 35–42 (2009)

12. Gu, Q.P., Tamaki, H.: Optimal branch decomposition of planar graphs in O(n3)

time. ACM Trans. Algorithms 4(3), article No.30, 1–13 (2008)

13. Gu, Q.P., Tamaki, H.: Constant-factor approximations of branch-decomposition

and largest grid minor of planar graphs in O(n1+ε) time. In: Proc. of the 2009

International Symposium on Algorithms and Computation (ISAAC 2009), pp. 984–

993 (2009)

14. Gu, Q.P., Tamaki, H.: Improved bounds on the planar branchwidth with respect

to the largest grid minor size, Technical Report, SFU-CMPT-TR 2009-17 (July

2009)

15. Gu, Q.P., Tamaki, H.: A radius-based linear-time-constructive upper bound on the

branchwidth of planar hypergrpahs, Technical Report, SFU-CMPT-TR 2009-21

(November 2009)

16. Robertson, N., Seymour, P.D.: Graph minors III. Planar tree-width. J. of Combi-

natorial Theory, Series B 36, 49–64 (1984)

17. Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree decomposi-

tion. J. of Combinatorial Theory, Series B 52, 153–190 (1991)

18. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J.

of Combinatorial Theory, Series B 62, 323–348 (1994)

19. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),

217–241 (1994)

20. Thomas, R.: Tree decompositions of graphs,

http://www.math.gatech.edu/~thomas/SLIDE/slide2.ps,p.32

21. Tamaki, H.: A linear time heuristic for the branch-decomposition of planar graphs.

In: Proc. of 11th Annual European Symposium on Algorithms, pp. 765–775 (2003)

http://www.math.gatech.edu/~thomas/SLIDE/slide2.ps,p.32

Maximum Overlap of Convex Polytopes under
Translation�

Hee-Kap Ahn1, Siu-Wing Cheng2, and Iris Reinbacher1

1 Department of Computer Science and Engineering, POSTECH, Korea
{heekap,irisrein}@postech.ac.kr

2 Department of Computer Science and Engineering, HKUST, Hong Kong
scheng@cse.ust.hk

Abstract. We study the problem of maximizing the overlap of two convex poly-
topes under translation in R

d for some constant d ≥ 3. Let n be the number
of bounding hyperplanes of the polytopes. We present an algorithm that, for any
ε > 0, finds an overlap at least the optimum minus ε and reports a translation
realizing it. The running time is O(n�d/2�+1 logd n) with probability at least
1−n−O(1), which can be improved to O(n log3.5 n) in R

3. The time complexity
analysis depends on a bounded incidence condition that we enforce with proba-
bility one by randomly perturbing the input polytopes. This causes an additive
error ε, which can be made arbitrarily small by decreasing the perturbation mag-
nitude. Our algorithm in fact computes the maximum overlap of the perturbed
polytopes. All bounds and their big-O constants are independent of ε.

1 Introduction

Many applications perform geometric shape matching to find a transformation of one
shape in order to maximize some similarity measure with another shape. The problem
of matching convex shapes has been used in tracking regions in an image sequence [13]
and measuring symmetry of a convex body [11]. One robust similarity measure for two
shapes is their overlap—the volume of their intersection. In this paper, we consider
maximizing the overlap of two convex polytopes under translation in R

d for d ≥ 3. The
dimension d is treated as a constant and so is any value depending on d alone.

In R
2, the maximum overlap problem has been studied for convex and simple poly-

gons. Let n be the number of input polygon edges. De Berg et al. [3] can maximize the
overlap of two convex polygons under translation in O(n log n) time. Mount et al. [14]
can do the same for two simple polygons in O(n4) time. When both rotation and
translation are allowed, Ahn et al. [2] can align two convex polygons with an over-
lap at least 1 − ε times the optimum for any ε ∈ (0, 1). They get a running time of
O((1/ε) log n + (1/ε2) log(1/ε)), assuming that there are two input arrays storing the

� Research of Ahn was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Tech-
nology (MEST) (No. 2010-0009857). Research of Cheng was partly supported by Research
Grant Council, Hong Kong, China (project no. 612109). Research of Reinbacher was partly
supported by a postdoc matching fund of HKUST.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 97–108, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

98 H.-K. Ahn, S.-W. Cheng, and I. Reinbacher

polygon vertices in order around the boundary. In the case of translation only, they
improve the running time to O((1/ε) log n + (1/ε) log(1/ε)).

The maximum overlap problem for convex polytopes under translation in R
d for

d ≥ 3 has been studied by Ahn et al. [1] and Fukuda and Uno [9]. Let n be the number
of hyperplanes defining the convex polytopes. Ahn et al.’s algorithm finds the max-
imum overlap of two convex polytopes under translation in O(n(d2+d−3)/2 logd+1 n)
expected time. Given k convex polytopes for some constant k ≥ 2, Fukuda and Uno can
translate them to give an overlap of at least opt− ε for any ε > 0, where opt denotes
the maximum overlap. They require O(log(opt/ε)) calls to a subroutine returning the
value and gradient of the overlap function for given translations of the polytopes. Some
critical details of this subroutine are missing though. In any case, the running time does
not depend on the input size n alone. They also gave an algorithm to find the maximum
overlap of k possibly non-convex polytopes under translation in O(nkd2+d) time.

Vigneron [16] studied the optimization of algebraic functions, which can be applied
to align two possibly non-convex polytopes under rigid motion. For two convex poly-
topes, Vigneron’s method returns in O

(
ε−Θ(d2)nΘ(d3)(log n

ε)Θ(d2)
)

time an overlap
under rigid motion that is at least 1 − ε of the optimum.

We give a new algorithm for the maximum overlap problem for two convex poly-
topes under translation in R

d for d ≥ 3. Our model of computation is the real-RAM
model in which the operations (+,−,×, /) can be performed in constant time. We
also make the standard assumption that it takes O(1) time to solve a system of O(1)
polynomials of fixed degree in O(1) variables. For any ε > 0, we can find an over-
lap at least the optimum minus ε and report a translation realizing it. Our algorithm
runs in O(n
d/2�+1 logd n) time with probability 1 − n−O(1), which can be improved
to O(n log3.5 n) in R

3. The time complexity analysis depends on a bounded incidence
condition, which may fail in degenerate situations. We enforce it with probability one by
randomly perturbing the input polytopes. This causes an additive error ε, which can be
made arbitrarily small by decreasing the perturbation magnitude. Our algorithm in fact
computes the maximum overlap of the perturbed polytopes. The running time bounds,
the probability bound, and the big-O constants in these bounds are independent of ε.

2 Background

An i-flat is L+ v for some i-dimensional linear subspace L and for some point v ∈ R
d,

i.e., a copy of L translated by the vector v. A hyperplane in R
d is a (d − 1)-flat. Any

hyperplane and the points on one side of it form a closed halfspace. Given a subset
X ⊂ R

d, its affine hull aff(X) is the flat of the lowest dimension containing X .
A topological space M is a k-manifold if any point x ∈ M has a neighborhood

homeomorphic to R
k or a k-dimensional closed halfspace for some k. The interior of

M , denoted by int(M), is the set of points in M with a neighborhood homeomorphic
to R

k. The boundary of M , denoted by bd(M), is M \ int(M). For example, a point
and any open convex set have empty boundary; the boundary of a line segment consists
of its two endpoints; the boundary of a polygon consists of its vertices and edges.

Let X and Y be two subsets of R
d. The closure of X , denoted by cl(X), is the

smallest closed subset of R
d containing X . The Minkowski sum of X and Y is defined

Maximum Overlap of Convex Polytopes under Translation 99

as X ⊕ Y = {x + y : x ∈ X, y ∈ Y }. So dim(X ⊕ Y) ≤ dim(X) + dim(Y). For
any α ∈ R

d, we have X ⊕ {α} = X + α.
A convex polytope P in R

d is the common intersection of (closed) halfspaces. These
are the bounding halfspaces and their boundaries the bounding hyperplanes of P . As-
sume that P has dimension d. For 0 ≤ k ≤ d, a k-face of P is the k-dimensional
common intersection of P and some bounding hyperplane(s). Taking no bounding hy-
perplane in the intersection gives the d-face, which is P itself. We follow the conven-
tion to call the 0-faces vertices, the 1-faces edges, and the (d − 1)-faces facets. We use
faces(P) to denote the set of k-faces of P for 0 ≤ k ≤ d. The faces with dimensions
less than d are called proper faces and they are subsets of bd(P). In non-degenerate
situations, a k-face lies in exactly d−k bounding hyperplanes. In degenerate situations,
a k-face may lie in more. Each face of P is a convex polytope.

An i-simplex is an i-dimensional convex polytope with exactly i + 1 vertices.
Let F be a finite family of convex subsets of R

d, each of dimension d − 1 or less.
The arrangement Arr(F) of F is a partition of R

d into disjoint cells. A cell is either a
connected component in R

d \ (
⋃

S∈F S), or a maximal collection of points in
⋃

S∈F S
that belong to the same elements in F .

Lemmas 1 and 2 below state the results on the ε-net theory [10] and cuttings [6] that
we use heavily. Let H be a set of hyperplanes. For any r ∈ (1, |H |), a (1/r)-cutting for
H is a collection of simplices with disjoint interiors, which together cover R

d such that
at most |H |/r hyperplanes in H intersect int(τ) for any d-simplex τ in the collection.

Lemma 1. Let H be a multiset of hyperplanes in R
d. Let r ∈ (1, |H |) and δ ∈ (0, 1)

be two parameters. There is a number jd,r,δ = Θ(dr log(dr/δ)) such that, if we draw
jd,r,δ hyperplanes from H uniformly at random and form an arrangement A of the
hyperplanes drawn (after removing duplicates), then it holds with probability at least
1 − δ that at most |H |/r hyperplanes in H intersect int(τ) for any d-simplex τ whose
interior lies in a cell of A.

Remark. In Lemma 1, to achieve a probability bound of 1 − |H |−O(1), we must draw
O(r log |H |) hyperplanes to guarantee that at most |H |/r hyperplanes intersect int(τ).

Lemma 2. Let H be a set of hyperplanes in R
d. For any r ∈ (1, |H |), a (1/r)-cutting

of H of size O(rd) can be constructed in O(|H |rd−1) time such that each d-simplex in
the cutting stores the hyperplanes in H that intersect its interior.

3 Overview

Let P1 and P2 be the two convex input polytopes, specified by n distinct bounding hy-
perplanes. The complexity of Pj , j ∈ {1, 2}, is O(n
d/2�), the number of its faces [8].
We always translate P1 and keep P2 stationary. We need the following definitions.

– For any vector α ∈ R
d, Qα denotes the common intersection (P1 + α) ∩ P2.

– For any f ∈ faces(P1) and g ∈ faces(P2), γf,g denotes the set {α ∈ R
d : (int(f)+

α)∩ int(g) �= ∅}, which is a single point or an open convex set. One can verify that
γf,g = (−int(f)) ⊕ int(g).

– Γ denotes the set { γf,g : dim(γf,g) < d }.

100 H.-K. Ahn, S.-W. Cheng, and I. Reinbacher

The dimension of γf,g is less than d if for any α ∈ R
d such that (int(f) + α) ∩

int(g) �= ∅, we can perturb α slightly to α′ such that (int(f) + α′) ∩ int(g) = ∅.
Thus, if we move a point α in R

d, there is a combinatorial change in Qα whenever the
point α crosses an element of Γ . There is no combinatorial change in Qα if the point
α varies within a cell in Arr(Γ). Let vol(Qα) denote the volume of Qα. The function
vol(Qα)1/d is concave over {α ∈ R

d : Qα �= ∅ } [15].
We follow the high level approach in the algorithm of de Berg et al. for convex

polygons [3], which we call POLYGON. One can extend POLYGON directly to higher
dimensions, but this gives an Ω(n2
d/2�) running time in the worst case as we explain
below. For d = 2, Γ consists of open line segments (translations that place a vertex of
P1 in the interior of an edge of P2 and vice versa) and the endpoints of the closure of
these line segments (translations that align vertices of P1 and P2). Let L be the set of
horizontal lines through the segment endpoints in Γ . Each line in L is the set of transla-
tions that place a vertex of P1 at the same height of some vertex of P2. The arrangement
of Γ is divided into strips by the lines in L. POLYGON locates the strip containing the
solution by probing L in a binary search manner. In each probe, POLYGON solves the
maximum overlap problem for P1 and P2 with translations restricted to a line � ∈ L,
and decide whether the solution for the original 2D problem lies above or below �. Let
S be the strip obtained by the binary search. De Berg et al. showed that S is stabbed by
O(n) open line segments in Γ . POLYGON scans the vertices and edges of P1 and P2 in
order from top to bottom to find the O(n) vertex-edge pairs that induce the open line
segments in Γ stabbing S. Then, exploiting the concavity of vol(Qα)1/2, POLYGON

constructs a sequence of cuttings (Lemma 2) to prune the search space to the cell in
Arr(Γ) ∩ S that contains the solution for the 2D maximum overlap problem.

For d ≥ 3, the lines in L become parallel hyperplanes and each hyperplane is the set
of translations that place a vertex of P1 at the same height as some vertex of P2. The
hyperplanes in L cut Arr(Γ) into d-dimensional slabs. One can still locate the slab S
containing the solution for the maximum overlap problem by a binary search. However,
for a vertex v of P1, the translated slab v + S can cross Θ(n
d/2�) faces of P2, so v
induces Θ(n
d/2�) elements of Γ that stab S. Summing over all faces of P1, there can
be Θ

(
n2
d/2�) elements of Γ that stab S. Hence, it would take Ω

(
n2
d/2�) time to

construct a cutting on the elements of Γ stabbing S.
Instead of parallel slabs, we prune Arr(Γ) using the ε-net theory (Lemma 1). First,

we define a set Γ̂ of hyperplanes, each containing one element of Γ . We generate a ran-
dom subset Ê0 ⊂ Γ̂ of size Θ(n
d/2� log n). The ε-net theory ensures that O(n
d/2�)
hyperplanes in Γ̂ stab any d-simplex in a cell of Arr(Ê0) with high probability, in par-
ticular, the cell C that contains the solution of the maximum overlap problem. How do
we locate C? As binary search no longer works, we instead construct a sequence of
cuttings on Ê0 to prune the search space to C, or more precisely to a d-simplex ρ0 ⊆ C
containing the solution. During this pruning, we recursively solve instances of the max-
imum overlap problem for P1 and P2 with translations restricted to a hyperplane in Ê0

in order to tell which side of this hyperplane we should step into.
The challenge is to find the elements of Γ that stab ρ0 so that we can search in ρ0

via cuttings. For the direct extension of POLYGON to high dimensions, we would scan
the faces of P1 and P2 in a direction orthogonal to the slabs and extract the face pairs

Maximum Overlap of Convex Polytopes under Translation 101

that induce the elements of Γ stabbing a particular slab. However, in our case scanning
no longer works. We prove a characterization of the elements of Γ that stab ρ0, which
allows us to find them using linear programming on P1 and P2. This is the key idea
to defy the O(n2
d/2�) bound. The speedup in R

3 is obtained by replacing the linear
programming with suitable queries using the Dobkin-Kirkpatrick structure [7].

Degeneracy in P1, P2 and Arr(Γ̂) has a great impact on the running time. For effi-
ciency, the linear programming step requires each face of P1 and P2 to be incident to
O(1) other faces. When pruning the search space using a cutting, we need to decide
which side of a hyperplane � ∈ Ê0 to step into, after obtaining the translation α ∈ � that
maximizes Qα over �. If α lies in a cell of Arr(Γ̂) that is incident to many other cells,
it may take a long time to decide which side of � we should step into. This explains the
need for the bounded incidence condition (precise definition given in the next section).

4 Algorithm

We first give some definitions and then detail the algorithm outlined in the previous
section. For each element γf,g ∈ Γ , define a hyperplane γ̂f,g containing γf,g as follows.

– Suppose that dim(f) + dim(g) < d. If dim(γf,g) = d − 1, then γ̂f,g = aff(γf,g).
Otherwise, we pick a unit vector v orthogonal to aff(γf,g) uniformly at random and
define γ̂f,g to be the (d − 1)-flat through γf,g orthogonal to v.

– Suppose that dim(f) + dim(g) ≥ d. Since dim(γf,g) < d by the definition of Γ ,
there is a face h of f such that dim(h) + dim(g) < d and aff(γh,g) = aff(γf,g).
(Pick any if there are more than one such h’s.) The hyperplane γ̂h,g is already
defined in the previous case. We set γ̂f,g = γ̂h,g .

We define Γ̂ to be the multiset { γ̂f,g : γf,g ∈ Γ }. Duplicates exist in Γ̂ if two distinct
face pairs induce the same hyperplane. Both Γ̂ and Γ have O

(
n2
d/2�) elements, so we

cannot afford to generate either of them completely.
Consider two quantities. First, the maximum number of faces in P1 or P2 that have

a non-empty common intersection. Second, the maximum number of hyperplanes in Γ̂
that have a non-empty common intersection. If these quantities have a constant upper
bound, the bounded incidence condition is satisfied, which we assume in the rest of the
paper. The time complexity analysis of our algorithm depends on it, but the correctness
of our algorithm does not. We show in the full version of the paper that for any ε > 0,
we can perturb the input to enforce the bounded incidence condition with probability
one and the maximum overlap for the perturbed input is at most ε less the optimum.

We call our algorithm LOCATE. Given an m-flat Π , LOCATE(Π) returns the trans-
lation α ∈ Π that maximizes vol(Qα) over Π . The original maximum overlap problem
is solved by setting m = d. LOCATE calls a subroutine PRUNE that takes three pa-
rameters, an m-flat Π , a d-simplex τ containing the optimal translation in Π , and any
subset Ê ⊆ Γ̂ . PRUNE(Π, τ, Ê) outputs a d-simplex τ ′ ⊆ τ such that τ ′ contains the
optimal translation in Π and int(τ ′) lies in a cell of Arr(Ê). Fig. 1 shows the pseu-
docodes of LOCATE and PRUNE. Although the solution lies in the m-flat, we search the
arrangement Arr(Γ̂) in R

d for notational convenience.

102 H.-K. Ahn, S.-W. Cheng, and I. Reinbacher

LOCATE(Π) /* return the optimal translation in Π */

1. If dim(Π) = 0, return Π ; otherwise, construct a d-simplex τ0 that contains the optimal
translation in Π .

2. Sample a subset Ê0 ⊂ Γ̂ of Θ(n�d/2� log n) hyperplanes.
3. ρ0 := PRUNE(Π,τ0, Ê0).
4. Compute a subset Ê1 ⊂ Γ̂ that has O(n�d/2�) size and contains {γ̂f,g ∈ Γ̂ : γf,g ∩

int(ρ0)
= ∅}.
5. ρ1 := PRUNE(Π,ρ0, Ê1).
6. Return the translation α ∈ ρ1 ∩ Π that maximizes vol(Qα)1/d.

PRUNE(Π,τ, Ê) /* return a d-simplex τ ′ ⊆ τ such that τ ′ contains the optimal translation in Π

and int(τ ′) lies in a cell of Arr(Ê). */

1. Set τ ′ = τ . Let α denote the translation in Π that maximizes vol(Qα) over Π .
2. Compute a 1

2
-cutting of Ê . Find the d-simplex τ ′′ in the cutting that contains α.

3. Triangulate τ ′ ∩ τ ′′. Update τ ′ to be the d-simplex in this triangulation that contains α.
Remove from Ê the hyperplanes that avoid int(τ ′).

4. Return τ ′ if Ê becomes empty. Otherwise, go to step 2.

Fig. 1. Pseudocodes of LOCATE and PRUNE

4.1 How LOCATE Works

Refer to the pseudocode of LOCATE in Fig. 1. In step 1, τ0 is constructed as follows. For
j ∈ {1, 2}, we compute Pj and its axes-parallel bounding box Bj in O(n
d/2�+n log n)
time [5]. The translations that bring B1 and B2 into intersection form a box B which
can be computed in O(1) time. We can take τ0 to be any d-simplex containing B. By
steps 2 and 3, we call PRUNE(Π, τ0, Ê0) with a random subset Ê0 ⊂ Γ̂ . We want the
d-simplex ρ0 returned by PRUNE to be stabbed by only few hyperplanes in Γ̂ because
we will construct cuttings on them later. By the ε-net theory, a d-simplex in any cell
of Arr(Ê0) is stabbed by (|Γ̂ |/|Ê0|) log n hyperplanes with probability 1− n−O(1). We
have |Γ̂ | = O

(
n2
d/2�) and we make |Ê0| = O(n
d/2� log n) to optimize the running

time of LOCATE. Lemma 3 below explains how we pick the subset Ê0.

Lemma 3. We can sample in O(n
d/2� log2 n) time a subset Ê0 ⊂ Γ̂ of Θ(n
d/2� log n)
size such that, with probability 1− n−O(1), for any d-simplex ρ whose interior lies in a
cell of Arr(Ê0), only O(n
d/2�) hyperplanes in Γ̂ intersect int(ρ).

Proof. Let F i
j be the number of i-faces of Pj for j ∈ {1, 2} and i ∈ [0, d]. For

k ∈ [0, d − 1], let Γ̂k be the multiset { γ̂f,g ∈ Γ̂ : dim(f) + dim(g) = k }. We
sample a hyperplane from Γ̂k uniformly at random as follows. First, pick an integer
i ∈ [0, k] with probability F i

1F
k−i
2 /(

∑k
a=0 F a

1 F k−a
2). Second, pick an i-face of P1

and a (k − i)-face of P2 with probabilities 1/F i
1 and 1/F k−i

2 , respectively. Repeat to
pick Θ(n
d/2� log n) face pairs that induce Θ(n
d/2� log n) hyperplanes in Γ̂k. The set
Ê0 contains all hyperplanes sampled over k ∈ [0, d − 1] with duplicates removed via
sorting. The time needed is O(n
d/2� log2 n).

Maximum Overlap of Convex Polytopes under Translation 103

Take any d-simplex ρ whose interior lies in a cell of Arr(Ê0). It follows immedi-
ately from Lemma 1 that, with probability 1 − n−O(1), only O(n
d/2�) hyperplanes in⋃d−1

k=0 Γ̂k intersects int(ρ). It is possible for int(ρ) to intersect a hyperplane γ̂f,g in Γ̂

where dim(f) + dim(g) ≥ d and so γ̂f,g �∈
⋃d−1

k=0 Γ̂k. By the definition of Γ̂ , we have
γ̂f,g = γ̂h,g for some face h of f where dim(h) + dim(g) < d, which implies that
γ̂h,g ∈

⋃d−1
k=0 Γ̂k. We charge the intersection between int(ρ) and γ̂f,g to the intersection

between int(ρ) and γ̂h,g. By the bounded incidence condition, the intersection between
int(ρ) and γ̂h,g is charged only O(1) times.

We discuss how PRUNE works in the next section, and we defer to Section 4.3 the
discussion of step 4, the generation of a subset Ê1 ⊂ Γ̂ that contains {γ̂f,g ∈ Γ̂ :
γf,g ∩ int(ρ0) �= ∅}. After step 5, we have a d-simplex ρ1 such that ρ1 contains the
optimal translation in Π and int(ρ1) lies in a cell of Arr(Ê1). The property of Ê1 implies
that int(ρ1) lies in a cell of Arr(Γ). (Some γ̂f,g in Γ̂ may intersect int(ρ1), but γf,g

does not.) We describe below how to find the optimal translation in step 6.
We first obtain a formula ϕ for vol(Qα) for any α ∈ int(ρ1) by defining a canonical

triangulation Tα of Qα as follows. The canonical triangulations of the (d− 1)-faces of
Qα are recursively defined. Then, fix a vertex q of Qα and connect it to every simplex in
bd(Qα) not incident to q to get Tα. If we have the volume formulae for the d-simplices
in Tα, their sum gives the formula for vol(Qα). The signed volume of a d-simplex with
vertices v0, v1, . . . , vd is 1

d! det(v1 − v0, v2 − v0, . . . , vd − v0), where each vi is viewed
as a column vector. Since there is no combinatorial change as α varies in int(ρ1), the
vertex coordinates of Qα are fixed linear functions in α and there is no combinatorial
change in Tα. So the signed volumes of the d-simplices in Tα do not change sign. We
construct Tα0 for a fixed translation α0 ∈ int(ρ1) to determine which d-simplices in Tα

have negative volume and multiply their formulae by −1. Constructing Qα and Tα takes
O(n
d/2� +n logn) time and |Tα| = O(n
d/2�). Note that the volume formulae for the
d-simplices in Tα are polynomials of degree O(1) in O(1) variables, and therefore their
sum is also a polynomial of degree O(1) in O(1) variables. We can compute a formula
ϕ for vol(Qα) with O(n
d/2�) terms in O(n
d/2� + n log n) time.

Combinatorial changes may happen if we move α from int(ρ1) to bd(ρ1). Nonethe-
less, these possible changes are that some d-simplices in Tα may become degenerate
and have zero volume. So the formula ϕ is valid for any α ∈ ρ1.

We convert ϕ to a formula ψ using the barycentric coordinates of α ∈ ρ1 ∩Π as the
variables. The formula ψ has O(n
d/2�) terms that are polynomials of degree O(1) in
O(1) variables. The conversion takes O(n
d/2�) time. We maximize ψ1/d by standard
calculus. If ψ1/d attains its maximum in int(ρ1 ∩ Π), we have the optimal translation.
Otherwise, ψ1/d attains its maximum in bd(ρ1 ∩Π) and we repeat the conversion of ϕ
and the maximization for each face of ρ1 ∩ Π .

Lemma 4. LOCATE(Π) runs in T (n, m) = Tg + Tp + O(n
d/2� log2 n) time, where
Tg denotes the time to generate Ê1 in step 4 and Tp denotes the total running time of
PRUNE in steps 3 and 5.

104 H.-K. Ahn, S.-W. Cheng, and I. Reinbacher

4.2 How PRUNE Works

Let α∗ denote the translation in an m-flat Π that maximizes the overlap over Π . PRUNE

takes parameters Π , a d-simplex τ containing α∗, and a set Ê of hyperplanes, and
returns a d-simplex τ ′ ⊆ τ such that α∗ ∈ τ ′ and int(τ ′) lies in a cell of Arr(Ê).
Assume for now an oracle that, given an (m − 1)-flat � ⊂ Π , decides which side of �
contains α∗.

Refer to the pseudocode of PRUNE in Fig. 1. In step 2, we construct a (1/2)-cutting
of Ê that has O(1) size and can be computed in O(|Ê |) time by Lemma 2. Let H be the
set of bounding hyperplanes of the (d− 1)-simplices in the cutting. Running the oracle
on h ∩ Π for all h ∈ H tells us which sides of the hyperplanes in H contain α∗. This
gives the d-simplex τ ′′ in the cutting that contains α∗. In step 3, we triangulate τ ′ ∩ τ ′′

in O(1) time and use the oracle as before to find the d-simplex in the triangulation that
contains α∗. By Lemma 2, at least half of the hyperplanes in Ê are removed in step 3.
Thus, steps 2–4 iterate O(log |Ê |) times and PRUNE takes O(To log |Ê | + |Ê | + 1

2 |Ê | +
1
4 |Ê | + . . .) = O(To log |Ê | + |Ê |) time, where To is the time to run the oracle once.

We describe below how the oracle works. Let F be the restriction of vol(Qα)1/d to
Π . For a cell C of Arr(Γ), let FC denote the restriction of F to cl(C) ∩ Π and let
∇FC denote the gradient of FC . We run LOCATE(�) to find the translation α̃ ∈ � that
maximizes the overlap over �. Intuitively, the gradient of F at α̃ points to the side of �
containing α∗. However, this idea fails because F may not be smooth at α̃, leaving the
gradient of F undefined at α̃. We get around this problem as follows. We call a cell C of
Arr(Γ) special if cl(C) contains α̃ and∇FC(α̃) points into C. If there is no special cell,
we report that α∗ = α̃. If there is a special cell C, we report the side of � that ∇FC(α̃)
points to. We argue that our strategy is correct as follows. Take the path of steepest
ascent on the graph of F from F (α̃) to F (α∗) and project it to Π . If the projected path
does not leave � at α̃, we have α∗ = α̃, so for any cell C whose closure contains α̃, the
gradient ∇FC(α̃) cannot point into C, i.e., no special cell. If the projected path leaves �
at α̃, it enters a special cell C and, by the maximality of F (α̃) over �, the projected path
never returns to �. Thus, ∇FC(α̃) points to the side of � containing α∗. There cannot
be two special cells; otherwise, the steepest ascent at F (α̃) projects to a direction v in
Π that points outside some special cell C. By definition, |∇FC(α̃)| is greater than the
magnitude of the gradient of FC at α̃ in direction v, which by the concavity of the graph
of F , is at least the steepest ascent at F (α̃). But then one can ascend faster on the graph
of FC in direction ∇FC(α̃), a contradiction.

The oracle requires the computation of ∇FC(α̃) for each cell C of Arr(Γ). We
describe this computation in the following. Let A ⊂ Γ be the subset of elements whose
closure contain α̃. They are induced by the intersecting face pairs of P1 + α̃ and P2, so
we can compute A by constructing Qα̃ in O(n
d/2� + n log n) time. Let Â = {γ̂f,g :
γf,g ∈ A}. We have |Â| = O(1) by the bounded incidence condition as all hyperplanes
in Â go through α̃. The closure of each cell of Arr(Â) contains α̃. Locally at α̃, Arr(Â)
is a refinement of the cells of Arr(Γ) whose closure contain α̃. So it suffices to compute
∇FC(α̃) for each cell C of Arr(Â), which can be done as follows. Compute the unit
vector v that points into cl(C) ∩ Π in the average direction of the edges of cl(C) ∩ Π .
For any faces f of P1 and g of P2 where (f + α̃)∩g �= ∅, we check whether f + α̃+ rv

Maximum Overlap of Convex Polytopes under Translation 105

intersects g, treating r as arbitrarily small. This gives the face lattice of Qα̃+rv. We
want to compute the formula for vol(Qα̃+rv) as in the previous section, but there is one
difference. The face lattice of Qα̃+rv allows us to construct the canonical triangulation
Tα̃+rv of Qα̃+rv. This gives the signed volume formula for each d-simplex in Tα̃+rv.
The unknown r is the only variable in the formula. However, since we do not know an
exact value of r, we cannot evaluate the signed volumes of the d-simplices in Tα̃+rv

and flip the signs of the negative volumes in order to obtain a formula for vol(Qα̃+rv).
Instead, we decide whether a d-simplex τ in Tα̃+rv has negative volume as follows. Let
Vτ denote the signed volume formula of τ , which is a polynomial in r of fixed degree.
We compute the ith derivative diVτ

dri for the smallest i ≥ 0 such that diVτ

dri |r=0 is non-

zero. (The 0th derivative is Vτ itself.) If diVτ

dri |r=0 is positive, then τ has positive volume;
otherwise, τ has negative volume. This takes O(1) time per d-simplex in Tα̃+rv. Hence,
for each cell C of Arr(Â), we can compute ∇FC(α̃) in O(n
d/2� + n log n) time.

Lemma 5. PRUNE(Π, τ, Ê) runs in O((T (n, m− 1)+ n
d/2� + n logn) log |Ê |+ |Ê|)
time, where T (n, m − 1) is the time for LOCATE to run on an (m − 1)-flat.

4.3 The Generation of Ê1

The step 4 of LOCATE generates a subset Ê1 ⊂ Γ̂ that contains the set { γ̂f,g ∈ Γ̂ :
γf,g ∩ int(ρ0) �= ∅ }. We discuss how to do this in O(n
d/2�+1 log n) time and ensure
that |Ê1| = O(n
d/2�). Recall that the Minkowski sum of two subsets X and Y of R

d is
X ⊕ Y = {x + y : x ∈ X, y ∈ Y }. So dim(X ⊕ Y) ≤ dim(X) + dim(Y).

We first compute a set E1 of face pairs from P1 and P2, each inducing an element
in Γ as follows. We initialize E1 to be empty. For each face h1 of P1 and for each face
σ of ρ0, we compute the vertices of (h1 ⊕ σ) ∩ P2. For each vertex computed, if it
is equal to (int(h1) ⊕ σ) ∩ int(h2) for some face h2 of P2, we insert into E1 all face
pairs (f, g) where h1 ∈ faces(f) and h2 ∈ faces(g) such that dim(γf,g) < d. (By
storing with f and g the basis vectors of aff(f) and aff(g), we can check in O(1) time
whether dim(f ⊕ g) < d and this suffices as dim(γf,g) = dim(f ⊕ g).) The vertices of
(h1 ⊕ σ) ∩ P2 that are not induced by int(h1) ⊕ σ do not trigger any insertion into E1.
At the end, we set Ê1 = { γ̂f,g : (f, g) ∈ E1 } and remove any duplicates via sorting.

Our analysis in the rest of this section is divided into three parts. First, we show
that Ê1 contains the set { γ̂f,g ∈ Γ̂ : γf,g ∩ int(ρ0) �= ∅ }. Second, we show that
|Ê1| = O(n
d/2�) with probability 1 − n−O(1). Third, we show that, with probability
1 − n−O(1), it takes O(n
d/2�+1 log n) time to compute the vertices of (h1 ⊕ σ) ∩ P2

over all faces h1 of P1 and all faces σ of ρ0.

The first part. We first prove two geometric properties and then show that Ê1 contains
the set { γ̂f,g ∈ Γ̂ : γf,g ∩ int(ρ0) �= ∅ }.

Lemma 6. The following properties hold for each element γf,g ∈ Γ .

(i) Suppose that (int(f) ⊕ σ) ∩ int(g) is a single point for some face σ of ρ0. Then,
γ̂f,g ∩ int(ρ0) �= ∅ or γ̂f,g contains a vertex of ρ0.

(ii) Suppose that γf,g intersects ρ0. There exists a face h1 of f , a face h2 of g, and a
face σ of ρ0 such that (int(h1) ⊕ σ) ∩ int(h2) is a single point.

106 H.-K. Ahn, S.-W. Cheng, and I. Reinbacher

Proof. Since (int(f)⊕ σ)∩ int(g) �= ∅, some translation in σ brings int(f) and int(g)
into intersection. Thus, γf,g ∩ σ �= ∅ and (i) follows as σ is a face of ρ0.

Consider (ii). Recall that γf,g is a point or an open convex set. So cl(γf,g) is a con-
vex polytope. Among the faces of cl(γf,g) that intersects ρ0, we choose those with the
lowest dimension. Among these faces, we choose a face cl(γh1,h2) such that dim(h1)+
dim(h2) is minimum. Since ρ0 does not intersect any face of cl(γf,g) with dimension
less than dim(γh1,h2), the boundary of cl(γh1,h2) avoids ρ0, which implies that some
face σ of ρ0 intersects γh1,h2 in a single point. That is, there is a unique translation α =
γh1,h2∩σ such that (int(h1)+α)∩int(h2) �= ∅. We claim that (int(h1)+α)∩int(h2) is
a single point, which implies (ii). If (int(h1)+α)∩ int(h2) is not a single point, its clo-
sure has a vertex (int(h′

1) + α) ∩ int(h′
2) for some h′

1 ∈ faces(h1) and h′
2 ∈ faces(h2)

where h′
1 is a proper face of h1 or h′

2 is a proper face of h2. Thus, dim(γh′
1,h′

2
) ≤

dim(γh1,h2) and γh′
1,h′

2
intersects σ, but dim(h′

1) + dim(h′
2) < dim(h1) + dim(h2).

This contradicts our choice of γh1,h2 .

Lemma 7. Ê1 contains the set { γ̂f,g ∈ Γ̂ : γf,g ∩ int(ρ0) �= ∅ }.

Proof. Choose a γf,g ∈ Γ intersecting int(ρ0). By Lemma 6(ii), (int(h1)⊕σ)∩int(h2)
is a single point for a face h1 of f , a face h2 of g, and a face σ of ρ0. So (int(h1) ⊕
σ)∩int(h2) is a vertex of (h1⊕σ)∩P2. We collect this vertex and add (f, g) to E1.

The second part. Lemma 8 below gives an O(n
d/2�) bound on the number of vertices
computed by our generation procedure. It follows that |Ê1| = O(n
d/2�).

Lemma 8. With probability 1 − n−O(1), there are O(n
d/2�) vertices in the convex
polytopes (h1 ⊕ σ) ∩ P2 over all faces h1 of P1 and all faces σ of ρ0.

Proof. Each vertex is (int(f)⊕σ)∩ int(g) for a face f of P1, a face g of P2, and a face
σ of ρ0. If dim(γf,g) < d, we give the vertex a blue color; if dim(γf,g) = d, we give it
a red color. It is possible for a vertex to receive both colors if it is induced by two face
pairs (f, g) and (f ′, g′) such that dim(γf,g) < d and dim(γf ′,g′) = d. We count these
two colored instances of the same vertex separately in our analysis.

Consider the blue vertices. Lemma 6(i) implies that γ̂f,g ∩ int(ρ0) �= ∅ or γ̂f,g

contains a vertex of ρ0. By Lemma 3, with probability 1−n−O(1), there are O(n
d/2�)
hyperplanes γ̂f,g in Γ̂ where γ̂f,g ∩ int(ρ0) �= ∅. By the bounded incidence condition,
any vertex of ρ0 lies in O(1) hyperplanes γ̂f,g in Γ̂ . For a face σ of ρ0, the blue vertex
(int(f) ⊕ σ) ∩ int(g) may be constructed more than once if there are other faces f ′ ∈
faces(P1) and g′ ∈ faces(P2) such that (int(f ′)⊕σ)∩ int(g′) = (int(f)⊕σ)∩ int(g).
Nevertheless, the pairs (f ′, g′) and (f, g) are already counted separately in the above
as we apply Lemma 6, Lemma 3 and the bounded incidence condition. Another factor
2d+1 − 1 is needed as we go over all faces σ of ρ0. So we compute O(n
d/2�) blue
vertices, counting multiplicities.

Consider a red vertex (int(f) ⊕ σ) ∩ int(g). For any translation α ∈ σ, we have
(int(f) + α) ∩ int(g) ⊆ (int(f) ⊕ σ) ∩ int(g), which is a single point. Therefore, for
any translation α ∈ σ, if (int(f) + α) ∩ int(g) �= ∅, then

(int(f) ⊕ σ) ∩ int(g) = (int(f) + α) ∩ int(g). (1)

Maximum Overlap of Convex Polytopes under Translation 107

Fix σ and a translation α0 in σ. Divide the red vertices (int(f)⊕σ)∩ int(g) over all
faces f of P1 and g of P2 into two groups, one satisfying (int(f) + α0) ∩ int(g) �= ∅
and the other satisfying (int(f) + α0) ∩ int(g) = ∅. By (1), the number of red vertices
in the first group is no more than the number of vertices of (P1 + α0) ∩ P2, which is
O(n
d/2�). For each red vertex (int(f)⊕ σ) ∩ int(g) in the second group, we charge it
to a blue vertex as follows. Since (int(f) ⊕ σ) ∩ int(g) is a single point, by continuity,
(f ⊕ σ) ∩ g is equal to this single point. We choose a face h1 of f and a face h2 of g
such that (int(h1) ⊕ σ) ∩ int(h2) �= ∅ and dim(h1) + dim(h2) is minimized. Thus,
(int(h1) ⊕ σ) ∩ int(h2) is the single point (f ⊕ σ) ∩ g and the minimization ensures
that dim(h1) + dim(h2) < d. So dim(γh1,h2) ≤ dim(h1) + dim(h2) < d. It follows
that (int(h1)⊕σ)∩ int(h2) is a blue vertex (it is a vertex of (h1 ⊕σ)∩P2). We charge
the red vertex (int(f)⊕σ)∩ int(g) to it. For another red vertex (int(f ′)⊕ σ)∩ int(g′)
to charge to (int(h1)⊕ σ)∩ int(h2), we must have h1 ∈ faces(f ′) and h2 ∈ faces(g′).
So the blue vertex (int(h1) ⊕ σ) ∩ int(h2) is charged O(1) times by the bounded in-
cidence condition. It follows that O(n
d/2�) red vertices are induced by each face σ of
ρ0. Another factor 2d+1 − 1 is needed as we go over all faces σ of ρ0. Thus, O(n
d/2�)
red vertices are computed, counting multiplicities.

The third part. The next result bounds the time to generate Ê1.

Lemma 9. Computing Ê1 takes O(n
d/2�+1 log n) time with probability 1 − n−O(1).

Proof. Let h1 be a face of P1 and let σ be a face of ρ0. The face h1 is the intersection
of O(n) halfspaces and hyperplanes. The Minkowski sum of each such halfspace or
hyperplane with σ has O(1) size and can be computed in O(1) time. So the linear
constraints defining h1 ⊕ σ can be computed in O(n) time.

We run Megiddo’s linear programming algorithm to find a vertex ν of (h1 ⊕ σ)∩P2

in O(n) time [12]. We visit the vertices adjacent to ν in two steps. First, we compute
the supporting lines of edges incident to ν as follows. The point ν is dual to a (d − 1)-
flat and each bounding hyperplane through ν is dual to a point in this (d − 1)-flat. The
supporting lines of the edges incident to ν correspond to the (d−2)-faces of the convex
hull of the dual points. By the bounded incidence condition and the constant size of σ,
there are O(1) such dual points, so it takes O(1) time to compute their convex hull and
hence the supporting lines of the edges incident to ν. Second, we shoot rays from ν
along all these supporting lines and find the first hyperplane that each ray stops at by
checking the linear constraints not containing ν in O(n) time. These stopping points
are the vertices adjacent to ν. Altogether, we can visit the vertices adjacent to ν in O(n)
time. Hence, it takes O(n + kσ,h1n log n) time to visit all vertices of (h1 ⊕ σ) ∩ P2,
where kσ,h1 is the number of such vertices and the O(log n) term comes from using a
dictionary to record vertices visited.

A vertex of (h1 ⊕σ)∩P2 is equal to (int(h1)⊕σ)∩ int(h2) for some face h2 of P2

if and only if that vertex lies in the translates of the bounding hyperplanes through h1

but not in the translates of any other bounding hyperplane of P1. Each such vertex can
be found in O(n) time. Hence, it takes O(n
d/2�+1 log n) time to construct Ê1 because
P1 has O(n
d/2�) faces and

∑
σ,h1

kσ,h1 = O(n
d/2�) with probability 1 − n−O(1) by

Lemma 8. (We remove duplicates in Ê1 in O(n
d/2� log n) time via sorting.)

108 H.-K. Ahn, S.-W. Cheng, and I. Reinbacher

Final results. By the results in Lemmas 4, 5, 8, and 9, we get the recurrence T (n, m) =
O(T (n, m− 1) log n + n
d/2�+1 log n) with boundary condition T (n, 0) = O(1). The
solution is T (n, m) = O(mn
d/2�+1 logm n). We can reduce the running time in R

3

by replacing the linear programming with suitable queries using the Dobkin-Kirkpatrick
structure [7]. The details can be found in the full version of the paper.

Theorem 1. Let P1 and P2 be two convex polytopes in R
d, d ≥ 3, specified by n bound-

ing hyperplanes. For any ε > 0, we can compute an overlap of P1 and P2 under trans-
lation that is at most ε less than the optimum. The running time is O(n
d/2�+1 logd n)
with probability 1−n−O(1). In R

3, the running time can be improved to O(n log3.5 n).

References

1. Ahn, H.-K., Brass, P., Shin, C.-S.: Maximum overlap and minimum convex hull of two con-
vex polyhedra under translation. Comput. Geom. Theory and Appl. 40, 171–177 (2008)

2. Ahn, H.-K., Cheong, O., Park, C.-D., Shin, C.-S., Vigneron, A.: Maximizing the Overlap of
Two Planar Convex Sets under Rigid Motions. Comput. Geom. Theory and Appl. 37, 3–15
(2007)

3. de Berg, M., Cheong, O., Devillers, O., van Kreveld, M., Teillaud, M.: Computing the Max-
imum Overlap of Two Convex Polygons under Translations. Theory of Comput. Syst. 31,
613–628 (1998)

4. Chazelle, B.: An optimal algorithm for intersecting three-dimensional convex polyhedra.
SIAM J. Computing 21, 671–696 (1992)

5. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discr. Comput.
Geom. 9, 377–409 (1993)

6. Chazelle, B.: Cutting Hyperplanes for Divide-and-Conquer. Discr. Comput. Geom. 9, 145–
159 (1993)

7. Dobkin, D.P., Kirkpatrick, D.G.: Determining the separation of preprocessed polyhedra – a
unified approach. In: Proc. 17th Internat. Colloq. Automata Lang. Program., pp. 400–413
(1990)

8. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Heidelberg (1987)
9. Fukuda, K., Uno, T.: Polynomial time algorithms for maximizing the intersection volume of

polytopes. Pacific J. Optimization 3, 37–52 (2007)
10. Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. Discr. Comput. Geom. 2,

127–151 (1987)
11. Heijmans, H.J.A.M., Tuzikov, A.V.: Similarity and symmetry measures for convex shapes

using Minkowski addition. IEEE Trans. PAMI 20, 980–993 (1998)
12. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31,

114–127 (1984)
13. Meyer, F., Bouthemy, P.: Region-based tracking in an image sequence. In: Sandini, G. (ed.)

ECCV 1992. LNCS, vol. 588, pp. 476–484. Springer, Heidelberg (1992)
14. Mount, D.M., Silverman, R., Wu, A.Y.: On the area of overlap of translated polygons. Com-

puter Vision and Image Understanding 64, 53–61 (1996)
15. Sangwine-Yager, J.R.: Mixed Volumes. In: Gruber, P.M., Wills, J.M. (eds.) Handbook on

Convex Geometry, vol. A, pp. 43–71. Elsevier, Amsterdam (1993)
16. Vigneron, A.: Geometric optimization and sums of algebraic functions. In: Proc. ACM–

SIAM Sympos. Alg., pp. 906–917 (2010)

Approximate Shortest Homotopic Paths in Weighted
Regions�

Siu-Wing Cheng1, Jiongxin Jin1, Antoine Vigneron2, and Yajun Wang3

1 Department of Computer Science and Engineering, HKUST, Hong Kong
2 INRA, UR 341 Mathématiques et Informatique Appliquées, Jouy-en-Josas, France

3 Microsoft Research Asia, Beijing, China

Abstract. Let P be a path between two points s and t in a polygonal subdivi-
sion T with obstacles and weighted regions. Given a relative error tolerance ε ∈
(0, 1), we present the first algorithm to compute a path between s and t that can
be deformed to P without passing over any obstacle and the path cost is within
a factor 1 + ε of the optimum. The running time is O(h3

ε2 kn polylog(k, n, 1
ε
)),

where k is the number of segments in P and h and n are the numbers of ob-
stacles and vertices in T , respectively. The constant in the running time of our
algorithm depends on some geometric parameters and the ratio of the maximum
region weight to the minimum region weight.

1 Introduction

Given a path P in the plane, the shortest homotopic path problem is to find a minimum-
cost path that can be deformed to P without crossing any obstacle. The problem origi-
nates from research in VLSI (e.g. [8,11]). Forbus et al. [6] described a planning system
in which a user makes a path sketch for vehicles or people and then the system gen-
erates the detailed optimized path homotopic to the sketch. It is natural to consider
non-Euclidean cost models because different regions incur different costs; for example,
traveling in swamps is harder than traveling on roads.

The weighted region model is the first non-Euclidean cost model and there has been
much work on it (e.g. [1,12,13]). The environment is a polygonal subdivision, each
region f has a weight wf , and the subpath cost within a region f is wf times the
subpath length. Computing the exact shortest path seems hard and only approximation
algorithms are known so far. The first algorithm of Mitchell and Papadimitriou [12]
runs in O(n8 log nNρ

ε) time, where n is the number of subdivision vertices, the vertices
have integer coordinates in [0, N], and ρ is the ratio of the maximum region weight
to the minimum region weight. Subsequently, other algorithms have been proposed
whose running times have a lower dependence on n. The most notable approach is to
compute the shortest path in a graph obtained by discretizing the input subdivision,
so as to approximate the true shortest path (e.g. [1,13]). Sun and Reif [13] gave an
algorithm that runs in O(n

ε log n
ε log 1

ε) time, where the hidden constant depends on
some geometric parameters. Aleksandrov et al. [1] achieved the best dependence on n

� The research of Cheng and Jin was supported by the Research Grant Council, Hong Kong,
China (project no. 612107).

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 109–120, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

110 S.-W. Cheng et al.

and ε with a running time of O(n√
ε
log n

ε log 1
ε), where the hidden constant depends on

ρ and some geometric parameters. No result is known so far on the shortest homotopic
path problem in weighted regions, although several results are known when the cost of
a path is its length [2,4,9].

The main result in this paper is a (1 + ε)-approximate shortest homotopic path algo-
rithm for any ε ∈ (0, 1) in weighted regions. Let P be a path between two points s and
t in a polygonal subdivision T with obstacles and weighted regions. Self-intersections
in P are allowed. Given ε ∈ (0, 1), our algorithm computes a path between s and t that
can be deformed to P without passing over any obstacle and the path cost is within a
factor 1 + ε of the optimum. The running time is O(h3

ε2 kn polylog(k, n, 1
ε)), where k

is the number of segments in P and h and n are the numbers of obstacles and vertices
in T , respectively. The constant in our running time depends on ρ and some geometric
parameters. These geometric parameters and the dependence on them are of the same
kind as in the work of Sun and Reif [13] as we use their result as a subroutine.

2 Preliminaries

We denote the input polygonal subdivision by T , which consists of vertices, edges, and
polygonal faces. Some polygonal faces are marked as inaccessible and each connected
component of inaccessible faces forms an obstacle. The remaining polygonal faces are
accessible and they are called the regions of T . Each region f is associated with a
positive weight wf > 0. Without loss of generality, we assume that T is connected,
every obstacle is a simple polygon, every region is a triangle, and the minimum region
weight is equal to 1. We use ρ to denote the maximum region weight in T .

Consider a line segment pq and a region f . Let |pq| denote the length of pq. We use
int(·) to denote the interior of the operand. If int(pq) ⊂ int(f) or pq is contained in an
edge adjacent to f only, we define costT (pq) = wf |pq|. If pq is contained in an edge
shared between f and another region g, we define costT (pq) = min{wf , wg} · |pq|.
A polygonal path Q is a polyline in T with finitely many segments. A link of Q is a
maximal segment in Q that lies in a region of T . An endpoint of a link is called a node.
We use |Q| to denote the length of Q. We use costT (Q) to denote the sum of the costs
of its links. Notice that |Q| ≤ costT (Q) ≤ ρ|Q|.

We use P to denote the input polygonal path. We use s and t to denote the endpoints
of P and we enforce them to be vertices of T by splitting regions if necessary. Two paths
with the same endpoints are homotopic if one can be deformed to the other without
passing over any obstacle.

3 Overview

We present a simplified version of our strategy to highlight the main ideas. This sim-
plified strategy cannot be turned into an effective algorithm, for instance, because no
algorithm is known for computing an exact shortest path in weighted regions.

We are given a triangulated domain with obstacles, and we want to find a shortest
path homotopic to a given input path P , with endpoints s and t. We first need to encode
the homotopy of P . To this end, we build a spanning tree of the obstacles, with an

Approximate Shortest Homotopic Paths in Weighted Regions 111

−→a2 ←−a2

−→a1

us

←−a1

P←−a3

s

t −→a3−→a2 ←−a2

−→a1

us

←−a1

P←−a3

s

t −→a3

Fig. 1. The obstacles are shaded. After canceling one ←−a3 and one −→a3, the path P becomes a new
path P ′ that crosses the edge a3 once.

extra edge connecting it to a point us on the outer face of our domain. The edges of
this spanning tree are denoted by a1, a2, . . . , ah. We choose each such edge ai to be a
shortest path between two points lying on obstacles, or between us and a point lying on
an obstacle.

We follow P from s to t to trace the edges that it crosses as well the crossing direc-
tions (determined with respect to an arbitrarily chosen orientation of the ai’s). In Fig. 1,
the trace is −→a1

←−a3
−→a3
←−a3
←−a2, where ←−ai means crossing ai from right to left and −→ai means

crossing ai from left to right. If ←−ai and −→ai appears consecutively in the trace, we can
cancel the two crossings. This corresponds to making a shortcut along ai between the
two crossings as illustrated in Fig. 1. The important point is that the above cancellation
does not change the homotopy of the path. When all cancellations are done, the reduced
trace SP is a unique encoding of the homotopy of P . Indeed, two paths P and Q with
the same endpoints are homotopic if and only if SP = SQ.

Since the tree edges are shortest paths, a shortcut (canceling two adjacent symbols
in the trace) does not increase the path cost. This is ideal because it means that for
any path P , there is a shortest path P ∗ homotopic to P that crosses the spanning tree
as dictated by SP . The path P ∗ makes no redundant crossing. A natural approach to
compute such a shortest path is as follows. Assume that SP starts with −→a1

←−a3
←−a2 We

know that P ∗ will first reach a1 from the left. As we do not know at which point of
a1 it arrives, we can discretize a1 by placing many vertices along it. For each of these
vertices, we compute an approximate shortest path from s, treating the edges ai of our
tree as obstacles. As these paths avoid our spanning tree, they lie in a simply connected
region. Thus, we do not need to consider their homotopy class and we can apply known
algorithms for approximate shortest paths in weighted regions.

After crossing a1, we know that P ∗ will reach a3 from the right. So we perform
a second round of approximate shortest paths computation (where the paths are not
allowed to cross our spanning tree). We perform this computation with multiple sources,
each source being one of the vertices placed on a1, and each such vertex having an
additive weight which is the approximate shortest distance from s to this vertex. The
target points, again, are the vertices placed densely along a3. We repeat this process for
each symbol in SP , and we obtain an approximate shortest path homotopic to P .

Our actual algorithm follows similar ideas, but there are important differences as
we face several difficulties. The most obvious one is that no algorithm is known for
computing an exact shortest path in weighted regions. Second, the spanning tree calls
for repeated shortest path computations in order to connect the obstacles, which is rather

112 S.-W. Cheng et al.

wasteful. We replace the spanning tree above by another tree, the anchor tree, which is
basically an approximate shortest path tree from us to one vertex of each obstacle. The
homotopy encoding SP is still based on the crossings between P and the anchor tree,
but we change it slightly for technical convenience. Since the paths in the anchor tree
are not exact shortest paths, we cannot expect a shortest path homotopic to P to cross
the anchor tree as dictated by SP . To conform to SP , we have the reroute the optimal
path along the anchor tree in the analysis. This demands a careful construction of the
anchor tree so that the rerouting error is small. Another major issue is that we have to
keep SP short because the running time of our algorithm is directly related to it. Finally,
to make our algorithm run faster, we will not discretize the anchor tree. We will still run
one round of approximate shortest paths computation for each symbol in SP , but in the
absence of vertices on the anchor tree, multiple crossings of the anchor tree (instead of
just one) may have to be taken at the end of a round. We need to do this quickly while
conforming to SP . The rest of this paper explains how to handle these difficulties.

4 The Subdivision S and the Graph Hε

We introduce a graph Hε which is the discretization of some subset of T based on
the scheme of Sun and Reif [13]. We briefly review their construction below. Given
a subdivision K with triangular regions, Sun and Reif place O(1

ε log 1
ε) Steiner points

on each edge of K, where the hidden constant depends on some geometric parameters.
The vertices of K and these Steiner points form the vertex set of a graph which we
denote by Gε(K). Every two vertices p and q of Gε(K) on the boundary of a region
are connected by the edge pq with weight costK(pq). There are O(1

ε |K| log 1
ε) vertices

and O(1
ε2 |K| log2 1

ε) edges in Gε(K). So Dijkstra’s algorithm returns a shortest path

or a shortest path tree in Gε(K) in O(1
ε2 |K| log |K|

ε log 1
ε) time [7]. A shortest path in

Gε(K) is a (1 + ε)-approximate shortest path in K. Sun and Reif gave a faster shortest
path algorithm that avoids generating the edges of Gε(K), but we do not need this as
other tasks will prove to be more time-consuming. Aleksandrov et al. [1] have a related
construction with better dependence on ε, but we cannot use it due to some technical
difficulties.

The graph Hε is Gε(S) for some refinement S of a subset of T . We will run mul-
tiple rounds of Dijkstra’s algorithm on a subgraph Halg of Hε to generate a (1 + ε)-
approximate shortest homotopic path. A dense enough discretization is sufficient for
this purpose. We will use another graph Hfen whose edges are contained in Hε to com-
pute the anchor tree for encoding the homotopy of P . This requires extra properties
as we explain below. Although Halg and Hfen serve different purposes, a (1 + ε)-
approximate shortest homotopic path has to interact with the anchor tree, i.e., cross
it. The relations among Hε, Halg, and Hfen facilitate the analysis.

Let Lst denote the length of a minimum-length path homotopic to P . Let B denote
an axis-parallel box centered at s with width 4ρLst. The cost of the shortest path ho-
motopic to P is between Lst and ρLst. So for any ε ∈ (0, 1), the box B contains any
(1+ε)-approximate shortest path homotopic to P , which means that only the obstacles
inside B are relevant. The restriction to B controls the costs of the paths in the anchor
tree which keeps short the canonical crossing sequence of P .

Approximate Shortest Homotopic Paths in Weighted Regions 113

(a) (b)

Fig. 2. The obstacles are shaded. We ignore the box B for simplicity. In (a), the black dots denote
the anchors and the dashed segments form the anchor triangulation. In (b), the circles have radii
δfen and the white dots are the extra vertices inserted.

For each obstacle inside B, we pick one of its vertices to be an anchor. We compute
the anchor triangulation, a triangulation of the anchors as well as the four corners of B.
We superimpose the anchor triangulation on B ∩ T to obtain a subdivision T ′. Notice
that an anchor triangulation edge may be split by the obstacles and the edges of B ∩ T
into several edges in T ′. Fig. 2(a) gives an illustration. The anchor triangulation edges
provide shortcuts in T ′ that one can take in building the anchor tree. This controls the
length of the canonical crossing sequence of P .

We need to prevent any path in the anchor tree from spiraling around the obsta-
cles in order to keep short the canonical crossing sequence of P . For this purpose, for
each edge uv in the anchor triangulation, the subset of uv within a distance δfen =
εLst/Θ(ρkn)O(1) from u or v plays a special role in building the anchor tree. Either
this subset consists of two segments ux and vy or it is the edge uv. In the former case,
we insert x and y as extra vertices into T ′ if they do not fall inside obstacles. Fig. 2(b)
shows an example. The exact value of δfen will be specified in the proof of Theorem 1,
our main result.

The subdivision S is the refinement of T ′ so that all regions become triangles.
W.l.o.g., we assume that S is connected. It has O(hn) vertices and O(hn) edges. We
construct Hε as Gε(S), which has O(h

ε n log 1
ε) vertices and O(h

ε2 n log2 1
ε) edges.

5 Anchor Tree

We introduce an anchor tree A to connect the anchors. The crossings between A and
P will be used to encode the homotopy of P . Let us be a vertex in S with the largest
y-coordinate. The anchor tree A consists of two parts, a non-self-intersecting subtree
in S that is rooted at us and spans all anchors, and a ray that shoots upward from us to
infinity. So A is a rooted tree with the root at vertical infinity.

Let a1, a2, . . . , ah be the anchors in A. Let αi denote the directed tree path in A
from ai to vertical infinity. Although the paths α1, α2, . . . may overlap, we view them
as non-crossing and side by side. Fig. 3(a) shows an example. The crossing sequence
of P is built by traversing P from s to t, appending a symbol ←−ai or −→ai whenever P
crosses αi. We append −→ai if αi is crossed from left to right with respect to its direction.
We append ←−ai otherwise. Fig. 3(b) shows an example. If ←−ai and −→ai are adjacent in the
crossing sequence, we can cancel them. It corresponds to a path deformation that does

114 S.-W. Cheng et al.

a5

α1α2 α3
α4
α5

a1 a2 a3 a4

a5
a1 a2 a3 a4

(a) (b)

Fig. 3. In (b), the crossing sequence of the solid path is −→a1
−→a2

−→a3
−→a4

−→a5
←−a5

←−a4
←−a3

−→a3
←−a3

−→a3
−→a4

−→a5. It can
be reduced to the crossing sequence −→a1

−→a2
−→a3

−→a4
−→a5 of the dashed path.

not pass over any obstacle. Repeating until no other symbol can be deleted gives the
unique canonical crossing sequence as implied by Lemma 1 below. Cabello et al. [3]
used vertical lines though obstacles to define the crossing sequence when the path cost
is its length. The anchor tree generalizes this idea. The same idea of using a tree to
encode homotopy was also used by Kaufmann and Mehlhorn [10].

Lemma 1. Let H denote R
2 minus the obstacles with anchors. Two paths in H with

the same endpoints are homotopic if and only if their canonical crossing sequences are
identical.

We construct the subtree of A rooted at us as a shortest path tree in some subgraph
of Hε as follows. For edge uv of the anchor triangulation, its subset within a distance
δfen from u or v consists of collinear edges in S. Due to obstacles, these collinear
edges may form several connected components and we call each connected component
a fence. Fig. 4 shows an example. To keep the canonical crossing sequence of P short,
we should prevent any path in A from spiraling around the obstacles and hence anchors.
We achieve this by making the interior of fences impenetrable. This is easily done by
splitting some vertices of Hε as follows. We split every vertex v of S in the interior
of a fence into two copies, one on each side of the fence, and these two copies are not
connected. Any edge incident to v is made incident to the copy of v on the same side
of the fence as that edge. Notice that one can still pass through a fence at its endpoints.
We use Hfen to denote the resulting graph. Note that each edge in Hfen coincides with
an edge in Hε. We compute the subtree of A rooted at us as the shortest path tree in
Hfen from us to all anchors. The next result states several properties of A.

Lemma 2. A has O(h
ε n log 1

ε) size and can be computed in O(h
ε2 n log n

ε log 1
ε) time.

Let γi, i ∈ [1, h], denote the paths in A between us and the anchors.

(i) costT (γi) = O(ρ2nLst).
(ii) The subpath of γi between any two nodes p and q has cost at most dpq +O(ρhδfen),

where dpq is the shortest path cost in Hε between p and q.
(iii) Let y be a crossing point between γi and an edge vw of the anchor triangulation.

If |vy| < δfen, then y lies on an obstacle.

Approximate Shortest Homotopic Paths in Weighted Regions 115

(a) (b)

Fig. 4. The shaded regions are obstacles. We ignore the box B for simplicity. In (a), the black dots
denote the anchors, the dashed segments form the anchor triangulation, and the dashed circles
have radii δfen. In (b), the fences are shown as bold segments and the refined subdivision is S .
Notice that some fences consist of several edges of S .

(iv) Suppose that γi intersects an edge of the anchor triangulation at two points x and
y. If xy does not intersect any obstacle, the subpath of γi between x and y has cost
at most costT (xy).

A key property of the anchor tree is that it ensures that the crossing sequence of P has
low dependence on n and ε.

Lemma 3. The canonical crossing sequence SP of P has length O(ρh2k log ρkn
ε).

Proof. (Sketch.) We break the k segments in P at their crossings with the vertical ray in
A. There are at most k such crossings, so P is partitioned into at most 2k subsegments
such that each subsegment may cross the subtree of A rooted at us but not the vertical
ray. Our strategy is to deform each subsegment and show an O(ρh log ρkn

ε) bound on
the number of crossings between the deformed subsegment and any path from us to an
anchor in A.

Take a segment � in P and a path γ in A from us to an anchor. Let x and x′ be two
crossings between � and γ that appear consecutively along γ. The subpath of γ between
x and x′ forms a simple cycle with xx′. If no obstacle lies inside this cycle, we deform
� by morphing xx′ to a curve next to the subpath of γ between x and x′ as shown in
Fig. 5. This eliminates the crossing x, x′, or both. The deformed � is homotopic to �
because the deformation does not pass over any obstacle (no obstacle lies inside the
cycle). The deformed � has no new crossing with A because xx′ is replaced by a curve
next to a subpath in A. Also, the deformed � does not cross itself because the choices
of x and x′ ensure that γ does not cross � between x and x′. We repeat until no more

γ

x′
�

x

γ

x′
�

x

γ

�

x′x

Fig. 5. Morph xx′ to follow the dashed curve. This eliminates the crossings x and x′ on the left,
x in the middle, and x′ on the right.

116 S.-W. Cheng et al.

xi2

y2

y3

y1

a xj3xi3

σ
xi1 xj2xj1

e

xik
xjk

zk

a

yk+1

yk

xik+1 xjk+1

(a) (b)

Fig. 6. (a) The shaded triangles denote the obstacles; the dashed line denotes �; the polygonal
curve denotes σ; the bold curves denote γ(xi1 , xj1), γ(xi2 , xj2) and γ(xi3 , xj3). (b) zk is the
last crossing along e with Cikjk before yk+1. As zkyk+1 avoids the obstacles, by Lemma 2(iv),
|ykyk+1| ≥ |zkyk+1| ≥ costT (γ(zk, yk+1))/ρ ≥ |ayk|/ρ. So |ayk+1| ≥ (1 + 1/ρ)|ayk|.

crossings with A can be eliminated. Let σ be the final deformed �. By induction, we
can show that σ is homotopic to �, and σ does not cross itself.

We define γ(p, q) to be the subcurve of γ between two points p and q on it. The
subcurve σ(p, q) is similarly defined. Let x1, x2, . . . denote the crossings between γ and
σ. All these crossings lie on � by our deformation. Consider the set of cycles {Cij =
σ(xi, xj) ∪ γ(xi, xj) : xi and xj are consecutive along γ}. We order the subscripts of
Cij such that us is closer to xi than xj along γ. Each cycle is simple and it must enclose
some anchors. We cluster the cycles that enclose the same anchors. The cycles in the
same cluster are nested. Rotate the plane so that the subsegment � is horizontal. We
divide a cluster into a left-group and a right-group, depending on whether xi lies to the
left or right of xj on �. The two sets of anchors enclosed by two different cycles are
either disjoint or one set is a subset of the other set. Therefore, there are at most 2h left-
and right-groups. We show that a left-group has O(ρ log ρkn

ε) cycles as follows. The
size of a right-group can be analyzed similarly.

There exists an edge e of the anchor triangulation that cuts through all cycles in the
left-group and ends at some anchor a inside the innermost cycle. (The existence of e is
ensured because we include the corners of the box B in the anchor triangulation.) Walk
along e away from a. Identify the first crossing between e and each cycle in the left-
group. Label these crossings as y1, y2, . . . , ym at increasing distances from a. Label
the cycles so that yk lies on Cikjk

for k ∈ [1, m]. It follows that Cikjk
is nested in

Cik+1jk+1 for k ∈ [1, m−1]. See Figure 6(a) for an example. We can show that |ay2| ≥
δfen and |ayk| ≥ (1 + 1/ρ)k−2|ay2| for k ∈ [2, m] by Lemma 2 and the optimality
of γ. Figure 6(b) illustrates the idea of the proof. The details are omitted. We have
(1 + 1/ρ)m−2δfen ≤ (1 + 1/ρ)m−2|ay2| ≤ |aym|, which is at most |γ(xim , xjm)| ≤
costT (γ). Thus, m = O

(
1

log(1+1/ρ) log costT (γ)
δfen

)
= O

(
ρ log ρkn

ε

)
as costT (γ) =

O(ρ2nLst) and δfen = εLst/Θ(ρkn)O(1).

6 Rerouting along A
Our algorithm will run |SP | + 1 rounds of shortest path computation starting from the
source s in a subgraph of Hε. In each round, A is treated as an obstacle. At the end

Approximate Shortest Homotopic Paths in Weighted Regions 117

of each round, we cross A in a way compatible with the remaining symbols in SP .
We reroute the optimal path along A in the analysis so that the structure of the rerouted
optimum is similar to ours. Our path is as short as the rerouted optimum by construction.
It is thus important to bound the rerouting error. In this section, we explain the rerouting
for a path Q in Hε with canonical crossing sequence SQ.

Split Q into a concatenation of subpaths and edges Q1 · u1v1 · Q2 · u2v2 · · · such
that each subpath Qi has no canonical crossing and each edge uivi crosses A at one or
more canonical crossings in SQ. We describe successive conversions from Qi below:
Qi → Q1

i → Q2
i → Q3

i , such that the homotopy is preserved. All crossings between
Qi and A are cancellable. Canceling two adjacent symbols can be implemented by
rerouting Qi along A. After doing all the cancellations, we get a path Q1

i that does
not cross A. This step is illustrated by the conversion from Fig. 7(a) to Fig. 7(b). For
each path γ in A from us to some anchor, we shortcut Q1

i along the right side of γ
between the first and last contact points of Q1

i on the right side of γ, and shortcut
analogously along the left side of γ. The resulting path is Q2

i . This step is illustrated by
the conversion from Fig. 7(b) to Fig. 7(c).

A A A

(a) Qi (b) Q1
i (c) Q2

i

Fig. 7. Qi → Q1
i → Q2

i

Finally, we convert Q2
i to a homotopic path Q3

i in Hε as follows. Assume for now
that γj is the only path in A that overlaps with Q2

i . We snap Q2
i to some nodes in

Q2
i ∩ γj and we use the example in Fig. 8 to illustrate this step. The white dots denote

some vertices of Hε. The path Q2
i starts to follow γj at the first contact x until Q2

i leaves
γj at y. To obtain Q3

i , we replace dx and xc by dc, and we replace uy and yv by uv.
For bounding the rerouting error, it is instructive to view the whole process as a direct

conversion from Qi to Q3
i by swapping subpaths between γj and Qi. That is, delete ac

and qu from γj , delete bd and pv from Qi, and then insert ab, cd, pq, and uv. The
converted Qi is Q3

i and the subpath of γj between c and u is replaced by the subpath
of Qi between b and p. Let βj denote the converted γj . Analogous to the fact that given
a convex quadrilateral, the total length of its diagonals is at least the total length of any
two opposite sides, we can show that costS(γj)+costS(Qi) ≥ costS(βj)+costS(Q3

i).
By Lemma 2(ii), we have costS(γj) ≤ costT (βj) + O(ρhδfen), which implies that
costT (Q3

i) ≤ costS(Qi)+O(ρhδfen). So far, we have only considered the rerouting of
Q2

i along one path in A. Rerouting along all h paths gives costS(Q3
i) ≤ costS(Qi) +

O(ρh2δfen).

118 S.-W. Cheng et al.

γj

a b
p

q

u vcd

Qi

x
y

Q2
i

Fig. 8. The dashed polyline denotes Qi \ Q2
i

Lemma 4. Let Q be a path in Hε with canonical crossing sequence SQ. We can convert
Q to a homotopic path Q3 in Hε such that:

(i) Q3 is the concatenation Q3
1 · u1v1 · Q3

2 · u2v2 · · · such that Q3
i does not cross A

and uivi crosses A at one or more canonical crossings in SQ.
(ii) costS(Q3) ≤ costS(Q) + O(ρh2δfen|SQ|).

7 Main Algorithm

First, we construct A using Lemma 2 and superimpose it on S. Since A bends only at
vertices of Hε on the edges of S, no new nodes are generated, so the overlay has size
O(h

ε n log 1
ε) by Lemma 2 and can be constructed in linear time.

Next, we obtain a subgraph Halg of Hε by deleting any edge pq that intersects A.
We intersect A with P by brute force to find its canonical crossing sequence SP in
O(h

ε kn log 1
ε) time. We run |SP |+1 rounds of shortest path computation in Halg. In the

initialization, for each vertex p of Halg, we set a vector p[i] = ∞ for i ∈ [0, |SP |]. The
entry p[i] will store the shortest path cost in Halg from s to p subject to the constraint
that the canonical crossing sequence of the path consists of the first i symbols in SP .

In the first round, we set s[0] = 0 and compute shortest paths in Halg from s to all
other vertices. The shortest path cost of a vertex p is stored at p[0] during this round.
Let σpq denote the canonical crossing sequence of the segment pq. At the end of the
round, for any edge pq of Hε such that σpq is a prefix of SP , we update q[|σpq|] to be
min{q[|σpq|], p[0]+costS(pq)}. In general, the jth round begins with selecting vertices
v of Halg such that v[j − 1] �= ∞ and run Dijkstra’s algorithm in Halg from these
vertices as multiple sources. This is akin to the computation of a weighted Voronoi
diagram. The shortest path cost of a vertex p is stored at p[j − 1] during this round.
Similarly, at the end of the jth round, we find all edges pq of Hε such that σpq matches
SP from the jth to the (j + |σpq | − 1)th symbols, and update q[j + |σpq| − 1]. That is,
q[j + |σpq | − 1] = min{q[j + |σpq | − 1], p[j − 1] + costS(pq)}. The final shortest path
cost is stored at t[|SP |].

At the end of each round, we have to find all eligible edges in Hε to update the entries
q[i]’s. Each edge pq in Hε lies inside a region. It may cross O(1

ε log 1
ε) segments in A

and crossing one such segment corresponds to gaining up to O(h) symbols. It means
that |σpq| = O(h

ε log 1
ε). It is time-consuming to check every edge in Hε. Fortunately,

we can do it more efficiently by preprocessing.

Lemma 5. We can build a data structure in O(|SP | h
ε2 n log2 1

ε) time so as to report the
eligible edges in Hε in time proportional to their number at the end of each round.

Approximate Shortest Homotopic Paths in Weighted Regions 119

us

a1
a2

a3

a4

a5

z2

z3

z4

z5
z6z1

Tf,z1

T̃f,z1

z5 z6−→a4

−→a3
−→a2

−→a1
z1 z2 z3−→a5

−→a4
z4←−a3−→a4

←−a5

−→a3
−→a2

z1 z2 z3

z5 z6−→a4

−→a5
−→a4

z4

←−a3
−→a1

(a) (b)

Fig. 9. (a) The division of a region into zones. (b) Tf,z1 and T̃f,z1 .

Proof. Each region f of S is split by A into disjoint zones, each being a simple polygon.
There are O(1

ε log 1
ε) zones in f because each zone contains some vertex of Hε in f .

We build a dual tree Tf to model the adjacency of the zones in f . Each node of Tf

represents a zone and two zones are connected in Tf if they are adjacent. Building Tf

takes O(1
ε log 1

ε) time. Fig. 9(a) shows the zones in a region f .
For each zone z in f , root Tf at z and attach z to a dummy parent. Then we expand

each edge between a zone z′ and its child zone z′′ into O(h) edges, each containing one
symbol that is gained by going from zone z′ to zone z′′. Denote by Tf,z the resulting
rooted tree. It has O(h

ε log 1
ε) size. Fig.9(b) shows Tf,z1 for the example in Fig. 9(a).

In Tf,z, we can read off the symbol sequence from any vertex p in zone z to any vertex
q in another zone. But this sequence may not be canonical. We perform a BFS of Tf,z ,
while modifying Tf,z on the fly. Suppose that we visit a node x from its parent x′

and let φ be the symbol on the edge x′x. The path from z to x′ gives a sequence of
symbols φ1, φ2, · · · , φi−1, φi. If φ does not cancel φi, we just continue with the BFS.
If φ cancels φi, we detach x from x′, make x a child of the grandparent x∗ of x′, and
set φi−1 to be the symbol on the edge x∗x. Then, we continue with the BFS. Basically,
we are reducing the crossing sequences while generating them. Let T̃f,z denote the final
rooted tree converted from Tf,z . T̃f,z is a prefix tree of canonical crossing sequences
from z to all other zones in f . The bottom figure in Fig. 9(b) shows an example.

Then, we find in SP the occurrences of all sequences in T̃f,z as follows. We construct
a suffix tree TS for SP in O(|SP |) time [5]. Then, we traverse T̃f,z in a depth-first
manner while navigating up and down TS correspondingly. It takes O(|T̃f,z| + |SP |)
time to find for each sequence σ in T̃f,z the subtree of TS that stores exactly the suffixes
of SP beginning with σ, which can then be traversed to output all occurrences of σ.
There are O(1

ε log 1
ε) sequences in T̃f,z and each appears at most |SP | times in SP .

Therefore, the total time to find all the occurrences of the sequences in T̃f,z in SP is
O(|T̃f,z |+|SP |+|SP |1ε log 1

ε) = O(|SP |1ε log 1
ε). Repeating for all zones in all regions

gives a running time of O(|SP | h
ε2 n log2 1

ε). We use |SP | lists to store the results. The
jth list contains all zone pairs (z, z′) such that the canonical crossing sequence from
z to z′ matches SP at the jth position. At the end of the jth round, for each zone pair
(z, z′) in the jth list, we report all edges pq of Hε such that p is in z and q is in z′.

120 S.-W. Cheng et al.

Theorem 1. Let P be a polygonal path of k segments in a weighted subdivision T with
h obstacles and n vertices. For any ε ∈ (0, 1), we can compute a (1 + ε)-approximate
shortest path homotopic to P in O(h3

ε2 kn polylog(k, n, 1
ε)) time, where the hidden con-

stant depends on ρ and some geometric parameters.

Proof. Let O be the shortest path in T homotopic to P . Using the analysis of Sun
and Reif [13], the path O can be snapped to a 1 + ε homotopic approximation O′

in Hε. Then, O′ can be converted to a path O′′ that satisfies Lemma 4. Our algo-
rithm returns a path cost at most costS(O′′) ≤ costS(O′) + O(ρh2δfen|SP |) ≤ (1 +
ε) costS(O) + O(ρh2δfen|SP |). If we set δfen = εLst/(ρh2|SP |), the additive term
becomes O(εLst) = O(ε costS(O)). Hence, our path cost is (1 + O(ε)) costS(O).
The factor 1 + O(ε) can be made 1 + ε by manipulating the constants. By Lemma 5,
the preprocessing takes O(|SP | h

ε2 n log2 1
ε) time. Consider the shortest path computa-

tion. Since Halg has O(h
ε n log 1

ε) vertices and O(h
ε2 n log2 1

ε) edges, one round of Dijk-
stra takes O(h

ε2 n polylog(k, n, 1
ε)) time. We use the eligible edges pq of Hε to update

the entries q[i]’s at the end of each round, which takes O(h
ε2 n log2 1

ε) time. The total

running time is O(|SP | h
ε2 n polylog(k, n, 1

ε)) = O(h3

ε2 kn polylog(k, n, 1
ε)), where the

hidden constant depends on ρ and some geometric parameters.

References

1. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest paths on
weighted polyhedral surfaces. J. ACM 52, 25–53 (2005)

2. Bespamyatnikh, S.: Computing homotopic shortest paths in the plane. J. Alg. 49, 284–303
(2003)

3. Cabello, S., Liu, Y., Mantler, A., Snoeyink, J.: Testing Homotopy for Paths in the Plane.
Discr. Comput. Geom. 31, 61–81 (2004)

4. Efrat, A., Kobourov, S.G., Lubiw, A.: Computing homotopic shortest paths efficiently. Com-
put. Geom. Theory and Appl. 35, 162–172 (2006)

5. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proc. 38th Annu. Sym-
pos. Found. Comput. Sci., pp. 137–143 (1997)

6. Forbus, K.D., Uhser, J., Chapman, V.: Qualitative spatial reasoning about sketch maps. AI
Magazine 24, 61–72 (2004)

7. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimiza-
tion algorithms. J. ACM 34, 596–615 (1987)

8. Gao, S., Jerrum, M., Kaufmann, M., Kehlhorn, K., Rülling, W., Storb, C.: On continuous
homotopic one layer routing. In: Proc. 4th Annu. Sympos. Comput. Geom., pp. 392–402
(1998)

9. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class.
Comput. Geom. Theory and Appl. 4, 63–98 (1994)

10. Kaufmann, M., Mehlhorn, K.: On local routing of two-terminal nets. J. Comb. Theory, Ser.
B 55, 33–72 (1992)

11. Leiserson, C.E., Maley, F.M.: Algorithms for routing and testing routability of planar VLSI
layouts. In: Proc. 17th Annu. Sympos. Theory of Comput., pp. 69–78 (1985)

12. Mitchell, J., Papadimitriou, C.: The weighted region problem: Finding shortest paths through
a weighted planar subdivision. J. ACM 38, 18–73 (1991)

13. Sun, Z., Reif, J.: On finding approximate optimal paths in weighted regions. J. Alg. 58, 1–32
(2006)

Spanning Ratio and Maximum Detour of Rectilinear
Paths in the L1 Plane

Ansgar Grüne1, Tien-Ching Lin2, Teng-Kai Yu2,3, Rolf Klein1,
Elmar Langetepe1, D.T. Lee2,3, and Sheung-Hung Poon4

1Institut für Informatik I, Universität Bonn, Bonn, Germany
2Institute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan

3Department of Computer Science and Information Engineering, National Taiwan University,
Taipei, Taiwan

4Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
ansgar.gruene@googlemail.com, kero@iis.sinica.edu.tw, tkyu@ntu.edu.tw

rolf.klein@uni-bonn.de, elmar.langetepe@informatik.uni-bonn.de

dtlee@iis.sinica.edu.tw, spoon@cs.nthu.edu.tw

Abstract. The spanning ratio and maximum detour of a graph G embedded in
a metric space measure how well G approximates the minimum complete graph
containing G and metric space, respectively. In this paper we show that comput-
ing the spanning ratio of a rectilinear path P in L1 space has a lower bound of
Ω(n log n) in the algebraic computation tree model and describe a deterministic
O(n log2 n) time algorithm. On the other hand, we give a deterministic O(n log2 n)
time algorithm for computing the maximum detour of a rectilinear path P in L1

space and obtain an O(n) time algorithm when P is a monotone rectilinear path.

Keywords: rectilinear path, maximum detour, spanning ratio, dilation, L1 met-
ric, Manhattan plane.

1 Introduction

Given a connected graph G = (V, E) embedded in a metric space M, the detour between
any two distinct points pi, p j in U =

⋃
e∈E e is defined as

δG(pi, p j) =
dG(pi, p j)
||pi, p j||M ,

where ||pi, p j||M denotes the distance between pi and p j in M and dG(pi, p j) is the short-
est path between pi and p j on G. The maximum detour δ(G) of G is defined as the
maximum detour over all pairs of distinct points in U, i.e.,

δ(G) = max
pi ,pj∈U,pi�pj

δG(pi, p j).

If we restrict the points pi, p j to the vertex set of G, then the maximum detour is also
called spanning ratio, dilation or stretch factor σ(G) of G, i.e.,

σ(G) = max
pi ,pj∈V,pi�pj

δG(pi, p j).

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 121–131, 2010.
© Springer-Verlag Berlin Heidelberg 2010

122 A. Grüne et al.

Given any connected graph embedded in any metric space, the spanning ratio can be
computed in a straightforward manner by computing the all-pairs shortest paths of G.
By using Dijkstra’s algorithm [8] with Fibonacci heaps [9], we can find the spanning
ratio in O(n(m+n log n)) time and O(n) space, where n and m are the numbers of vertices
and edges, respectively.

Sometimes the geometric properties of special graph classes can be exploited to ob-
tain a better upper bound [3,13,18]. If G is a connected graph embedded in the Euclidean
space R2, it is easy to see that the maximum detour is infinite if G is non-planar. But if G
is planar, we can compute the maximum detour by first computing shortest paths for all
pairs of vertices in O(n2 log n) time (since |E| = O(n)) and then using this information to
find the maximum detour between each pair of edges. Wulff-Nilsen [19] recently gave
an algorithm for computing the maximum detour of a planar graph in R2 in O(n

3
2 log3 n)

expected time. The case of G being a planar polygonal chain is of particular interest.
Agarwal et al. [1] gave an O(n log n) time randomized algorithm for computing the
spanning ratio or maximum detour of a polygonal path in R2, and used it to obtain an
O(n log2 n) time randomized algorithm for computing the spanning ratio or maximum
detour of cycles and trees in R2. They also claimed that it is possible to obtain a deter-
ministic algorithm for computing the spanning ratio or maximum detour of a polygonal
path in O(n logc n) running time by parametric search, for some constant c > 2.

Ebbers-Baumann et al. [5] developed an ε-approximation algorithm that runs in
O(n
ε

log n) time for computing the maximum detour of a polygonal chain in R2.
Narasimhan and Smid [15] studied the problem of approximating the spanning ratio
of an arbitrary geometric connected graph in Rd. They gave an O(n log n)-time algo-
rithm that computes a (1 − ε)-approximate value of the spanning ratio of a path, cycle,
or tree in Rd.

In this paper, we show that computing the spanning ratio of a rectilinear path P in
L1 space has a lower bound of Ω(n log n) in the algebraic computation tree model and
describe a deterministic O(n log2 n) time algorithm. This is the first sub-quadratic deter-
ministic algorithm for computing the spanning ratio of a polygonal path embedded in
a metric space avoiding complicated parametric search methods. We also give a deter-
ministic O(n log2 n) time algorithm for computing the maximum detour of a rectilinear
path P in L1 space, and we obtain an optimal deterministic O(n) time algorithm when
P is a monotone rectilinear path.

2 Preliminaries and Problem Definition

In this section we present the preliminaries and give the formal problem definitions.
In the L1 plane (also called Manhattan plane), the distance of two points pi = (xi, yi)
and p j = (x j, y j) is defined as ||pi, p j||L1 = dL1 (pi, p j) = |xi − x j| + |yi − y j|. A path
P = (V, E) of n ≥ 2 vertices is a connected undirected graph, in which every vertex has
degree two, except the two end vertices of degree one. If all of the edges of a path are
either horizontal or vertical, we call this path a rectilinear path. In this paper, we will
focus on rectilinear paths in which a vertex is either an end vertex or a corner vertex.
A corner vertex v ∈ V is a common vertex of a horizontal edge and a vertical edge and
has degree 2. In general, vertices may not necessarily exist only at corners or at ends.

Spanning Ratio and Maximum Detour of Rectilinear Paths in the L1 Plane 123

But the existence of non-corner and non-end vertices will not affect the correctness and
complexities of our algorithms. Thus the algorithms presented in this paper can solve
the problem for general rectilinear paths as well. Fig.1 (a) shows an example, where we
can find that apart from the two end vertices of the rectilinear path, the other vertices
are placed at corners.

(a)

� �

� �

� �

��

��

(b)

�p1

�

p2

�

� �

� �

� �

� �

� �

�

p14

Fig. 1. (a) A rectilinear path with all vertices at corners. (b) A rectilinear path that is monotone
with respect to the x-axis.

If a rectilinear path has non-decreasing x-coordinates from one of its end vertices to
the other, we say that this path is monotone with respect to the x-axis. Monotone with
respect to the y-axis can be defined similarly. Without loss of generality, we assume that
monotone rectilinear paths in this paper are all monotone with respect to the x-axis. We
refer to the vertices of an n-vertices monotone rectilinear path P from its left end to its
right end as p1, p2, ..., pn. Fig.1 (b) shows an example of a x-monotone rectilinear path.

Consider a connected graph G = (V, E) in the L1 plane. The distance (weight) of an
edge e ∈ E is defined as the L1 distance of its two incident vertices, and the distance
of any two points pi and p j on G (not necessarily in V) is defined as the length of the
shortest path between them on G, denoted as dG(pi, p j).

In this paper we will compute the spanning ratio and maximum detour of a rectilinear
path P in the L1 plane. The rest of the paper is organized as follows. In Section 3, we
show a lower bound for computing the spanning ratio of a rectilinear path P in the L1

plane, even for the case when the path P is monotone. Section 4 gives a deterministic
O(n log2 n) time algorithm for computing the spanning ratio of P. Section 5 gives an
O(n log2 n) time algorithm for computing the maximum detour of P and an O(n) time
algorithm when the path is monotone. We conclude in Section 6.

3 The Lower Bound

In this section we show that computing the spanning ratio of a rectilinear path P in the
L1 plane has a lower bound Ω(n log n) in the algebraic computation tree model. The
proof follows an idea of Grüne et al’s presentation [10] at EuroCG’03 that has not yet
been submitted for publication.

The Integer Element Distinctness Problem is to decide whether n integers
y1, y2, . . . , yn are all distinct. It is known that this problem has a lower bound ofΩ(n log n)
in the algebraic computation tree model [20]. We will show that we can transform an in-
stance y1, y2, . . . , yn of Integer Element Distinctness Problem into an instance

124 A. Grüne et al.

P = (V, E) in O(n) time. Let ymax = max
1≤i≤n

yi and ymin = min
1≤i≤n

yi. If ymin is negative,

we add |ymin| + 1 to every number to make all numbers positive. We set the vertex set
V = {p4i−3 = (2i−2

2n , ŷ + i), p4i−2 = (2i−1
2n , ŷ + i), p4i−1 = (2i−1

2n , yi), p4i = (2i
2n , yi) | i =

1, 2, . . . , n}, where ŷ = 3ymax + 2n + 1 (the reason will be shown later), and the edge set
E = {e j = (p j, p j+1) | j = 1, 2, . . . , 4n − 1}. Then P = (p1, p2, . . . , p4n) is a rectilinear
path that is monotone with respect to the x-axis. We say a vertex pi in P is a low vertex
if its y-coordinate is smaller than ŷ, and a high vertex otherwise.

p1 p2

p3 p4 p20

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

Fig. 2. Transforming an instance of the integer element distinctness problem into a rectilinear
path.

Fig.2 is an example of transforming an instance (3, 2, 4, 3, 1) of Integer Element
Distinctness Problem into a rectilinear path. By substituting n = 5, i = 1 and y1 = 3
into the formula, we have p1 = (2i−2

2n , ŷ+ i) = (0, ŷ+1), and p2, p3 and p4 are (1
10 , ŷ+1),

(1
10 , 3) and (2

10 , 3), respectively. It is easy to see that the y-coordinates of high vertices
are nondecreasing from left to right, but the y-coordinates of low vertices vary according
to the values of yi’s.

Lemma 1. Let pi, pi+1, p j, p j+1 be four vertices in P, where pi and pi+1 have the same
y-coordinate, p j and p j+1 have the same y-coordinate, and i + 1 < j. We have

δP(pi, p j+1) ≤ δP(pi+1, p j+1) = δP(pi, p j) ≤ δP(pi+1, p j).

Proof. δP(pi, p j) =
dP(pi ,pj)
dL1 (pi ,pj)

=
|pi pi+1 |+dP(pi+1,pj)
|pi pi+1 |+dL1 (pi+1 ,pj)

≤ dP(pi+1,pj)
dL1 (pi+1 ,pj)

= δP(pi+1, p j).

δP(pi+1, p j+1) = |pj p j+1 |+dP(pi+1,pj)
|pj p j+1 |+dL1 (pi+1 ,pj)

=
|pi pi+1 |+dP(pi+1 ,pj)
|pi pi+1 |+dL1 (pi+1 ,pj)

= δP(pi, p j).

δP(pi, p j+1) = dP(pi ,pj+1)
dL1 (pi ,pj+1) =

|pi pi+1 |+dP(pi+1 ,pj+1)
|pi pi+1 |+dL1 (pi+1 ,pj+1) ≤ dP(pi+1 ,pj+1)

dL1 (pi+1 ,pj+1) = δP(pi+1, p j+1). �

Lemma 1 shows that for any four vertices in such a situation only (pi+1, p j) can con-
tribute to the spanning ratio. We call such a pair of vertices a candidate pair.

Lemma 2. If a candidate pair (pi, p j) have one low vertex and one high vertex, then
there exists another candidate pair of vertices, both are high vertices or low vertices,
such that their detour is larger than δP(pi, p j).

Proof. Without loss of generality, we assume that pi is to the left of p j, pi is a high
vertex, and p j is a low vertex. Let vertex pk be the next high vertex to the right of p j.
Since ŷ = 3ymax + 2n + 1 > ymax + n + 1, we have

Spanning Ratio and Maximum Detour of Rectilinear Paths in the L1 Plane 125

δP(pi, p j) =
dP(pi ,pj)
dL1 (pi ,pj)

≤ dP(pi ,pj)
ŷ−ymax

<
dP(pi ,pj)

n+1 ≤ dP(pi ,pj)
dL1 (pi ,pk) ≤ dP(pi ,pk)

dL1 (pi ,pk) = δP(pi, pk).

The case of pi being a low vertex and p j being a high vertex is similar. �

Lemma 3. If a candidate pair (pi, p j) are both high or both low vertices with different
y-coordinates, then δP(pi, p j) ≤ 4n

3 (1
2 + ŷ + n − ymin).

Proof. Without loss of generality, we assume that pi is to the left of p j. Let the distance
between pi and p j along the x-axis be 2m−1

2n .

δP(pi, p j) =
dP(pi ,pj)
L1(pi ,pj)

≤ 2m−1
2n +2m(ŷ+n−ymin)

2m−1
2n +1

=
2− 1

m
2n +2(ŷ+n−ymin)

2− 1
m

2n +
1
m

≤ 1
n+2(ŷ+n−ymin)

3
2n

≤ 4n
3 (1

2n + ŷ + n − ymin) ≤ 4n
3 (1

2 + ŷ + n − ymin)

Since L1(pi, p j) ≥ 2m−1
2n +1, dP(pi, p j) ≤ 2m−1

2n +2m(ŷ+n−ymin) and
2− 1

m
2n +

1
m ≥ 1

2n +
1
m ≥

1
2n +

1
n =

3
2n , we have δP(pi, p j) ≤ 4n

3 (1
2n + ŷ + n − ymin) ≤ 4n

3 (1
2 + ŷ + n − ymin). �

Lemma 4. If a candidate pair (pi, p j) are both low vertices with the same y-coordinate,
then δP(pi, p j) ≥ 2n(ŷ − ymax).

Proof. Let the distance between pi and p j along x-axis be 2m−1
2n . Then, δP(pi, p j) ≥

2m(ŷ−ymax)
2m−1

2n
=

2m(2nŷ−2nymax)
2m−1 ≥ 2n(ŷ − ymax). �

Combining the above lemmas together, we now show that this problem has a lower
bound of Ω(n log n).

Theorem 1. Computing the spanning ratio of a rectilinear path P in the L1 plane has
a lower bound of Ω(n log n) in the algebraic computation tree model, even if the given
rectilinear path is x-monotone.

Proof. By Lemma 2, the spanning ratio must occur at a candidate pair of two high or
two low vertices. Substituting ŷ = 3ymax + 2n + 1 into the formulas of Lemma 3 and
Lemma 4, we have

2n(ŷ − ymax) = 2n(2ymax + 2n + 1) = 2n(2
3 (ŷ − 2n − 1) + 2n + 1)

= 2n(2
3 ŷ + 2

3 n + 1
3) > 2n(2

3 ŷ + 2
3 n + 1

3) − 4n
3 (ymin) = 4n

3 (1
2 + ŷ + n − ymin).

Therefore, if we choose ŷ = 3ymax + 2n + 1, then the spanning ratio δ(P) ≥ 2n(2ymax +

2n + 1) if and only if there exists a candidate pair of two low vertices with the same
y-coordinate. The existence of a candidate pair of two low vertices with the same y-
coordinate is equivalent to the existence of two numbers yi and y j (with i � j) of the
same value in the given instance of the Integer Element Distinctness Problem. �

4 Computing the Spanning Ratio of a Rectilinear Path

In this section we compute the spanning ratio of a rectilinear path P in the L1 plane. We
define that a vertex pi = (pi.x, pi.y) is dominated by another vertex p j = (p j.x, p j.y) if
pi.x ≤ p j.x and pi.y ≤ p j.y, denoted by pi p j. For a vertex pi in V , let p∗i be the vertex

126 A. Grüne et al.

in V such that δP(pi, p∗i) = max{δP(pi, p j) | p j ∈ V}. We say that p∗i is the best partner
of pi in V . Thus if we know the best partner of each vertex, then it is easy to compute
the spanning ratio of P. It suffices to consider the detours from pi to the vertices to the
right of it, i.e., to find the maximum detour from pi to the set Pi = {p j | pi.x ≤ p j.x}.
But the size of each Pi could be O(n) and the time complexity might become O(n2)
if we find the best partner of each vertex pi in a brute force manner. In the following,
we give an O(n log2 n) time and O(n) space algorithm. We divide the set Pi into two
subsets: D+i = {p j | pi p j} and D−i = Pi \ D+i . We denote the best partner of pi in D+i
as p+i and in D−i as p−i . We only focus on D+i here; the case of D−i is similar. That is, we
only need to find the p+i for each pi in D+i . Without loss of generality, we assume that
all vertices in P are in the first quadrant.

To solve this problem, we transform the vertices of V from the L1 plane to the L2

plane as follows. We transform each vertex p j in V into a point q j = (q j.x, q j.y) =
(dL1 (o, p j), dP(p1, p j)) in R2 in a one-to-one manner, where o is the origin. For conve-
nience, we call the original L1 plane the primal plane and the transformed space the
dual plane. In other words, in the dual plane q j has as its x-coordinate the L1 distance
between the origin o and p j and as its y-coordinate the path length from p1 to p j. The
point set Q+i = {q j | p j ∈ D+i } in the dual plane corresponds to the point set D+i in the
primal plane. Therefore, we have δP(pi, p+i) = max

qj∈Q+i
|m(i, j)|, where m(i, j) = qj .y−qi.y

q j .x−qi.x
.

Thus the spanning ratio δP(pi, p+i) occurs at either maximum m(i, j) or minimum m(i, j)
among all q j in Q+i . This problem now is equivalent to finding the two tangent lines
from qi to the convex hull of Q+i . Fig.3 shows an example. In Fig.3(a), pi has the dom-
inating set D+i = {pa, pb, pc, pd, pe}. In Fig.3(b), we transform pi and pa, pb, pc, pd, pe

into the dual plane. The maximum and minimum values of m(i, j) can be found by the
two tangent lines from qi to the convex hull of Q+i = {qa, qb, qc, qd, qe}.

(a)

�

�

��

�
�

�

o >

∧

x

y
p1

pa pb

pc

pi
pd

pe

(b)
>

∧

x

y

�

�
�

�

�

�

��
�
�
���

qa qb

qc
qi qd

qe

Fig. 3. (a) A vertex pi and its D+i = {pa, pb, pc, pd, pe}. (b) Finding δ(pi, p+i) in the dual plane by
the two tangent lines from qi to the convex hull of Q+i .

Based on this transformation, if we can find D+i for each pi, we can find p+i for each
pi by making tangent queries from qi to the convex hull of Q+i . We observe that the
tangent query is decomposable. A query is called decomposable if the answer to the
query over the entire set can be obtained by combining the answers to the queries to a
suitable collection of subsets of the set. We will partition D+i into log n subsets by the
divide-and-conquer method and make the tangent queries from qi to the convex hulls of
the corresponding subsets in the dual plane and choose the one with maximum slope.

Spanning Ratio and Maximum Detour of Rectilinear Paths in the L1 Plane 127

Our divide-and-conquer approach works as follows. Let pm be the vertex in P such
that pm.x is the median of the x-coordinates of all vertices in P. We divide the set P
into two subsets: PL = {pi | pi.x ≤ pm.x} and PR = {p j | p j.x > pm.x}. We then sort
the vertices of PL and PR in descending y-coordinates respectively. We iterate on each
vertex in PL in descending y-coordinate order such that we can find its best partner
in PR. Then we solve the subproblems PL and PR recursively. While iterating on each
vertex in PL in descending y-coordinate order, assume that after iterating on the vertex
pi in PL we have maintained a subset D+R = {pk | pk ∈ PR, pi.y ≤ pk.y} in the primal
plane and the convex hull of the corresponding subset Q+R = {qk | pk ∈ D+R} in the dual
plane. For the next iterating vertex p j in PL, we first insert into D+R those vertices in
PR whose y-coordinates are between pi.y and p j.y and their corresponding points in the
dual plane into the convex hull of Q+R respectively and then make a tangent query from
q j to the convex hull of Q+R.

Preparata [16] proposed an optimal algorithm for updating the convex hull in O(log n)
time for the insertion only case. Hershberger and Suri [12] obtained an offline version
of dynamic convex hull that can process a sequence of n insertion, deletion, and query
instructions in total O(n log n) time and O(n) space. If we implement our convex hull
by either of the dynamic convex hull data structures, we can afford tangent query or
insertion in O(log n) time. Therefore, the total time complexity of our algorithm is
T (n) = 2T (n

2) + O(n log n) = O(n log2 n).

Theorem 2. The spanning ratio of a rectilinear path in the L1 plane can be found in
O(n log2 n) time and O(n) space. �

5 Computing the Maximum Detour of a Rectilinear Path

In this section we compute the maximum detour of a rectilinear path P = (V, E) in the
L1 plane. The maximum detour can occur on any two distinct points in U =

⋃
e∈E e. In a

previous work, Grüne et al. [10] presented an O(n2) algorithm for finding the maximum
detour of a simple polygon P. There the detour between two points was defined as
the ratio of the minimum length of all connecting paths contained in P, divided by
the straight distance. They observed that linear time suffices for monotone rectilinear
polygons in L1. We also come to a linear time conclusion for monotone rectilinear paths;
but for arbitrary rectilinear paths, we obtain an upper bound of only O(n log2 n).

The following lemma is useful and will be used several times.

Lemma 5. For any three points p, q, r in U =
⋃

e∈E e with p q and q r, we have
δP(p, r) ≤ max{δP(p, q), δP(q, r)}.
Proof. There are three cases to be considered, depending on which one of {p, q, r} lies
between the two others on P, see Fig.4: (a) dP(p, r) = dP(p, q)+ dP(q, r); (b) dP(p, q) =
dP(p, r) + dP(r, q); (c) dP(q, r) = dP(q, p) + dP(p, r).

For case (a), we have δP(p, r) = dP(p,r)
dL1 (p,r) =

dP(p,q)+dP(q,r)
dL1 (p,q)+dL1 (q,r) ≤ max{ dP(p,q)

dL1 (p,q) ,
dP(q,r)
dL1 (q,r) }

= max{δP(p, q), δP(q, r)}.

128 A. Grüne et al.

For case (b), we have δP(p, r) = dP(p,r)
dL1 (p,r) ≤ dP(p,r)

dL1 (p,q) ≤ dP(p,q)
dL1 (p,q) = δP(p, q).

For case (c), we have δP(p, r) = dP(p,r)
dL1 (p,r) ≤ dP(p,r)

dL1 (q,r) ≤ dP(q,r)
dL1 (q,r) = δP(q, r). �

(a)

�

�

�

p

q
r

(b)

�

�

�

p

q

r

(c)

�

�

�

p

q

r

Fig. 4. (a) dP(p, r)=dP(p, q)+dP(q, r) (b) dP(p, q)=dP(p, r)+dP(r, q) (c) dP(q, r)=dP(q, p)+dP(p, r)

First in Section 5.1, we give an O(n) time and O(n) space algorithm to compute the
maximum detour when the rectilinear path is monotone. We then present an O(n log2 n)
time and O(n) space algorithm for the general case in Section 5.2.

5.1 Monotone Rectilinear Paths

Let us assume that dP(p1, pi), for i = 2, 3, ..., n, has been computed in O(n) time. For
any two distinct points on P, if the open straight line segment connecting them has no
intersection with P, we say these two points are visible from each other; they form a
visible pair.

Lemma 6. At least one of the pairs of points on P contributing to the maximum detour
must be a visible pair, and these two points must have the same y-coordinate.

Proof. By Lemma 5, if p, q ∈ P and the open segment pq intersects P at r, then one of
the two detours δP(p, r) and δP(r, q) must be no less than δP(p, q). Thus one of the pairs
of points contributing to the maximum detour must be a visible pair.

For a visible pair of points p, q ∈ P, if p.y � q.y, then we will show that there exists
a pair of points such that their detour larger than δP(p, q). Without loss of generality, we
assume that the path on P between p and q is below the segment pq and p q.

If there is a point r on the path between p and q such that p r and r q, we have
either δP(p, r) ≥ δP(p, q) or δP(r, q) ≥ δP(p, q) by Lemma 5. We then either replace
point p by point r if δP(r, q) ≥ δP(p, q) or replace point q by point r if δP(p, r) ≥
δP(p, q). If we repeat the above procedure on the path between p and q until there is no
point r on the path between p and q such that p r and r q, we can then move point
q downward to a point q′ such that q′.y = p.y, and we have δP(p, q′) ≥ δP(p, q). �

Given the lemma above, which says that two points defining the maximum detour must
be visible from each other and have the same y-coordinate, we shall call such a pair
horizontally visible.

Lemma 7. For any horizontally visible pair on P contributing to the maximum detour,
at least one of these two points must be a vertex.

Spanning Ratio and Maximum Detour of Rectilinear Paths in the L1 Plane 129

Proof. We will show that for a horizontally visible pair p, q ∈ P, if both p and q are not
a vertex, there exists a pair of points such that their detour larger than δP(p, q). Without
loss of generality, we assume that p is to the left of q and the path on P between p
and q is below pq. If we move p and q upward simultaneously while keeping their L1

distance the same, their detour δP(p, q) will increase as the path length from p to q on P
increases. Thus we can keep moving p and q upward until one of them coincides with
a vertex. �

Thus we can restrict our search of the candidate pairs of points to horizontally visible
pairs, with a vertex in each pair. Thus the number of candidate pairs is no more than the
number of vertices. Fig.5 (a) shows an example of all the candidate pairs on the path P.
We use a ray-shooting method to find all the candidate pairs. We will shoot rays from
each vertex to a target point horizontally visible from the vertex. Thus we can divide the
valid rays into four types, according to the four types of vertices from which we shoot
the rays, i.e., top-right, bottom-right, top-left, and bottom-left corner vertices.

(a)

�

� �

� �

� �

� �

� �

� �

�

�

�

�
� �

� �

�

�

(b)

� �

� �

� �

� �

� �

� �

�

�q1

�q2

�q3
q4 �q5

q6

Fig. 5. (a) Find all candidate pairs by ray-shooting. (b) Shoot rays horizontally to the right from
top-right vertices.

We only discuss the top-right corner case, as others are similar. Fig.5 (b) shows
an example in which there are four rays shooting from four top-right corner vertices,
q1, q2, q3, and q5. We use a stack S to help calculate the detours of this type of candidate
pairs. We traverse path P from left to right. When we go downward and encounter a
top-right vertex, we push the vertex into S . For the example in Fig.5 (b), we push q1,
q2 and q3 into S , respectively. When the path goes upwards and we encounter a vertex
qi, we pop the vertices lower than qi from S and compute the detours associated with
the horizontally visible pairs. For example in Fig.5 (b), when we encounter the vertex
q4, we pop q3 and compute the detour δP(q3, q) of the horizontally visible pairs (q3, q),
where q is the horizontal projection from q3 on the vertical edge containing q4. Since
a vertex can be pushed into and popped from S only once, the total time complexity
for finding the maximum detour in a monotone rectilinear path is O(n), and the space
complexity is obviously O(n).

Theorem 3. The maximum detour of a n-vertex monotone rectilinear path in the L1

plane can be found in O(n) time and O(n) space. �

5.2 Non-monotone Rectilinear Path

Now we consider the case of a non-monotone rectilinear path P. The candidate pairs
contributing to the maximum detour can be restricted to the following two cases. It can
be proved similarly as in Lemmas 6 and 7.

130 A. Grüne et al.

Lemma 8. Among the pairs of points contributing the maximum detour, there is one
satisfies one of the following two properties: (1) it is a pair of visible vertices; (2) it is
either a horizontally visible pair of points (with the same y-coordinate) or a vertically
visible pair of points (with the same x-coordinate), and at least one of the two points
must be a vertex. �

We can use the algorithm shown in Section 4 to deal with case (1), which takes O(n log2 n)
time. For case (2), we need to do both vertical and horizontal ray-shooting from V to P.
The total number of rays is O(n). We roughly describe the algorithm below. It can be
done in O(n log n) time.

Consider shooting rays horizontally to the right from top-right and bottom-right cor-
ner vertices. We first sort the vertical edges by their x-coordinates, and then use a plane
sweep method sweeping a vertical line from left to right. During the sweep, we maintain
a binary search tree which consists of active corner vertices. An active corner vertex is
one whose rightward ray has not yet been created. When scanning a new edge e, those
vertices in the binary search tree whose y-coordinates lie between the y-coordinates of
the two end vertices of e will shoot their rightward rays to e, creating horizontally visi-
ble pairs of points. We then delete those vertices from the binary search tree and insert
the two end vertices of edge e, if they are top-right or bottom-right corner vertices, into
the binary search tree. Obviously, this algorithm takes time O(n log n). The other types
of rays, horizontally to the left, vertically upward and vertically downward, can be han-
dled in a similar way. Thus we can find all horizontally and vertically visible pairs of
points in O(n log n) time. Therefore, the theorem follows.

Theorem 4. The maximum detour of a n-vertex rectilinear path in the L1 plane can be
found in O(n log2 n) time and O(n) space. �

6 Conclusion

We have shown that the problem of computing the spanning ratio of a rectilinear path P
in the L1 plane has a lower bound of Ω(n log n) in the algebraic computation tree model
and we have given a deterministic O(n log2 n) time algorithm. We have also given a
deterministic O(n log2 n) time algorithm for computing the maximum detour of a recti-
linear path P in the L1 plane and have obtained an optimal O(n) time algorithm for the
monotone case.

There is still a gap between the lower bound Ω(n log n) and upper O(n log2 n) for the
spanning ratio problem. How to bridge the gap will be of interest. As for the maximum
detour problem for non-monotone rectilinear paths, we have not been able to make any
use of the property that the maximum detour must be defined by a visible pair of points.
Whether one can get a more efficient algorithm exploiting this or any other property is
also of interest. Finally whether or not Ω(n log n) is a lower bound for computing the
maximum detour of a path remains open.

Acknowledgement

The authors would like to thank the anonymous referees for their careful reading of the
paper and for their precise suggestions.

Spanning Ratio and Maximum Detour of Rectilinear Paths in the L1 Plane 131

This work was supported in part by the National Science Council, Taiwan, under the
Grants NSC 98-2221-E-001-007-MY3, NSC 98-2221-E-001-008-MY3, NSC 97-2221-
E-007-054-MY3 and by a DFG-NSC Joint Research Project.

References

1. Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss, M.: Com-
puting the Detour and Spanning Ratio of Paths, Trees, and Cycles in 2D and 3D. Discrete
Comput. Geom. 39(1-3), 17–37 (2008)

2. Agarwal, P.K., Klein, R., Knauer, C., Sharir, M.: Computing the Detour of Polygonal Curves,
TRB 02-03, Freie Universität Berlin, Fachbereich Mathematik und Informatik (2002)

3. Aichholzer, O., Aurenhammer, F., Icking, C., Klein, R., Langetepe, E., Rote, G.: Generalized
Self-approaching Curves. Discrete Appl. Math. 109, 3–24 (2001)

4. Alstrup, S., Holm, J.: Improved Algorithms for Finding Level Ancestors in Dynamic Trees.
In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 73–84.
Springer, Heidelberg (2000)

5. Ebbers-Baumann, A., Klein, R., Langetepe, E., Lingas, A.: A Fast Algorithm for Approxi-
mating the Detour of a Polygonal Chain. Comput. Geom. Theory Appl. 27, 123–134 (2004)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
MIT Press and McGraw-Hill (2001)

7. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry,
Second Revised Edition, pp. 105–110. Springer, Heidelberg (2000), Section 5.3: Range Trees

8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathe-
matik 1, 269–271 (1959)

9. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimiza-
tion algorithms. Journal of the ACM 34(3), 596–615 (1987)

10. Grüne, A.: Umwege in Polygonen. Diploma Thesis, Institute of Computer Science I, Bonn
(2002)

11. Gudmundsson, J., Knauer, C.: Dilation and Detours in Geometric Networks. In: Gonzalez,
T.F. (ed.) Handbook of Approximation Algorithm and Metaheuristics. Chapman & Hall/CRC
(2007), Section 52

12. Hershberger, J., Suri, S.: Offline maintenance of planar configurations. J. Algorithms 21,
453–475 (1996)

13. Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. Math. Proc. Camb. Philos.
Soc. 125, 441–453 (1999)

14. Langerman, S., Morin, P., Soss, M.: Computing the Maximum Detour and Spanning Ratio of
Planar Paths, Trees and Cycles. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285,
pp. 250–261. Springer, Heidelberg (2002)

15. Narasimhan, G., Smid, M.: Approximating the Stretch Factor of Euclidean Graphs. SIAM J.
Comput. 30(3), 978–989 (2000)

16. Preparata, F.P.: An Optimal Real Time Algorithm for Planar Convex Hulls. Comm. ACM 22,
402–405 (1978)

17. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introducation. Springer, New
York (1985)

18. Rote, G.: Curves with increasing chords. Math. Proc. Camb. Philos. Soc. 115, 1–12 (1994)
19. Wulff-Nilsen, C.: Computing the Maximum Detour of a Plane Graph in Subquadratic Time.

In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp.
740–751. Springer, Heidelberg (2008)

20. Yao, A.C.-C.: Lower Bounds for Algebraic Computation Trees of Functions with Finite Do-
mains. SIAM Journal on Computing 20(4), 655–668 (1991)

Approximation and Hardness Results for the
Maximum Edge q-coloring Problem�

Anna Adamaszek1 and Alexandru Popa2

1 Centre for Discrete Mathematics and its Applications (DIMAP) and

Department of Computer Science, University of Warwick, UK

A.M.Adamaszek@warwick.ac.uk
2 Department of Computer Science, University of Bristol, UK

popa@cs.bris.ac.uk

Abstract. We consider the problem of coloring edges of a graph subject

to the following constraint: for every vertex v, all the edges incident to

v have to be colored with at most q colors. The goal is to find a coloring

satisfying the above constraint and using the maximum number of colors.

This problem has been studied in the past from the combinatorial and

algorithmic point of view. The optimal coloring is known for some special

classes of graphs. There is also an approximation algorithm for general

graphs, which in the case q = 2 gives a 2-approximation. However, the

complexity of finding the optimal coloring was not known.

We prove that for any integer q ≥ 2 the problem is NP-Hard and

APX-Hard. We also present a 5/3-approximation algorithm for q = 2 for

graphs with a perfect matching.

1 Introduction

We are given an integer q and a simple, undirected graph G = (V, E). An
assignment of colors to the edges of G is called an edge q-coloring if for every
vertex v ∈ V all the edges incident to v are colored with at most q different
colors. Notice that the notion of coloring is different than in the classical edge
coloring problem, as neighbouring edges can have the same color. An edge q-
coloring that uses the maximum number of colors is called a maximum edge
q-coloring. We consider the problem of finding a maximum edge q-coloring of a
given graph.

Motivation. The edge q-coloring problem is related to some recent results in
wireless mesh networks. Despite significant advances, today’s wireless LAN can-
not provide the same level of bandwidth as the wired ones. The bandwidth
problem due to interference is crucial in single-channel wireless mesh networks.

However, wireless LAN standards allow multiple non-overlapping frequency
channels to be used simultaneously to increase the bandwidth available to the
users. In 2005, Raniwala and Chiueh [9] proposed a multi-channel wireless mesh
� Research supported in part by the Centre for Discrete Mathematics and its Appli-

cations (DIMAP), EPSRC award EP/D063191/1.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 132–143, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Maximum Edge q-coloring Problem 133

network architecture that equips each network node with multiple interface
cards. Raniwala et al. show in [9,10] that even with just two interface cards
on each node it is possible to improve the network throughput by a factor of 6
to 7 compared to the single-channel ad hoc network architecture.

We can analyze this setting from the theoretical point of view and ask how
many channels can be used simultaneously by a given network. A network can
be viewed as a graph where each computer is represented by a vertex. Therefore
a channel assignment where each computer has q cards is equivalent to an edge
q-coloring of a graph. The number of colors in a maximum edge q-coloring of
a graph equals the number of channels that can be used simultaneously by a
network.

Previous results. The number of colors used in a maximum edge q-coloring is
called an anti-Ramsey number and has been extensively studied in the area of
extremal graph theory. In general, for given graphs G and H the anti-Ramsey
number ar(G, H) is defined to be the maximum number k such that there exists
an assignment of k colors to the edges of G in which every copy of H in G has at
least two edges with the same color. A coloring of G is an edge q-coloring if and
only if each subgraph K1,q+1 of G (a star with q + 1 edges) has two edges with
the same color. Therefore the number of colors in a maximum edge q-coloring of
G equals ar(G, K1,q+1).

The study of anti-Ramsey numbers started in 1975 with a paper by Erdős
et al. [1] and led to many results (see [5] for a survey). The most studied case
is G = Kn, but there are also results on computing or estimating the value of
ar(G, K1,q+1) for some classes of graphs G. In [6], Jiang shows that the number
of colors in a maximum edge q-coloring of a clique Kn for q ≤ n − 2 is either
� 1

2n(q − 1)� + � n
n−q+1� or � 1

2n(q − 1)� + � n
n−q+1� + 1, improving the previous

estimation by Manoussakis et al. [7]. Also in [6], it is shown that the number
of colors in a maximum edge q-coloring of a bipartite graph Kn,n equals n(q −
1)+� n

n−q+1�. Montellano-Ballesteros [8] computes the values ar(Qn, K1,q+1) and
ar(Cm×Cn, K1,q+1), where Qn is a hypercube and Cm×Cn a product of cycles.
The author presents also an upper bound on the value of ar(G, K1,q+1) if the
minimum degree of G is at least q + 4.

In this paper, our focus is on the algorithmic aspects of the problem. The
problem of finding a maximum edge q-coloring of a given graph has been studied
by Feng et al. [3,2,4]. They provide a 2-approximation algorithm for q = 2 and a
(1 + 4q−2

3q2−5q+2)-approximation for q > 2. They show that the problem is solvable
in polynomial time for trees and complete graphs in the case q = 2, but the
complexity for general graphs has been left as an open problem.

The algorithm presented by Feng et al. in [3,2,4] finds for a given graph G
a maximum subgraph H with maximum degree q − 1. Every edge from H is
colored using a unique color and each connected component of the rest of the
graph is colored with a new color. To show the above approximation ratios,
Feng et al. consider a character subgraph of G. For an edge colored graph G a
character subgraph is a subgraph of G that contains exactly one edge from each
color class. The number of edges in a character subgraph equals the number of

134 A. Adamaszek and A. Popa

colors in the optimal coloring. Comparing the number of edges in graph H with
the number of edges in a character subgraph gives the approximation ratios.

Our contributions. We prove that the problem of finding a maximum edge
q-coloring for a given graph is NP-Hard and APX-Hard for any integer q ≥ 2.
That solves the open problem by Feng et al. [3,2,4]. Moreover, we show that
the problem of finding the number of colors in a maximum edge q-coloring is
APX-Hard, and therefore computing the value of ar(G, K1,q+1) is APX-Hard.

To prove the hardness result we first consider a more general version of the
edge q-coloring problem, where each vertex has its own upper bound on the
number of colors it can be incident to. We show that this problem is APX-Hard
even if every vertex can be incident to either one or two colors. To prove this
result we construct a reduction from the MAX-3SAT problem with an upper
bound on the number of occurrences of each variable in the formula. Then we
show the hardness for the maximum edge q-coloring problem.

Feng et al. [2,4] proposed Algorithm 1 to approximate a maximum edge 2-
coloring. The outcome of the algorithm depends on the matching found in step
1, as in the example shown in Fig. 1. Feng et al. [2,4] show that Algorithm 1 is
a 2-approximation for general graphs for the case q = 2.

Algorithm 1. input: graph G = (V, E)
1 : Find a maximum matching M in G.

2 : Assign a unique color to each edge from M .

3 : Find the connected components in the graph (V, E \ M).

4 : Color the edges inside each connected component using a new color.

a) b)

Fig. 1. Possible colorings output by Algorithm 1 for the same graph. Bold edges repre-

sent the matching edges and they are colored with unique colors. The matching found

in a) yields an optimal coloring (using 5 colors). The matching found in b) yields a

coloring with only 4 colors.

We analyze the performance of Algorithm 1 for graphs with a perfect match-
ing and prove that it achieves approximation ratio 5

3 . This improves upon a
2-approximation due to Feng et al. [2,4].

To show the above result, we first consider the performance of the algorithm
for a class of graphs which we call minimal graphs, consisting of a perfect match-
ing and a tree. We show that for such graphs the optimal coloring uses less than

Maximum Edge q-coloring Problem 135

5
6n + 1 colors. As Algorithm 1 outputs a coloring with n

2 + 1 colors, it gives a
5
3 -approximation for this class of graphs. Then we show that minimal graphs are
the worst case for the algorithm and the approximation ratio for all graphs with
a perfect matching is 5

3 .
The rest of the paper is organized as follows. In Section 2 we show that

Algorithm 1 yields a 5
3 -approximation for graphs with a perfect matching. In

Section 3 we prove the hardness results. Section 4 contains conclusions and open
problems.

2 Approximation for Graphs with a Perfect Matching

In this section we focus on the case q = 2 and show that Algorithm 1 gives a
5
3 -approximation for graphs with a perfect matching.

We define ALG(G, M) to be the number of colors returned by Algorithm 1
for a graph G, if the matching found in the first step is M . OPT(G) denotes the
number of colors used in an optimal solution for G.

2.1 Approximation Guarantee for Minimal Graphs

We first show the result for a smaller class of graphs with a perfect matching.

Definition 1. A minimal graph is a simple graph G = (V, M ∪ T), M ∩ T = ∅,
consisting of a perfect matching M and a tree T .

A star is a graph K1,l for some integer l ≥ 1. A graph G = (V, E) is called a 2-star
if |V | ≥ 3 and there are vertices v, v′, v′′ ∈ V such that E = {vv′, v′v′′} ∪ {vw :
w ∈ V \ {v, v′, v′′}}. Therefore, a 2-star is a graph such that removing the edge
v′v′′ yields a star centered at v. Vertex v is called center of a 2-star, and v′′ is
called a pending vertex.

We want to show an upper bound on the number of colors in any edge 2-
coloring of a minimal graph. To show it, we need the following result.

Lemma 1. Given a minimal graph G = (V, M ∪ T) and an edge 2-coloring cG

of G we can construct a minimal graph G′ = (V, M ∪T ′) and an edge 2-coloring
cG′ of G′ such that:

1. cG′ uses the same number of colors as cG.
2. For each color c used by the coloring cG′ the set of tree edges colored with

c is either a star or a 2-star. Moreover, in every 2-star there is a matching
edge between the center and the pending vertex.

Proof. We look at the graph G colored according to cG. For a color c let Ec =
{e ∈ T : cG(e) = c} (the set of tree edges of G colored with c) and denote by Vc

the set of vertices incident to Ec. Assume that (Vc, Ec) does not satisfy condition
2 from the statement of the lemma. We fix an arbitrary edge e = vv′ in Ec and
for any other edge e′ = ww′ in Ec we perform the following operation. We can
assume without loss of generality that in the tree T the vertex v is closer to w

136 A. Adamaszek and A. Popa

a)

v

v′

w

w′
e e′

Tv′ Tw′

v

v′

w

w′
e e′

Tv′ Tw′

−→

b)

v

v′

w

w′
e e′

Tv′ Tw′

v

v′

w

w′

e

e′

Tv′

Tw′

−→

Fig. 2. Modifying the graph to make each color-component a star or a 2-star. Bold

edges are sharing one color. Dashed edges represent matching edges.

than to w′. If there is no matching edge between v and w′, we change the edge
ww′ to vw′ (as in Fig. 2a). Otherwise we change the edge ww′ to v′w′ (as in
Fig. 2b).

Let Ge′ be the graph after modifying the edge e′ as described above. Observe
that Ge′ is a minimal graph. The set of vertices and the matching edges remain
the same. One of the tree edges has been modified, but the edges still form a
tree. Considering the two cases above we make sure that no two neighbouring
vertices in the tree are connected by a matching edge.

Coloring cG yields a valid coloring for Ge′ : all the edges are colored using the
same colors as in cG, including the modified edge. The only vertex that has an
additional edge incident to it is either v or v′. The additional edge is colored with
color c and the vertex is already incident to the edge e colored with c, so there
are no new colors introduced for any vertex and the coloring remains feasible.

After performing these modifications for all the edges from the set Ec \ {e}
the modified graph is still a minimal graph and the coloring cG yields a valid
coloring for it. The set of edges colored with color c is either a star (if v was not
connected by a matching edge to any of the vertices w′) or a 2-star (otherwise,
in this case there is a matching edge between v and the pending vertex).

Notice that this operation does not change the connected components of the
tree T which are colored with colors different than c. After performing the above
modifications for all the colors we get a graph G′ and a coloring cG′ that satisfy
the lemma. ��

We are now ready to prove the upper bound on the number of colors used in an
edge 2-coloring of a minimal graph.

Lemma 2. Each edge 2-coloring of a minimal graph uses less than 5
6n+1 colors.

Proof. From Lemma 1 we know that it is enough to consider a minimal graph
G = (V, M ∪ T) and a coloring cG of G satisfying the properties: For each color
c the set of edges Ec = {e ∈ T : cG(e) = c} is either a star or a 2-star. In each
2-star there is a matching edge connecting the center with the pending vertex.

Maximum Edge q-coloring Problem 137

Let l denote the number of leaves (vertices of degree one) in T , and m the
number of monochromatic internal vertices in T (i.e. vertices which are not
leaves, for which all incident tree edges are colored with the same color). The
number of colors used by the edges of T is exactly n−(l+m)+1. The reason is that
in each internal node which is not monochromatic one new color is introduced.
The other color is already fixed by an edge connecting the vertex with its parent.
As the root has no parent, it introduces one additional color.

Since M is a perfect matching it contains n
2 edges. We define a to be the

number of edges from the matching which connect two leaves or two monochro-
matic vertices or a leaf and a monochromatic vertex. We also define b to be the
number of edges from the matching which connect a leaf or a monochromatic
vertex with another vertex. Since the matching is perfect, all the vertices are
present in the matching and, therefore, 2a + b = l + m.

We analyze how the edges from the matching can influence the coloring. If
a matching edge is incident to an internal vertex which is not monochromatic,
the matching edge has to be colored with one of the two colors already used by
the vertex. The only edges that can introduce new colors are the a edges that
connect leaves or monochromatic vertices. These edges can be colored with a
new color each, therefore in an optimal coloring we have a new colors.

There are two other types of matching edges that are feasible (but do not
introduce new colors):
– The b matching edges which connect a leaf or a monochromatic vertex with

another vertex.
– Matching edges that connect two internal vertices sharing the same color.

Let M1 be the set of such edges. We have |M1| = n
2 − a − b.

For each color c the set (Vc, Ec) is a star or a 2-star. Edges from M1 cannot
connect neighbouring vertices in a tree, so they can only connect siblings (in a
star or a 2-star) or the center of a 2-star with the pending vertex. Therefore all
the matching edges from M1 connect vertices that are at distance exactly two
from each other. We want to show an upper bound for |M1|.

Let deg(v) be the degree of v in T and d(v) the number of matching edges
from M1 connecting two neighbours of v in T . Then |M1| =

∑
v: deg(v)≥2 d(v).

We know that d(v) ≤ �deg(v)
2 �. Moreover, if deg(v) = 2 and d(v) = 1 then v is

monochromatic. Therefore
n

2
−a−b = |M1| ≤

∑
v: deg(v)≥3

�deg(v)
2

�+m ≤
∑

v: deg(v)≥3

(deg(v)−2)+m < l+m

as
∑

v: deg(v)≥2(deg(v) − 2) + 2 = l.
We get the following bound on the number of colors used by cG:

|cG| = n − (l + m) + a + 1 < n + (a + b − n

2
) + a + 1 =

n

2
+ (l + m) + 1.

As 2a + b = l + m, we get that a ≤ l+m
2 . That gives the second bound

|cG| = n − (l + m) + a + 1 ≤ n − l + m

2
+ 1.

138 A. Adamaszek and A. Popa

The largest value of |cG| is possible when l + m = n
3 and then we get the bound

|cG| < 5
6n + 1. ��

Theorem 1. Let G = (V, M ∪ T) be a minimal graph. Then OPT(G) < 5
3 ·

ALG(G, M).

Proof. Since the matching M has n
2 edges and after removing the matching the

graph has one connected component, ALG(G, M) = n
2 + 1. From Lemma 2 we

know that OPT (G) < 5
6n + 1. We get that OPT(G) < 5

3 · ALG(G, M). ��
The bounds in Lemma 2 and Theorem 1 are tight. For an arbitrary integer k
there is a minimal graph G = (M ∪ T) with 6k vertices, which can be colored
optimally using 5k colors, and the perfect matching M yields a coloring with
only 3k + 1 colors.

2.2 Approximation Guarantee for Graphs with a Perfect Matching

In the proof of the main theorem of this section we need the following lemma.

Lemma 3. Let α > 1 be a constant such that for every minimal graph G =
(V, M ∪ T) we have OPT(G) < α · ALG(G, M). Then for every graph G′ =
(V ′, M ′ ∪F) consisting of a perfect matching M ′ and a forest F such that M ′ ∩
F = ∅ we have OPT(G′) < α · ALG(G′, M ′).

Proof. Suppose that the graph G′ consists of a perfect matching M ′ and t > 1
trees. If we add arbitrary t− 1 edges connecting the forest into a tree, we obtain
a minimal graph G with the same set of vertices and the same set of matching
edges M ′. OPT (G) ≥ OPT (G′)−(t−1), since the optimal coloring of G′ can be
transformed into a coloring of G, coloring each added edge vw with an arbitrary
color c used by v and merging c with a color used by w if necessary.

The number of colors output by the algorithm depends on the number of
connected components in the graph after removing the matching edges. There-
fore ALG(G′, M ′) = ALG(G, M ′) + (t − 1). By the assumption OPT (G) <
αALG(G, M ′). We get OPT (G′) < αALG(G, M ′) + (t − 1) < α(ALG(G, M ′) +
(t − 1)) = αALG(G′, M ′). ��
Theorem 2. Let α > 1 be a constant such that for every minimal graph G =
(V, M ∪ T) we have OPT(G) < α · ALG(G, M). Then Algorithm 1 is an α-
approximation for all graphs with a perfect matching.

Proof. Proof by contradiction. Let G = (V, E) be a graph with minimum number
of edges such that Algorithm 1 does not give an α-approximation for it after
choosing some M ⊆ E as a perfect matching. Let E′ = E \M . We know that E′

is not a forest (otherwise we are done by Lemma 3), so it contains some cycle
e1, . . . , em. Let v be the vertex incident to both e1 and e2.

Fix some optimal coloring c of G. We can have one of the following cases:

– c(e1) = c(e2).
– c(e1) �= c(e2). Let ev ∈ M be the matching edge incident to v. As v can be

incident to edges in only two colors, we have c(e1) = c(ev) or c(e2) = c(ev).
We can assume that c(e1) = c(ev).

Maximum Edge q-coloring Problem 139

Consider G′ = (V, E\{e1}). Each coloring of G induces a coloring of G′. Coloring
c induces a coloring of G′ with exactly the same number of colors, therefore
OPT (G′) ≥ OPT (G).

Removing the edge e1 does not change the number of connected components
in the graph (V, E \ M), so ALG(G′, M) = ALG(G, M).

As OPT (G′)

ALG(G′,M)
≥ OPT (G)

ALG(G,M)
> α, Algorithm 1 is not an α-approximation for

G′. That is a contradiction with the minimality of G. We get that Algorithm 1
is an α-approximation for any graph G having a perfect matching. ��

From Theorem 1 and Theorem 2 we immediately get:

Theorem 3. Algorithm 1 is a 5
3 -approximation algorithm for all graphs with a

perfect matching.

3 Hardness Results

In this section we show that the maximum edge q-coloring problem is APX-Hard
for any integer q ≥ 2. We first prove the APX-Hardness of the following problem:

Problem. Maximum edge 1, 2-coloring
Instance. A graph G = (V, E) and a function c : V → {1, 2}
Task. Find an edge coloring using a maximum number of colors such

that for each vertex v ∈ V the edges incident to v are colored
with at most c(v) distinct colors.

We consider the decision version of the problem: whether there is a feasible
coloring using at least a given number of colors.

Theorem 4. The maximum edge 1, 2-coloring problem is APX-Hard, even for
the class of graphs which admit a coloring using at least β · |V | colors for some
constant β > 0.

Proof. We present a reduction from the MAX-3SAT(13) problem, which is known
to be APX-Hard (see e.g. [11]):

Problem. MAX-3SAT(13)
Instance. A CNF formula φ with at most three literals per clause, every

variable occurs in at most 13 clauses.
Task. Find an assignment that satisfies the maximum number of

clauses.

In the decision version of the MAX-3SAT(13) problem we ask whether there
exists an assignment satisfying at least a given number of clauses.

Given a formula φ with m clauses we construct the following graph (see Fig.3).
The set of vertices and the number of colors that can be incident to them are:

– F — a special vertex with c(F) = 1,
– c1, . . . , cm — one vertex for each clause, c(ci) = 2 for i = 1, . . . , m,

140 A. Adamaszek and A. Popa

– one vertex for each occurrence of a literal in the formula. If literal x appears a
times and ¬x appears b times, we have vertices x1, . . . , xa and ¬x1, . . . ,¬xb.
We set c(xi) = c(¬xj) = 1,

– for each variable x for each i ≤ a and j ≤ b — a vertex xij with c(xij) = 2.

The set of edges is as follows:

– Fci for i = 1, . . . , m,
– Fxij for all variables x and values i, j,
– edges connecting ci with vertices representing the literals from the i-th

clause,
– xixij for all variables x and values i, j,
– ¬xjxij for all variables x and values i, j.

F

c1 c2 c3

x1 y1 ¬x1 ¬y1 z1 x2 ¬z1

x11 y11 x21 z11

Fig. 3. A graph for the formula φ = (x ∨ y) ∧ (¬x ∨ ¬y ∨ z) ∧ (x ∨ ¬z)

We show that if there is an assignment satisfying exactly l clauses from the for-
mula φ, there is a coloring of G using exactly l+1 colors. Given an assignment of
the variables that satisfies l clauses, we use colors from the set C = {f, 1, . . . , m}
and construct the following coloring:

– color all the edges incident to F with color f ,
– for each clause color the edges connecting ci with satisfied literals using color

i and with unsatisfied literals using color f ,
– color each edge xixij with the same color as the edge connecting xi with its

clause,
– color each edge ¬xjxij with the same color as the edge connecting ¬xj with

its clause.

The i-th color is used if and only if the i-th clause is satisfied by the given
assignment. The color f is always used. Therefore the number of used colors
equals l + 1. The coloring is feasible: F is incident to one color, ci to at most
two colors, xi and ¬xj to one color, xij to at most two colors (either xi or ¬xj

is false, so two edges incident to vertex xij are colored with color f).

Maximum Edge q-coloring Problem 141

We prove now that if there is a coloring using l + 1 colors, then there is an
assignment satisfying at least l clauses of the formula. Call f the only color
incident to F . Edges xixij and ¬xjxij must have the same colors as the edges
connecting xi and ¬xj to their clauses, so they do not introduce any new colors.
Therefore the remaining l colors are introduced by the edges incident to vertices
ci, at most one new color for each ci (since c(ci) = 2 and ci is already incident to
f). We can assume without loss of generality that the vertices introducing new
colors are c1, . . . , cl. Let us call i the color incident to ci for i = 1, . . . , l. We can
extract from the coloring an assignment satisfying clauses c1, . . . , cl. We consider
only the part of the graph representing the first l clauses. We want to satisfy
each literal which is connected to its clause by an edge with color different than
f (with color i if it is in the i-th clause). The assignment is feasible: we cannot
set x and ¬x as true (satisfied), as it would result in three colors adjacent to
some xij where xi and ¬xj represent the occurrence of these literals in clauses
(we can assume that xi and ¬xj do not appear in the same clause, as that clause
would be always satisfied and could be removed). In the assignment we can set
both y and ¬y to false (unsatisfied) for some variable y, but we can repair it
easily by setting the value of y arbitrarily. We do the same with variables that
do not appear in any of the l chosen clauses. In such an assignment there are at
least l satisfied clauses.

Graph G can be colored with l + 1 colors if and only if there is an assignment
satisfying l clauses in φ. Therefore if we can approximate the maximum edge
1, 2-coloring problem with an arbitrarily small constant factor α > 1, we can
do the same for the MAX-3SAT(13) problem. It shows that the maximum edge
1, 2-coloring problem is APX-Hard.

The problem remains APX-Hard for the class of graphs which have a coloring
with at least β · |V | colors for some constant β > 0. Notice that each CNF
formula has an assignment that satisfies at least half of the clauses (it is either
an assignment that sets all the variables to TRUE, or all to FALSE).

As each variable occurs in at most 13 places in the formula, the number of
vertices in the graph satisfies |V | < 50m. As each formula has an assignment
satisfying at least m

2 clauses, each graph created from a formula has a coloring
using at least m

2 +1 > |V |
100 colors. Therefore the problem remains APX-Hard for

a class of graphs which admit a coloring using at least β · |V | colors for β = 1
100 .
��

Theorem 5. For an arbitrary integer q ≥ 2 the maximum edge q-coloring prob-
lem is APX-Hard.

Proof. We prove the theorem via a reduction from the maximum edge 1, 2-
coloring problem for the class of graphs which have a coloring with at least
β · |V | colors. From Theorem 4 we know that the problem is APX-Hard.

Let G = (V, E) be an instance of the maximum edge 1, 2-coloring problem
with n vertices and set k = |{v ∈ V : c(v) = 1}|. We show that we can build an
instance G′ = (V ′, E′) of the maximum edge q-coloring problem such that there
is a coloring of G′ using k + l +(q−2)n colors if and only if there is a coloring of
G using l colors. The respective colorings can be reconstructed from each other.

142 A. Adamaszek and A. Popa

We create a graph G′ from G by adding for each vertex v ∈ V a set of q−c(v)
vertices v1, . . . , vq−c(v) and connecting each of them with v.

If there is a coloring of G using l colors, then there is a coloring of G′ using
k + l + (q − 2)n colors. We obtain it by coloring each of the k + (q − 2)n added
edges with a new color. It is easy to check that such a coloring is feasible for G′.

If there is a coloring of G′ using k+ l+(q−2)n colors, there is a coloring of G
using l colors. We can modify the coloring of G′ without decreasing the number
of colors in such a way that all the k + (q − 2)n added edges are colored with
unique colors. We do it by performing the following operation for each vertex
v ∈ V :

– Let c1, ..., cp (p ≤ q) be the set of colors of the edges incident to v. We merge
these colors into one color (if c(v) = 1 or p < q) or arbitrarily into two colors,
in such a way that both of them are present in the subgraph induced by V
(if c(v) = 2 and p = q). The number of colors decreases by at most q−1 (for
c(v) = 1) or q − 2 (for c(v) = 2).

– Recolor the added edges (vvi) using unique colors. The number of colors
increases by q − 1 (for c(v) = 1) or q − 2 (for c(v) = 2).

The number of colors used in the modified coloring is at least k + l + (q − 2)n.
Deleting the added edges and vertices decreases the number of used colors by
exactly k + (q − 2)n, and the coloring of remaining edges is feasible for G: we
decrease the number of colors incident to a vertex v by q−2 (if c(v) = 2) or q−1
(if c(v) = 1), therefore there are at most two (one) colors incident to vertices
with c(v) = 2 and c(v) = 1 respectively. If there are more than l colors used in
the obtained coloring, we can decrease it to l by merging some colors.

The graph G has an edge 1, 2-coloring using l colors if and only if the graph
G′ has an edge q-coloring using k+ l+(q−2)n colors. From Theorem 4 we know
it is NP-Hard to distinguish between the case when all colorings of G use at
most l colors and the case when there exists a coloring using αl colors for some
constant α > 1 and for l > βn. Therefore it must be NP-Hard to distinguish
between graphs G′ which cannot be colored with more than k + l + 1 + (q − 2)n
colors and graphs admitting an edge q-coloring with at least k+αl+1+(q−2)n
colors. As l > βn for some constant β, k + l + 1 + (q − 2)n = O(l) and the
maximum edge q-coloring problem is APX-Hard. ��

Corollary 1. For any integer q ≥ 3 the problem of finding the anti-Ramsey
number ar(G, K1,q) for a given graph G is APX-Hard.

4 Conclusions

In this paper we show that the maximum edge q-coloring problem is APX-Hard
for any integer q ≥ 2. Moreover we show that the 2-approximation algorithm
considered in [4] is a 5

3 -approximation for graphs with a perfect matching. A nat-
ural open problem is to find better approximation algorithms for this problem,
or to prove that such algorithms do not exist.

Maximum Edge q-coloring Problem 143

Given the motivation of the problem via the wireless mesh networks, the
following variant might be interesting to consider. Given a simple, undirected
graph, color the edges of the graph in such a way that maximum number of
times any color is used is minimized and the q-constraints are respected.

Acknowledgements. We would like to thank to Artur Czumaj and Nigel Smart
for their useful comments. The second author is funded by an EPSRC PhD
studentship.

References

1. Erdős, P., Simonovits, M., Sós, V.T.: Anti-ramsey theorems. In: Infinite and finite

sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol.

II, vol. 10, pp. 633–643. Colloq. Math. Soc. János Bolyai (1975)

2. Feng, W., Chen, P., Zhang, B.: Approximate maximum edge coloring within factor

2: a further analysis. In: ISORA, pp. 182–189 (2008)

3. Feng, W., Zhang, L., Qu, W., Wang, H.: Approximation algorithms for maximum

edge coloring problem. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007.

LNCS, vol. 4484, pp. 646–658. Springer, Heidelberg (2007)

4. Feng, W., Zhang, L., Wang, H.: Approximation algorithm for maximum edge col-

oring. Theor. Comput. Sci. 410(11), 1022–1029 (2009)

5. Fujita, S., Magnant, C., Ozeki, K.: Rainbow generalizations of ramsey theory: A

survey. Graphs and Combinatorics (2010)

6. Jiang, T.: Edge-colorings with no large polychromatic stars. Graphs and Combi-

natorics 18(2), 303–308 (2002)

7. Manoussakis, Y., Spyratos, M., Tuza, Z., Voight, M.: Minimal colorings for properly

colored subgraphs. Graphs and Combinatorics 12(1), 345–360 (1996)

8. Montellano-Ballesteros, J.J.: On totally multicolored stars. Journal of Graph The-

ory 51(3), 225–243 (2006)

9. Raniwala, A., Chiueh, T.-c.: Architecture and algorithms for an ieee 802.11-based

multi-channel wireless mesh network. In: INFOCOM, pp. 2223–2234. IEEE, Los

Alamitos (2005)

10. Raniwala, A., Gopalan, K., Chiueh, T.-c.: Centralized channel assignment and

routing algorithms for multi-channel wireless mesh networks. Mobile Computing

and Communications Review 8(2), 50–65 (2004)

11. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2004)

3-Colouring AT-Free Graphs in Polynomial Time

Juraj Stacho

Wilfrid Laurier University, Department of Physics and Computer Science,

75 University Ave W, Waterloo, ON N2L 3C5, Canada

stacho@cs.toronto.edu

Abstract. Determining the complexity of the colouring problem on AT-

free graphs is one of long-standing open problems in algorithmic graph

theory. One of the reasons behind this is that AT-free graphs are not

necessarily perfect unlike many popular subclasses of AT-free graphs

such as interval graphs or co-comparability graphs. In this paper, we

resolve the smallest open case of this problem, and present a polynomial

time algorithm for 3-colouring of AT-free graphs.

1 Introduction

The colouring problem is one of the most studied problems on graphs. It is also
one of the first problems known to be NP -hard [4]. In other words, it is unlikely
that there is a polynomial time algorithm for solving this problem. This is true
even in very special cases such as in planar graphs, line graphs, graphs of bounded
degree or if the number of colours k is fixed and at least three. On the other
hand, for k = 2 the problem is polynomially solvable, as is the general problem
for many structured classes of graphs such as interval graphs, chordal graphs,
comparability graphs, and more generally for perfect graphs [5]. In these cases,
the special structure of the classes in question allows for polynomial algorithms.

We study the colouring problem in the class of AT-free graphs, i.e., graphs
with no asteroidal triple (a triple of vertices such that between any two vertices
of the triple there is a path disjoint from the closed neighbourhood of the third
vertex). This class is a generalization of interval and co-comparability graphs as
well as some non-perfect graphs such as the complements of triangle-free graphs.
Unlike other standard optimization problems such as the independent set or the
clique problem whose complexity on AT-free graphs is known (the former is
solvable in polynomial time, while the latter is NP -hard [2]), the complexity of
colouring is not known on AT-free graphs.

As a first step towards resolving this, we propose in this paper a polynomial
time algorithm for the 3-colouring problem on AT-free graphs. In particular, we
prove the following theorem.

Theorem 1. There is an O(n4) time algorithm to decide, given an AT-free
graph G, if G is 3-colourable and to construct a 3-colouring of G if it exists.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 144–155, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

3-Colouring AT-Free Graphs in Polynomial Time 145

. . .

. . .

. . .

v1
1 v1

2 v1
3 v1

k

v3
1 v3

2 v3
3 v3

k

v2
1 v2

2 v2
3 v2

k

Fig. 1. The triangular strip of order k

We show this in three stages:
(1) we reduce the problem to AT-free graphs with no induced diamonds,
(2) we show how to decompose every AT-free graph with no induced diamond

and no K4 into triangular strips (see Figure 1) using stable cutsets, and
(3) we prove that we are allowed to contract minimal stable separators without

changing the answer to the problem.

This reduces the problem to graphs whose blocks are triangular strips which are
all clearly 3-colourable. If at any stage we encounter K4, a clique on four vertices,
we declare the graph not 3-colourable. A sketch of an algorithm resulting from
this is presented below as Algorithm 1. (Note that G/S denotes the graph we
obtain from G by contracting the set of vertices S into a single vertex.)

Input: An AT-free graph G.
Output: A 3-colouring of G or “G is not 3-colourable”.

if G contains K4 then1

return “G is not 3-colourable”2

/* Now G contains no K4 */

if G contains adjacent vertices u, v with |N(u) ∩ N(v)| ≥ 2 then3

Recursively find a 3-colouring of G/N(u)∩N(v).4

/* Now G contains no induced diamond and no K4 */

if G contains a cutpoint or is disconnected then5

Recursively colour all blocks of G.6

/* Now G is 2-connected and contains no induced diamond and no K4 */

if G contains a minimal stable separator S with |S| ≥ 2 then7

Recursively find a 3-colouring of G/S .8

/* Now G is a triangular strip */

Construct a 3-colouring of G.9

Algorithm 1. Find a 3-colouring of an AT-free graph

Note that, in the above algorithm, once Line 5 is reached, the graph is guar-
anteed to be 3-colourable. This follows from the fact that AT-free graphs with
no induced diamond and no K4 are 3-colourable (we prove this as Theorem 3).

146 J. Stacho

Hence, to obtain a decision algorithm, one can modify the procedure in Algo-
rithm 1 to announce that “G is 3-colourable” once Line 5 is reached.

We remark that, for instance, in graphs with no induced path on five [11]
or six [10] vertices the problem of 3-colouring is also known to be polynomially
solvable even though to compute the chromatic number is NP -hard in both
classes [8]. (In fact, in the former case, the k-colouring problem for every fixed k
is polynomially solvable [7].) The main reason behind this is that in these cases
we are able to reduce the problem of 3-colouring to an instance of 2-satisfiability
which is solvable in polynomial time. Our approach for AT-free graphs differs
from this in that it instead focuses on efficient decomposition of AT-free graphs
to graphs for which 3-colouring can be decided in polynomial time.

In the following sections, we examine the main ingredients to the proof of
correctness of our algorithm which are summarized in the following two theorems.

Theorem 2. Let G be an AT-free graph with at least three vertices and no
induced diamond or K4. Then either

(i) G is a triangular strip, or
(ii) G contains a stable cutset.

Theorem 3. Every AT-free graph G with no induced diamond and no K4 is
3-colourable. Moreover, if G contains a minimal stable separator S, then there
is a 3-colouring of G in which all vertices of S have the same colour.

In the final section, we explain implementation details needed to guarantee the
running time O(n4).

2 Notation

In this paper, a graph is always simple, undirected, and loopless.
For a vertex v of a graph G, we denote by NG(v) the set of vertices adjacent

to v in G, and write NG[v] = NG(v)∪{v}. We drop the index G and write N(v)
and N [v] whenever it is clear from context. For X ⊆ V (G), we write G[X] for
the subgraph of G induced by X , and write G−X for the subgraph of G induced
by V (G) \ X . A set X ⊆ V (G) is stable, if G[X] contains no edges, and X is a
clique, if G[X] has all possible edges. As usual, Kn denotes the complete graph
on n vertices, and diamond is the (unique) graph on four vertices with five edges.

We say that a path P of a graph G is missed by a vertex x if no vertex of P
is adjacent to x. A triple of vertices x, y, z of a graph G is asteroidal if between
any two vertices of the triple there exists a path missed by the third vertex.

We write G/S for the graph we obtain from G by contracting (i.e., identifying)
all vertices in S into a single vertex. That is,

V (G/S) = (V (G) \ S) ∪ {s} where s �∈ V (G),
E(G/S) =

{
xy ∈ E(G)

∣∣∣ x, y �∈ S
}

∪
{

sy
∣∣∣ xy ∈ E(G) ∧ x ∈ S ∧ y �∈ S

}
.

A set S ⊆ V (G) disconnects vertices a, b in G if a and b are in different connected
components of G − S. We say that S is a cutset of G if it disconnects some

3-Colouring AT-Free Graphs in Polynomial Time 147

vertices a, b. We say that S is a minimal separator of G if there exist vertices a and
b such that S disconnects a and b, but no proper subset of S disconnects them.
(Note that a minimal separator is not necessarily an inclusion-wise minimal
cutset; for example, consider a 4-cycle with a pendant vertex.)

For a complete terminology, see [13].

3 Removing Diamonds

In this section, we explain how to reduce the problem to the case of AT-free
graphs with no induced diamonds. We show that if we have a diamond in G, i.e.,
we have adjacent vertices u, v such that their common neighbourhood contains
two non-adjacent vertices, then we can contract any maximal set S of pair-wise
non-adjacent common neighbours of u, v and the resulting graph remains AT-
free. It is also 3-colourable if and only if G is, since in any 3-colouring of G all
vertices of S must have the same colour. Thus we show the following theorem.

Theorem 4. If u, v are adjacent vertices of an AT-free graph G and S is a
maximal stable set in N(u) ∩ N(v), then G/S is AT-free. Moverover, G is 3-
colourable if and only if G/S is.

To prove this, we use a more general tool that allows contracting specific sets in
G without creating asteroidal triples. We say that a set S ⊆ V (G) is externally
connected in G, if for each x ∈ V (G) with N [x] ∩ S = ∅, the set S is contained
in a (single) connected component of G − N [x].

Lemma 1. Let G be an AT-free graph and S ⊆ V (G) be an externally connected
set in G. Then G/S is AT-free.

Proof. Let s denote the vertex of G/S to which we contracted the vertices of S,
and suppose that G/S contains an asteroidal triple {x, y, z}. Let P be a path in
G/S from y to z missed by x. If s is not on P , then P is also a path in G, and if
x = s, then every vertex of S misses P in G. So, suppose that s belongs to P and
is not one of the endpoints of P . Let u, v be the two neighbours of s on P . By
the construction of G/S , there exist vertices a, b ∈ S, such that ua, vb ∈ E(G).
Since xs �∈ E(G/S), we have NG[x]∩ S = ∅, and since S is externally connected
in G, we conclude that a and b, and hence, u and v are in the same connected
component of G−NG[x]. Consequently, there is a path in G from y and z missed
by x. Similarly, if s is one of the endpoints of P , say y = s, then we conclude
that there exists a path in G missed by x between z and each vertex of S.

This proves that if s is not one of x, y, z, then x, y, z is an asteroidal triple of
G, and otherwise, if say x = s, then a, y, z is an asteroidal triple of G for every
a ∈ S, a contradiction. �

From this lemma, we immediately obtain a proof of Theorem 4 as well as two
other corollaries that we make use of later.

Lemma 2. If G is AT-free and G[S] is connected, then G/S is AT-free.

148 J. Stacho

Proof. By Lemma 1, it suffices to show that S is externally connected. This is
obvious, since S induces a connected subgraph in G− N [x] for N [x] ∩ S = ∅. �

Lemma 3. If G is AT-free and S is a minimal separator, then G/S is AT-free.

Proof. Again, we show that S is externally connected. Consider x ∈ V (G)
with N [x] ∩ S = ∅, and let K denote the connected component of G − S that
contains x. Since S is a minimal separator, there exists a connected component
K ′ of G− S different from K such that each vertex of S has a neighbour in K ′.
Therefore, G[K ′ ∪ S] is connected, and so, S belongs to a connected component
of G − N [x], since clearly N [x] ∩ (K ′ ∪ S) = ∅. This proves that S is externally
connected, and so the claim follows from Lemma 1. �

Proof of Theorem 4. For the first part of the claim, it again suffices to prove
that S is externally connected. Consider x ∈ V (G) with N [x]∩S = ∅. Therefore
x is not adjacent to any vertex of S implying that S ∪ {x} is a stable set. By
the maximality of S, x is non-adjacent to one of u, v. By symmetry, suppose
that xu �∈ E(G). Then S ∪ {u} is in a connected component of G − N [x] since
G[S ∪ {u}] is connected. So, we conclude that S is indeed externally connected.

For the second part of the claim, let s be the vertex of G/S to which we
contracted S. If we have a 3-colouring of G/S , then we can extend this colouring
of G by colouring all vertices of S with the colour of s. Conversely, if we have a
3-colouring of G, then u, v have different colours in this colouring, and hence, all
vertices of S must have the same colour. So, we use this colour for s and colour
all other vertices of G/S as in G. This clearly yields a 3-colouring of G/S . �

4 Structural Decomposition

In this section, we prove Theorem 2 asserting that every AT-free graph with no
induced diamond and no K4 decomposes into triangular strips via stable cutsets.

The triangular strip of order k is the graph formed by taking three disjoint
paths P 1 = v1

1 , v
1
2 , . . . , v

1
k, P 2 = v2

1 , v2
2 , . . . , v

2
k, P 3 = v3

1 , v
3
2 , . . . , v

3
k and adding

a triangle on v1
i , v2

i , v3
i for each i = 1 . . . k. In other words, the triangular strip

of order k is the cartesian product of an induced path on k vertices and a
triangle. (See Figure 1 for an illustration.) We say that the triangles v1

1 , v
2
1 , v

3
1

and v1
k, v2

k, v3
k of the triangular strip of order k are the end-triangles.

We say that G is a triangular strip if G is isomorphic to the triangular strip
of order k for some k. Clearly, every triangular strip is AT-free and contains no
induced diamond or K4. Note that triangular strips have no stable cutsets; in
other words, the two conditions of Theorem 2 are mutually exclusive.

Let G be an AT-free graph with |V (G)| ≥ 3, no induced diamond, and no K4.
First, we observe that it suffices to prove Theorem 2 for 2-connected graphs G,
since any cutpoint (and also the empty set) forms a stable cutset of G. Since G
contains no diamond and no K4, no two triangles of G share an edge. We show
that, actually, no two triangles share a vertex provided G is 2-connected.

3-Colouring AT-Free Graphs in Polynomial Time 149

Lemma 4. Let G be a 2-connected AT-free graph with no induced diamond and
no K4. Then every vertex of G is in at most one triangle.

Proof. Let x be a vertex that belongs to two different triangles, namely, a
triangle x, a, b and a triangle x, u, v. Clearly, {u, v} ∩ {a, b} = ∅, since otherwise
x, u, v, a, b induces a diamond or a K4 in G. For the same reason, there is no
edge between vertices u, v and a, b.

Since G is 2-connected, G−x is connected, and hence, there is a path between
vertices u, v and a, b in G − x. Let P be a shortest such path. Without loss of
generality, P is a path from u to a. Let y be the second vertex on P (after u).
Clearly, yv �∈ E(G) and xy �∈ E(G), since otherwise y, v, u, x induces a diamond
or a K4. Also, y is not adjacent to one of a, b, since otherwise y, a, b, x induces
a diamond. In particular, yb �∈ E(G), since otherwise ya �∈ E(G) and u, y, b is a
shorter path from u, v to a, b which contradicts the minimality of P .

We now show that {y, v, b} is an asteroidal triple of G. Indeed, v, x, b is a path
from v to b missed by y, and v, u, y is a path from v to y missed by b. Finally,
P ′ = P \ {u}∪ {b} is a path from y to b missed by v, since vy �∈ E(G) and v has
no neighbour on P \ {u, y} by the minimality of P . �

By the above lemma, every vertex of G is in at most one triangle. If some vertex
v is in no triangle, then N(v) is a stable cutset of G unless V (G) = N [v] in
which case v is a cutpoint because G is assumed to have at least three vertices.

This implies that we may assume that every vertex of G is in exactly one
triangle. In other words, G contains a triangular strip (of order 1). We show
that by taking a maximal such strip, we either get the whole graph G or find
a stable cutset in G, thus proving Theorem 2. To simplify the proof of this, we
need the following technical lemma.

Lemma 5. Let G be an AT-free graph with no induced diamond and no K4, and
let H be a (not necessarily induced) subgraph of G isomorphic to a triangular
strip. Then (i) H is induced in G, and (ii) no vertex of H has a neighbour in
G − V (H) except for the vertices of the end-triangles of H.

Proof. Let vi
j for i = 1, 2, 3 and j = 1 . . . k for some k be the vertices of H .

Suppose that H is not induced in G, and let vi
jv

i′

j′ be an edge not in H such that
j < j′ and j′ − j is smallest possible. By symmetry, we may assume that i′ = 1,
and i ∈ {1, 2}. Clearly, j �= j′.

First, we observe that vi
j is not adjacent to v2

j′ and v3
j′ , since otherwise

vi
j , v

1
j′ , v

2
j′ , v

3
j′ induces a diamond or K4 in G. This also implies j′ − j ≥ 2.

By the choice of j, j′ and the fact that j′ − j ≥ 2, we conclude that vi
j is not ad-

jacent to v3
j+1, v

3
j+2, . . . , v

3
j′ , and v3

j+1 is not adjacent to v1
j′ . By the same token,

v2
j′ is not adjacent to v1

j+1 and v3
j+1. We show that {vi

j , v
3
j+1, v

2
j′} is an aster-

oidal triple in G. Indeed, the path vi
j , v

1
j′ , v

2
j′ is missed by v3

j+1, and the path
v3

j+1, v
3
j+2, . . . , v

3
j′ , v

2
j′ is missed by vi

j . Finally, v2
j′ is non-adjacent to at least one

of v1
j , v3

j otherwise v1
j , v2

j , v3
j , v2

j′ induces a diamond or K4 in G. If v3
j v2

j′ �∈ E(G),

150 J. Stacho

then the path vi
j , v

3
j , v3

j+1 is missed by v2
j′ . Otherwise, v1

j v2
j′ �∈ E(G) in which

case vi
j , v

1
j , v1

j+1, v
3
j+1 is a path (or walk) missed by v2

j′ . This proves (i).
For (ii), let x �∈ V (H) be a vertex adjacent to vi

j for some i ∈ {1, 2, 3} and
j ∈ {2 . . . k− 1}. By symmetry, we may assume i = 1. Clearly, x is non-adjacent
to both v2

j and v3
j , otherwise x, v1

j , v2
j , v3

j induces a diamond or K4 in G. First,
suppose that x is also adjacent to v1

j+1. Then x is non-adjacent to both v2
j+1 and

v3
j+1, since otherwise x, v1

j+1, v
2
j+1, v

3
j+1 induces a diamond or a K4. But now

{x, v3
j , v2

j+1} is an asteroidal triple in G. Indeed, the path x, v1
j , v3

j is missed by
v2

j+1, the path v3
j , v3

j+1, v
2
j+1 is missed by x, and the path v2

j+1, v
1
j+1, x is missed

by v3
j . So, we may assume xv1

j+1 �∈ E(G), and by symmetry, also xv1
j−1 �∈ E(G).

Suppose that x is non-adjacent to both v2
j+1 and v3

j−1. Then {x, v2
j+1, v

3
j−1}

is an asteroidal triple in G. Indeed, the path x, v1
j , v2

j , v2
j+1 is missed by v3

j−1,
the path v2

j+1, v
2
j , v3

j , v3
j−1 is missed by x, and the path v3

j−1, v
3
j , v1

j , x is missed
by v2

j+1. So x has at least one neighbour among v2
j+1, v

3
j−1. By the same token,

x has at least one neighbour among v3
j+1, v

2
j−1. Clearly, x cannot be adjacent to

both v2
j+1, v

3
j+1 or to both v2

j−1, v
3
j−1, since we get an induced diamond in G on

x, v1
j+1, v

2
j+1, v

3
j+1, or on x, v1

j−1, v
2
j−1, v

3
j−1. So, by symmetry, we may assume

that x is adjacent to v2
j−1 and v2

j+1 and non-adjacent to v3
j−1 and v3

j+1. But
then {x, v3

j−1, v
3
j+1} is an asteroidal triple in G. Indeed, the path x, v2

j+1, v
3
j+1 is

missed by v3
j−1, the path v3

j+1, v
3
j , v3

j−1 is missed by x, and the path v3
j−1, v

2
j−1, x

is missed by v3
j+1. That concludes the proof of (ii). �

Now, we are finally ready to prove Theorem 2.

Proof of Theorem 2. As remarked in the discussion above, we may assume that
G is 2-connected, and contains a triangle (triangular strip).

Let H be the largest triangular strip induced in G. If V (H) = V (G), then
G is a triangular strip, and we are done. Otherwise, there exists a vertex v ∈
V (G)\V (H) adjacent to a vertex of H . By Lemma 5, v is adjacent to a vertex c
of an end-triangle of H ; let a, b be the other two vertices of this triangle. Clearly,
va, vb �∈ E(G) since otherwise v, a, b, c induces a diamond or K4 in G.

First, we note that N(b)\{a} and N(a)\{b} are stable sets, since otherwise a or
b is in two triangles which is not possible by Lemma 4. Also, the sets N(a)∩N(v)
and N(b)∩N(v) are both stable sets of G, because otherwise we have an induced
diamond in G. Moreover, we prove that there are no edges between the two sets.
Suppose otherwise, and let u ∈ N(a) ∩ N(v) and w ∈ N(b) ∩ N(v) be adjacent.
We observe that if u ∈ V (H), then u belongs to a triangle in H and the triangle
u, v, w. But these triangles are different since v �∈ V (H) contradicting Lemma 4.
Hence, u �∈ V (H), and by the same token, w �∈ V (H). So, G[V (H) ∪ {u, v, w}]
contains a spanning triangular strip which is, by Lemma 5, induced in G. This,
however, contradicts the maximality of H .

Now, suppose that there are no edges between N(b) \ {a} and N(a) ∩ N(v).
In other words, S = (N(b) \ {a}) ∪ (N(a) ∩ N(v)) is a stable set. We show that
S is a stable cutset of G separating a from v. Suppose otherwise, and let P be a

3-Colouring AT-Free Graphs in Polynomial Time 151

shortest path in G − S from a to v. Let z be the second vertex on P (after a).
Since N(a)∩N(v) ⊆ S, we conclude zv �∈ E(G). Also, zc �∈ E(G), since otherwise
a, b, c, z induces a diamond or K4 in G. By the same token, zb �∈ E(G). We show
that {b, v, z} is an asteroidal triple in G which will yield a contradiction. Indeed,
the path v, c, b is missed by z, the path z, a, b is missed by v, and P \ {a} is a
path from z to v missed by b, since all neighbours of b except for a are in S.

Similarly, if there are no edges between N(a) \ {b} and N(b) ∩ N(v), we
conclude that G contains a stable cutset. So, we may assume that there exists
x ∈ N(a)∩N(v) adjacent to some y ∈ N(b)\{a}, and x′ ∈ N(b)∩N(v) adjacent
to some y′ ∈ N(a) \ {b}. We show that this is impossible. Clearly, y, y′ �∈ N(v),
since there are no edges between N(a) ∩ N(v) and N(b) ∩ N(v). Also, y is not
adjacent to any of a, c, x′, since otherwise b is in two triangles which is impossible
by Lemma 4. By the same token, y′ is not adjacent to any of b, c, x. We show
that G contains an asteroidal triple. Suppose that yy′ �∈ E(G). Then {y, y′, v}
is an asteroidal triple of G. Indeed, the path y, x, v is missed by y′, the path
y′, x′, v is missed by y, and the path y, b, a, y′ is missed by v. So, yy′ ∈ E(G) in
which case {x, c, x′} is an asteroidal triple of G. Indeed, the path x, a, c is missed
by x′, the path c, b, x′ is missed by x, and the path x, y, y′, x′ is missed by c.

That concludes the proof. �

5 Proof of Theorem 3

The proof is by induction on |V (G)|. Let G be an AT-free graph with no induced
diamond and no K4. If G has at most 2 vertices, the claim is trivially satisfied.

Therefore, we may assume |V (G)| ≥ 3. If G has a stable cutset, then by
(possibly) removing some of its vertices, we can find a minimal stable separator
in G. So, if G has no minimal stable separator, then it must be, by Theorem 2,
a triangular strip with vertices vi

j for i = 1, 2, 3 and j = 1 . . . k for some k. We
obtain a 3-colouring of G by assigning each vi

j the colour ((i + j) mod 3) + 1.
So, we may assume that G contains a minimal stable separator S. If S is empty,

then G is disconnected and we obtain a 3-colouring of G by independently 3-
colouring its connected components by induction. If S has one element, then G
has a cutpoint and we obtain a 3-colouring of G by 3-colouring its blocks by
induction, and permuting the colours in blocks so that they match on cutpoints.
In both cases, all vertices in S have the same colour. So, we may assume |S| ≥ 2.

To prove the claim, it now suffices to show that for every connected component
K of G−S, there exists a 3-colouring of G[K ∪S] in which all vertices of S have
the same colour.

Let K be a (fixed) connected component of G − S. Let S′ denote the set of
vertices of S with at least one neighbour in K. If S′ �= S, then S′ is a minimal
stable separator in G′ = G− (S \S′). By induction, there exists a 3-colouring of
G′ in which all vertices of S′ have the same colour. By restricting this colouring
to K ∪ S and colouring the vertices of S \ S′ with the common colour of the
vertices of S′, we obtain the required 3-colouring. (Note that the vertices of S\S′

are isolated in G[K ∪ S].)

152 J. Stacho

Hence, we may assume that every vertex of S has a neighbour in K. Further,
since S is a minimal separator, there exists a connected component K ′ of G−S
different from K such that each vertex of S also has a neighbour in K ′. Let G′

denote the graph G[K ∪ K ′ ∪ S]/K′ , and let x be the vertex of G′ to which we
contracted K ′. By Lemma 2, G′ is AT-free. Moreover, G′ contains no induced
diamond or K4, since any such subgraph is either in G, or contains x, but x
belongs to no triangle of G′. Also, S is a minimal separator in G′. Hence, if G′

has fewer vertices than G, then, by induction, there exists a 3-colouring of G′ in
which all vertices of S have the same colour. This colouring when restricted to
the vertices K ∪ S yields the required 3-colouring.

It follows that we may assume that G− S has exactly two connected compo-
nents, one of which is K, the other consists of a single vertex x, and every vertex
of S is adjacent to x and has a neighbour in K.

Now, let S∗ be a smallest subset of S such that
⋃

u∈S∗ N(u) =
⋃

u∈S N(u).
Suppose that S∗ contains three distinct vertices u, v, w. By the minimality of
S∗, there exist vertices u′, v′, w′ such that u′ ∈ N(u) \ (N(v) ∪ N(w)), v′ ∈
N(v) \ (N(u) ∪ N(w)) and w′ ∈ N(w) \ (N(u) ∪ N(v)). Clearly, u′, v′, w′ ∈ K
since S is a stable set and u, v, w are adjacent to x. Suppose that u′v′ �∈ E(G).
Then {u′, v′, x} is an asteroidal triple of G. Indeed, the path u′, u, x is missed by
v′, the path v′, v, x is missed by u′, and x misses any path in K between u′ and v′.
Hence, we must conclude u′v′ ∈ E(G), and by the same token, u′w′, v′w′ ∈ E(G).
However, then {u, v, w} is an asteroidal triple in G. Indeed, the path u, u′, v′, v
is missed by w, the path u, u′, w′, w is missed by v, and the path v, v′, w′, w is
missed by u. We therefore conclude |S∗| ≤ 2.

If S∗ �= S, then we consider the graph G′ = G − (S \ S∗). Clearly, S∗ is a
minimal separator in G′, and therefore, there exists, by induction, a 3-colouring
of G′ in which all vertices of S∗ have the same colour. We extend this colouring
to G by colouring all vertices of S \ S∗ with the common colour of the vertices
of S∗. By the definition of S∗, this yields the required 3-colouring.

Hence, we may assume that S consists of exactly two vertices u and v. We
let A = N(u) \ N(v), B = (N(u) ∩ N(v)) \ {x}, and C = N(v) \ N(u). By the
minimality of S∗, we have A �= ∅ and C �= ∅. Moreover, each vertex a ∈ A is
adjacent to every vertex c ∈ C, since otherwise {a, c, x} is an asteroidal triple
of G. Indeed, the path a, u, x is missed by c, the path c, v, x is missed by a, and
any path between a and c in K is missed by x. Furthermore, A is a stable set
in G, since any adjacent a, a′ ∈ A yield an induced diamond u, a, a′, c for any
vertex c ∈ C. By the same token, C is a stable set. Finally, B is a stable set,
since any adjacent b, b′ ∈ B yield an induced diamond b, b′, u, v in G.

Suppose that there is b ∈ B adjacent to some a ∈ A, and let c ∈ C. We show
that N(b) \ {u} ⊆ N(c). Suppose otherwise and let w ∈ N(b) \ {u} be such that
wc �∈ E(G). Clearly, bc �∈ E(G) since otherwise u, a, b, c induces a diamond in G.
Also, wu, wa �∈ E(G) since otherwise w, a, b, u induces a diamond or K4 in G.
Finally, wx �∈ E(G), since w is not one of u, v and x is only adjacent to u, v.
It follows that {w, x, c} is an asteroidal triple in G. Indeed, the path w, b, a, c is
missed by x, the path c, a, u, x is missed by w, and the path x, u, b, w is missed

3-Colouring AT-Free Graphs in Polynomial Time 153

by c. This proves that N(b) \ {u} ⊆ N(c). Now, by induction, there exists a
3-colouring of G − b in which u and v have the same colour. We extend this
colouring to G by assigning b the colour of c. Clearly, b and u have different
colours in this colouring, since otherwise c, u, v have the same colour, impossible
since cv is an edge in G−b. Also, b has colour different from its other neighbours,
since N(b) \ {u} ⊆ N(c). So, this gives the required 3-colouring.

It follows that we may assume that there are no edges between A and B. In
other words, A ∪ B is a stable set. It is also a minimal separator of G[K ∪ S]
separating u from v, since u, a, c, v and u, b, v are paths from u to v for each
a ∈ A, b ∈ B, and c ∈ C. So, by induction, there is a 3-colouring of G[K ∪ S] in
which all vertices of A∪B have the same colour. If B �= ∅, then by recolouring u
with the colour of v, we obtain the required 3-colouring. So, we conclude B = ∅.

Now, suppose that there is a ∈ A with N(a) ⊆ C ∪{u}. If |A| ≥ 2, then u, v is
a minimal separator in G−a, and hence, there exists, by induction, a 3-colouring
of G − a in which u, v have the same colour. Recall that N(a′) ⊇ C ∪ {u} for
all a′ ∈ A. So, by assigning a the colour of any vertex in A \ {a}, we obtain the
required 3-colouring. Hence, we may assume A = {a}, and we observe that C
is a minimal separator of G − u separating a from v. By induction, there is a
3-colouring of G − u in which all vertices of C have the same colour. To obtain
the required 3-colouring, we colour u with the colour of v and recolour a with the
colour different from the colour of u and the common colour of the vertices of C.

Hence, we may assume that there exists w ∈ N(a)\ (C ∪{u}) for some a ∈ A,
and by symmetry, we also have z ∈ N(c) \ (A ∪ {v}) for some c ∈ C. We show
that G contains an asteroidal triple which will lead to a contradiction. Clearly,
w and z are both different from and non-adjacent to all of u, v, x. If wc ∈ E(G)
or wz ∈ E(G), then {w, u, v} is an asteroidal triple. Indeed, the path w, a, u is
missed by v, the path w, c, v or w, z, c, v is missed by u, and the path u, x, v
is missed by w. So, wc, wz �∈ E(G), and by symmetry, za �∈ E(G). But now
{z, w, x} is an asteroidal triple. Indeed, the path w, a, c, z is missed by x, the
path w, a, u, x is missed by z, and the path z, c, v, x is missed by w.

That concludes the proof. �

6 The Algorithm

In this section, we finally prove Theorem 1 by showing that Algorithm 1 is correct
and can be implemented to run in time O(n4).

The correctness follows easily from Theorems 2, 3, 4 and Lemma 3. We there-
fore focus on the details of O(n4) implementation.

First, we note that the complexity is easily seen to be polynomial, since all the
tests in Algorithm 1 are polynomial including the test in Line 7 which follows
from [1]. Also, the algorithm makes at most n recursive calls, since each call
reduces the graph by at least one vertex. So, to get the running time O(n4), it
suffices to explain how to implement each test in time O(n3).

The test in Line 3 has a straightforward implementation of complexity O(n3).
Similarly, the test in Line 5 can be clearly implemented in time O(n2) by the

154 J. Stacho

standard algorithm of [12]. Also, we can recognize and colour triangular strips
in Line 9 in time O(n2) by iteratively removing triangles on vertices of degree 3.

For the test in Line 1, we do the following. If we execute Line 1 for the first
time, we test if G contains a K4 by trying all possible 4-sets of vertices in time
O(n4). If we reach Line 1 by recursion to G/S and s is the vertex of G/S to which
we contracted S, then we only test if the neighbourhood of s in G/S contains
a triangle. This requires only O(n3) time, and it is enough to verify that G/S

contains no K4, since before contracting S, the graph G was assumed to contain
no K4 (because we have reached at least Line 3 before the recursive call).

Therefore, it remains to show that we can implement the test in Line 7 in
time O(n3). This requires a little more work. As remarked earlier, if the neigh-
bourhood of some vertex x is a stable set, then either N(x) is a stable cutset of
G, or x is a cutpoint of G, or |V (G)| ≤ 2. It turns out that a partial converse of
this is also true as shown in the following lemma.

Lemma 6. If S is a minimal stable separator of an AT-free graph G, then there
exists a vertex x ∈ V (G) with N(x) ⊇ S.

Proof. Let S be a counterexample to the claim and let S∗ be a smallest subset
of S for which there is no vertex x with N(x) ⊇ S∗. Clearly, |S∗| ≥ 2.

First, suppose that |S∗| = 2. Hence, S∗ = {x, y} for some vertices x, y. Since
S is a minimal separator, there are connected components K, K ′ of G − S such
that each vertex of S has a neighbour in both K and K ′. In particular, we have
u ∈ N(x) ∩ K and v ∈ N(x) ∩ K ′. Clearly, uy, vy �∈ E(G) by the minimality
of S∗. This implies that {u, v, y} is an asteroidal triple of G. Indeed, the path
u, x, v is missed by y. Also, since S is a minimal separator, we have a path P in
G[K ∪ {y}] from y to u, and a path P ′ in G[K ′ ∪ {y}] from y to v. Clearly, P is
missed by v and P ′ is missed by u.

We therefore conclude |S∗| ≥ 3, and let x, y, z be any three vertices of S∗.
By the minimality of S∗, there exist vertices a, b, c such that N(a) ⊇ S∗ \ {x},
N(b) ⊇ S∗ \ {y}, and N(c) ⊇ S∗ \ {z}, and also ax, by, cz �∈ E(G). Therefore,
{x, y, z} is an asteroidal triple of G. Indeed, the path x, c, y is missed by z, the
path y, a, z is missed by x, and the path z, b, x is missed by y.

That concludes the proof. �

We further need the following observation which is easy to check.

Observation 7. If S is a stable cutset of a connected graph G, and S′ ⊇ S is
a stable set, then S′ is also a stable cutset of G. �

Now, if G contains a minimal stable separator S, then all we have to do, by
Lemma 6, is to find a vertex x with N(x) ⊇ S. Since G is assumed to have no
induced diamond and no K4 in Line 7, N(x) contains, by Lemma 4, at most two
maximal stable sets one of which contains S. But then this set is also a stable
cutset of G by Observation 7. So, to find a minimal stable separator in G, we
test for each vertex x if N(x) or N(x)\{u} or N(x)\{v} is a stable cutset where
uv (if exists) is the unique edge in G[N(x)]. This can be accomplished in time

3-Colouring AT-Free Graphs in Polynomial Time 155

O(n2) by a standard graph search, so altogether O(n3) for all x. If a stable cutset
S is found, we reduce it to a minimal stable separator by iteratively removing
vertices of S and testing if the resulting set is a still a cutset. Again, O(n3) time,
since it suffices to test each vertex only once.

7 Conclusion

In this paper, we have shown how to find in polynomial time a 3-colouring
of a given AT-free graph if one exists. To this end, we used a nice structural
decomposition of AT-free graphs without diamonds. Note that similar structural
results are also known for other restrictions of AT-free graphs [3,6].

Finally, after submitting the paper for review, we learned that Haiko Müller et
al. announced that for every fixed k, the k-colouring problem on AT-free graphs
is solvable in polynomial time [9]. Their result is yet to be published.

Acknowledgements

The author would like to thank Derek Corneil and anonymous referees for useful
suggestions, and also Kathie Cameron and Ch́ınh Hoàng for financial support.

References

1. Brandstädt, A., Dragan, F.F., Le, V.B., Szymczak, T.: On stable cutsets in graphs.

Discrete Applied Mathematics 105, 39–50 (2000)

2. Broersma, H., Kloks, T., Kratsch, D., Müller, H.: Independent sets in asteroidal

triple-free graphs. SIAM Journal on Discrete Mathematics 12, 276–287 (1999)

3. Corneil, D., Stacho, J.: The structure and recognition of C4-free AT-free graphs

(2010) (manuscript)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, New York (1979)

5. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences

in combinatorial optimization. Combinatorica 1, 169–197 (1981)

6. Hemper, H., Kratsch, D.: On claw-free asteroidal triple-free graphs. Discrete Ap-

plied Mathematics 121, 155–180 (2002)

7. Hoàng, C.T., Kaminski, M., Lozin, V.V., Sawada, J., Shu, X.: Deciding k-colo-

rability of P5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)

8. Král, D., Kratochv́ıl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs

without forbidden induced subgraphs. In: Brandstädt, A., Le Van, B. (eds.) WG

2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)

9. Müller, H.: Personal communication

10. Randerath, B., Schiermeyer, I.: 3-colorability ∈ P for P6-free graphs. Discrete

Applied Mathematics 136, 299–313 (2004)

11. Sgall, J., Woeginger, G.J.: The complexity of coloring graphs without long induced

paths. Acta Cybernetica 15, 107–117 (2001)

12. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM Journal on

Computing 1, 146–160 (1972)

13. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Englewood

Cliffs (2000)

On Coloring Graphs without Induced Forests�

Hajo Broersma, Petr A. Golovach, Daniël Paulusma, and Jian Song

School of Engineering and Computing Sciences, Durham University,

Science Laboratories, South Road, Durham DH1 3LE, England

{hajo.broersma,petr.golovach,daniel.paulusma,jian.song}@durham.ac.uk

Abstract. The �-Coloring problem is the problem to decide whether a

graph can be colored with at most � colors. Let Pk denote the path on k
vertices and G + H and 2H the disjoint union of two graphs G and H or

two copies of H , respectively. We solve a known open problem by show-

ing that 3-Coloring is polynomial-time solvable for the class of graphs

with no induced 2P3. This implies that the complexity of 3-Coloring for

graphs with no induced graph H is now classified for any fixed graph H
on at most 6 vertices. The Vertex Coloring problem is the problem to

determine the chromatic number of a graph. We show that Vertex Col-

oring is polynomial-time solvable for the class of triangle-free graphs with

no induced 2P3 and for the class of triangle-free graphs with no induced

P2 + P4. This solves two open problems of Dabrowski, Lozin, Raman and

Ries and implies that the complexity of Vertex Coloring for triangle-

free graphs with no induced graph H is now classified for any fixed graph H
on at most 6 vertices. Our proof technique for the case H = 2P3 is based

on a novel structural result on the existence of small dominating sets in

2P3-free graphs that admit a k-coloring for some fixed k.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by
integers called colors such that no two adjacent vertices receive the same color.
The corresponding �-Coloring problem is the problem to decide whether a
graph can be colored with at most � colors. The related Vertex Coloring

problem is the problem of determining the smallest number of colors a graph
can be colored with. Due to the fact that �-Coloring is NP-complete for any
fixed � ≥ 3, there has been considerable interest in studying its complexity when
restricted to certain graph classes. Without doubt one of the most well-known
results in this respect is that �-Coloring is polynomially solvable for perfect
graphs. More information on this classic result and on the general motivation,
background and related work on coloring problems restricted to special graph
classes can be found in several surveys [18, 19] on this topic.

We continue the study of the computational complexity of the �-Coloring

and Vertex Coloring problem restricted to graphs in which a small forest
F is forbidden as an induced subgraph (such graphs are called F -free). This

� This work has been supported by EPSRC (EP/G043434/1).

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 156–167, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Coloring Graphs without Induced Forests 157

problem has been studied in many papers by different groups of researchers [2–
5, 9–11, 13–15, 17, 19, 20].

The focus on forests as forbidden induced subgraph can be justified by the fol-
lowing result. Kamiński and Lozin [10] showed that 3-Coloring is NP-complete
for the class of graphs of girth (the length of a shortest induced cycle) at least p
for any fixed p ≥ 3. This immediately implies that 3-Coloring is NP-complete
for the class of H-free graphs, if H contains a cycle.

The 3-Coloring problem is also NP-complete for the class of claw-free graphs
(graphs with no induced 4-vertex star K1,3), even for the subclass of claw-free
graphs that are also diamond-free and 4-regular, as shown by Kochol, Lozin and
Randerath [12]. This immediately implies that 3-Coloring is NP-complete for
the class of F -free graphs, if F is a forest that contains a vertex with degree at
least 3. In our previous paper [3] we showed that 3-Coloring is polynomial-time
solvable for F -free graphs if F is a linear forest on at most 6 vertices, except
for the case that F = 2P3, i.e., F consists of two disjoint paths on 3 vertices.
In Section 2, we settle this remaining case by proving that the 3-Coloring

problem is also polynomial-time solvable for the class of 2P3-free graphs. Our
approach to proving this case involves novel structural results on the existence
of small dominating sets in graphs that admit a k-coloring. We explain these
new results in Section 2 as well. Our new result together with all other above
results lead to the following theorem.

Theorem 1. Let H be a fixed graph on at most 6 vertices. Then 3-Coloring

for H-free graphs is polynomial-time solvable if H is a linear forest; otherwise it
is NP-complete.

The complexity status of the 3-Coloring problem restricted to F -free graphs is
open for many forests F on seven or more vertices, in particular for paths. It is
even unknown whether there exists a fixed integer k ≥ 7 such that 3-Coloring

is NP-complete for Pk-free graphs. This indicates how difficult these complexity
questions are, and puts the results of this paper in the right perspective. For
larger values of �, more is known on the complexity status of the �-Coloring

problem restricted to Pk-free graphs. The currently sharpest known results are
that 4-Coloring is NP-complete for P8-free graphs [3] and that 6-Coloring is
NP-complete for P7-free graphs [2]. It is unknown whether there exists an integer
� such that �-Coloring is NP-complete for P6-free graphs.

Hoàng et al. [9] showed that �-Coloring for any fixed integer � is polynomial-
time solvable for P5-free graphs. In contrast, Král’ et al. [13] proved that Vertex

Coloring is NP-hard on P5-free graphs. In fact, they give a complete complexity
classification of the Vertex Coloring problem restricted to graphs in which
one fixed graph is forbidden as an induced subgraph. In particular, this problem
is NP-hard for triangle-free graphs (also called K3-free graphs). This motivated
a study by Kamiński and Lozin [10] on the computational complexity of the
Vertex Coloring problem on triangle-free graphs with one extra forbidden
subgraph H . They show that Vertex Coloring is NP-hard for triangle-free
H-free graphs for any fixed graph H that is not a forest. A very recent paper
of Dabrowski et al. [5] deals with the computational complexity of this problem

158 H. Broersma et al.

in triangle-free F -free graphs where F is a forest on at most 6 vertices. They
conclude that the problem is NP-hard when F = K1,5 and polynomial-time
solvable in all other cases, except when F = P2 + P4 and F = 2P3. They leave
these two cases as open problems. They call the case F = 2P3 a “challenging”
open problem, because the class of triangle-free 2P3-free graphs has unbounded
clique-width, whereas there is still some hope that the clique-width of (P2 +P4)-
free triangle-free graphs is bounded. We solve the two mentioned open problems
in Section 4 by presenting two polynomial-time algorithms that solve Vertex

Coloring for triangle-free 2P3-free graphs and for triangle-free (P2 + P4)-free
graphs, respectively. All above results yield the following theorem.

Theorem 2. Let H be a fixed graph on at most 6 vertices. Then Vertex Col-

oring for triangle-free H-free graphs is polynomial-time solvable if H is a forest
and H �= K1,5; otherwise it is NP-hard.

We would like to emphasize that our algorithm for the case F = 2P3 relies on
our polynomial-time result on the 3-Coloring problem for 2P3-free graphs in
Section 2 and another new polynomial-time result, namely on the 4-Coloring

problem for triangle-free 2P3-free graphs in Section 3. The latter result is another
application of our key results on dominating sets of Section 2. We think these
results are interesting in their own right and might lead to future applications.

In order to present our results, we start by introducing some additional ter-
minology and notations.

Notations and terminology. We only consider finite undirected graphs with-
out loops and without multiple edges. Let G = (V, E) be a graph. For u ∈ V let
NG(u) = {v | uv ∈ E} denote the neighborhood of u and let dG(u) = |NG(u)|
denote the degree of u. Let U be a subset of V . Then we define NG(U) = {v ∈
V \ U | uv ∈ E for some u ∈ U}. We write G[U] to denote the subgraph of G
induced by the vertices in U , i.e., the subgraph of G with vertex set U and an
edge between two vertices u, v ∈ U whenever uv ∈ E. Furthermore, U is called
a dominating set of G if every vertex of G is in U or adjacent to a vertex of U ,
and U is called an independent set if there is no edge between any two vertices in
U . If G[U] is a complete graph, i.e., if there is an edge between any two vertices
of U , then U is called a clique.

We use Kn and Pn to denote the complete graph and path on n vertices,
respectively. The disjoint union of two graphs G and H is denoted G + H , and
the disjoint union of k copies of G is denoted kG. A linear forest is the disjoint
union of a collection of paths. Let {H1, . . . , Hp} be a set of graphs. Then we say
that a graph G is (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to
a graph in {H1, . . . , Hp}; if p = 1, we sometimes use H1-free instead of (H1)-free.

A (vertex) coloring of a graph G = (V, E) is a mapping c : V → {1, 2, . . .}
such that c(u) �= c(v) whenever uv ∈ E. Here c(u) is referred to as the color
of u. An �-coloring of G is a coloring c of G with c(V) ⊆ {1, . . . , �}. Here we
use the notation c(U) = {c(u) | u ∈ U} for U ⊆ V . We let χ(G) denote the
chromatic number of G, i.e., the smallest � such that G has an �-coloring. We
say that a graph G is �-chromatic if χ(G) = � and �-colorable if χ(G) ≤ �. The

On Coloring Graphs without Induced Forests 159

problem �-Coloring is the problem to decide whether a given graph admits an
�-coloring. The Vertex Coloring problem is the problem of determining the
chromatic number of a given graph.

A list-assignment of a graph G = (V, E) is a function L that assigns a list
L(u) of so-called admissible colors to each u ∈ V . We say that a coloring c : V →
{1, 2, . . .} respects L if c(u) ∈ L(u) for all u ∈ V . In this case we also call c a
list-coloring.

In pre-coloring extension we assume that a (possibly empty) subset W ⊆ V of
G is pre-colored with cW : W → {1, 2, . . .} and the question is whether we can
extend cW to a coloring of G. If cW is restricted to {1, 2, . . . , �} and we want to
extend it to an �-coloring of G, we say we deal with the pre-coloring extension
version of �-Coloring. This problem is relevant for us in the following sense.
In our coloring algorithms we sometimes color the vertices of a subset W ⊆ V in
every possible way (in order to start some branching). In that case we say that
we pre-color W , and then we must solve the pre-coloring extension version.

2 Key Ingredients for Coloring 2P3-Free Graphs

Our polynomial-time algorithms heavily rely on a number of structural proper-
ties of k-colorable 2P3-free graphs. We present these properties in this section,
together with some other useful observations.

We start off with the following well-known observation, the proof of which
follows from the fact that the decision problem in this case can be modeled and
solved as an instance of the 2-Satisfiability problem. This approach has been
introduced by Edwards [6] and is folklore now.

Observation 1 ([6]). Let G be a graph in which every vertex has a list of
admissible colors of size at most 2. Then checking whether G has a coloring
respecting these lists is solvable in polynomial time.

Let G = (V, E) be a 2P3-free graph. Let I be an independent set in G, and let
X be a subset of V \I. We write I(X) := NG(X) ∩ I and I(X) := I\NG(X), so
I = I(X) ∪ I(X) and I(X) ∩ I(X) = ∅. If every vertex in NG(I)\X has exactly
one neighbor in I(X) then we say that X pseudo-dominates I. An example of a
set X that pseudo-dominates a set I is illustrated in Figure 1.

The proofs of the following two lemmas are omitted due to page restrictions.

Lemma 1. Let I be an independent set in a 2P3-free graph G = (V, E). Then
G[V \I] contains a clique X that pseudo-dominates I.

Lemma 2. Let G be a 2P3-free graph that contains a set X and an independent
set I, such that X pseudo-dominates I. Let k ≥ 1. If I(X) contains more than
k vertices with degree at least k in G, then G is not k-colorable.

The following lemma states a useful relationship between k-colorability of 2P3-
free graphs with minimum degree at least k and the existence of a dominating
set, the size of which is bounded by a quadratic function in k. Its proof uses
Lemmas 1 and 2.

160 H. Broersma et al.

X NG(I) \ X

I(X) I(X)

︷ ︸︸ ︷ ︷ ︸︸ ︷

︸ ︷︷ ︸ ︸ ︷︷ ︸

Fig. 1. A set X that pseudo-dominates a set I

Lemma 3. Let G be a connected 2P3-free graph with minimum degree at least
k for some integer k. If G is k-colorable, then G contains a dominating set of
size at most 2k2 + 3.

Proof. Let G be a connected 2P3-free graph with minimum degree at least k for
some integer k. Assume that G is k-colorable. Then G is Kk+1-free. If G is a
complete graph, then G contains a dominating set of size 1, and the statement
of the lemma holds. Suppose G is not a complete graph. Then G contains an
induced path uvw. If {u, v, w} is a dominating set of G, then the statement of
the lemma holds. Suppose {u, v, w} is not a dominating set of G.

Let G′ be the graph obtained from G after removing u, v, w, and all vertices
in NG({u, v, w}). Because G is (Kk+1, 2P3)-free and u, v, w form an induced P3,
we find that G′ is (Kk+1, P3)-free. Hence, every component of G′ is isomorphic
to a graph from {K1, . . . , Kk}.

We partition the vertices of G′ into at most k independent sets I1, . . . , Ik as
follows. First we form I1 by taking exactly one vertex from each component of
G′. We remove I1 from G′ and repeat the above step to obtain I2 if there were
any vertices of G′ left. We proceed in this way until all vertices of G′ have been
used. This will happen after at most k steps, because every component of G′ has
at most k vertices at the start of this procedure.

We apply Lemma 1 to each Ih in order to find a clique Xh in G that pseudo-
dominates Ih. Because G is Kk+1-free, |Xh| ≤ k for h = 1, . . . , k.

We apply Lemma 2 to G and each Ih in order to find that |Ih(Xh)| has size at
most k for h = 1, . . . , k. Then D = {u, v, w}∪X1∪· · ·∪Xk∪I1(X1)∪· · ·∪Ik(Xk)
has at most 3 + k2 + k2 = 2k2 + 3 vertices. Since D is a dominating set in G,
this completes the proof of Lemma 3. ��

Remark 1. If in Lemma 3 the graph G is a (K3, 2P3)-free graph, then every
component in the graph G′ has size at most two. Hence, there is no Ih, and
consequently, no Xh for h ≥ 3. Moreover, in that case, X1 and X2 have size at
most two. This means that the dominating set D in the statement of Lemma 3
has size at most 3 + 2 + 2 + k + k = 2k + 7. We also observe that in this case
the size of a maximum independent set in G[D] is at most 4 + 2k.

We observe that the graph in Lemma 3 is required to have minimum degree at
least k. This is not a problem due to the following well-known procedure. Let G
be a graph. Remove all vertices with degree at most k − 1 from G. Propagate

On Coloring Graphs without Induced Forests 161

this until we obtain a graph with minimum degree at least k, denoted as G≥k.
We observe the following.

Observation 2. Let k be a fixed integer. Then G≥k can be obtained in polyno-
mial time. Furthermore, G≥k is k-colorable if and only if G is k-colorable.

As an immediate consequence of our results we will now show that testing
whether a given 2P3-free graph is 3-colorable can be done in polynomial-time.

Theorem 3. The 3-Coloring problem can be solved in polynomial time for
the class of 2P3-free graphs.

Proof. Let G = (V, E) be a 2P3-free graph on n vertices. By Observation 2 we
may assume that G has minimum degree at least 3. We first check in O(n4) time
whether G is K4-free. If not, then G is not 3-colorable. Suppose G is K4-free.

Suppose G is disconnected. Then G contains at most one component that
is not isomorphic to a complete graph on at most three vertices, because G is
2P3-free. Hence, we may assume that G is connected. We give each vertex u of
G a list L(u) = {1, 2, 3} of admissible colors. We now search for a dominating
set of at most 21 vertices. We can do this in O(n21) time by brute force. If we
do not find such a set, then G is not 3-colorable, due to Lemma 3. Otherwise,
let D be the dominating set with |D| ≤ 21 that we found.

We pre-color the vertices of D and adjust the list of each vertex in V \D by
removing the colors of its neighbors in D. Because D is a dominating set of G,
we find that every vertex in G has a list of admissible colors of size at most
2. Then checking whether G has a coloring respecting these lists is solvable in
polynomial time by Observation 1. Because there are at most 3|D| ≤ 321 different
pre-colorings of D, our algorithm runs in polynomial time. ��

3 Coloring (K3, 2P3)-Free Graphs with at Most Four
Colors

We next present an algorithm that solves the 4-Coloring problem for the class
of (K3, 2P3)-free graphs.

3.1 Outline of the Algorithm

Our algorithm first assigns a list with colors 1, 2, 3, 4 to every vertex of the input
graph G. Our goal is to reduce the list of every vertex to a list with at most
two admissible colors such that Observation 1 can be used. For this purpose our
algorithm first preprocesses G, thereby reducing the lists of admissible colors
of every vertex by at least one. This preprocessing heavily relies on Lemma 3
and is explained in detail in Section 3.2. After the preprocessing stage, we either
find that G has no 4-coloring, or else we find a constant-bounded number of
so-called suitable list-assignments of G. Due to the preprocessing, every list in
every suitable list-assignment is a proper subset of {1, 2, 3, 4}, thus of size at

162 H. Broersma et al.

most three. We show that it suffices to find a coloring of G respecting one of
the suitable list-assignments of G. However, for a suitable list-assignment L′,
we might not be able to apply Observation 1 immediately, because there might
still be vertices u with |L′(u)| = 3. In Section 3.3 we apply a polynomial-time
branching algorithm that reduces the size of such lists, thereby enabling the use
of Observation 1.

We note that during the execution of the algorithm some vertices may get an
empty list of admissible colors at some moment. In that case our algorithm can
immediately output No. We do not write this explicitly in the description of our
algorithm, because such a case will be spotted anyway, namely at the moment
we apply Observation 1.

3.2 The Preprocessing

Let G be a (K3, 2P3)-free graph, every vertex u of which has a list L(u) =
{1, 2, 3, 4} of admissible colors. If G is disconnected, then G contains at most
one component that is not isomorphic to a complete graph on at most two
vertices, because G is 2P3-free. Henceforth, we assume that G is connected.
By Observation 2, we may assume that G has minimum degree at least 4. We
preprocess G in three phases.

Phase 1. Reduce the list sizes by at least 1
The algorithm checks if G has a dominating set D of size at most 2 ·4+7 = 15. If
not, it outputs No. Suppose G has such a dominating set D. Then the algorithm
pre-colors every vertex of D with a color from {1, 2, 3, 4} and adjusts the lists of
every other vertex by removing the colors of its neighbors in D.

After Phase 1, we can partition the set of vertices of G into five sets A,
B1, B2, B3, B4, some of which may be empty. They are defined as follows. We
let A consist of all vertices with a list of at most two admissible colors. Observe
that we have not removed the vertices of D. Because these have been pre-colored,
they have a list of exactly one admissible color. Hence, by definition, D ⊆ A. For
i = 1, . . . , 4, we let Bi consist of all vertices with list {1, 2, 3, 4}\{i}. We note
that each G[Bi] contains at most one component on more than two vertices, due
to our assumption that G is (K3, 2P3)-free. We denote this component by Hi

if it exists. We write Fi for the subgraph of G[Bi] induced by the vertices of
the edge-components (components isomorphic to K2). So, each Fi is the disjoint
union of a number of edges.

Phase 2. Pre-color each Fi

We pre-color every vertex of Fi for i = 1, . . . , 4 respecting its list of admissible
colors. Afterwards, the algorithm adjusts the lists of every other vertex in B1 ∪
B2 ∪ B3 ∪ B4 by removing the colors of its neighbors in F1 ∪ F2 ∪ F3 ∪ F4. We
redefine A, B1, B2, B3, B4 by moving every vertex in B1 ∪B2 ∪B3 ∪B4 that has
a new list of at most two admissible colors to A.

Phase 3. Reduce the list sizes in each Hi by at least one
For i = 1, . . . , 4 the algorithm acts as follows. It checks if Hi has a dominating
set Di of size at most 2 · 3 + 7 = 13. If not it outputs No. Suppose Hi has

On Coloring Graphs without Induced Forests 163

such a dominating set Di. Then the algorithm pre-colors every vertex of Di

respecting its list of admissible colors and adjusts the lists of every other vertex
in B1 ∪ B2 ∪ B3 ∪ B4 by removing the colors of its neighbors in Di. We denote
the resulting list-assignment by L′ and call L′ a suitable list-assignment of G.

After Phase 3, we redefine A, B1, B2, B3, B4 by moving every vertex in B1 ∪
B2 ∪B3 ∪B4 that has a new list of at most two admissible colors to A. Because
of Phases 2 and 3, each Bi now induces a set of isolated vertices in G. However,
a vertex from Bi may be adjacent to a vertex from Bj for some i, j with i �= j.

Before we continue with the description of our algorithm, we need to show the
following two lemmas, the proofs of which have been omitted. The first lemma
shows that we can restrict ourselves to suitable list-assignments of G. Note that
G has no suitable list-assignment if our algorithm has outputted No in Phase 1, 2
or 3. Otherwise, the number of suitable list-assignments depends on the number
of different pre-colorings in Phase 1, 2 and 3. Hence, G may have many suitable
list-assignments. However, the second lemma shows that the number of suitable
list-assignments is bounded by a constant and that we can find all of them in
polynomial time.

Lemma 4. Let G be a connected (K3, 2P3)-free graph with minimum degree at
least four. Then G has a 4-coloring if and only if there exists a suitable list-
assignment L′ such that G has a coloring respecting L′.

Lemma 5. Let G be a connected (K3, 2P3)-free graph with minimum degree at
least four. Then the number of suitable list-assignments of G is constant-bounded
and can be obtained in polynomial time.

Due to Lemma 4 our algorithm is left with the following task:

Check for each suitable list-assignment L′ whether G has a coloring that respects
L′.

Due to Lemma 5 our algorithm runs in polynomial time if it performs the above
task in polynomial time for every suitable list-assignment. In Section 3.3 we
consider a single suitable list-assignment L′ of G and show that this is indeed
the case.

3.3 Reducing the Lists of Size Three in a Suitable List-Assignment

Let L′ be a suitable list-assignment created from a connected (K3, 2P3)-free
graph G. Recall that, due to the preprocessing, V (G) = A ∪ B1 ∪ B2 ∪ B3 ∪ B4

with the following four properties; also recall that D is the dominating set that
got pre-colored in Phase 1.

P1. |L′(u)| ≤ 2 for every u ∈ A;

P2. L′(v) = {1, 2, 3, 4}\{i} for every v ∈ Bi and for every 1 ≤ i ≤ 4;

P3. Bi is an independent set for every 1 ≤ i ≤ 4;

P4. Every vertex of Bi is adjacent to at least one vertex of D that has color i.

164 H. Broersma et al.

Our algorithm now starts a branching procedure in order to reduce the number
of admissible colors in the list of every vertex in each Bi by at least one, thereby
enabling the use of Observation 1. This is described below.

Phase 4. The branching
Our algorithm first considers B1, then B2, then B3, and finally B4 by applying
the following code for each Bi. Recall that Bi(X) = NG(X) ∩ Bi and that
Bi(X) = Bi\NG(X).

(i) Determine a clique X in G[V \D] with X = {x} or X = {x1, x2} that pseudo-
dominates Bi.

(ii) If X = {x}, then do as follows for every pair p, q ∈ {1, 2, 3, 4}\{i} with p �= q:

1. Set L′(u) := {p, q} for every u ∈ Bi(X).
2. Remove all vertices in Bi(X) with at most two neighbors in V \D.
3. Pre-color all remaining vertices in Bi(X) respecting L′.
4. If i ≤ 3, then start Phase 4 with Bi+1; otherwise apply Observation 1.

If the above branching does not lead to a coloring of G respecting L′, then G
might still have such a coloring. However, in that case all three colors from
{1, 2, 3, 4}\{i}must occur on Bi(X). This means that our algorithm must do
as follows: pre-color x by i, remove x from G and repeat Phase 4 with set Bi.

(iii) If X = {x1, x2}, then do as follows for all 4-tuples (p, q, r, s) with p, q, r, s ∈
{1, 2, 3, 4}\{i}, p �= q and r �= s:

1. Set L′(u) := {p, q} for every u ∈ Bi({x1}).
2. Set L′(v) := {r, s} for every v ∈ Bi({x2}).
3. Remove all vertices in Bi(X) with at most two neighbors in V \D.
4. Pre-color all remaining vertices in Bi(X) respecting L′.
5. If i ≤ 3, then start Phase 4 with Bi+1; otherwise apply Observation 1.

If the above branching does not lead to a coloring of G respecting L′, then
G might still have such a coloring. However, in that case, all three colors
from {1, 2, 3, 4}\{i} must occur on Bi({x1}), implying that x1 has at least
three neighbors in Bi and must get color i, or they must all three occur on
Bi({x2}), implying that x2 has at least three neighbors in Bi and must get
color i. Note that this is an “either or” situation, because x1 and x2 are
adjacent, and as such they cannot both be colored with color i. We branch
in either direction.

First we check if x2 has at least three neighbors in Bi. If so, then do as
follows for every p ∈ L′(x1)\{i}:

6. Set L′(x1) = p.
7. Set L′(u) := L′(u)\{p} for every u ∈ Bi({x1}).
8. Set L′(x2) := {i}.
9. Remove x1, x2 from G, set Bi := Bi\Bi({x1}), and repeat Phase 4 with

Bi.

On Coloring Graphs without Induced Forests 165

If the above branching does not lead to a coloring of G respecting L′, or
if x2 has at most two neighbors in Bi, then check if x1 has at least three
neighbors in Bi. If not, then pre-color every vertex in Bi(X). Then start
Phase 4 with set Bi if i ≤ 3 or apply Observation 1 if i = 4. Otherwise do
as follows for every r ∈ L′(x2)\{i}:

10. Set L′(x2) = r.
11. Set L′(v) := L′(v)\{r} for every v ∈ Bi({x2}).
12. Set L′(x1) := {i}.
13. Remove x1, x2 from G, set Bi := Bi\Bi({x2}), and repeat Phase 4 with

Bi.

(iv) If all calls to Observation 1 yield no coloring, then G has no coloring re-
specting L′, and the algorithm outputs No. Otherwise, if there is a call to
Observation 1 that yields a coloring c, then the algorithm extends c to a
coloring of G that respects L′ by coloring the vertices it has removed from
G in the reverse order of their removal, in such a way that L′ is respected.

The proof of the following lemma has been omitted.

Lemma 6. Phase 4 is correct and runs in polynomial time.

By Lemmas 4–6 we immediately obtain the following result.

Theorem 4. The 4-Coloring problem can be solved in polynomial time for
the class of (K3, 2P3)-free graphs.

4 Determining the Chromatic Number

We present two polynomial-time algorithms that solve the Vertex Coloring

problem for (K3, 2P3)-free graphs and for (K3, P2+P4)-free graphs, respectively.
We need the following theorem. We omit the proof due to page restrictions.
However, the second statement has been observed by Dabrowski et al. [5] without
proof (because the result is easy to prove).

Theorem 5. Every (K3, 2P3)-free graph can be colored with at most 5 colors,
and every (K3, P2 + P4)-free graph can be colored with at most 4 colors.

Theorem 6. The Vertex Coloring problem can be solved in polynomial time
for the class of (K3, 2P3)-free graphs and for the class of (K3, P2+P4)-free graphs.

Proof. We present two algorithms. Each algorithm just checks for the input
graph G whether it is k-colorable for increasing k up to a certain value k∗,
which is equal to 4 in case G is (K3, 2P3)-free, and which is equal to 3 in case
G is (K3, P2 + P4)-free. If no coloring of G has been found then χG = k∗ +
1 is outputted. The correctness of these algorithms follows immediately from
Theorem 5. Below we show that they run in polynomial time.

166 H. Broersma et al.

We first note that a graph can be colored with at most one color if and only
if it consists of isolated vertices only. Secondly, a graph can be colored with at
most two colors if and only if it is bipartite.

Suppose our input graph G is (K3, 2P3)-free. Then, by Theorem 3 and 4, we
can test in polynomial time whether G is 3-colorable or 4-colorable, respectively.

Suppose G is (K3, P2 + P4)-free. In our previous paper [3] we showed that
3-Coloring can be solved in polynomial time even for (P2 + P4)-free graphs.

From the above we conclude that both our algorithm for coloring a (K3, 2P3)-
free graph and our algorithm for coloring a (K3, P2 + P4)-free graph run in
polynomial time. ��

5 Future Research

One can explore various directions to extend the polynomial-time results in this
paper, and determining the complexity of the following problems is still open.

1. 3-Coloring for (K3, sP3)-free graphs for any fixed s ≥ 3;
2. k-Coloring for 2P3-free graphs for any fixed k ≥ 4;
3. 3-Coloring for (K3, P7)-free graphs.

We expect that our key results in Section 2 will be useful for solving Problems 1
and 2. As an aside, we mention that Dabrowski et al. [5] showed that the Vertex

Coloring problem is polynomial-time solvable for the class of (K3, sK2)-free
graphs for any fixed s ≥ 2.

Another interesting research direction is to characterize the class of (K3, 2P3)-
free graphs with chromatic number 4 or 5. Such a characterization could lead
to a certifying algorithm, just as the ISAAC 2009 paper of Bruce, Hoàng, and
Sawada [4] successfully shows for 3-Colorability of P5-free graphs. We have
no examples of (K3, 2P3)-free graphs with chromatic number 5 and expect such
graphs to have a large number of vertices. We note that, even in the possible case
that such graphs do no exist at all, our polynomial-time algorithm in Section 3
for solving 4-Coloring is still useful, because it produces a 4-coloring of a 4-
chromatic (K3, 2P3)-free graph. An infinite class of 4-chromatic (K3, 2P3)-free
graphs can for example be obtained from the Grötzsch graph (see, e.g., [1]) by
replacing the unique vertex v of degree 5 by a set of vertices, all adjacent to the
five neighbors of v. These graphs are also (K3, P2 + P4)-free.

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer Graduate Texts in Mathe-

matics 244 (2008)

2. Broersma, H.J., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three complexity

results on coloring Pk-free graphs. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.)

IWOCA 2009. LNCS, vol. 5874, pp. 95–104. Springer, Heidelberg (2009)

On Coloring Graphs without Induced Forests 167

3. Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Narrowing down the gap

on the complexity of coloring Pk-free graphs. In: Proceedings of the 36th Interna-

tional Workshop on Graph-Theoretic Concepts in Computer Science (WG 2010).

LNCS (to appear, 2010)

4. Bruce, D., Hoàng, C.T., Sawada, J.: A certifying algorithm for 3-colorability of

P5-free graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,

vol. 5878, pp. 594–604. Springer, Heidelberg (2009)

5. Dabrowski, K., Lozin, V., Raman, R., Ries, B.: Colouring vertices of triangle-free

graphs. In: Proceedings of the 36th International Workshop on Graph-Theoretic

Concepts in Computer Science (WG 2010). LNCS (to appear, 2010)

6. Edwards, K.: The complexity of coloring problems on dense graphs. Theoret. Com-

put. Science 43, 337–343 (1986)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco (1979)

8. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences

in combinatorial optimization. Combinatorica 1, 169–197 (1981)

9. Hoàng, C.T., Kamiński, M., Lozin, V., Sawada, J., Shu, X.: Deciding k-colorability

of P5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)

10. Kamiński, M., Lozin, V.V.: Coloring edges and vertices of graphs without short or

long cycles. Contributions to Discrete Math. 2, 61–66 (2007)

11. Kamiński, M., Lozin, V.V.: Vertex 3-colorability of Claw-free Graphs. Algorithmic

Operations Research 21 (2007)

12. Kochol, M., Lozin, V.V., Randerath, B.: The 3-Colorability Problem on Graphs

with Maximum Degree Four. SIAM J. Comput. 32, 1128–1139 (2003)

13. Král’, D., Kratochv́ıl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs

without forbidden induced subgraphs. In: Brandstädt, A., Le Van, B. (eds.) WG

2001. LNCS, vol. 2204, p. 254. Springer, Heidelberg (2001)

14. Kratochv́ıl, J.: Precoloring extension with fixed color bound. Acta Math. Univ.

Comen. 62, 139–153 (1993)

15. Le, V.B., Randerath, B., Schiermeyer, I.: On the complexity of 4-coloring graphs

without long induced paths. Theor. Comp. Science 389, 330–335 (2007)

16. Lozin, V., Mosca, R.: Independent sets in extensions of 2K2-free graphs. Discrete

Appl. Math. 146, 74–80 (2005)

17. Randerath, B., Schiermeyer, I.: 3-Colorability ∈ P for P6-free graphs. Discrete

Appl. Math. 136, 299–313 (2004)

18. Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs - a sur-

vey. Graphs and Combin. 20, 1–40 (2004)

19. Tuza, Z.: Graph colorings with local constraints - a survey. Discuss. Math. Graph

Theory 17, 161–228 (1997)

20. Woeginger, G.J., Sgall, J.: The complexity of coloring graphs without long induced

paths. Acta Cybern. 15, 107–117 (2001)

On the Approximability of the Maximum
Interval Constrained Coloring Problem�

Stefan Canzar1, Khaled Elbassioni2, Amr Elmasry2,3, and Rajiv Raman4

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

3 Datalogisk Institut, University of Copenhagen, Denmark
4 DIMAP and Department of Computer Science, University of Warwick, UK

Abstract. In the Maximum Interval Constrained Coloring prob-

lem, we are given a set of intervals on a line and a k-dimensional require-

ment vector for each interval, specifying how many vertices of each of k
colors should appear in the interval. The objective is to color the vertices

of the line with k colors so as to maximize the total weight of intervals for

which the requirement is satisfied. This NP-hard combinatorial problem

arises in the interpretation of data on protein structure emanating from

experiments based on hydrogen/deuterium exchange and mass spectrom-

etry. For constant k, we give a factor O(
√

|Opt|)-approximation algo-

rithm, where Opt is the smallest-cardinality maximum-weight solution.

We show further that, even for k = 2, the problem remains APX-hard.

1 Introduction

The Interval Constrained Coloring (Icc) problem was introduced recently
by Althaus et al. [1,2] as the mathematical abstraction of a problem appearing
in the interpretation of experimental data in biochemistry. Monitoring exchange
rates via mass spectrometry is a method used to obtain information about the
3-dimensional structure of proteins. ICC captures the problem of increasing the
resolution of the exchange data from peptic fragments to single residues. We
refer the interested reader to Althaus et al. [2] for more on the biochemical
background. Interval Constrained Coloring is a decision problem that
asks for a coloring of an ordered sequence of n vertices V = [n] using k colors
such that a given set of requirements is satisfied. Each requirement is made up
of a closed interval I ⊆ [n], and a complete specification of how many elements
in I should be colored with each color.

More formally, let I be a set of m intervals defined on V = [n], let [k] be a
set of color classes, and r : I × [k] → ZZ+ be a requirement function such that∑

c∈[k]

r(I, c) = |I| for all I ∈ I. (1)

� Part of the work was done while the first, third and forth authors were members of

Max-Planck Institute. A. Elmasry is on leave from Alexandria University of Egypt.

R. Raman’s research is supported by the Centre for Discrete Mathematics and its

Applications (DIMAP) at University of Warwick, EPSRC award EP/D063191/1.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 168–179, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Approximability of the Maximum ICC Problem 169

The given set of intervals I is said to be feasible (or colorable) if there exists a col-
oring χ : V → [k] such that for every I ∈ I we have Nχ(I, c) = r(I, c), for all c ∈
[k], where Nχ(I, c) = |{i ∈ I : χ(i) = c}| denotes the number of vertices in I
assigned color c by χ. Clearly, not all sets of intervals are colorable. In the bio-
chemical application from which our problem arises, the requirement function
models exchange data collected in real experiments, which usually contain some
noise. Hence, we might not obtain a colorable instance even if the real underly-
ing instance is colorable. This motivates the study of the problem of extracting
the largest subset I ′ ⊆ I that is colorable. More precisely, we consider a more
general version of the problem where each interval also has a weight, in addi-
tion to its color requirements, given by w : I → IR+, and we wish to find a
maximum-weight colorable subset of the intervals, as well as produce a feasible
coloring. We define the problem formally below.

Definition 1 (Max-Feasible-Coloring (Mfc)). Given a set of intervals I
with non-negative weights w : I → IR+, a requirement function r : I× [k] → ZZ+

satisfying (1), the Max-Feasible-Coloring (Mfc) problem asks for finding
a maximum weight colorable subset I ′ ⊆ I.

The Mfc problem can also be cast as a problem on linear systems, as observed
by Byrka et al. [3]. A 0/1 matrix A has the consecutive 1’s property if in each
row of A the 1’s appear consecutively. Consider the following system, where
A ∈ {0, 1}m×n is the consecutive 1’s matrix derived in the natural manner from
the Mfc problem, and r(i) ∈ ZZm

+ is a column vector of requirements for the
i-th color from the m intervals. Let I be the n × n identity matrix.⎡⎢⎢⎢⎢⎢⎣

A 0 . . . 0
0 A . . . 0
...

. . .
...

0 . . . A
I . . . I

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x(1)

x(2)

...
x(k)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
r(1)

r(2)

...
r(k)

1

⎤⎥⎥⎥⎥⎥⎦
The Icc problem asks for a feasible solution to the above system with x(i) ∈
{0, 1}n, i = 1, . . . , k. The Mfc problem can then be stated as the problem of
computing the maximum subset of rows of the matrix A for which the above
system has a feasible solution. In this light, the problem is similar to the Max-

imum Feasible Subsystem (Mfs) problem, where an infeasible linear system
Ax = b is given and we wish to find the largest subsystem that has a feasible
solution. However, in the Mfs problem we may allow a rational vector x.

1.1 Our Results

We study the approximability of Mfc and present the first non-trivial approx-
imation algorithm for the problem. In particular, we give a factor O(

√
|Opt|)-

approximation algorithm, where we denote throughout by Opt ⊆ I an optimal
set of intervals, that is a maximum-weight colorable subset, with smallest car-
dinality. The main technique that we use is to decompose the problem into

170 S. Canzar et al.

simpler instances using Dilworth’s Theorem [4], and then show how we can solve
these simpler instances in polynomial time. A similar technique was used ear-
lier [5] to obtain an O(

√
|Opt| log n)-approximation algorithm for the following

Maximum Feasible Subsystem problem: Given an infeasible linear system
l ≤ Ax ≤ u, x ≥ 0, where A is a consecutive 1’s matrix, the problem is to find
the largest subsystem for which there is a feasible solution satisfying the non-
negativity constraints x ≥ 0. However, the same decomposition does not work
for the Mfc problem. In particular, one needs to use a different poset definition
when applying Dilworth’s Theorem. As it turns out, the new decomposition can
also be used to save the log n-factor in the above approximation factor for Mfs.

Note that the Interval Constrained Coloring problem for k = 2 colors
can be solved in polynomial time via linear programming. In contrast, we show
that the maximization version of the problem, Mfc, is APX-hard for k = 2.
This is akin to the situation for 2SAT and Max2SAT. We thus improve on the
result in [3], which shows that Mfc is APX-hard for k = 3.

1.2 Related Work

The Icc problem has been introduced in [2] by Althaus et al. who formulated the
problem of improving the resolution of exchange data as a linear minimization
problem subject to integer linear constraints (ILP), and proposed a branch-
and-bound approach to enumerate all optimal colorings (see also [6,7]). In [1],
Althaus et al. studied the problem from a theoretical point of view. They showed
it to be NP-hard in general and developed algorithms that, given a fractionally
feasible instance, find a coloring that satisfies all the requirements within ±1
of the prescribed value. Furthermore, they considered the maximization variant
of the problem, Mfc, and showed that if one is allowed to relax the coloring
requirements by a small factor of (1 + ε), then there is an algorithm that finds a
coloring satisfying (with violations) the optimal number of intervals, and running
in quasi-polynomial time if the number of colors is constant.

Komusiewicz et al. [8] showed that the problem is fixed-parameter tractable
with respect to parameters such as the maximum interval length and the maxi-
mum number of intervals containing a given vertex. Very recently, the decision
variant of the problem (Icc) was shown to be NP-hard even when k = 3 [3]; this
settles the complexity of the problem since, for k = 2, the problem is polynomi-
ally solvable [2]. However, prior to the current paper, both inapproximability of
Mfc for k = 2, and non-trivial approximations, for constant k, were not known.

A related or specialized version of the Interval Constrained Coloring

problem also arises in discrete tomography. The goal in these problems is to
reconstruct an image from the partial information that is available. In particular,
we have an m × n matrix A whose entries have to be colored with k colors. The
entries of the matrix are integers in the range {1, . . . , k}. Further, we are given
k row vectors of dimension m, and k column vectors of dimension n, which tell
us the number of entries of each color in each row and column. The problem
is then to reconstruct the coloring of the matrix A with the information in the
row and column vectors. This is a special case of a 2-dimensional version of

On the Approximability of the Maximum ICC Problem 171

our problem. See [9] for a recent survey, and [10] where the authors study the
problem when the path in our case is replaced by a general graph. We believe
that our techniques would be helpful in discrete tomography applications as well.

2 Preliminaries

In this section we recall some basic facts that we will use in our algorithm,
and introduce some definitions. Let (P ,�) be a partially ordered set (poset).
A chain (respectively, anti-chain) is a set of pairwise comparable (respectively,
incomparable) elements. The well-known Dilworth Theorem [4] states that, in
any poset P , the maximum size of anti-chain is equal to the minimum number
of chain-covers (that is, a partition of the poset into chains). An immediate
corollary is that P either contains a chain or an anti-chain of size at least

√
|P|.

Applying this recursively we obtain the following decomposition.

Lemma 1. Let (P ,�) be any poset. Then, P can be decomposed into k ≤ 2
√

|P|
sets P1, . . . ,Pk such that, for each i, the induced subposet (Pi,�) forms either
a chain or an anti-chain.

Proof. Let P1 be a chain or anti-chain of size
√

|P|. Recurse on (P −P1,�). The
recurrence we get for the number of iterations is f(p) ≤ 1 + f(p − √

p), where
p = |P|. This is satisfied with f(p) = 2

√
p. 	

Corollary 1. Let (P ,�) be a poset and w : P → IR+ be a weight function. Then
there is either a chain or an anti-chain in P of size at least w(P)

2
√

|P| .

Our approximation algorithm is based on decomposing the problem into simpler
instances, which can be solved in polynomial time. The instances are defined on
special classes of intervals, described more precisely in the following definitions:
A set of intervals I such that for every pair of intervals I, I ′ ∈ I either I ⊆ I ′

or I ′ ⊆ I will be called a tower. A set of intervals I such that for every pair
of intervals I, I ′ ∈ I neither I ⊆ I ′ nor I ′ ⊆ I will be called an anti-tower. An
anti-tower in which all the intervals intersect will be called a staircase.

We will use the following notation: For a set of intervals I ⊆ 2V , let Φ(I),
Ψ(I, u, v) and Υ(I) denote respectively the set of towers, the set of anti-towers
starting at u ∈ V and ending at v ∈ V , and the set of independent sets (that is,
pairwise disjoint intervals) from I.

An optimal tower I ′ ⊆ I (respectively, anti-tower, or staircase) is one for
which there exists a feasible coloring such that w(I ′) def=

∑
I∈I′ w(I) is maxi-

mized among all such towers (respectively, anti-towers, or staircases). We will
derive our main theorem in Section 3 form the following two lemmas, both of
which assume that k is a constant.

Lemma 2. Given any instance of Mfc, we can find an optimal tower in poly-
nomial time.

Lemma 3. Given any instance of Mfc and two vertices u and v, we can find
an optimal staircase starting at u and ending at v in polynomial time.

172 S. Canzar et al.

Two staircases are independent if the end point of one is less than the starting
point of the other, i.e., all the intervals of one are independent (i.e., disjoint) of
the intervals of the other. We will also need the following decomposition.

Proposition 1 ([11]). Any anti-tower can be partitioned into two subsets of
intervals, each of which is a set of independent staircases.

3 The Approximation Algorithm

The algorithm proceeds as follows. We first find the largest-weight colorable
tower (step 1). This can be done easily by dynamic programming, sketched in
Section 3.1. We then find, for every pair of vertices u, v ∈ V , u < v, an optimal
staircase starting at u and ending at v, and define a new weight function w′

on every possible interval of V (step 3). This can be done using the dynamic
program presented in Section 3.2. Using this weight function, we compute a
maximum wight independent set of intervals (step 5); we emphasize that we find
this independent set among all possible intervals in V , not only form I. This
can also be done by dynamic programming (see e.g. [12]). Finally, the algorithm
returns the larger among the two weights computed at steps 1 and 5. Note that
it is straightforward to modify the algorithm to also return a coloring with the
same weight that satisfies a subset of I.

Algorithm 1. Find-Mfc(V, I, r, w)
1: W1 = maxI′∈Φ(I) w(I′) (cf. Section 3.1)

2: for every u, v ∈ V s.t. u < v do
3: w′

u,v = maxI′∈Ψ(I,u,v) w(I′) (cf. Section 3.2)

4: end for
5: Let W2 = maxI′∈Υ({[u,v]:u,v∈V, u<v}) w′(I′)

6: return max{W1, W2}

Theorem 1. Algorithm Find-Mfc outputs a feasible coloring for a subset of
weight at least w(Opt)

4
√

Opt

.

Proof. Consider the intervals in a minimum-cardinality optimal solution Opt.
Define a poset P = (Opt,⊆) by the containment relation on these intervals. A
chain in such a poset is a tower, and an anti-chain is an anti-tower. By corollary
1, there is a tower or an anti-tower of weight at least w(Opt)

2
√

|Opt|
. If there is such

an anti-tower, then, by Proposition 1, there is an independent set of staircases of
weight at least w(Opt)

4
√

|Opt|
. Note that step 5 of the algorithm outputs the maximum

weight of an independent set of staircases. Thus, in all cases, the total weight of
intervals colored by the algorithm is as claimed. 	

On the Approximability of the Maximum ICC Problem 173

3.1 Finding an Optimal Tower; Proof of Lemma 2

Let I = {I1, . . . , Im} be a given set of intervals, where we assume that Ii = [ai, bi]
for i ∈ [m]. Given the requirement function r : I × [k] → ZZ+ satisfying (1), we
construct a partially ordered set (P ,�), where P ⊆ ZZk+2 is defined as follows:
there is one-to-one correspondence between P and I; interval Ii ∈ I is mapped
to the point (−ai, bi, r(Ii, 1), . . . , r(Ii, k)), and for two points P, P ′ ∈ P , P � P ′

if and only if at each coordinate P is at most the value of P ′. The algorithm for
finding an optimal tower is based on the following observation.

Observation 1. I ′ ⊆ I is a colorable tower if and only if it is a chain in P.

Thus, finding an optimal tower is equivalent to finding a maximum-weight chain,
which can be done in polynomial time (see, e.g., [12]).

3.2 Finding an Optimal Staircase; Proof of Lemma 3

Let I1, I2, . . . , Im be the sequence of intervals in I, sorted in the order of their left
endpoints, i.e., if i < j, then ai ≤ aj . Assuming this ordering, let Is be an interval
with as = u, where u is the starting vertex of the optimal staircase we are looking
for. Clearly, non of the intervals I� with � < s can be contained in the optimal
staircase starting at u. For simplicity, and w.l.o.g., let us therefore assume for
the remainder of this section, that we want to find the optimal staircase starting
at a1. Similarly, if It is an interval with bt = v, non of the intervals I� with � > t
can be contained in the optimal staircase ending at v. W.l.o.g. we therefore
assume in the following that we want to find the optimal staircase ending at bm.
Furthermore, we will assume that we have removed, in a preprocessing step, all
intervals from the instance which do not form a staircase with I1, i.e., intervals
I� with b� ≤ b1. Note that if such intervals Is or It do not exist, the weight of an
optimal staircase for this choice of u and v is defined to be −∞ in the algorithm
in Section 3. Similarly, if Is ∩ It = ∅ no staircase starting at as and ending at
bt exists and again its weight is defined to be −∞. However, if Is or It is not
uniquely defined, we have to maximize over all possible choices of Is and It with
Is ∩ It �= ∅.

We denote by It the set containing the subsequence I1, I2, . . . , It, for t ≤ m,
and by Optt an optimal staircase to the instance induced by interval set It that
contains intervals I1 and It. If such a solution does not exist, we set Optt

def= ∅.
Recall that for a given coloring χ and an arbitrary interval I defined on V ,
Nχ(I, c) counts the number of vertices in I colored c by χ. Accordingly, we de-
fine vector Nχ(I) = (Nχ(I, c))c∈[k]. Note that we denote vectors by boldface
characters. For a vector r̄ ∈ IRk, Optt(r̄, I) further constrains an optimal solu-
tion Optt to be satisfiable by a coloring χ with Nχ(I) = r̄. For such a coloring
to exist, the coloring requirement r̄ imposed on interval I must be valid in the
sense that ‖r̄‖1 = |I|. Since we will constrain optimal solutions Optt only by
valid requirements on a tail subinterval of It, we will denote Optt(r̄, I) simply
by Optt(r̄). Note that such a solution Optt(r̄) for a valid r̄ might not exist, in
which case again Optt(r̄)

def= ∅.

174 S. Canzar et al.

Intuitively, the dynamic program exploits the following optimality property
Consider a set I ′ ⊆ It′ with I1, It′ ∈ I′ that can be satisfied by a coloring
χ′. Then the colors assigned by χ′ to vertices within [at′ , b1] can be shuffled
arbitrarily without causing any interval in I′ to be not satisfied. Therefore, for
I ′ ∪ {It} to be satisfiable it suffices to require that there exists a coloring χ
satisfying both It′ and It such that Nχ([b1, bt′]) = Nχ′([b1, bt′]). In particular,
rearranging the colors of χ′ within [at′ , b1] such that it satisfies It (under an
appropriate coloring of the remaining vertices in [bt′ + 1, bt]) does not affect the
intervals in I ′, since none of them starts or ends in this interval. Furthermore,
the remainder of interval It′ , namely [bt′ +1, bt], does not intersect any interval in
I ′. In other words, if It′ is the predecessor of It in Optt, realized by a coloring χ,
then the intervals in Optt \ {It} must form a solution to It′ of maximum weight
among those solutions that can be realized by a coloring χ′′ that conforms with
χ′ in [b1, bt′], i.e., for which Nχ′′([b1, bt′]) = Nχ′([b1, bt′]) holds. An equivalent
composition of optimal solutions can be established if we condition on the colorig
within interval [p, bt′], at ≤ p ≤ b1, i.e., when we extend the left boundary of
[b1, bt′] in the above observation to any p ≥ at. More formally, an optimal solution
exhibits the following optimal substructure.

Theorem 2. (Optimal Substructure)
Assume that the optimal staircase Opt starts at interval I1 and ends at interval
It, i.e., I1, It ∈ Opt and I� /∈ Opt for all � > t. Further assume that It′ is the
predecessor of It in Opt, i.e., It′ ∈ Opt, for some 1 ≤ t′ < t, and for all I�

with t′ < � < t, I� /∈ Opt. Let χ be a coloring satisfying intervals in Opt.Then
for any at ≤ p ≤ b1, w(Opt \ {It}) = w(Optt′(Nχ([p, bt′]))).

Proof. Let χ be a coloring satisfying intervals in Opt and let at ≤ p ≤ b1 be
fixed. We show that for any subset I′ ⊆ It′ with I1, It′ ∈ I′, that can be satisfied
by a coloring χ′ s.t. Nχ′([p, bt′]) = Nχ([p, bt′]), set I ′∪{It} is colorable. For that,
we construct a coloring χ̃ as follows.

χ̃(u) =
{

χ(u) if u ∈ [bt′ + 1, bt] or u ∈ [at′ , p − 1]
χ′(u) if u ∈ [p, bt′] or u ∈ [a1, at′ − 1]

We show that coloring χ̃ satisfies I ′ ∪ {It}. First, consider interval It. The only
vertices spanned by It whose coloring differs from χ lie in [p, bt′]. These are
colored according to χ′, which satisfies Nχ′([p, bt′]) = Nχ([p, bt′]). Therefore
Nχ̃(It) = r(It) and the interval is satisfied by χ̃. Analogously, it can be shown
that interval It′ is satisfied by χ̃. Now consider an arbitrary interval I� ∈ I′

with � < t′. The only vertices spanned by I� whose coloring differs from χ′ lie
in [at′ , p − 1]. Since both χ and χ′ satisfy It′ , and Nχ([p, bt′]) = Nχ′([p, bt′]), we
have Nχ([at′ , p − 1]) = Nχ′([at′ , p − 1]) and thus Nχ̃(I�) = r(I�). 	

Let [p, bt] be a tail subinterval of It with at ≤ p ≤ b1, and let vector r̄ be a valid
coloring requirement with r̄ ≤ r(It) on that subinterval. To obtain an optimal
solution to It containing I1 and It that can be satisfied by a coloring χ with
Nχ([p, bt]) = r̄, the following recurrence “guesses” the predecessor It′ and the

On the Approximability of the Maximum ICC Problem 175

best allocation of r̄ to Iα = [p, bt′] and the remaining interval Iβ = [bt′ + 1, bt],
and recursively solves the resulting subproblem optimally.

w(Optt(r̄)) = max
1 ≤ t′ < t : at′ < at and bt′ < bt

¯̄r ∈ IRk : ||¯̄r||1 = bt′ − p + 1 and ¯̄r ≤ r̄,
r(It′) − ¯̄r ≥ r(It) − r̄

w(Optt′(¯̄r)). (2)

If there is no coloring satisfying both I1 and It under the restriction Nχ([p, bt]) =

r̄, we set Optt(r̄)
def= ∅ and define w(∅) def= −∞.

The recurrence considers only possible predecessors It′ that together with It

form a staircase. The tail subinterval [p, bt] is divided into interval Iα overlapping
with It′ and the remaining interval Iβ . A valid requirement ¯̄r on Iα is chosen in
such a way that there exists a coloring χ satisfying both Iα and Iβ under the
constraints Nχ([p, bt]) = r̄ and Nχ([p, bt′]) = ¯̄r. Such a coloring χ exists if and
only if requirement ¯̄r on [p, bt′] is consistent with requirement r̄ on [p, bt] (i.e., ¯̄r ≤
r̄) and at the same time the resulting requirement on [at, p − 1] of a coloring
satisfying It, namely r(It) − r̄, is consistent with the resulting requirement on
[at′ , p−1] of a coloring satisfying It′ , namely r(It′)−¯̄r (i.e., r(It′)− ¯̄r ≥ r(It)−r̄).

We compute the recurrence relation by a dynamic programming approach as
follows. An entry in the dynamic program matrix D is indexed by an interval
index t, the left boundary p of a tail subinterval of It, and a valid coloring
requirement vector r̄ on this subinterval [p, bt]. Then table entry D[t, p, r̄] stores
the weight of an optimal solution to It that contains I1 and It and that can be
satisfied by a coloring χ with Nχ([p, bt]) = r̄, more precisely

D[t, p, r̄] = w(Optt(r̄)).

Concerning the base case t = 1, we simply have to decide, for each p = a1, a2, . . . ,
am and each valid coloring requirement r̄ on tail subinterval [p, b1] of I1, whether
interval I1 is satisfiable under r̄:

D[1, p, r̄] =
{

w({I1}) if r̄ ≤ r(I1),
−∞ otherwise.

For all 2 ≤ t ≤ m, p = at, a3, . . . , am, and valid coloring requirements r̄ on [p, bt],
we simply “guess” the predecessor of It in Optt(r̄) according to (2):

D[t, p, r̄] = max
1 ≤ t′ < t : at′ < at and bt′ < bt

¯̄r ∈ IRk : ||¯̄r||1 = bt′ − p + 1 and ¯̄r ≤ r̄,
r(It′) − ¯̄r ≥ r(It) − r̄

D[t′, p, r̄],

where Iα = [p, bt′] and Iβ = [bt′ + 1, bt], as above. The desired value of the
optimal staircase starting at a1 and ending at bm is D[m, am, r(Im)].

176 S. Canzar et al.

4 APX-Hardness

We show that Mfc is APX-hard even with k = 2 colors. The reduction is from
Max2ESAT which was shown to be APX-hard by H̊astad [13]. The input to the
Max2ESAT problem is a boolean formula φ in conjunctive normal form with
variables x1, . . . , xn, and clauses C1, . . . , Cm, where each clause Ci is a disjunc-
tion of exactly 2 literals. The problem asks for an assignment of boolean values
to the variables that satisfies the maximum number of clauses(where a clause
is satisfied if it evaluates to 1). For a variable i, we let mi denote the number
of clauses that the variable appears in. The reduction is inspired by the APX-
hardness proof for the maximum feasible subsystem on interval matrices [5]. We
construct gadgets for each variable and each clause. Let P be a path on 8n+2 ver-
tices, where the vertices are labeled {v−4n−1, v−4n, v−4n+1, . . . , v−1, v1, v2, . . . ,
v4n, v4n+1}. In the figures, we represent the path having vertices on integer
points on the number line. However, the origin is not a vertex of P . Let the
two colors we use be BLACK and WHITE. We start with a description of the
variable gadgets.

Variable Gadget: The gadget for variable xi consists of 2mi copies of the following
basic gadget that we describe, i.e., each interval of the basic gadget for xi is
replicated 2mi times to obtain the variable gadget for xi.

A basic gadget for variable xi, BGi consists of 4 sets of intervals Li, Ri, Ci,
and Bi, nemonic for left, right, center and boundary respectively. The sets Li, Ri

and Ci consist of 2 intervals each, labeled L0
i and L1

i , and so on, and the set Bi

consists of two intervals labeled B′
i and B′′

i . Figure 1 gives a graphic representa-
tion of the gadget along with the requirements and coordinates of the intervals.
The intervals in set Li, for i = 1, . . . , n have their right end-point at −1, and
the intervals of set Ri have their left end-point at 1. The set Ci is symmetric
around 0. A variable gadget consists of 2mi copies of the basic gadget BGi for
variable xi. Assume we fix the colors of the vertices v−1 and v1 so that they
have distinct colors. Then, in any solution that satisfies the maximal number
of intervals of BGi, the two sets of vertices SA = {v−4i−1, v−4i, v4i, v4i+1}, and
SB = {v−4i+1, v−4i+2, v4i−2, v4i−1} receive two consecutive BLACK and two
consecutive WHITE colors in the same order, i.e., there are two possible ways
in which this happens encoding TRUE and FALSE.

(2i, 2i − 1)
(2i − 1, 2i)

(2i, 2i − 1)
(2i − 1, 2i)

(4i + 1, 4i − 3)
(4i − 3, 4i + 1)

(4i + 1, 4i + 1)

(4i − 3, 4i − 3)

−10 1

B′
i

R0
i

R1
i

L0
i

L1
i

C0
i

C1
i

B′′
i

−4i + 3 4i − 3

4i − 2−4i + 2

−4i + 1 4i − 1

−4i − 1 4i + 1

Fig. 1. The basic gadget for variable xi

On the Approximability of the Maximum ICC Problem 177

Lemma 4. The maximum number of intervals of a basic gadget BGi that can
be satisfied simultaneously is 5. If we assume that the vertices v−1 and v1 recieve
distinct colors, then there are exactly two colorings of the sets SA and SB (modulo
the colors on v−1 and v1).

Proof. Consider a basic gadget BGi. Each set Li, Ri and Ci consist of a pair of
mutually exclusive intervals, and we can satisfy at most one interval from each
set. This leaves us with the two intervals in the set Bi. Hence, we can satisfy at
most 5 intervals simultaneously, viz. one each from Li, Ri, Ci, and both intervals
from Bi. Note that such a set can always be satisfied as follows. Color the vertices
in the range of B′

i arbitrarily with equal numbers of each color. Now, suppose we
color the vertices in the sets SA the same color (either BLACK or WHITE),
and the set SB the same color. This gives a feasible coloring satifying 5 intervals.
Note that any optimal solution must select both intervals in the set Bi and one
interval from each of the remaining sets for an optimal solution.

Now consider a coloring that assigns distinct colors to the vertices −1 and 1.
We claim that there is no optimal solution that simultaneously satisfies both R0

i

and L1
i , and similarly there is no optimal solution simultaneously satisfying both

the intervals R1
i and L0

i . Since we have assumed that v−1 and v1 recieve distinct
colors, the set of vertices S = {v−4i+3, v−4i+2, . . . , v−3, v−2}∪{v2, v3, . . . , v4i−3}
must satisfy the color requirement (4i − 4, 4i − 4) in order to satisfy B′

i. Fur-
ther, assume that we can satisfy R0

i . Then, the range {v2, . . . , v4i−2} satisfy the
requirement (2i − 1, 2i − 2). Now, if we satisfy L1

i , the range {v−4i+2, . . . , v−2}
have color requirements (2i − 2, 2i − 1). Summing them up, the range S′ =
S ∪ {v−4i+2, v4i−2} has colors (4i − 3, 4i − 3). But, S′ ∪ {v−1, v1} has colors
(4i − 2, 4i − 2), and we can not satisfy any interval in the set Ci. Hence, we can
not have both R0

i and L1
i in an optimal solution. A symmetric argument holds

for the case where we have R1
i and L0

i together in an optimal solution. 	

For a variable gadget then, we can satisfy 10mi intervals simultaneously. We
abuse notation and use Li, L

0
i , etc. to refer either to the intervals of the basic

gadget, or to the 2mi copies of the variable gadget. An optimal solution for a
variable gadget consisting of {Bi, L

0
i , R

0
i , C

0
i } is said to be in a FALSE configura-

tion, and an optimal solution for a variable gadget consisting of {Bi, L
1
i , R

1
i , C

1
i }

is said to be in a TRUE configuration.
We can show easily by induction on n that the variable gadgets can each be

in TRUE or FALSE configuration independently, i.e., for any choice of an opti-
mal configuration for each variable gadget corresponding to variables x1, . . . , xn,
there exists a coloring that satisfies all of them simultaneously. This is encoded
in Lemma 5.

Lemma 5. The variable gadgets can be independently set to a TRUE or FALSE

configuration, with v−1 and v1 receiving distinct colors.

Clause Gadgets: We have 4 different clause gadgets corresponding to the 4 dif-
ferent types of clauses. If a clause Cp is of the form (xi ∨ xj) or (xi ∨ xj), then
the gadget for this clause consists of two intervals Ip

α, Ip
β . If Cp is of the form

178 S. Canzar et al.

(xi∨xj) or (xi∨xj) the gadget consists of 3 intervals Ip
α, Ip

β and Ip
γ . Table 1 shows

the gadgets for the 4 different types of clauses. The intervals corresponding to a
clause gadget are mutually exclusive, and satisfy the property that exactly one
interval will be satisfied if and only if the corresponding interval is satisfied. We
show this in the next lemma.

Table 1. The Clause gadgets corresponding to the 4 different types of clauses. We

assume that i < j.

Clause Intervals Requirement

Cp = (xi ∨ xj) Ip
α = [v−4j+2, v4i−2] (2i + 2j − 3, 2i + 2j − 1)

Ip
β = [v−4j+2, v4i−2] (2i + 2j − 2, 2i + 2j − 2)

Cp = (xi ∨ xj) Ip
α = [v−4j+1, v4i−2] (2i + 2j, 2i + 2j − 3)

Ip
β = [v−4j+1, v4i−2] (2i + 2j − 2, 2i + 2j − 1)

Ip
γ = [v−4j+1, v4i−2] (2i + 2j − 3, 2i + 2j)

Cp = (xi ∨ xj) Ip
α = [v−4j+1, v4i−2] (2i + 2j, 2i + 2j − 3)

Ip
β = [v−4j+1, v4i−2] (2i + 2j − 1, 2i + 2j − 2)

Ip
γ = [v−4j+1, v4i−2] (2i + 2j − 3, 2i + 2j)

Cp = (xi ∨ xj) Ip
α = [v−4j+2, v4i−2] (2i + 2j − 1, 2i + 2j − 3)

Ip
β = [v−4j+2, v4i−2] (2i + 2j − 2, 2i + 2j − 2)

Lemma 6. Let C be a clause, and assume that the gadgets for all the variables
are all optimally satisfied with v−1 and v1 receiving distinct colors. Then, exactly
one interval of C is satisfied if and only if the corresponding clause is satisfied
with the truth assignment implied by the satisfied variable gadgets.

Assume that all the variable gadgets are optimally satisfied. Then, the lemma
follows directly by counting the colors of the vertices contained in the intervals
corresponding to the clause gadget; the details are omitted.

The final part of the reduction, we show how we can ensure the assumption
in Lemmas 4, 5 and 6 that v−1 and v1 recieve distinct colors. We do this by the
addition of a set of 24m Z intervals spanning [v−1, v1], with requrirement (1, 1).
This completes the reduction. We are now ready to prove the main theorem.

Theorem 3. Mfc is APX-hard with k ≥ 2 colors.

Proof. (Sketch) Given an Max2ESAT instance with n variables and m clauses
that has an assignment satisfying k clauses, we construct a solution to the cor-
responding Mfc as described in the previous paragraph, encoding TRUE and
FALSE that satisfies at least 44m+k intervals. We can show that in the reverse
direction that in any optimal solution to the Mfc instance, all Z intervals are
satisfied, and all intervals corresponding to each variable gadget are satisfied
optimally. Hence, correspoding to each satisfied clause, exactly one interval cor-
responding to the clause gadget is satsified. Since the instance has at most O(m)
intervals, the reduction is gap preserving. 	

On the Approximability of the Maximum ICC Problem 179

The reduction above heavily uses mutually exclusive intervals with the same
end-points in order to achieve the gap preserving reduction. However, we believe
that we can modify the gadgets, albeit making the reduction more complicated
so that there are no mutually exlusive intervals with the same end-points, and
yet the reduction is gap preserving.

References

1. Althaus, E., Canzar, S., Elbassioni, K.M., Karrenbauer, A., Mestre, J.: Approxi-

mating the interval constrained coloring problem. In: Gudmundsson, J. (ed.) SWAT

2008. LNCS, vol. 5124, pp. 210–221. Springer, Heidelberg (2008)

2. Althaus, E., Canzar, S., Emmett, M.R., Karrenbauer, A., Marshall, A.G., Meyer-

Bäse, A., Zhang, H.: Computing h/d-exchange speeds of single residues from data

of peptic fragments. In: SAC, pp. 1273–1277 (2008)

3. Byrka, J., Karrebauer, A., Sanità, L.: Hardness of interval constrained coloring. In:

Proceedings of the 9th Latin American Theoretical Informatics Symposium, pp.

583–592 (2009)

4. Dilworth, R.: A decomposition theorem for partially ordered sets. Annals of Math-

ematics 51, 161–166 (1950)

5. Elbassioni, K.M., Raman, R., Ray, S., Sitters, R.: On the approximability of the

maximum feasible subsystem problem with 0/1-coefficients. In: SODA, pp. 1210–

1219 (2009)

6. Althaus, E., Canzar, S., Ehrler, C., Emmett, M.R., Karrenbauer, A., Mar-

shall, A.G., Meyer-Bäse, A., Tipton, J., Zhang, H.: Discrete fitting of hydrogen-

deuterium-exchange-data of overlapping fragments. In: Proceedings of the 4th In-

ternational Conference on Bioinformatics & Computational Biology, pp. 23–30

(2009)

7. Canzar, S., Elbassioni, K., Mestre, J.: A polynomial delay algorithm for enu-

merating approximate solutions to the interval constraint coloring problem. In:

ALENEX, pp. 23–33. SIAM, Philadelphia (2010)

8. Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing intractability: A

case study for interval constrained coloring. In: Kucherov, G., Ukkonen, E. (eds.)

CPM 2009. LNCS, vol. 5577, pp. 207–220. Springer, Heidelberg (2009)

9. de Werra, D., Costa, M.C., Picouleau, C., Ries, B.: On the use of graphs in discrete

tomography. 4OR 6 (2008) 101–123

10. Bentz, C., Costa, M.C., de Werra, D., Picouleau, C., Ries, B.: On a graph coloring

problem arising from discrete tomography. Networks 51, 256–267 (2008)

11. Albertson, M., Jamison, R., Hedetniemi, S., Locke, S.: The subchromatic number

of a graph. Discrete Mathematics 74, 33–49 (1989)

12. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, Algorithms

and Combinatorics, vol. 24. Springer, New York (2003)

13. H̊astad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)

Approximability of Constrained LCS�

Minghui Jiang

Department of Computer Science, Utah State University, Logan, UT 84322, USA
mjiang@cc.usu.edu

Abstract. The problem CONSTRAINED LONGEST COMMON SUBSEQUENCE

is a natural extension to the classical problem LONGEST COMMON SUBSE-
QUENCE, and has important applications to bioinformatics. Given k input se-
quences A1, . . . , Ak and l constraint sequences B1, . . . , Bl, C-LCS(k, l) is the
problem of finding a longest common subsequence of A1, . . . , Ak that is also a
common supersequence of B1, . . . , Bl. Gotthilf et al. gave a polynomial-time
algorithm that approximates C-LCS(k,1) within a factor

√
m̂|Σ|, where m̂

is the length of the shortest input sequence and |Σ| is the alphabet size. They
asked whether there are better approximation algorithms and whether there ex-
ists a lower bound. In this paper, we answer their questions by showing that their
approximation factor

√
m̂|Σ| is in fact already very close to optimal although a

small improvement is still possible:

1. For any computable function f and any ε > 0, there is no polynomial-time
algorithm that approximates C-LCS(k,1) within a factor f(|Σ|) · m̂1/2−ε

unless NP = P. Moreover, this holds even if the constraint sequence is unary.
2. There is a polynomial-time randomized algorithm that approximates C-LCS

(k, 1) within a factor |Σ| · O(
√

OPT · log log OPT/ log OPT) with high
probability, where OPT is the length of the optimal solution, OPT ≤ m̂.

For the problem over an alphabet of arbitrary size, we show that
3. For any ε > 0, there is no polynomial-time algorithm that approximates

C-LCS(k,1) within a factor m̂1−ε unless NP = P.
4. There is a polynomial-time algorithm that approximates C-LCS(k,1) within

a factor O(m̂/ log m̂).

We also present some complementary results on exact and parameterized algo-
rithms for C-LCS(k, l).

1 Introduction

LONGEST COMMON SUBSEQUENCE (LCS) is a fundamental problem in computer sci-
ence. Given two input sequences A1 and A2 and one constraint sequence B, CON-
STRAINED LONGEST COMMON SUBSEQUENCE (C-LCS) is the problem of finding a
longest common subsequence of A1 and A2 that is also a supersequence of B. The
problem C-LCS is a natural extension to the classical problem LCS, and has applica-
tion to computing the homology of two biological sequences with a specific or putative
structure in common [14].

We review some standard notations. For a sequence S, let S[i] denote the letter of
S at position i, let S[i, j] denote the subsequence of S starting at position i and ending

� Supported in part by NSF grant DBI-0743670.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 180–191, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Approximability of Constrained LCS 181

at position j (the subsequence is empty when i > j), and let |S| denote the length of
S. For two sequences S and T , let S T denote the concatenation of S and T , and write
S � T if S is a subsequence of T . For a letter σ and a positive integer w, let σw denote
a unary sequence consisting of w repetitions of σ.

The problem C-LCS can be easily generalized to a problem C-LCS(k, l) for an arbi-
trary number k of input sequences and an arbitrary number l of constraint sequences [6]:

Problem C-LCS(k, l)

Instance: k input sequences A1, . . . , Ak and l constraint sequences B1, . . . , Bl over
an alphabet Σ, where k ≥ 2, l ≥ 1, and |Σ| ≥ 2.

Problem: Find a longest sequence C such that C � Ai for each i, 1 ≤ i ≤ k, and
Bj � C for each j, 1 ≤ j ≤ l.

Here the input size n is the total length of the k input sequences and the l constraint
sequences.

For C-LCS(2, 1), the most basic version of the problem C-LCS on two input se-
quences A1 and A2 and one constraint sequence B, there are dynamic programming
algorithms running in O(|A1| · |A2| · |B|) time [2,5]; see also [9,1,4,3] for some re-
lated results. The problem C-LCS(k, l) becomes intractable, however, when either the
number k of input sequences or the number l of constraint sequences is unbounded.

An early result of Middendorf [12] on consistent sequences of type (Super, Sub)
implies that even if the input and constraint sequences are over a binary alphabet, it is
already NP-hard to decide whether a given instance of C-LCS(2, l) has a valid solution;
see also [13]. Recently, Gotthilf et al. [6] showed that if the sequences are over an arbi-
trary alphabet, then even if all constraint sequences have length 1, it is again NP-hard
to decide whether a given instance of C-LCS(2, l) has a valid solution. On the other
hand, Gotthilf et al. [6] observed that C-LCS(k, 1) is NP-hard because it generalizes
the classical problem LCS on an arbitrary number k of input sequences, which is known
to be NP-hard even if the input sequences are over a binary alphabet [11].

C-LCS(k, 1) is perhaps the most interesting variant of C-LCS because of its bio-
logical applications, hence it will be the focus of this paper. Let A1, . . . , Ak be the k
input sequences, and B be the single constraint sequence. Without loss of generality,
we assume that the constraint sequence B has length at least one and is a common sub-
sequence of the k input sequences A1, . . . , Ak. Put m̂ = min1≤i≤k |Ai| and b = |B|.
Then m̂ ≥ b ≥ 1.

Gotthilf et al. [6] gave a polynomial-time algorithm that approximates C-LCS(k, 1)
within a factor

√
m̂|Σ|, and asked whether there are better approximation algorithms

and whether there exists a lower bound. In the following two theorems, we show that
their approximation factor

√
m̂|Σ| is in fact already very close to optimal but neverthe-

less a small improvement is still possible:

Theorem 1. For any computable function f and any ε > 0, there is no polynomial-
time algorithm that approximates C-LCS(k, 1) within a factor f(|Σ|) · m̂1/2−ε unless
NP = P. Moreover, this holds even if the constraint sequence is unary.

Theorem 2. There is a polynomial-time randomized algorithm that approximates C-
LCS(k, 1) within a factor |Σ| · O(

√
OPT · log log OPT/ logOPT) with high proba-

bility, where OPT is the length of the optimal solution, OPT ≤ m̂.

182 M. Jiang

For an alphabet of arbitrary size, we can have |Σ| = Θ(m̂). Then the approximation
factor of Gotthilf et al.’s algorithm [6] becomes

√
m̂|Σ| = Θ(m̂). In the following two

theorems, we show that again this approximation factor Θ(m̂) is very close to optimal
but nevertheless a small improvement is possible:

Theorem 3. For any ε > 0, there is no polynomial-time algorithm that approximates
C-LCS(k, 1) within a factor m̂1−ε unless NP = P.

Theorem 4. There is a polynomial-time algorithm that approximates C-LCS(k, 1)
within a factor O(m̂/ log m̂).

Although the focus of this paper is on approximability, we also obtain some comple-
mentary results on exact and parameterized algorithms. The following theorem shows
that C-LCS(k, l) is fixed-parameter tractable with both the alphabet size |Σ| and the
optimal solution length OPT as parameters, and is polynomially solvable if both k and
l are constants:

Theorem 5. C-LCS(k, l) admits an exact algorithm running in time O(|Σ|OPT+1 ·n),
where OPT is the length of the optimal solution, and admits an exact algorithm running
in time O(

∏k
i=1(|Ai| + 1) ·

∏l
j=1(|Bj | + 1) · (k + l)).

2 Approximation Lower Bounds for C-LCS(k, 1)

2.1 Proof of Theorem 1

We prove the inapproximability of C-LCS(k, 1) by a reduction from MAX-CLIQUE.
Our construction is inspired by Middendorf [12, Theorem 2(b)].

Let G be a graph with n vertices and m edges. We construct a C-LCS(k, 1) instance
consisting of

k =
(

n

2

)
− m + 1

input sequences A1, . . . , Ak over a binary alphabet and a single constraint sequence B.
The constraint sequence B is a unary sequence of n − 1 zeros:

B = 0n−1.

The last input sequence Ak consists of n2 ones and n − 1 zeros:

Ak = 1n(01n)n−1.

Let V = {1, . . . , n} be the set of vertices of the graph G. Let Ē be the
(
n
2

)
−m pairs of

vertices of the graph G that are not edges. For each pair of vertices ēj = {u, v} ∈ Ē,
1 ≤ j ≤

(
n
2

)
− m and 1 ≤ u < v ≤ n, we construct a corresponding input sequence

Aj of n2 − n ones and n zeros:

Aj = (1n0)u−1 0(1n0)v−u (01n)n−v.

Approximability of Constrained LCS 183

For comparison, observe that

Ak = (1n0)u−1 1n(01n)v−u (01n)n−v.

We use the term one-block to refer to a substring of n consecutive ones in the input
sequences. Note that each input sequence Aj for 1 ≤ j ≤

(
n
2

)
− m consists of n − 1

one-blocks and n zeros, while the last input sequence Ak consists of n one-blocks and
n − 1 zeros. Thus m̂ = (n − 1)n + n = n2. This completes the construction. We refer
to Figure 1 for an example.

G

1

3

4 5

2

A1 = 0 11111 0 11111 0 11111 0 0 11111

A2 = 0 11111 0 11111 0 11111 0 11111 0

A3 = 11111 0 0 11111 0 11111 0 11111 0

A4 = 11111 0 11111 0 0 11111 0 0 11111

A5 = 11111 0 11111 0 11111 0 11111 0 11111

B = 0 0 0 0

C = 11111 0 11111 0 11111 0 0

Fig. 1. A graph G with n = 5 vertices and m = 6 edges. The C-LCS(k,1) instance of k =(
5
2

)
− 6 + 1 = 5 input sequences A1, . . . , A5 and a single constraint sequence B. The four

input sequences A1, A2, A3, A4 correspond to the 4 non-edges {1, 4}, {1, 5}, {2, 5}, {3, 4}. The
sequence C corresponds to the clique {1, 2, 3}.

Lemma 1. There is a clique K of q vertices in the graph G if and only if there is a
sequence C of length � = (q + 1)n − 1 that is a subsequence of each input sequence
Ai and is a supersequence of the constraint sequence B.

Proof. We first prove the direct implication. Suppose there is a clique K of q vertices
in the graph G. Let i1, . . . , iq be the q vertices in K , where i1 < . . . < iq. We construct
a sequence C of qn ones and n − 1 zeros as follows:

C = 0i1−1 1n 0i2−i1 1n · · · 0iq−iq−1 1n 0n−iq .

Note that C can be obtained from Ak by deleting all one-blocks except those with block
indices i1, . . . , iq. Clearly, C is a subsequence of Ak and is a supersequence of B. For
each input sequence Aj , 1 ≤ j ≤

(
n
2

)
−m, the two vertices u and v of the corresponding

non-edge ēj cannot be both in the clique K . Consider two cases:

184 M. Jiang

1. If u /∈ K , then C is a subsequence of the following common subsequence of Aj

and Ak

(1n0)u−1 (01n)v−u (01n)n−v,

which can be obtained either from Aj by deleting a zero, or from Ak by deleting
the one-block with block index u.

2. If v /∈ K , then C is a subsequence of the following common subsequence of Aj

and Ak

(1n0)u−1 (1n0)v−u (01n)n−v,

which can be obtained either from Aj by deleting a zero, or from Ak by deleting
the one-block with block index v.

In either case, C is a subsequence of Aj .
We next prove the reverse implication. Suppose there is sequence C of length � =

(q + 1)n − 1 that is a subsequence of each input sequence Ai and is a supersequence
of the constraint sequence B. Then C must contain exactly qn ones and exactly n − 1
zeros, because Ak and B have the same number n−1 of zeros. Note that the ones in the
input sequences are grouped into one-blocks. When selecting the common subsequence
C from each input sequence, we can select the ones from left to right in each one-block
and add the remaining ones of a one-block if it is only partially selected. In this way,
we obtain a sequence C′ that is a supersequence of C and is still a subsequence of each
input sequence. Moreover, C′ consists of at least q one-blocks and exactly n − 1 zeros.
Let K be the set of vertices corresponding to the block indices of these one-blocks in
Ak. We claim that K is a clique in the graph G, that is, for each non-edge ēj = {u, v},
either u or v is not in K .

We prove this claim by contradiction. Suppose that both vertices u and v of some
non-edge ēj are in K . Then the corresponding one-blocks with block indices u and v
in Ak are selected in C′. Since all n − 1 zeros in Ak are selected in C′, C′ contains
exactly u − 1 zeros before the one-block u, exactly n − v zeros after the one-block v,
and exactly v − u zeros between them. Observe that for any two one-blocks in Aj , if
there are at least u − 1 zeros before the left one-block and there are at least n − v zeros
after the right one-block, then these two one-blocks must both come from the middle
part 0(1n0)v−u of Aj , and hence have at most v − u − 1 zeros between them. Thus C′

cannot be a subsequence of Aj . This is a contradiction. 	

We now prove the approximation lower bounds for C-LCS(k, 1). Suppose there is a
polynomial-time algorithm that approximates C-LCS(k, 1) within a factor f(|Σ|) ·
m̂1/2−ε for some computable function f and some ε > 0. Then we can obtain a
polynomial-time algorithm that approximates MAX-CLIQUE (on a graph G of n ver-
tices) within a factor n1−ε as follows:

1. If n < (2f(2))1/ε, use a brute-force algorithm to find a maximum clique in G, then
return the clique.

2. Construct a C-LCS(k, 1) instance as in our reduction, use the f(|Σ|) · m̂1/2−ε-
approximation algorithm to find a subsequence of length �, then obtain a clique of
size q in G following the reverse implication of Lemma 1. If q ≥ 1, return the
clique of size q. Otherwise, return any single vertex in G as a clique of size 1.

Approximability of Constrained LCS 185

The algorithm clearly finds an optimal solution in constant time if it returns in Step 1.
Now assume that n ≥ (2f(2))1/ε, and proceed to Step 2. Let q∗ be the maximum size
of a clique in G. Let �∗ be the maximum length of a constrained common subsequence
for the reduced C-LCS(k, 1) instance. By Lemma 1, we have �∗ = (q∗ + 1)n − 1. The
algorithm finds a subsequence of length

� ≥ �∗

f(2) · m̂1/2−ε
=

(q∗ + 1)n − 1
f(2) · m̂1/2−ε

≥ q∗ + 1
f(2) · m̂1/2−ε

n − 1,

then obtains a clique of size

q ≥ q∗ + 1
f(2) · m̂1/2−ε

− 1.

Recall that m̂ = n2 and n ≥ (2f(2))1/ε. It follows that

max{q, 1} ≥ q + 1
2

≥ q∗ + 1
2f(2) · m̂1/2−ε

>
q∗

2f(2) · n1−2ε
=

nε

2f(2)
· q∗

n1−ε
≥ q∗

n1−ε
.

Let us recall the following result of Zuckerman which improves an earlier result of
Håstad [8]:

Theorem 6 (Zuckerman 2007 [15]). For any ε > 0, there is no polynomial-time algo-
rithm that approximates MAX-CLIQUE within a factor n1−ε unless NP = P.

By our reduction, it follows that for any computable function f and any ε > 0, there is
no polynomial-time algorithm that approximates C-LCS(k, 1) within a factor f(|Σ|) ·
m̂1/2−ε unless NP = P. The proof of Theorem 1 is now complete.

2.2 Proof of Theorem 3

It is easy to check that the reduction that Jiang and Li [10] used to prove the inap-
proximability of LCS over an arbitrary alphabet is an L-reduction from MAX-CLIQUE.
Thus, in conjunction with the result of Zuckerman [15], this L-reduction actually im-
plies the following theorem although it is not explicitly stated in their paper:

Theorem 7 (Jiang and Li 1995 [10]). For any ε > 0, there is no polynomial-time
algorithm that approximates LCS over an arbitrary alphabet within a factor m̂1−ε

unless NP = P, where m̂ is the length of the shortest input sequence.

Since C-LCS(k, 1) over an arbitrary alphabet includes LCS over an arbitrary alphabet
as a special case, Theorem 3 immediately follows.

3 Improved Approximation Algorithms for C-LCS(k, 1)

3.1 Proof of Theorem 2

Let C∗ be a constrained longest common subsequence. Since B � C∗, we can embed
B inside C∗ in some fixed way such that C∗ = C0 B[1] C1 . . . B[b] Cb, then assign

186 M. Jiang

each index a between 0 and b (which we call a slot) a value that is the length of the
subsequence Ca.

The previous approximation algorithm of Gotthilf et al. [6] is essentially a greedy
algorithm that composes a constrained common subsequence from two parts: the con-
straint sequence B itself and a |Σ|-approximation of the subsequence Ca for a slot a
of the highest value. Our improved algorithm for C-LCS(k, 1) uses Gotthilf et al.’s
greedy algorithm [6] as the first step, then supplements it with a brute-force algorithm
and a random procedure. Instead of betting on a single large slot, the random procedure
guesses a large number s of slots of high value. Intuitively, the random procedure and
the greedy algorithm complement each other in their respective worst cases. Then an
improved approximation ratio can be obtained by balancing them with suitably chosen
parameters.

Algorithm A1

1. Run Gotthilf et al.’s algorithm [6] to find a constrained common subsequence:

(a) For each slot a, 0 ≤ a ≤ b, do the following:

i. Partition the constraint sequence B → B[1, a] B[a + 1, b].
ii. Partition each input sequence Ai → Li,a Mi,a Ri,a such that B[1, a] �

Li,a, B[a + 1, b] � Ri,a, and Mi,a is maximal.
iii. Find a longest unary sequence Ma that is a common subsequence of Mi,a,

1 ≤ i ≤ k.
(b) Compose a sequence B[1, a] Ma B[a+1, b] for a slot a such that |Ma| is max-

imum.
2. Let z be the smallest positive integer1 such that for all integers � ≥ z,

� ≥ 16
⌈
log �/ log log �

⌉3
. (1)

For each integer �, b + 1 ≤ � < z, use brute force to find a constrained com-
mon subsequence of length � if it exists: enumerate all |Σ|� candidate sequences
of length �, and for each candidate sequence check whether it is a supersequence
of the constraint sequence B and is a common subsequence of the input sequences
Ai, 1 ≤ i ≤ k.

3. For each integer �, max{b + 1, z} ≤ � ≤ m̂, set the parameters

s =
⌈
log �/ log log �

⌉
, l =

⌊
(� · log log �/ log �)1/2

⌋
− 1, and w =

⌈
l

|Σ|

⌉
,

then for some tunable constant r (which controls the probability), repeat the follow-
ing random procedure for r(4s)s rounds to find a constrained common subsequence
of length b + sw:

1 A calculation shows that z = 324. Our choice of this value is somewhat arbitrary. We set the
parameter z to a concrete value here mostly for convenience, so that later in the analysis we
can prove a concrete approximation ratio λ ≤ |Σ|

√
OPT · log log OPT/ log OPT without

using the big-O notation. In actual implementation, we can set z to a smaller value, which
results in a reduced running time of Step 2 at the cost of an increased approximation ratio λ
that is still O(|Σ|

√
OPT · log log OPT/ log OPT).

Approximability of Constrained LCS 187

(a) Randomly select (sample with replacement) s slots between 0 and b. Sort the
s slots in ascending order: 0 ≤ b1 ≤ . . . ≤ bs ≤ b. Randomly select a letter
σi ∈ Σ for each slot bi, 1 ≤ i ≤ s.

(b) If the s slots are all distinct, that is, 0 ≤ b1 < . . . < bs ≤ b, compose a
candidate constrained sequence

B[1, b1] σw
1 . . . B[bs−1 + 1, bs] σw

s B[bs + 1, b],

and check whether it is a common subsequence of the input sequences Ai,
1 ≤ i ≤ k.

4. Return the longest constrained sequence found.

Approximation Ratio. Let OPT be the length of the constrained longest common
subsequence C∗. Let APX1, APX2, and APX3, respectively, be the maximum length
of a constrained common subsequence found in Step 1, Step 2, and Step 3 of the
algorithm. Put λ1 = OPT/APX1, λ2 = OPT/APX2, λ3 = OPT/APX3, and
λ = min{λ1, λ2, λ3}.

We clearly have b ≤ OPT ≤ m̂. If OPT = b, then APX1 = OPT and λ1 = 1.
Also, if b + 1 ≤ OPT < z, then APX2 = OPT and λ2 = 1. So suppose that

max{b + 1, z} ≤ OPT ≤ m̂.

Then OPT is equal to � for some iteration in Step 3.
Put

f =
√

(log OPT/ log log OPT) / |Σ|, (2)

We will show that
λ ≤

√
OPT · |Σ| / f,

hence

λ ≤ |Σ|
√

OPT · log log OPT/ log OPT ≤ |Σ|
√

m̂ · log log m̂/ log m̂.

We first look at Step 1. Let h be the highest value of a slot. Clearly,

h ≥
⌈

OPT − b

b + 1

⌉
≥ 1.

Gotthilf et al.’s algorithm [6] finds a constrained common subsequence of length

APX1 ≥ b +
⌈

h

|Σ|

⌉
≥ max

{
b + 1,

OPT
(b + 1)|Σ|

}
,

thus

λ1 ≤ min
{

OPT
b + 1

, (b + 1)|Σ|
}

.

If h ≥
√

OPT · |Σ| · f , then APX1 ≥
√

OPT/ |Σ| · f and λ1 ≤
√

OPT · |Σ| / f .
So suppose that

h ≤
√

OPT · |Σ| · f. (3)

188 M. Jiang

If b+1 ≥
√

OPT / |Σ|·f or b+1 ≤
√

OPT / |Σ| / f , then again λ1 ≤
√

OPT · |Σ| / f .
So suppose that √

OPT/ |Σ| / f ≤ b + 1 ≤
√

OPT / |Σ| · f. (4)

Now proceed to Step 3. Consider the iteration where � = OPT. From (2) we have

s =
⌈
log OPT/ log log OPT

⌉
=
⌈
f2|Σ|

⌉
, (5)

and

l =
⌊
(OPT · log log OPT/ logOPT)1/2

⌋
− 1 =

⌊√
OPT / |Σ| / f

⌋
− 1. (6)

Also, from (1) we have
OPT ≥ 16s3. (7)

Let t be the number of slots of value at least l. Then the number of slots of value less
than l is b + 1 − t. Since

OPT ≤ b + t · h + (b + 1 − t) · l,

we have

t ≥ OPT − b − (b + 1)l
h − l

≥ OPT − (b + 1)(l + 1)
h

≥ OPT −
√

OPT / |Σ| · f ·
√

OPT / |Σ| / f√
OPT · |Σ| · f

= (1 − 1/|Σ|)
√

OPT / |Σ| / f ≥ 1
2

√
OPT / |Σ|/ f, (8)

where the third inequality follows from (3), (4), and (6). Then, from (8), (7), and (5) we
have

t ≥ 1
2

√
OPT
f2|Σ| ≥ 1

2

√
16s3

s
= 2s, (9)

and from (9) and (5) we have

b ≥ b + 1
2

≥ t

2
≥ s ≥ 2f2. (10)

If a constrained common subsequence of length b + sw is found in this iteration of
Step 3, then from (6) and (10) we have

APX3 ≥ b + f2|Σ| · l

|Σ| ≥ b +
√

OPT / |Σ| · f − 2f2 ≥
√

OPT / |Σ| · f,

thus
λ3 ≤

√
OPT · |Σ| / f.

Probability. We now estimate the probability that a constrained common subsequence
is found in Step 3 in the iteration where � = OPT. First consider the probability p that a

Approximability of Constrained LCS 189

constrained common subsequence is found in one round of the random procedure. Since
the random procedure always finds a constrained common subsequence if it guesses
correctly s distinct slots of value at least l, and guesses correctly the dominating letter
for each of the s slots, we have

p ≥ t!/(t − s)!
(b + 1)s

· 1
|Σ|s . (11)

From (9), we have t!/(t−s)! ≥ (t/2)s. From (8) and (4), we have t/(b+1) ≥ 1/(2f2).
Also recall (5) that s = �f2|Σ|�. Thus

p ≥
(

t/2
(b + 1)|Σ|

)s

≥
(

1
4f2|Σ|

)s

≥
(

1
4s

)s

.

Put x = (4s)s. Then each round of the random procedure finds a constrained common
subsequence with probability at least 1/x. Since the random procedure is repeated for
rx rounds, the probability that a constrained common subsequence is not found in rx
consecutive rounds is at most

(1 − 1/x)rx ≤ 1/er,

which can be made arbitrarily small by choosing the constant r sufficiently large.

Time Complexity. Step 1 and Step 2 are clearly polynomial. For Step 3 to be poly-
nomial, it is sufficient that s = O(log n/ log log n) so that (4s)s = poly(n), where n
is the input size. This is clearly satisfied since s = �log �/ log log � � and � ≤ m̂ ≤ n.

3.2 Proof of Theorem 4

We obtain an O(m̂/ log m̂) approximation for C-LCS(k, 1) over an arbitrary alphabet
using Halldórsson’s partitioning technique [7]. Assume without loss of generality that
m̂ ≥ 2.

Algorithm A2

1. Find a shortest input sequence Â, which has length m̂, and partition it into q ≤
�m̂/ log m̂� substrings Â → S1 . . . Sq such that each substring Sp, 1 ≤ p ≤ q, has
length at most �log m̂�.

2. For each pair of indices u and v, 0 ≤ u < v ≤ b + 1, and for each subsequence T
of each substring Sp, 1 ≤ p ≤ q, compose a candidate constrained sequence

B[1, u] T B[v, b],

and check whether it is a supersequence of the constraint sequence B and is a
common subsequence of the input sequences Ai, 1 ≤ i ≤ k.

3. Return the longest constrained sequence found.

190 M. Jiang

Approximation Ratio. Let C∗ be a constrained longest common subsequence. Since
Â = S1 . . . Sq and C∗ � Â, we can partition C∗ into q substrings C∗ → C1 . . . Cq

such that Cp � Sp for 1 ≤ p ≤ q. Similarly, since C∗ = C1 . . . Cq and B � C∗, we
can partition B into q substrings B → T1 . . . Tq such that Tp � Cp for 1 ≤ p ≤ q.

By the Pigeonhole principle, at least one of the q substrings of C∗, say Cp, has length
at least 1/q times the length of C∗. This substring is enumerated by the algorithm as
some subsequence T of Sp. Let B[1, u] = T1 . . . Tp−1 and B[v, b] = Tp+1 . . . Tq. Then

B[1, u] T B[v, b] = T1 . . . Tp−1 Cp Tp+1 . . . Tq � C1 . . . Cp−1 Cp Cp+1 . . . Cq = C∗.

The length of B[1, u] T B[v, b] is at least the length of T , which is at least 1/q ≥
1/�m̂/ log m̂� times the length of C∗.

Time Complexity. The dominating step of the algorithm is Step 2. There are O(b2)
pairs of indices u and v, �m̂/ log m̂� substrings Sp, and at most 2�log m̂� = O(m̂) sub-
sequences T of each substring Sp. Thus the total number of candidate constrained se-
quences is O(b2m̂2/ log m̂). For each candidate constrained sequence, it takes O(n) time
to check whether it is valid. The overall running time of the algorithm is polynomial.

4 Exact Algorithms for C-LCS(k, l)

In this section we prove Theorem 5 by presenting two exact algorithms for C-LCS(k, l).
Our first exact algorithm, which runs in O(|Σ|OPT+1 · n) time, is a trivial brute-

force algorithm: for � = 1, . . . , m̂, enumerate all |Σ|� sequences of length �, then for
each candidate sequence check in O(n) time whether it is a constrained common subse-
quence; stop the iteration if for some � no candidate sequence of length � is a constrained
common subsequence.

Our second exact algorithm is based on dynamic programming, and achieves a run-
ning time of O(

∏k
i=1(|Ai| + 1) ·

∏l
j=1(|Bj | + 1) · (k + l)). For simplicity, we only

compute the maximum length of a constrained common subsequence (or report that
the problem has no solution). By standard techniques, an actual constrained common
subsequence of the maximum length can be found (if it exists) within the same running
time.

Denote by L(a1, . . . , ak; b1, . . . , bl) the maximum length of a constrained common
subsequence for the subproblem with partial input sequences A1[1, a1], . . . , Ak[1, ak]
and partial constraint sequences B1[1, b1], . . . , Bl[1, bl], where 0 ≤ ai ≤ |Ai| and
0 ≤ bj ≤ |Bj | for 1 ≤ i ≤ k and 1 ≤ j ≤ l. We use the value −∞ to indicate that a
subproblem has no solution. The desired entry is L(|A1|, . . . , |Ak|; |B1|, . . . , |Bl|).

The base cases are

L(0, . . . , 0; 0, . . . , 0) = 0,

and

L(a1, . . . , ak; b1, . . . , bl) = −∞, if min
1≤i≤k

ai < max
1≤j≤l

bj .

Approximability of Constrained LCS 191

The recurrence is

L(a1, . . . , ak; b1, . . . , bl)

= max

{
max
1≤i≤k

L(a1, . . . , ai−1, ai − 1, ai+1, . . . , ak; b1, . . . , bl)

L(a1 − 1, . . . , ak − 1; b′1, . . . , b
′
l) + 1,

where the second case applies only if A1[a1] = . . . = Ak[ak] = σ for some σ ∈ Σ;
then we let b′j = bj − 1 if Bj [bj] = σ and let b′j = bj if Bj [bj] �= σ.

References

1. Ann, H.-Y., Yang, C.-B., Tseng, C.-T., Hor, C.-Y.: Fast algorithms for computing the con-
strained LCS of run-length encoded strings. In: Proceedings of the 2009 International Con-
ference on Bioinformatics & Computational Biology (BIOCOMP 2009), pp. 646–649 (2009)

2. Arslan, A., Eğecioğlu, Ö.: Algorithms for the constrained longest common subsequence
problems. International Journal of Foundations of Computer Science 16, 1099–1109 (2005)

3. Bonizzoni, P., Della Vedova, G., Dondi, R., Pirola, Y.: Variants of constrained longest com-
mon subsequence. Information Processing Letters 110, 877–881 (2010)

4. Chen, Y.-C., Chao, K.-M.: On the generalized constrained longest common subsequence
problems. Journal of Combinatorial Optimization, doi:10.1007/s10878-009-9262-5.

5. Chin, F.Y.L., De Santis, A., Ferrara, A.L., Ho, N.L., Kim, S.K.: L Ho, and S. K. Kim. A
simple algorithm for the constrained sequence problems. Information Processing Letters 90,
175–179 (2004)

6. Gotthilf, Z., Hermelin, D., Lewenstein, M.: Constrained LCS: hardness and approximation.
In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 255–262. Springer,
Heidelberg (2008)

7. Halldórsson, M.M.: Approximation via partitioning. Technical Report IS-RR-95-0003F,
School of Information Science, Japan Advanced Institute of Science and Technology,
Hokuriku (1995)

8. Håstad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182, 105–142
(1999)

9. Iliopoulos, C.S., Rahman, M.S.: New efficient algorithms for the LCS and constrained LCS
problems. Information Processing Letters 106, 13–18 (2008)

10. Jiang, T., Li, M.: On the approximation of shortest common supersequences and longest
common subsequences. SIAM Journal on Computing 24, 1122–1139 (1995)

11. Maier, D.: The complexity of some problems on subsequences and supersequences. Journal
of the ACM 25, 322–336 (1978)

12. Middendorf, M.: On finding minimal, maximal, and consistent sequences over a binary al-
phabet. Theoretical Computer Science 145, 317–327 (1995)

13. Middendorf, M., Manlove, D.F.: Combined super-/substring and super-/subsequence prob-
lems. Theoretical Computer Science 320, 247–267 (2004)

14. Tsai, Y.-T.: The constrained longest common subsequence problem. Information Processing
Letters 88, 173–176 (2003)

15. Zuckerman, D.: Linear degree extractors and the inapproximability of Max Clique and Chro-
matic Number. Theory of Computing 3, 103–128 (2007)

Approximation Algorithms for the Multi-Vehicle
Scheduling Problem

Binay Bhattacharya� and Yuzhuang Hu

School of Computing Science, Simon Fraser University, Burnaby, Canada, V5A 1S6

{binay,yhu1}@cs.sfu.ca

Abstract. In this paper we investigate approximation algorithms for

the multi-vehicle scheduling problem (MVSP). In MVSP we are given

a graph G = (V, E), where each vertex u of V is associated with a

job j(u), and each edge e has a non-negative weight w(e). There are

m identical vehicles available to service the jobs. Each job j(u) has its

own release time r(u) and handling time h(u). A job j(u) can only be

serviced by one vehicle after its release time r(u), and the handling time

h(u) represents the time needed to finish processing j(u). The objective is

to find a schedule in which the maximum completion time of the jobs, i.e.

the makespan, is minimized. In this paper we present a 3-approximation

algorithm for MVSP on trees, and a (5 − 2
m

)-approximation algorithm

for MVSP on general graphs.

1 Introduction

In the vehicle routing problem (VRP) [5], we are given m vehicles and a complete
graph G where each edge is associated with non-negative edge cost satisfying the
triangle inequality. The objective is to find a separate tour for each vehicle such
that the total cost of the tour is minimized. In the typical setting of VRP, a
depot node o is also given, and in each tour the vehicle should start from and
end at the depot.

VRP is NP-hard as it is a generalization of the famous traveling salesman
problem (TSP) [13]. VRP in fact represents one of the most challenging tasks
in the area of optimization, and has been extensively investigated by many re-
searchers. Various tools, such as integer programming, local search, and clus-
tering, have been used to solve this class of problems [17]. As a well-recognized
approach of dealing with NP-hard problems, good approximation algorithms for
VRP are of great theoretical and practical importance. In this paper, we study
approximation algorithms for a variant of VRP. More specifically, we investigate
approximation algorithms for the multi-vehicle scheduling problem (MVSP) [9].

1.1 Multi-Vehicle Scheduling Problem (MVSP)

In MVSP we are given a graph G = (V, E), where each vertex u of V is associated
with a job j(u), and each edge e has a non-negative weight w(e). There are m

� Research was partially supported by MITACS and NSERC.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 192–205, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Approximation Algorithms for the Multi-Vehicle Scheduling Problem 193

identical vehicles available to service the jobs. Each job j(u) has its own release
time r(u) and handling time h(u). A job j(u) can only be serviced by one vehicle
after its release time r(u), and the handling time h(u) represents the time needed
to finish processing j(u). This implies that when the vehicle arrives earlier, the
vehicle may have to wait until the time r(u) to service j(u). The vehicle may
also choose to move to other vertices and come back to u later to service j(u).
The objective of MVSP is to find a schedule in which the maximum completion
time of the jobs, i.e., the makespan, is minimized.

MVSP is a variation of the classical VRP with time windows (VRPTW).
In VRPTW each vertex u in the graph is associated with a full time window
[r(u), d(u)], where r(u) and d(u) denote the release time and the deadline for
the job j(u) respectively. Time windows are called soft, if they are considered
non-biding, i.e., the vehicle is allowed to arrive earlier or later at a customer
node. However, when the time window constraint is violated, a separate penalty
cost of earliness or lateness will incur. Time windows are called hard, if the
customer nodes must be serviced within the specified time intervals. A survey for
VRPTW can be found in [17]. For approximation algorithms, Yehuda et al. gave
an O(log n)-approximation algorithm for VRPTW on a line in a geometric space
[3]; Blum et al. presented an O(log2 n)-approximation algorithm for VRPTW on
general graphs [2].

MVSP can be viewed as a relaxation of VRPTW, as in MVSP only release
times are associated with the customer nodes. The current research status on
MVSP is as follows. A substantial amount of research work [4] [7] [14] has been
devoted to a special case of MVSP, called SVSP, where only one vehicle is avail-
able to service the customers. Nagamochi et al. [9] introduced MVSP in the
general sense and gave a 2-approximation algorithm for MVSP on paths. For
MVSP on trees, Nagamochi et al. [15] [16] gave a (5−2/(m+1))-approximation
algorithm. There are also two polynomial time approximation schemes (PTAS)
[1] [8] for MVSP on trees under certain restrictions. For MVSP on general graphs,
a (9 + ε)-approximation can be derived from Even et al. [6].

1.2 Our Results and Solution Techniques

We summarize our results as follows.

1. For MVSP on trees, we design a 3-approximation algorithm.
2. For MVSP on general graphs, we present a (5− 2

m)-approximation algorithm.
This algorithm is based on the 3-approximation algorithm we propose for
MVSP on trees.

Our results are obtained by introducing an appropriate relaxation problem for
MVSP. We apply dynamic programming to give a 3-approximation for VRP
on trees. The main idea of this algorithm, is to use dynamic programming to
indirectly decompose the original problem P into a set of disjoint subproblems.
Approximating these subproblems separately gives us the solution for P with
the desired approximation ratio.

194 B. Bhattacharya and Y. Hu

Dynamic programming is one of the most fundamental and powerful tools for
designing efficient algorithms. However, its application in approximation algo-
rithms for VRP, is relatively new. The existing way of using dynamic program-
ming for VRP, e.g., in [2] [9] and [10], works as follows. First a set of disjoint
NP-hard subproblems is defined for the original problem P , and an approxima-
tion algorithm A with ratio α is designed for these subproblems. Typically these
subproblems have good properties, and the algorithm A can approximate them
well. In this method, dynamic programming is used as a master algorithm to
locate a set of subproblems with cost bounded by β · OPT (P), where OPT (P)
denotes the optimal solution cost of P . During this process all the configurations
of the subproblems are tried, and the algorithm A is applied to each of the con-
figurations. The one with the smallest cost is chosen to be the final solution. It
is easy to see that this solution is an (αβ)-approximation for P .

This approach relies on the fact that all the configurations of the subproblems
of P can be examined in polynomial time by dynamic programming. Therefore
it is only applicable when the underlying graph is a path [9], or when some or-
dering can be found for the underlying graph (as in the O(log2 n)-approximation
algorithm for VRPTW [2], where the dynamic programming proceeds based on
an ordering of the vertices). However, for VRP on trees, we do not know how to
deploy this method, since for a vertex u, the number of possible configurations
of the subproblems containing u is exponential in the number of children of u.

We apply dynamic programming to obtain a 3-approximation algorithm for
MVSP on trees in the following way. Our algorithm consists of two steps. In
the first step, we use dynamic programming to decompose the original problem
P into a set of disjoint subproblems. However, as it is not possible to try all
the configurations of the subproblems by directly obtaining solutions for P , we
instead find a relaxation problem P ′ and locate a set S of disjoint subproblems.
In the second step we work on approximation algorithms for the subproblems in
S. We show that a good approximation for P can be obtained by approximating
these subproblems well.

The two steps in our algorithm are highly connected. For MVSP on trees,
the problem P ′ solved in the first step in fact comes from the approximation
algorithm used in the second step. We locate P ′ in the following way. Define an
edge e to be a gap if and only if in the optimal solution no vehicle passes through
e to service customers. Define a gapless subproblem to be a subproblem whose
underlying subgraph contains no gaps. For a gapless subproblem P1, we design
an approximation algorithm which produces a solution with cost function f(P1).
Let S(P) denote the set of gapless subproblems of P . We treat maxP1∈S(P) f(P1)
as a bound, and define P ′ to be the problem of locating a set of subproblems with
the smallest possible bound maxP1∈S(P) f(P1). More details of this algorithm can
be found in Section 2 of this paper.

The rest of the paper is organized as follows. In Section 2 we present a
3-approximation algorithm for MVSP on trees. In Section 3 we show that a
(5− 2

m)-approximation is possible for MVSP on general graphs. In Section 4 we
conclude the paper and give figure research directions.

Approximation Algorithms for the Multi-Vehicle Scheduling Problem 195

2 3-Approximation for MVSP on Trees

In this section we show the 3-approximation algorithm for MVSP on trees. The
following notation is used in describing our algorithms. Assume we are given a
rooted tree T . For a node u in T , we denote the parent of u by p(u), and the
subtree rooted at u (including u) by Tu. Here p(u) is null if u is the root. We
use w(e) to denote the weight or cost of edge e.

2.1 Defining the Problem P ′ for MVSP on Trees

To define the relaxation problem P ′ for MVSP on trees, we first introduce several
lower bounds for a gapless subproblem of an MVSP instance on trees. These lower
bounds are also used to design approximation algorithms for MVSP on paths
[9]. For a gapless subproblem P1, we define two lower bounds for the makespan:

LB1(P1) = maxu∈V (P1){r(u) + h(u)}, LB2(P1, m
′) = W (P1)+H(P1)

m′

where V (P1) and E(P1) are the respective vertex set and edge set involved in P1,
m′ represents the number of vehicles used to service the jobs in P1, and W (P1)
and H(P1) are the total edge weights of E(P1) and the total handling times of
the jobs associated with the vertices in V (P1) respectively.

A collection of disjoint sets S1, S2, · · · , St is called a partition of the graph
G = (V, E), if Si ⊆ V (1 ≤ i ≤ t) and the vertices of Si (1 ≤ i ≤ t) induce a
connected subgraph in G. We define a vehicle configuration to be a partition of
the tree where each connected component Ci in the partition is associated with
a positive integer mi and

∑
i mi = m. Given a vehicle configuration V C, we call

an edge a cut edge under V C, if its two ends are in different subsets of vertices
in the partition corresponding to V C.

For a vertex u, we denote CVC (u) to be the set of connected components in
Tu under V C. Let SVC (u) be the set of subproblems defined on the correspond-
ing connected components in CVC (u). We define a new bound B(G, m) to be
minVC maxP2∈SVC (o)(B(P2, m

′) = LB1(P2)+(2W (P2)+H(P2))/m′), where o is
the root of the tree and m′ is the number of vehicles allocated for P2 under VC.
We similarly define B(Tu, m′) where m′ ∈ (0, m] is the number of vehicles used
to service the vertices in the subtree Tu. Our relaxation problem P ′ for MVSP
is just to find the set of subproblems corresponding to the bound B(G, m). We
first solve P ′, namely compute B(G, m), in strongly polynomial time by dynamic
programming. By doing so we find a set of cut edges and the original problem
is correspondingly decomposed to a set S of disjoint subproblems. In the second
step we figure out a feasible schedule for the subproblems in S with a makespan
of at most B(G, m). Note that the cut edges we located might be different from
the gaps that are defined on the optimal MVSP solution.

We first justify the second step of our algorithm in Lemma 1. The proof is
constructive.

Lemma 1. For MVSP on trees the subproblems corresponding to B(G, m) in-
duce a feasible MVSP solution with cost at most B(G, m).

196 B. Bhattacharya and Y. Hu

Proof. Let V C be the vehicle configuration corresponding to B(G, m). Consider
a subproblem P2 defined on a connected component under V C. Assume m′

vehicles are involved in P2 under V C. In the optimal solution for P2, an edge
might be traversed by more than one vehicles. We double the tree edges and
obtain a hamiltonian path containing all the jobs (by a depth first traversal of the
tree). We traverse the path from the root, and associate the handling times with
the jobs when they are visited for the first time. Therefore we transformed P2

for MVSP on trees to another subproblem P ′
2 of MVSP on paths with W (P ′

2) =
2W (P2), H(P ′

2) = H(P2) and LB1(P ′
2) = LB1(P2). Using the algorithm in [9],

we obtain a schedule for P ′
2 with cost bounded by LB1(P ′

2) + LB2(P ′
2, m

′). This
schedule is also feasible for P2 and has a cost of at most LB1(P2) + (2W (P2) +
H(P2))/m′ = B(P2, m

′). The lemma then holds after applying this analysis to
every other connected component under V C. 	

Lemma 2. For MVSP on trees the bound B(G, m) corresponds to a feasible
MVSP solution with cost bounded by 3 · OPT (P).

Proof. The gapless subproblems will be encountered when computing B(G, m).
The same operation in the proof of Lemma 1 can be applied on the gapless
subproblems. Since B(G, m) is the smallest possible, we have that B(G, m) ≤
3 · OPT (P). Due to Lemma 1 there exists a feasible solution with cost at most
B(G, m). This completes the proof. 	

The above proof also shows how to solve the subproblems once they are lo-
cated, therefore in the following we only focus on how to locate the appropriate
subproblems.

2.2 Locating the Subproblems for MVSP on Trees

The core of our solution is an algorithm to solve the following simple feasibility
decision problem D: Given a real number λ, is B(G, m) ≤ λ?

Solving the Decision Problem. In the following we assume that only the
leaves of the tree are associated with handling times. The general case can be
easily transformed to this setting by creating a pseudo vertex u′ for each vertex
u in the graph and connecting u and u′ by a zero cost edge. We set h(u′) to
h(u). It is easy to see that the optimal MVSP solution remains the same after
this transformation.

We solve the feasibility problem also by dynamic programming. Given a ve-
hicle configuration VC, we denote PVC (u) to be the subproblem defined on the
connected component containing u in CVC (u), and P ′

VC (u) to be the set of
subproblems defined on the connected components not containing u in CVC (u).
Recall that CVC (u) consists of all the connected components of Tu under VC.

To solve the decision problem, we maintain a variable obj(u) and a table
table(u) for each vertex u. The variable obj(u) records the minimum number m′

of vehicles needed to guarantee that B(Tu, m′) ≤ λ. The variable table(u) has two
dimensions. Assume the minimum value of an entry table(u)[i1][i2] of table(u)

Approximation Algorithms for the Multi-Vehicle Scheduling Problem 197

is obtained under the vehicle configuration V C. Then this value represents 2 ·
W (PVC (u)) + H(PVC (u)), given that i1 equals LB1(PVC (u)), and i2 vehicles
have been used to service the jobs in the subproblems of P ′

VC (u). Here LB1(Tu)
represents the first lower bound LB1 for all the jobs in Tu. In other words, given
the constraints of i1 and i2, the value of the entry table(u)[i1][i2] equals the
minimum of 2 · W (PVC (u)) + H(PVC (u)), for any vehicle configuration V C in
Tu. For each vertex u, we initialize all the table entries of table(u) to +∞. Given
an input of λ, the algorithm maintains that an entry table(u)[i1][i2] is not +∞
if and only if there exists a vehicle configuration V C under which the B bound
of each subproblem in P ′

VC (u) is less than or equal to λ.
We show the pseudo code of generating the tables in Figure 1.
For a leaf u, since there must be a vehicle to service u, and there are no other

jobs in Tu, the entry table(u)[r(u) + h(u)][0] is set to h(u). This is for the case
where the edge (p(u), u) is not a cut edge. The edge cost of (p(u), u) will be
considered later when merging table(u) to table(p(u)). When (p(u), u) is a cut
edge, again as u needs to be serviced, we set obj(u) to 1.

When u is a non-leaf node, the dynamic programming proceeds as follows.
We assume that all the tables and variables of its children have already been
computed. Let the children of u be c1, c2, · · · , ct (in an arbitrary order). The
algorithm scans this list of children from left to right, and incorporates the
tables of the children into table(u) one at a time. The variable obj(u) is updated
after all the children of u are considered and table(u) becomes available. The
computation of obj(u) can be expressed as

obj(u) = mini1,i2(i2 + �table(u)[i1][i2]/(λ − i1)�).

where 1 ≤ i1 ≤ LB1(G), 0 ≤ i2 ≤ m.
For an entry table(u)[i1][i2], assume its value is obtained under the vehicle

configuration V C. Then table(u)[i1][i2] represents 2 · W (PVC (u)) + H(PVC (u)).
Recall that i2 records the number of vehicles used in the subproblems of P ′

VC (u).
Therefore the total number of vehicles used in Tu corresponding to the entry
table(u)[i1][i2] is i2 + �table(u)[i1][i2]/(λ − i1)�. As we assume e = (p(u), u) is
a cut edge, and i1 represents LB1(PVC (u)), we can then get the minimum for
obj(u) after trying all possible values of i1 and i2.

The updating of table(u) for a vertex u is crucial for solving the decision
problem D. Let v be a child of u. Assume table(v) is already available before
we start to incorporate table(v) into table(u). Let tablev(u) be the resulting
new table for u. Every entry of tablev(u) is initialized to +∞, and table(u) will
be set to tablev(u) after processing v. Note that we need to work on this new
table, because additional vehicles may be needed to service all the vertices in
Tv. Consider the following cases:

Case 1: (u, v) is a cut edge. In this case tablev(u) is updated as

tablev(u)[i1][i2 + obj(v)] = table(u)[i1][i2], given that i2 + obj(v) ≤ m.

Here 1 ≤ i1 ≤ LB1(G), 0 ≤ i2 ≤ m. The entry tablev(u)[i1][i2 + obj(v)] will be
updated if it is greater than table(u)[i1][i2].

198 B. Bhattacharya and Y. Hu

Algorithm MVSP-decision(Tu, m, λ)
Input: an MVSP instance P defined on a tree Tu, an integer m and a real number λ.

Output: a table showing a bound B(Tu, m) (at least λ).

1 if u is a leaf then

2 obj(u) = 1

3 table(u)[r(u) + h(u)][0] = h(u)

4 return table(u)

5 endif

6

7 for each child v of u do

8 table(v) = MVSP-decision(Tv, m, λ);

9 tmp ← a new table with each entry set to +∞
10 for i1 = 0 to LB1(G) do

11 for i2 = 0 to m do

12 Comment: when e = (u, v) is a cut edge
13 if table(u)[i1][i2] < tmp[i1][i2 + obj(v)] and obj(v) ≤ m − i2 then

14 tmp[i1][i2 + obj(v)] = table(u)[i1][i2]
15 endif

16 Comment: when e = (u, v) is not a cut edge
17 for j1 = 0 to LB1(G) do

18 for j2 = 0 to m − i2 do

19 t1 = max{i1, j1}
20 t2 = table(u)[i1][i2] + table(v)[j1][j2] + 2w((u, v))

21 if t2 < tmp[t1][i2 + j2]) then

22 tmp[t1][i2 + j2] = t2
23 endif

24 table(u) ← tmp
25

26 Comment: consider the case when e = (p(u), u) is a cut edge
27 for i1 = 0 to LB1(G) do

28 for i2 = 0 to m do

29 t1 = �table(u)[i1][i2]/(λ − i1)�
30 if t1 + i2 < obj(u) then

31 obj(u) = t1 + i2
32 endif

33

34 return table(u)

Fig. 1. Solving the decision problem for MVSP on trees

Approximation Algorithms for the Multi-Vehicle Scheduling Problem 199

Note that an entry table(u)[i1][i2] has a meaningful value (not +∞), if and
only if under the corresponding vehicle configuration V C, B(P2, m

′) ≤ λ holds
for every subproblem P2 in P ′

VC (u). Here m′ denotes the number of vehicles
allocated for P2 under VC. This is implemented by line 13 in the algorithm
MVSP-decision in Figure 1. Recall that obj(u) records the minimum number
m′ of vehicles to guarantee that B(Tu, m′) ≤ λ. Therefore if i2 + obj(u) exceeds
m, then we know that V C is not a feasible vehicle configuration and there is no
need to complete the rest of the computation for V C.

Case 2: (u, v) is not a cut edge. In this case tablev(u) is updated as

tablev(u)[t][i2 + j2] = table(u)[i1][i2] + table(v)[j1][j2] + 2 · w((u, v)).

where 1 ≤ i1, j1 ≤ LB1(G), 0 ≤ i2 + j2 ≤ m, and t = max{i2, j2}. The entry
tablev(u)[t][i2 + j2] is updated when table(u)[i1][i2]+ table(v)[j1][j2]+2w((u, v))
is smaller.

Under this case we need to merge the two components Cu and Cv containing
u and v respectively under the current settings for the two entries of table(u)
and table(v). The new component has LB1 equal to the maximum of that of Cu

and Cv, so we update the first dimension of the new entry to be t = max{i2, j2}.
After the merging, the connected components not containing u and v remain
unchanged, therefore we set the second dimension to i2 + j2. Finally we need to
add 2 · w((u, v)) to this entry, as (u, v) now becomes part of the new connected
component containing both u and v.

The above algorithm runs in strongly polynomial time. Recall that LB1(P1)
= maxu∈V (P1) {r(u) + h(u)}, therefore for a vertex u the second dimension of
table(u) takes at most |V | distinct values. The time complexity of this algorithm
is dominated by Case 2 when updating table(u) for each vertex u. The algorithm
runs in time O(m2|V |3).

It is not difficult to see that this algorithm can be used to solve a disguised
problem D′ of D: Given a real number λ, compute the smallest possible bound
B(G, m) (at least λ) subject to the constraint that, under the corresponding
vehicle configuration VC the bound B(C, m′) of each connected component C,
not including the root o in CVC (o), is at most λ. Here m′ is the number of
vehicles used for the customers in C. We will show in the next subsection that
a strongly polynomial time algorithm for the optimization problem P ′ can be
obtained by solving D′.

Solving the Optimization Problem. In this subsection we present a poly-
nomial time algorithm called MVSP-optimization (Figure 2) to solve our opti-
mization problem. This algorithm is in the same spirit as that of the parametric
searching technique. Developed by Megiddo in [11] and [12], the parametric
searching technique works as follows. Let λ∗ be the optimal solution of an op-
timization problem P1. Assume that for P1 we have a decision problem D1(λ)
which is monotone in λ, in the sense that we can decide whether λ < λ∗, λ = λ∗

or λ > λ∗. Assume that we have an algorithm A for the decision problem D1(λ).
To solve the optimization problem P1, Megiddo’s idea is to run A generically. It

200 B. Bhattacharya and Y. Hu

seems somewhat strange to run an algorithm when the input is still unknown.
The core in Megiddo’s method is to maintain an open interval I where λ∗ lies
throughout the execution of the algorithm A. More specifically, I is initialized
to (−∞, +∞), and at each step of running A with unknown input, a critical
value t1 is computed and the concrete version of A is executed with parameter
t1. Therefore after the first step the interval I is shrunk to either (−∞, t1] or
[t1, +∞). When the generic version of A is terminated, we either find λ∗ or an
interval with its lower end equals λ∗.

It is crucial to generate the critical values in the parametric search framework.
These critical values in fact discretize the problem P1 and make it possible to
compute P1 optimally in polynomial time. Intuitively the critical values, or the
steps of A represent all the tests which the optimal solution must pass. On
the other hand, if a solution passes all such tests, then it is a candidate of the
optimal solution. Note that as long as all the critical values are tested, the master
optimization algorithm need not necessarily to be the same with A, e.g., in many
cases sorting all the critical values suffices for solving the optimization problem.

The algorithm MVSP-optimization in Figure 2 shares the same spirt with the
parametric searching technique, however, the details of MVSP-optimization are
different from the methods in [11] and [12]. Instead of running the algorithm for
the decision problem generically, we take advantage of the structure of the tree
and perform the tests bottom up along the path from the vertex being visited
to the root of the tree. Note that the idea of exploring parallelism for serial
algorithms as described in [12] does not seem to apply in this context.

Recall that P ′ is to compute the bound B(T, m) for a tree T and a given
integer m. We first define the discrete events, or the critical values, needed by
our method. Given a subtree Tu of T and a number 0 < m′ ≤ m, we define
the critical value at u to be the bound B(Tu, m′) under the constraint that m′

vehicles are assigned to service the jobs in Tu. Corresponding to this definition,
our algorithm runs in the bottom up fashion: the computation of the bound
B(T, m) starts from the leaves of the tree, and the optimal value of LB for a
subtree Tu will be available after all the vertices in Tu have been processed.

The reason we choose B(Tu, m′) (0 < m′ ≤ m) to be the critical value at a
vertex u is as follows. Let F ∗(T) be the optimal forest corresponding to the bound
B(T, m). Then B(T, m) is determined by a particular connected component C
of F ∗(T). Assume u is the root of C and Tu is allocated m′ vehicles in total
in the optimal solution. Then we can get the optimal solution by applying the
algorithm MVSP-decision in Figure 1 with the parameter B(Tu, m′). Given the
values B(Tu, m′) for every subtree Tu of T and every integer 0 < m′ ≤ m, it is
easy to see that we can compute B(T, m) by m · |V | applications of the algorithm
MVSP-decision.

For a leaf u of T , it is trivial to compute B(Tu, m′) (0 < m′ ≤ m). In our
algorithm, whenever a critical value B(Tu, m′) (u ∈ T, 0 < m′ ≤ m) is known, we
propagate the test on this value along the path from u to the root o of T . In other
words, for every vertex u′ on the path from u to o, we apply algorithm MVSP-
decision on Tu′ with m′′ ∈ [1, m] vehicles and the feasibility parameter B(Tu, m′).

Approximation Algorithms for the Multi-Vehicle Scheduling Problem 201

For an arbitrary vertex u, a critical value B(Tu, m′) (u ∈ T, 0 < m′ ≤ m)
is computed if and only if for every vertex u′ (other than u) in Tu, the test
of B(Tu′ , m′) (0 < m′ ≤ m) has already been taken on Tu. It is easy to see
that the optimal solution can be computed after m2|V |2 calls to the algorithm
MVSP-decision. Therefore the time complexity of the algorithm is O(m4|V |5).
The pseudo code of the above algorithm is listed in Figure 2.

Algorithm MVSP-optimization(T , m, o)
Input: an MVSP instance P defined on a tree T , an integer m and a root o.
Output: the bound B(T, m).

1 if u is a leaf then

2 B(Tu, 1) = r(u) + 2h(u)

3 endif

4

5 for each child v of u do

6 call MVSP-optimization(Tv, m, o)
7

8 for every vertex u′ on the path from u to the root o do

9 for every integer m′ = 0 to m do

10 for every integer m′′ = 0 to m do

11 call MVSP-decision(Tu′ , m′′, B(Tu, m′))

Fig. 2. Locating the subproblems for MVSP on trees

Lemma 3. The algorithm MVSP-optimization computes the bound B(G, m) ex-
actly. The running time of the algorithm is O(m4|V |5). 	

Proof. In the algorithm MVSP-optimization, by computing B(Tu, m′) (u ∈ V, 1 ≤
m′ ≤ m), we are in fact assuming that the edge (p(u), u) is a cut edge. The lemma
is trivially true when |V | = 1. Assume the lemma holds when |V | < n (n > 1).
Assume the graph G = (V, E) has n vertices and V C is the vehicle configuration
corresponding to B(G, m). Assume e1 = (p(u1), u1), e2 = (p(u2), u2), · · · , et =
(p(ut), ut) are all the cut edges where p(u1), p(u2), · · · , p(ut) are in the connected
component on which PV C(o) is defined. Assume m1, m2, · · · , mt vehicles are al-
located for the vertices in Tu1 , Tu2 , · · · , Tut respectively under V C. According to
our assumption, B(Tu1 , m1), B(Tu2 , m2), · · ·, B(Tut , mt) can be computed exactly
in polynomial time. In MVSP-optimization the critical value tests with feasibil-
ity parameters B(Tu1 , m1), B(Tu2 , m2), · · ·, B(Tut , mt) will be performed against
the root o. The lemma then holds for G due to the definition of the disguised de-
cision problem D′ and the fact that B(G, m) is determined by either PV C(o) or a
subproblem in P ′

V C(o).

By Lemmas 1, 2 and 3 we establish

Theorem 1. There is a 3-approximation for MVSP on trees. 	

202 B. Bhattacharya and Y. Hu

3 (5 − 2
m

)-Approximation for MVSP on General Graphs

The algorithm MVSP-optimization can be further utilized to get a (5 − 2
m)-

approximation for MVSP on general graphs. We simply apply MVSP-optimization
on a minimum spanning tree of the underlying graph G. We then obtain a feasi-
ble MVSP solution by the strategy mentioned in the proof of Lemma 1. In the
following we prove that the cost of this solution is at most (5 − 2

m) · OPT (P).
It is well known that minimum spanning trees have the property stated in

Lemma 4.

Lemma 4. Let C be the cycle introduced by adding an edge e to a minimum
spanning tree T . Then the cost of e is no less than that of any edge on C.

Lemma 4 together with Lemma 5 are crucial for our analysis. In the following we
define F ∗(P) to be the subgraph on which the gapless subproblems are defined
for an MVSP problem P .

Lemma 5. For an MVSP problem P the cost of any edge in F ∗(P) is a lower
bound on OPT (P).

Assume we already know F ∗(P) and the optimal cost OPT (P) . We describe
in the following an algorithm MVSP1 based on F ∗(P), which is designed for
analysis only. In MVSP1, we first remove any edge with cost more than OPT (P)
from the original graph G. Let the resulting graph be G′. We then compute
minimum spanning trees for each of the connected components of G′. Finally
we apply the strategy mentioned in the proof of Lemma 1 to the computed
minimum spanning trees. As shown in Lemma 6, the cost of such a solution is
at most (5 − 2

m) · OPT (P).

Lemma 6. Given the subgraph F ∗(P) for an MVSP problem P , the cost of the
solution produced by MVSP1, is at most (5 − 2

m) · OPT (P).

Proof. Let G′ be the resulting graph after removing edges with costs more than
OPT (P) from the original graph G. Due to Lemma 5, all the edges of F ∗(P)
still remain in the connected components of G′. Consider an arbitrary connected
component CC of G′. Let CC1, CC2, · · · , CCt be the connected components of
F ∗(P) in CC. We may assume that each CCi (1 ≤ i ≤ t) is a tree, as otherwise
some edges can be removed from a connected component of F ∗(P) to make it
a tree. We construct a new graph G′′ = (V ′′, E′′) where each vertex vi ∈ V ′′

(1 ≤ i ≤ t) corresponds to CCi (1 ≤ i ≤ t), and the cost of an edge (vi, vj) ∈ E′′

(1 ≤ i, j ≤ t) equals the minimum edge cost of any edge between a vertex in
CCi and a vertex in CCj in G′.

Let e1, e2, · · · , et−1 be the minimum spanning tree edges in G′′. Adding these
edges to F ∗(P) in G′ will produce a connected tree T ′ spanning all the vertices
in CC. Let P0 and Pi (1 ≤ i ≤ t) be the associated subproblems defined on T ′

and CCi respectively. Let m′ and mi (1 ≤ i ≤ t) be the vehicles used in T ′ and
CCi respectively. We have the following inequalities.

Approximation Algorithms for the Multi-Vehicle Scheduling Problem 203

(1) t ≤ m′ (2) W (Pi) + H(Pi) ≤ mi · OPT (P) (3) w(ei) ≤ OPT (P)

where 1 ≤ i ≤ t. The first inequality holds, because at least one vehicle should
be allocated for each Ci (1 ≤ i ≤ t). The second inequality is due to (W (Pi) +
H(Pi))/mi ≤ OPT (P) (1 ≤ i ≤ t). The third inequality is implied by the
algorithm MVSP1.

Therefore we have

B(T ′, m′) = LB1(P0) + (2 · W (P0) + H(P0))/m′

≤ OPT (P) + 2 ·
t∑

i=1

(W (Pi) + H(Pi))/m′ + 2 ·
t−1∑
i=1

w(ei)/m′

≤ OPT (P) + 2 ·
t∑

i=1

mi · OPT (P)/m′ + 2 · (t − 1) · OPT (P)/m′

≤ (5 − 2
m

) · OPT (P),

The lemma then holds after applying the same analysis to other connected com-
ponents of G′. 	

Consider another algorithm MVSP2, where we first compute the minimum span-
ning tree F of G and then remove the edges with costs more than OPT (P) from
F . In the following we show that MVSP1 and MVSP2 are essentially equivalent.

Lemma 7. Given F ∗(P) for an MVSP problem P , MVSP1 and MVSP2 produce
the same solution or two solutions with the same cost.

Proof. Assume CC is a connected component of G′. We claim that the vertices
in CC appear contiguously in any minimum spanning tree, say F , of G. This
contiguity is in the sense that any vertex not in CC is adjacent to at most one
vertex in CC by the edges of F .

Assume the vertices in CC are in two disjoint subtrees T1 and T2 of F . As CC
is a connected component, there is one edge e in CC that connects T1 and T2

and has cost at most OPT (P). Adding e to F will create a cycle. As T1 and T2

are disjoint in F , on this cycle there must exist two edges e1 and e2 of F , each
of which connects a vertex of CC to a vertex not in CC. According to MVSP1,
both e1 and e2 have costs larger than OPT (P). A contradiction to Lemma 4. 	

Given a minimum spanning tree F of G, our algorithm MVSP-optimization gives
the best partition of the tree to minimize B(F, m). We proved in Lemma 6 and
Lemma 7 that there exists a partition of F such that the corresponding LB
bound is at most (5 − 2

m) · OPT (P). Further due to Lemma 1, we establish

Theorem 2. There is a (5 − 2
m)-approximation for MVSP on general graphs.

	

204 B. Bhattacharya and Y. Hu

4 Conclusions and Future Work

In this paper we obtained a 3-approximation for MVSP on trees, and a (5− 2
m)-

approximation for MVSP on general graphs. We showed that by finding appro-
priate relaxation problems, dynamic programming can be applied in the design
of approximation algorithms for VRP on trees. Our (5 − 2

m)-approximation for
MVSP on general graphs is just based on the 3-approximation algorithm for
MVSP on trees. In the future we would like to further improve the approxima-
tion ratio for MVSP on general graphs, possibly by investigating new ways of
extending the use of dynamic programming for VRP to general graphs.

References

1. Augustine, J.E., Seiden, S.: Linear time approximation schemes for vehicle schedul-

ing problems. Theoretical Computer Science 324(2-3), 147–160 (2004)

2. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for

deadline-TSP and vehicle routing with time-windows. In: Proceedings of the 36th

Annual ACM Symposium on Theory of Computing, pp. 166–174 (2004)

3. Bar-Yehuda, R., Even, G., Shahar, S.: On approximating a geometric prize-

collecting traveling salesman problem with time windows. In: Proceedings of the

11th Annual European Symposium on Algorithms, pp. 55–66 (2003)

4. Bhattacharya, B.K., Carmi, P., Hu, Y., Shi, Q.: Single Vehicle Scheduling Problems

on Path/Tree/Cycle Networks with Release and Handling Times. In: Proceedings

of the 19th International Symposium on Algorithms and Computation, pp. 800–811

(2008)

5. Dantzig, G.B., Ramser, R.H.: The truck dispatching problem. Management Sci-

ence 6, 80–91 (1959)

6. Even, G., Garg, N., Konemann, J., Ravi, R., Sinha, A.: Min-max tree covers of

graphs. Operations Research Letters 32(4), 309–315 (2004)

7. Karuno, Y., Nagamochi, H.: Better approximation ratios for the single-vehicle

scheduling problems on line-shaped networks. Networks 39(4), 203–209 (2002)

8. Karuno, Y., Nagamochi, H.: A polynomial time approximation scheme for the

multi-vehicle scheduling problem on a path with release and handling times. In:

Proceedings of the 12th International Symposium on Algorithms and Computation,

pp. 36–47 (2001)

9. Karuno, Y., Nagamochi, H.: A 2-Approximation Algorithm for the Multi-vehicle

Scheduling Problem on a Path with Release and Handling Times. In: Proceedings

of the 9th Annual European Symposium on Algorithms, pp. 218–229 (2001)

10. Korula, N., Chekuri, C.: Approximation algorithms for orienteering with timewin-

dows (September 2007) (manuscript)

11. Megiddo, N.: Combinatorial optimization with rational objective functions. Math.

Oper. Res. 4, 414–424 (1979)

12. Megiddo, N.: Applying parallel computation algorithms in the design of serial al-

gorithms. Journal of ACM 30(4), 852–865 (1983)

13. Menger, K.: Reminiscences of the vienna circle and the mathematical colloquium.

Dortmund (1994)

14. Nagamochi, H., Mochizuki, K., Ibaraki, T.: Complexity of the Single Vehicle

Scheduling Problem on Graphs. Inform. Systems Oper. Res. 35(4), 256–276 (1997)

Approximation Algorithms for the Multi-Vehicle Scheduling Problem 205

15. Nagamochi, H., Okada, K.: A faster 2-approximationalgorithm for the minmax

p-traveling salesmenproblem on a tree. Discrete Applied Mathematics 140(1-3),

103–114 (2004)

16. Nagamochi, H., Okada, K.: Polynomial time 2-approximation algorithms for the

minmax subtree cover problem. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC

2003. LNCS, vol. 2906, pp. 138–147. Springer, Heidelberg (2003)

17. Toth, P., Vigo, D. (eds.): The vehicle routing problem. SIAM Monographs on

Discrete Mathematics and Applications, vol. 9. SIAM, Phaladelphia (2002)

On Greedy Algorithms for Decision Trees�

Ferdinando Cicalese1, Tobias Jacobs2, Eduardo Laber3, and Marco Molinaro4

1 University of Salerno, Italy
2 National Institute of Informatics, Japan

3 PUC – Rio de Janeiro, Brazil
4 Carnegie Mellon University, USA

Abstract. In the general search problem we want to identify a specific

element using a set of allowed tests. The general goal is to minimize

the number of tests performed, although different measures are used to

capture this goal. In this work we introduce a novel greedy approach

that achieves the best known approximation ratios simultaneously for

many different variations of this identification problem. In addition to

this flexibility, our algorithm admits much shorter and simpler analyses

than previous greedy strategies. As a second contribution, we investigate

the potential of greedy algorithms for the more restricted problem of

identifying elements of partially ordered sets by comparison with other

elements. We prove that the latter problem is as hard to approximate as

the general identification problem. As a positive result, we show that a

natural greedy strategy achieves an approximation ratio of 2 for tree-like

posets, improving upon the previously best known 14-approximation for

this problem.

1 Introduction

The problem of efficiently searching in a discrete set is a fundamental one in
computer science [20] and as such it appears in many diverse variants and in
a surprisingly wide range of areas, e.g., database [5, 9], learning [7], parallel
assembly of multipart products [10], image processing [3], data compression [14],
and more generally, theory of algorithms [1, 2, 4, 8, 19–26]. In this paper we try to
contribute to the large literature on searching by considering very general search
problems and analyzing the performance of a simple novel greedy approach. We
show that this novel approach matches most of the best known bounds to date
and, remarkably, allows for a very direct and less involved analysis as compared
to the state of the art.
Problem Definition. Let U be a finite set of objects and n = |U |. An initially
marked but unknown object u∗ ∈ U has to be identified. A weight function
w : U → N is given, which indicates for each object u ∈ U the likelihood that
u is the marked object to be identified. The identification is done by adaptively
performing tests from a given finite set T. We denote by m the cardinality of T.

� This work was supported by a fellowship within the Postdoc-Programme of the

German Academic Exchange Service (DAAD).

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 206–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Greedy Algorithms for Decision Trees 207

For each t ∈ T there is an associated partition, Gt = {G1
t , . . . , G

k
t } of the universe

U. The output of the test is the index j of the set in the partition Gt containing
the object u∗ which has to be identified, i.e., the j such that u∗ ∈ Gj

t . In such
case, we say that the objects in Gj

t satisfy (agree with) the test performed. For
each test t there is a cost ct that has to be paid in order to perform the test.

An identification strategy is typically represented by a decision tree D where
each internal node ν of D maps to a test tν and has |Gtν | children, indexed ac-
cording to the elements of the partition Gtν . The tree has exactly n leaves, which
are in one-to-one correspondence with elements in U . Each leaf � is associated
with an element in U which is the unique object satisfying the tests on the path
from the root of D to the leaf �. Given such a decision tree, the corresponding
strategy is to start performing the test associated to the root of D; if j is the
outcome of the test, then the test associated to the jth child is to be performed,
and so on, until a leaf is reached, indicating the marked object for the given
instance. Implicit in the definition of decision trees given here is that we only
allow instances of the problem where each object u ∈ U has a set of tests which
uniquely identifies u.

Given a decision tree D, the cost costD(u) of identifying an object u following
the strategy defined by D is defined as the sum of the costs of the tests associated
to the nodes on the unique path from the root of D to the leaf associated to u.

We consider two different measures of performance for a decision tree: The
average identification cost of D is defined as the expected costs of identifying
an objects chosen in accordance to the likelihood w(.) when we use the strategy
associated to D, i.e., in formulae:

avgcost(D) =
∑
u∈U

w(u)costD(u).

We remark that w is not a probability distribution.
We also consider the worst identification cost of D, defined as the maximum

over all u ∈ U of the cost of identifying u using the decision tree D, i.e., in
formulae:

worstcost(D) = max
u∈U

costD(u).

Existing Results. The problem of finding the decision tree with minimum av-
erage cost is a direct generalization of the Binary Identification Problem [12],
which coincides with the particular case when each test defines a bipartition.
Since there has been a substantial amount of work in variations of the above
identification problem, we will specify the type of instance we refer to by means
of a three field notation, inspired by scheduling problems. More precisely, we
will use the notation aCbW |cr|Obj, where the first field is used for indicating
numerical restrictions on the input, the second field for indicating combinato-
rial restrictions, and the third field is used to specify the objective function. In
the first field, aCbW with a, b ∈ {u, n} indicates whether the costs and weights
are uniform or not (e.g., uCnW indicates a problem with uniform costs and
non-uniform weights). As for the second field, the combinatorial restrictions we
consider are cr ∈ {B, M, P, T}, respectively for Binary tests, Multiway or k-ary

208 F. Cicalese et al.

tests, Poset, Tree-like poset. Finally, we consider the objective functions de-
scribed above, i.e., Obj ∈ {A, W}, for average-case, and worst-case, respectively.

The problem of finding a decision tree with minimum worst-case cost does
not admit an o(log n)-approximation algorithm unless P=NP, even when costs
are uniform [24]. The same lower bound holds for the uCnW |B|A version [5].

On the algorithmic side, it is known that a simple greedy algorithm achieves an
O(log n)-approximation for minimizing the worst-case cost with binary tests and
uniform costs [3]. The problem of finding a decision tree with minimum average
cost has received much more attention. For the uCnW |B|A version, Kosaraju
et al. [21] and DasGupta [7] independently proposed greedy algorithms with an
O(log W/wmin) approximation factor, where W is the sum of the weights of all
objects and wmin is the weight of the object with minimum weight. In addi-
tion, Kosaraju et. al. showed how to modify their greedy approach to attain an
O(log n)-approximation. Still in the case of binary tests, Adler and Heeringa [2]
present a (lnn + 1)-approximation for the nCuW |B|A version.1

In [5], Chakaravarthy et al. started the study of multiway tests. They present
an O(log2 n) approximation for the uCnW |M |A problem. In a later paper,
Chakaravarthy et al. [6] managed to cut a log n factor for uniform weight in-
stances, showing that the uCuW |M |A problem admits a O(log n)-approximation.

Recently Guillory and Blimes [15] simultaneously extended many of the above
results by showing that a natural extension of the algorithm proposed in [7]
achieves approximation ratio of 12 logW/wmin for the nCnW |M |A problem. Fi-
nally, Gupta et al. [16] proved that such a problem admits an O(log n)-
approximation, matching the Ω(log n) lower bound up to constant factors.

Our Results. One of the aim with which we embarked in our investigation was
to better understand the potentiality of the greedy approach pursuing a more
direct analysis and trying to disclose the problem’s crucial structure. In fact in
all the works mentioned in the above long historical excursus [2, 6, 7, 15, 16, 21],
the analyses are quite lengthy and involved, requiring several pages to prove
the approximations. This might be a result of the two specific greedy criteria
considered in those paper, namely the shrinkage-cost ratio and the minimization
of the heaviest group. In the paper considering the former criterium, at each
step the algorithm selects the test i which maximizes the shrinkage-cost ratio
defined by Δi(S,w)

ci
= 1

ci

(
w(S) −

∑k
j=1

w(Gj
i∩S)2

w(S)

)
, where S is the set of objects

consistent with the tests performed so far [2, 7, 15]. In the case when only
uniform weights are considered the weights are substituted by cardinalities of
the corresponding sets. In the papers considering the latter criterium, greedy
means selecting the test that generates a partition of S whose heaviest group is
as light as possible [6, 21]. We remark that the approach taken in [16] is different,
but somehow less transparent to the actual identification problem structure, as it
relies on much heavier machinery such as submodular optimization and variants
of the TSP problem.

1 Note that in the paper, the authors use the term weight to refer to the cost of a test.

On Greedy Algorithms for Decision Trees 209

Our first contribution is an alternative greedy strategy which, in order to select
the next test to perform, takes into account simultaneously the cardinality and
the weight of the sets in the partitions induced by the possible available tests.
This novel greedy strategy allows to achieve (or improve) the best known results
for different types of instances considered in literature and is prone to a short, and
in our opinion, neater analysis. More specifically, we give a short proof that our
algorithm attains a 4 ln(W/wmin)-approximation for nCnW |M |A. This improves
by a constant factor the 12 ln(W/wmin) analysis of [15]. For uCnW |M |A our algo-
rithm achieves a O(log n)-approximation. Finally, for instances with non-uniform
costs and uniform weights it simultaneously achieves an O(log n) approximation
for both the average-case and worst-case cost objective functions.

In the second part of the paper we investigate the potential of greedy ap-
proaches for restricted classes of the average-case multiway identification prob-
lem that have been studied in the literature. We consider the class where the
set U is a poset and for each element u ∈ U there exists a binary test which
reports whether the marked object is smaller than or equal to u [25]. It turns
out that there is little hope for better approximations for this class since we
show an Ω(log n) hardness of approximation. Thus, we consider the class of in-
stances where the poset is a rooted tree, the tests have uniform costs and objects
may have non-uniform weights. This corresponds to the NP-complete problem
of searching in trees [18, 23]. For this class, we show that the greedy strategy
which always selects the test which induces the most balanced partition attains
a 2-approximation, improving over the 14-approximation given in [23].

2 A Novel Greedy Procedure

Recall the problem definition and the notation given in the introduction. We say
that test t splits the objects into groups G1

t , . . . , G
k
t . Let nj

t = |Gj
t | and let W j

t

be the sum of the weights of the objects in Gj
t . Let j∗t = argmaxj{n

j
tW

j
t }. In

order to simplify the notation, we use the shorthands nt = n
j∗i
t and Wt = W

j∗t
t .

Now we describe the greedy approach we propose, dubbed Greedy. Let I =
(U, T, w) be an instance of an identification problem, where |U | = n and W =∑

u∈U w(u). Let t ∈ T be the test which minimizes ct/(nW − ntWt). Then the
root of the decision tree of Greedy is associated to the test t and its children
are decision trees obtained recursively by applying Greedy to the instances
I1, . . . , Ik, where Ii = (Gi

t, T, w).
The intuition behind Greedy’s criterium is that it penalizes a test whether

it has a high cost or it induces a partition of U that contains a set that is either
large or heavy.

We will use the following subadditivity property on the cost of an optimal
decision tree for the identification problem. This property was observed in [6]
for the average-case model. Similar arguments show that it also holds for the
worst-case model.

Proposition 1. [6] Let U be the set of objects in an instance of the identification
problem and let D∗ and E∗ be optimal decision trees with respect to the average-case

210 F. Cicalese et al.

model and worst-case model, respectively. Let U1, . . . , Uk be disjoint subsets of U,
and, for i = 1, . . . , k, let D∗

i (E∗
I) be an optimal decision tree for the subinstance of

I defined on the set of objects Ui for the average-case (worst-case) model. Then

k∑
i=1

avgcost(D∗
i) ≤ avgcost(D∗)

and
k

max
i=1

{worstcost(E∗
i)} ≤ worstcost(E∗).

2.1 Multiway Tests, Non-uniform Weights and Non-uniform Costs

We start our analysis of the approximation provided by Greedy considering the
case of nCnW |M |A instances. We are going to show that in this case Greedy

provides a solution with cost which is at most 2 lognW/wmin times the cost of an
optimal decision tree, where wmin is the minimum weight assigned to an object.
Without loss of generality, in the following analysis we assume wmin = 1.

Let cost(I) denote the cost of the decision tree produced by Greedy on
instance I and let OPT (I) be the cost of the optimal decision tree for the same
instance.

Let τ denote the first test performed by Greedy. Also, for each � = 1, . . . , k,
let I� be the instance associated with the set of objects G�

τ . Then, the cost
incurred by Greedy is given by cost(I) = Wcτ +

∑
� cost(I�). Moreover, using

Proposition 1, we have OPT (I) ≥
∑k

�=1 OPT (I�). Given any lower bound LB
on OPT (I), we can bound the approximation ratio attained by Greedy as
follows:

cost(I)
OPT (I)

≤ Wcτ +
∑

� cost(I�)
max{LB,

∑
� OPT (I�)}

≤ Wcτ

LB
+ max

�

cost(I�)
OPT (I�)

(1)

We now focus on devising a suitable lower bound LB on the cost of an optimal
decision tree D∗ for the instance I. For each test t ∈ T we define αt as the sum
of the weights of the objects associated with leaves that are descendants of some
node associated with test t in D∗.2 Clearly we have OPT (I) =

∑
t ctαt. The

greedy rule implies that cτ/(nW − nτWτ) ≤ ct/(nW − ntWt) for each t ∈ T . It
follows that

OPT (I) ≥ cτ

nW − nτWτ

∑
t

(nW − ntWt)αt (2)

We now note that we can interpret
∑

t(nW − ntWt)αt as the cost of a decision
tree for a modified version of instance I where the cost of test t is changed from
ct to nW − ntWt. We can then use the following result.

Claim. Let Ĩ be an instance obtained from I by changing the costs of the tests
so that for each t, it holds that ct ≥ nW − ntWt. Then OPT (Ĩ) ≥ nW 2/2.
2 Note that the leaves contributing to αt do not necessarily induce a subtree of D∗,

as t can appear in more than one node of D∗.

On Greedy Algorithms for Decision Trees 211

Proof of Claim. We use induction on n. If n = 2 then any test that splits the
two objects has cost at least 2W − W ′, where W ′ is the weight of the heaviest
object. Thus, the cost of the optimal tree is at least W (2W −W ′) ≥ W 2, which
establishes the base case.

Suppose now that the instance Ĩ comprises n > 2 objects. Let t̃ be the test at
the root of an optimal tree for Ĩ and notice that nt̃ < n. If nt̃ = 1 then OPT (Ĩ) ≥
W (nW − Wt̃) ≥ nW 2/2. If nt̃ > 1 then OPT (Ĩ) ≥ W (nW − nt̃Wt̃) + nt̃W

2
t̃
/2

because: (i) W (nW − nt̃Wt̃) is a lower bound on the contribution of the test
t̃ to OPT (Ĩ) and (ii) by induction, nt̃W

2
t̃
/2 is a lower bound for the instance

associated with the objects of the group induced by test t̃ that has nt̃ objects
with total weight Wt̃. Since W 2/2 ≥ Wt̃(W − Wt̃/2), collecting the terms with
nt̃ gives W (nW − nt̃Wt̃) + nt̃W

2
t̃
/2 ≥ nW 2/2, which establishes the result. 	

From the above claim and equation (2) we get that

OPT (I) ≥ cτnW 2

2(nW − nτWτ)
.

Then replacing LB by this lower bound in equation (1) gives

cost(I)
OPT (I)

≤ 2(nW − nτWτ)
nW

+ max
�

cost(I�)
OPT (I�)

.

Thus, assuming by induction on the number of objects that for each instance I�

the approximation ratio attained by Greedy is at most 2 ln(W �
τ n�

τ), which by
the definition of Wτ and nτ is at most 2 ln(Wτnτ), we have

cost(I)
OPT (I)

≤ 2
(

1 − nτWτ

nW
+ ln(nτWτ)

)
≤ 2 ln nW ≤ 4 ln W, (3)

where the second inequality uses the fact that ln x ≤ x − 1 for all x > 0 and the
last inequality uses the fact wmin = 1.

In general, dropping the assumption wmin = 1, the above analysis yields the
approximation

cost(I)
OPT (I)

≤ 2 lnn
W

wmin
, (4)

2.2 Uniform Costs and Non-uniform Weights

In the case of uCnW |M |A instance, we can strengthen the above result and show
that Greedy attains a 1 + 4 lnn approximation. Note that, for the particular
case when the costs are uniform Greedy selects a test t with smallest ntWt.

Let D be the tree constructed by Greedy and for each node v ∈ D let Dv

denote its subtree rooted at v and w(Dv) denote the sum of the weights of the
leaves in Dv. Define the set V = {v : w(Dv) ≤ W/n}, that is, the set of nodes
in Greedy’s tree such that the weight of the subtree below it is at most W/n.
It follows that these nodes contribute with at most W for the cost of D. Then
the approximation ratio can be bounded by

212 F. Cicalese et al.

cost(D)
OPT

=

∑
v∈D−V w(Dv)

OPT
+
∑

v∈V w(Dv)
OPT

≤
∑

v∈T−V w(Dv)
OPT

+ 1, (5)

where the inequality follows from the fact that OPT ≥ W .
We can now estimate the ratio

∑
v∈T−V w(Dv)

OPT in terms of an instance where
each object has weight at least W/n. We are coalescing objects that appear in
the decision tree of Greedy in subtrees whose leaves have total cost ≤ W/n.

Thus, by using the analysis of the previous section, from (4) we have∑
v∈T−V w(Dv)

OPT
≤ 2 ln

(
n

W

W/n

)
= 4 lnn,

which, together with (5), gives the desired result.

2.3 Greedy is Bi-Criteria for Non-uniform Costs and Uniform
Weights

We now show that for instanceswith uniform weightsGreedy attains an O(log n)-
approximation simultaneously for both average-case and worst-case objectives.
The first part of the claim follows directly from the general result of section 2.1,
hence we now prove the approximation for the worst-case objective.

Consider an instance I with arbitrary costs and uniform weights and let D
be the decision tree produced by Greedy on I. Let t be the first test performed
by Greedy and D� be the decision tree produced by Greedy on the instance
I� induced by G�

t . From the recursive nature of the algorithm we have

worstcost(D) = ct + max
�

{worstcost(D�)}. (6)

Now, let D∗ denote an optimal decision tree for the instance I and D∗
� be the

optimal decision tree for the instance I�. Using Proposition 1 we can again bound
worstcost(D∗) as

worstcost(D∗) ≥ max{LB, max
�

{worstcost(D∗
�)}}, (7)

where LB is any lower bound on worstcost(D∗).
We now turn to the issue of defining a suitable lower bound LB on the cost

of D∗. In the following we identify nodes of D∗ with the tests they map to. We
choose a root-to-leaf path v1, v2, . . . , vp in D∗ as follows. First, v1 is the root of
D∗. Then, assuming we have already chosen v1, . . . , vi, we choose vi+1 as the
child of vi that is used to split the objects that lie in the largest set of the
partition of Gvi . If the largest set has only one object, it corresponds to a leaf
�, then we set vi+1 = �. The process stops when we reach the leaf vp. We set
LB =

∑p−1
i=1 cvi . Our goal is now to bound this quantity.

Let ui be the number of objects that are in the subtree of D∗ rooted at vi

but not in the subtree rooted at vi+1. By definition of the vi’s, we have that

On Greedy Algorithms for Decision Trees 213

ui + nvi ≤ n holds for i = 1, . . . , p − 1. Then, the greedy criterium allows us to
write

ct

n2 − n2
t

≤ cvi

n2 − (n − ui)2
=

cvi

2nui − u2
i

for i = 1, . . . , p − 1.

Finally, adding up the costs of the nodes v1, . . . , vp−1 and using the fact that∑p−1
j=1 uj = n − 1, we get

LB ≥ ct

n2 − n2
t

p−1∑
i=1

(
2nui − u2

i

)
=

ct

n2 − n2
t

(
2n(n − 1) −

p−1∑
i=1

u2
i

)
≥ ct(n2 − 1)

n2 − n2
t

.

Now we can bound the approximation ratio of Greedy as the ratio of (6) and
(7), which gives

n2 − n2
t

n2 − 1
+ max

�

cost(D�)
cost(D∗

�)
.

Assuming, by induction on the size of the instances, that on I� Greedy provides
a solution at most ln((n�

t)
2 − 1) away from the optimal one, we have that the

approximation ratio becomes

n2 − n2
t

n2 − 1
+ ln(n2

t − 1) = 1 − n2
t − 1

n2 − 1
+ ln(n2

t − 1) ≤ ln(n2 − 1).

3 Partially Ordered Sets

In this section we consider the binary identification problem where the elements
of U form a partially ordered set and there is one test t(u) for each u ∈ U
which indicates whether u∗ ≤ u or not. That is, Gt(u) = {G1

t(u), G
2
t(u)} with

G1
t(u) = {u′ ∈ U : u′ ≤ u} and G2

t(u) = U \ G1
t(u). We represent the poset by

its Hasse diagram, that is, the digraph F with node-set U that contains the arc
(ui, uj) whenever uj covers ui (i.e., ui < uj and there is no u� in U such that
ui < u� < uj). Given a decision tree for this problem, it is useful to order its
nodes such that, for a node associated to the test t, its right child corresponds
to the part G1

t and its left child corresponds to the part G2
t .

We show next that, for every ε > 0, the problem uCnW |P |A cannot be
approximated in polynomial time within a ratio of (0.25 − ε) log n unless NP ⊆
TIME(nO(log log n)). This is accomplished via a reduction to Set Cover, which
is hard to approximate within a factor of less than log n under this complexity
assumption [11]. We remark that this reduction is similar to the one used in [5].

Consider a Set Cover instance (X,S), where X = {x1, . . . , xn} is the non-
empty ground set and S ⊆ 2X with

⋃
S∈S S = X is the family of covering sets.

Moreover, we assume that |S| = O(n2); this is without loss of generality since
these instances are still hard to approximate [11].

Given a Set Cover instance (X,S), we construct the following instance (F, w)
to our identification problem. The digraph F has a node vi for each xi ∈ X , a

214 F. Cicalese et al.

node si for each set Si ∈ S and one extra node r. The arcs in this graph are
(vi, r) for each vi and arcs (vi, sj) for xi ∈ Sj . The weight function w assigns
weight 1 to r and weight 0 to every other node.

Now we relate the solution for these instances. Consider a cover
C = {Si1 , Si2 , . . . , Sik

} for the Set Cover instance (X,S). We construct a de-
cision tree D for (F, w) with cost |C| + 1 as follows. First, make the leftmost
path of D contain the tests t(si1), t(si2), . . . , t(sik

), t(r) in this order; then com-
plete D to form a valid decision tree. To analyze the cost of D notice that the fact
that {Si1 , Si2 , . . . , Sik

} is a cover implies that the node in D associated to t(r)
has no descendant leaf associated to a vi. Then we have that the right child of
the node associated to t(r) is a leaf associated to r and hence cost(D) = |C|+1.

Now let D be a solution for the instance (F, w). We claim that D gives a cover
C for the Set Cover instance with |C| = cost(D). For this, let P be the path of
D from its root to the its leaf associated to r. The crucial property is that for
each element xi ∈ X , there is a node in P which either: (i) corresponds to the
test t(vi) or (ii) corresponds to a test t(sj) such that (vi, sj) ∈ F . To construct
the cover C, we consider each xi ∈ X and if it falls in case (i) we add to C any
set in S which contains xi and if xi falls in case (ii) we add to C the set Sj . By
construction, C is a cover which satisfies |C| = cost(D).

To conclude our reduction, let OPTSC and OPTID be respectively the optimal
value for the Set Cover and the identification problem instances. Let n(F) =
n + O(n2) + 1 denote the number of nodes in F . Using the previous properties,
we get that an α log(n(F))-approximate solution for the identification problem
gives a solution for Set Cover with size at most

α log(n(F))OPTID ≤ α log(n(F)) (OPTSC + 1) ≤ 2α(2 log n + O(1))OPTSC ,

where in the last inequality we used the fact that OPTSC ≥ 1. If α ≤ 0.25 − ε
for some ε > 0, then for large enough n the right hand side is at most (1 −
ε)(log n)OPTSC , hence we obtain an approximation for Set Cover with factor
better than log n. Given the aforementioned hardness of Set Cover, there can-
not exist a (0.25 − ε) log(n(F))-approximation with ε > 0 for the identification
problem uCnW |P |A unless NP ⊆ TIME(nO(log log n)).

4 Tree-Like Posets

Having shown that finding a good search strategy for partial orders is essentially
as hard as the general identification problem, we now turn our attention towards
a special class of partial orders. Namely, we consider posets whose Hasse diagram
F is a tree with arcs directed towards the root r, i.e. r is the unique maximum
element. The test asking whether or not u∗ ≤ r will never be applied by a
reasonable search strategy and is therefore assumed not to exist in the following.
Any other test “is u∗ ≤ u?” will split the tree into the the two connected
components F1, F2 induced by the removal of the unique outgoing edge of u.
We can therefore associate tests from T with edges and objects u ∈ U with
nodes of F . For simplicity we do not distinguish between tree nodes (edges) and
the elements of U (of T) associated with them.

On Greedy Algorithms for Decision Trees 215

After test t has revealed that the searched element u∗ is in F1, no reasonable
search strategy will perform a test corresponding to an edge in F2, and vice
versa. Therefore, in any reasonable search tree, each edge t ∈ T appears at most
once. It also always holds that |T | = |U | − 1. As any search tree D for F has
exactly |U | − 1 internal nodes, it follows that each test t ∈ T appears exactly
once in D.

We consider here the case uCnW |T |A of non-uniform weights and uniform
costs. That problem version is known to be NP-hard [18] and admits a linear
time algorithm achieving an approximation ratio of 14 [23]. In this section we
give a simple analysis showing that a natural greedy algorithm attains a 2-
approximation. We assume here that there are no elements of weight zero. In
the full paper we will show that this assumption can be removed by using a more
careful tie breaking strategy.

Our greedy algorithm always selects a test edge t such that the two subtrees
F1, F2 obtained by the removal of t are as even as possible in terms of weight, i.e.
the algorithm always maximizes min{w(F1), w(F2)}, breaking ties arbitrarily.

In order to prove that this algorithm results in a 2-approximation, we describe
a procedure for turning any search tree D∗, including the optimal one, into the
greedy search tree D computed by our algorithm, and we show that during the
transformation the cost increases by no more than cost(D)/2.

Let t be the test associated with the root of the greedy search tree D, and
let F1, F2 be the two subtrees obtained after removing t from F . Furthermore,
let D∗

1 be the search tree for F1 which is obtained from D∗ by simply skipping
all the tests associated with edges not in F1, and let D∗

2 be defined analogously.
The transformation from D∗ to D proceeds as follows: (a) Construct a search
tree D′ for F with test t at the root, and with the left and right subtree under
the root being equal to D∗

1 and D∗
2 , respectively. (b) Recursively turn D∗

1 and
D∗

2 into greedy search trees D1 and D2 for F1 and F2, respectively.

Lemma 1. Step (a) increases the cost by at most W/2.

Using this lemma, we can show by simple induction on the number of nodes in
F that the transformation increases the cost by at most cost(D)/2. The basic
case, |T | = 1, is trivial. From the induction hypothesis we know that step (b)
of the transformation increases the cost by at most cost(D1)/2 + cost(D2)/2, so
the claim follows from the fact that cost(D) = W + cost(D1) + cost(D2).

Proof (of Lemma 1). Assume w.l.o.g. that the root t1 of D∗ is associated with
an edge in the subtree F1. Consider in D∗ the path t1, t2, . . . that leads from t1
to test t. Let tk be the first test on that path which is not located in F2, so either
tk = t, or tk is associated with an edge in F2. Furthermore, for i = 1, . . . , k − 1,
among the two subtrees obtained by removing ti from F , let Gi be the one not
containing t.

As t1, . . . , tk−1 are in F1 and thus are skipped in D∗
2 , we have that the search

path to any node from F2 is by at least k − 1 shorter in D∗
2 than it is in D∗.

Search tree D∗
1 is obtained from D∗ by skipping certain tests, so the search path

in D∗
1 to any node in F1 is at most as long as in D∗. For the set of nodes in the

216 F. Cicalese et al.

subtree G′ := F1 − (G1 ∪ . . . ∪ Gk−1) we make a stronger statement: As in D∗

the search path to those nodes contains test tk /∈ F1, the search path to them
in D∗

1 is by at least one shorter. Summarizing the findings from this paragraph,
the difference d := cost(D∗) − (cost(D∗

1) + cost(D∗
2)) is

d ≥ (k − 1)w(F2) + w

(
F1 −

(
k−1⋃
i=1

Gi

))
≥ (k − 1)w(F2) + w(F1) −

k−1∑
i=1

w(Gi) .

The greedy criterion ensures that for i = 2, . . . , k − 1 the total weight w(Gi)
of all nodes in Gi is at most min{w(F2), W/2}. w(Gi) ≤ W/2 holds because
otherwise, as t is in F −Gi, greedy would rather choose ti than t (note that here
the assumptions of non-zero weights is essential). But this means that w(Gi) ≤
w(F −w(Gi)), and therefore w(Gi) > w(F2) would again mean that t1 is a better
greedy choice than t. We charge G2, . . . , Gk−1 against (k − 2) times w(F2):

d ≥ w(F2) + w(F1) − w(G1) = w(F − G1) ≥ W/2 .

Now the Lemma is established by

cost(D′) = W + cost(D∗
1) + cost(D∗

1) = W + cost(D∗) − d ≤ cost(D∗) + W/2 .

5 Conclusion

We presented a new greedy approach which can be employed for different vari-
ants of the multiway identification problem (aka active learning problem). We
demonstrated that this novel algorithm can be easily analyzed in several problem
cases considered in the literature. We believe that our greedy approach deserves
some more investigation in order to fully understand its potential and, possibly,
its applicability in other contexts of search where costs of the tests and weights
are simultaneously considered. With respect to our analysis, the following ques-
tions are worth considering: (1) can the analysis in Section 2.1. be improved
or can its tightness be shown? (2) An interesting generalization of the result in
Section 2.3 would be to prove that the cost of the costliest path is at most log nW
times the cost of the costliest path in the tree that minimizes the worst-case.

We also investigated the restriction of the decision tree minimization problem
to poset instances, showing that for the average-case objective general poset in-
stances are as hard to approximate as unrestricted instances. For the case of tree-
like posets, however,we proved that a greedy strategy can attain 2-approximation.
In this direction, a further open problem concerns the limits of approximability of
tree-like instances, e.g., existence of a PTAS vs. APX-hardness.

References

1. Abrahams, J.: Code and parse trees for lossless source encoding. In: Compression

and Complexity of Sequences 1997, pp. 145–171 (1997)

2. Adler, M., Heeringa, B.: Approximating optimal binary decision trees. In: Goel,

A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008.

LNCS, vol. 5171, pp. 1–9. Springer, Heidelberg (2008)

On Greedy Algorithms for Decision Trees 217

3. Arkin, E., Meijer, H., Mitchell, J., Rappaport, D., Skiena, S.: Decision trees for

geometric models. International Journal of Computational Geometry and Appli-

cations 8(3), 343–364 (1998)

4. Carmo, R., Donadelli, J., Kohayakawa, Y., Laber, E.: Searching in random partially

ordered sets. Theoretical Computer Science 321(1), 41–57 (2004)

5. Chakaravarthy, V., Pandit, V., Roy, S., Awasthi, P., Mohania, M.: Decision trees for

entity identification: Approximation algorithms and hardness results. In: PODS,

pp. 53–62 (2007)

6. Chakaravarthy, V., Pandit, V., Roy, S., Sabharwal, P.: Approximating decision

trees with multiway branches. In: Albers, S., Marchetti-Spaccamela, A., Matias,

Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 210–221.

Springer, Heidelberg (2009)

7. Dasgupta, S.: Analysis of a Greedy Active Learning Strategy. In: NIPS (2007)

8. Daskalakis, C., Karp, R., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and selec-

tion in posets. In: SODA, pp. 392–401 (2009)

9. Dereniowski, D., Kubale, M.: Efficient parallel query processing by graph ranking.

Fundamenta Informaticae 69 (2008)

10. Dereniowski, D.: Edge ranking and searching in partial orders. Discrete Applied

Mathematics 156(13), 2493–2500 (2008)

11. Feige, U.: A threshold of ln n for approximating set cover. Journal of the

ACM 45(4), 634–652 (1998)

12. Garey, M.: Optimal binary identification procedures. SIAM Journal on Applied

Mathematics 23(2), 173–186 (1972)

13. Garey, M., Graham, R.: Performance bounds on the splitting algorithm for binary

testing. Acta Informatica 3, 347–355 (1974)

14. Golin, M., Kenyon, C., Young, N.: Huffman coding with unequal letter costs. In:

STOC, pp. 785–791 (2002)

15. Guillory, A., Bilmes, J.: Average-Case Active Learning with Costs. In: The 20th

Intl. Conference on Algorithmic Learning Theory (2009)

16. Gupta, A., Krishnaswamy, R., Nagarajan, V., Ravi, R.: Approximation algorithms

for optimal decision trees and adaptive TSP problems. In: ICALP (2010)

17. Hyafil, L., Rivest, R.: Constructing obtimal binary decision trees is NP-complete.

Information Processing Letters 5, 15–17 (1976)

18. Jacobs, T., Cicalese, F., Laber, E., Molinaro, M.: On the Complexity of Searching

in Trees: Average-Case Minimization. In: ICALP (2010)

19. Knight, W.: Search in an ordered array having variable probe cost. SIAM Journal

on Computing 17(6), 1203–1214 (1988)

20. Knuth, D.: Optimum binary search trees. Acta. Informat. 1, 14–25 (1971)

21. Kosaraju, R., Przytycka, T., Borgstrom, R.: On an optimal split tree problem.

In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS,

vol. 1663, pp. 157–168. Springer, Heidelberg (1999)

22. Laber, E., Milidiú, R., Pessoa, A.: On binary searching with non-uniform costs. In:

SODA, pp. 855–864 (2001)

23. Laber, E., Molinaro, M.: An Approximation Algorithm for Binary Searching in

Trees. Algorithmica, doi: 10.1007/s00453-009-9325-0

24. Laber, E., Nogueira, L.: On the hardness of the minimum height decision tree

problem. Discrete Applied Mathematics 144(1-2), 209–212 (2004)

25. Lipman, M., Abrahams, J.: Minimum average cost testing for partially ordered

components. IEEE Transactions on Information Theory 41, 287–291 (1995)

26. Mozes, S., Onak, K., Weimann, O.: Finding an optimal tree searching strategy in

linear time. In: SODA, pp. 1096–1105 (2008)

Single and Multiple Device DSA Problem,
Complexities and Online Algorithms�

Weiwei Wu1,2, Wanyong Tian1,2, Minming Li2,
Chun Jason Xue2, and Enhong Chen1

1 School of Computer Science, University of Science and Technology of China
2 Department of Computer Science, City University of Hong Kong

{wweiwei2,twanyong2}@student.cityu.edu.hk, minmli@cs.cityu.edu.hk,

jasonxue@cityu.edu.hk, cheneh@ustc.edu.cn

Abstract. Westudy the single-deviceDynamic StorageAllocation (DSA)

problem and multi-device Balancing DSA problem in this paper. The goal

is to dynamically allocate the job into memory to minimize the usage of

space without concurrency. The SRF problem is just a variant of DSA

problem. Our results are as follows,

• The NP-completeness for 2-SRF problem, 3-DSA problem, and DSA

problem for jobs with agreeable deadlines.

• An improved 3-competitive algorithm for jobs with agreeable dead-

lines on single-device DSA problem. A 4-competitive algorithm for jobs

with agreeable deadlines on multi-device Balancing DSA problem.

• Lower bounds for jobs with agreeable deadlines: any non-clairvoyant

algorithm cannot be (2− ε)-competitive and any clairvoyant algorithm

cannot be (1.54 − ε)-competitive.

• The first O(log L)-competitive algorithm for general jobs on multi-

device Balancing DSA problem without any assumption.

1 Introduction

This paper studies Dynamic Storage Allocation (DSA) problem, which is a classic
problem in computer science. The problem description is as follows. Given a
set of n jobs J , each job Ji is characterized by a size si, an arrival time ri,
and a departure time/deadline di. Each job should be allocated in a contiguous
location at its arrival time. Once placed into address a(Ji), the job occupies
the allocated space from address a(Ji) to a(Ji) + si − 1 (with size si) in the
whole time interval [ri, di]. The occupied space is available for other jobs after
time di. Two jobs i, j are assigned with conflict if [ri, di] ∩ [rj , dj] �= ∅ and
[a(Ji), a(Ji) + si − 1] ∩ [a(Jj), a(Jj) + sj − 1] �= ∅. We need to place all the jobs
into the memory without conflict at any time. The objective is to minimize the
� This work was supported in part by grants from the Research Grants Coun-

cil of the Hong Kong Special Administrative Region, China [Project No. CityU

117408 and 123609], National Natural Science Foundation of China (grant no.

60775037), and Research Fund for the Doctoral Program of Higher Education of

China (20093402110017).

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 218–229, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Single and Multiple Device DSA Problem 219

memory space used by all jobs. Another interpretation of DSA is to consider
the following variant of Strip Packing Problem. Packing into a strip can be
interpreted as packing into a 2-D geometric plane X × Y with fixed width X .
In the Strip Packing Problem, each rectangle is a (di − ri + 1) × si area. The
objective is to pack all the rectangles into a strip that has a fixed width, while
minimizing the maximum height of this strip. Obviously, DSA is a variant of Strip
Packing Problem (we would not survey the work in this field here) where the
position of rectangles in X-axis is immovable. DSA has received much attention
since 1950s. Knuth proposed some basic methods in [12]. Stockmeyer proved its
NP-completeness by a reduction from the 3-partition problem in 1976. He also
proved DSA to be strongly NP-complete even when sizes of jobs are restricted to
{1,2} (The proof was given in Larry Stockmeyer’s private communication with
David Johnson and included in [3]). For offline version of DSA, the first constant-
factor approximation algorithm—an 80-approximation first-fit mechanism was
proposed by Kierstead in [10] where jobs are sorted according to their sizes.
Whereafter Kierstead reduced the approximation ratio to 6 in [11]. Subsequently,
Gergov presented a 5-approximation algorithm in [7] and then improved to a 3-
approximation algorithm in [8]. Narayanaswamy gave another 3-approximation
algorithm in [16]. The algorithm with approximation ratio 2 + ε is proposed by
Buchsbaum in [2]. For the special case of DSA with only two job sizes, Gergov [7]
presented a 2-approximation algorithm. When job sizes are restricted to small
values, Li et al. [13] proposed a 4

3 -approximation algorithm when the sizes are
{1, 2} and a 1.7-approximation algorithm when the sizes are {1, 2, 3}. For online
version of DSA, Robson [17] showed that first-fit algorithm had a competitive
ratio of O(log(Smax)) where Smax is the maximum size among all jobs. Then
Luby et al. [14] proved that first-fit algorithm could achieve the competitive
ratio of O(min{log(Smax), log(χ)}), where χ denotes the maximum number of
concurrent jobs for all time instants. This is an improvement over Robson [17]
since generally Smax and χ are incomparable. They also studied the multi-device
Balancing DSA problem (minimizing the maximum occupied space on m devices)
and gave an optimal competitive algorithm under the assumption that m ≤ ω∗

Smax

where ω∗ represents the maximum total size of alive jobs at any time, which is
also denoted as LOAD(J) in this paper. Gergov [7] improved the competitive
ratio of first-fit strategy of online DSA to Θ(max{1, log(Smax ·χ/ω∗)}). For cases
that the live-ranges (which equals the difference of deadline and arrival time) of
jobs are known when they arrive (this scenario is also referred to as clairvoyant
scheduling), Naor et al. [15] provided an online 8-competitive algorithm for jobs
with agreeable deadlines (where later released jobs have no earlier deadlines)
and an O(min{(log(L), log(τ))})-competitive algorithm for general jobs , where
L is the ratio between the longest and the shortest live-ranges of the jobs, and τ
denotes the maximum number of concurrent jobs that have different live-ranges.
[9] provides a lower bound Ω(log x

log log x)-competitive for online algorithm where x
can be n, Smax, χ, τ or log L.

DSA is investigated in many applications such as memory or register allocation
in operating systems and bandwidth allocation in communication networks etc.

220 W. Wu et al.

In operating systems, compiler algorithms should decide where to place items (ar-
rays or matrices etc.) in memory. To deal with register allocation problems or DSA
problems, another conventional mechanism is to use graph coloring. Graph color-
ing has been extensively investigated and specifically studied for register alloca-
tion since Chaitin [4]. From [4] on, many register allocation algorithms based on
graph coloring have been proposed such as [5][1][6]. Our study of DSA is motivated
by stream register file (SRF) allocation problem. SRF is a software-managed on-
chip memory. Since it is a critical resource, optimizing SRF utilization becomes
crucial. Recently in [18], by dividing streams (can be referred to as jobs here) into
two types (short streams with live-ranges l ≤ 2 and long streams with live-ranges
l ≥ 3), they modeled the problem into comparability graph coloring. They consid-
ered a special case where there are at most two long items at any time instant and
gave a near-optimal solution, without showing the complexity of this problem. We
will refer to their model as 2-SRF problem.

We study both the complexities and algorithms for DSA problem and its vari-
ants. Note that the SRF allocation problem studied in [18] can be transformed
into DSA notation. When considering the duration of the jobs, one interesting
question is that how large the value L should be in order to make the problem
hard. We will refer to the problem where every job has live-range at most L
as L-DSA problem. For the general DSA problem, we improve the performance
for the single-device DSA problem studied in [15] and gives the first competitive
algorithm for multi-device Balancing DSA problem without any assumption. We
start by investigating the jobs with agreeable deadlines, which was also studied in
[15]. This kind of jobs has received much concern in other domains of scheduling
problems. We derive the complexity for this type of jobs for completeness. More-
over, although our method leads to the same performance as [15] for the offline
setting, it is proved more extendable to the online setting both for single-device
and multi-device. Our results are as follows,

• The NP-completeness for 2-SRF problem, 3-DSA problem, and DSA problem
for jobs with agreeable deadlines.
• An improved 3-competitive algorithm over [15] for jobs with agreeable dead-
lines on single-device DSA problem. A 4-competitive algorithm for jobs with
agreeable deadlines on multi-device Balancing DSA problem.
• Lowerbounds for jobswithagreeabledeadlines: anynon-clairvoyantalgorithm
cannot be (2−ε)-competitive andany clairvoyant algorithmcannot be (1.54−ε)-
competitive.
• The firstO(log L)-competitive algorithm for general jobs on multi-device Bal-
ancing DSA problem without any assumption.

The rest of the paper is organized as follows. In Section 2, we review the model for
DSA problem and multi-device Balancing DSA problem. In Section 3, we settle
the complexities for L-DSA problem and 2-SRF problem. In Section 4, we inves-
tigate the single-device DSA problem. We propose the laminar decomposition for
jobs with agreeable deadlines. The complexity for jobs with agreeable deadlines
is settled. We have a simple 2-approximation algorithm through laminar decom-
position. This decomposition can be used to design an improved 3-competitive

Single and Multiple Device DSA Problem 221

algorithm (for jobs with agreeable deadlines). In Section 5, we design competitive
algorithms for multi-device Balancing DSA problem. A 4-competitive algorithm
for jobs with agreeable deadlines is proposed and also an O(log L)-competitive al-
gorithm for general jobs. Due to the space limit, some of the proofs are omitted
in this version.

2 Preliminaries

In operating systems, memory allocation algorithms need to consider where to
place a set of items (often arrays, matrices etc.) so that the overall usage of
memory is minimized. In DSA (Dynamic Storage Allocation) notation, we are
given jobs J where each job i (or Ji) has a size si and a live-range/length starting
from the arrival time ri and departing at deadline di, i.e. Ji = (ri, di, si). A job
i is said alive at time t if t ∈ [ri, di]. The time is partitioned into units. For
each unit of time t, if we say i has arrival time t, we mean job i is released at
the beginning of time t. Correspondingly, if we say i has deadline t, we mean
job i expires at the end of time t. Upon arrival of each job, we need to allocate
a contiguous memory location for it. We assume that the memory is starting
from address 1 instead of address 0. By a(Ji) we denote that Ji is assigned or
allocated to address a(Ji) throughout its live-range. Once placed into address
a(Ji), Ji occupies the space from address a(Ji) to a(Ji) + si − 1 (with size si)
in the whole time interval [ri, di]. The occupied space is available for other jobs
after time di. Two jobs i, j are assigned with conflict if [ri, di] ∩ [rj , dj] �= ∅ and
[a(Ji), a(Ji) + si − 1] ∩ [a(Jj), a(Jj) + sj − 1] �= ∅. We need to place all the jobs
into the memory without conflict at any time. Once allocated, the job cannot
be moved or deleted until its deadline. Only when the job leaves, its occupied
memory location can be available for other jobs. The objective is to minimize the
overall used memory size. For the multi-device Balancing DSA problem, we are
given m devices and the goal is to allocate the job in a balanced manner such that
the maximum occupied space on the m devices is minimum. By Smax we denote
the maximum size over all jobs. Let LOAD(t) be the total size of alive jobs at
time t. We use LOAD(J) to represent the maximum total size over all time t.
Obviously max{LOAD(J), Smax} is a lower bound for the optimal solution for
single-device DSA problem, while multi-device Balancing DSA problem has a
lower bound max{LOAD(J)

m , Smax}.
Observing that in the applications such as SRF problem each item usually has

a short live-range, we use L-DSA problem to denote the restricted DSA problem
where all jobs have live-ranges at most L. The jobs with agreeable deadlines
which receive much concern in scheduling literature are defined to be jobs where
later released jobs always have no earlier deadlines.

We use OPT (J) to denote the optimal memory space occupied by the op-
timal solution for jobs J . An offline algorithm is said to be c-approximation
if it outputs a solution which occupies memory space at most c · OPT (J).
In the online setting, the algorithm should make decision upon the arrival of
jobs. There are two versions. In the clairvoyant scheduling, the algorithm knows

222 W. Wu et al.

the deadline when a job is released, while in the non-clairvoyant scheduling
the algorithm does not know this information. We say an online algorithm is
c-competitive if it always outputs a solution within c times the optimal offline
solution.

3 Settling the Complexity for Special Cases of DSA/SRF
Problem

The decision version of Partition problem is as follows. Given finite set U =
{u1, u2, . . . , un} with

∑n
i=1 ui = 2B. The question is to find a subset U ′ ⊂ U

such that the sum of the elements in U ′ is exactly B. In the following we will show
that the 2-SRF problem and L-DSA problem are NP-complete. The construction
is reduced from Partition problem.

The problem defined in [18] is referred to as 2-SRF problem in this paper.
After transforming their paradigm to the DSA notation, the problem can be
considered equivalently as follows. There are two kinds of jobs, short jobs and
long jobs. All the short jobs have live-ranges at most 2. The long jobs have
live-ranges larger than 2, but each time there are at most two such long alive
jobs. The justification of such a problem is simple because we can split the long
live-range stream (job) into streams with short live-ranges by live-range splitting
technique. This allows us to break long jobs into jobs limited to some constant
length L. They discussed this problem by five sub-cases, among which four of
these cases can be solved optimally by their proposed algorithm, while the fifth
case is shown to be within the optimal solution plus 2 times the maximum size
of the long jobs. Thus the complexity of this problem still remains open. The
following theorem answers this question.

Theorem 1. The decision version of 2-SRF problem is NP-complete even when
all jobs have live-ranges at most L = 3.

Note that the reduction in Theorem 1 uses jobs that have live-ranges at most 3,
thus 3-DSA problem is also NP-complete. Simple extension of this construction
can show the NP-completeness for every L ≥ 3.

Corollary 1. The decision version of L-DSA problem is NP-complete for L ≥ 3.

4 Better Online Algorithms for DSA Problem

In this section, we start by studying jobs that have agreeable deadlines. In this
setting, all the later released jobs will have no earlier deadlines. This kind of jobs
has also received much attention in other domains of scheduling problems. We
will first show that the problem (with agreeable deadlines) is still NP-complete
in the offline setting. Then we design a 2-approximation algorithm for jobs with
agreeable deadlines in the offline version. This matches the result in [15]. How-
ever, we will show that the concept we use is more extendable to the online
problem both in single-device and multi-device setting.

Single and Multiple Device DSA Problem 223

4.1 Approximation Algorithm through Laminar Decomposition

The following reduction shows that the problem is still NP-complete for jobs
with agreeable deadlines. The reduction uses a symmetric structure of the jobs.

Theorem 2. DSA problem for jobs with agreeable deadlines is NP-complete.

To design an approximation algorithm, we introduce the laminar jobs. Laminar
jobs at time t is composed of jobs laminar(t) = {j : t ∈ [rj , dj]}. The concept
for our algorithm is to first decompose the original jobs into several small job
sets, with jobs in the same set forming laminar jobs. These sets are then divided
into two groups. Moreover, our decomposition and grouping ensure that jobs in
different sets but the same group are never concurrent with each other. Thus
this allows us to concentrate on the separated single set of laminar jobs. The
decomposition step loops as follows:

(1) Set t = d1. Let S1 = laminar(t).
(2) Assume j to be the first job in the remaining jobs. Let t = dj and S2 =

laminar(t).
(3) Update j to be the first job in the remaining jobs and repeat to find all

sets S3, S4, . . . , Sb until no jobs are left.

For the grouping step, we group the sets with odd index into group G1 =
{S1, S3, S5, . . . , } while the others form group G2. Note that both the decompo-
sition and grouping can be operated in online manner since we know both the re-
lease times and deadlines of the jobs when they arrive. An offline 2-approximation
algorithm can be easily obtained.

Lemma 1. DSA problem for agreeable jobs has a 2-approximation algorithm.

Proof. An important observation of such a grouping strategy is that the sets in
the same group are pairwise non-concurrent at any time. Take the first three
sets S1, S2, S3 for example. Let j be the first job in S2. Let ta be the largest
deadline of jobs in S1 and tb be the smallest arrival time of jobs in S3. We note
that dj ≥ ta according to the decomposition step (2). Moreover, the first job in
S3 has release time larger than dj because otherwise this job would be grouped
into S2, hence tb > dj . Therefore we have ta < tb and S1, S3 are not concurrent.
Similarly this can be extended to every two sets in the same group.

Getting this, for all sets in G1 (or G2), we can solve each set optimally by
FirstFit policy since laminar jobs is crossing at least one common time. The jobs
in group G1 (or G2) can also be solved optimally due to the pairwise indepen-
dence property of the sets. Finally, by applying OrderedF it(·) to G1 ∪ G2 and
Lemma 2, the new algorithm framework uses memory at most 2OPT (J).

Lemma 2. (Technical Lemma) If a job set J is decomposed into k disjoint
subsets G1, . . . , Gk, and every set Gi can be solved within r · OPT (Gi) by some
strategy STR (i.e for each i we have STR(Gi) ≤ r ·OPT (Gi)), then by applying
OrderedFit to J we have OrderedF it(STR,J) ≤ rk · OPT (J).

224 W. Wu et al.

Algorithm 1. OrderedFit(STR,J)
for each round r = 1, 2, . . . , k do

1. Simulate STR(Gr) in virtual device r. Denote the maximum occupied address

on device r to be Mr.

2. Assign all jobs in the practical memory as if they are combined by the

allocations in k virtual devices. Instead of starting from address 1 on the virtual

device, device r (r ≥ 2) starts its allocation from address
∑r

i=2 Mi−1 + 1 in the

practical single memory.

end for

Note that our new algorithm matches the current best algorithm in [15]. How-
ever, our decomposition step not only simplifies the structure of the jobs, but will
also be proved more extendable to online single-device and multi-device setting.

4.2 Better Online Algorithm through Laminar Decomposition

We note that our decomposition step can be performed in an online manner. We
will show how to achieve 3-competitive clairvoyant online algorithm by using
laminar decomposition. This improves the ratio 8 by algorithms in [15].

Our strategy is to assign the second decomposed group pessimistically to en-
sure that we waste at most one gap in the memory, which is shown in Algorithm
2. Let Si be generated by laminar jobs at time ti, i.e. Si = laminar(ti). We have
LOAD(Si) ≤ LOAD(ti) by the decomposition step.

Algorithm 2. PessiOnline
1. Jobs are decomposed into two groups G1 = {S1, S3, S5, . . .}, G2 = {S2, S4, S6, . . .}
online by laminar property. For all jobs in the same set, the job that is earlier

released will be allocated to lower address (ties are broken by assigning jobs with

earlier deadline to lower address). We apply different strategies for the two groups

as follows.

for each round i = 1, 2, 3, . . . do
2. For set S2i−1 in G1, upon arrival of the jobs, it will be placed on the lowest

feasible address (FirstFit). Let the maximum address used by this set be M2i−1.

3. For set S2i in G2, we pessimistically assign the first one to address M2i−1 + 1.

All the later jobs in the same set will be assigned one by one to the address im-

mediately (consecutively) after the prior one, without violating the rule in Step 1.

end for

Theorem 3. There is a 3-competitive algorithm for single-device DSA problem
where jobs have agreeable deadlines.

Proof. Obviously the occupied space is maximized at some time ti. The anal-
ysis is based on discussing the possible cases of placing job set S2k−1 where
k = 1, 2, Three observations are the key advantages of such an allocation

Single and Multiple Device DSA Problem 225

strategy. First, when we consider jobs in S2k−1 (determine the allocation upon
the arrival of a job), the determination should never worry about the possi-
ble conflict with S2k−3, since these two sets are separated by time t2k−2 and
thus never concurrent. Second, because of the pessimistic allocation in Step 3
and the rule in Step 1, the jobs in S2k−2 is consecutively allocated and only
leave at most one gap (it can only be the empty space starting from address 1)
at every time in interval [t2k−2, t2k−1] (before jobs S2k−1 are released). Third,
because we apply the FirstFit policy to set S2k−1 and also the two former ob-
servations, the jobs in S2k−1 can be placed in at most two contiguous memory
spaces (Namely, divided by a gap of empty space). For example, S3, S7 are
assigned to two contiguous memory spaces, while S5 is assigned to one contigu-
ous memory space. Furthermore, the gap is generated only because there is a
job with larger size being released. For the case that S2k−1 is separately allo-
cated, the gap is created because the space of the gap (let the size be sg) is
less than the job (let its size be sj) attempting to fit into this space. Namely,
we have sg < sj < LOAD(t2k−1). The occupied space at time t2k−1 is at most
LOAD(t2k−1) + sg ≤ 2LOAD(t2k−1) ≤ 2LOAD(J) ≤ 2OPT (J). Since we
assign the later set S2k pessimistically, the space used at time t2k is at most
LOAD(t2k−1) + sg + LOAD(t2k) ≤ 3OPT (J). For the case that S2k−1 is not
separately allocated, the occupied space by assigning S2k−1 at time t2k−1 is
LOAD(S2k−1) ≤ LOAD(t2k−1). S2k will not conflict with S2k−2 and is then
consecutively allocated after S2k−1, thus at time t2k the occupied space is at
most LOAD(t2k−1)+LOAD(t2k) ≤ 2LOAD(J) ≤ 2OPT (J). Combining these
two cases, the algorithm is 3-competitive.

4.3 Lower Bounds on the Online Algorithm

For jobs with agreeable deadlines, we show the following lower bounds of online
algorithm.

Theorem 4. Any non-clairvoyant online algorithm for DSA problem with agree-
able jobs cannot be (2− ε)-competitive. Any online clairvoyant algorithm for DSA
problem with agreeable deadlines cannot be (1.54 − ε)-competitive.

5 Multi-device Balancing DSA Problem

In this section, we settle the multi-device Balancing DSA problem for both agree-
able jobs and general jobs. In this setting, there are m devices and the objective
is to balance the usage of the memories. Accurately, we aim at minimizing the
maximum memory size used in the m memories. We observed that [14] studied
this problem under the assumption that “m ≤ ω∗

Smax
”. With their assumption,

[14] showed that their algorithm is online optimal competitive. We restudy this
problem by dropping their assumption. For the multi-device DSA problem, we
give a 4-competitive algorithm for jobs with agreeable deadlines and an O(log L)-
competitive algorithm for general jobs. The method of the online algorithm is
still based on the laminar decomposition.

226 W. Wu et al.

We also start by designing a O(1)-competitive algorithm for jobs with agree-
able deadlines.

Balancing DSA Problem for Jobs with Agreeable Deadlines. Assume
we decompose the jobs J to G1 = {S1, S3, S5, . . .}, G2 = {S2, S4, S6, . . .} where
Si = laminar(ti) through laminar decomposition in an online manner as in
Section 4.2. The new algorithm for multi-device is shown in Algorithm 3.

Algorithm 3. MultiOnline
1. Jobs are decomposed into two groups G1 = {S1, S3, S5, . . .}, G2 = {S2, S4, S6, . . .}
online by laminar property. We apply different strategies for the two groups. For

all jobs in the same set, the job that is earlier released will be allocated to lower

address (ties are broken by assigning jobs with earlier deadline to lower address). In

the following, by top address at time t we denote the maximum occupied address at

time t that is allocated in the current round.

for each round i = 1, 2, 3, . . . do
2. For set S2i−1 in G1, upon arrival of the jobs j, we simulate on every device by

assigning j to the lowest feasible address (FirstFit policy). If j can be allocated

to the empty space that is below the top address of the device l, then we assign

j to l. If not, then we assign j to the device with minimum top address. Assign j
to the selected device by FirstFit policy.

3. For set S2i in G2, we assign the jobs pessimistically. Upon the arrival of job

j ∈ S2i, we suppose that l is the current device that has the minimum top address

(let the address be Ml). Assign j to address Ml +1. All the later jobs in the same

set that is allocated to l will be assigned consecutively without violating the rule

in Step 1.

end for

Theorem 5. Algorithm MultiOnline is 4-competitive for multi-device Balancing
DSA problem on jobs with agreeable deadlines.

Proof. Through laminar decomposition, one advantage is that the load of set
of laminar jobs Si at time ti is exactly the summation of sizes over all its
jobs. We first note that the lower bounds for multi-device Balancing DSA prob-
lem are OPT ≥ LOAD(J)

m and OPT ≥ Smax. Observing this, our allocation
strategy in Algorithm 3 tries to balance the allocation for jobs in the same
set Si. Assume that the minimum (maximum) occupied address in the m de-
vices is Mmin (Mmax), the allocation strategy in Step 2 and Step 3 ensures that
Mmax−Mmin ≤ Smax. First, when allocating S1, the load at time t1 is allocated
in a balanced manner to the m devices. The maximum address used in the m
devices is at most LOAD(t1)

m +Smax since the minimum address used in the m de-
vices is at most LOAD(t1)

m and the difference of every two devices is at most Smax.
When we allocate S2, the jobs are pessimistically assigned to the current top ad-
dress on the selected device (which is the device that has the minimum occupied
address). The total space occupied in t2 is exactly LOAD(S1)+LOAD(S2) which

Single and Multiple Device DSA Problem 227

is at most LOAD(t1)+LOAD(t2) since assigning S1 did not generate any empty
space at time t1. Because we assign S2 in a balanced way, the device with max-
imum occupied address at time t2 is at most LOAD(t1)+LOAD(t2)

m + Smax. Note
that the optimal solution OPT uses at least max{LOAD(t1)

m , LOAD(t2)
m , Smax}.

Thus the occupied space at time t2 is at most 3 · OPT (J).
We will prove that the occupied address is at most 3 · OPT (J) at time t2i−1

and at most 4 ·OPT (J) at time t2i. As in the proof of Theorem 3, we discuss the
possible cases of allocation for set S2i−1 where i ≥ 2. Note that we allocate set
S2i−1 by FirstFit for selected device. Consider the case that the current job has
size larger than the remaining empty space that is below the selected device’s
top address. The allocation creates at most one gap (empty space) that has size
less than Smax. This property holds because the strategy on a single device is
the same as what we used in Algorithm 2. This job will be allocated to the top
address of the selected device.

We start by the simple case that every device is at least assigned one job of
S2i−1 to its top address (denote such a device as saturated-device). That is, each
gap generated on the m devices is at most Smax. After assigning S2i−1, the total
occupied space in these devices at time t2i−1 is at most LOAD(t2i−1)+m ·Smax.
In this case, we have Mmin ≤ LOAD(t2i−1)

m +Smax. Thus Mmax ≤ Mmin+Smax ≤
3 · OPT (J). When we assign S2i later, we need not worry about the possible
conflict with S2i−2. Due to the pessimistic strategy in Step 3, the jobs in S2i

are assigned to the top address consecutively and no space is wasted. Thus after
assigning S2i, the total occupied space in these devices at time t2i is at most
LOAD(t2i−1) + LOAD(t2i) + m · Smax. Hence, in this case we have Mmax ≤
Mmin + Smax ≤ LOAD(t2i−1)+LOAD(t2i)

m + Smax + Smax ≤ 4 · OPT (J).
We say a device is saturated (or unsaturated) if the current job is (or not)

infeasible to be assigned to the empty space that is below the top address of
the selected device at Step 2. Now we consider the case that some devices are
saturated while others are not when assigning S2i−1. The existence of saturated
device implies that the current job is infeasible to be allocated to the empty
space on the unsaturated devices according to Step 2. Thus the empty space
both on the unsaturated devices and the saturated devices has size less than
Smax. The total occupied space at time t2i−1 is still LOAD(t2i−1) + m · Smax.
Thus Mmax ≤ LOAD(t2i−1)

m + 2Smax ≤ 3OPT (J). Similarly at time t2i, we have
Mmax ≤ LOAD(t2i−1)+LOAD(t2i)

m + 2Smax ≤ 4OPT (J).
It remains to consider the case that all devices are unsaturated after assigning

S2i−1. All the jobs of S2i−1 are assigned below their top addresses of the selected
devices. Note that the occupied top address for these unsaturated-devices is
generated at time t2i−2. This value can be bounded by 4OPT (J) by the analysis
above. Thus the maximum occupied space at time t2i−1 is at most 4 ·OPT (J) in
this situation. Considering assigning S2i later, all jobs in S2i−2 have departed at
this time by the independence property of laminar decomposition. Thus we need
not to worry about the possible conflict between S2i and S2i−2. Since all the load
is assigned from address 0 consecutively at time t2i−1. The total occupied space

228 W. Wu et al.

at time t2i will be LOAD(S2i−1)+LOAD(S2i) which is at most LOAD(t2i−1)+
LOAD(t2i). Thus we have Mmax ≤ LOAD(t2i−1)+LOAD(t2i)

m +Smax ≤ 3·OPT (J)
at time t2i in this situation. Therefore, the competitive ratio of Algorithm 3 is
at most 4.

Extending to General Jobs. Now we are ready for the competitive algo-
rithm on multi-device for general jobs. The extension will follow some extending
procedure for single-device in [15] with further modifications. We will derive a
O(logL)-competitive algorithm without aiming at reducing its constant factor.
Every job with length (2i−1, 2i] is rounded to length 2i. Then the rounded jobs
with length 2i can be grouped into a set of type i. We will make a loss of factor 2
in this step. All the jobs in the same group has the nice property that they have
agreeable deadlines. Let J ′ be all the jobs that are already released at current
time t and correspondingly S′

max be the largest job size until time t. Let lower
bound LB(t) = max{LOAD(J ′)

m , S
′

max}. According to the proof in Theorem 5,
we only need to assign a slot with size 4 ·LB(t) for the set of type i which ensures
the feasibility to allocate jobs J ′. There are O(log L) such sets of different types.
We only need to open a new slot (starting from the maximum occupied address
thus far) if the arrival job cannot be matched to a slot for its type. Note that
the value LB(t) will change over time, thus we need to update the slot size as
follows. For the current value LB(t), we allocate a slot with size 8LB(t) for each
type i. When this value (the lower bound over time LB(t)) is doubled due to
later released jobs, we then double the slot size that is newly opened for jobs
of type i. The doubling procedure will ensure that the total size of slot that is
allocated is O(log L · LB(t)). Thus finally the competitive ratio is O(log L).

Theorem 6. There is an O(log L)-competitive algorithm for multi-device Bal-
ancing DSA problem for general jobs.

6 Conclusion

In this paper, we improve the algorithms for DSA problem(s) by introducing
the online laminar decomposition. It not only simplifies the analysis, but is also
proved more extendable both for single-device and multi-device setting.

References

1. Briggs, P., Cooper, K.D., Torczon, L.: Improvements to graph coloring register

allocation. ACM Transactions on Programming Languages and Systems 16(3), 428–

455 (1994)

2. Buchsbaum, A.L., Karloff, H., Kenyon, C., Reingold, N., Thorup, M.: OPT versus

LOAD in dynamic storage allocation. In: Proceedioings of the 35th Annual ACM

Symposium on Therory of Computing (STOC), pp. 556–564 (2003)

3. Buchsbaum, A.L., Efrat, A., Jain, S., Venkatasubramanian, S.: Restricted strip

covering and the sensor cover problem. The Conference version appears in Pro-

ceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.

1056–1063 (2007), The full version is at

http://arxiv.org/PS_cache/cs/pdf/0605/0605102v1.pdf

http://arxiv.org/PS_cache/cs/pdf/0605/0605102v1.pdf

Single and Multiple Device DSA Problem 229

4. Chaitin, G.J.: Register allocation & spilling via graph coloring. In: Proceedings

of the SIGPLAN Symposium on Compiler Construction, pp. 98–105. ACM Press,

New York (1982)

5. Chow, F.C., Hennessy, J.L.: The priority-based coloring approach to register alloca-

tion. ACM Transactions on Programming Languages and Systems 12(4), 501–536

(1990)

6. George, L., Appel, A.W.: Iterated register coalescing. ACM Transactions on Pro-

gramming Languages and Systems 18(3), 300–324 (1996)

7. Gergov, J.: Approximation algorithms for dynamic storage allocation. In: Dı́az, J.

(ed.) ESA 1996. LNCS, vol. 1136, pp. 52–61. Springer, Heidelberg (1996)

8. Gergov, J.: Algorithms for compile-time memory optimization. In: Proceedings of

the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. S907–S908

(1999)

9. Kalyanasundaram, B., Pruhs, K.R.: Dynamic Spectrum Allocation: The Impotency

of Duration Notification. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS,

vol. 1974, pp. 421–428. Springer, Heidelberg (2000)

10. Kierstead, H.A.: The linearity of first-fit colorings of interval graphs. SIAM Journal

on Discrete Mathematics 1(4), 526–530 (1988)

11. Kierstead, H.A.: A polynomial time approximation algorithm for dynamic storage

allocation. Discrete Mathematics 88, 231–237 (1991)

12. Knuth, D.E.: Foundamental algorithms, 2nd edn., vol. 1. Addison-Wesley, Reading

(1973)

13. Li, S.C., Leong, H.W., Quek, S.K.: New approximation algorithms for some dy-

namic storage allocation problems. In: Proceedings of the 10th Annual Interna-

tional Computing and Combinatorics Conference, pp. 339–348 (2004)

14. Luby, M.G., Naor, J., Orda, A.: Tight bounds for dynamic storage allocation. In:

Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms,

pp. 724–732 (1994)

15. Naor, J., Orda, A., Petruschka, Y.: Dynamic storage allocation with known du-

rations. In: Proceedings of the 5th Annual European Symposium on Algorithms

(ESA), pp. 378–387 (1997); The journal version appreas in Discrete Applied Math-

ematics 100(3), 203–213 (2000)

16. Narayanaswamy, N.S.: Dynamic storage allocation and on-line colouring interval

graphs. In: Proceedings of the 10th Annual International Computing and Combi-

natorics Conference, pp. 329–338 (2004)

17. Robson, J.M.: Worst case fragmentation of first-fit and best fit storage allocation

strategies. Computer Journal 20, 242–244 (1977)

18. Yang, X., Wang, L., Xue, J., Deng, Y., Zhang, Y.: Comparability graph coloring for

optimizing utilization of stream register files in stream processors. In: Proceedings

of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP), pp. 111–120 (2009)

The Onion Diagram: A Voronoi-Like Tessellation
of a Planar Line Space and Its Applications�,��

(Extended Abstract)

Sang Won Bae1 and Chan-Su Shin2

1 Department of Computer Science, Kyonggi University, Suwon, Korea
swbae@kgu.ac.kr

2 Department of Digital Information and Engineering,
Hankuk University of Foreign Studies, Yongin, Korea

cssin@hufs.ac.kr

Abstract. Given a set S of weighted points in the plane, we consider two prob-
lems dealing with planar lines in R

2 under the weighted Euclidean distance: (1)
Preprocess S into a data structure that efficiently finds a nearest point among S
of a query “line”. (2) Find an optimal “line” that maximizes the minimum of the
weighted distance to any point of S. We introduce a unified approach to both
problems based on a new geometric transformation that maps lines in the plane
into points in a line space. It turns out that our transformation, together with
its target space, well describes the proximity relations between given weighted
points S and every planar line in R

2. We define a Voronoi-like tessellation on the
line space and investigate its geometric, combinatorial, and computational prop-
erties. As its applications, we obtain several new results on the two problems.

1 Introduction

Let S ⊂ R
2 be a set of n points, called sites, with weights assigned. For any point

x ∈ R
2, the distance dp(x) to a site p ∈ S is defined to be their Euclidean distance

times the weight wp > 0 of p; that is, dp(x) := wp · d(p, x), where d(·, ·) denotes the
Euclidean distance function. Consider two popular geometric problems:

The nearest-neighbor query problem. Preprocess S into a data structure that effi-
ciently reports arg minp∈S dp(q) for a query point q ∈ R

2.
The max-min location problem. Find an optimal point x∗ ∈ conv(S) that maximizes

the minimum distance to sites; that is, x∗ = argmaxx∈conv(S) minp∈S dp(x),
where conv(S) denotes the convex hull of S.

When the weights wp of all p ∈ S are equal (or without weights), both problems
can be solved efficiently by the ordinary Voronoi diagram; the nearest-neighbor query

� This work is dedicated to our advisor, Professor Kyung-Yong Chwa, on the occasion of his
honorable retirement.

�� Work by S.W.Bae was supported by National Research Foundation of Korea(NRF) grant
funded by the Korea government(MEST) (No. 2010-0005974). Work by C.-S.Shin was sup-
ported by National Research Foundation of Korea(NRF) grant funded by the Korea govern-
ment(MEST) (No. 2010-0016416), and the HUFS Research Fund.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 230–241, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Onion Diagram: A Voronoi-Like Tessellation 231

can be answered in O(log n) time by the Voronoi diagram of S using O(n) space
and O(n log n) preprocessing time, and the max-min location problem, also known
as the largest empty circle problem, is solved by traversing all vertices and edges of
the Voronoi diagram [14]. In the general weighted case, one can exploit the multiplica-
tively weighted Voronoi diagram of given weighted points S with O(n2) construction
time [2].

This paper aims to extend the above idea, exploiting Voronoi diagrams of a certain
type, in solving a variant of the problems where “lines” in R

2 are dealt with instead of
“points” in R

2:

The nearest-neighbor line query problem. Preprocess S to a data structure that effi-
ciently reports arg minp∈S dp(l) for a query line l ⊂ R

2.
The max-min line location problem. Find an optimal line l∗ ⊂ R

2 intersecting
conv(S) that maximizes the minimum distance to sites.

Note that for any line l ⊂ R
2, the distance dp(l) to a site p ∈ S is naturally extended

as dp(l) := minx∈l dp(x). In the nearest-neighbor line query problem, shortly the line
query problem, the query object becomes a line in R

2; in the max-min line location
problem, we would like to find an optimal line. The max-min line location problem
is a geometric facility location problem, where a facility of line shape to be placed
is “obnoxious” so that each site in S want to stay as far away from it as possible.
Both problems have been studied in computational geometry and operations research
community, motivated by their natural applications.

It is known that the unweighted version of both problems can be efficiently solved
commonly by the geometric dual transformation that maps a line y = ax + b in the
primal plane into a point (a,−b) in the dual plane, and vice versa. Lee and Chiang [12]
showed the line query can be processed in O(log n) time using O(n2) space and pre-
processing time based on the geometric duality, while the same performance had been
achieved earlier by Cole and Yap [5]. Afterwards, Nandy et al. [13] improved the re-
quired storage into O(n2/ logn) and extended it to k-nearest neighbor queries, again
exploiting the duality. The max-min line location problem for unweighted points is
equivalent to the problem of finding a widest empty corridor. The currently best al-
gorithm solves the widest empty corridor problem in O(n2) time and O(n) space by
topological sweeping in the dual plane [11].

On the other hand, the geometric duality is seemingly hard to extend to the general
(weighted) version of the problems. To our best knowledge, the line query problem
for weighted points has not been considered in the literature. The max-min line loca-
tion problem is also known as the obnoxious line location problem, shortly the OLL
problem, and was first studied by Drezner and Wesolowsky [8] with an O(n3)-time al-
gorithm. The first near-quadratic O(n2 log3 n)-time algorithm was recently presented
by Dı́az-Báñez et al. [7]; later, Chen and Wang [3] improved it to O(n2 log n) time.
Both algorithms are achieved via the parametric search technique.

The parametric search technique is known as a powerful tool to solve geometric op-
timization problems, resulting in theoretically efficient algorithms, while their imple-
mentation is an entirely challenging task because the simulation by a parallel decision
algorithm is fairly complicated. Though several attempts to make it more practical have
been suggested [4,16], its practical implementation still remains a challenge. Therefore,

232 S.W. Bae and C.-S. Shin

an efficient algorithm avoiding the parametric search technique would be more attempt-
ing, even though its theoretical running time is slightly sub-optimal.

This paper introduces a new geometric transformation that maps lines in the primal
plane into points in a parameterized space L. It turns out that our mapping, together
with its target space L, provides nice geometric insights that make easy to look into the
proximity relations between planar lines and given weighted points S. Further, we de-
fine a Voronoi-like subdivision O(S) on L generated by weighted points S, named the
onion diagram, and investigate its geometric, combinatorial and computational proper-
ties. As the nearest-neighbor query problem and the max-min location problem can be
solved by exploiting the multiplicatively weighted Voronoi diagram, the onion diagram
is applied to their line version, resulting in several new algorithmic results:

(1) We present a data structure of size O(n2) that answers a line query among n
weighted points in O(log n) time after O(n2 log n) preprocessing time. This is the
first nontrivial result on the line query problem among weighted points.

(2) We present the first near-quadratic O(n2 log n)-time/O(n2)-space algorithm for the
OLL problem for weighted points that avoids the parametric search. The bounds
match the best known ones achieved via the parametric search [3]. We also present
an O(n2 log2 n)-time/O(n)-space algorithm, again avoiding the parametric search.

(3) Our approach extends to weighted “polygon” sites, where we are given m polygons
with n total corners. We show that the OLL problem for weighted polygons can
be solved in O(nm + m2 log m log n) time using O(nm) space, and that the line
query problem for weighted polygons can be solved using O(nm) space, O(nm +
m2 log m log n) preprocessing time, and O(log n) query time.

The previously best algorithm for the OLL problem runs in O(nm+n log2 n+
m2 log m) time and O(nm) space [3] via the parametric search technique, and our
result on the line query problem among polygons shows the first nontrivial bound.

2 The Onion Diagram: Definition and Properties

In this section, we introduce our transformation, give the definition of the onion dia-
gram, and then reveal its several useful properties. Due to lack of space, some proofs
are omitted but will be found in a longer version.

2.1 The Line Space L

We first describe our coordinate system for planar lines, which introduces a new param-
eterized space L of planar lines in R

2. Let o ∈ R
2 be the origin (or the reference point)

in the plane. Any line l ⊂ R
2 can be described by a pair (θ, λ) of two parameters with

θ ∈ [0, π) and λ ∈ R as follows: θ denotes the orientation of l and λ the signed distance
of l from o. More precisely, letting �θ ⊂ R

2 be the directed line through o with direction
θ − π

2 , the intersection point �θ ∩ l is expressed as o+λ · (cos(θ − π
2), sin(θ − π

2)); that
is, λ can be seen as the coordinate of point �θ ∩ l on �θ.

Define L := [0, π) × R to be the set of all possible pairs of parameters. Observe
that any point in L corresponds to a unique line l in R

2. In order to clearly distinguish

The Onion Diagram: A Voronoi-Like Tessellation 233

θ

λ
L

2 2 2 21

R
2

θ

λ
L

(a) (b) (c)

op1p2 p3 p4
0 0

p̄4

p̄3

p̄1

p̄2

ō

0 π 0 π

Fig. 1. An example of the onion diagram induced by S = {o, p1, p2, p3, p4}, as shown in (a)with
wo = 1 and wpi = 2 for i = 1, . . . 4. (a) the five weighted points in the primal plane R

2, (b) p̄
for every p ∈ S, (c) the onion diagram O(S), where the thick curves are bisectors between o and
pi and the region R(o) of o ∈ S is depicted by the shaded region.

things, we shall call the plane R
2 the primal plane and L the line space; for any line

l ⊂ R
2 in the primal plane, let l̄ = (θ, λ) ∈ L be its corresponding point in the line

space. In L, we regard the θ-axis as horizontal and the λ-axis as vertical.
Note that our mapping l �→ l̄ = (θ, λ) is hardly said to be a geometric dual trans-

formation, since a point p ∈ R
2 in the primal plane is not mapped into a line in L.

Instead, we consider any point p ∈ R
2 in the primal plane to be a function p̄(θ) over

θ ∈ [0, π) based on the orthogonal projection onto the line �θ ⊂ R
2 with orientation

θ − π/2: let p̄(θ) be the λ-coordinate of the line through p with orientation θ. Then,
p̄(θ) is described as a sinusoidal function with angular frequency 1:

p̄(θ) = ρp · sin(φp + θ),

where ρp := d(p, o) and φp ∈ [0, 2π) denotes the direction from o towards p. By an
abuse of notation, we denote by p̄ the graph of p̄(θ) over θ ∈ [0, π) embedded in the
line space L. Note that ō(θ) = 0 for any θ ∈ [0, π) and thus ō is the horizontal line
through (0, 0) ∈ L. See Fig. 1(a) and (b).

2.2 Definition of the Onion Diagram

We are now given a set S ⊂ R
2 of n weighted point sites in the primal plane; for any

p ∈ S, let wp > 0 be its assigned weight. Recall that the weighted distance from a
line l ∈ R

2 to p ∈ S is represented as wp · d(p, l). For any l̄ = (θ, λ) ∈ L, we define
dp(l̄) := wp · |p̄(θ) − λ|. Then, it is easy to check that dp(l̄) = wp · d(p, l).

Now, we can define a Voronoi-like diagram on the line space L that is generated
by the set S of sites in the primal plane R

2 under the distance function dp for any
p ∈ S. For any p, q ∈ S with p �= q, the line space L is split into three regions
R(p, q), B(p, q) and R(q, p) as follows: let B(p, q) := {l̄ ∈ L | dp(l̄) = dq(l̄)} and
R(p, q) := {l̄ ∈ L | dp(l̄) < dq(l̄)}. We call B(p, q) the bisector between p and q.
The region R(p) of p with respect to S is defined to be R(p) :=

⋂
q∈S\{p} R(p, q). By

its definition, it is obvious that the union of the (closure of) R(p) covers the whole line
space L. Consequently, the regions R(p) form a planar subdivision of L. We shall call

234 S.W. Bae and C.-S. Shin

0 π 0 π 0 π

q̄

p̄

(a) wp > wq (b) wp = wq (c) wp < wq

θ = θpq

Fig. 2. The shape of the bisector B(p, q) with various weights wp and wq . In each of three figures,
thin black curves are p̄ and q̄, thick curves are Bin(p, q) and Bout(p, q), and the shaded region
depicts R(p, q). (a) wp = 2, wq = 1; (b) wp = wq = 1; (c) wp = 1, wq = 3.

this subdivision of the line space L the onion diagram induced by the set S of sites in
the primal plane, denoted by O(S). The term “onion” is inspired by its geometric shape;
for some cases, the diagram O(S) resembles a cross section of an onion as shown in
Fig. 1(c).

As a subdivision of L, the onion diagram O(S) consists of a number of vertices,
edges, and cells. Each vertex v̄ of O(S) is determined by three (or more) sites p, q, r ∈
S such that dp(v̄) = dq(v̄) = dr(v̄) = minp′∈S dp′(v̄). Each edge e of O(S) is a
maximally connected portion of B(p, q) for some p, q ∈ S such that dp(l̄) = dq(l̄) <
dr(l̄) for any l̄ ∈ e and any r ∈ S. Each cell of O(S) is a maximally connected set of
points l ∈ L that are closest to exactly one p ∈ S; thus, each cell of O(S) is a connected
component of R(p) for some p ∈ S.

2.3 Geometric and Combinatorial Properties

We start with an interesting relation between the onion diagram and the multiplicatively
weighted Voronoi diagram.

Lemma 1. The cross section of the onion diagram O(S) by a vertical line � ⊂ L at
θ = θ′ coincides with the 1-dimensional multiplicatively weighted Voronoi diagram on
the line �θ′ for S̄(θ′), where S̄(θ′) denotes the set of the orthogonal projections of each
p ∈ S onto �θ′ . Therefore, � intersects at most O(n) cells and edges of O(S).

Hence, the onion diagram O(S) can be seen as the trace of the 1-dimensional weighted
Voronoi diagram on �θ as θ increases continuously from 0 to π. This gives an idea of
a plane sweep algorithm for computing O(S), which will be presented in Section 3.
About the 1-dimensional weighted Voronoi diagram, we refer to Aurenhammer [1].

Now, we look into the shape of the bisector B(p, q).

Lemma 2. The bisector B(p, q) ⊂ L between any two sites p, q ∈ S consists of two
simple curves Bin(p, q) and Bout(p, q). Moreover, if wp �= wq , then

Bin(p, q) : λ =
wpp̄(θ) + wq q̄(θ)

wp + wq
, Bout(p, q) : λ =

wpp̄(θ) − wq q̄(θ)
wp − wq

;

if wp = wq , Bin(p, q) is described as above and Bout(p, q) is a vertical line {θ = θpq},
where θpq ∈ [0, π) is the unique orientation such that p̄(θpq) = q̄(θpq) holds.

The Onion Diagram: A Voronoi-Like Tessellation 235

Thus, each of Bin(p, q) and Bout(p, q) is either a vertical line in L or the graph of the
sum of two sinusoidal functions, c1 sin(φp + θ) + c2 sin(φq + θ) for constants c1 and
c2 depending on wp, wq , p, and q. See Fig. 2.

From now, we bound the combinatorial complexity of the onion diagram O(S),
which counts the total number of vertices, edges, and cells of O(S).

Lemma 3. Any two distinct B�(p, q) and B�(r, s) intersect at most once for �,� ∈
{in, out} and p, q, r, s ∈ P .

In spite of the seemingly favorable behaviors of the bisectors B(p, q) as shown in
Lemma 3, we show that the region R(p) of a site p ∈ S can have a quadratic com-
plexity Ω(n2).

Lemma 4. Let S ⊂ R
2 be any set of n points in the primal plane in which no three

are collinear. Then, there exists an assignment of weights such that the region R(p) for
some p ∈ S has complexity Ω(n2).

Lemma 4 directly implies that the onion diagram O(S) has complexity Ω(n2) in the
worst case. An easy upper bound for the complexity of O(S) is O(n3) because each
region R(p) for p ∈ S is the union of some cells in the arrangement of B(p, q) whose
complexity is O(n2) by Lemma 3. In the following, we show that the right bound is
Θ(n2).

For p ∈ S, we split S \ {p} into two subsets Sin
p and Sout

p , where Sin
p is the set of

points in S \ {p} whose weights are at most wp and Sout
p := (S \ {p}) \ Sin

p . Then,
the region R(p) is also represented by R(p) = Rin(p) ∩ Rout(p), where Rin(p) :=⋂

q∈Sin
p

R(p, q) and Rout(p) :=
⋂

q∈Sout
p

R(p, q). We are more interested in the com-

plexity of Rin(p); it will be shown that the complexity of O(S) is not more than the
sum of those of the Rin(p) for all p ∈ S.

Our task is thus to tightly bound the complexity of Rin(p). For the purpose, we
observe the following:

Lemma 5. Let Γp := {Bin(p, q), Bout(p, q) | q ∈ S \{p}} and A(Γp) be the arrange-
ment of Γp. Then, Rin(p) is the union of cells of A(Γp) intersected by p̄.

Now, we are ready to prove the linear bound on the complexity of Rin(p).

Lemma 6. The combinatorial complexity of Rin(p) is at most O(|Sin
p |).

Proof. Let Γp and A(Γp) be defined as in Lemma 5. By Lemma 5, we are done by
bounding the complexity of the union of all cells of A(Γp) intersected by p̄. We cut each
curve γ ∈ Γp by p̄ at the unique intersection point (its uniqueness is easily checked by
equations) into two curves γ+ and γ−, where γ+ lies above p̄ and γ− lies below p̄. Let
Γ+

p := {γ+ | γ ∈ Γp} and Γ−
p := {γ− | γ ∈ Γp}. Then, the boundary of Rin(p) is

exactly the union of the lower envelope L(Γ+
p) of Γ+

p and the upper envelope U(Γ−
p)

of Γ−
p . See Fig. 2(a) for illustration to B(p, q) and R(p, q) when wp > wq .

Now, we show that L(Γ+
p) is corresponding to the Davenport-Schinzel sequence of

order 2. Recall that any pair of two curves in Γ+
p intersects at most once by Lemma 3.

Informally speaking, the curve segments in Γ+
p act almost like the half-lines; one end

of each γ+ ∈ Γ+
p reaches the vertical line {θ = 0} or {θ = π} and the other lies

236 S.W. Bae and C.-S. Shin

on p̄. Thus, attaching a steep ray at γ+ ∩ p̄ is enough to reform it as the graph of a
function defined totally on [0, π). Further, the number of pairwise intersections among
such extended curves are at most two; the steep extension intersects at most once with
any other curve. This implies that the lower envelope L(Γ+

p) of Γ+
p corresponds to the

Davenport-Schinzel sequence of order 2 and O(|Sin
p |) symbols, whose length is at most

O(|Sin
p |) [15].

The identical argument applies to U(Γ−
p), completing the proof. We note that a sim-

ilar technique — attaching steep rays — can be found in showing the lower envelope of
straight line segments corresponds to the Davenport-Schinzel sequence of order 3.

Finally, we show the tight bound on the complexity of the onion diagram.

Theorem 1. The combinatorial complexity of the onion diagram O(S) induced by n
weighted points S is O(n2). This bound is asymptotically tight in the worst case.

Proof. Since the onion diagram O(S) is a planar subdivision and its vertices are inci-
dent to at least three edges, we are done by showing that the number of vertices of O(S)
is O(n2). For each vertex v̄ ∈ L of O(S), let p, q, r ∈ S with wp ≥ wq ≥ wr be the
three sites defining v̄. Then, the vertex v̄ of O(S) also appears as a vertex of Rin(p);
that is, a vertex of O(S) is also a vertex of Rin(p) for some p ∈ S. This implies that
the number of vertices of O(S) does not exceed the sum of the number of vertices of
Rin(p) for all p ∈ S. By Lemma 6, we thus have

|O(S)| ≤
∑
p∈S

|Rin(p)| =
∑
p∈S

O(|Sin
p |) =

∑
p∈S

O(n) = O(n2),

as claimed. The tightness of the bound is shown by Lemma 4.

We remark that the quadratic bound remains still tight even if the assigned weights
wp for p ∈ S are all equal. In this (unweighted) case, we have R(p) = Rin(p) and
therefore the complexity of each region R(p) is O(n) by Lemma 6. On the other hand,
one can easily see that, for any p, q ∈ S with p �= q, there is an edge of O(S) that is a
connected portion of B(p, q), provided that no three of S are collinear. Consequently,
the worst-case complexity of O(S) is Θ(n2).

3 Computing the Onion Diagram

In this section, we present a near-optimal algorithm for computing the onion diagram
O(S). Our algorithm follows a standard plane sweep technique: let � ⊂ L be the vertical
line in the line space at θ, namely the sweep line, and we maintain the intersection
between � and the cells of O(S) as θ increases continuously from 0 to π. Each cell C of
O(S) is regarded to be labeled by p ∈ S with C ⊆ R(p). The combinatorial structure
of the intersections is described by the order of labels of cells along the sweep line �,
and is stored in a balanced binary search tree T .

We need the following observation for correct computation.

Lemma 7. Each cell C of O(S) is θ-monotone. Moreover, the leftmost and the right-
most point of C are vertices of O(S).

The Onion Diagram: A Voronoi-Like Tessellation 237

By Lemma 7, we know that each cell of O(S) intersects � in an interval and that the
combinatorial structure changes whenever � touches a vertex of O(S). We call an ori-
entation θ ∈ [0, π) an event orientation if � touches a vertex of O(S) at θ. It is also said
that an event occurs at θ and a vertex v̄ ∈ L of O(S) is associated with an event. There
are two sorts of events: merge events and split events. When a merge event occurs at θ,
two edges of O(S) are merged at the associated vertex v̄ into one; for a split event, an
edge of O(S) is split into two at the corresponding vertex v̄.

Our algorithm runs in two phases: First, we predict and gather all possible events
with their associated vertices and then sweep the line space L by the sweep line �,
constructing the diagram O(S).

Prediction phase. In the prediction phase, we compute a set V of O(n2) points in L

which includes all vertices of O(S). Since each event corresponds to a vertex of O(S),
computing V is sufficient to collect all candidates of events.

More precisely, V is determined to be the union of all vertices of Rin(p) for p ∈ S.
Then, as shown in the proof of Theorem 1, V is a superset of the set of vertices of O(S).
Furthermore, |V | = O(n2) by Lemma 6 and it can be computed in O(n2 log n) time
by the following lemma.

Lemma 8. For any p ∈ S, all vertices of Rin(p) can be identified in O(n log n) time.

Sweeping phase. In the sweeping phase, we first initialize T for θ = 0 by computing
the intersection of the sweep line � and O(S), which coincides with a 1-dimensional
weighted Voronoi diagram by Lemma 1. This initialization can be done in O(n log n)
time by Aurenhammer [1]. We then put the points in V associated with the event candi-
dates into a priority queue Q indexed by their θ-coordinates, and run the main loop. In
the main loop, we extract the next upcoming event from Q and process it accordingly,
updating the combinatorial structure T .

Let v̄ = (θ, λ) ∈ V be a point in the line space associated with the next event at
θ to be processed. There are the three sites p, q, r ∈ S defining v̄; that is, we have
dp(v̄) = dq(v̄) = dr(v̄). Recall that V contains a number of “fake” events. In order to
filter them out, we test the validity of the current event using the following observation:
If the current event is a true split event, then a pair of labels {p, q, r} must be consecutive
in T ; otherwise, if it is a true merge event, then a permutation of labels {p, q, r} must
be consecutive in T . The validity test of each event can be done in O(log n) time by
searching the binary tree T .

Once the validity test is passed, we update T accordingly, making up the tree T lo-
cally by insertion or deletion. This also can be done in O(log n) time. Since we process
O(n2) events and each of them is handled in O(log n) time, the sweeping phase is done
in O(n2 log n) time. Once the sweeping phase is completed, we know the combinato-
rial structure of the onion diagram O(S) and thus we can build it by tracing its edges
and vertices.

Theorem 2. The onion diagram O(S) induced by a given set S ⊂ R
2 of n weighted

points can be computed in O(n2 log n) time using O(n2) space.

238 S.W. Bae and C.-S. Shin

4 Applications

In this section, we present several new algorithmic results on the line query problem
and the max-min (or obnoxious) line location problem, all of which are based on the
observations on the onion diagram made in previous sections.

4.1 Querying a Line for Nearest-Neighbor among Weighted Points

This is a direct application of the onion diagram. With an aid of a standard point location
structure [6] on the onion diagram O(S), a query can be processed in O(log n) time.
We hence conclude the following.

Theorem 3. Given a set S of weighted points in R
2, one can preprocess S into a data

structure of size O(n2) in time O(n2 log n) that can answer a nearest point among S
of a query line in O(log n) time.

It is worth noting that Theorem 3 presents the first nontrivial bound on the nearest-
neighbor line query problem among weighted points.

4.2 The Max-Min Line Location Problem among Weighted Points

This problem asks to find an optima line that maximizes the minimum of the weighted
distances to given points S. A key observation, which was known by previous results [8,
7], is rephrased as follows in terms of the onion diagram O(S):

Lemma 9. LetΦ(l̄)be the minimum ofdp(l̄)over allp∈S; that is, Φ(l̄) := minp∈S dp(l̄).
Suppose that l̄∗ ∈ L is a local maximum of function Φ. Then, one of the following cases
holds: (1) l̄∗ is a vertex of the onion diagram O(S); or (2) l̄∗ lies on an edge e of O(S),
and if e ⊂ B(p, q) for some p, q ∈ S, the θ-coordinate of l̄∗ is θpq + π/2 (modulo π),
where θpq ∈ [0, π) denotes the orientation from p towards q.

Lemma 9 tells us a way of finding an optimal obnoxious line l∗ in the onion diagram
O(S). Since the combinatorial complexity of O(S) is O(n2) by Theorem 1, it is done
by traversing every vertex and edge of O(S) in the same time bound, once we obtain the
diagram O(S). The total time complexity is dominated by O(n2 log n) by Theorem 2.

Theorem 4. Given a set S of n weighted points, the obnoxious line location (OLL)
problem can be solved in O(n2 log n) time and O(n2) space, without using the para-
metric search technique.

Remark that our asymptotic bounds exactly match those by Chen and Wang [3]. Nonethe-
less, our main contribution here is found in removing the technical difficulty depending
on the parametric search and thus making its practical implementation easier. Comput-
ing the onion diagram can be done by Theorem 2 and the algorithm is relatively easy
to implement; it exploits standard data structures and the plane sweep technique. More-
over, our approach based on the onion diagram provides a more geometric insight to the
problem, resulting in an alternative algorithm using linear space:

Theorem 5. Given a set S of n weighted points, the obnoxious line location (OLL)
problem can be solved in O(n2 log2 n) time and O(n) space, without using the para-
metric search technique.

The Onion Diagram: A Voronoi-Like Tessellation 239

5 Extension to Weighted Polygonal Sites

In this section, we extend our discussion to the polygonal site case; thus, here let S be a
set of m weighted simple polygons, possibly being overlapping, with n total number of
corners. For each polygon P ∈ S, a weight wP > 0 is assigned as before, and thus the
distance from any line l ⊂ R

2 to P ∈ S is defined to be dP (l̄) := wP · minp∈P d(p, l).
Since we consider only the distance from lines, we can assume that each P ∈ S is
convex; even though P ∈ S is not convex, its convex hull conv(P) can be computed in
linear time [9].

As in Section 2, consider the orthogonal projection P̄ (θ) of P ∈ S onto the line
�θ ⊂ R

2 through the origin o ∈ R
2 with orientation θ−π/2. Obviously, P̄ (θ) is an inter-

val on �θ , described by two λ-coordinates (P̄+(θ), P̄−(θ)). Each of P̄+(θ) and P̄−(θ)
is a continuous and piecewise sinusoidal function, consisting of |P | breakpoints corre-
sponding to orientations θpp′ in which two consecutive corners p, p′ of P are aligned.
By an abuse of notation, we denote by P̄+ and P̄− the graphs of functions P̄+(θ) and
P̄−(θ) over θ ∈ [0, π), and by P̄ the region bounded by P̄+ and P̄−. See Fig. 3.

Redefinition of the onion diagram. Observe that the set {l̄ ∈ L | dP (l̄) = dQ(l̄)}
contains a two-dimensional region P̄ ∩ Q̄, corresponding to the set of lines l in the
primal plane R

2 that intersect both P and Q; thus, dP (l̄) = dQ(l̄) = 0. Since we would
like to have one-dimensional bisectors to define the onion diagram, we take an arbitrary
linear order ≺ on S and redefine the bisector B(P, Q) as follows: For any P, Q ∈ S
with P ≺ Q, we let R(P, Q) := {l̄ ∈ L | dP (l̄) ≤ dQ(l̄)}; R(Q, P) := {l̄ ∈ L |
dP (l̄) > dQ(l̄)}; B(P, Q) := ∂R(P, Q), the boundary of R(P, Q). We call the set
B(P, Q) ⊂ L the bisector between two weighted polygons P and Q. The region R(P)
of P is defined to be the intersection of R(P, Q) for any Q ∈ S with Q �= P . Then, the
line space L is decomposed by the regions R(P) and the onion diagram O(S) induced
by S is the corresponding planar subdivision of L. See Fig. 3(d).

Complexity bound. The vertices, edges, and cells of O(S) are induced accordingly.
Since a vertex v̄ of O(S) is determined by some P, Q, Q′ ∈ S with dP (v̄) = dQ(v̄) =
dQ′(v̄), three edges of O(S) are incident to v̄ which are portions of B(P, Q), B(P, Q′),
and B(Q, Q′), respectively. On the other hand, the complexity of an edge of O(S) is

o

P

Q

P̄+

P̄−

P̄ Q̄+

Q̄−

Q̄
P̄ ∩ Q̄

(a) (b) (c) (d)

Fig. 3. (a) Two given polygons P and Q. (b)(c) P̄ and Q̄; black dots are breakpoints on their
boundaries P̄+, P̄−, Q̄+, and Q̄−. (d) The bisector B(P, Q) (black thick curves) and the break-
points (black dots) on it, when wP = 8, wQ = 1 and P ≺ Q. The gray region, including P̄ ∩ Q̄,
depicts R(P, Q). All figures are precisely drawn under scaling.

240 S.W. Bae and C.-S. Shin

generally more than constant: each edge of O(S) consists of a number of “breakpoints”.
Thus, in order to correctly count the combinatorial complexity of O(S), we also need
to consider the breakpoints on its edges.

Observe that a breakpoint on B(P, Q) corresponds to an orientation θpp′ in which
two consecutive corners p, p′ of P or of Q are aligned; recall that the description of
function P̄ (θ) or Q̄(θ) changes at such orientations θpp′ only. Since we have only n such
orientations, the number of distinct θ-coordinates of all breakpoints are at most n. Also,
Lemma 1 extends to the polygon case and thus any vertical line � ⊂ L intersects at most
O(m) cells and edges of O(S). This implies that there are at most O(nm) breakpoints
on the edges of O(S). Fig. 3 also illustrates the breakpoints on the bisector B(P, Q);
one can check that every breakpoint is corresponding to such an orientation θpp′ .

Bounding the number of vertices of O(S) is done in a similar fashion as Lemma 6
and Theorem 1. Detailed proofs will be presented in a longer version of the paper.

Theorem 6. The combinatorial complexity of the onion diagram O(S) induced by a
given set S of m polygons with n total number of corners is O(nm). Moreover, there
are at most O(m2) vertices and O(nm) breakpoints on the edges in O(S). All these
bounds are asymptotically tight in the worst case.

Algorithm. The overall framework of our algorithm computing O(S) is almost identical
to that for weighted points described in Section 3. One special care is necessary to handle
the breakpoints on the edges. Here, we handle three types of events: split, merge, and
breakpoint events. Split and merge events are defined as in the weighted point case and
breakpoint events occur whenever the sweep line � touches a breakpoint on an edge of
O(S).

As discussed above, breakpoint events occur at at most n different orientations and
a breakpoint event can cause O(m) changes on edges intersected by the current sweep
line �. Thus, when handling a breakpoint event determined by two consecutive corners
of P ∈ S, it suffices to do a linear search on T to find all intervals labeled by P and
update them accordingly, taking O(m) time per breakpoint event.

For the other two types of events, we first observe the following:

Lemma 10. Computing the intersection B(P, Q) ∩ B(P, Q′) for P, Q, Q′ ∈ S can be
done in O(log(|P | + |Q| + |Q′|)) time.

This is possible because the corners of each polygon in S are given sorted. The above
lemma provides a primitive operation of computing a superset V of the set of all ver-
tices of O(S), thus collecting all split and merge events, in the prediction phase. Conse-
quently, the following is obtained by an analogous method to Lemma 8 for each P ∈ S.

Lemma 11. All split and merge events can be collected in O(m2 log m logn) time.

The sweeping phase of the algorithm processes each event in O(log m) time since T
always contains O(m) intervals as aforementioned. Finally, we conclude the following.

Theorem 7. The onion diagram O(S) induced by a set S of m polygons with n total
corners can be computed in O(nm + m2 log m log n) time using O(nm) space.

As direct applications of the onion diagram O(S) induced by a given set S of weighted
polygons, we state following new algorithmic results.

The Onion Diagram: A Voronoi-Like Tessellation 241

Theorem 8. Given a set S of m weighted polygons with n total corners, one can pre-
process S into a data structure of size O(nm) in time O(nm + m2 log m log n) that
can answer a nearest polygons among S of a query line in O(log n) time.

To the best of our knowledge, the above theorem presents the first nontrivial result on
the nearest-neighbor query among weighted polygons.

Theorem 9. Given a set S of m weighted polygons with n total corners, the obnoxious
line location (OLL) problem among S can be solved in O(nm + m2 log m logn) time
and O(nm) space, without using the parametric search technique.

Remark that the previously best algorithm for the obnoxious line location problem for
weighted polygons runs in O(nm+n log2 n+m2 log m) time using O(nm) space via
the parametric search [3]. Our algorithm again avoids the parametric search, while its
performance is as good as the previous one: ours even outperforms it for m = o(log2 n).

References

1. Aurenhammer, F.: The one-dimensional weighted Voronoi diagram. Inf. Process. Lett. 22(3),
119–123 (1986)

2. Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted
Voronoi diagram in the plane. Pattern Recognition 17(2), 251–257 (1984)

3. Chen, D.Z., Wang, H.: Locating an obnoxious line among planar objects. In: Proc. 20th Int.
Sympos. Algo. Comput. (ISAAC), pp. 740–749 (2009)

4. Cole, R.: Parallel merge sort. SIAM J. Comput. 17(4), 770–785 (1988)
5. Cole, R., Yap, C.: Geometric retrieval problems. In: Proc. 24th IEEE Sympos. Foundation of

Computer Science (FOCS), pp. 112–121 (1983)
6. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry:

Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)
7. Dı́az-Báñez, J.M., Ramos, P.A., Sabariego, P.: The maximin line problem with regional de-

mand. European Journal of Operational Research 181(1), 20–29 (2007)
8. Drezner, Z., Wesolowsky, G.: Location of an obnoxious route. Journal of Operational Re-

search Society 40(11), 1011–1018 (1989)
9. Graham, R.L., Yao, F.F.: Finding the convex hull of a simple polygon. J. Algorithms 4(4),

324–331 (1983)
10. Hershberger, J.: Finding the upper envelope of n line segments in o(n log n) time. Inf. Pro-

cess. Lett. 33(4), 169–174 (1989)
11. Janardan, R., Preparata, F.P.: Widest-corridor problems. Nordic J. of Computing 1(2), 231–

245 (1994)
12. Lee, D., Chiang, Y.: The power of geometric duality revisited. Inform. Process Lett. 21, 117–

122 (1985)
13. Nandy, S.C., Das, S., Goswami, P.P.: An efficient k nearest neighbors searching algorithm

for a query line. Theoretical Computer Science 299, 273–288 (2003)
14. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer, Heidelberg

(1985)
15. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications.

Cambridge University Press, New York (1995)
16. van Oostrum, R., Veltkamp, R.C.: Parametric search made practical. Comput. Geom: Theory

and Appl. 28, 75–88 (2004)

Improved Online Algorithms for 1-Space
Bounded 2-Dimensional Bin Packing

Yong Zhang1,2,�, Jingchi Chen2, Francis Y.L. Chin2,��, Xin Han3,� � �,
Hing-Fung Ting2,†, and Yung H. Tsin4,‡

1 College of Mathematics and Computer Science, Hebei University, China
2 Department of Computer Science, The University of Hong Kong, Hong Kong

{yzhang,jchen,chin,hfting}@cs.hku.hk
3 School of Software, Dalian University of Technology, China

hanxin.mail@gmail.com
4 School of Computer Science, University of Windsor, Canada

peter@uwindsor.ca

Abstract. In this paper, we study 1-space bounded 2-dimensional bin

packing and square packing. A sequence of rectangular items (square

items, respectively) arrive over time, which must be packed into square

bins of size 1×1. 90◦-rotation of an item is allowed. When an item arrives,

we must pack it into an active bin immediately without any knowledge

of the future items. The objective is to minimize the total number of bins

used for packing all the items in the sequence. In the 1-space bounded

variant, there is only one active bin for packing the current item. If the

active bin does not have enough space to pack the item, it must be closed

and a new active bin is opened.

Our contributions are as follows: For 1-space bounded 2-dimensional

bin packing, we propose an online packing strategy with competitive

ratio 5.155, surpassing the previous 8.84-competitive bound. The lower

bound of competitive ratio is also improved from 2.5 to 3. Furthermore,

we study 1-space bounded square packing, which is a special case of the

bin packing problem. We give a 4.5-competitive packing algorithm, and

prove that the lower bound of competitive ratio is at least 8/3.

1 Introduction

The bin packing problem [1–9, 11–24] has been well studied for more than thirty
years. In the general bin packing problem, a sequence of items are packed into
bins without overlapping. The objective is to minimize the number of bins used
for packing all the items in the sequence.

� Supported by Shanghai Key Laboratory of Intelligent Information Processing,

China. Grant No. IIPL-2010-010.
�� Research supported by HK RGC grant HKU-7113/07E and the William M.W.

Mong Engineering Research Fund.
� � � Partially supported by the Fundamental Research Funds for the Central Universi-

ties.
† Research supported by HK RGC grant HKU-7171/08E.
‡ Research supported by NSERC under grant NSERC 7811-2009.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 242–253, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing 243

Most previous studies do not impose a limit on the number of bins available
for packing the items (called active bins). We call this model unbounded space.
There is another model called bounded space, which is more realistic in many
applications. In the bounded space model, the number of active bins is bounded
by a constant, and each item can only be packed into one of the active bins. If
none of the active bins has enough space to pack an item, one of the current
active bins is closed and a new active bin is opened to pack that item.

In this paper, we consider 1-space bounded 2-dimensional bin packing and
square packing, which are interesting variants of bin packing. In the 1-space
bounded variant, the number of active bins is only one. If an item cannot be
packed into the active bin, we have to close this bin and open a new one to
pack the item. In the 1-space bounded 2-dimensional bin packing problem, each
item is rectangular in shape and its width and height are no more than 1. The
items must be packed into square bins of size 1 × 1. 90◦-rotation of any item
is allowed, otherwise, the competitive ratio is unbounded [12]. 1-space bounded
square packing is a special case of 1-space bounded 2-dimensional bin packing,
where each item is a square with edge length no more than 1. Again, the objective
is to minimize the number of square bins used.

For example, as shown in Fig. 1(a), there are four items to be packed into unit
square bins, and the arrival order is A, B, C and D. After the packing position
of A is fixed, we have two choices to pack B: rotation and without rotation. If
we pack B without rotation in the same bin with A as shown in Fig. 1(b), when
item C arrives, we have to open a new bin since the current active bin does not
have enough space for packing C. In the optimal solution, these four items can
be packed into one bin (Fig. 1(c)), since item B, C and D can be rotated and
the free space in the bin can accommodate all of them in their order of arrival.

C D
A

B

(a) four items arrive in order A, B, C, and D

(c) optimal packing into one bin(b) non-optimal packing into two bins

BA

C D

D

C

A

B

Fig. 1. Example of optimal packing and non-optimal packing

We focus on the online version of 1-space bounded 2-dimensional bin packing
and square packing, where the items arrive over time, and when packing the
current item, we have no information of the future items and the position of
the packed items in the bin cannot be changed. To measure the performance of

244 Y. Zhang et al.

online bin packing, the general method is to use the asymptotic competitive ratio.
Consider an online algorithm A and an optimal offline algorithm OPT . For any
sequence S of items, let A(S) be the cost (number of square bins used) incurred
by algorithm A and OPT (S) be the corresponding optimal cost incurred by
algorithm OPT . The asymptotic competitive ratio for algorithm A is:

R∞
A = lim

k→∞
sup

S
{ A(S)
OPT (S)

|OPT (S) = k}.

Related works
Both the offline and online version of the bin packing problem have been well
studied. For the offline version of two-dimensional bin packing. Chung et. al. [5]
presented an approximation algorithm with an asymptotic performance ratio of
2.125. Caprara [4] improved the upper bound to 1.69103. Bansal et al. [2] devised
a randomized algorithm with an asymptotic performance ratio of at most 1.525.
As for the offline lower bound of the approximation ratio, Bansal et al. [1] showed
that the two-dimensional bin packing problem does not admit any asymptotic
polynomial time approximation scheme.

For online one-dimensional bin packing, Johnson et al. [16] showed that the
First Fit algorithm (FF) has an asymptotic competitive ratio of 1.7. Yao [24]
improved the algorithm to obtain a better upper bound of 5/3. Lee et al. [17]
introduced the class of Harmonic algorithms, and showed that an asymptotic
competitive ratio of 1.63597 is achievable. Ramanan et al. [21] further improved
the upper bound to 1.61217. The best known upper bound is that of the Super
Harmonic algorithm of Seiden [22] which is 1.58889. As for the lower bound of
the competitive ratio, Yao [24] showed that no online algorithm can have an
asymptotic competitive ratio less than 1.5. The best known lower bound to date
is 1.54014 [23].

For two-dimensional online bin packing, the best known lower bound is 1.907 [3]
while the best known upper bound is 2.5545 [13].

For bounded space online bin packing, Csirik and Johnson [6] presented an 1.7-
competitive algorithm (K-Bounded Best Fit algorithms (BBFK)) for one dimen-
sional bin packing using K active bins, where K ≥ 2. Epstein et al. [8] gave a
1.69103d-competitive algorithm using (2M − 1)d active bins, where M ≥ 10 is
an integer such that M ≥ 1/(1 − (1 − ε)1/(d+2)) − 1, ε > 0 and d is the dimen-
sion of the bin packing problem. For the 1-space bounded variant, Fujita [12] gave
an O((log log m)2)-competitive algorithm, where m is the width of the square bin
and the size of each item is a× b, where a, b are integers no larger than m. He also
proved that the competitive ratio for the 1-bounded space variant is at least 23/11.
Recently, Chin et al. [7] proposed an 8.84-competitive packing strategy. Moreover,
they proved that the lower bound of the competitive ratio is at least 2.5.

For the special case where the items are squares, there are also many results
[9–11, 14, 15, 18–20]. For bounded space online square packing, Epstein and van
Stee [10] gave a 2.3692-competitive algorithm, they also proved that the lower
bound of the competitive ratio is at least 2.36343. Januszewski and Lassak [15]
proved that any sequence of square items with a total area of at most 5/16 can

Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing 245

be packed into a unit bin. Han et al. [14] studied a variant in which any packed
item can be removed so as to guarantee a good competitive ratio and presented
a packing algorithm that is 3-competitive. Note that in the above two studies,
there is only one bin to pack the square items.

The remaining part of this paper is organized as follows. In Section 2, we pro-
pose a 5.155-competitive algorithm for the 1-space bounded bin packing prob-
lem; we also prove that the lower bound of the competitive ratio is at least 3. In
Section 3, we consider 1-space bounded square packing and give a 4.5-competitive
algorithm, which is the first result in this variant. Moreover, we prove that the
lower bound of this variant is at least 8/3. In Section 4, we summarize our results
and give some future research directions.

2 1-Space Bounded 2-Dimensional Bin Packing

In this section, we propose a packing strategy for 1-space bounded 2-dimensional
bin packing with competitive ratio 5.155. In the previous 8.84-competitive algo-
rithm, the items are classified into three types according to their sizes, and the
unit bin is partitioned into two parts: the upper and lower part. The upper part
only accommodates items from the two types of the larger sizes, while the lower
part only accommodates items from the type of the smallest size. In our new
approach, there is no partition in the unit bin which means that an item can
be placed at any available position within the bin. This new approach is more
flexible than the previous one and can thus achieve better performance.

Since 90◦-rotation is allowed, we shall assume that for each rectangular item,
the width is no less than the height. We classify the rectangular items into three
classes A, B and C according to the width x as follows:

A = {(x, y)|x ≥ 1/2},
B = {(x, y)|1/4 ≤ x < 1/2}, and
C = {(x, y)|x < 1/4}.

For simplicity, let A-item denote an item belonging to class A. B-item and C-
item are defined similarly.

In our packing strategy, A-items are packed into the active bin using a top-
down approach while B-items and C-items are packed into the bin using a
bottom-up approach. If an item cannot be packed into the bin using the strategy,
we close the active bin and open a new one to pack the item.

We further divide the C-items into subclasses C0, C1, C2, An item (x, y)
belongs to subclass Ci, i ≥ 0, if 2−i−1/4 ≤ x < 2−i/4. Let wi denote the maximal
possible width of items from subclass Ci. Then, w0 = 1/4, w1 = 1/8, ... Each
item belonging to subclass C2j−1 or C2j (j > 0) is packed into a row with height
w2j−1 and width 1/2. The items from subclasses C2j−1 are packed from left to
right while the items from subclass C2j are packed from right to left in two
subrows (upper and lower) keeping the lengths of the two subrows balanced at
all times (that means a new item is always packed into the shorter subrow).
Note that the Cj -items (j > 0) are packed with a 90◦-rotation. Figure 2 depicts

246 Y. Zhang et al.

a row with packed items from subclass C2j−1 and C2j . When handling an item
from subclass C2j−1 (or C2j), a new row of height w2j−1 must be created if the
existing rows of height w2j−1 cannot accommodate this item.

w2j−1

C2j−1 C2j

1/2

Fig. 2. Packing C2j−1 (or C2j)-items (j > 0) into a row

Fact 1. For any non-last row of height w2j−1, the occupation ratio is at least 5/16.

Proof. Consider the packing configuration shown in Figure 2. Assuming that
the length of the left occupied area (the total height of the packed items from
subclass C2j−1 in this row) is y, the lengths of the upper and lower subrows in
the right occupied area are y1 and y2 respectively, w.l.o.g., y1 ≥ y2.

If this configuration cannot accommodate the next item from subclass C2j−1

or C2j , we have y + y1 + (height of the item) > 1/2 ⇒ y + y1 + 1/8 > 1/2. Since
the lengths of the two subrows in the right occupied area are balanced, we have
y1 − y2 ≤ w2j ≤ 1/16. Therefore, the total occupied area in this row is at least
(y + y2) × w2j−1/2. Since the total area of this row is w2j−1/2, the occupation
ratio is thus at least y + y2 ≥ 5/16. 	

The following is a detailed description of the above packing strategy.

Algorithm PS1: packing strategy for 1-space bounded 2-dimensional bin packing

1: The A-items are packed in a top-down order with the vertical symmetry axis of

each item aligning with the vertical symmetry axis of the square bin.

2: The B-items and C-items are packed in a bottom-up order along both the left and

right side of the square bin keeping the heights of these two sides balanced at all

times, i.e., a new B-item (C0-item) or newly created row of Cj-item with j > 0, is

always packed on the side of smaller height.

3: If there is insufficient space to pack a new item (A-item, B-item, or C0-item) or a

new row (Cj-item with j > 0), the bin is closed and a new bin is opened to pack

the new item or row.

For example, given the current configuration in Figure 3, the height of the
packed A-items is y, the left and right sides of the packed B-items and C-items
are of height y1 and y2 respectively.

Consider packing the Cj -items with j > 0. If there are more than one rows for
the subclass Cj , the last row could be almost empty while the occupation ratio of
the other rows is at least 5/16 by Fact 1. Since the last row of each subclass could
be almost empty, the total area of such rows is at most (w1+w3+w5+...)×1/2 =
(1/8 + 1/32 + ...) × 1/2 ≈ 1/12.

Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing 247

y1

y

y2

central axle

A-item B-item C-item

row for C1 and C2

C0

C0 C0

Fig. 3. Packing items into a square bin

A B

C

D

E

F

Al Ar

Fig. 4. Partition of unit bin

Theorem 1. The competitive ratio of the packing strategy PS1 is at most 5.155.

Proof. For a given sequence of items, suppose the number of bins used by the
packing strategy PS1 is n. Let oi

A, oi
B and oi

C be the occupied space of A-, B-
and C- items in the i-th bin respectively. The average occupation for all the bins
is
∑n

i=1(o
i
A + oi

B + oi
C)/n.

Consider the packing configuration of the i-th bin as shown in Figure 3. We
have oi

A ≥ y/2, oi
B ≥ (y1 + y2 −

∑
j≥1 w2j−1 − m)/4 ≥ (y1 + y2 − 1/6 − m)/4,

oi
C ≥ m · min{1/8, minj>0{1/2− w2j−1}} ≥ m/8, where m is the total height of

C0-items and non-last rows of Cj-items with j > 0. Let pi
C = m/8, qi

C = oi
C −pi

C .
When n is very large, we have∑n

i=1(o
i
A + oi

B + oi
C)

n
≥ min

1≤i<n
{oi

A/2+ oi
B/2+pi

C + oi+1
A /2+ oi+1

B /2+ qi+1
C } (1)

W.l.o.g., assume y1 ≥ y2.

– If the next A-item with height u cannot be packed into this bin, we have
y + y1 + u > 1 and oi+1

A ≥ u/2. Thus,

• If y1 − y2 ≤ 1/4

oi
A/2 + oi

B/2 + pi
C + oi+1

A /2 + oi+1
B /2 + qi+1

C

≥ y/4 + (y1 + y2 − 1/6 − m)/8 + u/4 + m/8
≥ y/4 + (y1 + y2)/8 + u/4 − 1/48
> (1 − y1)/4 + (y1 + y2)/8 − 1/48
= 11/48 − (y1 − y2)/8
≥ 19/96

• If y1−y2 > 1/4, that means the top item in the bottom-left occupied area
is a B-item. Thus, oi

B ≥ (y2 +y2−1/6−m)/4+(y1−y2)2. It follows that

248 Y. Zhang et al.

oi
A/2 + oi

B/2 + pi
C + oi+1

A /2 + oi+1
B /2 + qi+1

C

≥ y/4 + (y2 + y2 − 1/6 − m)/8 + (y1 − y2)2/2 + u/4 + m/8
≥ (y + u)/4 + y2/4 − 1/48 + (y1 − y2)2/2
> (1 − y1)/4 + y2/4 − 1/48 + (y1 − y2)2/2
= 11/48 + (y1 − y2)2/2 − (y1 − y2)/4
≥ 19/96

– If the next B-item with height u cannot be packed into this bin, we have
y + y2 + u > 1 and oi+1

B ≥ u2. Thus

oi
A/2 + oi

B/2 + pi
C + oi+1

A /2 + oi+1
B /2 + qi+1

C

≥ y/4 + (y1 + y2 − 1/6 − m)/8 + u2/2 + m/8
= y/4 + (y1 + y2)/8 + u2/2 − 1/48
≥ y/4 + y2/4 + u2/2 − 1/48
> (1 − u)/4 + u2/2 − 1/48
≥ 19/96

– If the next C-item with height u cannot be packed into this bin,
• if this item belongs to subclass Ci (i > 0), then as the width of wi (i > 0)

is at most 1/8, we must have y + y2 + 1/8 > 1. Thus,

oi
A/2 + oi

B/2 + pi
C + oi+1

A /2 + oi+1
B /2 + qi+1

C

≥ y/4 + (y1 + y2 − 1/6 − m)/8 + m/8
= y/4 + (y1 + y2)/8 − 1/48
≥ y/4 + y2/4 − 1/48
> (1 − 1/8)/4 − 1/48
= 19/96

• if the next item with height u belongs to subclass C0, we have y +
y2 + u > 1. Note that as this C0-item will be packed into the next bin,
qi+1
C ≥ u2 − u/8. We thus have,

oi
A/2 + oi

B/2 + pi
C + oi+1

A /2 + oi+1
B /2 + qi+1

C

≥ y/4 + (y1 + y2 − 1/6 − m)/8 + m/8 + (u2 − u/8)
= y/4 + (y1 + y2)/8 − 1/48 + (u2 − u/8)
≥ y/4 + y2/4 − 1/48 + (u2 − u/8)
> (1 − u)/4 − 1/48 + (u2 − u/8)
≥ 149/768

Combining all of the above cases, we conclude that the competitive ratio of this
packing strategy is at most 768/149 < 5.155. 	

Theorem 2. The lower bound of competitive ratio for 1-space bounded
2-dimensional bin packing is at least 3.

Proof. Consider a sequence of items: S ={X1, X2, ..., X2n, Y1, Y2, Z1, Y3, Y4, Z2, ...,
Yn−1, Yn, Zn/2, Y1, Y2, Z1, Y3, Y4, Z2, ..., Yn}, in which ε = o(1/n2), and

Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing 249

X2i−1 = (1/2 + i · ε, 1/2 + i · ε)
X2i = (1/2 − (i − 1) · ε, 1/2 − (i − 1) · ε)
Yi = (1/2 + i · ε, 1/2 − i · ε)
Zi = (1, (2i + 2) · ε)

In the first part of the item sequence containing all the Xi items, no online
algorithm can pack any two consecutive items into one unit square bin because
the sum of the edge lengths of any two consecutive X-items is larger than 1.
Thus, at least 2n bins are used for packing all the Xi items.

For the remaining part of the item sequence containing all the Yi and Zi items,
no three consecutive Yi items with an intervening Zi item can be packed into
the same bin. As a result, at least n bins are needed to pack this part of the
item sequence.

For optimal offline packing, since X2i−1, X2i+2, Yi, Yi (1 ≤ i ≤ n − 1) can
be packed into one bin; X2, Yn, Yn can be packed into one bin; X2n−1 can
be packed into one bin, and all the Zi items can be packed into one bin, the
minimum number of bins needed for packing all the items is at most n + 2.

From the above analysis, we conclude that no online algorithm can achieve a
competitive ratio less than 3 for 1-space bounded 2-dimensional bin packing. 	

3 1-Space Bounded Square Packing

In 1-space bounded square packing, a sequence of square items is to be packed
into bins, where there is only one active bin at any time. If a newly arrived square
item cannot be packed into the active bin, we close the active bin and open a new
one for packing that item and subsequent items. The packing strategy in [14]
can be used for this variant directly, leading to a 6-competitive algorithm for
1-space bounded square packing.

Most of the previous studies on square packing use the method of packing
square in brick where a brick is a rectangle with aspect ratio

√
2. A brick can

be partitioned into two smaller congruent bricks of the same size. Thus, packing
a square into a brick can be done recursively. Given a square Q, we use S(Q)
to denote the smallest brick which can contain Q. Let |R| denote the area of
rectangle R.

We briefly describe the algorithm in [15] for packing a square Q in a brick B.

– If there is no empty brick in B of size greater than or equal to S(Q), then
give up packing Q in B.

– Else pack Q into B as follows:

• if there is an empty brick congruent to S(Q), then pack Q into it,
• else partition the smallest empty brick P that is larger than S(Q) into

a sequence of bricks of area |P |/2, |P |/4,..., 2|S(Q)|, |S(Q)|, |S(Q)|,
respectively. Then pack Q into one of the two bricks of area |S(Q)|.

The following lemma is proved in [15].

250 Y. Zhang et al.

Lemma 2. If the above algorithm cannot pack an item Q in a brick B, then
all empty bricks in B are smaller than S(Q). Furthermore, there is at most one
empty brick with area |S(Q)|/2i for each i = 1, 2, ..., and the total area of the
empty bricks is less than |S(Q)|.

Fact 3. If Q is packed in a brick congruent to S(Q), then at least 1/(2
√

2) of
this brick is occupied.

3.1 A 4.5-Competitive Algorithm

We partition each unit bin as shown in Figure 4. Note that bricks A to F are
of the same size (1/3,

√
2/3). Each brick can be further partitioned into two

congruent bricks. For instance, brick A can be partitioned into Al and Ar. Our
packing strategy is as follows.

Algorithm PS2: For 1-space bounded square packing

1: For a square item s with edge length no greater than
√

2/6, we search Al, Ar, Bl,

Br, Cl, Dl, Cr, Dr, E, F , in the listed order, for an S(s) to pack the square s at

its top-left corner.

2: Else, for a square item s with edge length no greater than 1/3, we search A, B, C,

D, E, F , in the listed order, for an S(s) to pack s at its top-left corner.

3: Else, for a square item s with edge length no greater than
√

2/3, we search CD,

EF , in the listed order, for an S(s) to pack s at its bottom-left corner. Note that

CD (or EF) is one brick for packing the item in this case.

4: Else, for a square item with edge length greater than
√

2/3, we pack it at the

bottom-right corner of the unit bin.

Fact 4. In executing Algorithm PS2, if an item s with edge length no greater
than

√
2/6 is packed in Cr or Dr, the total area of the packed items is larger

than 1/6; if an item s′ with edge length no greater than
√

2/3 is packed in E or
F , the total area of the packed items is larger than 2/9.

Proof. According to Algorithm PS2, items with edge length no greater than√
2/6 are packed into the bricks Al, Ar, Bl, Br, Cl, Dl, Cr, Dr in the listed

order. If s is packed into Cr or Dr, then using Lemma 2, it is easily verified that
there is at most one empty brick of area |S(s)|/2i(i > 0) in the preceding bricks.
Therefore, by Fact 3, the total occupied area in this bin is at least (|A| + |B| +
|Cl| + |Dl| −

∑
i>0 |S(s)|/2i)/2

√
2 + |s| > 1/6. Similarly, if an item s′ with edge

length no greater than
√

2/3 is packed into E or F , the total occupied area is
no less than 2/9. 	

Theorem 3. The competitive ratio of the packing strategy PS2 is at most 4.5.

Proof. To prove this theorem, we will show, based on PS2, that either the total
occupied area in a bin is at least 2/9, or the total occupied area in two consecutive
bins is at least 4/9. Therefore, the average occupied area in each bin is at least
2/9. Consider the item sequence s1, s2, ..., sk−1, sk, sk+1, ..., where s1 is the first

Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing 251

item packed into bin I. Suppose s1 to sk−1 are all packed into I by PS2, and
sk+1 is not packed into I. We analyze the situation in packing sk. Let ek denote
the edge length of sk.

– ek ≥ 2/3
The area of sk is at least 4/9, no matter where sk is packed, the average
occupied area in I and the next bin is thus at least 2/9.

– 1 −
√

2/3 ≤ ek < 2/3
In this case, if sk can be packed into I, the occupied area is larger than 2/9.
Otherwise, there must be an item in I preventing sk from being packed into
the bottom-right corner.
• If the item is of edge length larger than

√
2/3 (it must occupy the bottom-

right corner and cover part of brick EF), then the occupied area is at
least (

√
2/3)2 = 2/9.

• If the item is of edge length no larger than
√

2/3 and resides in E or F ,
then according to Fact 4, the occupied area in I is at least 2/9.

• If the item is of edge length larger than
√

2/6 and resides in C or D, then
from the packing strategy, this item is packed at the top-left corner in C
or D whereas sk is packed at the bottom-right corner of I. Therefore, the
total edge length of these two items is more than 1, and the total area
of these two items is no less than (

√
2/6 + x)2 + (1 −

√
2/6 − x)2 ≥ 1/2,

where
√

2/6+x is the edge length of the item. Consequently, the average
occupied area is at least 1/4, which is larger than 2/9.

• Otherwise, the item is of edge length no greater than
√

2/6 and resides in
Cr or Dr. From Fact 4, the total area of the packed items is at least 1/6.
The total area of items s1 to sk is thus at least 1/6+(1−

√
2/3)2 > 0.446,

and the average occupied area is larger than 2/9.
–

√
2/3 < ek < 1 −

√
2/3

If sk can be packed into I, the occupied area in this bin is at least (
√

2/3)2 =
2/9. Otherwise, packing sk at the bottom-right corner of the bin results in
sk overlapping some packed item in brick E or F . If one of the packed items
is of edge length no less than

√
2/3, then the total occupied area in the bin

is at least 2/9. Otherwise, from Fact 4, the total occupied area contributed
by the items s1, s2, . . . , sk−1 is at least 2/9.

– ek ≤
√

2/3
If sk cannot be packed into this bin, then similar to the above case, the
occupied area in this bin is at least 2/9.

Otherwise, sk can be packed into I. But sk+1 cannot be packed into this
bin. Again, similar to the above analysis, the average occupied area in I is
at least 2/9.

Since the average occupied area in each bin is at least 2/9, the competitive ratio
of our packing strategy PS2 is thus at most 4.5. 	

3.2 Lower Bound of the Competitive Ratio

Now we shall derive a lower bound of the competitive ratio for 1-space bounded
square packing. Roughly speaking, we use three types of items to derive the
lower bound.

252 Y. Zhang et al.

– Type-X has area slightly larger than 1/4.
– Type-Y has area slightly smaller than 1/4.
– Type-Z has sufficiently small area.

The high level idea underlying the lower bound proof is as follows: We construct
a sequence with n items of type-X , 3n items of type-Y and 2n/3 items of type-Z
such that we need n bins to pack the first n items of type-Y , n bins to pack
the n items of type-X , and 2n/3 bins to pack the remaining 2n items of type-Y
and 2n/3 items of type-Z. But for the optimal packing strategy, n + 2 bins is
sufficient. Specifically, one bin for packing the 2n/3 items of type-Z, n + 1 bins
for packing all the type-X and type-Y items; in most of these bins three type-Y
items and one type-X item are packed together in one bin.

Theorem 4. There is no online algorithm with a competitive ratio less than 8/3
for 1-space bounded square packing.

Proof. Consider a sequence of items Y1, X1, Y2, X2, ..., Yn, Xn, Yn, Y ′, Y ′, Z,
3Y ′, Z, 3Y ′, Z ..., containing n type-X items, 3n type-Y items and 2n/3 type-Z
items. Let ε = o(1/n2).

Xi = (1/2 + (n + 2 − i) · ε, 1/2 + (n + 2 − i) · ε)
Yi = (1/2 − (n + 1 − i) · ε, 1/2 − (n + 1 − i) · ε)
Y ′ = (1/2 − n · ε, 1/2 − n · ε)
Z = (3n · ε, 3n · ε)

For the first part of the item sequence containing 2n items, any two consecutive
items cannot be packed together into one bin. Thus, any online algorithm will
use at least 2n bins for the first part.

For the remaining part containing 2n type-Y items and 2n/3 type-Z items,
any four consecutive type-Y items cannot be packed together into one bin be-
cause of the intervening type-Z item. Thus, any online algorithm will use at least
2n/3 bins to pack the remaining items.

The total number of bins used by any online algorithm is at least 8n/3.
For offline optimal packing, Yi, Xi+1, Y ′, Y ′ (i < n) can be packed together

into one bin. X1 can be packed into the n-th bin, while Yn, Yn, Y ′ can be packed
into the (n + 1)-th bin. The type-Z items can all be packed into the (n + 2)-th
bin. Thus, the minimum number of bins used for packing all the items is at most
n + 2.

Hence, the lower bound of competitive ratio is at least 8/3. 	

4 Concluding Remarks

We have studied 1-space bounded 2-dimensional bin packing and presented on-
line algorithms for rectangle packing and square packing. For rectangle packing,
we derived an upper bound of 5.155 and a lower bound of 3. For square packing,
the corresponding bounds we derived are 4.5 and 2.667. These bounds surpass
the previously best known bounds. We feel that the gap between the upper and
lower bound is quite big in both cases. We thus propose closing these gaps as
open problems for future research.

Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing 253

References

1. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin Packing in Multiple

Dimensions: In-approximability Results and Approximation Schemes. Mathematics

of Operations Research 31(1), 31–49 (2006)

2. Bansal, N., Caprara, A., Sviridenko, M.: Improved approximation algorithm for

multidimensional bin packing problems. In: FOCS 2006, pp. 697–708 (2006)

3. Blitz, D., van Vliet, A., Woeginger, G.J.: Lower bounds on the asymptotic worst-

case ratio of on-line bin packing algorithms (1996) (unpublished manuscript)

4. Caprara, A.: Packing 2-dimensional bins in harmony. In: FOCS 2002, pp. 490–499

(2002)

5. Chung, F.R.K., Garey, M.R., Johnson, D.S.: On packing two-dimensional bins.

SIAM J. Algebraic Discrete Methods 3(1), 66–76 (1982)

6. Csirik, J., Johnson, D.S.: Bounded Space On-Line Bin Packing: Best is Better than

First. Algorithmica 31, 115–138 (2001)

7. Chin, F.Y.L., Ting, H.-F., Zhang, Y.: 1-Space Bounded Algorithms for 2-

Dimensional Bin Packing. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009.

LNCS, vol. 5878, pp. 321–330. Springer, Heidelberg (2009)

8. Epstein, L., van Stee, R.: Optimal Online Algorithms for Multidimensional Packing

Problems. SIAM Jouranl on Computing 35(2), 431–448 (2005)

9. Epstein, L., van Stee, R.: Online square and cube packing. Acta Inf. 41(9), 595–606

(2005)

10. Epstein, L., van Stee, R.: Bounds for online bounded space hypercube packing.

Discrete Optimization 4, 185–197 (2007)

11. Ferreira, C.E., Miyazawa, E.K., Wakabayashi, Y.: Packing squares into squares.

Pesquisa Operacional 19, 223–237 (1999)

12. Fujita, S.: On-Line Grid-Packing with a Single Active Grid. Information Processing

Letters 85, 199–204 (2003)

13. Han, X., Chin, F., Ting, H.-F., Zhang, G., Zhang, Y.: A New Upper Bound on 2D

Online Bin Packing (manuscript)

14. Han, X., Iwama, K., Zhang, G.: Online removable square packing. Theory of Com-

puting Systems 43(1), 38–55 (2008)

15. Januszewski, J., Lassak, M.: On-line packing sequences of cubes in the unit cube.

Geometriae Dedicata 67, 285–293 (1997)

16. Johnson, D.S., Demers, A.J., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-

Case performance bounds for simple one-dimensional packing algorithms. SIAM

Journal on Computing 3(4), 299–325 (1974)

17. Lee, C.C., Lee, D.T.: A simple on-line bin packing algorithm. J. Assoc. Comput.

Mach. 32, 562–572 (1985)

18. Leung, J.Y.-T., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.L.: Packing

squares into a square. J. Parallel Distrib. Comput. 10, 271–275 (1990)

19. Kohayakawa, Y., Miyazawa, F.K., Raghavan, P., Wakabayashi, Y.: Multidimen-

sionalcube packing. Algorithmica 40(3), 173–187 (2004)

20. Meir, A., Moser, L.: On packing of squares and cubes. Journal of Combinatorial

Theory 5, 126–134 (1968)

21. Ramanan, P.V., Brown, D.J., Lee, C.C., Lee, D.T.: On-line bin packing in linear

time. Journal of Algorithms 10, 305–326 (1989)

22. Seiden, S.S.: On the online bin packing problem. J. ACM 49, 640–671 (2002)

23. van Vliet, A.: An improved lower bound for on-line bin packing algorithms. Infor-

mation Processing Letters 43, 277–284 (1992)

24. Yao, A.C.-C.: New Algorithms for Bin Packing. Journal of the ACM 27, 207–227

(1980)

On the Continuous CNN Problem

John Augustine� and Nick Gravin

School of Physical and Mathematical Sciences

Nanyang Technological University

Singapore 637371

jea@ics.uci.edu, ngravin@gmail.com

Abstract. In the (discrete) CNN problem, online requests appear as

points in R
2. Each request must be served before the next one is revealed.

We have a server that can serve a request simply by aligning either its

x or y coordinate with the request. The goal of the online algorithm is

to minimize the total L1 distance traveled by the server to serve all the

requests. The best known competitive ratio for the discrete version is

879 (due to Sitters and Stougie).

We study the continuous version, in which, the request can move con-

tinuously in R
2 and the server must continuously serve the request. A

simple adversarial argument shows that the lower bound on the compet-

itive ratio of any online algorithm for the continuous CNN problem is

3. Our main contribution is an online algorithm with competitive ratio

3+2
√

3 ≈ 6.464. Our analysis is tight. The continuous version generalizes

the discrete orthogonal CNN problem, in which every request must be

x or y aligned with the previous request. Therefore, our result improves

upon the previous best known competitive ratio of 9 for the discrete

orthogonal CNN problem (due to Iwama and Yonezawa).

1 Introduction

The k-server problem has been influential in the development of online algo-
rithms [3]. We have k servers that can move around a metric space. Requests
arrive in an online manner on various locations in the metric space. After each
request arrives, one of the k servers must move to the request location. The
online algorithm must make this decision without any knowledge of the future
requests. The objective is to minimize the sum of the distances traveled by the
k servers.

A natural variant of the k-server problem, the (discrete) CNN problem, was
introduced by Koutsoupias and Taylor [4]. The name derives from the following
illustrative example: consider a sequence of newsworthy events that occur in
street intersections in Manhattan. A CNN news crew must cover these events
with minimal movement. Since they have powerful zoom lenses, they only need
to be at some point on either one of the two cross streets. More formally, we are
� Work done in part while at Tata Research Development and Design Centre, Pune,

India

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 254–265, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Continuous CNN Problem 255

given a sequence of requests as points from R
2 that appear in an online manner.

We have one server that can move around in R
2. To serve a request, the server

must merely align itself to the x or y coordinate of the request. The objective is
to minimize the total distance traveled by the server in L1 norm.

There is an equivalent alternative definition that is also used in literature in
which, instead of a single server that can move in 2D, we have two independent
servers with one restricted to move along the x-axis, while the other is restricted
to move along the y-axis. Given an online request at (a, b), either the x-axis server
must move to x = a or the y-axis server must move to y = b. The objective is
to minimize the sum of distances moved by either servers. Notice that the two
independent servers in different dimensions are equivalent to a single server that
can move around in both dimensions. For this reason, the CNN problem is also
called sum of two 1-server problems [4].

pi

�di

Fig. 1. Illustration for the two server definition of the continuous CNN problem

We introduce the continuous version of the CNN problem. We use the alter-
native two server definition to illustrate the continuous version. Consider the
problem of covering the activities of a soccer match (see Figure 1). For the sake
of simplicity in our illustration, let us have two cameras on rails, one along the
length (i.e., the x-axis server) and the other along the breadth (the y-axis server)
of the field. Their orientations are fixed perpendicular to the direction of move-
ment (of course, pointing into the field). As the ball is kicked around, at least one
of the two cameras must track the ball continuously. Informally, the input is a
request point moving along a continuous trajectory that is revealed in an online
manner and a server must continuously align itself to the x or y coordinate of
the request.

We say that two points are x-aligned (respectively, y-aligned) if they share
the same x (respectively, y) coordinate. Also, we say that two points are aligned
if they are either x-aligned or y-aligned. We are now ready to formally define
the continuous CNN problem. For this formal definition (and for the rest of the
paper) we have a single server that can move around in 2D space. Our input is an
online sequence of pairs ri = (pi, di), where pi is a point on pi−1 + tdi−1, t ≥ 0,
and di is a unit vector in some arbitrary direction. (In the soccer illustration, pi

is the point on the previous trajectory where the ball is intercepted and di is the
new direction in which it is kicked.) Without loss of generality, the first point is
assumed to be the origin. The server also starts at the origin. When an input pair
(pi, di) is revealed, the server and pi are already aligned. The online algorithm
must then commit to a continuous trajectory Ti(t) of the server parameterized by

256 J. Augustine and N. Gravin

t such that for all t ≥ 0, Ti(t) is aligned with pi + tdi. After the online algorithm
commits, the next request (pi+1, di+1) arrives, the online server moves to the
point on Ti that aligns with pi+1 along the trajectory Ti. The objective is to
minimize the total distance traveled by the server in L1 norm.

History of CNN problems: The discrete version of the CNN problem was
discussed in several conferences and seminars in the late 1990s without any
breakthroughs[1,2]. It was formally introduced by Koutsoupias and Taylor [4]1.
They conjectured that this problem has a competitive algorithm along with a
lower bound of 6 +

√
17 on the competitive ratio of any deterministic online al-

gorithm. Their conjecture was proved affirmatively in [5] by Sitters, Stougie, and
de Paepe, albeit, with an algorithm that was 105-competitive. For a fascinating
discussion of the prevailing understanding of this problem in 2003, see [1]. Even-
tually, Sitters and Stougie [6] made further improvements and provided a 879-
competitive algorithm. In fact, their work focussed on the generalized k-server
problem which can be characterized as the sum of several 1-server problems on
arbitrary metric spaces. The orthogonal CNN problem was introduced by Iwama
and Yonezawa [2]. Each request (except the first one) must either share the x
coordinate or the y coordinate with the previous request. With this restriction,
they were able to improve the competitive ratio dramatically to 9.

Our Contribution: We focus on the continuous CNN problem, which is a gen-
eralization of the orthogonal CNN problem. We formalize this in the following
Claim (with proof deferred to the full version).

Claim 1. Any c-competitive algorithm A for the continuous CNN problem can
be applied to the orthogonal CNN problem in a manner that preserves the com-
petitive ratio.

Sweet spot

Starting point

Trajectory of request

Trajectory of

Trajectory of

offline server

online server

Correction for online server

Sweet spot

Starting point

Fig. 2. Illustration for Claim 2. The figure on the left shows the request trajectory.

The figure on the right shows the trajectory of online and offline servers.

Claim 2. If there is a c-competitive algorithm for the continuous CNN problem,
then c ≥ 3 even when the request trajectory is restricted to lie on the boundary
of a unit square.

1 Conference version appeared in STACS 2000.

On the Continuous CNN Problem 257

Proof (Sketch). We now provide an example that informally illustrates how we
get a lower bound of 3 on the competitive ratio of the continuous CNN problem;
see Figure 2. Consider the unit square with both the optimal offline server and
the online server at the top-left corner. In this adversarial example, the request
moves to the bottom-right corner so that the online server is forced to choose
between either a clockwise or counter-clockwise direction. Assume, without loss
of generality, that it chooses the clockwise direction and moves to the top-right.
The offline server, however, makes a single move down to the bottom-left. Sup-
pose now the request moves around repeatedly in the left and bottom edges of
the unit square, i.e., it makes a repeated “L” shaped move. Clearly, the offline
server is already at a “sweet spot” and therefore stays unmoved. The online
server, however, must correct its position and move to the sweet spot to offset
its disadvantage. Notice that the online server moved three units of distance
while the optimal offline server just needed one. 	

The significant contribution of our paper is an online algorithm for the contin-
uous CNN problem with a competitive ratio of 3 + 2

√
3 = 6.464. In light of

Claim 1, our result improves upon the 9-competitive algorithm for the orthogo-
nal CNN problem [2]. Our algorithm alternates between two phases, namely, the
bishop phase and the rook phase. Hence, we call it the Bishop-Rook algorithm or
just the BR algorithm. Our analysis using a non-decreasing potential function
is non-trivial. Finally, we show that our analysis is tight by constructing input
instances for which the competitive ratio is realized.

In Section 2 we present the BR Algorithm for the continuous CNN problem.
We analyze the BR algorithm in Section 3 and show that it has a competitive
ratio of (3 + 2

√
3) ≈ 6.464.

2 The BR Algorithm for the Continuous CNN Problem

We now turn our attention to the main problem that we address in this paper —
the continuous CNN problem. Recall that we formally defined the input as an on-
line sequence of pairs (pi, di). Informally, we treat the request as a point starting
at the origin and moving to each subsequent pi in straight line segments whose
direction is given by the vector di. So we use the term request trajectory to refer
to the path traversed by the request. The server’s trajectory must stay aligned
with request trajectory at all times. In this section, we describe the Bishop-Rook
algorithm or just the BR algorithm that alternates between two phases, namely,
the Bishop phase and the Rook phase. As the name implies, the server moves di-
agonally during the Bishop phase. In the Rook phase, we treat the horizontal and
vertical components of the server separately, leading to movements that mimic
Rooks in Chess. The algorithm switches between the phases when appropriate
conditions (described subsequently for each phase) are met.

The key intuition behind the algorithm is the following. Suppose the offline
server manages to get to a “sweet spot” from which it can align with the request
trajectory with little or no movement. Then, the online server also must home
into that spot. Iwama and Yonezawa [2] also exploit this idea. They get closer

258 J. Augustine and N. Gravin

to a potential sweet spot using “L” shaped moves — hence, one can call it the
Knight algorithm. To achieve this homing effect in the BR algorithm, we define
an offset vector at the end of the bishop phase that, when added to the online
server’s position, will point to our candidate sweet spot. In the rook phase, we
use the offset vector to guide the online server to the sweet spot.

Server

Request

Offset

Fig. 3. Bishop phase

Bishop Phase: During the bishop phase, as the name implies, the server moves
diagonally making a 45◦ angle with the axes. Without loss of generality, let the
point pi be at (0, 0) and the online server be on the non-negative part of y-axis
at (0, h), so h ≥ 0; see Figure 3. Throughout the bishop phase, the server moves
in a manner that maintains x-alignment with the request trajectory. Notice that
this defines the x component of the server movement. To ensure the diagonal
movement of the bishop phase, the server also moves in the −y direction. For
every maximal δx that the server moves in either the +x or −x direction, the
server simultaneously moves a distance |δx| in the −y direction. If (and when)
the position of server and request trajectory coincide, we terminate the bishop
phase and switch to the rook phase. Let (sx, sy) be the coordinates of the point
at which they coincide. Then, the offset vector o = −sxx, where x is the unit
vector in the positive x direction.

Rook Phase: At the beginning of the rook phase, positions of server and request
trajectory coincide. Without loss of generality we assume that offset is in the
−x direction. We maintain two invariants throughout the rook phase. However,
in so doing, we are judicious with the L1 distance traveled by the server.

y-alignment: The server and request trajectory are always y-aligned. This fully
defines the movement of the server along the y direction because the server
maintains the same y coordinate as that of the request.

x coordinate inequality: The x coordinate of the server is always less than
or equal to the x coordinate of the request trajectory. This invariant is more
subtle. When the x coordinate of the request trajectory is strictly greater
than that of the server, the server’s x coordinate stays unchanged — this is
to ensure that we are judicious with the L1 distance traveled. When the x
coordinates coincide and the request trajectory is moving in the −x direction,
then the server moves along with the request trajectory.

On the Continuous CNN Problem 259

Fig. 4. Rook phase without offset
update

Fig. 5. Rook phase showing offset
update

During the rook phase, the offset vector o decreases whenever the server moves.
The rate of decrease depends on the horizontal and vertical components of the
movement. The rate at which |o| decreases is given by:

|o| ←

⎧⎨⎩ |o| − (1 +
√

3)|t| if server and request move a distance t vertically
|o| if request moves but server does not
|o| − t if server and request move a distance t horizontally

When |o| reaches 0, we switch to the bishop phase. Fig. 4 depicts the working
of the rook phase, but does not show the change in offset . Fig. 5 shows how
the offset shrinks as the phase progresses.

3 Analysis of the BR Algorithm

To simplify the analysis, we assume that we are working on an instance of the
continuous orthogonal CNN problem, i.e, all the direction vectors di are orthog-
onal with respect to the axes. This does not affect our analysis because any
straight line of arbitrary angle can be approximated by a series of infinitesimally
small x and y components.

Before we proceed with the analysis, we make a simple observation that allows
us to insert artificial points into the input sequence. Suppose we are given a
sequence of input requests I = ((p1, d1), . . . , (pi, di), (pi+1, di+1), . . .). Consider
the sequence I ′ = (p1, d1), . . . , (pi, di), (p′i, di), (pi+1, di+1), . . ., where p′i lies on
the line segment between pi and pi+1. Then any server trajectory for serving the
request sequence I will also serve I ′ and vice versa.

Our analysis uses a potential function that is non-decreasing throughout the
execution of the algorithm. We define a cycle to be the combination of a bishop
phase and the subsequent rook phase. Recall that at the start of a cycle, the
offset is 0. We re-orient our view such that the next outstanding request is at
the origin and the online server is at (0, h), where h ≥ 0. When re-orienting
our view, we ensure that the potential remains unchanged. This is shown formally

260 J. Augustine and N. Gravin

in Remark 1. The potential function Φ is a function of the offset and the
parameters defined as follows:

�opt and �on are the distances traveled by the optimal offline server and the
online server, respectively,

popt and pon are the positions of the optimal offline server and the online server,
respectively.

The potential function is given by

Φ = (3 + 2
√

3)�opt − 3d(pon + o, popt) − �on − |o| + f(|o|, popt, pon), (1)

where d(p, q) is the L1 distance between points p and q. To define f , we first
define h = popt

y − pon
y , where popt

y and pon
y are the y coordinates of popt and pon.

Now,

f(o, popt, pon) =

⎧⎨⎩
0 if h ≤ 0
(6 − 2

√
3)h if 0 ≤ h ≤ |o|

(6 − 2
√

3)|o| if |o| ≤ h

Theorem 3. Φ is non-decreasing throughout the execution of the BR algorithm
and this implies a competitive ratio of (3 + 2

√
3).

We first provide a series of lemmas that lead to the proof of Theorem 3.

Lemma 1. If the online server stays still, Φ does not decrease.

Proof. Note that o remains unchanged when the online server stays still. Also,
the optimal server either (i) does not move, (ii) moves horizontally (arbitrary
distance) or (iii) moves vertically the same distance that the request moves. In
all three cases, Φ does not decrease. 	

Corollary 1. From Lemma 1, it follows that, in the bishop phase, Φ does not
decrease when request moves vertically.

We define the offset halfplane to be the halfplane x ≤ pon
x . Naturally, its com-

plement is x > pon
x . Since pon

x can change as the online server moves, the offset
halfplane also changes accordingly.

Corollary 2. From Lemma 1, it follows that, in the rook phase, Φ does not de-
crease when request moves horizontally in the complement of the offset halfplane.

Remark 1. At the start of each cycle, the axes of the euclidean plane can be
redrawn (orthogonally) without changing Φ.

Proof. At the start of each cycle, offset is 0. Therefore, only the first three
terms of Equation 1 are non-zero. Those three terms do not change if the axes
are redrawn orthogonal to the previous axes. 	

In the rest of the lemmas, since we can insert new points into the request se-
quence, we show that Φ does not decrease for small ε moves of the request in
the direction specified.

On the Continuous CNN Problem 261

popt

pon

ε

Fig. 6. Case: popt is un-

changed

o

o

pon

popt

ε

Fig. 7. Case: popt moves ver-

tically

pon

o

o

popt

ε

Fig. 8. Case: popt
y ≤ pon

y

o

pon

o

popt

ε

Fig. 9. Case: popt
y ≥ pon

y

Lemma 2. In the bishop phase, Φ does not decrease when the request moves a
distance ε in the horizontal direction.

Proof. We treat this proof in cases based on the behavior of the optimal offline
algorithm.

Case: popt is unchanged. This is only possible if popt and request are y-aligned.
�opt is unchanged. �on increased by 2ε. |o| has changed by at most ε. f = 0
because h ≤ 0. If the request moves in the same direction as o, then |o|
decreases by ε. d(pon + o, popt) decreased by ε. Overall, Φ does not decrease
(see Fig. 6).

Case: popt moves vertically and aligns with request. This is a composi-
tion of Lemma 1 and the previous case (see Fig. 7).

Case: popt
y ≤ pon

y and popt and request are x-aligned for the duration
of the move. �opt increases by ε. If request moves in the same direction as
o, then |o| decreases by ε and d(pon + o, popt) decreases by 2ε, otherwise,
|o| increases by ε and d(pon + o, popt) is unchanged. �on increases by 2ε. f
remains at 0. Therefore, Φ does not decrease (see Fig. 8).

Case: popt
y ≥ pon

y and popt and request are x-aligned for the duration of
the move. �opt increases by ε. If request moves in the same direction as o,
then |o| decreases by ε and d(pon + o, popt) remains unchanged. Otherwise,

262 J. Augustine and N. Gravin

popt pon

o

o

ε

Fig. 10. Case: popt stays still

pon

o

o

popt

ε

Fig. 11. Case: popt moves vertically

pon

o

o

popt

ε

Fig. 12. Case: popt makes an x-

aligned move

|o| increases by ε and d(pon + o, popt) increases by 2ε. �on increases by 2ε. h
in f increased by ε (see Fig. 9).

The easy case is when |o| decreases. We assume that either |o| ≥ h or
|o| ≤ h. Otherwise, we can insert a request when the change happens. With
either option, the change in f term is positive and since |o| decreases, one
can work out that Φ increases.

When |o| increases, the analysis tightens. The f term increases by (6 −
2
√

3)ε because |o| and h also increase by ε. Therefore, ΔΦ = (3 + 2
√

3)ε −
6ε − 2ε − ε + (6 − 2

√
3)ε = 0.

Case: popt and request are x-aligned for the duration of the move. In
this case, we are not restricting the relative locations of popt and pon. In
particular, pon ≥ popt first, then after some point, the inequality is inter-
changed. If we insert a request at that point, then, this case breaks into the
previous two cases. 	

Lemma 3. In the rook phase, Φ does not decrease when request moves horizon-
tally into the offset halfplane.

Proof. As the request moves a distance ε, the online server goes with it. (So, the
request does not enter the offset halfplane, but rather pushes it by a distance ε.)
Therefore, |o| decreases by ε.

Case: popt stays still. Clearly, popt is y-aligned with the request. �opt and
d(pon + o, popt) are unchanged, but �on increases by ε. Since popt and pon are
y-aligned, f = 0. Recall that |o| decreases by ε. Therefore, Φ is unchanged
(see Fig. 10).

Case: popt makes a vertical move after which, popt and request are y-
aligned. We can assume that popt made the jump first before pon moved

On the Continuous CNN Problem 263

ε

popt

pon

o

o

Fig. 13. Case: popt
y ≤ pon

y and popt

is x-aligned

ε

pon

o

o

popt

Fig. 14. Case: popt
y ≥ pon

y and popt

is x-aligned. pon moves up

o

popt

ε

pon

o

Fig. 15. Case: popt
y ≥ pon

y and popt

is x-aligned. pon moves down.

o ε

pon

o

popt

Fig. 16. Case: popt x-aligns with a

horizontal move

o ε

pon

o

popt

Fig. 17. Case: popt moves vertically

along with the request. From Lemma 1, Φ does not decrease when popt

jumped. pon moving along with the request is handled by the previous case
(see Fig. 11).

Case: popt makes an x-aligned move. �opt and �on increase by ε.
d(pon + o, popt) decreased by ε. Since |o| decreased by ε, f decreases
at most by (6 − 2

√
3)ε (see Fig. 12). Therefore,

Δ(Φ) ≥ (3+2
√

3)ε+3ε+ε−ε−(6−2
√

3)ε ≥ 0. 	

Lemma 4. In the rook phase, Φ does not decrease when request moves vertically.

Proof. Note that all vertical moves of ε distance in the rook phase decrease |o|
by (1 +

√
3)ε.

Case: popt
y ≤ pon

y and popt is x-aligned and therefore does not move. �opt

is obviously unchanged, but �on increases by ε. d(pon + o, popt) decreased
by at least (1 +

√
3)ε − ε =

√
3ε. Since h ≤ 0, Δ(f) = 0. Therefore,

Δ(Φ) ≥ 3
√

3ε +
√

3ε > 0 (see Fig. 13).

264 J. Augustine and N. Gravin

Case: popt
y ≥ pon

y and popt is x-aligned, so it does not move. pon and
request move up by ε. As in the previous case, �opt remains unchanged,
but �on increases by ε. Also, |o| decreased by (1 +

√
3)ε. d(pon + o, popt)

decreased by (1 +
√

3)ε + ε = 2ε +
√

3ε. Both h and |o| decreased, so f
decreased as well by at most (1 +

√
3)(6 − 2

√
3)ε (see Fig. 14). Therefore,

Δ(Φ) ≥ 3(2 +
√

3)ε − ε + (1 +
√

3)ε − (6 − 2
√

3)(1 +
√

3)ε ≥ 0

Case: popt is still, but pon and request start below popt, move up and
cross over to above popt. This is simply a composition of the above two
cases, so Φ does not decrease.

Case: popt
y ≥ pon

y and popt is x-aligned, so it does not move. pon and
request move down by ε. �opt is unchanged, but �on increases by ε. |o|
decreased by (1 +

√
3)ε. d(pon + o, popt) decreased by (1 +

√
3)ε − ε =

√
3ε.

While h increases, |o| decreased. Therefore, f might decrease, but at most by
(1+

√
3)(6−2

√
3)ε. Therefore, Δ(Φ) ≥ 3

√
3ε+

√
3ε−(1+

√
3)(6−2

√
3)ε = 0

(see Fig. 15).
Case: popt starts out y-aligned, but it x-aligns itself to the request with a hori-

zontal move. This case can be viewed as the composition of two parts. popt

moves first and Φ does not decrease (by Lemma 1). Then, popt stays still,
but request and server move up. This is the previous case. Hence, Φ does
not decrease (see Fig. 16).

Case: popt moves vertically (up or down) and stays y-aligned. �opt and
�on increase by ε. |o| decreases by (1 +

√
3)ε, but d(pon + o, popt) in-

creases by at most (1 +
√

3)ε. Finally, f remains at 0. Therefore, Δ(Φ) ≥
(3 + 2

√
3)ε − 3(1 +

√
3)ε − ε + ε +

√
3ε = 0 (see Fig. 17). 	

Proof (of Theorem 3). Φ started at 0 and, from Lemmas 1, 2, 3, 4, and Corol-
lary 2, we know that it only increased. Without loss of generality, we can as-
sume that we terminate at the end of the rook phase, at which point, the f
function will evaluate to 0. If we terminate at some other point in the cycle,
f might be non-zero. For the purpose of analysis, we can perform a simple
trick to bring f to zero without increasing �opt. In particular, we artificially
move the request repeatedly in an “L” shaped manner with popt at the cor-
ner. pon will home in on this corner point as well and once it coincides with
the corner, f will become zero without incurring any increase in �opt. Since
Φ = (3 + 2

√
3)�opt − 3d(pon + o, popt) − �on − |o| ≥ 0, and d(pon + o, popt) and

|o| are non negative, (3 + 2
√

3)�opt ≥ �on. 	

Remark 2. The analysis of our algorithm is tight, i.e. there are infinite sequences
of requests for which �on = (3 + 2

√
3)�opt.

We defer the proof of Remark 2 to the full version. In fact, we provide two tight
examples to indicate how Φ balances between multiple scenarios. We feel that
minor adjustments to Φ will not reduce the competitive ratio.

On the Continuous CNN Problem 265

Acknowledgment

We are grateful to Ning Chen, Edith Elkind, Sachin Lodha, Srinivasan Iyengar,
Sasanka Roy and Dilys Thomas for useful discussions and ideas.

References

1. Chrobak, M.: Sigact news online algorithms column 1. SIGACT News 34(4), 68–77

(2003)

2. Iwama, K., Yonezawa, K.: The orthogonal CNN problem. Inf. Process. Lett. 90(3),

115–120 (2004)

3. Koutsoupias, E.: The k-server problem. Computer Science Review 3(2), 105–118

(2009)

4. Koutsoupias, E., Taylor, D.S.: The CNN problem and other k-server variants. Theor.

Comput. Sci. 324(2-3), 347–359 (2004)

5. Sitters, R., Stougie, L., de Paepe, W.: A competitive algorithm for the general

2-server problem. In: ICALP 2003: 29th International Colloquium on Automata,

Languages and Programming, Malaga, Spain, pp. 624–636 (2003)

6. Sitters, R.A., Stougie, L.: The generalized two-server problem. J. ACM 53(3), 437–

458 (2006)

Policies for Periodic Packet Routing

Britta Peis, Sebastian Stiller, and Andreas Wiese�

Technische Universität Berlin,
Straße des 17. Juni 136, 10623 Berlin, Germany

{peis,stiller,wiese}@math.tu-berlin.de

Abstract. In the periodic packet routing problem each of a set of tasks repeat-
edly emits packets over an infinite time horizon. These have to be routed along
their fixed path through a common network. A schedule must resolve the re-
source conflicts on the arcs, such that the maximal delay any packet experiences
can be bounded. The scheduling policies themselves must be simple enough to be
executed in real-time, i.e., with low computational overhead. We compare the po-
tential of two natural classes of policies, namely, template schedules and priority
schedules by giving algorithms and lower bounds.

1 Introduction

Packet routing has become a standard model for data transfer. The basic model features
a graph of servers as vertices and links as arcs. Each packet travels through the network
along a simple path from its start vertex to its destination vertex. For the time a packet
crosses an arc, it blocks this link (or part of its bandwidth) for other packets. Each
server can store several packets at the same time. In our model we assume infinite
vertex capacity. Further, we assume the paths of the packets to be given. Therefore, the
task is to find synchronized scheduling decisions to settle the resource conflicts on the
arcs. Algorithms for these decisions are the central subject of this paper.

Usually, the data transfer between each pair of start and destination vertex consists
of a huge quantity of packets. Typical examples are the real-time transfer of a video
content or of a conversation. To execute complicated, individual scheduling decisions
for each of these packets would create an unacceptable high computational overhead.

Therefore, a suitable model combines standard packet routing with the paradigm of
classical real-time scheduling: In the Periodic Packet Routing Problem (PPRP) we are
given a graph and a set of tasks. Each task, e.g., a connection for a voice communication,
is defined by a pair of start and destination vertex. Once the connection is established
along a certain routing path the task repeatedly emits packets over a long time interval.
Given several such tasks in the network, one needs a simple policy to decide at each
arc which packet is send first via this arc. Such a policy shall ensure a certain quality
of service (QoS), i.e., that each packet is delayed along its path by at most a certain,
tolerable small time span.

As in classical real-time scheduling, we distinguish two task models, the strict peri-
odic and the sporadic task model. A strict periodic task emits one new packet exactly

� This work was partially supported by the DFG-research center MATHEON and the DFG-focus
program 1307.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 266–278, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Policies for Periodic Packet Routing 267

every p time units. In the sporadic case the period p is only a lower bound on the separa-
tion time: a task can emit packets at any time, but the release dates of two packets of the
same task are at least p time units apart. Strict periodic tasks model a steady demand of
data transfer, e.g., for a video content. But for the broadcast of conversations a sporadic
task can be a better model.

As the total duration of a connection is usually much larger than the transfer time
for a single packet, we assume the time horizon of each task to be infinite. Note that an
instance of the sporadic PPRP consists of an infinite set of scenarios, for each of which
the policy must guarantee the desired QoS. One of these scenarios is equivalent to the
strict periodic instance with the same input data.

In this work, firstly, we require as QoS that the maximum delay for every packet is
finitely bounded. We prove a necessary and sufficient condition that a schedule with this
QoS exists. This result holds for arbitrary graphs. For the rest of the paper we restrict to
trees. For trees, secondly, we construct and analyze policies that achieve higher levels
in QoS.

As stated before, the scheduling policies must be simple enough to work in real-
time. A widely used class of policies in classical real-time machine scheduling are fixed
priority policies. Here each task has a (distinct) priority assigned. Whenever, jobs (in
our case: packets) are in conflict, the first job of the task with highest priority is served
first (i.e., traverses an edge). For periodic packet routing we study global-priority and
edge-priority schedules. For the former there is a global priority assignment for the tasks
which is identical for every part (i.e., edge) of the system. Such a priority assignment
is simple and therefore easy to implement. Edge-priority schedules are more flexible.
There, each edge has again a priority for the tasks which use it. However, this list is not
necessarily identical for each edge. This additional freedom allows better schedules as
we will see in the sequel and does not loose too much flexibility.

A class of schedules specifically designed [1] for PPR problems are template sched-
ules. Here at each point in time an arc is open to transfer packets of exactly one task.
This exclusive openness permutes cyclically in time over all tasks that send their pack-
ets along the arc. To construct a template schedule one has to find for each arc the order
in which the tasks are permuted and the offsets between the cyclic permutations of all
arcs.

We show how schedules of the two types can be constructed. Further, we show how
much can be gained in QoS by using template schedules instead of priority schedules.
Before we give a detailed overview of our results, we summarize some definitions.

1.1 Definitions

Let G = (V, A) be a directed tree. Let T denote a set of tasks τi = (si, ti) with
si, ti ∈ V such that in G there is a directed path from si to ti. Let p ∈ N denote a
period length. We call I = (G, T, p) an instance of the Periodic Packet Routing Problem
(PPRP). We assume a discrete time model. Each task τi repeatedly creates new packets
which have to be transported from si to ti by a routing schedule. We assume unit transit
times (i.e., each packet needs one timestep to traverse an arc), unlimited storage in each
vertex, and unit bandwidths (each arc can be used by at most one packet at a time).

268 B. Peis, S. Stiller, and A. Wiese

We distinguish between the strict and the sporadic PPRP. For instances of the strict
PPRP each task generates a new packet every p timesteps, starting at time t = 0. In
instances of the sporadic PPRP it is not known a priori when the tasks emit their packets.
We require only that in each time interval of length p each task emits at most one packet.
We call a specification of the release times for the packets a realization.

For each task τi we denote by Pi the arcs on the unique path from si to ti and define
Di := |Pi|. For an arc e let Te denote the set of tasks which use e. For general graphs
we assume that we are given the paths of the tasks Pi explicitly.

We also consider undirected trees, where the paths of different tasks may include the
same edge in opposite direction. Still, for undirected trees, the edge can only be used
by one packet at time. In case an edge can be used at a time by one packet in each
direction, we speak of a bidirected tree.

Given an instance, respectively a realization, a schedule S must feasibly and for an
infinite time horizon assign to each arc for each point in time which packet is routed on
it. We say a limit for a task τi in a schedule S is a value k such that each packet which
is ever created by τi needs at most k timesteps to reach ti after it has been created.
We denote by c the congestion, that is the maximum number of tasks which use an arc
(or the maximum number of tasks which use an undirected edge in one direction). We
say an instance I is feasible if there is a schedule for I such that for each task there
is a finite limit. We call a schedule a direct schedule if no packet waits in a vertex
different from its start vertex (and its destination vertex). A schedule is called indirect
if it is not necessarily direct. We now define the two main classes of schedules under
consideration.

Definition 1 (Template schedules). Let I = (G, T, p) be an instance of the sporadic
PPRP or the strict PPRP. A schedule for I is a template schedule if there exists an
integer p̄ ≤ p and a map task : E × {0, ..., p̄ − 1} → T ∪ {none} such that in the
schedule an arc e = (u, v) is used at time t by a packet M created by a task τ if and
only if task(e, t mod p̄) = τ , M is located on u at time t, and no packet created by τ
before M is located on u.

Note that each map task : E×{0, ..., p̄ − 1} → T ∪{none} yields a template schedule,
if its restriction to every arc e is surjective on Te. Also note that a template schedule
might delay a packet even though there is no conflicting packet waiting. Apart from
template schedules, this peculiarity is inevitable in a direct periodic schedule.

We consider two types of priority schedules: Global-priority schedules have a global
priorization of the tasks (which is valid for each edge), edge-priority schedules might
have different priorizations for each edge.

Definition 2 (Edge-priority schedule). Let I = (G, T, p) be an instance of the spo-
radic or strict PPRP. A schedule for I is an edge-priority schedule if there exists a total
order ≺e⊆ T ×T for each edge e in G such that the following holds: If in the schedule
a packet M of task τ traverses arc e = (a, b) between time t and t+1, then each packet
located at time t in node a either belongs to tasks τ ′ with τ ≺e τ ′ or belongs to task τ
and has a later release date than M .

Policies for Periodic Packet Routing 269

Definition 3 (Global-priority schedule). Let I = (G, T, p) be an instance of the spo-
radic or strict PPRP. A schedule for I is a global-priority schedule if it is an edge-
priority schedule and all relations ≺e for the edges are identical.

Both types of priority schedules are simpler to apply than template schedules: While
priority schedules can be executed fully locally, template schedules require a ‘global
clock’. Edge-priority schedules are a strengthened version of global-priority schedules.
We also briefly discuss two other ways to strengthen priority schedules, which we define
on the fly.

1.2 Related Work

The non-periodic packet routing problem is widely studied. In a celebrated paper
Leighton et al. [5] show that there is always a schedule of length O(C + D) (where
C denotes the maximum number of packets using an edge and D is the length of the
longest path of a packet). In [6] Leighton et al. also present an algorithm which finds
such schedules. Often the packet routing problem is studied on special (simple) topolo-
gies like trees [8,10] or grid graphs [7,11]. Busch et al. [2] present algorithms computing
direct schedules, i.e., schedules which delay packets only in their start vertex. Also, sim-
ple greedy algorithms [9] and the complexity of the problem [4,10] have been studied.

The result by Leighton et al. [5] is extended to the periodic setting by Andrews et
al. [1] guaranteeing a bound of O(Di + 1/ri) for each session i with a packet injection
rate of ri (corresponding to a task with a period length in our notation). In particular,
they introduce the template schedules which are also studied in this paper.

Our task models are borrowed from classical real-time scheduling. Here one studies
real-time executable algorithms for distributing and scheduling (computational) jobs on
a processor platform. However, as there is no graph involved the techniques are quite
different. For an overview cf. [3].

Note that with arbitrary period lengths for the tasks (rather than all being identical
to p) the PPRP with only one edge is identical to real-time scheduling on one machine.
Since the latter is already very complicated, in particular in the case of priority sched-
ules, for the PPRP we restrict to tasks with identical period lengths.

1.3 Our Contributions

We give a comprehensive characterization of the periodic packet routing problem in the
various settings (direct/indirect schedules, bidirected/directed trees, template/priority
schedules), see Tables 1 and 2 for a complete overview. We present algorithms and
prove limitations and relations of the different types of schedules. Most importantly, we
show the following results:

� For bidirected trees we give an algorithm to construct template schedules that guaran-
tee a maximal delay for each packet of 2c− c(1/2)�diam(G)/2�−1 − 1. This is achieved
by carefully distributing the necessary delays among the tasks.
� For directed trees we give an edge-priority schedule that guarantees a maximal delay
of 1.5c − 1 for each packet (under mild conditions on the congestion). We give a non
trivial construction that yields a lower bound tightly matching the quality achieved by
the algorithm.

270 B. Peis, S. Stiller, and A. Wiese

� Finally, in Section 4.3 we follow a more direct approach to compare the power of
template schedules and priority schedules. We show that whenever a priority schedule
achieves a certain quality of service, one can construct a template schedule imitating the
priority schedule well enough to achieve the same or almost the same quality. Key to
these results is to prove that priority schedules after some time show a periodic behavior.

In the following Section 2 we prove a necessary and sufficient condition on the exis-
tence of a schedule. The affirmative part of the theorem rests on a structural insight for
template schedules that allows to bound the backlog of the packets.

All our algorithms are designed for trees in the setting of equal period lengths p.
This is so because we show that already on chain graphs (which have a quite simple
structure) no edge-priority schedule can always guarantee non-trivial limits. Also, we
prove that with arbitrary period lengths already on a path no edge-priority schedule
can guarantee a delay for each packet which is bounded by a constant times the period
length of its respective task.

To round up the picture on PPRP we also state minor results for which we defer
the proofs to our technical report[12]. Among these are complexity results and results
on two other ways to strengthen the concept of priority schedules: First, we allow the
priority relation to be not necessarily transitive. Under certain conditions this gives a
well-defined and fruitful class of so called quasi-priority schedules. Secondly, we briefly
mention the effect of an initial swing-in period in which the schedule can deviate from
its priority rules.

Table 1. Overview of our results for template schedules

Template Schedules
Indirect Schedules Direct Schedules
Limit Bound on c Limit Bound on c

Directed Trees c + Di − 1 p c + Di − 1 p

Bidirected Trees 2c − c(1/2)�diam(G)/2�−1 + Di − 1 p 2c + Di − 2 p/2

Undirected Trees 4c − 2c(1/2)�diam(G)/2�−1 + Di − 1 p/2 4c + Di − 3 p/4

Table 2. Overview of our results for priority schedules. All bounds hold for both the strict periodic
and the sporadic setting.

Priority Schedules
Type Limit Bound on c Lower Bound

Bidirected Trees Global 2c + Di − 1 p/3 –
Directed Trees Global – – 2c + Di − 1

Directed Trees Edge 1.5c + Di − 1 2p/5 1.5c + Di − 1

2 Necessary and Sufficient Bound for Feasibility

Theorem 1. An instance I = (G, T, p) of the strict or sporadic PPRP on an arbitrary
graph G is feasible if and only if c ≤ p. Also, there is always a template schedule for it
which guarantees a limit of p · Di for each task τi.

Policies for Periodic Packet Routing 271

The theorem can be shown with the following technique. For instances in which an arc e
is used by more than p tasks in the long run there are arbitrarily many packets waiting
to use e. With careful technical analysis we can show that some of them will have an
arbitrarily large delay. For instances with c ≤ p we show that any template schedule
such that {task(e, k)|0 ≤ k < p̄} = Te guarantees a limit of p · Di for each task τi. In
order to prove the limit we use the following insight for template schedules.

Lemma 1. Let I be an instance of the sporadic PPRP and let S be a template schedule
for I with periodicity p̄. Assume that for each arc e we have {task(e, k)|0 ≤ k < p̄} =
Te. If a packet M created by a task τi arrives on a vertex v at time t then no packet
created by τi arrives on v during the time interval [t + 1, t + p̄).

Proof. Let τi be a task. We prove the claim by induction over Pi. Since p̄ ≤
p the claim holds for si (due to our definition of the sporadic setting). Now let
{si = v0, v1, ...vk−1, vk = ti} be the vertices on Pi. We assume by induction that the
claim holds for the vertices v1, ..., v�. Assume that at time t a packet M created by τi

arrives on v�. The induction hypothesis implies that no other packet created by τi is
located on v� at time t. Since S is a template schedule with periodicity p̄ there must
be a timestep t′ ≥ t with t′ < t + p̄ at which M traverses the arc e� = (v�, v�+1).
In particular, this implies that during the time interval [t + p̄, t′ + p̄) no packet cre-
ated by τi traverses e� (due to the periodicity of S). We conclude that M arrives on
v�+1 at time t′ + 1 and no packet created by τi arrives at v�+1 during the time interval
[t′ + 2, t′ + p̄ + 1). 	

For further technical we refer to our technical report [12].

3 Template Schedules

In the sequel we will study template schedules on directed trees, bidirected trees and
undirected trees. Note that the case of directed trees is a special case of bidirected trees.

3.1 Directed Trees

Let I = (G, T, p) be an instance of the sporadic periodic packet routing problem on a
directed tree G. We present an algorithm which constructs a direct template schedule
guaranteeing a limit of c + Di − 1 for each task τi. It transfers ideas from [10] to the
periodic setting. The given bound is best possible: There are instances in which there
can be no better limit for every task (e.g., consider an instance on a directed path in
which all tasks have identical paths). Also, in the strict periodic setting it is NP -hard to
determine whether there is a template schedule which guarantees a limit of c + Di − 2
for an instance on a directed tree (see technical report [12]).

Now we present the algorithm. First, we compute a feasible path-coloring for the
paths of the tasks (i.e. a coloring such that any two paths sharing an edge have dif-
ferent colors). A proof given in [10, Section 2.1] shows that on directed trees there
is always a valid coloring for the paths of the tasks f : T → {0, ..., c − 1} with at
most c colors and this coloring can be computed in polynomial time. Then we define

272 B. Peis, S. Stiller, and A. Wiese

a time-dependent edge-coloring g : E × {0, ..., c − 1} → {0, ..., c − 1} which has
the property that for two consecutive arcs e = (u, v) and e′ = (v, w) we have that
g (e, i) = g (e′, (i + 1) mod c) for 0 ≤ i < c. This yields a periodic template sched-
ule with p̄ := c by defining task (e, k) := τi if f (τi) = g (e, k) for all arcs e and
all k ∈ {0, ..., c − 1}. If g(e, k) /∈ f (Te) we define task (e, k) := none. Denote by
DTREE (I) the resulting schedule.

Theorem 2. Let I be an instance of the sporadic periodic packet routing problem on a
directed tree with c ≤ p. The schedule DTREE(I) is a direct template schedule which
guarantees a limit of c + Di − 1 for each tasks τi.

Proof. The property of g is passed on to task: For two consecutive arcs e = (u, v) and
e′ = (v, w) we have that task (e, k) = task (e′, (k + 1) mod c) for all k ∈ {0, ..., c −
1}. Therefore, once a packet has left its start vertex it is never delayed until it reaches
its destination vertex. Each packet has to wait for at most c − 1 timesteps in its start
vertex. We conclude that for each task τi it holds that c + Di − 1 is a valid limit. 	

3.2 Bidirected Trees

Before we present our algorithms for the bidirected tree we introduce some structure
for the tree which we will use for all algorithms in the sequel.

Definition 4 (Tree-structure). Let G be a directed or bidirected tree. We define a ver-
tex vr to be the root vertex such that for each vertex v we have that its height h(v)
(i.e., the distance between vr and v) is bounded by �diam(G)/2� (where diam(G) de-
notes the diameter of G). We call an arc e an up-arc if it is oriented towards vr and a
down-arc if it is oriented away from vr. For each task τi we define the vertex vi which
is closest to vr to be the peak vertex of τi. For a task τi we define its height h(τi) by
h(τi) := h(vi). We say a packet moves up if it is using an up-arc. A packet moves down
if it uses a down-arc.

Now we describe our indirect schedule BTREE(I) which guarantees a limit of 2c −
c
(

1
2

)�diam(G)/2�−1 + Di − 1 for each task τi (see [12] for formal definitions). It has
the property that on the way up we delay packets only in their start vertex (restricted
to the way up the problem is essentially PPR on a directed tree). For the way down we
use the following key observation: Assume there are two sets of tasks T and T ′ using
arcs e = (u, v) and e′ = (u′, v), respectively, and a common arc ē = (v, w). Assume
that the values of the map task for the arcs e and e′ have already been defined. Then
we can assign the values of task for the arc ē such that no task in T is delayed on v and
each task in T ′ is delayed at most |T | times on v by assigning the free slots in a suitable
manner to T ′.

We define p̄ := c. Our algorithm considers the vertices sorted by their height and
defines the values of task for their respective adjacent arcs. We start with the root vertex
vr and define task such that no packet is delayed on vr. This can be achieved since the
graph induced by vr and its neighbors behaves like a directed tree (to compute the
values for task see DTREE(I)). Now let v be a vertex with h(v) > 0 and assume that
the algorithm has already computed the values of task for arcs (u, w) with h(u) < h(v)

Policies for Periodic Packet Routing 273

or h(w) < h(v). Our schedule ensures that tasks moving up through v and tasks with
peak vertex v do not delay each other (such an assignment can be found by interpreting
the respective subgraph as a directed tree and finding a schedule which fits to the up-arc
adjacent to v). Note that these are the only tasks which use up-arcs adjacent to v. It
remains to define the prioritization of the tasks on the down-arcs adjacent to v. Denote
by T

(down)
e the tasks whose path uses a down-arc e = (v, w) and which have a peak

vertex different than v (i.e., above v). Denote by T
(peak)
e the tasks which use e and

which have v as peak vertex. There are two cases: If |T (down)
e | ≥ c(1 −

(
1
2

)h(v))
then – according to the key observation stated above – we give priority to T

(peak)
e

causing a delay of at most c
(

1
2

)h(v)
for each task in |T (down)

e |. On the other hand,

if |T (down)
e | < c(1 −

(
1
2

)h(v)) we give priority to |T (down)
e | causing a delay of at most

c(1 −
(

1
2

)h(v)) for each task in T
(peak)
e .

Theorem 3. Let I be an instance of the sporadic PPRP on a bidirected tree with c ≤ p.
The schedule BTREE(I) is a template schedule which guarantees a limit of 2c −
c
(

1
2

)�diam(G)/2�−1 + Di − 1 for each task τi.

Proof. Let τi be a task with peak vertex vi. Let Mi be a packet created by τi. From the
definition of task it follows that on its way up Mi is delayed only in its start vertex (at

most p̄−1 = c−1 times). On vi the packet Mi is delayed at most c(1−
(

1
2

)h(vi)) times.
Now let e = (v, w) be a down-arc on Pi which is not adjacent to vi (i.e., v �= vi). By

construction, Mi is delayed at most c
(

1
2

)h(v)
times on v. Denote by P ↓

i all vertices on
the way down of τi, excluding vi and ti. We calculate that in total Mi is delayed at most

c(1 −
(

1
2

)h(vi)) +
∑

v∈P↓
i

c
(

1
2

)h(v)
times. With the geometric sequence and using that

h(v) ≤ �diam(G)/2�−1 for all v ∈ P ↓
i we obtain a limit of 2c−c

(
1
2

)�diam(G)/2�−1+
Di − 1 for each packet created by τi. 	

Our analysis of BTREE(I) always guarantees a bound of 2c+Di − 2. We provide an
instance with p = c = 2 where no template schedule can guarantee a better bound for
every task (see technical report [12]).

Direct Schedule. In contrast to the schedule DTREE(I) for directed trees, BTREE(I)
is not a direct schedule. It is NP -hard to decide whether a direct template schedule
exists or not. Furthermore, there are in fact instances, even with c ≤ 3p/4, for which
no direct schedule exists, see [12] for both results. We now present a direct schedule
BRTEEdir(I) for any instance I of the sporadic PPRP on a bidirected tree with c ≤
p/2, guaranteeing a limit of 2c + Di − 2 for each task τi. It transfers techniques from
the non-periodic case presented in [2, Theorem 3.4].

We sort the tasks descendingly by their height h(τi) (the distance between vr and
Pi). W.l.o.g. let τ1, τ2, ..., τ|T | be this order. Define p̄ := 2c. We iterate over the tasks
with i = 1 to |T |. Consider the i-th iteration. Let Pi = {v0, v1, ..., v|Pi|−1} be the path
of τi and let ej = (vj , vj+1) for all j ∈ {0, ..., |Pi|− 2}. Let wi be the smallest positive
integer such that task(ej , wi +j mod p̄) = none for all relevant values of j. We assign
τi the initial start offset wi and define task(ej, wi + j mod p̄) = τi for all respective

274 B. Peis, S. Stiller, and A. Wiese

values of j. We sorted the tasks by height and hence only the tasks which use the two
edges on Pi adjacent to vi can interfere with a task τi. Since we required that c ≤ p/2
there is always a feasible value for wi with 0 ≤ wi ≤ 2c − 2 < p̄. We denote by
BTREEdir(I) the resulting schedule.

Theorem 4. Let I be an instance of the sporadic PPRP on a bidirected tree with c ≤
p/2. The schedule BTREEdir(I) is a direct template schedule which guarantees a
limit of 2c + Di − 2 for each task τi.

3.3 Undirected Trees and Randomized Algorithms

Randomized Algorithm. We further establish a randomized algorithm which interprets
a bidirected tree as two directed trees and combines the two schedules (computed like in
DTREE(I)) with a random offset. For each task τi it guarantees a limit of c + Di − 1
in expectation in the strict periodic case, a limit of 1.5c + Di − 1 in expectation in the
sporadic case, and a limit of 2c+Di−2 independently from the outcome of the random
experiment, for details see [12].

Undirected Trees. The techniques presented for bidirected trees can be adapted to the
case of undirected trees. It turns out that in this setting we need to require that c ≤ p/2
since otherwise for any α, β > 0 we can construct an instance for which there can
be no limit of the form αc + Di + β for every task τi and there is not necessarily
a direct schedule. We derived algorithms which compute schedules with limits 4c −
2c
(

1
2

)�diam(G)/2�−1 + Di − 1 (indirect schedule) and 4c + Di − 3 (direct schedule if
we also require that c ≤ p/4), see [12].

4 Priority Schedules

In this section we investigate edge- and global-priority schedules. It turns out that a
bound on c stricter than just c ≤ p is necessary for edge-priority schedules (and hence
for global-priority schedules) in order to guarantee a limit of the form α · Di for ev-
ery instance as we will see in the sequel. We first describe the edge-priority schedule
EPRIO(I) guaranteeing a limit of 3c/2 + Di − 2 if c ≤ 2p/5.

4.1 Edge-Priority schedule

Let I be an instance of the sporadic PPRP on a directed tree. We need to define a
prioritization for each arc separately. First, we define that τ ≺e τ ′ if h(τ) < h(τ ′)
for each arc e. So now we focus on the tie-breaking for tasks τ, τ ′ with h(τ) = h(τ ′).
Consider a vertex v. Let e1, ..., er be the ingoing up-arcs of v and let e′1, ..., e′s be the
outgoing down-arcs of v. Denote by Ev the set of all these arcs. In case that vr is not the
root vertex let ē be the remaining arc which is adjacent to v. We define the prioritization
for all tasks with peak vertex v.

We define Tv to be the set of tasks which use v. Let T ′
v be the tasks in Tv which do

not use ē. We compute a minimum path coloring for the paths of the tasks Tv. This can
be done by a reduction to edge-coloring of a bipartite multigraph. Exactly c colors are

Policies for Periodic Packet Routing 275

needed, for details see [10]. Assume that the paths are colored with colors {1, 2, ..., c}.
If there is an arc ẽ ∈ Ev such that more than c/2 tasks use both ẽ and ē then we assume
w.l.o.g. that the paths which use ē and ẽ use the colors 1, ..., m if ē is an up-arc and
the colors c − m + 1, ..., c if ē is a down-arc (assuming that there are m such paths).
Note that there can be at most one arc ẽ with this property. Denote by f(τ) the color
of the path of a task τ . Let τ, τ ′ ∈ T ′

v be a pair of tasks with peak vertex v. For each
up-arc e we define τ ≺e τ ′ if f(τ) < f(τ ′). For each down-arc e we define τ ≺e τ ′ if
f(τ) > f(τ ′). Denote by EPRIO(I) the resulting schedule.

Theorem 5. Let I be an instance of the sporadic PPRP on a directed tree with c ≤
2p/5. The schedule EPRIO(I) guarantees a limit of 3c/2 + Di − 1.

Proof. Let τi be a task colored with color f (τi). We say a task τj interferes with τi if Pi

and Pj have a common arc on which Pj has a higher priority than Pi. We observe that at
most f (τi)− 1 tasks with peak vertex vi interfere with τi on its way up and there are at
most c− f (τi) such tasks which interfere with τi on its way down. By the choice of the
colors for tasks in Tv\T ′

v we have that in total at most c/2+(f (τi) − 1)+(c − f (τi)) =
3c/2 − 1 tasks interfere with τi.

We require that c ≤ 2p/5 in order to ensure that two packets created by a task with
higher priority than τi have a certain minimum time distance when arriving at vi. This
allows to show that each packet created by τi is delayed at most once by each task with
higher priority. For details see [12]. 	

Now we show that the bound guaranteed by EPRIO(I) is best possible.

Theorem 6. For each period length p and any even value for c there exist instances of
the sporadic PPRP on directed trees for which no edge-priority schedule can guarantee
a better limit than 3c/2 + Di − 1 for every task τi.

Proof. Consider a very long path along which c/2 tasks send their packets. Denote by
Î these tasks. Assume on the contrary that we have a schedule S which guarantees a
better limit than 3c/2 + Di − 1 for each task τi.

At every other vertex on the path we introduce a gadget. We have a star with the
vertices v1, v2, v3, v4, vr and the arcs (v1, vr) , (v2, vr) , (vr, v3) , (vr, v4). The tasks in
Î use the arcs (v2, vr) and (vr, v4). We introduce c/2 tasks with the path (v2, vr, v3),
c/2 tasks with the path (v1, vr, v3), and c/2 tasks with the path (v1, vr, v4). We denote
these tasks by I1, I2, and I3, respectively. We introduce 3c2/2 of these gadgets. For
every task τ̂ ∈ Î there can be at most 3c gadgets in which a task τ /∈ Î has a higher

priority than τ̂ . Since
∣∣∣Î∣∣∣ = c/2 by the pigeon hole principle there must be a gadget F

in which every task in Î has a higher priority than the tasks traversing F which are not
in Î . Hence, in F the delays of the packets have to be distributed among the tasks in
I1 ∪ I2 ∪ I3. One can show that then one of these tasks can be delayed up to 3c/2 − 1
times, see [12] for details. 	

We would also like to comment that without a bound on the congestion c the schedule
EPRIO(I) cannot guarantee the limits stated in the theorems. Even more, we can show
the following proposition (which of course also holds for global-priority schedules since
they are special cases of edge-priority schedules), proven in [12].

276 B. Peis, S. Stiller, and A. Wiese

Proposition 1. Let α > 0. There is an instance Iα = (G, T, p) of the sporadic PPRP
on a directed tree G with c = p such that for any edge-priority schedule ES there is a
task τ ∈ T for which ES cannot guarantee any limit k with k ≤ α · c + Di.

Investigating edge-priority schedules only on trees might look restrictive at first glance.
However, we show in the following theorem that already on chain graphs – which have
a quite simple structure – no edge-static schedule can guarantee non-trivial limits for
all tasks. We assume that the paths are given as part of the input.

Theorem 7. For any D > 0 and any c, p ∈ N there is an instance I = (G, T, p) of the
sporadic PPRP with given paths on a chain graph G such that Di = D for each task
τi ∈ T , all tasks have the same start and the same destination vertex, each arc is used
by c tasks, and for every edge-priority schedule there is at least one task τ ∈ T which
has a limit in Ω (c · Di).

The proof of the theorem is given in our technical report [12]. There, we also prove
that if the tasks have arbitrary period lengths pi, in general we cannot obtain schedules
guaranteeing good limits for all tasks like in EPRIO(I).

Theorem 8. For every α ≥ 0 there is an instance I = (G, T) of the sporadic PPRP
with arbitrary period lengths on a path such that for any edge-periodic schedule there
is a task τi ∈ T whose limit is at least α · pi + Di.

4.2 Global-Priority Schedule and Strict Periodic Setting

Global-priority schedule. We define a global-priority schedule GPRIO(I). Let I be
an instance of the sporadic PPRP on a bidirected tree. We define a task τi to have a
higher priority than a task τj if h(τi) < h(τj). The priorization of tasks with the same
peak vertex is defined arbitrarily.

Theorem 9. Let I be a instance of the sporadic PPRP on a bidirected tree with c ≤
p/3. The schedule GPRIO(I) guarantees a limit of 2c + Di − 2 for each task τi.

Proof. Consider a task τi. On its way up it is delayed only up to c− 1 times. This holds
since there it can only be delayed by tasks which use the last up-arc on Pi and excluding
τi there are at most c− 1 such tasks. Similarly, on the way down τi can only be delayed
on vi by tasks which use the first down-arc of Pi. We require that c ≤ p/3 in order to
ensure that each packet created by τi is delayed at most once by each task with higher
priority. 	

It is easy to see that there are instances where GPRIO(I) delays a packet 2c−2 times.
In fact, using an instance on a directed star graph we can show this applies for any
global static schedule (full proof see [12]).

Theorem 10. For each period length p and any value for c there exist instances of the
sporadic PPRP on directed trees for which no global-priority schedule can guarantee
a better limit than 2c + Di − 2 for every task τi.

There are instances where even in the strict periodic setting no global-priority schedule
can a guarantee better limit than Ω(c · Di) for every task τi, see [12].

Policies for Periodic Packet Routing 277

Priority Schedules for Strict Periodic Packet Routing. For the strict periodic setting one
can show that GPRIO(I) and EPRIO(I) can guarantee the stated bounds already if
we require only that c ≤ p/2. Also, in the strict periodic setting we can weaken the
notion of global-priority schedules to quasi-global-priority schedules: we no longer
require a relation ≺ which is globally a total order. Instead, we consider the restriction
of ≺ to the tasks whose packets wait for using an arc at any timestep t. If we require
only that this restriction is a total order then we can obtain a schedule which guarantees
a limit of p/a + Di − 1 for each task τi if c ≤ p/a for an integer a ≥ 2.

Also, if we allow a carefully controlled initial swing-in phase after which we start
executing an edge-priority schedule we can find schedules on directed and bidirected
trees which guarantee limits of p+Di−1 and 2p+Di−1, respectively, while allowing
any congestion c ≤ p. For details we refer to our technical report [12].

4.3 Imitation Theorems

We show that global- and edge-priority schedules can be imitated by template schedules
with almost the same quality.

In the strict periodic setting we say that a template schedule S imitates a priority
schedule PS if after a certain time t0 the schedule S transfers a packet created by a task
τ along an edge e if and only if PS does so. Since the strict period setting is a special
realization of the sporadic setting, if a priority schedule PS guarantees a limit of ki for
a task τi then any template schedule S imitating PS guarantees a limit of ki + p for τi.

Theorem 11. Every global-priority schedule can be imitated by a template sched-
ule. Every edge-priority schedule on a bidirected tree can be imitated by a template
schedule.

This theorem can be shown using a structural insight of independent interest: After a
certain time global-priority schedules on arbitrary graphs and edge-priority schedules
on bidirected trees behave periodically. See [12] for details.

Acknowledgments. We would like to thank Martin Niemeier for fruitful discussions on
the topic.

References

1. Andrews, M., Fernández, A., Harchol-Balter, M., Leighton, F., Zhang, L.: General dynamic
routing with per-packet delay guarantees of O (distance + 1/session rate). SIAM Journal of
Computing 30, 1594–1623 (2000)

2. Busch, C., Magdon-Ismail, M., Mavronicolas, M., Spirakis, P.: Direct routing: Algorithms
and complexity. Algorithmica 45, 45–68 (2006)

3. Buttazzo, G.C.: Hard Real-time Computing Systems: Predictable Scheduling Algorithms
And Applications. Real-Time Systems Series. Springer, Santa Clara (2004)

4. di Ianni, M.: Efficient delay routing. Theoretical Computer Science 196, 131–151 (1998)
5. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-scheduling in

O(congestion + dilation) steps. Combinatorica 14, 167–186 (1994)
6. Leighton, F.T., Maggs, B.M., Richa, A.W.: Fast algorithms for finding O(congestion +

dilation) packet routing schedules. Combinatorica 19, 375–401 (1999)

278 B. Peis, S. Stiller, and A. Wiese

7. Leighton, F.T., Makedon, F., Tollis, I.G.: A 2n − 2 step algorithm for routing in an n × n
array with constant size queues. In: Proceedings of the 1st Annual Symposium on Parallel
Algorithms and Architectures, pp. 328–335 (1989)

8. Leung, J.Y.-T.: Handbook of Scheduling: Algorithms, Models and Performance Analysis
(2004)

9. Mansour, Y., Patt-Shamir, B.: Greedy packet scheduling on shortest paths. Journal of Algo-
rithms 14 (1993)

10. Peis, B., Skutella, M., Wiese, A.: Packet routing: Complexity and algorithms. In: Proceedings
of the 7th Workshop on Approximation and Online Algorithms (2009)

11. Peis, B., Skutella, M., Wiese, A.: Packet routing on the grid. In: Proceedings of the 9th Latin
American Theoretical Informatics Symposium (2010)

12. Peis, B., Stiller, S., Wiese, A.: Periodic packet routing on trees. Technical Report 008-2010,
Technische Universität Berlin (April 2010)

Increasing Speed Scheduling and Flow Scheduling

Sebastian Stiller and Andreas Wiese�

Technische Universität Berlin,
Straße des 17. Juni 136, 10623 Berlin, Germany
���������	����
�����������������

Abstract. Network flows and scheduling have been studied intensely, but mostly
separately. In many applications a joint optimization model for routing and schedul-
ing is desireable. Therefore, we study flows over time with a demand split into
jobs. Our objective is to minimize the weighted sum of completion times of these
jobs. This is closely related to preemptive scheduling on a single machine with a
processing speed increasing over time. For both, flow scheduling and increasing
speed scheduling, we provide an EPTAS. Without release dates we can prove a
tight approximation factor of (

√
3+1)/2 for Smith’s rule, by fully characterizing

the worst case instances. We give exact algorithms for some special cases and a
dynamic program for speed functions with a constant number of speeds. We can
prove a competitive ratio of 2 for the online version. We also study the class of blind
algorithms, i.e., those which schedule without knowledge of the speed function.

1 Introduction

Scheduling and network flows are two corner stones of combinatorial optimization.
These topics are intensely treated, and rich both in theory and applicability to real-
world optimization problems. Still, many real-world applications in logistic, traffic, and
telecommunication require a coupled optimization of scheduling and routing decisions.
As an example consider the container terminal of a modern harbor where containers are
carried from the storage area to the loading cranes by automatically guided vehicles.
One has to make a scheduling decision on the order in which the containers are brought
to the ships, and a routing decision for the vehicles through the small area between
storage and cranes. These applications usually surpass the algorithmic means developed
separately for scheduling and flows. Thus, one either has to reside to general purpose
methods, in particular IP models, or to decouple the optimization of scheduling and
routing. In this work we consider a basic step towards joint, combinatorial optimization
of flows and schedules.

Given an s-t-network, static capacities for the arcs’ in-flow rates, and static transit
times for the arcs. Further, given a demand comprised of k jobs, each characterized by
its own flow demand and weight. The goal is to find a feasible flow over time minimiz-
ing the sum of weighted completion times, i.e., the points in time when the complete
demand of a job has reached the sink.

Using multiple deadline flows—a slight extensions of known, though elaborate tech-
niques for earliest arrival flows—flow scheduling boils down to an intriguing scheduling

� This work was partially supported by the DFG-research center MATHEON and the DFG-focus
program 1307.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 279–290, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

280 S. Stiller and A. Wiese

problem. This subproblem is simple enough to be stated in one sentence: Given jobs
with processing demand and weights and a single machine with increasing speed: which
schedule minimizes the weighted sum of completion times?

Increasing speed scheduling forms an interesting specialization of scheduling with
varying speed and a wide generalization of scheduling with rejection. Though flow
scheduling only leads to scheduling with stepwise increasing speed, we also treat in-
creasing speed scheduling for arbitrary (integrable) speed functions.

Related work. To the best of our knowledge flow scheduling has not been considered
so far. It has some far resemblance to flow shop problems. There is a close relation to
dynamic multi-commodity, earliest arrival, and universally maximal flows.

For the single source, single sink case an earliest arrival flow (EAF) always exist [5],
and can be found by a pseudopolynomial successive shortest path algorithms [12,17].
There are instances where these algorithm take exponentially many steps in a binary
encoded input [18]. For multiple sinks and sources EAFs need not exist [4]. In [9]
a fully polynomial-time approximation scheme for the earliest arrival s-t-problem is
given. These results have been extended in [2] to solve EAFs with multiple sources.

The solution for an instance of the flow scheduling problem is a multicommodity
flow over time where all commodities have common source and common sink, opti-
mizing a for flows unusual objective function, namely, weighted sum of completion
times. Multicommodity flow over time is NP-hard even in the fractional case, and even
for strongly restricted graph classes [6,7]. See also reference therein for a survey on
flows over time in general.

Increasing speed scheduling with release dates clearly contains 1|ri, pmtn|∑wjCj as
an NP-hard special case. For this an EPTAS is known [1]. For scheduling with arbitrary
varying speed, in particular, when machines stop, we can argue that the 1|pmtn|∑wjCj

problem is weakly NP-hard by a reduction from the PARTITION-problem similar to
that in [10]. Already [11] focus on machines with nondecreasing speed. They restrict
to unit weights but treat multiple, identical machines. In contrast [13] consider paral-
lel machines with arbitrary weight but unit length jobs. In [3] Epstein et al. consider
the problem of minimizing the weighted sum of completion times on a machine with
increasing and decreasing speed without knowledge of the machine, like the blind al-
gorithms discussed in this paper.

Another closely related problem is scheduling with rejection (cf. [8] and references
there within), i.e., jobs can be excluded from the schedule at a fixed penalty cost. This
is weakly NP-hard for a single machine (reduction from knapsack). Moreover, the case
of unit weights and the case of unit lengths are shown to be polynomial. The case where
rejection costs are proportional to job weights is open. This is equivalent to a special
case of increasing speed scheduling, notably, when the machine has constant speed until
time t, and infinite (or sufficiently large) speed after t.

Definitions. This work treats the following two problems:

Definition 1 (Flow scheduling problem). Consider a directed graph G with two dis-
tinct nodes s and t. For each arc we are given a static inflow capacity and a static
transit time. Also, we are given a set of jobs J where each job Ji has a weight wi and

Increasing Speed Scheduling and Flow Scheduling 281

a demand �i. The goal is to find a multi-commodity flow over time from s to t with |J |
commodities such that ∑Ji∈J wiCi is minimized where Ci denotes the time when flow
value corresponding to commodity i has reached �i.

For the definition of dynamic flows over time we refer to [2,9].

Definition 2 (Increasing speed scheduling (ISS) problem). Given a machine whose
speed is given as a integrable, weakly monotonically increasing function s : R

+ → R
+

and k jobs Ji = (wi, �i). Compute a schedule which minimizes the weighted sum of com-
pletion times, i.e., we look for k integrable indicator functions χi : R

+ → {0,1} with
χi(x) ·χ j(x) = 0 for all x ∈ R

+ and i �= j such that Ci := infT∈R+{
� T

0 χi(x)s(x)dx ≥ �i}
exists and ∑Ji∈J wiCi is minimized.

For a job (wi, �i) we call wi/�i its Smith’s ratio. Note that in the literature often the
inverse is referred to as Smith’s ratio. A schedule processing the jobs successively with
non-increasing Smith’s ratio is called a Smith’s rule algorithm. Recall that an EPTAS is
a family of (1 + ε)-algorithms for all ε > 0 with running time in O (f (ε) · poly(n)) for
a function f depending only on ε .

Our contribution. In Section 2 we establish the connection between flow scheduling
and increasing speed scheduling. We show that flows that are maximal for a given set
of deadlines can be found in polynomial time (Theorem 1). Next, we extend the EPTAS
of [1] for preemptive single machine scheduling with release dates to ISS with release
dates. Together with Theorem 1 this yields an EPTAS for the flow scheduling problem.
In Section 4 we give exact, polynomial time algorithms for the ISS problem in similar
special cases as considered in [8] for scheduling with rejection. Moreover, we device a
dynamic program in case the speed function is a step function with constantly many steps.

The most important result of this work is found in Section 5. We show that Smith’s
rule is a (

√
3+1)/2 approximation for ISS, and that this is a tight analysis. We achieve

the tightness, because we constructively characterize worst instances for Smith’s rule.
While at first glance one might even expect Smith’s rule to be optimal, to our mind the
tight analysis of its approximation factor yields the deepest insight to the behavior of
the ISS problem.

In the final sections we study online algorithms and algorithms that have no knowl-
edge of the speed function (blind algorithms). For both cases there is a lower bound.
For the online case we achieve a competitive ratio of 2. A blind algorithm with approx-
imation factor α yields an α-approximation for the flow scheduling problem. So we get
a (

√
3+ 1)/2 approximation for the flow scheduling problem.

An intriguing question that we have to leave open is, whether the ISS problem with-
out release dates is NP-hard. Recall that it is NP-hard with release dates. Also, it would
be interesting to find out whether the flow scheduling problem is NP-hard.

2 From Flows to Scheduling

We consider flows over time with single source and sink1. For these it is known that
an earliest arrival flow (EAF) exists [5], i.e., a flow over time that has a maximal flow

1 As we want to be brief on this please cf. [2,9] for basic definitions and properties. As the
ISS-part is self-contained, readers with no interest in EAFs may also skip this section.

282 S. Stiller and A. Wiese

value at every point in time. In particular, one can compute in pseudo-polynomial time
its inflow rate into the sink sEAF which is a non-decreasing, stepwise constant function
of time. For some instances this function has (in the input size of the network) pseudo-
polynomially many break-points [18].

Therefore, any (single source, single sink) flow scheduling problem has an optimal
solution with the following structure. Let I be the smallest interval in time such that
in the complement of I no flow arrives at the sink. During I the inflow rate is always
positive and the interval can be partitioned into k consecutive intervals such that during
each of these intervals [Ti,Ti +1) all inflow to the sink belongs to the same job. Interpret
the inflow rate to the sink as the speed of a machine. Then we can rephrase: To minimize
the weighted sum of completion times (without release dates) it is best to process the
jobs without preempting and in a certain order on that machine.

An EAF is by definition maximal at all points in time, thus to solve the flow schedul-
ing problem one may calculate an EAF and solve the ISS problem with its speed func-
tion sEAF. As for EAFs no strongly polynomial encoding is known (and deemed un-
likely to exist) this leads to over-complicated flow schedules. The pseudo-polynomial
blow up is unnecessary for an optimal solution: The flow value in any optimal solution
for a flow scheduling instance needs to equal that of an EAF only at the completion
time of each job. So, assuming that the optimal order of the jobs is known one can in
strongly polynomial time find an optimal flow schedule by the following concept.

Definition 3 (Multiple Deadline Flows (MDF)). Given an s-t-digraph G with non-
negative, constant transit times τ and capacities u on the arcs, and a finite set of dead-
lines T = {T1, . . . ,Tk}. A flow over time x for transit times τ respecting at any point
in time u as inflow rates of the arc is called a Multiple Deadline Flow (MDF), if for
1 ≤ i ≤ k its value up to time Ti is maximal among all feasible flows over time on
(G,τ,u).

Recall that the value of a flow over time is the inflow (minus the outflow, which

can be assumed to be zero) at the sink node: ∑(v,t)∈A(G)
� Ti−τ(v,t)

0 x(v,t)(θ)dθ −
∑(t,v)∈A(G)

� Ti
0 x(t,v)(θ)dθ .

Theorem 1. An MDF for G,τ,u, and T can be found in time polynomial in its input
length.

Proof. First we calculate in polynomial time the value of a maximal flow over time
for each deadline Ti. Then computing the MDF is equivalent to computing a quickest
dynamic transshipment in the following graph: Replace the sink t by k sink nodes ti each
connected to t by its own arc of transit time Tk − Ti and infinite capacity. The demand
at each sink equals the maximal flow value for the corresponding deadline Ti minus
the maximal flow value for Ti−1. A dynamic transshipment can be found in polynomial
time [9]. 	

A direct algorithm given in [16] computes an MDF even in strongly polynomial time.
To solve flow scheduling, in case the optimal (or some fixed) order of the jobs for a

flow scheduling problem is given by the index of the jobs, calculate the minimal time
horizons Ti by quickest flows for the successive sums of demands ∑1≤ j≤i � jof the first

Increasing Speed Scheduling and Flow Scheduling 283

i jobs. Then solve the MDF problem for the set of deadlines {Ti}. In the resulting flow
assign the first �1 flow units that reach the sink to the first job, the following �2 flow
units to the second job, and so on. This yields an optimal flow schedule (for the fixed
order).

To summarize: We are in a chicken and egg problem. Given an optimal order of
the jobs, one can find an optimal flow schedule in strongly polynomial time. Without
the optimal order, one can use the pseudo-polynomially sized inflow rate of an EAF
as speed function of an ISS problem that returns the optimal order of the jobs for the
flow scheduling problem. To solve this dilemma one can either approximate the earliest
arrival flow by a flow with a bounded number of speed changes and work with the ma-
chine given by this flow or calculate an order which fulfills some approximation factor
independent of the actual machine speed (blind algorithms). We will pursue both of
these approaches, the first leading to an EPTAS and the second to an exact approxima-

tion factor of
√

3+1
2 . For both approaches one could restrict to the ISS problem with step

functions as speed functions. We even treat the ISS problem with general, integrable
speed functions.

3 EPTAS

In this section we present an EPTAS for the increasing speed scheduling problem with
arbitrary release dates. We show later that this yields also an EPTAS for the flow
scheduling problem.

Let 0 < ε < 1. We describe an algorithm which guarantees an approximation ratio

of 1 +O(ε) and has a running time in O
(

2poly(1/ε)n + n logn
)

. (By abuse of notation

whenever we use the term O(ε) we refer to a function bounded by k ·ε for some positive
k.) W.l.o.g. we assume that at any time the speed of the machine is at least 1.

First, we derive a couple of properties depending on ε which we can assume for
the instance without losing more than a factor of 1 +O(ε) in the objective function in
comparison to the optimum (denoted by “with 1 + ε loss” or “with 1 + O(ε) loss”).
Here we can extend techniques from [1] to increasing speed. Then, we show how to
compute the optimal schedule with these properties by a dynamic program.

We define R(w) to be the timestep when the total work that the machine has done so
far equals w. As short notation we use Rx := R((1 + ε)x). Note that since we assume
that the machine always runs with at least unit speed we have that Rx+1 ≤ (1 + ε)Rx.
We split the time scale into intervals of the form Ix := [Rx,Rx+1). In order to simplify
notation we will use the notion Ix for the interval as well as for the work that the machine
does within Ix.

Lemma 1. With 1+O(ε) loss, we can assume for each job Ji that ri ≥ R(ε�i) and that
�i is a power of (1 + ε).

Proof. Scaling an optimal schedule in time by a factor of 1 + ε the work the work
of any interval [x,y] is moved to the interval [(1 +O(ε))x,(1 +O(ε))y]. Since in the
new interval more work can be done, we gain slack which can be used for the desired
properties. Scaling increases the objective function by at most a factor of 1+O(ε). For
details cf. [16]. 	

284 S. Stiller and A. Wiese

The following lemmata are proven using a technique which we call interval-hopping:
for every interval Ix we move the work which is done in Ix to the interval Ix+1.
The gained free space is then used to ensure certain properties of the instance or the
schedule.

Lemma 2. Assume the adjustments of Lemma 1. With 1 + ε loss, we can additionally
assume that each job is released at a time Rx.

Proof. After interval-hopping set the release time of each job Ji to the largest value Rx

before Ji is processed. 	

In order to simplify the complexity of the problem we calculate the objective func-
tion as if each job finishes at the end of an interval. So, for the remainder of this sec-
tion we do not consider the objective function ∑Jj∈J wjCj but the objective function

∑Jj∈J wj min
{

Rx : Cj ≤ Rx
}

. As an effect, we can assume that the machine has con-
stant speed within each interval.

Lemma 3. Assume the adjustments of the previous lemmata. For completion times Ci

resulting from any schedule we have that
∑Ji∈J wiCi ≤ ∑Ji∈J wi min{Rx : Ci ≤ Rx} ≤ (1 + ε)∑Ji∈J wiCi.

Proof. The first inequality is obvious. The second inequality holds since
min{Rx : Ci ≤ Rx} ≤ (1 + ε)Ci for all values Ci. 	

A job Ji is called small if it is released at a time Rx such that �i ≤ εIx. Otherwise it
is large. We denote by Hx and Tx the large and small jobs, respectively, which were
released at time Rx. For a set of jobs J ′ ⊆ J we denote by p(J ′) their total demand.

Lemma 4. Assume the adjustments of the previous lemmata. With 1 + O(ε) loss, we
can additionally assume that

– no small job is ever preempted,
– no small job is processed in more than one interval,
– the order in which the small jobs are executed obeys Smith’s rule,
– each large job Ji ∈ Hx is preempted only if there is an integer k ≤ 1

ε3 such that a

fraction of exactly k · εIx
�i

of the job has already been processed,
– at any point in time in each set Hx there is at most one job which has already been

processed but which has not been finished yet,
– the number of distinct job sizes in Hx is bounded by |Hx| ≤ 3log1+ε

1
ε + 1,

– the number of jobs in each distinct size is bounded by 1/ε , and
– p(Tx) ≤ Ix.

Proof. We use interval-hopping once. Then, in each interval Ix+1 there is a free space
of εIx. We can assume that in Ix+1 there is at most one small job Ji which is preempted.
Since Ji was originally scheduled in Ix we have that �i ≤ εIx. Thus, in the gained free
space in Ix+1 we can finish Ji. The other claims can be shown similarly with interval-
hopping or by using the properties derived so far. For details cf. [16]. 	

The following lemma gives an upper bound on the time a job has to wait before it
completes.

Increasing Speed Scheduling and Flow Scheduling 285

Lemma 5. Assume the adjustments of the previous lemmata. With 1 + ε loss, we can
additionally assume that each job which is released at time Rx finishes in the interval
Ix+s(ε) the latest, where s(ε) is a constant depending only on ε .

Proof. We use interval-hopping and shift the work of each interval Ix to the inter-
val Ix+1. Lemma 4 implies a bound on the total demand on the jobs in Tx ∪ Hx. With

s(ε) =
⌈

log1+ε

(
1
ε + 1

ε4

(
3log1+ε

1
ε + 1

))⌉
+ 1 the gained free space in Ix+s(ε) suffices

to process all jobs of Tx ∪Hx. 	

Now we partition the ordered list of the jobs in each set Tx into at most 2/ε2 packs, each
with size at most ε2 · Ix. Denote by Px,i the ith pack of small jobs which are released at
time Rx.

Lemma 6. Assume the adjustments of the previous lemmata. With 1 + ε loss, we can
additionally assume that in each interval Ix either all or none of the jobs in a pack Px′,i
are scheduled, each job which is released at time Rx finishes in the interval Ix+s(ε)+2
the latest, and the ordering of the small jobs does not necessarily obey Smith’s rule
anymore.

Proof. We use interval-hopping and shift each interval Ix to Ix+2. This gives us a free
space of εIx+1 in each interval Ix+2. Due to the original ordering by Smith’s rule at most
one pack Px′,i per value x′ is scheduled partially but not completely in an interval Ix. The
total demand of these packs is upper bounded by ∑x

i=x−s+1 ε2 · Ii ≤ ε · Ix+1. Thus, in the
gained free space we can finish all these packs. 	

Next, we describe a dynamic program which finds the best solution with the above
properties. Each table entry is identified by a combination of an interval Ix and for each
interval Iy with x− s(ε) ≤ y < x, we have the subset of jobs in Hy which have already
been fully processed, a job Ji ∈ Hy and an integer k ≤ 1

ε3 such that a fraction of exactly

k · εIx
�i

of Ji has been processed, and the subset of the packs Py,i which have already been
fully processed.

Since we need to consider at most s(ε) · n intervals in total, the number of table

entries is bounded by O
(

2poly(1/ε)n
)

. We obtain the following theorem:

Theorem 2. There is a polynomial time approximation scheme for the increasing speed

scheduling problem with release dates with running time O
(

2poly(1/ε)n + n logn
)

.

In order to do the computation in the dynamic program it is not necessary to know the
exact speed function. It is sufficient to know the points in time when a total demand
of (1 + ε)x has already been processed for the relevant values of x. Recall that at most
s(ε) ·n intervals are relevant for us. Thus, we obtain the following theorem:

Corollary 1. There is an efficient polynomial time approximation scheme for the flow
scheduling problem.

Proof. Follows from Theorems 1 and 2. 	

286 S. Stiller and A. Wiese

4 Tractable Cases of ISS

In this section we analyze the structure of the increasing speed scheduling problem.
We identify some properties which allow efficient algorithms for certain special cases.
Moreover, we provide the necessary insights for our analysis of the Smith’s rule algo-
rithm in Section 5. Throughout this section we assume that all jobs are released at time
t = 0. Accordingly, we can restrict ourselves to non-preemptive schedules.

Proposition 1. The ISS problem has the following properties:

– In any optimal schedule subsequent jobs are ordered by demand if the job with less
demand has the better Smith’s ratio.

– If in the instance there is an ordering J1,J2, ...,J|J | for the jobs such that wi
�i

≥ wi+1
�i+1

and �i ≤ �i+1 for each i then it is optimal to order the jobs ascendingly by demand.
– If in an instance I all jobs have the same Smith’s ratio then

• there is an optimal schedule which orders the jobs ascendingly by demand and
• there is a worst possible schedule which orders the jobs descendingly by de-

mand.
– If all jobs have the same demand then it is optimal to order the jobs descendingly by

their weight. This is still true if the speed of the machine can decrease and increase.

Proof. All claims follow from exchange arguments, i.e., one swaps two adjacent jobs
and calculates the change in the objective function. 	

For machines without speed change there is a well known exchange argument show-
ing that in an optimal schedule the jobs are ordered non-decreasingly by their Smith’s
factors [15]. In our setting, this argument can easily be applied to jobs starting and fin-
ishing within an interval A in which the machines has constant speed. We show that the
statement even holds for the set of all jobs which end in such an interval A (and not
necessarily start in A).

Lemma 7. For an interval A with constant machine speed the jobs finishing in A are
ordered according to Smith’s rule in any optimal schedule.

Proof. Straight forward calculations show the claim for all jobs which start and end in
A, and for the first two jobs if the smaller job has the better Smith’s ratio. If both is not
the case extend A to the left (i.e., change the speed function) such that the first job starts
in A. One can show the schedule remains optimal for the changed machine. For details
cf. [16]. 	

Now we consider step functions for the speed. We denote by si the different speeds
of the machine and by Ai the corresponding intervals, i.e., Ai := s(si)

−1. The above
properties allow for a dynamic program in case the number of speeds is bounded by
a constant: It gets a list of the jobs ordered by Smith’s rule. It successively removes a
job Jj from the list and chooses the interval Ai = [ai,ai+1) in which Jj finishes. Inside
Ai, the job Jj is scheduled right after the last job finishing within Ai. If Jj is the first
job assigned to Ai we try all start offsets less or equal ai for which Jj finishes within
Ai. Thus, in the dynamic programming table we need to encode how many jobs have
already been removed from the list and how much space (at the beginning and at the
end) of each interval is already occupied by jobs.

Increasing Speed Scheduling and Flow Scheduling 287

Theorem 3. If the number of different values for the speed function is bounded by a
constant there is an exact, pseudopolynomial dynamic program for the ISS problem.

Proof. Computing an entry in the dynamic programming table can be done in pseu-
dopolynomial time. The number of entries in the dynamic programming table is bounded
by n ·L2k. Lemma 7 implies that our procedure finds the optimal solution. 	

Note that this pseudopolynomial algorithm cannot be combined with the pseudopolyno-
mial algorithm for earliest arrival flows [12,17] to achieve an exact, pseudopolynomial
algorithm for the entire problem. An EAF corresponds to a machine with pseudopoly-
nomially many speeds. Our result requires a constant number of speeds.

5 Tight Analysis of Smith’s Rule

In this section we present a tight analysis which shows that the Smith’s rule algorithm

is exactly a
√

3+1
2 -approximation. We achieve tightness in this result because we con-

structively characterize worst case instances. Let I = (J ,M) be an instance of the
increasing speed scheduling problem. We denote by SR(I) the worst possible schedule
which obeys Smith’s rule (i.e., tie-breaking decisions are taken such that the cost of the
schedule is maximized). We show how to transform I into an instance with a special
structure without decreasing SR(I)/OPT(I). Then we show that on instances with this

structure the Smith’s rule algorithm is exactly a
√

3+1
2 -approximation.

Lemma 8. For any instance I there is an instance I′ = (J ′,M) such that wi/�i = 1 for
all jobs J′

i ∈ J ′ and SR(I′)/OPT (I′) ≥ SR(I)/OPT(I). Moreover, if in I the demands
of all jobs are integral then in I′ the demands of all jobs are integral as well.

Proof. First, we define a partition of the jobs in I into classes Ci such that two jobs be-
long to the same class if and only if they have the same Smith’s ratio. Let Ĩ be an instance
with as few classes Ci as possible such that SR(Ĩ)/OPT (Ĩ) ≥ SR(I)/OPT(I) =: α . If in
Ĩ there is only one class then scaling job weights completes the proof. So now assume
that there are at least two classes in Ĩ. Denote by SR(Ci) and OPT (Ci) the amount
that a class Ci contributes SR(Ĩ) and OPT (Ĩ), respectively. Since SR(Ĩ)/OPT (Ĩ) ≥ α
there must be a class Ck such that SR(Ck)/OPT (Ck) ≥ α . If Ck is the class with highest
Smith’s ratio then we can remove all other classes and SR(I)/OPT(I) will not decrease.
So now assume that Ck is not the class with the highest Smith’s ratio. Then we increase
the weights of the jobs in Ck until they all have the Smith’s ratio of Ck−1. Denote by I′

the resulting instance. Let β > 1 denote the factor by which we increased the weights
of the jobs in Ck. Then we calculate that OPT (I′) ≤ OPT (Ĩ) + (β −1)OPT (Ck)
and SR(I′) = SR(Ĩ) + (β −1)SR(Ck) ≥ α(OPT (Ĩ) + (β −1)OPT (Ck)). This yields
SR(I′)/OPT (I′) ≥ SR(I)/OPT(I). Applying this reasoning until there is only one class
completes the proof. 	

Recall from Proposition 1 that if all Smith’s ratios are identical then we can assume that
OPT (I) orders the jobs ascendingly by demand and the worst Smith’s rule schedule
SR(I) orders the jobs descendingly by demand. Now we want to study the demands

288 S. Stiller and A. Wiese

of the jobs. Assume that in J =
{

J1,J2, ...,J|J |
}

the jobs are ordered ascendingly

by their demand. Let k denote the largest integer such that ∑k
i=1 �i ≤ 1

2 ∑|J |
i=1 �i. We

define Jsmall := {J1,J2, ...,Jk} ⊂ J . For an instance I′ we denote the respective set by
J ′

small .

Lemma 9. Let ε > 0. For any instance I such that all jobs in J have a Smith’s ratio
of 1 there is an instance I′ such that

– all jobs in I′ have a Smith’s ratio of 1,
– J ′

small consist only of jobs of demand 1,
–
∣∣J ′ \J ′

small

∣∣= 1 (i.e., there is exactly one job with demand larger than 1),
– M′ has at most one speed change which occurs when the large job is finished in

SR(I′), and

– SR(I′)
OPT (I′) ≥ (1− ε) SR(I)

OPT (I) .

The transformation from I to I′ stated in the lemma is achieved by an elaborate but
nowhere surprising procedure of merging and splitting jobs and carefully adjusting the
speed of the machine (see [16] for details). Now we prove the approximation ratio of√

3+1
2 for the Smith’s rule algorithm.

Lemma 10. For any instance I it holds that SR(I)/OPT(I) ≤
√

3+1
2 .

Proof. Let ε > 0. Using the lemmata above we derive an instance I′ = (J ′,M′) with
the respective properties. We define L := ∑J′

i ∈J ′ �′i. Let s1 and s2 denote the two speed
values of M′ with s1 ≤ s2. We set k := L−�′m (i.e., we have k small jobs of demand 1) and

calculate that SR(I′)/OPT (I′) ≤ �′m·k+(�′m)2

(�′m)2+ k2
2

using that k ≤ �′m. For fixed �′m we define

f (k) :=
�′m·k+(�′m)2

(�′m)2+ k2
2

. The function f attains its maximum for [0, �′m] in k =
(
−1 +

√
3
)
·

�′m. We conclude that SR(I′)
OPT (I′) ≤

√
3+1
2 . Hence, for any ε > 0 we can show that SR(I)

OPT (I) ≤
1

1−ε · SR(I′)
OPT (I′) ≤ 1

1−ε ·
√

3+1
2 . This implies that SR(I)

OPT (I) ≤
√

3+1
2 . 	

Lemma 11. For any ε > 0 there are instances Iε such that SR(Iε)/OPT (Iε) ≥
(1− ε)

√
3+1
2 .

The instances Iε are constructed such that the function f in the proof of Lemma 10
attains its maximum. Moreover, the weights of their jobs can be perturbed such that
any algorithm which obeys Smith’s rule outputs the same solution. Thus, we obtain the
following theorem:

Theorem 4. Any algorithm respecting Smith’s rule is a
√

3+1
2 -approximation, and none

of these algorithms can achieve a better approximation factor for all instances.

6 Blind and Online Algorithms

We note that the Smith’s rule algorithm orders the jobs without knowledge of the speed
function. We call algorithms with this property blind algorithms. A blind algorithm for

Increasing Speed Scheduling and Flow Scheduling 289

the ISS problem allows to solve the flow scheduling problem without computing the
full earliest arrival pattern. It suffices to calculate (in a second step) an MDF for the job
ordering computed by the blind ISS algorithm (of the first step). With Theorem 1 we
have the following corollary.

Corollary 2. There is an approximation algorithm for the flow scheduling problem with

approximation factor
√

3+1
2 which runs in polynomial time.

Since a blind algorithm does not have knowledge of the machine it cannot compute
the optimal solution for every instance. In particular, a lower bound – communicated to
us by an anonymous referee – shows that a blind algorithm can achieve at best an ap-
proximation ratio of (19+3

√
65)/(22+2

√
65) ≈ 1.1328. The basic strategy for lower

bounds is to confront the algorithm with two different machines. One machine runs
with unit speed and another machine runs with unit speed up to a certain time and then
becomes arbitrarily fast. For either ordering of the jobs, on one of the machines the
achieved approximation ratio is bad.

Now we consider the increasing speed scheduling problem in an online setting. We
assume the following online model: each job Ji has a release time ri, the existence and
all data of a job become known at its release time, and at time t the speed of the machine
up to time t is known, the speed of the machine after time t is not known.

Note that neither the defined class of online algorithms nor the class blind algorithms
contains the other:

We consider the following algorithm which we call the online Smith’s rule algorithm,
SRonline(I): always processes the job which has the largest Smith’s factor among all
available jobs.

Theorem 5. The online Smith’s rule algorithm has a competitive ratio of 2.

Proof. Like in Section 5 w.l.o.g. all jobs have equal Smith’s ratios. We establish a lower
bound instance I′ by replacing each job Ji by �i/ε jobs, each with demand ε and weight
wi
�i

ε such that SRonline(I′) does not preempt any job. Similarly to Proposition 1 one can
show that SRonline(I′) = OPT (I′) and OPT (I′) ≤ OPT (I). The fact that the speed of the
machine never decreases implies that SRonline(I) ≤ 2 ·SRonline(I′) and thus SRonline(I) ≤
2 ·OPT(I). For the full proof we refer to [16]. 	

Note that our analysis is tight since there are examples (even for the case that the speed
of the machine does not change) where the online Smith’s rule algorithm does not per-
form better than 2 [14].

The lower bound of ≈ 1.1328 for the approximation factor of a blind algorithm car-
ries over to a lower bound for online algorithms. It actually also holds if all jobs are
released at time t = 0 and only the information about the machine becomes available
online.

For the problem 1|ri, pmtn|∑Cj the shortest remaining processing time algorithm
(SRPT) is optimal: at each point in time, we process the available job which has the
shortest remaining demand. Ties are broken arbitrarily. This can be generalized to our
problem and proven by an exchange argument.

Theorem 6. If all jobs in an instance I have the same weight then SRPT(I) is optimal.

290 S. Stiller and A. Wiese

References

1. Afrati, F., Bampis, E., Chekuri, C., Karger, D., Kenyon, C., Khanna, S., Milis, I., Queyranne,
M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for minimizing average
weighted completion time with release dates. In: Proceedings of the 40th Annual Symposium
on Foundations of Computer Science (FOCS 1999), pp. 32–44. IEEE, Los Alamitos (1999)

2. Baumann, N., Skutella, M.: Earliest arrival flows with multiple sources. Mathematics of Op-
erations Research 34, 499–512 (2009)

3. Epstein, L., Levin, A., Marchetti-Spaccamela, A., Megow, N., Mestre, J., Skutella, M.,
Stougie, L.: Universal sequencing on a single machine. In: Eisenbrand, F., Shepherd, F.B.
(eds.) Integer Programming and Combinatorial Optimization. LNCS, vol. 6080, pp. 230–
243. Springer, Heidelberg (2010)

4. Fleischer, L.: Faster algorithms for the quickest transshipment problem with zero transit
times. In: Proceedings of the 9th Annual Symposium on Discrete Algorithms (SODA 1998),
pp. 147–156 (1998)

5. Gale, D.: Transient flows in networks. Michigan Mathematical Journal 6, 59–63 (1959)
6. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient algorithms

and complexity. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 397–409. Springer, Heidelberg (2003)

7. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient algorithms and
complexity. Theoretical Computer Science 379, 387–404 (2007)

8. Hoogeveen, H., Skutella, M., Woeginger, G.J.: Preemptive scheduling with rejection. In:
Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 268–277. Springer, Heidelberg (2000)

9. Hoppe, B., Tardos, É.: Polynomial time algorithms for some evacuation problems. In: Pro-
ceedings of the 5th Annual Symposium on Discrete Algorithms (SODA 1994), pp. 433–441
(1994)

10. Labetoulle, J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Preemptive scheduling of
uniform machines subject to release dates. In: Progress in Combinatorial Optimization, pp.
245–261. Academic Press, London (1984)

11. Meilijson, I., Tamir, A.: Minimizing flow time on parallel identical processors with variable
unit processing time. Operations Research 32(2), 440–448 (1984)

12. Minieka, E.: Maximal, lexicographic, and dynamic network flows. Operations Research 21,
517–527 (1973)

13. Queyranne, M., Schulz, A.S.: Scheduling unit jobs with compatible release dates on paral-
lel machines with nonstationary speed. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS,
vol. 920, pp. 307–320. Springer, Heidelberg (1995)

14. Schulz, A.S., Skutella, M.: The power of α-points in preemptive single machine scheduling.
Journal of Scheduling, 121–133 (2002)

15. Smith, W.E.: Various optimizers for single-stage production. Naval Research and Logistics
Quarterly, 59–66 (1956)

16. Stiller, S., Wiese, A.: Increasing speed scheduling and flow scheduling. Technical Report
007-2010, Technische Universität Berlin (February 2010)

17. Wilkinson, W.L.: An algorithm for universal maximal dynamic flows in a network. Opera-
tions Research 19, 1602–1612 (1971)

18. Zadeh, N.: A bad network problem for the simplex method and other minimum cost flow
algorithms (1973)

A Tighter Analysis of Work Stealing

Marc Tchiboukdjian1, Nicolas Gast1, Denis Trystram1,
Jean-Louis Roch1, and Julien Bernard2

1 Grenoble University

firstname.lastname@imag.fr
2 Université de Franche-Comté

julien.bernard@lifc.univ-fcomte.fr

Abstract. Classical list scheduling is a very popular and efficient tech-

nique for scheduling jobs in parallel platforms. However, with the in-

creasing number of processors, the cost for managing a single centralized

list becomes prohibitive. The objective of this work is to study the extra

cost that must be paid when the list is distributed among the processors.

We present a general methodology for computing the expected makespan

based on the analysis of an adequate potential function which represents

the load unbalance between the local lists. A bound on the deviation

from the mean is also derived. Then, we apply this technique to show

that the expected makespan for scheduling W unit independent tasks on

m processors is equal to W/m with an additional term in 3.65 log2 W .

Moreover, simulations show that our bound is very close to the exact

value, approximately 50% off. This new analysis also enables to study

the influence of the initial repartition of tasks and the reduction of the

number of steals when several thieves can simultaneously steal work in

the same processor’s list.

1 Introduction

List scheduling is one of the most popular technique for scheduling the tasks
of a parallel program. This algorithm has been introduced by Graham [1]. Its
principle is to build a list of ready tasks and schedule them as soon as there exist
available resources. List schedules are low-cost (greedy) algorithms that are not
too far from optimal solutions. Most proposed list algorithms always consider
a centralized management of the list. However, today parallel platforms involve
more and more processors. Thus, the time needed for managing such a centralized
data structure can not be ignored anymore [2]. Practically, implementing such
schedulers induces synchronization overheads when several processors access the
list concurrently. Such overheads involve low level synchronization mechanisms.

A suitable approach to reduce the contention is to distribute the list among
the processors: each processor manages its own list of tasks. When a processor
becomes idle, it randomly chooses another processor and steals some work, i.e.
it transfers some tasks from the victim’s list to its own list. Such a strategy is
called work-stealing (WS). WS has been implemented in many languages and
parallel libraries including Cilk [3], Intel TBB [4] and KAAPI [5].

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 291–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

292 M. Tchiboukdjian et al.

Related works. WS has been analyzed in a seminal paper of Blumofe and Leiser-
son [6] where they show that the expected makespan of series-parallel precedence
graphs with unit tasks is bounded by E [Cmax] ≤ W/m+O(T∞) where W is the
number of tasks, T∞ is the critical path of the graph and m is the number of
processors. This analysis has been improved in [7] using a proof based on a po-
tential function. However the precedence graph is constrained to have only one
source and out-degree at most 2 which does not model the basic case of inde-
pendent tasks. Simulating independent tasks with a binary tree of dependencies
gives a bound of W/m + O(log W) as a complete binary tree of W nodes has a
depth of T∞ ≤ log2 W . Our new analysis allows to directly devise a result for
the independent tasks case.

Notice that there exist other ways to analyze work stealing where the work
generation is probabilistic and that target steady state results [8,9,10,11].

Our analysis shows some similarities with the work of Berenbrink et al. [12].
It is based on computing the expected decrease of a potential function. However,
to simplify the analysis, we introduce an adversary that controls one parameter
of the model, the number of steal requests at each time step.

Contributions. We present a new methodology for studying distributed list
scheduling algorithms. The bound obtained in [7] is asymptotically optimal up
to a constant factor but their analysis shows big constant factors. Based on the
analysis of the load balancing between two processors during a steal request, we
compute the expected number of steal requests and a bound on the makespan is
derived. Thanks to our analysis, the constant factors are greatly reduced and are
less than 50% away from values obtained by simulation. Moreover, our analysis
enables to evaluate the impact of two modifications of the WS algorithm : the
influence of the initial repartition of tasks and the reduction of the number of
steal requests when several thieves can simultaneously steal work in the same
processors list.

Roadmap. After presenting the model and notations in Section 2, we give the
principle of the analysis in Section 3. We apply this analysis to the case of unit
independent tasks and study the influence of the initial repartition of tasks in
Section 4. Section 5 quantifies the reduction of steals when several thieves are
allowed to steal the same victim simultaneously. We analyze simulation results
in Section 6.

2 Model of the Distributed List

In this section, we give properties a distributed list implementation should follow.
We consider a parallel platform composed of m identical processors. At time t,

let wi(t) represent the amount of work on processor i. When wi(t) > 0, processor
i is active and executes some work: wi(t+1) ≤ wi(t). When wi(t) = 0, processor
i is idle and intends to steal a random processor j. If processor j has no work,
i.e. wj(t) = 0, the steal fails and processor i will steal again at the next time slot.
Otherwise, a certain amount of work is transfered from processor j to processor

A Tighter Analysis of Work Stealing 293

i: wi(t + 1) + wj(t + 1) ≤ wj(t). Processor i will resume execution at time t + 1.
The execution terminates when all the processors are idle, i.e. ∀i, wi(t) = 0. We
also denote the total amount of work on all processors by w(t) =

∑m
i=1 wi(t)

and the number of active processors by α(t) ∈ [0, m]. Thus, between time t and
t + 1, there are m − α(t) steal requests. Notice that when α(t) = 0, all queues
are empty and thus the execution is complete.

To model the contention on the queues, no more than one steal request per
processor can succeed in the same time slot. If several requests target the same
processor, a random one succeeds and all the others fail. This assumption will
be relaxed in Section 5.

This is a high level model of a distributed list. We will show in Section 4
how these properties accurately model the case of independent tasks. We justify
here some choices of this model. There is no explicit communication cost as
WS algorithms most often target shared memory platforms. A steal request is
done in constant time independently of the amount of work transfered. This
assumption is not restrictive: for the case of independent tasks, the description
of a large number of tasks can be very short. For instance a whole subpart of
an array of tasks can be represented in a compact way by the range of the
corresponding indices, each cell containing the effective description of a task (a
STL transform in [13]). For more general cases with dependencies, it is usually
enough to transfer a task which represents a part of the graph [7].

3 Principle of the Analysis and Main Theorem

This section presents the principle of the analysis. The main result is Theorem 1
that gives bounds on the expectation of the steal requests done by the schedule
as well as the probability that the number of requests exceeds this bound.

The main idea of our analysis is that we study the decrease of a potential
function Φ(t), instead of studying directly the number of processors that will
run out of work and become idle. The definition of Φ(t) varies depending on
the scenario (see Sections 4 to 5). The diminution of the potential depends on
the number of steal requests, m − α(t). Since α(t) is a complicated random
process, we tackle this problem by assuming that an adversary is choosing the
number of active processors α(t) at each step of the schedule. At the beginning,
the adversary starts with Φ(0) potential. Each time, when she chooses its α(t),
m − α(t) steal requests are generated and diminishes the potential. The more
work requests she creates, the more the potential decreases. She tries to maximize
the number of steal requests before running out of potential.

In the actual system, α(t) is determined by the evolution of the system and
cannot be chosen at time t. The introduction of an adversary provides an upper-
bound on the number of steal requests and has two main advantages. First, its
simplicity makes it applicable in several scenarios, such as the ones presented
in Sections 4 to 5. Moreover, we show in Section 6 that the gap between the
obtained bound and the values obtained by simulation is small.

294 M. Tchiboukdjian et al.

The analysis of the scenarios of sections 4 to 5 will be done in three steps.

1. First, we define a potential function and we compute the potential decrease
δk
i (t) when the processor i receives k work requests.

2. Then we compute the expected decrease of the potential between step t and
t + 1, ΔΦ(t) def= Φ(t) − Φ(t + 1). By linearity of expectation,

E [ΔΦ(t)] =
m∑

i=1

m−1∑
k=0

E
[
δk
i |i receives k requests

]
P {i receives k requests} ,

where E [X |Y] denotes the expectation of X knowing Y . Using the properties
of δk

i (t), we show that there exists a function h(α) ∈ (0; 1] such that
E [ΔΦ(t)|Φ(t) = Φ, α(t) = α] ≥ h(α)Φ

3. Finally, we obtain a bound on the expected number of steal requests E [R]
using Theorem 1 presented in this section. An upper bound on the expected
makespan E [Cmax] can be obtained using the bound on the number of steal.

The following theorem gives an upper bound on the number of steal requests
using a lower bound on the expected decrease of the potential in one step.

Theorem 1. Assume that the potential function Φ(t) satisfies:
– There exists a constant d > 0 such that dΦ(t) ∈ N.
– Φ(t) is non-increasing.
– There exists a function h(α) ∈ (0, 1] such that if α ∈ [1, m − 1] processors

are active at time t and Φ(t) = Φ, then the potential decreases on average by
E [Φ(t) − Φ(t + 1)|Φ(t) = Φ, α(t) = α] ≥ h(α) · Φ.

Let λ = max1≤α≤m−1
m−α

−m log2(1−h(α)) and Φ(0) be the potential at t = 0. Then

(i) the expected number of steal requests R until Φ(t) ≤ 1 is bounded by
E [R] ≤ λ · m · log2 Φ(0);

(ii) The deviation from the mean can be bounded by:
P {R ≥ λ · m · log2 Φ(0) + u} ≤ 2−u/(λm)

Proof. Without loss of generality and to simplify the notation, we assume d = 1.
Let T be the random variable indicating the end of the schedule: T =

min{t|Φ(t) ≤ 1}. The number of steal requests is equal to the number of idle
processors at each time step. The number of steal requests after time t is R(t):

R(t) =
T−1∑
s=t

m − α(s)

The total number of steals is R
def= R(0).

The sequence α(t) is difficult to study since it depends on the number of
processors at time t− 1 with 0 or 1 tasks, but also the successful or unsuccessful
steals. Therefore, we perform the analysis assuming a worst-case scenario: at each
time t, an adversary can choose α(t) knowing the history of the system but not
the future random choices. This can be seen as a Markov decision process with
total reward criteria, see [14] for more details about Markov decision processes.

A Tighter Analysis of Work Stealing 295

We prove by induction on Φ that for all t,

E [R(t)|Φ(t) = Φ] ≤ λm log2(Φ)

For Φ = 1, this is clearly true since in that case T ≤ t and R(t) = 0. Assume
that (3) holds for all t and all φ < Φ. E [R(t)|Φ(t) = Φ] is equal to:

E [R(t)|Φ(t) = Φ] = E [m − α(t) + R(t + 1)|Φ(t) = Φ]
= m − α(t) + E [R(t + 1)|Φ(t) = Φ] (1)

By definition of ΔΦ(t), if Φ(t) = Φ, then Φ(t + 1) = Φ − φ with probability
P {ΔΦ(t) = φ|Φ(t) = Φ}. Since Φ(t) is non-increasing, ΔΦ(t)≥0. Therefore:

E [R(t + 1)|Φ(t)=Φ] =
Φ∑

φ=0

E [R(t + 1)|Φ(t + 1)=Φ − φ]P {ΔΦ(t) = φ|Φ(t)=Φ} .

Let us denote p0
def= P {ΔΦ(t) = 0|Φ(t) = Φ}. Using the induction hypothesis,

and the fact that E [R(t + 1)|Φ(t + 1) = Φ] = E [R(t)|Φ(t) = Φ], we get from (1)

(1−p0)E [R(t)|Φ(t)=Φ] ≤ m−α(t)+
Φ∑

φ=1

λm log2(Φ − φ)P {ΔΦ(t)=φ|Φ(t)=Φ}

= m−α(t)+λmE [log2(Φ−ΔΦ(t))|Φ(t)=Φ]−λm log2(Φ)p0 (2)

where we used the fact that
∑Φ

φ=1(. . .) =
∑Φ

φ=0(. . .) − λm log2(Φ)p0.
Moreover, by Jensen’s inequality (log is concave), we have:

E [log2(Φ − ΔΦ(t))|Φ(t) = Φ] ≤ log2(Φ − E [ΔΦ(t)|Φ(t) = Φ])
≤ log2(Φ − h(α(t))Φ) (3)

Combining equations (2) and (3), we get:

(1−p0)E [R(t)|Φ(t) = Φ] ≤ (1−p0)λm log2(Φ)+m−α(t)+λm log2(1−h(α(t))).

If α(t) = m, the sum of the two last terms of the equation is negative since
1 − h(α) ≤ 1. If α(t) = 0, the schedule is finished. If 0 < α(t) < m, the sum
of the two last terms is negative by definition of λ (λ corresponds to the worst
choice of α(t)). Dividing on both sides by 1 − p0 concludes the proof of (i).

The proof of (ii) is quite similar to the proof of (i). We prove by induction
on Φ that E

[
2R(t)/(λm)−log2(Φ)|Φ(t) = Φ

]
≤ 1. It clearly holds for Φ = 1 since in

that case it is equal to 0. E
[
2R(t)/(λm)−log2(Φ)|Φ(t) = Φ

]
is equal to

Φ∑
φ=0

E

[
2R(t)/(λm)−log2(Φ)|Φ(t + 1)=Φ − φ

]
P {ΔΦ(t)=φ|Φ(t)=Φ}

Using R(t+1) = m−α+R(t) and introducing log2(Φ−φ)− log2(Φ−φ), this equals
Φ∑

φ=1

2
m−α
λm +log2(1− φ

Φ)
E

[
2

R(t+1)
λm −log2(Φ−φ)|Φ(t+1)=Φ−φ

]
P {ΔΦ(t)=φ|Φ(t)=Φ}

+ 2
m−α
λm E

[
2

R(t+1)
λm −log2(Φ)|Φ(t + 1)=Φ

]
p0

296 M. Tchiboukdjian et al.

≤
Φ∑

φ=1

2
m−α
λm +log2(1− φ

Φ)
P {ΔΦ(t)=φ|Φ(t)=Φ} + 2

m−α
λm E

[
2

R(t)
λm −log2(Φ)|Φ(t)=Φ

]
p0

where we used the induction hypothesis for the inequality.
Then, adding and subtracting the first term of the sum

∑Φ
φ=1, this leads to

(1 − 2
m−α
λm p0)E

[
2

R(t)
λm −log2(Φ)|Φ(t)=Φ

]
≤ 2

m−α
λm E [1 − ΔΦ/Φ|Φ(t)=Φ] − 2

m−α
λm p0

≤ 2
m−α
λm +log2(1−h(α)) − 2

m−α
λm p0

≤ 1 − 2
m−α
λm p0.

where we used the definition of λ to show that the first term is less than one.
This shows that E

[
2

R(t)
λm −log2(Φ)|Φ(t)=Φ

]
≤ 1. Therefore by Markov’s inequality:

P {R(t) ≥ λm log2 Φ + u|Φ(t)=Φ} = P

{
2

R(t)
λm −log2 Φ ≥ 2

u
λm |Φ(t)=Φ

}
≤ 2−

u
λm .

4 Unit Independent Tasks

We apply the analysis presented in the previous section for the case of indepen-
dent unit tasks. In this case, each processor i maintains a local queue Qi of tasks
to execute. At every time slot, if the local queue Qi is not empty, processor i
picks a task and executes it. When Qi is empty, processor i sends a steal request
to a random processor j. If Qj is empty or contains only one task (currently
executed by processor j), then the request fails and processor i will have to send
a new request at the next slot. If Qj contains more than one task, then i is given
half of the tasks (after that the task executed at time t by processor j has been
removed from Qj). The amount of work on processor i at time t, wi(t), is the
number of tasks in Qi(t). At the beginning of the execution, w(0) = W and
tasks can be arbitrarily spread among the queues.

Applying the method presented in Section 3, the first step of the analysis is
to define the potential function and compute the potential decrease when a steal
occurs. For this example, Φ(t) is defined by:

Φ(t) =
m∑

i=1

(
wi(t) − w(t)

m

)2

=
m∑

i=1

wi(t)2 − w2(t)
m

.

This potential represents the load unbalance in the system. If all queues have
the same wi(t) = w(t)/m, then Φ(t) = 0. Φ(t) ≤ 1 implies that there is at most
one processor with at most one more task than the others. In that case, there
will be no steal until there is just one processor with 1 task and all others idle.
Moreover, the potential function is maximal when all the work is concentrated
on a single queue. That is Φ(t) ≤ w(t)2 − w(t)2/m ≤ (1 − 1/m)w2(t).

Assume that at time t, the queue i has wi(t) ≥ 1 tasks. If it receives one
or more steal requests, it chooses a processor j among the thieves. At time
t + 1, i has executed one task and the rest of the work is split between i and j.

A Tighter Analysis of Work Stealing 297

Therefore, wi(t + 1) = �(wi(t) − 1)/2� and wj(t + 1) = �(wi(t) − 1)/2�. Thus
wi(t+1)2+wj(t+1)2 = �(wi(t)−1)/2�2+�(wi(t)−1)/2�2 ≤ wi(t)2/2−wi(t)+1.
Therefore, this generates a difference of potential of

δk
i (t) = δ1

i (t) ≥ wi(t)2/2 + wi(t) − 1. (4)

If i receives zero steal requests, it potential goes from wi(t)2 to (wi(t) − 1)2,
generating a potential decrease of 2wi(t) − 1. The last event contributing to the
change of the potential is that (

∑m
i=1 wi(t))2/m goes from w(t)2/m to w(t+1)2 =

(w(t) − α(t))2/m, generating a potential increase of 2α(t)w(t)/m − α(t)2/m.
Recall that at time t, there are α(t) active processors and therefore m − α(t)

processors that send steal requests. A processor i receives zero steal requests if
the m−α(t) thieves choose another processor. Each of these events is independent
and happens with probability (m − 2)/(m − 1). Therefore, the probability for
the processor to receive one or more steal requests is pr(α(t)):

pr(α(t)) = 1 −
(

1 − 1
m − 1

)m−α(t)

.

If Φ(t)=Φ and α(t)=α, by summing the expected decrease on each active pro-
cessor δ1

i , the expected potential decrease is greater than:∑
i/wi(t)>0

[
pr(α)

(wi(t)2

2
+ wi(t)−1

)
+ (1 − pr(α))(2wi(t)−1)

]
− 2w(t)

α

m
+

α2

m

=
pr(α)

2
Φ +

pr(α)
2

(
w(t)2

m
− 2w(t) + 2

m − α

mpr(α)
(2w(t) − α)

)
(5)

≥ pr(α)
2

(
Φ +

w(t)2

m
− 2

w(t)
m

+ 2
(

1 − 1
m

)
(w(t) − α)

)
≥ pr(α)

2
Φ

The details of the computation of (5) can be found in Appendix A.
Using Theorem 1 of the previous section, we conclude the analysis by the

following theorem.

Theorem 2. Let Cmax be the makespan of W unit independent tasks scheduled
by work stealing. Then:

(i) E [Cmax] ≤
W

m
+

2
1 − log2(1 + 1

e)
· log2 W + 1

(ii) P

{
Cmax ≥ W

m
+

2
1 − log2(1 + 1

e)
·
(

log2 W + log2

1
ε

)
+ 1

}
≤ ε

These bounds are optimal up to a constant factor in log2 W .

Proof. Using Equation (5), E [ΔΦ(t)|Φ(t) = φ, α(t) = α] ≤ h(α)Φ, with h(α) =
pr(α)/2. Using Theorem 1 (i) and the fact that Φ(0) ≤ W 2, the expected number
of steal requests before Φ(t) ≤ 1 is bounded by:

E [R] ≤ λm log2(W
2) = 2λm log2(W),

with λ = max1≤α≤m−1(m−α)/(−m log2(1−h(α))). A direct computation shows
that (m − α)/(−m log2(1 − h(α))) is decreasing in α. Therefore, its minimum is
attained for α = 1. This shows that λ ≤ 1/(1 − log2(1 + 1

e)).

298 M. Tchiboukdjian et al.

As said before, when Φ(t) ≤ 1, there is at most one processor with at least
one more task than the others. Therefore, there will be a steal request only when
this processor will have one task and the others zero. This happens only once
and generates at most m − 1 steal requests.

At each time step of the schedule, a processor is either computing one task or
stealing work. This shows that m · Cmax = W + R. Thus:

E [Cmax] ≤
W

m
+

2
1 − log2(1 + 1

e)
log2 W + 1

The proof of the (i) applies mutatis mutandis to prove the bound in proba-
bility (ii) using Theorem 1 (ii).

We now give a lower bound for this problem. Consider W = 2k+1 tasks and
m = 2k processors, all the tasks being on the same processor at the beginning.
In the best case, all steal requests target processors with highest loads. In this
case the makespan is Cmax = k + 2: the first k = log2 m steps for each processor
to get some work; one step where all processors are active; and one last step
where only one processor is active. In that case, Cmax ≥ W

m + log2 W − 1.

This theorem shows that the factor before log2 W is bounded by 1 and 2/(1 −
log2(1 + 1/e)) < 3.65. Simulations reported in Section 6 seem to indicate that
the factor of log2(W) is slightly less. This shows that the constants obtained by
our analysis are sharp.

Initial repartition of tasks. In the worst case, all tasks are in the same queue
at the beginning of the execution. Using bounds in terms of Φ0, one can show
that a more balanced initial repartition leads to fewer steal requests on average.
Suppose that we take a balls-and-bins assignment as the initial repartition: for
each task, we choose a processor at random and put the task in its queue. The
expected value of Φ0 is:

E [Φ0] =
∑

i

E
[
w2

i

]
− W 2

m
=
∑

i

(
Var [wi] + E [wi]

2
)

− W 2

m
=
(
1 − 1

m

)
· W

as wi follows a binomial distribution. Since the number of work requests is pro-
portional to log2 Φ0, this initial distribution of tasks reduces the number of steal
requests by a factor of 2 on average.

5 Cooperation among Thieves

In this section, we modify the protocol for managing the distributed list. Previ-
ously, when k > 1 steal requests were sent on the same processor, only one of
them could be served due to contention on the list. We now allow the k requests
to be served in unit time. This model has been implemented in the middleware
Kaapi [5]. When k steal requests target the same processor, the work is divided
into k + 1 pieces. In practice, allowing concurrent thieves increase the cost of a
steal request but we neglect this additional cost here. We assume that the k con-
current steal requests can be served in unit time. We study the influence of this
new protocol on the number of steal requests in the case of unit independent tasks.

A Tighter Analysis of Work Stealing 299

We use the potential function1 Φ(t) =
∑m

i=1 wi(t)2. Let us first compute
the decrease of the potential when processor i receives k ≥ 1 steal requests. If
wi(t) > 0, it can be written wi(t) = (k + 1)q + r + 1 with 0 ≤ r < k + 1. After
one time step and k steal requests, the work will be divided in r parts with q +1
tasks and k + 1 − r parts with q tasks. By a direct computation, the potential
generated by these steal requests at time t + 1 can be bounded by:

r(q+1)2 +(k+1−r)q2 = (k+1)q2 +r(2q+1) ≤ 1
k + 1

((k + 1)q + r)2 ≤ wi(t)2

k + 1
.

If m − α processors send steal requests, the probability for an active processor
to receive k steal requests is

pk(α) =
(

m − α
k

)
1

(m − 1)k

(
m − 2
m − 1

)m−α−k

The expected diminution of the potential caused by the steals on processor i
is equal to

∑m−α
k=0 δk

i pk(α). By a direct computation, this is bounded by

m−α∑
k=0

δk
i pk(α) ≥

m−α∑
k=0

(
1 − 1

k + 1

)
wi(t)2pk(α)

= wi(t)2
(

1 − m − 1
m − α + 1

(
1 −

(
m − 2
m − 1

)m−α+1
))

This shows that E [ΔΦ(t)|Φ(t) = Φ|α(t) = α] ≤ h(α)Φ where

h(α) = 1 − m − 1
m − α + 1

(
1 −

(
m − 2
m − 1

)m−α+1
)

Deriving with respect to α shows that (m − α)/ − log2(1 − h(α)) is decreasing.
Thus λ = max1≤α≤m(m−α)/−m log2(1−h(α)) = (m−1)/−m log2(1−h(1)).
A direct computation shows that λ ≤ 1/− log2(1− 1/e). Therefore we can copy
mutatis mutandis the proof of Theorem 2 to show that:

Theorem 3. The makespan Ccoop
max of W unit independent tasks scheduled with

cooperative work stealing satisfies:

(i) E [Ccoop
max] ≤ W

m
+

2
− log2(1 − 1

e)
· log2 W + 1

(ii) P

{
Ccoop

max ≥ W

m
+

2
− log2(1 − 1

e)
· log2 W + 1 ≥ 2

− log2(1 − 1
e)

log2(ε)
}

≤ ε

Compared to the situation with no cooperation among thieves, the number of
steal requests is reduced by a factor 1−log2(1+1/e)

− log2(1−1/e) ≈ 1.20. We will see in Section 6
that this is close to the value obtained by simulation.
1 The same potential function as in Section 4 could be used but leads to more complex

computations.

300 M. Tchiboukdjian et al.

101 103 105
1

1.5

2

2.5

number of processors m

co
n
st
a
n
t
fa
ct
o
r
o
f
lo
g
2
W

Standard Steal
Cooperative Steal

101 103 105

1.1

1.12

1.14

number of processors m

Ratio of Steal Requests

Fig. 1. (Left) Constant factor of log2 W against the number of processors for

the standard steal and the cooperative steal. (Right) Ratio of steal requests

(standard/cooperative).

6 Experimental Study

Theorem 1 provides upper bound on the expected value of the makespan for the
models considered in Sections 4 and 5. In this section, we experimentally study
the constant factor of the log2 W term and show that it is close to the theoretical
result.

We developed a simulator that strictly follows the model of Sections 4 and 5.
At the beginning, all the tasks are given to processor 0 in order to be in the
worst case, i.e. when the initial potential Φ0 is maximum. Each pair (m,W) is
simulated 10000 to get accurate results, with a coefficient of variation
about 2%.

We computed the constant factor 2λ of the log2 W term for various number of
processors and tasks. The value goes to a limit between 2 and 3 (cf. Fig. 1). This
gives a constant 2λ ≈ 2.37 for unit independent tasks with standard steal and
2λcoop ≈ 2.08 for unit independent tasks with cooperative steal. The theoretical
values of 3.65 (standard steal) and 3.02 (cooperative steal) are close, only 50%
greater than the simulation values. The difference can be explained by the use of
an adversary in Theorem 1. Moreover, the analysis is fine enough to predict the
advantage of the cooperative steal with a gain of 20% over the standard steal,
close to the experimental gain of 14%.

7 Concluding Remarks

We have presented in this paper a new analysis of work stealing. The main
result is to prove that the expected makespan to schedule a workload of W on
m processors is no more than the best possible absolute lower bound W/m plus
an additive term in 3.65 log2 W very close to the value obtained by simulation.

A Tighter Analysis of Work Stealing 301

References

1. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal on

Applied Mathematics 17, 416–429 (1969)

2. Hoffmann, R., Korch, M., Rauber, T.: Performance evaluation of task pools based

on hardware synchronization. In: Proc. of Supercomputing (2004)

3. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-

tithreaded language. In: Proceedings of PLDI (1998)

4. Robison, A., Voss, M., Kukanov, A.: Optimization via reflection on work stealing

in TBB. In: Proceedings of IPDPS, pp. 1–8 (2008)

5. Gautier, T., Besseron, X., Pigeon, L.: KAAPI: A thread scheduling runtime sys-

tem for data flow computations on cluster of multi-processors. In: Proceedings of

PASCO, pp. 15–23 (2007)

6. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work

stealing. Journal of the ACM 46(5), 720–748 (1999)

7. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-

grammed multiprocessors. Theory of Computing Systems 34(2), 115–144 (2001)

8. Berenbrink, P., Friedetzky, T., Goldberg, L.A.: The natural work-stealing algorithm

is stable. SIAM Journal of Computing 32(5), 1260–1279 (2003)

9. Mitzenmacher, M.: Analyses of load stealing models based on differential equations.

In: Proceedings of SPAA, pp. 212–221 (1998)

10. Hendler, D., Shavit, N.: Non-blocking steal-half work queues. In: Proceedings of

PODC (2002)

11. Gast, N., Gaujal, B.: A Mean Field Model of Work Stealing in Large-Scale Systems.

In: Proceedings of SIGMETRICS (2010)

12. Berenbrink, P., Friedetzky, T., Goldberg, L.A., Goldberg, P.W., Hu, Z., Martin,

R.: Distributed selfish load balancing. SIAM Journal on Computing 37(4) (2007)

13. Traoré, D., Roch, J.L., Maillard, N., Gautier, T., Bernard, J.: Deque-free work-

optimal parallel STL algorithms. In: Luque, E., Margalef, T., Beńıtez, D. (eds.)

Euro-Par 2008. LNCS, vol. 5168, pp. 887–897. Springer, Heidelberg (2008)

14. Puterman, M.L.: Markov Decision Processes : Discrete Stochastic Dynamic Pro-

gramming. Wiley, Chichester (2005)

A Proof of Inequality (5) of Theorem 2

Recall that the expectation of the potential decrease is greater than:∑
i/wi(t)>0

[
pr(α)

(
wi(t)2

2
+ wi(t)−1

)
+ (1−pr(α))(2wi(t)−1)

]
− 2w(t)

α

m
+

α2

m

=
pr(α)

2

(∑
wi(t)2 − w(t)2

m

)
+ pr(α)

(
w(t)2

2m
+ w(t) − α

)
+(1 − pr(α)) (2w(t) − α) − 2w(t)

α

m
+

α2

m

where we used that
∑

i/wi(t)>0 wi(t) = w(t) and that
∑

i/wi(t)>0 1 = α since α is
the number of active processors. A direct computation shows that this is equal
to

302 M. Tchiboukdjian et al.

pr(α)
2

Φ + pr(α)
(

w(t)2

2m
+ w(t) − α − 2w(t) + α

)
+ 2w(t) − α − 2w(t)

α

m
+

α2

m

=
pr(α)

2
Φ +

pr(α)
2

(
w(t)2

m
− 2w(t) +

2
pr(α)

(
1 − α

m

)
(2w(t) − α)

)
=

pr(α)
2

Φ +
pr(α)

2

(
w(t)2

m
− 2w(t) +

2
m

m − α

pr(α)
(2w(t) − α)

)
. (6)

Let define f by f(α) def= (m − α)/pr(α). A direct computation shows that the
derivative f ′ is negative. Thus, f is non increasing for 1 ≤ α ≤ m − 1 and
min1≤α≤m−1 f(α) = f(m − 1) = m − 1. Therefore, (6) is greater than:

pr(α)
2

Φ +
pr(α)

2

(
w(t)2

m
−2w(t) + 2

m−1
m

(2w(t)−α)
)

=
pr(α)

2
Φ +

pr(α)
2

(
w(t)2

m
−2w(t) + 2w(t)

(
1− 1

m

)
+ 2

(
1− 1

m

)
(w(t)−α)

)
=

pr(α)
2

Φ +
pr(α)

2

(
w(t)2

m
−2w(t)

m
+ 2

(
1− 1

m

)
(w(t)−α)

)
.

As w(t) − α(t) ≥ 0 (an active processor has at least one task) the last term is
positive. Moreover, for all w(t) > 1, the second term is positive. Thus, this is
greater than pr(α)

2 Φ which concludes the proof of the inequality (5).

B Computation of λ for the Unit Tasks

In this section, we compute the constant λ for the unit tasks. We first show that
the quantity (m − α)/ (− log2(1 − pr(α)/2)) is decreasing in α. Then we bound
the value (m − 1)/ (− log2(1 − pr(1)/2)) by (m − 1)/(1 − log2(1 + 1/e)).

Let g(α) def= − log2(1 − pr(α)/2) and f(α) def= (m − α)/g(α). By definition of
pr(α), g(α) can be written:

g(α) = − log2

(
1
2

+
1
2

(
1 − 1

m − 1

)m−α
)

= 1 − log2

(
1 +

(
1 − 1

m − 1

)m−α
)

.

Denoting p
def= 1 − 1/(m − 1) and x

def= pm−α, the derivative of f w.r.t. α is:

f ′(α) =
(1 + x) ln(1 + x) − x ln x − (1 + x) ln 2

(1 + x)g(α)2 ln 2

The derivative of (1 + x) ln(1 + x) − x ln x − (1 + x) ln 2 w.r.t. x is ln(1 + x) −
ln(x) − ln 2 = ln(1 + 1/x) − ln 2 > 0. As x < 1, this shows that (1 + x) ln(1 +
x) − x ln x − (1 + x) ln 2 < (1 + 1) ln(1 + 1) − 1 ln 1 − (1 + 1) ln 2 = 0.

This shows that f(α) is decreasing. Therefore, λ = max1≤α≤m−1
1
mf(α) =

1
mf(1). Using the fact that for m ≥ 2, (1 − 1

m−1)m−1 ≤ 1/e, we get that

1 − log2

(
1 + (1 − 1/(m − 1))m−1

)
≥ 1 − log2(1 + 1/e) which shows that λ ≤

1
1−log2(1+1/e) .

Approximating the Traveling Tournament
Problem with Maximum Tour Length 2

Clemens Thielen and Stephan Westphal

Department of Mathematics, University of Kaiserslautern, Paul-Ehrlich-Str. 14,

D-67663 Kaiserslautern, Germany

{thielen,westphal}@mathematik.uni-kl.de

Abstract. We consider the traveling tournament problem, which is a

well-known benchmark problem in tournament timetabling. The most

important variant of the problem imposes restrictions on the number of

consecutive home games or away games a team may have. We consider

the case where at most two consecutive home games or away games are

allowed. We show that the well-known independent lower bound for this

case cannot be reached and present an approximation algorithm that has

an approximation ratio of 3/2 + 6
n−4

, where n is the number of teams in

the tournament. In the case that n is divisible by 4, this approximation

ratio improves to 3/2 + 5
n−1

.

Keywords: traveling tournament problem, timetabling, approximation

algorithm.

1 Introduction

Professional sports leagues exist all over the world. Popular leagues are often
of huge economic importance due to the enormous revenues generated by sell-
ing tickets and broadcasting rights for the games. Hence, the planning of these
leagues is of major importance. An important aspect is the generation of a
timetable for the tournaments that specifies the order in which the teams play
each other during the season and the venue of each game. A well-studied variant
of this problem is the traveling tournament problem (TTP), which was formally
introduced by Easton et al.[1] in 2001. Given the number of teams and the pair-
wise distances between their home venues, TTP asks for a timetable of a double
round robin tournament that minimizes the sum of the distances traveled by
the teams during the season. This problem is quite important in practice, for
example in the US, where the distances between two teams’ home venues are
often quite large, so minimizing travel distance becomes a major issue.

The variant of TTP most relevant in practice imposes restrictions on the num-
ber of consecutive home games or away games a team may have. The schedules
of many major sports leagues, e.g., the Major League Baseball (MLB) in the
US, contain such restrictions. The case that was studied most so far is that the
number of consecutive home or away games is upper bounded by three. The case

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 303–314, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

304 C. Thielen and S. Westphal

TTP(2), where only two consecutive home or away games are allowed, was stud-
ied in a classical paper by Campbell and Chen [2], who scheduled a basketball
conference of ten teams with a solution method based on matching techniques.
Their method, however, only yields a relaxed tournament, which needs two time
slots more than necessary. Moreover, no upper bound on the number of consecu-
tive home games was considered and the schedules constructed by their method
violate the upper bound of at most two consecutive away games for some teams.

We now formally define the traveling tournament problem (TTP) and intro-
duce our notation. We are given a set of n teams, where n ≥ 4 is even. An (n×n)-
distance matrix D = (dij) specifies the distances between the home venues of
the teams, i.e., dij ≥ 0 is the distance between the home venues of teams i and
j. The distances are assumed to be symmetric (i.e., dij = dji for all i, j) and
satisfy dii = 0 for all i as well as the triangle inequality (i.e., dij + djk ≥ dik for
all i, j, k). A game is an ordered pair of teams, where the first team is the home
team and the second the away team. A sequence of consecutive away games of
a team is called a road trip, and sequence of consecutive home games is called a
home stand. A double round robin tournament is a collection of games in which
every team plays every other team once at home and once away (i.e., at the
other team’s home venue). Hence, exactly 2n − 2 time slots are necessary for a
double round robin tournament. Before the tournament, each team is assumed
to stay at its home venue and it has to return there after the tournament in
case that its last game is an away game. Between two consecutive away games,
a team travels directly from the venue of the first opponent to the venue of the
second opponent. With this terminology, the traveling tournament problem for
a positive integer k ≥ 2 is defined as follows:

Definition 1 (The Traveling Tournament Problem (TTP(k)) [1])
INSTANCE: The set of n teams and the distance matrix D = (dij).
TASK: Compute a feasible double round robin tournament of the teams

satisfying the following conditions:

(a) The length of any home stand is at most k.
(b) The length of any road trip is at most k.
(c) Game j at i is not followed immediately by game i at j.
(d) The sum of the distances traveled by the teams is minimized.

1.1 Previous Work

Since the proposal of TTP by Easton et al. [1], many approximation algo-
rithms and heuristics have been designed for the problem (cf., for example,
[3,4,5,6,7]). The first algorithm with a constant approximation ratio was the
(2+ (9/4)/(n− 1))-approximation algorithm for TTP(3) proposed by Miyashiro
et al. [5]. Recently, Westphal and Noparlik [7] presented the first constant fac-
tor approximation for k > 3, which achieves an approximation ratio of at most
5+3/n+3/(2k). The only approximation results on TTP(2) we are aware of are
the ones due to Campbell and Chen [2] already mentioned above. The complex-
ity of TTP was recently settled in [8] by showing that the problem is strongly

Approximating the Traveling Tournament Problem 305

NP-hard to solve. A modified version of TTP without restrictions on the number
of consecutive home games or away games was shown to be strongly NP-hard in
[9]. Surveys on round robin scheduling and TTP can be found in [10,11].

1.2 Our Contribution

We show that the independent lower bound for TTP(2) obtained by matching
techniques in [2] can in fact not be reached in general without violating some
constraints of the TTP. Instead, we use this bound to construct an approximation
algorithm that always outputs a tournament with overall distance traveled at
most 3/2+ 5

n−1 times optimal in the case that n/2 is even, and at most 3/2+ 6
n−4

times optimal in the case that n/2 is odd.

2 The Lower Bound

In this section, we present the lower bound for TTP(2) obtained by Campbell
and Chen [2] and show that this lower bound cannot be reached in general.

The basic idea of the lower bound is that the optimal trips for a given team i
can be obtained by computing a minimum weight perfect matching in the com-
plete undirected graph G on the set of teams with the weight of the edge from
team j to team k given as the distance djk between the home venues of j and k.
Figure 1 illustrates the construction. Since team i has to visit each of the other
teams and may visit at most two teams in one trip, it has to use each of the
dotted edges [i, j], j �= i, at least once. Thus, we may ignore these edges when
looking for an optimal set of trips. Moreover, the number of trips of length 2
must be maximized in order to minimize the travel distance. Hence, an optimal
set of trips corresponds to a partition of the teams into pairs such that the sum
of the distances between the paired teams is minimized. Each pair in the pairing
is then visited by team i in a single trip, and the team that is paired with i
itself is visited in a trip of length 1. Such a pairing is exactly a minimum weight
perfect matching in G. In particular, the optimal pairing is independent of the
team i for which the travel distance is minimized.

Using this lower bound on the distance traveled by a single team for each of
the teams independently yields the following lower bound on the overall distance

i

j

k

djk

Fig. 1. Optimal trips for team i obtained from a minimum weight matching

306 C. Thielen and S. Westphal

traveled in any feasible tournament: Writing Δ :=
∑

i�=j dij , the overall distance
traveled in any feasible tournament is at least

n∑
i=1

(
d(M) +

∑
j �=i

dij

)
= Δ + n · d(M), (1)

where d(M) is the weight of a minimum weight perfect matching in G.
The reason that this lower bound cannot be reached in general is that the

optimal trips for the teams given by the perfect matching cannot be synchronized
to yield a feasible tournament. To see why, suppose that we were given a schedule
in which all teams travel the optimal trips given by the minimum weight perfect
matching as above. Consider two teams t1, t2 that are paired in the matching
and look at the time slot l in the tournament in which team t1 visits team t2.
Since t1 uses the trips given by the matching, the trip in which it visits t2 has
length 1, so t1 has home games in the slots l − 1, l + 1 adjacent to l. Using this,
Figure 2 shows why we already obtain a contradiction to Constraint (c) of the
TTP: If some team t3 �= t2 visits t1 in slot l − 1, team t3 must have visited t2 in
the previous slot l − 2 as it travels according to the perfect matching and [t1, t2]
is a matching edge. But this implies that t2 has a trip of length 1 in slot l − 1,
which can only be the case if it visits t1 in this slot. t1 was, however, already
assumed to play against t3 in slot l − 1. Hence, the only possibility would be
that t2 visits t1 in slot l − 1, which contradicts Constraint (c) of the TTP as t1
visits t2 in the adjacent slot l.

l − 2 l − 1 l l + 1

t1

t2

t3

A

A

A A

H

HH

H

Fig. 2. No team t3
= t2 can visit t1 in slot l − 1

Even without Constraint (c) we would obtain a contradiction since, by sym-
metry, the same argumentation yields that only t2 can visit t1 in slot l + 1, so
t2 would have to visit t1 twice.

3 Approximation Algorithms

A very simple way to construct a 2-approximation for TTP(2) is to take an arbi-
trary schedule with the minimum possible number of breaks. In such a schedule,
n − 2 of the n teams have one trip containing two games, while all other trips
contain exactly one game. Because of the triangle inequality, the distance trav-
eled on each trip consisting of two games is not longer than the distance traveled
when visiting the opponents of these games separately. Thus, the total length

Approximating the Traveling Tournament Problem 307

of the trips corresponding to this schedule is not greater than 2Δ. Since the
cost of any feasible tournament is at least Δ as shown in the previous section,
this schedule yields a 2-approximation. In the rest of the paper, we present an
algorithm that constructs a tournament T of total cost at most 3/2+ 6

n−1 times
optimal, which yields an approximation ratio less than 2 for n ≥ 14.

3.1 Construction of the Tournament T

We assume that the n teams are numbered such that the edges (1, 2), (3, 4), . . . ,
(n− 1, n) form a minimum weight perfect matching M in the graph G. For each
i = 1, . . . , n, we denote the sum of the distances of team i to all other teams by
s(i), i.e.,

s(i) :=
∑
j �=i

dij .

As
∑n

i=1 s(i) = Δ, we can choose the numbering in such a way that s(n − 1)
+ s(n) ≤ 2 · Δ/n. Furthermore, we may order the two teams on each matching
edge such that s(i) ≥ s(i+1) for every odd i ≤ n/2, and s(i) ≤ s(i+1) for every
odd i > n/2. Hence, we obtain

n/2∑
i=1, i odd

s(i + 1) +
n−2∑

i=n/2+1, i odd

s(i) ≤ Δ

2
− (s(n − 1) + s(n))/2. (2)

In order to schedule the matches between the teams, we apply the canonical
tournament introduced by de Werra [12]. This way, we make sure that each team
plays against every other team exactly once. This initial canonical schedule can
be obtained by assigning the teams to the vertices of a special graph as displayed
in Figure 3 for n = 20.

11 2 12 3 13 4 14 5 15

61671781891910
1 20

Fig. 3. Games at the first time slot for n = 20

The matches of the first time slot correspond to the pairs of vertices being
adjacent to each other and a game always takes place at the venue of the team
assigned to the head of the corresponding arc. The second day’s matches can
be obtained by changing the assignment of the teams to the black vertices in
counterclockwise direction as shown in Figure 4. The schedules for the other
time slots are derived analogously. The only difference is that the orientation of
the arc incident to team 20 changes every second time, thus making sure that
the road trips and home stands of team 20 do not get longer than 2.

Clearly, the first half of the tournament obtained this way has no road trip
or home stand longer than two. The second half is derived from the first half by

308 C. Thielen and S. Westphal

2 12 3 13 4 14 5 15 6

16717818919101
11 20

Fig. 4. Games at the second time slot for n = 20

repeating the matches of the first half with changed home field advantage. As the
first half does not contain any road trip or home stand longer than two matches,
the second half will not contain any road trips or home stands being too long
either. We only need to make sure that the connection of the two halves does not
yield any such event. If we started the second half with the same match as the
first one, we might obtain road trips of length four. Team 13 would encounter
such a situation in the tournament stated in Figure 3 as it would end the first
half of the season with a road trip containing teams 6 and 7 and start the second
half with two away games against 8 and 9, thus obtaining a road trip of length
four. Therefore, we start the second half with the last two games of the first
half. This way, we make sure that no two games against the same opponent
are played consecutively (Definition 1, Condition (c)) and additionally take care
that no road trips or home stands at the connection of the two halves become
too long. We can see that the latter holds by considering the four possible cases
for the games at the connection point. In case the first half of some team t ends
with two away games against teams t1 and t2, the second half starts with one
home game against t1 which is followed by another home game against t2. We
denote such a sequence as AAHH . The other possible sequences read HHAA,
AHHA, and HAAH , and none of these sequences yield a road trip or home
stand longer than 2.

3.2 Costs of the Tournament T for n/2 Even

In this section, we prove an upper bound for the total length of the tours defined
by the tournament T constructed above in the case that the number n of teams
is divisible by 4, i.e., n/2 is even. In the next section, we will derive a slightly
larger bound for the case that n/2 is odd.

We assume that every team t having an away game against team n drives home
before driving to team n’s venue and drives home again after having played that
match. By construction, t has a home game before or after that game anyway,
so we just added one more visit home. By the triangle inequality, this can only
increase the total cost of the tournament. Furthermore, we apply the triangle
inequality a second time by assuming that every team drives home after the last
game of the first half of the season if it is not already at home. We now estimate
the distances related to the constructed tournament T separately.

Ch - The costs related to home games of team n: Every other team plays one
away game against team n. As we can assume by application of the triangle
inequality that all teams come from their home venues to play against team n
and return to their home venues after this game, we know that the cost incurred
thereby is at most

Approximating the Traveling Tournament Problem 309

Ch ≤
n−1∑
i=1

(d(i, n) + d(n, i)) = 2s(n).

Ca - The costs related to away games of team n: Analogously to the estimation
of the home games of team n, we can upper bound the costs incurred by the
away games of team n by first assuming that team n always returns home after
each away game. This way, we derive the same upper bound of 2s(n) for the
costs Ca incurred by the away games.

Cs - The costs related to the first days of the season halves and the costs of
returning home after the last days of the season halves: At the first day of the
season, n/2 teams have to travel to their opponents. We do not consider the
games that the teams n − 1 and n are involved in, as we have already taken
care of these costs above. Hence, there are n/2− 2 distances traveled left, which
correspond to all but one of the vertical arcs in Figure 3. After the games of
day n− 1, the first half of the season is over and we assume that all teams drive
home. The second half of the season starts with the matches that have already
taken place at day n−2 and it ends with the second leg of the game of day n−3.

Observe that the orientation of the arcs does not have an effect on the total
distance traveled. It only affects the question who is driving, which is not of
interest here. In the example mentioned above, for team 13, the matches to
consider are those against the teams 8, 7, 6, and 5. If team 13 did not start the
season this way but with a match against team 9 say, we would need to consider
the distances to the teams 9, 8, 7, and 6. Overall, there are n−1 different choices
for the first and last trips of the two halves of the season and each edge of
({1, . . . , n − 1} × {1, . . . , n − 1}) is part of at most four of these choices. Hence,
summing up the distances of the n − 1 different possible choices, we obtain a
total of at most

n−1∑
i=1

n−1∑
j=i+1

4dij = 2Δ − 4s(n) ≤ 2Δ.

Consequently, there has to be a choice for which Cs ≤ 2Δ/(n − 1).

Co - The other costs: The opponent schedule for the first half of the tournament
in the example is shown in Table 1. Here, the ith row displays the opponents of
team i in the order they are faced in the course of the first half of the season. We
now consider the cost of each row separately. By adding an additional drive from
the last opponent to the first opponent of team i in the first half of the season, we
obtain a cyclic order of the opponents and the cost only increases. Observe that
we already considered the distances incurred by playing against team n. The
costs of the remaining trips in the cyclic order are exactly the same as the costs
for playing against the opponents in order i+1, i+2, . . . , n−1, 1, 2, . . . , i−1, like
for team 10 in the example from Table 1. The same can be done for the second
half of the season, where we obtain the same order of games as for the first one.

310 C. Thielen and S. Westphal

As the road trips of the second half are exactly the home stands of the first half
and vice verse, it suffices to consider, for each team i, a sequence of away games
against the teams i + 1, i + 2, . . . , n− 1, 1, 2, . . . , i − 1 with only the first and the
last trip having length one and all other trips having length two.

Table 1. Opponent schedule for the teams in the example. Games contained in trips

following edges of M in the cyclic order are colored gray.

1 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 19 1 20 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

3 18 19 1 2 20 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4 17 18 19 1 2 3 20 5 6 7 8 9 10 11 12 13 14 15 16

5 16 17 18 19 1 2 3 4 20 6 7 8 9 10 11 12 13 14 15

6 15 16 17 18 19 1 2 3 4 5 20 7 8 9 10 11 12 13 14

7 14 15 16 17 18 19 1 2 3 4 5 6 20 8 9 10 11 12 13

8 13 14 15 16 17 18 19 1 2 3 4 5 6 7 20 9 10 11 12

9 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 20 10 11

10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20

11 10 20 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9

12 9 10 11 20 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8

13 8 9 10 11 12 20 14 15 16 17 18 19 1 2 3 4 5 6 7

14 7 8 9 10 11 12 13 20 15 16 17 18 19 1 2 3 4 5 6

15 6 7 8 9 10 11 12 13 14 20 16 17 18 19 1 2 3 4 5

16 5 6 7 8 9 10 11 12 13 14 15 20 17 18 19 1 2 3 4

17 4 5 6 7 8 9 10 11 12 13 14 15 16 20 18 19 1 2 3

18 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 19 1 2

19 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 1

20 1 11 2 12 3 13 4 14 5 15 6 16 7 17 8 18 9 19 10

Thus, for every team i with i being even, we see that the trips visiting
teams 1, 2, . . . , i − 2 include edges that are part of M . Hence, by the triangle
inequality, the distance c(i) traveled by i is not greater than

i−2∑
j=1

dij +
i−3∑

j=1, j odd

dj,j+1 + 2di,i−1 + 2di,i+1 + 2di,n−1 +
n−2∑

j=i+2

2dij

=
i−2∑
j=1

dij +
i−3∑

j=1, j odd

dj,j+1 +
n−1∑

j=i−1

2dij =
i−3∑

j=1,j odd

dj,j+1 + s(i) − din +
n−1∑

j=i−1

dij .

Analogously, for every team i with i being odd, we see that the trips visiting
teams i + 2, . . . , n− 2 include edges that are part of M . Hence, the distance c(i)
traveled by i is at most

n−2∑
j=i+2

dij +
n−3∑

j=i+2, j odd

dj,j+1 + 2di,i−1 + 2di,i+1 + 2di,n−1 +
i−2∑
j=1

2dij

=
n−3∑

j=i+2, j odd

dj,j+1 + di,n−1 + s(i) − din +
i+1∑
j=1

dij .

Approximating the Traveling Tournament Problem 311

Hence, the sum c(i) + c(i + 1) for any odd i < n − 2 amounts to
n−3∑

j=i+2, j odd

dj,j+1 + di,n−1 + s(i) − din +
i+1∑
j=1

dij

+
i−2∑

j=1,j odd

dj,j+1 + s(i + 1) − di+1,n +
n−1∑
j=i

di+1,j

≤ d(M) + di,n−1 + s(i) − din + s(i + 1) − di+1,n +
i+1∑
j=1

dij +
n−1∑
j=i

di+1,j − di,i+1︸ ︷︷ ︸
=:f(i)

.

As s(i) ≥ s(i + 1) for all odd i ≤ n/2, we estimate f(i) in this case as

f(i) =
i+1∑
j=1

dij +
n−1∑
j=i

di+1,j − di,i+1 =
i−1∑
j=1

dij +
n−1∑
j=i

di+1,j

≤
i−1∑
j=1

(di,i+1 + di+1,j) +
n−1∑
j=i

di+1,j =
i−1∑
j=1

di,i+1 +
i−1∑
j=1

di+1,j +
n−1∑
j=i

di+1,j

= (i − 1)·di,i+1 + s(i + 1) − di+1,n

i≤n/2

≤ (n/2 − 1)·di,i+1 + s(i + 1) − di+1,n.

Analogously, for all odd i > n/2, we have that s(i) ≤ s(i + 1), so we estimate

f(i) =
i+1∑
j=1

dij +
n−1∑
j=i

di+1,j − di,i+1 =
i+1∑
j=1

dij +
n−1∑

j=i+2

di+1,j

≤
i+1∑
j=1

dij +
n−1∑

j=i+2

(di+1,i + dij) =
n−1∑
j=1

dij +
n−1∑

j=i+2

di+1,i

=
n−1∑
j=1

dij + (n − i − 2) · di+1,i

i>n/2

≤ s(i) − din + (n/2 − 1) · di+1,i.

Overall, we can conclude that
∑n−2

i=1 c(i) amounts to
n−2∑

i=1, i odd

(c(i) + c(i + 1))

≤
n−2∑

i=1, i odd

(
d(M) + di,n−1 + s(i) − din + s(i + 1) − di+1,n + f(i)

)

≤
n−2∑

i=1, i odd

(
d(M) + di,n−1 + s(i) − din + s(i + 1) − di+1,n

)

+
n/2∑

i=1, i odd

(
(n/2 − 1) · di,i+1 + s(i + 1) − di+1,n

)

312 C. Thielen and S. Westphal

+
n−2∑

i=n/2+1, i odd

(
s(i) − din + (n/2 − 1) · di+1,i

)
Eq.(2)

≤
n−2∑

i=1, i odd

(
d(M) + di,n−1

)
+ Δ − s(n − 1) − s(n) − s(n)

+ (n/2 − 1) · d(M) + Δ/2 − (s(n − 1) + s(n))/2
≤ (n/2 − 1) · d(M) + 3/2 · Δ − 2s(n) + (n/2 − 1) · d(M) − (s(n − 1) + s(n))/2
= (n − 2) · d(M) + 3/2 · Δ − 2 · s(n) − (s(n − 1) + s(n))/2.

Moreover, team n − 1 has to travel to all of its opponents separately incurring a
cost of at most 2 · s(n − 1). Finally, the total cost can be estimated as

Ch + Ca + Cs + Co

≤2s(n) + 2s(n) + 2Δ/(n − 1)
+ (n − 2) · d(M) + 3/2 · Δ − 2s(n) + 2s(n − 1) − (s(n − 1) + s(n))/2

=3/2 · (s(n − 1) + s(n)) + 2Δ/(n − 1) + (n − 2) · d(M) + 3/2 · Δ
≤3/2 · (2Δ/n) + 2Δ/(n − 1) + (n − 2) · d(M) + 3/2 · Δ
≤5Δ/(n − 1) + (n − 2) · d(M) + 3/2 · Δ.

As we have a lower bound of Δ + n · d(M) for the total cost of any feasible
tournament, this yields an overall approximation ratio of 3

2 + 5
n−1 .

3.3 Costs of the Tournament T for n/2 Odd

Recall that, after having played against team n, team i has to play against the
teams i + 1, i + 2, . . . , n − 1, 1, 2, . . . , i − 1. In the case that n is not a multiple
of 4, the estimation of the cost c(i) changes slightly as there might occur an
additional drive home between the (n/2 − 1)th game g1 and the n/2th game g2

of the sequence i+1, i+2, . . . , n−1, 1, 2, . . . , i−1, which might have been counted
as a road trip before. We distinguish three cases:

Case 1: i+n/2 ≤ n− 1. The game g1 is against team i+n/2− 1, and g2 is the
game against team i + n/2. For even i, we have applied the triangle inequality
in this case anyway, so that c(i) does not change. Otherwise, it changes by
di,i+n/2−1 + di,i+n/2 − di+n/2−1,i+n/2.

Case 2: i + n/2 = n. The game g1 is against team n − 1, and g2 is the game
against team 1. In this case, we have applied the triangle inequality anyway, so
that c(i) does not change.

Case 3: i + n/2 > n. The game g1 is against team i − n/2, and g2 is the game
against team i − n/2 + 1. For odd i, we have applied the triangle inequality
in this case anyway, so that c(i) does not change. Otherwise, it changes by
di,i−n/2 + di,i−n/2+1 − di−n/2,i−n/2+1.

Approximating the Traveling Tournament Problem 313

The additional costs for all three cases sum up to

C̃ :=
n/2−1∑

i=1, i odd

(
di,i+n/2−1 + di,i+n/2 − di+n/2−1,i+n/2

)
+

n−2∑
i=n/2+1, i even

(
di,i−n/2 + di,i−n/2+1 − di−n/2,i−n/2+1

)

≤
n/2−1∑

i=1, i odd

(
di,i+n/2−1 + di,i+n/2

)
+

n−2∑
i=n/2+1, i even

(
di,i−n/2 + di,i−n/2+1

)

≤
n/2−1∑

i=1, i odd

(
di,i+n/2−1 + di,i+n/2

)
+

n/2−2∑
i=1, i odd

(
di+n/2,i + di+n/2,i+1

)
≤

n/2−2∑
i=1, i odd

(
di,i+n/2−1 + 2 · di,i+n/2 + di+1,i+n/2

)
.

We already assumed that the teams are numbered such that the edges (i, i + 1)
for i odd form a minimum weight perfect matching M in G and that s(n − 1) +
s(n) ≤ 2 · Δ/n. We are, however, still free to choose the mapping of the edges
in M̃ := M \ {(s(n − 1), s(n))} to the pairs (i, i + 1). In the following, we will
choose this mapping in a way that minimizes the additional costs C̃.

We consider the complete undirected graph G′ on M̃ . Each vertex (u, v) of G′

corresponds to a pair of teams u and v that form an edge (u, v) ∈ M̃ and which
we ordered such that s(u) ≤ s(v). Using this ordering for every vertex of G′, we
define a weight function w on the edges of G′ by

w((u, v), (w, z)) := duw + duz + dwu + dwv for all (u, v), (w, z) ∈ M̃.

The sum of the weights of the edges of G′ is then∑
((u,v),(w,z))∈E[G′]

w((u, v), (w, z)) = 1/2 ·
∑

(u,v) �=(w,z)∈M̃

(duw + duz + dwu + dwv)

≤ 1/2 ·

⎛⎝ ∑
(u,v)∈M̃

s(u) +
∑

(w,z)∈M̃

s(w)

⎞⎠ =
∑

(u,v)∈M̃

s(u) ≤ Δ/2,

where the last inequality holds since s(u) ≤ s(v) for all (u, v) ∈ M̃ .
Since every complete graph is 1-factorable, there exists a decomposition of the

edges of G′ into n/2 − 2 perfect matchings. Thus, the weight of the minimum
weight perfect matching M ′ with respect to w in G′ can be estimated as

w(M ′) ≤ Δ/2
n/2 − 2

=
Δ

n − 4
.

314 C. Thielen and S. Westphal

Given M ′ =: {((ui, vi), (wi, zi)) : i = 1, 3, 5, . . . , n/2 − 2}, we assign the teams
to the numbers 1, 2, . . . , n − 2 by giving team ui the number i, team vi the
number i +1, team wi the number i + n/2, and team zi the number i + n/2− 1.

Observe that this assignment violates none of the assumptions on the number-
ing of the teams made so far. Moreover, we can conclude after straightforward
calculations that C̃ ≤ Δ

n−4 , which, for the case that n/2 is odd, leads to an
overall approximation ratio of 3/2 + 5

n−1 + 1
n−4 ≤ 3/2 + 6

n−4 .

References

1. Easton, K., Nemhauser, G., Trick, M.: The traveling tournament problem descrip-

tion and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 580–584.

Springer, Heidelberg (2001)

2. Campbell, R.T., Chen, D.S.: A minimum distance basketball scheduling problem.

In: [13], pp. 15–25

3. Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament prob-

lem: A combined integer programming and constraint programming approach. In:

Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 100–

109. Springer, Heidelberg (2003)

4. Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated

annealing approach to the travelling tournament problem. Journal of Schedul-

ing 9(2), 177–193 (2006)

5. Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the trav-

eling tournament problem. In: Proceedings of the 7th International Conference on

the Practice and Theory of Automated Timetabling (PATAT) (2008)

6. Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation

algorithm for the traveling tournament problem. In: Dong, Y., Du, D.-Z., Ibarra,

O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 679–688. Springer, Heidelberg (2009)

7. Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament

problem. In: Proceedings of the 8th International Conference on the Practice and

Theory of Automated Timetabling (PATAT) (2010)

8. Thielen, C., Westphal, S.: Complexity of the Traveling Tournament Problem. The-

oretical Computer Science (2010) (online first), doi:10.1016/j.tcs.2010.10.001

9. Bhattacharyya, R.: A note on complexity of traveling tournament problem. Opti-

mization Online (2009)

10. Kendall, G., Knust, S., Ribeiro, C., Urrutia, S.: Scheduling in sports: An annotated

bibliography. Computers and Operations Research 37(1), 1–19 (2010)

11. Rasmussen, R., Trick, M.: Round robin scheduling - a survey. European Journal of

Operations Research 188, 617–636 (2008)

12. de Werra, D.: Scheduling in sports. In: [14], pp. 381–395

13. Machol, R.E., Ladany, S.P., Morrison, D. (eds.): Management Science in Sports.

Studies in the Management Sciences, vol. 4. North-Holland Publishing Company,

Amsterdam (1976)

14. Hansen, P.: Studies on Graphs and Discrete Programming. Annuals of Discrete

Mathematics, vol. 11. North-Holland Publishing Company, Amsterdam (1981)

Alphabet Partitioning for Compressed
Rank/Select and Applications

Jérémy Barbay1, Travis Gagie1,�, Gonzalo Navarro1,�, and Yakov Nekrich2

1 Department of Computer Science, University of Chile

{jbarbay,tgagie,gnavarro}@dcc.uchile.cl
2 Department of Computer Science, University of Bonn

yasha@cs.uni-bonn.de

Abstract. We present a data structure that stores a string s[1..n] over

the alphabet [1..σ] in nH0(s) + o(n)(H0(s)+1) bits, where H0(s) is the

zero-order entropy of s. This data structure supports the queries access
and rank in time O (lg lg σ), and the select query in constant time. This

result improves on previously known data structures using nH0(s) +

o(n lg σ) bits, where on highly compressible instances the redundancy

o(n lg σ) cease to be negligible compared to the nH0(s) bits that encode

the data. The technique is based on combining previous results through

an ingenious partitioning of the alphabet, and practical enough to be

implementable. It applies not only to strings, but also to several other

compact data structures. For example, we achieve (i) faster search times

and lower redundancy for the smallest existing full-text self-index; (ii)
compressed permutations π with times for π() and π−1() improved to

log-logarithmic; and (iii) the first compressed representation of dynamic

collections of disjoint sets.

1 Introduction

Search queries on strings have many important applications, to the point that
one is willing to sacrifice some additional space to index the string in order to
support the queries in less time. The most important queries serve as primitives
to implement many other operations, in particular pattern matching in full-
text databases (see, e.g., [18,7,14,19] for recent discussions): given a string s,
s.access(i) returns the ith character of s, which we denote s[i]; s.ranka(i) returns
the number of occurrences of the character a up to position i; and s.selecta(i)
returns the position of the ith occurrence of a in s.

Wavelet trees [11] represent a string s[1..n] over alphabet [1..σ] within n lg σ+
o(n lg σ) bits, where lg denotes the logarithm in base two. The indexing space
in o(n lg σ) is considered asymptotically “negligible” compared to the n lg σ bits
required to hold the main data, while providing support for the queries in time
O (lg σ). Later results [10] improved the times to O (lg lg σ).

Regularities in the string permit further reductions in the space, from n lg σ
bits down to nHk(s) bits, where Hk(s) denotes the kth-order empirical entropy
� Funded in part by the Millennium Institute for Cell Dynamics and Biotechnology

(ICDB), Grant ICM P05-001-F, Mideplan, Chile.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 315–326, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

316 J. Barbay et al.

Table 1. Recent bounds and our new ones for data structures supporting access, rank
and select. The first row holds for σ = O (polylog(n)) and the second for σ = o(n). The

space bound in the sixth row holds for k = o(logσ n). The times of our Thm. 1 can be

refined into a more complicated formula (see also Cor. 1).

space (bits) access rank select

[8, Thm. 3.2] nH0(s) + o(n) O (1) O (1) O (1)

[8, Cor. 3.3] nH0(s) + o(n lg σ) O
(
1 +

lg σ
lg lg n

)
O
(
1 +

lg σ
lg lg n

)
O
(
1 +

lg σ
lg lg n

)
[10, Thm. 2.2] n lg σ + o(n lg σ) O (lg lg σ) O (lg lg σ) O (1)

[10, Thm. 2.2] n lg σ + o(n lg σ) O (1) O (lg lg σ lg lg lg σ) O (lg lg σ)

[3, Lem. 4.1] nH0(s) + o(n lg σ) O (lg lg σ) O (lg lg σ) O (1)

[3, Thm. 4.2] nHk(s) + o(n lg σ) O (1) O
(
(lg lg σ)2 lg lg lg σ

)
O (lg lg σ lg lg lg σ)

Thm 1 nH0(s) + o(n)(H0(s) + 1) O (lg lg σ) O (lg lg σ) O (1)

Thm 1 nH0(s) + o(n)(H0(s) + 1) O (1) O (lg lg σ lg lg lg σ) O (lg lg σ)

of s (i.e., the minimum self-information of s with respect to a kth-order Markov
source; see Manzini [15] for a definition and discussion). The challenge of com-
pressing the string while still supporting the queries efficiently was also achieved,
using as little as nH0(s) + o(n lg σ) [11,8,3] and even nHk(s) + o(n lg σ) bits [3]
(for any k = o(logσ n)) while retaining the time complexities.

One problem with such space is that, on highly compressible data, the o(n lg σ)
bits of the index are not always negligible compared to the space used to encode
the compressed data. Hence the challenge is to retain the efficient support for
the queries while compressing the index redundancy as well. In this paper we
solve this challenge in the case of zero-order entropy compression, that is, the
redundancy of our data structure is asymptotically negligible compared to the
zero-order entropy of the text, plus o(n) bits.

For comparison, the representation by Golynski et al. [10] does not compress1

s and uses additional O
(

n lg σ
lg lg σ

)
= o(n lg σ) bits, but offers log-logarithmic times

for the queries. Ferragina et al.’s wavelet tree [8] achieves zero-order compression
plus O

(
n lg σ lg lg n

lg n

)
= o(n lg σ) bits, supporting the queries in O

(
1 + lg σ

lg lg n

)
time. Barbay et al. [3] obtain zero-order space and log-logarithmic times, but
their redundancy is still o(n lg σ). See Table 1 for a summary of our bounds and
previous ones.2

In Section 2 we show how to combine the strengths of these data structures,
obtaining not only zero-order compressed space and log-logarithmic times, but

1 In terms of the usual entropy measures. It compresses to the k-th order entropy of

a different sequence (A. Golynski, personal communication).
2 When we write o(n lg σ) bits we mean o(n) lg σ. Although in some cases [10,3] the

results are actually n o(lg σ), we point out that this can be taken as o(n) lg σ because,

if σ = O (polylog(n)), one can use a structure by Ferragina et al. [8, Thm. 3.2] that

solves access, rank, and select in constant time using nH0(s) + o(n) bits. Thus one

can assume σ = ω(1) at the very least. See also Footnote 6 of Barbay et al. [3].

Alphabet Partitioning for Compressed Rank/Select and Applications 317

also compressed redundancy. The technique can be summarized as partitioning
the alphabet into sub-alphabets according to the characters’ frequencies in s,
storing in a multiary wavelet tree [8] the string that results from replacing the
characters in s by identifiers of their sub-alphabets, and storing separate strings,
each the projection of s to the characters of s belonging to each sub-alphabet,
this time using Golynski et al.’s [10] structure for large alphabets. We achieve a
data structure that stores a string s[1..n] in nH0(s) + o(n)(H0(s) + 1) bits, thus
guaranteeing that the redundancy stays negligible even when the text is very
compressible. It supports queries in the times shown in Table 1 (rows 7 and 8
give two alternatives).

Then we consider various extensions and applications of our main result. In
Section 3 we show how our result can be used to improve an existing text index
that achieves k-th order entropy [8,3], so as to improve its redundancy and
query times. This way we achieve the first self-index with space bounded by
nHk(s)+o(n)(Hk(s)+1) bits, able of counting and locating pattern occurrences
and extracting any substring of s, within the time complexities achieved by either
of its predecessors. In Sections 4 and 5, respectively, we show how to apply our
data structure to store a compressed permutation, a compressed function and
a compressed dynamic collection of disjoint sets, while supporting a rich set of
operations on those. This improves or gives alternatives to the best previous
results [4,17,12]. We have approached these applications in such a way that an
improvement to our main result, however achieved, translates into improved
bounds for them as well.

2 Alphabet Partitioning

Let s[1..n] be a sequence over effective alphabet [1..σ], i.e., every character ap-
pears in s, so σ ≤ n. (At the end of the section we handle the case of large
alphabets.) The zero-order entropy of s is H0(s) =

∑
a∈[1..σ]

|s|a
n lg n

|s|a , where
|s|a is the number of occurrences of the character a in s. Note that by convexity
we have nH0(s) ≥ (σ − 1) lgn + (n− σ + 1) lg(n/(n− σ + 1)), a property we will
use later.

Our results are based on the following alphabet partitioning scheme. Let
m[1..σ] be the sequence assigning to each character a ∈ [1..σ] the value

m[a] = �lg(n/|s|a) lg n� ≤
⌈
lg2 n

⌉
.

Let t[1..n] be the string over
[
1..

⌈
lg2 n

⌉]
obtained from s by replacing each

occurrence of a by m[a], for 1 ≤ a ≤ σ. For 0 ≤ � ≤ �lg2 n�, let σ� be the number
of occurrences of � in m or, equivalently, the number of distinct characters of
s replaced by � in t. Finally, let s�[1..|t|�] be the string over [1..σ�] defined by
s�[t.rank�(i)] = m.rank�(s[i]).

Notice that, if both a and b are replaced by the same number in t, then
lg(n/|s|b) − lg(n/|s|a) < 1/ lgn and so |s|a/|s|b < 21/ lg n. It follows that, if a is
replaced by � in t, then σ� < 21/ lg n|s�|/|s|a (by fixing a and summing over all
those b replaced by �). Since

318 J. Barbay et al.∑
�lg(n/|s|a) lg n�=�

|s|a = |s�| and
∑

a

|s|a =
∑

�

|s�| = n ,

we have

nH0(t) +
∑

�

|s�| lg σ�

<
∑

�

|s�| lg(n/|s�|) +
∑

�

∑
�lg(n/|s|a) lg n�=�

|s|a lg
(
2

1
lg n |s�|/|s|a

)
=
∑

a

|s|a lg(n/|s|a) + n/ lg n

= nH0(s) + o(n) .

In other words, if we represent t with H0(t) bits per symbol and each s� with
lg σ� bits per symbol, we achieve a good overall compression. Thus we can obtain
a very compact representation of a string s by storing a compact representation
of t and storing each s� as an “uncompressed” string over an alphabet of size σ�.

Now we show how our approach can be used to obtain a fast and compact
rank/select data structure. Suppose we have a data structure T that supports
access, rank and select queries on t; another structure M that supports the same
queries on m; and data structures S1, . . . , S�lg2 n� that support the same queries
on s1, . . . , s�lg2 n�. With these data structures we can implement

s.access(i) = m.select�(s�.access(t.rank�(i))), where � = t.access(i);

s.ranka(i) = s�.rankc(t.rank�(i)), where � = m.access(a) and c = m.rank�(a);

s.selecta(i) = t.select�(s�.selectc(i)) where � = m.access(a) and c = m.rank�(a).

We implement T and M as multiary wavelet trees [8]; we implement each
S� as either a multiary wavelet tree or an instance of Golynski et al.’s [10,
Thm. 2.2] access/rank/select data structure, depending on whether σ� ≤ lg n

or not. The wavelet tree for T uses at most nH0(t) + O
(

n(lg lg n)2

lg n

)
bits and

operates in constant time, because its alphabet size is polylogarithmic. If S� is
implemented as a wavelet tree, it uses at most |s�|H0(s�) + O

(
|s�| lg |s�| lg lg n

lg n

)
bits3 and operates in constant time for the same reason; otherwise it uses at most
|s�| lg σ� + O

(
|s�| lg σ�

lg lg σ�

)
≤ |s�| lg σ� + O

(
|s�| lg σ�

lg lg lg n

)
bits (the latter because σ� >

lg n). Thus in either case the space for s� is bounded by |s�| lg σ� +O
(

|s�| lg |s�|
lg lg lg n

)
bits. Finally, since M is a sequence of length σ over an alphabet of size �lg2 n�,
the wavelet tree for M takes O (σ lg lg n) bits. Because of the property we re-
ferred to in the beginning of this section, nH0(s) ≥ (σ − 1) lg n, this space is

3 This is achieved by using block sizes of length
lg n
2

and not
lg |s�|

2
, at the price of

storing universal tables of size O (
√

n polylog(n)) = o(n) bits. Therefore all of our

o(·) expressions involving n and other variables will be asymptotic in n.

Alphabet Partitioning for Compressed Rank/Select and Applications 319

H0(s)O
(

n lg lg n
lg n

)
. By these calculations, the space for T , M and the S�’s adds

up to nH0(s) + o(n)H0(s) + o(n), where the o(n) term is O
(

n
lg lg lg n

)
.

Depending on which time tradeoff we use for Golynski et al.’s data structure,
we obtain the results of Table 1. We can refine the time complexity by noticing
that the only non-constant times are due to operating on some string s�, where
the alphabet is of size σ� < 21/ lg n|s�|/|s|a, where a is the character in question,
thus lg lg σ� = O (lg lg min(σ, n/|s|a)).

Theorem 1. We can store s[1..n] over effective alphabet [1..σ] in nH0(s) +
o(n)(H0(s) + 1) bits and support access, rank and select queries in O (lg lg σ),
O (lg lg σ), and O (1) time, respectively (variant (i)). Alternatively, we can sup-
port access, rank and select queries in O (1), O (lg lg σ lg lg lg σ) and O (lg lg σ)
time, respectively (variant (ii)). Any of the σ terms in these time complexities
is actually min(σ, n/|s|a), where a stands for s[i] in the time of the access query,
and for the character argument in the time of the rank and select query.

Moreover, by implementing S� as a wavelet tree whenever σ� ≤ (lg n)lg lg lg n,
we ensure to achieve the complexities of wavelet trees if those are better than
the ones given above. That is, for example, O

(
min

(
1 + lg σ�

lg lg n , lg lg σ�

))
instead

of just O (lg lg σ�). We can similarly match the complexity O (lg lg σ� lg lg lg σ�).
Note that, if we do this, the complexities that were O (1) become O

(
1 + lg σ�

lg lg n

)
.

Corollary 1. All the time complexities up to O (lg lg σ) in variants (i) or (ii)
of Theorem 1 can be made O

(
min

(
1 + lg σ

lg lg n , lg lg σ
))

. Alternatively, all time

complexities in variant (ii) can be made O
(
min

(
1 + lg σ

lg lg n , lg lg σ lg lg lg σ
))

.
As in Theorem 1, the σ term is actually min(σ, n/|s|a).

In the most general case, s is a sequence over an alphabet Σ which is not an
effective alphabet, and σ symbols from Σ occur in s. Let Σ′ be the set of elements
that occur in s; we can map characters from Σ′ to elements of [1..σ] by replacing
each a ∈ Σ′ with its rank in Σ′. All elements of Σ′ are stored in the indexed
dictionary data structure described by Raman et al. [20], so that the following
queries are supported in constant time: for any a ∈ Σ′ its rank in Σ′ can be
found (for any a �∈ Σ′ the answer is −1); for any i ∈ [1..σ] the i-th smallest
element in Σ′ can be found. The indexed dictionary of Raman et al. [20] uses
σ lg(eμ/σ) + o(σ) + O (lg lg μ) bits of space, where e is the base of the natural
logarithm and μ is the maximal element in Σ′; the value of μ can be specified
with additional O (lg μ) bits. We replace every element in s by its rank in Σ′,
and the resulting string is stored using Theorem 1. Hence, in the general case the
space usage is increased by σ lg(eμ/σ) + o(σ) + O (lg μ) bits and the asymptotic
time complexity of queries remains unchanged.

320 J. Barbay et al.

3 Reduced Redundancy on Self-indexes

Our result can be readily carried over self-indexes. These also represent a sequence,
but they support other operations related to text searching. A well known self-
index [8] achieves k-th order entropy space by partitioning the Burrows-Wheeler
transform [6] of the sequence and encoding each partition to its zero-order entropy.
Those partitions must support queries access and rank. By using Theorem 1(i)
to represent such partitions, we achieve the following result, improving previous
ones [8,10,3].

Theorem 2. Let s[1..n] be a string over alphabet4 [1..σ]. Then we can repre-
sent s using nHk(s) + o(n)(Hk(s) + 1) bits of space, for any k ≤ (α logσ n) − 1
and constant 0 < α < 1, while supporting the following queries: (i) count the
number of occurrences of a pattern p[1..m] in s, in time O (m lg lg σ); (ii) lo-
cate any such occurrence in time O (lg n lg lg lg n lg lg σ); (iii) extract s[l, r] in
time O ((r − l) lg lg σ + lg n lg lg lg n lg lg σ). The lg lg σ times can be reduced to
O
(
1 + lg σ

lg lg n

)
if convenient.

For these particular locating and extracting times we are sampling one out of
every lg n lg lg lg n text positions, which maintains our lower-order space term
o(n) at O (n/ lg lg lg n). Compared to Theorem 4.2 of Barbay et al. [3], we reduce
the redundancy from o(n) lg σ to o(n)(Hk(s) +1). Our improved locating times,
however, just owe to the denser sampling, which they could also use.

4 Compressing Permutations

We now show how to use access/rank/select data structures to store a com-
pressed permutation. We follow Barbay and Navarro’s notation [4] and improve
their space and, especially, their time performance. They measure the compress-
ibility of a permutation π in terms of the entropy of the distribution of the
lengths of runs of different kinds. Let π be covered by ρ runs (using any of the
previous definitions of runs [13,4,16]) of lengths runs(π) = 〈n1, . . . , nρ〉. Then
H(runs(π)) =

∑ ni

n lg n
ni

≤ lg ρ is called the entropy of the runs (and, because
ni ≥ 1, it also holds nH(runs(π)) ≥ (ρ − 1) lg n). We first consider permuta-
tions which are interleaved sequences of increasing or decreasing values as first
defined by Levcopoulos et al. [13] for adaptive sorting, and later on for compres-
sion [4], and then give improved results for more specific classes of runs. In both
cases we consider first the application of the permutation π() and its inverse,
π−1(), to show later how to extend the support to the iterated applications of
the permutation, πk(), extending and improving previous results [17].

Theorem 3. Let π be a permutation on n elements that consists of ρ inter-
leaved increasing or decreasing runs, of lengths runs(π). We can store π in
2nH(runs(π)) + o(n)(H(runs(π)) + 1) bits and perform π() and π−1() queries
in O

(
min

(
1 + lg ρ

lg lg n , lg lg ρ
))

time.

4 Again, [1..σ] does not need to be the effective alphabet (see paragraph after Thm. 1).

Alphabet Partitioning for Compressed Rank/Select and Applications 321

Proof. We first replace all the elements of the rth run by r, for 1 ≤ r ≤ ρ.
Let s be the resulting string and let s′ be s permuted according to π, that is,
s′[π(i)] = s[i]. We store s and s′ using Theorem 1(i) and store ρ bits indicating
whether each run is increasing or decreasing. Notice that, if π(i) is part of an
increasing run, then s′.ranks[i](π(i)) = s.ranksi, so

π(i) = s′.selects[i]
(
s.ranksi

)
;

if π(i) is part of a decreasing run, then s′.ranks[i](π(i)) = s.ranks[i](n) + 1 −
s.ranksi, so

π(i) = s′.selects[i]
(
s.ranks[i](n) + 1 − s.ranksi

)
.

A π−1() query is symmetric. The space of the bitmap is ρ ∈ o(n)H(runs(π))
because nH(runs(π)) ≥ (ρ − 1) lg n. 	

We now consider the case of runs restricted to be strictly incrementing (+1) or
decrementing (−1), while still letting them be interleaved: such runs were not
directly considered before.

Theorem 4. Let π be a permutation on n elements that consists of ρ interleaved
strictly incrementing or decrementing runs. For any constant ε > 0, we can store
π in nH(runs(π))+ o(n)(H(runs(π))+ 1)+O (ρnε) bits and perform π() queries
in O

(
min

(
1 + lg ρ

lg lg n , lg lg ρ
))

time and π−1() queries in O (1/ε) time.

Proof. We first replace all the elements of the rth run by r, for 1 ≤ r ≤ ρ,
considering the runs in order by minimum element. Let s ∈ {1, . . . , ρ}n be the
resulting string. We store s using Theorem 1(i); we also store an array containing
the runs’ lengths, directions (incrementing or decrementing), and minima, in
order by minimum element; and store a predecessor data structure containing the
runs’ minima as keys with their positions in the array as auxiliary information.
The predecessor data structure is based on Lemma 4 of Andersson’s paper [1].
It is an nε-ary trie where the keys are sought considering ε lg n bits per trie
node, and hence found in O (1/ε) time. Each of the ρ elements may require
O ((1/ε)nε lg n) bit space for the nε-size children arrays along its O (1/ε)-length
path. By slightly adjusting ε the space is O (ρnε) bits. With these data structures,
we can retrieve a run’s data given either its array index or any of its elements.

If π(i) is the jth element in an incrementing run whose minimum element
is m, then π(i) = m + j − 1; on the other hand, if π(i) is the jth element of a
decrementing run of length l whose minimum element is m, then π(i) = m+l−j.
It follows that, given i, we can compute π(i) by using the query j = s.ranksi
and then an array lookup at position s[i] to find m, l and the direction, finally
computing π(i) from them. Also, given π(i), we can compute i by first using a
predecessor query to find the run’s array position r, then an array lookup to
find m, l and the direction, then computing j = π(i) − m + 1 (increasing) or
j = m + l − π(i) (decreasing), and finally using the query i = s.selectr(j). 	

322 J. Barbay et al.

Notice that, if π consists of ρ contiguous increasing or decreasing runs, then π−1

consists of ρ interleaved incrementing or decrementing runs. Therefore, Theo-
rem 4 applies to such permutations as well, with the time bounds for π() and
π−1() queries reversed, which yields the following corollary:

Corollary 2. Let π be a permutation on n elements that consists of ρ contigu-
ous increasing or decreasing runs. For any constant ε > 0, we can store π in
nH(runs(π)) + o(n)(H(runs(π)) + 1) + O (ρnε) bits and perform π() queries in
O (1/ε) time and π−1() queries in O

(
min

(
1 + lg ρ

lg lg n , lg lg ρ
))

time.

If π’s runs are both contiguous and incrementing or decrementing, then so are
the runs of π−1. In this case we can store π in O (ρnε) bits and answer π() and
π−1() queries in O (1) time. To do this, we use two predecessor data structures:
for each run, in one of the data structures we store the position j in π of the first
element of the run, with π(j) as auxiliary information; in the other, we store
π(j), with j as auxiliary information. To perform a query π(i), we use the first
predecessor data structure to find the starting position j of the run containing i,
and return π(j)+i−j. A π−1() query is symmetric. Decreasing runs are handled
as before.

Corollary 3. Let π be a permutation on n elements that consists of ρ contiguous
incrementing or decrementing runs. For any constant ε > 0, we can store π in
O (ρnε) bits and perform π() and π−1() queries in O (1/ε) time.

We now show how to achieve exponentiation (πk(i), π−k(i)) within compressed
space. Munro et al. [17] reduced the problem of supporting exponentiation on
a permutation π to the support of the direct and inverse application of another
permutation, related but with quite distinct runs than π. Expressing their result
as a succinct index and combining it with any of our results does yield a com-
pression, but one where the space depends of the lengths of both the runs and
cycles of π. The following construction, extending the technique from Munro et
al. [17], retains the compressibility properties of π by building a companion data
structure that uses small space to support the exponentiation, thus allowing the
compression of the main data structure with any of our results.

Theorem 5. Suppose we have a data structure D that stores a permutation π
on n elements and supports queries π() in time g(π). Then for any t ≤ n, we can
build a succinct index that takes O ((n/t) lg n) bits and, when used in conjunction
with D, supports πk() and π−k() queries in O (t g(π)) time.

Proof. We decompose π into its cycles and, for every cycle of length at least t,
store the cycle’s length and an array containing pointers to every tth element
in the cycle, which we call ‘marked’. We also store a compressed binary string,
aligned to π, indicating the marked elements. For each marked element, we record
to which cycle it belongs and its position in the array of that cycle.

Alphabet Partitioning for Compressed Rank/Select and Applications 323

To compute πk(i), we repeatedly apply π() at most t times until we either
loop (in which case we need apply π() at most t more times to find πk(i) in the
loop) or we find a marked element. Once we have reached a marked element,
we use its array position and cycle length to find the pointer to the last marked
element in the cycle before πk(i), and the number of applications of π() needed
to map that to πk(i) (at most t). A π−k query is similar (note that it does not
need to use π−1()). 	

As an example, given a constant ε > 0 and a value t ≤ n, we can combine
Corollary 2 and Theorem 5 to obtain a data structure that stores Sadakane’s Ψ
function [21] for s in nH0(s) + o(n)(H0(s) + 1) + O (σnε + (n/t) lg n) bits and
supports Ψk() and Ψ−k() queries in O (1/ε + t) time; these queries are useful
when working on compressed suffix arrays and trees.

5 Compressing Functions and Dynamic Collections of
Disjoint Sets

Hreinsson, Krøyer and Pagh [12] recently showed how, given X = {x1, . . . , xn} ⊆
[U] and f : [U] → [1..σ], where [U] is the set of numbers whose binary rep-
resentations fit in a machine word, they can store f restricted to X in com-
pressed form with constant-time evaluation. Their representation uses at most
(1+ δ)nH0(f)+n min(pmax +0.086, 1.82(1−pmax))+ o(σ) bits, where δ > 0 is a
given constant and pmax is the relative frequency of the most common function
value. We note that this bound holds even when σ ! n.

Notice that, in the special case where X = [1..n] and σ ≤ n, we can achieve
constant-time evaluation and a better space bound using Theorem 1. We can
also find all the elements in [1..n] that f maps to a given element in [1..σ] (using
select), find an element’s rank among the elements with the same image, or the
size of the preimage (using rank), etc.

Theorem 6. Let f : [1..n] → [1..σ] be a surjective function.5 We can represent
f using nH0(f)+o(n)(H0(f)+1) bits so that any f(i) can be computed in O (1)
time. Moreover, each element of f−1(a) can be computed in O (lg lg σ) time, and
|f−1(a)| requires time O (lg lg σ lg lg lg σ). Alternatively we can compute f(i) and
|f−1(a)| in time O (lg lg σ) and deliver any element of f−1(a) in O (1) time.

We omit the other improvements of Theorem 1 and Corollary 1 for conciseness.
We can also achieve interesting results with our theorems from Section 4, as runs
arise naturally in many real-life functions. For example, suppose we decompose
f(1), . . . , f(n) into ρ interleaved non-increasing or non-decreasing runs. Then
we can store it as a combination of the permutation π that stably sorts the
values f(i), plus a compressed rank/select data structure storing a binary string
b[1..n + σ + 1] with σ + 1 bits set to 1: if f maps i values in [1..n] to a value j in

5 So that [1..σ] is the effective alphabet size of string f . General functions with image

of size σ′ < σ require O (σ′ lg(σ/σ′)) + o(σ) extra bits, or we can handle them using

O (σ lg lg n) bits with our structure M .

324 J. Barbay et al.

[1..σ] then, in b, there are i bits set to 0 between the jth and (j + 1)th bits set
to 1. Therefore,

f(i) = b.rank1(b.select0(π(i)))

and the theorem below follows immediately from Theorem 3. Similarly, f−1(a) is
obtained by applying π−1() to the area b.rank0(b.select1(a))+1 . . . b.rank0(b.select1
(a + 1)), and |f−1(a)| is computed in O (1) time. Notice that H(runs(π)) =
H(runs(f)) ≤ H0(f), and that b can be stored in O

(
σ lg n

σ

)
+ o(n) bits [20].

Corollary 4. Let f : [1..n] → [1..σ] be a surjective function6 with f(1), . . . , f(n)
consisting of ρ interleaved non-increasing or non-decreasing runs. Then we can
store f in 2nH(runs(f)) + o(n)(H(runs(f)) + 1) + O

(
σ lg n

σ

)
bits and compute

any f(i), as well as retrieve any element in f−1(a), in O (lg lg ρ) time. The size
|f−1(a)| can be computed in O (1) time.

We can obtain a more competitive result if f is split into contiguous runs, but
their entropy is no longer bounded by the zero-order entropy of string f .

Corollary 5. Let f : [1..n] → [1..σ] be a surjective function with f(1), . . . , f(n)
consisting of ρ contiguous non-increasing or non-decreasing runs. Then we can
represent f in nH(runs(f))+o(n)(H(runs(f))+1)+O (ρnε)+O

(
σ lg n

σ

)
bits, for

any constant ε > 0, and compute any f(i) in O (lg lg σ) time, as well as retrieve
any element in f−1(a) in O (1/ε) time. The size |f−1(a)| can be computed in
O (1) time.

Finally, we now give what is, to the best of our knowledge, the first result about
storing a compressed collection of disjoint sets. The key point in the next theorem
is that, as the sets in the collection C are merged, our space bound shrinks with
the entropy of the distribution sets(C) of elements to sets.

Theorem 7. Let C be a collection of disjoint sets whose union is [1..n]. For
any constant ε > 0, we can store C in (1 + ε)nH(sets(C)) + O (|C| lg n) + o(n)
bits and perform any sequence of m union and find operations in a total of
O ((1/ε)(m + n) lg lg n) time.

Proof. We first use Theorem 1 to store the string s[1..n] in which each s[i] is
the representative of the set containing i. We then store the representatives in a
standard disjoint-set data structure D [22]. Together, our data structures take
nH(sets(C)) + O (|C| lg n) + o(n)(H(sets(C)) + 1) bits. We can perform a query
find(i) on C by performing D.find(s[i]), and perform a union(i, j) operation on
C by performing D.union(D.find(s[i]), D.find(s[j])).

For our data structure to shrink as we union sets, we keep track of H(sets(C))
and, whenever it shrinks by a factor of 1+ε, we rebuild our entire data structure
on the updated values s[i] ← find(s[i]). First, note that all those find operations
take O (n) time because of path-compression [22]: Only the first time one accesses
a node v ∈ C it may occur that the representative is not directly v’s parent.

6 Otherwise we proceed as usual to map the domain to the effective one.

Alphabet Partitioning for Compressed Rank/Select and Applications 325

Reconstructing the structure of Theorem 1 takes also O (n) time: As we need
just access on s, we need only rank and access on our multiary wavelet tree and
access on the s� sequences. Thus the latter are implemented simply as arrays
and the former are also easily built in linear time for these two queries [8].

Since H(sets(C)) is always less than lg n, we rebuild only O
(
log1+ε lg n

)
=

O ((1/ε) lg lg n) times. Finally, the space term o(n)H(sets(C)) is absorbed by
εH(sets(C)) by slightly adjusting ε. 	

6 Conclusions and Future Work

We have presented the first zero-order compressed representation of strings ef-
ficiently supporting queries access, rank, and select, so that the redundancy of
the compressed representation is also compressed. That is, our space for string
s[1..n] over alphabet [1..σ] is nH0(s) + o(n)(H0(s) + 1) instead of the usual
nH0(s) + o(n) lg σ bits. This is very important in many practical applications
where the data is highly compressible and the redundancy would otherwise dom-
inate the overall space.

In the full paper we will work on several improvements and further applica-
tions. First, we can reduce the dependence on the alphabet size from O (σ lg lg n)
to O (σ) by storing a length-restricted Shannon code in O (σ) bits [9] instead
of the data structure M . To avoid the O (1) extra redundancy per character
associated with using a length-restricted prefix code, we replace each charac-
ter in s whose codeword length is at most lg lg n by a distinct number in t.
This increases the alphabet size of t by at most lg n; calculation shows that
our space bound increases by an O (1 + 1/ lg lg n)-factor and, thus, remains at
most nH0(s)+ o(n)(H0(s)+1). Second, given any constant c, we can reduce the
min(σ, n/|s|a) in our time bounds by a factor of (lg n)c; to do this, we further
partition each sub-alphabet into (lg n)c sub-sub-alphabets. Third, our alphabet
partitioning techniques yields a compressed representation of posting lists of
sizes (n1, . . . , nσ) which supports access, rank and select on the rows in time
O (lg lg σ), and uses total space for data and index proportional to the entropy
H(n1, . . . , nσ) of the distribution of those sizes (if the posting lists refer to the
words of a text, this is also the zero-order word-based entropy of the text). This
is achieved by encoding the string of labels encountered during a row-first traver-
sal, writing a special symbol (e.g. $) at each change of row. This improves the
space of previously known data structures [2], and improves the time complexity
of previous compression results [5].

Naturally, the next challenge ahead is to obtain a data structure using space
nHk(s)+o(n)(Hk(s)+1) bits rather than nHk(s)+o(n) lg σ, while still supporting
the queries access, rank, and select, in reasonable time. Note that Barbay et al. [3]
achieve nHk(s)+ o(n) lg σ for such a structure: we have reduced the redundancy
to o(n)(Hk(s) + 1) for the case k = 0 and for self-indexes, but not for the basic
problem in the general case where k = o(logσ n).

Acknowledgments. Many thanks to Djamal Belazzougui for helpful comments
on a draft of this paper.

326 J. Barbay et al.

References

1. Andersson, A.: Sorting and searching revisited. In: Karlsson, R., Lingas, A. (eds.)

SWAT 1996. LNCS, vol. 1097, pp. 185–197. Springer, Heidelberg (1996)

2. Barbay, J., Golynski, A., Munro, J.I., Rao, S.S.: Adaptive searching in succinctly

encoded binary relations and tree-structured documents. Theoretical Computer

Science 387(3), 284–297 (2007)

3. Barbay, J., He, M., Munro, J.I., Rao, S.S.: Succinct indexes for strings, binary

relations and multi-labeled trees. In: Proc. 18th SODA, pp. 680–689 (2007)

4. Barbay, J., Navarro, G.: Compressed representations of permutations, and appli-

cations. In: Proc. 26th STACS, pp. 111–122 (2009)

5. Blandford, D., Blelloch, G.: Index compression through document reordering. In:

Proc. DCC, pp. 342–351 (2002)

6. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.

Technical Report 124, Digital Equipment Corporation (1994)

7. Claude, F., Navarro, G.: Practical rank/select queries over arbitrary sequences. In:

Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 176–187.

Springer, Heidelberg (2008)

8. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations

of sequences and full-text indexes. ACM Transactions on Algorithms 3(2)

9. Gagie, T., Navarro, G., Nekrich, Y.: Fast and compact prefix codes. In: van

Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM

2010. LNCS, vol. 5901, pp. 419–427. Springer, Heidelberg (2010)

10. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a

tool for text indexing. In: Proc. 17th SODA, pp. 368–373 (2006)

11. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:

Proc. 14th SODA, pp. 841–850 (2003)

12. Hreinsson, J.B., Krøyer, M., Pagh, R.: Storing a compressed function with constant

time access. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 730–

741. Springer, Heidelberg (2009)

13. Levcopoulos, C., Petersson, O.: Sorting shuffled monotone sequences. Information

and Computation 112(1), 37–50 (1994)

14. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theoretical

Computer Science 387(3), 332–347 (2007)

15. Manzini, G.: An analysis of the Burrows-Wheeler transform. Journal of the

ACM 48(3), 407–430 (2001)

16. Mehlhorn, K.: Sorting presorted files. In: Weihrauch, K. (ed.) GI-TCS 1979. LNCS,

vol. 67, pp. 199–212. Springer, Heidelberg (1979)

17. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of per-

mutations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)

ICALP 2003. LNCS, vol. 2719, pp. 345–356. Springer, Heidelberg (2003)

18. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-

veys 39(1):article 2 (2007)

19. Rahman, N., Raman, R.: Rank and select operations on binary strings. In: Kao,

M.-Y. (ed.) Encyclopedia of Algorithms. Springer, Heidelberg (2008)

20. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications

to encoding k-ary trees and multisets. In: Proc. 13th SODA, pp. 233–242 (2002)

21. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays.

Journal of Algorithms 48(2), 294–313 (2003)

22. Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. Journal

of the ACM 31(2), 245–281 (1984)

Entropy-Bounded Representation of Point Grids

Arash Farzan1, Travis Gagie2,�, and Gonzalo Navarro2,�

1 Max-Planck-Institut für Informatik

afarzan@mpi-inf.mpg.de
2 Department of Computer Science, University of Chile

{tgagie, gnavarro}@dcc.uchile.cl

Abstract. We give the first fully compressed representation of a set of m

points on an n×n grid, taking H +o(H) bits of space, where H = lg
(

n2

m

)
is the entropy of the set. This representation supports range counting,

range reporting, and point selection queries, with a performance that

is comparable to that of uncompressed structures and that improves

upon the only previous compressed structure. Operating within entropy-

bounded space opens a new line of research on an otherwise well-studied

area, and is becoming extremely important for handling large datasets.

1 Introduction

A point grid is an extremely basic structure underlying the representation of
two-dimensional point sets, graphics, spatial databases, geographic data, binary
relations, graphs, images, and so on. It has been intensively studied from a
computational geometry viewpoint, where most of the focus has been on two
basic primitives: (orthogonal) range counting (how many points are there in
this rectangle?), and (orthogonal) range reporting (list the points falling within
this rectangle). More sophisticated queries are possible if points have associated
values, and also more general shapes than rectangles have been considered.

Consider a n × n grid containing m points. Currently the best results re-
lated to the focus of this paper are as follows. Range counting can be done in
time O

(
lg m

lg lg m

)
and linear space, that is, O(m) integers [12]. The preprocessing

time is O
(
m

√
lg m

)
[5]. That counting time cannot be improved within space

O(m polylog(m)) [17]. Range reporting can be done in time O(lg lg m + k), where
k is the number of points reported, using O(m lgε m) integers for any constant
ε > 0 [1]. The time raises to O(lg lg m(lg lg m + k)) if the space is reduced to
O(m lg lg m) integers [1], and it reaches O

(
lg m

lg lg m + k lgε m
)

if the space is linear
[15]. There are also some bounds that may be relevant when many points are
to be reported: O(lg m + k lg lg(4m/k)) time using O(m lg lg m) integers, and
O(lg m + k lgε(2m/k)) time using O(m) integers [6]. Some of these results have
been matched even in the dynamic scenario [14].

Many of the application areas for this problem handle huge volumes of infor-
mation, and thus even the “linear” space structures might be excessively large.
� Partially funded by Fondecyt Grant 1-080019, Chile.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 327–338, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

328 A. Farzan, T. Gagie, and G. Navarro

Since each point requires storing two coordinates, the space complexities above
should be multiplied by 2 lg n bits. Unless m is very small, even storing these
bare coordinates uses much more space than necessary, and moreover the con-
stants hidden within the O(...) notation are not negligible. Some succinct data
structures have been designed using, for example, m lg m + o(m lg m) bits when
m = n, answering range counting queries in time O

(
lg m

lg lg m

)
and reporting in

time O
(
(k + 1) lg m

lg lg m

)
[4]. That space is not the best possible when m is larger

than n. A (worst-case) lower bound on the number of bits needed to represent
a grid is the logarithm of the number of possible grids, called the “entropy”
H = lg

(
n2

m

)
= m lg n2

m + O(m + lg n).
To the best of our knowledge, the only previous work achieving this “com-

pressed” space is by Barbay et al. [2]. They propose a data structure using
H + o(H) + O(m) + o(n) bits (see our Thm. 2). Within this space they solve
many interesting range counting, range reporting, and point selection queries
(give the kth point in a rectangle, according to some order) in O(lg n) time
per delivered point. Contrarily to succinct indexes, they propose an integrated
encoding, where the data and the index are stored together.

In this paper we push further in the direction of storing the grid data within
its entropy bound, improving simultaneously the space redundancy and the time
performance of queries. Most notably, we achieve a fully compressed representa-
tion taking H + o(H) bits of space, while supporting the operations in constant
time in some cases. Depending on m, we use different data structures to achieve
this goal. The result is summarized in Thm. 1; see Section 2.2 for more details.

Theorem 1. An n×n grid with m points can be represented within H+o(H) bits
of space, where H = lg

(
n2

m

)
, so that orthogonal range counting can be answered

in O
(
lg n2

m

)
time, range reporting in time O

(
lg2 n2

m

)
per delivered datum, and

point selection queries in at most O
(
lg2 n

)
time. Depending on the density of

the matrix the times are reduced down to O(1) per delivered datum.

The paper is organized as follows. Section 2 gives basic concepts on bitmaps and
point grids, defines the problems we address, proves some technical results needed
later, and summarizes the results we achieve. Section 3 describes a “compressed”
representation taking H + o(n2) bits of space and achieving constant time for
range counting and reporting. Section 4 achieves the “fully compressed” space, in
exchange for higher query times, and finishes with the proof of Thm. 1. Section 5
concludes and gives further research directions.

2 Basic Concepts

2.1 The One-Dimensional Case

The one-dimensional variant of the problem, i.e., on a bitmap B[1, n], has been
long studied. Let B have m bits set, then the entropy of the bitmap is H = lg

(
n
m

)
.

Entropy-Bounded Representation of Point Grids 329

All the range counting, range reporting, and point locating queries can be solved
in terms of two primitives: rankb(B, i) is the number of occurrences of bit b in
B[1, i], and selectb(B, j) is the position in B of the jth occurrence of bit b.

Clark [8] and Munro [13] showed that both rank and select can be solved
in constant time using n + o(n) bits of space, that is, B itself plus sublinear
space. Golynski et al. [9] showed that the o(n) term must be Ω(n lg lg n

lg n) if B

is stored in plain form, and moreover achieved this bound. Raman et al. [19]
provided a compressed representation retaining constant query times and taking
H + O

(
m + n lg lg n

lg n

)
bits. We prove now a technical lemma we will need later.

Lemma 1. Let 0 < α ≤ 1 be a constant and b = Θ(lgα n). Let bitmap B[1, n]
be stored in a way such that we can only access pieces B[(i − 1) · b + 1, i · b] at
a time, for any i. Then we can perform rank and select in constant time using
O
(

n lg lg n
b

)
bits of extra space, and this is optimal.

Proof. Let us take any algorithm achieving constant time and O
(

n lg lg n
lg n

)
extra

space, say Golynski’s [9], and adapt it to this restriction. The algorithm builds
and uses several indexes and accesses B a constant number of times. Each such
time, it reads a “word” of w = O(lg n) consecutive bits of B, in order to either
(a) count the number of 1s in a part of the word or (b) find the position of the
kth 1 or 0 in a part of the word, using universal tables.

We introduce an indirection when accessing such universal tables. Each word
is covered by w

b pieces. For each piece, we store the summary number of 1s in the

piece. This requires lg(b + 1) bits, so the total space is O
(

n lg b
b

)
= O

(
n lg lg n

b

)
.

Moreover, in a RAM machine with word size w we can read all the summary
numbers of the pieces covering any word in O(1) accesses, as they add up to
w lg b

b = o(lg n) bits. With these summary numbers we can index a universal table
of size O

(
2o(lg n)polylog(n)

)
, telling (a) the number of bits set up to any given

piece of the word, and (b) the piece where the kth 0/1 of the word occurs. A final
access to one b-bit piece, with another universal table of size O

(
2bpolylog(n)

)
,

completes the query in constant time.
The lower bound comes directly from Golynski [9], who states that if one

probes t bits and answers rank/select in constant time, then the index must be
of size Ω(m lg t

t). In the worst case m = n and the algorithm can access at most
t = O(b) bits in constant time. 	

2.2 Two Dimensions

We can identify a grid with a binary matrix. We will consider rectangular ranges
of the form (i1, i2)× (j1, j2), where i1 and i2 are rows and j1 and j2 are columns.
Over those ranges we define the queries

– rank(i1, i2, j1, j2) counts the number of points in the range; and
– select(i1, i2, j1, j2, k1, k2) gives the k1th to the k2th points in the range, in

row-major or column-major order (this generalizes from range reporting and
point selection queries).

330 A. Farzan, T. Gagie, and G. Navarro

The general case is called a 4-sided query. A particular case, a 3-sided query,
arises when one of the coordinates is always 1 or n. A 2-sided query arises when
two of the coordinates, one of row and one of column, is always 1 or n. A band-
query has 1 and n for either the row or the column coordinates. Finally, a 1-sided
query has only one coordinate different from 1 or n.

Since rank(i1, i2, j1, j2) = rank(1, i2, 1, j2) − rank(1, i1 − 1, 1, j2) − rank(1, i2, 1,
j1 − 1) + rank(1, i1 − 1, 1, j1 − 1), we study only 2-sided queries for rank. For
compliance with the existing literature, we prefer to study the queries in terms
of selecting the kth point, select(i1, i2, j1, j2, k), and reporting (up to) k points in
a range, report(i1, i2, j1, j2, k). Our solutions, however, can actually be combined
to solve the general select(i1, i2, j1, j2, k1, k2) query within the time of selecting
the k1th point and then reporting the k2 − k1 + 1 points following it. Further-
more, our rank query is never slower than our select, and select(i1, i2, j1, j2, k) =
select(i1, i2, 1, n, k+x) with x = rank(i1, i2, 1, j1 −1) if select delivers in column-
major order, and analogously in row-major order. Finally, our sublinear-sized
indexes can be computed (or the algorithms trivially modified) for several rota-
tions and reflections of the grid within the same asymptotic space. Therefore we
can, without loss of generality, focus our study on the following queries:

– rank(i, j) is the number of points in (1, i) × (1, j);
– select(i1, i2, k) gives the kth point in the range (i1, i2) × (1, n), in column-

major order (as explained this allows one to emulate any 4-sided query);
– select(i, k) gives the kth point in the range (1, i) × (1, n), in column-major

order (this allows one to emulate any 3-sided query); and
– report(i1, i2, j1, k) gives the first (up to) k points in the range (i1, i2)×(j1, n),

in column-major order.

Barbay et al. [2] propose a number of primitives on binary matrices, yet several
can be reduced to others. Their maximal operations (in the sense that the others
reduce to a constant number of applications of these) are rel rnk (equivalent
to our rank), rel sel obj maj and rel sel lab maj (equivalent to our select),
and lab rnk and obj rnk (which count the number of nonempty rows/columns
within a range and have no equivalent in this paper). By using wavelet trees [10],
they achieve the following result (adapted and fixed here):

Theorem 2 ([2]). A binary matrix of σ rows (“labels”) by n columns (“ob-
jects”) with t 1s can be represented within H + o(H) + O

(
t + n lg lg n

lg n

)
bits,

so that queries rel rnk(i1, i2, j1, j2) (number of points in (i1, i2) × (j1, j2)),
rel sel lab maj(i, k, j1, j2) (kth point, in label-major order, in (i, σ)× (j1, j2)),
and rel min obj maj(i1, i2, j) and rel acc obj maj(i1, i2, j) (first and succes-
sive points, in object-major order, in (i1, i2)× (j, n)), can be answered in O(lg σ)
time per delivered datum. Rel sel obj maj(i1, i2, j, k) (kth point, in object-major
order, in (i1, i2) × (j, n)), can be carried out in O(lg σ lg n) time.

Entropy-Bounded Representation of Point Grids 331

Table 1. Space and time complexities achieved by Barbay et al. [2] and in this paper.

The “or” case depends on using row-major or column-major order. The times for

Thm. 4 are simplified assuming m = O
(

n2

lg1/4 n

)
; otherwise Thm. 3 takes over. The

times to operate on 0s are the same for Thm. 3; for Thm. 4 we give them explicitly.

Source Space rank time report time

Thm. 2 [2] H + o(H) + O(m) + o(n) lg n (k + 1) lg n

Thm. 3 H + O
(

n2 lg lg n

lg1/4 n

)
1 k + 1

Thm. 4 H + o(H) + O(m + lg n) lg n2

m
(k + 1) lg n2

m

Thm. 4 (0s) lg n2

m
(k + 1) lg2 n2

m

Thm. 1 H + o(H) lg n2

m
(k + 1) lg2 n

Source select time (4-sided) select time (3-sided)

Thm. 2 [2] lg n or lg2 n lg n

Thm. 3 lg n lg lg n

Thm. 4 lg n or lg n + lg2 n2

m
lg n2

m
or lg n + lg2 n2

m

Thm. 4 (0s) lg n + lg2 n2

m
lg n + lg2 n2

m

Thm. 1 lg2 n lg2 n

Proof. This is in their Thm. 2 [2]. Their space formula “t lg σ + o(t) lg σ +
O
(
min(t, n lg t

n)
)
” should indeed be t lg σ + o(t) lg σ + lg

(
n+t

t

)
+ O(min(n, t)) +

O
(

(n+t) lg lg(n+t)
lg(n+t)

)
. Since the last three terms are t lg n

t +O
(
t + n lg lg n

lg n

)
, we have

the total t lg nσ
t + o(t) lg nσ

t +O
(
t + n lg lg n

lg n

)
= H + o(H) + O

(
t + n lg lg n

lg n

)
. 	

Table 1 compares the previous and new complexities achieved for our opera-
tions. The previous compressed representation [2] achieves H + o(H) bits only if
ω(n lg lg n

lg2 n
) = m = o(n2) (note our m is their t). Also, it always supports rank in

time O(lg n). This time is O(1) in our “compressed” solution, and in our “fully
compressed” solution it is O

(
lg n2

m

)
in the range m = O

(
n2

lg1/4 n

)
. This is never

worse than the previous result [2], and is strictly better if m = n2−o(1). For report
and select we are faster or slower depending on the case.

3 A Compressed Representation

We first describe a solution using n2 + o(n2) bits, and then convert it into one
using H + o(n2) bits.

3.1 Constant-Time Rank

The matrix is first subdivided into superblocks of size s × s, s = lg2 n. Each

superblock is in turn subdivided into blocks of size b × b, b =
√

lg n
2 . The n2 bits

332 A. Farzan, T. Gagie, and G. Navarro

of the matrix will be stored block-wise, that is, the b2 = lg n
2 bits of each block

will be stored contiguously.
For each superblock in the matrix, we store the rank values at all the positions

of the rightmost column and bottom row of the superblock. In other words, we
store all rank(i, s · j) and rank(s · i, j) values. This requires O

(
n2 lg n
lg2 n

)
= o(n2)

bits. For each block within each superblock, we store the local (i.e. within its
superblock) rank values at all the positions of the rightmost column and bottom
row of the block. If we call ranks those local rank values, what we store is all
ranks(i, b · j) and ranks(b · i, j) values. This requires O

(
n2 lg lg n√

lg n

)
= o(n2) bits.

This gives enough information to compute rank(i, j) in constant time. Let
i = s · is + irs and j = s · js + jrs, so that s · is and s · js are the projections
of i and j to the last superblock-aligned row and column, and 0 ≤ irs, jrs < s
are the local positions within their superblock. Similarly, let irs = b · ib + irb and
jrs = b · jb + jrb, with 0 ≤ irb, jrb < b the projections into, and local coordinates
within, the blocks. Then it is easy to verify that

rank(i, j) = rankb(i, j)
+ ranks(i, b · jb) + ranks(b · ib, j) − ranks(b · ib, b · jb)
+ rank(i, s · js) + rank(s · is, j) − rank(s · is, s · js),

where rankb(i, j) is the local rank value within its block. All the rank and ranks

values in the formula are stored. As for rankb(i, j), this is rank(irb, jrb) within its
block. As there are only 2b2 =

√
n different blocks, we can store all the answers

to all possible (local) rank queries within O(
√

npolylog(n)) = o(n) bits. Since
we can read at once the b2 = O(lg n) bits of the block (stored contiguously as
explained), we can look up a table entry in constant time.

3.2 Constant-Time Report

We first solve a subproblem that might have independent interest. Given a row
range [i1, i2] and a column j, nextCol(i1, i2, j) is the smallest column number
j′ > j that is nonempty (i.e., contains a 1) in the range [i1, i2]. We now show
how to support this query in constant time and o(n2) extra space.

The key idea is to keep signature bit vectors which represent the bitwise-
or of various contiguous ranges of matrix rows. First we divide the rows into
batches of s = lg2 n rows. Akin to the classical solution to range minimum
queries (RMQs) [3], we explicitly store bit vectors of length n which are the or
of batches i to i + 2k − 1 for all 1 ≤ i ≤ n/s, 0 ≤ k ≤ lg(n/s). Furthermore,
we enhance these bit vectors with one-dimensional constant-time rank and select
structures. This requires O

(
n

lg2 n
· n lg n

)
= o(n2) bits and reduces the query

nextCol(s · i1, s · i2 − 1, j) to that of finding the next 1 after position j in either
of two bit vectors (the one or-ing batches i1 to i1 + 2k − 1 and the one or-
ing batches i2 − 2k to i2 − 1, for k = �lg(i2 − i1)�). Finding the next 1 in
a bit vector is easily reduced to one-dimensional rank and select queries, j′ =
select1(B, rank1(B, j) + 1).

Entropy-Bounded Representation of Point Grids 333

A general range [i1, i2] may contain several batches, plus possibly two within-
batch areas at each extreme. Thus we have reduced the problem to within batches
of size lg2 n. We now repeat the partition similarly within each batch. We divide
the rows into chunks of d = lg1/4 n rows and again use the same machinery to
isolate the problem to within chunks. The extra space for all the chunk-level bit
vectors is O

(
n

lg1/4 n
· n lg(lg2 n)

)
= o(n2).

Now, confined within a chunk of d rows, we consider bit vectors B(i1, i2),
1 ≤ i1, i2 < d, such that B(i1, i2) is the or of rows from i1 to i2. We cannot
explicitly store all these vectors, as the space would be ω(n2). However, we do
explicitly store the rank and select indexes for each such bit vector. To simulate
access to the virtual bit vector B(i1, i2), we use our b × b matrix blocks stored
contiguously, in order to provide in constant time any O

(√
lg n

)
bits of any

horizontal strip of width i2 − i1 + 1. By Lemma 1, we can in this case achieve
constant time for rank and select using extra indexes of size O

(
n lg lg n√

lg n

)
.

As there are O
(

n
lg1/4 n

)
chunks, each storing O

(
(lg1/4 n)2

)
indexes for

B(i1, i2), the total space is O
(

n
lg1/4 n

·
√

lg n · n lg lg n√
lg n

)
= o(n2) bits. The

nextCol(i1, i2, j) query is thus solved by consulting at most 2 batch bitmaps, 4
chunk bitmaps, and 2 (virtual) B(i1, i2) bitmaps. With rank and select on each,
we easily find the next 1 after position j across the 8 bit vectors, in constant
time.

Once nextCol is solved, it is easy to address report(i1, i2, j1, j2, k) queries. We
store one-dimensional rank and select indexes for every column of the matrix. As
already explained, their extra space adds up to O

(
n lg lg n√

lg n

)
= o(n) per column

as we can access only O
(√

lg n
)

contiguous bits of any column. The first points
to report are at column j = nextCol(i1, i2, j1 − 1). With one-dimensional rank
and select on column j, we can report the points at rows [i1, i2] of that column,
each in constant time. We go on with j = nextCol(i1, i2, j), and so on, until
either j > j2 or we have reported k points. Thus the query takes time O(k + 1).

3.3 Select Queries

For select(i1, i2, k) we binary search, using rank, the position of the kth point in
O(lg n) time. We can do better for the simpler select(i, k) query. We have already
stored the rank values at the rightmost columns of the superblocks. Assume these
values are organized row-wise, and moreover in a y-fast trie data structure [20].
This sums to O

(
n lg n
lg2 n

)
= o(n) bits per row. The trie for row i permits finding the

superblock column containing the kth point in (1, i) × (1, n), in O(lg lg n) time
(by finding the successor of k). Now a binary search over lg2 n values gives, in
another O(lg lg n) time, the precise column, and one-dimensional rank and select
on the column give the position of the kth point. Thus the time is O(lg lg n).

334 A. Farzan, T. Gagie, and G. Navarro

3.4 Entropy-Bounded Space

We have assumed the b × b blocks are explicitly stored. Instead, we can replace
them by a (c, o) pair, just as Raman et al. [19] do for one-dimensional bit vectors.
Let a block contain m 1s. Then its class c is m and its offset o is the index of this
particular b × b block among all the different blocks of class m. A table indexed
by c and o storing the contents of all the possible bit vectors takes O(

√
n lg n)

bits, thus we can recover any block content in constant time.
Each c value is stored in lg(b2+1)=O(lg lg n) bits, adding up to O

(
n2 lg lg n

lg n

)
=

o(n2) bits in total. The number of bits required for all the o fields, assuming the
rth block contains mr bits set, is

∑
r�lg

(
b2

mr

)
� ≤ lg

(
n2

m

)
+ O

(
n2

lg n

)
[19]. Finally,

we also need pointers to find in constant time an o field, as these have variable-
length representations. This can also be done within O

(
n2 lg lg n

lg n

)
bits [19] with

techniques akin to one-dimensional rank.

Theorem 3. A n × n matrix with m 1s and entropy H = lg
(
n2

m

)
can be rep-

resented within H + O
(

n2 lg lg n
lg1/4 n

)
bits, so that operation rank(i, j) is computed

in O(1) time, report(i1, i2, j1, j2, k) performs in time O(k + 1), select(i1, i2, k) is
supported in O(lg n) time, and select(i, k) is computed in O(lg lg n) time.

Note that we can define the complementary queries, where 0s are considered
instead of 1s. This is obvious for rank but not for report nor select. It is not hard
to see that we can support in addition these complementary queries, by adding
other similar o(n2) bits of space, that is, asymptotically for free. As explained,
we can also support the select variants where rows and columns are exchanged,
within o(n2) additional space.

4 A Fully-Compressed Representation

Our compressed representation achieves entropy-bounded space for the matrix
itself, but the extra space is o(n2). This may dominate the entropy bound H .
The key to achieving indexes sublinear in H is to adapt the partitioning into
superblocks and blocks to the number of bits set in the matrix. The price will
be superconstant time for all queries, due to our internal usage of Thm. 2.

4.1 Rank Query

We first divide the matrix into superblocks of size s × s, where now s = n2 lg m
m

(assume for now m = Ω(n lg m); we consider the other case later in Section 4.4).
The superblocks are further divided into blocks of size b × b, for b = n2 lg lg m

m .
Just as for Section 3.1, we store absolute ranks at the borders of superblocks
and local ranks at the borders of blocks. As the former require lg m bits to be
represented, they add up to O(m) bits. The latter require lg s2 bits per datum,
adding up to O

(
n2

b · lg s2
)

= O
(

m
lg lg m · lg n2 lg m

m

)
= o(H) + O(m + lg n).

Entropy-Bounded Representation of Point Grids 335

As before, the problem is reduced to supporting local rank within a block of
size b2. We store each block using the wavelet tree of Thm. 2, which for the rth
block with mr bits set requires lg

(
b2

mr

)
+ o(lg

(
b2

mr

)
) + O(mr) + o(b).1 It answers

rank in time O(lg b) = O
(
lg n2

m + lg lg lg m
)
. Added over all the blocks, the space

is lg
(
n2

m

)
+ o(lg

(
n2

m

)
) + O(m) + o(m) = H + o(H) + O(m).

4.2 Select Queries

As we have stored all the values rank(i, s · j), rank(s · i, j), and ranks(i, b · j), we
can compute any rank(i1, i2, b · j1, b · j2) in constant time. Thus we can binary
search for the column of blocks where the kth point of (i1, i2) × (1, n) lies. This
takes time O

(
lg n

b

)
. For 3-sided queries we can arrange the superblock ranks

of each row in a y-fast trie as before, so as to pay O(lg lg m) time to find the
superblock, plus O

(
lg s

b

)
= O(lg lg m) to binary search for the block.

Let jb be the column of blocks found, then the local rank of the (globally)
kth point, within block-column jb, is k′ = k − rank(i1, i2, 1, b · (jb − 1)). Now we
refine the search to find the exact column where the answer lies. A general way
to do this is to carry out a binary search within columns [b · (jb − 1) + 1, b · jb]
using rank. This rank is not constant-time because we are not in borders of
blocks. Hence the time raises to O

(
lg2 b

)
= O

(
lg2 n2

m + (lg lg lg m)2
)
. Once we

know the precise column j, we must find the k′′th point in it, within rows
[i1, i2], for k′′ = k − rank(i1, i2, 1, j − 1). We first binary search the block verti-
cally in time O

(
lg n

b

)
, since we can compute any rank(b · i, j) value in constant

time. Finally, confined within a block, we report the correct point in O
(
lg2 b

)
time using rel sel obj maj on the wavelet tree of the block (or O(lg b) using
rel sel lab maj, depending on the orientation).

A smarter way, but one which applies only to one direction (that is, we can-
not have simultaneously the improved result for queries select(i1, i2, 1, n, k) and
select(1, n, j1, j2, k)), is to arrange the block contents in a different way. Instead
of using one wavelet tree structure per block, we pack a whole block column per
wavelet tree, taking the b columns as their σ “labels” and the n rows as their
“objects” (recall Thm. 2). So the rank times are still O(lg σ) = O(lg b), and the
within-block rank used in Section 4.1 can still be carried out within this time.
Furthermore, finding the k′th point, in label-major order, between objects i1
and i2 (operation rel sel lab maj), also takes O(lg b) time.

Therefore, if the band of our query is horizontal and we have stored block
columns in wavelet trees (or vice versa), we find the kth point within time
O(lg n) (4-sided select) or O

(
lg lg m + lg n2

m

)
(3-sided select).

4.3 Range Reporting

Let us first assume that the query band is horizontal and we have stored rows
of blocks in wavelet trees. To solve report(i1, i2, j1, j2, k), we first need to find

1 The o(lg
(

b2

mr

)
) term is asymptotic in b, which is ω(1) in terms of n, so it can be

safely added up over many blocks later.

336 A. Farzan, T. Gagie, and G. Navarro

the next column after j1 − 1 that is nonempty in the range [i1, i2]. We use the
same RMQ-akin idea of Section 3.2. We form batches storing the or of ranges of
rows of superblocks, for a total space of O

(
n
s · n lg n

s

)
= O(m) bits, and chunks

storing the or of ranges of rows of blocks within superblocks, for a total space of
O
(

n
b · n lg s

b

)
= O(m) bits. Instead of the virtual B(i1, i2) bitmaps, to find the

next 1 in the band (i1, i2) × (j + 1, n) we use the horizontally arranged wavelet
trees. They find this point using a rel min obj maj query, in O(lg b) time.

Now we must be able to find the 1s in the current column j, before proceeding
to the next one. Those 1s within the first block since global row i1 are easily
found with rel acc obj maj in the wavelet tree of the block. In order to find
the next block downwards containing points in column j, we store a signature
bit vector Bj [1, n/b] for each column j, so that Bj [i] = 1 iff there is a 1 in the
range (i · (b − 1) + 1, i · b) × (j, j) of the matrix. Using one-dimensional rank and
select on the Bj vectors, we can easily find the next block downwards that has
a 1 in the current column, in constant time. All the points in column j mod b of
that block are then reported (unless they exceed the global row i2). Bit vectors
Bj require O

(
n2

b

)
= o(m) bits of space in total.

If, instead, the band of the query is orthogonal to that of wavelet trees, we
proceed as follows. The wavelet tree covering column j1 can deliver all the
points within rows [i1, i2] since column j1 onwards, in O(lg b) time each, us-
ing rel sel lab maj. We must now find the next nonempty block. We build a
reduced matrix of n × (n/b), so that its cell (i′, j′) contains a 1 iff the original
matrix contains a 1 in (i′, b · (j′ −1)+1)× (i′, b · j′). Then the block column that
is nonempty in [i1, i2] in the original matrix corresponds to the next column that
is nonempty in [i1, i2] in the reduced matrix. We can then apply the technique
of Section 3.2, creating the batch and chunk bitmaps over the reduced matrix,
taking overall space O

(
n2

b

)
= o(m). Once we arrive at the next nonempty block

column, its wavelet tree delivers its points in order, and so on.

4.4 The Final Result

A missing piece is to cover the case m = o(n lg m) = o(n lg n). When the matrix
is so sparse, lg n2

m = Θ(lg n), and thus it is preferable to use the wavelet tree by
itself. The only problem is the o(n) extra space (see Thm. 2), which does not
fit in o(H) whenever m = O

(
n lg lg n
lg2 n

)
. This is because Barbay et al. [2] chose

Raman et al.’s representation [19] to achieve constant-time rank and select on
a bit vector. By using instead a binary searchable representation [11], the o(n)
term becomes o(H)+O(m + lg n) and the O(lg σ) time becomes O(lg σ + lg m).
This is O(lg n) for us, which fits perfectly within our general result.

Theorem 4. A n × n matrix with m 1s and entropy H = lg
(

n2

m

)
can be stored

in H + o(H)+O(m + lg n) bits, so that operation rank(i, j) is computed in O(τ)
time and report(i1, i2, j1, j2, k) in time O((k + 1)τ), where τ = lg n2

m + lg lg lg m.
In one direction (that can be chosen), select(i1, i2, k) is computed in O(lg n)

Entropy-Bounded Representation of Point Grids 337

time, and select(i, k) in time O(τ + lg lg m). In the other direction, both select
operations cost O

(
lg n + τ2

)
time.

Note that if m = O
(

n2

lg1/4 n

)
, then τ + lg lg m = O

(
lg n2

m

)
; otherwise Thm. 3 is

better in all aspects. Finally, if we want to report or select 0s, we can replicate all
the extra structures considering the complemented matrix (still defining s and
b in terms of 1s), within o(H) + O(m + lg n) bits . The wavelet trees, instead,
must internally binary search on rank to simulate their local operations, all of
which (except rank itself) would now cost O

(
τ2
)
. Thus this complexity must be

added to the times given for report (per delivered datum) and any select.
We now have all the necessary pieces to prove our main result.

Proof (of Thm. 1). Putting together our “compressed” (Thm. 3) and “fully
compressed” (Thm. 4) solutions, the claimed time complexities are obtained. We
achieve H + o(H) bit space for all cases: (a) The O

(
n2 lg lg n
lg1/4 n

)
extra bits of our

“compressed” solution is o(H) as long as ω(n2

lg1/4 n
) = m = n2−ω(n2

lg1/4 n
). (b) The

“fully compressed” solution uses H +o(H)+O(lg n) space as long as m = o(n2).
(c) These two cover the entire range for m except m = n2 − O

(
n

lg1/4 n

)
; there,

we complement the matrix and use the fully-compressed solution with 0-queries
instead of 1-queries. (d) The final O(lg n) is not o(H) only if m = O(1), in which
case we can encode the points in differential form (e.g. δ-encoding), and answer
queries in constant time by scanning the points. 	

5 Conclusions

Although the area of orthogonal range queries has received much attention, the
extremely interesting case where the structure achieves entropy-bounded space
is largely under-explored. This work completes a large portion of the picture,
and hopefully opens the door to much further research.

A first line of future work is to find and reach the lower bounds on the time
complexity under this new scenario. Existing lower bounds, such as Ω

(
lg m

lg 2M
m

)
counting time when using M words of memory [7], or one-dimensional lower
bounds [18] might be useful. Succinct-space results [4] suggest we can do bet-
ter. Particularly intriguing is that select takes constant time on dense one-
dimensional bitmaps, whereas we have not achieved that in two dimensions. In-
terestingly, schemes that achieve entropy-bounded extra space in one dimension
[16], offer rank time analogous to ours, O

(
lg n

m

)
, yet their select is constant-time.

As for space, H = lg
(
n2

m

)
is a crude worst-case lower bound that does not

account for regularities, such as clusters of points, that arise in real life. Our
actual space is indeed much better: the sum of local entropies of small blocks.
An interesting future work challenge is to improve the lower order term, o(H).

Other natural directions for future work are to consider further operations [2],
extending to d-dimensional spaces, achieving dynamic compressed structures,
and secondary-memory variants.

338 A. Farzan, T. Gagie, and G. Navarro

Acknowledgements. We thank Jérémy Barbay for discussions and proofreading.

References

1. Alstrup, S., Brodal, G., Rauhe, T.: New data structures for orthogonal range

searching. In: Proc. 41st FOCS, pp. 198–207 (2000)

2. Barbay, J., Claude, F., Navarro, G.: Compact rich-functional binary relation rep-

resentations. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 172–185.

Springer, Heidelberg (2010)

3. Bender, M., Farach-Colton, M.: The level ancestor problem simplified. Theoretical

Computer Science 321(1), 5–12 (2004)

4. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search

structures on a grid with applications to text indexing. In: Proc. 11th WADS, pp.

98–109 (2009)

5. Chan, T., Pătraşcu, M.: Counting inversions, offline orthogonal range counting,

and related problems. In: Proc. 21st SODA, pp. 161–173 (2010)

6. Chazelle, B.: Filtering search: A new approach to query-answering. SIAM Journal

of Computing 15, 703–724 (1986)

7. Chazelle, B.: Lower bounds for orthogonal range searching: II. The arithmetic

model. Journal of the ACM 37(3), 430–463 (1990)

8. Clark, D.: Compact Pat Trees. PhD thesis, University of Waterloo, Canada (1996)

9. Golynski, A.: Optimal lower bounds for rank and select indexes. Theoretical Com-

puter Science 387(3), 348–359 (2007)

10. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:

Proc. 14th SODA (2003)

11. Gupta, A., Hon, W.-K., Shah, R., Vitter, J.S.: Compressed data structures: Dic-

tionaries and data-aware measures. In: Proc. 16th DCC, pp. 213–222 (2006)

12. Já Já, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidi-

mensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.)

ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

13. Munro, I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,

vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

14. Nekrich, Y.: Space efficient dynamic orthogonal range reporting. In: Proc. 21st

SCG, pp. 306–313 (2005)

15. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Com-

putational Geometry: Theory and Applications 42(4), 342–351 (2009)

16. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.

In: Proc. 9th ALENEX (2007)

17. Pătraşcu, M.: Lower bounds for 2-dimensional range counting. In: Proc. 39th

STOC, pp. 40–46 (2007)

18. Pătraşcu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: Proc.

38th STOC, pp. 232–240 (2006)

19. Raman, R., Raman, V., Srinivasa Rao, S.: Succinct indexable dictionaries with

applications to encoding k-ary trees and multisets. In: Proc. 13th SODA, pp. 233–

242 (2002)

20. Willard, D.: Log-logarithmic worst-case range queries are possible in space θ(n).

Information Processing Letters 17(2), 81–84 (1983)

Identifying Approximate Palindromes in
Run-Length Encoded Strings�

Kuan-Yu Chen1, Ping-Hui Hsu1, and Kun-Mao Chao1,2,3

1 Department of Computer Science and Information Engineering
2 Graduate Institute of Biomedical Electronics and Bioinformatics

3 Graduate Institute of Networking and Multimedia

National Taiwan University, Taipei, Taiwan 106

Abstract. We study the problem of identifying palindromes in com-

pressed strings. The underlying compression scheme is called run-length

encoding, which has been extensively studied and widely applied in di-

verse areas. Given a run-length encoded string rle(T), we show how to

preprocess rle(T) to support efficient retrieval of the longest palindrome

with a specified center position and a tolerated number of mismatches

between its two arms. Let n be the number of runs of rle(T) and k
be the tolerated number of mismatches. We present two algorithms for

the problem, both with preprocessing time polynomial in the number of

runs. The first algorithm, devised for small k, identifies the desired palin-

drome in O(log n + min{k, n}) time with O(n log n) preprocessing time,

while the second algorithm achieves O(log2 n) query time, independent

of k, after O(n2 log n)-time preprocessing.

1 Introduction

The explosion of digital data urges the need for effective compression methods.
Representing data in compressed form reduces the consumption of disk space
and the time needed for transmission. However, the drawback is that compressed
data must be decompressed before existing text-mining algorithms can be ap-
plied. In 1992, Amir and Benson [1] addressed the two-dimensional matching
problem with the text represented as run-length encoded format. Since then, it
has become a challenging task to design algorithms directly searching or min-
ing compressed data without any decompression. The most extensively studied
problem under this paradigm is compressed pattern matching, for which sev-
eral compression schemes have been considered, such as run-length encoding,
Lempel-Ziv encoding, and straight-line programs (see [12,17] for more details).
Another research direction is to identify featured patterns in compressed strings.
For example, in [14] the authors studied the problem of finding all squares in a
run-length encoded string. Finding palindromes and squares in LZ-compressed
strings was discussed in [9]. In addition, the work of [16] demonstrated how

� Partially supported by NSC grants 97-2221-E-002-097-MY3 and 98-2221-E-002-081-

MY3 from the National Science Council, Taiwan.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 339–350, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

340 K.-Y. Chen, P.-H. Hsu, and K.-M. Chao

to compute longest common substrings and palindromes in strings described in
terms of straight-line programs.

The ultimate goal in this line of investigation is to design algorithms whose
time depends solely on the compressed sizes. So far several positive results have
been found for run-length encoding. Let m and n denote the number of runs of
the two input run-length encoded strings. The exact string matching problem
can be easily solved in O(m + n) time. The k-mismatch with wildcards problem
is solvable in O(mn log m) time [6]. Computing the longest common subsequence
of two run-length encoded strings requires O(mn log mn) time [2], and comput-
ing their edit distance (Levenshtein distance) can be done in O(mn2) time [5].
Moreover, there exists an O(n log n)-time algorithm for finding all squares in a
run-length encoded string [14]. In this paper, we explore the problem of identify-
ing approximate palindromes in a run-length encoded string. Two algorithms will
be presented. Both of them have preprocessing time polynomial in the number
of runs.

2 Problem Definition and Main Results

2.1 Run-Length Encoding

Run-length encoding (rle) is a simple and effective coding scheme that performs
lossless data compression. rle compression represents consecutive and identical
symbols with a run, usually denoted by σi, where σ is an alphabet symbol and i
is its repetition times. For example, string bbcccddaaaaa is optimally encoded as
b2c3d2a5. Transforming a non-optimal rle format such as b2c1c2d2a3a2 into an
optimal one is easy. Thus, without loss of generality we assume that the input
rle string of our problem is optimally encoded.

2.2 Palindrome

A palindrome is a word that can be read the same way in either direction. For-
mally, a palindrome is a string of the form uur or uσur, where u and ur are two
nonempty strings, one being the reverse string of the other, and σ is an alphabet
symbol. A palindrome is called an even palindrome if it is of the form uur, and an
odd palindrome otherwise. For example, strings abbaabba and abbabba are even
and odd palindromes, respectively. Moreover, substrings u and ur are referred
to as the two arms of the palindrome. Identifying palindromes in a string has
been an interesting topic from both theoretical and practical perspectives. In
biological application, palindromic motifs are found in most genomes and have
been especially investigated in bacterial chromosomes. In [7], the authors studied
a new technique for the genome-wide analysis of palindrome formation. Due to
the large scale of biological data, compression methods are often used to reduce
the storage as well as to accelerate the computation.

Identifying Approximate Palindromes in Run-Length Encoded Strings 341

2.3 Notation and Similarity Measure

Throughout the paper, we adopt the following notation. We let T denote the
uncompressed string and rle(T) denote its optimally encoded rle format. Our
problem will take rle(T), instead of T , as input. We let capital letter N de-
note the string length of T and let small letter n denote the number of runs
in rle(T). We let T [i . . . j] denote the substring of T starting and ending at
positions i and j. In particular, T [i] is the i-th symbol of T . Alternatively,
we use T (c, �) to specify a substring of T , which is interpreted as the sub-
string of T centered at position c with arm length �. More specifically, we
define T (c, �), where c ∈ {1, 3

2 , 2, 5
2 , . . . , N} and 0 ≤ � ≤ N

2 , to be the sub-
string T [�c� − � . . . �c� + �]. For example, suppose that T = abbacbcacabbacb.
The odd palindrome T [4 . . .8] = acbca is substring T (6, 2), and the even palin-
drome T [1 . . .4] = abba is substring T (5

2 , 2). Analogously, T [�c� − � . . . �c� − 1]
and T [�c� + 1 . . . �c� + �] are referred to as the left and right arms of T (c, �).

A palindrome is said to be exact if its one arm exactly matches the other in
the reverse order. In biological applications, genetic mutations occur during the
evolutionary process; hence, it is more meaningful to identify approximate palin-
dromes instead of exact ones [13]. We use Hamming distance as the similarity
measure between the two arms of a palindrome.

Definition 1. We define dH(T (c, �)) to be the Hamming distance between the
two arms of T (c, �). Formally, dH(T (c, �)) =

∑�
i=1 δ(T [�c� − i], T [�c� + i]),

where δ(a, b) = 0 if symbol a matches symbol b and δ(a, b) = 1 otherwise.

2.4 Problem Definition

Since there are 2N − 1 possible center positions for palindromes in T , it takes
Ω(N) time to enumerate all approximate palindromes in T . An important feature
of our approach is that instead of constructing all the palindromes explicitly,
which easily leads to time complexity depending on the uncompressed size N , we
aim at preprocessing the compressed string for later retrieval of palindromes at
any given center. Formally, our problem is defined as a query-answering paradigm
as follows. We preprocess rle(T) in order to support on-line queries Q(T, c, k) =
max{� | dH(T (c, �)) ≤ k}, where c ∈ {1, 3

2 , 2, 5
2 , . . . , N} and 0 ≤ k ≤ N

2 . In other
words, Q(T, c, k) returns the length of the longest palindrome in T centered at
position c and having no more than k mismatches between its arms. Note that
once we obtain the value of Q(T, c, k), the position of the palindrome is also
located. We will present two algorithms whose preprocessing and query time
depend only on the compressed size n.

2.5 Our Results

For notational convenience, we say that an algorithm has time complex-
ity 〈f(n), q(n)〉, if it spends O(f(n)) time at the preprocessing stage and O(q(n))
time at the query stage. In this paper, we present two algorithms achieving the
following time and space complexities.

342 K.-Y. Chen, P.-H. Hsu, and K.-M. Chao

1. The first algorithm takes 〈n log n, log n + min{k, n}〉 time and O(n) space.
2. The second algorithm takes 〈n2 log n, log2 n〉 time and O(n2 log n) space.

In most applications, the number of mismatches is limited. Hence, the first
algorithm is preferable because it has better preprocessing time and requires
less extra space. From the theoretical point of view, however, since k ranges
from 0 to N

2 , our second algorithm achieves a considerable improvement on the
query time when k is large. Moreover, the second algorithm reveals an interesting
connection between the palindrome problem and the interval stabbing problem
from computational geometry.

3 An 〈n log n, log n + min{k, n}〉-Time Algorithm

Our first algorithm relies on longest common extension (LCE) queries.
Let rle(T) = X1X2 . . .Xn, where Xi denotes the i-th run of rle(T). Recall
that each run Xi is composed of a run symbol, denoted by Xs

i , and a run length,
denoted by X l

i . Therefore, we can view a run, Xi = (Xs
i , X l

i), as a symbol drawn
from Σ × Z

+. We write Xi = Xj if Xs
i = Xs

j and X l
i = X l

j .
At the preprocessing stage, we construct array R[1 . . . n] storing the start

position of each run in the uncompressed string T . Formally, R[i] =
∑i−1

j=1 X l
j +1

for 1 ≤ i ≤ n. Besides, we preprocess rle(T) to support online LCE(rle(T), i, j)
queries, where 1 ≤ i ≤ n and 1 ≤ j ≤ n, defined as follows.

LCE(rle(T), i, j) = max{� | Xi−1 = Xj+1, Xi−2 = Xj+2, . . . , Xi−� = Xj+�}.

Lemma 1. Answering an LCE query described above can be done in 〈n log n, 1〉
time and O(n) space.

Proof. It is well known that the LCE problem can be solved by combining the
techniques of suffix trees and lowest common ancestor (LCA) queries [10]. We
construct a generalized suffix tree T of rle(T) = X1X2 . . .Xn and its reverse
string XnXn−1 . . . X1, and then preprocess T for constant-time LCA queries.
Since rle(T) can be seen as a string over an unbounded alphabet, the first
step takes Θ(n log n) time and O(n) space [8]. Preprocessing T for LCA queries
takes O(n) time and O(n) space [11]. 	

Figure 1 depicts the query procedure of our first algorithm. The procedure first
performs a binary search on array R to locate which run the queried center lies
in. Then, it simply extends the palindrome from the center position outwards
as much as possible. The extension is based on either the left-side or the right-
side extension, depending on which one encounters a run boundary first. The
procedure is terminated when the promised k-mismatches budget is used up or
the extension reaches one of the string ends.

Lemma 2. The while-loop of Query is performed O(min{k, n}) times.

Identifying Approximate Palindromes in Run-Length Encoded Strings 343

Procedure Query(c, k)

1 Perform binary search for the largest index i such that R[i] ≤ c;
2 Initially, i1 ← i2 ← i, � ← 0, and budget ← k;

3 while i1 ≥ 1 and i2 ≤ n do
4 if Xs

i1
= Xs
i2 then budget ← budget − (min{left(c, i1), right(c, i2)} − �);

5 if budget < 0 then
6 Terminate the procedure and output min{left(c, i1), right(c, i2)} + budget;
7 else // budget ≥ 0

8 if left(c, i1) < right(c, i2) then
9 � ← left(c, i1); i1 ← i1 − 1;

10 else if right(c, i2) < left(c, i1) then
11 � ← right(c, i2); i2 ← i2 + 1;

12 else // left(c, i1) = right(c, i2)
13 i1 ← i1 − LCE(rle(T), i1, i2); i2 ← i2 + LCE(rle(T), i1, i2);
14 � ← right(c, i2); i1 ← i1 − 1; i2 ← i2 + 1;

15 end if
16 end if
17 end while
18 Output �;

Fig. 1. The query procedure of the first algorithm. Let i1 (resp., i2) be a pointer track-

ing the run number of the current left (resp., right) extension. Function left(c, i1) (resp.,

right(c, i2)) indicates the arm length if the extension reaches the left end (resp., right

end) of run Xi1 (resp., Xi2). Formally, left(c, i1) = �i� − R[i1] and right(c, i2) =

R[i2 + 1]− �i�. Parameter � keeps track of the length of our last extension, and budget
records the remaining mismatches allowed. Note that when left(c, i1) = right(c, i2),
an additional LCE query is performed for a “free leap” over consecutive matched runs.

Proof. If the condition of line 4 is valid, we say that the while-loop enters a
mismatch iteration; otherwise, it is in a match iteration. Below, we consider
mismatch and match iterations separately. First, observe that (1) budget is
initialized as k and is decreased by a positive amount at mismatch iterations,
and (2) the procedure is terminated when budget < 0. Therefore, the number
of mismatch iterations is clearly bounded by O(min{k, n}). Next, we prove
the number of match iterations satisfies the same bound by showing that a
match iteration must be immediately followed by a mismatch iteration, if any.
The while-loop enters a match iteration implies Xs

j1
= Xs

j2
. If lines 8–9 are

executed, at the next iteration it cannot be the case that Xs
j1−1 = Xs

j2 , for
runs Xj1 and Xj1−1 then encode the same symbol and should be encoded as a
single run. It can be argued similarly for the case where lines 10–11 are executed.
If lines 12–14 are executed, the definition of LCE(rle(T), j1, j2) directly implies
that Xs

j1
�= Xs

j2
for the updated j1 and j2 of the next iteration. 	

Theorem 1. The first algorithm runs in 〈n log n, log n + min{k, n}〉 time and
O(n) space.

Proof. Immediate from Lemmas 1 and 2. 	

344 K.-Y. Chen, P.-H. Hsu, and K.-M. Chao

4 An 〈n2 log n, log2 n〉-Time Algorithm

We note again that k ranges from 0 to N
2 . Hence, the first algorithm may spend

O(n) time answering a query. In this section, we establish the connection be-
tween our problem and the interval stabbing problem [3]. Our second algorithm
utilizes segment trees, initially proposed by Bentley [4], and achieves a query time
of O(log2 n), independent of k. The algorithm is devised in light of matrix D
defined below.

Definition 2. We define D to be an N × N matrix whose entry D[i, j] =
δ(T [i], T [j]), where δ(a, b) = 0 if symbol a matches symbol b and δ(a, b) = 1
otherwise.

For those entries D[i, j] where i + j = d, they are said to be on anti-diagonal d
of D, denoted by Dd. The anti-diagonal number of D ranges from 2 to 2N . Each
run pair Xi and Xj corresponds to a block (sub-matrix) of D, denoted by Bi,j .
Observe that all entries in Bi,j are 0’s if Xs

i = Xs
j , and are 1’s otherwise. We

call Bi,j a match block if Xs
i = Xs

j , and a mismatch block if Xs
i �= Xs

j . The blocks
in D are further divided into different levels. For those blocks Bi,j where j−i = h,
they are said to be on level h of D. See Figure 2a for an illustration.

X2

X3

X4

X5

X2 X
3

X
4

X
5

b
b

a

a

b
a

a

b

c

c

b

c

b b a a a a b b c c c b b b

b
b

X1

X1

B1, 2

D10

B4, 5

B3, 4

B2, 3

(a)

anti-diagonal d
level h

roof (d, h)

at max_level (d)

cost (d, h)

(b)

Fig. 2. (a) The matrix D based on input string rle(T) = b2a4b2c3b3. Matrix D is par-

titioned into mismatch blocks (light grey blocks) and match blocks (white blocks). The

dark grey grids form anti-diagonal 10, and blocks B1,2, B2,3, B3,4, and B4,5 constitute

level 1 of D. (b) An illustration of functions max level, roof , and cost. The block with

the maximum level, max level(d), on anti-diagonal d is shown in the upper-right corner

of the figure. The staircase depicts the exterior of blocks below level h, which intersects

with anti-diagonal d at point roof(d, h). The light-grey blocks depict the mismatch

blocks on anti-diagonal d that are between level 0 and level h, and cost(d, h) gives the

number of entries passed through by anti-diagonal d.

Given a center position c and an arm length �, observe that dH(T (c, �)) =∑�
i=1 D[�c� − i, �c� + i]. Therefore, we aim to find the longest extension on

anti-diagonal 2c, from entry D[�c� − 1, �c� + 1] to entries in upper triangular

Identifying Approximate Palindromes in Run-Length Encoded Strings 345

matrix, with at most k entries that are 1’s. With proper preprocessing, the
second algorithm directly evaluates the number of entries that are 1’s up to a
certain level and a binary search on levels is then performed.

4.1 Query Decomposition

For presentation simplicity, each entry D[i, j] is treated as a point (i, j) in the
plane. That is, matrix D = {(i, j) | 1 ≤ i ≤ N and 1 ≤ j ≤ N}, and anti-
diagonals Dd and blocks Bi,j are subsets of D. We will focus on blocks in the
upper triangular matrix of D, i.e., blocks Bi,j with j − i ≥ 0.

Definition 3. For 1 ≤ i ≤ n and 1 ≤ j ≤ n, we define functions corner1(Bi,j),
corner2(Bi,j), corner3(Bi,j), and corner4(Bi,j) to be the upper-left, upper-right,
lower-right, and lower-left corner points of block Bi,j, respectively.

With the help of array R, defined in the previous section, answering functions
corner1, corner2, corner3, and corner4 can be easily done in constant time. Be-
low, we define three additional functions max level, roof , and cost. See Figure 2b
for an illustration.

Definition 4. For 2 ≤ d ≤ 2N , we define max level(d) to be the maximum block
level on anti-diagonal d. Formally, max level(d) = max{j − i | Dd ∩ Bi,j �= φ}.

Definition 5. For 2 ≤ d ≤ 2N and 0 ≤ h ≤ n − 1, we define roof(d, h) to be
the farthest point on anti-diagonal d that is below level h. Formally, roof(d, h) =
(x, y) such that (x, y) ∈ Dd ∩ Bi,j , where j − i ≤ h, and y is maximized.

Definition 6. For 2 ≤ d ≤ 2N and 0 ≤ h ≤ n − 1, we define cost(d, h) to be
the total number of points on anti-diagonal d which belong to mismatch blocks
between level 0 and level h. Formally, cost(d, h) = |Dd ∩S|, where S = {(x, y) ∈
Bi,j | Bi,j is a mismatch block and 0 ≤ j − i ≤ h}.

Procedure Query2(c, k)

1 if cost(2c,max level(2c)) ≤ k then
2 Output j − �c�, where (i, j) = roof(2c, max level(2c));
3 else
4 Find the smallest h ∈ [0, max level(2c)] such that cost(2c, h) > k;

5 Output (j − �c�) − (cost(2c, h) − k), where (i, j) = roof(2c, h);

6 end if

Fig. 3. The query procedure of the second algorithm

Sections 4.2, 4.3, and 4.4 are devoted to demonstrate that by a preprocess-
ing of O(n2 log n) time and space, functions max level, roof , and cost can be
answered in O(log n) time. Our query algorithm based on these functions is
presented in Figure 3. In Query2, the algorithm first evaluates the number of

346 K.-Y. Chen, P.-H. Hsu, and K.-M. Chao

entries that are 1’s of the longest extension that reaches the maximum level. If
the value is below threshold k, we know the extension is able to reach the matrix
border (see lines 1–2). Otherwise, a binary search is performed for the minimum
level that exceeds threshold k (see line 4). If the claimed time for answering these
functions is correct, the time required for Query2 is O(log2 n).

4.2 Answering a max level Query

We define P to be a list of points containing the upper-left corners of blocks in
the first row of D and the upper-right corners of blocks in the last column of D.
Formally, P(i) = corner1(B1,i) for 1 ≤ i ≤ n, and P(i) = corner2(Bi−n+1,n) for
n + 1 ≤ i ≤ 2n − 1, where P(i) is the i-th point of list of P .

Lemma 3. Answering function max level can be done in 〈n, log n〉 time and
O(n) space.

Proof. Preparing list P is easily done in O(n) time and space. Observe that the
anti-diagonal numbers of points in P are in sorted order. Hence, we can perform
a binary search for the largest j such that the anti-diagonal number of P(j) is
less than or equal to d. The value max level(d) is then the block level of P(j). 	

4.3 Answering a roof Query

Observe that for a fixed h, the points of roof(d, h) for all 2 ≤ d ≤ 2N form a
staircase in D. Let Qh be the list of the upper-right corners of blocks on level h.
Formally, Qh(i) = corner2(Bi,i+h), where Qh(i) is the i-th point in list Qh

for 1 ≤ i ≤ n − h.

Lemma 4. Answering function roof can be done in 〈n2, log n〉 time and O(n2)
space.

Proof. Preparing lists Qh, where 0 ≤ h ≤ n−1, is easily done in O(n2) time and
space. Observe that the anti-diagonal numbers of points in Qh are in sorted order.
Hence, we perform a binary search for the largest j such that the anti-diagonal
number of Qh(j) is less than or equal to d. If no such j exists, then roof(d, h)
is the intersection of Dd and uv, where u = (1, 1) and v = Qh(1). Similarly, if
j = n−h, then roof(d, h) is the intersection of Dd and uv, where u = Qh(n−h)
and v = (n, n). Otherwise, roof(d, h) is the intersection of Dd with either uv
or vw, where u = Qh(j), w = Qh(j + 1), and v = corner2(Bj+1,j+h). 	

4.4 Answering a cost Query

We now show how to answer a cost query in O(log n) time after O(n2 log n)-time
preprocessing.

Definition 7. For each mismatch block Bi,j, where 0 ≤ j − i ≤ n − 1, we
define function fi,j : [2, 2N] → N to be the number of entries of Bi,j that are on
anti-diagonal d. Formally, fi,j(d) = |Dd ∩ Bi,j | for 2 ≤ d ≤ 2N.

Identifying Approximate Palindromes in Run-Length Encoded Strings 347

Let (x, y) = corner1(Bi,j) and (x′, y′) = corner3(Bi,j). If x′ + y ≤ x + y′, the
value of fi,j(d) can be easily calculated by the following formula. (The values
of fi,j in the other case where x′ + y > x + y′ can be argued similarly.)

fi,j(d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, for 2 ≤ d ≤ x + y − 1;
d − x − y, for x + y ≤ d ≤ x′ + y − 1;
x′ − x, for x′ + y ≤ d ≤ x + y′;
x′ + y′ − d, for x + y′ + 1 ≤ d ≤ x′ + y′;
0, for x′ + y′ + 1 ≤ d ≤ 2N .

(1)

By Equation (1), the non-zero values of fi,j can be interpreted as three line
segments in the plane (see Figure 4). Observe that to evaluate fi,j(d) we can
compute the intersection of vertical line x = d with the three line segments
representing fi,j . If there is no intersection, then fi,j(d) = 0. Otherwise, the
value of fi,j(d) is the y-coordinate of the intersection.

We let F denote the set of line segments obtained by interpreting all fi,j into
segments. Note that |F| = O(n2). Besides the two endpoints, each line segment
of fi,j is also associated with value j − i, i.e., the level of block Bi,j . Given a
line segment L ∈ F , we let (x1(L), y1(L)) and (x2(L), y2(L)) denote its left and
right endpoints, and let z(L) denote its level.

(x, y)

x+y

x+y'

x'+y

x'+y'

d

f
i, j (d)

Bi, j (x', y')

Fig. 4. The diagram of fi,j for the case where x′ + y ≤ x + y′. The values of fi,j are

interpreted as three line segments in the plane (the bold lines). The x-axis represents

anti-diagonal number, and the y-axis represents the value of fi,j . If x + y = x′ + y − 1

or x′ + y = x + y′ or x + y′ + 1 = x′ + y′, the line segments become points. We note

that this does not affect the correctness of our approach.

Now, answering a cost query can be interpreted as answering an interval stab-
bing query as follows. By definitions of cost and fi,j , we have that cost(d, h) =∑

j−i≤h fi,j(d). Hence, to evaluate the value of cost(d, h) we need to sum up the
y-coordinates of intersections of line x = d with L ∈ F , where z(L) ≤ h. That
is, cost(d, h) =

∑
L∈G(y1(L) + (d − x1(L)) × y2(L)−y1(L)

x2(L)−x1(L)), where G = {L ∈ F |
d ∈ [x1(L), x2(L)], z(L) ≤ h}. Set G contains those segments below level h that

348 K.-Y. Chen, P.-H. Hsu, and K.-M. Chao

are stabbed by vertical line x = d. Given set F , reporting segments in G is in
essence a two-dimensional interval stabbing query. However, our cost query is
more like a counting query which asks for a value concerning the intersections.
Below, we demonstrate how to utilize a segment tree to answer a cost query.

Let m denote the size of F . The x-coordinates of endpoints of segments in F
subdivide the x-axis into 2m+1 intervals, called atomic intervals.1 The segment
tree T built based on F is a balanced binary tree, whose leaves are in 1–1 cor-
respondence with the atomic intervals, ordered from left to right. Each segment
of F is split into several pieces and stored in at most 2 log m nodes of T (see [3]
for more details). An internal node u of T corresponds to the union of the atomic
intervals of its descendent leaves, denoted by interval Iu. A segment is said to
span Iu if its projection to the x-axis covers Iu. We store a piece of L ∈ F in
node u if L spans Iu but does not span Ip, where p is u’s parent. The stored
piece will be the part of L whose x-coordinates lying in range Iu.

At answering a cost(d, h), we traverse T from the root to a leaf node, where
the path is determined by value d. All pieces found at the nodes along this path
belong to segments stabbed by vertical line x = d. Recall that our cost query
relates to intersections of the stabbed pieces that are below level h. Thus, we
keep the stored pieces in a node ordered by their levels. Moreover, we replace
each piece by an accumulated segment which sums up all pieces in the same node
that are below its level. To sum up two pieces in a node we simply add up the
corresponding y-coordinates of their two endpoints. Then, for each node in the
query path we need only to perform a binary search to retrieve the accumulated
segment with highest level below h and compute its intersection with vertical
line x = d. A cost query can now be answered in O(log2 m) time.

To reduce the time to O(log m), we apply the standard technique of fractional
cascading, described in [15,18]. We add auxiliary lists of pointers to nodes of T .
With the help of auxiliary lists, only one binary search is needed at root node,
and the binary searches in the rest of the query path are saved by using pointers
(see Figure 5). More specifically, each accumulated segment is associated with a
pointer, and the auxiliary lists are constructed bottom-up by merging the point-
ers in children’s nodes. Besides, each pointer is linked to pointers in children’s
lists, if any, with level preceding it.

Lemma 5. The segment tree T can be built in O(n2 log n) time and space.

Proof. Inserting a segment of F into T involves two search paths of length
O(log m). All auxiliary pointers concerning the inserted segment are contained in
nodes along these two paths. Hence, the total size of auxiliary lists is O(m log m).
As long as we insert segments of F from the lowest level to higher levels in
order, both replacing with accumulated segments and constructing links between
pointers can be easily done in a dynamic programming fashion. Since m = O(n2),
the lemma thus follows. 	

1 To simplify the discussion, we assume that the 2m endpoints of segments in F have

distinct x-coordinates. Moreover, we do not construct a leaf node for each endpoint

of the segments.

Identifying Approximate Palindromes in Run-Length Encoded Strings 349

1

2

3
4

4

1 442 1

1 32 3

4

41

1 2 3 4

1 3 41 2 3

1 2 32

2 1 4 4

1 41 3 4

x = d

Fig. 5. The left side of the figure depicts the segment tree T which stores four two-

dimensional segments as shown below the tree. The number next to each segment

indicates the block level of the segment. Each segment is partitioned and stored as

accumulated segments in (grey-shaded) nodes of T . For example, the segment of level 1

is split into three pieces and stored as accumulated segments in two leaf nodes and one

internal node. The nodes of T are associated with auxiliary lists of pointers, shown on

the right side of the figure. To retrieve the accumulated segment stabbed by vertical

line x = d and having the highest level below level h, only one binary search is needed

at the root’s auxiliary list. The binary searches in the rest of nodes along the query

path are saved by directly following the pointers.

Theorem 2. The second algorithm runs in 〈n2 log n, log2 n〉 time and O(n2 log n)
space.

Proof. Immediate from Lemmas 3, 4, 5 and procedure Query2. 	

5 Concluding Remarks

In this paper, we show how to preprocess an rle string, with time polynomial in
the number of runs, to support online queries of the longest approximate palin-
drome with a specified center position and a specified threshold of mismatches
between the two arms. We would like to remark that both of our approaches can
be easily extended to support queries of gapped palindromes whose two arms are
separated by a nonempty substring called loop [13]. Moreover, in biological ap-
plication a palindromic DNA sequence contains two paired strands of nucleotides
complementary to each other. It is also not hard to adapt our approach to finding
palindromes with complementary arms by redefining the notion of matching.

References

1. Amir, A., Benson, G.: Efficient Two-Dimensional Compressed Matching. In: Data

Compression Conference, pp. 279–288 (1992)

2. Apostolico, A., Landau, G.M., Skiena, S.: Matching for Run-Length Encoded

Strings. Journal of Complexity 15(1), 4–16 (1999)

350 K.-Y. Chen, P.-H. Hsu, and K.-M. Chao

3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-

try: Algorithms and Applications. Springer, Heidelberg (2008)

4. Bentley, J.L.: Solutions to Klee’s Rectangle Problems. Technical Report, Carnegie-

Mellon University, Pittsburgh, PA (1977)

5. Chen, K.-Y., Chao, K.-M.: A Fully Compressed Algorithm for Computing the Edit

Distance of Run-Length Encoded Strings. In: de Berg, M., Meyer, U. (eds.) ESA

2010. LNCS, vol. 6346, pp. 415–426. Springer, Heidelberg (2010)

6. Chen, K.-Y., Hsu, P.-H., Chao, K.-M.: Hardness of Comparing Two Run-Length

Encoded Strings. Journal of Complexity (accepted) (A preliminary version ap-

peared in CPM 2009)

7. Diede, S.J., Tanaka, H., Bergstrom, D.A., Yao, M.-C., Tapscott, S.J.: Tapscott:

Genome-wide Analysis of Palindrome Formation. Nature Genetics 42(4), 279

(2010)

8. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the Sorting-Complexity

of Suffix Tree Construction. Journal of ACM 47(6), 987–1011 (2000)

9. Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient Algorithms

for Lempel-Ziv Encoding (Extended Abstract). In: Karlsson, R., Lingas, A. (eds.)

SWAT 1996. LNCS, vol. 1097, pp. 392–403. Springer, Heidelberg (1996)

10. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Cambridge University Press, Cambridge (1997)

11. Harel, D., Tarjan, R.E.: Fast Algorithms for Finding Nearest Common Ancestors.

SIAM Journal on Computing 13(2), 338–355 (1984)

12. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A Unified Algorithm for

Accelerating Edit-Distance Computation via Text-Compression. In: STACS, pp.

529–540 (2009)

13. Hsu, P.-H., Chen, K.-Y., Chao, K.-M.: Finding All Approximate Gapped Palin-

dromes. In: ISAAC, pp. 1084–1093 (2009)

14. Liu, J.J., Huang, G.S., Wang, Y.L.: A Fast Algorithm for Finding the Posi-

tions of All Squares in a Run-Length Encoded String. Theoretical Computer Sci-

ence 410(38-40), 3942–3948 (2009)

15. Lueker, G.S.: A Data Structure for Orthogonal Range Queries. In: FOCS, pp. 28–34

(1978)

16. Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto,

K.: Efficient Algorithms to Compute Compressed Longest Common Substrings and

Compressed Palindromes. Theoretical Computer Science 410(8-10), 900–913 (2009)

17. Rytter, W.: Algorithms on Compressed Strings and Arrays. In: Bartosek, M., Tel,

G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 48–65. Springer, Hei-

delberg (1999)

18. Willard, D.E.: Predicate-Oriented Database Search Algorithms. Garland Publish-

ing, New York (1978)

Minimum Cost Partitions
of Trees with Supply and Demand

Takehiro Ito1, Takuya Hara1, Xiao Zhou1, and Takao Nishizeki2

1 Graduate School of Information Sciences, Tohoku University,

Aoba-yama 6-6-05, Sendai, 980-8579, Japan

takehiro@ecei.tohoku.ac.jp,

hara@nishizeki.ecei.tohoku.ac.jp,

zhou@ecei.tohoku.ac.jp
2 School of Science and Technology, Kwansei Gakuin University,

2-1 Gakuen, Sanda, 669-1337, Japan

nishi@kwansei.ac.jp

Abstract. Let T be a given tree. Each vertex of T is either a supply

vertex or a demand vertex, and is assigned a positive integer, called the

supply or the demand. Every demand vertex v of T must be supplied an

amount of “power,” equal to the demand of v, from exactly one supply

vertex through edges in T . Each edge e of T has a direction, and is

assigned a positive integer which represents the cost required to delete e
from T or reverse the direction of e. Then one wishes to obtain subtrees

of T by deleting edges and reversing the directions of edges so that (a)

each subtree contains exactly one supply vertex whose supply is no less

than the sum of all demands in the subtree and (b) each subtree is rooted

at the supply vertex in a sense that every edge is directed away from the

root. We wish to minimize the total cost to obtain such rooted subtrees

from T . In the paper, we first show that this minimization problem is

NP-hard, and then give a pseudo-polynomial-time algorithm to solve the

problem. We finally give a fully polynomial-time approximation scheme

(FPTAS) for the problem.

1 Introduction

In this paper, we deal with a directed graph G in which each vertex is either
a supply vertex or a demand vertex. Each vertex v of G is assigned a positive
integer, which is called the supply of v if v is a supply vertex, otherwise, called
the demand of v. Each edge e of G is assigned a positive integer, called the
cost of e, which represents the cost required to delete e from G or reverse the
direction of e. Figure 1(a) illustrates a tree T , in which each edge has a direction,
each supply vertex is drawn as a rectangle and each demand vertex as a circle,
the supply or demand is written inside, and the cost is attached to each edge.
Assume that the “power” can flow only along the direction of an edge, and that
each demand vertex can receive power from exactly one supply vertex through
directed edges in G. One thus wishes to partition G into subtrees, that is, obtain

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 351–362, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

352 T. Ito et al.

155 6 3

7 23
20

7 2 3

53

10 7

8 6
2

10 3

2 4
8

15 4

2 1

(a) (b)

155 6 3

7 23
20

7 2 3

53

10 7

8 6
2

10 3

2 4
8

15 4

2 1

Fig. 1. (a) Tree T and (b) rooted subtrees of T

rooted subtrees from G by deleting some edges or reversing the directions of
some edges, so that

(a) each subtree has exactly one supply vertex whose supply is no less than
the sum of demands of all demand vertices in the subtree; and

(b) each subtree is rooted at the supply vertex in a sense that every edge is
directed away from the root.

We wish to minimize the total cost to obtain such rooted subtrees from a given
graph G; the total cost is the sum of costs of all edges that are deleted from
G or are reversed the directions. The problem is called the minimum partition
problem for G. Figure 1(b) illustrates an optimal solution for the tree T in Fig.
1(a), that is, a partition of T into rooted subtrees; each subtree is surrounded
by a thin dotted curve; all the deleted edges are drawn by thick dotted lines,
and all the edges whose directions are reversed are drawn by thick solid lines;
the direction of each edge in rooted subtrees is indicated by a white arrow; the
minimum total cost is (5 + 2 + 3) + (8 + 6 + 3 + 2 + 4) = 33.

The minimum partition problem has some applications to the power supply
problem for power delivery networks [1,4,5,6,8,9]. Let G be a directed graph of
a power delivery network. Each supply vertex represents a “feeder,” which can
supply electrical power. Each demand vertex represents a “load,” which requires
electrical power supplied from exactly one of the feeders through a network.
Each directed edge of G represents a cable segment, which can be “turned off”
by a switch in the segment; when the switch is “turned on,” the power can flow
through the cable segment only in the direction of the switch. The direction of
the switch must be reversed if one wishes to flow power in the other direction.
Thus, the minimum partition problem represents the “power supply switching
problem” to minimize the sum of costs for “reconfiguring” the network by either
turning off or reversing some switches in cable segments.

A simple problem to examine only whether a given graph has at least one par-
tition (into subtrees satisfying (a) and (b) above) is called the partition problem.
Ito et al. showed that the problem is NP-complete even for series-parallel graphs
[6]. Therefore, it is very unlikely that the problem can be solved in polynomial
time even for series-parallel graphs. However, they showed that the problem can
be solved in linear time for trees [5]. One of their algorithms actually finds a
partition of a given tree T if there is, but the cost to obtain a partition is not

Minimum Cost Partitions of Trees with Supply and Demand 353

always minimum. Thus, it has been desired to obtain an efficient algorithm
to find a partition of a tree with the minimum cost. (They also gave a fully
polynomial-time approximation scheme (FPTAS) for the problem of maximiz-
ing the sum of demands supplied power when a given tree has no partition [5].)

In this paper, we give the following three results for the minimum partition
problem for trees. The first is to show that the knapsack problem [2] can be
reduced in linear time to the minimum partition problem for trees of height two,
and hence the minimum partition problem is NP-hard even for trees. The second
is to give a pseudo-polynomial-time algorithm to solve the problem for trees T .
The algorithm is based on a sophisticated dynamic programming approach and
takes time O(n + W 2), where n is the number of vertices in T and W is the
sum of costs of all edges in T . Thus, our algorithm takes polynomial time if W
is bounded by a polynomial in n. As the third result, we give an FPTAS for the
minimum partition problem for trees. The main idea of the FPTAS is to find an
approximate solution by repeating the pseudo-polynomial-time algorithm with
appropriately chosen scaling factors.

2 Pseudo-Polynomial-Time Algorithm

The minimum partition problem was defined informally in Introduction. In this
section, we first formally define the minimum partition problem, and then give
a pseudo-polynomial-time algorithm for the problem.

We deal with a directed graph G = (V, E) with vertex set V and edge set E. V
is often denoted by V (G), and E by E(G). Throughout the paper, we denote by
(v, w) a directed edge in G joining vertices v and w whose direction is from v to
w. We denote by sup(v) the supply of a supply vertex v, by dem(w) the demand
of a demand vertex w, and by c(e) the cost of an edge e. A partition P of G is to
partition G into subtrees by deleting edges from G so that each subtree contains
exactly one supply vertex whose supply is no less than the sum of all demands in
the subtree. P often denotes the set of subtrees. For a partition P and an edge e,
we denote by c(P , e) the cost paid by P for e; c(P , e) = c(e) if either e is deleted
from G or the direction of e is toward the supply vertex in the subtree containing
e; otherwise, c(P , e) = 0. The cost c(G,P) of a partition P is the sum of costs
c(P , e) paid by P for all edges e in G, that is, c(G,P) =

∑
e∈E c(P , e). We call P

the minimum partition of G if c(G,P) is minimum among all partitions of G. We
denote by OPT(G) the cost of a minimum partition of G; let OPT(G) = +∞ if
G has no partition. The minimum partition problem is to compute OPT(G) for a
given directed graph G, and to find a minimum partition unless OPT(G) = +∞.

Our first result is the following theorem, whose proof is omitted from this
extended abstract.

Theorem 1. The minimum partition problem is NP-hard even for trees of height
two.

In this section, as the second result, we show that the minimum partition problem
for a tree T = (V, E) can be solved in pseudo-polynomial time. Indeed, we

354 T. Ito et al.

introduce a generalized problem, called the minimum R-partition problem for a
subset R of E, and show that the problem can be solved in pseudo-polynomial
time.

A partition P of T is called an R-partition if c(P , e) = 0 for every edge e ∈ R,
that is, e is neither deleted from T nor directed toward the supply vertex in
the subtree containing e. We call P the minimum R-partition of T if c(T,P) is
minimum among all R-partitions of T . We denote by OPT(T, R) the cost of a
minimum R-partition of T ; let OPT(T, R) = +∞ if T has no R-partition. The
minimum R-partition problem is to compute OPT(T, R), and to find a minimum
R-partition P of T unless OPT(T, R) = +∞. The minimum partition problem is
merely the minimum R-partition problem for R = ∅. (Our FPTAS in Section 3
finds an approximate solution as the best one among R-partitions of T for some
subsets R of E.)

The main result of this section is the following theorem.

Theorem 2. For a directed tree T = (V, E) and a subset R of E, the minimum
R-partition problem can be solved in time O(n + W 2

R), where n is the number of
vertices in T and WR =

∑
e∈E\R c(e).

In the remainder of this section, as a proof of Theorem 2, we give an algorithm to
solve the minimum R-partition problem in time O(n+W 2

R). We indeed show only
how to compute the minimum cost OPT(T, R). It is easy to modify our algorithm
so that it actually finds a minimum R-partition of T unless OPT(T, R) = +∞.
Note that c(T,P) ≤ WR for every R-partition P of T .

One may assume without loss of generality that T is a rooted tree with an
arbitrarily chosen root r. For each vertex u of T , we denote by Tu the subtree of T
which is rooted at u and is induced by all descendants of u in T . Every R-partition
of T naturally induces a partition of the vertex set V (Tu) of Tu. (See Figs. 2
and 3, where each subtree is indicated by a dotted closed curve.) However, the
induced partition does not always form an R′-partition of Tu for R′ = R∩E(Tu),
because the subtree of Tu containing u may have no supply vertex. (See Figs. 3(a)
and (b).) We will later define such a partition as an “extendable R′-partition” of
Tu, and consider the power flow in the edge joining u and its parent in T . More
precisely, we consider the following two types of extendable R′-partitions of Tu.
The first is called a “j-out partition,” which can deliver an amount j of marginal
power outside Tu through u. The second is called a “j-in partition,” which needs

r
j

(a) (b)

u

v
Pu

j

u

v

Fig. 2. (a) R-partition of tree T and (b) j-out partition of subtree Tu

Minimum Cost Partitions of Trees with Supply and Demand 355

r
j

(a) (b)

u Pu u

j

u no supply

Fig. 3. (a) R-partition of tree T and (b) j-in partition of subtree Tu

an amount j of deficient power to be delivered inside Tu through u. For these
extendable R′-partitions, we introduce two functions fout(Tu, x) and fin(Tu, x),
0 ≤ x ≤ WR; fout(Tu, x) is the maximum marginal power of a j-out partition P
of Tu such that c(Tu,P) ≤ x; and fin(Tu, x) is the minimum deficient power of
a j-in partition P of Tu such that c(Tu,P) ≤ x. We compute fout and fin from
the leaves to the root r of T by means of dynamic programming.

We now formally define the notion of an extendable R′-partition of Tu for
R′ ⊆ E(Tu). (Intuitively, R′ = R ∩ E(Tu).) An extendable R′-partition P of Tu

is a partition of Tu into subtrees such that
(a) the subtree Pu ∈ P containing u contains at most one supply vertex, and

each subtree Pi ∈ P \ {Pu} contains exactly one supply vertex;
(b) if a subtree Pi ∈ P contains a supply vertex v, then sup(v) ≥

∑
w∈V (Pi)\{v}

dem(w); and
(c) c(P , e) = 0 for each edge e ∈ R′.

Thus, an extendable R′-partition of Tu is an R′-partition of Tu if Pu contains a
supply vertex.

Let ms be the maximum supply, that is, ms = max{sup(v) | v is a supply
vertex in T }. Let Zs be the set of all integers j such that 0 ≤ j ≤ ms. We then
classify the set of all extendable R′-partitions of Tu into several subclasses, called
j-out partitions and j-in partitions for j ∈ Zs.

(a) An extendable R′-partition P of Tu is called a j-out partition if the subtree
Pu ∈ P contains a supply vertex v and sup(v) ≥ j +

∑
w∈V (Pu)\{v} dem(w). (See

Fig. 2(b).) A j-out partition of Tu corresponds to an R-partition of the whole
tree T in which all demand vertices in Pu are supplied power from a supply
vertex in Tu, as illustrated in Figs. 2(a) and (b); an amount j of power can be
delivered outside Tu through u, and hence the “margin” of P is j. Note that any
R′-partition of Tu is a j-out partition for some integer j ∈ Zs.

(b) An extendable R′-partition P of Tu is called a j-in partition if Pu contains
no supply vertex and

∑
w∈V (Pu) dem(w) ≤ j. (See Fig. 3(b).) Thus, if P is a

j-in partition of Tu, then u is a demand vertex and dem(u) ≤ j. A j-in partition
of Tu corresponds to an R-partition of T in which all (demand) vertices in Pu

including u are supplied power from a supply vertex outside Tu, as illustrated in
Figs. 3(a) and (b); an amount j of power must be delivered inside Tu through

356 T. Ito et al.

u, and hence the “deficiency” of P is j. Note that there is no 0-in partition of
Tu, because dem(w) > 0 for every demand vertex w in T .

We are now ready to give a formal definition of two functions fout and fin.
Let ZWR be the set of all integers x such that 0 ≤ x ≤ WR. We first define
fout(Tu, x) for a subtree Tu and an integer x ∈ ZWR , as follows:

fout(Tu, x) = max{j ∈ Zs | Tu has a j-out partition P
such that c(Tu,P) ≤ x}. (1)

Thus, fout(Tu, x) is the maximum amount j of “marginal power” of a j-out
partition P such that c(Tu,P) ≤ x. If Tu has no j-out partition P with c(Tu,P) ≤
x for all integers j ∈ Zs, then let fout(Tu, x) = −∞. We then define fin(Tu, x)
for a subtree Tu and an integer x ∈ ZWR , as follows:

fin(Tu, x) = min{j ∈ Zs | Tu has a j-in partition P such that c(Tu,P) ≤ x}.

Thus, fin(Tu, x) is the minimum amount j of “deficient power” of a j-in partition
P such that c(Tu,P) ≤ x. If Tu has no j-in partition P with c(Tu,P) ≤ x for all
integers j ∈ Zs, then let fin(Tu, x) = +∞.

Our algorithm computes the two functions fout(Tu, x) and fin(Tu, x) for each
vertex u of T from the leaves to the root r of T by means of dynamic program-
ming. Since T = Tr, one can easily compute the minimum cost OPT(T, R) from
fout(Tr, x), as follows:

OPT(T, R) = min{x ∈ ZWR | fout(Tr, x) �= −∞} (2)

if fout(Tr, x) �= −∞ for some integer x ∈ ZWR ; otherwise, OPT(T, R) = +∞.
Let u be a vertex of T , let u1, u2, · · · , ul be the children of u ordered arbitrarily,

and let ei, 1 ≤ i ≤ l, be the edge joining u and ui. For each i, 1 ≤ i ≤ l, let Tui

be the subtree of T which is rooted at ui and is induced by all descendants of
ui in T . We denote by T i

u the subtree of T which consists of the vertex u, the
edges e1, e2, · · · , ei and the subtrees Tu1 , Tu2 , · · · , Tui . Clearly Tu = T l

u. For the
sake of notational convenience, we denote by T 0

u the tree consisting of a single
vertex u.

One can easily compute fout(T 0
u , x) and fin(T 0

u , x) for each vertex u of T . (Due
to the page limitation, we omit the details.)

We now compute the two functions fout(T i
u, x) and fin(T i

u, x), 1 ≤ i ≤ l, for
each internal vertex u of T from the counterparts of T i−1

u and Tui , where l is the
number of the children of u. However, due to the page limitation, we show only
how to compute fout(T i

u, x); one can compute fin(T i
u, x) similarly. Remember

that Tu = T l
u, and that T i

u is obtained from T i−1
u and Tui by joining u and ui as

illustrated in Fig. 4, where T i−1
u is indicated by a thin dotted closed curve. We

denote by γ(u, ui) the cost paid for ei by a partition in which ei is not deleted
and the power flows through ei from u to ui, that is,

γ(u, ui) =
{

0 if ei = (u, ui);
c(ei) if ei = (ui, u).

Minimum Cost Partitions of Trees with Supply and Demand 357

(a) (b) (c)

Tu1

Tu

Tui-1 Tui

u1

j

k

k - j

ui-1

u

ui
ei

...

...

i-1

Tu
i

j + k

Tu1

Tu

Tui-1 Tui

u1

j

k ui-1

u

ui
ei

...

...

i-1

Tu
i

k

Tu1

Tu

Tui-1 Tui

u1

j

j ui-1

u

ui
ei

...

...

i-1

Tu
i

Fig. 4. Power flow in a j-out partition of T i
u

We denote by γ(ui, u) the cost paid for ei by a partition in which ei is not deleted
and the power flows through ei from ui to u.

We explain how to compute fout(T i
u, x). Let P be a j-out partition of T i

u such
that c(T i

u,P) ≤ x and j = fout(T i
u, x) �= −∞. Then, there are the following three

cases (a)–(c), as illustrated in Figs. 4(a)–(c), respectively:
Case (a): ei is not deleted in P and the power flows through ei from u to ui;
Case (b): ei is not deleted in P but the power flows through ei from ui to u;

and
Case (c): ei is deleted in P .

Figures 4(a)–(c) illustrate the power flows in T i
u for the three cases, where an

arrow represents the direction of power flow and a thick dotted line represents
a deleted edge. For two integers x ∈ ZWR and y ∈ ZWR , we define fa

out(T i
u, x, y),

fb
out(T

i
u, x, y) and f c

out(T
i
u, x, y) for Cases (a), (b) and (c), respectively. Intuitively,

x and y are the costs for T i
u and T i−1

u , respectively.

Case (a): ei is not deleted in P and the power flows through ei from u to ui.
In this case, we have

c(P , ei) = γ(u, ui) =
{

0 if ei = (u, ui);
c(ei) if ei = (ui, u).

(See Fig. 4(a).) Therefore, if ei ∈ R and ei = (ui, u), then we define fa
out(T

i
u, x, y)

= −∞ for every pair (x, y) of integers x, y ∈ ZWR . One may thus assume that
either ei �∈ R or ei = (u, ui) if ei ∈ R. Then, ui is supplied power from a vertex
in T i−1

u , and either u is a supply vertex or both u and ui are supplied power
from the same supply vertex in T i−1

u . Therefore, for some integer k ∈ Zs with
k ≥ j, the j-out partition P of T i

u can be obtained by merging a k-out partition
P1 of T i−1

u and a (k − j)-in partition P2 of Tui such that

c(T i
u,P) = c(T i−1

u ,P1) + c(Tui ,P2) + γ(u, ui).

Since c(T i
u,P) ≤ x, we have c(T i−1

u ,P1) ≤ y and c(Tui ,P2) ≤ x−y −γ(u, ui) for
some integer y ∈ ZWR . Since P1 is a k-out partition of T i−1

u with c(T i−1
u ,P1) ≤ y,

one may assume by Eq. (1) that k = fout(T i−1
u , y). Similarly, one may assume

that k − j = fin(Tui , x − y − γ(u, ui)). Since fout(T i
u, x) = j = k − (k − j), we

define
fa
out(T

i
u, x, y) = fout(T i−1

u , y) − fin(Tui , x − y − γ(u, ui)). (3)

358 T. Ito et al.

Similarly as Case (a) above, we define fb
out(T

i
u, x, y) and f c

out(T
i
u, x, y) for two

integers x ∈ ZWR and y ∈ ZWR for Cases (b) and (c), respectively. Then, we
compute fout(T i

u, x) as follows:

fout(T i
u, x) = max{fa

out(T
i
u, x, y), fb

out(T
i
u, x, y), f c

out(T
i
u, x, y) | y ∈ ZWR}.(4)

Proof of Theorem 2
For a vertex u of T and an index i, 0 ≤ i ≤ l, we denote by WR(T i

u) the
sum of costs of all edges in E(T i

u) \ R. Then, c(T i
u,P) ≤ WR(T i

u) for every
extendable R′-partition P of T i

u, where R′ = R ∩ E(T i
u). Thus one can easily

observe that it suffices to compute fout(T i
u, x) and fin(T i

u, x) only for integers
x, 0 ≤ x ≤ WR(T i

u). We denote by Time
(
T i

u

)
the computation time of our

algorithm for T i
u.

Clearly, WR(T 0
u) = 0 for each vertex u of T . Therefore, one can easily compute

fout(T 0
u , 0) and fin(T 0

u , 0) for a vertex u of T in time O(1). We thus have

Time
(
T 0

u

)
= O(1). (5)

Therefore, fout(T 0
u′ , 0) and fin(T 0

u′ , 0) can be computed for all vertices u′ of T i
u

in time O(ni
u), where ni

u is the number of vertices in T i
u.

We then show that Time
(
T i

u

)
= O

(
ni

u + (WR(T i
u))2

)
. Since T i

u is obtained
from T i−1

u and Tui by adding an edge ei, we have

WR(T i
u) =

{
WR(T i−1

u) + WR(Tui) + c(ei) if ei /∈ R;
WR(T i−1

u) + WR(Tui) if ei ∈ R.
(6)

Using Eqs. (3) and (4), one can trivially compute fout(T i
u, x) for all integers

x, 0 ≤ x ≤ WR(T i
u), in time O

(
(WR(T i

u) + 1) × (WR(T i−1
u) + 1)

)
because

0 ≤ x ≤ WR(T i
u) and 0 ≤ y ≤ WR(T i−1

u). However, one can easily observe that
it can be done in time O

(
WR(T i

u)+1+(WR(T i−1
u)+1)×(WR(Tui)+1)

)
because

Eq. (3), for example, can be rewritten as follows: for 0 ≤ y ≤ WR(T i−1
u) and

0 ≤ z ≤ WR(Tui)

fa
out(T

i
u, y + z + γ(u, ui), y) = fout(T i−1

u , y) − fin(Tui , z)

if 0 ≤ y + z + γ(u, ui) ≤ WR(T i
u). Similarly, one can compute fin(T i

u, x) for all
integers x, 0 ≤ x ≤ WR(T i

u), from the counterparts of T i−1
u and Tui in time

O
(
WR(T i

u) + 1 + (WR(T i−1
u) + 1) × (WR(Tui) + 1)

)
. Therefore, we have

Time
(
T i

u

)
= Time

(
T i−1

u

)
+ Time

(
Tui

)
+O

(
WR(T i

u) + 1 + (WR(T i−1
u) + 1) × (WR(Tui) + 1)

)
.

Solving the recurrence equation above with Eqs. (5) and (6), we have Time
(
T i

u

)
=

O
(
ni

u + (WR(T i
u))2

)
.

Since Tr has n vertices and WR(Tr) = WR for the root r of T , we have
Time

(
Tr

)
= O(n + W 2

R). One can thus compute fout(Tr, x) and fin(Tr, x) in

Minimum Cost Partitions of Trees with Supply and Demand 359

time O(n + W 2
R) for all integers x, 0 ≤ x ≤ WR. Then, by Eq. (2) one can

compute OPT(T, R) from fout(Tr, x) in time O(WR).
Thus, the minimum R-partition problem for a tree T can be solved in time

O(n + W 2
R). 	

3 FPTAS

The main result of this section is the following theorem.

Theorem 3. There is a fully polynomial-time approximation scheme for the
minimum partition problem for trees.

In the remainder of this section, as a proof of Theorem 3, we give an algorithm
to find a partition P of a tree T = (V, E) with c(T,P) < (1 + ε)OPT(T) in time
polynomial in both n and 1/ε for any real number ε > 0. Thus, our approximate
value for T is c(T,P), and the error must be bounded by εOPT(T), that is,

c(T,P) − OPT(T) < εOPT(T). (7)

We extend the ordinary “scaling and rounding” technique [2,3,4,5,7] to the
minimum partition problem, and introduce new techniques. Trivially, the mini-
mum partition problem can be solved in linear time if a given tree T has exactly
one supply vertex; OPT(T) is the sum of costs of all edges that are directed
toward the supply vertex unless OPT(T) = +∞. One may thus assume that T
has two or more supply vertices. Then one or more edges must be deleted in
every partition P of T and hence c(P , e) > 0 for some edge e of T . Assume that
the edges e1, e2, · · · , en−1 in E are labeled in non-increasing order with respect
to the cost c, that is, c(e1) ≥ c(e2) ≥ · · · ≥ c(en−1). We define subsets Ri,
0 ≤ i ≤ n − 2, of E as follows: R0 = ∅, and Ri = {e1, e2, · · · , ei}, 1 ≤ i ≤ n − 2.
Let T i = (V, E), 0 ≤ i ≤ n− 2, be the tree with the same vertex set V and edge
set E as T , but the cost c̄i(e) of each edge e in T i is defined as follows:

c̄i(e) =
⌈

c(e)
ti

⌉
, (8)

where ti (> 0) is a scaling factor which will be decided later. Clearly, P is an
Ri-partition of T if and only if P is an Ri-partition of T i.

[Algorithm]
Our algorithm finds an approximate solution P by repeating the algorithm in
Section 2, as follows:

Step 1. Execute the following (1) and (2) for each i, 0 ≤ i ≤ n − 2:
(1) find a minimum Ri-partition Pi of T i with respect to the cost c̄i

by the algorithm in Section 2; and
(2) regard Pi as an approximate solution for T , and compute its cost

c(T,Pi) with respect to the original cost c;

360 T. Ito et al.

Step 2. Choose a partition having the minimum cost among P0,P1, · · · ,Pn−2

as our approximate solution P of the minimum partition problem for
T , and hence

c(T,P) = min{c(T,Pi) | 0 ≤ i ≤ n − 2}. (9)

[Computation time]
We first show that our algorithm finds the partition P of T in time polynomial
in both n and 1/ε. It suffices to show that the minimum Ri-partition Pi of tree
T i, 0 ≤ i ≤ n − 2, can be found in time O(n4/ε2). Then P can be found in time
O(n5/ε2).

Our idea is to choose appropriately the scaling factor ti. Let WRi =
∑

e∈E\Ri

c̄i(e). Then, using the algorithm in Section 2, one can find the minimum Ri-
partition Pi of T i, 0 ≤ i ≤ n − 2, in time O(n + W

2

Ri
). Since c(e1) ≥ c(e2) ≥

· · · ≥ c(en−1) and Ri = {e1, e2, · · · , ei}, we have

WRi =
∑

e∈E\Ri

c̄i(e) < nc̄i(ei+1). (10)

We choose the scaling factor ti as follows:

ti =
εc(ei+1)

n
. (11)

Then, by Eqs. (8), (10) and (11) we have

WRi < n

⌈
c(ei+1)

ti

⌉
< n

(n

ε
+ 1

)
=

n2

ε
+ n.

Thus Pi can be found in time O(n + W
2

Ri
) = O(n4/ε2).

[Error]
We finally show that our approximate solution P satisfies Eq. (7).

Consider an arbitrary minimum partition P∗ of T , whose cost is OPT(T).
Clearly, P∗ is an Ri-partition of T for some indices i, 0 ≤ i ≤ n−2. Let k be the
maximum one among these indices. Then P∗ is indeed a minimum Rk-partition
of T , and c(P∗, ek+1) > 0. We thus have

OPT(T) = c(T,P∗) = OPT(T, Rk) ≥ c(ek+1). (12)

The minimum Rk-partition Pk of T k is of course a partition of T . It suffices to
show that

c(T,Pk) < (1 + ε)OPT(T, Rk), (13)

because Eqs. (9), (12) and (13) immediately imply c(T,P) < (1+ε)OPT(T) and
hence Eq. (7) holds.

We now verify Eq. (13). Let E∗ = {e ∈ E | c(P∗, e) > 0}, then by Eq. (12)
we have

OPT(T, Rk) = c(T,P∗) =
∑

e∈E∗

c(e). (14)

Minimum Cost Partitions of Trees with Supply and Demand 361

Let Ek = {e ∈ E | c(Pk, e) > 0}, then

c(T,Pk) =
∑

e∈Ek

c(e). (15)

By Eq. (8) we have
tk c̄k(e) ≥ c(e) > tk

(
c̄k(e) − 1

)
(16)

for every edge e ∈ E. Therefore, by Eqs. (14) and (16) we have

OPT(T, Rk) >
∑

e∈E∗

tk
(
c̄k(e) − 1

)
=

∑
e∈E∗

tk c̄k(e) − tk|E∗|. (17)

Clearly, for each edge e ∈ E, c̄k(P∗, e) > 0 if and only if c(P∗, e) > 0. We
hence have c̄k(T k,P∗) =

∑
e∈E∗ c̄k(e). Pk is a minimum Rk-partition of T k with

respect to the cost c̄k, while P∗ is not necessarily a minimum Rk-partition of
T k. Therefore, we have∑

e∈E∗

c̄k(e) = c̄k(T k,P∗) ≥ c̄k(T k,Pk) =
∑

e∈Ek

c̄k(e)

and hence ∑
e∈E∗

tk c̄k(e) ≥
∑

e∈Ek

tk c̄k(e). (18)

Thus, by Eqs. (15)–(18) we have

OPT(T, Rk) >
∑

e∈Ek

tk c̄k(e) − tk|E∗| ≥
∑

e∈Ek

c(e) − tk|E∗|

= c(T,Pk) − tk|E∗|. (19)

Since |E∗| < n, by Eqs. (11), (12) and (19) we have

c(T,Pk) − OPT(T, Rk) < tkn = εc(ek+1) ≤ εOPT(T, Rk).

We have thus verified Eq. (13).

This completes the proof of Theorem 3. 	

4 Conclusions

In this paper, we studied the minimum partition problem for trees. We first
show that the problem is NP-hard even for trees of height two. We then give an
algorithm to solve the minimum R-partition problem for a tree T = (V, E) of
n vertices in time O(n + W 2

R), where WR =
∑

e∈E\R c(e). Thus, the algorithm
takes polynomial time if WR is bounded by a polynomial in n. Based on the
algorithm, we finally show that there is an FPTAS for the minimum partition
problem for trees. It is easy to modify our algorithms so that they actually find
a partition of a given tree.

362 T. Ito et al.

In all partitions of a tree T , the same number ns −1 of edges must be deleted,
where ns is the number of supply vertices in T . Thus, if c(e) = 1 for all edges e,
then the minimum partition problem is simply to obtain desired rooted subtrees
from T by deleting ns − 1 edges and reversing the directions of the minimum
number of edges. Theorem 2 implies that such an instance can be solved in time
O(n2).

Consider finally a slightly modified instance in which each edge e of a tree T
is assigned two positive integers cdel(e) and crev(e); cdel(e) represents the cost
required to delete e from T , while crev(e) represents the cost required to reverse
the direction of e. Our results can be easily extended to such a case.

References

1. Boulaxis, N.G., Papadopoulos, M.P.: Optimal feeder routing in distribution system

planning using dynamic programming technique and GIS facilities. IEEE Trans. on

Power Delivery 17, 242–247 (2002)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco (1979)

3. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum

of subset problems. J. ACM 22, 463–468 (1975)

4. Ito, T., Demaine, E.D., Zhou, X., Nishizeki, T.: Approximability of partitioning

graphs with supply and demand. J. of Discrete Algorithms 6, 627–650 (2008)

5. Ito, T., Zhou, X., Nishizeki, T.: Partitioning trees of supply and demand. Interna-

tional J. of Foundations of Computer Science 16, 803–827 (2005)

6. Ito, T., Zhou, X., Nishizeki, T.: Partitioning graphs of supply and demand. Discrete

Applied Mathematics 157, 2620–2633 (2009)

7. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg

(2004)

8. Morton, A.B., Mareels, I.M.Y.: An efficient brute-force solution to the network re-

configuration problem. IEEE Trans. on Power Delivery 15, 996–1000 (2000)

9. Teng, J.-H., Lu, C.-N.: Feeder-switch relocation for customer interruption cost min-

imization. IEEE Trans. on Power Delivery 17, 254–259 (2002)

Computing the (t, k)-Diagnosability of
Component-Composition Graphs and Its

Application

Sun-Yuan Hsieh� and Chun-An Chen

Department of Computer Science and Information Engineering,

National Cheng Kung University,

No. 1, University Road, Tainan 701, Taiwan

{hsiehsy,p7696423}@mail.ncku.edu.tw

Abstract. (t, k)-Diagnosis, which is a generalization of sequential diag-

nosis, requires that at least k faulty processors should be identified and

repaired in each iteration provided there are at most t faulty processors,

where t ≥ k. Let κ(G) and n(G) be the node connectivity and the num-

ber of nodes in G, respectively. We show that the class of m-dimensional

component-composition graphs G for m ≥ 4 is (Ω(h), κ(G))-diagnosable,

where h =
2m−2×lg (m−1)

m−1
if 2m−1 ≤ n(G) < m!; and h = 2m−2 if

n(G) ≥ m!. Based on this result, the (t, k)-diagnosability of numerous

multiprocessor systems can be computed efficiently.

Keywords: Diagnosability, component-composition graphs, applied

graph theory, multiprocessor systems, the PMC model, (t, k)-diagnosis.

1 Introduction
Because of the rapid development of VLSI technology, a multiprocessor system
may contain hundreds or even thousands of nodes, some of which may be faulty
when the system is put into use. As the number of nodes in a multiprocessor
system increases, node fault identification in such systems is crucial for reliable
computing. The process of discriminating between faulty nodes and fault-free
nodes in a system is called fault diagnosis. When a faulty node is identified, it
is replaced by a fault-free node to maintain the system’s reliability.

Preparata et al. [16] introduced a graph theoretical model, called the PMC
model (Preparata, Metze, and Chien’s model), for system level diagnosis. Under
the PMC model, every node u is capable of testing whether another node v is
faulty if there exists a communication link between them. Moreover, it is assumed
that a test result is reliable (respectively, unreliable) if the node that initiates the
test is fault-free (respectively, faulty). The PMC model has also been adopted
in the approaches proposed [4,5,6].

Sequential diagnosis [16], also called diagnosis with repair, iteratively iden-
tifies subsets of faulty nodes; then, at the end of each iteration, all identified
faulty nodes are replaced or repaired before the next iteration is initiated. This
� Corresponding author.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 363–374, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

364 S.-Y. Hsieh and C.-A. Chen

process is repeated until all faulty nodes have been replaced or repaired. Araki
and Shibata [3] further introduced a generalization of sequential diagnosis, called
(t, k)-diagnosis, where t ≥ k. If there are at most t faulty nodes, in each it-
eration, the method can identify at least k faulty nodes (or all faulty nodes if
there are less than k faulty nodes remaining). A system is (t, k)-diagnosable if at
least k faulty nodes can be identified in each iteration. Chang et al. [6,7] showed
that n-dimensional Matching Composition Networks (MCNs) for n > 5 are(
Ω
(

2n×lg n
n

)
, n
)
-diagnosable. In [5], the authors showed d-dimensional grids and

tori are, respectively,
(
Ω
(
N

d
d+1

)
, Ω(d)

)
-diagnosable and

(
Ω
(
N

d
d+1

)
, Ω(2d)

)
-

diagnosable, where N is the number of nodes.
In this paper, we propose a unified approach to compute the (t, k)-

diagnosability of numerous multiprocessor systems (graphs) under the PMC
model, including hypercubes, crossed cubes, twisted cubes, locally twisted cubes,
multiply-twisted cubes, generalized twisted cubes, recursive circulants, Möbius
cubes, Mcubes, star graphs, bubble-sort graphs, pancake graphs, and burnt pan-
cake graphs. Our approach first sketches the common properties of the above
classes of graphs, and defines a super class of graphs, called m-dimensional
component-composition graphs, to cover them. Let κ(G) and n(G) be the node
connectivity and the number of nodes in G, respectively. We then show that
the m-dimensional component-composition graph G for m ≥ 4 is (Ω(h), κ(G))-
diagnosable, where h = 2m−2×lg (m−1)

m−1 if 2m−1 ≤ n(G) < m!; and h = 2m−2

if n(G) ≥ m!. Based on this result, the (t, k)-diagnosability of the above mul-
tiprocessor systems can be computed efficiently. Chang et al. [6] showed that
n-dimensional hypercubes, n-dimensional twisted cubes, n-dimensional crossed
cubes, and n-dimensional Möbius cubes, are

(
Ω
(

2n×lg n
n

)
, n
)
-diagnosable,

where n > 5. We improve on Chang’s results because our t-value matches the
asymptotic lower bound of the t-value derived in [6], but we extend the dimen-
sion from n > 5 to n ≥ 3. To the best of our knowledge, except for Chang’s
results, the (t, k)-diagnosability of the other mentioned multiprocessor systems
have not been resolved thus far.

2 Preliminaries

An undirected graph (graph for short) G = (V, E) is comprised of a node (vertex)
set V and an edge set E, where V is a finite set and E is a subset of {(u, v)| (u, v) is
an unordered pair of V }. We also use V (G) and E(G) to denote the node set
and edge set of G, respectively. Let n(G) be the number of nodes (order) in G
and let e(G) be the number of edges in G. For an edge (u, v), we call u and v
the end-nodes of the edge. A subgraph of G = (V, E) is a graph (V ′, E′) such
that V ′ ⊆ V and E′ ⊆ E. Given U ⊆ V (G), the subgraph of G induced by U
is defined as G[U] = (U, {(u, v) ∈ E(G)| u, v ∈ U}). For a node u in G, we let
NG(u) denote the set of all its neighboring nodes, i.e., NG(u) = {v ∈ V (G) : v
is adjacent to u}. For two non-empty sets V1, V2 ⊂ V (G), the neighborhood set
of V1 in V2 is defined as NG(V1, V2) = {v ∈ V2 : ∃ a node u ∈ V1 such that

The (t, k)-Diagnosability of Component-Composition Graphs 365

(u, v) ∈ E(G)}. A multigraph is a graph in which we allow multiple edges and
self loops.

The components of a graph G are its maximal connected subgraphs. A com-
ponent is trivial if it has no edge; otherwise, it is non-trivial. An isolated node
is a node of degree 0; and a cut-node is a node whose deletion would increase
the number of components. A separating set of a graph G is set S ⊂ V (G) such
that G − S has more than one component. The node connectivity (connectivity
for short) of a graph G, denoted by κ(G), is the minimum size of a node set
S such that G − S is disconnected or contains only one node1. For two graphs
G1 = (V1, E1) and G2 = (V2, E2), the disjoint union of G1 and G2, denoted
by G1 ⊕ G2, is the graph (V1

⋃
V2, E1

⋃
E2). For a set W of unordered pairs of

V (G), we use G
⋃

W to represent the graph (V, E
⋃

W).
A directed graph �G = (V, �E) is comprised of a node set V and an directed edge

set �E, where V is a finite set and �E is a subset of {(u, v)| (u, v) is an ordered
pair of V }. For convenience, the notations defined for an undirected graph can
also be adopted for directed graphs. For a directed edge (u, v), we call u and
v the tail and head of the edge, respectively. Given U ⊆ V (�G), the subgraph
of �G = (V, �E) induced by U is defined as �G[U] = (U, {(u, v) ∈ �E| u, v ∈ U}).
A spanning subgraph of �G = (V, �E) is a subgraph of �G with the node set V .
A directed path in �G, denoted by 〈u1, u2, . . . , un〉, is a sequence of nodes such
that (ui, ui+1) ∈ �E for 1 ≤ i ≤ n − 1. For v ∈ V (�G), the outdegree d+(v) is the
number of edges with tail v and the indegree d−(v) is the number of edges with
head v.

In approaches based on the PMC model, a self-diagnosable system is often
represented by a directed graph in which an arc directed from node u to node
v means that u can test v. To diagnose faults, a number of tests are performed
on nodes and the collection of all test results is referred to as a syndrome, which
we define as follows.

Definition 1. [6] Under the PMC model, a syndrome σ of a system �G is defined
as follows: For any directed edge (u, v), σ(u, v) = 0 if v is tested by u and found
to be fault-free; and σ(u, v) = 1 if v is tested by u and found to be faulty.

The test result initiated by a faulty node is unreliable; thus, more than one
syndrome may be produced for G with faulty nodes. When G has faulty nodes,
a syndrome σ is randomly generated for the purpose of fault diagnosis. We call
the set of all faulty nodes, denoted as F , an allowable faulty set with σ under the
PMC model if the following two conditions hold: (1) σ(u, v) = 0 for u ∈ V − F
and v ∈ V − F ; (2) σ(u, v) = 1 for u ∈ V − F and v ∈ F .

Definition 2. [3] A system G is (t, k)-diagnosable, where t ≥ k, if given any
syndrome produced by the system under the presence of a faulty set F , the fol-
lowing conditions hold: (1) All faulty nodes can be identified when |F | ≤ k. (2)
At least k faulty nodes can be identified when k < |F | ≤ t.
1 The notation G − S represents the graph obtained by deleting all the nodes in S

from G.

366 S.-Y. Hsieh and C.-A. Chen

Let F be a faulty set in a system G. Under the sequential diagnosis approach, we
need |F | iterations to diagnose and repair all faulty nodes in the worst case. In
(t, k)-diagnosable systems, it is guaranteed that the number of iterations required
for diagnosis is at most

⌈
|F |
k

⌉
.

3 Component-Composition Graphs

A matching in a graph G is a set of non-loop edges with no shared end-nodes.
The nodes incident to the edges of a matching M are saturated by M ; the others
are unsaturated. A perfect matching in a graph is a matching that saturates every
node. The following theorem is useful to the definition of component-composition
graphs.

Theorem 1. Let C1, C2, . . . , Cl be l components of a graph G. There exists a
perfect matching PM in (V (G), {(x, y)| x ∈ Ci and y ∈ Cj for 1 ≤ i, j ≤ l
and i �= j}) such that G

⋃
PM is connected if and only if the following three

conditions hold: (a) n(G) is even; (b) 2 ≤ l ≤ n(G)
2 + 1; (c) n(Ci) ≤

∑
1≤j≤l

j �=i

n(Cj)

for all 1 ≤ i ≤ l.

Proof. First, we prove the necessity part. Suppose, to the contrary, that G does
not satisfy at least one condition. If Condition (a) does not hold (i.e., n(G) is
odd), then G obviously does not contain any perfect matching. If Condition (b)
does not hold, then 0 ≤ l ≤ 1 or l ≥ n(G)

2 + 2. If 0 ≤ l ≤ 1, then {(x, y)| x ∈ Ci

and y ∈ Cj for 1 ≤ i, j ≤ l and i �= j} = ∅, which leads to PM = ∅; hence,
V (G) cannot be saturated by any matching edge in PM . If l ≥ n(G)

2 + 2 (i.e.,
2l−n(G) ≥ 4), G will contain at least four trivial components (i.e., four isolated
nodes) and each of the other non-trivial components is exactly a K2 (complete
graph with two nodes). This implies that G

⋃
PM will be disconnected, which

leads to a contradiction. If Condition (c) does not hold (i.e., n(Cp) >
∑

1≤j≤l
j �=p

n(Cj)

for some 1 ≤ p ≤ l), then there exist at least n(Cp) −
∑

1≤j≤l
j �=i

n(Cj) > 0 nodes

that cannot be saturated by any matching edge in PM ; hence, a contradiction
occurs.

Next, we prove the sufficiency part by induction on n(G) as follows. It is easily
seen to hold for the base case of n(G) = 2. We consider now the case n(G) ≥ 4.
Without loss of generality, suppose that n(C1) ≥ n(C2) ≥ · · · ≥ n(Cl). We start
by pairing a non-cut-node x ∈ V (C1) with a non-cut-node y ∈ V (Cl). Consider
the reduced instance G′ obtained by removing nodes x and y. Since Condition
(b) is satisfied by G, it must be that n(C1) ≥ 2. Thus, it suffices to show
that G′ satisfies all conditions of the theorem; we can inductively find a perfect
matching PM ′ such that G′⋃PM ′ is connected, and add the edge (x, y) to it
such that PM = PM ′⋃{(x, y)} is a perfect matching that saturates V (G) and
G
⋃

PM is connected. Condition (a) continues to hold in G′ since we remove

The (t, k)-Diagnosability of Component-Composition Graphs 367

an even number of nodes. If Condition (b) is violated, then it must be that
initially l = 2 or l = n(G)

2 + 1. In case of former, it must be that n(C1) = n(C2)
since G satisfies Condition (c). As n(G) ≥ 4, the graph G′ must also contain
two components. In case of latter, we know that n(Cl) = 1 because there are
n(G)

2 +1 components. Then, the number of components in G′ is l−1 = n(G′)
2 +1

since removal of y eliminates the component Cl. Hence, Condition (b) is satisfied.
Finally, for condition (c), if l = 2, then we are clearly done because it must be
that n(C1) = n(C2) in G. Otherwise, l ≥ 3. If Condition (c) is violated in G′,
then it must be n(C2) > n(C1) +

∑l
i=3 n(Ci) − 2; and n(C1) = n(C2) in G. But

then
∑l

i=3 n(Ci) < 2, and hence
∑l

i=3 n(Ci) = 1 (since l ≥ 3). This contradicts
the fact that G satisfies Condition (a). 	

Given that G = C1 ⊕ C2 ⊕ · · · ⊕ Cl and PM both satisfy the conditions
specified in Theorem 1, we use the notation PM(C1, C2, . . . , Cl) to represent
the graph G

⋃
PM , where V (PM(C1, C2, . . ., Cl)) = V (C1)

⋃
· · ·

⋃
V (Cl) and

E(PM(C1, C2, . . . , Cl)) = E(C1)
⋃

· · ·
⋃

E(Cl)
⋃

PM . Based on Theorem 1, we
now provide a recursive definition of a new class of graphs.

Definition 3. The class of m-dimensional component-composition graphs, de-
noted by CCGm, is defined recursively as follows: (1) CCG1={K1}. (2) For m ≥
2, CCGm = {PM(G1, G2, . . . , Gl)| Gi ∈ CCGm−1 and n(Gi) ≤

∑
1≤j≤l

j �=i

n(Gj) for

all 2 ≤ l ≤
∑ l

i=1 n(Gi)

2 + 1}.
Based on Definition 3, it is not difficult to show the following result.

Lemma 1. Every graph G = PM(G1, G2, . . . , Gl) ∈ CCGm satisfies the follow-
ing properties: (a) G is connected; (b) n(G) ≥ 2m−1; (c) G is (m−1)-regular; (d)
n(G) is even for m ≥ 2; (e) 2 ≤ l ≤ n(G)

2 +1 for m ≥ 2; (f) n(Gi) ≤
∑

1≤j≤l
j �=i

n(Gj)

for all 1 ≤ i ≤ l.

4 (t, k)-Diagnosability of CCGm

Under the PMC model, a self-diagnosable system G is represented by a directed
graph �G = (V, �E). Suppose that 〈u1, u2, . . . , un〉 is a directed path from node u1

to node un in �G and σ is a syndrome of �G. If σ(ui, ui+1) = 0 for all 1 ≤ i ≤ n−1,
then either u1 is faulty or u1, u2, . . . , un are all fault-free. Let �G′ be a spanning
subgraph of �G that contains all arcs (x, y) with σ(x, y) = 0, i.e., �G′ = (V ′, �E′),
where V ′ = V and �E′ = {(x, y)| (x, y) ∈ E(�G) and σ(x, y) = 0}. In addition, let
C′ denote the set of all strongly connected components (also called component
if there is no ambiguity) in �G′. Note that for every two distinct nodes u and v
in the same strongly connected component, there is a directed path from u to v
and vice versa. Clearly, in each component of C′, all the nodes are either faulty
or fault-free. Let a faulty component (respectively, fault-free component) be a
component in which all the nodes are faulty (respectively, fault-free).

368 S.-Y. Hsieh and C.-A. Chen

If C′ has only one component, then all nodes in V are faulty or fault-free.
Hence, we assume that C′ contains at least two components. By regarding each
component of C′ as a super node and connecting two distinct components (super
nodes) X ∈ C′ and Y ∈ C′ by an edge if there exists (x, y) ∈ E(�G) with
x ∈ X and y ∈ Y , we can construct an undirected graph G′′ = (V ′′, E′′), where
V ′′ = C′ and E′′ = {(X, Y)| X ∈ V ′′, Y ∈ V ′′, and (x, y) ∈ E(�G) with x ∈
X and y ∈ Y }. For X ∈ V ′′, let NG′′(X) be the neighborhood of X in G′′, i.e.,
NG′′(X) = {Y | Y ∈ V ′′ and (X, Y) ∈ E(G′′)}. For convenience, a super node
X in G′′ can be also used to represent the set of nodes of a strongly connected
component (in �G′) corresponding to X .

Since all neighbors of a fault-free component are faulty components, faulty
nodes can be found if some fault-free components are identified. Recall that in
(t, k)-diagnosis, the number of faulty nodes is bounded from above by t. A node
subset in G can be guaranteed to be a fault-free component, denoted by X ,
provided that |X | is larger than or equal to t + 1. In other words, t + 1 is a
threshold for guaranteeing a fault-free component.

The following function Φ is to determine a lower bound on the degree of
(t, k)-diagnosability of G.

Definition 4. Define Φ(χ1, χ2) for G′′ to be the largest integer p so that, for
each nonempty subset S of V ′′ with χ2 ≤

∑
Z∈S n(�G[Z]) ≤ p, V ′′ − S is an

independent set and there exists X ∈ V ′′ − S that satisfies the following two
conditions: (D1) n(�G[X]) ≥ χ1; (D2)

∑
Y ∈NG′′ (X)

n(�G[Y]) ≥ χ2.

Recall that the process of (t, k)-diagnosis is iterative; in each iteration (except
the last iteration), at least k faulty nodes can be identified provided there are at
most t faulty nodes in G. In addition, we only need to find a component whose
size is larger than or equal to the threshold t+1. Let S described in Definition 4
be the faulty set F , and let χ1 = t + 1 and χ2 = k. Note that t is at most p
provided that Φ(t + 1, k) ≥ t.

4.1 A Feasible Value of k

Lemma 2. For any graph G = (V, E), if U be a subset of V and W ⊂ V − U
is a component of V − U , then |NG(W, U)| ≥ κ(G).

Proof. Since W ⊂ V − U and W is maximal connected, there is no edge in G
whose two end-nodes belong to W and G − U − W . Suppose, to the contrary,
that |NG(W, U)| < κ(G). Then, by the assumption that W ⊂ V − U , NG(W, U)
is a separating set whose size smaller than κ(G), which leads to a contradiction.
Hence, |NG(W, U)| ≥ κ(G). 	

Due to the space limitation, the proof of the following lemma is omitted.

Lemma 3. Φ(t + 1, κ(G)) = Φ(t + 1, q) for all non-negative integers q < κ(G).

By Lemma 3, κ(G) is a feasible value of k.

The (t, k)-Diagnosability of Component-Composition Graphs 369

4.2 A Feasible Value of t

In Subsection 4.1, we have proved that Φ(t+1, κ(G)) = Φ(t+1, 0) ≥ t. In order to
evaluate Φ(t+1, 0), we define a function Ψ for G′′ as follows: Ψ(χ1) is the smallest
integer p so that there exists a subset H of V ′′ satisfying

∑
Z∈H

n(�G[Z]) = p.

Moreover, V ′′ − H is an independent set of G′′ and there exists no X ∈ V ′′ −
H with n(�G[X]) ≥ χ1. Let χ1 = t + 1 and H = F be a faulty subset with∑
Z∈F

n(�G[Z]) = Ψ(t + 1). Clearly, Φ(t + 1, 0) = Ψ(t + 1) − 1. Therefore, we use

Ψ(t + 1) − 1 ≥ t if a system �G is (t, k)-diagnosable.
Let G be a graph in CCGm. Given �W ⊆ E(�G), let a(�W) be the number of

arcs in �W . Define I(β) = max
Z⊆V (G)

n(�G[Z])=β

a(E(�G[Z])), i.e., I(β) is the maximal number

of arcs in �G, whose two endpoints are contained in an β-node subset. Clearly,
I(1) = 0.

Lemma 4. 0 ≤ I(β) ≤ β × lg β, where β ≥ 1.

Proof. Let G = PM(G1, G2, . . . , Gl) be a graph in CCGm, where Gi ∈ CCGm−1

for 1 ≤ i ≤ l. For U ⊆ V (G) with β = |U | ≥ 1, let Ui = U
⋂

V (Gi) for 1 ≤ i ≤ l.
We define EU = {(x, y)| x ∈ Ui, y ∈ Uj , and (x, y) ∈ PM for i ≤ i, j ≤
l and i �= j}, and let �EU be the set of directed edges obtained from EU so that
for each (x, y) ∈ EU , there are two arcs (x, y) and (y, x) in �EU .

Let Ir(β) be the maximum number of arcs in �G whose two endpoints belong
to a β-node subset of an induced subgraph G′ ∈ CCGr of G, where 1 ≤ r ≤ m.
Initially, Ir(1) = 0 for 1 ≤ r ≤ m and Ir(β) ≥ 0. Clearly, I(β) = Im(β).
Moreover, I(|U |) = Im(|U |) ≤ Im−1(|U1|)+Im−1(|U2|)+· · ·+Im−1(|Ul|)+a(�EU),
where m ≥ 2. Let Uj1 , Uj2 , . . . , Ujs be all the non-empty sets in {U1, U2, . . . , Ul}.
Then, I(|U |) = Im(|U |) ≤ Im−1(|Uj1 |)+Im−1(|Uj2 |)+ · · ·+Im−1(|Ujs |)+a(�EU).
Without loss of generality, we assume that 1 ≤ |Uj1 | ≤ |Uj2 | ≤ · · · ≤ |Ujs |.
Let βi = |Uji | ≥ 1 for all 1 ≤ i ≤ s. Then, β = β1 + β2 + · · · + βs, where
1 ≤ β1 ≤ β2 ≤ · · · ≤ βs. Moreover, I(β) = Im(β) ≤ Im−1(β1)+ Im−1(β2)+ · · ·+
Im−1(βs) + a(�EU), where s ≥ 1.

Next, we prove, by induction on m, that I(β) ≤ β × lg β. First, it is straight-
forward to check that I1(β) ≤ β × lg β for β = 1. Suppose that Ip(β) ≤ β × lg β
holds when m = p. Now, we consider the case where m = p + 1. If s = 1, then
I(β) = Ip+1(β) ≤ Ip(β) ≤ β × lg β. If s ≥ 2, we have the following scenarios.

Case 1: βs ≤ β1 + β2 + · · · + βs−1. Note that a(�EU) ≤ �β1+β2+···+βs

2 � × 2 ≤
β1 + β2 + · · · + βs. By the induction hypothesis, I(β) = Ip+1(β) ≤ Ip(β1) +
Ip(β2)+ · · ·+Ip(βs)+(β1 +β2 + · · ·+βs) ≤ β1 × lg β1 +β2 × lg β2 + · · ·+βs×
lg βs + (β1 + β2 + · · · + βs). We can prove this case based on the following
claim. Due to the space limitation, the proof is omitted.

Claim 1. β1×lg β1+β2×lg β2+· · ·+βs×lg βs+(β1+β2+· · ·+βs) ≤ β×lg β.

370 S.-Y. Hsieh and C.-A. Chen

Case 2: βs > β1+β2+ · · ·+βs−1. In this case, a(�EU) ≤ 2×(β1+β2+ · · ·+βs−1).
By the induction hypothesis, I(β) = Ip+1(β) ≤ Ip(β1)+Ip(β2)+· · ·+Ip(βs)+
2 × (β1 + β2 + · · · + βs−1) ≤ β1 × lg β1 + β2 × lg β2 + · · · + βs × lg βs + 2 ×
(β1 +β2 + · · ·+βs−1). We prove this case based on the following claim. Due
to the space limitation, the proof is omitted.

Claim 2. β1× lgβ1+β2× lg β2+ · · ·+βs× lg βs+2×(β1+β2+ · · ·+βs−1) ≤
β × lg β.

	

Lemma 5. Ψ(t + 1) =

⌈
n(�G)×((m−1)−lg t)

2(m−1)−lg t

⌉
, where G ∈ CCGm.

Proof. Let G = PM(G1, G2, . . . , Gl) be a graph in CCGm, where Gi ∈ CCGm−1

for 1 ≤ i ≤ l. In addition, let F = {Y1, Y2, . . . , Yd} be a set of faulty components
and V ′′ −F = {X1, X2, . . . , Xc} be a set of fault-free components, where c+d =
n(G′′). Recall that each node of �G has indegree and outdegree m − 1. Clearly,
I(
∑d

j=1 n(�G[Yj])) plus the number of arcs from F to V ′′ − F does not exceed

(
∑d

j=1 n(�G[Yj])) × (m − 1); and the number of arcs from V ′′ − F to F does not

exceed (
∑d

j=1 n(�G[Yj])) × (m − 1) − I(
∑d

j=1 n(�G[Yj])). Hence, by Lemma 4, we
have

a(E(�G)) =
c∑

i=1

I(n(�G[Xi])) + I(
d∑

j=1

n(�G[Yj])) + (the number of arcs from F to

V ′′ − F) + (the number of arcs from V ′′ − F to F)

≤
c∑

i=1

(n(�G[Xi]) × lg(n(�G[Xi]))) + (
d∑

j=1

n(�G[Yj])) × (m − 1)

+ (
d∑

j=1

n(�G[Yj])) × (m − 1) − I(
d∑

j=1

n(�G[Yj])).

(1)

Since G is (m − 1)-regular, a(E(�G)) = n(�G) × (m − 1). Moreover, accord-
ing to the definition of Ψ(t + 1), we need n(�G[Xi]) ≤ t for 1 ≤ i ≤ c.
Then, we have

∑c
i=1(n(�G[Xi]) × lg n(�G[Xi])) ≤

∑c
i=1(n(�G[Xi])) × lg t =

(n(�G) −
∑d

j=1 n(�G[Yj])) × lg t. Note that I(
∑d

j=1 n(�G[Yj])) ≥ 0. Thus, Formula

(1) can be rewritten as follows: n(�G) × (m − 1) ≤ (n(�G) −
∑d

j=1 n(�G[Yj])) ×
lg t + 2 × (

∑d
j=1 n(�G[Yj])) × (m − 1). From the above equation, we have∑d

j=1 n(�G[Yj]) ≥ n(�G)×((m−1)−lg t)
2(m−1)−lg t . The definition of Ψ(t+1) leads to Ψ(t+1) =⌈

n(�G)×((m−1)−lg t)
2(m−1)−lg t

⌉
. 	

By Lemma 5, we have Φ(t + 1, κ(G)) = Φ(t + 1, 0) = Ψ(t + 1) −
1 =

⌈
n(�G)×((m−1)−lg t)

2(m−1)−lg t

⌉
− 1. It is easy to see that each t satisfying t ≤⌈

n(�G)×((m−1)−lg t)
2(m−1)−lg t

⌉
− 1 has Φ(t + 1, κ(G)) ≥ t.

The (t, k)-Diagnosability of Component-Composition Graphs 371

Lemma 6. If h(t) < 0 for any t ≤ T = min{a, 2b}, then (t−a)×(lg t−b) > h(t).

Lemma 7. Φ(t + 1, κ(G)) ≥ t if t ≤ 2m−2×lg (m−1)
m−1 , where G ∈ CCGm and

2m−1 ≤ n(�G) < m! for m ≥ 4.

Proof. For a positive number p and an integer q, q − 1 < p if �p� ≥ q. Since
Φ(t + 1, κ(G)) = Ψ(t + 1) − 1 =

⌈
n(�G)×((m−1)−lg t)

2(m−1)−lg t

⌉
− 1 ≥ t implies that

n(�G)×((m−1)−lg t)
2(m−1)−lg t > t, n(�G)×(m−1)−n(�G)× lg t−2(m−1)× t+ t× lg t > 0. By

factorizing the above inequality, we have
(
t − 2m−2×lg (m−1)

m−1

)
×(lg t−2(m−1)) >

lg t ×
(
n(�G) − 2m−2×lg (m−1)

m−1

)
+ 2m−1 × lg (m − 1) − n(�G) × (m − 1) = h(t). By

Lemma 6, we can set a = 2m−2×lg (m−1)
m−1 , b = 2(m − 1), and T = min{a, 2b} =

2m−2×lg (m−1)
m−1 . Now, we prove that h(t) < 0 for any t ≤ T = 2m−2×lg (m−1)

m−1 as
follows. Since 2m−1 ≤ n(�G) < m!, we have

h(t) = lg t ×
(

n(G) − 2m−2 × lg (m − 1)

m − 1

)
+ 2

m−1 × lg (m − 1) − n(G) × (m − 1)

≤ lg

(
2m−2 × lg (m − 1)

m − 1

)
×
(

n(G) − 2m−2 × lg (m − 1)

m − 1

)
+ 2

m−1 × lg (m − 1) − n(G) × (m − 1)

=
(
lg
(
2

m−2
)

+ lg (lg (m − 1)) − lg (m − 1)
)
×
(

n(G) − 2m−2 × lg (m − 1)

m − 1

)
+ 2

m−1 × lg (m − 1) − n(G) × (m − 1)

= n(G) × ((m − 2) + lg (lg (m − 1)) − lg (m − 1))

−
(

2m−2 × lg (m − 1)

m − 1

)
× ((m − 2) + lg (lg (m − 1)) − lg (m − 1))

+ 2
m−1 × lg (m − 1) − n(G) × (m − 1)

= n(G) × (−1 + lg (lg (m − 1)) − lg (m − 1))

−
(

2m−2 × lg (m − 1)

m − 1

)
× ((m − 2) + lg (lg (m − 1)) − lg (m − 1))

+ 2
m−1 × lg (m − 1)

≤ 2
m−1 × (−1 + lg (lg (m − 1)) − lg (m − 1))

−
(

2m−2 × lg (m − 1)

m − 1

)
× ((m − 2) + lg (lg (m − 1)) − lg (m − 1))

+ 2
m−1 × lg (m − 1)

=

(
2m−2

m − 1

)
× (−2(m − 1) + 2(m − 1) × lg (lg (m − 1)) − (m − 2) × lg (m − 1)

− lg (m − 1) × lg (lg (m − 1)) + lg (m − 1) × lg (m − 1)) = z(m).

It is not difficult to show that h(t) ≤ z(m) < 0 as m = 4, 5, . . . , 16.

372 S.-Y. Hsieh and C.-A. Chen

When m ≥ 17, [lg (m − 1)]2 ≤ m − 12. We have

h(t) ≤ z(m) =
(

2m−2

m − 1

)
× (2(m − 1) × lg (lg (m − 1)) − (m − 2) × lg (m − 1)

− lg (m − 1) × lg (lg (m − 1)) + lg (m − 1) × lg (m − 1) − 2(m − 1))

=

(
2m−2

m − 1

)
×
{
lg (lg (m − 1))

2(m−1) − lg (m − 1)
(m−2)

− lg (lg (m − 1))
lg (m−1)

+ lg (m − 1)
lg (m−1) − lg 2

2(m−1)
}

=

(
2m−2

m − 1

)
×
{

lg

(
(lg (m − 1))2(m−1)−lg (m−1)

(m − 1)(m−2)

)
+ lg

(
(m − 1)lg (m−1)

22(m−1)

)}

=

(
2m−2

m − 1

)
×

⎧⎨⎩lg

⎛⎝[
(lg (m − 1))2

](m−1)− lg (m−1)
2

(m − 1)(m−2)

⎞⎠ + lg

⎛⎝ (m − 1)lg (m−1)

(m − 1)
2(m−1)
lg (m−1)

⎞⎠⎫⎬⎭
< 0.

Hence, Φ(t + 1, κ(G)) ≥ t for any t ≤ 2m−2×lg (m−1)
m−1 . 	

Lemma 8. Φ(t + 1, κ(G)) ≥ t if t ≤ 2m−2, where G ∈ CCGm and n(�G) ≥ m!
for m ≥ 4.

Proof. Based on the argument used in the proof of Lemma 7, Φ(t + 1, κ(G)) ≥ t

implies that n(�G)×(m−1)−n(�G)×lg t−2(m−1)×t+t×lg t > 0. By factorizing
the above inequality, we have (t−n(�G))× (lg t− (m−2)) > m× t−n(�G) = h(t).
By Lemma 6, we can set a = n(�G), b = m − 2, and T = min{a, 2b} = 2m−2.
Now, we prove h(t) < 0 for any t ≤ T = 2m−2 as follows. Since n(�G) ≥ m!, we
have m × t − n(�G) ≤ m ×

(
2m−2

)
− m! = m ×

(
2m−2 − (m − 1)!

)
< 0. Hence,

Φ(t + 1, κ(G)) ≥ t for any t ≤ 2m−2. 	

Lemma 7 (respectively, Lemma 8) implies that X ∈ V ′′ with n(�G[X]) ≥ t + 1
provided that t ≤ T = 2m−2×lg (m−1)

m−1 (respectively, t ≤ T = 2m−2) and 2m−1 ≤
n(�G) < m! (respectively, n(�G) ≥ m!). In other words, if a system contains at
most T faulty nodes, all of these nodes can be identified by executing a (t, k)-
diagnosis algorithm.

Since n(�G) = n(G), by Lemma 7 and 8, we have the following theorem.

Theorem 2. If G ∈ CCGm for m ≥ 4, then G is (Ω(h), κ(G))-diagnosable,
where h = 2m−2×lg (m−1)

m−1 if 2m−1 ≤ n(G) < m!; and h = 2m−2 if n(G) ≥ m!.

2 Let z(m) = [lg (m − 1)]2 − (m − 1). When m ≥ 17,
∂ z(m)

∂ m
=

2×lg (m−1)
ln 2×(m−1)

− 1 =

2
ln 2×lg (m−1)−(m−1)

m−1
=

lg (m−1)
2

ln 2 −lg 2(m−1)

m−1
< 0. Since z(m) ≤ z(17) = 0 ≤ 0, we

have z(m) ≤ 0, which implies that [lg (m − 1)]2 ≤ m − 1 for m ≥ 17.

The (t, k)-Diagnosability of Component-Composition Graphs 373

5 Application to Multiprocessor Systems

Definition 5. [18] A class of n-dimensional hypercube-like graphs, denoted by
HLn for n ≥ 0, are simple, connected, undirected graphs that can be defined
recursively as follows: (1) HL0 = {K1}. (2) For n ≥ 1, a graph G ∈ HLn is
constructed from two graphs G1 = (V1, E1) and G2 = (V2, E2), where each Gi ∈
HLn−1, V1 = {v1, v2, . . . , vn}, and V2 = {w1, w2, . . . , wn}. Moreover, V (G) =
V1

⋃
V2 and E(G) = E1

⋃
E2

⋃
E3, where E3 = {(vj , wij)| 1 ≤ j ≤ n and

(i1, i2, . . . , in) is a permutation of 1, 2, . . . , n}.

The following lemma can be shown by induction on n.

Lemma 9. HLn is a subclass of CCGn+1 for n ≥ 0.

It has been shown that κ(HLn) = n [18]. Hence, by Theorem 2 and Lemma 9,
we have the following result.

Corollary 1. Every graph in HLn is
(
Ω(2n−1×lg n

n), n
)
-diagnosable for n ≥ 3.

Numerous multiprocessor systems are in HLn; for example, the n-dimensional
hypercube Qn, the n-dimensional crossed cube CQn, the n-dimensional twisted
cube TQn, the n-dimensional locally twisted cube LTQn, the n-dimensional
multiply-twisted cube MTQn, the n-dimensional generalized twisted cube GQn,
recursive circulants G(2n, 4) for odd n ≥ 3, the n-dimensional Möbius cube
MQn, and the n-dimensional Mcubes Mn. Hence, by Corollary 1, the above
multiprocessor systems are

(
Ω(2n−1×lg n

n), n
)
-diagnosable, where n ≥ 3.

We can show that (1) the n-dimensional star graphs Sn defined in [1,2] belongs
to CCGn for n ≥ 1; (2) The n-dimensional bubble-sort graph Bn (n ≥ 1) defined
in [2,13] belongs to CCGn for n ≥ 1; (3) The n-dimensional pancake graph ℘n

(n ≥ 1) defined in [2,10] belongs to CCGn for n ≥ 1; and (4) The n-dimensional
burnt pancake graph BPn (n ≥ 0) defined in [11,12] belongs to CCGn+1 for
n ≥ 0. Hence, based on Theorem 2, we have the following results.

Corollary 2. (a) Sn for n ≥ 4 is
(
Ω(2n−2), n − 1

)
-diagnosable. (b) Bn for

n ≥ 4 is
(
Ω(2n−2), n − 1

)
-diagnosable. (c) ℘n for n ≥ 4 is

(
Ω(2n−2), n − 1

)
-

diagnosable. (d) BPn for n ≥ 3 is
(
Ω(2n−1), n

)
-diagnosable.

6 Concluding Remarks

In this paper, we have investigated the (t, k)-diagnosability of component compo-
sition graphs. By applying our technical theorem, we have successfully demon-
strated the (t, k)-diagnosability of several multiprocessor systems. Our results
show that (t, k)-diagnosis can achieve high diagnosability, even if the degree of
the graph is small. A future work is to apply our strategy to other classes of
graphs.

374 S.-Y. Hsieh and C.-A. Chen

References

1. Akers, S.B., Horel, D., Krishnamurthy, B.: The star graph: an attractive alter-

native to the n-cube. In: Proceedings of the International Conference on Parallel

Processing, pp. 393–400 (1987)

2. Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric intercon-

nection networks. IEEE Transactions on Computers 38(4), 555–566 (1989)

3. Araki, T., Shibata, Y.: (t, k)-diagnosable system: A generalization of the PMC

models. IEEE Transactions on Computers 52(7), 971–975 (2003)

4. Armstrong, J.R., Gray, F.G.: Fault diagnosis in a boolean n-cube array of micro-

processors. IEEE Transactions on Computers C-30(8), 587–590 (1981)

5. Chang, G.Y., Chen, G.H.: (t, k)-diagnosability of multiprocessor systems with ap-

plications to grids and tori. SIAM Journal on Computing 37(4), 1280–1298 (2007)

6. Chang, G.Y., Chen, G.H., Chang, G.J.: (t, k)-diagnosis for matching composition

networks. IEEE Transactions on Computers 55(1), 88–92 (2006)

7. Chang, G.Y., Chen, G.H., Chang, G.J.: (t, k)-diagnosis for matching composition

networks under the MM* model. IEEE Transactions on Computers 56(1), 73–79

(2007)

8. Esfahanian, A.H., Ni, L.M., Sagan, B.E.: The twisted n-cube with application to

multiprocessing. IEEE Transactions on Computers 40(1), 88–93 (1991)

9. Fan, J.: Diagnosability of crossed cubes under the comparison diagnosis model.

IEEE Transactions on Parallel and Distributed Systems 13(7), 687–692 (2002)

10. Jwo, J.S., Lakshmivarahan, S., Dhall, S.K.: A new class of interconnection networks

based on the alternating group. Networks 23, 315–326 (1993)

11. Kaneko, K., Sawada, N.: An algorithm for node-to-set disjoint paths prob-

lem in burnt pancake graphs. IEICE Transactions on Information and Sys-

tems E86VD(12), 2588–2594 (2003)

12. Kaneko, K., Sawada, N.: An algorithm for node-to-node disjoint paths problem in

burnt pancake graphs. IEICE Transactions on Information and Systems E90VD(1),

306–313 (2007)

13. Lakshmivarahan, S., Jwo, J.S., Dhall, S.K.: Symmetry in interconnection networks

based on cayley graphs of permutation groups: a survey. Parallel Computing 19(4),

361–407 (1993)

14. Park, J.H., Kim, H.C., Lim, H.S.: Many-to-many disjoint path covers in hypercube-

like interconnection networks with faulty elements. IEEE Transactions on Parallel

and Distributed Systems 17(3), 227–240 (2006)

15. Park, J.H., Lim, H.S., Kim, H.C.: Panconnectivity and pancyclicity of hypercube-

like interconnection networks with faulty elements. Theortical Computer Sci-

ence 377, 170–180 (2007)

16. Preparata, F.P., Metze, G., Chien, R.T.: On the connection assignment problem

of diagnosable systems. IEEE Transactions on Electronic Computers EC-16(6),

848–854 (1967)

17. Suzuki, Y., Kaneko, K.: An algorithm for node-disjoint paths in pancake graphs.

IEICE Transactions on Information and Systems E86-D(3), 610–615 (2003)

18. Vaidya, A.S., Rao, P.S.N., Shankar, S.R.: A class of hypercube-like networks. In:

Proc. 5th Symp. on Parallel and Distributed Processing, pp. 800–803 (1993)

Why Depth-First Search Efficiently Identifies
Two and Three-Connected Graphs

Amr Elmasry�

Max-Planck Institut für Informatik and University of Copenhagen

elmasry@mpi-inf.mpg.de

Abstract. Given an undirected 3-connected graph G with n vertices

and m edges, we modify depth-first search to produce a sparse spanning

subgraph with at most 4n − 10 edges that is still 3-connected. If G is

2-connected, to maintain 2-connectivity, the resulting graph will have at

most 2n − 3 edges. The way depth-first search discards irrelevant edges

illustrates the reason behind its ability to verify and certify biconnectivity

[1,2,3] and triconnectivity [4,5] in linear time. Dealing with a sparser

graph, after the first depth-first-search calls, makes the algorithms in

[2,5] more efficient. We also give a characterization of separation pairs of

a 2-connected graph in terms of the resulting sparse graph.

1 Introduction

Depth-first search is a basic algorithm for graph traversal and for searching
within a domain of outcomes with a uniform structure. The algorithm exists in
most of the basic algorithmic textbooks [6,7]. Many graph problems have been
efficiently solved in linear time using depth-first search. These include: finding
strongly connected components [8], verifying biconnectivity [3], topological sort-
ing [9], finding an st ordering [1,2], and finding triconnected components [5].
Using depth-first search, the classical path-addition method of Hopcroft and
Tarjan was the first published linear-time planarity-testing algorithm [10].

Graph connectivity properties resemble a fundamental issue in the study of
graph theory. Efficient algorithms for determining these properties are both the-
oretically and practically important. In the early seventies, several of the afore-
mentioned papers were published illustrating the ability of depth-first search to
solve graph problems and investigate connectivity properties. The question about
the ability of depth-first search to efficiently handle two and three-connectivity,
but not higher connectivity, is an intriguing question.

Around 50 years ago, Tutte [8] proved the fundamental result that every 3-
connected graph on more than 4 vertices contains an edge whose contraction
results yet in another 3-connected graph. Recently, Elmasry et al. [11] strength-
ened this result by showing that every depth-first-search tree of a 3-connected
graph contains such a contractible edge. However, it is worth to mention that
not every spanning tree of a 3-connected graph contains a contractible edge.
� On leave from Alexandria University of Egypt.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 375–386, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

376 A. Elmasry

The problem of finding a k-connected spanning subgraph of a k-connected
graph is related, and interesting in its own sake. Finding a k-connected spanning
subgraph with the minimum number of edges is known to be NP-hard for any k ≥
2 [12]. However, the problem is much easier if we want to produce a ”sparse” k-
connected spanning subgraph of a k-connected graph. This can be done in linear
time using the algorithm of Nagamochi and Ibaraki [13], which produces a k-
connected spanning subgraph with at most kn−k(k+1)/2 edges. The algorithm
in [14] can also produce in linear time a 2-connected spanning subgraph with
at most 2n − 2 edges or a 3-connected spanning subgraph with at most 3n − 3
edges. However, both algorithms do not use depth-first search.

In this paper, we give an algorithm that relies on depth-first search to produce
a sparse spanning subgraph that is 2-connected if the input graph is 2-connected
(Section 4), and 3-connected if the input graph is 3-connected (Section 5). The
structure of the resulting graph is uniform in the sense that, in addition to the
depth-first-search tree, a constant number of back edges are associated with each
vertex. Once these constant pieces of information are computed, the succeeding
depth-first-search calls efficiently extract the required information in linear time.
These arguments seem not to apply for higher connectivity, and hence the job
would not be done with the same efficiency. In Section 6, we characterize sep-
aration pairs in a 2-connected graph (more precisely than [5]) in terms of the
information kept in the resulting sparse graph.

The st-ordering of a 2-connected graph is a certificate for biconnectivity. The
algorithm in [2] performs two depth-first-search calls to produce such an st-
ordering. Producing a sparse spanning subgraph by our algorithm, within the
first depth-first-search call, makes the algorithm in [2] more efficient when per-
forming the second call. A similar argument was used by Ebert [1] to efficiently
produce an st-ordering. For finding the triconnected components of a 2-connected
graph, the Hopcroft-Tarjan algorithm [5] works in two stages and performs sev-
eral depth-first-search calls. Our method uses ideas related to the first stage of
this algorithm. Producing a sparse spanning subgraph by our algorithm, within
the depth-first-search calls of the first stage of the algorithm in [5], the second
stage of the algorithm in [5] will be efficiently performed on the sparse graph
and hence requiring O(n) instead of O(m) time.

2 Preliminaries

2.1 Definitions

Two vertices u and v are called connected if G contains a path from u to v.
Otherwise, they are called disconnected.

A graph is called connected if every pair of distinct vertices in the graph can
be connected through some path. A graph is called k-connected if every pair
of distinct vertices in the graph can be connected through k disjoint paths.

A connected component is a maximal connected subgraph of G. Each vertex
belongs to exactly one connected component, as does each edge. A separation
class is the set of vertices of a connected component.

Why Depth-First Search Efficiently Identifies 2 and 3-Connected Graphs 377

A vertex cut (separation vertices) is a set of vertices whose removal splits a
connected graph into more than one connected component. A graph is k-
connected if and only if the size of every vertex cut is at least k. In particular,
a separation pair is a pair of vertices whose removal disconnects the graph.

A palm tree P is the directed graph produced by depth-first search when applied
to G. There are two types of arcs in P : A tree arc joins a vertex u to its
parent in the tree of P when u is first visited by depth-first search. The other
arcs are called cycle arcs or back edges.

2.2 Notations

- G = (V, E): an undirected graph on a set of vertices V and a set of edges E.
- n = |V |, and m = |E|.
- ūv: the edge between vertices u and v in G.
- P : the palm tree produced by the depth-first-search algorithm.
- P ′: the sparse palm tree produced by our algorithm.
- u → v: the depth-first-search tree arc in P from vertex u to vertex v.
- u

∗−→ v: the simple directed path in the tree of P , constituting zero or more
arcs, between vertices u and v.

- u ↪→ v: the back edge in P from vertex u to vertex v.

3 Depth-First Search

In this section, we review the basic depth-first-search algorithm.
We use the following variables in Algorithm 1:

num(u): is an integer that represents the order in which a vertex u is first
visited by depth-first search.

parent(u): is the parent of vertex u in the tree of P .

Algorithm 1. DFS(u)
1: c = c + 1

2: num[u] = c
3: for all w in the adjacency list of u do
4: if (num[w] == 0) then
5: parent[w] = u
6: DFS(w)
7: add u → w as a tree arc in P
8: else
9: if (num[w] < num[u] && w
= parent[u]) then

10: add u ↪→ w as a back edge in P
11: end if
12: end if
13: end for

378 A. Elmasry

Algorithm 2. main()
1: for i = 1 to n do
2: num[i] = parent[i] = 0

3: end for
4: c = 0

5: DFS(s) /* s is an arbitrary root of the DFS palm tree P

The following three lemmas are classical properties of depth-first search, which
we will use later to prove our main lemmas.

Lemma 1. If u ↪→ v is in P , then v
∗−→ u is in P .

Proof. Since u ↪→ v is in P , thus num(v) < number(u) and u
∗−→ v is not in P .

Assume that v
∗−→ u is also not in P . The way depth-fist search works implies

that the adjacency list of v must have been fully scanned before the first time
u is reached. Accordingly, v → u would have been in P and not u ↪→ v. We
conclude that v

∗−→ u is in P . 	

Lemma 2. If ūv ∈ E(G) and num(v) < num(u), then v
∗−→ u is in P .

Proof. Since num(v) < num(u), then u
∗−→ v is not in P . Assume that v

∗−→ u
is also not in P . Then, neither u → v nor v → u is in P . Also, by Lemma 1,
neither u ↪→ v nor v ↪→ u is in P . But ūv ∈ E(G), and hence it must exist in P

either as a tree edge or as a back edge. We conclude that v
∗−→ u is in P . 	

Lemma 3. Consider any 3 vertices v1, v2, v3. If num(v1) < num(v2) < num(v3)
and v1

∗−→ v3 is in P , then v1
∗−→ v2 is in P .

Proof. The way depth-first search works ensures that all the descendants of a
vertex in the tree of P are fully scanned directly after and while this vertex
is scanned. In other words, all the descendants of a vertex must be assigned
consecutive numbers. It follows that v1

∗−→ v2 is in P , for otherwise either
num(v2) < num(v1) or num(v2) > num(v3) holds. 	

4 Biconnectivity

In this section, we show that at most one back edge is to be associated with
every vertex to preserve biconnectivity. More precisely, for every vertex u, we
only need to keep in P ′ the back edge u ↪→ w whose head w is the first vertex
visited by depth-first search among all vertices v where u ↪→ v is in P . This
property is implemented by modifying depth-first search; see Algorithm 3. The
next lemma is a direct consequence of such property.

Lemma 4. Consider the case when ūv ∈ E(G) and num(v) < num(u), but
neither v → u nor u ↪→ v is in P ′. There exists w ∈ V (G) such that u ↪→ w is
in P ′ and num(w) < num(v).

Why Depth-First Search Efficiently Identifies 2 and 3-Connected Graphs 379

We use the following variable in Algorithm 3:

low(u) : is an integer that holds num(w), where w is the vertex that has the
smallest number among all vertices v with u ↪→ v in P .

Algorithm 3. sparsify-2(u)
1: c = c + 1

2: low[u] = num[u] = c
3: for all w in the adjacency list of u do
4: if (num[w] == 0) then
5: parent[w] = u
6: sparsify-2(w)
7: add u → w as a tree arc in P ′

8: else
9: if (num[w] < num[u] && w
= parent[u]) then

10: if (num[w] < low[u]) then
11: low[u] = num[w]

12: l = w
13: end if
14: end if
15: end if
16: end for
17: if (low[u]
= num[u]) then
18: add u ↪→ l as a back edge in P ′

19: end if

Lemma 5. P ′ is 2-connected if and only if G is 2-connected.

Proof. As P ′ is a spanning subgraph of G, G is 2-connected if P ′ is 2-connected.
Assume that G is 2-connected, and suppose that P ′ is not 2-connected. Hence,

there is a separation vertex a in P ′. Let V1 and V2 be two separation classes in
P ′ with respect to a. Since G is 2-connected, there exists an edge ūv ∈ E(G)
such that u ∈ V1 and v ∈ V2. Assume w.l.o.g. that num(v) < num(u). Then, by
Lemma 2, v

∗−→ u is in P ′. Hence num(v) < num(a) < num(u).
Using Lemma 4, there is a back edge u ↪→ w in P ′ with num(w) < num(v).

Since u ↪→ w is in P ′, thus w ∈ V1. Also, by Lemma 1, w
∗−→ u is in P ′. Since

num(w) < num(v) < num(u), Lemma 3 implies that w
∗−→ v is in P ′.

Because num(w) < num(v) < num(a), w
∗−→ v can not pass through a.

Although w ∈ V1 and v ∈ V2, but still w
∗−→ v does not pass through a. It

follows that w
∗−→ v is not in P ′; this contradicts the implication of the previous

paragraph. We conclude that P ′ is 2-connected. 	

Lemma 6. P ′ has at most 2n − 3 edges.

Proof. There are n−1 tree edges in P ′. There is at most one back edge emanating
from any vertex. In addition, there are no back edges emanating from vertices 1
and 2. The total number of back edges in P ′ is therefore at most n − 2. 	

380 A. Elmasry

5 Triconnectivity

In this section, we show that at most three back edges are to be associated with
every vertex of P ′ to preserve triconnectivity. Using the same notion as [5], we
define lowpt(u) as the lowest vertex reachable from u by traversing zero or more
tree arcs in P followed by at most one back edge. More specifically,

lowpt(u) = min({num(u)} ∪ {num(w) | u ↪→ w} ∪ {lowpt(w) | u → w}).

Phase I computes such lowpt values for all the vertices in a depth-first-search
manner; see Algorithm 4.

Algorithm 4. Phase I: compute-lowpt(u)
1: c = c + 1

2: lowpt[u] = num[u] = c
3: for all w in the adjacency list of u do
4: if (num[w] == 0) then
5: parent[w] = u
6: compute-lowpt(w)
7: if (lowpt[w] < lowpt[u]) then
8: lowpt[u] = lowpt[w]

9: end if
10: else
11: if (num[w] < num[u] && w
= parent[u]) then
12: if (num[w] < lowpt[u]) then
13: lowpt[u] = num[w]

14: end if
15: end if
16: end if
17: end for

Accordingly, the following lemma relates the lowpt value of a vertex and the
low value of one of its descendants in the tree of P .

Lemma 7. Given r ∈ V (G), there exists y ∈ V (G) such that r
∗−→ y is in P

and lowpt(r) = low(y).

Proof. We write lowpt(r) as lowpt(r) = min(low(r), {lowpt(w) | r → w}). If
low(r) ≤ min({lowpt(w) | r → w}) or if r is a leaf in the tree of P , the lemma
follows by noting that lowpt(r) = low(r). Otherwise, there exists a vertex w′

such that r → w′ and lowpt(r) = lowpt(w′). By induction, the lemma applies
for w′, i.e., there exists a vertex y where w′ ∗−→ y is in P and lowpt(w′) = low(y).
The lemma follows by noting that r → w′ ∗−→ y is in P . 	

Phase II sorts the adjacency lists of G in descending order according to the lowpt
values calculated in Phase I. To implement the sorting in linear time, we resort
to random access and use Radix Sort; see Algorithm 5.

Why Depth-First Search Efficiently Identifies 2 and 3-Connected Graphs 381

Algorithm 5. Phase II: construct ordered adjacency lists
1: for i = 1 to n do
2: bucket[i] = nill
3: end for
4: for all (u, w) ∈ E(G) do
5: add (u, w) to bucket[lowpt[w]]

6: end for
7: for i = 1 to n do
8: for all (u, w) ∈ bucket[i] do
9: add w to the beginning of A(u)

10: end for
11: end for

In the sequel, we assume that P is the palm tree produced by Phase II. We
also assume that the vertices of P will be renumbered in Phase III by another
depth-first search according to the new ordering of the adjacency lists.

The next lemma illustrates a nice property concerning such numbers assigned
to the vertices by depth-first search when applied to the ordered adjacency lists.

Lemma 8. Given u, z ∈ V (G) where num(u) < num(z), then either

(i) u
∗−→ z is in P , or

(ii) Let x be the lowest common ancestor of u and z, and let r be such that
x → r

∗−→ z is in P (the vertex r may be z itself). Then, num(u) < num(r)
and lowpt(r) ≤ low(u).

Proof. Since num(u) < num(z), thus z
∗−→ u is not in P . If u

∗−→ z is not in P ,
then there exist three vertices x, r, r′ such that both x → r

∗−→ z, x → r′ ∗−→ u
are in P and r �= r′. Since num(u) < num(z), depth-first search visits r′ and
all its descendants in the tree of P before r. It follows that num(u) < num(r).
The way we ordered the adjacency lists ensures that lowpt(r) ≤ lowpt(r′). As
lowpt(r′) ≤ low(u), then lowpt(r) ≤ low(u). 	

In Phase III, in addition to the tree of P , we only need to keep in P ′ the following
three back edges associated with every vertex u:

– u ↪→ w1 and u ↪→ w2 whose heads w1 and w2 are the first and second vertices
visited by depth-first search among all vertices v where u ↪→ v is in P .

– z ↪→ u whose tail z is the last vertex visited by depth-first search among all
vertices v where v ↪→ u is in P .

To attain such a structure for P ′, Algorithm 6 once more applies depth-first
search. We use the following variables in Algorithm 6:

low2(u): is an integer that holds num(w2), where w2 is the vertex that has the
second-smallest number among all vertices v with u ↪→ v in P .

high(u): is an integer that holds num(z), where z is the vertex that has the
largest number among all vertices v with v ↪→ u in P .

vertex(c): is the vertex u that has num(u) = c.

382 A. Elmasry

Algorithm 6. Phase III: sparsify-3(u)
1: c = c + 1

2: low[u] = low2[u] = high[u] = num[u] = c
3: vertex[c] = u
4: for all w ∈ A(u) do
5: if (num[w] == 0) then
6: parent[w] = u
7: sparsify-3(w)
8: add u → w as a tree arc in P ′

9: else
10: if (num[w] < num[u] && w
= parent[u]) then
11: if (num[w] < low[u]) then
12: low2[u] = low[u]

13: low[u] = num[w]

14: else
15: if (num[w] < low2[u]) then
16: low2[u] = num[w]

17: end if
18: end if
19: if (num[u] > high[w]) then
20: high[w] = num[u]

21: end if
22: end if
23: end if
24: end for
25: l = vertex[low[u]]

26: if (l
= u) then
27: add u ↪→ l as a back edge in P ′

28: end if
29: l2 = vertex[low2[u]]

30: if (l2
= u) then
31: add u ↪→ l2 as a back edge in P ′

32: end if
33: h = vertex[high[u]]

34: if (h
= u && low[h]
= num[u] && low2[h]
= num[u]) then
35: add h ↪→ u as a back edge in P ′

36: end if

The next lemma directly follows and illustrates properties of P ′.

Lemma 9. Consider the case when ūv ∈ E(G) and num(v) < num(u), but
neither v → u nor u ↪→ v is in P ′. The following two facts must hold.

(i) ∃ w1, w2 ∈ V (G) such that both u ↪→ w1 and u ↪→ w2 are in P ′, and
num(w1) < num(w2) < num(v).

(ii) ∃ z ∈ V (G) such that z ↪→ v is in P ′, and num(u) < num(z)

Why Depth-First Search Efficiently Identifies 2 and 3-Connected Graphs 383

Algorithm 7. main()
1: for i = 1 to n do
2: num[i] = parent[i] = 0

3: end for
4: c = 0

5: compute-lowpt(s) /* s is an arbitrary root of the DFS palm tree P
6: construct ordered adjacency lists
7: for i = 1 to n do
8: num[i] = parent[i] = 0

9: end for
10: c = 0

11: sparsify-3(s)

Lemma 10. P ′ is 3-connected if and only if G is 3-connected.

Proof. As P ′ is a spanning subgraph of G, G is 3-connected if P ′ is 3-connected.
Assume that G is 3-connected, and suppose that P ′ is not 3-connected. Fol-

lowing Lemma 5, P ′ is 2-connected. Hence, there is a separation pair a, b in P ′.
Let V1 and V2 be two separation classes in P ′with respect to the cut {a, b}. Since
G is 3-connected, there exists an edge ūv ∈ E(G) such that u ∈ V1 and v ∈ V2.
Assume w.l.o.g. that num(v) < num(u). Then, by Lemma 2, v

∗−→ u is in P ′.
It follows that v

∗−→ u must pass through one of the separation vertices. As-
sume w.l.o.g. that v

∗−→ u passes through b, i.e., v
∗−→ b

∗−→ u is in P ′. Hence,
num(v) < num(b) < num(u).

From Lemma 9 part (i), there exist two back edges u ↪→ w1 and u ↪→ w2 in
P ′ with num(w1) < num(w2) < num(v). It follows that w1, w2 ∈ V1 ∪ {a, b}.
Since num(v) < num(b), thus w1, w2 �= b. Accordingly, at least one of the two
vertices w1 and w2 (namely w1) is /∈ {a, b}. Call this vertex w, i.e., w ∈ V1

and num(w) < num(v). Also, by Lemma 1, w
∗−→ u is in P ′. Since num(w) <

num(v) < num(u), Lemma 3 implies that w
∗−→ v is in P ′. It follows that

w
∗−→ a

∗−→ v is in P ′. Hence, num(w) < num(a) < num(v).
From Lemma 9 part (ii), there exists a back edge z ↪→ v in P ′ with num(u) <

num(z). As v ∈ V2, it follows that z ∈ V2. Since num(u) < num(z), following
Lemma 8 case (i), suppose that u

∗−→ z is in P ′. Then, either u
∗−→ a or u

∗−→ b
is in P ′. But, this is impossible because num(a) < num(b) < num(u).

Using Lemma 8, we are only left with case (ii). Let x be the lowest common
ancestor of u and z, and let r be such that x → r

∗−→ z is in P ′. Lemma 8
implies num(u) < num(r). As num(u) < num(r) ≤ num(z), then r

∗−→ z can
not pass through either a or b. Since z ∈ V2, thus r ∈ V2. By Lemma 7, there
exists a vertex y such that r

∗−→ y is in P (also in P ′) and lowpt(r) = low(y).
As num(u) < num(r) ≤ num(y), then r

∗−→ y can not pass through either a or
b. Since r ∈ V2, thus y ∈ V2. Also, by Lemma 8 case (ii), lowpt(r) ≤ low(u) =
num(w). Then, low(y) ≤ num(w). Let q be the vertex with num(q) = low(y).
It follows that num(q) ≤ num(w), and y ↪→ q is in P ′. Again, by Lemma 1,

384 A. Elmasry

q
∗−→ y is in P ′. Accordingly, q is in the same separation class as y, i.e., q ∈ V2.

Since w ∈ V1, therefore q �= w ensuring that num(q) < num(w).
As num(q) < num(w) < num(y) and q

∗−→ y is in P ′, it follows by lemma
3 that q

∗−→ w is in P ′. Although q ∈ V2 and w ∈ V1, still q
∗−→ w can pass

through neither a nor b because num(w) < num(a) < num(b); a contradiction.
We conclude that P ′ is 3-connected. 	

Lemma 11. P ′ has at most 4n − 10 edges.

Proof. There are n − 1 tree edges in P ′. There are at most two back edges
emanating from any vertex, among the three associated with it. In addition,
there are no back edges emanating from the two vertices numbered 1 and 2, and
at most one back edge from the vertex numbered 3. This adds up to at most
2n−5 first-type back edges. There is at most one back edge entering any vertex,
among the three associated with it. In addition, there are no back edges entering
the two vertices numbered n − 1 and n. Also, a back edge entering one of the
two vertices numbered 1 and 2 must have been counted among the first-type
back edges. This accounts for at most n − 4 second-type back edges. The total
number of edges in P ′ is then at most (n− 1)+ (2n− 5)+ (n− 4) = 4n− 10. 	

6 Characterizing Separation Pairs

In this section, we show how to characterize any pair of separation vertices in a
2-connected graph. Most of the notion and ideas we describe here are similar to
those in [5]; the difference is that we only use the information kept in the sparse
palm tree P ′ instead of P .

Again, using the same notion as [5], we define lowpt2(u) as the second lowest
vertex reachable from u by traversing zero or more tree arcs in P followed by
at most one back edge. The lowpt2 values solely depend on the low and low2
values, and can be as well computed in Phase I of the algorithm.

lowpt2(u) = min({num(u)} ∪ ({num(w) | u ↪→ w} ∪
{lowpt(w) | u → w} − {lowpt(u)})).

Now, we give a characterization for any separation pair, which only depends
on the low, low2 and high values, in addition to the tree structure of P ′.

Lemma 12. Given a 2-connected graph G, and a, b ∈ V (G) such that num(a) <
num(b). {a, b} is a separation pair of G if and only if either (i) or (ii) holds.

(i) Type 1 separation pairs:
∃ r such that b → r and
1. lowpt(r) = num(a).
2. lowpt2(r) ≥ num(b).
3. ∃ s /∈ {a, b}, and r

∗−→ s is not in P ′.

Why Depth-First Search Efficiently Identifies 2 and 3-Connected Graphs 385

(ii) Type 2 separation pairs:
– num(a) �= 1.
– ∃ r �= b, a → r

∗−→ b such that ∀x with r
∗−→ x in P ′ and b

∗−→ x not
in P ′ we have:
1. num(r) ≤ num(x) < num(b).
2. low(x) ≥ num(a).
3. Let y be the vertex having num(y) = high(x). If b → w

∗−→ y, then
lowpt(w) ≥ num(a).

Lemma 12 is pretty similar to [5, Lemma 13]. The only difference is in case (ii)3,
where we save the checking of the back edges that are not in P ′. As G is 2-
connected, Lemma 5 implies that a separation pair in G is also a separation pair
in P ′. On the other hand, Lemma 10 implies that P ′ will not have a separation
pair that is not a separation pair in G. Although it is possible to prove Lemma
12 from scratch, its correctness directly follows from the proof of [5, Lemma 13]
and the arguments of Lemmas 5 and 10.

7 Conclusion

We have shown how to produce a sparse graph and maintain its two or three-
connectivity using depth-first search. The nice feature of the resulting sparse
graph is that, in addition to the tree arcs of the palm tree, we only need to
maintain a constant number of back edges associated with every vertex (at most
one back edge for biconnectivity and at most three back edges for triconnec-
tivity). Being able to explore the graph in such a uniform way sheds the light
on why it is possible to efficiently identify biconnectivity and triconnectivity in
linear time using depth-first search. The ideas seem not to extend to higher con-
nectivity, reasoning the inability to check higher connectivity in linear time. Our
method can be directly used to improve the efficiency of the Hopcroft-Tarjan
algorithm [5], because the underlying graph will have O(n) (instead of m) edges
after the first stage of the algorithm in [5], when replaced by our algorithm.

References

1. Ebert, J.: st-Ordering the vertices of biconnected graphs. Computing 30, 19–33

(1983)

2. Even, S., Tarjan, R.E.: Computing an st-numbering. Theoretical Computer Sci-

ence 2, 339–344 (1976)

3. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on

Computing 1, 146–159 (1972)

4. Elmasry, A., Mehlhorn, K., Schmidt, J.M.: A linear-time certifying triconnectivity

algorithm for Hamiltonian graphs. Available at the second author’s home page

(2010)

5. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM

Journal on Computing 2(3), 135–158 (1973)

6. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd

edn. MIT Press and McGraw-Hill (2001)

386 A. Elmasry

7. Knuth, D.: The Art of Computer Programming, 3rd edn., vol. 1. Addison-Wesley,

Reading (1997)

8. Tutte, W.: A theory of 3-connected graphs. Indag. Math. 23, 441–455 (1961)

9. Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Algorith-

mica 6(2), 171–185 (1976)

10. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. Journal of the Association

for Computing Machinery 21(4), 549–568 (1974)

11. Elmasry, A., Mehlhorn, K., Schmidt, J.M.: Every DFS tree of a 3-connected graph

contains a contractible edge. Available at the second author’s home page (2010)

12. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory

of NP-Completeness. W. Freeman, New York (1979)

13. Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding a sparse k-

connected spanning subgraph of a k-connected graph. Algorithmica 7, 583–596

(1992)

14. Cheriyan, J., Kao, M.Y., Thurimella, R.: Scan-first search and sparse certificates:

an improved parallel algorithm for k-vertex connectivity. SIAM Journal on Com-

puting 22, 157–174 (1993)

Beyond Good Shapes: Diffusion-Based
Graph Partitioning Is Relaxed Cut Optimization�

Henning Meyerhenke

University of Paderborn, Department of Computer Science
Fuerstenallee 11, D-33102 Paderborn, Germany

����������	
���

Abstract. In this paper we study the prevalent problem of graph partitioning
by analyzing the diffusion-based partitioning heuristic BUBBLE-FOS/C, a
key component of the practically successful partitioner DIBAP [14]. Our
analysis reveals that BUBBLE-FOS/C, which yields well-shaped partitions in
experiments, computes a relaxed solution to an edge cut minimizing binary
quadratic program (BQP). It therefore provides the first substantial theoretical
insights (beyond intuition) why BUBBLE-FOS/C (and therefore indirectly
DIBAP) yields good experimental results. Moreover, we show that in bisections
computed by BUBBLE-FOS/C, at least one of the two parts is connected. Using
arguments based on random walk techniques, we prove that in vertex-transitive
graphs actually both parts must be connected components each. All these results
may help to eventually bridge the gap between practical and theoretical graph
partitioning.

Keywords: Diffusive graph partitioning, relaxed cut optimization, disturbed
diffusion.

1 Introduction

Partitioning the vertices of a graph such that certain optimization criteria are met, oc-
curs in many applications in computer science, engineering, and related fields. The
most common formulation of the graph partitioning problem for an undirected (possi-
bly edge-weighted) graph G = (V,E) (or G = (V,E,ω)) asks for a division Π of V into k
pairwise disjoint subsets (parts) {π1, . . . ,πk} of size at most �|V |/k� each, such that the
edge cut is minimized. The edge cut is defined as the total number (or total weight) of
edges having their incident nodes in different subsets. Among many others, the applica-
tions of this N P-hard problem include load balancing in numerical simulations [19]
and image segmentation [6,20].

Despite recent approximation algorithms, simpler heuristics are preferred in practice,
many of which can be found in the surveys [19] (graph partitioning) and [18] (graph
clustering). Spectral algorithms have been widely used [8]; they are global optimizers
based on graph eigenvectors. For computational efficiency or quality reasons, they have

� Partially supported by German Research Foundation (DFG) Priority Programme 1307 Algo-
rithm Engineering.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 387–398, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

388 H. Meyerhenke

been mostly superseded by local improvement algorithms. Integrated into a multilevel
framework, local optimizers such as Kernighan-Lin (KL) [10] can be found in sev-
eral popular partitioning libraries [4,9]. Unfortunately, theoretical quality guarantees
are not known for KL. Another class of improvement strategies comprises diffusion-
based methods [14,17]. While they are slower than KL, diffusive methods often yield a
better quality, also when repartitioning dynamic graphs [14,15].

Motivation. The hybrid algorithm DIBAP is a multilevel combination of the diffusive
algorithms BUBBLE-FOS/C [15] and TRUNCCONS. Particularly on graphs arising in
numerical simulations, DIBAP is very successful [14]. For example, it has computed
for six of the eight largest graphs of a popular benchmark set [21] a large number (more
than 80 out of 144 when DIBAP was published) of their best known partitions with
respect to the edge cut. The algorithm BUBBLE-FOS/C, which is related to Lloyd’s
k-means method [11], is an integral part of DIBAP responsible for good solutions on
smaller representations of the input graphs. In experiments with graphs from numerical
simulations, BUBBLE-FOS/C computes partitions with well-shaped parts. This comes
along with a small number of boundary nodes (i. e., nodes with at least one neighbor in
a different part) and a small edge cut [15]. However, apart from intuition (see Section 2),
there has been no satisfactory theoretical explanation why BUBBLE-FOS/C and ulti-
mately DIBAP produce such good partitions.

Contribution. With this work we answer several open questions regarding diffusion-
based partitioning with BUBBLE-FOS/C. In Section 3 we prove a major insight about
the optimization criterion of BUBBLE-FOS/C. The heuristic computes a k-way (k ≥ 2)
balanced partition that is the relaxed solution of a binary quadratic program (BQP)
for finding the partition with minimum edge cut. As a byproduct, computing new center
nodes for each part is related to a very similar BQP by the contribution to the constraints.
Note that, while the insight about relaxed cut optimization alone may not be sufficient
to guarantee a heuristic’s practical success, we pursue here the other way around and
analyze a heuristic known to produce good partitions. These results may pave the way
for finding bounds on BUBBLE-FOS/C’s quality for certain graph classes.

The achievements in Section 4 concern the connectedness of the parts in a bipartition
(k = 2) computed by BUBBLE-FOS/C. We prove a result known for spectral partition-
ing [5], which is new for BUBBLE-FOS/C: In any undirected connected graph G, at
least one of the two parts is connected. For vertex-transitive graphs (such as torus or
hypercube), we use the random walk measure hitting times and conditional expecta-
tions to show that both parts are always connected.

2 Notation and Related Work

2.1 Notation

We consider in this paper undirected edge-weighted graphs G = (V,E,ω), which are
triples with the set of n vertices (or nodes) V , a set of m edges E ⊆ V ×V , and an edge
weight function ω : E → R≥0. We also assume that the graphs are finite, connected,
and simple, i. e., they do not contain self-loops (u,u) or multiple edges with the same
endpoints. Connectedness can be enforced by focusing on the connected components.

Beyond Good Shapes 389

Matrices M are written in bold font, a matrix entry at position (u,v) as [M]u,v. We use
column vectors; the v-th entry of a vector w is denoted by [w]v. In case we refer to the
v-th entry of the i-th vector, we write [wi]v. The symmetric positive semidefinite Laplace
matrix matrix L of G [3, p. 27ff.] has the entries [L]u,v = −ω({u,v}) for {u,v} ∈ E ,
[L]u,u = deg(u) (with deg(u) = −∑v�=u[L]u,v), and [L]u,v = 0 otherwise.

2.2 Diffusion-Based and Related Partitioning Techniques

Intuitively, a random walk [12] is likely to stay a long time in a dense graph region
before leaving it via one of the few outgoing edges. There exist many graph cluster-
ing/partitioning techniques exploiting this notion (see [18]). Many diffusive processes
are described by stochastic matrices and are therefore related to random walks [12].
Diffusion models many important transport phenomena such as heat flow; another ap-
plication is localized load balancing in parallel computations. In such a discrete setting,
diffusion is a local iterative process which exchanges splittable load entities between
neighboring vertices, usually until all vertices have the same amount of load. For graph
partitioning, diffusive algorithms and similarity measures are used to compute well-
shaped partitions [15,17]. These works exploit the fact that diffusive processes send
load faster into densely connected graph regions, which corresponds to the intuition
that random walks stay longer in dense graph regions.

Meila and Shi [13] connect random walks to spectral partitioning. Spectral methods
such as [20] solve relaxations of IPs that minimize the edge cut or the related ratio cut.
They build on Fiedler’s seminal work on spectral partitioning [5] and use eigenvectors
of Laplace or adjacency matrices for partitioning. A spectral relaxation to the geometric
k-means clustering problem is given by Zha et al. [22].

The diffusive partitioning algorithm BUBBLE-FOS/C, which we consider in this pa-
per, is composed of the BUBBLE framework (described below) and the similarity mea-
sure FOS/C [15]. FOS/C (first order scheme with constant drain) introduces a drain-
based disturbance into the first order diffusion scheme. With the disturbance, FOS/C
reaches a steady state whose load vector w represents similarities of nodes. These sim-
ilarities reflect whether nodes are connected by many paths of short length.

Definition 1. (FOS/C) [15] Given a connected and undirected graph G = (V,E,ω) free
of self-loops, a set of source nodes /0 �= S ⊂ V, initial load vector w(0), and constants
0 < α ≤ (deg(G)+ 1)−1 and δ > 0.1 Let the drain vector d (which is responsible for
the disturbance) be defined as [d]v = (δn/|S|)− δ if v ∈ S and [d]v = −δ otherwise.
Then, the FOS/C iteration in time step t ≥ 1 is defined as w(t) = Mw(t−1) + d, where
M = I−αL is the doubly-stochastic diffusion matrix and L the Laplace matrix of G.

Lemma 1. [15] For any d ⊥ (1, . . . ,1)T (i. e., 〈d,(1, . . . ,1)T 〉 = 0), the FOS/C iteration
reaches a steady state, which can be computed by solving the linear system Lw = d.

Definition 2. If |S| = 1 (|S| > 1), we call the FOS/C iteration to the steady state or its
corresponding linear system a single-source (multiple-source) FOS/C procedure. Also,
let [w(t)]uv ([w]uv) denote the load on node v in time step t (in the steady state) of a single-
source FOS/C procedure with node u as source.

1 Here, the maximum degree of G is defined as deg(G) := maxu∈V deg(u).

390 H. Meyerhenke

Remark 1. [16] [w]uv = limt→∞([Mtw(0)]uv +nδ (∑t−1
l=0[M

l]v,u)− tδ), where [Ml]v,u is the
probability of a random walk (defined by the stochastic diffusion matrix M) starting at
v to be on u after l steps. [Mtw(0)]uv converges to the balanced load distribution. Thus,
the important part of an FOS/C load in the steady state is nδ (∑t−1

l=0[M
l]v,u) – the sum

of transition probabilities of random walks with increasing lengths. Observe that load
vectors w can be made comparable by normalizing them such that ∑v∈V [w]v = n.

Algorithm Bubble-FOS/C(G, k) → Π
01 Z = InitialCenters(G, k) /* Arbitrary disjoint centers */

02 for τ = 1,2, . . . until convergence

/* ��������������: */

03 parallel for each part πp

04 Init dp (Sp = {zp}), solve and normalize Lwp = dp

05 parallel for each node v ∈ V

06 Π(v) = argmax1≤p≤k[wp]v
/* ���	����������: */

07 parallel for each part πp

08 Initialize dp (Sp = πp) and solve Lwp = dp

09 zp = argmaxv∈πp
[wp]v

10 return Π

Fig. 1. Sketch of the main BUBBLE-FOS/C algorithm

The generic algorithmic
framework behind the
partitioning algorithm
BUBBLE-FOS/C is the
so-called BUBBLE frame-
work. BUBBLE is related to
Lloyd’s k-means clustering
algorithm [11] and transfers
Lloyd’s idea to graphs.
The framework’s first step
chooses one initial repre-
sentative (center) for each
of the k parts. All remaining
vertices are assigned to
the closest (with respect
to some measure) center
vertex. After that, each part
computes its new center
for the next iteration. Then,

the two latter operations are repeated alternately. BUBBLE-FOS/C is outlined in
Figure 1, where Π = {π1, . . . ,πk} denotes the set of parts, Π(v) the part of node v,
and Z = {z1, . . . ,zk} the set of the corresponding center nodes. First, the algorithm
determines possibly arbitrary, but pairwise disjoint initial centers (line 1). After that,
with the new centers, the main loop is executed. It determines in alternating calls a
new partition (���������	�	�
�, lines 3-6) and new centers (�
��	����	���,
lines 7-9). BUBBLE-FOS/C implements these framework operations with k FOS/C
procedures (more precisely with equivalent linear systems for efficiency) per major
operation, single-source ones (Sp = {zp}) for ���������	�	�
� and multiple-source
(Sp = πp) ones for �
��	����	���. The loop is iterated until convergence is reached
(convergence is guaranteed [14]) or, if time is important, a constant number of times.

Within the partitioner DIBAP one uses BUBBLE-FOS/C to compute solutions for
smaller representations of the input graph with only a few thousand nodes and edges.
This computation is reasonably fast and gives initial solutions that are usually better
suited than KL-based ones. Initial solutions are refined by a faster local diffusion
process (which yields initial solutions of lower quality, but refines well) within a mul-
tilevel process, see [14] for details. DIBAP is the combination of these two diffusive
algorithms and yields very good experimental results in a reasonable amount of running

Beyond Good Shapes 391

time (as an example, for k ≤ 16 and graphs with less than one million nodes and edges,
DIBAP requires less than a minute on standard hardware). Except for the connection to
random walks and other intuitive explanations mentioned earlier in this section, there
has been no theoretical evidence until now why the important initial solutions produced
by BUBBLE-FOS/C have a high quality.

3 Optimization Criterion of BUBBLE-FOS/C

It has been shown before [14, Thm. 10], that the iterative optimization performed by the
graph partitioning heuristic BUBBLE-FOS/C can be described by a potential function.
This function F sums up the diffusion load of each vertex v ∈ V in a single-source
FOS/C procedure in time step τ with v’s closest center vertex zp as source. In fact,
the results computed by the operations ���������	�	�
� and �
��	����	��� each
maximize F for their fixed input (centers or parts, respectively). Moreover, random
walks (and also related diffusion processes) can identify dense vertex subsets because
they do not escape these regions easily via one of the few external edges. However,
it has been unclear so far how these facts relate to the good experimental results of
BUBBLE-FOS/C with respect to metrics more specific to graph partitioning.

With the upcoming analysis of BUBBLE-FOS/C, we show that – under mild con-
ditions – BUBBLE-FOS/C solves a relaxed edge cut minimization problem. This is
slightly surprising: In previous experiments with numerical simulation graphs [15],
BUBBLE-FOS/C was compared to the popular partitioning libraries KMETIS and JOS-
TLE. The best improvements by BUBBLE-FOS/C could be seen regarding the number
of boundary nodes and the shape of the parts. Yet, concerning the edge cut, the improve-
ment over the other libraries was not as clear, probably because KMETIS and JOSTLE

focus chiefly on the edge cut.

3.1 Edge Cut Minimization

Our plan is to express cut minimization by a binary quadratic programming problem
(BQP) based on matrices and vectors equivalent or similar to those used in BUBBLE-
FOS/C. For this purpose we introduce some notation first. Define a binary indicator
vector x(p) ∈ {0,1}n for part p, 1 ≤ p ≤ k, with [x(p)]v = 1 ⇔ v ∈ πp. Let X ∈ {0,1}n×k

be the matrix whose p-th column is x(p). Moreover, let y(p,p′) := x(p) − x(p′) and Y the
matrix whose columns are the vectors y(p,p′), 1 ≤ p < p′ ≤ k.

It is well-known [5] that xT Lx = ∑{u,v}∈E ω({u,v})([x]u − [x]v)2. Hence, finding a
balanced partition with minimum edge cut can be written as:

min
X∈{0,1}n×k

∑1≤p≤k xT
(p)Lx(p) (1)

subject to ‖x(p)‖1 = n
k (balanced parts)

∑1≤p≤k[x(p)]v = 1∀v ∈ V (exactly one part per node).

392 H. Meyerhenke

3.2 ���������	�	�
�Computes Relaxed Minimum Cuts

Assume we use BUBBLE-FOS/C to find a balanced (|πi| = |π j| ∀1 ≤ i, j ≤ k) k-
partition with minimum (or in practice at least small) edge cut of an undirected graph
G = (V,E,ω) with n nodes, n/k ∈ N. To find a good solution, BUBBLE-FOS/C alter-
nates the operations ���������	�	�
� and �
��	����	���. Eventually, it finds a
local optimum of the potential function F described above [14]. In the original formu-
lation of BUBBLE-FOS/C, we solve k linear systems Lwp = dp, 1 ≤ p ≤ k, for each
���������	�	�
� and �
��	����	��� operation, respectively. Recall that dp is the
drain vector that changes according to the set of source nodes and wp is the resulting
load vector.

To ensure balanced parts, ���������	�	�
� can be followed by an operation
called ������������ [15]. ������������ searches iteratively for scalars βp such
that the assignment of vertices to parts according to argmax1≤p≤k[βpwp]v (instead of
argmax1≤p≤k[wp]v) results in balanced parts. A simple iterative search for suitable βp

is not always successful in practice, but in many cases it is.

Remark 2. Let 1 ≤ p ≤ k. If the βp were known beforehand, they could be integrated
into the drain vector. The resulting linear systems to solve would be L(βpwp) = (βpdp).
Hence, it does not make a difference whether suitable βp are searched such that
argmax1≤p≤k[βpwp]v results in balanced parts or if we solve L(βpwp) = (βpdp) from
the very beginning.

That is why we assume the scalars βp to be known for now with 0 < βp �= βp′ < 1 for
all 1 ≤ p �= p′ ≤ k. For the BQP formulation this is feasible, as will become clear in the
remainder of this section. It is essential that the drain vectors are adapted accordingly:

Definition 3. The entry of vertex v ∈ V in the drain vector d(A)
p (A for assign) for the

FOS/C procedure of part πp with center zp in the operation ���������	�	�
� with
scale value βp is defined as

[d(A)
p]v = δ ·βp ·

{
(n−1) if v = zp

−1 otherwise.

Remark 3. If k = 2, instead of solving Lw = d(A)
1 and Lw2 = d(A)

2 , it is sufficient to

solve L(w1 − w2) = d(A)
1 − d(A)

2 . Then, to assign vertices to parts, one does not search
for argmax (the part with the highest load for the vertex) but makes a sign test. Such a

new linear system Lw(p,p′) = d(A)
(p,p′) with w(p,p′) := wp − wp′ and d(A)

(p,p′) := d(A)
p − d(A)

p′

(if k = 2, then p = 1 and p′ = 2) is called fused (linear) system. We will see in the proofs
of Lemmas 2 and 3 that this fusion technique can be extended easily to k > 2 parts.

Lemma 2. Let 1 ≤ p ≤ k. Given a graph G = (V,E,ω) with n vertices and n
k ∈ N, its

Laplace matrix L, k center vertices Z = {z1, . . . ,zk}, k pairwise different real scalars

0 < βp < 1 (with 1
3 <

βp
βq

< 3 for 1 ≤ p �= q ≤ k), the FOS/C drain constant δ , and the

corresponding drain vectors d(A)
p (one for each part p).

Beyond Good Shapes 393

The BQP for finding a balanced k-partition Π = {π1, . . . ,πk} with minimum cut in
G under the condition zp ∈ πp can be reformulated as:

min
X∈{0,1}n×k

∑
1≤p≤k

xT
(p)Lx(p) (2)

subject to yT
(p,p′)d

(A)
(p,p′) = nδ (βp + βp′) ∀(p, p′) (3)

with y(p,p′) := x(p) − x(p′) for all 1 ≤ p < p′ ≤ k.

In the proof (full paper version) it becomes clear that the
(k

2

)
constraints are chosen such

that the center vertices do not change their parts and that the parts have equal size.

Corollary 1. Let Π = {π1, . . . ,πk} be a balanced partition with minimum cut. If the set
of center nodes Z = {z1, . . . ,zk} is chosen in Lemma 2 such that zp ∈ πp (1 ≤ p ≤ k),
then the BQP (2), (3) computes Π or another balanced partition with minimum cut.

Due to the N P-hardness of BQP optimization, we aim at relaxed solutions. In-
stead of choosing only 0 or 1 in the indicator vectors, we now allow the entries of
the relaxed indicator vectors x(p) to take on arbitrary real values. Moreover, we use
y(p,p′) := x(p) − x(p′) in the objective function to use the fusion technique described in
Remark 3 (in the integral problem, the use of y(p,p′) instead of x(p) in the objective func-
tion would still model the edge cut, as the change is constant). These changes yield the
new optimization problem

min
Y∈R

n×(k
2)

∑
1≤p<p′≤k

yT
(p,p′)Ly(p,p′) with constraints as in (3). (4)

Lemma 3. The global minimum Y of Problem (4) can be computed by solving and

evaluating k linear equations of the form Lzp = − 1
2 d(A)

p (1 ≤ p ≤ k), where

y(p,p′) =
nδ (βp + βp′)

zT
(p,p′) ·d(A)

(p,p′)

· z(p,p′) and z(p,p′) := zp − zp′ , 1 ≤ p < p′ ≤ k.

Proof. Recall that ���������	�	�
� solves k linear systems of the form Lx(p) = d(A)
p

and assigns each node to the part with the highest load for that node. It is essential to

observe that this is equivalent to solving
(k

2

)
linear systems of the form Ly(p,p′) = d(A)

(p,p′)
and deciding a partial order with respect to the higher load for each node based on
its sign in y(p,p′) = x(p) − x(p′). Note that, before performing scale balancing, all load
vectors x are normalized by adding a proper multiple of 1 = (1, . . . ,1)T such that
∑v∈V [x]v = n. This ensures a common basis for comparison and does not affect the
equations, because L1 = 0 and dp · 1 = 0. After

(k
2

)
comparisons for each node v, the

“winning” part (i. e., the one with the highest load for v) has been determined. (Of
course, for efficiency reasons, one would not perform such a large number of compar-
isons. Instead one solves k linear systems and makes k−1 comparisons per node.)

Regarding Eq. (4), using standard multidimensional calculus, one can easily see

that the function f (Y) := ∑1≤p<p′≤k yT
(p,p′)Ly(p,p′) is differentiable over R

n×(k
2), be-

cause it is a sum of differentiable functions. Furthermore, each constraint function

394 H. Meyerhenke

h(y(p,p′)) := yT
(p,p′)d

(A)
(p,p′) −nδ (βp +βp′) is continuously differentiable over R

n. Hence,
we can continue by using a Karush-Kuhn-Tucker argument (see [2, Ch. 4]) and let
Y = (y(1,2),y(1,3), . . . ,y(k−1,k)) be a feasible solution. For Y to be a global minimum, a

vector Λ = (Λ(1,2),Λ(1,3), . . . ,Λ(k−1,k)) ∈ R
(k

2) must exist with

∇ f (Y)+ ∑1≤p<p′≤k Λ(p,p′)∇h(y(p,p′)) = 0,

which yields 2L∑1≤p<p′≤k y(p,p′) = − ∑
1≤p<p′≤k

Λ(p,p′)d
(A)
(p,p′) .

Such a vector Λ indeed exists: We first solve the linear systems Lzp = − 1
2 d(A)

p for all

1 ≤ p ≤ k. With z(p,p′) := zp − zp′ we have for all 1 ≤ p < p′ ≤ k : Lz(p,p′) = − 1
2 d(A)

(p,p′),

so that L∑1≤p<p′≤k z(p,p′) = − 1
2 ∑1≤p<p′≤k d(A)

(p,p′). Let y(p,p′) := Λ(p,p′)z(p,p′), so that we
arrive at

Ly(p,p′) = −1
2

Λ(p,p′)d
(A)
(p,p′) ∀1 ≤ p < p′ ≤ k

⇒ L ∑
1≤p<p′≤k

y(p,p′) = −1
2 ∑

1≤p<p′≤k

Λ(p,p′)d
(A)
(p,p′) .

Hence, a suitable Λ exists. Following [2, Thm. 4.3.8], f and h are convex functions
or the sum of convex functions (again, this is easy to check, for f by using that L is
positive semidefinite (xT Lx ≥ 0∀x)), so that Y is a global optimum of Equation (4).
Finally, some rearranging suffices to compute each y(p,p′) and Λ(p,p′) from z(p,p′). 	

Let us make clear now why the assumption of already known βp is feasible. First, recall
from Remark 2 that the result of the linear systems is the same regardless when the
βp are introduced into the equations. Lemma 2 tells us that the actual choice of the βp

is hardly relevant for the BQP to work – as long as they are not equal, lie between 0
and 1, and their quotient is neither too small nor too large. Hence, we choose suitable
βp such that the BQP works. In practice, however, we cannot make such a choice for
BUBBLE-FOS/C a priori. Yet, given the mild conditions, we can assume that the scalars
βp computed by ������������will fulfill the constraints mentioned above in the vast
majority of cases. Therefore, we can conclude this section with the following insight:

Theorem 1. Let k ≥ 2. Given a graph G = (V,E,ω) with n nodes (n/k ∈ N) and a set
Z with one center vertex for each of the k parts. Then, the two consecutive operations
���������	�	�
� and ����������with suitable βp (1 ≤ p ≤ k) together compute
the global minimum of the Optimization Problem (4). Problem (4) is a relaxed version
of BQP (2), (3). If Z = {z1,...,zk} is given such that zp ∈ πp and Π = {π1, . . . ,πp} is an
(unknown) optimal (with respect to the edge cut) partition, then this BQP computes an
optimal partition.

Proof. We solve for each ���������	�	�
� operation the linear systems Lwp = dp,
where each dp is the original drain vector without integration of βp, 1 ≤ p ≤ k. Per-
forming ������������ results in the load vector βpwp. With the Remarks 2 and 3

Beyond Good Shapes 395

and the proof of Lemma 3, it follows that the assignment process can be regarded as
making

(k
2

)
comparisons per vertex, i. e., vertices are assigned according to their sign

in the
(k

2

)
fused load vectors w(p,p′) = βpwp − βp′wp′ . As a direct consequence of the

results above, for suitable βp these load vectors w(p,p′) correspond to a relaxed optimal
solution of the BQP (2), (3). As shown before, this BQP would find the solution with
minimum edge cut given an optimal placement of the center nodes. 	

3.3 �
��	����	���Maximizes Constraint Contribution

Recall that the iteration of BUBBLE-FOS/C with its alternating calls to
���������	�	�
� and �
��	����	���maximizes the potential function F (see the
beginning of Section 3). Insofar it is interesting to find out if a similar optimization prop-
erty holds when �
��	����	��� is described as the relaxation of a cut-minimizing
BQP. Note that in the case of �
��	����	���we are given a fixed partition and need
to return one center vertex for each part.

Compared to our derivation in Section 3.2, the drain vector for part πp is not d(A)
p

any more, but d(C)
p (C for centers). This change reflects that the total drain is not given

to one center vertex, but shared among all vertices of the part under consideration.
Moreover, the scale values βp are not needed any more, i. e., they can be set to 1 here.

Consequently, [d(C)
p]v = δβp(n/|πp|−1) if v ∈ πp and [d(C)

p]v = −βpδ if v /∈ πp.

Remark 4. To establish a BQP for �
��	����	��� given the input partition Π , we
simply replace all occurrences of d(A) by d(C) in Equation (3), eliminate the unnecessary
βp, and use the indicator vectors x(p) here:

xT
(p)d

(C)
p = δ (n−|πp|) ∀1 ≤ p ≤ k . (5)

As shown below, the modified constraints ensure that all vertices stay in their part. This
is important because the operation �
��	����	��� is not supposed to change the
partition. In particular, the computed centers must come from different parts.

Lemma 4. The constraints in Equation (5) ensure that the centers Z = {z1, . . . ,zk}
computed by the BQP (2), (5) are in pairwise different parts with respect to Π .

Immediately the question arises how the computation of centers is supposed to min-
imize the edge cut. Indeed, the BQP formulation only computes an indicator vector
that represents the input partition. Yet, the new centers do have an extremal property,
the contribution to Constraint (5). Again, we relax the binary condition on x(p), i. e.,

let x(p) ∈ R
n. Since d(C) is constant for all vertices of the same part and [x(p)]zp =

argmax1≤v≤n[x(p)]v:

Corollary 2. Given a partition Π = {π1, . . . ,πk}, let �
���	����	��� compute the

vertices Z = {z1, . . . ,zk} as new centers. The respective entry [x(p)]zpd(C)
zp contributes

the highest value of all vertices in πp to xT
(p) ·d(C)

p , 1 ≤ p ≤ k.

396 H. Meyerhenke

4 Connectedness Properties of BUBBLE-FOS/C

For some applications that use partitioning as an intermediate step (e. g., tracking par-
ticles in parallel), it is advantageous that the parts are connected, i. e., that they have
exactly one connected component each. Experiments with graphs from finite element
discretizations reveal that the subdomains computed by BUBBLE-FOS/C are (nearly
always) connected if the algorithm is allowed to perform sufficiently many iterations.
Unfortunately, there has been no theoretical evidence for this observation until now.

In this section we make a step towards gaining more knowledge about the connect-
edness properties of BUBBLE-FOS/C. Similar to Fiedler’s classical result [5] about
spectral bipartitioning (but by using a different proof approach), we state that at least
one part in a partition {π1,π2} computed by BUBBLE-FOS/C is connected.

Theorem 2. If the graph G = (V,E,ω) is connected, then at least one of k = 2 parts
computed by ���������	�	�
� on G is connected.

The proof relies on the fact that the diffusion loads increase monotonically on some path
from a vertex to a center. Note that the results of this section as well as some missing
auxiliary results are proved in the full version of this paper. Now we tighten the result
for all connected vertex-transitive graphs (a graph is vertex-transitive if for any pair of
distinct vertices there is an automorphism mapping one to the other [3]), where both
parts are shown to be connected. Two well-known vertex-transitive classes are torus
graphs and hypercubes, which are important network topologies.

Theorem 3. Let G = (V,E) be a connected vertex-transitive graph. Fix two arbitrary
different vertices z1, z2 ∈V. Let the operation ���������	�	�
� divide V into the two
subdomains π1 = {u ∈ V | [w]z1

u ≥ [w]z2
u } and π2 = {u ∈ V | [w]z1

u < [w]z2
u }. Then, π1

and π2 are each connected components in G.

Proof. The random walk measure hitting time H[u,v] between nodes u and v is the
expected timestep in which a random walk starting in u visits v for the first time. By
using [16, Thm. 1], we know that 1

α ([w]vu − [w]vv) = δ (H[v,v]−H[u,v]). First, we show
that hitting times are symmetric on vertex-transitive graphs. For this we use that [w]uu =
[w]vv, which follows from the fact that [Mt]v,v = [Mt]u,u for all u,v ∈ V and all t ≥ 0 for
an unweighted vertex-transitive graph G [1, p. 151]. Also, the symmetry [w]uv = [w]vu
holds for all u,v ∈ V [16] and H[v,v] is zero (definition of hitting times). Thus:

([w]vv = [w]uu) ∧ ([w]uv = [w]vu) ⇒ [w]vu − [w]vv = [w]uv − [w]uu ⇒ H[u,v] = H[v,u].

Assume now for the sake of contradiction that π2 is not connected. In this case there
exists a node-separator T ⊆ π1 such that there are at least two components A,B ⊆ π2

which are not connected by a path via nodes in π2. Assume w. l. o. g. that z2 ∈ B.
Then for each vertex a ∈ A we obtain [w]z2

a > [w]z1
a ⇔ [w]z2

a − [w]z2
z2 > [w]z1

a − [w]z1
z1 ⇔

H[z2,z2]−H[a,z2] > H[z1,z1]−H[a,z1] ⇔ H[a,z1] > H[a,z2] .
In the same manner we have for each vertex x ∈ T that H[x,z1] ≤ H[x,z2]. Let X (t)

be the random variable representing the node visited in time step t by a random walk,
and let Fu(x) be the event that a fixed vertex x is the first vertex visited in T of a
random walk starting from u ∈ V . Furthermore, denote by τa(T) := mint∈N{X (t) ∈

Beyond Good Shapes 397

T | X (0) = a} and let τa,T (z1) := mint∈N{X (t) = z1 | X (0) = a}− τa(T). By using con-
ditional expectations (E [Y] = ∑z Pr [Z = z] ·E [Y |Z = z]) [7], we obtain H[a,z1] =
E [τa(z1)] = E [τa(T)+ τa,T (z1)] = ∑x∈T Pr [Fa(x)] ·

(
E [τa(T)+ τa,T (z1) | Fa(x)]

)
,

which is transformed by using the linearity of conditional expectations into

H[a,z1] = ∑
x∈T

Pr [Fa(x)] ·
(
E [τa(T) | Fa(x)]+E [τa,T (z1) | Fa(x)]

)
= ∑

x∈T
Pr [Fa(x)] ·

(
E [τa(x) | Fa(x)]+E [τx(z1) | Fa(x)]

)
= ∑

x∈T

Pr [Fa(x)] ·
(
E [τa(x) | Fa(x)]+ H[x,z1]

)
.

Exactly the same arguments yield H[a,z2] = ∑x∈T Pr [Fa(x)] ·
(
E [τa(x) | Fa(x)] +

H[x,z2]
)
. Due to H[x,z1] ≤ H[x,z2] for each x ∈ T , we finally obtain

H[a,z1] = ∑
x∈T

Pr [Fa(x)] ·
(
E [τa(x) | Fa(x)]+ H[x,z1]

)
≤ ∑

x∈T

Pr [Fa(x)] ·
(
E [τa(x) | Fa(x)]+ H[x,z2]

)
= H[a,z2] ,

which is a contradiction to our assumption H[a,z1] > H[a,z2]. Therefore, the subdomain
π2 has to be connected. The remainder of the proof is analogous (switch π1 and π2). 	

Generalizing this result to other graph classes will probably require new techniques, as
the FOS/C load property [w]vv = [w]uu does not hold any more. Also, our hitting time
argument in the proof cannot be generalized to k > 2 in a straightforward manner since
the vertex separator may contain vertices from more than one part.

5 Conclusions and Future Work

As explained in the introduction, diffusion-based graph partitioning has proved to be
very successful in practice. Here we have provided the first substantial theoretical ev-
idence for this success by proving that the assignment of vertices to parts in the parti-
tioning algorithm BUBBLE-FOS/C is relaxed cut optimization. In this sense BUBBLE-
FOS/C is similar to spectral partitioning, but does not require the (possibly numerically
problematic) computation of eigenvectors. Moreover, we have proved two results on the
connectedness of parts, which is a property that is important for some applications.

With these new tools at hand, we would like to consider the iterative nature of
BUBBLE-FOS/C and explore the faster partitioning algorithm DIBAP in future work.
DIBAP uses BUBBLE-FOS/C as one of two key components. It will be interesting
to learn more about the interaction of these components, whose combination is
responsible for obtaining high quality at reasonable speed. Eventually, it might also
be possible to derive an approximation guarantee on BUBBLE-FOS/C’s and DIBAP’s
quality from our relaxed BQP results, at least for certain graph classes. Since there are
no such guarantees known for the popular KL heuristic, such a result would be a major
step towards uniting theoretical and practical graph partitioning.

Acknowledgments. The author thanks T. Sauerwald, who contributed to the proof of
Thm. 3, and C. Buchheim, R. Feldmann, and B. Monien for helpful discussions.

398 H. Meyerhenke

References

1. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. J. Wiley & Sons, Chichester
(2000)

2. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming. Theory and Algorithms,
2nd edn. John Wiley, Chichester (1993)

3. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1993)
4. Chevalier, C., Pellegrini, F.: Pt-scotch: A tool for efficient parallel graph ordering. Parallel

Comput. 34(6-8), 318–331 (2008)
5. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application

to graph theory. Czechoslovak Mathematical Journal 25, 619–633 (1975)
6. Grady, L., Schwartz, E.L.: Isoperimetric graph partitioning for image segmentation. IEEE

Trans. Pattern Anal. Mach. Intell. 28(3), 469–475 (2006)
7. Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 3rd edn. Oxford Uni-

versity Press, Oxford (2001)
8. Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm for mapping

parallel computations. SIAM Journal on Scientific Computing 16(2), 452–469 (1995)
9. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. Journal

of Parallel and Distributed Computing 48(1), 96–129 (1998)
10. Kernighan, B.W., Lin, S.: An efficient heuristic for partitioning graphs. Bell Systems Tech-

nical Journal 49, 291–308 (1970)
11. Lloyd, S.P.: Least squares quantization in PCM. IEEE Transactions on Information The-

ory 28(2), 129–136 (1982)
12. Lovász, L.: Random walks on graphs: A survey. Combinatorics, Paul Erdös is Eighty 2, 1–46

(1993)
13. Meila, M., Shi, J.: A random walks view of spectral segmentation. In: Eighth International

Workshop on Artificial Intelligence and Statistics (AISTATS) (2001)
14. Meyerhenke, H., Monien, B., Sauerwald, T.: A new diffusion-based multilevel algorithm for

computing graph partitions. Journal of Parallel and Distributed Computing 69(9), 750–761
(2009); Best Paper Awards and Panel Summary: IPDPS 2008

15. Meyerhenke, H., Monien, B., Schamberger, S.: Graph partitioning and disturbed diffusion.
Parallel Computing 35(10-11), 544–569 (2009)

16. Meyerhenke, H., Sauerwald, T.: Analyzing disturbed diffusion on networks. In: Asano, T.
(ed.) ISAAC 2006. LNCS, vol. 4288, pp. 429–438. Springer, Heidelberg (2006)

17. Pellegrini, F.: A parallelisable multi-level banded diffusion scheme for computing balanced
partitions with smooth boundaries. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par
2007. LNCS, vol. 4641, pp. 195–204. Springer, Heidelberg (2007)

18. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
19. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high performance scientific

simulations. In: The Sourcebook of Parallel Computing, pp. 491–541. Morgan Kaufmann,
San Francisco (2003)

20. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22(8), 888–905 (2000)

21. Walshaw, C.: The graph partitioning archive (2010),
���	����������
��������������������������	���������

(Last access: 1 March 2010)
22. Zha, H., He, X., Ding, C.H.Q., Gu, M., Simon, H.D.: Spectral relaxation for k-means cluster-

ing. In: Proceedings of Advances in Neural Information Processing Systems 14 (NIPS 2001),
pp. 1057–1064. MIT Press, Cambridge (2001)

http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

Induced Subgraph Isomorphism
on Interval and Proper Interval Graphs�

Pinar Heggernes1, Daniel Meister2, and Yngve Villanger1

1 Department of Informatics, University of Bergen, Norway

pinar.heggernes@ii.uib.no, yngve.villanger@ii.uib.no
2 Theoretical Computer Science, RWTH Aachen University, Germany

meister@cs.rwth-aachen.de

Abstract. The Induced Subgraph Isomorphism problem on two in-

put graphs G and H is to decide whether G has an induced subgraph

isomorphic to H . Already for the restricted case where H is a complete

graph the problem is NP-complete, as it is then equivalent to the Clique

problem. In a recent paper [7] Marx and Schlotter show that Induced

Subgraph Isomorphism is NP-complete when G and H are restricted

to be interval graphs. They also show that the problem is W [1]-hard

with this restriction when parametrised by the number of vertices in H .

In this paper we show that when G is an interval graph and H is a con-

nected proper interval graph, the problem is solvable in polynomial time.

As a more general result, we show that when G is an interval graph and

H is an arbitrary proper interval graph, the problem is fixed parameter

tractable when parametrised by the number of connected components

of H . To complement our results, we prove that the problem remains

NP-complete when G and H are both proper interval graphs and H is

disconnected.

1 Introduction

Given two graphs G and H , where G has more vertices than H , the Induced

Subgraph Isomorphism (ISI) problem is to decide whether G has an in-
duced subgraph isomorphic to H . Equivalently, the question is whether we can
delete vertices from G to obtain a graph isomorphic to H . ISI is a generalisa-
tion of several well known NP-complete problems like Clique, Independent

Set, Longest induced path, and Graph Isomorphism, and it is thus NP-
complete, as well as W [1]-hard when parametrised by the number of vertices
in H .

As the problem is applicable in a variety of important practical areas [3], it
has been studied with respect to polynomial-time solvability and fixed parameter
tractability on restricted input graphs. ISI is solvable in polynomial time when
G and H are both trees [8] but it remains NP-complete when G is a tree and

� This work is supported by the Deutsche Forschungsgemeinschaft and by the Research

Council of Norway.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 399–409, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

400 P. Heggernes, D. Meister, and Y. Villanger

H is a forest [5] or when G is a cubic planar graph and H is a path [5]. When
parametrised by the number of vertices in H , the problem is known to be fixed
parameter tractable when G and H are planar [3] or have maximum degree
bounded by a constant [2]. In a very recent paper by Marx and Schlotter, ISI is
studied on interval graphs. When both G and H are interval graphs, the authors
show that the problem is NP-complete and W [1]-hard when parametrised by the
number of vertices in H [7].

Here, we show that when G is an interval graph and H is an arbitrary proper
interval graph, ISI is fixed parameter tractable when parametrised by the number
of connected components of H (and consequently also when parametrised by the
number of vertices in H).

To indicate that these results are the best that we can hope for, we show that
ISI remains NP-complete when G and H are both proper interval graphs and H
is disconnected.

To achieve our polynomial-time algorithm, we give an intermediate algorithm
for solving the following problem in polynomial time: Given two connected in-
terval graphs G and H with a partial ordering of the vertices of each graph, is
there an isomorphism between H and an induced subgraph of G that respects
the given partial orderings? Our main result is obtained by showing that if H
is isomorphic to an induced subgraph G′ of G then the relative ordering of the
vertices of G′ is of a restricted type “fitting” the ordering of H , in any interval
ordering for G.

Many NP-hard graph problems become solvable in polynomial time on interval
graphs and even more on proper interval graphs. An example related to our
problem is Graph Isomorphism which can be solved in linear time on interval
graphs [1]. From this point of view, the mentioned results of Marx and Schlotter
and our hardness result are surprising.

Due to space limitations, all the proofs are excluded from this extended ab-
stract.

2 Definitions and Notation

We consider simple finite undirected graphs. For a graph G = (V, E), V = V (G)
is the vertex set of G and E = E(G) is the edge set of G. For every edge uv ∈ E,
vertices u and v are adjacent or neighbours. The neighbourhood of a vertex u in
G is NG(u) =def {v | uv ∈ E}, and the closed neighbourhood of u is NG[u] =def

NG(u) ∪ {u}. A set X ⊆ V is called clique of G if the vertices in X are pairwise
adjacent. A maximal clique is a clique that is not a proper subset of any other
clique. For U ⊆ V , the subgraph of G induced by U is denoted by G[U] and it is
the graph with vertex set U and edge set equal to the set of edges uv ∈ E with
u, v ∈ U . For every U ⊆ V , G′ = G[U] is an induced subgraph of G. By G \ X
for X ⊆ V , we denote the graph G[V \ X].

For two graphs G and H , G is isomorphic to H if there is a bijective mapping ϕ
from V (G) to V (H) such that for every vertex pair u, v of G, uv ∈ E(G) if and
only if ϕ(u)ϕ(v) ∈ E(H). Mapping ϕ is called an isomorphism from G to H . If

Induced Subgraph Isomorphism on Interval and Proper Interval Graphs 401

G has an induced subgraph G′ such that G′ is isomorphic to H then we say that
G has an induced subgraph isomorphic to H or, equivalently, H is isomorphic
to an induced subgraph of G. Let us formally define the problem we are working
on.

Induced Subgraph Isomorphism (ISI)
Input: Two graphs G and H .
Question: Does G have an induced subgraph that is isomorphic to H?

For a graph G, vertices u, v of G and an integer k ≥ 0, a u, v-path of length k
is a sequence (u0, . . . , uk) of k+1 distinct vertices of G such that uiui+1 ∈ E(G)
for 0 ≤ i < k and u0 = u and uk = v. A path (u0, . . . , uk) is chordless if
uiuj /∈ E(G) for 0 ≤ i < i + 1 < j ≤ k. A graph G is connected if there is a
u, v-path in G for every vertex pair u, v of G. A connected component of G is a
maximal connected induced subgraph of G. The distance between two vertices
u and v in G is the smallest integer k such that G has a u, v-path of length k.

A graph is an interval graph if intervals of the real line can be assigned to
its vertices such that two vertices are adjacent if and only if their assigned
intervals overlap. A clique path of a graph G is an ordering 〈A1, . . . , Ak〉 of the
maximal cliques of G that satisfies the following for every vertex x of G: if
1 ≤ p < q < r ≤ k and x ∈ Ap ∩ Ar then x ∈ Aq. A graph is an interval graph if
and only if it has a clique path [4]. A clique path can be constructed in linear time
[4]. Note that an interval graph can have many different clique paths. An proper
interval graph is an interval graph whose vertices can be assigned intervals such
that no interval is properly contained in any other interval. A claw is a graph
that is isomorphic to K1,3. A graph is claw-free if it does not have a claw as
an induced subgraph. Proper interval graphs are exactly the claw-free interval
graphs [10].

A vertex ordering for a graph G is a linear ordering σ = 〈u1, . . . , un〉 of the
vertices of G. For two vertices ui, uj of G in σ, we write ui �σ uj if i ≤ j. If
additionally i �= j then we write ui ≺σ uj. A vertex ordering σ for G = (V, E) is
called interval ordering if for every vertex triple u, v, w of G, u ≺σ v ≺σ w and
uw ∈ E imply vw ∈ E. A graph is an interval graph if and only if it admits an
interval ordering [9]. A vertex ordering σ for G is called proper interval ordering if
for every vertex triple u, v, w of G, u ≺σ v ≺σ w and uw ∈ E imply uv, vw ∈ E.
A graph is a proper interval graph if and only if it admits a proper interval
ordering [6]. Interval orderings and proper interval orderings can be computed
in linear time, if they exist.

3 Polynomial-Time Solvable Cases of Induced Subgraph
Isomorphism on Interval Graphs

We show that when G is an interval graph and H is a connected proper interval
graph, ISI is solvable in polynomial time. From our intermediate results to reach
this algorithm, it will follow that ISI is fixed-parameter tractable, parametrised
by the number of connected components of H , when G is an interval graph and
H is an arbitrary proper interval graph.

402 P. Heggernes, D. Meister, and Y. Villanger

To obtain this result, we start by giving an intermediate result which is inter-
esting on its own. In the first subsection we study the following problem: given
two interval graphs G and H with clique paths 〈A1, . . . , Ak〉 and 〈B1, . . . , Bl〉
for G and H , respectively, decide whether there is an isomorphism from H to
an induced subgraph of G that preserves the order of the maximal cliques given
by the clique paths. We show that this problem is solvable in polynomial time.

3.1 Induced Subgraph Isomorphism on Ordered Interval Graphs

We start by showing that any isomorphism between an interval graph and an
induced subgraph of another interval graph must map maximal cliques of the
two graphs to each other.

Lemma 1. Let G and H be interval graphs with clique paths 〈A1, . . . , Ak〉 and
〈B1, . . . , Bl〉, respectively. If there is an isomorphism ϕ from H to an induced
subgraph of G then there is a mapping ψ : {1, . . . , l} → {1, . . . , k} such that
ϕ(Bl) ⊆ Aψ(l) and ϕ(Bi \ Bi+1) ⊆ Aψ(i) \ Aψ(i+1) for every 1 ≤ i < l and
ψ(i) �= ψ(j) for every 1 ≤ i < j ≤ l.

This subsection considers isomorphisms that require ψ(1) < · · · < ψ(l) for func-
tion ψ of Lemma 1. We formalise this notion in the following way. Let G and H
be graphs and let σ and τ be vertex orderings for respectively G and H . We say
that H is (σ, τ)-isomorphic to an induced subgraph G′ of G if there exists an
isomorphism ϕ from H to G′ such that ϕ(u) ≺σ ϕ(v) for every vertex pair u, v
of H with u ≺τ v.

An interval graph G = (V, E) may have many interval orderings. An interval
ordering σ for G is a preference interval ordering if additionally the following
condition is satisfied for every vertex triple u, v, w of G: if u ≺σ v ≺σ w and
uw ∈ E and uv �∈ E then there is x ∈ V such that w ≺σ x and wx ∈ E and vx �∈
E. (Informally, a preference interval ordering is a right endpoint ordering for an
interval model where ties are broken by a left endpoint ordering.) Every interval
graph has a preference interval ordering, and such an ordering can be computed
in linear time. An interval graph can have many preference interval orderings.
We need to relate preference interval orderings to clique paths and to (arbitrary)
interval orderings. Let G be an interval graph with clique path 〈A1, . . . , Ak〉. A
preference interval ordering τ for G related to 〈A1, . . . , Ak〉 satisfies for every
vertex pair u, v of G and every 1 ≤ i < k that u ∈ Ai\Ai+1 and v ∈ Ai+1∪· · ·∪Ak

implies u ≺τ v. Note that such an ordering always exists. Let σ be an interval
ordering for G. A preference interval ordering τ for (G, σ) satisfies for every
vertex pair u, v of G that uv �∈ E and u ≺σ v implies u ≺τ v. It is important
to see that also such an ordering always exists and it is also obtainable from a
given clique path.

The first algorithm that we consider is called LocalOrderingInduced-

Subgraph, LOIS for short, and presented in Figure 1. This algorithm solves a
restricted version of ISI on interval graphs, namely it requires the same number
of maximal cliques for the two input graphs and additionally checks for ordered
isomorphisms only.

Induced Subgraph Isomorphism on Interval and Proper Interval Graphs 403

Algorithm LocalOrderingInducedSubgraph (LOIS)

Input Graphs G and H with vertex orderings σ = 〈x1, . . . , xn〉 and

τ = 〈y1, . . . , yr〉, respectively.

Output An isomorphism ϕ from an induced subgraph G′ to H such that for all

vertex pairs u, v of G′, u ≺σ v iff u ≺τ v, if such an isomorphism exists.

begin
for i = r downto 1 do let ai = n − r + i end for;

while H is not (σ, τ)-isomorphic to G[{xa1 , . . . , xar}] do
let yi, yj be a vertex pair of H where i < j and j is largest possible

such that yiyj
∈ E(H) ⇔ xaixaj ∈ E(G);

if yiyj
∈ E(H) then push(i) else push(j) end if

end while;

return a1, . . . , ar and accept
end.

Subroutine push(b)
begin

set ab = ab − 1;

while ab = ab−1 and b ≥ 2 do set b = b − 1; set ab = ab − 1; end while;

if a1 = 0 then reject end if
end.

Fig. 1. Algorithm LOIS

Lemma 2. Let G and H be interval graphs with the same number of maximal
cliques. Let σ and τ be preference interval orderings for respectively G and H.
Algorithm LOIS on this input computes a (σ, τ)-isomorphism from H to an
induced subgraph of G, if it exists.

We extend the above problem to interval graphs with different numbers of max-
imal cliques. We apply a variant of Algorithm LOIS as a subroutine. The main
difficulty is to determine the correct selection of maximal cliques of G. Our al-
gorithm is called InducedIntervalSubgraph, IIS for short, and it is given in
Figure 2. It applies as a subroutine Algorithm LOIS

∗; this algorithm is described
in the next paragraph.

Algorithm LOIS
∗ mainly works as Algorithm LOIS given in Figure 1. As an

additional input, there is a lower bound on the value of ai for each vertex of H .
The return value of LOIS

∗ is a vertex or a special symbol instead of the values of
a1, . . . , ar. During the initialization or the execution of Subroutine push, there
may be an ai that becomes smaller than the corresponding given lower bound.
If such a lower bound violation occurs during the initialization step, let m be
the largest integer such that am is smaller than its corresponding lower bound.
The algorithm stops and returns vertex ym. Otherwise, the initialization step
is executed successfully, and a lower bound violation can occur only during the
execution of Subroutine push. Let yi, yj with i < j be the (earliest) vertex
pair of H for which a problem was encountered. If Subroutine push was called
with i as parameter then the algorithm returns yj , if push was called with j as

404 P. Heggernes, D. Meister, and Y. Villanger

Algorithm InducedIntervalSubgraph (IIS)

Input An interval graph G with clique path 〈A1, . . . , Ak〉,
an interval graph H with clique path 〈B1, . . . , Bl〉.

Output accept if H is isomorphic to an induced subgraph of G under

the extra conditions given in Lemma 3.

begin
let τ be preference interval ordering for H related to 〈B1, . . . , Bl〉;
let ψ(0) = 0; let ψ(1) = 0; let m = 1; let Bl+1 = ∅;
loop

initialize(m);

let G′ = G[Aψ(1) ∪ · · · ∪ Aψ(l)];

let σ be preference interval ordering for G′ related to 〈Aψ(1), . . . , Aψ(l)〉;
for i = 1 to l do

for each x ∈ Bi \ Bi+1 do λ(x) = |Aψ(1) ∪ · · · ∪ Aψ(i−1)| + 1 end for
end for;

set y = LOIS
∗(G′, H ; σ, τ ; λ);

if y is a vertex of H then set m such that y ∈ Bm \ Bm+1;

else set m = 0; end if
while m > 0;

accept
end.

Subroutine initialize(s)

begin
for i = 1 to s do

let p be smallest such that p > ψ(i − 1) and p > ψ(s);
if p does not exist then reject end if;
set ψ(i) = p

end for
end.

Fig. 2. Algorithm IIS

parameter then the algorithm returns yi. If no lower bound condition violation
ever happens, which means that Algorithm LOIS

∗ accepts, then the algorithm
returns a special symbol. Note that LOIS already checks for a lower bound
violation, namely it checks whether a1 < 1 at the end of push. So, it is clear
that if Algorithm LOIS would reject then Algorithm LOIS

∗ will not return the
special symbol.

Lemma 3. Let G and H be interval graphs with A = 〈A1, . . . , Ak〉 and
B = 〈B1, . . . , Bl〉 clique paths for respectively G and H, where l ≤ k. Algo-
rithm InducedIntervalSubgraph on this input accepts if and only if there
are integers s1, . . . , sl satisfying 1 ≤ s1 < · · · < sl ≤ k such that H is (σ, τ)-
isomorphic to an induced subgraph of G[As1 ∪ · · · ∪ Asl

] where σ is a preference
interval ordering related to 〈As1 , . . . , Asl

〉 and τ is a preference interval ordering
related to B.

Induced Subgraph Isomorphism on Interval and Proper Interval Graphs 405

We determine the running time of IIS. The running time is mainly determined by
the number of executions of the main loop of IIS and the running time of a single
execution of LOIS

∗. Let graph G have n vertices. The main loop is executed
at most n2 times. Each single loop execution, including the re-initialization,
requires O(n2) time plus the time for an execution of LOIS

∗. The running time
of this procedure is of order the running time of LOIS. The main while loop
is executed at most n2 times. A single loop execution requires O(n2) time for
checking the isomorphism condition and finding a new vertex pair. This sums
up to a total running time of O(n6) for IIS.

3.2 Finding Induced Proper Interval Subgraphs of Interval Graphs

In the previous subsection, we gave an algorithm that, given interval graphs G
and H , decides whether H is isomorphic to an induced subgraph of G where
an additional ordering condition had to be satisfied. This additional ordering
condition seems to be necessary to obtain a polynomial-time algorithm when
both G and H are interval graphs, as without the ordering condition the problem
is NP-complete by the results of Marx and Schlotter [7].

In this section, we show that Induced Subgraph Isomorphism is
polynomial-time solvable if G is an interval graph and H is a connected proper
interval graph. We will simply apply Algorithm IIS for deciding the question.
Part of the input for this algorithm are clique paths. Our decision problem can
be solved by trying all possible combinations of clique paths. Interval graphs can
have many clique paths, which would result in a worst-case exponential-time al-
gorithm. Connected proper interval graphs, however, have at most two clique
paths [10]. For our algorithm, it will be of high importance that the clique path
for G can be chosen arbitrarily.

Theorem 1. Given an interval graph G and a connected proper interval
graph H, it can be decided in O(n6) time whether G has an induced subgraph
isomorphic to H.

For complementing the result of Theorem 1, we consider the case when input
graph H disconnected. It can be shown that any isomorphism from H to an
induced subgraph of given graph G maps the vertices of connected components
consecutively with respect to any interval ordering for G. With this result and
the algorithm of Theorem 1, the induced subgraph isomorphism problem can be
solved in polynomial time when the order of the connected components of H is
fixed with respect to an interval ordering for G. This implies the following result.

Theorem 2. Given an interval graph G on n vertices and a proper interval
graph H with r connected components, it can be decided in O(r! · rn6 log n) time
whether G has an induced subgraph isomorphic to H.

Hence, when G is an interval graph and H is a proper interval graph, ISI is fixed-
parameter tractable when parametrised by the number of connected components
of H .

406 P. Heggernes, D. Meister, and Y. Villanger

4 Induced Subgraph Isomorphism Is NP-Complete on
Proper Interval Graphs

In this section, we will show that the algorithms obtained in the previous section
can be considered optimal: If the order of the connected components of H is not
fixed then the problem becomes NP-complete already when both G and H are
proper interval graphs and G is connected. We will obtain the completeness
result by a reduction from a variant of the Hamiltonian Path problem.

Theorem 3 ([11]). The Fixed Hamiltonian Path problem, given a graph G
and a vertex pair u, v of G, to decide whether G has a u, v-path that is Hamilto-
nian, is NP-complete.

Let G be a graph and let u, v be a vertex pair of G. We will construct a graph
pair (F, H) such that F and H are proper interval graphs and H is isomorphic
to an induced subgraph of F if and only if there is a u, v-path in G that is
Hamiltonian. Let u1, . . . , un be the vertices of G. Without loss of generality, we
will assume u1 = u and un = v. The main idea of the construction is that a u, v-
path of G that is Hamiltonian is a sequence of n − 1 edges where consecutive
pairs are adjacent. Our two graphs will have the following tasks:

– F provides a list of all edges of G and a means for checking whether n − 1
selected edges form a sequence of the desired type

– H provides a mechanism for selecting n − 1 edges of G.

We begin with the construction of graph F . The graph is composed of subgraphs
as shown in Figure 3. The figure shows two graphs, where the upper one is a
graph type. The graph type has a complete graph on six vertices on its left
end and a complete graph on seven vertices on its right end. The two complete
graphs are joined by a graph that is a sequence of n triangles, then a chordless
path between the vertices c and d and then another sequence of n triangles.
The graphs of the depicted type differ from each other just in the length of
the path between c and d. For an integer l with 1 − n ≤ l ≤ n − 1, let Ml

be the graph of the depicted graph type where the path between c and d has
length (8n3 + 2) + (n + l − 1)(2n + 5). By Nl, we denote the induced subgraph
of Ml that is obtained by deleting two vertices of minimum degree from each
of the two complete graphs. So, Nl has a complete graph on four vertices at
its left end, then a sequence of n triangles, a chordless path, another sequence
of n triangles and finally a complete graph on five vertices. Now, let i, j be
an integer pair where 1 ≤ i, j ≤ n and i �= j. We define Fi,j and Hi,j as

the following graphs: Fi,j =def Mj−i \
(
{a1, . . . , an, b1, . . . , bn} \ {ai, bj}

)
and

Hi,j =def Nj−i \
(
{a1, . . . , an, b1, . . . , bn} \ {ai, bj}

)
.

This means that the two complete graphs of Fi,j and Hi,j are connected by a
long path that contains only two triangles, namely the ones formed with vertex ai

and with vertex bj .

Induced Subgraph Isomorphism on Interval and Proper Interval Graphs 407

a1 a2 an

c

bnb1

d

b2

p

q

b2 bn

d

a2 an1ab1

c z

Fig. 3. Depicted on the upper part is a graph type, where vertices c and d are connected

by a chordless path of arbitrary length. The graph type is used for the construction of

graphs F and H . The lower part of the figure depicts a graph, that we call Q in the

construction of F .

We consider the second (lower) graph in Figure 3; denote it by Q. We de-
fine an induced subgraph of Q for every vertex of G. Let 1 ≤ i ≤ n: Qi =def

Q \
(
{a1, . . . , an, b1, . . . , bn} \ {ai, bi}

)
. We compound the graphs Q1, . . . , Qn to

blocks, where we define three of them:

a) middle block
join Qi and Qi+1 by adding the edge between vertex d of Qi and vertex c of
Qi+1, 1 ≤ i < n

b) start block
obtained from middle block by deleting all (remaining) vertices a2, . . . , an,
b2, . . . , bn in Q2, . . . , Qn

c) end block
obtained from middle block by deleting all (remaining) vertices a1, . . . , an−1,
b1, . . . , bn−1 in Q1, . . . , Qn−1.

Let B1 and Bn be respectively a start and an end block, and let B2, . . . , Bn−1

be n − 2 copies of the middle block. We denote by cm
l , zm

l , dm
l the vertices c,

z, d, respectively, of Qm in block Bl. Let P = P8n3+1 be a chordless path on
8n3 + 1 vertices. One vertex of degree 1 of P is called start vertex, the other one
is called end vertex. Obtain F ∗ from B1, . . . , Bn and n−1 copies P1, . . . , Pn−1 of
P first as the disjoint union of B1, . . . , Bn and P1, . . . , Pn−1 and second adding
the edge between vertex dn

i and the start vertex of Pi and the edge between the
end vertex of Pi and vertex c1

i+1 for all 1 ≤ i < n. For later arguments, it is
important to observe that F ∗ is constructed from a long chordless path (with
vertices c1

1 and dn
n as start and end vertex) by adding vertices, that are adjacent

to exactly two adjacent vertices on the path.
We are ready for constructing graph F : F is the disjoint union of F ∗ and

Fi,j , Fj,i for every edge uiuj ∈ E(G). Note that the number of connected

408 P. Heggernes, D. Meister, and Y. Villanger

components of F is 1+2|E(G)|, since every edge of G is related to two connected
components of F .

We continue with the construction of graph H . We define two new graphs, S
and T :

s) S has a complete graph on six vertices that is connected to a sequence of
n triangles; S is the induced subgraph of the upper graph type depicted in
Figure 3 from the complete graph on the left hand side to vertex c.

t) T has a complete graph on seven vertices that is connected to a sequence of
n triangles; T is the induced subgraph of the upper graph type depicted in
Figure 3 from the complete graph on the right hand side to vertex d.

For each 1 ≤ i ≤ n, we define Si and Ti as follows: Si =def S \
(
{a1, . . . , an} \

{ai}
)

and Ti =def T \
(
{b1, . . . , bn} \ {bi}

)
. With theses definitions, H is

the disjoint union of S1, . . . , Sn−1 and T2, . . . , Tn and Hi,j , Hj,i for every uiuj ∈
E(G). Note that the number of connected components of H is 2(n−1)+2|E(G)|.

Lemma 4. G has a u, v-path that is Hamiltonian if and only if H is isomorphic
to an induced subgraph of F .

Theorem 4. Induced Subgraph Isomorphism is NP-complete when both in-
put graphs are proper interval.

As a final remark, we want to point out that we can make F connected without
changing more of the construction of F and H . We would modify F by connecting
the connected components of F by chordless paths of length 8n3 +2n(2n+5) =
8n3+4n2+10n. Thus, ISI is NP-complete even when input graph G is connected
proper interval.

5 Conclusion

Concluding from our results, we can summarise the knowledge on the tractability
of Induced Subgraph Isomorphism when input graph G is an interval graph
as follows:

– If H is interval, it is NP-complete and W [1]-hard ([7]).
– If H is a disconnected proper interval, it is NP-complete and fixed parameter

tractable (this paper).
– If H is connected proper interval, it is polynomial-time solvable (this paper).

We would like to conclude with a couple of questions: (1) What is the computa-
tional complexity of ISI when G is a chordal graph and H is a connected proper
interval graph? (2) For which subclasses C of proper interval graphs does ISI
become polynomial-time solvable when G is interval and H is disconnected and
belongs to C ?

Induced Subgraph Isomorphism on Interval and Proper Interval Graphs 409

References

1. Booth, K.S., Lueker, G.S.: A linear time algorithm for deciding interval graph

isomorphism. Journal of the ACM 26, 183–195 (1979)

2. Cai, L., Chan, S.M., Chan, S.O.: Random separation: A new method for solv-

ing fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A.

(eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)

3. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems.

J. Graph Algorithms Appl. 3(3), 1–27 (1999)

4. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific Jour-

nal of Mathematics 15, 835–855 (1965)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-completeness. W. H. Freeman & Co., New York (1979)

6. Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Com-

puters & Mathematics with Applications 25, 15–25 (1993)

7. Marx, D., Schlotter, I.: Cleaning Interval Graphs. arXiv:1003.1260v1 (2010)

8. Matula, D.W.: Subtree isomorphism in O(n5/2). Ann. Discrete Math. 2, 91–106

(1978)

9. Olariu, S.: An optimal greedy heuristic to color interval graphs. Information Pro-

cessing Letters 37, 21–25 (1991)

10. Roberts, F.S.: Indifference Graphs. In: Proof Techniques in Graph Theory, pp.

139–146. Academic Press, New York (1969)

11. Sipser, M.: Introduction to the Theory of Computation. International Thomson

Publishing (1996)

Testing Simultaneous Planarity When the
Common Graph Is 2-Connected

Bernhard Haeupler1, Krishnam Raju Jampani2, and Anna Lubiw2

1 CSAIL, Dept. of Computer Science,

Massachusetts Institute of Technology, Cambridge, MA 02139

haeupler@mit.edu
2 David R. Cheriton School of Computer Science,

University of Waterloo, Waterloo, ON, Canada, N2L 3G1

{krjampan,alubiw}@uwaterloo.ca

Abstract. Two planar graphs G1 and G2 sharing some vertices and

edges are simultaneously planar if they have planar drawings such that

a shared vertex [edge] is represented by the same point [curve] in both

drawings. It is an open problem whether simultaneous planarity can be

tested efficiently. We give a linear-time algorithm to test simultaneous

planarity when the two graphs share a 2-connected subgraph. Our algo-

rithm extends to the case of k planar graphs where each vertex [edge] is

either common to all graphs or belongs to exactly one of them.

Keywords: Simultaneous Embedding, Planar Graph, PQ Tree, Graph

Drawing.

1 Introduction

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs sharing some vertices and
edges. The simultaneous planar embedding problem asks whether there exist
planar embeddings for G1 and G2 such that, in the two embeddings, each vertex
v ∈ V1 ∩ V2 is mapped to the same point and each edge e ∈ E1 ∩ E2 is mapped
to the same curve. We show that this problem can be solved efficiently when the
common graph (V1 ∩ V2, E1 ∩ E2) is 2-connected.

The study of planar graphs has a long history and has generated many deep
results [24,23,25]. There is hope that some of the structure of planarity may
carry over to simultaneous planarity. A possible analogy is with matroids, where
optimization results carry over from one matroid to the intersection of two ma-
troids [7]. On a more practical note, simultaneous planar embeddings are valu-
able for visualization purposes when two related graphs need to be displayed.
For example, the two graphs may represent different relationships on the same
node set, or they may be the “before” and “after” versions of a graph that has
changed over time.

Over the last few years there has been a lot of work on simultaneous pla-
nar embeddings, which have been called “simultaneous embeddings with fixed

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 410–421, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Testing Simultaneous Planarity When the Common Graph Is 2-Connected 411

edges” [8,9,12,13,14,15,21]. We mention a few results here and give a more de-
tailed description in the Background section below. A major open question is
whether simultaneous planarity of two graphs can be tested in polynomial time.
The problem seems to be right on the feasibility boundary. The problem is NP-
complete for three graphs [15] and the version where the planar drawings are
required to be straight-line is already NP-hard for two graphs and only known
to lie in PSPACE [10]. On the other hand several classes of (pairs of) graphs are
known to always have simultaneous planar embeddings [9,8,14,13,21] and there
are efficient algorithms to test simultaneous planarity for some very restricted
graph-classes: biconnected outerplanar graphs [13], and the case where one graph
has at most one cycle [12].

This paper shows how to efficiently test simultaneous planarity of any two
graphs that share a 2-connected subgraph and thus greatly extends the classes
of graph pairs for which a testing algorithm is known. Our algorithm builds on
the planarity testing algorithm of Haeupler and Tarjan [17], which in turn unifies
the planarity testing algorithms of Lempel-Even-Cederbaum [22], Shih-Hsu [27]
and Boyer-Myrvold [5].

The paper is organized as follows: Section 1.1 gives more background and
related work. In Section 2 we review and develop some techniques for PQ-trees,
which are needed for our algorithm. We present our algorithm for simultaneous
planarity in Section 3. We also show that our algorithm can be extended to solve
a generalization of simultaneous planarity for k graphs, whose common graph is
2-connected.

1.1 Background

Versions of simultaneous planarity have received much attention in recent years.
Brass et al. [6] introduced the concept of simultaneous geometric embeddings of
a pair of graphs—these are planar straight-line drawings such that any common
vertex is represented by the same point. Note that a common edge will necessarily
be represented by the same line segment. It is NP-hard to test if two graphs
have simultaneous geometric embeddings [10]. For other work on simultaneous
geometric embeddings see [2] and its references.

The generalization to planar drawings where edges are not necessarily drawn
as straight line segments, but any common edge must be represented by the same
curve was introduced by Erten and Kobourov [9] and called simultaneous em-
bedding with consistent edges. Most other papers follow the conference version of
Erten and Kobourov’s paper and use the term simultaneous embedding with fixed
edges (SEFE). In our paper we use the more self-explanatory term “simultaneous
planar embeddings.” A further justification for this nomenclature is that there
are combinatorial conditions on a pair of planar embeddings that are equivalent
to simultaneous planarity. Specifically, Jünger and Schultz give a characteriza-
tion in terms of “compatible embeddings” [Theorem 4 in [21]]. Specialized to
the case where the common graph is connected, their result says that two pla-
nar embeddings are simultaneously planar if and only if the cyclic orderings of
common edges around common vertices are the same in both embeddings.

412 B. Haeupler, K.R. Jampani, and A. Lubiw

Several papers [9,8,14] show that pairs of graphs from certain restricted classes
always have simultaneous planar embeddings, the most general result being that
any planar graph has a simultaneous planar embedding with any tree [14]. On
the other hand, there is an example of two outerplanar graphs that have no
simultaneous planar embedding [14].

The graphs that have simultaneous planar embeddings when paired with
any other planar graph have been characterized [13]. In addition, Jünger and
Schultz [21] characterize the common graphs that permit simultaneous planar
embeddings no matter what pairs of planar graphs they occur in. There are
efficient algorithms to test simultaneous planarity for biconnected outerplanar
graphs [13] and for a pair consisting of a planar graph and a graph with at most
one cycle [12].

Simultaneously and independently of this work Angelini et al. [1] showed
how to test simultaneous planarity of two graphs when the common graph is
2-connected. Their algorithm is based on SPQR-trees, takes O(n3) time and is
restricted to the case where the two graphs have the same vertex set.

There is another, even weaker form of simultaneous planarity, where common
vertices must be represented by common points, but the planar drawings are
otherwise completely independent, with edges drawn as Jordan curves. Any set
of planar graphs can be represented this way by virtue of the result that a planar
graph can be drawn with any fixed vertex locations [26].

The idea of “simultaneous graph representations” has also been applied to
intersection representations [19,18].

2 PQ-Trees

Many planarity testing algorithms in the literature use PQ-trees (or a variation)
to obtain a linear-time implementation. PQ-trees were discovered by Booth and
Lueker [4] and are used, not only for planarity testing, but for many other appli-
cations like recognizing interval graphs or testing matrices for the consecutive-
ones property. We first review PQ-trees and then in Subsection 2.1 we show how
to manipulate pairs of PQ-trees.

A PQ-tree represents the permutations of a set of elements satisfying a family
of constraints. Each constraint specifies that a certain subset of elements must
appear consecutively in any permutation. The leaves of a PQ-tree correspond to
the elements of the set, and internal nodes are labeled ‘P’ or ‘Q’, and are drawn
using a circle or a rectangle, respectively. PQ-trees are equivalent under arbitrary
reorderings of the children of a P-node and reversals of the order of children of a
Q-node. We consider a node with two children to be a Q-node. A leaf-order of a
PQ-tree is the order in which its leaves are visited in an in-order traversal of the
tree. The set of permutations represented by a PQ-tree is the set of leaf-orders
of equivalent PQ-trees. Given a PQ-tree tree T on a set U of elements, adding
a consecutivity constraint on a set S ⊆ U , reduces T to a PQ-tree T ′, such that
the leaf-orders of T ′ are precisely the leaf-orders of T in which the elements of
S appear consecutively. Booth and Lueker [4] gave an efficient implementation
of PQ-trees that supports this operation in amortized O(|S|) time.

Testing Simultaneous Planarity When the Common Graph Is 2-Connected 413

Although PQ-trees were invented to represent linear orders, they can be rein-
terpreted to represent circular orders as well [17]: Given a PQ-tree we imagine
that there is a new special leaf s attached as the “parent” of the root. A circular
leaf order of the augmented tree is a circular order that begins at the special leaf,
followed by a linear order of the remaining PQ-tree and ending at the special leaf.
Again a PQ-tree represents all circular leaf-orders of equivalent PQ-trees. It is
easy to see that a consecutivity constraint on such a set of circular orders directly
corresponds to a consecutivity constraint on the original set of linear leaf-orders.
Note that using PQ-trees for circular orders requires solely this different view
on PQ-trees but does not need any change in their implementation.

2.1 Intersection and Projection of PQ-Trees

In this section we develop simple techniques to obtain consistent orders from two
PQ-trees. More precisely when two PQ-trees share some but not (necessarily)
all leaves, we want to find a permutation represented by each of them with a
consistent ordering on the shared leaves. The idea for this is to first project
both PQ-trees to the common elements, intersect the resulting PQ-trees, pick
one remaining order and finally “lift” this order back. We now describe the
individual steps of this process in more detail.

The projection of a PQ-tree on a subset of its leaves S is a PQ-tree obtained
by deleting all elements not in S and simplifying the resulting tree. Simplifying
a tree means that we (recursively) delete any internal node that has no children,
and delete any node that has a single child by making the child’s grandparent
become its parent. This can easily be implemented in linear time.

Given two PQ-trees on the same set of leaves (elements) we define their inter-
section to be the PQ-tree T that represents exactly all orders that are leaf-orders
in both trees. This intersection can be computed as follows.

1. Initialize T to be the first PQ-tree.
2. For each P-node in the second PQ-tree, reduce T by adding a consecutivity

constraint on all its descendant leaves.
3. For each Q-node in the second tree, and for each pair of adjacent children

of it, reduce T by adding a consecutivity constraint on all the descendant
leaves of the two children.

Using the efficient PQ-tree implementation such an intersection can be com-
puted in time linear in the size of the two PQ-trees (see Booth’s thesis [3]).

These two operations are enough to achieve our goal. Given two PQ-trees
T1 and T2 defined on different element (leaf) sets, we define S to be the set of
common elements. Now we first construct the projections of both PQ-trees on S
and then compute their intersection T as described above. Any permutation of
S represented by T can now easily be “lifted” back to permutations of T1 and
of T2 that respect the chosen ordering of S. Furthermore, any two permutations
of T1 and T2 that are consistent on S can be obtained this way.

We note that techniques to “merge” PQ trees were also presented by Jünger
and Leipert [20] in work on level planarity. Their merge is conceptually and

414 B. Haeupler, K.R. Jampani, and A. Lubiw

technically different from ours in that the result of their merge is a single PQ tree
whereas our structure of two orderings that are consistent on common elements
cannot be captured by a single PQ tree.

3 Planarity

In this Section, we review the recent algorithm of Haeupler and Tarjan [17] for
testing the planarity of a graph. Next we extend it to an algorithm for testing
simultaneous planarity. We first begin with some basic definitions.

Let G = (V, E) be a graph on vertex set V = {v1, · · · , vn} and let O be an
ordering of the vertices of V . An edge vivj is an in-edge of vi (in O) if vj appears
before vi in O, and vivj is an out-edge of vi if vj appears after vi in O.

An st-ordering of G is an ordering O of the vertices of G, such that the first
vertex of O is adjacent to the last vertex of O and every intermediate vertex
has an in-edge and an out-edge. It is well-known that G has an st-ordering if
and only if it is 2-connected. Further, an st-ordering can be computed in linear
time [11].

A combinatorial embedding of G, denoted by C(G), is defined as a clockwise
circular ordering of the incident edges of vi, for each i ∈ {1, · · · , n}, with respect
to a planar drawing of G. If C is a combinatorial embedding of G, we use C(vi)
to denote the clockwise circular ordering of edges incident with vi in C.

3.1 Planarity Testing Using PQ-Trees

Let G = (V, E) be a connected graph. The planarity testing algorithm of Haeu-
pler and Tarjan embeds vertices (and their edges) one at a time and maintains
all possible partial embeddings of the embedded subgraph at each stage. For the
correctness of the algorithm it is crucial that the vertices are added in a leaf-
to-root order of a spanning-tree. This guarantees that the remaining vertices
induce a connected graph and hence lie in a single face of the partial embedding
at any time. Using either a leaf-to-root order of a depth-first spanning tree or an
st-order leads to particularly simple implementations that run in linear-time. In-
deed these two orders are essentially the only two orders in which the algorithm
runs in linear-time using the standard PQ-tree implementation. Our algorithm
uses a mixture of the two orders: We first add the vertices that are contained in
only one of the graphs using a depth-first search order and then add the com-
mon vertices using an st-ordering. We now give an overview of how the simple
planarity test works for each of these orderings.

st-order:
Let v1, v2, · · · , vn be an st-order of G. At any stage i ∈ {1, · · · , n − 1} the
vertices {v1, · · · , vi} form a connected component and the algorithm maintains
all possible circular orderings of out-edges around this component using a PQ-
tree Ti. Since v1vn is an out-edge at every stage, it can stay as the special leaf of
Ti for all i. At stage 1, the tree T1 consists of the special leaf v1vn and a P-node
whose children are all other out-edges of v1.

Testing Simultaneous Planarity When the Common Graph Is 2-Connected 415

Now suppose we are at a stage i ∈ {1, · · · , n − 2}. We call the set of leaves of
Ti that correspond to edges incident to vi+1, the black leaves. To go to the next
stage, we first reduce Ti so that all the black edges appear together. A non-leaf
node in the reduced PQ-tree is said to be black if all its descendants are black
edges. We next create a new P-node pi+1 and add all the out-edges of vi+1 as
its children. Now Ti+1 is constructed from Ti as follows:

Case 1: Ti contains a black node x that is an ancestor of all the black leaves.
We obtain Ti+1 from Ti by replacing x and all its descendants with pi+1.
Case 2: Ti contains a (non-black) Q-node containing a (consecutive) sequence
of black children. We obtain Ti+1 from Ti by replacing these black children (and
their descendants) with pi+1.

Note that if the reduction step fails at any stage then the graph must be
non-planar. Otherwise the algorithm concludes that the graph is planar.

Leaf-to-root order of a depth-first spanning tree:
Let v1, v2, · · · , vn be a leaf-to-root order of a depth-first spanning tree of G.
Note that at stage i, the vertices {v1, · · · , vi} may induce several components. We
maintain a PQ-tree for each component representing the set of circular orderings
of its out-edges. Using a depth-first spanning tree, in contrast to an arbitrary
spanning tree, has the advantage that we can easily maintain the invariant that
the edge to the smallest node greater than i will be the special leaf. Adding vi+1

can lead to merging several components into one.
To go to the next stage, we first reduce each PQ-tree corresponding to such

a component by adding a consecutivity constraint that requires the set of out-
edges that are incident to vi+1 to be consecutive and then deleting these edges.
By the invariant stated above the special leaf is among these edges. Note that
the resulting PQ-tree for a component now represents the set of linear-orders of
the out-edges that are not incident to vi+1. Now we construct the PQ-tree for
the new merged component including vi+1 as follows:

Let vl be the parent of vi+1 in the depth-first spanning tree. The PQ-tree
for the new component consists of the edge vi+1vl as the special leaf and a new
P-node as a root and whose children are all the remaining out-edges of vi+1 and
the roots of the PQ-trees of the reduced components (similar to the picture in
Figure 1). Note that by choosing the edge vi+1vl as the special leaf we again
maintain the above mentioned invariant.

As before, if the reduction step fails for any component, then the graph is
non-planar. Otherwise the algorithm concludes that the graph is planar.

3.2 Simultaneous Planarity

Let G1 = (V1, E1) and G2 = (V2, E2) be two planar connected graphs with
|V1| = n1 and |V2| = n2. Let G = (V1 ∩ V2, E1 ∩ E2) be 2-connected and
n = |V1 ∩ V2|. Let v1, v2, · · · , vn be an st-ordering of V1 ∩ V2. We call the edges
and vertices of G common and all other vertices and edges private.

416 B. Haeupler, K.R. Jampani, and A. Lubiw

We say two linear or circular orderings of elements with some common ele-
ments are compatible if the common elements appear in the same relative order
in both orderings. Similarly we say two combinatorial embeddings of G1 and G2

respectively are compatible if for each common vertex the two circular orderings
of edges incident to it are compatible.

If G1 and G2 have simultaneous planar embeddings, they have combinatorial
embeddings that are compatible with each other. If the common edges form a
connected graph the converse is also true and is a special case of Theorem 4
of Jünger and Schultz [21]. Thus it is enough to compute a pair of compatible
combinatorial embeddings.

We will find compatible combinatorial embeddings by adding vertices one by
one, iteratively constructing two sets of PQ-trees, representing the partial planar
embeddings of G1 and of G2 respectively. Each PQ-tree represents one connected
component of G1 or G2. In the first phase we will add all private vertices of G1

and G2, and in the second phase we will add the common vertices in an st-
ordering. When a common vertex is added, it will appear in two PQ-trees, one
for G1 and one for G2 and we must take care to maintain compatibility.

Before describing the two phases, we give the main idea of maintaining com-
patibility between two PQ-trees. In Section 2.1 we found compatible orders for
two PQ-trees using projection and intersection of PQ-trees, but we were un-
able to store a set of compatible orderings, which is what we really need, since
planarity testing involves a sequence of PQ-trees.

To address this issue we introduce a Boolean “orientation” variable attached
to each Q-node to encode whether it is ordered forward or backward. Compati-
bility is captured by equations relating orientation variables. At the conclusion
of the algorithm, it is a simple matter to see if the resulting set of Boolean
equations has a solution. If it does, we use the solution to create compatible
orderings of the Q nodes of the two PQ-trees. Otherwise the graphs do not have
simultaneous planar embeddings.

In more detail, we create a Boolean orientation variable f(q) for each Q-node
q, with the interpretation that f(q) = True iff q has a “forward” ordering. We
record the initial ordering of each Q-node in order to distinguish “forward” from
“backward”. During PQ-tree operations, Q-nodes may merge, and during pla-
narity testing, parts of PQ-trees may be deleted. We handle these modifications
to Q-nodes by the simple expedient of having an orientation variable for each
Q-node, and equating the variables as needed. When Q-nodes q1 and q2 merge,
we add the equation f(q1) = f(q2) if q1 and q2 are merged in the same order
(both forward or both backward), or f(q1) = ¬f(q2) otherwise.

We now describe the two phases of our simultaneous planarity testing algo-
rithm. To process the private vertices of G1 and G2 in the first phase we compute
for each of them a reverse depth-first ordering by contracting G into a single ver-
tex and then running a depth-first search from this vertex. With these orderings
we can now run the algorithm of Haeupler and Tarjan for all private vertices as
described in Section 3.1.

Testing Simultaneous Planarity When the Common Graph Is 2-Connected 417

Now the processed vertices induce a collection of components, such that each
component has an out-edge to a common vertex. Further, the planarity test
provides us for each component with an associated PQ-tree representing all
possible cyclic orderings of out-edges for that component. For each component
we look at the out-edge that goes to the first common vertex in the st-order
and re-root the PQ-tree for this component to have this edge represented by the
special leaf. This completes the first phase.

For the second phase we insert the common vertices in an st-order. The algo-
rithm is similar to that described in Section 3.1 for an st-order but in addition
has to take care of merging in the private components as well. We first examine
the procedure for a single graph. Adding the first common vertex v1 is a special
set-up phase; we will describe the general addition below. Adding v1 joins some
of the private components into a new component C1 containing v1.

For each of these private components we reduce the corresponding PQ-tree so
that all the out-edges to v1 appear together, and then delete those edges. Note
that due to the re-rooting at the end of the first phase the special leaf is among
those edges. Thus the resulting PQ-tree represents the linear orderings of the
remaining edges. We now build a PQ-tree representing the circular orderings
around the new component C1 as follows: we take v1vn as the special leaf, create
a new P-node as a root and add all the out-edges of v1 and the roots of the
PQ-trees of the merged private components as children of the root (see Fig. 1).

Fig. 1. Setting up T (C1). The P-node’s children are the outgoing edges of v1 and the

PQ-trees for the components that are joined together by v1.

Now consider the situation when we are about to add the common vertex
vi, i ≥ 2. The graph so far may have many connected components but because
of the choice of an st-ordering all common vertices embedded so far are in one
component Ci−1, which we call the main component. When we add vi, all com-
ponents with out-edges to vi join together to form the new main component Ci.
This includes Ci−1 and possibly some private components. The other private
components do not change, nor do their associated PQ-trees.

We now describe how to update the PQ-tree Ti−1 associated with Ci−1 to form
the PQ-tree Ti associated with Ci. This is similar to the approach described in

418 B. Haeupler, K.R. Jampani, and A. Lubiw

Section 3.1. We first reduce Ti−1 so that all the black edges (the ones incident to
vi) appear together. As before, we call a non-leaf node in the reduced PQ-tree
black if all its descendants are black leaves. For any private component with an
out-edge to vi, we reduce the corresponding PQ-tree so that all the out-going
edges to vi appear together, and then delete those edges. We make all the roots
of the resulting PQ-trees into children of a new P-node pi, and also add all the
out-going edges of vi as children of pi. It remains to add pi to Ti−1 which we do
as described below. In the process we also create a black tree Ji that represents
the set of linear orderings of the black edges.

Case 1: Ti−1 contains a black node x such that all black edges are descendants
of x. Let Ji be the subtree rooted at x. We obtain Ti from Ti−1 by replacing x
and all its descendants with pi.
Case 2: Ti−1 contains a non-black Q-node x that has a sequence of adjacent
black children. We group all the black children of x and add them as children
(in the same order) of a new Q-node x′. Let Ji be defined as the subtree rooted
at x′. We add an equation relating the orientation variables of x and x′. We
obtain Ti from Ti−1 by replacing the sequence of black children of x (and their
descendants) with pi (see Figure 2).

Fig. 2. (left) Adding vertex vi which is connected to main component Ci−1 and to

private components C1 . . . Ck. (right) Creating Ti from Ti−1 by replacing the black

subtree by a P-node whose children are the outgoing edges of vi and the PQ-trees for

the newly joined private components.

Note that we use orientation variables above for a purpose other than com-
patibility. (We are only working with one graph so far). Standard planarity tests
would simply keep track of the order of the deleted subtree Ji in relation to its
parent. Since we have orientation variables anyway, we use them for this purpose.

We perform a similar procedure on graph G2. We will distinguish the black
trees of G1 and G2 using superscripts. Thus after adding vi we have black trees
J1

i and J2
i . It remains to deal with compatibility. We claim that it suffices to

enforce compatibility between each pair J1
i and J2

i .
To do so, we perform a unification step in which we add equations between

orientation variables for Q-nodes in the two trees.

Testing Simultaneous Planarity When the Common Graph Is 2-Connected 419

Unification step for stage i
We first project J1

i and J2
i to the common edges, as described in Section 2.1,

carrying over orientation variables from each original node to its copy in the
projection. Next we create the PQ-tree Ri that is the intersection of these two
projected trees as described in Section 2.1. Initially Ri is equal to the first tree.
The step dealing with Q-nodes (Step 3) is enhanced as follows:
3. For each Q-node q of the second tree, and for each pair a1, a2 of adjacent

children of q do the following: Reduce Ri by adding a consecutivity constraint
on all the descendant leaves of a1 and a2. Find the Q-node that is the least
common ancestor of the descendants of a1 and a2 in Ri. Add an equation
relating the orientation variable of this ancestor with the orientation variable
of q (using a negation if needed to match the orderings of the descendants).

Observe that any equations added during the unification step are necessary.
Thus if the system of Boolean equations is inconsistent at the end of the al-
gorithm, we conclude that G1 and G2 do not have a compatible combinatorial
embedding. Finally, if the system of Boolean equations has a solution, then we
obtain compatible leaf-orders for each pair J1

i and J2
i as follows: Pick an arbi-

trary solution to the system of Boolean equations. This fixes the truth values of
all orientation variables and thus the orientations of all Q-nodes in all the trees.
Subject to this, choose a leaf ordering I of Ri (by choosing the ordering of any
P-nodes). I can then be lifted back to (compatible) leaf-orders of J1

i and J2
i that

respect the ordering of I. The following Lemma shows that this is sufficient to
obtain compatible combinatorial embeddings of G1 and G2.

Lemma 1. If the system of Boolean equations has a solution then G1 and G2

have compatible combinatorial embeddings.

Proof. The procedure described above produces compatible leaf orders for all
pairs of black trees J1

i and J2
i . Recall that the leaves of J1

i (resp. J2
i) are the

out-edges of the component Ci−1 in G1 (resp. G2) and contain all the common
in-edges of vi. Focussing on G1 individually, its planarity test has succeeded,
and we have a combinatorial embedding such that the ordering of edges around
vi contains the leaf order of J1

i . Also, we have a combinatorial embedding of G2

such that the ordering of edges around vi contains the leaf order of J2
i .

The embedding of a graph imposes an ordering of the out-edges around every
main component. We can show inductively, starting from i = n, that the ordering
of the out-edges around the main component Ci−1 in G1 is compatible with the
ordering of the out-edges in the corresponding main component in G2. Moreover
all the common edges incident to vi, belong to either Ci−1 or Ci. This implies
that in both embeddings, the orderings of edges around any common vertex are
compatible. Therefore G1 and G2 have compatible combinatorial embeddings.

A generalization of simultaneous planarity to k graphs. Consider a gen-
eralization of simultaneous planarity for k graphs, when each vertex [edge] is
either present in all the graphs or present in exactly one of them. Our algorithm
of section 3.2 can be readily extended to solve this generalized version, when the
common graph is 2-connected (see the full paper [16] for more details).

420 B. Haeupler, K.R. Jampani, and A. Lubiw

3.3 Running Time

We show that our algorithm can be implemented to run in linear time. Comput-
ing the reverse depth-first ordering and the st-ordering are known to be feasible
in linear-time [11]. The first phase of our algorithm uses PQ-tree based pla-
narity testing with a reverse depth-first search order [17], which runs in linear
time using the efficient PQ-tree implementation of Booth and Lueker [3,4]. The
re-rooting between the two phases needs to be done only once and can easily
be done in linear time. The second phase of our algorithm uses PQ-tree based
planarity testing with an st-order, as discussed in Section 3.1. This avoids re-
rooting of PQ-trees, and thus also runs in linear time [17,4,22]. The other part
of the second phase is the unification step, which is only performed on the black
trees, i.e. the edges connecting to the current vertex. Thus we can explicitly store
the black trees and the intersection tree at every stage and allow the unification
step to take time linear in the complete size of both black trees. The intersection
algorithm needs to be implemented with a little bit more care but again, using
the standard PQ-tree implementation and the intersection algorithm described
in Booth’s thesis [3], linear time is possible. The last thing that needs to be
implemented efficiently is the handling of the orientation variables. Note that
a Q-node is implemented as a doubly-linked list of its children [4]. By storing
the variable and orientation information of a Q-node in one of the links of the
doubly-linked list and generating equations lazily at the end of each unification
step, we can generate all variable equations in linear time (see full paper for
details). Once generated, the equations can clearly be solved in linear time.

Acknowledgment. We want to thank Bob Tarjan. Some of the ideas used here
go back to joint research that was done for a complete version of [17].

References

1. Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the si-

multaneous embeddability of two graphs whose intersection is a biconnected graph

or a tree. In: IWOCA. LNCS (2010)

2. Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with

no geometric simultaneous embedding. In: CoRR, abs/1001.0555 (2010)

3. Booth, K.: PQ Tree Algorithms. PhD thesis, University of California, Berkeley

(1975)

4. Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs,

and graph planarity using pq-tree algorithms. Journal of Computer and System

Sciences 13, 335–379 (1976)

5. Boyer, J., Myrvold, W.: On the cutting edge: Simplified O(n) planarity by edge

addition. Journal of Graph Algorithms and Applications 8(3), 241–273 (2004)

6. Brass, P., Cenek, E., Duncan, C., Efrat, A., Erten, C., Ismailescu, D., Kobourov,

S.G., Lubiw, A., Mitchell, J.: On simultaneous planar graph embeddings. Compu-

tational Geometry: Theory and Applications 36(2), 117–130 (2007)

7. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial

Optimization. Wiley Interscience, Hoboken (1997)

Testing Simultaneous Planarity When the Common Graph Is 2-Connected 421

8. DiGiacomo, G., Liotta, G.: Simultaneous embedding of outerplanar graphs,

paths, and cycles. International Journal of Computational Geometry and Applica-

tions 17(2), 139–160 (2007)

9. Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few

bends. Journal of Graph Algorithms and Applications 9(3), 347–364 (2005)

10. Estrella-Balderrama, A., Gassner, E., Junger, M., Percan, M., Schaefer, M., Schulz,

M.: Simultaneous geometric graph embeddings. In: Hong, S.-H., Nishizeki, T.,

Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg

(2008)

11. Even, S., Tarjan, R.: Computing an st-Numbering. Theor. Comput. Sci. 2(3), 339–

344 (1976)

12. Fowler, J., Gutwenger, C., Junger, M., Mutzel, P., Schulz, M.: An SPQR-tree

approach to decide special cases of simultaneous embedding with fixed edges. In:

Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 1–12. Springer,

Heidelberg (2009)

13. Fowler, J., Jünger, M., Kobourov, S.G., Schulz, M.: Characterizations of restricted

pairs of planar graphs allowing simultaneous embedding with fixed edges. In:

Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS,

vol. 5344, pp. 146–158. Springer, Heidelberg (2008)

14. Frati, F.: Embedding graphs simultaneously with fixed edges. In: Kaufmann, M.,

Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 108–113. Springer, Heidelberg

(2007)

15. Gassner, E., Junger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous graph

embeddings with fixed edges. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271,

pp. 325–335. Springer, Heidelberg (2006)

16. Haeupler, B., Jampani, K.R., Lubiw, A.: Testing simultaneous planarity when the

common graph is 2-connected (2010)

17. Haeupler, B., Tarjan, R.E.: Planarity algorithms via PQ-trees (extended abstract).

Electronic Notes in Discrete Mathematics 31, 143–149 (2008)

18. Jampani, K.R., Lubiw, A.: The simultaneous representation problem for chordal,

comparability and permutation graphs. In: WADS. LNCS, vol. 5664, pp. 387–398.

Springer, Heidelberg (2009)

19. Jampani, K.R., Lubiw, A.: Simultaneous interval graphs (2010) (submitted)

20. Jünger, M., Leipert, S.: Level planar embedding in linear time. J. Graph Algorithms

Appl. 6(1), 67–113 (2002)

21. Jünger, M., Schulz, M.: Intersection graphs in simultaneous embedding with fixed

edges. Journal of Graph Algorithms and Applications 13(2), 205–218 (2009)

22. Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs.

In: Rosenstiehl, P. (ed.) Theory of Graphs: International Symposium, pp. 215–232

(1967)

23. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins University Press,

Baltimore (2001)

24. Nishizeki, T., Chiba, N.: Planar graphs: theory and algorithms. Elsevier, Amster-

dam (1988)

25. Nishizeki, T., Rahman, M.S.: Planar graph drawing. World Scientific, Singapore

(2004)

26. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs

and Combinatorics 17(4), 717–728 (2001)

27. Shih, W.K., Hsu, W.-L.: A new planarity test. Theoretical Computer Science

223(1-2), 179–191 (1999)

Computing the Discrete Fréchet Distance with
Imprecise Input

Hee-Kap Ahn1, Christian Knauer2, Marc Scherfenberg2,
Lena Schlipf3, and Antoine Vigneron4

1 Department of Computer Science and Engineering, POSTECH, Pohang, Korea

heekap@postech.ac.kr
2 Institute of Computer Science, Universität Bayreuth, 95440 Bayreuth, Germany

{Christian.knauer,marc.scherfenberg}@uni-bayreuth.de
3 Institute of Computer Science, Freie Universität Berlin, Germany

schlipf@mi.fu-berlin.de
4 INRA, UR 341 Mathématiques et Informatique Appliquées,

78352 Jouy-en-Josas, France

antoine.vigneron@jouy.inra.fr

Abstract. We consider the problem of computing the discrete Fréchet

distance between two polygonal curves when their vertices are impre-

cise. An imprecise point is given by a region and this point could lie

anywhere within this region. By modelling imprecise points as balls in

dimension d, we present an algorithm for this problem that returns in

time 2O(d2)m2n2 log2(mn) the Fréchet distance lower bound between

two imprecise polygonal curves with n and m vertices, respectively.

We give an improved algorithm for the planar case with running time

O(mn log2(mn) + (m2 + n2) log(mn)). In the d-dimensional orthogonal

case, where points are modelled as axis-parallel boxes, and we use the

L∞ distance, we give an O(dmn log(dmn))-time algorithm.

We also give efficient O(dmn)-time algorithms to approximate the

Fréchet distance upper bound, as well as the smallest possible Fréchet

distance lower/upper bound that can be achieved between two imprecise

point sequences when one is allowed to translate them. These algorithms

achieve constant factor approximation ratios in “realistic” settings (such

as when the radii of the balls modelling the imprecise points are roughly

of the same size).

1 Introduction

Shape matching is an important ingredient in a wide range of computer ap-
plications such as computer vision, computer–aided design, robotics, medical
imaging, and drug design. In shape matching, we are given two geometric ob-
jects and we compute their distance according to some geometric similarity mea-
sure. The Fréchet distance is a natural distance function for continuous shapes
such as curves and surfaces, and is defined using reparameterizations of the
shapes [3,4,5,16].

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 422–433, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Computing the Discrete Fréchet Distance with Imprecise Input 423

The discrete Fréchet distance is a variant of the Fréchet distance in which we
only consider vertices of polygonal curves. In dimension d, given two polygonal
curves with n and m vertices, respectively, there is a dynamic programming
algorithm that computes the discrete Fréchet distance between them in Θ(dmn)
time [9]. Later, Aronov et al. [6] presented efficient approximation algorithms
for computing the discrete Fréchet distance of two natural classes of curves:
κ-bounded curves and backbone curves. They also proposed a pseudo-output-
sensitive algorithm for computing the discrete Fréchet distance exactly.

Most of previous works on the Fréchet distance assume that the input curves
are given precisely. The input curve, however, could be only an approximation; In
many cases, geometric data comes from measurements of continuous real-world
phenomenons, and the measuring devices have finite precision. This imprecise-
ness of geometric data has been studied lately, and quite a few algorithms that
handle imprecise data have been given for fundamental geometric problems: for
example, computing the Hausdorff distance [12], Voronoi diagrams [17], planar
convex hulls [13], and Delaunay triangulations [11,14].

Imprecise data can be modelled in different ways. One possible model, for
data that consists of points, is to assign each point to a region, typically a disk
or a square. In this case, existing algorithms for computing the Fréchet distance
could be too sensitive to the precision of the measurements, and they may return
a solution without providing any guarantee on its correctness or preciseness. One
solution to this problem is to take the impreciseness of the input into account
in the design of algorithms, so that they return a solution with some additional
information on its quality.

Our results. In this paper, we study the problem of computing the discrete
Fréchet distance between two polygonal curves, where the vertices of a polygonal
curve are imprecise. Each vertex belongs to a region, which is either a Euclidean
ball or an axis-parallel box in R

d. We consider two cases: the orthogonal case
and the Euclidean case. In the orthogonal case, the regions are boxes, and we
use the L∞ distance. In the Euclidean case, the regions are balls and we use the
Euclidean distance.

Typical applications of this problem include computing similarity of two
spatio-temporal data sets such as polygonal trajectories of moving objects (e.g.
cars, people, animals) whose vertex locations are obtained by some positioning
services (e.g. the Global Positioning System), and therefore imprecise.

Given two imprecise sequences of n and m points, respectively, we give al-
gorithms for computing the Fréchet distance lower bound between these two
sequences. In the d-dimensional orthogonal case, our algorithm runs in time
O(dmn log(dmn)). In the Euclidean case, we give an 2O(d2)m2n2 log2(mn)-time
algorithm for arbitrary dimension d, and we give an improved O(mn log2(mn)+
(m2 + n2) log(mn))-time algorithm in the plane.

We also give efficient O(dmn)-time algorithms to approximate the Fréchet
distance upper bound, as well as the smallest possible Fréchet distance lower
and upper bound that can be achieved between two imprecise point sequences
when one is allowed to translate them. These algorithms achieve constant factor

424 H.-K. Ahn et al.

approximation ratios in realistic settings, such as when the radii of the balls
modelling the imprecise points are roughly of the same size, or when any two
consecutive imprecise points are well-separated (so that their imprecision regions
do not overlap).

2 Notation and Preliminaries

We work in R
d, and we use a metric dist(·, ·) which is either the Euclidean

distance, or the L∞ distance. Let A = a1, . . . , an and B = b1, . . . , bm de-
note two sequences of points in R

d. A coupling is a sequence of ordered pairs
(α1, β1), . . . , (αc, βc) such that:

– α1 = 1, β1 = 1, αc = n and βc = m.
– for each 1 � k < c, one of the three statements below is true:

• αk+1 = αk + 1 and βk+1 = βk + 1.
• αk+1 = αk + 1 and βk+1 = βk.
• βk+1 = βk + 1 and αk+1 = αk

The discrete Fréchet distance F(A, B) is the minimum, over all couplings, of
max1�k�c dist(aαk

, bβk
). (See Figure 1.)

In what follows, we consider the case where the two point-sequences A and B
are imprecise. So, instead of knowing the position of each ai, bj , we are given two
sequences of regions of R

d denoted by H = h1, . . . , hn and V = v1, . . . , vm. These
regions will be either Euclidean balls, or axis-aligned boxes. They specify where
the points ai, bj may lie, and thus for each i, j, we have ai ∈ hi and bj ∈ vj . For
all i � n, we denote by Hi the subsequence h1, . . . , hi, and for all j � m, we
denote Vj = v1, . . . , vj .

We will consider two different cases. In the Euclidean case, the regions are
Euclidean balls in R

d and we use the Euclidean distance. In the orthogonal case,
the regions are axis-aligned boxes and the distance we use is the L∞ metric.

A realization of the region sequence H is a point sequence A = a1, . . . , an

such that ai ∈ hi for all 1 � i � n. Similarly, a realization of the region sequence
V is a point sequence B = b1, . . . , bm such that bj ∈ vj for all 1 � j � m. We
denote by A ∈R H and B ∈R V the fact that A is a realization of H , and B is
a realization of V , respectively. When A ∈R H and B ∈R V , we will say that
(A, B) is a realization of (H, V). This will be denoted as (A, B) ∈R (H, V).

Definition 1. For two region sequences H and V , the Fréchet distance lower
bound Fmin(H, V) is the minimum, over all realizations (A, B) of (H, V), of the
discrete Fréchet distance F(A, B):

Fmin(H, V) = min
(A,B)∈R(H,V)

F(A, B).

The Fréchet distance upper bound Fmax(H, V) is the maximum, over all real-
izations (A, B) of (H, V), of the discrete Fréchet distance F(A, B):

Fmax(H, V) = max
(A,B)∈R(H,V)

F(A, B).

Computing the Discrete Fréchet Distance with Imprecise Input 425

h1

h2

h3

h4

v1

v2

v3

a1

b1

a2
a3

b2

a4 = b3

Fig. 1. The discrete Fréchet distance between the sequences A = a1, a2, a3, a4 and B =

b1, b2, b3 is achieved by the coupling (1, 1), (2, 2), (3, 2), (4, 3), and we have F(A, B) =

dist(a2, b2) = dist(a3, b2). The sequences A and B are realizations of the sequences of

regions H = h1, h2, h3, h4 and V = v1, v2, v3, which is denoted by (A,B) ∈R (H,V).

The Fréchet distance lower bound Fmin(H,V) is achieved by the realization (A, B), so

we have Fmin(H, V) = F(A,B).

3 Computing the Fréchet Distance Lower Bound Fmin

In this section, we give algorithms for computing Fmin(H, V). We first give a deci-
sion algorithm that, given a real number δ � 0 , decides whether Fmin(H, V) � δ.
Then we give an improved decision algorithm for the Euclidean case. Based on
these decision algorithms, we finally give optimization algorithms, which com-
pute Fmin(H, V) in the orthogonal case and in the Euclidean case.

We denote by hδ
i (resp. vδ

j) the set of points that are at distance at most
δ from hi (resp. vj). In the Euclidean case, where hi is a ball with radius r,
the set hδ

i is the concentric ball with radius r + δ. In the orthogonal case, if
hi = [x1, y1] × · · · × [xd, yd], we have hδ

i = [x1 − δ, y1 + δ] × · · · × [xd − δ, yd + δ].

3.1 Decision Algorithm for the Orthogonal Case

Our decision algorithm is based on dynamic programming. In this sense, it is
related to Eiter and Mannila’s algorithm [9] for computing the discrete Fréchet
distance, but we use additional invariants to address the impreciseness. These
new invariants are carefully chosen feasibility regions, which indicate where the
current points (ai, bj) may lie. Note that a straightforward discretization of the
space of realizations of H, V would yield an exponential time bound, because one

426 H.-K. Ahn et al.

would have to consider the arrangement of nm surfaces in dimension (m + n)d
defined by the equation dist(ai, bj) � δ for each pair i, j.

So in each cell of an array with n rows and m columns, we will store two
feasibility regions FHδ(i, j) ⊂ R

d and FVδ(i, j) ⊂ R
d. The ith row represents

the region Hi, and the jth column represents Vj . We will compute these fields
row by row, from i = 1 to i = n.

Remember that Ai (resp. Bj) denotes the sequence a1, . . . , ai (resp. b1, . . . , bj).
As we shall see in Lemma 1, the feasibility region FHδ(i, j) represents the possible
locations of ai, where (Ai, Bj) is a realization of (Hi, Vj), and there exists a
coupling that achieves F(Ai, Bj) � δ whose last two pairs are not (i−1, j), (i, j).
The other feasibility region FVδ(i, j) represents the possible locations of bj, when
there is such a coupling whose last two pairs are not (i, j − 1), (i, j). Thus, the
Fréchet distance lower bound Fmin(Hi, Vj) is more than δ if and only if both of
these feasibility regions FHδ(i, j) and FVδ(i, j) are empty.

The pseudocode of our decision algorithm DecideFréchetMin is given below.
Lines 1 to 8 initialize some of the fields of our array for the first row and column,
as well as an extra zeroth column and row. It allows boundary cases when i = 1
and j = 1 to be handled correctly in the main loop. The main loop is from line 9
to 15. As we are in the orthogonal case, lines 12–15 consist in intersecting two
axis-aligned boxes in dimension d. It can be done trivially in O(d) time, so our
algorithm runs in O(dmn) time.
Algorithm DecideFréchetMin
Input: Two sequences of regions H = h1, . . . , hn and V = v1, . . . , vm, and a

value δ � 0.
Output: TRUE when Fmin(H, V) � δ, and FALSE otherwise.
1. for i ← 1 to n
2. FHδ(i, 0) ← ∅
3. FVδ(i, 0) ← ∅
4. for j ← 1 to m
5. FHδ(0, j) ← ∅
6. FVδ(0, j) ← ∅
7. FHδ(0, 0) ← R

d

8. FVδ(0, 0) ← R
d

9. for i ← 1 to n
10. for j ← 1 to m
11. if FHδ(i − 1, j − 1) = ∅ and FVδ(i − 1, j − 1) = ∅
12. then FHδ(i, j) ← FHδ(i, j − 1) ∩ vδ

j

13. FVδ(i, j) ← FVδ(i − 1, j) ∩ hδ
i

14. else FHδ(i, j) ← hi ∩ vδ
j

15. FVδ(i, j) ← hδ
i ∩ vj

16. if FHδ(n, m) = ∅ and FVδ(n, m) = ∅
17. then return FALSE
18. else return TRUE

In order to prove that our decision algorithm DecideFréchetMin is correct, we
need the following lemma.

Computing the Discrete Fréchet Distance with Imprecise Input 427

Lemma 1. For any 2 � i � n, 2 � j � m, we have Fmin(Hi, Vj) � δ if and
only if FHδ(i, j) �= ∅ or FVδ(i, j) �= ∅. More precisely, for any x, y ∈ R

d, we
have:

(a) x ∈ FHδ(i, j) if and only if there exists (Ai, Bj) ∈R (Hi, Vj) such that ai = x,
and such that there exists a coupling achieving F(Ai, Bj) � δ whose last two
pairs are not (i − 1, j), (i, j).

(b) y ∈ FVδ(i, j) if and only if there exists (Ai, Bj) ∈R (Hi, Vj) such that bj = y,
and such that there exists a coupling achieving F(Ai, Bj) � δ whose last two
pairs are not (i, j − 1), (i, j).

We now prove Lemma 1 when i, j � 3. The boundary cases where i = 2 or j = 2
can be easily checked. We only prove Lemma 1(a); the proof of (b) is similar.
Our proof is done by induction on (i, j), so we assume that Lemma 1 is true
for all the cells that have been handled before cell (i, j) by our algorithm; in
particular, it is true for all cells (i′, j′) �= (i, j) such that i′ � i and j′ � j.

We first assume that x ∈ FHδ(i, j), and we want to prove that there exists
(Ai, Bj) ∈R (Hi, Vj) such that ai = x, and such that there exists a coupling
achieving F(Ai, Bj) � δ whose last two pairs are not (i − 1, j), (i, j). We distin-
guish between two cases:

– First case: FHδ(i−1, j −1) �= ∅ or FVδ(i−1, j −1) �= ∅. Then, by induction,
there exists (Ai−1, Bj−1) ∈R (Hi−1, Vj−1) such that F(Ai−1, Bj−1) � δ. We
also know that FHδ(i, j) was set to hi ∩vδ

j at line 14. In other words, x ∈ hi,
and there exists y′ ∈ vj such that dist(x, y′) � δ. So we extend Ai−1 and
Bj−1 by choosing ai = x and bj = y′. We extend a coupling achieving
F(Ai−1, Bj−1) � δ with the pair (i, j), and obtain a coupling achieving
F(Ai, Bj) � δ whose last two pairs are (i − 1, j − 1), (i, j).

– Second case: FHδ(i− 1, j − 1) = ∅ and FVδ(i − 1, j − 1) = ∅. Then FHδ(i, j)
was set to FHδ(i, j−1)∩vδ

j at line 12. Thus x ∈ FHδ(i, j−1), so by induction,
there exists (Ai, Bj−1) ∈R (Hi, Vj−1) such that ai = x and F(Ai, Bj−1) � δ.
Since x ∈ vδ

j , there exists y′ ∈ vj such that dist(x, y′) � δ. So we extend
Bj−1 by choosing bj = y′. We extend a coupling achieving F(Ai, Bj−1) = δ
with the pair (i, j), and we obtain a coupling achieving F(Ai, Bj) � δ whose
last two pairs are (i, j − 1), (i, j).

Now we assume that there exists (Ai, Bj) ∈R (Hi, Vj) such that there exists a
coupling C achieving F(Ai, Bj) � δ whose last two pairs are not (i − 1, j), (i, j).
We want to prove that ai ∈ FHδ(i, j). We distinguish between two cases:

– First case: FHδ(i − 1, j − 1) �= ∅ or FVδ(i − 1, j − 1) �= ∅. It implies that
FHδ(i, j) was set to hi ∩ vδ

j at line 14. Since Ai ∈R Hi, we have ai ∈ hi.
Since Bj ∈R Vj and F(Ai, Bj) � δ, it follows that dist(ai, bj) � δ, and thus
ai ∈ vδ

j . Thus, ai ∈ FHδ(i, j).
– Second case: FHδ(i−1, j −1) = ∅ and FVδ(i−1, j −1) = ∅. Then, by induc-

tion, we have Fmin(Hi−1, Vj−1) > δ, which implies that F(Ai−1, Bj−1) > δ,
so the pair (i − 1, j − 1) cannot appear in C. It follows that the last three
pairs of C can only be (i, j −2), (i, j−1), (i, j) or (i−1, j−2), (i, j−1), (i, j).

428 H.-K. Ahn et al.

So, by induction, we have ai ∈ FHδ(i, j − 1). Since F(Ai, Bj) � δ, we have
ai ∈ vδ

j . As FHδ(i − 1, j − 1) = ∅ and FVδ(i − 1, j − 1) = ∅, the value of
FHδ(i, j) was set to FHδ(i, j − 1) ∩ vδ

j at line 14, so we have ai ∈ FHδ(i, j).

This completes the proof of Lemma 1. It follows immediately from Lemma 1
that Algorithm DecideFréchetMin decides correctly whether Fmin(H, V) � δ.
As we observed above, our algorithm runs in O(dmn) time. Thus, we obtain the
following result:

Theorem 1. In the d-dimensional orthogonal case, given δ � 0, and given two
imprecise sequences H and V of n and m points, respectively, we can decide in
O(dmn) time whether Fmin(H, V) ≤ δ.

3.2 Decision Algorithm for the Euclidean Case

In this section, we give an efficient algorithm for the Euclidean case. A naive
implementation of Algorithm DecideFréchetMin would require to construct the
regions FHδ(i, j) and FVδ(i, j), which may be intersections of Ω(n) balls in
R

d. Even in R
2, it would increase the running time of our algorithm by an

order of magnitude. To improve the running time, we will show how to compute
these intersections in amortized 2O(d2) log(mn) time per step. We will need the
following result:

Lemma 2. We can decide in 2O(d2)k time whether k balls in d-dimensional
Euclidean space have an empty intersection.

Proof. We consider a collection of k balls in R
d. We use the standard lifting-

map [8, Section 1.2], which maps any point x = (x1, . . . , xd) ∈ R
d to the point

x̂ =
(
x1, . . . , xd,

∑d
i=1 x2

i

)
∈ R

d+1. Then a ball B ⊂ R
d can be mapped to

an affine hyperplane H ⊂ R
d+1 such that x ∈ B if and only if x̂ is below H.

Thus, deciding whether k balls have a non-empty intersection reduces to deciding
whether there is a point x such that x̂ is below all the corresponding hyperplanes.
To do this, it suffices to decide whether there is a point ŷ = (y1, . . . , yd+1) below
all these hyperplanes and such that

∑d
i=1 y2

i � yd+1. It can be done in 2O(d2)k
time using an algorithm of Dyer [7] for some generalized linear programs in
fixed dimension; in our case, the linear constraints for Dyer’s algorithm are given
by our set of hyperplanes, and the convex function we use is (y1, . . . , yd+1) �→
−yd+1 +

∑d
i=1 y2

i .

We now explain how we implement line 13 in amortized 2O(d2) log n time. We
fix the value of j, and we show how to build an incremental data structure that
decides in amortized 2O(d2) log n time whether FVδ(i, j) = ∅. To achieve this, we
do not maintain the region FVδ(i, j) explicitly: we only maintain an auxiliary
data structure that allows us to decide quickly whether it is empty or not. During
the course of Algorithm DecideFréchetMin , the region FVδ(i, j) can be reset to
hδ

i ∩ vj at line 15, and otherwise, it is the intersection of FVδ(i − 1, j) with hδ
i .

So at any time, we have FVδ(i, j) = hδ
i0 ∩ hδ

i0+1 · · · ∩ hδ
i ∩ vj for some 1 � i0 � i.

Computing the Discrete Fréchet Distance with Imprecise Input 429

So our auxiliary data structure needs to perform three types of operations:

1. Set S = ∅.
2. Insert the next ball into S.
3. Decide whether the intersection of the balls in S is empty.

When we run Algorithm DecideFréchetMin on column j, the sequence of n
balls hδ

1, . . . , h
δ
n is known in advance, but not the sequence of operations. So

this is the assumption we make for our auxiliary data structure: we know in
advance the sequence of balls, but the sequence of operations is given online.
A trivial implementation using Lemma 2 requires 2O(d2)n time per operation.
Using exponential and binary search [15], we will show how to do it in amortized
2O(d2) log n time per operation.

Operation 1 is trivial to implement. To implement operation 2, suppose that,
before we perform this operation, the cardinality |S| of S is s = 2�, for some
integer �. Then, using Lemma 2, we check whether the intersection of the balls
in S and the next s balls is empty. If so, we find by binary search the first
subsequence of balls, starting at the balls of S, whose intersection is empty. By
Lemma 2, it can be done in 2O(d2)s log s time. Then we can perform in constant
time each operation of type 2 or 3 until the next time operation 1 is performed.
On the other hand, if the intersection of the balls in S and the next s balls is not
empty, we record this fact. Then, until the cardinality of S reaches 2s = 2�+1, or
we perform operation 1, we can perform each operation of type 2 or 3 in constant
time.

This data structure needs only amortized 2O(d2) log n time per operation.
Keeping one such data structure for each value of j, we can perform line 13
of Algorithm DecideFréchetMin in amortized 2O(d2) log n time. Similarly, we
can implement line 12 in amortized 2O(d2) log m time. Overall, we obtain the
following result:

Theorem 2. In the d-dimensional Euclidean case, given δ � 0, and given two
imprecise sequences H and V of n and m points, respectively, we can decide in
2O(d2)mn log(mn) time whether Fmin(H, V) ≤ δ.

3.3 Optimization Algorithms

In this section, we give optimization algorithms for computing the Fréchet dis-
tance lower bound in the orthogonal case, and in the Euclidean case. They are
based on the decision algorithms of sections 3.1 and 3.2.

We first consider the orthogonal case. The result of the decision algorithm may
only change at some value of δ such that a box FHδ(i, j) or FVδ(i, j) degenerates
to a box of dimension less than d. It may happen when the sides of two boxes
of type hδ

i , hi, vδ
j , or vj have a common supporting hyperplane. Therefore, if we

denote by (x1, . . . , xd, y1, . . . , yd) the coordinates of the box [x1, y1]×· · ·×[xd, yd],
and if we denote by (c1, . . . , ck) the sequence of all these coordinates in increasing
order, the optimal value Fmin(H, V) has to be of the form cj − ci or (cj − ci)/2
for some i � j. The matrix with coefficients cij = max{0, cj − ck+1−i} is a k-
by-k monotone matrix with k � dmn, so using the technique by Frederickson

430 H.-K. Ahn et al.

and Johnson [1,10] for searching in such a matrix, we can find Fmin(H, V) using
O(log(dmn)) calls to our decision algorithm. Thus, we obtained the following
result:

Theorem 3. In the d-dimensional orthogonal case, given two imprecise sequences
H and V of n and m points, respectively, we can compute Fmin(H, V) in time
O(dmn log(dmn)).

This approach does not work in the Euclidean case, so instead of using Frederick-
son and Johnson’s technique, we use parametric search [1,2]. Using the algorithm
from Theorem 2 both as the decision algorithm and the generic algorithm (with-
out making it parallel), we obtain the following result:

Theorem 4. In the d-dimensional Euclidean case, given two imprecise sequences
H and V of n and m points, respectively, we can compute Fmin(H, V) in time
2O(d2)m2n2 log2(mn).

We can improve this result when d = 2. To achieve this, we apply parametric
search in a different way. Observe that the result of Algorithm DecideFréchetMin
only changes when there is a change in the combinatorial structure of the arrange-
ment of the circles bounding the disks hi, h

δ
i , vj , v

δ
j for all i, j. So, as a generic algo-

rithm, we use an algorithm that computes the arrangement of these 2m + 2n cir-
cles. There exists such an algorithm with running time O(log(mn)) using O(m2 +
n2) processors [2]. The decision algorithm is just our algorithmDecideFréchetMin ,
which runs in O(mn log(mn)) time. So we need a total of O((m2 + n2) log(mn))
time to run the generic algorithm, and a total of O(mn log2(mn)) time for the
decision algorithm. Thus, we obtain the following result:

Theorem 5. In the two-dimensional Euclidean case, given two imprecise se-
quences H and V of n and m points, respectively, we can compute Fmin(H, V)
in O(mn log2(mn) + (m2 + n2) log(mn)) time.

4 Approximation Algorithms

The running time of our algorithm for computing Fmin exactly in the Euclidean
case, when the dimension is larger than 2, may be too large for some applications.
The situation is worse for the problem of computing Fmax since we currently do
not even have a polynomial time algorithm. The problem of matching imprecise
shapes with respect to the discrete Fréchet distance under translations seems
even more complicated; in particular, we currently do not know how to solve it
in polynomial time.

Definition 2. For two region sequences H and V , the smallest Fréchet distance
lower bound under translation is the minimum over all translations t of the
Fréchet distance lower bound 1 Fmin(H + t, V):

Fmin
tr (H, V) = min

t
Fmin(H + t, V).

1 For a translation t and a region sequence H = h1, . . . , hn we denote by H + t the

translate of H by t. Formally H + t = h1 ⊕ t, . . . , hn ⊕ t where hi ⊕ t denotes the

Minkowski sum of hi and t, i.e., hi ⊕ t = {x + t | x ∈ hi}.

Computing the Discrete Fréchet Distance with Imprecise Input 431

The smallest Fréchet distance upper bound under translation is the minimum
over all translations t of the Fréchet distance upper bound Fmin(H + t, V):

Fmax
tr (H, V) = min

t
Fmax(H + t, V).

We obtained efficient algorithms to approximate Fmin, Fmax, Fmin
tr , and Fmax

tr in
arbitrary dimension d. Due to space limitation, we only state our results in this
section, the proofs and the descriptions of the algorithms will be given in the
full version of this paper.

As in the previous sections, we are given two input sequences H and V of n and
m imprecise points, respectively, in d-dimensional space. In the Euclidean case,
we use the Euclidean distance, and we assume that the imprecision regions hi, vj

are Euclidean balls with centers a0
i , b

0
j and radius 0 < rmin ≤ r(hi), r(vj) ≤ rmax.

In the orthogonal case, we use the L∞ distance, and the imprecision region hi

(resp. vj) is an axis-parallel box that contains an L∞ ball with radius rmin and
center a0

i (resp. b0
j), and is contained in a L∞ ball with radius rmax and with

the same center a0
i (resp. b0

j). In both cases, we denote A0 = (a0
1, . . . , a

0
n) and

B0 = (b0
1, . . . , b

0
m).

The approximation quality for Fmax
tr and Fmax depends on the error parame-

ters rmin, rmax. In particular we get constant factor approximations for the case
rmax = Θ(rmin), which seems to be a reasonable assumption in practice. We
obtain the following result for approximating the Fréchet distance upper bound.

Theorem 6. In dimension d, given two imprecise sequences H and V of n and
m points, respectively, we can compute in O(dmn) time a value APPmax(H, V)
such that

Fmax(H, V) ≤ APPmax(H, V) ≤ (1 + rmax/rmin)Fmax(H, V).

The proof is omitted due to space limitation. The idea is to place each point at
the center of its region, and take APPmax(H, V) = F(A0, B0) + 2rmax.

The approximation quality for Fmin
tr and Fmin depends on the error param-

eter rmax and an additional parameter measuring how well-separated any two
consecutive points in an input sequence are:

Definition 3. For a parameter Δsep > 0, we say that a region sequence H =
h1, . . . , hn is Δsep-separated if minx∈hi,y∈hi+1 dist(x, y) ≥ Δsep for all 1 ≤ i ≤
n − 1.

We get constant factor approximations for the case Δsep = Ω(rmax), which again
seems to be a realistic assumption. In particular, we obtain the following result
for approximating the Fréchet distance lower bound. The proof is omitted due
to space limitation.

Theorem 7. In dimension d, given two Δsep-separated region sequences H and
V of n and m points, respectively, we can compute in O(dmn) time a value
APPmin(H, V) such that

Fmin(H, V) ≤ APPmin(H, V) ≤ (1 + 8rmax/Δsep)Fmin(H, V).

432 H.-K. Ahn et al.

Finally, we obtain the results below for approximating the Fréchet distance lower
and upper bounds under translation. Our algorithms run in O(dmn) time, and
we currently do not know if these values can be computed exactly in polynomial
time. The proof is omitted due to space limitation.

Theorem 8. In dimension d, given two imprecise sequences H and V of n and
m points, respectively, we can compute in O(dmn) time two values APPmax

tr (H, V)
and APPmin

tr (H, V) such that

(i) Fmax
tr (H, V) ≤ APPmax

tr (H, V) ≤ (2 + 3rmax/rmin)Fmax
tr (H, V), and

(ii) Fmin
tr (H, V) ≤ APPmin

tr (H, V) ≤ (2 + 20rmax/Δsep)Fmin
tr (H, V).

5 Conclusion

In this paper, we gave an efficient algorithm for computing the Fréchet dis-
tance lower bound between two imprecise point sequences. We also gave efficient
approximation algorithms for the Fréchet distance upper bound, and for the
Fréchet distance upper bound and lower bound under translations.

Unfortunately, our dynamic programming approach for the Fréchet distance
lower bound does not seem to apply to the Fréchet distance upper bound. So
we currently do not have a polynomial-time algorithm for computing the exact
Fréchet distance upper bound. This problem may be hard, as it sometimes hap-
pens that a maximization problem for imprecise points is much harder than the
corresponding minimization problem. For instance, Löffler and Van Kreveld [13]
showed that computing the maximum area or perimeter of the convex hull of n
imprecise points is NP-hard, even though the corresponding minimization prob-
lems can be solved in O(n2) and O(n log n) time respectively. Thus, it would
be interesting to show that the exact Fréchet distance upper bound problem is
NP-hard, or to find a polynomial-time algorithm.

Acknowledgements

Work by Ahn was supported by the Korea Research Foundation Grant funded by
the Korean Government(KRF-2008-614-D00008). Work by Knauer and Scher-
fenberg was supported by the German Science Foundation (DFG) under grant
Al 253/5-3. Work by Schlipf was supported by the Deutsche Forschungsgemein-
schaft within the research training group ’Methods for Discrete Structures’(GRK
1408).

References

1. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. Com-

puting Surveys 30(4), 412–458 (1998)

2. Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in ge-

ometric optimization. J. Algorithms 17(3), 292–318 (1994)

3. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal

curves. International Journal of Computational Geometry and Applications 5, 75–

91 (1995)

Computing the Discrete Fréchet Distance with Imprecise Input 433

4. Alt, H., Knauer, C., Wenk, C.: Matching polygonal curves with respect to the

Fréchet distance. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010,

pp. 63–74. Springer, Heidelberg (2001)

5. Alt, H., Knauer, C., Wenk, C.: Comparison of distance measures for planar curves.

Algorithmica 38(1), 45–58 (2003)

6. Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C.: Fréchet distance for

curves, revisited. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp.

52–63. Springer, Heidelberg (2006)

7. Dyer, M.E.: A class of convex programs with applications to computational geom-

etry. In: Proc. 8th Symposium on Computational Geometry, pp. 9–15. ACM, New

York (1992)

8. Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge Uni-

versity Press, Cambridge (2001)

9. Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Tech. Rep. CD-TR

94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria

(1994)

10. Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: Sorted ma-

trices. SIAM Journal on Computing 13(1), 14–30 (1984)

11. Khanban, A.A., Edalat, A.: Computing Delaunay triangulation with imprecise in-

put data. In: Proc. 15th Canadian Conference on Computational Geometry, pp.

94–97 (2003)

12. Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff dis-

tance between imprecise point sets. In: ISAAC. LNCS, vol. 5878, pp. 720–729.

Springer, Heidelberg (2009)

13. Löffler, M., van Kreveld, M.J.: Largest and smallest tours and convex hulls for

imprecise points. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059,

pp. 375–387. Springer, Heidelberg (2006)

14. Löffler, M., Snoeyink, J.: Delaunay triangulation of imprecise points in linear time

after preprocessing. Computational Geometry: Theory and Applications 43(3),

234–242 (2010)

15. Moffat, A., Turpin, A.: Compression and Coding Algorithms. Kluwer, Dordrecht

(2002)

16. Rote, G.: Computing the Fréchet distance between piecewise smooth curves. Com-

putational Geometry: Theory and Applications 37(3), 162–174 (2007)

17. Sember, J., Evans, W.: Guaranteed Voronoi diagrams of uncertain sites. In: Proc.

20th Annual Canadian Conference on Computational Geometry (2008)

Connectivity Graphs of Uncertainty Regions�

Erin Chambers1, Alejandro Erickson2, Sándor Fekete3, Jonathan Lenchner4,
Jeff Sember5, Srinivasan Venkatesh2, Ulrike Stege2, Svetlana Stolpner6,

Christophe Weibel7, and Sue Whitesides2

1 Dept. of Mathematics and Computer Science, Saint Louis University

echambe5@slu.edu
2 Dept. of Computer Science, University of Victoria

{ate,sue}@uvic.ca, {venkat,stege}@cs.uvic.ca
3 Inst. of Operating and Computer Networks, TU Braunschweig

s.fekete@tu-bs.de
4 IBM T.J. Watson Research Center

lenchner@us.ibm.com
5 Dept. of Computer Science, University of British Columbia

jpsember@cs.ubc.ca
6 School of Computer Science, McGill University

sveta@cim.mcgill.ca
7 Computer Science Department, Dartmouth College

weibel@cs.dartmouth.edu

Abstract. We study a generalization of the well known bottleneck span-

ning tree problem called Best Case Connectivity with Uncertainty: Given

a family of geometric regions, choose one point per region, such that the

length of the longest edge in a spanning tree of a disc intersection graph

is minimized. We show that this problem is NP-hard even for very sim-

ple scenarios such as line segments and squares. We also give exact and

approximation algorithms for the case of line segments and unit discs

respectively.

1 Introduction

Finding an optimally connected substructure in a network is one of the funda-
mental combinatorial optimization problems in network design. The standard
problem of minimizing the total edge cost in the network amounts to a mini-
mum spanning tree, which can be computed by straightforward greedy methods.
A closely related problem that has gained in importance in the context of wire-
less networking is to consider the “bottleneck” problem of minimizing the length
of the longest edge. This corresponds to choosing the necessary power and thus
range for the routers to be placed at nodes. Often, greedy methods still yield
optimal solutions. However, the situation changes when the location of devices
becomes part of the problem: How should each location be chosen from a given

� The authors are grateful for two Bellairs workshops supporting this research: the 8th

and 9th McGill—INRIA Workshop on Computational Geometry in 2009 and 2010.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 434–445, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Connectivity Graphs of Uncertainty Regions 435

neighborhood, such that the solution to the resulting bottleneck connectivity
problem is optimal? The neighborhoods can be the result of imprecise input
data, or simply arise from a geometric range of possible locations; depending
on the scenario, the choice of locations can be optimistic (i.e., best case) or
adversarial (i.e., worst case).

Let U , |U | = n, denote a family of uncertainty regions, e.g., a family of disks,
squares, line segments or pairs of points. For each uncertainty region ui ∈ U , 1 ≤
i ≤ n, one point pi is to be chosen inside this region ui. Let P be the set of points
chosen. For some value α ∈ R, we define the connectivity graph Gα = (V, E) of P
with respect to α as follows: V = P and E = {(pi ∈ P, pj ∈ P), ‖pi−pj‖2 ≤ 2α}.
Thus, the graph connects a pair of points with an edge whenever closed disks
of radius α centered at these points intersect. We can now formally define the
main problem, Best Case Connectivity with Uncertainty (BCU), that we study
in this paper.

The BCU Problem. Given a set U = {u1, . . . , un} of n uncertainty regions,
find the minimum value α for which there exists a choice of point set P =
{p1, . . . , pn}, pi ∈ ui, such that the connectivity graph Gα of P is connected.

Related Work. If the n uncertainty regions are points (in other words, there is
no uncertainty), then finding the minimum α for which the connectivity graph is
connected amounts to finding a minimum Euclidean Bottleneck Spanning Tree
(MBST) on the points. Since minimum spanning trees (MSTs) are also MBSTs,
these can be found in time O(n log n).

The well-studied family of range assignment problems is closely related. In
these problems the disks centered at each point can be of different radii, and the
goal is to minimize the total power consumption under the constraint that the
network satisfies certain structural properties like connectivity, strong connectiv-
ity, or a particular broadcast property. Most of the work on these problems has
considered point sets rather than uncertainty regions (see [4,11,12,1,8]). Thus
our work provides an early exploration of connectivity problems, arising in the
context of wireless networks, for points lying in nontrivial uncertainty regions.

The minimum spanning tree problem has been studied in the setting of un-
certainty regions. Yang et al. [16] showed that the problem of computing a span-
ning tree that minimizes the total edge length is NP-hard if the uncertainty
regions are non-overlapping unit disks or rectangles. They also give a polynomial-
time approximation scheme (PTAS) for the case where the uncertainty regions
are unit disks; this is notably different from our problem, which does not ad-
mit a PTAS, unless P=NP. Other optimization problems with neighborhoods
that have received attention include the Traveling Salesman Problem; e.g. see
[2,10,7,5,13]. The bottleneck version of TSP is known to be NP-hard [9, p. 212].
A 2-approximation has been known since 1984 [14].

Our Main Results. After sketching that many variants of BCU are NP-hard
(some even to approximate), we give exact and approximation algorithms for cer-
tain variants. Given the geometric nature of our problems, we use the Euclidean
measure of distance. Our main results are as follows:

436 E. Chambers et al.

1. We show that BCU is NP-hard even in the simple case when the uncertainty
regions are vertical line segments. Our proof technique also works when the
regions are all squares or even pairs of points; We show that it is NP-hard
to approximate BCU within a factor less than

√
5/2 when the uncertainty

regions are pairs of points. See Section 2.
2. We present an exact algorithm for BCU when the instance consists of n fixed

points and k line segments. The algorithm is polynomial in n for constant
k. See Section 3.

3. For uncertainty regions that are all unit disks, we give a simple constant
additive approximation algorithm for this problem. A slight modification
of this algorithm gives a constant multiplicative approximation in case the
disks are non-overlapping. See Section 4.

2 Hardness Results

We prove hardness results for two variants of the BCU problem. Our first theorem
shows NP-hardness when the uncertainty regions are line segments or point pairs.
Interestingly, this result also implies a hardness of approximation result for the
case of point pairs. Our second theorem proves NP-hardness for the case of
non-overlapping square uncertainty regions. In the remainder of this section, we
sketch the main ideas behind the first result. Detailed proofs are available in the
full version of this article [3].

NP-hardness of BCU for line segments or point pairs. We consider the
BCU problem for non-overlapping uncertainty regions of vertically aligned pairs
of points, unit distance apart with integer coordinates. We study the decision
version of BCU problem for α = 1, i.e., we want to decide if Gα = G1 is
connected for some choice of points, one for each uncertainty pair. By using a
reduction from Planar 3-SAT, we will show that this problem is NP-hard.

Overview of the Reduction. We use a reduction from Planar 3-SAT, 3-SAT
with the added condition that the input formula can be represented as a planar
graph. We make use of the fact that, given a planar 3-SAT instance Φ with
formula graph H(Φ), this graph has a planar layout on an O(n)×O(n) grid [6,15].
Further, in this layout, the vertices (variables and clauses) can be drawn as
horizontal line segments and edges as vertical line segments.

To reduce from Planar 3-SAT to an instance of BCU, where the uncertainty
regions are pairs of points, we design various gadgets. Specifically, given a layout
of a Planar 3-SAT instance using line segments as described above, we replace
each horizontal line segment corresponding to a variable by a variable gadget,
each horizontal line segment corresponding to a clause by a clause gadget, and
each edge by an appropriate vertical sequence of uncertainty pairs. We will argue
that there exists a choice of point in each of these uncertainty pairs such that the
connectivity graph for α = 1, G1, is connected if and only if the corresponding
Planar 3-SAT instance is satisfiable.

Overview of the Gadgets. We give the main ideas behind the clause gadget,
variable gadget and connector gadgets linking others.

Connectivity Graphs of Uncertainty Regions 437

A clause gadget is designed so that it contains three “gates”, one for each of
the literals in the clause. The gate for each literal will be either on the top or the
bottom of the clause gadget depending on whether the literal appears below or
above the clause in the planar grid layout with horizontal and vertical segments.
For the connectivity subgraph corresponding to the clause to be connected to the
rest of the graph in G1, at least one of these three gates must be open. This will
correspond to setting the literal to “true” in the clause. This, in turn, ensures
that the clause is satisfied.

The role of a variable gadget is to choose and propagate a truth value for
the variable to all the clauses containing it in a consistent manner. The variable
gadget contains three types of constructs. Type I and type II constructs will
help link the variable to all the clauses that contain it and are either above
or below it. We have one such type I-type II pair for every occurrence of the
variable in a clause. A construct of type III is used to ensure that the truth
assignment to the variable in all the copies of type I-type II pairs are the same.
If not, the subgraph of G1 corresponding to this variable gadget is not connected.
Furthermore, G1 itself cannot be connected as it cannot join subgraphs arising
from parts of a variable gadget.

The variable and clause gadgets are linked to each other using two types
of connectors. The connector linking a clause to a variable ensures a consistent
assignment of truth value to a variable and a clause that contains this variable or
its negation. Inconsistent assignments will result in G1 being disconnected. The
connector linking a variable to another variable can be more flexible. It should
help connect one variable gadget to another variable gadget in G1 irrespective
of the choice of truth values for each of them.

We observe that there is no approximation algorithm for the maximum edge
length, polynomial in the size of the input, with approximation ratio less than√

5/2, unless P = NP . Indeed, our instances have a Bottleneck Spanning Tree
of maximum edge length 2 (α = 1) if the underlying 3-SAT instance has a
valid assignment and at least

√
5 otherwise. Hence, if we had a polynomial time

approximation to the solution with a ratio less than
√

5/2, we could use the
approximation to find a Bottleneck Spanning Tree with maximum edge length
not greater than 2, a contradiction (unless P = NP).

We finish this section by noting that if we replace the point pairs by a unit
length vertical line segment joining them, we can also prove that the BCU prob-
lem for line segments is NP-hard. However, we cannot prove that it is NP-hard
to approximate.

3 An Exact Algorithm Solving BCU for n Fixed Points
and k Segments

We present an exact algorithm that solves our problem when the input consist of
n fixed points and k line segments of any length and orientation (as uncertainty
regions). For the ease of presentation, we assume the line segments to be in
general position. Our algorithm determines, in a time that is polynomial in n for

438 E. Chambers et al.

any fixed k, a set of point positions on the segments, such that there is a spanning
tree connecting all the points on the segments as well as all fixed points, with no
tree edge longer than L, where L = 2α and α is minimized. In other words, we
seek to find a spanning tree connecting exactly one point of each segment and
all fixed points, with its longest edges being of minimum length.

Algorithm Overview. A key feature of our recursive algorithm is that it
restricts an exhaustive search for an optimal solution to a search of candidate
solutions in the set of what we call minimum solution trees, optimal solutions
that satisfy additional properties. Our algorithm computes the combinatorial
structure of candidates for a minimum solution tree by exhaustive search for
possible “support sequences” (E1, . . . , Em) for candidate critical paths. Their
support sequences implicitly determine the locations of the tree vertices on the
segments of the support sequences. The coordinates are specified up to user-
defined precision δ. Once a critical path is found, the original problem is updated
with new fixed points, specified to precision δ, and fewer segments. At the end the
combinatorial structure of a minimum solution tree candidate is known, together
with support sequences for critical paths through tree vertices on segments. The
exact locations of these vertices are given implicitly by the support sequences.
Whenever a fixed point is determined for each segment, we compute a MBST
on these points to obtain the α for this minimum solution tree candidate. The
candidate tree with the minimum α gives an optimum solution to our input.

Minimum Solution Trees. To prepare for the description of our algorithm,
we start with describing properties of the positions of points on segments in an
optimal solution. We remark that in an optimal solution for k > 1 we can have
considerable freedom on the placement of points on segments not incident to
longest edges, and therefore even an infinite number of optimal solutions may
exist. To reduce the search space, we constrain the solution to be determined in
defining a way to compare different (spanning tree) solutions. For this, consider
the set of all spanning trees taken over all fixed points and all point choices on
the k segments. We define a linear ordering on this set as follows.

For any two selections of points on the k segments, and for two of their
corresponding spanning trees, let L and L′ be ordered lists of lengths of all edges
in the two trees, sorted from longest to shortest. That is, L = (l1, l2, . . . , ln+k−1)
and L′ = (l′1, l′2, . . . , l′n+k−1), with li ≥ li+1 and l′i ≥ l′i+1 for all i. We say
that L is preferred over L′ if for a certain i, li < l′i, and lj = l′j for all j < i.
This defines a general ordering on lists. Our algorithm seeks to choose points on
segments and a spanning tree such that the corresponding list of edge lengths
is preferred over all other possibilities of point selections on the segments. We
call such a tree a minimum solution tree T .1 In a minimum solution tree T , not
only are longest edges as short as possible, but also the number of longest edges
is minimum. In other words, the tree with a smallest number of shortest longest
edges is preferred over the ones with more edges of the same length. Further, for
1 We remark that for lists L and L′ for two different spanning tress with two different

sets of points on the segments, it is possible that L = L′, that is we can have a tie.

Connectivity Graphs of Uncertainty Regions 439

all i the ith longest edge is as small as possible, and the number of edges of that
length is minimum. A choice of points on segments that results in a minimum
solution tree T is an optimal point set for T .

The above conditions imply convenient properties on the optimal point set
w.r.t. a minimum solution tree. Note that, for any point p of an optimal point
set, it is impossible to improve the solution by slightly moving p on its segment;
in fact, any perturbation of a point must lengthen at least one of the edges that
is longest among all edges incident to p. We distinguish the possibilities for a
point p on a segment in an optimal point set (see Figure 1). Given a point p
on a segment, we call an edge of a minimum solution tree incident to p locally
longest if no other tree edge incident to p is longer.

segment

�
�

�

�

�

segment

�
�
�

�

�

�
segment

�
�
�

�

�

�

Fig. 1. Points (in blue) of type 1, 2, and 3 respectively, with longest incident edges

in blue. In each case, moving the point along the segment results in a longer longest

incident edge.

1. Point p lies at an extremity of the segment. Then, one of the locally longest
edges incident to p lies on the half plane that is delimited by a line perpen-
dicular to the segment and that does not contain the segment. Moving p
would lengthen that edge.

2. Point p is on the relative interior of the segment and one of the locally
longest edges incident to p is perpendicular to the segment. Moving p in any
direction would lengthen that edge.

3. Point p is on the relative interior of the segment and not of type 2. Then
there are two locally longest edges incident to p lying on different half-planes
delimited by a line perpendicular to the segment passing through p. Moving
p in any direction would increase the length of one of these two edges.

Notably, if we know for any point p on a segment of type 1 or 2 that it has a
locally longest incident edge that would become longer if p were moved or if we
know for a point p of type 3 that it has a pair of locally longest incident edges
where one of them would become longer when moving p, then we can deduce p’s
position without any knowledge of other incident edges of p.

Critical Paths. To define this concept, let (E1, . . . , Em) be a given sequence
of fixed points and segments, where E1 and Em are fixed points or segments,

440 E. Chambers et al.

and E2, . . . , Em−1 are segments. A critical path consists of points pi located at
selected positions on the segments Ei and are connected by edges ei such that (1)
the edges all have the same length, and (2) no other selection of point locations
on these segments results in a sequence where edges are not longer but some are
strictly shorter.

Since it is impossible to shorten an edge of a critical path by moving a single
point pi without causing another edge to be longer, all the pi on the critical path
must be of one of the three types described above.

Before we can describe how to compute a critical path and argue that a
sequence (E1, . . . , EM) supports at most one critical path, we need a few more
definitions. Given (E1, . . . , Em) and a positive number Λ, let U1(Λ) be the set
of points in the plane reachable from E1 by an edge of length Λ or less, and let
Ui(Λ) for i > 1 be the set of points on the plane reachable from Ui−1(Λ) ∩ Ei

by an edge of length Λ or less. Let S1(Λ) be the set of points on the plane
reachable from E1 by an edge e1 of length exactly Λ, that is in the case that
E1 is a segment, no point in S1(Λ) can be reached from E1 by an edge shorter
than Λ. Similarly, let Si(Λ) for i > 1 be the set of points on the plane reachable
from Si−1(Λ) ∩ Ei by an edge ei of length exactly Λ, such that e1, . . . , ei form a
critical path (assuming the endpoint of ei that is not on Ei is a fixed point).

We study the properties of Ui(Λ) and Si(Λ). First, we can deduce inductively
that if Ui−1(Λ) ∩ Ei �= ∅, then it consists of a single point or a subsegment (a
connected subset) of Ei: If the set Ui(Λ) �= ∅, then Ui(Λ) is either a ball of radius
Λ, or the Minkowski sum of a ball of radius Λ and a segment where Ui(Λ) = E1

if i = 1, and Ui(Λ) = Ui−1(Λ) ∩ Ei otherwise (Figure 2).

� E1

U1(L)

S1(L)

E1

U1(L)

S1(L)

Fig. 2. Examples of U1(Λ) and S1(Λ) for the cases that E1 is a fixed point or a segment

Lemma 1. Si(Λ) ⊆ Ui(Λ).

Proof. Sketch: By definition, S1(Λ) is a subset of U1(Λ). We prove by induction
that Si(Λ) is a subset of Ui(Λ) for all i. We remark that it is sufficient to prove
that any open set containing a point of Si(Λ) intersects with the boundary of
Ui(Λ), which can be done with some care by contradiction.

It follows that if Ui−1(Λ) ∩ Ei = ∅, then Si−1(Λ) ∩ Ei = ∅. If Ui−1(Λ) ∩ Ei

consists of a single point p, then either Si−1(Λ) ∩ Ei = ∅ or Si−1(Λ)∩ Ei = {p}.
If Ui−1(Λ) ∩ Ei is a subsegment of Ei, then Si−1(Λ) ∩ Ei can be empty, one
extremity of the subsegment, both extremities of the subsegment, or the complete
subsegment. In fact, we can prove the following lemma.

Connectivity Graphs of Uncertainty Regions 441

Lemma 2. (a) The set S1(Λ) is the boundary of U1(Λ). (b) For all i > 1, the
set Si(Λ) is the intersection of the boundary of Ui(Λ) with the Minkowski sum
of a circle of radius Λ and Si−1(Λ) ∩ Ei.

Proof. (a) This follows from the definition of S1(Λ). (b) By definition, Si(Λ)
contains only points at distance Λ from Si−1 ∩ Ei. From Lemma 1, we know
that Si(Λ) ⊆ Ui(Λ). It is therefore sufficient to prove that every point in the
intersection is in Si(Λ). We prove this by induction. Let p be any point in the
intersection. Since p is in the Minkowski sum of a circle of radius Λ and Si−1∩Ei,
there exists q ∈ Si−1 ∩ Ei at distance exactly Λ from p, and by the induction
hypothesis, there is a path of edges of length Λ from q, which we can extend to p.
We need to prove that there is no other path to p that uses edges no longer than
Λ, and some shorter. Suppose there is a choice of p1, . . . , pi such that p1, . . . , pi, p
is such a path. Suppose first that the last edge is shorter than Λ by some ε > 0.
Then, by changing the length of the last edge by less than ε, we can find paths
to any point in some open set around p. This contradicts the assumption that p
is part of the boundary of Ui(Λ). Therefore, the last edge of the path is of length
Λ exactly. But that means that p is at distance Λ from both q and pi, which are
both in Ui(Λ) ∩ Ei. This means that the midpoint of the segment from q to pi

is in Ui(Λ) ∩ Ei and at distance less than Λ from p, yielding a contradiction. �

The following cases are possible (Figure 3).

�
E1 E2

�

�

E1

E2

� �
E1

E2

� �

�

E1 E2

Fig. 3. Shapes of Si(Λ) of type a, b, c and d respectively. S1(Λ) is indicated with a

dashed line, S1(Λ) ∩ E2 and S2(Λ) are in red.

a. Si−1(Λ) ∩ Ei = ∅ and therefore Si(Λ) = ∅.
b. Ui−1(Λ)∩Ei consists of a single point p and Si−1(Λ)∩Ei = {p}. Then Si(Λ)

is a circle of radius Λ centered around p.
c. Ui−1(Λ) ∩ Ei is a subsegment of Ei and Si−1(Λ) ∩ Ei is a single extremity of

the subsegment. In this case, Ui(Λ) is the Minkowski sum of the subsegment
and a ball of radius L, and Si(Λ) is the half circle of radius Λ centered on
Si−1(Λ) ∩ Ei at one extremity of Ui(Λ).

d. Ui−1(Λ) ∩ Ei is a subsegment of Ei and Si−1(Λ) ∩ Ei consists of both ex-
tremities of the subsegment. In this case, Ui(Λ) is the Minkowski sum of the
subsegment and a ball of radius Λ, and Si(Λ) consists of both half circles
of radius Λ each centered on a point of Si−1(Λ) ∩ Ei at each extremity of
Ui(Λ).

442 E. Chambers et al.

For a given (E1, . . . , Em) and length Λ it is therefore possible to compute suc-
cessively the Ui(Λ)’s and Si(Λ)’s. In order to obtain a critical path we require
Um−1(Λ)∩Em = Sm−1(Λ)∩Em. Notably, this can only happen for the smallest
Λ such that Um−1(Λ) ∩ Em �= ∅.

In our exact algorithm critical paths contribute to the set of candidate solu-
tions. Given (E1, . . . , Em) and Λ, the following algorithm determines an existing
critical path with a precision, say δ.

(1) Determine Um−1(Λ). (2) If Um−1(Λ) ∩ Em = ∅, then increase Λ and go
to (1). (3) If Um−1(Λ) ∩ Em �= ∅, then decrease Λ and go to (1). Once the
approximate minimum L∗ ∈ [Λ − δ, Λ + δ] is found, check whether Um−1(L∗) ∩
Em = Sm−1(L∗) ∩ Em.

Possible outcomes for Um−1(Λ) ∩ Em �= ∅ (Figure 4) are:

�

�

E1

E2

E3

�

�

�

E1

E2

E3

�

�

�
E1

E2

E3

� �

�
�

E1 E2
E3

Fig. 4. Sequence (E1, E2, E3) with outcomes of type α, β, γ, and δ respectively for the

case that Λ is minimum such that U2(Λ) ∩ E3
= ∅. S1(Λ) is depicted by dashed lines.

S1(Λ) ∩ E2, S2(Λ) and S2(Λ) ∩ E3 are shown in red.

α. For the minimum L∗ such that Em intersects the interior of Um−1(L∗), there
is no critical path.

β. For the minimum L∗ such that Um−1(L∗) ∩ Em = Sm−1(L∗) ∩ Em = {p},
there is a critical path.

γ. For the minimum L∗ such that Um−1(L∗)∩Em is a single point and Sm−1(L∗)∩
Em = ∅, there is no critical path.

δ. For the minimum L∗ such that Um−1(L∗)∩Em is a segment and Sm−1(L∗)∩
Em consists only of extremities of the segment, there is no critical path.

Corollary 1. If (E1, . . . , Em) supports a critical path of locally longest edges in
a minimum solution tree then there is a unique choice of point locations that
defines the critical path.

Description of the Algorithm. We show how to compute an optimal solution
by examining possible critical paths, using the following corollary.

Corollary 2. If (E1, . . . , Em) supports a critical path of locally longest edges in
a minimum solution tree then this choice is part of an optimal solution.

Note that if we had an oracle giving us a (E1, . . . , Em) that supports a critical
path of locally longest edges in the optimal solution, then we could determine

Connectivity Graphs of Uncertainty Regions 443

the choice of points on these elements in the optimal solution. We could then
replace the segments in the sequence by fixed points and solve the rest of the
problem separately. This eventually would allow us to replace all segments by
fixed points, and then to solve the problem by finding an associated MBST.

Lacking an oracle we determine these sequences by complete enumeration of all
possible sequences (E1, . . . , Em), where E1 and Em are fixed points or segments,
and E2, . . . , Em−1 are segments. There are O((n + k)2 · k! · k) such sequences.
This enumeration accounts for most of the complexity of our algorithm. For
each sequence in the enumeration, we check whether it supports a critical path
and whether the edge-length for this path is best so far. If not, we discard this
path. Otherwise we recurse on the updated set of sequences and points. That
is, we prune these sequences in the enumeration as we find them. Once we have
gone through the complete list of possible sequences, we will have found the
critical path with shortest locally longest edges. Then we replace the segments
of the sequence with fixed points defined by the critical path. We then execute
the algorithm recursively on the thus reduced instance, using edges of length
no greater than the ones in the critical path just found. Once the instance does
not contain any more segments, we connect all remaining connected components
with a greedy algorithm, in polynomial time.

We remark that it is crucial to determine critical paths with progressively
decreasing edge lengths since positions of points on segments should only be
determined using the locally longest incident edges.

The enumeration in our algorithm described above is superexponential in
the number k of segments, which is not surprising since we have shown the
problem with no fixed points is NP-hard. For constant k the problem is, however,
polynomial in the number n of points, as our running time analysis will show.

The (multiple recursive) enumeration results in a search tree of size O(((n +
k)2 · k! · k2)k) with a O(k) running time for each node in the search tree. Thus
the total time complexity is O(((n + k)2 · k! · k2)k · k).

4 Constant Factor and Additive Approximations

Our approximations are based on computing minimum bottleneck spanning
trees, MBSTs, which are spanning trees that minimize the maximum length
edge in the tree.

Lemma 3. Given a set of uncertainty regions that are unit disks D1, . . . , Dn

with centers p1, . . . , pn, let L be the largest edge of a bottleneck spanning tree on
{pi}. Then choosing broadcasting locations �i = pi and α = L/2 is at worst an
OPT+1 approximation to the BCU Problem. In other words, if OPT denotes
the smallest radius α for any choice of �i ∈ Di, then L/2 ≤ OPT+1. This
approximation can be computed in polynomial time.

Proof. Let L be the maximum length edge of a MBST on {pi}. Consider the
best choice of the �i ∈ Di and an associated MBST on these �i. The edges of this
MBST are each at most 2 shorter than the corresponding edges of a spanning

444 E. Chambers et al.

tree, S, on the corresponding pi. Thus the maximum length of any edge in S is
at most 2 greater than the maximum length edge in the MBST on the �i, and,
similarly, the maximum length, L, of any edge of a MBST on the {pi} must be
at most 2 greater than the maximum length edge in the MBST on the �i. The
result follows. �

Our approximation for the BCU Problem is not a constant factor approximation,
since if one takes n unit disks with non-empty intersection, then the �i can all
be taken to equal one of the intersection points so that OPT= 0 while L/2 can
be non-zero (and as big as 1). However, it is a constant factor approximation for
non-overlapping unit disks.

5 Other Related Results and Conclusions

In this work, we also studied a closely related problem, Worst Case Connectivity
with Uncertainty (WCU):

The WCU Problem. Find the minimum value α such that for any choice of
points P , the connectivity graph Gα of P is connected.

We were able to show a simple approximation algorithm for WCU that is
within an additive factor of 1 and a muliplicative factor of 2 when the uncertainty
regions are unit disks (result omitted due to space restriction). Although we
have been able to obtain several NP-hardness results for BCU, we do not have
any complexity lower bounds for WCU which, a priori, seems harder. It is an
interesting open question to improve our approximation algorithms for both
these problems.

It would be interesting to show NP-hardness results for the BCU problem
for other uncertainty regions such as disks. It is also possible that techniques
from convex optimization could be used to design approximation algorithms for
BCU for, say, line segments or squares. From the perspective of fixed parameter
tractability, we observed that BCU is in FPT when the instance consists of n
fixed points and k pairs of points; the parameter is k. However, we conjecture that
BCU for the case of line segments is W[1]-hard and hence our exact algorithm
is unlikely to be improved upon significantly.

In conclusion, our work on connectivity problems for uncertainty regions mo-
tivated by wireless network scenarios suggests that this area provides a rich
collection of problems for further investigation.

Note. The details of the reductions, as well as full proofs of our results, can be
found in the full version of this article [3].

References

1. Alt, H., Arkin, E., Brönnimann, H., Erickson, J., Fekete, S., Knauer, C., Lenchner,

J., Mitchell, J., Whittlesey, K.: Minimum-cost coverage of point sets by disks. In:

Proc. 22nd ACM Symp. Comp. Geom. (SoCG), pp. 449–458 (2006)

Connectivity Graphs of Uncertainty Regions 445

2. Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering

salesman problem. Disc. Appl. Mathematics 55(3), 197–218 (1994)

3. Chambers, E., Erickson, A., Fekete, S., Lenchner, J., Sember, J., Venkatesh, S.,

Stege, U., Stolpner, S., Weibel, C., Whitesides, S.: Connectivity graphs of uncer-

tainty regions. arXiV:1009.3469 (2010)

4. Clementi, A.E.F., Penna, P., Silvestri, R.: On the power assignment problem in

radio networks. Technical Report TR00-054, Electronic Colloquium on Computa-

tional Complexity (2000)

5. de Berg, M., Gudmundsson, J., Katz, M.J., Levcopoulos, C., Overmars, M.H., van

der Stappen, A.F.: TSP with neighborhoods of varying size. J. Algorithms 57(1),

22–36 (2005)

6. Duchet, P., Hamidoune, Y.O., Vergnas, M.L., Meyniel, H.: Representing a planar

graph by vertical lines joining different levels. Disc. Mathematics 46(3), 319–321

(1983)

7. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neigh-

borhoods in the plane. In: Proc. 12th ACM-SIAM Symp. on Disc. Algorithms

(SODA), pp. 38–46 (2001)

8. Fuchs, B.: On the hardness of range assignment problems. In: Calamoneri, T.,

Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 127–138.

Springer, Heidelberg (2006)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman, New York (1979)

10. Gudmundsson, J., Levcopoulos, C.: A fast approximation algorithm for TSP with

neighborhoods. Nord. J. Comput. 6(4), 469 (1999)

11. Lev-Tov, N., Peleg, D.: Exact algorithms and approximation schemes for base

station placement problems. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002.

LNCS, vol. 2368, pp. 90–99. Springer, Heidelberg (2002)

12. Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station

coverage with minimum total radii. Computer Networks 47(4), 489–501 (2005)

13. Mitchell, J.S.B.: A PTAS for TSP with neighborhoods among fat regions in the

plane. In: Proc. 18th ACM-SIAM Symp. on Disc. Algorithms (SODA), pp. 11–18

(2007)

14. Parker, G., Rardin, R.L.: Guaranteed performance heuristics for the bottleneck

traveling salesman problem. Operations Research Letters 2(6), 269–272 (1984)

15. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations

of planar graphs. Disc. Comp. Geom. 1, 343–353 (1986)

16. Yang, Y., Lin, M., Xu, J., Xie, Y.: Minimum spanning tree with neighborhoods. In:

Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 306–316. Springer,

Heidelberg (2007)

π/2-Angle Yao Graphs Are Spanners

Prosenjit Bose1,�, Mirela Damian2,��, Karim Doüıeb3,�, Joseph O’Rourke4,
Ben Seamone5, Michiel Smid6,�, and Stefanie Wuhrer7

1 School of Computer Science, Carleton University, Ottawa, Canada

jit@scs.carleton.ca
2 Department of Computer Science, Villanova University, Villanova, USA

mirela.damian@villanova.edu
3 School of Computer Science, Carleton University, Ottawa, Canada

kdouieb@ulb.ac.be
4 Department of Computer Science, Smith College, Northampton, USA

orourke@cs.smith.edu
5 School of Mathematics and Statistics, Carleton University, Ottawa, Canada

bseamone@connect.carleton.ca
6 School of Computer Science, Carleton University, Ottawa, Canada

michiel@scs.carleton.ca
7 Institute for Information Technology, National Research Council, Ottawa, Canada

stefanie.wuhrer@nrc-cnrc.gc.ca

Abstract. We show that the Yao graph Y4 in the L2 metric is a spanner

with stretch factor 8
√

2(29 + 23
√

2).

1 Introduction

Let V be a finite set of points in the plane and let G = (V, E) be the complete
Euclidean graph on V . We will refer to the points in V as nodes, to distinguish
them from other points in the plane. The Yao graph [7] with an integer parameter
k > 0, denoted Yk, is defined as follows. Any k equally-separated rays starting
at the origin define k cones. Pick a set of arbitrary, but fixed cones. We can now
translate the cones to each node u ∈ V . In each cone, pick a shortest edge uv,
if there is one, and add to Yk the directed edge −→uv. Ties are broken arbitrarily.
Note that the Yao graph differs from the Θ-graph in how the shortest edge is
chosen. While the Yao graph chooses the shortest edge in terms of the Euclidean
distance, the Θ-graph chooses the shortest edge as the one that has the shortest
distance to u after being projected to the bisector of the cone. Most of the time
we ignore the direction of an edge uv; we refer to the directed version −→uv of
uv only when its origin (u) is important and unclear from the context. We will
distinguish between Yk, the Yao graph in the Euclidean L2 metric, and Y ∞

k , the
Yao graph in the L∞ metric. Unlike Yk however, in constructing Y ∞

k ties are
broken by always selecting the most counterclockwise edge; the reason for this
choice will become clear in Section 2.
� Supported by NSERC.

�� Supported in part by NSF grant CCF-0728909 and by Villanova’s CEET.

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 446–457, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

π/2-Angle Yao Graphs Are Spanners 447

For a given subgraph H ⊆ G and a fixed t ≥ 1, H is called a t-spanner for
G if, for any two nodes u, v ∈ V , the shortest path in H from u to v is no
longer than t times the length of uv. The value t is called the dilation or the
stretch factor of H . If t is constant, then H is called a length spanner, or simply
a spanner.

The class of graphs Yk has been much studied. Bose et al. [2] showed that,
for k ≥ 9, Yk is a spanner with stretch factor 1

cos 2π
k −sin 2π

k

. In [1] we improve the
stretch factor and show that, in fact, Yk is a spanner for any k ≥ 7. Recently,
Molla [5] showed that Y2 and Y3 are not spanners, and that Y4 is a spanner
with stretch factor 4(2 +

√
2), for the special case when the nodes in V are in

convex position (see also [3]). The authors conjectured that Y4 is a spanner for
arbitrary point sets. In this paper, we settle their conjecture and prove that Y4

is a spanner with stretch factor 8
√

2(29 + 23
√

2).
The paper is organized as follows. In Section 2, we prove that the graph Y ∞

4

is a spanner with stretch factor 8. In Section 3 we establish several properties for
the graph Y4. Finally, in Section 4, we use the properties of Section 3 to prove
that, for every edge ab in Y ∞

4 , there exists a path between a and b in Y4 not
much longer than the Euclidean distance between a and b. By combining this
with the result of Section 2, it follows that Y4 is a spanner.

2 Y ∞
4 in the L∞ Metric

In this section we focus on Y ∞
4 , which has a nicer structure compared to Y4.

First we prove that Y ∞
4 is a plane graph. Then we use this property to show

that Y ∞
4 is an 8-spanner. To be more precise, we prove that for any two nodes

a and b, the graph Y ∞
4 contains a path between a and b whose length (in the

L∞-metric) is at most 8|ab|∞.
We need a few definitions. We say that two edges ab and cd properly cross

(or cross, for short) if they share a point other than an endpoint (a, b, c or d);
we say that ab and cd intersect if they share a point (either an interior point or
an endpoint). Let Q1(a), Q2(a), Q3(a) and Q4(a) be the four quadrants at a, as in

a

b

c

(b)

a

(a)

Q (a)1

Q (a)2

Q (a)3 Q (a)4

P (a)1

d

S(a,b) b

Fig. 1. (a) Definitions: Qi(a), Pi(a) and S(a, b). (b) Lemma 1: ab and cd cannot cross.

448 P. Bose et al.

Figure 1a. Let Pi(a) be the path that starts at point a and follows the directed
Yao edges in quadrant Qi. Let Pi(a, b) be the subpath of Pi(a) that starts at a
and ends at b. Let |ab|∞ be the L∞ distance between a and b. Let sp(a, b) denote
a shortest path in Y ∞

4 between a and b. Let S(a, b) denote the open square with
corner a whose boundary contains b, and let ∂S(a, b) denote the boundary of
S(a, b). These definitions are illustrated in Figure 1a. For a node a ∈ V , let x(a)
denote the x-coordinate of a and y(a) denote the y-coordinate of a.

Lemma 1. Y ∞
4 is a plane graph.

Proof. The proof is by contradiction. Assume the opposite. Then there are two
edges

−→
ab,

−→
cd ∈ Y ∞

4 that cross each other. Since
−→
ab ∈ Y ∞

4 , S(a, b) must be empty
of nodes in V , and similarly for S(c, d). Let j be the intersection point between
ab and cd. Then j ∈ S(a, b) ∩ S(c, d), meaning that S(a, b) and S(c, d) must
overlap. However, neither square may contain a, b, c or d. It follows that S(a, b)
and S(c, d) coincide, meaning that c and d lie on ∂S(a, b) (see Figure 1b). Since
cd intersects ab, c and d must lie on opposite sides of ab. Thus either ac or
ad lies counterclockwise from ab. Assume without loss of generality that ac lies
counterclockwise from ab; the other case is identical. Because S(a, c) coincides
with S(a, b), we have that |ac|∞ = |ab|∞. In this case however, Y ∞

4 would break
the tie between ac and ab by selecting the most counterclockwise edge, which is
−→ac. This contradicts that

−→
ab ∈ Y ∞

4 . 	

Theorem 1. Y ∞
4 is an 8-spanner in the L∞ metric space.

Proof. We show that, for any pair of points a, b ∈ V , |sp(a, b)|∞ < 8|ab|∞. The
proof is by induction on the pairwise distance between the points in V . Assume
without loss of generality that b ∈ Q1(a), and |ab|∞ = |x(b)−x(a)|. Consider the
case in which ab is a closest pair of points in V (the base case for our induction).
If ab ∈ Y ∞

4 , then |sp(a, b)|∞ = |ab|∞. Otherwise, there must be ac ∈ Y ∞
4 , with

|ac|∞ = |ab|∞. But then |bc|∞ < |ab|∞ (see Figure 2a), a contradiction.

a

b

c

a’

b’

a

b

c

S

d

i

a

b

c

a’

b’

r

a

b

c

a’

b’

r
i

i

d

j

j

e

A A A

(a) (b) (c) (d)

a

b

c

a’

b’

r

i

d

j
e

A

(e)

Fig. 2. (a) Base case. (b) �abc empty (c) �abc non-empty, Par ∩P2(b) = {j} (d) �abc
non-empty, Par ∩P2(b) = ∅, e above r (e) �abc non-empty, Par ∩P2(b) = ∅, e below r.

π/2-Angle Yao Graphs Are Spanners 449

Assume now that the inductive hypothesis holds for all pairs of points closer
than |ab|∞. If ab ∈ Y ∞

4 , then |sp(a, b)|∞ = |ab|∞ and the proof is finished. If
ab /∈ Y ∞

4 , then the square S(a, b) must be nonempty.
Let A be the rectangle ab′ba′ as in Figure 2b, where ba′ and bb′ are parallel

to the diagonals of S. If A is nonempty, then we can use induction to prove
that |sp(a, b)|∞ <= 8|ab|∞ as follows. Pick c ∈ A arbitrary. Then |ac|∞ +
|cb|∞ = |x(c) − x(a)| + |x(b) − x(c)| = |ab|∞, and by the inductive hypothesis
sp(a, c)⊕ sp(c, b) is a path in Y ∞

4 no longer than 8|ac|∞ +8|cb|∞ = 8|ab|∞; here
⊕ represents the concatenation operator. Assume now that A is empty. Let c be
at the intersection between the line supporting ba′ and the vertical line through
a (see Figure 2b). We discuss two cases, depending on whether �abc is empty
of points or not.

Case 1: �abc is empty of points. Let ad ∈ P1(a). We show that P4(d) cannot
contain an edge crossing ab. Assume the opposite, and let st ∈ P4(d) cross
ab. Since �abc is empty, s must lie above bc and t below ab, therefore |st|∞ ≥
|y(s)−y(t)| > |y(s)−y(b)| = |sb|∞, contradicting the fact that st ∈ Y ∞

4 . It follows
that P4(d) and P2(b) must meet in a point i ∈ P4(d) ∩ P2(b) (see Figure 2b).
Now note that |P4(d, i)⊕P2(b, i)|∞ ≤ |x(d)−x(b)|+ |y(d)−y(b)| < 2|ab|∞. Thus
we have that |sp(a, b)|∞ ≤ |ad⊕P4(d, i)⊕P2(b, i)|∞ < |ab|∞ +2|ab|∞ = 3|ab|∞.

Case 2: �abc is nonempty. In this case, we seek a short path from a to b
that does not cross to the underside of ab, to avoid oscillating paths that cross
ab arbitrarily many times. Let r be the rightmost point that lies inside �abc.
Arguments similar to the ones used in Case 1 show that P3(r) cannot cross ab
and therefore it must meet P1(a) in a point i. Then Par = P1(a, i) ⊕ P3(r, i) is
a path in Y ∞

4 of length

|Par|∞ < |x(a) − x(r)| + |y(a) − y(r)| < |ab|∞ + 2|ab|∞ = 3|ab|∞. (1)

The term 2|ab|∞ in the inequality above represents the fact that |y(a)− y(r)| ≤
|y(a)− y(c)| ≤ 2|ab|∞. Consider first the simpler situation in which P2(b) meets
Par in a point j ∈ P2(b)∩Par (see Figure 2c). Let Par(a, j) be the subpath of Par

extending between a and j. Then Par(a, j)⊕P2(b, j) is a path in Y ∞
4 from a to b,

therefore |sp(a, b)|∞ ≤ |Par(a, j) ⊕ P2(b, j)|∞ < 2|y(j)− y(a)|+ |ab|∞ ≤ 5|ab|∞.
Consider now the case when P2(b) does not intersect Par. We argue that, in

this case, Q1(r) may not be empty. Assume the opposite. Then no edge st ∈ P2(b)
may cross Q1(r). This is because, for any such edge, |sr|∞ < |st|∞, contradicting
st ∈ Y ∞

4 . This implies that P2(b) intersects Par, again a contradiction to our
assumption. This establishes that Q1(r) is nonempty. Let rd ∈ P1(r). The fact
that P2(b) does not intersect Par implies that d lies to the left of b. The fact that
r is the rightmost point in �abc implies that d lies outside �abc (see Figure 2d).
It also implies that P4(d) shares no points with �abc. This along with arguments
similar to the ones used in case 1 show that P4(d) and P2(b) meet in a point
j ∈ P4(d) ∩ P2(b). Thus we have found a path

Pab = P1(a, i) ⊕ P3(r, i) ⊕ rd ⊕ P4(d, j) ⊕ P2(b, j) (2)

450 P. Bose et al.

extending from a to b in Y ∞
4 . If |rd|∞ = |x(d)−x(r)|, then |rd|∞ < |x(b)−x(a)| =

|ab|∞, and the path Pab has length

|Pab|∞ ≤ 2|y(d) − y(a)| + |ab|∞ < 7|ab|∞. (3)

In the above, we used the fact that |y(d)− y(a)| = |y(d)− y(r)|+ |y(r)− y(a)| <
|ab|∞ + 2|ab|∞. Suppose now that

|rd|∞ = |y(d) − y(r)|. (4)

In this case, it is unclear whether the path Pab defined by (2) is short, since
rd can be arbitrarily long compared to ab. Let e be the clockwise neighbor of
d along the path Pab (e and b may coincide). Then e lies below d, and either
de ∈ P4(d), or ed ∈ P2(e) (or both). If e lies above r, or at the same level as r
(i.e., e ∈ Q1(r), as in Figure 2d), then

|y(e) − y(r)| < |y(d) − y(r)| (5)

Since rd ∈ P1(r) and e is in the same quadrant of r as d, we have |rd|∞ ≤ |re|∞.
This along with inequalities (4) and (5) implies |re|∞ > |y(e) − y(r)|, which
in turn implies |re|∞ = |x(e) − x(r)| ≤ |ab|∞, and so |rd|∞ ≤ |ab|∞. Then
inequality (3) applies here as well, showing that |Pab|∞ < 7|ab|∞.

If e lies below r (as in Figure 2e), then

|ed|∞ ≥ |y(d) − y(e)| ≥ |y(d) − y(r)| = |rd|∞. (6)

Assume first that ed ∈ P2(e), or |ed|∞ = |x(e) − x(d)|. In either case, |ed|∞ ≤
|er|∞ < 2|ab|∞. This along with inequality (6) shows that |rd|∞ < 2|ab|∞.
Substituting this upper bound in (2), we get |Pab|∞ ≤ 2|y(d)− y(a)|+ 2|ab|∞ <
8|ab|∞. Assume now that ed �∈ P2(e), and |ed|∞ = |y(e)−y(d)|. Then ee′ ∈ P2(e)
cannot go above d (otherwise |ed|∞ < |ee′|∞, contradicting ee′ ∈ P2(e)). This
along with the fact de ∈ P4(d) implies that P2(e) intersects Par in a point k.
Redefine Pab = Par(a, k) ⊕ P2(e, k) ⊕ P4(e, j) ⊕ P2(b, j). Then Pab is a path in
Y ∞

4 from a to b of length |Pab| ≤ 2|y(r) − y(a)| + |ab|∞ ≤ 5|ab|∞. 	

This theorem will be employed in Section 4.

3 Y4 in the L2 Metric

In this section we establish basic properties of Y4. Due to space restrictions, some
of these properties are stated without proofs. The proofs can be found in [1]. The
ultimate goal of this section is to show that, if two edges in Y4 cross, there is a
short path between their endpoints (Lemma 8). We begin with a few definitions.

Let Q(a, b) denote the infinite quadrant with origin at a that contains b. For
a pair of nodes a, b ∈ V , define recursively a directed path P(a → b) from a to
b in Y4 as follows. If a = b, then P(a → b) = null. If a �= b, there must exist
−→ac ∈ Y4 that lies in Q(a, b). In this case, define

P(a → b) = −→ac ⊕ P(c → b).

π/2-Angle Yao Graphs Are Spanners 451

Recall that ⊕ represents the concatenation operator. This definition is illustrated
in Figure 3a. Fischer et al. [4] show that P(a → b) is well defined and lies entirely
inside the square centered at b whose boundary contains a.

a

b

y

x

Q(a, b)

Q (a)1Q (a)2

Q (a)3 Q (a)4

a

b
e

R(a,b)

(a) (b)

P (a b)

c

R
d

h

c

Fig. 3. Definitions: (a) Q(a, b) and P(a → b). (b) PR(a → b).

For any node a ∈ V , let D(a, r) denote the open disk centered at a of radius r,
and let ∂D(a, r) denote the boundary of D(a, r). Let D[a, r] = D(a, r)∪∂D(a, r).
For any path P and any pair of nodes a, b ∈ P , let P [a, b] be the subpath of P
from a to b. Let R(a, b) be the closed rectangle with diagonal ab.

For a fixed pair of nodes a, b ∈ V , define a path PR(a → b) as follows. Let
e ∈ V be the first node along P(a → b) that is not strictly interior to R(a, b).
Then PR(a → b) is the subpath of P(a → b) that extends between a and e. In
other words, PR(a → b) is the path that follows the Y4 edges pointing towards
b, truncated as soon as it reaches b or leaves R(a, b). Formally, PR(a → b) =
P(a → b)[a, e]. This definition is illustrated in Figure 3b. Our proofs will make
use of the following two propositions.

Proposition 1. The sum of the lengths of crossing diagonals of a non-degenerate
(necessarily convex) quadrilateral abcd is strictly greater than the sum of the lengths
of either pair of opposite sides:

|ac| + |bd| > |ab| + |cd|
|ac| + |bd| > |bc| + |da|

Proposition 2. For any triangle �abc, the following inequalities hold:

|ac|2

⎧⎪⎨⎪⎩
< |ab|2 + |bc|2, if ∠abc < π/2
= |ab|2 + |bc|2, if ∠abc = π/2
> |ab|2 + |bc|2, if ∠abc > π/2

Lemma 2. For each pair of nodes a, b ∈ V ,

|PR(a → b)| ≤ |ab|
√

2 (7)

Furthermore, each edge of PR(a → b) is no longer than |ab|.

452 P. Bose et al.

Proof. Let c be one of the two corners of R(a, b), other than a and b. Let
−→
de ∈

PR(a → b) be the last edge on PR(a → b), which necessarily intersects ∂R(a, b)
(note that it is possible that e = b). Refer to Figure 3b. Then |de| ≤ |db|,
otherwise

−→
de could not be in Y4. Since db lies in the rectangle with diagonal

ab, we have that |db| ≤ |ab|, and similarly for each edge on PR(a → b). This
establishes the latter claim of the lemma. For the first claim of the lemma, let
p = PR(a → b)[a, d] ⊕ db. Since |de| ≤ |db|, we have that |PR(a → b)| ≤ |p|.
Since p lies entirely inside R(a, b) and consists of edges pointing towards b, we
have that p is an xy-monotone path. It follows that |p| ≤ |ac| + |cb|, which is
bounded above by |ab|

√
2. 	

Lemma 3. Let a, b, c, d ∈ V be four disjoint nodes such that
−→
ab,

−→
cd ∈ Y4, b ∈

Qi(a) and d ∈ Qi(c), for some i ∈ {1, 2, 3, 4}. Then ab and cd cannot cross.

The next four lemmas (4–8) each concern a pair of crossing Y4 edges, culminating
(in Lemma 8) in the conclusion that there is a short path in Y4 between a pair
of endpoints of those edges.

Lemma 4. Let a, b, c and d be four disjoint nodes in V such that
−→
ab,

−→
cd ∈ Y4,

and ab crosses cd. Then (i) the ratio between the shortest side and the longer
diagonal of the quadrilateral acbd is no greater than 1/

√
2, and (ii) the shortest

side of the quadrilateral acbd is strictly shorter than either diagonal.

Lemma 5. Let a, b, c, d be four distinct nodes in V , with c ∈ Q1(a), such that
(i)

−→
ab ∈ Q1(a) and

−→
cd ∈ Q2(c) are in Y4 and cross each other, and (ii) ad is

a shortest side of quadrilateral acbd. Then PR(a → d) and PR(d → a) have a
nonempty intersection.

Lemma 6. Let a, b, c, d be four distinct nodes in V , with c ∈ Q1(a), such that
(i)

−→
ab ∈ Q1(a) and

−→
cd ∈ Q3(c) are in Y4 and cross each other, and (ii) ad is a

shortest side of quadrilateral acbd. Then PR(d → a) does not cross ab.

The next lemma relies on all of Lemmas 2–6.

Lemma 7. Let a, b, c, d ∈ V be four distinct nodes such that
−→
ab ∈ Y4 crosses−→

cd ∈ Y4, and let xy be a shortest side of the quadrilateral abcd. Then there exist
two paths Px and Py in Y4, where Px has x as an endpoint and Py has y as an
endpoint, with the following properties:

(i) Px and Py have a nonempty intersection.
(ii) |Px| + |Py| ≤ 3

√
2|xy|.

(iii) Each edge on Px ∪ Py is no longer than |xy|.

Proof. Assume without loss of generality that b ∈ Q1(a). We discuss the follow-
ing exhaustive cases:

1. c ∈ Q1(a), and d ∈ Q1(c). In this case, ab and cd cannot cross each other
(by Lemma 3), so this case is finished.

π/2-Angle Yao Graphs Are Spanners 453

a

b

cd

a

b
c

d

a

b
c d

(a)

(b) (d) (e)

a
b

c

d

a

b

c
d
y

d

y

c

x

P (y d)R
P (d y)R

x

a
b

c

d
(c)

Fig. 4. Lemma 7: (a, b) c ∈ Q1(a) (c) c ∈ Q2(a) (d) c ∈ Q4(a).

2. c ∈ Q1(a), and d ∈ Q2(c), as in Figure 4a. Since ab crosses cd, b ∈ Q2(c).
Since

−→
ab ∈ Y4, |ab| ≤ |ac|. Since

−→
cd ∈ Y4, |cd| ≤ |cb|. These along with

Lemma 4 imply that ad and db are the only candidates for a shortest edge
of acbd. Assume first that ad is a shortest edge of acbd. By Lemma 3, Pa =
PR(a → d) does not cross cd. It follows from Lemma 5 that Pa and Pd =
PR(d → a) have a nonempty intersection. Furthermore, by Lemma 2, |Pa| ≤
|ad|

√
2 and |Pd| ≤ |ad|

√
2, and no edge on these paths is longer than |ad|,

proving the lemma true for this case. Consider now the case when db is a
shortest edge of acbd (see Figure 4a). Note that d is below b (otherwise,
d ∈ Q2(c) and |cd| > |cb|) and, therefore, b ∈ Q1(d)). By Lemma 3, Pd =
PR(d → b) does not cross ab. If Pb = PR(b → d) does not cross cd, then
Pb and Pd have a nonempty intersection, proving the lemma true for this
case. Otherwise, there exists −→xy ∈ PR(b → d) that crosses cd (see Figure 4a).
Define

Pb = PR(b → d) ⊕ PR(y → d)
Pd = PR(d → y)

By Lemma 3, PR(y → d) does not cross cd. Then Pb and Pd must have a
nonempty intersection. We now show that Pb and Pd satisfy conditions (i)
and (iii) of the lemma. Proposition 1 applied on the quadrilateral xdyc tells
us that |xc| + |yd| < |xy| + |cd|. We also have that |cx| ≥ |cd|, since

−→
cd ∈ Y4

and x is in the same quadrant of c as d. This along with the inequality above
implies |yd| < |xy|. Because xy ∈ PR(b → d), by Lemma 2 we have that
|xy| ≤ |bd|, which along with the previous inequality shows that |yd| < |bd|.
This along with Lemma 2 shows that condition (iii) of the lemma is satisfied.

454 P. Bose et al.

Furthermore, |PR(y → d)| ≤ |yd|
√

2 and |PR(d → y)| ≤ |yd|
√

2. It follows
that |Pb| + |Pd| ≤ 3

√
2|bd|.

3. c ∈ Q1(a), and d ∈ Q3(c), as in Figure 4b. Then |ac| ≥ max{ab, cd}, and by
Lemma 4 ac is not a shortest edge of acbd. The case when bd is a shortest edge
of acbd is settled by Lemmas 3 and 2: Lemma 3 tells us that Pd = PR(d → b)
does not cross ab, and Pb = PR(b → d) does not cross cd. It follows that Pd

and Pb have a nonempty intersection. Furthermore, Lemma 2 guarantees
that Pd and Pb satisfy conditions (ii) and (iii) of the lemma. Consider now
the case when ad is a shortest edge of acbd; the case when bc is shortest is
symmetric. By Lemma 6, PR(d → a) does not cross ab. If PR(a → d) does
not cross cd, then this case is settled: Pd = PR(d → a) and Pa = PR(a → d)
satisfy the three conditions of the lemma. Otherwise, let −→xy ∈ PR(a → d)
be the edge crossing cd. Arguments similar to the ones used in case 1 above
show that Pa = PR(a → d)⊕PR(y → d) and Pd = PR(d → y) are two paths
that satisfy the conditions of the lemma.

4. c ∈ Q1(a), and d ∈ Q4(c), as in Figure 4c. Note that a horizontal reflection
of Figure 4c, followed by a rotation of π/2, depicts a case identical to case
1, which has already been settled.

5. c ∈ Q2(a), as in Figure 4d. Note that Figure 4d rotated by π/2 depicts a
case identical to case 1, which has already been settled.

6. c ∈ Q3(a). Then it must be that d ∈ Q1(c), otherwise cd cannot cross ab. By
Lemma 3 however, ab and cd may not cross, unless one of them is not in Y4.

7. c ∈ Q4(a), as in Figure 4e. Note that a vertical reflection of Figure 4e depicts
a case identical to case 1, so this case is settled as well. 	

We are now ready to establish the main lemma of this section, showing that
there is a short path between the endpoints of two intersecting edges in Y4.

Lemma 8. Let a, b, c, d ∈ V be four distinct nodes such that
−→
ab ∈ Y4 crosses−→

cd ∈ Y4, and let xy be a shortest side of the quadrilateral abcd. Then Y4 contains
a path p(x, y) connecting x and y, of length |p(x, y)| ≤ 6√

2−1
· |xy|. Furthermore,

no edge on p(x, y) is longer than |xy|.
Proof. Let Px and Py be the two paths whose existence in Y4 is guaranteed by
Lemma 7. By condition (iii) of Lemma 7, no edge on Px and Py is longer than
|xy|. By condition (i) of Lemma 7, Px and Py have a nonempty intersection. If
Px and Py share a node u ∈ V , then the path p(x, y) = Px[x, u] ⊕ Py[y, u] is a
path from x to y in Y4 no longer than 3

√
2|xy|; the length restriction follows from

guarantee (ii) of Lemma 7. Otherwise, let
−→
a′b′ ∈ Px and

−→
c′d′ ∈ Py be two edges

crossing each other. Let x′y′ be a shortest side of the quadrilateral a′c′b′d′, with
x′ ∈ Px and y′ ∈ Py. Lemma 7 tells us that |a′b′| ≤ |xy| and |c′d′| ≤ |xy|. These
along with Lemma 4 imply that |x′y′| ≤ |xy|/

√
2. This enables us to derive a

recursive formula for computing a path p(x, y) ∈ Y4 as follows:

p(x, y) =

{
x, if x = y

Px[x, x′] ⊕ Py[y, y′] ⊕ p(x′, y′), if x �= y

Simple induction on the length of xy establishes the claim of the lemma. 	

π/2-Angle Yao Graphs Are Spanners 455

4 Y ∞
4 and Y4

We prove that every individual edge of Y ∞
4 is spanned by a short path in Y4.

This, along with the result of Theorem 1, establishes that Y4 is a spanner. Fix
an edge −→xy ∈ Y ∞

4 . Define an edge or a path as t-short (with respect to |xy|) if
its length is within a constant factor t of |xy|. In our proof that ab is spanned
by a t-short path with respect to |ab| in Y4, we will make use of the following
three statements.

S1 If ab is t-short, then PR(a → b), and therefore its reverse, P−1
R (a → b), are

t
√

2-short by Lemma 2.
S2 If ab ∈ Y4 is t1-short and cd ∈ Y4 is t2-short, and if ab intersects cd, Lemmas 4

and 8 show that there is a t3-short path between any two of the endpoints
of these edges with t3 = t1 + t2 + 3(2 +

√
2)max(t1, t2).

S3 If p(a, b) is a t1-short path and p(c, d) is a t2-short path and the two paths
intersect, then there is a t3-short path P between any two of the endpoints
of these paths with t3 = t1 + t2 + 3(2 +

√
2)max(t1, t2), by S2.

Lemma 9. For any edge ab ∈ Y ∞
4 , there is a path p(a, b) ∈ Y4 between a and b,

of length |p(a, b)| ≤ t|ab|, for t = 29 + 23
√

2.

Proof. For the sake of clarity, we only prove here that there is a short path p(a, b)
between a and b, and skip the calculations of the actual stretch factor t (which
are detailed in the appendix of [1]). We refer to an edge or a path as short if its
length is within a constant factor of |ab|. Assume without loss of generality that
−→
ab ∈ Y ∞

4 , and
−→
ab ∈ Q1(a). If

−→
ab ∈ Y4, then p(a, b) = ab and the proof is finished.

So assume the opposite, and let −→ac ∈ Q1(a) be the edge in Y4; since Q1(a) is
nonempty, −→ac exists. Because −→ac ∈ Y4 and b is in the same quadrant of a as c,
we have that

|ac| ≤ |ab| (i)

|bc| ≤ |ac|
√

2 (ii) (8)

Thus both ac and bc are short. And this in turn implies that PR(b → c) is short
by S1. We next focus on PR(b → c). Let b′ /∈ R(b, c) be the other endpoint of
PR(b → c). We distinguish three cases.

Case 1: PR(b → c) and ac intersect. Then by S3 there is a short path p(a, b)
between a and b.

Case 2: PR(b → c) and ac do not intersect, and PR(b′ → a) and ab do not
intersect (see Figure 5b). Note that because b′ is the endpoint of the short
path PR(b → c), the triangle inequality on �abb′ implies that ab′ is short, and
therefore PR(b′ → a) is short. We consider two cases:

(i) PR(b′ → a) intersects ac. Then by S3 there is a short path p(a, b′). So

p(a, b) = p(a, b′) ⊕ P−1
R (b → c)

is short.

456 P. Bose et al.

a
(a)

P (b c)R
b

c

b’

a

b

c
b’

P (b c)R

P (c b’)R

a

b

c b’

r

s

)c()b(
e

P (p a
)

R

P (b c)R
P (b’ c)
R

e d

x

Fig. 5. Lemma 9: (a) Case 1: PR(b → c) and ac have a nonempty intersection. (b)

Case 2: PR(b′ → a) and ab have an empty intersection. (c) Case 3: PR(b′ → a) and ab
have a non-empty intersection.

(ii) PR(b′ → a) does not intersect ac. Then PR(c → b′) must intersect PR(b →
c) ⊕PR(b′ → a). Next we establish that b′c is short. Let

−→
eb′ be the last edge

of PR(b → c), and so incident to b′ (note that e and b may coincide). Because
PR(b → c) does not intersect ac, b′ and c are in the same quadrant for e. It
follows that |eb′| ≤ |ec| and ∠b′ec < π/2. These along with Proposition 2 for
�b′ec imply that |b′c|2 < |b′e|2+ |ec|2 ≤ 2|ec|2 < 2|bc|2 (this latter inequality
uses the fact that ∠bec > π/2, which implies that |ec| < |bc|). It follows that

|b′c| ≤ |bc|
√

2 ≤ 2|ac| (by (8)ii) (9)

Thus b′c is short, and by S1 we have that PR(c → b′) is short. Since PR(c →
b′) intersects the short path PR(b → c)⊕PR(b′ → a), there is by S3 a short
path p(c, b), and so

p(a, b) = ac ⊕ p(c, b)

is short.

Case 3: PR(b → c) and ac do not intersect, and PR(b′ → a) intersects ab (see
Figure 5c). If PR(b′ → a) intersects ab at a, then p(a, b) = PR(b → c)⊕PR(b′ →
a) is short. So assume otherwise, in which case there is an edge

−→
de ∈ PR(b′ → a)

that crosses ab. Then d ∈ Q1(a), e ∈ Q3(a) ∪ Q4(a), and e and a are in the
same quadrant for d. Note however that e cannot lie in Q3(a), since in that case
∠dae > π/2, which would imply |de| > |da|, which in turn would imply

−→
de /∈ Y4.

So it must be that e ∈ Q4(a).
Next we show that PR(e → a) does not cross ab. Assume the opposite, and

let −→rs ∈ PR(e → a) cross ab. Then r ∈ Q4(a), s ∈ Q1(a) ∪ Q2(a), and s and a
are in the same quadrant for r. Arguments similar to the ones above show that
s /∈ Q2(a), so s must lie in Q1(a). Let d be the L∞ distance from a to b. Let x
be the projection of r on the horizontal line through a. Then

|rs| ≥ |rx| + d ≥ |rx| + |xa| > |ra| (by the triangle inequality)

π/2-Angle Yao Graphs Are Spanners 457

Because a and s are in the same quadrant for r, the inequality above contradicts
−→rs ∈ Y4.

We have established that PR(e → a) does not cross ab. Then PR(a → e) must
intersect PR(e → a) ⊕ de. Note that de is short because it is in the short path
PR(b′ → a). Thus ae is short, and so PR(a → e) and PR(e → a) are short. Thus
we have two intersecting short paths, and so by S3 there is a short path p(a, e).
Then

p(a, b) = p(a, e) ⊕ P−1
R (b′ → a) ⊕ P−1

R (b → c)

is short. Straightforward calculations show that, in each of these cases, the stretch
factor for p(a, b) does not exceed 29 + 23

√
2. 	

Our main result follows immediately from Theorem 1 and Lemma 9:

Theorem 2. Y4 is a t-spanner, for t ≥ 8
√

2(29 + 23
√

2).

5 Conclusion

Our results settle a long-standing open problem, asking whether Y4 is a spanner
or not. We answer this question positively, and establish a loose stretch factor
of 8

√
2(29 + 23

√
2). Experimental results, however, indicate a stretch factor of

the order 1+
√

2, a factor of 200 smaller. Finding tighter stretch factors for both
Y ∞

4 and Y4 remain interesting open problems. Establishing whether Y5 and Y6

are spanners or not is also open.

References

1. Bose, P., Damian, M., Doüıeb, K., O’Rourke, J., Seamone, B., Smid, M., Wuhrer, S.:

π/2-Angle Yao Graphs are Spanners. Technical Report, arXiv:1001.2913v1 (2010)

2. Bose, P., Maheshwari, A., Narasimhan, G., Smid, M., Zeh, N.: Approximating ge-

ometric bottleneck shortest paths. Computational Geometry: Theory and Applica-

tions 29, 233–249 (2004)

3. Damian, M., Molla, N., Pinciu, V.: Spanner properties of π/2-angle Yao graphs.

In: Proc. of the 25th European Workshop on Computational Geometry, pp. 21–24

(March 2009)

4. Fischer, M., Lukovszki, T., Ziegler, M.: Geometric searching in walkthrough anima-

tions with weak spanners in real time. In: Bilardi, G., Pietracaprina, A., Italiano,

G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 163–174. Springer, Heidelberg

(1998)

5. Molla, N.: Yao spanners for wireless ad hoc networks. M.S. Thesis, Department of

Computer Science, Villanova University (December 2009)

6. Green, J.W.: A note on the chords of a convex curve. Portugaliae Mathematica 10(3),

121–123 (1951)

7. Yao, A.C.-C.: On constructing minimum spanning trees in k-dimensional spaces and

related problems. SIAM Journal on Computing 11(4), 721–736 (1982)

Identifying Shapes Using Self-assembly
(Extended Abstract)

Matthew J. Patitz1 and Scott M. Summers2

1 Department of Computer Science, University of Texas–Pan American,

Edinburg, TX, 78539, USA

mpatitz@cs.panam.edu
2 Department of Computer Science and Software Engineering,

University of Wisconsin–Platteville, Platteville, WI 53818, USA

summerss@uwplatt.edu

Abstract. In this paper, we introduce the following problem in the the-

ory of algorithmic self-assembly: given an input shape as the seed of a

tile-based self-assembly system, design a finite tile set that can, in some

sense, uniquely identify whether or not the given input shape–drawn from

a very general class of shapes–matches a particular target shape. We first

study the complexity of correctly identifying squares. Then we investi-

gate the complexity associated with the identification of a considerably

more general class of non-square, hole-free shapes.

1 Introduction

As amazingly complex as biological organisms are, at the nanoscale they are com-
posed of “simple” pieces that spontaneously self-assemble–a bottom-up process
by which a relatively small group of fundamental components combine according
to local rules in order to form a complex structure. This very basic process is
responsible for the vast diversity and complexity of life–from the most simple
single-cell organisms to human beings.

Inspired by nature, scientists have developed and studied a wide variety of
artificial self-assembling systems in order to produce structures as varied as
nanowires [25], crystals [11], nanofiber scaffoldings [10], landscapes for nanoscale
robots [9, 13] and dozens of other novel supramolecules (see [4, 15, 19] for more
examples). In addition to experimental work, there has also been a plethora of
theoretical work in the design and analysis of the complexities and limitations
of self-assembling systems, with notable examples including [6, 8, 14, 16].

Much of the research in algorithmic self-assembly (both theoretical and experi-
mental) can be loosely categorized into four “genres:” the self-assembly of shapes
[17, 18], evaluating computable functions to direct nanoscale self-assembly [24]
replicating input shapes [1], and creating novel materials that have various chem-
ical properties [26]. In this paper, we introduce a novel (theoretical) self-assembly
problem that is motivated by not only the behavior of biological systems but also
the practical need to verify artificial laboratory-based self-assembly systems. We
call this new problem the shape identification problem, and define it as the task

O. Cheong, K.-Y. Chwa, and K. Park (Eds.): ISAAC 2010, Part II, LNCS 6507, pp. 458–469, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Identifying Shapes Using Self-assembly 459

of designing a tile-based self-assembly system that positively identifies a target
structure that has a pre-specified shape (and size) from among possible “junk”
structures drawn from a very general pool of objects.

Motivation: Shape identification is a fundamental process of nature and is
explicitly used by biological systems in a variety of ways. First and foremost,
the immune system generates complexes whose express purpose is to selectively
identify–and ultimately bind to–precisely-shaped locations on the surface of for-
eign objects in order to mark them for destruction (by, for example, killer T cells).
Also, cellular transport systems, such as those which transport amino acids or
sugars, work by moving specifically-shaped molecules from one side of a mem-
brane to the other. Furthermore, the power of a self-assembling system (natural
or artificial) ultimately arises from the information encoded in its constituent
components. In the notable case of proteins, it is the information embedded in
their precise three-dimensional geometry that allow them to match and combine
with the necessary specificity to build the fundamental building blocks of life.

The ability to correctly identify only the completely formed products of an
artificial self-assembly system is also of extreme importance to practitioners.
Unfortunately, accomplishing this task is difficult because the self-assembly en-
vironment is often variable and chaotic, where mistakes are likely to be made and
partially-formed products common. Current methods of imaging the results of
nanoscale self-assembling systems provide insufficient resolution for automated
visual inspection of assemblies and require error-prone manual inspection (for
instance, by pouring over atomic force microscope images). Methods such as
gel electrophoresis allow for the separation of products based loosely on their
mass and shape, but unfortunately with far less shape specificity than desired.
With accurate nanoscale shape identification schemes, however, the accuracy of
the techniques that experimenters use to identify the products of self-assembling
systems could be improved dramatically.

In this paper, we formulate the shape identification problem in algorithmic
self-assembly (defined formally in Section 2.1) and exhibit a variety of solu-
tions thereof while working in the RNAse enzyme model–a discrete mathematical
model of two-handed tile-based self-assembly (based on Winfree’s abstract Tile
Assembly Model [16, 21]) that distinguishes DNA tiles from RNA tiles and per-
mits the usage of an RNAse enzyme that dissolves all of the RNA tiles in a given
assembly. This model was initially suggested by Rothemund and Winfree in the
final section of [16] and formally defined by Abel, Benbernou, Damian, Demaine,
Demaine, Flatland, Kominers and Schweller [1]. We focus our attention on the
design of “small” tile sets that identify certain types of target shapes by tagging
them with a border of DNA tiles. Note that the borders, which signify positive
identification, could also be “functionalized” with bindings sites that facilitate
the easy extraction of only the correct assemblies. It is worthy of note that,
while the results presented in this paper are based on tile-based self-assembly
systems identifying tile-based assemblies, the underlying principles of this pa-
per are applicable to the identification of any type of precisely shaped shaped
object (e.g., a DNA origami complex [15]) so long as its perimeter advertises the

460 M.J. Patitz and S.M. Summers

necessary binding domains, which in the case of this paper, are single-stranded
DNA sequences.

Statement of Results: In Section 3, we exhibit a planar tile assembly system
capable of identifying any n×n square using O

(
log n

log log n

)
. We subsequently prove

a matching lower bound on the minimum number of unique tile types required
to identify an n × n square for almost all n. We conclude Section 3 with a O(1)
size planar tile assembly system that “universally” identifies whether or not any
hole-free input shape is an n × n square. In Section 4, we develop a non-planar
tile assembly system that identifies a wide variety of “hole-free” shapes that have
a kind of “perimeter-rectangle decomposition” that uses an optimal number of
unique tile types in the sense of Kolmogorov complexity. We then mildly extend
the aforementioned result to identify a more general class of shapes–assuming
the use of two different types of RNAse enzymes is permitted.

2 Preliminaries and Notation

In this paper, we work in a variant of Erik Winfree’s abstract Tile Assembly
Model [21, 22] modified to model unseeded growth, known as the two-handed
aTAM, which has been studied previously under various names [1–3, 6, 7, 12, 23].
In the two-handed aTAM, any two assemblies can attach to each other, rather
than enforcing that tiles can only accrete one at a time to an existing seed
assembly. A tile type is a unit square with four sides, each having a glue consisting
of a label (a finite string) and strength (a natural number). We represent tiles
as squares. Notches on the sides of tile types represent the glue strength of that
side. The thick notches represent strength 4, and otherwise each single notch
contributes a strength of one to the glue strength of that side.

We assume a finite set T of tile types, but an infinite number of copies of
each tile type, each copy referred to as a tile. A supertile (a.k.a., assembly) is
a positioning of tiles on the integer lattice Z

2. Two adjacent tiles in a supertile
interact if the glues on their abutting sides are equal and have positive strength.
Each supertile induces a binding graph, a grid graph whose vertices are tiles,
with an edge between two tiles if they interact. The supertile is τ-stable if every
cut of its binding graph has strength at least τ , where the weight of an edge is
the strength of the glue it represents. That is, the supertile is stable if at least
energy τ is required to separate the supertile into two parts. A tile assembly
system (TAS) is a pair T = (T, σ, τ), where T is a finite tile set, σ is an initial
seed configuration and τ ∈ N is the temperature. Given a TAS T = (T, σ, τ), a
supertile is producible if either it is a single tile from T , σ, or it is the τ -stable
result of translating two producible assemblies. A supertile α is terminal if for
every producible supertile β, α and β cannot be τ -stably attached. A TAS is
directed (a.k.a. deterministic or confluent) if it has only one terminal, producible
supertile and all producible assemblies are finite. Given a connected shape X ⊆
Z

2, a TAS T produces X uniquely if every producible, terminal supertile places
tiles only on positions in X (appropriately translated if necessary).

Identifying Shapes Using Self-assembly 461

We also assume that each tile type is defined as being either composed of DNA
or of RNA. The utility of RNA-based tile types comes from that fact that, at
prescribed points during the assembly process, we assume that the experimenter
can add an RNAse enzyme to the solution which causes all tiles composed of
RNA to dissolve. We assume that when this occurs, all portions of all RNA tiles
are completely dissolved, including glue portions that may be bound to DNA
tiles, returning the previously bound edges of those DNA tiles to unbound states.

In other words, for a given supertile α that is stable at temperature τ , when
the RNAse enzyme is added to the solution, all positions in α which are occupied
by RNA tiles become undefined (locations at which no tiles exist). The resultant
supertile may not be τ -stable and thus defines a multiset of subsupertiles con-
sisting of the maximal stable supertiles of α at temperature τ , which we denote
as BREAKτ (α).

Unless explicitly stated, in this paper we subscribe to the restriction that the
RNAse enzyme must be added exactly once–and only after an initial phase of
two-handed self-assembly (involving both DNA and RNA tiles at temperature τ)
reaches some (intermediate) terminal state. Of course, after the RNAse enzyme
has completely dissolved all of the RNA tiles, two-handed self-assembly of only
DNA tiles is allowed to proceed until a final terminal state is reached. We also
assume that tile types cannot be added at any point of the self-assembly process,
whence all of our constructions in this paper have O(1) stage complexity.

The two handed RNAse enzyme assembly model was initially suggested in
[16] and was recently used to study the problem of replicating shapes using
self-assembly [1].

2.1 The Shape Identification Problem in the RNAse Enzyme Model

For every shape (a.k.a., a finite, connected subset of Z2) X , define the assembly
σX as the placement of specially designated seed (DNA) tiles at every point in
X subject to the restrictions that σX must be τ -stable, the strengths of all of
the “external” glues must be 1 and be labeled with the empty string. 1

We now define the shape identification problem in self-assembly. For any set of
shapes C and any target shape X ∈ C, the ordered pair (C, X) is an instance of
the shape identification problem. A solution to the shape identification problem
instance (C, X) is an ordered pair (T, τ), where T is a finite set of tile types, τ ∈ N

is the temperature and for any Y ∈ C, the tile assembly system T = (T, σY , τ)
satisfies the following conditions. If X = Y then T uniquely produces a fully-
connected final assembly α consisting of σY with a fully connected ring of easily-
distinguishable “border” tiles along the perimeter of σY . However, if X �= Y ,
then σY is terminal (no tiles remain attached to it) and the size of (number of
tiles in) any terminal assembly α �= σY is at most 5. Here, (T, τ) identifies the
shape X with respect to C at temperature τ , a.k.a., (T, τ) solves (C, X).

1 We speculate that one possible molecular implementation of this might be achieved

using Rothemund’s DNA origami as a seed structure [5, 15] to which DNA and RNA

tiles can subsequently attach.

462 M.J. Patitz and S.M. Summers

(a) Target shape X
and input shape Y

(b) Seed assembly σY (c) The goal!

Fig. 1. The desired outcome for a “yes” instance of the shape identification problem

An example of an instance of–and solution to–the shape identification problem
(for some shape with respect to some class of shapes) is depicted in Figure 1.
We say that the identification complexity of (C, X) is the number of unique tile
types in the smallest tile set of any solution that solves (C, X) (this definition
should be somewhat reminiscent of the tile complexity [16] of a shape X being
defined as the minimum number of tile types necessary to uniquely produce X).

3 Identification of n × n Squares with Planarity

We begin our investigation into the identification of shapes using self-assembly
by studying the planar identification of n×n squares. A tile assembly system T
is planar if, for every possible assembly sequence in T , all attaching supertiles
have obstacle-free paths to their mates and therefore require use of only two
spacial dimensions. The interested reader is encouraged to consult [7] for more
discussion of planarity in self-assembly. We say that a solution (T, τ) to (C, X)
is planar if, for every shape Y ⊆ Z

2, the tile assembly system T = (T, σY , τ) is
planar.

In this section, we exhibit two planar solutions to the shape identification
problem that efficiently identify n×n squares with respect to the set of all hole-
free shapes: shapes whose complements are infinite, connected subsets of Z2. We
also construct a universal tile set that is capable of identifying whether a given
input shape is in fact a square of any dimension.

For each n ∈ N, let Sn = {0, 1, . . . , n−1}2 be the n×n square whose lower-left
corner is positioned at the origin. Throughout this paper, C denotes the class of
all hole-free shapes. The motivating factor behind defining C this way is because
we want our constructions to be able to distinguish a target shape from among
many different possible “junk” (i.e., non-square) input shapes.

3.1 Planar Identification of n × n Squares with O(log n) Unique
Tile Types

Our first main result of this section is the following theorem, which essentially
states that there is an efficient planar identification scheme for n × n squares,
i.e., the identification complexity of Sn with respect to C is O(log n).

Identifying Shapes Using Self-assembly 463

Theorem 1. For every 6 < n ∈ N, there exists a tile set Tn with |Tn| = O(log n)
such that (Tn, τ = 4) is planar and solves (C, Sn).

The proof idea of Theorem 1 is as follows. Suppose we are trying to identify Sn

for some 6 < n ∈ N. Given an input shape Y ∈ C, our construction first attaches
“verification modules” to north- south- and west-facing sides of Y (if Y is an
n×n square, then there will be exactly one of each of these types of sides). These
modules are side-by-side pairs of unary counters and binary counters that do not
interact with each other as they count. The unary counters count (in unary) the
length of the side to which they are attached and the binary counters essentially
count (in binary) up to n (the dimension of the target square). Each verification
module compares the length of the side to which it is attached with n. If all three
verification modules report success and agree with each other, then the input
shape is in some sense “almost” a square. The three verification modules then
cooperate to allow DNA border tiles to start attaching to the east-facing side of
the input shape. If border tiles can attach to all but the two bottom rightmost
points along the east-facing side, then the input shape is in fact Sn and our
construction reaches an intermediate terminal state. At this point, we add the
RNAse enzyme leaving only the input shape to which the east-facing border tiles
are attached. The remaining border tiles attach in a clockwise fashion until a
complete and fully connected border is assembled. However, if not all east-facing
border tiles can attach (i.e., the input shape is not Sn), then after the RNAse
enzyme is added all previously-attached border tiles will disassociate one at a
time until no tiles are attached to the input shape.

3.2 Ω
(

log n
log log n

)
Unique Tile Types Are Necessary to Identify an

n × n Square

In [16], Rothemund and Winfree established an Ω
(

log n
log log n

)
lower bound on

the number of tile types required to uniquely assemble an n × n full square for
almost all n. In this section, we adapt their information-theoretic proof tech-
nique to the shape identification problem for n × n squares under the RNAse
enzyme model. Formally, we say that P (n) is true for almost all n if and only if
limn→∞

|{1≤m≤n|P (m) is true }|
n = 1.

Theorem 2. Foralmost alln ∈ N, if (T, τ) solves (C, Sn), then |T | = Ω
(

log n
log log n

)
.

Proof. For each n ∈ N, define the Kolmogorov complexity of n as K(n) =
min{|π| | U(π) = n} where U is some fixed universal Turing machine. The reader
is encouraged to consult [20] for a more detailed discussion of Kolmogorov com-
plexity. An easy application of the pigeonhole principle tells us that for almost
all n ∈ N, K(n) = Ω(log n).

For n ∈ N satisfying K(n) ≥ log n and temperature τ ∈ N, there exists a
constant size Turing machine M that takes as input a tile set Tn that uniquely
identifies Sn, a seed assembly representing the input shape σ (as discussed in

464 M.J. Patitz and S.M. Summers

?

YESYESYESYESYESYESYES

YES1YES

YES YES YES YES YES YES YES YES YES YES YES YES YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

U0

U1

U

U2

U3

YESYES

>

>

>

>

>

>

>

>

>

>

P

P

P

P1

P

P

P

P1

P0

P*

P*

P1

>

>

>

>

>

>

>
>

>

>

>

>>>

>>>

>>
>

>
>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

<

<

<

<

<

<
<<

<<<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<
<

<
<

<

<

<
<

<
<

<

<

<

A

A

A

A

A

A

A

A

A

A

A

A

A

L

L

L

L

L

L

L

L

L

L

L

L

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B A

B

B

B

B

B

B

G

G G

G

G
G

G
G

G

G

G

G

G

G

G

Z

Z

Z

Z

Z

Z

Z
Z

Z
Z

Z
Z

Z
X

X

X

X

XX

XX

XX

XX

X
X

X

X
X

X

X

X

X

X

Z

Z

X

X

X

X

X

X

X

X

Z

Z

X

X

X

X

Z

Z

X

X

X

X

Z

Z

X

X

X

X

A

A

A

A

A

A

A

A

L

L

RLLLLLR

R

S

0

0
0

0
0

010

0

001

0
*

0
* 0

0
0*

0
*

0

0

0

1

1

0

00

0

0

0

0

0*

0*

0*

1

1

1

0

1

1*

0*

1*

1*

1*

0

1

1

0

0*

1*

1
*

0*

0*

0*

0
*

1

1

1*

1
*

0

0

0

0

1

1

1

1*

1
*

? ? ? ? ? ? ? ? ?

??????????????????
?

?
?

?
?

?
?

??

?

?????

?

?

?

?

?

?

?

?

?

?

????????????

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

??

??

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?

??

?

1*

1
*

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0 0 0
00

0
*

1
*

1
1
*

0 1 0

1
*

0
*

1
*

0 0

0

0 1 1

1

R

S

Fig. 2. An example of our construction for Theorem 1 with n = 7. Our tile set is

partitioned into several logical groups–each given a different color in this figure to

represent the relative order in which they assemble (i.e., Red, Orange, Yellow, Green,

Blue, Indigo, Violet). First, the red supertiles assemble and attach to the corners of the

input shape. The orange group essentially encodes the length of the to-be-identified

square via a binary counter and requires O(log n) unique tile types. The “U” border

tiles attach along the east-facing side of the input shape. All tiles are RNA tiles except

for the “U” tiles and, of course, the tiles that make up the initial seed square.

Section 2.1) and outputs the maximum extent (height or width) of the uniquely
produced terminal assembly. We can then use M as a subroutine in another con-
stant size Turing machine N that takes as input Tn and sequentially simulates
M on Tn with the seed assembly σSi for i ≥ 0 in order while checking if
the maximum extent (height or width) of the ith uniquely produced terminal

Identifying Shapes Using Self-assembly 465

assembly is i + 2. Since Tn uniquely identifies Sn, we are guaranteed that this
search will eventually terminate, at which point N halts and outputs i = n.
This implies that the size of (number of bits in) the encoding for Tn must be
Ω(log n). Since we can encode an arbitrary tile set T with O(|T | log |T |) bits
(assuming T has a diagonal strength function) and τ with O(1) bits, we have
that |Tn| = Ω

(
log n

log log n

)
.

3.3 Planar Identification of n × n Squares with O
(

log n
log log n

)
Unique

Tile Types

The construction for Theorem 1 can be modified to prove the following asymp-
totically optimal result for the identification of n × n squares.

Theorem 3. For every 6 < n ∈ N, there exists a tile set Tn with |Tn| =
O
(

log n
log log n

)
such that (Tn, τ = 4) is planar and solves (C, Sn).

3.4 Universal Planar Identification of Squares with O(1) Unique
Tile Types

In the previous subsections, we focused our attention on the problem of iden-
tifying n × n squares for particular values of n from among any input shape
drawn from the set of all hole-free shapes. We now study the related problem
of universally identifying whether or not a given input shape is an n × n square
for some n ∈ N. Here, we are given an arbitrary hole-free input shape and we
wish to correctly identify it (in the sense of tagging its border with special tiles)
if and only if it is in fact a square.

Theorem 4. There exists a finite tile set T with |T | = O(1) such that, for every
6 < n ∈ N, (T, τ = 4) is planar and solves (C, Sn).

Intuitively, we prove Theorem 4 by constructing a constant size tile set that (1)
grows unary counters off of the north, west and south sides of the input shape
and then (2) allows a border of DNA tiles to assemble if and only if all of the
counters agree on the same value (in addition to the right side of the input shape
being consistent with that of a square).

4 Non-planar Identification of More Shapes

We now exhibit a non-planar self-assembly system that efficiently identifies a
wide variety of shapes with respect to the set of all hole-free shapes but at the
expense of sacrificing planarity. We first define some notation.

Let (x, y) = a ∈ Z
2 and (w, z) = b ∈ Z

2 and define d∞ (a, b) = max{|x −
w|, |y − z|}. If X is a shape, then we say that the feature size of X is the
minimum d∞ (a, b) such that a and b are on two non-adjacent edges of X .

466 M.J. Patitz and S.M. Summers

(a) An example shape X (b) A valid perimeter-

rectangle decomposition of

X.

Fig. 3. An example of a perimeter-rectangle decomposition of a particular shape

We say that a shape X is x-monotone if its intersection with any vertical line
is a connected line. If X is a shape, then let R̃(X) be the smallest rectan-
gle that contains X + {(0, 3), (0,−3)}, where, for any set A ⊆ Z

2, X + A =
{x + a | x ∈ X and a ∈ A}. We say that X has a perimeter -rectangle decom-
position, denoted as {Ri}n−1

i=0 for some n ∈ N, if: for each 0 ≤ i < n, Ri is a
rectangle, for all 0 ≤ j < n, i �= j ⇒ Ri ∩ Rj = ∅, height(Ri) ≤ 2width(Ri) + 3,
R̃(X) − X =

⋃n−1
i=0 Ri, and for each 0 ≤ i < n, the perimeter of Ri intersects

the perimeter of R̃(X). For any rectangle R, we write h(R) = height(R), and
w(R) = width(R). See Figure 3 for an example of a shape and a valid perimeter-
rectangle decomposition thereof. Recall that C is the set of all hole-free shapes.

Theorem 5. Fix a universal Turing machine U . Let X be a shape and πX be
any program such that U(πX) = 〈X〉, where 〈·〉 is a standard binary encoding of
a finite object. If X is x-monotone, has feature size 5 and has perimeter-rectangle
decomposition {Ri}n−1

i=0 , then the identification complexity of X with respect to

C is O
(

|πX |
log|πX |

)
.

Note that by choosing πX to be the shortest program such that U(πX) = 〈X〉,
then |πX | = K(X). The proof idea of Theorem 5 is as follows. Given a shape X
that satisfies the hypothesis, our construction first converts X into a string xyz

such that x encodes all of the “north-facing” features of X , y encodes h
(
R̃(X)

)
and z encodes all of the “south-facing” features of X . Our construction then
uses this string as a seed in order to assemble a frame to which an input shape
can attach. Once the input shape attaches to the frame, a single-tile-wide border
assembles around the perimeter of the input shape and fills in completely if and
only if the input shape matches the target shape. Once the RNAse enzyme is
added, the frame dissolves and if the input shape has a full border of DNA tiles,
then we are done and the target shape has been correctly identified. However, if
the input shape does not match the target shape, then our construction ensures
that a full border around the input shape is not allowed to assemble. Moreover,

Identifying Shapes Using Self-assembly 467

if the border is not fully formed after the RNAse enzyme is added, then the
partially formed border will disassemble in a counter-clockwise fashion one tile
at a time eventually leaving the input shape completely free of DNA border tiles.
We encode X as a program πX using the optimal encoding scheme of Soloveichik
and Winfree [18], whence the identification complexity of X with respect to C is
O
(

|πX |
log|πX |

)
.

5 Non-planar Identification of Even More Shapes

Throughout this paper, we have assumed that the RNAse enzyme (the agent
responsible for removing all of the RNA tile types) is added once–and only–after
the initial stage of two-handed self-assembly is allowed to reach a terminal state.
Under this assumption, the RNAse enzyme universally dissolves every RNA tile
in all of the produced assemblies. In this section, we relax this restriction and
allow for the use of two different types of RNAse enzymes in two separate dissolve
stages that each affect a different group of RNA tiles. Doing so leads to a mild
refinement of Theorem 4, stated precisely as the following theorem.

Theorem 6. Fix a universal Turing machine U and let X be a shape and πX

be any program such that U(πX) = 〈X〉. If X is x-monotone, has feature size 6
and if the use of two different types of RNAse enzymes in two separate dissolve
stages is permitted, then the identification complexity of X with respect to C is
O
(

|πX |
log|πX |

)
.

(a) Very high-level overview of the construc-

tion for Theorem 6. The grey wedge represents

a self-assembly simulation of a Turing machine

that unpacks a compact description of all of

the rectangles that eventually assemble into a

frame that accepts the input shape.

(b) After the first type

of RNAse is added, all

of the supertiles are

free to assemble into a

frame that accepts the

input shape.

Fig. 4. Overview of the construction for Theorem 6

468 M.J. Patitz and S.M. Summers

Notice that, unlike Theorem 4, in Theorem 6, we no longer require that X have
a perimeter-rectangle decomposition, which implies that now X may potentially
have a “jagged” border–perhaps even drastically so!

The proof idea of Theorem 6 is similar to that of Theorem 4 in that we
assemble a frame that accepts an input shape Y and allows a border of DNA
tiles to assemble if and only if the Y = X . In order to overcome the assumption
that the Y must have a perimeter-rectangle decomposition, we use two dissolve
stages.

Acknowledgment. The authors are indebted to Paul Rothemund and John
Mayfield for helpful discussions as well as to an anonymous reviewer for providing
detailed comments regarding several technical aspects of this paper.

References

1. Abel, Z., Benbernou, N., Damian, M., Demaine, E., Demaine, M., Flatland, R.,

Kominers, S., Schweller, R.: Shape replication through self-assembly and RNAse

enzymes. In: SODA 2010: Proceedings of the Twentyfirst Annual ACM-SIAM Sym-

posium on Discrete Algorithms, pp. 1045–1064 (2010)

2. Adleman, L.: Toward a mathematical theory of self-assembly (extended abstract),

Tech. Report 00-722, University of Southern California (2000)

3. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Wasserman, H.: Linear self-

assemblies: Equilibria, entropy and convergence rates. In: Sixth International Con-

ference on Difference Equations and Applications. Taylor and Francis, Abington

(2001)

4. Andersen, E.S., Dong, M., Nielsen, M.M., Jahn, K., Subramani, R., Mamdouh,

W., Golas, M.M., Sander, B., Stark, H., Oliveira, C.L.P., Pedersen, J.S., Birkedal,

V., Besenbacher, F., Gothelf, K.V., Kjems, J.: Self-assembly of a nanoscale dna

box with a controllable lid. Nature 459(7243), 73–76 (2009)

5. Barish, R.D., Schulman, R., Rothemund, P.W., Winfree, E.: An information-

bearing seed for nucleating algorithmic self-assembly. Proceedings of the National

Academy of Sciences 106(15), 6054–6059 (2009)

6. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T., de Es-

panés, P.M.: Complexities for generalized models of self-assembly. SIAM Journal

on Computing 34, 1493–1515 (2005)

7. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller,

R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes

with O(1) glues. Natural Computing 7(3), 347–370 (2008)

8. Fu, Y., Schweller, R.: Temperature 1 self-assembly: Deterministic assembly in 3d

and probabilistic assembly in 2d. In: Proceedings of the ACM-SIAM Symposium

on Discrete Algorithms (SODA 2011) (to appear, 2011)

9. Gu, H., Chao, J., Xiao, S.-J., Seeman, N.C.: A proximity-based programmable dna

nanoscale assembly line. Nature 465(7295), 202–205 (2010)

10. Hartgerink, J.D., Beniash, E., Stupp, S.I.: Self-Assembly and Mineralization of

Peptide-Amphiphile Nanofibers. Science 294(5547), 1684–1688 (2001)

11. Kalsin, A.M., Fialkowski, M., Paszewski, M., Smoukov, S.K., Bishop, K.J.M., Grzy-

bowski, B.A.: Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a

Diamond-Like Lattice. Science 312(5772), 420–424 (2006)

Identifying Shapes Using Self-assembly 469

12. Luhrs, C.: Polyomino-safe DNA self-assembly via block replacement. In: Goel, A.,

Simmel, F.C., Sośık, P. (eds.) DNA14. LNCS, vol. 5347, pp. 112–126. Springer,

Heidelberg (2008)

13. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J.,

Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular

robots guided by prescriptive landscapes. Nature 465(7295), 206–210 (2010)

14. Majumder, U., LaBean, T.H., Reif, J.H.: Activatable tiles for compact error-

resilient directional assembly. In: 13th International Meeting on DNA Computing

(DNA 13), Memphis, Tennessee, June 4-8 (2007)

15. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Na-

ture 440(7082), 297–302 (2006)

16. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled

squares (extended abstract). In: STOC 2000: Proceedings of the Thirty-second

Annual ACM Symposium on Theory of Computing, pp. 459–468. ACM, New York

(2000)

17. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of

DNA Sierpinski triangles. PLoS Biology 2(12), 2041–2053 (2004)

18. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal

on Computing 36(6), 1544–1569 (2007)

19. Tang, Z., Zhang, Z., Wang, Y., Glotzer, S.C., Kotov, N.A.: Self-Assembly of CdTe

Nanocrystals into Free-Floating Sheets. Science 314(5797), 274–278 (2006)

20. Vitányi, P., Li, M.: An introduction to kolmogorov complexity and its applications.

Springer, Heidelberg (1997)

21. Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute

of Technology (June 1998)

22. Winfree, E.: Simulations of computing by self-assembly, Tech. Report CaltechC-

STR:1998.22, California Institute of Technology (1998)

23. Winfree, E.: Self-healing tile sets. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.)

Nanotechnology: Science and Computation. Natural Computing Series, pp. 55–78.

Springer, Heidelberg (2006)

24. Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly

of dna: Some theory and experiments. In: DNA Based Computers II. DIMACS,

vol. 44, pp. 191–213. American Mathematical Society, Providence (1996)

25. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-Templated

Self-Assembly of Protein Arrays and Highly Conductive Nanowires. Sci-

ence 301(5641), 1882–1884 (2003)

26. Zeng, H., Li, J., Liu, J.P., Wang, Z.L., Sun, S.: Exchange-coupled nanocomposite

magnets by nanoparticle self-assembly. Nature 420(6914), 395–398 (2002)

Author Index

Adamaszek, Anna II-132

Adiga, Abhijin I-366

Ahn, Hee-Kap II-97, II-422

Amano, Kazuyuki I-304

Amir, Amihood I-25

Augustine, John II-254

Babenko, Maxim A. I-451

Bae, Sang Won II-230

Bampis, Evripidis I-353

Barbay, Jérémy II-315

Berman, Piotr I-15

Bernard, Julien II-291

Bhattacharya, Binay II-192

Bomze, Immanuel I-427

Bose, Prosenjit I-109, II-446

Brankovic, Ljiljana I-390

Brodal, Gerth Stølting II-1, II-37

Brodnik, Andrej I-133

Broersma, Hajo II-156

Cai, Jin-Yi I-253

Canzar, Stefan II-168

Carmi, Paz I-316

Chambers, Erin I-241, II-434

Chao, Kun-Mao II-339

Chen, Chun-An II-363

Chen, Enhong II-218

Chen, Jingchi II-242

Chen, Kuan-Yu II-339

Cheng, Siu-Wing I-37, II-97, II-109

Cheung, David W. I-61

Chimani, Markus I-427

Chin, Francis Y.L. II-242

Chitnis, Rajesh I-366

Cicalese, Ferdinando II-206

Damian, Mirela II-446

Didimo, Walter II-61

Di Giacomo, Emilio II-61

Doüıeb, Karim I-109, II-446

Duchier, Denys I-279

Durand-Lose, Jérôme I-279

Eisenberg, Estrella I-25

Elbassioni, Khaled II-168

Elmasry, Amr II-168, II-375

Eppstein, David I-1, I-241, I-403

Erickson, Alejandro II-434

Farzan, Arash II-327

Fekete, Sándor II-434

Férée, Hugo I-291

Fernau, Henning I-390

Franklin, Matt I-2

Gagie, Travis II-315, II-327

Gast, Nicolas II-291

Giesbrecht, Mark I-266

Golovach, Petr A. II-156

Goodrich, Michael T. I-97

Gravin, Nick II-254

Grüne, Ansgar II-121

Gu, Qian-Ping II-85

Haeupler, Bernhard II-410

Hainry, Emmanuel I-291

Han, Xin II-242

Hansen, Thomas Dueholm I-415

Hara, Takuya II-351

Hasunuma, Toru II-49

He, Jing I-49

Heggernes, Pinar II-399

Hoyrup, Mathieu I-291

Hsieh, Sun-Yuan II-363

Hsu, Ping-Hui II-339

Hu, Yuzhuang II-192

Huang, Sangxia I-253

Iacono, John I-133

Ishii, Toshimasa II-49

Ito, Takehiro II-351

Iwama, Kazuo I-73, I-85

Jacobs, Tobias II-206

Jampani, Krishnam Raju I-206, II-410

Jiang, Minghui II-180

Jin, Jiongxin II-109

472 Author Index

Jirásek, Jozef I-157

Jünger, Michael I-427

Karpinski, Marek I-3, I-15

Kavitha, Telikepalli I-145

Kejlberg-Rasmussen, Casper II-37

Klav́ık, Pavel I-157

Klein, Rolf II-121

Knauer, Christian I-37, II-422

Kobayashi, Yasuaki II-73

Kononov, Alexander I-353

Kubo, Mikio I-121

Kuo, Chung-Chin II-13

Laber, Eduardo II-206

Langerman, Stefan I-37

Langetepe, Elmar II-121

Lee, D.T. II-121

Lenchner, Jonathan II-434

Levy, Avivit I-25

Li, Angsheng I-218

Li, Minming II-218

Liang, Hongyu I-49

Limouzy, Vincent I-194

Lin, Tien-Ching II-121

Liotta, Giuseppe II-61

Ljubić, Ivana I-427

Löffler, Maarten I-403

Lu, Pinyan I-253

Lubiw, Anna I-206, II-410

Lucarelli, Giorgio I-353

Mamoulis, Nikos I-61

Meijer, Henk II-61

Meister, Daniel II-399

Mertzios, George B. I-230

Meyerhenke, Henning II-387

Milis, Ioannis I-353

Miyamoto, Yuichiro I-121, II-73

Molinaro, Marco II-206

Mutzel, Petra I-427

Nagamochi, Hiroshi I-182

Nasre, Meghana I-145

Navarro, Gonzalo II-315, II-327

Nekrich, Yakov II-25, II-315

Nichterlein, André I-378

Niedermeier, Rolf I-378

Nimbhorkar, Prajakta I-145

Nishimura, Harumichi I-85

Nishizeki, Takao II-351

Ono, Hirotaka II-49

O’Rourke, Joseph II-446

Patitz, Matthew J. II-458

Paulusma, Daniël II-156

Péchoux, Romain I-291

Peis, Britta II-266

Poon, Sheung-Hung II-121

Popa, Alexandru II-132

Raman, Rajiv II-168

Raymond, Rudy I-85

Reinbacher, Iris II-97

Roch, Jean-Louis II-291

Roche, Daniel S. I-266

Saurabh, Saket I-366

Scherfenberg, Marc II-422

Schlipf, Lena II-422

Schudy, Warren I-3

Seamone, Ben II-446

Sember, Jeff II-434

Senot, Maxime I-279

Seto, Kazuhisa I-73

Shin, Chan-Su II-230

Shioura, Akiyoshi I-169

Sioutas, Spyros II-1

Smid, Michiel I-37, I-316, II-446

Song, Jian II-156

Spoerhase, Joachim I-440

Stacho, Juraj II-144

Stege, Ulrike II-434

Stiller, Sebastian II-266, II-279

Stolpner, Svetlana II-434

Strash, Darren I-97, I-403

Sudholt, Dirk I-340

Summers, Scott M. II-458

Takai, Tadashi I-73

Tamaki, Hisao II-73, II-85

Tamaki, Suguru I-73

Tchiboukdjian, Marc II-291

Teruyama, Junichi I-85

Thielen, Clemens II-303

Tian, Wanyong II-218

Tilak, Hrushikesh I-266

Ting, Hing-Fung II-242

Author Index 473

Truelsen, Jakob II-37

Trystram, Denis II-291

Tsichlas, Kostas II-1

Tsin, Yung H. II-242

Uhlmann, Johannes I-378

Uno, Takeaki I-121

Uno, Yushi II-49

Venkatesh, Srinivasan II-434

Vigneron, Antoine II-109, II-422

Villanger, Yngve II-399

Wang, Biing-Feng II-13

Wang, Yajun II-109

Weibel, Christophe II-434

Weller, Mathias I-378

Westphal, Stephan II-303

Whitesides, Sue II-434

Wiese, Andreas II-266, II-279

Wong, W.K. I-61

Wu, Weiwei II-218

Wuhrer, Stefanie II-446

Xie, Yulai I-328

Xu, Jinhui I-328

Xu, Lei I-328

Xue, Chun Jason II-218

Yiu, S.M. I-61

Yu, Chih-Chiang II-13

Yu, Teng-Kai II-121

Zaks, Shmuel I-230

Zarges, Christine I-340

Zaroliagis, Christos II-1

Zelikovsky, Alexander I-15

Zey, Bernd I-427

Zhang, Peng I-218

Zhang, Ye I-61

Zhang, Yong II-242

Zhou, Xiao II-351

Zhuang, Bingbing I-182

Zwick, Uri I-415

	Title Page
	Preface
	Organization
	Table of Contents – Part II
	Session 6A. Data Structure and Algorithm II
	D2-Tree: A New Overlay with Deterministic Bounds
	Introduction
	Deterministic Load Balancing
	A Technique for Amortized Constant Weight Updating
	Updates and Load Balancing

	The D^2-Tree
	The D^2-Tree Structure
	The Index Structure of the D^2-Tree
	Other Efficiency Issues and the Main Result

	Conclusions and Discussion
	References

	Efficient Indexes for the Positional Pattern Matching Problem and Two Related Problems over Small Alphabets
	Introduction
	Preliminaries
	The Positional Pattern Matching Problem
	An Index for Finite Alphabets
	An Index for |Σ| = O(polylog(n))

	The Position-Restricted Pattern Matching Problem
	Variable-Length Don't Care Pattern Matching Problem
	Concluding Remarks
	References

	Dynamic Range Reporting in External Memory
	Introduction
	Dominance Reporting for Small Sets
	(1,1,2)- and (2,1,2)-Sided Queries for Small Sets

	Extended Three-Sided Queries
	Range Reporting in Three Dimensions
	Conclusion
	References

	A Cache-Oblivious Implicit Dictionary with the Working Set Property
	Introduction
	Our Results

	A Moveable Dictionary
	Methods and Jobs
	Correctness

	Construction of the Working Set Dictionary
	Invariants
	Operations
	Memory Management
	Analysis

	References

	Session 6B. Graph Algorithm II
	The (p, q)-total Labeling Problem for Trees
	Introduction
	Bounds on $λTp,q(G)$
	Tight Bounds on $λTp,q(G)$ for Trees
	Algorithms for (p,q)-total Labelings of Trees
	Case: $p ≤ 3q/2$
	Case: $p > 3q/2$

	Concluding Remarks
	References

	Drawing a Tree as a Minimum Spanning Tree Approximation
	Introduction
	(1 + ε)-EMST Drawings
	Computing (1 + ε)-EMST Drawings of General Trees
	Polynomial Area Approximation Schemes for Bounded Degree Trees
	Trees with Logarithmic Height
	Trees with Vertex Degree at Most Six
	$EMST$ Drawings of Complete Binary Trees

	Open Problems
	References

	k-cyclic Orientations of Graphs
	Introduction
	General Graphs
	Planar Graphs
	NP-Completenes for k ≥ 4
	Polynomial Time Algorithm for Finding 3-Cyclic Orientations of Planar Graphs

	References

	Improved Bounds on the Planar Branchwidth with Respect to the Largest Grid Minor Size
	Introduction
	Main Result
	An Upper Bound on the Branchwidth of a Plane Hypergraph
	The Branchwidth and Grid-Minor Size of a Cylinder
	References

	Session 7A. Computational Geometry II
	Maximum Overlap of Convex Polytopes under Translation
	Introduction
	Background
	Overview
	Algorithm
	How LOCATE Works
	How PRUNE Works
	The Generation of $E1$

	References

	Approximate Shortest Homotopic Paths in Weighted Regions
	Introduction
	Preliminaries
	Overview
	The Subdivision S and the Graph $H_ε$
	Anchor Tree
	Rerouting along A
	Main Algorithm
	References

	Spanning Ratio and Maximum Detour of Rectilinear Paths in the L_1 Plane
	Introduction
	Preliminaries and Problem Definition
	The Lower Bound
	Computing the Spanning Ratio of a Rectilinear Path
	Computing the Maximum Detour of a Rectilinear Path
	Monotone Rectilinear Paths
	Non-monotone Rectilinear Path

	Conclusion
	References

	Session 7B. Graph Coloring II
	Approximation and Hardness Results for the Maximum Edge q-coloring Problem
	Introduction
	Approximation for Graphs with a Perfect Matching
	Approximation Guarantee for Minimal Graphs
	Approximation Guarantee for Graphs with a Perfect Matching

	Hardness Results
	Conclusions
	References

	3-Colouring AT-Free Graphs in Polynomial Time
	Introduction
	Notation
	Removing Diamonds
	Structural Decomposition
	Proof of Theorem 3
	The Algorithm
	Conclusion
	References

	On Coloring Graphs without Induced Forests
	Introduction
	Key Ingredients for Coloring 2P_3-Free Graphs
	Coloring ($K3,2P3$)-Free Graphs with at Most Four Colors
	Outline of the Algorithm
	The Preprocessing
	Reducing the Lists of Size Three in a Suitable List-Assignment

	Determining the Chromatic Number
	Future Research
	References

	Session 8A. Approximation Algorithm II
	On the Approximability of the Maximum Interval Constrained Coloring Problem
	Introduction
	Our Results
	Related Work

	Preliminaries
	The Approximation Algorithm
	Finding an Optimal Tower; Proof of Lemma 2
	Finding an Optimal Staircase; Proof of Lemma 3

	APX-Hardness
	References

	Approximability of Constrained LCS
	Introduction
	Approximation Lower Bounds for C-LCS(k,1)
	Proof of Theorem 1
	Proof of Theorem 3

	Improved Approximation Algorithms for C-LCS(k,1)
	Proof of Theorem 2
	Proof of Theorem 4

	Exact Algorithms for C-LCS(k,l)
	References

	Approximation Algorithms for the Multi-Vehicle Scheduling Problem
	Introduction
	Multi-Vehicle Scheduling Problem (MVSP)
	Our Results and Solution Techniques

	3-Approximation for MVSP on Trees
	Defining the Problem P' for MVSP on Trees
	Locating the Subproblems for MVSP on Trees

	$(5-2m)$-Approximation for MVSP on General Graphs
	Conclusions and Future Work
	References

	On Greedy Algorithms for Decision Trees
	Introduction
	A Novel Greedy Procedure
	Multiway Tests, Non-uniform Weights and Non-uniform Costs
	Uniform Costs and Non-uniform Weights
	Greedy is Bi-Criteria for Non-uniform Costs and Uniform Weights

	Partially Ordered Sets
	Tree-Like Posets
	Conclusion
	References

	Session 8B. Online Algorithm
	Single and Multiple Device DSA Problem, Complexities and Online Algorithms
	Introduction
	Preliminaries
	Settling the Complexity for Special Cases of DSA/SRF Problem
	Better Online Algorithms for DSA Problem
	Approximation Algorithm through Laminar Decomposition
	Better Online Algorithm through Laminar Decomposition
	Lower Bounds on the Online Algorithm

	Multi-device Balancing DSA Problem
	Conclusion
	References

	The Onion Diagram: A Voronoi-Like Tessellation of a Planar Line Space and Its Applications (Extended Abstract)
	Introduction
	The Onion Diagram: Definition and Properties
	The Line Space L
	Definition of the Onion Diagram
	Geometric and Combinatorial Properties

	Computing the Onion Diagram
	Applications
	Querying a Line for Nearest-Neighbor among Weighted Points
	The Max-Min Line Location Problem among Weighted Points

	Extension to Weighted Polygonal Sites
	References

	Improved Online Algorithms for 1-Space Bounded 2-Dimensional Bin Packing
	Introduction
	1-Space Bounded 2-Dimensional Bin Packing
	1-Space Bounded Square Packing
	A 4.5-Competitive Algorithm
	Lower Bound of the Competitive Ratio

	Concluding Remarks
	References

	On the Continuous CNN Problem
	Introduction
	The BR Algorithm for the Continuous CNN Problem
	Analysis of the BR Algorithm
	References

	Session 9A. Scheduling
	Policies for Periodic Packet Routing
	Introduction
	Definitions
	Related Work
	Our Contributions

	Necessary and Sufficient Bound for Feasibility
	Template Schedules
	Directed Trees
	Bidirected Trees
	Undirected Trees and Randomized Algorithms

	Priority Schedules
	Edge-Priority schedule
	Global-Priority Schedule and Strict Periodic Setting
	Imitation Theorems

	References

	Increasing Speed Scheduling and Flow Scheduling
	Introduction
	From Flows to Scheduling
	EPTAS
	Tractable Cases of ISS
	Tight Analysis of Smith's Rule
	Blind and Online Algorithms
	References

	A Tighter Analysis of Work Stealing
	Introduction
	Model of the Distributed List
	Principle of the Analysis and Main Theorem
	Unit Independent Tasks
	Cooperation among Thieves
	Experimental Study
	Concluding Remarks
	References

	Approximating the Traveling Tournament Problem with Maximum Tour Length 2
	Introduction
	Previous Work
	Our Contribution

	The Lower Bound
	Approximation Algorithms
	Construction of the Tournament T
	Costs of the Tournament T for n/2 Even
	Costs of the Tournament T for n/2 Odd

	References

	Session 9B. Data Structure and Algorithm III
	Alphabet Partitioning for Compressed Rank/Select and Applications
	Introduction
	Alphabet Partitioning
	Reduced Redundancy on Self-indexes
	Compressing Permutations
	Compressing Functions and Dynamic Collections of Disjoint Sets
	Conclusions and Future Work
	References

	Entropy-Bounded Representation of Point Grids
	Introduction
	Basic Concepts
	The One-Dimensional Case
	Two Dimensions

	A Compressed Representation
	Constant-Time $Rank$
	Constant-Time $Report$
	$Select$ Queries
	Entropy-Bounded Space

	A Fully-Compressed Representation
	$Rank$ Query
	$Select$ Queries
	Range Reporting
	The Final Result

	Conclusions
	References

	Identifying Approximate Palindromes in Run-Length Encoded Strings
	Introduction
	Problem Definition and Main Results
	Run-Length Encoding
	Palindrome
	Notation and Similarity Measure
	Problem Definition
	Our Results

	An $n log n, log n+min{k, n}$-Time Algorithm
	An $n2 log n, log2 n$-Time Algorithm
	Query Decomposition
	Answering a max_level Query
	Answering a $roof$ Query
	Answering a $cost$ Query

	Concluding Remarks
	References

	Session 10A. Graph Algorithm III
	Minimum Cost Partitions of Trees with Supply and Demand
	Introduction
	Pseudo-Polynomial-Time Algorithm
	FPTAS
	Conclusions
	References

	Computing the (t, k)-Diagnosability of Component-Composition Graphs and Its Application
	Introduction
	Preliminaries
	Component-Composition Graphs
	(t,k)-Diagnosability of CCG_m
	A Feasible Value of k
	A Feasible Value of t

	Application to Multiprocessor Systems
	Concluding Remarks
	References

	Why Depth-First Search Efficiently Identifies Two and Three-Connected Graphs
	Introduction
	Preliminaries
	Definitions
	Notations

	Depth-First Search
	Biconnectivity
	Triconnectivity
	Characterizing Separation Pairs
	Conclusion
	References

	Beyond Good Shapes: Diffusion-Based Graph Partitioning Is Relaxed Cut Optimization
	Introduction
	Notation and Related Work
	Notation
	Diffusion-Based and Related Partitioning Techniques

	Optimization Criterion of Bubble-FOS/C
	Edge Cut Minimization
	AssignPartition Computes Relaxed Minimum Cuts
	ComputeCenters Maximizes Constraint Contribution

	Connectedness Properties of Bubble-FOS/C
	Conclusions and Future Work
	References

	Induced Subgraph Isomorphism on Interval and Proper Interval Graphs
	Introduction
	Definitions and Notation
	Polynomial-Time Solvable Cases of Induced Subgraph Isomorphism on Interval Graphs
	Induced Subgraph Isomorphism on Ordered Interval Graphs
	Finding Induced Proper Interval Subgraphs of Interval Graphs

	Induced Subgraph Isomorphism Is NP-Complete on Proper Interval Graphs
	Conclusion
	References

	Session 10B. Computational Geometry III
	Testing Simultaneous Planarity When the Common Graph Is 2-Connected
	Introduction
	Background

	PQ-Trees
	Intersection and Projection of PQ-Trees

	Planarity
	Planarity Testing Using PQ-Trees
	Simultaneous Planarity
	Running Time

	References

	Computing the Discrete Fréchet Distance with Imprecise Input
	Introduction
	Notation and Preliminaries
	Computing the Fréchet Distance Lower Bound Fmin
	Decision Algorithm for the Orthogonal Case
	Decision Algorithm for the Euclidean Case
	Optimization Algorithms

	Approximation Algorithms
	Conclusion
	References

	Connectivity Graphs of Uncertainty Regions
	Introduction
	Hardness Results
	An Exact Algorithm Solving BCU for n Fixed Points and k Segments
	Constant Factor and Additive Approximations
	Other Related Results and Conclusions
	References

	π/2-Angle Yao Graphs Are Spanners
	Introduction
	Y ∞ 4 in the L∞ Metric
	Y4 in the L2 Metric
	Y ∞ 4 and Y4
	Conclusion
	References

	Identifying Shapes Using Self-assembly (Extended Abstract)
	Introduction
	Preliminaries and Notation
	The Shape Identification Problem in the RNAse Enzyme Model

	Identification of n × n Squares with Planarity
	Planar Identification of n × n Squares with O(log n) Unique Tile Types
	$(lognloglogn) Unique Tile Types Are Necessary to Identify an n n Square$
	Planar Identification of n n Squares with $O(lognloglogn)4 Unique Tile Types
	Universal Planar Identification of Squares with O(1) Unique Tile Types

	Non-planar Identification of More Shapes
	Non-planar Identification of $Even More$ Shapes
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

