
The Nullness Analyser of julia

Fausto Spoto

Dipartimento di Informatica, Università di Verona, Italy
fausto.spoto@univr.it

Abstract. This experimental paper describes the implementation and
evaluation of a static nullness analyser for single-threaded Java and Java
bytecode programs, built inside the julia tool. Nullness analysis deter-
mines, at compile-time, those program points where the null value might
be dereferenced, leading to a run-time exception. In order to improve the
quality of software, it is important to prove that such situation does not
occur. Our analyser is based on a denotational abstract interpretation
of Java bytecode through Boolean logical formulas, strengthened with a
set of denotational and constraint-based supporting analyses for locally
non-null fields and full arrays and collections. The complete integration
of all such analyses results in a correct system of very high precision
whose time of analysis remains in the order of minutes, as we show with
some examples of analysis of large software.

1 Introduction

Software is everywhere nowadays. From computers, it has subsequently been em-
bedded in phones, home appliances, industries, aircraft, nuclear power stations,
with more applications coming every day. As a consequence, its complexity is
increasing and bugs spread with the software itself. While bugs are harmless in
some situations, in others they have economical, human or civil consequences.
Therefore, software verification is increasingly recognised as an important aspect
of software technology and consumes larger and larger portions of the budget of
software development houses.

Software verification aims at proving software error-free. The notion of error is
in general very large, spanning from actual run-time errors to bad programming
practices to badly-devised visual interfaces. Techniques for software verification
are also manifold. It is generally accepted that the programming language of
choice affects the quality of software: languages with strong static (compile-
time) checks, simple syntax and simple semantics reduce the risk of errors. Good
programming practices are also a key element of software quality. The reuse of
trusted libraries is another. Nevertheless, bugs keep being present in modern
software.

Hence, the big step in software verification should be automatic software ver-
ification tools, able to find, automatically and in reasonable time, the bugs in
a program. Of course, no tool can be both correct (finding all bugs) and com-
plete (finding only bugs), because of the well-known undecidability property of

E.M. Clarke and A. Voronkov (Eds.): LPAR-16, LNAI 6355, pp. 405–424, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

406 F. Spoto

software. But a tool can well be useful if it approximates the set of bugs in a
precise way, as a set of warnings, yet leaving to the programmer the burden of
determining which warnings are real bugs.

In this paper we describe our implementation of a software verifier for null-
pointer analysis, also called nullness analysis, embedded inside the julia tool,
carried out in the last three years. We show the structure of the implementation,
its precision and strengths. Its goal is to spot program points in Java and Java
bytecode where a null-pointer exception might be raised at run-time, because
the value null is dereferenced during the access to a field, a call to a method or
during synchronisation. Although julia works over bytecode, it can be applied
to Java source code by compiling it into bytecode and we only report examples,
here, over Java source code, more easily understood by the reader.

It is important to stress that we do not claim the absolute superiority of our
implementation w.r.t. other tools for automatic software verification of Java.
We only want to highlight the specific features of our tool that make it rele-
vant in the context of software verification, possibly in coexistence with other
tools. Namely, a software verification tool can be judged w.r.t. many orthogonal
aspects, including:

correctness/completeness. A correct verifier has the advantage of definitely
excluding the presence of bugs outside the list of warnings provided to the
user. Nevertheless, it is understandable that some tools have decided to
sacrifice correctness (and completeness), since this lets them shrink the list
of warnings to the most realistic ones: a long list of warnings can only scare
the user, who will not use the tool anymore. Our choice is to stay correct
and restrict the list of warnings as much as possible with the help of the
most advanced techniques for static analysis;

annotations/no annotations. A verifier using annotations requires the pro-
grammer to decorate the source code with invariants that can be exploited
but must also be checked by the tool. Examples are method pre- and post-
conditions and loop invariants. This approach burdens the programmer with
an extra task, but it obliges him to reason on what he writes and clean and
document the code. Moreover, a tool exploiting annotations can be extremely
precise and its analysis can be modular, that is, parts of the program can
be changed without having to verify everything again. Our choice has been
not to use annotations;

genericity. A generic verifier performs many kinds of software verifications
and is consequently more useful. Nevertheless, an implementation centered
around a given verification problem can be more focused on its specific target
and more optimised. Our choice is to have a general analyser (julia), but
our limited time has been used to build advanced instantiations for nullness
verification and termination analysis [20] only;

real-time/off-line. A real-time verifier runs every time the source code is modi-
fied and provides immediate feedback to the programmer. It is typically mod-
ular, i.e., it performs local reasonings on each method and requires source
code annotations. Sometimes (but not always) some incorrect assumptions

The Nullness Analyser of julia 407

are made, such as assuming that methods are always called with non-null
arguments that do not share any data structure, which is not always true.
Real-time verifiers are very effective during software development. Off-line
verifiers require larger resources and are consequently used at fixed mile-
stones during software development. But they can afford the most precise
verification techniques and can provide a correct and thorough report on the
analysed program. Our choice is that of an off-line analyser, although its
run-times are kept in the order of minutes on a standard computer.

Many different tools provide some form of nullness analysis. The Eclipse
IDE [1] provides a real-time, very limited, incorrect, largely imprecise null-
ness analysis, as a plug-in. ESC/Java2 [4] is a generic tool, evolved from
ESC/Java [8], that uses theorem-proving to perform an off-line nullness anal-
ysis, using annotations provided by the programmer. The tool can also work
without annotations, but then the number of warnings for null-pointer derefer-
ences becomes very large [15]. It is possible to infer typical nullness annotations
with a tool called Houdini [7], which calls ESC/Java to validate or refuse the
annotations. It does not work with ESC/Java2 and the latest version is from
2001. Since then, Java has largely changed. We did not manage to build Houdini
and ESC/Java on our Linux machine. FindBugs [10] is another generic tool
that performs an only syntactical off-line nullness analysis, in general incorrect
(see later for an example). Nevertheless, this tool is considered very effective at
spotting typical erroneous programming patterns where null-pointer bugs oc-
cur. Jlint [2] performs a simple, only syntactical analysis of the code to spot
some possible null-pointer dereferences of variables. It did not compile on our
Linux machine, so we could not experiment with it. According to the README
file, it is updated to Java version 1.4 only. Daikon [6] is a tool that infers likely
nullness annotations, but there is no guarantee of their correctness. A compar-
ison of those tools, beyond the case of nullness analysis, is presented in [15]. It
must be stated that they do not only verify null-pointer dereferences, but also
other properties of Java programs. Nit [11], instead, is a tool explicitly targeted
at nullness analysis. It performs a provably correct, fast off-line nullness analysis
of Java bytecode programs. This tool is the most similar to julia, since both are
based on semantical static analysis through abstract interpretation [5] of Java
bytecode. It is faster than julia, but this comes at the price of precision, since its
latest version 0.5d is almost as precise as an old version of julia (see the exper-
iments in [18]) that used only the techniques up to Subsection 3.2 of this paper.

The contribution of this paper is the presentation of the structure of the
nullness analysis implemented inside julia, together with a brief overview of
the techniques that it exploits, partially based on logical formulas. As such,
it is an example of implementation of logical systems for static analysis, with
strong correctness guarantees. Our goal has been precision and correctness, which
entails that julia will not be so fast as other tools, although it is already able
to analyse around 5000 methods in a few minutes on standard hardware.

The rest of the paper is organised as follows. Section 2 yields an introduc-
tory example of nullness analysis with julia, FindBugs and Nit. Section 3

408 F. Spoto

describes the structure of the nullness analysis of julia and how each component
contributes to the precision of the overall result. Section 4 describes how julia
creates an annotation file collecting nullness information, that can later be used
by other tools. Section 5 concludes the paper. The theoretical results that form
the basis of our implementation have already been published elsewhere. In partic-
ular, [17] reports a formal description and proofs of correctness for the techniques
of Subsections 3.1 and 3.2; [18] includes the same for Subsection 3.3 also; [19]
reports definitions and proofs for the rawness analysis of Section 4 and formalises
the constraint-based techniques used in julia. The new analyses for arrays and
collections in Subsections 3.4 and 3.5 have never been published before.

2 An Introductory Example

In order to show the kind of precision that can be expected from our null-
ness analysis, consider the Java program in Figure 1. Methods equals() and
hashCode() are reachable since they are called, indirectly, by the calls at lines
30 and 32 to the library method java.util.HashSet.add(). The analysis of
that program through julia does not signal any warning. According to the cor-
rectness guarantee of julia, this means that the program will never dereference
the null value at run-time. The analysis of the same program with Nit yields
8 warnings:

line 14: unsafe call to bool equals(Object)

line 16: unsafe call to bool equals(Object)

line 19: unsafe call to int hashCode()

line 24: unsafe call to String replace(char,char)

line 26: unsafe call to String replace(char,char)

line 31: unsafe field read of C inner

line 34: unsafe call to void println(String)

line 35: unsafe call to void println(String)

They are false alarms, since:

– at lines 14 and 19, field name is always non-null in the objects of class C (look
at lines 24 and 26 and consider that the return value of String.replace()
is always non-null). Hence the call to equals() does not dereference null;

– at line 16, the non-nullness of field inner has been already checked at line
15 (Java implements a short-circuit semantics for ||);

– at lines 24 and 26, args[i] is non-null, since the Java Virtual Machine
passes to main() an array args containing non-null values only, and there
is no other call to main() in the program;

– at line 31, variable t cannot hold null since it iterates over the elements of
the array ts (line 29), which is filled with non-null values by the loop at
lines 23 − 27;

– at lines 34 and 35, the static field System.out cannot hold null since it
is initialised to a non-null value by the Java Virtual Machine and is not
modified after by the program in Figure 1 (it never calls System.setOut()
with a possibly null argument).

The Nullness Analyser of julia 409

0: import java.util.*;

1: public class C {

2: private String name;

3: private C inner;

4: public C(String name, C inner) {

5: this.name = name;

6: this.inner = inner;

7: }

8: public String toString() {

9: if (inner != null) return "[" + inner + "]";

10: else return "[]";

11: }

12: public boolean equals(Object other) {

13: return other instanceof C &&

14: ((C) other).name.equals(name) &&

15: (((C) other).inner == null ||

16: ((C) other).inner.equals(inner));

17: }

18: public int hashCode() {

19: return name.hashCode();

20: }

21: public static void main(String[] args) {

22: C[] ts = new C[args.length];

23: for (int i = 0; i < ts.length; i++) {

24: ts[i] = new C(args[i].replace(’\\’,’/’), null);

25: if (i < ts.length - 1)

26: ts[++i] = new C(args[i].replace(’\\’,’/’), ts[i - 1]);

27: }

28: Set<C> s1 = new HashSet<C>(), s2 = new HashSet<C>();

29: for (C t: ts) {

30: s1.add(t);

31: if (t.inner != null)

32: s2.add(t.inner);

33: }

34: for (C t: s1) System.out.println(t.toString());

35: for (C t: s2) System.out.println(t.toString());

36: }

37: }

Fig. 1. A Java program exposing interesting considerations about nullness

The analysis of the same program with FindBugs yields no warnings. How-
ever, this result is the consequence of some optimistic (and in general incorrect)
hypotheses assumed by FindBugs on the behaviour of the program under anal-
ysis: it cannot be taken as a proof of the fact that the program in Figure 1 never
dereferences null. Namely, assume to comment out lines 15 and 31 in Figure 1.
The program contains two bugs now: at line 16, method equals() is called on a
possibly null field inner; at line 35, method toString() is called on a possibly

410 F. Spoto

null variable t, since the set s2 might contain null now, introduced at line 32.
julia correctly spots these situations and issues two warnings:

line 16: call with possibly-null receiver to C.equals(Object)

line 35: call with possibly-null receiver to C.toString()

However, FindBugs keeps signalling no warning at all and hence is not able to
find those two bugs and is incorrect. Nit keeps signalling the same 8 warnings
seen above. It somehow misses the bug at line 35, since, there, no warning is
signalled for the incorrect call to toString() but only a false alarm about the
call to println(). However, this must be just a bug in the implementation of
Nit, that might be corrected in next releases, since the underlying theory has
been certified in Coq to be correct.

3 Nullness Analysis in Julia

We describe here the phases of the nullness analyser implemented inside the ju-
lia analysis tool and their contribution to the overall precision. We had to use
many techniques in order to achieve a very high level of precision. julia currently
performs semantical static analyses based on denotational abstract interpreta-
tion and on constraint-based abstract interpretation. Both come in different
flavors here, for inferring properties of local variables, fields, arrays of references
and collections. We test each technique with all the previous techniques turned
on as well, so we will see progressively increasing times and precision.

Before the actual nullness analysis starts, julia must of course load and
parse the .class or .jar files containing the analysed Java bytecode applica-
tion. Moreover, it must extract the control flow of the program, linking method
calls with the method implementations that they actually call. We perform this
through a nowadays traditional class analysis [13]. Type inference for local vari-
ables and Java bytecode stack elements is performed as in the official documen-
tation [12]. These aspects of julia are completely independent from the actual
analysis which is later performed, nullness, termination or other.

3.1 Nullness Analysis of Local Variables

Given a program point p, the number of local variables accessible at p is finite,
although arbitrarily large. In particular, it is possible to access all and only the
local variables declared by the method before p, which include the formal param-
eters of the method. This entails that it is possible to build a finite constraint
expressing the nullness behaviour of the variables at p w.r.t. the nullness behav-
ior of the variables at a subsequent program point p′. In [17], this constraint is
defined as a Boolean logical formula whose models include all possible nullness
behaviours for the local variables.

Assume for instance that p is line 22 in Figure 1. The only variable in scope at p
is args, since ts is not yet declared at p. Program p′ is the logically subsequent
statement in that program, i.e., the assignment int i = 0 at line 23. At p′,

The Nullness Analyser of julia 411

variables args and ts are declared. The Boolean formula built by julia to
relate the nullness of the variables at p to that of the nullness at p′ uses Boolean
variables of two forms: v̌ stands for the value of variable v at p; v̂ stands for
its value just after p, that is, at p′. A special variable e is used to represent
exceptional states. Namely, that formula is:

¬ě ∧ (¬ê → (¬ ˆargs ∧ ¬t̂s)) (1)

meaning that, if the assignment at line 22 is executed, then no exception must
be raised immediately before p (¬ě); moreover, if no exception is raised by the
assignment (¬ê) then both args and ts are non-null at p′ (¬ ˆargs ∧ ¬t̂s).
In (1), program variables of reference type have been translated into Boolean
variables of two kinds: input variables, such as ˇargs, stand for the nullness of
the corresponding program variable at the beginning of p, while output variables,
such as ˆargs, stand for the nullness of the corresponding variable at the end of p,
i.e., at beginning of p′. The special variable e stands for an exceptional situation
(in the sense of a raised Java exception, implicit or explicit).

Consider now the assignment int i = 0 at line 23. For it julia builds the
Boolean formula:

¬ě ∧ ¬ê ∧ (ˇargs ↔ ˆargs) ∧ (ťs ↔ t̂s) (2)

that is, if that assignment is executed then no exception must be raised just
before it (¬ě); no exception is ever raised by that assignment (¬ê); the nullness
of args and ts is not affected by the assignment to i ((ˇargs ↔ ˆargs) ∧ (ťs ↔
t̂s)). Nothing is said about variable i, since it has primitive type so its value is
abstracted away.

In order to analyse the sequential execution of more statements, julia per-
forms the abstract sequential execution of Boolean formulas, each abstracting
one of the statements. For instance, the abstract sequential execution of (1)
and then (2) is computed by matching the output variables of (1) with the in-
put variables of (2). That is, those variables are renamed into the same new,
fresh variables, the resulting two formulas are conjuncted (∧) and the new fresh
variables are projected away through an existential quantification. The result is

¬ě ∧ ¬ê ∧ ¬ ˆargs ∧ ¬t̂s (3)

The latter is an abstraction of the state at the beginning of the execution of the
loop at line 23, after the initialisation of i. It clearly states that ts is non-null
there.

These Boolean formulas can be built in a methodological way as a bottom-up
abstraction of the code. Their construction is based on the abstract sequential
composition of formulas but also on the logical disjunction of two formulas, to
abstract conditionals and virtual methods calls with multiple target implementa-
tions. Method calls are abstracted by plugging the analysis (denotation) of their
body in the point of call, so that the resulting analysis is inter-procedural and
completely context-sensitive. The latter means that the approximation of the fi-
nal state, after a method call, is not fixed, but depends on the approximation of

412 F. Spoto

the input state before the same call. Loops and recursion are modelled through
a fixpoint calculation. We have used no widening, since the abstract domain of
Boolean formulas has finite height (at each program point, the number of local
variables in scope is fixed and finite) and we have never experienced the need of
accelerating the convergence of the fixpoint calculations.

The detailed formalisation of this analysis and its proof of correctness are done
in [17] by using abstract interpretation. The analysis can be used to guarantee
the absence of null dereferences in the code. For instance, Equation (3), together
with a formula built for the body of the loop at lines 23 − 27 and stating that
the nullness of ts does not change inside the loop, is enough to conclude that
the dereference ts.length at line 23 does not raise any null-pointer exception.

The implementation of this analysis is quite efficient since binary decision
diagrams [3] are used to represent the Boolean formulas and no aliasing in-
formation must be computed before the analysis: the abstraction into Boolean
formulas abstracts away the heap memory completely and only considers the
activation records of the methods, where the local variables live. This means,
for instance, that we do not have to bother that the call to the constructor of
C at line 22 modifies the nullness of args since this is just impossible: in Java,
the callee cannot modify the value of the local variables of the caller, but only,
possibly, the fields and array elements reachable from those local variables and
the static fields and everything reachable from them, which are not local vari-
ables. This simplicity comes at a price: the relative imprecision of the results.
For instance, the analysis of the program in Figure 1 with julia tuned down to
use this technique only yields the following set of warnings (false alarms):

line 14: call with possibly-null receiver to String.equals(Object)

line 16: call with possibly-null receiver to String.equals(Object)

line 19: call with possibly-null receiver to String.hashCode()

line 24: call with possibly-null receiver to String.replace(char,char)

line 26: call with possibly-null receiver to String.replace(char,char)

line 31: read with possibly-null receiver of field inner

line 34: call with possibly-null receiver to C.toString()

line 35: call with possibly-null receiver to C.toString()

We report below the precision of this analysis, as the amount derefs of deref-
erences that are proved safe in the analysed programs, i.e., having a provably
non-null receiver. The analysed programs do not contain unsafe dereferences,
as we have verified by checking, manually, the warnings issued by the most pre-
cise analysis (Subsection 3.5). Then a very precise analyser could in principle
find out that 100% of their dereferences are safe. The only exception is EJE,
that contains three bugs, that is, three dereferences that can actually happen
on null sometimes. For EJE, a very precise analyser could in principle find out
that 99.89% of the dereferences are safe.

We also report below the number of safe dereferences restricted to some fre-
quent examples, namely, those related to field accesses (access), field modifica-
tions (update) and method calls (call). In this and the following tables, we have
analysed the programs by including the whole java.* hierarchy in the analysis,

The Nullness Analyser of julia 413

which is reflected in the relatively high number of methods analysed. Fewer li-
brary methods might be included, but worst-case assumptions would then be
made for them by the analyser, compromising the precision of the results. The
time of the analysis, in seconds, includes that for parsing the class files of the
application and of the libraries. OurTunes is an open source cross-platform file
sharing client which allows users to connect to iTunes and share music files.
EJE is a text editor. JFlex is a lexical analysers generator. utilMDE are Michael
Ernst’s supporting classes for Daikon; they include test applications, that is
what we analyse. The Annotation File Utilities (in the following just AFU)
are tools that allow to apply or extract annotations into Java source code (see
also Section 4). The experiments have been performed on a quad-core Intel Xeon
computer running at 2.66Ghz, with 8 gigabytes of RAM and Linux 2.6.27.

program methods time derefs access update call warnings

OurTunes 3036 24.49 86.48% 92.95% 99.64% 79.12% 425
EJE 3077 33.31 77.04% 99.43% 100.00% 57.37% 926

JFlex 3735 39.05 81.29% 76.79% 98.33% 81.71% 1254
utilMDE 3706 43.05 92.85% 93.68% 99.06% 88.42% 252

Annotation File Utilities 3625 39.48 91.09% 88.45% 99.66% 86.64% 523

For verification purposes, this first technique does not have a satisfying preci-
sion. Nevertheless, it is interesting for optimisation (removal of useless nullness
tests), which is less fussy about precision. Moreover, it is correct for the analysis
of multi-threaded applications, while the other techniques that we are going to
describe give, in special situations, incorrect results on multi-threaded programs
(their adaptation to multi-threaded applications is on its way).

3.2 Globally non-null Fields

The warning at line 14 in Subsection 3.1 is a consequence of the fact that method
equals() is called on field name of variable other rather than on a variable.
Hence the technique of that subsection cannot prove that that call does not
raise any null-pointer exception. The same happens for the warning at line 19.
To solve this problem, we need information on the nullness of the fields also, not
just of the local variables of the program. Field definitions are finite in any Java
program, but an unbound number of objects can be allocated by a program,
thus allowing an unbound number of field instances. Hence, it is not possible to
allocate a Boolean variable for each of those instances. Even considering field
definitions only, and merging their instances in the same approximation, the
number of field definitions is typically too high to be reflected in the same num-
ber of Boolean variables. In [17], we have solved this problem by labelling fields
as non-null whenever they are always initialised by all the constructors of their
defining class, are never accessed before that initialisation and the program only
stores a non-null values inside them (in constructors or methods). If this is the
case, we are sure that these non-null fields always hold a non-null value when
they are accessed. Since their identification requires nullness information about
the values that are written into them, this new nullness analysis is performed in
an oracle-based way: it is first assumed that all fields that are always initialised

414 F. Spoto

by all the constructors of their defining class, before being read, are non-null.
That is, we use an initial oracle that contains all such fields. A first nullness
analysis is computed as in Subsection 3.1, exploiting such (optimistic) hypothe-
sis. Then some fields are discarded from the oracle as potentially null whenever
the last nullness analysis cannot prove that only non-null values are written
into them. Hence a new nullness analysis is performed and the oracle further
shrunk. This process is repeated until the oracle does not shrink anymore. This
oracle-based technique, proved correct in [17], will be exploited also in the sub-
sequent subsections, since the extra analyses that we will introduce there, for
extra precision, need nullness information themselves.

This technique identifies globally non-null fields, since they stay non-null,
forever, after their initialisation. Not surprisingly, it is computationally more
expensive than that in Subsection 3.1. This is not only a consequence of the
repeated execution of the nullness analysis, which is tamed by using caches. The
actual complication is that it needs some form of definite aliasing information in
order to identify the non-null fields. Namely, in order to spot the fields of this
that are initialised by each constructor, it is not sufficient to look for assignments
to this.field, since many assignments may occur, indirectly, by writing inside
x.field, where x is a definite alias of this. This is particularly the case in Java
bytecode, where, typically, the stack contains aliases of local variables (such as
this). Moreover, helper functions are frequently used to help constructors build
the state of this and definite aliasing is needed to track the information flow
from constructors to helper functions. To that purpose, one needs to prove that
the call to the helper function happens on a definite alias of this.

In conclusion, the cost of this analysis is higher, as well as its precision, than
that of the analysis in Subsection 3.1 alone. For instance, for the program in
Figure 1, julia reports now only 6 of the 8 warnings reported in Subsection 3.1
(we write inside square brackets the warnings that have been removed):

[line 14: call with possibly-null receiver to String.equals(Object)]

line 16: call with possibly-null receiver to String.equals(Object)

[line 19: call with possibly-null receiver to String.hashCode()]

line 24: call with possibly-null receiver to String.replace(char,char)

line 26: call with possibly-null receiver to String.replace(char,char)

line 31: read with possibly-null receiver of field inner

line 34: call with possibly-null receiver to C.toString()

line 35: call with possibly-null receiver to C.toString()

The following table shows time and precision for the analysis of the same
applications analysed in Subsection 3.1 (the number of analysed methods does
not change w.r.t. what is reported in that subsection). It reports, for comparison,
inside brackets, some numbers as they were in that subsection:

program time derefs access update call warnings

OurTunes 31.94 (was 24.49) 95.09% (was 86.48%) 97.65% 100.00% 90.90% 173 (was 425)
EJE 43.34 (was 33.31) 98.25% (was 77.04%) 99.85% 100.00% 96.78% 74 (was 926)

JFlex 56.89 (was 39.05) 90.35% (was 81.29%) 85.23% 98.95% 93.71% 750 (was 1254)
utilMDE 64.17 (was 43.05) 95.11% (was 92.85%) 94.03% 100.00% 92.20% 195 (was 252)

AFU 52.37 (was 39.48) 96.04% (was 91.09%) 96.97% 100.00% 94.19% 231 (was 523)

The Nullness Analyser of julia 415

This technique yields almost the same results as Nit, as the experiments
in [18] show. Nit is in general faster but only slightly less precise than this
technique, possibly because the analysis in Subsection 3.1 is completely context-
sensitive, which is not the case for Nit.

In general, this technique, as well as those of the next subsections, is not
correct for multi-threaded programs. This is because, although it assumes a
field of an object o to be non-null only when it is always initialised by all
constructors of the class of o before being read and only assigned non-null
values in the program, it is possible, according to the Java memory model, that
its initialisation is not immediately visible to other threads than that creating
o. Hence, those threads might find null in the field [9]. Nit incurs in the same
problem, since its proof of correctness considers a simplified memory model,
which is not that of multi-threaded Java.

3.3 Locally non-null Fields

Some fields are not globally non-null. Namely, there are fields that are not
initialised by all the constructors of their defining class, or that are accessed
before being initialised, or that are assigned null somewhere in the program.
For them, programmers often test their non-nullness before actually accessing
them, with programming patterns such as that at lines 15 and 16 in Figure 1,
where method equals() is called on field inner of other only if that field
is found to contain a non-null value. In [18], a static analysis is coupled to
that described in Subsection 3.2, which computes a set of definitely non-null
fields at a given program point. This local non-nullness information is performed
through a denotational, bottom-up analysis of the program, which is proved
correct in [18]. In this analysis, the abstraction of a piece of code contains a set of
definitely non-null fields for each variable in scope. These sets are implemented
as bitmaps, for better efficiency and for keeping down the memory consumption.

Differently from Subsection 3.1, method calls might modify the approxima-
tion of the local variables of the caller here, which are sets of fields definitely
non-null and hence possibly reset to null by the callee, since they are not glob-
ally non-null as in Subsection 3.2. This is a major complication, which requires
a preliminary sharing analysis to infer which local variables might be affected
by each method call. We perform that analysis with a denotational abstract
interpretation, defined and proved correct in [16], implemented with Boolean
formulas. For better precision, we couple it with a constraint-based creation
points analysis, which provides the set of object creation statements in the pro-
gram where the values bound to a given variable at a given program point or
to a given field might have been created. A constraint is a graph whose nodes
stand for the approximation of each variable at each program point and of each
field and whose arcs bind those approximations, reflecting the program’s infor-
mation flow. A constraint-based analysis builds a large constraint for the whole
program and lets information flow inside it. In our case, creation points flow
along the arcs. Sets are, again, implemented as bitmaps. We use the creation
points analysis at each method call to compare the creation points of each field

416 F. Spoto

update instruction reachable from the code of the callee with the creation points
of each local variable of the callee: if they do not intersect, the execution of
the callee cannot affect the approximation for that variable. Note that sharing
and creation points analysis are complementary: the former is context-sensitive
(in our implementation), which is not the case for the latter that, however, lets
us reason on the receiver of each single field update operations that might be
performed during the execution of the callee. Moreover, constraint-based anal-
yses allow a precise approximation of properties of the fields, which is not easy
with denotational static analyses. For a formal definition of a constraint-based
analysis and proof of correctness, see the case of rawness analysis in [19].

This technique increases the precision of the nullness analysis, but also its
computational cost, mainly because of sharing and creation points analysis. For
instance, julia, using this technique, reports only 5 of the 6 warnings reported
in Subsection 3.2 for the program in Figure 1:

[line 16: call with possibly-null receiver to String.equals(Object)]

line 24: call with possibly-null receiver to String.replace(char,char)

line 26: call with possibly-null receiver to String.replace(char,char)

line 31: read with possibly-null receiver of field inner

line 34: call with possibly-null receiver to C.toString()

line 35: call with possibly-null receiver to C.toString()

The subsequent table shows times and precision of larger analyses with this
technique:

program time derefs access update call warnings

OurTunes 102.91 (was 31.94) 98.47% (was 95.09%) 97.94% 100.00% 97.91% 54 (was 173)
EJE 128.66 (was 43.34) 98.66% (was 98.25%) 99.85% 100.00% 97.55% 56 (was 74)

JFlex 151.60 (was 56.89) 94.75% (was 90.35%) 86.44% 100.00% 97.49% 460 (was 750)
utilMDE 235.76 (was 64.17) 97.40% (was 95.11%) 94.03% 100.00% 96.34% 117 (was 195)

AFU 182.16 (was 52.37) 98.66% (was 96.04%) 97.19% 100.00% 98.27% 126 (was 231)

3.4 Full Arrays

The analyses described so far always assume that the elements of an array of
references are potentially null. Hence, for instance, in Subsection 3.3 we still get
the three warnings at lines 24, 26 and 31 of the program in Figure 1. For better
precision, we need a static analysis that spots those arrays of references that only
contain non-null elements. We call such arrays full. Examples of full arrays are
the args parameter passed by the Java Virtual Machine to method main() or
explicitly initialised arrays such as Object[] arr = { a, b, c }, provided it
is possible to prove that a, b and c hold non-null values at run-time. Other
examples are arrays iteratively initialised with loops such as that at lines 23−27
of the program in Figure 1. Those loops must provably initialise all elements of
the array with definitely non-null values. Note that this property is relatively
complex to prove, since the initialisation of the array elements can proceed in
many ways and orders. For instance, in Figure 1, each iteration initialises two
elements of ts at a time. Moreover, the initialising loop might end at the final
element of the array (or, downwards, at the first) and this might be expressed

The Nullness Analyser of julia 417

through a variable rather than the .length notation as in Figure 1. Furthermore,
the loop is often a for loop, but it might also be a while loop or a do...while
loop (since we analyse Java bytecode, there is no real difference between those
loops). In general, it is hence unrealistic to consider all possible initialisation
strategies, but some analysis is needed, that captures the most frequent scenarios.
Moreover, a semantical analysis is preferable, rather than a weak syntactical
pattern matching over the analysed code. In our implementation, definite aliasing
information is used to prove that ts.length (in Figure 1) is the size of an
array that is definitely initialised inside the body of the loop at lines 23 − 27.
If this is the case, a denotational analysis based on regular expressions builds
the shape of the body of this loop: if this shape (i.e., regular expression) looks
as an initialisation of some variable i (the same compared to ts.length) to 0,
followed by an alternation of array stores at i of non-null values and unitary
increments of i, then the array is assumed to hold non-null values at the natural
exit point of the loop, but not at exceptional exit points, i.e., those that end the
loop if it terminates abnormally because of some exception. We are currently
working at improving this analysis, by considering more iteration strategies in
the initialising loop. We also plan to consider the case when the array is held in
a field rather than in a local variable.

Full arrays can be copied, stored into fields or passed as parameters to meth-
ods. Hence, we use a constraint-based static analysis that tracks the flow of the
arrays in the program. During this analysis, we consider that full arrays may
lose their property of being full as soon as an array store operation is executed,
which writes a possibly null value. For better precision, we exploit the available
static type information and use the creation points analysis, the same of Subsec-
tion 3.3, to determine the variables, holding full arrays, that might be affected
by each array store operation.

It must be said that julia is able to reason on single array elements as well,
if they are first tested for non-nullness and then dereferenced. For instance, it
knows that args[i] does not hold null immediately after line 24 in Figure 1,
even if it were not able to prove that args is full. This is because args[i] has
been dereferenced there, so it cannot hold null immediately after (or otherwise
an exception would interrupt the method). Of course, this requires julia to prove
that the constructor of C and method replace() do not write null into args,
by using sharing and creation points analysis. We have embedded this local
array non-nullness analysis inside the technique of Subsection 3.3, since local
non-nullness of fields and of array elements can be considered in a uniform way.

The improvements induced by all these approximations of the nullness of the
array elements increase the precision of the nullness analysis. For instance, the
analysis with julia of the program in Figure 1, using these extra techniques,
yields only 2 of the 5 warnings reported in Subsection 3.3 now:
[line 24: call with possibly-null receiver to String.replace(char,char)]

[line 26: call with possibly-null receiver to String.replace(char,char)]

[line 31: read with possibly-null receiver of field inner]

line 34: call with possibly-null receiver to C.toString()

line 35: call with possibly-null receiver to C.toString()

418 F. Spoto

These techniques increase precision and time of the nullness analysis of larger
applications as well:

program time derefs access update call warnings

OurTunes 160.63 (was 102.91) 98.47% (was 98.47%) 97.94% 100.00% 97.91% 54 (was 54)
EJE 164.58 (was 128.66) 98.83% (was 98.66%) 100.00% 100.00% 97.81% 47 (was 56)

JFlex 173.02 (was 151.60) 95.27% (was 94.75%) 86.44% 100.00% 97.59% 409 (was 460)
utilMDE 298.88 (was 235.76) 97.90% (was 97.40%) 94.03% 100.00% 97.24% 81 (was 117)

AFU 222.24 (was 182.16) 98.86% (was 98.66%) 97.19% 100.00% 98.63% 107 (was 126)

3.5 Collection Classes

The Java programming language comes with an extensive library. Some promi-
nent library classes are the collection classes, such as Vector, HashSet and
HashMap. They are largely used in Java programs, but complicate the nullness
analysis, since most of their instances are allowed to contain null elements, keys
or values. As a consequence, there is no syntactical guarantee, for instance, that
the iterations at lines 34 and 35 in Figure 1 happen over non-null elements only.
This is why julia signals two warnings there, up to the technique of Subsec-
tion 3.4. The techniques described up to now do not help here since, for instance,
the elements of a hashset are stored inside a backing hashmap, which contains
an array of key/value entries. The technique of Subsection 3.2 might be able to
prove that the field holding the key or that holding the value in all entries are
globally non-null, but this is not the case: in Figure 1 hashmaps are not only
used inside the two hashsets s1 and s2, but also internally by the Java libraries
themselves. In some of those uses, not apparent from Figure 1, null is stored
(or seems to julia to be stored) as a value or key in a hashmap. In any case,
the technique of Subsection 3.2 would be very weak here because it flattens all
collections into the same, global abstraction for the nullness of the fields of the
entries inside a hashmap: a program may use more hashsets or hashmaps (as
is the case in Figure 1) and it is important, for better precision, to distinguish
the collections possibly having null among their elements from those that only
contain non-null elements: in Section 2 we have seen that commenting out line
31 introduces a warning at line 35 but not at line 34. The technique of Subsec-
tion 3.3 does not help either. The method get() of a hashmap or the method
next() of an iterator over the keys or values of a hashmap does not check for
the non-nullness of the field of the hashmap entry holding the returned value (as
method equals() in Figure 1 does for field inner) nor assigns it to a definitely
non-null value before returning its value.

To prove that the two calls to toString() in Figure 1 happen on a non-
null variable t, we use a new technique. Namely, we let julia prove that s1
and s2 are sets of non-null elements. To that purpose, we have developed a
constraint-based analysis that approximates each local variable at each given
program point and each field with a flag, stating if the value of the variable or
field is an instance of a collection class that does not contain null. Whenever a
method is called, such as HashSet.add(), which might modify the flag of some
variable, the analysis checks if it can prove that the call adds a non-null value to
the collection. If this is not the case, the affected variables and fields lose the flag

The Nullness Analyser of julia 419

stating that they do not contain null elements. In order to over-approximate
the variables and fields affected, we use sharing and creation points analysis, as
in Subsection 3.3.

The property of containing non-null elements only is propagated by the
constraint-based analysis, following variable assignments, method calls and re-
turn. Also, if an iterator is built from a collection that does not contain null
elements, then we flag that iterator as iterating over non-null elements only. If
a possibly null element is added, later, to that iterator, it will lose its flag, and
this will happen also to the variables holding the backing collection.

Our implementation of this analysis currently considers around 20 collection
classes but we plan to consider more in the future. In order to simplify the
addition of new classes, the analysis consults some Java annotations that we
have written for the methods of the collection classes. Adding more classes is
hence a matter of writing new annotations. In particular, one does not need to
modify the analysis itself.

By using this technique, the nullness analysis with julia of the program in
Figure 1 issues no warning, instead of the 2 of Subsection 3.4. The following
table shows that this technique improves the precision of the analysis of larger
applications as well:

program time derefs access update call warnings

OurTunes 162.82 (was 160.63) 99.01% (was 98.47%) 99.11% 100.00% 98.58% 38 (was 54)
EJE 157.61 (was 164.58) 99.07% (was 98.83%) 100.00% 100.00% 98.26% 36 (was 36)

JFlex 176.61 (was 173.02) 98.66% (was 95.27%) 99.14% 100.00% 97.80% 118 (was 409)
utilMDE 257.01 (was 298.88) 98.76% (was 97.90%) 100.00% 100.00% 97.78% 58 (was 81)

AFU 231.42 (was 222.24) 99.05% (was 98.86%) 98.31% 100.00% 98.72% 91 (was 107)

The time for analysing EJE and utilMDE has actually decreased w.r.t. Sub-
section 3.4, since the extra precision has accelerated the convergence of the
oracle-based nullness analysis. Three of the warnings issued for EJE are actual
null-pointer bugs of that program. The others are false alarms.

This analysis and that of Subsection 3.4 are strictly intertwined. The analysis
in Subsection 3.4 must first determine the program points that initialise a full
array. Then, the property of being full is propagated across the program, to-
gether with the same property for collection classes. The fullness for arrays and
collections actually interact: if a collection is full, then its toArray() methods
return a full array.

4 Construction of the Annotation File

In Section 3, we have seen the different phases of the nullness analysis of julia
and how they provide different levels of precision for software verification, i.e.,
different numbers of warnings. But nullness analysis can also be used to build
an annotation of the program under analysis, reporting which fields, parameters
or return values of methods might hold null at run-time. This is interesting to
the programmer, is useful for documentation and can also be seen as a standard
description of the nullness behaviour of the program. As such, it can be imported
and exported between different tools for software analysis.

420 F. Spoto

We did not devise our own annotation language for nullness, but used one
that has been developed for the Checker Framework for Java [14]. The latter is
a generic tool for software verification, based on type checking. Types can be
specified and written into Java source code as Java annotations. The system type-
checks those types and reports inconsistencies. The checker framework contains
a type-system for nullness and is bundled with a tool (file annotation utilities)
that imports a succinct description of the nullness behaviour of the program (a
jaif file, in their terminology) into Java source code. This is perfect for julia:
since our tool analyses Java bytecode, it has no direct view of the source code,
but it can generate a jaif file which is then importable into source code, by using
the file annotation utilities.

class C:

field inner: @Nullable

method <init>(Ljava.lang.String;LC;)V:

parameter #1: @Nullable

method equals(Ljava.lang.Object;)Z:

parameter #0: @Nullable

Fig. 2. Jaif file generated by julia for the program in Figure 1

Figure 2 reports the jaif file generated by julia for the program in Figure 1.
The default hypothesis is that everything is non-null, so that only possible null-
ness must be explicitly reported in the file. Hence Figure 2 says, implicitly, that
field name in Figure 1 is non-null and that the constructor of class C (method
<init>) always receives a non-null value as its first parameter (numbered as
0). Jaif files report also the nullness of the elements of an array of references or
of an object of a collection class. Hence, since nothing is explicitly reported in
Figure 2 about method main(), that figure tells us that main() in Figure 1 is
always called with a parameter which is a non-null array of non-null strings.

For another example, consider the program in Figure 3 and the corresponding
jaif file generated by julia, shown in Figure 4. This jaif file tells us that julia has
been able to conclude that every call to methods main() and first() happens
with a non-null argument of non-null strings, as well as every call to the
constructor of Test. The same is not stated for method second(), since in some
cases null is passed to second() for x. Moreover, the calls to method inLoop()
are reported to happen with a non-null argument x, but whose elements might
be null (see the annotation inner-type 0: @Nullable). This is true, since
inLoop() is called with an array s as actual parameter that is not always full
at the point of call. Field g is reported as possibly-null and there are actual
cases when it contains null at run-time. Field map is reported as non-null but its
inner-type 1 is possibly-null: this is the value component of the map. Instead,
its key component is definitely non-null, since there is no annotation for map
about inner-type 0 and the default is non-null.

The Nullness Analyser of julia 421

The Checker Framework benefits from information about which values are
raw, that is, are objects whose non-null fields might not have been assigned yet.
This is important since, when a value is raw, the type-checker of the Framework
correctly assumes its non-null fields to be potentially null. This is the case
of this at the beginning of the constructor of Test, since its fields map and f
(reported to be non-null in the jaif file) have not been yet initialised there. Hence
also this inside inLoop() and first() is raw. But this inside second() is not
raw since all its non-null fields have been already initialised when second() is
called. In the jaif file in Figure 4, rawness information is reported with the @Raw
annotation, applied to the receiver this, although, in more complex examples,
we might find it reported for fields, parameters and return types as well. julia
never reports it for the receiver of a constructor (such as that of Test), since it
is the default there.

julia computes rawness information with a constraint-based rawness analy-
sis, performed after the nullness analysis of Section 3. Rawness analysis is imple-
mented as a constraint-based static analysis, where each variable at each given
program point and each field is approximated with the set of its non-null fields
that have been definitely initialised there. Those sets flow along the constraint,

import java.util.*;

public class Test {

private Map<String, Object> map;

private String f, g;

public static void main(String[] args) {

new Test(args);

}

private Test(String[] args) {

map = new LinkedHashMap<String, Object>();

String[] s = new String[args.length / 2];

for (int i = 0; i < s.length; i++) {

map.put(s[i] = args[i * 2], null);

inLoop(s);

}

System.out.println(first(s));

f = "name";

if (args.length > 5)

g = "surname";

second(g);

}

private void inLoop(String[] x) {}

private String first(String[] s) {

return s.length > 0 ? s[0] : null;

}

private void second(String x) {}

}

Fig. 3. A simple Java program

422 F. Spoto

class Test:

field g: @Nullable

field map:

inner-type 1: @Nullable

method second(Ljava.lang.String;)V:

parameter #0: @Nullable

method first([Ljava.lang.String;)Ljava.lang.String;:

return: @Nullable

receiver: @Raw

method inLoop([Ljava.lang.String;)V:

parameter #0:

inner-type 0: @Nullable

receiver: @Raw

Fig. 4. The jaif file generated by julia for the program in Figure 3

reflecting assignments, parameter passing and method returns, and are enlarged
at field assignments. A formal definition and a proof of correctness of this anal-
ysis are contained in [19].

Although the jaif files built by julia are correct, this does not mean that
their application to the source code type-checks w.r.t. the type-checker of the
Checker Framework. This is because the techniques of Section 3 are data-flow,
much different from those applied by that type-checker. Nevertheless, we have
been working at making julia and the Checker Framework closer.

The Daikon tool is also able to generate jaif files, but they are only likely
correct. Nit generates jaif files also and computes some rawness information
during its nullness analysis. Nevertheless, it does not dump the rawness infor-
mation into the jaif file. Since Nit is less precise than the full-featured nullness
analysis of julia, the generated jaif files are less precise too.

5 Conclusion

We have described and experimented with the nullness analysis implemented
inside julia. It is correct and very precise, with a cost in time which is still
acceptable for off-line analyses (a few minutes). Note that the only other correct
nullness analysis for Java is that in [11], whose precision is similar to that of
Subsection 3.2, as experimentally validated in [17].

Our nullness analysis is the composition of many static analyses, denota-
tional and constraint-based. In general, denotational analyses provide context-
sensitivity, while constraint-based analyses provide better support for the analy-
sis of fields. In terms of software engineering, julia contains two implementations
of those classes of analysis, from which all concrete static analyses are derived
by subclassing. This has simplified the development of new analyses and allowed
the optimisation of the shared components and their debugging.

Our work is not finished yet. First of all, we aim at making julia more scal-
able, up to including the whole javax.* hierarchy in the analysis. This will

The Nullness Analyser of julia 423

benefit the precision of the results, particularly for the analysis of those ap-
plications that make use of the Swing graphical library. We are also working
at making the results correct for multi-threaded applications. In this direction,
we are developing a static analysis that identifies those fields that are only ac-
cessed by the thread that has assigned them. If this is the case, all techniques
from Section 3 are correct for them. For the other fields (hopefully not many)
a worst-case assumption will be made. The web interface of julia must also be
improved in order to provide better graphical effects and more feedback to the
user. It is available at the address http://julia.scienze.univr.it, where the
reader can test the tool without any local installation.

References

1. Eclipse.org Home, http://www.eclipse.org
2. Jlint, http://artho.com/jlint
3. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers 35(8), 677–691 (1986)
4. Cok, D.R., Kiniry, J.: Esc/Java2: Uniting ESC/Java and JML. In: Barthe, G.,

Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

5. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc.
of the 4th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 1977), Los Angeles, California, USA, pp. 238–252. ACM, New
York (1977)

6. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon System for Dynamic Detection of Likely Invariants. Science
of Computer Programming 69(1-3), 35–45 (2007)

7. Flanagan, C., Leino, K.R.M.: Houdini, an Annotation Assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

8. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended Static Checking for Java. In: Proc. of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2002), Berlin, Ger-
many. SIGPLAN Notices, vol. 37(5), pp. 234–245. ACM, New York (May 2002)

9. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison-Wesley, Reading (2006)

10. Hovemeyer, D., Pugh, W.: Finding More Null Pointer Bugs, but Not Too Many.
In: Das, M., Grossman, D. (eds.) Proc. of the 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering (PASTE 2007),
San Diego, California, USA, pp. 9–14. ACM, New York (June 2007)

11. Hubert, L., Jensen, T., Pichardie, D.: Semantic Foundations and Inference of non-
null Annotations. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS,
vol. 5051, pp. 132–149. Springer, Heidelberg (2008)

12. Lindholm, T., Yellin, F.: The JavaTM Virtual Machine Specification, 2nd edn.
Addison-Wesley, Reading (1999)

13. Palsberg, J., Schwartzbach, M.I.: Object-oriented Type Inference. In: Proc. of the
6th Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 1991), Phoenix, Arizona, USA. ACM SIGPLAN Notices,
vol. 26(11), pp. 146–161. ACM, New York (November 1991)

http://www.eclipse.org
http://artho.com/jlint

424 F. Spoto

14. Papi, M.M., Ali, M., Correa, T.L., Perkins, J.H., Ernst, M.D.: Practical Pluggable
Types for Java. In: Ryder, B.G., Zeller, A. (eds.) Proc. of the ACM/SIGSOFT
2008 International Symposium on Software Testing and Analysis (ISSTA 2008),
Seattle, Washington, USA, pp. 201–212. ACM, New York (July 2008)

15. Rutar, N., Almazan, C.B., Foster, J.S.: A Comparison of Bug Finding Tools for
Java. In: Proc. of the 15th International Symposium on Software Reliability Engi-
neering (ISSRE 2004), Saint-Malo, France, pp. 245–256. IEEE Computer Society,
Los Alamitos (November 2004)

16. Secci, S., Spoto, F.: Pair-Sharing Analysis of Object-Oriented Programs. In: Han-
kin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 320–335. Springer,
Heidelberg (2005)

17. Spoto, F.: Nullness Analysis in Boolean Form. In: Proc. of the 6th IEEE Interna-
tional Conference on Software Engineering and Formal Methods (SEFM 2008),
Cape Town, South Africa, pp. 21–30. IEEE Computer Society, Los Alamitos
(November 2008)

18. Spoto, F.: Precise null-Pointer Analysis. Software and Systems Modeling (to ap-
pear, 2010)

19. Spoto, F., Ernst, M.: Inference of Field Initialization. Technical Report UW-CSE-
10-02-01, University of Washington, Department of Computer Science & Engineer-
ing (February 2010)

20. Spoto, F., Mesnard, F., Payet, E.: A Termination Analyser for Java Bytecode
Based on Path-Length. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 32(3) (March 2010)

	The Nullness Analyser of {\sc{julia}}
	Introduction
	An Introductory Example
	Nullness Analysis in {\sc{julia}}
	Nullness Analysis of Local Variables
	Globally non-\nil Fields
	Locally non-\nil Fields
	Full Arrays
	Collection Classes

	Construction of the Annotation File
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

