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Abstract. Traditionally, the full verification of a program’s functional
correctness has been obtained with pen and paper or with interactive
proof assistants, whereas only reduced verification tasks, such as ex-
tended static checking, have enjoyed the automation offered by
satisfiability-modulo-theories (SMT) solvers. More recently, powerful
SMT solvers and well-designed program verifiers are starting to break
that tradition, thus reducing the effort involved in doing full verification.

This paper gives a tour of the language and verifier Dafny, which has
been used to verify the functional correctness of a number of challenging
pointer-based programs. The paper describes the features incorporated
in Dafny, illustrating their use by small examples and giving a taste of
how they are coded for an SMT solver. As a larger case study, the paper
shows the full functional specification of the Schorr-Waite algorithm in
Dafny.

0 Introduction

Applications of program verification technology fall into a spectrum of assur-
ance levels, at one extreme proving that the program lives up to its functional
specification (e.g., [8,23,28]), at the other extreme just finding some likely bugs
(e.g., [19, 24]). Traditionally, program verifiers at the high end of the spectrum
have used interactive proof assistants, which require the user to have a high
degree of prover expertise, invoking tactics or guiding the tool through its vari-
ous symbolic manipulations. Because they limit which program properties they
reason about, tools at the low end of the spectrum have been able to take ad-
vantage of satisfiability-modulo-theories (SMT) solvers, which offer some fixed
set of automatic decision procedures [18, 5].

An SMT-based program verifier is automatic in that it requires no user inter-
action with the solver. This is not to say it is effortless, for it usually requires
interaction at the level of the program being analyzed. Used analogously to type
checkers, the automatic verifier takes a program with specifications (analogously,
type annotations) and produces error messages about where the program may
be violating a rule of the language (like an index bounds error) or a programmer-
supplied specification (like a failure to establish a declared postcondition). The
error messages speak about the program (e.g., “MyProgram.dfy(212,23): loop

invariant might not hold on entry”) and can be computed continuously in the
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background of an integrated development environment. Compared with the use
of an interactive proof assistant, the added automation and the interaction closer
to the programmer’s domain stand a chance of reducing the effort involved in
using the verifier and reducing the amount of expertise needed to use it.

Recently, some functional-correctness verification has been performed using
automatic program verifiers based on SMT solvers or other automatic decision
procedures [45, 52, 14, 33]. This has been made possible by increased power and
speed of state-of-the-art SMT solvers and by carefully crafted program verifiers
that make use of the SMT solver. For example, the input language for programs
and specifications affects how effective the verifier is. Moreover, SMT solvers
obtain an important kind of user extensionality by supporting quantifiers, and
these quantifiers are steered by matching triggers. The design of good triggers
is a central ingredient in making effective use of SMT solvers (for various issues
in using matching triggers, see [34]).

In this paper, I describe the language and verifier Dafny. The language is im-
perative, sequential, supports generic classes and dynamic allocation, and builds
in specification constructs (as in Eiffel [42], JML [29], and Spec# [4]). The spec-
ifications include standard pre- and postconditions, framing constructs, and ter-
mination metrics. Devoid of convenient but restricting ownership constructs for
structuring the heap, the specification style (based on dynamic frames [27]) is
flexible, if sometimes verbose. To aid in specifications, the language includes
user-defined mathematical functions and ghost variables. These features permit
programs to be specified for modular verification, so that the separate verifica-
tion of each part of the program implies the correctness of the whole program.
Finally, in addition to class types, the language supports sets, sequences, and
algebraic datatypes.

Dafny’s basic features and statements are presented in Marktoberdorf lectures
notes [33]. Those lecture notes give a detailed account of the logical encoding of
Dafny, including the modeling of the heap and objects, methods and statements,
and user-defined functions. The additional features described in this paper and
present in the current implementation of the language and verifier include generic
types, algebraic datatypes, ghost constructs, and termination metrics.

Dafny’s program verifier works by translating a given Dafny program into the
intermediate verification language Boogie 2 [2, 40, 32] in such a way that the
correctness of the Boogie program implies the correctness of the Dafny program.
Thus, the semantics of Dafny are defined in terms of Boogie (a technique applied
by many automatic program verifiers, e.g., [14,21]). The Boogie tool is then used
to generate first-order verification conditions that are passed to a theorem prover,
in particular to the SMT solver Z3 [17].

Dafny has been used to specify and verify some challenging algorithms. The
specifications are understandable and verification times are usually low. To show-
case the composition of Dafny’s features, I describe the Schorr-Waite algorithm
in Dafny. In fact, I include its entire program text (including its full functional
correctness specifications), which as far as I know is a first in a conference paper.
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Feeding this program through the Dafny verifier, the verification takes less than
5 seconds.

Dafny is available as open source at boogie.codeplex.com.

1 Dafny Language Features

Dafny is an imperative, class-based language. In this section, I describe some of
its more advanced features and sketch how these are encoded in Boogie 2 by the
Dafny verifier.

In principle, the language can be compiled to executable code, but the current
implementation includes only a verifier, not a compiler. For a verified program,
a compiler would not need to generate any run-time representation for specifi-
cations and ghost state, which are needed only for the verification itself.

1.0 Types

The types available in Dafny are booleans, mathematical integers, (possibly null)
references to instances of user-defined generic classes, sets, sequences, and user-
defined algebraic datatypes. There is no subtyping, except that all class types are
subtypes of the built-in type object. Programs are type safe, that is, the static
type of an expression accurately describes the run-time values to which the
expression can evaluate. Generic type instantiations and types of local variables
are inferred. Because of the references and dynamic allocation, Dafny can be used
to write interesting pointer algorithms. Sets are especially useful when specifying
framing (described below), and sequences and algebraic datatypes are especially
useful when writing specifications for functional correctness (more about that
below, too).

1.1 Pre- and Postconditions

Methods have standard declarations for preconditions (keyword requires) and
postconditions (keyword ensures), like those in Eiffel, JML, and Spec#. For
example, the following method declaration promises to set the output parameter
r to the integer square root of the input parameter n, provided n is non-negative.

method ISqrt(n : int) returns (r : int)

requires 0 ≤ n;

ensures r*r ≤ n ∧ n < (r+1)*(r+1);

{ /* method body goes here. . . */ }

It is the caller’s responsibility to establish the precondition and the implemen-
tation’s responsibility to establish the postcondition. As usual, failure by either
side to live up to its responsibility is reported by the verifier as an error.

boogie.codeplex.com
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1.2 Ghost State

A simple and useful feature of the language is that variables can be marked as
ghost. This says that the variables are used in the verification of the program
but are not needed at run time. Thus, a compiler can omit allocating space and
generating code for the ghost variables. For this to work, values of ghost variables
are not allowed to flow into non-ghost (“physical”) variables, which is enforced
by syntactic checks.

Like other variables, ghost variables are updated by assignment statements.
For example, the following program snippet maintains the relation g = 2*x:

class C {

var x : int; var y : int; ghost var g : int;

method Update() modifies {this};

{ x := x + 1; g := g + 2; }

}

(I will explain the modifies clause in Sec. 1.3.) Dafny follows the standard con-
vention of object-oriented languages to let this.x be abbreviated as x, where
this denotes the implicit receiver parameter of the method.

As far as the verifier is concerned, there is no difference between ghost vari-
ables and physical variables. In particular, their types and the way they undergo
change are the same as for physical variables. At the cost of the explicit updates,
this makes them much easier to deal with than model variables or pure methods
(e.g., [29]), whose values change as a consequence of other variables changing.

1.3 Modifications

An important part of a method specification is to say which pieces of the pro-
gram state are allowed to be changed. This is called framing and is specified in
Dafny by a modifies clause, like the one in the Update example above. For sim-
plicity, all framing in Dafny is done at the object granularity, not the object-field
granularity. So, a modifies clause indicates a set of objects, and that allows the
method to modify any field of any of those objects.

For example, the Update method above is also allowed to modify this.y. If
callers need to know that the method has no effect on y, the method specification
can be strengthened by a postcondition ensures y = old(y);, where old(E),
which can be used in postconditions, stands for the expression E evaluated on
entry to the method.

A method’s modifies clause must account for all possible updates of methods.
This may seem unwieldy, since the set of objects a method affects can be both
large and dynamically determined. There are various solutions to this problem;
for example, Spec# makes use of a programmer-specified ownership hierarchy
among objects [3, 38], JML uses ownership and data groups [43, 31], and sepa-
ration logic and permission-based verifiers infer the frame from the given pre-
condition [44,49,37]. Inspired by dynamic frames [27], Dafny uses the crude and
simple modifies clauses just described, which allows the frame to be specified by
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the value of a ghost variable. The standard idiom is to declare a set-valued ghost
field, say Repr, to dynamically maintain Repr as the set of objects that are part
of the receiver’s representation, and to use Repr in modifies clauses (see [33]).
For example:

class MyClass {

ghost var Repr : set<object>;

method SomeMethod() modifies Repr; { /* . . . */ }

}

Recall, this modifies clause gives the method license to modify any field of any
object in Repr. If this is a member of the set Repr, then the modifies clause also
gives the method license to modify the field Repr itself.

In retrospect, I find that this language design—explicit, set-valued modifies

clauses that specify modifications at the granularity of objects—has contributed
greatly to the flexibility and simplicity of Dafny.

1.4 Functions

A class can declare mathematical functions. These are given a signature, which
can include type parameters, a function specification, and a body. For illustra-
tion, consider the following prototypical function, declared in a class C:

function F(x : T) requires P; reads R; decreases D; { Body }

where T is some type, P is a boolean expression, R is a set-valued expression,
D is a list of expressions, and Body is an expression (not a statement). The
requires clause says in which states the function is allowed to be used; in other
words, the function can be partial and its domain is defined by the requires

clause. Just like Dafny checks for division-by-zero errors, it also checks that
invocations of a function satisfy the function’s precondition. The reads clause
gives a frame for the function, saying which objects the function may depend
on. Analogously to modifies clauses of methods, the reads clause describes a
set of objects and the function is then allowed to depend on any field of any
of those objects. Dafny enforces the reads clause in the function body. The
decreases clause gives a termination metric (also known as a variant function
or a ranking function), which specifies a well-founded order among recursive
function invocations. Finally, Body defines the value of the function.

By default, function are “ghost” and can be used in specifications only. But by
declaring the function with function method, the function definition is checked
to be free of specification-only constructs and the function can then be used in
compiled code.

The Dafny function is translated into a Boogie function with the name C.F
(in Boogie, dot is just another character that can be used in identifier names).
In addition to the explicit Dafny parameters of the function, the Boogie func-
tion takes as parameters the heap and the receiver parameter. The prototypical
function above gives rise to a Boogie axiom of the form:
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(∀H:HeapType , this : [[C]], x: [[T]] •
GoodHeap(H) ∧ this �= null ∧ [[P]] ⇒ C.F (H, this, x) = [[Body]] )

where HeapType denotes the type of the heap, [[ · ]] denotes the translation func-
tion from Dafny types and expressions into Boogie types and expressions, and
GoodHeap holds of well-formed heaps (see [33]). The Dafny function declaration
is allowed to omit the body, in which case this definitional axiom is omitted and
the function remains uninterpreted.

When generating axioms, one needs to be concerned about the logical consis-
tency of those axioms. Unless the user-supplied body is restricted, the definitional
axiom could easily be inconsistent, in particular if the function is defined (mu-
tually) recursively. To guard against this, Dafny insists that any recursion be
well-founded, which is enforced in two phases. First, Dafny builds a call graph
from the syntactic declarations of functions. Then, for any function that may be
(mutually) recursive, the language makes use of the termination metric supplied
by the decreases clause. Such a metric is a lexicographic tuple whose components
can be expressions of any type. Dafny enforces that any call between mutually
recursive functions leads to a strictly smaller metric value. In doing the compari-
son, it first truncates the caller’s tuple and callee’s tuple to the longest commonly
typed prefix. Integers are ordered as usual, false is ordered below true, null
is ordered below all other references, sets are ordered by subset, sequences are
ordered by their length, and algebraic datatypes are ordered by their rank (see
Sec. 1.9). All of these are finite and naturally bounded from below, except inte-
gers, for which a lower bound of 0 is enforced. The lower bound is checked of the
caller’s decreases clause, but the check is performed at the time of a (mutually)
recursive call, not on entry to the caller. This makes the specification of some
decreases clauses more natural.

An omitted decreases clause defaults to the set of objects denoted by the
reads clause.

There is one more detail about the encoding of the definitional axiom. In
Boogie, all declared axioms are available when discharging proof obligations.
Thus, if the axioms are inconsistent, then all proof obligations can be discharged
trivially, even the proof obligations designed to ensure the consistency of the
axioms! To avoid such circularities, Dafny adds an antecedent to each definitional
axiom; this lets the axiom be activated selectively. Let the height of a function
be its order in a topological sort of all functions according to the call graph.
For example, mutually recursive functions have the same height. The antecedent
added to the definitional axiom of a function F of height h is h < ContextHeight ,
where ContextHeight is an uninterpreted constant. To activate the definitional
axioms of non-recursive calls, the consistency check of function F is given the
assumption ContextHeight = h. Proof obligations related to methods get to
assume what amounts to ContextHeight = ∞, thus activating all definitional
axioms.

To further explain the Boogie encoding of Dafny’s functions, it is necessary
first to give more details of the encoding of the heap [33]. The Dafny verifier
models the heap as a map from object references and field names to values. The
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type of a Dafny field-selection expression o.f depends on the type of the field
f, which is modeled directly using Boogie’s polymorphic type system. All object
references in Dafny are modeled by a single Boogie type Ref . A field f of type T

declared in a class C is modeled as a constant C.f of type Field [[T]], where Field
is a unary type constructor. The type of the heap, HeapType , is a polymorphic
map type 〈α〉[Ref ,Field α]α; in words, for any type α, given a Ref and a Field α,
the map returns an α [40]. For example, if f is of type int and o has type C, then
the Boogie encoding declares a constant C.f of type Field int and, in a heap H,
o.f is modeled as H[o, C.f ], which has the Boogie type int.

Back to the encoding of functions. The reads clause of the prototypical func-
tion above produces the following frame axiom:

(∀H,K:HeapType , this : [[C]], x: [[T]] •
GoodHeap(H) ∧ GoodHeap(K) ∧
(∀ 〈α〉 o:Ref , f :Field α • o �= null ∧ [[o ∈ R]] ⇒ H[o, f ] = K[o, f ] )
⇒ C.F (H, this , x) = C.F (K, this , x) )

where “∀〈α〉 o:Ref , f :Field α” quantifies over all types α, all references o, and
all fields names f of type Field α. The frame axiom says that if two heaps H and
K agree on the values of all fields of all non-null objects in R, then C.F returns
the same value in the two heaps.

At first, it may seem odd to have a frame axiom, since the function’s defini-
tional axiom is more precise, but the frame axiom serves several purposes. First,
if Body is omitted, the frame axiom still gives a partial interpretation of the func-
tion. Second, the frame axiom opens the possibility of using scope rules where
Dafny hides the exact definition, except in certain restricted scopes, for exam-
ple when verifying the enclosing class. By emitting the definitional axiom only
when verifying the program text in the restricted scopes, other scopes then only
get to know what the function depends on, not its exact definition. Such scope
rules are still under experimentation in the current version of Dafny (but see,
e.g., [30, 49]). Third, for certain recursively defined functions, the frame axiom
can sometimes keep the underlying SMT solver away from matching loops.

Dafny allows the frame of a function to be given as reads *;, in which case the
function is allowed to depend on anything and the frame axiom is not emitted.

The logical consistency of the frame axiom plus the definitional axiom is jus-
tified by reads check that are part of the function body’s consistency check: each
heap dereference is checked to be in the declared reads clause [33]. Meanwhile,
the frame axiom by itself is consistent, so it is always activated.

1.5 Specifying Data-Structure Invariants

When specifying a program built as a layers of modules, it is important to
have specifications that let one abstract over the details of each module. Several
approaches exist, for example built around ownership systems [13, 12], explicit
validity bits [3], separation logic [46], region logic [1], and permissions [9]. Dafny
follows an approach inspired by dynamic frames [27], where the idea is to specify
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frames as dynamically changing sets and where the consistency of data structures
(that is, object invariants [42, 3]) are specified by validity functions [19, 39, 44].
The sets, functions, ghost variables, and modifies clauses of Dafny are all that
is needed to provide idiomatic support for this approach.

Let me illustrate the idiom that encodes dynamic frames in Dafny with this
program skeleton:

class C {

ghost var Repr : set<object>;

function Valid() : bool

reads {this} ∪ Repr;

{ this ∈ Repr ∧ . . . }
method Init()

modifies {this};

ensures Valid() ∧ fresh(Repr - {this});

{ . . . Repr := {this} ∪ . . .; }

method Update()

requires Valid();

modifies Repr;

ensures Valid() ∧ fresh(Repr - old(Repr));

{ . . . }
. . .

}

The ghost variable Repr is the dynamic frame of the object’s representation. The
Dafny program needs to explicitly update the variable Repr when the object’s
representation changes. Dafny does not build in any notion of an object invariant.
Instead, the body of function Valid() is used to define what it means for an
object to be in a consistent state.

Dafny does not have any special constructs to support object construction.
Instead, one declares a method, named Init in the skeleton above, that performs
the initialization. A client then typically allocates and initializes an object as
follows:

var c := new C; call c.Init();

Method Init says it may modify the fields of the object being initialized, which
includes the ghost field Repr. Its postcondition says the method will return in
a state where Valid() is true. Since Init is allowed to modify Repr, it declares
a postcondition that says something about how it changes Repr. An expression
fresh(S), which is allowed in postconditions, says that all non-null objects in the
set S have been allocated since the invocation of the method. The postcondition
of Init says that all objects it adds to Repr, except this itself, have been allocated
by Init. Thus, the typical client above can conclude that c.Repr is disjoint from
any previous set of objects in the program.

The program skeleton also shows a typical mutating method, Update. It re-
quires and maintains the object invariant, Valid(), and it only modifies objects
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in the object’s representation. Since Update can modify the ghost variable Repr,
the postcondition fresh(. . .) promises to add only newly allocated objects to
Repr, which lets clients conclude that the object’s representation does not bleed
into previous object representations.

More about this idiom and some examples are found in the Marktoberdorf
lecture notes [33].

Note that the specifications in the program skeleton above are just idiomatic.
It is easy to deviate from this idiom. For example, to specify that the Append

method of a List class will reuse the linked-list representation of the argument,
one might use the following specification:

method Append(that : List)

requires Valid() ∧ that.Valid();

modifies Repr ∪ that.Repr;

ensures Valid() ∧ fresh(Repr - old(Repr) - old(that.Repr));

Here, nothing is said about the final value of that.Repr; in particular, the caller
cannot assume this and that to have disjoint representations after the call. More-
over, the value of that.Valid() is also under-specified on return, so the caller can-
not assume that to still be in a consistent state. One may need to strengthen the
precondition above with Repr ∩ that.Repr = {}, which says that the representa-
tions of this and that are disjoint, or perhaps with Repr ∩ that.Repr ⊆ {null},
which says that they share at most the null reference.

The code in the skeleton shows only the specifications one needs to talk about
the object structure. To also specify functional correctness, one typically adds
more ghost variables (for example,

ghost var Contents : seq<T>;

for a linked list of T objects) and uses these variables in method pre- and post-
conditions.

1.6 Type Parameters

Classes, methods, functions, algebraic datatypes, and datatype constructors are
generic, that is, they can take type parameters. Here is an example generic class,
where T denotes a type parameter of the class:

class Pair<T> {

var a : T; var b : T;

method Flip() modifies {this}; ensures a = old(b) ∧ b = old(a);

{ var tmp := a; a := b; b := tmp; }

}

Uses of generic features require some type instantiation, which can often be
inferred. For example, this code fragment allocates an integer pair and invokes
the Flip method:
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var p := new Pair<int>; p.b := 7; call p.Flip(); assert p.a = 7;

Expressions whose type is a type parameter can only be treated parametrically,
that is, Dafny does not provide any type cast or type query operation for such
expressions. For example, the body of the Flip method cannot use a and b as
integers, but the client code above can, since, there, the type parameter has been
instantiated with int.

Dafny types are translated into Boogie types, which generally are coarser.
For example, bool and int translate to the same types in Boogie, and all class
types translate into one user-defined Boogie type Ref , which is used to model all
references. Procedures and functions in Boogie can also take type parameters,
but the Dafny verifier does not make use of them for Dafny generics. The reason
for this primarily has to do with the types of field values in the heap. As explained
above in Sec. 1.4, each Dafny field gives rise to one Boogie constant that denotes
the field name. This is important, because it allows generic code to be verified
just once; for example, the implementation of the Flip method is verified without
considering any specific instantiation of type parameter T. But in contexts where
a use of a field like a or b is known to produce a specific type, like in the client
code for Flip above, retrieving that field from the heap needs to produce the
specific type. That goes beyond what the type constructor Field can do. So,
rather than using type parameters in Boogie to deal with the generics in Dafny,
the Dafny verifier introduces one Boogie type Box to stand for all values whose
type is a type parameter. It then also introduces conversion functions from each
type to Box and vice versa. The verifier is careful not to box an already boxed
value, which can be ensured by looking at the static types of expressions.

In my personal experience with the Spec# program verifier, I have found the
encoding of generic types to be an error prone enterprise. In retrospect, I think
the reason has been that boxed entities in Spec# are encoded as references,
which is what they look like in the .NET virtual machine. Admittedly, Dafny’s
generics are simpler, but my feeling is that the decision of encoding generic types
using a separate Boogie type has led to a more straightforward encoding.

1.7 Sets

Dafny supports finite sets. A set of T-valued elements has type set<T>. Operations
on sets are the usual ones, like membership, union, difference, and subset, but
not complement and not cardinality. Sets are encoded as maps from values to
booleans. The axiomatization defines all operations in terms of set membership;
for example, there are no axioms that directly state the distribution of union
over intersection. This axiomatization seems to work smoothly in practice—it is
fast, simple, and gets the verification done.

In that spirit, set equality is translated into a Boogie function SetEqual , which
is defined by equality in membership. Because Boogie does not promise exten-
sionality of its maps [32], the reverse does not necessarily hold. For example, if F
is a function on sets and s and t are sets, the Dafny verifier may not succeed in
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proving F(s) = F(t) even if it has enough information to establish that s and t

have the same members. The verifier therefore includes the axiom

(∀ a, b:Set • SetEqual(a, b) ⇒ a = b )

but because of the way quantifiers are handled in SMT solvers like Z3, this axiom
is put into play only if the prover has a ground term SetEqual(s, t). If that term
is not available, the Dafny user may need to help the verifier along by supplying
the statement assert s = t;, which both introduces the term SetEqual(s, t) and
adds it as a proof obligation.

A final remark about sets is that the Dafny encoding only ever uses sets of
boxes. That is, the translation boxes values before adding them to sets. The
reason for this is similar to the reason for introducing boxes for type parameters
described in Sec. 1.6.

1.8 Sequences

Dafny also supports sequences, with operations like member selection, concate-
nation, and length. They are encoded analogously to sets, except that they do
not use Boogie’s built-in maps, but instead use a user-defined type Seq with a
separate member-select function and a function for retrieving the length of the
sequence. However, my experience with sequences has not been as smooth as
with sets.

In particular, quantifying over sequence elements like in (∀ i • . . .s[i]. . .),
but where the index into the sequence involves not just the quantified variable
i but also some arithmetic, does not always lead to useful quantifier triggering.
Although this problem has more to do with mixing triggers and interpreted
symbols (like +), the problem can become noticeable when specifying properties
of sequences. The workaround, once one has a hunch that this is the problem,
is either to rewrite the quantifier or to supply an assertion that mentions an
appropriate term to be triggered. For example, the list reversal program in the
Marktoberdorf lecture notes [33] needs an assertion of the form:

assert list[0] = data;

1.9 Algebraic Datatypes

An algebraic datatype defines a set of structural values. For example, generic
nonempty binaries trees with data stored at the leaves can be defined as follows:

datatype Tree<T> { Leaf(T); Branch(Tree<T>, Tree<T>); }

This declaration defines two constructors for Tree values, Leaf and Branch. A
use of a constructor is written like #Tree.Leaf(5), an expression whose type is
Tree<int>.

The most useful feature of a datatype is provided by the match expression,
which indicates one case per constructor of the datatype. For example,
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function LeafCount<T>(d : Tree<T>) : int decreases d;

{

match d

case Leaf(t) ⇒ 1

case Branch(u,v) ⇒ LeafCount(u) + LeafCount(v)

}

is a function that returns the number of leaves of a given tree.
All datatypes are modeled using a single user-defined Boogie type, Datatype,

and constructors are modeled as Boogie functions. There are five properties of
interest in the axiomatization of such functions:

0. each constructor is injective in each of its arguments,
1. different constructors produce different values,
2. every datatype value is produced from some constructor of its type,
3. datatype values are (partially) ordered, and
4. the ordering is well-founded.

Dafny emits Boogie axioms for three of these properties.
Properties (0) and (1) are axiomatized in the usual way, by giving the inverse

functions and providing a category code, respectively. Property (2) is currently
not encoded by the Dafny verifier, because it can give rise to enormously expen-
sive disjunctions. Luckily, the property is usually not needed, because the only
case-split facility that Dafny provides on datatypes is the match expression and
Dafny insists, through a simple syntactic check, that all cases are covered (which
means there is usually no need to prove in the logic that all cases are handled).

Property (3) is encoded using an integer function rank and axioms that pos-
tulate datatype arguments of a constructor to have a smaller rank than the value
constructed. For example, Dafny emits the following axiom for Branch:

(∀ a0, a1:Datatype • rank(a0) < rank(Tree.Branch(a0, a1)) )

Property (4) is of interest when one wants to do induction on the structure of
datatypes. It holds if the datatypes in a program can be stratified so that every
datatype includes some constructor all of whose datatype arguments come from
a lower stratum. Dafny enforces such a stratification, but it does not actually
emit an axiom for this property (which otherwise would simply have postulated
rank to return non-negative integers only), because the SMT solver never sees
any proof obligation that requires it.

If the underlying SMT solver provides native support for algebraic datatypes
(which Z3 actually does, as does CVC-3 [6]), then Dafny could tap into that
support (which presumably provides all five properties) instead of rolling its own
axioms. However, that would also require the intermediate verification language
to support algebraic datatypes (which Boogie currently does not).

One final, important thing remains to be said about the encoding of datatypes,
and it concerns the definitional axioms generated for Dafny functions. Recursive
functions are delicate to define in an SMT solver, because of the possibility
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that axioms will be endlessly instantiated (a phenomenon known as a matching
loop [18], see also [34]). The problem can be mitigated by specifying triggers
that are structurally larger than the new terms produced by the instantiations.
Following VeriFast [26], Dafny emits, for any function whose body is a match

expression on one of the function’s arguments, a series of definitional axioms,
one corresponding to each case. The crucial point is that the trigger of each
axiom discriminates according to the form of the function’s argument used in
the match.

For example, one of the definitional axioms for function LeafCount above is:

(∀u, v:Datatype •
LeafCount(Tree.Branch(u, v)) = LeafCount(u) + LeafCount(v) )

where the trigger is specified to be the left-hand side of the equality (for brevity,
I omitted the H and this arguments to LeafCount). Note that the new LeafCount
terms introduced by instantiations of this axiom would cause further instantia-
tions only if the SMT solver has already equated u or v with some Tree.Branch
term. In contrast, consider the following axiom, where I write b0 and b1 for the
inverse functions of Tree.Branch :

(∀ d:Datatype • LeafCount(d) = LeafCount(b0(d)) + LeafCount(b1(d)) )

If triggered on the term LeafCount(d), this axiom is likely to lead to a matching
loop, since each instantiation gives rise to new terms that also match the trigger.

1.10 Termination Metrics

As a final language-feature topic, let me say more about termination, and in
particular about the termination of loops. Loops can be declared with loop in-
variants and a termination metric, the latter being supplied with a decreases

clause that takes a lexicographic tuple, just as for functions. Dafny verifies that,
each time the loop’s back edge is taken (that is, each time control reaches the
end of the body of the while statement and proceeds to the top of a new itera-
tion where it will evaluate the loop guard), the (“post-iteration”) metric value is
strictly smaller than the (“pre-iteration”) metric value at the top of the current
iteration.

As I mentioned in Sec. 1.4, each Dafny type has an ordering, has finite val-
ues only, and, except for integers, is bounded from below. If the decrement of
the metric involves decreasing an integer-valued component of the lexicographic
tuple, then Dafny checks, at the time of the back edge, that the pre-iteration
value of that component had been at least 0. The complicated form of this rule
(compared to, say, the simpler rule of enforcing as a loop invariant that every
integer-valued component of the metric is non-negative) gives more freedom in
choosing the termination metric. For example, the following loop verifies with
the simple decreases clause given, despite the fact that n will be negative after
the loop:
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while (0 ≤ n) decreases n; { . . . n := n - 1; }

To support applications where it is not desirable to insist on loop termination,
Dafny lets a loop be declared with decreases *;, which skips the termination
check for the loop.

Dafny also supports decreases clauses for methods, giving protection against
infinite recursion. As for functions, Dafny proceeds in two phases, in the first
phase building a call graph and in the second phase checking the decreases

clauses of (mutually) recursive calls. Use of the two phases reduces the number
of decreases clauses that programs need to contain.

2 Case Study: Schorr-Waite Algorithm

The famous Schorr-Waite algorithm marks all nodes reachable in a graph from
a given root node [47]. What makes the algorithm attractive, and challenging
for verification, is that it keeps track of most of the state of its depth-first search
by reversing edges in the graph itself. This can be appropriate in the marking
phase of a garbage collector, which is run at a time when space is low. The
functional correctness of the algorithm has four parts: (C0) all reachable nodes
are marked, (C1) only reachable nodes are marked, (C2) there is no net effect
on the structure of the graph, and (C3) the algorithm terminates.

In this section, I present the entire Dafny program text for the Schorr-Waite
algorithm. Using this 120-line program as input, Dafny (using Boogie 2 and
Z3 version 2.4) verifies its correctness in less than 5 seconds. A large number
of proofs have been constructed for the algorithm through both pen-and-paper
proofs and mechanical verifications (see, e.g., [10, 0, 41, 25, 11]). The previous
shortest mechanical-verifier input for this algorithm appears to be 400 lines of
Isabelle proof scripts by Mehta and Nipkow [41], whereas many other attempts
have been far longer. To my knowledge, no previous Schorr-Waite proof has
been carried out solely by an SMT solver, and never before has all necessary
specifications and loop invariants been presented in one conference paper.

Here is a description of highlights of the program:
Class Node (lines 0–5 in the program below) represents the nodes in the

graph, each with some arbitrary out-degree as represented by field children.
The Schorr-Waite algorithm adds the childrenVisited field for bookkeeping,
and the ghost field pathFromRoot is used only for the verification.

Datatype Path (lines 7–10) represents lists of Node’s and is used by function
Reachable (line 13) to describe the list of intermediate nodes between from and
to. Function ReachableVia (line 18) is defined recursively according to that list
of intermediate nodes. Reachability predicates are notoriously difficult for first-
order SMT solvers, but the trigger-aware encoding of the definitional axiom
(explained in Sec. 1.9) makes it work honorably for this program.

The method itself is defined starting at line 28 and its specification is given
on lines 29–41. The preconditions say that the method parameters describe a
proper graph with marks and auxiliary fields cleared. Correctness property (C0)
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is specified by the postconditions on lines 36–37, (C1) on line 39, and (C2)
on line 41. Noteworthy about this specification is that (C0) is specified as a
closure property, using quantifiers, whereas (C1) uses the reachability predicate.
Alternatively, one could have also specified (C0) with the reachability predicate,
as the dual of (C1), but that would have led to a more complicated proof (using
a loop invariant like Hubert and Marché’s I4c in [25], which they describe as “the
trickiest annotation”). Correctness property (C3) is implicit, since Dafny checks
that loops and methods terminate.

The heart of the algorithm is implemented by a loop with 3 cases (lines 85–
112), one for going deeper into the graph (“push”), one for considering the next
child of the current node, and one for backtracking to the previous node on the
stack (“pop”). The program maintains a ghost variable stackNodes that stores
the visitation stack of the depth-first traversal. This ghost variable, which is
updated explicitly (lines 48, 95, and 106), plays a vital part in the proof. It is
used in most of the loop invariants. Lines 74–76 declare the relation between
stackNodes and the Schorr-Waite reversed edges.

The loop invariant helps establish the postconditions as follows: Correctness
property (C0) is maintained as a loop invariant (lines 51 and 61–62), except
for those nodes that are on the stack. Ditto for (C2) (lines 63–65). Correctness
property (C1) is also maintained as a loop invariant (line 72). It uses function
Reachable, which is defined in terms of an existential quantifier. The prover needs
help in establishing this existential quantifier when a node is marked (lines 46 and
109), so the program supplies a witness by using a local ghost variable path and
an associated loop invariant (line 70). To maintain that invariant in the pop case,
intermediate reachability paths are recorded in the ghost field pathFromRoot, see
the loop invariant on line 71.

The termination metric for the loop is given as a lexicographic triple on line
83. The first component of the triple is a set, the second a sequence, and the
third an integer. Dafny verifies that each iteration of the loop decreases this
triple and that its integer component is bounded from below. Since sets are fi-
nite in Dafny, this establishes a well-founded order and thus implies that the loop
terminates. In comparison, proving termination of the Schorr-Waite algorithm
using Caduceus [21], a verifier equipped to use SMT solvers when possible, in-
volved using a second-order formula even just to express the well-foundedness of
the termination metric used, which necessitated the use of an interactive proof
assistant to complete the proof [25].

0 class Node {
1 var children : seq<Node>;
2 var marked : bool;
3 var childrenVisited : int;
4 ghost var pathFromRoot : Path;
5 }
6
7 datatype Path {
8 Empty;
9 Extend(Path, Node);

10 }
11
12 class Main {
13 function Reachable(from : Node, to: Node, S: set<Node>) : bool
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14 requires null �∈ S;
15 reads S;
16 { (∃ via: Path • ReachableVia(from, via, to, S)) }
17
18 function ReachableVia(from : Node, via: Path, to: Node, S: set<Node>): bool
19 requires null �∈ S;
20 reads S;
21 decreases via;
22 {
23 match via
24 case Empty ⇒ from = to
25 case Extend(prefix, n) ⇒ n ∈ S ∧ to ∈ n.children ∧ ReachableVia(from, prefix, n, S)
26 }
27
28 method SchorrWaite(root : Node, ghost S: set<Node>)
29 requires root ∈ S;
30 // S is closed under ’children’:
31 requires (∀ n • n ∈ S =⇒ n �= null ∧ (∀ ch • ch ∈ n.children =⇒ ch = null ∨ ch ∈ S));
32 // graph starts with nothing marked and nothing being indicated as currently being visited :
33 requires (∀ n • n ∈ S =⇒¬n.marked ∧ n.childrenVisited = 0);
34 modifies S;
35 // nodes reachable from ’root’ are marked :
36 ensures root.marked;
37 ensures (∀ n • n ∈ S ∧ n.marked =⇒ (∀ ch • ch ∈ n.children ∧ ch �= null =⇒ ch.marked));
38 // every marked node was reachable from ’root’ in the pre-state :
39 ensures (∀ n • n ∈ S ∧ n.marked =⇒ old(Reachable(root, n, S)));
40 // the structure of the graph has not changed :
41 ensures (∀ n • n ∈ S =⇒ n.childrenVisited = old(n.childrenVisited) ∧

n.children = old(n.children));
42 {
43 var t := root;
44 var p: Node := null; // parent of t in original graph
45 ghost var path := #Path.Empty;
46 t.marked := true;
47 t.pathFromRoot := path;
48 ghost var stackNodes := [];
49 ghost var unmarkedNodes := S - {t};
50 while (true)
51 invariant root.marked ∧ t �= null ∧ t ∈ S ∧ t �∈ stackNodes;
52 invariant |stackNodes| = 0 ⇐⇒ p = null;
53 invariant 0 < |stackNodes| =⇒ p = stackNodes[|stackNodes|-1];
54 // stackNodes has no duplicates :
55 invariant (∀ i, j • 0 ≤ i ∧ i < j ∧ j < |stackNodes| =⇒ stackNodes[i] �= stackNodes[j]);
56 invariant (∀ n • n ∈ stackNodes =⇒ n ∈ S);
57 invariant (∀ n • n ∈ stackNodes ∨ n = t =⇒
58 n.marked ∧ 0 ≤ n.childrenVisited ∧ n.childrenVisited ≤ |n.children| ∧
59 (∀ j • 0 ≤ j ∧ j < n.childrenVisited =⇒ n.children[j] = null ∨ n.children[j].marked));
60 invariant (∀ n • n ∈ stackNodes =⇒ n.childrenVisited < |n.children|);
61 invariant (∀ n • n ∈ S ∧ n.marked ∧ n �∈ stackNodes ∧ n �= t =⇒
62 (∀ ch • ch ∈ n.children ∧ ch �= null =⇒ ch.marked));
63 invariant (∀ n • n ∈ S ∧ n �∈ stackNodes ∧ n �= t =⇒
64 n.childrenVisited = old(n.childrenVisited));
65 invariant (∀ n • n ∈ S =⇒ n ∈ stackNodes ∨ n.children = old(n.children));
66 invariant (∀ n • n ∈ stackNodes =⇒
67 |n.children| = old(|n.children|) ∧
68 (∀ j • 0 ≤ j ∧ j < |n.children| =⇒

j = n.childrenVisited ∨ n.children[j] = old(n.children[j])));
69 // every marked node is reachable :
70 invariant old(ReachableVia(root, path, t, S));
71 invariant (∀ n, pth • n ∈ S ∧ n.marked ∧ pth = n.pathFromRoot =⇒

old(ReachableVia(root, pth, n, S)));
72 invariant (∀ n • n ∈ S ∧ n.marked =⇒ old(Reachable(root, n, S)));
73 // the current values of m.children[m.childrenVisited] for m’s on the stack :
74 invariant 0 < |stackNodes| =⇒

stackNodes[0].children[stackNodes[0].childrenVisited] = null;
75 invariant (∀ k • 0 < k ∧ k < |stackNodes| =⇒
76 stackNodes[k].children[stackNodes[k].childrenVisited] = stackNodes[k-1]);
77 // the original values of m.children[m.childrenVisited] for m’s on the stack :
78 invariant (∀ k • 0 ≤ k ∧ k+1 < |stackNodes| =⇒
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79 old(stackNodes[k].children)[stackNodes[k].childrenVisited] = stackNodes[k+1]);
80 invariant 0 < |stackNodes| =⇒
81 old(stackNodes[|stackNodes|-1].children)[stackNodes[|stackNodes|-1].childrenVisited] =

t;
82 invariant (∀ n • n ∈ S ∧¬n.marked =⇒ n ∈ unmarkedNodes);
83 decreases unmarkedNodes, stackNodes, |t.children| - t.childrenVisited;
84 {
85 if (t.childrenVisited = |t.children|) {
86 // pop
87 t.childrenVisited := 0;
88 if (p = null) {
89 return;
90 }
91 var oldP := p.children[p.childrenVisited];
92 p.children := p.children[..p.childrenVisited] + [t] +

p.children[p.childrenVisited + 1..];
93 t := p;
94 p := oldP;
95 stackNodes := stackNodes[..|stackNodes| - 1];
96 t.childrenVisited := t.childrenVisited + 1;
97 path := t.pathFromRoot;
98 } else if (t.children[t.childrenVisited] = null ∨ t.children[t.childrenVisited].marked) {
99 // just advance to next child

100 t.childrenVisited := t.childrenVisited + 1;
101 } else {
102 // push
103 var newT := t.children[t.childrenVisited];
104 t.children := t.children[..t.childrenVisited] + [p] +

t.children[t.childrenVisited + 1..];
105 p := t;
106 stackNodes := stackNodes + [t];
107 path := #Path.Extend(path, t);
108 t := newT;
109 t.marked := true;
110 t.pathFromRoot := path;
111 unmarkedNodes := unmarkedNodes - {t};
112 }
113 }
114 }
115 }
116

Here is a breakdown of the effort involved in constructing this Dafny program.
I spent 5 hours one night, writing the algorithm (starting from a standard depth-
first traversal with an explicit stack) and specifications (C0) and (C2), along
with the loop invariants necessary for verification. The next day, I implemented
decreases clauses for loops in Dafny, which let me write the lexicographic triple
on line 83 to prove (C3). I then spent 2–3 days trying to define ReachableVia

using a seq<Node>, after which I gave up and hand-coded algebraic datatypes
into the Dafny-generated Boogie program. That seemed to lead to a proof. After
a many-month hiatus from Dafny, I then added datatypes to Dafny and, within
a few more hours, completed the full proof.

In conclusion, while the specification of the algorithm is clear and reading
any one line of the loop invariants is likely to receive nods from a programmer,
the 32 lines of quantifier-filled loop invariants can be a mouthful. The hardest
thing in writing the program is deciphering the verifier’s error messages so that
one can figure out what loop invariant to add or change. That task is not yet
for non-experts. Although I am pleased to have done the proof, I find the loop
invariants to be complicated because they are so concrete, and think I would
prefer a refinement approach like that used by Abrial [0].
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3 Related Work

To a large extent, the language, specification constructs, and logical encoding
of Dafny borrow from other languages and verifiers. The particular combination
adds up to a flexible and powerful system. In this section, I give a more detailed
comparison with some of the most closely related tools.

The Java Modeling Language (JML) [29] is a rich specification language for
Java. It has many of the same specification features as Dafny. The biggest dif-
ference with Dafny lies on the tool side, where JML lacks an automatic verifier.
The KeY tool [7] accepts JML specifications, but the tool uses an interactive
verifier. ESC/Java [22,15] uses JML specifications and uses an underlying SMT
solver, but it performs extended static checking (that is, it intentionally misses
some program errors in order to reduce the cost of using the tool [19]), not full
verification.

In the specification language itself, JML supports behavioral subtyping for
subclasses in Java. It has advanced support for ghosts, including model classes
and model code. It does not build in algebraic datatypes, and termination metrics
are more developed in Dafny. A larger difference is the way modular verification
is done: JML uses object invariants and data groups [43,31] whereas Dafny uses
dynamic frames.

Spec# [4, 38] is an object-oriented language with specifications, defined as a
superset of C# 2.0. It has an SMT-based automatic verifier [2] and provides
modular verification by enforcing an ownership discipline among objects in the
heap. For programs that fit this discipline, the necessary specifications are concise
and natural. Spec# also has rich support for subclasses and immutable classes.
However, Spec# lacks the mathematical specification constructs needed to carry
out full functional correctness verification. For example, it has no ghost variables,
no built-in sets or sequences, no algebraic datatypes, no termination metrics, and
quantifiers are restricted to be ones that are executable. As a further comparison
with Dafny, its support for verifying generic classes is not nearly as developed.

JML and Spec# use pure methods instead of mathematical functions. A pure
method is a side-effect free method, written using statements in the program-
ming language. The advantage of pure methods is that they leverage an existing
language feature, and programs often contain query methods that return the
value a mathematical function would have. However, pure methods are sur-
prisingly complicated to get right. A major problem is that pure methods do
have effects; for example, a pure method may allocate a hashtable that it uses
during its computation. Another problem is that pure methods often are not
deterministic, because they may return a newly allocated object (perhaps a
non-interned string or an object representing a set of integers). These problems
make it tricky to provide the programming logic with the desirable illusion that
pure methods are functions (see, e.g., [16, 36]). In contrast, the treatment of
mathematical functions in Dafny, and the logic functions in Caduceus [20] from
which they were first inspired, is simple (as is the treatment of functions in other
logics that only provide functions, not statements and other programming con-
structs). Dafny’s function method declaration achieves the advantage of using
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one language mechanism for both (restricted) specifications and code, but does
so by letting the function be used in code rather than letting code be used as a
function. I conclude with a slogan: pure methods are hard, functions are easy.

VeriCool 1 [50] has provided much inspiration for Dafny. It is also based
on dynamic frames, but the prevailing style is to use VeriCool’s pure methods
(which are mostly like functions) instead of ghost variables. When such frames
are defined recursively, they can bring about problems with matching loops in the
SMT solver. Whereas Dafny does framing at the granularity of objects, VeriCool
uses the more detailed object-field granularity. VeriCool has been extended to
concurrency [48]. It does not support generic classes, algebraic datatypes, or
termination metrics.

The idea in Dafny of using set-valued expressions for framing comes from the
original work on dynamic frames by Kassios [27]. The difference lies in how the
dynamic frames are represented, which impacts automation. The original dy-
namic frames are represented by specification variables, which are functions of
other variables in the program. They are therefore more like Dafny’s functions
than Dafny’s ghost variables. Because ghost variables are independent coordi-
nates in the heap, they avoid the problems with recursively defined functions
that, like in VeriCool 1, can be an issue for the SMT solver.

As for the notation, Kassios’s preservation operator Ξ can be written us-
ing quantifiers and old in Dafny, the modification operator Δ corresponds to
modifies clauses in Dafny, and Kassios’s operator Λ for the swinging pivots re-
quirement [39] corresponds to the idiom that uses fresh in Dafny (Sec. 1.5).
Specification variables correspond to functions in Dafny, and the frames predi-
cate corresponds to reads clauses in Dafny.

A recent trend seems to be to add more specification features to program-
ming languages. For example, the Jahob verification system admits specifica-
tions written in higher-order logic [52]. This differs from interactive higher-order
proof assistants in that the input mostly looks like a program, not a series of
proof steps. Jahob also includes some features that can be used to write proofs,
as does, to a lesser extent, Boogie [32]. VeriFast [26] integrates into C features
for writing and proving lemmas.

Others are using SMT solvers for functional correctness verification. Régis-
Gianas and Pottier used an SMT solver in their proof of Kaplar and Tarjan’s
algorithm for functional double-ended queues [45]. VCC [14] is being used to
verify the Microsoft Hyper-V hypervisor. As part of that project, VCC has been
used to prove the functional correctness (sans termination) of several challenging
data structures.

From the other direction, various interactive proof assistants are using SMT
solvers as part of their grind tactics.

4 Conclusions

In this paper, I have shown the design of Dafny, a language and verifier. Al-
though it does not support all functional-correctness verification tasks—to do so
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is likely to require more data types and perhaps some higher-order features—it
has already demonstrated its use in automatic functional-correctness verification.
Rosemary Monahan and I have also used Dafny to complete the 8 verification
benchmarks proposed by Weide et al. [51], except for one aspect of one bench-
mark, which requires a form of lambda closure [35].

Dafny had started as an experiment to encode dynamic frames, but it has
grown to become more of a general-purpose specification language and verifier
(where modular verification is achieved via dynamic frames). As part of future
work on Dafny, I intend to build a compiler that generates executable code.

I expect that more full functional correctness verifications will be done by
SMT-based verifiers in the future.
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