
Non-oblivious Strategy Improvement

John Fearnley

Department of Computer Science, University of Warwick, UK
john@dcs.warwick.ac.uk

Abstract. We study strategy improvement algorithms for mean-payoff
and parity games. We describe a structural property of these games,
and we show that these structures can affect the behaviour of strategy
improvement. We show how awareness of these structures can be used to
accelerate strategy improvement algorithms. We call our algorithms non-
oblivious because they remember properties of the game that they have
discovered in previous iterations. We show that non-oblivious strategy
improvement algorithms perform well on examples that are known to be
hard for oblivious strategy improvement. Hence, we argue that previous
strategy improvement algorithms fail because they ignore the structural
properties of the game that they are solving.

1 Introduction

In this paper we study strategy improvement for two player infinite games played
on finite graphs. In this setting the vertices of a graph are divided between two
players. A token is placed on one of the vertices, and in each step the owner
of the vertex upon which the token is placed must move the token along one
of the outgoing edges of that vertex. In this fashion, the two players form an
infinite path in the graph. The payoff of the game is then some property of
this path, which depends on the type of game that is being played. Strategy
improvement is a technique that originated from Markov decision processes [7],
and has since been applied many types of games in this setting, including simple
stochastic games [3], discounted-payoff games [12], mean-payoff games [2], and
parity games [15,1]. In this paper we will focus on the strategy improvement
algorithm of Björklund and Vorobyov [2], which is designed to solve mean-payoff
games, but can also be applied to parity games.

Algorithms that solve parity and mean-payoff games have received much in-
terest. One reason for this is that the model checking problem for the modal
μ-calculus is polynomial time equivalent to the problem of solving a parity
game [4,14], and there is a polynomial time reduction from parity games to
mean-payoff games [12]. Therefore, faster algorithms for these games lead to
faster model checkers for the μ-calculus. Secondly, both of these games lie in
NP ∩ co-NP, which implies that neither of the two problems are likely to be
complete for either class. Despite this, no polynomial time algorithms have been
found.

The approach of strategy improvement can be described as follows. The algo-
rithm begins by choosing one of the players to be the strategy improver, and then

E.M. Clarke and A. Voronkov (Eds.): LPAR-16, LNAI 6355, pp. 212–230, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Non-oblivious Strategy Improvement 213

picks an arbitrary strategy for that player. A strategy for a player consists of a
function that picks one edge for each of that player’s vertices. Strategy improve-
ment then computes a set of profitable edges for that strategy. If the strategy
is switched so that it chooses some subset of the profitable edges, rather than
the edges that are currently chosen, then strategy improvement guarantees that
the resulting strategy is better in some well-defined measure. So, the algorithm
picks some subset of the profitable edges to create a new, improved, strategy to
be considered in the next iteration. This process is repeated until a strategy is
found that has no profitable edges, and this strategy is guaranteed optimal for
the strategy improver. Since any subset of the profitable edges could be used to
create an improved strategy in each iteration, some method is needed to deter-
mine which subset to choose in each iteration. We call this method a switching
policy, and the choice of switching policy can have a dramatic effect on the
running time of the algorithm.

A significant amount of research has been dedicated to finding good switch-
ing policies. In terms of complexity bounds, the current best switching policies
are randomized, and run in an expected O(2

√
n log n) number of iterations [2].

Another interesting switching policy is the optimal switching policy given by
Schewe [13]. An optimal switching policy always picks the subset of profitable
edges that yields the best possible successor strategy, according to the measure
that strategy improvement uses to compare strategies. It is not difficult to show
that such a subset of profitable edges must exist, but computing an optimal sub-
set of profitable edges seemed to be difficult, since there can be exponentially
many subsets of profitable edges to check. Nevertheless, Schewe’s result is a
polynomial time algorithm that computes an optimal subset of edges. Therefore,
optimal switching policies can now be realistically implemented. It is important
to note that the word “optimal” applies only to the subset of profitable edges
that is chosen to be switched in each iteration. It is not the case that a strategy
improvement algorithm equipped with an optimal switching policy will have an
optimal running time.

Perhaps the most widely studied switching policy is the all-switches policy,
which simply selects the entire set of profitable edges in every iteration. Although
the best upper bound for this policy is O(2n/n) iterations [11], it has been found
to work extremely well in practice. Indeed, for a period of ten years there were no
known examples upon which the all switches policy took significantly more than
a linear number of iterations. It was for this reason that the all-switches policy
was widely held to be a contender for a proof of polynomial time termination.

However, Friedmann has recently found a family of examples that force a
strategy improvement algorithm equipped with the all-switches policy to take an
exponential number of steps [5]. Using the standard reductions [12,16], these ex-
amples can be generalised to provide exponential lower bounds for all-switches on
mean-payoff and discounted-payoff games. Even more surprisingly, Friedmann’s
example can be generalised to provide an exponential lower bound for strategy
improvement algorithms equipped with an optimal switching policy [6]. This re-
cent revelation appears to imply that there is no longer any hope for strategy

214 J. Fearnley

improvement, since an exponential number of iterations can be forced even if
the best possible improvement is made in every step.

Our contributions. Despite ten years of research into strategy improvement al-
gorithms, and the recent advances in the complexity of some widely studied
switching policies, the underlying combinatorial structure of mean-payoff and
parity games remains somewhat mysterious. There is no previous work which
links the structural properties of a parity or mean-payoff game with the be-
haviour of strategy improvement on those games. In this paper, we introduce
a structural property of these games that we call a snare. We show how the
existence of a snare in a parity or mean-payoff game places a restriction on the
form that a winning strategy can take for these games.

We argue that snares play a fundamental role in the behaviour of strategy
improvement algorithms. We show that there is a certain type of profitable edge,
which we call a back edge, that is the mechanism that strategy improvement
uses to deal with snares. We show how each profitable back edge encountered
by strategy improvement corresponds to some snare that exists in the game.
Hence, we argue that the concept of a snare is a new tool that can be used in
the analysis of strategy improvement algorithms.

We then go on to show that, in addition to being an analytical tool, aware-
ness of snares can be used to accelerate the process of strategy improvement. We
propose that strategy improvement algorithms should remember the snares that
they have seen in previous iterations, and we give a procedure that uses a pre-
viously recorded snare to improve a strategy. Strategy improvement algorithms
can choose to apply this procedure instead of switching a subset of profitable
edges. We give one reasonable example of a strategy improvement algorithm
that uses these techniques. We call our algorithms non-oblivious strategy im-
provement algorithms because they remember information about their previous
iterations, whereas previous techniques make their decisions based only on the
information available in the current iteration.

In order to demonstrate how non-oblivious techniques can be more powerful
than traditional strategy improvement, we study Friedmann’s family of examples
that cause the all-switches and the optimal switching policies to take exponential
time. We show that in certain situations non-oblivious strategy improvement
makes better progress than even the optimal oblivious switching policy. We go
on to show that this behaviour allows our non-oblivious strategy improvement
algorithms to terminate in polynomial time on Friedmann’s examples. This fact
implies that it is ignorance of snares that is a key failing of oblivious strategy
improvement.

2 Preliminaries

A mean-payoff game is defined by a tuple (V, VMax, VMin, E, w) where V is a set
of vertices and E is a set of edges, which together form a finite graph. Every

Non-oblivious Strategy Improvement 215

vertex must have at least one outgoing edge. The sets VMax and VMin partition V
into vertices belonging to player Max and vertices belonging to player Min,
respectively. The function w : V → Z assigns an integer weight to every vertex.

The game begins by placing a token on a starting vertex v0. In each step,
the player that owns the vertex upon which the token is placed must choose
one outgoing edge of that vertex and move the token along it. In this fashion,
the two players form an infinite path π = 〈v0, v1, v2, . . . 〉, where (vi, vi+1) is
in E for every i in N. The payoff of an infinite path is defined to be M(π) =
lim infn→∞(1/n)

∑n
i=0 w(vi). The objective of Max is to maximize the value

of M(π), and the objective of Min is to minimize it.
A positional strategy for Max is a function that chooses one outgoing edge for

every vertex belonging to Max. A strategy is denoted by σ : VMax → V , with
the condition that (v, σ(v)) is in E, for every Max vertex v. Positional strategies
for player Min are defined analogously. The sets of positional strategies for Max
and Min are denoted by ΠMax and ΠMin, respectively. Given two positional
strategies, σ and τ for Max and Min respectively, and a starting vertex v0,
there is a unique path 〈v0, v1, v2 . . . 〉, where vi+1 = σ(vi) if vi is owned by Max
and vi+1 = τ(vi) if vi is owned by Min. This path is known as the play induced
by the two strategies σ and τ , and will be denoted by Play(v0, σ, τ).

For all v in V we define:

Value∗(v) = max
σ∈ΠMax

min
τ∈ΠMin

M(Play(v, σ, τ))

Value∗(v) = min
τ∈ΠMin

max
σ∈ΠMax

M(Play(v, σ, τ))

These are known as the lower and upper values, respectively. For mean-payoff
games we have that the two quantities are equal, a property called determinacy.

Theorem 1 ([10]). For every starting vertex v in every mean-payoff game we
have Value∗(v) = Value∗(v).

For this reason, we define Value(v) to be the value of the game starting at the
vertex v, which is equal to both Value∗(v) and Value∗(v). The computational
task associated with mean-payoff games is to find Value(v) for every vertex v.

Computing the 0-mean partition is a decision version of this problem. This
requires us to decide whether Value(v) > 0, for every vertex v. Björklund and
Vorobyov have shown that only a polynomial number of calls to an algorithm
for finding the 0-mean partition are needed to find the value for every vertex in
a mean-payoff game [2].

A Max strategy σ is a winning strategy for a set of vertices W if M(v, σ, τ) > 0
for every Min strategy τ and every vertex v in W . Similarly, a Min strategy τ
is a winning strategy for W if M(v, σ, τ) ≤ 0 for every Max strategy σ and
every vertex v in W . To solve the 0-mean partition problem we are required to
partition the vertices of the graph into the sets (WMax, WMin), where Max has
a winning strategy for WMax and Min has a winning strategy for WMin.

216 J. Fearnley

3 Snares

In this section we introduce a structure called that we call a “snare”. The dic-
tionary definition1 of the word snare is “something that serves to entangle the
unwary”. This is a particularly apt metaphor for these structures since, as we
will show, a winning strategy for a player must be careful to avoid being trapped
by the snares that are present in that player’s winning set.

The definitions in this section could be formalized for either player. We choose
to focus on player Max because we will later choose Max to be the strategy
improver. For a set of vertices W we define G � W to be the sub-game induced
by W , which is G with every vertex not in W removed. A snare for player Max
is defined to be a subgame for which player Max can guarantee a win from every
vertex.

Definition 2 (Max Snare). For a game G, a snare is defined to be a tuple
(W, χ) where W ⊆ V and χ : W ∩ VMax → W is a partial strategy for player
Max that is winning for every vertex in the subgame G � W .

This should be compared with the concept of a dominion that was introduced
by Jurdziński, Paterson, and Zwick [8]. A dominion is also a subgame in which
one of the players can guarantee a win, but with the additional constraint that
the opponent is unable to leave the dominion. By contrast, the opponent may
be capable of leaving a snare. We define an escape edge for Min to be an edge
that Min can use to leave a Max snare.

Definition 3 (Escapes). Let W be a set of vertices. We define the escapes
from W as Esc(W) = {(v, u) ∈ E : v ∈ W ∩ VMin and u /∈ W}.
It is in Min’s interests to use at least one escape edge from a snare, since if
Min stays in a Max snare forever, then Max can use the strategy χ to ensure
a positive payoff. In fact, we can prove that if τ is a winning strategy for Min
for some subset of vertices then τ must use at least one escape from every Max
snare that exists in that subset of vertices.

Theorem 4. Suppose that τ is a winning strategy for Min on a set of vertices
S. If (W, χ) is a Max snare where W ⊂ S, then there is some edge (v, u) in
Esc(W) such that τ(v) = u.

10

v u

Fig. 1. A simple snare

Figure 1 shows an example of a subgame upon which a snare can be defined. In
all of our diagrams, boxes are used to represent Max vertices and triangles are
1 American Heritage Dictionary of the English Language, Fourth Edition.

Non-oblivious Strategy Improvement 217

used to represent Min vertices. The weight assigned to each vertex is shown on
that vertex. If we take W = {v, u} and χ(v) = u then (W, χ) will be a Max snare
in every game that contains this structure as a subgame. This is because the cycle
is positive, and therefore χ is a winning for Max on the subgame induced by W .
There is one escape from this snare, which is the edge Min can use to break the
cycle at u.

Since the example is so simple, Theorem 4 gives a particularly strong property
for this snare: every winning strategy for Min must use the escape edge at u. If
Min uses the edge (u, v) in some strategy, then Max could respond by using the
edge (v, u) to guarantee a positive cycle, and therefore the strategy would not be
winning for Min. This is a strong property because we can essentially ignore the
edge (u, v) in every game into which the example is embedded. This property
does not hold for snares that have more than one escape.

4 Strategy Improvement

In this section we will summarise Björklund and Vorobyov’s strategy improve-
ment algorithm for finding the 0-mean partition of a mean-payoff game [2]. Their
algorithm requires that the game is modified by adding retreat edges from every
Max vertex to a special sink vertex.

Definition 5 (Modified Game). A game (V, VMax, VMin, E, w) will be modi-
fied to create (V ∪ {s}, VMax ∪ {s}, VMin, E′, w′), where E′ = E ∪ {(v, s) : v ∈
VMax}, and w′(v) = w(v) for all vertices v in V , and w′(s) = 0.

Strategy improvement always works with the modified game, and for the rest of
the paper we will assume that the game has been modified.

Given two strategies, one for each player, the play induced by the two strate-
gies is either a finite path that ends at the sink or a finite initial path followed
by an infinitely repeated cycle. This is used to define the valuation of a vertex.

Definition 6 (Valuation). Let σ be a positional strategy for Max and τ be
a positional strategy for Min. If Play(v0, σ, τ) = 〈v0, v1, . . . vk, 〈c0, c1, . . . cl〉ω〉,
for some vertex v0, then we define Valσ,τ (v0) = −∞ if

∑l
i=0 w(ci) ≤ 0 and

∞ otherwise. Alternatively, if Play(v, σ, τ) = 〈v0, v1, . . . vk, s〉 then we define
Valσ,τ (v0) =

∑k
i=0 w(vi).

Strategy improvement algorithms choose one player to be the strategy improver,
which we choose to be Max. For a Max strategy σ, we define br(σ) to be the best
response to σ, which is a Min strategy with the property Valσ,br(σ)(v) ≤ Valσ,τ (v)
for every vertex v and every Min strategy τ . Such a strategy always exists, and
Björklund and Vorobyov give a method to compute it in polynomial time [2].
We will frequently want to refer to the valuation of a vertex v when the Max
strategy σ is played against br(σ), so we define Valσ(v) to be shorthand for
Valσ,br(σ)(v). Occasionally, we will need to refer to valuations from multiple
games. We use ValσG(v) to give the valuation of the vertex v when σ is played

218 J. Fearnley

against br(σ) in the game G. We extend all of our notations in a similar manner,
by placing the game in the subscript.

For a Max strategy σ and an edge (v, u) that is not chosen by σ, we say (v, u)
is profitable in σ if Valσ(σ(v)) < Valσ(u). Switching an edge (v, u) in σ is denoted
by σ[v �→ u]. This operation creates a new strategy where, for a vertex w ∈ VMax

we have σ[v �→ u](w) = u if w = v, and σ(w) otherwise. Let F be a set of edges
that contains at most one outgoing edge from each vertex. We define σ[F] to
be σ with every edge in F switched. The concept of profitability is important
because switching profitable edges creates an improved strategy.

Theorem 7 ([2]). Let σ be a strategy and P be the set of edges that are profitable
in σ. Let F ⊆ P be a subset of the profitable edges that contains at most one
outgoing edge from each vertex. For every vertex v we have Valσ(v) ≤ Valσ[W](v),
and there is a vertex for which the inequality is strict.

The second property that can be shown is that a strategy with no profitable edges
is optimal. An optimal strategy is a Max strategy σ such that Valσ(v) ≥ Valχ(v)
for every Max strategy χ and every vertex v. The 0-mean partition can be
derived from an optimal strategy σ: the set WMax contains every vertex v with
Valσ(v) = ∞, and WMin contains every vertex v with Valσ(v) < ∞.

Theorem 8 ([2]). A strategy with no profitable edges is optimal.

Strategy improvement begins by choosing a strategy σ0 with the property that
Valσ0(v) > −∞ for every vertex v. One way to achieve this is to set σ0(v) = s for
every vertex v in VMax. This guarantees the property unless there is some nega-
tive cycle that Min can enforce without passing through a Max vertex. Clearly,
for a vertex v on one of these cycles, Max has no strategy σ with Valσ(v) > −∞.
These vertices can therefore be removed in a preprocessing step and placed
in WMin.

For every strategy σi a new strategy σi+1 = σi[F] will be computed, where F
is a subset of the profitable edges in σi, which contains at most one outgoing edge
from each vertex. Theorem 7 implies that Valσi+1(v) ≥ Valσi(v) for every vertex
v, and that there is a vertex for which the inequality is strict. This implies that a
strategy cannot be visited twice by strategy improvement. The fact that there is a
finite number of positional strategies for Max implies that strategy improvement
must eventually reach a strategy σk in which no edges are profitable. Theorem 8
implies that σk is the optimal strategy, and strategy improvement terminates.

Strategy improvement requires a rule that determines which profitable edges
are switched in each iteration. We will call this a switching policy. Oblivious
switching policies are defined as α : 2E → 2E, where for every set P ⊆ E, we
have that α(P) contains at most one outgoing edge for each vertex.

Some of the most widely studied switching policies are all-switches policies.
These policies always switch every vertex that has a profitable edge, and when
a vertex has more than one profitable edge an additional rule must be given to
determine which edge to choose. Traditionally this choice is made by choosing
the successor with the highest valuation. We must also be careful to break ties

Non-oblivious Strategy Improvement 219

when there are two or more successors with the highest valuation. Therefore, for
the purposes of defining this switching policy we will assume that each vertex
v is given a unique index in the range {1, 2, . . . , |V |}, which we will denote as
Index(v).

All(F) = {(v, u) : There is no edge (v, w) ∈ F with Valσ(u) < Valσ(w)
or with Valσ(u) = Valσ(w) and Index(u) < Index(w)}.

In the introduction we described optimal switching policies, which we can
now formally define. A switching policy is optimal if it selects a subset of prof-
itable edges F that satisfies Valσ[H](v) ≤ Valσ[F](v) for every subset of profitable
edges H and every vertex v. Schewe has given a method to compute such a set
in polynomial time [13]. We will denote an optimal switching policy as Optimal.

5 Strategy Trees

The purpose of this section is to show how a strategy and its best response can
be viewed as a tree, and to classify profitable edges by their position in this tree.
We will classify edges as either cross edges or back edges. We will later show
how profitable back edges are closely related to snares.

It is technically convenient for us to make the assumption that every vertex has
a finite valuation under every strategy. The choice of starting strategy ensures
that for every strategy σ considered by strategy improvement, we have Valσ(v) >
−∞ for every vertex v. Obviously, there may be strategies under which some
vertices have a valuation of ∞. The first part of this section is dedicated to
rephrasing the problem so that our assumption can be made.

We define the positive cycle problem to be the problem of finding a strategy σ
with Valσ(v) = ∞ for some vertex v, or to prove that there is no strategy with
this property. The latter can be done by finding an optimal strategy σ with
Valσ(v) < ∞ for every vertex v. We can prove that a strategy improvement
algorithm for the positive cycle problem can be adapted to find the 0-mean
partition.

Proposition 9. Let α be a strategy improvement algorithm that solves the pos-
itive cycle problem in O(κ) time. There is a strategy improvement algorithm
which finds the 0-mean partition in O(|V | · κ) time.

We consider switching policies that solve the positive cycle problem, and so we
can assume that every vertex has a finite valuation under every strategy that our
algorithms consider. Our switching policies will terminate when a vertex with
infinite valuation is found. With this assumption we can define the strategy tree.

Definition 10 (Strategy Tree). Given a Max strategy σ and a Min strategy
τ we define the tree T σ,τ = (V, E′) where E′ = {(v, u) : σ(v) = u or τ(v) = u}.
In other words, T σ,τ is a tree rooted at the sink whose edges are those chosen by
σ and τ . We define T σ to be shorthand for T σ,br(σ), and Subtreeσ(v) : V → 2V

220 J. Fearnley

0

-1

1

0

2

v

u

a

b

c

d

s 0

10

Fig. 2. A strategy tree

to be the function that gives the vertices in the subtree rooted at the vertex v
in T σ.

We can now define our classification for profitable edges. Let (v, u) be a
profitable edge in the strategy σ. We call this a profitable back edge if u is
in Subtreeσ(v), otherwise we call it a profitable cross edge.

Figure 2 gives an example of a strategy tree. In all of our diagrams, the dashed
lines give a strategy σ for Max, and the dotted lines show br(σ). The strategy tree
contains every vertex, and every edge that is either dashed or dotted. The subtree
of v is the set {v, b, c, d, u}. The edge (v, u) is profitable because Valσ(v) = 0
and Valσ(u) = 1. Since u is contained in the subtree of v, the edge (v, u) is a
profitable back edge.

6 Profitable Back Edges

In this section we will expose the intimate connection between profitable back
edges and snares. We will show how every profitable back edge corresponds to
some snare that exists in the game. We will also define the concept of snare
consistency, and we will show how this concept is linked with the conditions
implied by Theorem 4.

Our first task is to show how each profitable back edge corresponds to some
Max snare in the game. Recall that a Max snare consists of a set of vertices, and
a strategy for Max that is winning for the subgame induced by those vertices.
We will begin by defining the set of vertices for the snare that corresponds to a
profitable back edge. For a profitable back edge (v, u) in a strategy σ we define
the critical set, which is the vertices in Subtreeσ(v) that Min can reach when
Max plays σ.

Definition 11 (Critical Set). If (v, u) is a profitable back edge in the strat-
egy σ, then we define the critical set as Criticalσ(v, u) = {w ∈ Subtreeσ(v) :

Non-oblivious Strategy Improvement 221

There is a path 〈u, u1, . . . uk = w〉 where for all i with 1 ≤ i ≤ k we have
ui ∈ Subtreeσ(v) and if ui ∈ VMax then ui+1 = σ(ui)}.
In the example given in Figure 2, the critical set for the edge (v, u) is {v, b, d, u}.
The vertex b is in the critical set because it is in the subtree of v, and Min can
reach it from u when Max plays σ. In contrast, the vertex c is not in the critical
set because σ(d) = v, and therefore Min cannot reach c from u when Max plays
σ. The vertex a is not in the critical set because it is not in the subtree of v.

Note that in the example, σ[v �→ u] is a winning strategy for the subgame
induced by critical set. The definition of the critical set is intended to capture
the largest connected subset of vertices contained in the subtree of v for which
σ[v �→ u] is guaranteed to be a winning strategy.

Proposition 12. Let (v, u) be a profitable back edge in the strategy σ and let C
be Criticalσ(v, u). The strategy σ[v �→ u] is winning for every vertex in G � C.

We can now formally define the snare that is associated with each profitable
back edge that is encountered by strategy improvement. For a profitable back
edge (v, u) in a strategy σ we define Snareσ(v, u) = (Criticalσ(v, u), χ) where
χ(v) = σ[v �→ u](v) if v ∈ Criticalσ(v, u), and undefined at other vertices.
Proposition 12 confirms that this meets the definition of a snare.

We will now argue that the conditions given by Theorem 4 must be observed
in order for strategy improvement to terminate. We begin by defining a concept
that we call snare consistency. We say that a Max strategy is consistent with a
snare if Min’s best response chooses an escape from that snare.

Definition 13 (Snare Consistency). A strategy σ is said to be consistent with
the snare (W, χ) if br(σ) uses some edge in Esc(W).

In the example given in Figure 2 we can see that σ is not consistent with
Snareσ(v, u). This is because br(σ) does not choose the edge (b, a). However,
once the edge (v, u) is switched we can prove that br(σ[v �→ u]) must use the
edge (b, a). This is because Min has no other way of connecting every vertex in
Subtreeσ(v) to the sink, and if some vertex is not connected to the sink then its
valuation will rise to ∞.

Proposition 14. Let (v, u) be a profitable back edge in the strategy σ. There is
some edge (x, y) in Esc(Criticalσ(v, u)) such that br(σ[v �→ u])(x) = y.

We can show that strategy improvement cannot terminate unless the current
strategy is consistent with every snare that exists in the game. This is because
every strategy that is not consistent with some snare must contain a profitable
edge.

Proposition 15. Let σ be a strategy that is not consistent with a snare (W, χ).
There is a profitable edge (v, u) in σ such that χ(v) = u.

These two propositions give us a new tool to study the process of strategy
improvement. Instead of viewing strategy improvement as a process that tries to

222 J. Fearnley

increase valuations, we can view it as a process that tries to force consistency with
Max snares. Proposition 15 implies that this process can only terminate when
the current strategy is consistent with every Max snare in the game. Therefore,
the behaviour of strategy improvement on an example is strongly related with
the snares that exist for the strategy improver in that example.

7 Using Snares to Guide Strategy Improvement

In the previous sections, we have shown the strong link between snares and
strategy improvement. In this section we will show how this insight can be used
to guide strategy improvement. We will give a procedure that takes a strategy
that is inconsistent with some snare, and returns an improved strategy that is
consistent with that snare. Since the procedure is guaranteed to produce an im-
proved strategy, it can be used during strategy improvement as an alternative
to switching a profitable edge. We call algorithms that make use of this proce-
dure non-oblivious strategy improvement algorithms, and we give a reasonable
example of such an algorithm.

To define our procedure we will use Proposition 15. Recall that this proposi-
tion implies that if a strategy σ is inconsistent with a snare (W, χ), then there is
some profitable edge (v, u) in σ such that χ(v) = u. Our procedure will actually
be a strategy improvement switching policy. This policy will always choose to
switch an edge that is chosen by χ but not by the current strategy. As long as
the current strategy remains inconsistent with (W, χ) such an edge is guaranteed
to exist, and the policy terminates once the current strategy is consistent with
the snare. This procedure is shown as Algorithm 1.

Algorithm 1. FixSnare(σ, (W, χ))
while σ is inconsistent with (W, χ) do

(v, w) := Some edge where χ(v) = w and (v, w) is profitable in σ.
σ := σ[v �→ u]

end while
return σ

In each iteration the switching policy switches one vertex v to an edge (v, u)
with the property that χ(v) = u, and it never switches a vertex at which the
current strategy agrees with χ. It is therefore not difficult to see that if the
algorithm has not terminated after |W | iterations then the current strategy will
agree with χ on every vertex in W . We can prove that such a strategy must be
consistent with (W, χ), and therefore the switching policy must terminate after
at most |W | iterations.

Proposition 16. Let σ be a strategy that is not consistent with a snare (W, χ).
Algorithm 1 will arrive at a strategy σ′ which is consistent with (W, χ) after at
most |W | iterations.

Non-oblivious Strategy Improvement 223

Since FixSnare is implemented as a strategy improvement switching policy that
switches only profitable edges, the strategy that is produced must be an improved
strategy. Therefore, at any point during the execution of strategy improvement
we can choose not to switch a subset of profitable edges and run FixSnare in-
stead. Note that the strategy produced by FixSnare may not be reachable from
the current strategy by switching a subset of profitable edges. This is because
FixSnare switches a sequence of profitable edges, some of which may not have
been profitable in the original strategy.

We propose a new class of strategy improvement algorithms that are aware
of snares. These algorithms will record a snare for every profitable back edge
that they encounter during their execution. In each iteration these algorithms
can either switch a subset of profitable edges or run the procedure FixSnare
on some recorded snare that the current strategy is inconsistent with. We call
these algorithms non-oblivious strategy improvement algorithms, and the general
schema that these algorithms follow is shown in Algorithm 2.

Algorithm 2. NonOblivious(σ)
S := ∅
while σ has a profitable edge do

S := S ∪ {Snareσ(v, u) : (v, u) is a profitable back edge in σ}
σ := Policy(σ, S)

end while
return σ

Recall that oblivious strategy improvement algorithms required a switching
policy to specify which profitable edges should be switched in each iteration.
Clearly, non-oblivious strategy improvement algorithms require a similar method
to decide whether to apply the procedure FixSnare or to pick some subset of
profitable edges to switch. Moreover, they must decide which snare should be
used when the procedure FixSnare is applied. We do not claim to have the
definitive non-oblivious switching policy, but in the rest of this section we will
present one reasonable method of constructing a non-oblivious version of an
oblivious switching policy. We will later show that our non-oblivious strategy
improvement algorithms behave well on the examples that are known to cause
exponential time behaviour for oblivious strategy improvement.

We intend to take an oblivious switching policy α as the base of our non-
oblivious switching policy. This means that when we do not choose to use the
procedure FixSnare, we will switch the subset of profitable edges that would be
chosen by α. Our goal is to only use FixSnare when doing so is guaranteed to
yield a larger increase in valuation than applying α. Clearly, in order to achieve
this we must know how much the valuations increase when α is applied and how
much the valuations increase when FixSnare is applied.

Determining the increase in valuation that is produced by applying an oblivi-
ous switching policy is easy. Since every iteration of oblivious strategy improve-
ment takes polynomial time, We can simply switch the edges and measure the

224 J. Fearnley

difference between the current strategy and the one that would be produced. Let
σ be a strategy and let P be the set of edges that are profitable in σ. For an
oblivious switching policy α the increase of applying α is defined to be:

Increase(α, σ) =
∑

v∈V

(Valσ[α(P)](v) − Valσ(v))

We now give a lower bound on the increase in valuation that an application of
FixSnare produces. Let (W, χ) be a snare and suppose that the current strategy
σ is inconsistent with this snare. Our lower bound is based on the fact that
FixSnare will produce a strategy that is consistent with the snare. This means
that Min’s best response is not currently choosing an escape from the snare,
but it will be forced to do so after FixSnare has been applied. It is easy to see
that forcing the best response to use a different edge will cause an increase in
valuation, since otherwise the best response would already be using that edge.
Therefore, we can use the increase in valuation that will be obtained when Min
is forced to use and escape. We define:

SnareIncreaseσ(W, χ) = min{(Valσ(y) + w(x)) − Valσ(x) : (x, y) ∈ Esc(W)}
This expression gives the smallest possible increase in valuation that can happen
when Min is forced to use an edge in Esc(W). We can prove that applying
FixSnare will cause an increase in valuation of at least this amount.

Proposition 17. Let σ be a strategy that is not consistent with a snare (W, χ),
and let σ′ be the result of FixSnare(σ, (W, χ)). We have:

∑

v∈V

(Valσ
′
(v) − Valσ(v)) ≥ SnareIncreaseσ(W, χ)

We now have the tools necessary to construct our proposed augmentation
scheme, which is shown as Algorithm 3. The idea is to compare the increase
obtained by applying α and the increase obtained by applying FixSnare with the
best snare that has been previously recorded, and then to only apply FixSnare
when it is guaranteed to yield a larger increase in valuation.

Algorithm 3. (Augment(α))(σ, S)
(W,χ) := argmax(X,μ)∈S SnareIncreaseσ(X, μ)
if Increase(α, σ) > SnareIncreaseσ(W,χ) then

P := {(v, u) : (v, u) is profitable in σ}
σ := σ[α(P)]

else
σ := FixSnare(σ, (W, χ))

end if
return σ

Non-oblivious Strategy Improvement 225

8 Comparison with Oblivious Strategy Improvement

In this section we will demonstrate how non-oblivious strategy improvement can
behave well in situations where oblivious strategy improvement has exponential
time behaviour. Unfortunately, there is only one source of examples with such
properties in the literature, and that is the family of examples given by Fried-
mann. In fact, Friedmann gives two slightly different families of hard examples.
The first type is the family that that forces exponential behaviour for the all-
switches policy [5], and the second type is the family that forces exponential
behaviour for both all-switches and optimal switching policies [6]. Although our
algorithm performs well on both families, we will focus on the example that was
designed for optimal switching policies because it is the most interesting of the
two.

This section is split into two parts. In the first half of this section we will study
a component part of Friedmann’s example upon which the procedure FixSnare
can out perform an optimal switching policy. This implies that there are situ-
ations in which our augmentation scheme will choose to use FixSnare. In the
second half, we will show how the good performance on the component part is
the key property that allows our non-oblivious strategy improvement algorithms
to terminate quickly on Friedmann’s examples.

8.1 Optimal Switching Policies

We have claimed that the procedure FixSnare can cause a greater increase in
valuation than switching any subset of profitable edges. We will now give an
example upon which this property holds. The example that we will consider is
shown in Figure 3, and it is one of the component parts of Friedmann’s family of
examples that force optimal policies to take an exponential number of steps [6].

The diagram shows a strategy for Max as a set of dashed edges. It also shows
Min’s best response to this strategy as a dotted edge. Even though this example

0

0

0

1

2100

2

1

0

v

x

y

z

Fig. 3. A component of Friedmann’s exponential time example

226 J. Fearnley

could be embedded in an arbitrary game, we can reason about the behaviour of
strategy improvement by specifying, for each edge that leaves the example, the
valuation of the successor vertex that the edge leads to. These valuations are
shown as numbers at the end of each edge that leaves the example.

In order to understand how strategy improvement behaves we must determine
the set of edges that are profitable for our strategy. There are two edges that are
profitable: the edge (z, v) is profitable because the valuation of v is 2 which is
greater than 0, and the edge at x that leaves the example is profitable because
leaving the example gives a valuation of 2 and the valuation of y is 1. The
edge (y, z) is not profitable because the valuation of z is 0, which is smaller than
the valuation of 1 obtained by leaving the example at y.

For the purposes of demonstration, we will assume that no other edge is
profitable in the game into which the example is embedded. Furthermore, we
will assume that no matter what profitable edges are chosen to be switched,
the valuation of every vertex not contained in the example will remain constant.
Therefore, the all-switches policy will switch the edges (z, v) and the edge leading
away from the example at the vertex x. It can easily be verified that this is also
the optimal subset of profitable edges, and so the all-switches and the optimal
policies make the same decisions for this strategy. After switching the edges
chosen by the two policies, the valuation of x will rise to 2, the valuation of z
will rise to 3, and the valuation of y remain at 1.

By contrast, we will now argue that non-oblivious strategy improvement would
raise the valuations of x, y, and z to 2100 + 1. Firstly, it is critical to note that
the example is a snare. If we set W = {v, x, y, z} and choose χ to be the partial
strategy for Max that chooses the edges (x, y), (y, z), and (z, v), then (W, χ) will
be a snare in every game into which the example is embedded. This is because
there is only one cycle in the subgame induced by W when Max plays χ, and
this cycle has positive weight.

Now, if the non-oblivious strategy improvement algorithm was aware of the
snare (W, χ) then the lower bound given by Proposition 17 would be 2100. This
is because closing the cycle forces Min’s best response to use escape edge to
avoid losing the game. Since 2100 is much larger than the increase obtained by
the optimal switching policy, the policies Augment(All) and Augment(Optimal)
will choose to run FixSnare on the snare (W, χ). Once consequence of this is that
the policy Optimal is no longer optimal in the non-oblivious setting.

8.2 Friedmann’s Exponential Time Examples

The example that we gave in the previous subsection may appear to be trivial.
After all, if the valuations outside the example remain constant then both the
all-switches and optimal switching policies will close the cycle in two iterations.
A problem arises, however, when the valuations can change. Note that when
we applied the oblivious policies to the example, no progress was made towards
closing the cycle. We started with a strategy that chose to close the cycle at only
one vertex, and we produced a strategy that chose to close the cycle at only one
vertex. When the assumption that valuations outside the example are constant

Non-oblivious Strategy Improvement 227

is removed, it becomes possible for a well designed game to delay the closing of
the cycle for an arbitrarily large number of iterations simply by repeating the
pattern of valuations that is shown in Figure 3.

2k+n 2k+2 2k+1

0

0

0

1

0

0

0

1

0

0

0

1

. . .

Fig. 4. The bits of a binary counter

Friedmann’s family of examples exploits this property to build a binary
counter, which uses the subgame shown in Figure 3 to represent the bits. The
general idea of this approach is shown in Figure 4. Friedmann’s example uses
n instances of the cycle, indexed 1 through n. These bits are interconnected
in a way that enforces two properties on both the all-switches and the optimal
switching policies. Firstly, the ability to prevent a cycle from closing that we have
described is used to ensure that the cycle with index i can only be closed after
every cycle with index smaller than i has been closed. Secondly, when the cycle
with index i is closed, every cycle with index smaller than i is forced to open.
Finally, every cycle is closed in the optimal strategy for the example. Now, if the
initial strategy is chosen so that every cycle is open, then these three properties
are sufficient to force both switching policies to take at least 2n steps before
terminating.

The example works by forcing the oblivious switching policy to make the same
mistakes repeatedly. To see this, consider the cycle with index n− 1. When the
cycle with index n is closed for the first time, this cycle is forced open. The
oblivious optimal switching policy will then not close it again for at least an-
other 2n−1 steps. By contrast, the policies Augment(All) and Augment(Optimal)
would close the cycle again after a single iteration. This breaks the exponential
time behaviour, and it turns out that both of our policies terminate in polyno-
mial time on Friedmann’s examples.

Of course, for Friedmann’s examples we can tell by inspection that Max al-
ways wants to keep the cycle closed. It is not difficult, however, to imagine an
example which replaces the four vertex cycle with a complicated subgame, for
which Max had a winning strategy and Min’s only escape is to play to the ver-
tex with a large weight. This would still be a snare, but the fact that it is a
snare would only become apparent during the execution of strategy improve-
ment. Nevertheless, as long as the subgame can be solved in polynomial time

228 J. Fearnley

by non-oblivious strategy improvement, the whole game will also be solved in
polynomial time. This holds for exactly the same reason as the polynomial be-
haviour on Friedmann’s examples: once the snare representing the subgame has
been recorded then consistency with that snare can be enforced in the future.

9 Conclusions and Further Work

This paper has uncovered and formalized a strong link between the snares that
exist in a game and the behaviour of strategy improvement on that game. We
have shown how this link can be used to guide the process of strategy improve-
ment. With our augmentation procedure we gave one reasonable method of in-
corporating non-oblivious techniques into traditional strategy improvement, and
we have demonstrated how these techniques give rise to good behaviour on the
known exponential time examples.

It must be stressed that we are not claiming that simply terminating in poly-
nomial time on Friedmann’s examples is a major step forward. After all, the
randomized switching policies of Björklund and Vorobyov [2] have the same
property. What is important is that our strategy improvement algorithms are
polynomial because they have a better understanding of the underlying structure
of strategy improvement. Friedmann’s examples provide an excellent cautionary
tale that shows how ignorance of this underlying structure can lead to exponen-
tial time behaviour.

There are a wide variety of questions that are raised by this work. Firstly,
we have the structure of snares in parity and mean-payoff games. Theorem 4
implies that all algorithms that find winning strategies for parity and mean
payoff games must, at least implicitly, consider snares. We therefore propose
that a thorough and complete understanding of how snares arise in a game is a
necessary condition for devising a polynomial time algorithm for these games.

It is not currently clear how the snares in a game affect the difficulty of solving
that game. It is not difficult, for example, to construct a game in which there an
exponential number of Max snares: in a game in which every weight is positive
there will be a snare for every connected subset of vertices. However, games with
only positive weights have been shown to be very easy to solve [9]. Clearly, the
first challenge is to give a clear formulation of how the structure of the snares
in a given game affects the difficulty of solving it.

In our attempts to construct intelligent non-oblivious strategy improvement
algorithms we have continually had problems with examples in which Max and
Min snares overlap. By this we mean that the set of vertices that define the
subgames of the snares have a non empty intersection. We therefore think that
studying how complex the overlapping of snares can be in a game may lead to
further insight. There are reasons to believe that these overlappings cannot be
totally arbitrary, since they arise from the structure of the game graph and the
weights assigned to the vertices.

We have presented a non-oblivious strategy improvement algorithm that pas-
sively records the snares that are discovered by an oblivious switching policy, and

Non-oblivious Strategy Improvement 229

then uses those snares when doing so is guaranteed to lead to a larger increase
in valuations. While we have shown that this approach can clearly outperform
traditional strategy improvement, it does not appear to immediately lead to a
proof of polynomial time termination. It would be interesting to find an expo-
nential time example for the augmented versions of the all-switches policy or of
the optimal policy. This may be significantly more difficult since it is no longer
possible to trick strategy improvement into making slow progress by forcing it
to repeatedly close a small number of snares.

There is no inherent reason why strategy improvement algorithms should be
obsessed with trying to increase valuations as much as possible in each iteration.
Friedmann’s exponential time example for the optimal policy demonstrates that
doing so in no way guarantees that the algorithm will always make good progress.
Our work uncovers an alternate objective that strategy improvement algorithms
can use to measure their progress. Strategy improvement algorithms could ac-
tively try to discover the snares that exist in the game, or they could try and
maintain consistency with as many snares as possible, for example. There is
much scope for an intelligent snare based strategy improvement algorithm.

We have had some limited success in designing intelligent snare based strategy
improvement algorithms for parity games. We have developed a non-oblivious
strategy improvement algorithm which, when given a list of known snares in the
game, either solves the game or finds a snare that is not in the list of known
snares. This gives the rather weak result of a strategy improvement algorithm
whose running time is polynomial in |V | and k, where k is the number of Max
snares that exist in the game. This is clearly unsatisfactory since we have already
argued that k could be exponential in the number of vertices. However, this is
one example of how snares can be applied to obtain new bounds for strategy
improvement. As an aside, the techniques that we used to obtain this algorithm
do not generalize to mean-payoff games. Finding a way to accomplish this task
for mean-payoff games is an obvious starting point for designing intelligent snare
based algorithms for this type of game.

Acknowledgements. I am indebted to Marcin Jurdziński for his guidance,
support, and encouragement during the preparation of this paper.

References

1. Björklund, H., Sandberg, S., Vorobyov, S.: A discrete subexponential algorithm
for parity games. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp.
663–674. Springer, Heidelberg (2003)

2. Björklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy im-
provement algorithm for mean payoff games. Discrete Applied Mathematics 155(2),
210–229 (2007)

3. Condon, A.: On algorithms for simple stochastic games. In: Cai, J.-Y. (ed.) Ad-
vances in Computational Complexity Theory. DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, vol. 13, pp. 51–73. American Mathe-
matical Society, Providence (1993)

230 J. Fearnley

4. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of μ-
calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396.
Springer, Heidelberg (1993)

5. Friedmann, O.: A super-polynomial lower bound for the parity game strategy im-
provement algorithm as we know it. In: Logic in Computer Science (LICS). IEEE,
Los Alamitos (2009)

6. Friedmann, O.: A super-polynomial lower bound for the parity game strategy im-
provement algorithm as we know it (January 2009) (preprint)

7. Howard, R.: Dynamic Programming and Markov Processes. Technology Press and
Wiley (1960)

8. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. In: Proceedings of ACM-SIAM Symposium on Discrete
Algorithms, SODA 2006, pp. 117–123. ACM/SIAM (2006)

9. Khachiyan, L., Gurvich, V., Zhao, J.: Extending dijkstras algorithm to maximize
the shortest path by node-wise limited arc interdiction. In: Grigoriev, D., Harri-
son, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 221–234. Springer,
Heidelberg (2006)

10. Liggett, T.M., Lippman, S.A.: Stochastic games with perfect information and time
average payoff. SIAM Review 11(4), 604–607 (1969)

11. Mansour, Y., Singh, S.P.: On the complexity of policy iteration. In: Laskey, K.B.,
Prade, H. (eds.) UAI 1999: Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence, pp. 401–408. Morgan Kaufmann, San Francisco (1999)

12. Puri, A.: Theory of Hybrid Systems and Discrete Event Systems. PhD thesis,
University of California, Berkeley (1995)

13. Schewe, S.: An optimal strategy improvement algorithm for solving parity and
payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp.
369–384. Springer, Heidelberg (2008)

14. Stirling, C.: Local model checking games (extended abstract). In: Lee, I., Smolka,
S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)

15. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games (Extended abstract). In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

16. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theo-
retical Computer Science 158(1-2), 343–359 (1996)

	Non-oblivious Strategy Improvement
	Introduction
	Preliminaries
	Snares
	Strategy Improvement
	Strategy Trees
	Profitable Back Edges
	Using Snares to Guide Strategy Improvement
	Comparison with Oblivious Strategy Improvement
	Optimal Switching Policies
	Friedmann's Exponential Time Examples

	Conclusions and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

