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Preface

The 16th LPAR event was held in Africa for the very first time, signalling a
bright future for a conference with a glowing history. For many years it was
a goal of the steering committee to hold LPAR in Africa and the enthusiasm
for our presence far exceeded our expectations. With the help of local organiser
Waly Faye, LPAR integrated itself into the surrounding culture and atmosphere,
allowing participants to enjoy a collage of music, dancing, food, and logic.

Organisational issues caused LPAR 16, originally intended to be held in 2009,
to be delayed to 2010. Despite this, LPAR 16 received 47 submissions. Each
submission was reviewed by at least 4, and on average 4.1, programme committee
members. The committee members decided to accept 27 regular papers and 9
short papers. They deliberated electronically via the EasyChair system, which
continued to provide a platform for smoothly carrying out all aspects of the
program selection and finalization and conference registration. It has been a
tradition of LPAR to invite some of the most influential researchers in its focus
area to discuss their work and their vision for the field. This year’s distinguished
speakers were Geoff Sutcliffe (University of Miami, USA) and Michel Parigot
(PPS, France). This volume contains the revised versions of the accepted full
papers as well as the full text of Geoff Sutcliffe’s talk.

This conference would not have been possible without the hard work of the
many people who relentlessly handled the local arrangements, especially Wale
Faye, who offered us the full hospitality of his country, village and extended fam-
ily. We are most grateful to the 32 members of the Program Committee, who did
an excellent job in handling the submissions, and the additional reviewers, who
assisted them in their evaluations. We greatly appreciate the generous support
of our sponsors, the Office of Naval Research and Microsoft Research. We are
also especially grateful to Michael Gabbay for organising, drafting and compiling
these proceedings. Finally we are grateful to the authors, the invited speakers
and the attendees who made this conference an enjoyable and fruitful event.

June 2010 Edmund Clarke
Andrei Voronkov
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The TPTP World –
Infrastructure for Automated Reasoning

Geoff Sutcliffe

University of Miami, USA

Abstract. The TPTP World is a well known and established infras-
tructure that supports research, development, and deployment of Auto-
mated Theorem Proving (ATP) systems for classical logics. The data,
standards, and services provided by the TPTP World have made it in-
creasingly easy to build, test, and apply ATP technology. This paper
reviews the core features of the TPTP World, describes key service com-
ponents of the TPTP World, presents some successful applications, and
gives an overview of the most recent developments.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development and use
of computer programs that automate sound reasoning: the derivation of conclu-
sions that follow inevitably from facts. The dual discipline, automated model
finding, develops computer programs that establish that a set of statements is
consistent, and in this work we consider automated model finding to be part of
ATP. These capabilities lie at the heart of many important computational tasks,
e.g., formal methods for software and hardware design and verification, the anal-
ysis of network security protocols, solving hard problems in mathematics, and
inference for the semantic web. High performance ATP systems (for logics sup-
ported in the TPTP World) include E/EP [16], LEO-II [1], Paradox [3], SPASS
[33], Vampire [14], and Waldmeister [7].

The TPTP World is a well known and established infrastructure that sup-
ports research, development, and deployment of Automated Theorem Proving
(ATP) systems for classical logics. The TPTP World includes the TPTP prob-
lem library, the TSTP solution library, standards for writing ATP problems
and reporting ATP solutions, tools for processing ATP problems and solutions,
and harnesses for controlling the execution of ATP systems and tools. The
TPTP World infrastructure has been deployed in a range of applications, in
both academia and industry. Section 2 of this paper reviews the core of the
TPTP World, Section 3 describes key service components of the TPTP World,
Section 4 presents some applications, and Section 5 gives an overview of the
most recent developments in the TPTP World. Section 6 concludes.

E.M. Clarke and A. Voronkov (Eds.): LPAR-16, LNAI 6355, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 G. Sutcliffe

2 The TPTP World Core Infrastructure

The Thousands of Problems for Theorem Provers (TPTP) problem library [20]
is the de facto standard set of test problems for Automated Theorem Prov-
ing (ATP) systems for classical logics.1 It is the original core component of the
TPTP World, and is commonly referred to as “the TPTP”. The TPTP problem
library supplies the ATP community with a comprehensive library of the test
problems that are available today, in order to provide an overview and a sim-
ple, unambiguous reference mechanism, to support the testing and evaluation of
ATP systems, and to help ensure that performance results accurately reflect ca-
pabilities of the ATP systems being considered. The current TPTP (v4.0.1) has
forty-one domains, in the fields of logic, mathematics, computer science, science
and engineering, and social sciences. Each TPTP problem file has a header sec-
tion that contains information for the user, and the logical formulae are wrapped
with annotations that provide a unique name for each formula in the problem,
a user role (axiom, conjecture, etc.), and auxiliary user information. The logi-
cal formulae are written in the TPTP language (described below), which has a
consistent and easily understood notation. Since its first release in 1993, many
researchers have used the TPTP as an appropriate and convenient basis for ATP
system evaluation. Over the years the TPTP has also increasingly been used as
a conduit for ATP users to provide samples of their problems to ATP system
developers – users have found that contributing samples of their problems to the
TPTP exposes the problems to the developers, who then improve their systems’
performances on the problems, which completes a cycle to provide the users with
more effective tools.

One of the keys to the success of the TPTP World is the consistent use of the
TPTP language for writing problems and solutions [24], which enables conve-
nient communication between different systems and researchers. The language
shares many features with Prolog, a language that is widely known in the ATP
community. Indeed, with a few operator definitions, units of TPTP data can be
read in Prolog using a single read/1 call, and written with a single writeq/1
call. A principal goal of the development of the TPTP language grammar was
to make it easy to translate the BNF into lex/yacc/flex/bison input, so that
construction of parsers (in languages other than Prolog) can be a reasonably
easy task [32]. The TPTP World services described in Section 3 naturally pro-
cess data written in the TPTP language. Parsers written in C and Java, and
the lex/yacc/flex/bison input files, are part of the TPTP World. Many ATP
system developers and users have adopted the TPTP language.

In order to precisely specify what is known or has been established about a set
of formulae, the TPTP World provides the SZS ontologies [19]. These ontologies
provide status and dataform values to describe logical data. For example, a
TPTP problem might be tagged as a Theorem, a model finder might report that
a set of formulae is Satisfiable, and a parser might report that a formula
contains a SyntaxError. The SZS standard also recommends the precise way

1 Available at http://www.tptp.org

http://www.tptp.org
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in which the ontology values should be presented, in order to facilitate easy
processing.

The Thousands of Solutions from Theorem Provers (TSTP) solution library,
the “flip side” of the TPTP, is a corpus of ATP systems’ solutions to TPTP
problems.2 A major use of the TSTP is for ATP system developers to examine
solutions to problems, and thus understand how they can be solved, leading to
improvements to their own systems. At the time of writing this paper, the TSTP
contained the results of running 54 ATP systems and system variants on all the
problems in the TPTP that they can, in principle, attempt to solve (therefore,
e.g., finite model finding systems are not run on problems that are known to be
unsatisfiable). This has produced over 155000 files for solved problems, of which
almost 100000 contain explicit proofs or models (rather than only an assurance
of a solution). The first section of each TSTP solution file is a header that con-
tains information about the TPTP problem, information about the ATP system,
characteristics of the computer used, the SZS status and output dataform from
the system, and statistics about the solution. The second section of each TSTP
solution file contains the annotated formulae that make up the solution. A key
feature of the TSTP is that solutions from many of the ATP systems are written
in the TPTP language - the same language as used for TPTP problems.

An important feature of the TPTP is the problem ratings [28]. The ratings
provide a well-defined measure of how difficult the problems are for ATP systems,
and how effective the ATP systems are for different types of problems. For rating,
the TPTP problems are divided into Specialist Problem Classes (SPCs), and the
TSTP files for each SPC are analyzed. The performance of systems whose set of
solved problems is not a subset of that of any other system is used to rate the
problems. The fraction of such systems that fail on a problem is the difficulty rat-
ing for a problem: problems that are solved by all/some/none of the systems get
ratings of 0.00/0.01-0.99/1.00, and are referred to as easy/difficult/hard prob-
lems respectively. Over time, decreasing ratings for individual problems provide
an indication of progress in the field [23]. The analysis done for problem ratings
also provides ratings for ATP systems, for each SPC: the rating of a system is
the fraction of the difficult problems that it solves.

3 TPTP World Services

The TPTP World includes tools, programming libraries, and online services
that are used to support the application and deployment of ATP systems.3 This
section describes a few of the components – there are many more!

SystemOnTPTP [17] is a TPTP World utility that allows an ATP problem
or solution to be easily and quickly submitted in various ways to a range of
ATP systems and tools. The utility uses a suite of currently available ATP
systems and tools, whose properties (input format, reporting of result status,
etc.) are stored in a simple text database. The implementation of SystemOnTPTP

2 Available at http://www.tptp.org/TSTP
3 The tools and libraries are available at http://www.tptp.org/TPTPWorld.tgz

http://www.tptp.org/TSTP
http://www.tptp.org/TPTPWorld.tgz
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uses several subsidiary tools to preprocess the input, control the execution of
the ATP systems and tools, and postprocess the output. On the input side
TPTP2X or TPTP4X (TPTP World tools for parsing and transforming TPTP
format formulae) is used to prepare the input for processing. A program called
TreeLimitedRun is used to monitor the execution of ATP systems and tools, and
limit the CPU time and memory used – TreeLimitedRun monitors processes
more tightly than is possible with standard operating system calls. Finally a
program called X2tptp converts an ATP system’s output to TPTP format, if
requested by the user.

The TPTP World ATP system recommendation service uses the ATP system
ratings to recommend ATP systems for solving a new problem. A new problem is
analysed to determine its SPCs – one for establishing theoremhood or unsatisfia-
bility, and one for establishing countersatisfiability or satisfiability. The systems
that contributed to the problem ratings in those SPCs are recommended, in
decreasing order of system rating for the SPCs.

GDV [18] is a TPTP World tool that uses structural and then semantic tech-
niques to verify TPTP format derivations. Structural verification checks that in-
ferences have been done correctly in the context of the derivation, e.g., checking
that the derivation is acyclic, checking that assumptions have been discharged,
and checking that introduced symbols (e.g., in Skolemization) are distinct. Se-
mantic verification checks the expected semantic relationship between the par-
ents and inferred formula of each inference step. This is done by encoding the
expectation as a logical obligation in an ATP problem, and then discharging
the obligation by solving the problem with trusted ATP systems. The expected
semantic relationship between the parents and inferred formula of an inference
step depends on the intent of the inference rule used. For example, deduction
steps expect the inferred formula to be a theorem of its parent formulae. The
expected relationship is recorded as an SZS value in each inferred formula of
a derivation. GDV uses the SystemOnTPTP utility to execute the trusted ATP
systems.

AGInTRater is a TPTP World tool that evaluates the interestingness of for-
mulae in TPTP format derivations (AGInTRater is a component of the AGInT
system that discovers interesting theorems of a given set of axioms [13]). AGIn-
TRater has a filter that measures up to eight “interestingness” features of formu-
lae (some features are inappropriate in some situations): preprocessing detects
and discards obvious tautologies, obviousness estimates the difficulty of proving
a formula, weight estimates the effort required to read a formula, complexity
estimates the effort required to understand a formula, surprisingness measures
new relationships between function and predicate symbols in a formula, intensity
measures how much a formula summarizes information from its leaf ancestors,
adaptivity measures how tightly the universally quantified variables of a formula
are constrained, and focus measures the extent to which a formula is making
a positive or negative statement. Formulae that pass the majority of the filters
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are passed to a static ranker, which combines the measures from the filters with
a measure of usefulness, which measures how much a formula has contributed
to proofs of further formulae. The scores are then normalized and averaged to
produce an interestingness score. AGInTRater is a unique feature of the IDV
derivation visualizer, described next.

IDV [29] is a TPTP World tool for graphical rendering and analysis of TPTP
format derivations. IDV provides an interactive interface that allows the user to
quickly view features of the derivation, and access analysis facilities. The left
hand side of Figure 1 shows the rendering of the derivation output by the EP
ATP system, for the TPTP problem PUZ001+1. The IDV window is divided into
three panes: the top pane contains control buttons and sliders, the middle pane
shows the rendered DAG, and the bottom pane gives the text of the annotated
formula for the node pointed to by the mouse. The rendering of the derivation
DAG uses shapes, colors, and tags to provide information about the derivation.
The user can interact with the rendering in various ways using mouse-over and
mouse clicks. The buttons and sliders in the control pane provide a range of
manipulations on the rendering – zooming, hiding and displaying parts of the
DAG, and access to GDV for verification. A particularly novel feature of IDV
is its ability to provide a synopsis of a derivation by using the AGInTRater to
identify interesting lemmas, and hiding less interesting intermediate formulae. A
synopsis is shown on the right hand side of Figure 1. IDV is easily appreciated
by using it through the online interfaces described next.

All of the TPTP World services described in this section, and a few more be-
sides, are accessible in web browser interfaces.4 These interfaces execute most of
the services using the SystemOnTPTP utility. The SystemB4TPTP interface pro-
vides access to problem pre-processing tools, including parsers, pretty-printers,
first-order form to clause normal form conversion, type checking, and axiom rele-
vance measures. It additionally provides a facility to convert a problem to TPTP
format from some other formats. The SystemOnTPTP interface provides the core
functionality of the SystemOnTPTP utility, to submit an ATP problem to ATP
systems. It additionally provides system reports and recommendations for which
systems to use on a given problem, based on the SPCs and system ratings. The
SystemOnTPTP interface also has direct access to the SSCPA ATP meta-system
[25], which runs multiple recommended ATP systems in competition parallel. Fi-
nally, the SystemOnTSTP interface provides access to derivation post-processing
tools, including parsers, pretty-printers, answer extraction, GDV, AGInTRater,
and IDV.

As an alternative to interactive access via a web browser, the TPTP World ser-
vices can also be accessed programmatically using http POST multi-part form
requests. Perl and Java code for doing this is available as part of the TPTP
World. The benefits of using the TPTP World online service include not in-
stalling ATP systems and tools locally, having access to the latest version of
ATP systems (e.g., versions from CASC and unpublished versions), and full
access to all the TPTP World tools. You are encouraged to abuse my server!

4 Available starting at http://www.tptp.org/cgi-bin/SystemOnTPTP

http://www.tptp.org/cgi-bin/SystemOnTPTP
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Fig. 1. EP’s proof by refutation of PUZ001+1

4 TPTP World Applications

Research scientists in the Robust Software Engineering Group of the Intelligent
Systems Division of NASA Ames have developed, implemented, and evaluated
a certification approach that uses Hoare-style techniques to formally demon-
strate the safety of aerospace programs that are automatically generated from
high-level specifications [5]. A verification condition generator processes the au-
tomatically generated code, and produces a set of safety obligations in the form
of TPTP format problems that are provable if and only if the code is safe. The
obligation problems are discharged using the SSCPA ATP meta-system (men-
tioned in Section 3), to produce TPTP format proofs that are then verified by
GDV. The proofs and verification logs serve as safety certificates for authorities
like the FAA.
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The MPTP project [31] aims to link-up the large formal Mizar Mathemat-
ical Library (MML) [15] with ATP technology, and to boost the development
of AI-based ATP methods. The MPTP system converts Mizar format prob-
lems to an extended TPTP language that adds term-dependent sorts and ab-
stract (Fraenkel) terms to the TPTP syntax. Problems in the extended lan-
guage are transformed to standard TPTP format by relativization of sorts and
deanonymization of abstract terms. Finding proofs for these problems provides
cross verification of the underlying Mizar proofs. Mizar proofs are also exported
as TPTP format derivations,5 allowing a number of ATP experiments and use
of TPTP tools, e.g., GDV and IDV.

Sledgehammer [12] is a linkup from the interactive theorem prover Isabelle/
HOL [11] to first-order ATP systems. Sledgehammer is activated by the user,
who wishes to prove a goal from the current background theory. A set of relevant
facts is extracted from the background theory – this set is almost inevitably a
superset of what is required for a proof of the goal. The goal and background
facts are translated into a TPTP format first-order logic problem, which is given
to one or more ATP systems. If one of the ATP systems finds a proof, the axioms
used in the proof are extracted, and the goal is reproved using the Metis ATP
system [8], which natively outputs an Isabelle/HOL proof. One of the options
within Sledgehammer is to use the TPTP World service to run ATP systems; in
particular, this is done for running the Vampire ATP system.

The Naproche (NAtural language PROof CHEcking) system [4] automatically
checks mathematical texts (written in the Naproche controlled natural language)
for logical correctness. Each statement of a text is required to follow from pre-
ceding information in the text. The text is first translated into a linguistic rep-
resentation called a Proof Representation Structure, from which TPTP format
proof obligations are created. The proof obligations are discharged by calling an
ATP system, using the TPTP World service. The TPTP format proofs produced
by the ATP system are used to create the Naproche output, and also analyzed
(using another TPTP World tool) to help select what preceding information
should be provided in subsequent proof obligations. IDV is also used to debug
the Naproche system.

SPASS-XDB [26] is a modified version of the SPASS ATP system, with the
ability to retrieve world knowledge axioms from a range of external sources
(databases, internet, computations, etc.) asynchronously, on demand, during it’s
deduction. Figure 2 shows the system architecture, which is comprised of the
SPASS-XDB ATP system, mediators, and external sources of world knowledge
axioms. SPASS-XDB accepts a problem file containing (i) specifications for the
external sources, (ii) internal axioms, and (iii) a conjecture to be proved. All the
formulae are written in the TPTP language, and commonly axioms from a TPTP
format export of the SUMO ontology [10] are provided as internal axioms that
allow deep reasoning over the world knowledge. SPASS-XDB augments SPASS’
classic CNF saturation algorithm with steps to request and accept world knowl-
edge axioms. Requests are written as TPTP format “questions”, and axioms

5 Available at http://www.tptp.org/MizarTPTP

http://www.tptp.org/MizarTPTP
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are delivered as TPTP format “answers”, using SZS standards. The requests are
made and the axioms delivered asynchronously, so that SPASS-XDB continues its
deduction process while the axioms are being retrieved from the (comparatively
slow) external sources. SPASS-XDB is available in the SystemOnTPTP interface.

Fig. 2. System Architecture

The CADE ATP System Competition (CASC) [27] is held annually to evaluate
the performance of sound, fully automatic ATP systems – it is the world cham-
pionship for such systems. The design and implementation of CASC is closely
linked to the TPTP World. The divisions and problem categories of CASC are
similar to the SPCs used in the TPTP problem and system rating scheme. The
problems used in CASC are taken from the TPTP problem library, and the
TPTP problem ratings are used to select appropriately difficult problems that
differentiate between the systems entered into CASC. CASC has been a catalyst
for impressive improvements in ATP, stimulating both theoretical and implemen-
tation advances [9]. The positive effects of CASC on ATP system development
have had reciprocal positive effects on the TPTP. Observers at the event have
been encouraged to contribute their problems to the TPTP. The ATP systems
entered into CASC are the most recent versions available, and after CASC they
are added to the SystemOnTPTP suite. The systems are run over the TPTP
problem library to update the TSTP solution library, which in turn provides
updated problem and system ratings.

5 Current Developments in the TPTP World

The TPTP (problem library, and later World) was originally developed for un-
typed first-order logic. In 2008-9 the Typed Higher-order Form (THF) was added,
and the first release of the TPTP problem library with THF problems was in 2009
[21]. The TPTP THF language is a syntactically conservative extension of the
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untyped first-order language. It has been divided into three layers named THF0,
THF, and THFX. THF0 [2] is a core subset based on Church’s simply typed
lambda calculus. THF provides a richer type system, the ability to reason about
types, more term and type constructs, and more connectives. THFX provides
“syntactic sugar” that is usefully expressive. In conjunction with the addition
of THF problems to the TPTP problem library, other components of the TPTP
World were extended to support THF. This includes parsers, pretty-printers,
type checkers, export to existing higher-order ATP systems’ formats, and proof
presentation in IDV. Additionally, four theorem proving ATP systems and two
model finders have been produced, and are available in SystemOnTPTP. The
addition of THF to the TPTP World has had an immediate impact on progress
in the development of automated reasoning in higher-order logic [22].

Following the addition of THF to the TPTP World, steps are now being
taken to add support for a Typed First-order Form (TFF) in the TPTP World.
The TPTP TFF language is (like the THF language) a syntactically conservative
extension of the untyped first-order language. TFF problems are being collected,6

and a TPTP release including TFF problems is expected in 2010. An ATP
system has been built to solve these problems, by translating the problems to
an equivalent first-order form and calling an existing first-order ATP system.

As well as being useful in it own right, TFF also provides a foundation for
adding support for arithmetic in the TPTP World. For arithmetic, the TFF
language includes atomic types for integer, rational and real numbers, with
corresponding forms for constants. A core set of predicates and functions for
arithmetic relations and operations has been defined. The extent to which ATP
systems can do arithmetic is expected to vary, from a simple ability to evaluate
ground terms, through an ability to instantiate variables in arithmetic expres-
sions, to extensive algebraic manipulations. Five ATP systems have been con-
figured for solving TFF arithmetic problems (although none are yet able to deal
with all the TFF arithmetic constructs). ATP systems have been notorious for
their lack of arithmetic capabilities, and it is expected that this development in
the TPTP World will provide useful infrastructure that will help developers add
arithmetic to their ATP systems, and consequently provide new functionality to
ATP system users.

A long time challenge of artificial intelligence has been to provide a system
that is capable of reasoning with world knowledge, with a natural language inter-
face [30]. As a small step towards that goal in the TPTP World, SystemB4TPTP
now supports input in Attempto Controlled English (ACE) [6]. ACE input is
translated to first-order logic by an online service at the University of Zurich,
and the TPTP format axioms and conjecture that are returned can be submit-
ted to an ATP system. A modified version of the translation is being developed,
which adds axioms that link the predicate and function symbols used in the
translated formulae to those used in SUMO and the sources of external data
available to SPASS-XDB. This will allow SPASS-XDB to be used, to provide
deep reasoning with world knowledge.

6 Available at http://www.tptp.org/TPTP/Proposals/SampleProblems/TFF

http://www.tptp.org/TPTP/Proposals/SampleProblems/TFF
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6 Conclusion

The TPTP World is a well known and established infrastructure that supports
research, development, and deployment of Automated Theorem Proving (ATP)
systems for classical logics. This paper has given an overview of the TPTP World,
and shown how it can be successfully applied. Recent developments in the TPTP
World are expected to broaden the user base of ATP system developers, and
attract new ATP system users.

The TPTP problem library is a core component of the TPTP World, and users
of the TPTP World are encouraged to contribute their problems to the library.
The common adoption of TPTP standards, especially the TPTP language and
SZS ontology, has made it easier to build complex reasoning systems. Developers
are encouraged to adopt the TPTP standards, to provide compliant components
that can be combined to meet users’ needs.
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Abstract. Grounding is the task of reducing a first order formula to ground for-
mula that is equivalent on a given universe, and is important in many kinds of
problem solving and reasoning systems. One method for grounding is based on
an extension of the relational algebra, exploiting the fact that grounding over a
given domain is similar to query answering. In this paper, we introduce two meth-
ods for speeding up algebraic grounding by reducing the size of tables produced.
One method employs rewriting of the formula before grounding, and the other
uses a further extension of the algebra that makes negation efficient. We have im-
plemented the methods, and present experimental evidence of their effectiveness.

1 Introduction

Challenging combinatorial search problems are ubiquitous in applications of computer
science, including many problems which are NP-hard and challenging in practice. A
variety of algorithmic approaches to such problems are used in practice, among these
the application of general purpose solvers, such as SAT and ILP solvers. Effective use
of these technologies typically requires considerable expertise, both in terms of the ap-
plication problem at hand and the solving technology. Many users do not have such ex-
pertise easily available, and even for experts producing correct and effective reductions
to SAT or integer programming is often a time consuming and error-prone exercise.

An approach to improving accessibility and ease of use of combinatorial search
methods is to provide a high-level specification or modelling language, in which both
expert and non-expert users may specify their problems without direct concern for
the underlying solving techniques. The input for a (ground) solver is then generated
automatically from a specification together with an instance. Examples of languages
for this purpose include ASP languages [7,6], the language of the IDP system [10],
SPEC2SAT [2] and ESSENSE [5]. The process of mapping a high-level specification
and an instance to a low-level solver input language is grounding.

The input for a combinatorial search problem is a finite structure, and the task is to
construct one or more additional relations satisfying a certain property. For example,
in the Hamiltonian cycle problem, the input is a graph G = 〈V ;E〉, and the task is to
construct a path P of a certain sort in G, thus obtaining an expanded structure G′ =
〈V ;E,P〉. When the property is specified by a formula of first order logic (FO), the
class of problems which can be specified are those in NP [4]. Examples of systems
with specification languages that are natural extensions of FO are described in [8] and
[10]. These systems ground to languages that are extensions of SAT. For any fixed FO

E.M. Clarke and A. Voronkov (Eds.): LPAR-16, LNAI 6355, pp. 13–26, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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specification, grounding is polynomial time, but in practice current grounders are often
too slow in grounding large instances of some problems.

A method for grounding FO specifications based on an extension of the relational al-
gebra was introduced in [9], and a prototype implementation based on this method is re-
ported in [8]. In this paper, we present refinements to this method to improve the speed
of grounding. When naively implemented, the algebraic grounding approach may be
slow because very large intermediate tables may be produced. Much work in database
query optimization aims to reduce the size of intermediate tables. However, in our ob-
servation, the single largest impediment to speed in grounding is due to negation, which
is not well studied in query optimization. The problem is that the complement opera-
tion, as defined in [8], tends to produce very large tables, which are sometimes universal
(containing all possible tuples) or nearly so.

Here, we present two approaches for mitigating the costs of negation. To our knowl-
edge, these have no close analogs in standard database techniques. The first approach,
denoted FR for “formula re-writing” constructs a logically equivalent formula which
minimizes the cost of negations. The second method, denoted T/F for “True-False Ta-
bles”, is a further generalization of the relational algebra in which complementation
is inexpensive. Both methods are heuristic, meaning there are conditions under which
they will produce slow rather than faster grounding, but in practice we generally observe
significant speedups.

We have implemented both of the methods in a new grounder. Each method produces
order of magnitude speedups over the version of the grounder without these refinements.
Moreover, while the naive version of the grounder is slow in comparison with other
existing model expansion grounders, the versions with these improvements are highly
competitive.

2 Background

We formalize combinatorial search problems in terms of the logical problem of model
expansion (MX), defined here for an arbitrary logic L .

Definition 1 (MX). Given an L -sentence φ , over the union of disjoint vocabularies σ
and ε , and a finite structure A for vocabulary σ , find a structure B that is an expansion
of A to σ ∪ ε such that B |= φ .

In this paper, φ is a problem specification formula, and is fixed for each search problem.
A always denotes a finite σ -structure, called the instance structure, σ is the instance
vocabulary, and ε the expansion vocabulary.

Example 1. The following formula φ of first order logic constitutes a specification for
Graph 3-Colouring:

∀x [
(
R(x)∨B(x)∨G(x)

)
] ∧

∀x ¬[(R(x)∧B(x))∨ (R(x)∧G(x))∨ (B(x)∧G(x))] ∧
∀x∀y [(E(x,y)∨E(y,x)) ⊃ (¬(R(x)∧R(y))∧¬(B(x)∧B(y))∧¬(G(x)∧G(y)))]

An instance is a structure for vocabulary σ = {E}, i.e., a graph A = G = (V ;E). The
task is to find an expansion B of A that satisfies φ :
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A︷ ︸︸ ︷
(V ;EA , RB ,BB,GB)︸ ︷︷ ︸

B

|= φ .

Interpretations of the expansion vocabulary ε = {R,B,G}, for structures B that satisfy
φ , are proper 3-colourings of G .

The grounding task is to produce a ground formula ψ = Gnd(φ ,A ), such that models
of ψ correspond to solutions for instance A . Formally, to ground we bring domain
elements into the syntax by expanding the vocabulary with a new constant symbol for
each element of the domain. For domain A, the domain of structure A , we denote the set
of such constants by Ã. In practice, the ground formula should contain no occurrences
of the instance vocabulary, in which case we call it reduced.

Definition 2 (Reduced Grounding for MX). Formula ψ is a reduced grounding of
formula φ over σ -structure A = (A;σA ) if
1) ψ is a ground formula over ε ∪ Ã, and
2) for every expansion structure B = (A;σA ,εB) over σ ∪ε , B |= φ iff (B, ÃB) |= ψ ,

where ÃB is the standard interpretation of the new constants Ã.

Proposition 1. Let ψ be a reduced grounding of φ over σ -structure A . Then A can
be expanded to a model of φ iff ψ is satisfiable.

Producing a reduced grounding with respect to a given structure A can be done by an al-
gorithm that, for each fixed FO formula, runs in time polynomial in the size of A . Such
a grounding algorithm implements a polytime reduction to SAT for each NP search
problem. Simple grounding algorithms, however, do not reliably produce groundings
for large instances of interesting problems fast enough in practice.

Grounding for MX is a generalization of query answering. Given a structure (database)
A , a boolean query is a formula φ over the vocabulary of A , and query answering is
equivalent to evaluating whether φ is true, i.e., A |= φ . For model expansion, φ has some
additional vocabulary beyond that of A , and producing a reduced grounding involves
evaluating out the instance vocabulary, and producing a ground formula representing the
possible expansions of A for which φ is true.

The grounding algorithms in this paper construct a grounding by a bottom-up process
that parallels database query evaluation, based on an extension of the relational algebra.
For each sub-formula φ(x̄) with free variables x̄, we call the set of reduced groundings
for φ under all possible ground instantiations of x̄ an answer to φ(x̄). We represent
answers with tables on which an extended algebra operates.

An X-relation is a k-ary relation associated with a k-tuple of variables X, represent-
ing a set of instantiations of the variables of X. It is a central notion in databases. In
extended X-relations, introduced in [9], each tuple γ is associated with a formula ψ .
For convenience, we use 
 and ⊥ as propositional formulas which are always true and,
respectively, false.

Definition 3 (extended X-relation; function δR). Let A be a domain, and X a tuple of
variables with |X | = k. An extended X-relation R over A is a set of pairs (γ,ψ) s.t.
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1) γ : X → A, and
2) ψ is a formula, and
3) if (γ,ψ) ∈ R and (γ,ψ ′) ∈ R then γ = γ ′.
The function δR represented by R is a mapping from k-tuples γ of elements of the
domain A to formulas, defined by:

δR(γ) =

{
ψ if (γ,ψ) ∈ R,

⊥ if there is no pair (γ,ψ) ∈ R.

For brevity, we sometimes write γ ∈R to mean that there exists ψ such that (γ,ψ)∈R.
We also sometimes call extended X-relations simply tables. To refer to X-relations for
some concrete set X of variables, rather than in general, we write X-relation.

Definition 4 (answer to φ wrt A ). Let φ be a formula in σ ∪ ε with free variables X,
A a σ -structure with domain A, and R an extended X-relation over A . We say R is an
answer to φ wrt A if for any γ : X → A, we have that δR(γ) is a reduced grounding of
φ [γ] over A . Here, φ [γ] denotes the result of instantiating free variables in φ according
to γ .

Since a sentence has no free variables, the answer to a sentence φ is a zero-ary extended
X-relation, containing a single pair (〈〉,ψ), associating the empty tuple with formula ψ ,
which is a reduced grounding of φ .

Example 2. Let σ = {P} and ε = {E}, and let A be a σ -structure with
PA = {(1,2,3),(3,4,5)}. The following extended relation R is an answer to
φ1 ≡ P(x,y,z)∧E(x,y)∧E(y,z):

x y z ψ
1 2 3 E(1,2)∧E(2,3)
3 4 5 E(3,4)∧E(4,5)

Observe that δR(1,2,3) = E(1,2)∧E(2,3) is a reduced grounding of φ1[(1,2,3)] =
P(1,2,3)∧E(1,2)∧E(2,3), and δR(1,1,1) =⊥ is a reduced grounding of φ1[(1,1,1)].
The following extended relation is an answer to φ2 ≡ ∃zφ1:

x y ψ
1 2 E(1,2)∧E(2,3)
3 4 E(3,4)∧E(4,5)

Here, E(1,2)∧E(2,3) is a reduced grounding of φ2[(1,2)]. Finally, the following rep-
resents an answer to φ3 ≡ ∃x∃yφ2, where the single formula is a reduced grounding
of φ3.

ψ
[E(1,2)∧E(2,3)]∨ [E(3,4)∧E(4,5)]

The relational algebra has operations corresponding to each connective and quantifier
in FO, as follows: complement (negation); join (conjunction); union (disjunction), pro-
jection (existential quantification); division or quotient (universal quantification). Fol-
lowing [9,8], we generalize each to extended X-relations as follows.
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Definition 5 (Extended Relational Algebra). Let R be an extended X-relation and
S an extended Y -relation, both over domain A.
1. ¬R is the extended X-relation ¬R = {(γ,ψ) | γ : X → A,δR(γ) �= 
, and ψ =

¬δR(γ)}
2. R � S is the extended X ∪Y -relation {(γ,ψ) | γ : X ∪Y → A,γ|X ∈ R,γ|Y ∈

S , and ψ = δR(γ|X)∧δS (γ|Y )};
3. R∪S is the extended X ∪Y -relation R∪S = {(γ,ψ) | γ|X ∈R or γ|Y ∈S , and

ψ = δR(γ|X )∨δS (γ|Y )}.
4. For Z ⊆ X, the Z-projection of R, denoted by πZ(R), is the extended Z-relation

{(γ ′,ψ) | γ ′ = γ|Z for some γ ∈ R and ψ =
∨

{γ∈R|γ ′=γ|Z} δR(γ)}.
5. For Z ⊆ X, the Z-quotient of R, denoted by dZ(R), is the extended Z-relation

{(γ ′,ψ) | ∀γ(γ : X → A∧ γ|Z = γ ′ ⇒ γ ∈ R), and ψ =
∧

{γ∈R|γ ′=γ|Z} δR(γ)}.

To ground using this algebra, we apply the algebra inductively on the structure of the
formula, just as the standard relational algebra may be applied for query evaluation. We
define the answer to atomic formula P(x̄) as follows. If P is an instance predicate, the
answer to P is the set of tuples (ā,
), for ā ∈ PA . If P is an expansion predicate, the
answer is the set of all pairs (ā,P(ā)), where ā is a tuple of elements from the domain
A. Correctness of the method then follows, by induction on the structure of the formula,
from the following proposition.

Proposition 2. Suppose that R is an answer to φ1 and S is an answer to φ2, both with
respect to (wrt) structure A . Then
1. ¬R is an answer to ¬φ1 wrt A ;
2. R � S is an answer to φ1 ∧φ2 wrt A ;
3. R∪S is an answer to φ1 ∨φ2 wrt A ;
4. If Y is the set of free variables of ∃z̄φ1, then πY (R) is an answer to ∃z̄φ1 wrt A .
5. If Y is the set of free variables of ∀z̄φ1, then dY (R) is an answer to ∀z̄φ1 wrt A .

The straightforward proof for cases 1, 2 and 4 is given in [9]; the other cases follow
easily.

The answer to an atomic formula P(x̄), where P is from the expansion vocabulary,
is formally a universal table, but in practice we may represent this table implicitly
and avoid explicitly enumerating the tuples. As operations are applied, some subset of
columns remain universal, while others do not. Again, those columns which are univer-
sal may be represented implicitly. This could be treated as an implementation detail, but
the use of such implicit representations dramatically affects the cost of operations, and
so it is useful to further generalize our extended X-relations. Following [8], we call the
variables which are implicitly universal “hidden” variables, as they are not represented
explicitly in the tuples, and the other variables “explicit” variables.

Definition 6 (Extended Hidden X-Relation RY ; δRY ). Let X ,Y be tuples of variables,
with Y ⊆ X (when viewed as sets), and |X | = k. An extended hidden X-relation RY is a
set of tuples (γ,ψ) s.t.
1) γ : X\Y → A, and
2) ψ is a formula, and
3) if (γ,ψ) ∈ RY and (γ,ψ ′) ∈ RY , then ψ = ψ ′.
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The function δRY represented by RY is a mapping from k-tuples γ ′ of elements of the
domain A to formulas, defined by

δRY (γ ′) =

{
ψ if (γ ′ |X\Y ,ψ) ∈ R,

⊥ if there is no pair (γ ′ |X\Y ,ψ) ∈ R.

So, an extended hidden X-relation RY is a compact representation of an extended X-
relation by an extended X\Y -relation, which may be used whenever the columns for
variables of Y are universal. If X = Y , we have a compact representation of a universal
relation; if Y = /0, we have a normal extended X-relation.

All the operations of the algebra generalize easily. The hidden variables technique
does not alter the semantics of the operations. Henceforth, the term table may denote
either an extended X-relation or a hidden extended X-relation.

Definition 7. Basic Grounding Method (B): We ground a sentence φ wrt A using this
algebra, proceeding bottom-up according to the structure of the formula, and applying
the operation corresponding to each connective or quantifier. At the top, we obtain the
answer to φ , which is a relation containing only the pair (〈〉,ψ), where ψ is a reduced
grounding of φ wrt A .

The Negation Problem. If we naively negate an extended X-relation, we often end
up with a universal table. To see this, consider an extended X-relation R. To construct
its negation ¬R, we include (γ,¬ψ) for every (γ,ψ) ∈ R with ψ �= 
, and include
(γ,
), for every γ with γ �∈ R. If there are no tuples (γ,
) ∈ R then ¬R contains a
pair for every possible instantiation of X . Once a universal, or nearly universal, table is
constructed, all following operations must deal with it. In the following two sections,
we describe two methods for mitigating this problem.

3 Formula Rewriting

In this section, we describe a method for pre-processing the specification formula before
running the basic grounder. For each sub-formula ψ of φ , consider all possible ways to
rewrite ψ using De Morgan laws, generalized to include quantifiers. Of all rewritings,
we choose the one for which cost of carrying out negations is minimum.

This is a heuristic method. It is often the case that the total grounding time is domi-
nated by the time for joins, and it is possible that by minimizing negation cost we may
increase the overall grounding time because our re-writing increases the join cost. How-
ever, minimum join order is NP-hard (see, e.g., [3]), so it is unlikely that we can effi-
ciently minimize a cost function which accurately reflects join cost. As the experiments
reported in Section 6 indicate, our heuristic tends to significantly reduce grounding time
in practice.

We define the cost of constructing the complement of an extended hidden X-relation
RY to be |A||X\Y | where A is the domain. This is a reasonable approximation of the
time to construct the complement, because doing so requires that we visit every instan-
tiation of X\Y , and do a small constant amount of work for each. We then define the
negation cost of a formula, with respect to a structure A , as the sum of the costs of the
complement operations carried by the B grounder.
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The cost of the complement operation corresponding to the negation of a subformula
φ is primarily determined by the number of variables that are not hidden in the answer
to φ constructed by the B grounder. These are the variables that are free in φ and also
occur as arguments in atomic subformula P(x̄) of φ , where P is an instance predicate.
(Variables that occur only as arguments to predicate symbols of the expansion vocabu-
lary remain hidden.) Let nhv(φ) denote this set of variables. The cost of complementing
the answer to φ is essentially the size of a universal relation of arity |nhv(φ)|. Thus, we
define the function SizeA (φ) to be |A ||nhv(φ)|.

Now, we define the negation cost of formula φ with respect to structure A , denoted
CostA (φ), as:

CostA (φ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if φ is atomic,

SizeA (φ)+ CostA (α) if φ is ¬α ,

CostA (α)+ CostA (β ) if φ is α{∧,∨}β ,

CostA (α) φ is ∀xα or ∃xα .

The negation cost is the number of tuples that are visited by the B grounder while
performing complement operations. (Thus, the cost of atoms is zero.)

Our goal is to produce a formula ψ equivalent to φ but with minimum negation cost,
by transforming φ according to standard equivalences. To be precise, we define the set
Rewitings(φ) to be the set of formulas which is the closure of set {φ} under appli-
cation of De Morgan’s laws and the equivalences (∀xα) ≡ (¬∃x ¬α), and (∃xα) ≡
(¬∀x ¬α). To ground φ , we will apply a formula-rewriting function, FRA (ψ), that
maps φ to the formula in Rewitings(φ) with minimum negation cost.

The size of the set Rewitings(φ) is easily seen to be exponential in the size of
φ , but we can compute FRA (φ) efficiently by dynamic programming. Algorithm (1)
computes the minimum cost of a formula in Rewitings(φ). That is, MinCostA (ψ) =
CostA (FRA (ψ)) for each subformula ψ of φ .

Input: Subformula ψ
Output: Minimum costs P,N for ψ ,¬ψ respectively.
/* Throughout, Pα and Nα denote the values returned by

MinCostA (α). */
if ψ ≡ α ∧β or ψ ≡ α ∨β then

P ← min(Pα + Pβ ,SizeA (ψ)+ Nα + Nβ ) ;
N ← min(SizeA (ψ)+ Pα + Pβ ,Nα + Nβ ) ;

else if ψ ≡ ¬α then
P ← min(SizeA (ψ)+ Pα ,Nα ) ;
N ← min(Pα ,SizeA (ψ)+ Nα) ;

else if ψ ≡ ∀xα or ψ ≡ ∃xα then
P ← min(Pα ,SizeA (ψ)+ Nα) ;
N ← min(SizeA (ψ)+ Pα ,Nα ) ;

else if ψ is atomic then 〈P,N〉 ← 〈0,SizeA (ψ)〉;
return 〈P,N〉;

Algorithm 1. The algorithm MinCostA (ψ) giving minimum costs of computing an-
swers to ψ and ¬ψ .
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The algorithm to produce the formula FRA (φ), is a simple variant of Algorithm (1),
in the usual manner for dynamic programming. The algorithm runs in time O(|φ |).

Proposition 3. 1) Any reduced grounding of FRA (φ) wrt A is a reduced grounding
of φ wrt A ;

2) The formula in Rewitings(φ) with minimum negation cost can be found in time
O(|φ |).

Definition 8. Formula Re-writing Method (FR): To ground a sentence φ wrt A , we
compute FRA (φ), and then ground FRA (φ) wrt A using the B grounder.

4 T/F Relational Algebra

Another way to tackle the negation problem is to modify the algebra so that the comple-
ment operation can be cheap. Here, we do this by adding a new relation type. We call
extended X-relations as defined previously F relations, and the new relation T relations.
Absence of a tuple from an F relation is equivalent to being paired with the formula ⊥,
whereas absence from a T relation is equivalent to being paired with 
. To construct
the complement of an extended X-relation R, we negate each formula occurring in a
pair in R, and then change the type of R (to T if it was F, and vice versa). Thus, the
complement operation is linear time, and does not change the number of tuples. All the
other operations are adapted to this setting, and in practice their application tends to
generate smaller tables than when using the algebra with only F relations.

Definition 9 (T and F relations). A default-false extended X-relation (F relation) is an
extended X-relation as defined in Definition 3, extended with a flag that is set to False.
A default-true extended X-relation (T relation) is an extended X-relation as defined in
Definition 3, extended with a flag that is set to True, and with δR defined as:

δR(γ) =

{
ψ if 〈γ,ψ〉 ∈ R,


 if there is no pair 〈γ,ψ〉 ∈ R.

Rather than explicitly identifying the type of every extended X-relation, we often simply
write RF if R is an F relation, and RT if R is a T relation. When the type is clear from
the context, or does not matter, we may omit the superscript. The definition of an answer
to formula φ wrt A of Definition 4 applies to both T and F extended X-relations.

The operations on F tables to produce F tables are just those for regular extended
X-relations, as defined in Definition 5. There are many possible additional operations
when we consider both T and F relations. For example, a join may be applied to two F
relations, two T relations, or one of each, and in each case we may choose to produce
either an F table or a T table. We have adopted a simple heuristic strategy: For each
choice of operation and the types of its argument(s), we make a fixed choice to produce
either a T or F table. The full set of operations used is as follows.

Definition 10 (Algebra for T and F relations). For each operation of Definition 5,
except complement, we have an equivalently defined operation mapping F relations to
F relations. In addition, we have the following. Let RF and RT be extended X-relations
and S F and S T extended Y-relations, both over domain A. Then
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1. ¬RF is the extended X-relation

{(γ,ψ) | γ : X → A,γ ∈ RF and ψ = ¬δR(γ)}.

¬RT is defined dually.
2. (a) RF � S T is the extended X ∪Y-relation

{(γ,ψ) | γ : X ∪Y → A, γ|X ∈ RF and ψ = δR(γ|X )∧δS (γ|Y )}

(b) RT � S T is the extended X ∪Y-relation

{(γ,ψ) | γ : X∪Y →A, (γ|X ∈RT or γ|Y ∈S T ) and ψ = δR(γ|X )∧δS (γ|Y )}

3. (a) RT ∪S T is the extended X ∪Y-relation

{(γ,ψ) | γ : X ∪Y → A, γ|X ∈ RT ,γ|Y ∈ S T and ψ = δR(γ|X )∨δS (γ|Y )}

(b) RT ∪S F is the extended X ∪Y -relation

{(γ,ψ) | γ : X ∪Y → A, γ|X ∈ RT and ψ = δR(γ|X)∨δS (γ|Y )}

4. The Y -projection of RT , denoted πY (RT ), is the extended Y -relation:

{(γ,ψ) | γ ′ ∈ R for every γ ′ with γ ′|Y = γ and ψ =
∨

{γ ′∈R|γ ′|Y =γ}
δR(γ ′)}

5. The Y -quotient of RT , denoted by dY (RT ), is the extended Y-relation

{(γ,ψ) | γ = γ ′|Y for some γ ′ ∈ RT and ψ =
∧

{γ ′∈R|γ ′|Y =γ}
δR(γ ′)}.

Proposition 4. Suppose that RF
1 ,RT

2 ,RT
3 are answers to φ1,φ2,φ3, respectively, all

wrt structure A . Then
1. ¬RF

1 is an answer to ¬φ1 wrt A , and ¬RT
2 is an answer to ¬φ2 wrt A .

2. (a) RF
1 � RT

2 is an answer to φ1 ∧φ2 wrt A .
(b) RT

2 � RT
3 is an answer to φ2 ∧φ3 wrt A .

3. If Y is the set of free variables of ∃z̄φ2, then πY (RT
2 ) is an answer to ∃z̄φ2 wrt A .

4. If Y is the set of free variables of ∀z̄φ2, then dY (RT
2 ) is an answer to ∀z̄φ2 wrt A .

5. (a) RT
2 ∪RT

3 is an answer to φ2 ∨φ3 wrt A .
(b) RF

1 ∪RT
2 is an answer to φ1 ∨φ2 wrt A .

The proofs are straightforward, and generalize those for the standard version.

Definition 11. True/False Table Method (T/F): To ground a sentence φ wrt A , we
construct an F table as the answer to each atomic formula, and then apply the algebra
bottom-up according to the structure of the formula.

It is, perhaps, interesting to observe that we can use a T/F algebra with all possible
operations, and in polynomial time compute the optimum choice for which operation to
apply at each connective. However, we are not able to use this fact to speed up grounding
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in practice, as any method we see to carry out this computation requires as much work
as constructing a grounding. Hence our heuristic application of T and F tables.

Indeed, it can be shown both that there are cases where the B method performs better
than our T/F method, and also where algebras with additional operations perform better.
Example 3 illustrates this latter case. Nonetheless, as our empirical results in Section 6
illustrate, the method tends to work well in practice.

Example 3. This example shows that by using a larger set of operations for T and F
tables we may improve on the performance of our T/F method. Let φ be the formula
¬R(x,y)∧¬S(x,y), and A be the structure with domain A = {1,2,3} over vocabulary
{R,S}, where

RA = {(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)} and SA = {(1,3),(2,3),(3,3)}.

The T/F method takes the following steps:

1. T T
1 (A ) = ¬RF(A ), hence T T

1 (A ) is: { (1,1,⊥) ,(1,2,⊥),(2,1,⊥),(2,2,⊥),
(3,1,⊥), (3,2,⊥) }

2. T T
2 (A ) = ¬SF(A ), hence T F

2 (A ) is: {(1,3,⊥),(2,3,⊥),(3,3,⊥)}
3. T T

3 (A ) = T T
1 (A ) � T T

2 (A ), hence T T
3 (A ) is: {(1,1,⊥),(1,2,⊥),(1,3,⊥),

(2,1,⊥),(2,2,⊥), (2,3,⊥),(3,1,⊥),(3,2,⊥),(3,3,⊥)}
However, an alternative evaluation could be:

1. T F
1 (A ) = ¬RF(A ), hence T F

1 (A ) is: {(1,3,
),(2,3,
),(3,3,
)}
2. T T

2 (A ) = ¬SF(A ), hence T F
2 (A ) is: {(1,3,⊥),(2,3,⊥),(3,3,⊥)}

3. T F
3 (A ) = T F

1 (A ) � T T
2 (A ), hence T F

3 (A ) is: {}

5 Comparing the Methods: An Example

To illustrate the differences between the basic grounder and the methods FR and T/F,
we use the following axiom from Example 1, a specification of 3-Colouring, (re-writing
the implication as a disjunction)

∀x∀y (¬E(x,y)∨¬(R(x)∧R(y))). (1)

Here, E(x,y) is an instance predicate and R(x), for red, is an expansion predicate. We
consider the steps taken by each of the three algorithms on the graph (V ;E) with

V = {1, . . . ,5}, E = {(1,2),(1,3),(1,4),(1,5),(2,1),(3,1),(4,1),(5,1)}.

The Basic Grounder first negates E(x,y) producing a relation T1(x,y) of size 17 with
all the tuples not occurring in E(x,y). Then, from the subformula¬(R(x)∧R(y)) pro-
duces a relation T2(x,y) with both variables x and y hidden (because they occur only
in expansion predicates). T2 contains a single pair consisting of the empty tuple and
formula ¬(R(x)∧R(y)). The relations T1 and T2 are unioned to produce T3(x,y). T3

contains any tuple occurring in either T1 or T2. Since x and y are hidden in T2, it implic-
itly contains all possible combinations of x and y. Thus, T3 contains 25 tuples where 17
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of them (the ones present in T1) are paired with formula
 and the others are paired with
formula ¬(R(m)∧R(n)) (with appropriate constant symbols m and n). Then, quotient
operator is applied to T3 to give us a formula (which is then converted to CNF).

The Formula Rewriting method first converts formula (1) to the following formula
which minimizes the negation cost:

¬∃x∃y (E(x,y)∧ (R(x)∧R(y))) (2)

The basic grounder is run on the rewritten formula. The first operation is a join to
compute an answer to R(x)∧R(y), which produces the extended relation T1(x,y) with
both x and y hidden. It has a single pair consisting of the empty tuple and formula
R(x)∧R(y). Then, E and T1 are joined to form T2. As T2 includes only the tuples present
in both E and T1, it only has the 8 tuples in E . Then, projections are applied producing
a zero-ary relation T3 with only one tuple. Finally, the complement of T3 is constructed.
Since there are no free variables, this operation involves only negating the formula
paired with the single tuple in T3.

The T/F tables method first complements the table for E , producing a T relation
T T

1 (x,y) having the same 8 tuples as in E , but the formula paired with each tuple negated
(i.e., 
 replaced by ⊥). Then the answer to ¬(R(x)∧R(y)) is constructed. This is the T
relation T T

2 (x,y) with both x and y hidden and formula ¬(R(x)∧R(y)) paired with the
single empty tuple. Then, the union operation is applied on two T relations T T

1 and T T
2 ,

and a T relation T T
3 is generated. It contains only those tuples that appear in both T T

1
and T T

2 , and therefore contains only the 8 tuples of T T
1 . Finally the quotient is applied

to T T
3 to generate the final result.

This example illustrates that the use of either FR or T/F methods can significantly
reduce the size of intermediate tables produced during grounding. Such a large benefit
is not obtained for all formulas, however, formulas with an instance relation guarding
the universal quantifiers, as in the examle, are common.

For this example, the choice of instance structure does not change the result. The
basic method takes O(|V |2) steps for grounding formula 1 while the two other meth-
ods take O(|E|) steps for the same task, which is typically much smaller. However, in
general the benefits obtained by the new methods are not always independent of the
instance structure.

6 Experimental Evaluation

In this section we report an experimental evaluation of the methods. We have imple-
mented a grounder based on the extended relational algebra which can be run in three
modes: mode B; mode FR, and mode T/F, corresponding to the three methods of Defi-
nitions 7, 8 and 11. We present the results for four problems, Graph Colouring, Hamil-
tonian Cycle, Blocked Queens, and Latin Square Completion. These represent a vari-
ety of combinatorial structures, are easily modelled in a pure FO language, and illus-
trate the variation in the relative performance of the present grounder relative to similar
grounders.
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Table 1. Comparision of grounding times for the three modes of our grounder, basic (B), formula
re-writing (FR) and True-False approach (T/F). We give mean times for all instances in each
benchmark set, in units of 1/10 seconds. Numbers in parentheses are the speedup factor. The
best time for each problem is presented in bold.

Problem B FR T/F
Graph Col. 33.7 7.5 (4.5) 6.3 (5.3)
Ham. Cycle 992 129 (7.7) 150 (6.6)
Blocked Queens 36.9 3.7 (10) 4.1 (9.0)
Latin Square Comp. 273 25.7 (10) 31.8 (8.6)

Table 1 gives the mean grounding times for each mode of operation on each
of the problems. The total number of instances represented is 187, as follows: Graph
colouring (17 instances); Hamiltonian Cycle (30 instances); Blocked Queens (40 in-
stances); Latin Square Completion (100 instances). The instances are from the Aspara-
gus repository [1]; all instances and axiomatizations are available online at
http://www.cs.sfu.ca/research/groups/mxp/examples/. The times are for running on a
Sun Java workstation with an Opteron 250 cpu, with 2GB of RAM, running Suse En-
terprise Linux 2.6.11.4. The code is written in C++ and compiled with g++ version
3.3.5, on the same machine.

Both FR and T/F are substantially faster than B on all problems we looked at, in-
cluding others not reported here. In general, we expect the T/F approach to be more
powerful than FR and we attribute the slightly better performance of FR over T/F here
to the fact that the implementation of FR has been somewhat optimized, while that of
T/F has not been.

We also compared the speed of our grounder with other grounders for FO MX,
namely GidL [10] and MXG [8], on the same problem instances. The grounding time
comparison is shown in Table 2. GidL was run in two modes: with approximation on
(G+A), and off (G-A). The approximation method attempts to reduce the size of ground-
ing, and sometimes also affects the speed.

MXG and both versions of GidL failed to ground any instance of Hamiltonian Cycle
using the (very standard) axiomatization we used for our grounder. To report running
times for these, we modified the axioms by pushing leading quantifiers in as far as
possible. (Our grounder does this implicitly.)

Table 2. Comparision of grounding times for our grounder with GidL and MXG. The columns
are: GidL with approximation on (G+A), GidL with approximation off (G-A), MXG, and our
new grounder with formula re-writing (FR) and T/F tables (T/F). Values are mean times for all
instances of each problem, in 1/10-ths of seconds. The best time for each problem is presented
in bold.

Problem G-A G+A MXG FR T/F
Graph-Col. 10.1 10.2 16.7 7.5 6.3
Ham. Cyc. >1200 603 578.7 129 150
Bl. Queens 97.3 1.3 25.4 3.7 4.1
Latin Sq. C. 16.9 30.2 764 25.7 31.8
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Remark 1. The languages of GidL and MXG allow (to different degrees) aggregate
operations and inductive definitions. We used pure FO axiomatizations without these
here, as the handling of these special forms is a distinct issue.

No grounder dominates in this comparison: Each of G+A, G-A, FR and T/F have min-
imum mean times for one problem. We also observe that FR appears relatively robust:
it does not rank worse than second on any of the problems, whereas G+A ranks third
once and each of the others ranks third or worse at least twice.

Our grounder with method B, in comparison with the other relational algebra based
grounder MXG, is somewhat slower on three problems and somewhat faster on one.
MXG includes some techniques that improve on the method B, and GidL includes a
number of techniques to improve speed over naive substitution.

7 Conclusions and Future Work

We have described and implemented two speed-up techniques for grounding based on
extended relational algebra. We presented an experimental evaluation, in which the
methods exhibited speedup factors of 4 to 10 times. Speedups on other problems we
have tried are similar, so we conclude that the methods are effective and probably use-
ful in practice.

Future work on the methods reported here includes:

– A more sophisticated T/F table method. Under most conditions, T/F tables are
strictly more powerful than B and FR, but this power is not fully exploited in our
current T/F method. We plan to develop a stronger method for T/F tables, probably
involving additional operations, and possibly in combination with FR.

– Strategies that effectively combine the techniques reported here with the adapta-
tions of standard query optimization methods such as join ordering and pipelining.

We believe that extended relational algebra has great potential for developing effi-
cient grounders. Since control is distinct from the basic operations, many algorithmic
techniques may be applied, possibly in surprising combinations, and advanced database
query optimization techniques can be adapted to grounding. We have described the
grounding method, and the specific methods introduce in this paper, in terms of FO and
reduction to propositional logic, but the ideas can be used for many other choices of
languages.
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10. Wittocx, J., Mariën, M., Denecker, M.: Grounding with bounds. In: Proc. AAAI 2008, pp.
572–577 (2008)



Constraint-Based Abstract Semantics for
Temporal Logic: A Direct Approach to Design

and Implementation�

Gourinath Banda1 and John P. Gallagher1,2

1 Roskilde University, Denmark
2 IMDEA Software, Madrid

{gnbanda,jpg}@ruc.dk

Abstract. Abstract interpretation provides a practical approach to ver-
ifying properties of infinite-state systems. We apply the framework of
abstract interpretation to derive an abstract semantic function for the
modal μ-calculus, which is the basis for abstract model checking. The
abstract semantic function is constructed directly from the standard
concrete semantics together with a Galois connection between the con-
crete state-space and an abstract domain. There is no need for mixed
or modal transition systems to abstract arbitrary temporal properties,
as in previous work in the area of abstract model checking. Using the
modal μ-calculus to implement CTL, the abstract semantics gives an
over-approximation of the set of states in which an arbitrary CTL for-
mula holds. Then we show that this leads directly to an effective im-
plementation of an abstract model checking algorithm for CTL using
abstract domains based on linear constraints. The implementation of
the abstract semantic function makes use of an SMT solver. We describe
an implemented system for proving properties of linear hybrid automata
and give some experimental results.

1 Introduction

In this paper we apply the framework of abstract interpretation [12] to design
and implement an abstraction of temporal logic, based on linear constraints.
We emphasise firstly that abstraction of the concrete semantics of a language
such as the modal μ-calculus or CTL gives safe approximations for arbitrary
formulas. Some other previous approaches handle only universal formulas (e.g.
[11]). Secondly, we do not need to introduce extra conceptual apparatus in the
semantics such as mixed or modal transition systems (e.g. [16,25]) in order to
approximate the meaning of arbitrary formulas. Thirdly we show that the ab-
stract semantics can be directly implemented, for domains based on constraints,
using a constraint solver (a convex polyhedra library) and satisfiability checker
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(an SMT solver) and applied to prove properties of real-time systems modelled
as linear hybrid automata.

The present work is part of an attempt to develop a uniform constraint-based
formal modelling and verification framework for verifying infinite state reactive
systems. The modelling part of this framework was considered in [3] where it was
shown how to model linear hybrid automata (LHA) specifications as constraint
logic programs. However the techniques described in the present work are not
limited to constraint-based models and properties but applies to any abstraction
in the framework of abstract interpretation. This work is also orthogonal to other
highly interesting and relevant areas of abstract model checking such as abstract
domain construction and the refinement of abstractions. We believe that basing
our presentation based on completely standard semantics and abstract inter-
pretation techniques will facilitate cross-fertilisation of techniques from abstract
interpretation and model checking.

The structure of this paper is as follows. Section 2 reviews the syntax and
semantics of the modal μ-calculus and recalls how this can be used to define the
semantics of typical temporal property languages such as CTL. The theory of
abstract interpretation is then outlined. Section 3 describes abstract interpre-
tation of the μ-calculus semantic function, providing a basis for abstract model
checking. Section 4 shows how to define an abstraction based on linear con-
straints. Section 5 describes an implementation of the constraint-based abstract
semantics and Section 6 gives some experimental results. In Sections 7 and 8 we
discuss related work and conclusions.

2 Preliminaries

The (propositional modal) μ-calculus “provides a single, simple and uniform
framework subsuming most other logics of interest for reasoning about reactive
systems” [20]. The set of μ-calculus formulas is defined by the following grammar.

φ ::= p | ¬p | Z | φ1 ∧ φ2 | φ1 ∨ φ2 | AXφ | EXφ | μZ.φ | νZ.φ

where p ranges over a set of atomic formulas P and Z ranges over a set of propo-
sitional variables V . Note that negations can appear only before propositions p.
This form is called negation normal form; if we extend the grammar to allow
expressions of the form ¬φ in which occurrences of Z in φ in formulas fall under
an even number of negations, an equivalent formula in negated normal form can
be obtained using rewrites (which are justified by the semantics below), namely
¬μZ.φ ⇒ νZ.¬φ, ¬νZ.φ ⇒ μZ.¬φ, ¬EXφ ⇒ AX¬φ, ¬AXφ ⇒ EX¬φ together
with De Morgan’s laws and elimination of double negation.

2.1 Semantics of μ-Calculus

There are various presentations of the semantics of the μ-calculus, e.g. [20,30].
We restrict our attention here to state-based semantics, which means that given
a Kripke structure K, a μ-calculus formula evaluates to the set of states in K
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at which the formula holds. The semantics is presented in a functional style
similar to that given in [15] Section 9, suitable for applying abstraction. A μ-
calculus formula is interpreted with respect to a Kripke structure, which is a
state transition system whose states are labelled with atomic propositions that
are true in that state.

Definition 1 (Kripke structure). A Kripke structure is a tuple 〈S, Δ, I, L,P〉
where S is the set of states, Δ ⊆ S × S is a total transition relation (i.e. every
state has a successor), I ⊆ S is the set of initial states, P is the set of propositions
and L : S → 2P is the labelling function which returns the set of propositions that
are true in each state. The set of atomic propositions is closed under negation.

We first define some subsidiary functions that depend on K.

Definition 2. Given a Kripke structure K = 〈S, Δ, I, L,P〉 we define functions
pre : 2S → 2S, p̃re : 2S → 2S and states : P → 2S as follows.

– pre(S′) = {s | ∃s
′ ∈ S

′
: (s, s

′
) ∈ Δ} returns the set of states having at least

one of their successors in the set S′ ⊆ S;
– p̃re(S′) = compl(pre(compl(S′))) returns the set of states all of whose suc-

cessors are in the set S′ ⊆ S; the function compl(X) = S \ X.
– states(p) = {s ∈ S | p ∈ L(s)} returns the set of states where p ∈ P holds.

The functions pre and p̃re are defined by several authors (e.g. [32,15]) and are
also used with other names by other authors (e.g. they are called pre∃ and pre∀
by Huth and Ryan [30]).

Lemma 1. pre and p̃re are monotonic.

Let Mu be the set of μ-calculus formulas, and V → 2S be the set of environments
for the free variables. The meaning of a formula is a mapping from an environ-
ment giving values to its free variables to a set of states. The semantics function
[[.]]μ : Mu → (V → 2S) → 2S is defined as follows.

[[Z]]μσ = σ(Z)
[[p]]μσ = states(p) [[¬p]]μσ = states(¬p)
[[EXφ]]μσ = pre([[φ]]μσ) [[φ1 ∨ φ2]]μσ = [[φ1]]μσ ∪ [[φ2]]μσ
[[AXφ]]μσ = p̃re([[φ]]μσ) [[φ1 ∧ φ2]]μσ = [[φ1]]μσ ∩ [[φ2]]μσ
[[μZ.φ]]μσ = lfp(F ) [[νZ.φ]]μσ = gfp(F )

where F (S′) = [[φ]]μσ[Z/S′] where F (S′) = [[φ]]μσ[Z/S′]

The expressions lfp(F ) and gfp(F ) return the least fixed point and greatest fixed
point respectively of the monotonic function F : 2S → 2S on the lattice 〈2S ,⊆,
∪,∩, S, ∅〉. The Knaster-Tarski fixed point theorem [41] guarantees the existence
of least and greatest fixed points for a monotonic function on a complete lattice,
and also their constructive forms

⋃∞
i=0 F i(∅) and

⋂∞
i=0 F i(S) respectively. The

environment σ[Z/S′] above is such that σ[Z/S′]Y = S′ if Y = Z and σ(Y )
otherwise.The functions F above are monotonic due the restricted occurrence of
negation symbols in negated normal form.
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When a formula contains no free variables we can evaluate it in a trivial
environment σ∅ in which all variables are mapped (say) to the empty set. If φ
contains no free variables we thus define its meaning [[φ]] = [[φ]]μσ∅.

2.2 CTL Syntax and Semantics

The set of CTL formulas φ in negation normal form is inductively defined by
the following grammar:

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | AXφ | EXφ | AFφ | EFφ | AGφ | EGφ
| AU(φ1, φ2) | EU(φ1, φ2) | AR(φ1, φ2) | ER(φ1, φ2)

where p ranges over a set of atomic formulas P . We assume familiarity with
the intended meanings of the various temporal operators. Note that we some-
times refer to arbitrary negations ¬φ in what follows, but such formulas can be
transformed to equivalent negation normal form formulas.

CTL is interpreted by translating to μ-calculus, using the following function C.

C(p) = p C(¬p) = ¬p
C(EXφ) = EX C(φ) C(φ1 ∨ φ2) = C(φ1) ∨ C(φ2)
C(AXφ) = AX C(φ) C(φ1 ∧ φ2) = C(φ1) ∧ C(φ2)
C(EFφ) = μZ.(C(φ) ∨ EX Z) C(ER(φ1, φ2)) = νZ.(C(φ2) ∧ (C(φ1) ∨ EX Z)
C(AFφ) = μZ.(C(φ) ∨ AX Z) C(AU(φ1, φ2)) = μZ.(C(φ2) ∨ (C(φ1) ∧ AX Z)
C(AGφ) = νZ.(C(φ) ∧ AX Z) C(EU(φ1, φ2)) = μZ.(C(φ2) ∨ (C(φ1) ∧ EX Z)
C(EGφ) = νZ.(C(φ) ∧ EX Z) C(AR(φ1, φ2)) = νZ.(C(φ2) ∧ (C(φ1) ∨ AX Z)

A semantic function for CTL is then obtained by composing the translation
with the semantics of the μ-calculus. The translated formulas contain no free
variables (all variables Z are introduced in the scope of a μ or ν). Thus we
define the semantic function for a CTL formula φ as [[φ]]CTL = [[C(φ)]].

It is of course possible to partially evaluate the translation function. In this
way we obtain state semantics for CTL directly. For example, the meaning of
EFφ and AGφ are:

[[EFφ]]CTL = lfp(F ) where F (S′) = [[φ]]CTL ∪ pre(S′))
[[AGφ]]CTL = gfp(F ) where F (S′) = [[φ]]CTL ∩ p̃re(S′))

We present the semantics via μ-calculus to emphasise the generality of the ap-
proach; we can now restrict our attention to considering μ-calculus semantics.

2.3 Model Checking

Model checking consists of checking whether the Kripke structure K possesses
a property φ, written K |= φ. This is defined to be true iff I ⊆ [[φ]], where I is
the set of initial states, or equivalently, that I ∩ [[¬φ]] = ∅. (Note that ¬φ should
be converted to negation normal form). Thus model-checking requires imple-
menting the μ-calculus semantics function. Specifically, the implementation of
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the expressions lfp(F ) and gfp(F ) is performed by computing a Kleene sequence
F i(∅) or F i(S) respectively, iterating until the values stabilise.

When the state-space powerset 2S has infinite ⊆-chains, these iterations might
not terminate and hence the model checking of infinite state systems becomes
undecidable. In this case we try to approximate [[.]] using the theory of abstract
interpretation.

2.4 Abstract Interpretation

In abstract interpretation we develop an abstract semantic function systemati-
cally from the standard (“concrete”) semantics with respect to a Galois connec-
tion. We present the formal framework briefly.

Definition 3 (Galois Connection). 〈L,�L〉 −−−→←−−−
α

γ
〈M,�M 〉 is a Galois Con-

nection between the lattices 〈L,�L〉 and 〈M,�M 〉 if and only if α : L → M and
γ : M → L are monotonic and ∀l ∈ L, m ∈ M, α(l) �M m ⇔ l �L γ(m).

In abstract interpretation, 〈L,�L〉 and 〈M,�M 〉 are the concrete and abstract
semantic domains respectively. Given a Galois connection 〈L,�L〉 −−−→←−−−

α

γ
〈M,�M 〉

and a monotonic concrete semantics function f : L → L, then we define an
abstract semantic function f � : M → M such that for all m ∈ M , (α ◦ f ◦
γ)(m) �M f �(m). Furthermore it can be shown that lfp(f) �L γ(lfp(f �)) and
that gfp(f) �L γ(gfp(f �)) where lfp(f), gfp(f) are the least and greatest fixed
points respectively of f .

Thus the abstract function f � can be used to compute over-approximations
of f , and it can be interpreted using the γ function. The case where the ab-
stract semantic function is defined as f � = (α ◦ f ◦ γ) gives the most precise
approximation with respect to the Galois connection. We next apply this gen-
eral framework to abstraction of the μ-calculus semantics, and illustrate with a
specific abstraction in Section 4.

3 Abstract Interpretation of μ-Calculus Semantics

We consider abstractions based on Galois connections 〈2S ,⊆〉 −−−→←−−−
α

γ
〈2A,⊆〉,

where the abstract domain 2A consists of sets of abstract states. In fact the ab-
stract domain could be any lattice but for the purposes of this paper we consider
such state-based abstractions, which will be further discussed in Section 4.

Definition 4. Let pre : 2S → 2S, p̃re : 2S → 2S, and states : P → 2S be the
functions defined in Definition 2. Given a Galois connection 〈2S ,⊆〉 −−−→←−−−

α

γ
〈2A,⊆

〉, we define apre : 2A → 2A, ãpre : 2A → 2A and astates : P → 2A as

apre = α ◦ pre ◦ γ ãpre = α ◦ p̃re ◦ γ astates = α ◦ states
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The properties of Galois connections imply that for all S′ ⊆ S, α(pre(S′)) ⊆
apre(α(S′)) and α(p̃re(S′)) ⊆ ãpre(α(S′)). We simply substitute apre, ãpre
and astates for their concrete counterparts in the μ-calculus semantic function
to obtain abstract semantics for the μ-calculus.

Given a Galois connection 〈2S ,⊆〉 −−−→←−−−
α

γ
〈2A,⊆〉, the abstract μ-calculus se-

mantic function [[·]]aμ : Mu → (V → 2A) → 2A is defined as follows.

[[Z]]aμσ = σ(Z)
[[p]]aμσ = astates(p) [[¬p]]aμσ = astates(¬p)
[[EXφ]]aμσ = apre([[φ]]aμσ) [[φ1 ∨ φ2]]aμσ = [[φ1]]aμσ ∪ [[φ2]]aμσ
[[AXφ]]aμσ = ãpre([[φ]]aμσ) [[φ1 ∧ φ2]]aμσ = [[φ1]]aμσ ∩ [[φ2]]aμσ
[[μZ.φ]]aμσ = lfp(Fa) [[νZ.φ]]aμσ = gfp(Fa)

where Fa(A′) = [[φ]]aμσ[Z/A′] where Fa(A′) = [[φ]]aμσ[Z/A′]

As before, for formulas containing no free variables we define the function
[[φ]]a = [[φ]]aμσ∅. The abstract semantics for a CTL formula φ is [[C(φ)]]a.

The functions α and γ are extended to apply to environments σ : V → A.
α(σ) is defined as α(σ)(Z) = α(σ(Z)) and γ(σ) is defined as γ(σ)(Z) = γ(σ(Z)).

Theorem 1 (Safety of Abstract Semantics). Let K = 〈S, Δ, I, L,P〉 be
a Kripke structure, 〈2S ,⊆〉 −−−→←−−−

α

γ
〈2A,⊆〉 be a Galois connection and φ any

μ-calculus formula in negation normal form. Then α([[φ]]μσ) ⊆ [[φ]]aμα(σ) and
γ([[φ]]aμσ) ⊇ [[φ]]μγ(σ), for all environments σ.

The proof is by structural induction on φ. First we establish a subsidiary result.

Lemma 2. Let F (S′) = [[φ]]μσ[Z/S′] and Fa(A′) = [[φ]]aμα(σ)[Z/A′] and let
〈2S ,⊆〉 −−−→←−−−

α

γ
〈2A,⊆〉 be a Galois connection. Assume α([[φ]]μσ) ⊆ [[φ]]aμα(σ).

Then for all A′ ⊆ A, (α ◦ F ◦ γ)(A′) ⊆ Fa(A′).

Proof.

(α ◦ F ◦ γ)(A′) = α(F (γ(A′)))
= α([[φ]]μσ[Z/γ(A′)])
⊆ [[φ]]aμα(σ)[Z/α(γ(A′))] by assumption that

α([[φ]]μσ) ⊆ [[φ]]aμα(σ)
⊆ [[φ]]aμα(σ)[Z/A′] by properties of Galois connections

and monotonicity of [[φ]]aμα(σ)
= Fa(A′)

The proof of Theorem 1 is just an exercise in applying the properties of Galois
connections and monotonic functions. We show a few representative cases.

Proof. (Theorem 1). We show that α([[φ]]μσ) ⊆ [[φ]]aμα(σ) by structural induction
on φ. The proof for γ([[φ]]aμσ) ⊇ [[φ]]μγ(σ) is similar.
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Base Cases.

– φ = Z.
α([[Z]]μσ) = α(σ(Z))

= α(σ)(Z)
= [[Z]]aμα(σ)

– φ = p′ where p′ = p or p′ = ¬p

α([[p′]]μσ) = α(states(p′))
= astates(p′)
= [[p′]]aμα(σ)

Inductive Cases

– φ = EXφ.

α([[EXφ]]μσ) = α(pre([[φ]]μσ))
⊆ α(pre(γ(α([[φ]]μσ)))) by Galois connection

and monotonicity of pre, α
= apre(α([[φ]]μσ))
⊆ apre([[φ]]aμα(σ)) by ind. hyp.

and monotonicity of apre
= [[EXφ]]aμα(σ)

– φ = μZ.φ.

In this case, and the case for φ = νZ.φ, we make use of the general property
of a Galois connection 〈2S ,⊆〉 −−−→←−−−

α

γ
〈2A,⊆〉 that if f : 2S → 2S and f � :

2A → 2A are such that (α ◦ f ◦ γ) ⊆ f �, then α(lfp(f)) ⊆ lfp(f �) and
α(gfp(f)) ⊆ gfp(f �). The relevant condition (α ◦ f ◦ γ) ⊆ f � is established in
Lemma 2.

α([[μZ.φ]]μσ) = α(lfp(F )) where F (S′) = [[φ]]μσ[Z/S′]
⊆ lfp(Fa) where Fa(A′) = [[φ]]aμα(σ)[Z/A′]

by Lemma 2, ind. hyp., and
properties of Galois connections

= [[μZ.φ]]aμα(σ)

Corollary 1. Let K = 〈S, Δ, I, L,P〉 be a Kripke structure and φ be a μ-
calculus formula with no free variables. Then if γ([[¬φ]]a) ∩ I = ∅ then K |= φ.

Proof.

γ([[¬φ]]aμ) ∩ I = ∅ ≡ γ([[¬φ]]aμσ∅) ∩ I = ∅
⇒ [[¬φ]]μγ(σ∅) ∩ I = ∅ by Theorem 1
≡ [[¬φ]] ∩ I = ∅ since γ(σ∅) = σ∅
≡ I ⊇ [[φ]]
K |= φ

This result provides us with a sound abstract model checking procedure for any
μ-calculus formula φ. Of course, if γ([[¬φ]]a) ∩ I ⊃ ∅ nothing can be concluded.
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4 An Abstract Constraint-Based Domain

The abstract semantics given in Section 3 is not always implementable in practice
for a given Galois connection 〈2S ,⊆〉 −−−→←−−−

α

γ
〈2A,⊆〉. In particular, the function

γ yields a value in the concrete domain, which is typically an infinite object
such as an infinite set. Thus evaluating the functions α(states(p)), (α ◦ pre ◦ γ)
and (α ◦ p̃re ◦ γ) might not be feasible. In general in abstract interpretation
one designs functions that safely approximate these constructions. For example
one would design computable functions apre′ and ãpre

′ such that for all A,
apre′(A′) ⊇ apre(A′) and ãpre′(A′) ⊇ ãpre(A′). In this section we show that the
abstract semantics is implementable directly, without any further approximation,
for transition systems and abstract domains expressed using linear constraints.

4.1 Abstract Domains Based on a State-Space Partitions

Consider transition systems whose states are n-tuples of real numbers; we take
as the concrete domain the complete lattice 〈2C ,⊆〉 where C ⊆ 2Rn

is some
nonempty, possibly infinite set of n-tuples including all the reachable states of
the system.

We build an abstraction of the state space based on a finite partition of C
say A = {d1, . . . , dk} such that

⋃
A = C. Such a partition could be obtained in

various ways, including predicate abstraction or Moore closures (see [23] for a
discussion). Define a representation function β : C → 2A, such that β(x̄) = {d ∈
A | x̄ ∈ d}. We extend the representation function [36] to sets of points, obtaining
the abstraction function α : 2C → 2A given by α(S) =

⋃
{β(x̄) | x̄ ∈ S}. Define

the concretisation function γ : 2A → 2C , as γ(V ) = {x̄ ∈ C | β(x̄) ⊆ V }. As
shown in [36,13], 〈2C ,⊆〉 −−−→←−−−

α

γ
〈2A,⊆〉 is a Galois connection. Because A is a

partition the value of β(x̄) is a singleton for all x̄, and the γ function can be
written as γ(V ) =

⋃
{γ({d}) | d ∈ V }.

4.2 Constraint Representation of Transition Systems

We consider the set of linear arithmetic constraints (hereafter simply called
constraints) over the real numbers.

c ::= t1 ≤ t2 | t1 < t2 | c1 ∧ c2 | c1 ∨ c2 | ¬c

where t1, t2 are linear arithmetic terms built from real constants, variables and
the operators +, ∗ and −. The constraint t1 = t2 is an abbreviation for t1 ≤
t2 ∧ t2 ≤ t1. Note that ¬(t1 ≤ t2) ≡ t2 < t2 and ¬(t1 < t2) ≡ t2 ≤ t2,
and so the negation symbol ¬ can be eliminated from constraints if desired by
moving negations inwards by Boolean transformations and then applying this
equivalence.

A constraint c is satisfied by an assignment of real numbers to its variables if
the constraint evaluates to true under this assignment, and is satisfiable (written
SAT (c)) if there exists some assignment that satisfies it. A constraint can be



Constraint-Based Abstract Semantics for Temporal Logic 35

identified with the set of assignments that satisfy it. Thus a constraint over n
real variables represents a set of points in Rn.

A constraint can be projected onto a subset of its variables. Denote by projV (c)
the projection of c onto the set of variables V .

Let us consider a transition system defined over the state-space Rn. Let
x̄, x̄1, x̄2 etc. represent n-tuples of distinct variables, and r̄, r̄1, r̄2 etc. represent
tuples of real numbers. Let x̄/r̄ represent the assignment of values r̄ to the re-
spective variables x̄. We consider transition systems in which the transitions

can be represented as a finite set of transition rules of the form x̄1
c(x̄1,x̄2)−→ x̄2.

This represents the set of all transitions from state r̄1 to state r̄2 in which the
constraint c(x̄1, x̄2) is satisfied by the assignment x̄1/r̄1, x̄2/r̄2. Such transition
systems can be used to model real-time control systems [27,3].

4.3 Constraint Representation of the Semantic Functions

We consider abstract semantics based on linear partitions, so that each element
di of the partition A = {d1, . . . , dn} is representable as a linear constraint cdi .
We first provide definitions of the functions pre, p̃re, α, γ and states in terms of
constraint operations. In the next section the optimisation and effective imple-
mentation of these operations is considered. Let T be a finite set of transition
rules. Let c′(ȳ) be a constraint over variables ȳ. We express the functions pre,
p̃re and states using constraint operations as follows.

pre(c′(ȳ)) =
∨
{projx̄(c′(ȳ) ∧ c(x̄, ȳ)) | x̄

c(x̄,ȳ)−→ ȳ ∈ T }
p̃re(c′(ȳ)) = ¬(pre(¬c′(ȳ)))
states(p) = p

In the definition of states we use p both as the proposition (the argument of
states) and as a set of points (the result).

The β function introduced in Section 4.1 can be rewritten as β(x̄) = {d ∈
A | x̄ satisfies cd}. Assuming that we only need to apply α to sets of points
represented by a linear constraint c, we can rewrite the α and γ functions as
follows.

α(c) = {d ∈ A | SAT(cd ∧ c)} γ(A′) =
∨
{cd | d ∈ A′} for A′ ⊆ A

5 Implementation

The abstract μ-calculus semantic function [[.]]a can be implemented directly as
a recursive function following the definition in Section 3. The structure of the
algorithm is independent of any particular abstraction. With standard iterative
techniques for computing greatest and least fixpoints [7] the algorithm has the
same complexity as a concrete model checker for μ-calculus. In practice the effec-
tiveness of the algorithm as an abstract model checker depends on the effective
implementation of the functions accessing the transition system and performing
abstraction and concretisation, namely pre, p̃re, α and γ.
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5.1 Computation of α and γ Functions Using Constraint Solvers

The constraint formulations of the α and γ functions allows them to be effectively
computed. The expression SAT(cd∧c) occurring in the α function means “(cd∧c)
is satisfiable” and can be checked by an SMT solver. In our experiments we use
the SMT solver Yices [19]. The γ function simply collects a disjunction of the
constraints associated with the given set of partitions; no solver is required.

5.2 Optimisation of Constraint-Based Evaluation

Combining the constraint-based evaluation of the functions pre and p̃re with
the constraint-based evaluation of the α and γ functions gives us (in principle) a
method of computing the abstract semantic counterparts of pre and p̃re, namely
(α ◦ pre ◦ γ) and (α ◦ p̃re ◦ γ). The question we now address is the feasibility of
this approach. Taken naively, the evaluation of these constraint-based functions
(in particular p̃re) does not scale up. We now show how we can transform these
definitions to a form which can be computed much more efficiently, with the help
of an SMT solver.

Consider the evaluation of (α ◦ p̃re ◦ γ)(A′) where A′ ∈ 2A is a set of disjoint
partitions represented by constraints.

(α ◦ p̃re ◦ γ)(A′) = (α ◦ p̃re)(
∨
{cd | d ∈ A′})

= α(¬(pre(¬(
∨
{cd | d ∈ A′})))

= α(¬(pre(
∨
{cd ∈ A \ A′}))

In the last step, we use the equivalence ¬(
∨
{cd | d ∈ A′}) ↔

∨
{cd ∈ A \

A′}, which is justified since the abstract domain A is a disjoint partition of the
concrete domain; thus A\A′ represents the negation of A′ restricted to the state
space of the system. The computation of pre(

∨
{cd ∈ A \ A′}) is much easier to

compute (with available tools) than pre(¬(
∨
{cd | d ∈ A′})). The latter requires

the projection operations proj to be applied to complex expressions of the form
projx̄(¬(c1(ȳ) ∨ · · · ∨ ck(ȳ)) ∧ c(x̄, ȳ)), which involves expanding the expression
(to d.n.f. for example); by contrast the former requires evaluation of simpler
expressions of the form projx̄(cd(ȳ) ∧ c(x̄, ȳ)).

We can improve the computation of the abstract function (α ◦ pre ◦ γ). Let
{ci} be a set of constraints, each of which represents a set of points. It can easily
seen that pre(

∨
{ci}) =

∨
{pre(ci)}. Consider the evaluation of (α ◦ pre ◦ γ)(A′)

where A′ ∈ 2A is a set of disjoint partitions represented by constraints.

(α ◦ pre ◦ γ)(A′) = (α ◦ pre)(
∨
{cd | d ∈ A′})

= α(
∨
{pre(cd) | d ∈ A′})

Give a finite partition A, we pre-compute the constraint pre(cd) for all d ∈ A.
Let Pre(d) be the predecessor constraint for partition element d. The results can
be stored as a table, and whenever it is required to compute (α ◦ pre ◦ γ)(A′)
where A′ ∈ 2A, we simply evaluate α(

∨
{Pre(d) | d ∈ A′}). The abstraction

function α is evaluated efficiently using the SMT solver, as already discussed.
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x = 2

x = 2
x < 2
x = 1
w = 1

l1

w > 5
x = 1

w = -2
l2

w  = 5
 x := 0 

x < 2
x = 1

w = -2

Fig. 1. A Water-level Monitor [27]

rState1(A,B,C,D):- rState4(E,F,G,H),

D=1,H=4,G≤I,1*J=1*E+1*(I-G),1*K=1*F+ -2*(I-G),

J=2,L=J,M=K,0≤C,1*A=1*L+1*(C-0),1*B=1*M+1*(C-0),B≤10.

rState1(A,B,C,D):- D=1,0≤C,1*A=1*0+1*(C-0),1*B=1*1+1*(C-0),B≤10.

rState2(A,B,C,D):- rState1(E,F,G,H),

D=2,H=1,G≤I,1*J=1*E+1*(I-G),1*K=1*F+1*(I-G),

K=10,L=0,M=K,0≤C,1*A=1*L+1*(C-0),1*B=1*M+1*(C-0),A≤2.

rState3(A,B,C,D):- rState2(E,F,G,H),

D=3,H=2,G≤I,1*J=1*E+1*(I-G),1*K=1*F+1*(I-G),J=2,

L=J,M=K,0≤C,1*A=1*L+1*(C-0),1*B=1*M+ -2*(C-0),B>=5.

rState4(A,B,C,D):- rState3(E,F,G,H),

D=4,H=3,G≤I,1*J=1*E+1*(I-G),1*K=1*F+ -2*(I-G),K=5,

L=0,M=K,0≤C,1*A=1*L+1*(C-0),1*B=1*M+ -2*(C-0),A≤2.

Fig. 2. The Water-Level Controller transition rules, automatically generated from Fig-
ure 1 [4]

Note that expressions of the form α(pre(
∨
{· · ·})) occur in the transformed

expression for (α ◦ p̃re ◦ γ)(A′) above. The same optimisation can be applied
here too. Our experiments show that this usually yields a considerable speedup
(2-3 times faster) compared to dynamically computing the pre function during
model checking.

Our implementation of the abstract μ-calculus semantic function [[.]]aCTL was
in Prolog, with interfaces to external libraries to perform constraint-solving func-
tions. In implementing the pre operation we make use of a Ciao-Prolog interface
to the PPL library [2]. In particular, this is used to compute the proj function.
The α function is implemented using the SMT solver Yices [19]. We implemented
an interface predicate yices sat(C,Xs), where C is a constraint and Xs is the set
of variables in C. This predicate simply translates C to the syntax of Yices, and
succeeds if and only if Yices finds that the constraint is satisfiable. Using this
predicate the definition of α, that is α(c) = {d | SAT(cd∧c)} can be implemented
directly as defined.

6 Experiments Using an SMT Constraint Solver

A small example is shown with all details to illustrate the process of proving
a property. In Figure 1 is shown a linear hybrid automaton (LHA) for a water
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region(1,rState1(A,B,C,D),[D=1,-1*A≥ -9,1*A≥0,1*A-1*B= -1,1*A-1*C=0]).

region(2,rState2(A,B,C,D),[D=2,-1*C≥ -2,1*C≥0,1*A-1*C=0,1*B-1*C=10]).

region(3,rState3(A,B,C,D),[D=3,-2*C≥ -7,1*C≥0,1*A-1*C=2,1*B+2*C=12]).

region(4,rState4(A,B,C,D),[D=4,-1*C≥ -2,1*C≥0,1*A-1*C=0,1*B+2*C=5]).

region(5,rState1(A,B,C,D),[D=1,-1*C≥ -9,1*C≥0,1*A-1*C=2,1*B-1*C=1]).

Fig. 3. Disjoint Regions of the Water-Level Controller States

level controller taken from [27]. Figure 2 shows transition rules represented as
constraint logic program (CLP) clauses generated automatically from the LHA
in Figure 1, as explained in detail in [3]. The state variables in an atomic formula
of form rState(X,W,T,L) represent the rate of flow (X), the water-level (W), the
elapsed time (T) and the location identifier (L). The meaning of a clause of form

rState(X,W,T,L) :- rState(X1,W1,T1,L1), c(X,W,T,L,X1,W1,T1,L1)

is a transition rule (X1, W1, T1, L1)
c(X,W,T,L,X1,W1,T1,L1)−→ (X, W, T, L). The initial state

is given by the clause rState(0,0, ,1).
Figure 3 shows the result of an analysis of the reachable states of the system,

based on computing an approximation of the minimal model of the constraint
program in Figure 2. This approximation is obtained by a tool for approximating
the minimal model of an arbitrary CLP program [6,28]. There are 5 regions,
which cover the reachable states of the controller starting in the initial state
(which is region 1). The term region(N, rState(A,B,C,D),[. . .]) means that
the region labelled N is defined by the constraint in the third argument, with
constraint variables A,B,C,D corresponding to the given state variables. The 5
regions are disjoint. We use this partition to construct the abstract domain as
described in Section 4.1.

Our implementation of the abstract semantics function is in Ciao-Prolog with
external interfaces to the Parma Polyhedra Library [2] and the Yices SMT solver
[19]1 Using this prototype implementation we successfully checked many CTL
formulas including those with CTL operators nested in various ways, which in
general is not allowed in Uppaal [5], HyTech [29] or PHAVer [22] (though
special-purpose constructs such as a “leads-to” operator can be used to handle
some cases).

Table 1 gives the results of proving properties using abstract model checking
two systems, namely, a water level monitor and a task scheduler. Both of these
systems are taken from [27]. In the table: (i) the columns System and Property
indicate the system and the formula being checked; (ii) the columns A and Δ,
respectively, indicate the number of abstract regions and original transitions in
a system and (iii) the column time indicates the computation time to prove a
formula on the computer with an Intel XEON CPU running at 2.66GHz and
with 4GB RAM.

Water level controller. The water level system has 4 state variables and 4 transi-
tion rules. A variety of different properties that were proved is shown in Table 1.
1 Prolog code available at http://akira.ruc.dk/~jpg/Software/amc all.pl.
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In some cases we derived a more precise partition than the one originally returned
for the transition system, using the technique described below in Section 6.1.

The formula AF (W ≥ 10) means “on all paths the water level (W ) reaches at
least 10”, while AG(W = 10 → AF (W < 10 ∨ W > 10)) means “on every path
the water level cannot get stuck at 10”. The formula AG(0 ≤ W ∧W ≤ 12) is a
global safety property stating that the water level remains within the bounds 0
and 12. A more precise invariant is reached some time after the initial state and
this is proved by the property AF (AG(1 ≤ W ∧ W ≤ 12)), in other words “on
all paths, eventually the water level remains between 1 and 12”. Since for all
φ, AG(φ) ≡ AG(AG(φ)) we are able to prove AG5(0 ≤ W ∧ W ≤ 12) which is
only shown in order to indicate the capability of the prover to handle arbitrarily
deeply nested formulas. The formula EF (W = 10) shows that the water level can
reach exactly 10. Finally, the formula EU(W < 12, AU(W < 12, W ≥ 12)) shows
another example of a verified progress property (which could be formulated more
simply but is shown just to exercise the prover’s capabilities).

Scheduler. The scheduler system for two processes has 8 state variables, 18
abstract regions and 12 transition rules. We proved a number of safety and
liveness properties, again successfully checking properties of a form beyond the
capability of other model checkers. For example the nested formula AG(K2 >
0 → AF (K2 = 0)) is a critical correctness property meaning that tasks of high
priority (whose presence is indicated by a strictly positive value of K2) do not
get starved (that is, the value of K2 eventually returns to zero on all paths).

6.1 Property-Specific Refinements

The topic of refinement is a very relevant and much-studied area in proof by
abstraction. Refinement is applied when a given abstraction is too coarse to
prove some property. In this case we seek to derive a more precise refinement,
that is somehow more relevant to the property being proved. Refinement is not
the main focus in this paper, but we discuss briefly the use of a property-specific
refinement that we can apply to increase the number of provable properties.
Consider the property EF (W = 10) in the water level controller, which holds on
the system. But this formula cannot be verified when the state space is abstracted
with regions that cannot distinguish states where W = 10. The negation of the
formula, namely AG(W > 10∨W < 10), holds in the abstract initial state since
there are infinite paths from the initial region which always stay in regions that
are consistent with W �= 10.

One approach to solving such cases is to make a property-specific refinement
to the abstraction. For a given constraint property p each region is split into
further regions by adding the constraints p and ¬p respectively to each region.
Only the satisfiable regions need to be retained. With this refined abstraction
using (W = 10) for p, the property EF (W = 10) can then successfully be
checked.
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Table 1. Experimental Results

System Property A Δ Time (secs.)

Waterlevel AF (W ≥ 10) 5 4 0.02
Monitor AG(0 ≤ W ∧ W ≤ 12) 5 4 0.01

AF (AG(1 ≤ W ∧ W ≤ 12)) 5 4 0.02
AG(W = 10 → AF (W < 10 ∨ W > 10)) 10 4 0.05
AG(AG(AG(AG(AG(0 ≤ W ∧ W ≤ 12))))) 5 4 0.02
EF (W = 10) 10 4 0.01
EU(W < 12, AU(W < 12, W ≥ 12)) 7 4 0.04

Task Scheduler EF (K2 = 1) 18 12 0.53
AG(K2 > 0 → AF (K2 = 0)) 18 12 0.30
AG(K2 ≤ 1) 18 12 0.04

The CEGAR approach to refinement [9] is quite compatible with our ap-
proach, but we are also interested in investigating more general forms of refine-
ment investigated in the theory of abstract interpretation [23].

7 Related Work

The topic of model-checking infinite state systems 2 and using some form of ab-
straction has been already widely studied. Abstract model checking is described
by Clarke et al. [10,11]. In this approach a state-based abstraction is defined
where an abstract state is a set of concrete states. A state abstraction together
with a concrete transition relation Δ induces an abstract transition relation Δabs.
Specifically, if X1, X2 are abstract states, (X1, X2) ∈ Δabs iff ∃x1 ∈ X1, x2 ∈ X2
such that (x1, x2) ∈ Δ. From this basis an abstract Kripke structure can be built;
the initial states of the abstract Kripke structure are the abstract states that
contain a concrete initial state, and the property labelling function of the ab-
stract Kripke structure is induced straightforwardly as well. Model checking CTL
properties over the abstract Kripke structure is correct for universal temporal
formulas (ACTL), that is, formulas that do not contain operators EX, EF, EG
or EU . Intuitively, the set of paths in the abstract Kripke structure represents
a superset of the paths of the concrete Kripke structure. Hence, any property
that holds for all paths of the abstract Kripke structure also holds in the con-
crete structure. If there is a finite number of abstract states, then the abstract
transition relation is also finite and thus a standard (finite-state) model checker
can be used to perform model-checking of ACTL properties. Checking properties
containing existential path quantifiers is not sound in such an approach.

2 When we say model checking of (continuous) infinite state systems, it means model-
checking the discrete abstractions of infinite state systems. In [1], it is established
that hybrid systems can be safely abstracted with discrete systems preserving all the
temporal properties expressed in branching-time temporal logics as well as linear-
time temporal logics.
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This technique for abstract model checking can be reproduced in our ap-
proach, although we do not explicitly use an abstract Kripke structure. Check-
ing an ACTL formula is done by negating the formula and transforming it to
negation normal form, yielding an existential temporal formula (ECTL formula).
Checking such a formula using our semantic function makes use of the pre func-
tion but not the p̃re function. For this kind of abstraction the relation on ab-
stract states s → s′ defined as s ∈ (α ◦ pre ◦ γ)({s′}) is identical to the abstract
transition relation defined by Clarke et al. Note that whereas abstract model
checking the ACTL formula with an abstract Kripke structure yields an under-
approximation of the set of states where the formula holds, our approach yields
the complement, namely an over-approximation of the set of states where the
negation of the formula holds.

There have been different techniques proposed in order to overcome the re-
striction to universal formulas. Dams et al. [16] present a framework for con-
structing abstract interpretations for μ-calculus properties in transition systems.
This involves constructing a mixed transition system containing two kinds of
transition relations, the so-called free and constrained transitions. Godefroid
et al. [25] proposed the use of modal transition systems [33] which consist of
two components, namely must-transitions and may-transitions. In both [16] and
[25], given an abstraction together with a concrete transition system, a mixed
transition system, or an (abstract) modal transition system respectively, is au-
tomatically generated. Following this, a modified model-checking algorithm is
defined in which any formula can be checked with respect to the dual transi-
tion relations. Our approach by contrast is based on the standard semantics of
the μ-calculus. The may-transitions and the must-transitions of [25] could be
obtained from the functions (α ◦ pre ◦ γ) and (α ◦ p̃re ◦ γ) respectively. For the
case of an abstraction given by a partition A = {d1, . . . , dn} it seems that an
abstract modal transition system could be constructed with set of states A such
that there is a may-transition di → dj iff di ∈ (α ◦ pre ◦ γ)({d′j} and a must-
transition di → dj iff di ∈ (α ◦ p̃re ◦ γ)({dj}. However the two approaches are
not interchangeable; in [25] a concrete modal transition system has the same set
of must-transitions and may-transitions, but applying the above constructions
to the concrete state-space (with α and γ as the identity function) does not
yield the same sets of must- and may-transitions (unless the transition system
is deterministic). We have shown that the construction of abstract transition
systems as in [10,11], and abstract modal transition systems in particular [16,25]
is an avoidable complication in abstraction. Probably the main motivation for
the definition of abstract transition systems is to re-use existing model checkers,
as remarked by Cousot and Cousot [15] (though this argument does not apply
to modal or mixed transition systems in any case).

Property-preserving abstraction using Galois connections was applied in a μ-
calculus setting by Loiseaux et al. [35]. Our aim and approach are similar, but
are both more general and more direct. The cited work develops sounds ab-
stractions for universal properties only whereas we handle arbitrary properties.
On the other hand it uses Galois connections to develop a simulation relation
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between concrete and abstract systems, which goes beyond the scope of the cur-
rent work. The application of the theory of abstract interpretation to temporal
logic, including abstract model checking, is thoroughly discussed by Cousot and
Cousot [14,15]. Our abstract semantics is inspired by their approach, in that
we also proceed by direct abstraction of a concrete semantic function using a
Galois connection, without constructing any abstract transition relations. The
technique of constructing abstract functions based on the pattern (α ◦ f ◦ γ),
while completely standard in abstract interpretation [13], is not discussed ex-
plicitly in the temporal logic context. We focus only on state-based abstractions
(Section 9 of [15]) and we ignore abstraction of traces. Our contribution com-
pared to these works is to work out the abstract semantics for a specific class
of constraint-based abstractions, and point the way to effective abstract model
checking implementations using SMT solvers. Kelb [32] develops a related ab-
stract model checking algorithm based on abstraction of universal and existential
predecessor functions.

Giacobazzi and Quintarelli [24] discuss abstraction of temporal logic and their
refinement, but deal only with checking universal properties. Säıdi and Shankar
[40] also develop an abstract model checking algorithm integrated with a theorem
proving system for handling property-based abstractions. Their approach also
uses abstract interpretation but develops a framework that uses both over- and
under-approximations for handling different kinds of formula.

Our technique for modelling and verifying real time and concurrent systems
using constraint logic programs [3] builds on the work of a number of other
authors, including Gupta and Pontelli [26], Jaffar et al. [31] and Delzanno and
Podelski [17]. However we take a different direction from them in our approach
to abstraction and checking of temporal properties, in that we use abstract CLP
program semantics when abstracting the state space (only briefly mentioned in
the present work), but then apply this abstraction in a temporal logic framework,
which is the topic of this work. Other authors have encoded both the transition
systems and CTL semantics as constraint logic programs [8,34,37,18,21,38,39].
However none of these develops a comprehensive approach to abstract semantics
when dealing with infinite-state systems. Perhaps a unified CLP-based approach
to abstract CTL semantics could be constructed based on these works, but sound
abstraction of negation in logic programming remains a significant complication
in such an approach.

8 Conclusion

We have demonstrated a practical approach to abstract model checking, by con-
structing an abstract semantic function for the μ-calculus based on a Galois
connection. Much previous work on abstract model checking is restricted to ver-
ifying universal properties and requires the construction of an abstract transition
system. In other approaches in which arbitrary properties can be checked [25,16],
a dual abstract transition system is constructed. Like Cousot and Cousot [15] we
do not find it necessary to construct any abstract transition system, but rather
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abstract the concrete semantic function systematically. Using abstract domains
based on constraints we are able to implement the semantics directly. The use
of an SMT solver adds greatly to the effectiveness of the approach.

Acknowledgements. We gratefully acknowledge discussions with Dennis Dams,
César Sánchez, Kim Guldstrand Larsen and suggestions by the LPAR-16 referees.
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Abstract. We consider a mild extension of universal algebra in which
terms are built both from deterministic and probabilistic variables, and
are interpreted as distributions. We formulate an equational proof sys-
tem to establish equality between probabilistic terms, show its soundness,
and provide heuristics for proving the validity of equations. Moreover, we
provide decision procedures for deciding the validity of a system of equa-
tions under specific theories that are commonly used in cryptographic
proofs, and use concatenation, truncation, and xor. We illustrate the ap-
plicability of our formalism in cryptographic proofs, showing how it can
be used to prove standard equalities such as optimistic sampling and
one-time padding as well as non-trivial equalities for standard schemes
such as OAEP.

1 Introduction

Provable security [15] is a methodology used by cryptographers for providing
rigorous mathematical proofs of the correctness of cryptographic schemes. One
of the popular tools for provable security is the game-based technique [4], in
which cryptographic proofs are organized as a sequence of game/event pairs:

G0, A0 →h1 G1, A1 → · · · →hn Gn, An

where G0, A0 formalises the security goal—e.g. IND-CPA and IND-CCA for
an encryption scheme or UF-CMA and EF-CMA for signature schemes—and
the scheme under study, and hi are monotonic functions such that PrGi [Ai] ≤
hi+1(PrGi+1 [Ai+1]). By composition, h1 ◦ · · · ◦ hn(PrGn [An]) is an upper bound
for PrGn [An].

While the game-based technique does not advocate any formalism for games,
some authors find convenient to model games as probabilistic programs. In this
setting, game-based cryptographic proofs often proceed by replacing a set of
algebraic expressions s1 . . . sn by another set of expressions t1 . . . tn in the pro-
gram. The correctness of the transformation is guaranteed provided the tuples of
terms s1 . . . sn and t1 . . . tn yield equal distributions. Notable examples include:
� This work was partially supported by French ANR SESUR-012, SCALP, Spanish

project TIN2009-14599 DESAFIOS 10, and Madrid Regional project S2009TIC-1465
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One-time padding: for every cyclic group G of prime order and generator g of
G, the distributions gx and c · gx, where the variable x is sampled randomly
over Zq, are equal;

Optimistic sampling: for every k, the distributions (x, x ⊕ y) and (x ⊕ y, x)
are equal, where x is sampled uniformly over the set of bitstrings of size k,
and y is an arbitrary but fixed bitstring of size k—here ⊕ denotes the bitwise
xor on bitstrings.

The purpose of this article is to provide a formalism that captures and justi-
fies the equational reasonings that pervade cryptographic proofs. To this end,
we consider an extension of universal algebra that distinguishes between prob-
abilistic variables and determistic variables. While deterministic variables are
interpreted in the usual way via valuations, the interpretation of probabilistic
variables is through sampling, so that the intepretation [[t]]y �→b of a term t with
probabilistic variables x and deterministic variables y under the valuation y �→ b
is defined as

λc ∈ σ. Pr
a∈τ

[t[x, y := a, b] = c]

where τ is the type of x and σ is the type of t, and where ·[· := ·] denotes
substitution of variables by values. In the case of optimistic sampling, where the
variable x is probabilistic and the variable y is deterministic, the interpretation
[[x ⊕ y]]y �→b of the expression x ⊕ y w.r.t. a valuation y �→ b is defined as a

$←
{0, 1}k, [[x ⊕ y]]x �→a,y �→b, i.e. the distribution obtained by monadic composition
of the uniform distribution over {0, 1}k, and of the (deterministic) interpretation
of 〈〈x ⊕ y〉〉x �→a,y �→b. Equivalently, [[x ⊕ y]]y �→b = λc. Pra∈{0,1}k [a⊕ b = c]. Under
this interpretation, one can show that

[[〈x ⊕ y, x〉]]y �→b = λc, d. Pr
a∈{0,1}k

[a ⊕ b = c, a = d]

is equal to
[[〈x, x ⊕ y〉]]y �→b = λc, d. Pr

a∈{0,1}k
[a = c, a ⊕ b = d]

Note that the equational theory of probabilistic terms reveals some subtleties:
for example, the equation x

.= y is valid whenever x and y are probabilistic
variables of the same type; however, the equation 〈x, x〉 .= 〈y, y′〉 is not valid in
general—as a result, it is important to consider systems of equations rather than
single equations, as further explained below.

Our main contributions are:

– the definition of a proof system for reasoning about equations, and systems
of equations. We prove that the system is sound and provide useful heuristics
for establishing the validity of a system of equations;

– for specific theories, including the theory of xor and concatenation, the defini-
tion of decision procedures for deciding the validity of a system of equations;
and sufficient conditions for the decidability of the validity of a system of
equations.
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2 A Motivating Example

We illustrate the need for proving equality between distributions with one clas-
sical example of encryption scheme, namely RSA-OAEP [5,9]. Recall that an
asymmetric encryption scheme is specified by a triple (KG, E ,D) where KG is a
key generation algorithm which outputs a pair of public and private keys, E is an
encryption algorithm that takes an input a public key and a plaintext algorithm
and outputs a ciphertext, and a decryrption algorithm that takes the private
key and the ciphertext and produces the corresponding plaintext. An asymmet-
ric encryption scheme (KG, E ,D) is said to be indistinguishable between real or
random (IND-ROR) if the difference between the final distribution of the two
games is small:1

(sk, pk)←KG; m←A(pk); c←E(pk, m); return c

(sk, pk)←KG; m←A(pk); y $←{0, 1}k; c←E(pk, y); return c

where A is the procedure that represents the adversary.
OAEP is a famous padding scheme that is used for increasing robustness of

RSA encryption. The OAEP algorithm relies on two random oracles G and H ,
which are sampled during initialization—we gloss over the size of the arguments
and images of H and G. Key generation, encryption and decryption are respec-
tively defined as:

KG = (f, f−1) $←Λ, return (f, f−1)

E(m, f) = r∗ $←{0, 1}k0; s∗←(m | 0k1) ⊕ G(r∗); t∗←H(s∗) ⊕ r∗

return f(s∗ | t∗)
D(y) = s|t := f−1(y); r := H(s) ⊕ t;

if [G(r)]k1 = [s]k1 then (return [s ⊕ G(r)]k−k1 ) else reject

where where Λ denotes the set of trapdoor permutations—for the purpose of this
paper, it is sufficient to know that f and f−1 are inverse to each other—-and [.]k
and [.]k respectively denote taking and removing the first k bits of a bitstring.

The first step in the proof of IND-ROR for OAEP is to show that the two
code snippets below yield the same distribution:

r∗ $←{0, 1}k0; m←A(f); g∗ $←{0, 1}k−k0;
return f((m | 0k1) ⊕ g∗|H((m | 0k1) ⊕ g∗) ⊕ r∗)

m←A(f); y $←{0, 1}k;
return y

In order to prove the equality, one must show the validity of the equation:

f((m | 0k1) ⊕ g∗|H((m | 0k1) ⊕ g∗) ⊕ r∗) .= y

where g∗, r∗, y are random variables. More formally, one must show that the
distribution induced by the left hand side by sampling uniformly g∗ and r∗ over
1 Technically, games are indexed by a security parameter η and IND-ROR states that

the distance between the families of distributions induced by the indexed games are
negligible in η.
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their respective sets is the uniform distribution. The informal argument goes
as follows: since r∗ is uniformly distributed and only occurs once, therefore the
expression H((m | 0k1) ⊕ g∗) ⊕ r∗ is uniformly distributed and can be replaced
by a fresh random variable hr∗. Thus, we are left to prove

f((m | 0k1) ⊕ g∗|hr∗) .= y

Now, g∗ is uniformly distributed and only occurs once, therefore the expression
(m | 0k1) ⊕ g∗ is uniformly distributed and can be replaced by a fresh random
variable mg∗. Thus, we are left to prove

f(mg∗|hr∗) .= y

The concatenation of random variables being random, one can subsitute mg∗|hr∗

by a fresh variable z∗, so that one is left to prove

f(z∗) .= y

To conclude, observe that f is a bijection so f(z∗) is uniformly distributed, and
hence we indeed have f(z∗) .= y. In the course of the paper, we will develop a
procedure that formalizes this reasoning.

3 Preliminaries

We refer to e.g. Chapter 8 of [14] for an introduction to finite distributions,
with examples from cryptography. Throughout the paper, we only consider
(sub)distributions over finite sets: let A be a finite set; the set D(A) of dis-
tributions over A is the set of functions d : A → [0, 1] such that

∑
a∈A d(a) ≤ 1.

Given a distribution d ∈ D(A) and an element a ∈ A, we write Pr[d = a] for
d(a).

Let A be a finite set of cardinal q. The uniform distribution over A assigns
to each element of A probability q−1. We write x

$← A to denote the uniform
distribution on A. The monadic composition of the uniform distribution and of
a function f : A → D(B) is the distribution y

$←A, f(y), which is defined by the

clause Pr[y $←A, f(y) = b] = q′

q where q′ is the cardinal of f−1(b). Intuitively,
this is the distribution of a random variable which is obtained by sampling A
uniformly at random to obtain a value y, and then evaluating f at y.

The product distribution d1 × · · · × dn of the distributions d1 . . .dn is defined
as x1

$←d1 . . . xn
$←dn, (x1, . . . , xn). Conversely, the i-th projection of a distri-

bution d over A1 × · · · × An is the distribution x
$← d, πi(x), where πi denotes

the usual projection.
The following observation, which only holds for finite domains and uniform

distributions, is the cornerstone of the general decision procedure for deciding
equality of distributions.

Proposition 1. For all finite sets A and B, and functions f, g : A → B, the
following are equivalent:
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– x
$←A, f(x) = x

$←A, g(x)
– there exists a bijection h : A → A such that f = g ◦ h.

Note that since A is finite, h is bijective iff it is injective iff it is surjective.

A remark on products. Throughout the paper, we use the vector notation to
denote tuples of terms. Accordingly, we use tuple notations to denote the product
of their types, thus t denotes a tuple of terms and σ denotes the product of their
types.

4 Syntax and Semantics

This section introduces the syntax and semantics of probabilistic terms, and
gives a precise formulation of the satisfaction problem for systems of equations
of probabilistic terms. For an introduction to equational logic and term rewriting
see e.g. [1].

4.1 Syntax

We start from the notion of many-sorted signature. We allow function symbols
to be overloaded, but impose restrictions to ensure that terms have at most one
sort.

Definition 1 (Signature). A signature is a triple Σ = (S,F , :), where S is a
set of sorts, F is a set of function symbols, and : is a typing relation between
function symbols and arities of the form σ1 × . . .×σn → τ , with σ1 . . . σn τ ∈ S.

We require that the typing relation is functional, i.e. if f : σ1 × . . . × σn → τ
and f : σ1 × . . .× σn → τ ′, then τ = τ ′. In particular, we assume that constants
have a single type.

Terms are built in the usual way, except that we distinguish between two sets
of variables: the set R denotes variables that are interpreted probabilistically,
and the set D denotes variables that are interpreted deterministically. It is con-
venient to assume that there are infinitely many deterministic and probabilistic
variables of each sort. Moreover, we assume that for every x ∈ R there exists a
distinguished variable x̄ ∈ D of the same sort.

Definition 2 (Terms and substitutions). Let Σ = (S,F , :) be a signature
and let X be a collection of variables. The set TX of terms over X is built from
the syntax: t ::= x | f(t) where f ranges over F and x ranges over X. In the
sequel, we consider the set of terms over V = D ∪ R, and write T instead of
TD∪R. Elements of TD are called D-terms.

Substitutions over X (to TY ) are defined as functions from X to TY ; we let
ρ t denote the result of applying the substitution ρ to t.
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Given Y ⊆ X, we let varY (t) denote var(t) ∩ Y , where var(t) is defined in
the usual way. Moreover, we say that t ≡α(Y ) t′ iff there exists a 1-1 renaming
ρ : varY (t) → varY (t′) such that ρ t = t′.

Terms are subject to a simple typing discipline that ensures that functions are
applied to arguments of the correct types. In the sequel, we implicitly assume
that each variable x has a unique sort σx and that terms are well-typed; we
adopt the standard notations t : σ (resp. t ∈ TX(σ)) to denote that a term t has
type σ (resp. t has type σ and var(t) ⊆ X). Thanks to requiring that typing is
functional, every term has at most one type.

Definition 3 (System of equations). A system of equations over a set X,
or X-system of equations, is a statement s1

.= t1 ∧ . . . ∧ sn
.= tn where, for

i = 1 . . .n, si and ti have the same type, i.e. si, ti ∈ TX(σi) for some σi. We
often use s

.= t as a shorthand for systems of equations.

Unlike equational logic, it is important to consider systems of equations rather
than single equations. Because of the possible dependencies between terms, the
conjunction of two valid equalities may not be valid.

Consider the probabilistic variables x, y, z of type σ: the system of equations
x

.= y ∧ x
.= z is not valid, whereas the two equations x

.= y and x
.= z are

valid; this is because the distribution y
$← σ, z

$← σ, 〈y, z〉 yields the uniform

distribution over σ × σ whereas x
$←σ, 〈x, x〉 does not.

Definition 4 (Theory). A theory is a pair T = (Σ, E) where Σ is a signature
and E is a (possibly infinite) set of of systems of equations.

4.2 Semantics

The semantics of probabilistic terms is adapted immediately from equational
logic. In particular, algebras provide the natural semantics for signatures.

Definition 5 (Algebra). Let Σ = (S,F , :) be a signature. A Σ-algebra is a
pair A = ((Aσ)σ∈S , (fA)f∈F) where Aσ is a finite set that interprets the sort σ
and fA ∈ Aσ1 ×· · ·×Aσn → Aτ for every f ∈ F such that f : σ1× . . .×σn → τ .
In the sequel, we let A =

⋃
σ∈S Aσ and write [[σ]] instead of Aσ.

Terms are interpreted as distributions, by taking a probabilistic interpretation
of variables in R.

Definition 6 (Interpretation of terms). Let Σ = (S,F , :) be a signature
and A = ((Aσ)σ∈S , (fA)f∈F ) be a Σ-algebra.

– An X-valuation is a function ρ : X → A such that ρ(x) ∈ Aσx for every
x ∈ X. We let ValX denote the set of X-valuations. In the sequel, we often
omit the subscript; moreover, we often use the notation x �→ a to denote
any valuation ρ such that ρ(xi) = ai.
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– Let ρ ∈ ValX . The pre-interpretation 〈〈t〉〉ρ of a term t ∈ TX is defined as:

〈〈t〉〉ρ =
{

ρ(t) if t ∈ X
fA(〈〈t1〉〉ρ, . . . , 〈〈tn〉〉ρ) if t = f(t1, . . . , tn)

– Let ρ ∈ ValD. The interpretation [[t]]ρ of a tuple of terms t of type σ is
defined by the clause:

[[t]]ρ = λa : σ. Pr
ρ′∈ValR

[〈〈t〉〉ρ+ρ′ = a]

where the valuation ρ + ρ′ denotes the (disjoint) union of ρ and ρ′, and for
every tuple of terms t = 〈t1, . . . , tn〉 and for every valuation ρ, 〈〈t〉〉ρ denotes

〈〈〈t1〉〉ρ, . . . , 〈〈tn〉〉ρ〉

Note that the interpretation of a tuple of terms needs not coincide with the
product distribution of their interpretations. For example, [[x, x]]ρ �= [[x]]ρ × [[x]]ρ
for every x ∈ R.

Definition 7 (Model). Let T=(Σ, E) be a theory; let A = ((Aσ)σ∈S , (fA)f∈F)
be a Σ-algebra.

– A system of equations s
.= t is valid in A, written A |= s

.= t iff for every
ρD ∈ ValD, we have [[s]]ρD = [[t]]ρD .

– A is a T-algebra (or T-model) iff for every system of equations s
.= t ∈ E,

we have A |= s
.= t.

The notion of model for an equational theory coincides with that of equational
logic for theories with D-systems of equations.

Note that one can prove that the following equations are valid: x
.= y for every

probabilistic variables x and y of the same type, x⊕x′ .= y for every probabilistic
variables x, x′ and y of type {0, 1}k.

4.3 Satisfaction Problem

The problem addressed in this paper can now be stated formally: given a theory
T = (Σ, E), a collection of Σ-algebras (Ai)i∈I and a system of equations s

.= t,
can we decide whether ∀i ∈ I, Ai |= s

.= t. We write DecSat(T,(Ai)i∈I) if the
problem is decidable.

Stating the satisfaction problem relative to a collection of models rather than
a single one is somewhat unusual, and is motivated by the need to carry cryp-
tographic proofs parametrically in the size of the security parameter.

5 Exclusive or, Concatenation, and Projection

The purpose of this section is to present decision procedures for the theories of
exclusive or, and the theory of exclusive or, concatenation, and projection.
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(s | t) ⊕ (s′ | t′) = (↓(1,#s′) s | (↓(#s′+1,#s) s | t)) ⊕ (s′ | t′) if #s′ < #s
(s | t) ⊕ (s′ | t′) = (s | t) ⊕ (↓(1,#s) s′ | (↓(#s+1,#s′) s′ | t′)) if #s < #s′

(s | t) ⊕ (s′ | t′) = (s ⊕ s′) | (t ⊕ t′) if #s = #s′

↓(i1,i2) (s ⊕ t) = (↓(i1,i2) s) ⊕ (↓(i1,i2) t)
↓(i1,i2) (s | t) = ↓(i1,i2) s if i2 ≤ #s
↓(i1,i2) (s | t) = ↓(i1−#s,i2−#s) t if #s < i1
↓(i1,i2) (s | t) = ↓(i1,#s) s |↓(1,i2−#s) t if i1 ≤ #s < i2

↓(i1,i2) (↓(j1,j2) s) = ↓(i1+j1,i2+j1) s
↓(1,#s) (s) = s

Fig. 1. Theory of concatenation and projection

5.1 Exclusive or

The first theory T⊕ has a single sort bs, a constant 0 : bs and a binary symbol
⊕ : bs × bs → bs. Its axioms are:

x ⊕ (y ⊕ z) .= (x ⊕ y) ⊕ z x ⊕ y
.= y ⊕ x

x ⊕ 0 .= x x ⊕ x
.= 0

We consider the family of algebras (BSk)k∈N, where BSk is the set of bistrings
of size k, with the obvious interpretation for terms. By abuse of notation, we
write |= s

.= t instead of ∀k ∈ N, BSk |= s
.= t.

We begin by stating some simple facts. First, one can decide whether D-
equations hold.

Lemma 1. Let s, t ∈ TD. It is decidable whether |= s
.= t.

Second, one can decide whether a term is semantically equal to a variable in R.
We write U(t) iff for all ρ ∈ Val, [[t]]ρ is uniformly distributed.

Lemma 2. Let t ∈ T . It is decidable whether U(t).

Proof. Every term t can be reduced to a normal form t′, in which variables
appear at most once. Then [[t]]ρ is uniformly distributed iff t′ contains at least
one R-variable.

It follows that one can decide equality of two terms.

Lemma 3. Let s and t be terms. It is decidable whether |= s
.= t.

Proof. If U(s) and U(t), return true. If ¬U(s) and U(t) or U(s) and ¬U(t), return
false. If ¬U(s) and ¬U(t), then s and t can be reduced to normal forms s′ ∈ TD
and t′ ∈ TD. Return true if |= s′ .= t′ and false otherwise.

In order to extend the result to tuples of terms, we rely on the following lemma.
The result is used e.g. in [6].

Proposition 2. Let t1 . . . tn ∈ T such that U(ti) for 1 ≤ i ≤ n. Exactly one of
the following statements hold:
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– indep (t): for every ρ ∈ Val, [[(t1 . . . tn)]]ρ = [[t1]]ρ × · · · × [[tn]]ρ;
– dep (t): there is a non-null vector λ ∈ {0, 1}n and s ∈ TD such that

depλ,s (t), where depλ,s (t) holds iff for every ρ ∈ Val,

[[
∑

1≤i≤n

λiti]]ρ = [[s]]ρ

where
∑

denotes summation mod 2.

Proof. For simplicity, assume that t1 . . . tn ∈ T{y1...yl} with y1 . . . yl ∈ R, and
consider bistrings of length k. Then indep (t) iff for all bitstrings of length k
a1 . . . an, the system of equations

(∗)

⎧⎪⎨⎪⎩
t1 = a1

...
tn = an

has exactly 2k(l−n) solutions. Indeed, Pr[
∧n

i=1 ti = ai] = α2−kl, where α is the
number of solutions of (∗). It is now easy to prove by induction on n that
α = 2k(l−n) is equivalent to the linear independence of t, which is equivalent to
¬dep (t).

For example, one can prove that the distribution induced by the triple of terms
(x⊕ y, y ⊕ z, z ⊕ x), where x, y, and z are probabilistic variables of type {0, 1}k

is not uniformly distributed, i.e. the system of equations:

x ⊕ y
.= w1 ∧ y ⊕ z

.= w2 ∧ z ⊕ x
.= w3

is not valid, since we have (x ⊕ y) ⊕ (y ⊕ z) ⊕ (z ⊕ x) = 0.
Note that one can effectively decide which of the two conditions hold, since

there are only finitely many λ to test—and s, if it exists, can be computed from∑
1≤i≤n λiti. Decidability follows.

Proposition 3. DecSat(T⊕,(BSk)k∈N).

Proof. The decision procedure works as follows:

1. If the system only contains a single equation s
.= t, invoke Lemma 3;

2. If indep (s) and indep (t), return true;
3. If depλ,s (s) and depλ,s (t) for the same λ and s, then pick λk �= 0, and

recursively check the smaller system without the equation sk
.= tk;

4. Otherwise, return false.

Since terms of sort bs are only built from variables of sort bs, decidability ex-
tends immediately to the multi-sorted theory T+

⊕, with set of sorts bsk for all
k, constants 0k : bsk, and a—single but overloaded—binary function symbol
⊕ : bsi × bsi → bsi. The axioms are those of T⊕. Finally, we consider the alge-
bras (BSk)k∈N with the obvious interpretation.

Proposition 4. DecSat(T+
⊕,(BSk)k∈N).
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5.2 Exclusive or, Concatenation, and Projection

Next, we prove decidability for exclusive or and concatenation. Thus, the theory
T{⊕,|,↓} has infinitely many sorts bsk and infinitely many function symbols:

0k : bsk ⊕ : bsk × bsk → bsk |: bsk × bsk′
→ bsk+k′

↓(i,j): bsk → bsj−i+1

where k′, i, j ∈ N are such that i ≤ j ≤ k. Its axioms are those of the theory T⊕,
together with axioms for the associativity and neutral for concatenation, and
with axioms for relating concatenation, projection and ⊕, which are given in
Figure 1. Finally, we consider the indexed family of algebras (BSi)i∈N in which
the interpretation of bsk is the set of bitstrings of length ki, with the obvious
interpretation of function symbols.

Proposition 5. DecSat(T{⊕,|,↓},(BS≤k)k∈N).

Proof. The proof proceeds by a reduction to the previous case, and relies on
a set of rewrite rules that transform an arbitrary system of equations into an
equivalent system without concatenation and projection. There are two sets
of rewrite rules; both rely on typing information that provides the length of
bitstrings; we let #s denote the length of the bistring s. The first set of rewrite
rules, is obtained by orienting the rules of Figure 1 from left to right, and pushes
concatenations to the outside and projections to the inside. The second set of
rewrite rules, given in Figure 2, aims to eliminate concatenation and projection
by transforming equations of the form s | t

.= s′ | t′ with #s = #s′ and #t = #t′

into a system of equations s
.= s′ | t

.= t′, and by replacing expressions of the
form ↓(i,j) x by fresh variables x(i,j)—in order to get an equivalent system, the
replacement is performed by a global substitution [x := x1,i−1 | xi,j | xj+1,#x].

The procedure terminates: intuitively, the rule for splitting variables can only
be applied a finite number of times, and the remaining rules are clearly ter-
minating. Upon termination, one obtains a system of equations of the form
s

.= t ∧ x
.= u where the ss and ts only contain ⊕-terms and the us, are con-

catenations of variables, and variables on the left hand side, i.e. the xs, do not
appear in the first system of equations, and moreover variables arise at most
once globally in the us. Thus, the validity of the system is equivalent to the
validity of s

.= t which can be decided by Proposition 3.

s1 | s2
.= t1 | t2 → 〈↓(1,#t1) s1, (↓(#t1+1,#s1) s1) | s2〉 .= 〈t1, t2〉 if #t1 < #s1

s1 | s2
.= t1 | t2 → 〈s1, s2〉 .= 〈↓(1,#s1) t1, (↓(#s1+1,#t1) t1) | t2〉 if #s1 < #t1

s1 | s2
.= t1 | t2 → 〈s1, s2〉 .= 〈t1, t2〉 if #t1 = #s1

s1 | s2
.= t ⊕ t′ → 〈s1, s2〉 .= 〈↓(1,#s1) (t ⊕ t′), ↓(#s1+1,#s1+#s2) (t ⊕ t′)〉

s1 | s2
.=↓(i1,i2) t → 〈s1, s2〉 .= 〈↓(i1,i1+#s1) t, ↓(i1+1+#s1,i1+1+#s2−#s1) t〉

s
.= t → Δ

Γ ∧ s
.= t → Γ ∧ Δ

Γ∧ ↓(i,j) x
.= t → (Γ ∧ xi,j

.= t)[x := x1,i−1 | xi,j | xj+1,#x] ∧ x
.= x1,i−1 | xi,j | xj+1,#x

Fig. 2. Normalization of equation systems with concatenation and projection
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6 An Equational Logic for Systems of Equations

The purpose of this section is to provide a sound proof system for proving the
validity of a system of equations, and to study the conditions under which the
proof system is complete and decidable.

6.1 Proof System

The proof system contains structural rules, equational rules that generalize those
of equational logic, and specific rules for probabilistic terms.

Structural rules specifically deal with systems of equations; the rule [Struct]
allows us to duplicate, permute, or eliminate equations. Formally s

.= t ⊆ s′ .= t′

iff for every j there exists i such that the i-th equation of s′ .= t′ is syntactically
equal to the j-th equation of s

.= t. Moreover, the rule [Merge] allows us to merge
systems of equations, provided they do not share any variables in R. Note that
the side condition of the [Merge] rule is necessary for soundness; without the
side condition, one could derive for probabilistic variables x, y, z of the same
type that x

.= y ∧ x
.= z is valid (since from x

.= y and x
.= z are), which is

unsound as mentioned earlier.
The equational rules include reflexivity, symmetry and transitivity of equality,

congruence rules for function symbols, a rule for axioms, and a substitution rule.
Note that the rule for functions is stated for ensuring soundness, and that the
following rule is unsound:

! s1
.= t1 . . . ! sn

.= tn

! f(s1 . . . sn) .= f(t1 . . . tn)

because it would allow to derive that ! x⊕x
.= y⊕z for x, y, z probabilistic vari-

ables of type {0, 1}k. Note also that we allow in the application of the [Fun] rule
to have side equations u

.= v, which is required to have successive applications
of the [Fun] rule.

Likewise, the rule for substitutions requires that the subsituted terms are
deterministic; without this restriction, the rule would be unsound as for every
deterministic variable y of type {0, 1}k and probabilistic variable x of the same
type, one could derive ! x

.= x ⊕ y[y := x] from ! x
.= x ⊕ y. Note that one can

combine the rule for substitution with the rule [Rand] below to allow substitu-
tions of terms that contain fresh probabilistic variables, in the style of [11].

Finally, the rules for probabilistic variables include rules for α-conversion, and
the rule [Bij], that is the syntactical counterpart of Proposition 1. It assumes that
varR(s)∪varR(t) ⊆ x, and requires that there are D-terms u and v that represent
bijections, and such that the composition of u with s is equal to t[x := x̄]—where
x̄ ∈ D is a type-preserving renaming of x. In the side condition, we let VR denote
varR(s) ∪ varR(t) and VD denote varD(s) ∪ varD(t).

Here is an example of the use of this system to prove optimistic sampling,
i.e. for every deterministic variable y of type {0, 1}k and probabilistic variable
x of the same type, ! x ⊕ y

.= x. The last step of the proof is an application of
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� s
.= t

� s′ .= t′ [Struct] where s′ .= t′ ⊆ s
.= t

s
.= t ⊆ E

� s
.= t

[Axm]

� s
.= t � s′ .= t′

� s
.= t ∧ s′ .= t′ [Merge] where (varR(s) ∪ varR(t)) ∩ (varR(s′) ∪ varR(t′)) = ∅

� s
.= s

[Refl] � s
.= t

� t
.= s

[Sym] � s
.= t � t

.= u

� s
.= u

[Trans]

� u
.= v ∧ s1

.= t1 ∧ . . . ∧ sn
.= tn

� u
.= v ∧ f(s1 . . . sn) .= f(t1 . . . tn)

[Fun]

� s
.= t

� ρs
.= ρt

[Subst]where ρ : D → TD

s ≡α(R) s′ t ≡α(R) t′ � s
.= t

� s′ .= t′ [Alpha]

� s[x := u] .= t[x := x̄] � u[x̄ := v] .= x̄

� s
.= t

[Bij]where

8<
:

VR ⊆ x
VD ∩ x̄ = ∅
(var(u) ∪ var(v)) ⊆ (x̄ ∪ VD)

Fig. 3. Proof system

the [Bij] rule, with u = x̄⊕ y and v = x̄⊕ y. It is easy to check that the premises
hold, i.e. ! x ⊕ y[x := x̄ ⊕ y] .= y, and ! x̄ ⊕ y[x̄ := x̄ ⊕ y] .= x̄.

One application of the [Bij] rule is to lift equality of deterministic terms to
equality of distributions. Concretely, we have:

! s[x := x̄] .= t[x := x̄]

! s
.= t

[Rand]where
{

VR ⊆ x
VD ∩ x̄ = ∅

Using this rule, one can also conclude that for every distinct probabilistic variable
x and y of type {0, 1}k, one has ! x ⊕ y

.= x.
In order to apply optimistic sampling in context, we must rely on a derived

rule for linear variables. Given a tuple of terms s in which x of type σ appears
exactly once, and assuming that ! x

.= t with var(t) ∪ var(s) ⊆ y, then:

x
.= t ∧ y

.= y

! s
.= s[x := t]

[Linear] x �∈ var(t)

The rule [Linear] can be proved by induction on the structure of the terms, or
using the [Bij+] rule in the next section. In particular, one can prove that for
every theory that contains the ⊕ operator and its associated equations that:

! s
.= s[x := x ⊕ t]

x �∈ var(t) ∧ x linear in s

Note that the conjunct y
.= y is required in the rule [Linear] because one could

otherwise take s to be x ⊕ y and t to be y, to prove (x ⊕ y)[x := y] .= x, which
is of course not valid.
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6.2 Soundness

The proof system is sound.

Proposition 6. Let T = (Σ, E) be a theory and assume that ! s
.= t. For every

T-algebra A, we have A |= s
.= t.

Proof (Sketch). By induction on the length of derivations. We only consider the
case [Bij]. Assume that we have A |= s[x := u] .= t[x := x̄] and A |= u[x̄ := v] .=
x̄. To show that A |= s

.= t, i.e. [[s]]ρ = [[t]]ρ for every valuation ρ ∈ ValD. We
have (the second equality holds by induction hypothesis):

[[s]]x �→[[u]]ρ = [[s[x := u]]]ρ = [[t[x := x̄]]]ρ

To conclude, it is sufficient to show that for every a ∈ [[σx]], and partial
valuation ρ′ with domain (var(u) ∪ var(v)) \ x the function [[u]]ρ′+x̄ �→a is a
bijection from [[σx]] to itself. By induction hypothesis, we have that
[[u[x̄ := v]]]ρ′+x̄�→a = (ρ′ + x̄ �→ a)x̄, or equivalently [[u]]ρ′+x̄�→[[v]]x̄�→a

= a. Hence
[[u]]ρ′+x̄→a is a bijection.

6.3 Products

Our proof system does not make any specific provision with product, thus it is
not possible to prove that for every probabilistic variables x, y and z of respective
types {0, 1}k, {0, 1}k′

and {0, 1}k+k′
one has ! x|y = z. Thus, the proof system

is incomplete.
One can remedy to this issue by considering theories with products, and en-

riching the proof system for such theories.

Definition 8 (Theory with products). A theory T = (Σ, E) has products iff
for every sorts σ and σ′, there exists a sort τ and function symbols π : τ → σ,
π′ : τ → σ′ and pair : σ × σ′ → τ such that the following D-equations hold:

pair(π(y), π′(y)) .= y π(pair(x, x′)) .= x π′(pair(x, x′)) .= x′

Concatenation and truncation of bitstrings are the primary examples of function
symbols that yield a product structure. Given a theory with products, one can
show that the rules for products are sound:

! s[x, x′ := π(y), π′(y)] .= t

! s
.= t

[ProdE]

The [ProdE] rule implicitly assumes that products exist, and that y is a fresh
variable. The rule allows to collate two probabilistic variables x and x′ of re-
spective sorts σ and σ′ by a probabilistic variable y of sort σ × σ′, and is useful
to prove the previous example. There is a dual rule [ProdI], which allows to
introduce projections, and is ommitted.
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6.4 Example Revisited

The example of Section 2 can be established through successive applications of
the [Linear] rule, the [Prod] rule, and finally the [Bij] rule. The signature is that
of bitstrings with exclusive or, concatenation, and truncation, extended with two
function symbols f and f−1, with additional axioms that state that f and f−1

are mutually inverse bijections.
The first step in the derivation is to show that the equation f(z∗) .= y is

derivable, for y and z∗ probabilistic variables. The equation is established using
the [Bij] rule, and relies on the axioms on f and f−1. Formally, we prove:

f(z∗) .= y

Then, the second step in the proof is to derive from the above equality the
equation:

f(mg∗ | hr∗) .= y

The proof proceeds as follows: we use the [Prod] rule to establish that mg∗ |
hr∗ .= z∗, and then the [Fun] rule to prove that f(mg∗ | hr∗) .= f(z∗), so by
transitivity, we have f(mg∗ | hr∗) .= y. Then, we can apply the [Linear] rule to
conclude that

f((m | 0k1) ⊕ g∗|hr∗) .= y

By a further application of the [Linear] rule, one concludes as expected that:

f((m | 0k1) ⊕ g∗|H((m | 0k1) ⊕ g∗) ⊕ r∗) .= y

6.5 Towards Completeness

The purpose of this section is to define completeness, and to provide some partial
results towards completeness. Unfortunately, we have not been able to prove
completeness for any theory of interest.

Recall that a proof system is complete w.r.t. a set of models if all systems of
equations that are valid in the models are also provable.

Definition 9 (Completeness). Let T = (Σ, E) be a theory. The proof system
is complete (resp. D-complete) wrt an indexed family (Ai)i∈I of T-algebras iff for
every system of equations (resp. D-equations) s

.= t, if for all i ∈ I, Ai |= s
.= t

then ! s
.= t.

There are two main issues with completeness. The first issue is the existence
of products, which is discussed above. The second and main difficulty is the
representation of bijections in the syntax. Indeed, one must show that the rule
[Bij] does indeed provide a syntactic counterpart to Proposition 1. In other
words, completeness requires that one can represent some bijections by a tuple
of terms, so that the rule [Bij] applies. A stronger hypothesis, namely that all
functions are representable by terms, is captured by the definition of primal
algebra, which is used e.g. in [13]: an algebra A is primal iff for every function
f : σ1 × . . .× σn → τ (with n > 0, and σ1 . . . σn, τ interpretations of sorts) there
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exists a D-term u with free variables x1 : σ1 . . . xn : σn such that for every
(a1, . . . , an) ∈ σ1 × · · · × σn, we have:

[[u]](x1:=a1,...,xn:=an) = f(a1, . . . , an)

Unfortunately, the notion of primal algebra is too strong for our setting, because
proving completeness would require that all the algebras of the indexed family
(Ai)i∈I are primal. Since the size of the algebras is unbounded, it is not clear,
even for the case of bitstrings considered in Section 5, how to define the signature
so to meet this requirement. One can instead consider a weaker notion, called
weak primality.

Definition 10 (Weakly primal). An algebra A is weakly primal iff for every
f1, f2 : σ1 × . . . × σn → τ (with n > 0, and σ1 . . .σn, τ interpretations of sorts)
that are interpretations of D-terms, and for every bijection h : σ1 × . . . × σn →
σ1× . . .×σn such that f2 = f1 ◦h, there exist terms u1, . . . , un with free variables
x1, . . . , xn such that f2 = f1◦[[(u1, . . . , un)]], and [[(u1, . . . , un)]] is a bijection over
σ1 × . . . × σn.

Note that weak primality does not require that h is representable, but instead
that there exist terms that satisfy the same equation as h. This weakening of
the original definition is necessary to prove that weak primality holds for the
signature of ⊕. The proof uses similar arguments to the proof of decidability
of validity of equations, and yields a process to build the terms u1 . . . un. We
illustrate the process on two examples: assume that s = x1 ⊕ x2 ⊕ x3 and t =
x2⊕x3. Then one takes the terms u1 = x1, u2 = x1⊕x2, u3 = x3, which provide
a bijection. Now, assume that s = x1 ⊕ x2 ⊕ x3 and t = x3. Then one takes the
terms u1 = x1, u2 = x2, u3 = x3 ⊕ x1 ⊕ x2, which provide a bijection.

Weak primality is sufficient to prove that every valid equation (not system of
equations) is derivable, provided that completeness holds for every D-equation.
The idea of the proof is as follows. Consider an equation s

.= t with deterministic
variables x1 . . . xn of type σ1 . . .σn, and probabilistic variables y1 . . . ym of type
τ1 . . . τm. Assume that for all i ∈ I, Ai |= s

.= t. By Proposition 1, there exists
a bijection fa1...an : [[τ1]] × . . . × [[τm]] → [[τ1]] × . . . × [[τm]] for every (a1 . . . an) ∈
[[σ1]] × · · · × [[σn]] such that:

〈〈s〉〉x �→a,y �→b = 〈〈t〉〉x �→a,y �→fa1...an (b)

for every (b1, . . . , bm) ∈ [[τ ]]. By weak primality, there exist D-terms u and v
with free variables x1 . . .xn and ȳ1 . . . ȳm such that for every a1 . . . an b1 . . . bm,
we have:

– fa1...an(b1, . . . , bm) = 〈〈u〉〉x �→a,ȳ �→b,
– f−1

a1...an
(b1, . . . , bm) = 〈〈v〉〉x �→a,ȳ �→b.

By D-completeness, we have that ! s
.= t[y := u] and ! u[ȳ := v] .= ȳ, and

hence by applying the [Bij] rule it follows that ! s
.= t is provable.
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6.6 Proof Automation

One strategy for proving a system of equations is to apply the [Bij] rule so as to
fall back in the realm of universal algebra—i.e. of D-systems of equations. Thus,
applicability of the [Bij] rule is the key to automation. This section considers
conditions for automating the [Bij] rule. Our starting point is a mild generaliza-
tion of the [Bij] rule, which does not require that all probabilistic variables are
eliminated simulateneously (recall that VD is a shorthand for varD(s)∪varD(t)):

! s[x := u] .= t[x := x̄] ! u[x̄ := v] .= x̄

! s
.= t

[Bij+]

where VD ∩ x̄ = ∅ and var(u) ∪ var(v) ⊆ (x̄ ∪ VD). The difference with the rule
[Bij] is that the side condition varR(s)∪varR(t) ⊆ x is dropped. Informally, this
rule allows constructing the underlying bijection of Proposition 1 incrementally.
It does not increase the power of the logic, but makes it easier to use, and is
important for injectivity, as suggested below. There is a close connection between
the rule [Bij+] and matching, see e.g. [1].

Definition 11 (1-1 matching problem). Let s, t be two terms and x ⊆
varR(s) ∪ varR(t). A solution to a 1-1 matching problem is a pair (u, v) of D-
terms such that:

– varD(u) ∪ varD(v) ⊆ x̄,
– ! s[x := u] .= t[x := x̄],
– ! u[x̄ := v] .= x̄.

We let Sol(s ≺≺1−1
x t) denote the set of solutions.

The rule [Bij+] can be rephrased equivalently as:

Sol(s ≺≺1−1
x t) �= ∅

! s
.= t

Hence, for every system of equations s
.= t, we have that Sol(s ≺≺1−1

x t) �= ∅
implies that for every i ∈ I, we have Ai |= s

.= t. Thus, one can prove a system
of equations s

.= t by exhibiting an element of Sol(s ≺≺1−1
x t).

Call a tuple of D-terms s injective (w.r.t. variables x and theory E) iff for
every e, ! s

.= s[x := e] implies ! e
.= x. Note that every vector of terms is

injective whenever E has unitary matching. Moreover, for every single variable
x and expression s in the theory of bitstrings, s is injective w.r.t. x, provided x
is provably equal to x ⊕ s0, and x does not occur in s0. On the other hand, one
cannot prove injectivity for terms that contain two variables x and y: indeed,
let s be x ⊕ y. Then for every constant bitstring c one can derive x ⊕ y

.=
x⊕ y[x, y := x ⊕ c, y ⊕ c] whereas we do not have x

.= x⊕ c and y
.= y ⊕ c. This

explains why it is important to consider the rule [Bij+] instead of [Bij].
The rule [Match] below, that uses the notion of injective term as a side con-

dition, is derivable:

� s[x := u] .= t[x := x̄] � s[x := x̄] .= t[x := v]

� s
.= t

[Match]if s injective w.r.t. x



62 G. Barthe et al.

Assume that ! s[x := u] .= t[x := x̄] and ! s[x := x̄] .= t[x := v]. Then,
! s[x := u][x̄ := v] .= t[x̄ := v] by substitution. That is, ! s[x := u[x̄ := v]] .=
t[x̄ := v]. By transitivity, ! s[x := u[x̄ := v]] .= s and by injectivity !
u[x̄ := v] .= x̄. One concludes by applying the rule [Bij+].

Thus, one can automate proofs in our logic by performing matching on injec-
tive terms.

7 Conclusion

We have considered a mild extension of universal algebra in which variables are
given a probabilistic interpretation. We have given a sound proof system and
useful heuristics to carry equational reasoning between such probabilistic terms;
moreover, we have provided decision procedures for specific theories that arise
commonly in cryptographic proofs.

Related work. Equational logic [10] is a well-established research field, and there
has been substantial work to develop proof systems and decision procedures for
differents flavours of the logic: many-sorted, multi-sorted, etc. Yet there seems
to have been few works that consider probabilistic extensions of equational logic;
for example, P-Maude [12] is an extension of Maude that supports probabilistic
rewrite theories, an extension of term rewriting where a term rewrites to another
term with a given probability. However, none of these works seems to have been
motivated by cryptography.

Equational theories have been thoroughly studied in the setting of crypto-
graphic protocols; see e.g. [7]. In particular, computational and probabilisitc
semantics for an equational theory of exclusive or is given, in the context of a
more general approach to such semantics for general equational theories, is given
in [3]. However, this work does not consider equational logics with probabilistic
terms.

Future work. The formalism of probabilistic terms seems new and deserves fur-
ther investigation in its own right. It would be interesting to develop further the
proof theory of probabilistic terms, and in particular to establish sufficient con-
ditions for completeness and decidability. In addition, it seems relevant to study
its relationship with other probabilistic extensions of equational logic, such as
P-Maude [12]. The connection between matching and 1-1 matching also deserves
further attention.

Our work is part of a larger effort to carry a proof-theoretical study of log-
ical methods for cryptographic proofs, and our main focus will be to exploit
our results in cryptography. Further work is required to extend the scope of
our results to other theories of interest for cryptography, see e.g. [7], including
permutations, exponentiation, etc. We also intend to extend our results to (loop-
free) probabilistic programs, and to develop automated proof methods to decide
observational equivalence between such programs. A further step would be to
consider, instead of observational equivalence, a notion of statistical distance
between programs and to develop automated approximation methods.
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In the long term, our goal is to implement our methods and integrate them in
tools to reason about cryptographic schemes and protocols, e.g. CertiCrypt [2],
or our automated tool to reason about encryption [8].
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their comments, and to Santiago Escobar, Pascal Lafourcade, and José Meseguer
for interesting discussions.
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Program Logics for Homogeneous Meta-programming
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Abstract. A meta-program is a program that generates or manipulates another
program; in homogeneous meta-programming, a program may generate new parts
of, or manipulate, itself. Meta-programming has been used extensively since
macros were introduced to Lisp, yet we have little idea how formally to reason
about meta-programs. This paper provides the first program logics for homoge-
neous meta-programming – using a variant of MiniML�

e by Davies and Pfenning
as underlying meta-programming language. We show the applicability of our ap-
proach by reasoning about example meta-programs from the literature. We also
demonstrate that our logics are relatively complete in the sense of Cook, enable
the inductive derivation of characteristic formulae, and exactly capture the obser-
vational properties induced by the operational semantics.

1 Introduction

Meta-programming is the generation or manipulation of programs, or parts of programs,
by other programs, i.e. in an algorithmic way. Meta-programming is commonplace, as
evidenced by the following examples: compilers, compiler generators, domain specific
language hosting, extraction of programs from formal specifications, and refactoring
tools.

Many programming languages, going back at least as far as Lisp, have explicit
meta-programming features. These can be classified in various ways such as: genera-
tive (program creation), intensional (program analysis), compile-time (happening while
programs are compiled), run-time (taking place as part of program execution), het-
erogeneous (where the system generating or analysing the program is different from
the system being generated or analysed), homogeneous (where the systems involved
are the same), and lexical (working on simple strings) or syntactical (working on ab-
stract syntax trees). Arguably the most common form of meta-programming is re-
flection, supported by mainstream languages such as Java, C#, and Python. Web sys-
tem languages such as PHP use meta-programming to produce web pages containing
JavaScript; JavaScript (in common with some other languages) does meta-programming
by dynamically generating strings and then executing them using its eval function. In
short, meta-programming is a mainstream activity.

An important type of meta-programming is generative meta-programming, specif-
ically homogeneous meta-programming. The first language to support homogeneous
meta-programming was Lisp with its S-expression based macros; Scheme’s macros
improve upon Lisp’s by being fully hygienic, but are conceptually similar. Perhaps un-
fortunately, the power of Lisp-based macros was long seen to rest largely on Lisp’s min-
imalistic syntax; it was not until MetaML [17] that a modern, syntactically rich language

E.M. Clarke and A. Voronkov (Eds.): LPAR-16, LNAI 6355, pp. 64–81, 2010.
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was shown to be capable of homogeneous meta-programming. Since then, MetaOCaml
[18] (a descendant of MetaML), Template Haskell [16] (a pure compile-time meta-
programming language) and Converge [19] (inspired by Template Haskell and adding
features for embedding domain specific languages) have shown that a variety of mod-
ern programming languages can house homogeneous generative meta-programming,
and that this allows powerful, safe programming of a type previously impractical or
impossible.

Meta-Programming & Verification. The ubiquity of meta-programming demonstrates
its importance; by extension, it means that the correctness of much modern software
depends on the correct use of meta-programming. Surprisingly, correctness and meta-
programming have received little joint attention. In particular, there seem to be no pro-
gram logics for meta-programming languages, homogeneous or otherwise. We believe
that the following reasons might be partly responsible.

– First, developing logics for non-meta-programming programming languages is al-
ready a hard problem, and only recently have satisfactory solutions been found
for reasoning about programs with higher-order functions, state, pointers, con-
tinuations or concurrency [1,14,21]. Since reasoning about meta-programs con-
tains reasoning about normal programs as a special case, program logics for meta-
programming are at least as complicated as logics for normal languages.

– Second, it is often possible to side-step the question of meta-programming cor-
rectness altogether by considering only the final product of meta-programming.
Compilation is an example where the meta-programming machinery is typically
much more complex than the end product. Verifying only the output of a meta-
programming process is inherently limited, because knowledge garnered from the
input to the process cannot be used.

– Finally, static typing of meta-programming is challenging, and still not a fully
solved problem. Consequently, most meta-programming languages are at least
partly dynamically typed (including MetaOCaml); Template Haskell on the other
hand intertwines code generation with type-checking in complicated ways. Log-
ics for such languages are not well understood in the absence of other meta-
programming features; moreover, many meta-programming languages have ad-
ditional features such as capturing substitution, pattern matching of code, and
splicing of types, which are largely unexplored theoretically. Heterogeneous meta-
programming adds the complication of multi-language verification.

Contributions. The present paper is the first in a series investigating the use of program
logics for the specification and verification of meta-programming. The aim of the series
is to unify and relate all key meta-programming concepts using program logics. One of
our goals is to achieve coherency between existing logics for programming languages
and their meta-programming extensions (i.e. the former should be special cases of the
latter). The contributions of this paper are as follows (all proofs have been omitted in
the interests of brevity; they can be found in [4]):

– We provide the first program logic for a generative, homogeneous meta-
programming language (PCFDP, a variant of Davies and Pfenning’s MiniML�

e [6],
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itself an extension of PCF [8]). The logic smoothly generalises previous work on
axiomatic semantics for the ML family of languages [1,2,9,11,12,21]. The logic
is for total correctness (for partial correctness see [4]). A key feature of our logic
is that for PCFDP programs that don’t do meta-programming, i.e. programs in the
PCF-fragment, reasoning can be done in the simpler logic [9,11] for PCF. Hence
reasoning about meta-programming does not impose an additional burden on rea-
soning about normal programs.

– We show that our logic is relatively complete in the sense of Cook [5] (Section 5).
– We demonstrate that the axiomatic semantics induced by our logic coincides

precisely with the contextual semantics given by the reduction rules of PCFDP

(Section 5).
– We present an additional inference system for characteristic formulae which en-

ables, for each program M, the inductive derivation of a pair A,B of formulae which
describe completely M’s behaviour (descriptive completeness [10], Section 5).

2 The Language

This section introduces PCFDP, the homogeneous meta-programming language that is
the basis of our study. PCFDP is a meta-programming variant of call-by-value (CBV)
PCF [8], extended with the meta-programming features of Mini-ML�

e [6, Section 3].
From now on we will simply speak of PCF to mean CBV PCF. Mini-ML�

e was the first
typed homogeneous meta-programming language to provide a facility for executing
generated code. Typing the execution of generated code is a difficult problem. Mini-
ML�

e achieves type-safety with two substantial restrictions:

– Only closed generated code can be executed.
– Variables free in code cannot be λ-abstracted or be recursion variables.

Mini-ML�
e was one of the first meta-programming languages with a Curry-Howard cor-

respondence, although this paper does not investigate the connection between program
logic and the Curry-Howard correspondence. PCFDP is essentially Mini-ML�

e , but with
a slightly different form of recursion that can be given a moderately simpler logical
characterisation. PCFDP is an ideal vehicle for our investigation for two reasons. First, it
is designed to be a simple, yet non-trivial meta-programming language, having all key
features of homogeneous generative meta-programming while removing much of the
complexity of real-world languages (for example, PCFDP’s operational semantics is sub-
stantially simpler than that of the MetaML family of languages [17]). Second, it is built
on top of PCF, a well-understood idealised programming language with existing pro-
gram logics [9,11], which means that we can compare reasoning in the PCF-fragment
with reasoning in full PCFDP.

PCFDP extends PCF with one new type 〈α〉 as well as two new term constructors,
quasi-quotes 〈M〉 and an unquote mechanism let 〈x〉 = M in N. Quasi-quotes 〈M〉
represent the code of M, and allow code fragments to be simply expressed in normal
concrete syntax; quasi-quotes also provide additional benefits such as ensuring hygiene.
The quasi-quotes we use in this paper are subtly different from the abstract syntax
trees (ASTs) used in languages like Template Haskell and Converge. In such languages,
ASTs are a distinct data type, shadowing the conventional language feature hierarchy.
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In this paper, if M has type α, then 〈M〉 is typed 〈α〉. For example, 〈1 + 7〉 is the code
of the program 1 + 7 of type 〈Int〉. 〈M〉 is a value for all M and hence 〈1 + 7〉 does
not reduce to 〈8〉. Extracting code from a quasi-quote is the purpose of the unquote
let 〈x〉 = M in N. It evaluates M to code 〈M′〉, extracts M′ from the quasi-quote,
names it x and makes M′ available in N without reducing M′. For example

let 〈x〉 = (λz.z)〈1 + 7〉 in 〈λn.xn〉

first reduces the application to 〈1 + 7〉, then extracts the code from 〈1 + 7〉, names it x
and makes it available unevaluated to the code 〈λn.xn〉:

let 〈x〉 = (λz.z)〈1 + 7〉 in 〈λn.xn〉 → let 〈x〉 = 〈1 + 7〉 in 〈λn.xn〉
→ 〈λn.xn〉[1 + 7/x]
= 〈λn.(1 + 7)n〉

(Γ∪Δ)(x) = α
Γ;Δ ! x : α

Γ,x : α;Δ ! M : β
Γ;Δ ! λxα.M : α → β

Γ;Δ ! M : α → β Γ;Δ ! N : α
Γ;Δ ! MN : β

Γ, f : (α → β);Δ ! λxα.M : α → β
Γ;Δ ! µ f α→β.λxα.M : α → β

Γ;Δ ! M : Bool Γ;Δ ! N : α Γ;Δ ! N′ : α
Γ;Δ ! if M then N else N′ : α

Γ;Δ ! M : Int Γ;Δ ! N : Int
Γ;Δ ! M +N : Int

ε;Δ ! M : α
Γ;Δ ! 〈M〉 : 〈α〉

Γ;Δ ! M : 〈α〉 Γ;Δ,x : α ! N : β
Γ;Δ ! let 〈x〉 = M in N : β

Fig. 1. Key typing rules for PCFDP

Not evaluating code after extraction from a quasi-quote is fundamental to meta-
programming because it enables the construction of code other than values under
λ-abstractions. This is different from the usual reduction strategies of CBV-calculi —
Section 6 discusses briefly how PCFDP might nevertheless be embeddable into PCF. Un-
quote can also be used to run a meta-program: if M evaluates to a quasi-quote 〈N〉, the
program let 〈x〉= M in x evaluates M, extracts N, binds N to x and then runs x, i.e. N.
In this sense, PCFDP’s unquote mechanism unifies splicing and executing quasi-quoted
code, where the MetaML family of languages uses different primitives for these two
functions [17].

Syntax and Types. We now formalise PCFDP’s syntax and semantics, assuming a set of
variables, ranged over by x,y, f ,u,m, ... (for more details see [6,8]).

α ::= Unit || Bool || Int || α → β || 〈α〉
V ::= c || x || λxα.M || µ f α→β.λxα.M || 〈M〉
M ::= V || op(M̃) || MN || if M then N else N′ || let 〈x〉 = M in N

Here α ranges over types, V over values and M ranges over programs. Constants c
range over the integers 0,1,−1, ..., booleans t, f, and () of type Unit, op ranges over
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the usual first-order operators like addition, multiplication, equality, conjunction, nega-
tion, comparison, etc., with the restriction that equality is not defined on expressions
of function type or of type 〈α〉. The recursion operator is µ f .λx.M. The free vari-

ables fv(M) of M are defined as usual with two new clauses: fv(〈M〉) def
= fv(M) and

fv(let 〈x〉 = M in N)
def
= fv(M) ∪ (fv(N) \ {x}). We write λ().M for λxUnit.M and

let x = M in N for (λx.N)M, assuming that x /∈ fv(M) in both cases. A typing envi-
ronment (Γ,Δ, ...) is a finite map x1 : α1, ...,xk : αk from variables to types. The domain
dom(Γ) of Γ is the set {x1, ...,xn}, assuming that Γ is x1 : α1, ...,xn : αn. We also write
ε for the empty environment. The typing judgement is written Γ;Δ ! M : α where we
assume that dom(Γ)∩dom(Δ) = /0. We write ! M : α for ε;ε ! M : α. We say a term
M is closed if ! M : α. We call Δ a modal context in Γ;Δ ! M : α. We say a variable
x is modal in Γ;Δ ! M : α if x ∈ dom(Δ). Modal variables represent code inside other
code, and code to be run. The key type-checking rules are given in Figure 1. Typing for
constants and first-order operations is standard.

Noteworthy features of the typing system are that modal variables cannot be λ- or
µ-abstracted, that all free variables in quasi-quotes must be modal, and that modal vari-
ables can only be generated by unquotes. [6] gives detailed explanations of this typing
system and its relationship to modal logics.

The reduction relation → is unchanged from PCF for the PCF-fragment of PCFDP,
and adapted to PCFDP as follows. First we define define reduction contexts, by extending
those for PCF as follows.

E [·] ::= ... || let 〈x〉 = E [·] in M

Now → is defined as usual on closed terms with one new rule.

let 〈x〉 = 〈M〉 in N → N[M/x]

We write →→ for →∗. M ⇓ V means that M →→ V for some value V . We write M ⇓ if
M ⇓V for some appropriate V .

By �Γ;Δ;α (usually abbreviated to just �) we denote the usual typed contextual pre-
conguence: if Γ;Δ ! Mi : α for i = 1,2 then: M1 �Γ;Δ;α M2 iff for all closing context C[·]
such that ! C[Mi] : Unit (i = 1,2) we have C[M1] ⇓ implies C[M2] ⇓. We write $ for
� ∩ �−1 and call $ contextual congruence. Other forms of congruence are possible.
Our choice means that code can only be observed contextually by running it. Hence for
example 〈M〉 and 〈λx.Mx〉 are contextually indistinguishable if x /∈ fv(M), as are 〈1+2〉
and 〈3〉. This coheres well with the notion of equality in PCF, and facilitates a smooth
integration of the logics for PCFDP with the logics for PCF. Some meta-programming
languages are more discriminating, allowing, e.g. printing of code, which can distin-
guish α-equivalent programs. It is unclear how to design logics for such languages.

Examples. We now present classic generative meta-programs in PCFDP. We reason
about some of these programs in later sections.

The first example is from [6] and shows how generative meta-programming can stage
computation, which can be used for powerful domain-specific optimisations. As an ex-
ample, consider staging an exponential function λna.an. It is generally more efficient
to run λa.a×a×a than (λna.an) 3, because the recursion required in computing an for
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arbitrary n can be avoided. Thus if a program contains many applications (λna.an) 3, it
makes sense to specialise such applications to λa.a×a×a. Meta-programming can be
used to generate such specialised code as the following example shows.

power
def
= µp.λn.if n ≤ 0 then 〈λx.1〉 else let 〈q〉 = p(n−1) in 〈λx.x× (q x)〉

This function has type ! power : Int → 〈Int → Int〉. This type says that power takes an
integer and returns code. That code, when run, is a function from integers to integers.
More efficient specialisers are possible. This program can be used as follows.

power 2 →→ 〈λa.a× ((λb.b× ((λc.1)b))a)〉

The next example is lifting [6], which plays a vital role in meta-programming. Call
a type α basic if it does not contain the function space constructor, i.e. if it has no
subterms of the form β → β′. The purpose of lifting is to take an arbitrary value V of
basic type α, and convert (lift) it to code 〈V 〉 of type 〈α〉. Note that we cannot simply
write λx.〈x〉 because modal variables (i.e. variables free in code) cannot be λ-abstracted.
For α = Int the function is defined as follows:

liftInt
def
= µg.λnInt.if n ≤ 0 then 〈0〉 else let 〈x〉 = g(n−1) in 〈x + 1〉.

Note that liftInt 3 evaluates to 〈0 + 1 + 1 + 1〉, not 〈3〉. In more expressive meta-
programming languages such as Converge the corresponding program would evalu-
ate to 〈3〉, which is more efficient, although 〈0 + 1 + 1 + 1〉 and 〈3〉 are observationally
indistinguishable.

Lifting easily extended to Unit and Bool, but not to function types. For basic types
〈α〉 we can use the following definition:

lift〈α〉
def
= λx〈α〉.let 〈a〉 = x in 〈〈a〉〉

PCFDP can implement a function of type 〈α〉 → α for running code [6]:

eval
def
= λx〈α〉.let 〈y〉 = x in y.

3 A Logic for Total Correctness

This section defines the syntax and semantics of the logic. Our logic is a Hoare logic
with pre- and post-conditions in the tradition of logics for ML-like languages [1,2,11,12].
Expressions, ranged over by e,e′, ... and formulae A,B, ... of the logic are given by the
grammar below, using the types and variables of PCF.

e ::= c || x || op(ẽ)
A ::= e = e′ || ¬A || A∧B || ∀xα.A || u • e = m{A} || u = 〈m〉{A}

The logical language is based on standard first-order logic with equality. Other quan-
tifiers and propositional connectives like ⊃ (implication) are defined by de Morgan
duality. Quantifiers range over values of appropriate type. Constants c and operations
op are those of Section 2.
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The proposed logic extends the logic for PCF of [9,10,11] with a new code evalu-
ation primitive u = 〈m〉{A}. It says that u, which must be of type 〈α〉, denotes (up to
contextual congruence) a quasi-quoted program 〈M〉, such that whenever M is executed,
it converges to a value; if that value is denoted by m then A makes a true statement about
that value. We recall from [9,10,11] that u • e = m{A} says that (assuming u has func-
tion type) u denotes a function, which, when fed with the value denoted by e, terminates
and yields another value. If we name this latter value m, A holds. We call the variable m
in u• e = m{A} and u = 〈m〉{A} an anchor. The anchor is a bound variable with scope
A. The free variables of e and A, written fv(e) and fv(A), respectively, are defined as

usual noting that fv(u = 〈m〉{A}) def
= (fv(A)\{m})∪{u}. We use the following abbrevi-

ations: A-x indicates that x /∈ fv(A) while e ⇓ means ∃xα.e = x, assuming that e has type
α. We let m = 〈e〉 be short for m = 〈x〉{x = e} where x is fresh, m• e = e′ abbreviates
m•e = x{x = e′} where x is fresh. We often omit typing annotations in expressions and
formulae.

Judgements (for total correctness) are of the form {A} M :m {B}. The variable m
is the anchor of the judgement, is a bound variable with scope B, and not modal. The
judgement is to be understood as follows: if A holds, then M terminates to a value, and if
we denote that value m, then B holds. If a variable x occurs freely in A or in B, but not in
M, then x is an auxiliary variable of the judgement {A} M :m {B}. With environments
as in Section 2, the typing judgements for expressions and formulae are Γ;Δ ! e : α
and Γ;Δ ! A, respectively. The typing rules are given in Appendix A, together with the
typing of judgements. The anchor in u = 〈m〉{A} is modal, while it is not modal in
u • e = m{A}.

The logic has the following noteworthy features. (1) Quantification is not directly
available on modal variables. (2) Equality is possible between modal and non-modal
variables. The restriction on quantification makes the logic weaker for modal variables
than first-order logic. Note that if x is modal in A we can form ∀y.(x = y ⊃ A), using an
equation between a modal and a non-modal variable. Quantification over all variables
is easily defined by extending the grammar with a modal quantifier which ranges over
arbitrary programs, not just values:

A ::= ... || ∀x�α.A

For ∀x�α.A to be well-formed, x must be modal and of type α in A. The existential
modal quantifier is given by de Morgan duality. Modal quantification is used only in the
metalogical results of Section 5. We sometimes drop type annotations in quantifiers,
e.g. writing ∀x.A. This shorthand will never be used for modal quantifiers. We abbre-
viate modal quantification to ∀x�.A. From now on, we assume all occurring programs,
expressions, formulae and judgements to be well-typed.

Examples of Assertions & Judgements. We continue with a few simple examples to
motivate the use of our logic.

– The assertion m = 〈3〉, which is short for m = 〈x〉{x = 3} says that m denotes code
which, when executed, will evaluate to 3. It can be used to assert on the program
〈1 + 2〉 as follows: {T} 〈1 + 2〉 :m {m = 〈3〉}
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– Let Ωα be a non-terminating program of type α (we usually drop the type sub-
script). When we quasi-quote Ω, the judgement {T} 〈Ω〉 :m {T} says (qua precon-
dition) that 〈Ω〉 is a terminating program. Indeed, that is the strongest statement we
can make about 〈Ω〉 in a logic for total correctness.

– The assertion ∀xInt.m • x = y{y = 〈x〉} says that m denotes a terminating function
which receives an integer and returns code which evaluates to that integer. Later we
use this assertion when reasoning about liftInt which has the following specification.

{T} liftInt :u {∀n.n ≥ 0 ⊃ u • n = m{m = 〈n〉}}

– The formula Au
def
= ∀nInt ≥ 0.∃ f Int→Int.(u • n = 〈 f 〉 ∧ ∀xInt. f • x = xn) says that u

denotes a function which receives an integer n as argument, to return code which
when evaluated and fed another integer x, computes the power xn, provided n ≥ 0.
We can show that {T} power :u {Au} and {Au} u 7 :r {r = 〈 f 〉{∀x. f • x = x7}}.

– The formula ∀x〈α〉yα.(x = 〈y〉 ⊃ u • x = y) can be used to specify the evaluation
function from Section 2: {T} eval :u {∀x〈α〉yα.(x = 〈y〉 ⊃ u • x = y)}

Models and the Satisfaction Relation. This section formally presents the semantics of
our logic. We begin with the notion of model. The key difference from the models of
[11] is that modal variables denote possibly non-terminating programs.

(e1) x•y = z{A}∧ x•y = z{B} ≡ x•y = z{A∧B}
(e2) x•y = z{¬A} ⊃ ¬x•y = z{A}
(e3) x•y = z{A}∧¬x•y = z{B} ≡ x•y = z{A∧¬B}
(e4) x•y = z{A∧B} ≡ A∧ x•y = z{B} z /∈ fv(A)
(e5) x•y = z{∀aα.A} ≡ ∀aα.x•y = z{A} a �= x,y,z
(e6) (A ⊃ B)∧ x•y = z{A} ⊃ x•y = z{B} z /∈ fv(A,B)
(ext) x = y ≡ Ext(xy)

Fig. 2. Key total correctness axioms for PCFDP

Let Γ,Δ be two contexts with disjoint domains (the idea is that Δ is modal while
Γ is not). A model of type Γ;Δ is a pair (ξ,σ) where ξ is a map from dom(Γ) to
closed values such that ! ξ(x) : Γ(x); σ is a map from dom(Δ) to closed programs
! σ(x) : Δ(x). We also write (ξ,σ)Γ;Δ to indicate that (ξ,σ) is a model of type Γ;Δ. We
write ξ ·x : V for ξ∪{(x,V )} assuming that x /∈ dom(ξ), and likewise for σ ·x : VM. We
can now present the semantics of expressions. Let Γ;Δ ! e : α and assume that (ξ,σ)

is a Γ;Δ-model, we define [[e]](ξ,σ) by the following inductive clauses. [[c]](ξ,σ)
def
= c,

[[op(ẽ)]](ξ,σ)
def
= op([[ẽ]](ξ,σ)), [[x]](ξ,σ)

def
= (ξ∪σ)(x). The satisfaction relation for formu-

lae has the following shape. Let Γ;Δ ! A and assume that (ξ,σ) is a Γ;Δ-model. We
define (ξ,σ) |= A as usual with two extensions.

– (ξ,σ) |= e = e′ iff [[e]](ξ,σ) $ [[e′]](ξ,σ).
– (ξ,σ) |= ¬A iff (ξ,σ) �|= A.
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– (ξ,σ) |= A∧B iff (ξ,σ) |= A and (ξ,σ) |= B.
– (ξ,σ) |= ∀xα.A iff for all closed values V of type α: (ξ · x : V,σ) |= A.
– (ξ,σ) |= u • e = x{A} iff ([[u]](ξ,σ)[[e]](ξ,σ)) ⇓V and (ξ · x : V,σ) |= A.
– (ξ,σ) |= u = 〈m〉{A} iff [[u]](ξ,σ) ⇓ 〈M〉, M ⇓V and (ξ,σ ·m : V ) |= A.

To define the semantics of judgements, we need to say what it means to apply a model

(ξ,σ) to a program M, written M(ξ,σ). That is defined as usual, e.g. x(ξ,σ)
def
= (ξ∪

σ)(x) and (MN)(ξ,σ)
def
= M(ξ,σ)N(ξ,σ).

The satisfaction relation |= {A} M :m {B} is given next. Let Γ;Δ;α ! {A} M :m {B}.
Then

|= {A} M :m {B} iff ∀(ξ,σ)Γ;Δ.(ξ,σ) |= A ⊃ ∃V.(M(ξ,σ) ⇓V ∧ (ξ ·m : V,σ) |= B).

This is the standard notion of total correctness, adapted to the present logic.

Axioms. This section introduces the key axioms of the logic. All axioms of [9,10,11] re-
main valid. We add axioms for x = 〈y〉{A}. Tacitly, we assume typability of all axioms.
Some key axioms are given in Figure 2, more precisely, the axioms are the universal
closure of the formulae presented in Figure 2. The presentation of axioms uses the fol-
lowing abbreviation: Extq(xy) stands for ∀a.(x = 〈z〉{z = a} ≡ y = 〈z〉{z = a}).

Axiom (q1) says that if the quasi-quote denoted by x makes A true (assuming the
program in that quasi-quote is denoted by y), and in the same way makes B true, then it
also makes A∧B true, and vice versa. Axiom (q2) says that if the quasi-quote denoted
by x contains a terminating program, denoted by y, and makes ¬A true, then it cannot
be the case that under the same conditions A holds. The reverse implication is false, be-
cause ¬x = 〈y〉{A} is also true when x denotes a quasi-quote whose contained program
is diverging. Next is (q3): x = 〈y〉{A} says in particular that x denotes a quasi-quote
containing a terminating program, so ¬x = 〈y〉{B} can only be true because B is false.
Axioms (q4,q5) let us move formulae and quantifiers in and out of code-evaluation
formulae, as long as the anchor is not inappropriately affected. Axiom (q6) enables us

{A[x/m]∧ x ⇓} x :m {A} VAR {A[c/m]} c :m {A} CONST
{A-g} M :u {B}

{A} µg.M :u {B[u/g]} REC

{A-x ∧B} M :m {C}
{A} λxα.M :u {∀x.(B ⊃ u•x = m{C})} ABS

{A} M :m {B} {B} N :n {C[m+n/u]}
{A} M +N :u {C} ADD

{A} M :m {B} {B[bi/m]} Ni :u {C} b1 = t,b2 = f i = 1,2
{A} if M then N1 else N2 :u {C} IF

{A} M :m {B} {B} N :n {m•n = u{C}}
{A} MN :u {C} APP

{A} M :m {B}
{T} 〈M〉 :u {A ⊃ u = 〈m〉{B}} QUOTE

{A} M :m {B-mx ⊃ m = 〈x〉{C-m}} {B ⊃C} N :u {D-mx}
{A} let 〈x〉 = M in N :u {D} UNQUOTE

Fig. 3. Key PCFDP inference rules for total correctness
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to weaken a code-evaluation formula. The code-extensionality axiom (extq) formalises
what it means for two quasi-quotes to be equal: they must contain observationally in-
distinguishable code.

Rules. Key rules of inference can be found in Figure 3. We write ! {A} M :m {B} to
indicate that {A}M :m {B} is derivable using these rules. Rules make use of capture-free
syntactic substitutions e[e′/x], A[e/x] which is straightforward, except that in e[e′/x]
and A[e/x], x must be non-modal. Structural rules like Hoare’s rule of consequence, are
unchanged from [9,10,11] and used without further comment. The rules in Figure 3 are
standard and also unchanged from [9,10,11] with three significant exceptions, explained
next.

[VAR] adds x ⇓, i.e. ∃a.x = a in the precondition. By construction of our models,x ⇓
is trivially true if x is non-modal. If x is modal, the situation is different because x may
denote a non-terminating program. In this case x ⇓ constrains x so that it really denotes
a value, as is required in a total correctness logic.

[QUOTE] says that 〈M〉 always terminates (because the conclusion’s precondition is
simply T). Moreover, if u denotes the result of evaluating 〈M〉, i.e. 〈M〉 itself, then,
assuming A holds (i.e., given the premise, if M terminates), u contains a terminating
program, denoted m, making B true. Clearly, in a logic of total correctness, if M is not a
terminating program, A will be equivalent to F, in which case, [QUOTE] does not make
a non-trivial assertion about 〈M〉 beyond stating that 〈M〉 terminates.

[UNQUOTE] is similar to the usual rule for let x = M in N which is easily derivable:

{A} M :x {B} {B} N :u {C}
{A} let x = M in N :u {C} LET

Rules for let 〈x〉= M in N are more difficult because a quasi-quote always terminates,
but the code it contains may not. Moreover, even if M evaluates to a quasi-quote con-
taining a divergent program, the overall expression may still terminate, because N uses
the destructed quasi-quote in a certain manner. Here is an example:

let 〈x〉 = 〈Ω〉 in ((λab.a) 7 (λ().x)).

[UNQUOTE] deals with this complication in the following way. Assume {A}M :m {B ⊃
m = 〈x〉{C}} holds. If M evaluates to a quasi-quote containing a divergent program, B
would be equivalent to F. The rule uses B ⊃ C in the right premise, where x is now a
free variable, hence also constrained by C. If B is equivalent to F, the right precondition
is T, i.e. contains no information, and M’s termination behaviour cannot depend on x,
i.e. N must use whatever x denotes in a way that makes the termination or otherwise of
N independent of x. Apart from this complication, the rule is similar to [LET].

4 Reasoning Examples

We now put our logic to use by reasoning about some of the programs introduced in
Section 2. The derivations use the abbreviations of Section 3 and omit many steps that
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are not to do with meta-programming. Several reduction steps are justified by the fol-
lowing two standard structural rules omitted from Figure 3.

A ⊃ A′ {A′} M :u {B′} B′ ⊃ B
{A} M :u {B} CONSEQ

{A} M :m {B ⊃C}
{A∧B} M :m {C} ⊃-∧

Example 1. We begin with the simple program {T} 〈1+2〉 :m {m = 〈3〉}. The derivation
is straightforward.

1 {T} 1 + 2 :a {a = 3}

2 {T} 〈1 + 2〉 :m {T ⊃ m = 〈a〉{a = 3}} QUOTE, 1

3 {T} 〈1 + 2〉 :m {m = 〈3〉} CONSEQ, 2

Example 2. This example deals with the code of a non-terminating program. We derive
{T} 〈Ω〉 :m {T}. This is the strongest total correctness assertion about 〈Ω〉. In the proof,
we assume that {F} Ω :a {T} is derivable, which is easy to show.

1 {F} Ω :a {T}

2 {T} 〈Ω〉 :m {F ⊃ m = 〈a〉{T}} QUOTE, 1

3 {T} 〈Ω〉 :m {T} CONSEQ, 2

Example 3. The third example destructs a quasi-quote and then injects the resulting
program into another quasi-quote.

{T} let 〈x〉 = 〈1 + 2〉 in 〈x + 3〉 :m {m = 〈6〉}
We derive the assertion in small steps to demonstrate how to apply our logical rules.

1 {T} 〈1 + 2〉 :m {m = 〈3〉} Ex. 1

2 {(a = 3)[x/a]∧x ⇓} x :a {a = 3} VAR

3 {x = 3} x :a {a = 3} CONSEQ, 2

4 {T} 3 :b {b = 3} CONST, CONSEQ

5 {a = 3} 3 :b {a = 3∧b = 3} INVAR, 4

6 {a = 3} 3 :b {(c = 6)[a + b/c]} CONSEQ, 5

7 {x = 3} x + 3 :c {c = 6} ADD, 3, 6

8 {T} 〈x + 3〉 :u {x = 3 ⊃ u = 〈c〉{c = 6}} QUOTE, 7

9 {x = 3} 〈x + 3〉 :u {u = 〈c〉{c = 6}} ⊃-∧, 8

10 {T} 〈1 + 2〉 :m {T ⊃ m = 〈x〉{x = 3}} CONSEQ, 1

11 {T ⊃ x = 3} 〈x + 3〉 :u {u = 〈6〉} CONSEQ, 9

12 {T} let 〈x〉 = 〈1 + 2〉 in 〈x + 3〉 :u {u = 〈6〉} UNQUOTE, 10, 11
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Example 4. Now we show that destructing a quasi-quote containing a non-terminating
program, and then not using that program still leads to a terminating program. This
reflects the operational semantics in Section 2.

{T} let 〈x〉 = 〈Ω〉 in 〈1 + 2〉 :m {m = 〈3〉}

The derivation follows.

1 {T} 〈Ω〉 :m {T} Ex. 2

2 {T} 〈Ω〉 :m {F ⊃ m = 〈a〉{T}} CONSEQ, 1

3 {T} 〈1 + 2〉 :m {m = 〈3〉} Ex. 1

4 {F ⊃ T} 〈1 + 2〉 :m {m = 〈3〉} CONSEQ, 3

5 {T} let 〈x〉 = 〈Ω〉 in 〈1 + 2〉 :m {m = 〈3〉} UNQUOTE, 2, 4

The examples below make use of the following convenient forms of the recursion
rule and [UNQUOTE]. Both are easily derived.

{A-gn ∧∀0 ≤ i < n.B[i/n][g/u]} λx.M :u {B-g}
{A} µg.λx.M :u {∀n ≥ 0.B} REC’

{A} M :m {T} {T} N :u {B}
{A} let 〈x〉 = M in N :u {B} UQ

Example 5. This example extract a non-terminating program from a quasi-quote, and
injects it into a new quasi-quote. Our total-correctness logic cannot say anything non-
trivial about the resulting quasi-quote (cf. Example 2):

{T} let 〈x〉 = 〈Ω〉 in 〈x〉 :u {T}

The derivation is straightforward.

1 {T} 〈Ω〉 :m {T} Ex. 2

2 {F[x/a]∧x ⇓} x :a {F} VAR

3 {F} x :a {T} CONSEQ, 2

4 {T} 〈x〉 :u {F ⊃ u = 〈a〉{T}} QUOTE, 3

5 {T} let 〈x〉 = 〈Ω〉 in 〈x〉 :u {T} UQ, 1, 4

Example 6. Now we reason about liftInt from Section 3. In the proof we assume that

i,n range over non-negative integers. Let Au
n

def
= u • n = m{m = 〈n〉}. We are going to

establish the following assertion from Section 3: {T} liftInt :u {∀n.Au
n}. We set C

def
= i ≤

n∧∀ j < n.Ag
j , D

def
= i > 0∧∀r.(0 ≤ r < n ⊃ g • r = m{m = 〈r〉}) and P

def
= let 〈x〉 =

g(i−1) in 〈x + 1〉.
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1 {C} i ≤ 0 :b {C∧ (b = t ≡ i ≤ 0)}

2 {T} 〈0〉 :m {m = 〈0〉} Like Ex. 1

3 {i = 0} 〈0〉 :m {m = 〈i〉} INVAR, CONSEQ, 2

4 {(C∧b = t ≡ i ≤ 0)[t/b]} 〈0〉 :m {m = 〈i〉} CONSEQ, 3

5 {x = i−1} 〈x + 1〉 :m {m = 〈i〉} Like Ex. 3

6 {T ⊃ x = i−1} 〈x + 1〉 :m {m = 〈i〉} CONSEQ, 5

7 {(C∧b = t ≡ i ≤ 0)[f/b]} g :s {D} VAR

8 {D} i−1 :r {g • r = t{t = 〈i−1〉}}

9 {(C∧b = t ≡ i ≤ 0)[f/b]} g(i−1) :t {t = 〈i−1〉} APP, 7, 8

10 {(C∧b = t ≡ i ≤ 0)[f/b]} P :m {m = 〈i〉} UNQUOTE, CONSEQ, 6, 9

11 {C} if i ≤ 0 then 〈0〉 else P :m {m = 〈i〉} IF, 4, 10

12 {T} λi.if i ≤ 0 then 〈0〉 else P :u {∀i.(C ⊃ Au
i )} ABS, 11

13 {∀ j < n.Ag
j} λi.if i ≤ 0 then 〈0〉 else P :u {∀i ≤ n.Au

i } CONSEQ ⊃-∧, 12

14 {T} liftInt :u {∀n.∀i ≤ n.Au
n} REC’, 13

15 {T} liftInt :u {∀n.Au
n} CONSEQ, 14

Example 7. We close this section by reasoning about the staged power function from

Section 2. Assuming that i, j,k,n range over non-negative integers, we define Bu
n

def
=

u • n = m{m = 〈y〉{∀ j.y • j = jn}}. In the derivation, we provide less detail than in
previous proofs for readability.

1 C
def
= n ≤ k∧∀i < k.Bp

i D
def
= C∧ (b = t∧n ≤ 0)

2 P
def
= let 〈q〉 = p(n−1) in 〈λx.x× (q x)〉

3 {C} n ≤ 0 :b {D}

4 {D[t/b]} 〈λx.1〉 :m {m = 〈y〉{∀ j.y• j = jn}} Like prev. examples

5 {D[f/b]} p(n−1) :r {T ⊃ r = 〈q〉{∀ j.q • j = jn−1}} Like Ex. 6

6 {T ⊃ ∀ j.q • j = jn−1} 〈λx.x× (q x)〉 :m {m = 〈y〉{∀ j.y• j = jn}} Like Ex. 6

7 {D[f/b]} P :m {m = 〈y〉{∀ j.y• j = jn}} UNQUOTE, 5, 6

8 {C} if n ≤ 0 then 〈λx.1〉 else P :m {m = 〈y〉{∀ j.y• j = jn}} IF, 7

9 {T} λn.if n ≤ 0 then 〈λx.1〉 else P :u {∀n ≤ k.((∀i < k.Bp
i ) ⊃ Bu

n)} ABS, 8

10 {∀i < k.Bp
i } λn.if n ≤ 0 then 〈λx.1〉 else P :u {∀n ≤ k.Bu

n} CONSEQ, 9

11 {T} power :u {∀k.∀n ≤ k.Bu
n} REC’, 10

12 {T} power :u {∀n.Bu
n} CONSEQ, 11
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5 Completeness

This section answers three important metalogical questions about the logic for total
correctness introduced in Section 3.

– Is the logic relatively complete in the sense of Cook [5]? This question asks if
|= {A} M :m {B} implies ! {A} M :m {B} for all appropriate A,B. Relative com-
pleteness means that the logic can syntactically derive all semantically true asser-
tions, and reasoning about programs does not need to concern itself with models.
We can always rely on just syntactic rules to derive an assertion (assuming an oracle
for Peano arithmetic).

x non-modal
{T} x :m {x = m} VAR

x modal
{x ⇓} x :m {x = m} VARm

{A} M :m {B}
{T} 〈M〉 :u {A ⊃ u = 〈m〉{B}} QUOTE

{A1} M :m {B1} {A2} N :u {B2}
{A1 ∧ ((∀mx�.A2)∨∀m.(B1 ⊃ m = 〈x〉{A2}))}

let 〈x〉 = M in N :u
{∃mx�.((m = 〈·〉 ⊃ m = 〈x〉)∧B1 ∧B2)}

UQ

Fig. 4. Key inference system for TCAPs, where m = 〈·〉 is short for m = 〈z〉{T}

– Is the logic observationally complete [10]? The second question investigates if the
program logic makes the same distinctions as the observational congruence. In
other words, does M $ N hold iff for all suitably typed A,B: {A} M :m {B} iff
{A} N :m {B}? Observational completeness means that the operational semantics
(given by the contextual congruence) and the axiomatic semantics given by logic
cohere with each other.

– If a logic is observationally complete, we may ask: given a program M, can we
find, by induction on the syntax of M, characteristic formulae A,B such that (1)
|= {A}M :m {B} and (2) for all programs N: M $ N iff |= {A} N :m {B}? If charac-
teristic formulae always exist, the semantics of each program can be obtained and
expressed finitely in the logic, and we call the logic descriptively complete [10].

Following [3,10,21], we answer all questions in the affirmative.

Characteristic Formulae. Program logics reason about program properties denoted by
pairs of formulae. But what are program properties? We cannot simply say program
properties are subsets of programs, because there are uncountably many such subsets,
yet only countably many pairs of formulae. To obtain a notion of program property that
is appropriate for a logic of total correctness, we note that such logics cannot express
that a program diverges. More generally, if |= {A}M :m {B} and M � N (where � is the
contextual pre-congruence from Section 2), then also |= {A} N :m {B}. Thus pairs A,B
talk about upwards-closed sets of programs. A set S of programs is upwards-closed
if M ∈ S and M � N together imply that N ∈ S. It can be shown that each upwards
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closed set of PCFDP-terms has a unique least element up-to $. Thus each upwards-
closed set has a distinguished member, is its least element. Consequently a pair A,B is
a characteristic assertion pair for M (at m) if M is the least program w.r.t. � such that
|= {A} M :m {B}, leading to the following key definition.

Definition. A pair (A,B) is a total characteristic assertion pair, or TCAP, of M at u, if
the following conditions hold (in each clause we assume well-typedness).

1. (soundness) |= {A} M :u {B}.
2. (MTC, minimal terminating condition) For all models (ξ,σ), M(ξ,σ) ⇓ if and only

if (ξ,σ) |= A.
3. (closure) If |= {E} N :u {B} and E ⊃ A, then for all (ξ,σ): (ξ,σ) |= E implies

M(ξ,σ) � N(ξ,σ).

A TCAP of M denotes a set of programs whose minimum element is M, and in that
sense characterises that behaviour uniquely up to �.

Descriptive Completeness. The main tool in answering the three questions posed
above is the inference system for TCAPs, of which the key rules are given in Figure 4.
The remaining rules are unchanged from [10]. We write !tcap {A} M :u {B} to indicate
that {A} M :u {B} is derivable in that new inference system. It is obvious that TCAPs
can be derived mechanically from programs – no invariants for recursion have to be
supplied manually.

The premise of [UNQUOTE] in Figure 4 uses modal quantification. This is the only
use of the modal quantifier. The semantics is: (ξ,σ) |= ∀x�α.A iff for all closed pro-
grams M of type α: (ξ,σ ·x : M) |= A. Syntactic reasoning with modal quantifiers needs a
few straightforward quantifier axioms beyond those of first-order logic and those of Fig-
ure 2, for example ¬∀x�.x ⇓, and ¬∀x�.¬x ⇓. An interesting open question is whether
modal quantification can be avoided altogether in constructing TCAPs.

Theorem 1.

1. (descriptive completeness for total correctness) Assume Γ;Δ ! M : α. Then !tcap

{A} M :u {B} implies (A,B) is a TCAP of M at u.
2. (observational completeness) M $ N if and only if, for each A and B, we have

|= {A} M :u {B} iff |= {A} N :u {B}.
3. (relative completeness) Let B be upward-closed at u. Then |= {A} M :u {B} implies

! {A} M :u {B}.

6 Conclusion

We have proposed the first program logic for a meta-programming language, and es-
tablished key metalogical properties like completeness and the correspondence be-
tween axiomatic and operational semantics. We are not aware of previous work on
program logics for meta-programming. Instead, typing systems for statically enforc-
ing program properties have been investigated. We discuss the two systems with the
most expressive typing systems, Ωmega [15] and Concoqtion [7]. Both use indexed
typed to achieve expressivity. Ωmega is a CBV variant of Haskell with generalised
algebraic datatypes (GADTs) and an extensible kind system. In Ωmega, GADTs can
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express easily datatypes representing object-programs, whose meta-level types encode
the object-level types of the programs represented. Tagless interpreters can directly be
expressed and typed for these object programs. Ωmega is expressive enough to encode
the MetaML typing system together with a MetaML interpreter in a type-safe manner.
Concoqtion is an extension of MetaOCaml and uses the term language of the theo-
rem prover Coq to define index types, specify index operations, represent the properties
of indexes and construct proofs. Basing indices on Coq terms opens all mathematical
insight available as Coq libraries to use in typing meta-programs. Types in both lan-
guages are not as expressive with respect to properties of meta-programs themselves,
as our logics, which capture exactly the observable properties. Nevertheless, program
logic and type-theory are not mutually exclusive; on the contrary, reconciling both in
the context of meta-programming is an important open problem.

The construction of our logics as extensions of well-understood logics for PCF in-
dicates that logical treatment of meta-programming is mostly orthogonal to that of
other language features. Hence [18] is an interesting target for generalising the tech-
niques proposed here because it forms the basis of MetaOCaml, the most widely stud-
ied meta-programming language in the MetaML tradition. PCFDP and [18] are similar
as meta-programming languages with the exception that the latter’s typing system is
substantially more permissive: even limited forms evaluation of open code is possible.
We believe that a logical account of meta-programming with open code is a key chal-
lenge in bringing program logics to realistic meta-programming languages. A different
challenge is to add state to PCFDP and extend the corresponding logics. We expect the
logical treatment of state given in [2,21] to extend smoothly to a meta-programming
setting. The main issue is the question what typing system to use to type stateful meta-
programming: the system used in MetaOCaml, based on [18], is unsound in the pres-
ence of state due to a form of scope extrusion. This problem is mitigated in MetaOCaml
with dynamic type-checking. As an alternative to dynamic typing, the Java-like meta-
programming language Mint [20] simply prohibits the sharing of state between differ-
ent meta-programming stages, resulting in a statically sound typing system. We believe
that both suggestions can be made to coexist with modern logics for higher-order state
[2,21], in the case of [20] easily so.

The relationship between PCFDP and PCF, its non-meta-programming core, is also
worth investigating. Pfenning and Davies proposed an embedding �·� from PCFDP into
PCF, whose main clauses are given next.

�〈α〉� def
= Unit → �α�

�〈M〉� def
= λ().�M�

�let 〈x〉 = M in N� def
= let x = �M� in �N�[x()/x]

We believe that this embedding is fully-abstract, but proving full abstraction is non-
trivial because translated PCFDP-term have PCF-inhabitants which are not translations
of PCFDP-terms (e.g. λxInt→Int.λ().x). A full abstraction proof might be useful in con-
structing a logically fully abstract embedding of the logic presented here into the sim-
pler logic for PCF from [9,11]. A logical full abstraction result [13] is an important step
towards integrating logics for meta-programming with logics for the produced meta-
programs.
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In the light of this encoding one may ask why meta-programming languages are
relevant at all: why not simply work with a non-meta-programming language and en-
codings?

– We believe that nice (i.e. fully abstract and compositional) encodings might exist
for simple meta-programming languages like PCFDP because PCFDP lives at the
low end of meta-programming expressivity. For even moderately more expressive
languages like [18] no fully abstract encodings into simple λ-calculi are known.

– A second reason is to do with efficiency, one of the key reasons for using meta-
programming: encodings are unlikely to be as efficient as proper meta-programming.

– Finally, programs written using powerful meta-programming primitives are more
readable and hence more easily evolvable than equivalent programs written using
encodings.
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Appendix

A Typing Rules for Expressions, Formulae and Assertions

The key typing rules for expressions, formulae and judgements are summarised in Fig-
ure 5 above.

(x,α) ∈ Γ∪Δ
Γ;Δ ! x : α

Γ;Δ ! u : α → β Γ;Δ ! e : α Γ,m : β;Δ ! A
Γ;Δ ! u•e = m{A}

Γ;Δ ! e : α Γ;Δ ! e′ : α
Γ;Δ ! e = e′

Γ;Δ ! A Γ;Δ ! B
Γ;Δ ! A∧B

Γ,x : α;Δ ! A
Γ;Δ ! ∀xα.A

Γ;Δ,x : α ! A
Γ;Δ ! ∀x�α.A

Γ;Δ ! u : 〈α〉 Γ;Δ,m : α ! A
Γ;Δ ! u = 〈m〉{A}

Γ;Δ ! A
Γ;Δ ! ¬A

Γ;Δ ! A m /∈ dom(Γ)∪dom(Δ) Γ;Δ ! M : α Γ,m : α;Δ ! B
Γ;Δ;α ! {A} M :m {B}

Fig. 5. Typing rules for expressions, formulae and judgements. Rules for constants and first-order
operations omitted.
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Abstract. Pointer analysis statically approximates the heap pointer
structure during a program execution in order to track heap objects or
to establish alias relations between references, and usually contributes
to other analyses or code optimizations. In recent years, a number of al-
gorithms have been presented that provide an efficient, scalable, and yet
precise pointer analysis. However, it is unclear how the results of these
algorithms compare to each other semantically.

In this paper, we present a general region type system for a Java-like
language and give a formal soundness proof. The system is subsequently
specialized to obtain a platform for embedding the results of various
existing context-sensitive pointer analysis algorithms, thereby equipping
the computed relations with a common interpretation and verification.
We illustrate our system by outlining an extension to a string value
analysis that builds on pointer information.

1 Introduction

Pointer (or points-to) analysis is a static program analysis technique that deter-
mines an over-approximation of possible points-to relations that occur during the
execution of a program. More precisely, it chooses an abstraction of the point-
ers and references, and computes which pointers may possibly point to which
data. A conservative approximation of this structure is also an alias analysis, as
the computed points-to relation directly includes the information which point-
ers may point to the same object. A pointer analysis is often used for compiler
optimizations, but may also serve as the basis for other analyses, such as the
computation of possible string values in order to prevent string-based security
holes.

There exists a large number of pointer analysis algorithms [1,2,3] for different
languages. Each algorithm faces the trade-off between precision and efficiency
of the analysis: it should choose the right abstractions in order to produce as
much useful information as possible while at the same time being able to process
large code bases in a reasonable time. These analyses have different techniques,
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implementations, and complexities. Especially BDD-based algorithms [4,5] have
been shown to be very efficient and precise at the same time.

While several of these analyses also consider soundness, it appears that there
does not yet exist a uniformly agreed-upon formal framework that encompasses
the interpretations of at least a substantial subset of the analyses. We argue
that such a unifying treatment is important, for theoretical as well as pragmatic
and practical reasons. First, it is a basis for fair comparisons regarding the pre-
cision, flexibility or expressivity of different analyses, the theoretical complex-
ity of the associated algorithms, and their experimental evaluation on common
benchmarks. Second, once the analyses agree on the formal property they guar-
antee, we can safely replace one analysis by another in a compiler or verification
tool. Third, a uniform guarantee provides the basis for the formal verification of
security-relevant properties that rely on pointer analysis results, as is required
in proof-carrying code scenarios.

The first purpose of the present paper is to provide such a framework for Java-
like languages, given by a hierarchy of region-based type systems for a language
in the style of Featherweight Java [6]. Uniformity (i.e. semantic agreement) is
guaranteed by equipping the bottom-most layer in the hierarchy with a formal
interpretation and soundness result, and by deriving the higher levels by spe-
cializing this bottom-most layer to move towards calculi representing concrete
analyses.

Second, we demonstrate that a number of existing pointer analyses for object-
oriented programs are based on abstraction disciplines that arise as specializa-
tions of a generic parametrized refinement of our base-level type system. We focus
on disciplines that specify the abstraction of references and execution points [7],
and therefore enable different forms of field-sensitive and context-sensitive anal-
yses. For example, objects may be abstracted to their allocation sites and their
class, and execution points may be abstracted by receiver-object or call-site stack
contexts.

As one moves higher in the hierarchy, different choices for these abstractions
regarding expressivity arise, corresponding to the above abstraction disciplines,
and decidability issues become more prominent, in particular the question of
algorithmic type checking. Our third contribution consists of showing how the
parametrized type system can be reformulated algorithmically to yield a type
checking algorithm. Thanks to the hierarchical structure of our framework, we
thus immediately obtain algorithms for automatically validating the correctness
of the results of concrete analyses, as long as the results have been interpreted in
the framework by instantiating its parameters. As we only consider the results,
our verification is also independent of implementation details of concrete analysis
algorithms.

Finally, we apply our framework to the analysis of string values, in order to lay
the foundations for eliminating SQL injections and cross-site scripting attacks.
We extend the language to a simple string model, and outline how data flow
analyses for possible string values that build on pointer analyses [8,9] can be
verified with the correspondingly extended type system.
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Related work. We include concepts of context-sensitivity to distinguish differ-
ent analyses of the same method implementation. In particular, k-CFA [10] is
a higher-order control flow analysis where contexts are call stack abstractions
of finite length k. The k-CFA mainly addresses control flows in functional lan-
guages, where functions are first-class values. It requires a combination of value
(data flow) analysis and control flow analysis to approximate the possible lambda
abstractions that an expression may evaluate to. The similar dynamic dispatch
problem for methods in object-oriented languages is easier to solve, as the pos-
sible implementation targets of a method invocation can be retrieved from the
class information. k-CFA has been extended with polyvariant types for func-
tions [11], such that different types can be used for the function at different
application sites. In our type system, we borrow this concept of polyvariance.

Hardekopf and Lin [12] transform variables that are not address-taken into
SSA form, such that running a flow-insensitive analysis on these converted vari-
ables has the effect of running a flow-sensitive analysis on the original variables.
Our framework assumes SSA-transformed code input, presented in the form of
a functional program. Identifying opportunities for SSA transformation, which
is a central concern of [12], can thus be seen as a preprocessing phase for our
framework to apply.

This paper uses “regions” in the sense of Lucassen and Gifford [13], i.e. as
representations of disjoint sets of memory locations. Equivalently, regions thus
partition or color the memory. In literature, this disjointness is used to show
that certain memory manipulations do not influence other parts of a program,
in order to e.g. show semantic equivalences [14], to enable a safe garbage col-
lection [15], or to infer properties for single objects by tracking unique objects
in a region [16,17]. In the pointer analysis setting presented here, regions are
simply seen as abstract memory locations that summarize one or more con-
crete locations, thereby helping to discover may-alias relations. We do not con-
sider uniqueness or must-alias information, and do not aim to justify garbage
collection.

Paddle [18] and Alias Analysis Library [19] are implementation frameworks
that embed concrete pointer analyzers by factoring out different parameters,
as is done here. However, the works do not aim at a formal soundness result.
Indeed, they embed the algorithms into a common implementation framework,
while our type system embeds the results of such algorithms into a common
semantic framework.

Synopsis. The next section introduces the FJEU language and its semantics. We
introduce the base-level region type system and the soundness proof in section 3.
In section 4, we specialize the type system to a parametrized version, such that
abstraction principles found in pointer analyses can be modeled explicitly as
instantiations of the parameters, and outline a type-checking algorithm. Finally,
section 5 extends the system, such that results of a string analysis based on
pointer analysis can also be verified.
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2 Featherweight Java with Updates

We examine programs of the language FJEU [20], a simplified formal model
of the sequential fragment of Java that is relevant for pointer analysis. FJEU
extends Featherweight Java (FJ) [6] with attribute updates, such that programs
may have side effects on a heap. Object constructors do not take arguments, but
initialize all fields with null , as they can be updated later. Also, the language
adds let constructs and conditionals to FJ. For a small example, please refer to
the full version of this paper [21], which shows a small list copy program in Java
and a corresponding implementation in FJEU.

2.1 Preliminaries

We write P(X) for the set of all subsets of X . The notations A → B and A ⇀ B
stand for the set of total and partial functions from A to B, respectively. We
write [x �→ v] for the partial function that maps x to v and is else undefined.
The function f [x �→ v] is equal to f , except that it returns v for x. Both function
notations may be used in an indexed fashion, e.g. f [xi �→ vi]{1,...,n}, to define
multiple values. In typing rules, we sometimes write x : v and f, x : v corre-
sponding to the above notation. Finally, we write a for a sequence of entities a.

2.2 Syntax

The following table summarizes the (infinite) abstract identifier sets in the lan-
guage, the meta-variables we use to range over them, and the syntax of FJEU
expressions:

variables: x, y ∈ X classes: C, D, E ∈ C
fields: f ∈ F methods: m ∈ M

E % e ::= null | x | new C | let x = e in e | x.f | x.f := y | x.m(y) |
if x instanceof E then e else e | if x = y then e else e

To keep our calculus minimal and focused on pointer alias analysis, we omit
primitive data types such as integers or booleans. However, such data types
and their operations can easily be added to the language. We also omit type
casts found in FJ, as they do not provide new insights to pointer analysis. In
order to simplify the proofs, we require programs to be in let normal form.
The somewhat unusual conditional constructs for dynamic class tests and value
equality are included to have reasonable if-then-else expressions in the language
while avoiding the introduction of booleans.

An FJEU program is defined by the following relations and functions:

subclass relation: ≺ ∈ P(C × C)
field list: fields ∈ C → P(F)

method list: methods ∈ C → P(M)
method table: mtable ∈ C ×M ⇀ E

FJEU program: P = (≺,fields ,methods,mtable)
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FJEU is a language with nominal subtyping: D ≺ C means D is an im-
mediate subclass of C. The relation is well-formed if it is a tree successor re-
lation; multiple inheritance is not allowed. We write & for the reflexive and
transitive hull of ≺. The functions fields and methods describe for each class
C which fields and method objects of that class have. The functions are well-
formed if for all classes C and D such that D & C, fields(C) ⊆ fields(D) and
methods(C) ⊆ methods(D), i.e. classes inherit fields and methods from their su-
perclasses. A method table mtable gives for each class and each method identifier
its implementation, i.e. the FJEU expression that forms the method’s body. To
simplify the presentation, we assume that formal argument variables in the body
of a method m are named xm

1 , xm
2 , etc., abbreviated to xm, besides the implicit

and reserved variable this. All free variables of an implementation of m must be
from the set {this, xm

1 , xm
2 , . . .}. A method table is well-formed if mtable(C, m)

is defined whenever m ∈ methods(C). In other words, all methods declared by
methods must be implemented, though the implementation may be overridden
in subclasses for the same number of formal parameters. In the following, we
assume a fixed FJEU program P whose components are all well-formed.

2.3 Semantics

A state consists of a store (variable environment or stack) and a heap (memory).
Stores map variables to values, while heaps map locations to objects. An object
consists of a class identifier and a valuation of its fields. The only kind of values
in FJEU are locations and null references.

locations: l ∈ L stores: s ∈ X ⇀ V
values: v ∈ V = L ∪ {null} heaps: h, k ∈ L ⇀ O

objects: O = C × (F ⇀ V)

The semantics of FJEU is defined as a standard big-step relation (s, h) ! e ⇓
v, h′, which means that an FJEU expression e evaluates in store s and heap h
to the value v and modifies the heap to h′. Due to reasons of limited space,
figure 1 only shows the defining rules for some of the syntactic forms. A premise
involving a partial function, like s(x) = l, implies the side condition x ∈ dom(s).

2.4 Class Tables

A class table C0 = (A0, M0) models FJ’s standard type system, where types are
simply classes. The field typing A0 : (C×F) ⇀ C assigns to each class C and each
field f ∈ fields(C) the class of the field. The field class is required to be invariant
with respect to subclasses of C. The method typing M0 : (C × M) ⇀ C × C
assigns to each class C and each method m ∈ methods(C) a method type, which
specifies the classes of the formal argument variables and of the result value. It is
required to be contravariant in the argument classes and covariant in the result
class with respect to subclasses of C.
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l �∈ dom(h)
F = [f �→ null ]f∈fields(C)

(s, h) � new C ⇓ l, h[l �→ (C, F )]

(s, h) � e1 ⇓ v1, h1

(s[x �→ v1], h1) � e2 ⇓ v2, h2

(s, h) � let x = e1 in e2 ⇓ v2, h2

s(x) = l h(l) = (C, F )
h′ = h[l �→ (C, F [f �→ s(y)])]

(s, h) � x.f := y ⇓ s(y), h′

s(x) = l h(l) = (C, ) |xm| = |y| = n
s′ = [this �→ s(x)] ∪ [xm

i �→ s(yi)]i∈{1,...,n}
(s′, h) � mtable(C, m) ⇓ v, h′

(s, h) � x.m(y) ⇓ v, h′

Fig. 1. Operational semantics of FJEU (extract)

3 Region Type System

In this section we define the base region type system, which serves as a main
unifying calculus for pointer analysis and is given an interpretation and sound-
ness proof. We assume an infinite set R of regions r, which are abstract memory
locations. Each region stands for zero or more concrete locations. Different re-
gions represent disjoint sets of concrete locations, hence they partition or color
the memory. Two pointers to different regions can therefore never alias.

3.1 Refined Types and Subtyping

The region type system is a refinement of the plain type system: we equip classes
with (possibly infinite) subsets from R. For example, a location l is typed with
the refined type C{r,s} if it points to an object of class C (or a subclass of C),
and if l is abstracted to either r or s, but no other region. The null value can be
given any type, while the type of locations must have a non-empty region set.
The following table summarizes the definitions:

Regions: r, s, t ∈ R
Region sets: R, S, T ∈ P(R)

Refined types: σ, τ ∈ T = C × P(R)

In the following, we use the notation CR instead of (C, R) for types. Though
the region identifier s is already used for variable stores, the difference should be
clear from the context. Since region sets are an over-approximation of the possible
locations where an object resides, we can easily define a subtyping relation <:
based on set inclusion:

CR <: DS ⇐⇒ R ⊆ S ∧ C & D

We also extend subtyping to method types:

σ <: τ ⇐⇒ |σ| = |τ | ∧ ∀i ∈ 1, . . . , |σ|. σi <: τi

(σ, τ) <: (σ′, τ ′) ⇐⇒ σ′ <: σ ∧ τ <: τ ′
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3.2 Annotated Class Tables

We extend (plain) class tables C0 to annotated class tables C = (Aget, Aset, M).

– The annotated field typings Aget, Aset : (C×R×F) ⇀ T assign to each class
C, region r and field f ∈ fields(C) the refined type of the field for all objects
of class C in region r. The field type is split into a covariant get-type Aget

for the data read from the field, and a contravariant set-type Aset that is
needed for data to be written to the field. This technique improves precision
and is borrowed from Hofmann and Jost [20]. More formally, annotated field
typings are well-formed if for all classes C, subclasses D & C, regions r and
fields f ∈ fields(C),
• Aset(C, r, f) <: Aget(C, r, f), and
• Aget(D, r, f) <: Aget(C, r, f) and Aset(C, r, f) <: Aset(D, r, f).

Also, the class component of Aget(C, r, f) and Aset(C, r, f) must be A0(C, f),
i.e. invariant.

– The annotated method typing M : (C × R × M) ⇀ P(T × T ) assigns to
each class C, region r and method m ∈ methods(C) an unbounded number
of refined method types for objects of class C in region r, enabling infinite
polymorphic method types. This makes it possible to use a different type
at different invocation sites (program points) of the same method. Even
more importantly, the same invocation site can be checked in different type
derivations with different method types. For every well-formed annotated
method type, there must be an improved method type in each subclass: for
all classes C, subclasses D & C, regions r, and methods m ∈ methods(C),
we require
• ∀(σ, τ) ∈ M(C, r, m). ∃(σ′, τ ′) ∈ M(D, r, m). (σ′, τ ′) <: (σ, τ).

Again, the class components of the refined types M(C, r, m) have to match
the classes of the underlying unannotated method type M0(C, m).

In the following, we assume a fixed annotated class table C with well-formed
field and method typings.

3.3 Region Type System

The type system (see figure 2) derives judgements Γ ! e : τ , meaning
FJEU expression e has type τ with respect to a variable context (store typing)
Γ : X ⇀ T that maps variables to types.

The rule T-Sub is used to obtain weaker types for the expression. The rules
T-Let, T-Var, and T-IfInst are standard. The rule T-IfEq exploits the fact
that the two variables must point to the same object (or be null) in the then
branch, therefore the intersection of the region sets can be assumed. In T-Null,
the null value may have any type (any class and any region set). In the rule
T-New, we may choose any region r, which is an abstract location that includes
(possibly among others) the concrete location of the object allocated by this
expression.
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T-Sub

Γ � e : σ σ <: τ

Γ � e : τ
T-Let

Γ � e1 : σ Γ, x : σ � e2 : τ

Γ � let x = e1 in e2 : τ

T-Var

Γ, x : τ � x : τ
T-Null

Γ � null : τ

T-IfInst

x ∈ dom(Γ ) Γ � e1 : τ Γ � e2 : τ

Γ � if x instanceof E then e1 else e2 : τ

T-IfEq

Γ, x : CR∩S, y : DR∩S � e1 : τ Γ, x : CR, y : DS � e2 : τ

Γ, x : CR, y : DS � if x = y then e1 else e2 : τ

T-New

Γ � new C : C{r}

T-Invoke

∀r ∈ R. ∃(σ′, τ ′) ∈ M(C, r, m). (σ′, τ ′) <: (σ, τ )
Γ, x : CR, y : σ � x.m(y) : τ

T-GetF

∀r ∈ R. Aget(C, r, f) <: τ

Γ, x : CR � x.f : τ
T-SetF

∀r ∈ R. τ <: Aset(C, r, f)

Γ, x : CR, y : τ � x.f := y : τ

Fig. 2. Region type system

When a field is read (T-GetF), we look up the type of the field in the Aget

table. As the variable x may point to a number of regions, we need to ensure
that τ is an upper bound of the get-types of f over all r ∈ R. In contrast, when
a field is written (T-SetF), the written value must have a subtype of the types
allowed for that field by the Aset table with respect to each possible region r ∈ R.
Finally, the rule T-Invoke requires that for all regions r ∈ R where the receiver
object x may reside, there must exist a method typing that is suitable for the
argument and result types.

An FJEU program P = (≺,fields ,methods,mtable) is well-typed if for all
classes C, regions r, methods m and method types (σ, τ) such that (σ, τ) ∈
M(C, r, m), the following judgement is derivable:

[this �→ C] ∪ [xm
i �→ σi]i∈{1,...,|xm|} ! mtable(C, m) : τ

The polymorphic method types make the region type system very expressive
in terms of possible analyses of a given program. Each method may have many
types, each corresponding to a derivation of the respective typing judgment. In
the different derivations, different regions may be chosen for new objects, and
different types may be chosen for called methods. This flexibility provides the
basis for our embedding of external pointer analyses. Moreover, since there may
be infinitely many method types for each method, this system is equivalent to
one which allows infinite unfoldings of method calls.
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3.4 Interpretation

We now give a formal interpretation of the typing judgement in form of a sound-
ness theorem. Afterwards, we continue by restricting the expressivity of the
system and reformulating the rules in order to move towards an actual type
checking algorithm. The underlying idea is that we only have to prove sound-
ness once for the general system; for later systems, it suffices to show that they
are special cases of the general system, such that the soundness theorem applies
to these systems as well.

A heap typing Σ, Π : L ⇀ (C × R) assigns to heap locations a static class
(an upper bound of the actual class found at that location) and a region. Heap
typings, a standard practice in type systems for languages with dynamic memory
allocations [22], separate the well-typedness definitions of locations in stores
and objects from the actual heap, thereby avoiding the need for a co-inductive
definition for well-typed heaps in the presence of cyclic structures. Heap typings
map locations to very specific types, namely those where the region set is a
singleton. A heap typing thus partitions a heap into (disjoint) regions.

We define a typing judgment for values Σ ! v : τ , which means that according
to heap typing Σ, the value v may be typed with τ . In particular, the information
in Σ(l) specifies the type of l. Also, the typing judgment of locations is lifted to
stores and variable contexts.

Σ ! null : τ

Σ(l) = (C, r)
Σ ! l : C{r}

Σ ! v : σ σ <: τ

Σ ! v : τ

Σ ! s : Γ ⇐⇒ ∀x ∈ dom(Γ ). Σ ! s(x) : Γ (x)

A heap h is well-typed with respect to a heap typing Σ and implicitly a field
typing Aget, written h |= Σ, if the type for all locations given by Σ are actually
“valid” with respect to the classes of the objects, and if the field values are
well-typed with respect to Aget and Σ:

h |= Σ ⇐⇒ ∀l ∈ dom(Σ). l ∈ dom(h) ∧ Σ |= h(l) : Σ(l)

where

Σ |= (C, F ) : (D, r) ⇐⇒ C & D ∧ dom(F ) = fields(C) ∧
∀f ∈ fields(C). Σ ! F (f) : Aget(C, r, f)

As the memory locations are determined at runtime, the heap typings cannot
be derived statically. Instead, our interpretation of the typing judgement Γ !
e : τ states that whenever a well-typed program is executed on a heap that is
well-typed with respect to some typing Σ, then the final heap after the execution
is well-typed with respect to some possibly larger heap typing Π . The typing Π
may be larger to account for new objects that may have been allocated during
execution, but the type of locations that already existed in Σ may not change.
More formally, a heap typing Π extends a heap typing Σ, written Π ( Σ, if
dom(Σ) ⊆ dom(Π) and ∀l ∈ dom(Σ). Σ(l) = Π(l).
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Theorem 1 (Soundness Theorem). Fix a well-typed program P . For all
Σ, Γ, τ, s, h, e, v, k with

Γ ! e : τ and Σ ! s : Γ and (s, h) ! e ⇓ v, k and h |= Σ

there exists some Π ( Σ such that

Π ! v : τ and k |= Π.

Proof. By induction over the derivations of the operational semantics and the
typing judgement. Details can be found on the authors’ homepage [21]. We have
also developed a formalization in Isabelle/HOL.

4 Parametrized Region Type System

Our next goal is to use the type system for the automatic algorithmic verification
of results of external analyses. In this section, we focus on the first step in this
direction by showing how to interpret given analysis results in the type system.
We then outline how to implement an algorithmic type checking algorithm for
the automatic verification.

The interpretation of given results requires the reformulation of the above
type system to explicitly model abstraction principles that are fundamental for
a number of different pointer analysis techniques [7]. We focus on two general
classes of abstractions: the abstraction of the call graph using contexts, and the
abstraction of objects on the heap. The region type system is equipped with
parameters that can be instantiated to specific abstraction principles. We show
that the parametrized version of the type system arises as a specialization of the
general region type system.

In the following, the notion of program points is made explicit by annotating
expressions with expression labels i ∈ I: we write [e]i for FJEU expressions, where
e is defined as before. An FJEU program is well-formed if each expression label
i appears at most once in it. In the following, we only consider well-formed pro-
grams, and simply write e instead [e]i if the expression label i is not important.

4.1 Abstraction Principles

Context-insensitive pointer analyses examine each method exactly once. Their
result provides for each method a single pointer structure specification which is
used for every call of that method. Context-sensitive algorithms improve preci-
sion: each method may be analyzed multiple times under different contexts, so
that different specifications can be used for different calls to the same method.
A context-sensitive algorithm settles on a specific (finite) set of contexts, and
produces for each method one pointer structure specification per context. Pointer
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structure specifications correspond to our method types. We therefore model the
concept of contexts by introducing a finite abstract set of contexts Z, and by
parametrizing the method typing function M to associate one method type per
context in Z.

The choice of contexts and specifications for each method call depends on the
analysis in question. For example, call-site sensitive algorithms [23] process each
method once for each program point where the method is called. Receiver-object
sensitive analyses [24] differentiate pointer structure specifications of a method
according to the abstraction of the invoking object. More powerful analyses use
call stacks as contexts to differentiate method calls. For example, a method m
may be analyzed for each possible call-site stack that may occur at the time
when m is called. Similarly, receiver-object stacks can be used. In other words,
one considers the call graph of the program. A method m is then represented by
a node in this graph, and a context corresponds to a possible path that leads
to the node. As there may be infinitely many paths in recursive programs, the
number of paths needs to be restricted by some mechanism. A common way is
to consider only the last k entries on the stack (k-CFA [10]), or to collapse each
strongly connected component into a node, thereby eliminating recursive cycles
from the set of possible paths [1,25]. Following this observation, we employ a
general context transfer function φ which represents the edges in the abstract
call graph. The function selects a context for the callee based on the caller’s
context, the class of the receiver object, its region, the method name, and the
call site.

Another abstraction principle is the object abstraction, i.e. the abstract loca-
tion assigned to allocated objects. This corresponds to our concepts of regions.
As pointer analysis algorithms differentiate only finitely many abstract objects,
we can restrict the set of regions R to a finite size.

A common abstraction is to distinguish objects according to their allocation
site and/or their class. More precise analyses also take into account the context
under which allocation takes place. For example, in object-sensitive analysis by
Milanova et al. [24], objects are distinguished by their own allocation site and
the allocation site of the this object. Objects may also be distinguished by the
call site of the invoked method, a technique called heap specialization [26]. We
model these concepts by an object abstraction function ψ that assigns the region
for the new object, given the allocation site and the current method context.
Our system is by design class-sensitive, as the class information is part of the
type.

Figure 3 summarizes the four parameters of our system: contexts, context
transfer function, regions, and object abstraction function. Also, it shows how
to instantiate the parameters to obtain various standard abstraction principles.

The parametrized method typing M̂ : (C × R × Z ×M) ⇀ T × T replaces
the annotated polymorphic method typing M in the annotated class table. It is
well-formed if for all classes C and subclasses D & C, regions r ∈ R, methods
m ∈ methods(C), and contexts z ∈ Z, it holds M̂(D, r, z, m) <: M̂(C, r, z, m).
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Regions (finite): r, s, t ∈ R
Contexts (finite): z ∈ Z

Context transfer function: φ ∈ Z × C ×R×M× I → Z
Object abstraction function: ψ ∈ Z × I → R

set of regions object abstraction function principle

R = I ψ(z, i) = i allocation site abstraction
R = Z = I × I ψ((i1, i2), i0) = (i0, i1) object-sensitive allocation

site abstraction
R = Z = I ψ(ic, i) = ic heap specialization

set of contexts context transfer function principle

Z = {z0} φ(z, C, r, m, i) = z0 context-insensitivity
Z = R φ(z, C, r, m, i) = r object-sensitive 1-CFA
Z =

⋃
n∈{1,...,k} Mn φ(z, C, r, m, i) = (m :: z)|k method identifier k-CFA

Z = {i ∈ σ(I′) | I′ ⊆ I} φ(z1, C, r, m, i) = z2 CFA with eliminated
s.th. IEc(z1, i, z2, m) recursive cycles

where

– σ(X) is the set of all permutations of X
– L|k is the truncation of list L after the first k elements
– IEc is the call graph relation of [25] where recursive cycles have been replaced by

single nodes

Fig. 3. The four type system parameters, and possible instantiations to common ab-
straction principles

4.2 The Parametrized Type System

The parametrized type system extends the typing judgment of the general region
type system by a context component z. With the exception of the following two
rules, all rules remain as presented in section 3 (with the addition of the context z
in each judgement):

TP-New

r = ψ(z, i)
Γ ; z ! [new C]i : C{r}

TP-Invoke

∀r ∈ R. M̂(C, r, φ(z, C, r, m, i), m) <: (σ, τ)
Γ, x : CR, y : σ ; z ! [x.m(y)]i : τ

While in the previous system any region r could be chosen for new objects, we
have restricted this flexibility in the TP-New rule to the region specified by ψ.
Moreover, instead of allowing arbitrarily many types per method, from which
any type could be selected for invocations, we now have one type determined by
the context z that is selected by the φ function in the TP-Invoke rule.
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For a given parametrized method typing M̂ , we define a the corresponding
polymorphic method typing M(C, r, m) :=

⋃
z∈Z{M̂(C, r, z, m)}. The rules of

the parametrized system are derivable in the previous system: The only changed
rules TP-New and TP-Invoke have more restrictive premises than their coun-
terparts T-New and T-Invoke. Hence if Γ ; z ! e : τ can be derived from
some M̂ in the parametrized system, then Γ ! e : τ can be derived in the
previous system with respect to the corresponding method typing M .

A method table is well-typed for M̂ if for all classes C, contexts z, regions r,
and methods m such that M̂(C, r, z, m) = (σ, τ), the judgement Γ ; z !
mtable(C, m) : τ can be derived with Γ = [this �→ C] ∪ [xm

i �→ σi]i∈{1,...,|xm|}.
It is easy to see that if a method table is well-typed with respect to M̂ in the
parametrized system, then it is also well-typed with respect to the corresponding
method typing M in the general system. Therefore, the soundness theorem is
applicable to the parametrized region type system.

4.3 Algorithmic Type Checking

The parametrized type system can be rewritten into a syntax directed form, from
which one can directly read off an algorithm A(Γ, e) = τ that computes “from
left to right” the type τ of an expression e based on a store typing Γ . For this, we
eliminate the subtyping rule, and instead specify the most precise resulting type τ
for each expression, similarly to the approach taken by Pierce [22]. The soundness
proof shows that the internalisation of the subtyping rule is correct, i.e. that the
judgements derived with the algorithmic type system can also be derived with
the parametrized type system. To demonstrate the verification capabilities of
the algorithmic type system, we have also developed a context-sensitive pointer
analysis algorithm for FJEU, described declaratively as a set of recursive Datalog
rules in the style of Whaley and Lam [25]. The full algorithmic type system, its
soundness proof and the sample pointer analysis algorithm can be found on the
authors’ homepage [21].

5 String Analysis

String analysis is a dataflow analysis technique to determine possible string val-
ues (character sequences) that may occur during the execution of a program.
Since strings appear as objects in Java, it is natural to implement a string anal-
ysis by building on pointer analysis: string objects are identified and tracked
by the pointer analysis, while their possible values are determined by the string
analysis.

We now equip the FJEU language with special string objects and operations to
give a simplified formalization of Java’s String class, and extend the region type
system to enable the verification of pointer analyses of string objects. Afterwards,
we show how to use the region information to interpret the results of a specific
string analysis.
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5.1 FJEU with Strings

The language FJEUS is an extension of FJEU with operations to create and
concatenate strings. While the String class in Java is just another class in the
Java class hierarchy, it is regarded as a separate type in FJEUS. This allows us
to treat string objects differently: An object of class String in FJEUS is simply a
string value (character sequence) on the heap. The meta-variable w ranges over
character sequences W , and W ranges over sets of string values. We rely on a
given sequence concatenation function +.

character sequences: w ∈ W
sets of character sequences: W ∈ P(W)

extended expressions: E % e ::= . . . | new String(w) | x.concat(y)

character sequence concatentation: + ∈ W ×W → W
heaps: h, k ∈ L ⇀ O ∪W

The expression new String(w) allocates a new string object with the character
sequence w on the heap. The string operation x.concat(y) has its own special
semantics and is implemented with the + operator. As we only model strings
with non-mutable values in the language, a string concatenation always creates a
new string object on the heap. The operational semantics is extended as follows:

l �∈ dom(h)
(s, h) ! new String(w) ⇓ l, h[l �→ w]

s(x) = l1 s(y) = l2 h(l1) = w1 h(l2) = w2
l �∈ dom(h) w = w1 + w2

(s, h) ! x.concat(y) ⇓ l, h[l �→ w]

Note that this rather modest extension is intended to keep the formalization
simple. Other extensions could include more string operations, or mutable string
objects that model Java’s StringBuffer class.

5.2 Pointer Analysis for String Objects

We extend the region type system from section 3 to accommodate the new string
objects. We distinguish references to “proper” objects and to string objects: a
type is either a class with a region set (CR), or the special String class with a
region set (StringR). The String class is independent from other classes in the
class hierarchy.

types: σ, τ ∈ T = (C ∪ {String}) × P(R)

C & D R ⊆ S

CR <: DS

R ⊆ S

StringR <: StringS
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Fields and method typings may now include the StringR type. Also, all exist-
ing typing rules from section 3 remain unchanged. In particular, the null value
may be assigned a String type. A field x.f may only be accessed if x is a (non-
String) class C; similarly for method calls x.m. These are the two additional
typing rules for new String(str) and x.concat(y):

Γ ! new String(w) : String{r}

Γ, x : StringR, y : StringS ! x.concat(y) : String{t}

The heap typings Σ, Π : L ⇀ (C ∪ {String}) × R may now also map loca-
tions to the String class. We extend the well-typed value relation Σ ! v : τ
accordingly:

Σ ! null : τ

Σ(l) = (C, r)
Σ ! l : C{r}

Σ(l) = (String, r)
Σ ! l : String{r}

Σ ! v : σ σ <: τ

Σ ! v : τ

The definition of well-typed heaps additionally requires well-typed character
sequences (last line):

h |= Σ ⇐⇒ ∀l ∈ dom(Σ). l ∈ dom(h) ∧ Σ |= h(l) : Σ(l)
Σ |= (C, F ) : (D, r) ⇐⇒ C & D ∧ . . . (as before)
Σ |= w : (String, r) ⇐⇒ PROP(w, r)

In other words, the property that a heap h is well-typed with respect to Σ
now includes the condition that for all locations l such that Σ(l) = (String, r),
h(l) contains a string value w that satisfies a certain property PROP with respect
to r. For the moment, assume PROP is simply True. The proof of the soundness
theorem is extended in a straight-forward way for the extensions described above.
Moreover, the type system can be parametrized in the same fashion as described
in section 4: as both string operations create new objects, we use the ψ function
to determine the region of these objects.

In the following subsection, we present an analysis that can help to prevent
cross-site scripting attacks, and give a semantic formalization by instantiating
the string property PROP.

5.3 String Analysis with Operation Contexts

In a typical cross-site scripting scenario, a user input is embedded into a string
that is executed or interpreted. To prevent the injection of malicious code, one
wants to track how a string is constructed, and ensure that its executable parts
originate from trusted sources, like string literals in the program code.
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We therefore add a string operation context Ω, which expresses the possible
string operations that objects in specific regions may be the result of. The typing
rules are extended with constraints on Ω.

string operations: O % ω ::= newstring w r | concat r s t | unknown W r
operation context: Ω ∈ P(O)

newstring w r ∈ Ω

Γ ! new String(w) : String{r}

∀r ∈ R, s ∈ S. concat r s t ∈ Ω

Γ, x : StringR, y : StringS ! x.concat(y) : String{t}

Informally, an operation newstring w r ∈ Ω means that region r may include
a string w. concat r s t means that region t may include a string object that
is obtained by concatenating some strings from regions r and s. The operation
unknown W r means that strings in region r may be from the set W . This is
useful for external methods whose types are given to but not verified by the type
system. Whenever more primitive string operations are added to the language,
the set O may be extended accordingly.

Formally, we define a semantic interpretation Ω�r� that gives the possible
values for string objects in region r. It is defined as the smallest set satisfying
the following conditions:

newstring w r ∈ Ω ⇒ w ∈ Ω�r�

concat r s t ∈ Ω ⇒ ∀w1 ∈ Ω�r�, w2 ∈ Ω�s�. w1 + w2 ∈ Ω�t�

unknown W r ∈ Ω ⇒ W ⊆ Ω�r�

After instantiating the string property as PROP(w, r) ≡ w ∈ Ω�r�, the relation
h |= Σ ensures that string values on the heap are indeed in the interpretation of
the string operation context.

Apart from this extensional interpretation, the string operation context and
the typing of external methods also contain intensional information about the
origin and the possible constructions of strings in a specific region, which enables
the verification of more complex string policies.

For example, consider the following string-manipulating program that relies
on external functions getUserInput() to retrieve data from the user, escape-
HTML(s) that quotes all HTML tags in string s and returns the result as a
new string, and output(s) that outputs the string s.

let firstPart = new String("<sometag>")
in let contents = getUserInput()

in let escContents = escapeHTML(contents)
in output(firstPart.concat(sanContents))

The security policy is that the output may only be the result of a concate-
nation of a string literal with a string that does not contain HTML tags. The
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policy is expressed using the following types for external methods and the string
operation context:

getUserInput : unit −→ String{q}
escapeHTML : String{q} −→ String{s}

output : String{t} −→ unit

Ω = { newstring "<sometag>" l,

unknown W q, unknown Ŵ s,

concat s l t, concat l s t }

(Ŵ is the set of all strings that do not contain HTML tags, and unit is
a unit type, which could be modeled in FJEUS as a null type like String∅.)
The external function getUserInput returns strings with arbitrary values of the
set W in region q (“questionable”), which are converted by escapeHTML into
strings of region s (“sanitized”), which are assumed to not contain any HTML
tags (set Ŵ). For the literal firstPart, the type checker can assign the region l
(“literals”), as the literal value in Ω matches. The output function only accepts
strings from region t (“trusted”), which must be, according to Ω, a concatenation
of strings from region l and (HTML tag-free) region s. Therefore, the typability
of the program proves that the security policy is indeed fulfilled. The example
demonstrates that handling trusted sanitizing functions is actually a strength of
type-based presentations: simply assign an appropriate type to a function if you
believe the associated semantic property of the function.

The approach is related to the work by Christensen et al. [8] on the analysis
of string values using context-free grammars with operation productions. The
symbolic string operations in the context correspond to nodes in their annotated
flow graph, and their semantics of the flow graph resembles our interpretation
of Ω�r�. Similarly, Crégut and Alvarado [9] have presented an algorithm that
tracks string objects with pointer analysis, and collects intensional information
about the string operations applied to them. We thus expect that aspects of
the results of these algorithms are verifiable in our system. Our approach is also
related to taint analysis [27], as the region identifiers can convey information
about the trustworthiness of strings, which is preserved throughout assignments
and method invocations.

6 Discussion

We presented a framework for classifying alias analyses for Java-like languages,
given by a hierarchy of region-based type systems. We demonstrated how existing
disciplines arise as instantiations of our framework and may be given a uniform
interpretation by embedding their results in a single type system. We also gave
an algorithmic variant of the type system, thus enabling syntax-directed type-
checking and hence validation of analyses results. Finally, we showed how our
framework may be extended to string analyses. In the following, we briefly discuss
specific design decisions, and outline future work.

To our knowledge, most existing pointer analyses express their results at a
coarse-grain level of syntactic structure such as methods. In accordance with
this, we employed a phrase-based formulation of type systems and interpreted
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judgements with respect to a big-step evaluation semantics. An extension of
the interpretation to include non-terminating executions appears possible, using
techniques as in [28].

Our framework does not aim to be flow- or path-sensitive. We see these con-
cepts as orthogonal to the central idea of our paper, namely interpreting context-
sensitivity using polyvariant types. Nevertheless, we acknowledge the increasing
relevance of flow and path sensitivity in recent work on pointer analysis. The
T-IfEq rule illustrates a possible extension of the type system with path-
sensitive capabilities: the information from the branching expression is used
to refine the analysis for the “then” branch of the conditional. Moreover, sub-
derivations of a judgement contain implicitly more fine-grained (non-)alias re-
lationships applicable at intermediate program points, and include aspects of
flow-sensitivity as any variable may be associated with different types in a deriva-
tion. Arguably, local alias assertions could be made more explicit by moving to a
small-step operational regime and/or formulations of the type systems that are
inspired by abstract interpretation and yield a global specification table with en-
tries for all program points [29]. However, the use of evaluation-style judgements
greatly simplifies soundness proofs at least at the level of methods, as recursive
calls follow the type derivation structure.

The Doop framework [5] enables the definition of highly precise and efficient
pointer analyses declaratively using Datalog rules. While the authors do not
seem to aim at a fully formal correctness proof that interprets the Datalog rules
and relations with respect to the semantics of the Java language, they take great
care to separate the essential aspects of analysis techniques from implementation
details of the algorithm. We intend to look at the ideas in their work in order
to find ways to adapt our type system to more language features and pointer
analyses.

In addition to type systems for pointer alias analysis, the literature contains
the terminology “type-based alias analysis” [30]. The latter term appears to
mean that datatype or static class information is used to improve the precision
of an alias analysis, while region type systems directly include the points-to
relations in the types. However, as our system extends the ordinary type system
of Java, it arguably also encompasses type-based alias analyses.

Having been developed in order to embed static analysis results, it is not
surprising that the type systems over-approximate their semantic guarantee.
Thus, failure to validate the legitimate result of a specific analysis may be rooted
in either an incorrect interpretation of the analysis into our framework or the
fact that the analysis is more precise than the host type system. A particular
direction in which our type system (and some analyses) might be generalized is
shape analysis [31]. Another interesting recent development that our work does
not accommodate is the analysis of programs that use reflection [27]; this would
require a fundamental understanding of the semantic analysis of reflection.

Although we have only examined the results of pointer analysis algorithms, the
algorithms can be seen as an external means of type inference. It seems promising
to further investigate the implementations of these algorithms, and to recreate
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their logic in the type system in order to obtain a parametric type system with
a fully automatic (internal) type inference. Alternatively, the identification of
abstraction principles could also propose a way to parametrize existing pointer
analysis implementations.

Regarding the string analysis, we have concentrated on the previously-noted
observation that the precision of the analysis benefits from the availability of
(non-)aliasing information [9]. In principle, the benefits may be mutual. For
example, the method call x.concat(y) on a String in Java actually returns the
reference x if y has a length of zero. If the length of y can be obtained from a
string analysis, this information helps to improve the region set for the result
type in the rule for concatenation. Mutual dependencies between aliasing and
string analyses may thus be an interesting topic for future work.

Also, we have only outlined the use of a verified string analysis for security
policies. In collaboration with SAP’s Sophia-Antipolis-based research lab on se-
curity we plan to extend the type system with string operation contexts to verify
the absence of cross-site scripting attacks in concrete scenarios.
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Abstract. We present ABC, a software tool for automatically computing sym-
bolic upper bounds on the number of iterations of nested program loops. The sys-
tem combines static analysis of programs with symbolic summation techniques
to derive loop invariant relations between program variables. Iteration bounds are
obtained from the inferred invariants, by replacing variables with bounds on their
greatest values. We have successfully applied ABC to a large number of exam-
ples. The derived symbolic bounds express non-trivial polynomial relations over
loop variables. We also report on results to automatically infer symbolic expres-
sions over harmonic numbers as upper bounds on loop iteration counts.

1 Introduction

Establishing tight upper bounds on the execution times of programs is both difficult
and interesting, see e.g. [10,5,9,8]. We present ABC, a new software tool for automat-
ically computing tight symbolic upper bounds on the number of iterations of nested
program loops. The derived bounds express polynomial relations over loop variables.
ABC is fully automatic, combines static analysis of programs with symbolic summation
techniques, and requires no user-guidance in providing additional set of predicates, tem-
plates and assertions. ABC is also able to derive symbolic expressions over harmonic
numbers as upper bounds on loop iteration counts, which, to the best of our knowledge,
is not yet possible by other works.

In our approach to bound computation, we have identified a special class of nested
loop programs, called the ABC-loops (Section 3.1). Further, we have built a loop con-
verter to transform, whenever possible, arbitrary loops into their equivalent ABC-loop
format (Section 3.2). Informally, an ABC-loop is a nested for-loop such that each loop
from the nested loop contains exactly one iteration variable with only one condition
and one (non-initializing) update on the iteration variable. For such loops, our method
derives precise bounds on the number of loop iterations.

In our work, we assume that each program statement is annotated with the time units
it needs to be executed. For simplicity, we assume that an iteration of an unnested loop
takes one unit time, and all other instructions of the unnested loop need zero time.

The key steps of our approach to bound computation are as follows (Section 3.3).
(i) First, we instrument the innermost loop body of an ABC-loop with a new variable
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that increases at every iteration of the program. We denote this variable by z. Upper
bounds on the value of z thus express upper bounds on the number of loop iterations.
(ii) Next, the value of z is computed as a polynomial function over the nested loop’s
iteration variables. We call the relation between z and the loop’s iteration variables
the z-relation. To this end, for each loop of the ABC-loop, recurrence equations of z
and the loop iteration variables are first constructed. Closed forms of variables are then
derived using our symbolic solver which integrates special techniques from symbolic
summation (Section 3.4). The derived closed forms express valid relations between z
and the loop iteration variables, and thus the z-relations are loop invariant properties.
(iii) Further, by replacing loop iteration variables by bounds on their greatest values in
the computed z-relation, bounds on the value of z are obtained. These bounds give us
tight symbolic upper bounds on the number of iterations of the program. Our method
can be generalized for the timing analysis of loops whose iteration bounds involve har-
monic expressions over the loop variables (Section 3.5).

Implementation. ABC was implemented in the the Scala programming language [18],
contains altogether 5437 lines of Scala code, and is available at:

http://mtc.epfl.ch/software-tools/ABC/

Inputs to ABC are loops written in the Scala syntax. ABC first rewrites the input loop
into an equivalent ABC-loop by using its loop converter, and then computes bounds on
loop iteration counts using its bound computer. The bound computer relies on the sym-
bolic solver in order to derive closed forms of symbolic sums and simplify mathematical
expressions. The overall workflow of ABC is given in Figure 1.

Note that ABC does not rely on an external computer algebra package for symbolic
summation.

Experiments. We successfully applied ABC on examples from [10,9], as well as on 90
nested loops extracted from the JAMA package [13] – see Section 4 and the mentioned
URL1. Altogether, we ran ABC on 558 lines of JAMA. ABC computed precise upper
bounds on iteration counts for all loops, and inferred the z-relation for 87 loops, all in
less than one second on a machine with a 2.8 GHz Intel Core 2 Duo processor and 2GB
of RAM. The 3 loops for which ABC was not able to derive the z-relation were actually
sequences of loops.

We believe that similar experimental results as the ones resulting from JAMA could
be obtained by running ABC on the Jampack library [20], or on various numerical
packages of computer algebra packages such as Mathematica [22], Matlab [4], or Math-
cad [2].

Related work. We only discuss some of the many methods that are related to ABC.
Paper [15] infers polynomial loop invariants among program variables by using poly-

nomial invariant templates of bounded degree. Unlike [15], where no restrictions on the
considered loops were made, we require no user guidance in providing invariant tem-
plates but automatically derive invariants (z-relations) for a restricted class of loops.
Our method has thus advantage in automation, but it is restricted to ABC-loops.

1 There are 167 loops in JAMA amongst which there are 90 nested for-loops. ABC successfully
inferred the exact bound for all but three for-loops.
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Loop

Loop Converter ABC Loop Bound Computer
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Fig. 1. The ABC tool

The approach presented in [11] infers invariants and bound assertions for loops with
nested conditionals and assignments, where the assignments statements describe non-
trivial recurrence relations over program variables (i.e. variable initializations are not
allowed). To this end, loops are first represented by a collection of loop-free program
paths, where each path corresponds to one conditional branch. Further, recurrence solv-
ing over variables is applied on each program path separately. Bounds on iteration coun-
ters can be finally inferred if the iteration counters are changed by each path in the same
manner. Due to these restrictions, nested loops cannot be handled in [11]. Contrarily to
[11], we infer bound assertions as z-relations for nested loops, but, unlike [11], our
invariant assertions are only over loop iteration variables and not arbitrary program
variables.

Paper [10] derives iteration bounds of nested loops by pattern matching simple recur-
rence equations. Contrarily to [10], we solve more general recurrence equations using
the Gosper algorithm [6] and identities over harmonic numbers [7].

Solving recurrence relations is also the key ingredient in [1] for computing bounds.
Unlike our method, evaluation trees for the unfoldings of the recurrence relations are
first built in [1], and closed forms of recurrences are then derived from the maximum
size of the trees. Contrarily to [1], we can handle more general recurrences by means
of symbolic computation, but [1] has the advantage of solving non-deterministic recur-
rences that may result from the presence of guards in the loop body.

Symbolic upper bounds on iteration counts of multi-path loops are automatically
derived in [8]. The approach deploys control-flow refinement methods to eliminate in-
feasible loop paths and rewrites multi-path loops into a collection of simpler loops
for which bound assertions are inferred using abstract interpretation techniques [3].
The programs handled by [8] are more general than the ABC-loops. Unlike [8], we do
not rely on abstract interpretation, and are able to infer harmonic expressions as upper
bounds on loop iterations counts. Abstract interpretation is also used in [12,16] for au-
tomatically inferring upper and lower bounds on the number of execution steps of logic
programs.

Paper [14] describes an automated approach for inferring linear upper bounds for
functional programs, by solving constraints that are generated using linear program-
ming. In our work we derive polynomial, and not just linear, upper bounds.

There has been a great deal of research on estimating the worst case execution time
(WCET) of real-time systems, see e.g. [5,9,19]. Papers [5,9] automatically infer loop
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for (i = 1; i ≤ n; i = i + 1) do
for (j = 1; j ≤ n; j = j + 1) do
skip
end do

end do

for (i = 0; i ≤ n; i = i + 1) do
for (j = 0; j ≤ m; j = j + 2) do
skip

end do
end do

(a) (b)

Fig. 2. Examples illustrating the power of ABC to (i) compute z-relations as loop invariants, and
(ii) infer tight upper bounds on the number of iterations of loops

bounds only for simple loops; bounds for the iteration numbers of multi-path loops
must be provided as user annotations. The aiT tool [5] determines the number of loop
iterations by relying on a combination of interval-based abstract interpretation with pat-
tern matching on typical loop patterns. The SWEET tool [9] determines upper bounds
on loop iterations by unrolling loops dynamically and analyzing each loop iteration
separately using abstract interpretation. In contrast, our method is fully automatic and
path-insensitive, but it is restricted to ABC-loops. The TuBound tool [19] implements
a constraint logic based approach for loop analysis to compute tight bounds for nested-
loops. The constraints being solved in [19] are directly obtained from the loop con-
ditions and express bounds on the loop iteration variables. Unlike [19], we infer loop
bounds by computing closed forms of iteration variables.

2 Motivating Examples

We first give some examples illustrating what kind of iteration bounds ABC can auto-
matically generate.

Consider Figure 2(a) taken from the JAMA library [13]. ABC first instruments the
innermost loop of Figure 2(a) with a new variable z, initialized to 1, for counting the
number of iterations of Figure 2(a). The thus obtained loop is presented in Figure 3(a).
Further, by applying ABC on Figure 3(a), we derive the z-relation2:

z = (i − 1)n + j

as an invariant property of the loop. By replacing i and j with bounds on their greatest
values (i.e. n) in the z-relation, the number of iterations of Figure 2(a) is bounded by:

n2.

Consider next Figure 2(b) with a non-unit increment, and its ”instrumented” version
in Figure 3(b). We obtain the z-relation:

z = 1 +
⌊

j

2

⌋
+ i

(⌊m

2

⌋
+ 1

)
,

2 Actually, the loops of Figure 2 are first translated into their equivalent ABC-format, and then
the z variable is introduced in their innermost loop body. For simplicity, in Figure 3 we present
the “instrumentation” step directly on the loops of Figure 2 and not on their ABC-loop formats.
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z = 1
for (i = 1; i ≤ n; i = i + 1) do
for (j = 1; j ≤ n; j = j + 1) do
z = z + 1
end do

end do

z = 1
for (i = 0; i ≤ n; i = i + 1) do
for (j = 0; j ≤ m; j = j + 2) do
z = z + 1

end do
end do

(a) (b)

Fig. 3. Figure 2 instrumented by ABC

yielding:

1 + (1 + n)
⌊m

2

⌋
+ n

as a tight upper bound on loop iteration counts 3, where )m
2 * denotes the largest integer

not greater than m
2 .

In the sequel, we illustrate the main steps of ABC on Figure 2(b).

3 ABC: System Description

We have identified a special class of loops, called the ABC-loops (Section 3.1), and de-
signed a loop converter for translating programs into their equivalent ABC-loop shape
(Section 3.2). Algorithmic methods from symbolic summation, implemented in our
symbolic solver (Section 3.4), are further deployed in ABC to automatically derive
upper bounds on loop iterations of ABC-loops (Section 3.3).

3.1 ABC-Loops

We denote by Z the set of integer numbers, and by Z[x] the ring of polynomial functions
in indeterminate x over Z.

We consider programs of the following form:

for (i1 = 1; i1 ≤ c; i1 = i1 + 1) do
for (i2 = 1; i2 ≤ f1(i1); i2 = i2 + 1) do

. . .
for (id = 1; id ≤ fd−1(i1, . . . , id−1); id = id + 1) do

skip
end do
. . .

end do
end do

(1)

where i1, . . . , id are pairwise disjoint scalar variables (called loop iteration variables)
with values from Z, c is an integer-valued symbolic constants, and fk ∈ Z[i1, . . . , ik]
are polynomial functions (k = 1, . . . , d − 1).

3 In our work we did not consider analyzing the relations between the smallest and greatest
symbolic values of the loop iteration variables. It may however be the case that these symbolic
values are such that the loops are never executed (e.g. n < 0).
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Algorithm 1. Loop Converter
Input: For-loop F and conversion list = {}
Output: ABC-loop F ′ and conversion list
1: 〈ovar, oincr〉:= 〈outer iteration variable(F ), outer iteration increment(F )〉
2: 〈olbound, oubound〉:= 〈outer iteration lowerbound(F ), outer iteration upperbound(F )〉
3: nvar:= fresh variable()
4: F0:= loop body(F )

[
ovar �→ oincr · (nvar + olbound − 1

)]
5: conversion list:=conversion list ∪ {ovar = oincr · (nvar + olbound − 1

)}
6: if isloop(F0) then
7: F ′:= for-loop(nvar, 1,

⌊
oubound−olbound

oincr

⌋
+ 1, 1, Loop Converter(F0))

8: else
9: F ′:= for-loop(nvar, 1,

⌊
oubound−olbound

oincr

⌋
+ 1, 1, F0)

10: end if

In what follows, loops satisfying (1) will be called ABC-loops.

3.2 The Loop Converter

Converting loops into ABC-loops is done as presented in Algorithm 1. The algorithm
(i) converts loops into equivalent ones such that the smallest values of the loop iteration
variables are 1, and (ii) converts loops with arbitrary increments over the iteration vari-
ables into equivalent loops with increments of 1. The for-loop(v,e1,e2,e3,body) notation
used in Algorithm 1 is a short-hand notation for the loop:

for (v = e1; v ≤ e2; v = v + e3) do body end do.

In more detail, Algorithm 1 takes as input a nested for-loop F and an empty list
conversion list, and returns, whenever possible, an ABC-loop F ′ that is equivalent to
F . The conversion list is used to store the list of changes made by Algorithm 1 on the
iteration variables of F .

Lines 4-9 of Algorithm 1 are required to convert F into an equivalent loop whose
outermost loop has the following properties: it iterates over a new variable nvar instead
of the iteration variable ovar of the outermost loop of F , where nvar and ovar are
polynomially related; the smallest value of nvar is 1 (instead of the smallest value
olbound of ovar); nvar is increment by 1 (instead of the oincr increment value of
ovar); the greatest value of nvar is given by the largest integer not greater than the
rational expression oubound−olbound

oincr + 1, where oubound is the greatest value of ovar.
The appropriately modified4 loop body F0 of F is processed in the similar manner,
yielding finally the ABC-loop F ′ that is equivalent to F .

Example 1. Consider Figure 2(b). By applying Algorithm 1, the loop iteration variables
i1 and j1 are introduced with i = i1 − 1 and j = 2(j1 − 1) (lines 3-5 of Algorithm 1).
The smallest values of i1 and j1 are 1, their greatest values are respectively n + 1 and
)m

2 *+1, and i1 and j1 are incremented by 1 (lines 6-9 of Algorithm 1). The ABC-loop
format of Figure 2(b) is given in Figure 4(a).

4 The expression s[x �→ e] denotes the expression obtained from s by substituting each occur-
rence of the variable x by the expression e.
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for (i1 = 1; i1 ≤ n + 1; i1 = i1 + 1) do
for(j1 = 1; j1 ≤ �m

2
� + 1; j1 = j1 + 1) do

skip
end do

end do

z = 1
for (i1 = 1; i1 ≤ n + 1; i1 = i1 + 1) do

for (j1 = 1; j1 ≤ �m
2
� + 1; j1 = j1 + 1) do

z := z + 1
end do

end do
(a) (b)

Fig. 4. ABC-loop format of Figure2(b) and its instrumented version, where i = i1 − 1 and
j = 2(j1 − 1). Note that �m/2� ∈ Z.

Based on Algorithm 1 and keeping the notations of (1), we conclude that the general
shape of loops that can be converted into ABC-loops is:

for (i1 = l; i1 ≤ c; i1 = i1 + inc1) do
for (i2 = g1(i1); i2 ≤ f1(i1); i2 = i2 + inc2) do

. . .
for (id = gd−1(i1, . . . , id−1); id ≤ fd−1(i1, . . . , id−1); id = id + incd) do

skip
end do
. . .

end do
end do

(2)

where l, inc1, . . . , incd are integer-valued symbolic constants, and gk ∈ Z[i1, . . . , ik].

3.3 The Bound Computer

We assume that each program statement is annotated with the time units it needs to be
executed. For simplicity, we assume that an iteration of an unnested ABC-loop takes one
time unit, and all other instructions of the unnested loop need zero time (e.g. assignment
statements take zero time to be executed). That is we compute a bound on the total
number of loop iterations of an ABC-loop (1).

In our approach to bound computation, we instrument the innermost loop body of (1)
with a new variable that increases at every iteration of the program, and is initialized to
1 before entering the ABC-loop. We denote this variable by z. From (1), we thus obtain:

z = 1
for (i1 = 1; i1 ≤ c; i1 = i1 + 1) do

. . .
for (id = 1; id ≤ fd−1(i1, . . . , id−1); id = id + 1) do

z := z + 1
end do
. . .

end do

(3)

Example 2. The instrumented loop of Figure 4(a) is given in Figure 4(b).

Upper bounds on the value of z give upper bounds on the number of iterations of (3).
We are hence left with computing the value of z as a function, called the z-relation,
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Algorithm 2. Bound Computer
Input: ABC-loop F , initial value z0 of z
Output: z-relation zrel
1: inner:= loop body(F )
2: incr:= z reduce loop(inner)
3: 〈ovar, oubound〉:= 〈outer iteration variable(F ),outer iteration upperbound(F )〉
4: nvar:= fresh variable()
5: zi:=z0 + solve sum(nvar, 1, ovar − 1, incr

[
ovar �→ nvar

]
)

6: if isloop(inner) then
7: zrel:= z =Bound Computer(inner, zi)
8: else
9: zrel:=z = zi

10: end if

over i1, . . . , id. To this end, the value of z at an arbitrary iteration of the outermost loop
of (3) is first computed.

Computing the value of z after an arbitrary iteration of the outermost loop of (3).
Let us consider a more general loop than (3):

for (i1 = 1; i1 ≤ c; i1 = i1 + 1) do
for (i2 = 1; i2 ≤ f1(i1); i2 = i2 + 1) do

. . .
for (id = 1; id ≤ fd−1(i1, . . . , id−1); id = id + 1) do

z := z + g(id)
end do
. . .

end do
end do

(4)

where i1, . . . , id, c, f1, . . . , fd−1 are as in (1), and g ∈ Z[id]. In particular, if g = 1 then
(4) becomes (3).

Let s1, . . . , sl be nonnegative integers (l = 1, . . . , d) such that 1 ≤ s1 ≤ c, 1 ≤ s2 ≤
f1(i1), . . . , and 1 ≤ sl ≤ fl−1(i1, . . . , il−1). In the sequel we consider s1, . . . , sl arbi-
trary but fixed. We write x(l,‖s1,...,sl‖) to mean the value of a variable x ∈ {i1, . . . , id, z}
in (4) such that the kth loop of (4) is at its skth iteration (k = 1, . . . , l),

We are thus interested in deriving z(1,‖s1‖) for s1 ∈ {1, . . . , c}. We proceed as fol-
lows. For each loop of (4), starting from the innermost one, we (i) model the assignment
over z as a recurrence equation, (ii) deploy symbolic summation algorithms to compute
the closed form of z, and (iii) replace the loop by a single assignment over z expressing
the relation between the values of z before the first and after the last execution of the
loop. Steps (i)-(iii) are recursively applied until all loops of (4) are eliminated.

In more detail, z(1,‖s1‖) is derived as follows. We start with the innermost loop of
(4). The assignment over z is modeled by the recurrence equation:

z(d,‖s1,...,sd+1‖) = z(d,‖s1,...,sd‖) + g(i(d,‖s1,...,sd−1‖)
d ), (5)
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yielding:

z(d,‖s1,...,sd‖) = iniz +
sd∑

k=1

g(i(d,‖s1,...,k−1‖)
d ),

where iniz = z(d,‖s1,...,0‖) denotes the value of z before entering the innermost loop
of (4). The value of i

(d,‖s1,...,sd‖)
d is computed from the recurrence equation:

i
(d,‖s1,...,sd+1‖)
d = i

(d,‖s1,...,sd‖)
d + 1.

Namely, we have i
(d,‖s1,...,sd‖)
d = inid +

∑sd

k=1 1, where inid = 1 denotes the initial
value of id (i.e. before the first iteration of the innermost loop of (4)). Hence,

i
(d,‖s1,...,sd‖)
d = sd + 1. (6)

Note that (6) holds for each iteration variable, that is:

i
(l,‖s1,...,sl‖)
l = sl + 1

for every l ∈ {1, . . . , d}. For this reason, in what follows we write il instead of
i
(l,‖s1,...,sl‖)
l and use the relation il = sl + 1 to speak about the value of il at itera-

tion sl of the lth loop. We thus obtain:

z(d,‖s1,...,sd‖) = iniz +
sd∑

k=1

g(i(d,‖s1,...,k−1‖)
d ) = iniz +

id−1∑
k=1

g(k).

Since g ∈ Z[id], the closed form of
∑id−1

k=1 g(k) always exists [6] and can be computed
as a polynomial function over id (see Section 3.4).

Finally, we consider the last iteration sd = id − 1 = fd−1(i1, . . . , id−1) of the

innermost loop of (4), and write incrd =
∑fd−1(i1,...,id−1)

k=1 g(k). We make use of
incrd ∈ Z[i1, . . . , id−1] to “eliminate” the innermost loop of (4) and obtain:

for (i1 = 1; i1 ≤ c; i1 = i1 + 1) do
. . .
for (id−1 = 1; id−1 ≤ fd−1(i1, . . . , id−2); id−1 = id−1 + 1) do

z := z + incrd

end do
. . .

end do

(7)

Inner loops of (7) can be further eliminated by applying recursively the steps described
above, since closed forms of polynomial expressions over i1, . . . , id yield polynomial
expressions over i1, . . . , id whenever the summation variables are bounded by polyno-
mial expressions. As a result, the total number of increments over z in the s1th iteration
of the outermost loop of (4) is derived. Let us denote this number by incr1. Then:

z(1,‖s1‖) = z0 + incr1, where z0 = 1 is the value of z before (4).
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Example 3. Consider Figure 4(b). We aim at deriving z(1,‖s1‖), where 1 ≤ s1 ≤ n + 1
is arbitrary but fixed such that i1 = s1 + 1.

From the innermost loop of Figure 4(b), we have z(2,‖s1,s2+1‖) = z(2,‖s1,s2‖) + 1
for an arbitrary but fixed s2, where 1 ≤ s2 ≤ )m

2 * + 1 and j1 = s2 + 1. Hence,

z(2,‖s1,s2‖) = ini2 + j1 − 1,

where ini2 is the initial value of z before entering the innermost loop. Further, after
s2 = j1−1 = )m

2 *+1 iterations of the innermost loop, the total number of increments
over z is:

incr2 =
�m

2 �+1∑
k=1

1 = )m

2
* + 1.

The innermost loop of Figure 4(b) is next eliminated, yielding:

for (i1 = 1; i1 ≤ n + 1; i1 = i1 + 1) do z = z + )m

2
* + 1 end do

with the recurrence equation of z as:

z(1,‖s1‖+1) = z(1,‖s1‖) + )m

2
* + 1.

Solving this recurrence and using that z0 = 1 is the initial value of z before the outer-
most loop of Figure 4(b), we obtain:

z(1,‖s1‖) = 1 +
i1−1∑
k=1

(
)m

2
* + 1

)
= 1 + (i1 − 1)

(
)m

2
* + 1

)
.

Computing the z-relation among arbitrary values of z, i1, . . . , id. We are interested
in deriving the value of z(d,‖s1,...,sd‖), where ik = sk + 1 (k = 1, . . . , d), from which
the z-relation can be immediately constructed as z = z(d,‖s1,...,sd‖).

The value z(d,‖s1,...,sd‖) (and hence the z-relation) is inferred by Algorithm 2 as
follows.

(a) The value incr is computed such that z(1,‖s1‖) = z0+incr (line 2 of Algorithm 2);
(b) The outermost loop of (4) is omitted (line 1 of Algorithm 2), yielding:

for (i2 = 1; i2 ≤ f1(i1); i2 = i2 + 1) do
. . .
for (id = 1; id ≤ fd−1(i1, . . . , id−1); id = id + 1) do

z := z + g(id)
end do
. . .

end do

(8)

(c) The value of z at the s2th iteration of the outermost loop (8) is next computed,
where the initial value of z before (8) is considered to be z(1,‖s1‖) (line 7 of Algo-
rithm 2). As a result, z(2,‖s1,s2‖) in the loop (4) is obtained.
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(d) Steps (b)-(c) are recursively applied on (8) until no more loops are left and
z(d,‖s1,...,sd‖) is derived (lines 6-9 of Algorithm 2).

Example 4. Consider Figure 4(b). The outermost loop of Figure 4(b) is omitted (line 1
of Algorithm 2), yielding:

for (j1 = 1; j1 ≤ )m

2
* + 1; j1 = j1 + 1) do z = z + 1 end do (9)

The total number of increments incr2 = )m
2 * + 1 over z made by (9) is computed,

as presented in Example 3 (line 2 of Algorithm 2). The value zi = z(1,‖s1‖) of z at an
iteration s1 = i1 − 1 of the outermost loop of Figure 4(b) is further obtained (lines 3-5
of Algorithm 2), as:

zi = z0 +
i1−1∑

nvar=1

(
)m

2
* + 1

)
= 1 + (i1 − 1)

(
)m

2
* + 1

)
.

Next, Algorithm 2 is called on (9) with the initial value zi to compute the value of z
at an iteration s2 = j1 − 1 of (9) (line 7 of Algorithm 2). As (9) has no inner loops, we
have incr = 1 and z′i = zi +

∑j1−1
nvar=1 1, yielding (lines 2-5 of Algorithm 2):

z(2,‖s1,s2‖) = z′i = (i1 − 1)
(
)m

2
* + 1

)
+ j1.

The z-relation of Figure 4(b) is finally derived (line 9 of Algorithm 2), as:

z = (i1 − 1)
(
)m

2
* + 1

)
+ j1.

To obtain the z-relation of Figure 2(b), we make use of i = i1 − 1 and j = 2(j1 − 1)
and have:

z = i
(⌊m

2

⌋
+ 1

)
+

⌊
j

2

⌋
+ 1.

Replacing i and j respectively with n and m in the z-relation, the upper bound on loop
iteration counts of Figure 2(b) is:

(n + 1)
( ⌊m

2

⌋
+ 1

)
.

3.4 Symbolic Solver

Simplifying arithmetical expressions and computing closed forms of symbolic sums is
performed by the symbolic solver engine of ABC. Our symbolic solver supports the
closed form computation of the following sums:

e2∑
x=e1

c1 · nx
1 · xd1 + · · · + cr · nx

r · xdr

where e1, e2 are integer-valued symbolic constants, ni, di are natural numbers, and ci

are rational numbers. Closed forms of such sums always exists [6]. For computing the
closed forms of these sums we rely on a simplified version of the Gosper algorithm [6].
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for (i = 1; i ≤ n; i = i + 1)
for (j = 0; j ≤ n; j = j + i)
skip
end do

end do

for (i1 = 1; i1 ≤ n; i1 = i1 + 1)
for (j1 = 1; j1 ≤ n1; j1 = j1 + 1)
skip

end do
end do

z := 1
for (i1 = 1; i1 ≤ n; i1 = i1 + 1)
for (j1 = 1; j1 ≤ n1; j1 = j1 + 1)
z := z + 1

end do
end do

(a) Not an ABC-loop (b) Converted loop by ABC with (c) Instrumented loop by ABC
n1 = � n

i1
� + 1, and i = i1 , j = i · j1

Fig. 5. ABC on a non-ABC-loop

We have also instrumented our symbolic solver to handle symbolic sums whose
closed forms involve harmonic numbers [7], as discussed in Section 3.5.

3.5 Beyond ABC-Loops

Our approach to bound computation implemented in ABC is complete for ABC-loops
and for loops satisfying (2). That is, it always returns the z-relation and loop iteration
bound of an ABC-loop.

It is worth to be mentioned that some loops violating (2) can still be successfully
analyzed by ABC.

Consider Figure 5(a) violating (2), as updates over j depend on i. However, using
Algorithm 1 we derive the loop given in Figure 5(b), yielding finally the “instrumented”
loop from Figure 5(c). Further, by applying Algorithm 2, we are left with finding the

closed form of
∑i1−1

k=1

⌊
n
i1

⌋
. This sum cannot be further simplified [7]. However, we

can compute an upper-bound on its closed form using the relation:

i1−1∑
k=1

⌊
n

i1

⌋
≤

⌊
i1−1∑
k=1

n

i1

⌋
=

⌊
n

i1−1∑
k=1

1
i1

⌋
.

Note that
∑i1−1

k=1
1
i1

is the harmonic number H(i1−1) arising from the truncation of
the harmonic series [7]. We make use of H(i1 − 1) and derive an upper bound on the
loop iteration count of Figure 5(a) as being a harmonic expression. To this end, we have
extended our symbolic solver with some simple identities over harmonic numbers. To
the best of our knowledge, inferring a tight loop bound for Figure 5(a) is not yet possible
by other works.

ABC can thus be successfully applied to loops for which symbolic computation
methods can be deployed to compute or approximate closed forms of loop variables.
Such cases may arise from nested loops whose inner loop counters are updated by non-
constant polynomial functions in the outer loop counters (i.e. yielding iteration bounds
as harmonic numbers).

4 Experiments

We applied ABC to a large number of examples, including benchmark programs from
recent work on timing analysis [21] as well as from the JAMA package [13].
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Table 1. Experimental results obtained by ABC on benchmark examples

Loop z-relation Iteration bound Time [s]

for (i = a; i ≤ b; i = i + 1)
skip
end do

z = 1 + i − a 1 + b − a 0.172

for (i = 0; i ≤ n − 1; i = i + 1)
for (j = 0; j ≤ i; j = j + 1)
skip

end do
end do

z = 1 + j + i+i2
2

n+n2
2

0.219

for (i = 1; i ≤ m; i = i + 1)
for (j = 1; j ≤ i; j = j + 1)
for (k = i + 1; k ≤ m; k = k + 1)
for (l = 1; l ≤ k; l = l + 1)
skip

end do
end do

end do
end do

z =

i2m2−im2+i2m−im
4 +

i2−i4
8 + i3−i

12 +

jm+jm2+k2

2 −
m2+ji2+ji+m+k

2 + 1

3m4+2m3−3m2−2m
24

1.281

for (i = 0; i ≤ ( n∗n∗n
2 − 1); i = i + 1)

for (j = 0; j ≤ n − 1; j = j + 1)
for (k = 0; k ≤ j − 1; k = k + 1)
skip
end do

end do
end do

z =

1 + k + in2−in+j2−j
2

n5−n4
4

0.234

for (i = 1; i ≤ n; i = i + 1)
for (j = 1; j ≤ i; j = j + 1)
skip

end do
end do

z = i2−i
2 + j n2+n

2
0.203

for (i = 1; i ≤ n; i = i + 1)
for (j = i; j ≤ n; j = j + 1)
skip

end do
end do

z =

(i − 1)n + j + i−i2
2

n2+n
2

0.203

for (j = 1; i ≤ m; j = j + 1)
for (i = 1; i ≤ n; i = j + 1)
skip

end do
end do

z = i + (j − 1)n nm 0.187

for (i = n; i ≥ 1; i = i − 1)
for (j = m; j ≥ 1; j = j − 1)
skip

end do
end do

z = (n−i+1)m−j+1 nm 0.188

Tables 1 and 2 summarize some of our results obtained on a machine with a 2.8 GHz
Intel Core 2 Duo processor and 2GB of RAM.

The first four programs of Table 1 are examples taken from [21], whereas the last
four programs of Table 1 are loops taken from the JAMA package [13]. The examples
of Table 2 are our own benchmark examples, and illustrate the power of ABC in han-
dling nested loops whose inner loop counters polynomially depend on its outer loop
counters. The difference between the first four programs of Table 2 is given by the
mixed incremental/decremental updates and smallest/greatest values of the loop coun-
ters. Note that the last three programs of Table 2 yield polynomial loop bounds as sums
of multivariate monomials.



116 R. Blanc et al.

Table 2. Further experimental results obtained by ABC

Loop z-relation Iteration bound Time [s]

for (i = 1; i ≤ n; i = i + 1)
for (j = 1; j ≤ m; j = j + 1)
skip

end do
end do

z = j + (i − 1)m nm 0.187

for (i = n; i ≥ 1; i = i − 1)
for (j = 1; j ≤ m; j = j + 1)
skip

end do
end do

z = j + (n − i)m nm 0.187

for (i = n; i ≥ 1; i = i − 1)
for (j = m; j ≥ 1; j = j − 1)
skip

end do
end do

z = 1 − j + (n − i + 1)m nm 0.187

for (i = n; i ≥ 1; i = i − 1)
for (j = m; j ≥ m; j = j − 1)
skip

end do
end do

z = 1 − i − j + m + n n 0.203

for (i = a; i ≤ b; i = i + 1)
for (j = c; j ≤ d; j = j + 1)
for (k = i − j; k ≤ i + j; k = k + 1)
skip

end do
end do
end do

z =
1 − 2ad + 2id−
ad2 + id2 + ac2−
ic2 + j2 − c2+
j − a + k

(c2 − (d + 1)2)(a − b − 1) 0.328

for (i = n; i ≥ 1; i = i − 1)
for (j = 1; j ≤ m; j = j + 1)
for (k = i; k ≤ i + j; k = k + 1)
for (l = 1; l ≤ k; l = l + 1)
skip
end do

end do
end do
end do

z =

−m2+3m+2
4 i2+

( j2+j−1
2 − 2m3+9m2+13

12 )i+
k2−k

2 + j3−j
6 + 1+

2m2+3mn+9m+9n+13
12 mn

2m2+3mn+9m+9n+13
12 mn 0.625

for (i = n; i ≥ 1; i = i − 1)
for (j = 1; j ≤ m; j = j + 1)
for (k = i; k ≤ p; k = k + 1)
for (l = q; l ≤ j; l = l − 1)
skip
end do

end do
end do
end do

z =
3j−ij−j2+ij2

2 + k − l − p+
i2m+im2−i2m2−im

4 +
jq − jk + kq − pq+
mn−m2n−mn2+m2n2

4 +
3jp−j2p−imp+im2p

2 −
ijq + jpq+
mnp−m2np−imq

2 − impq+
im2q+mnq−mn2q

2 + mnpq

m2n2−mn2−m2n+mn
4 +

mnp−m2np+mnq−mn2q
2 +

mnpq

0.375

The first column of Table 1 (respectively of Table 2) presents the loop being fed
into ABC, the second column shows the z-relation derived by ABC, whereas the third
one presents the number of loop iterations computed by ABC. The forth column gives
the time (in seconds) needed by ABC to infer bounds on loop iteration counts 5. Note
that iteration bounds are integer-valued polynomial expressions (e.g. n2 +n is divisible
by 2).

5 Note, that the timings given in Tables 1 and 2 include also the required time to launch the JVM.
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5 Conclusions

We describe the software tool ABC for automatically deriving tight symbolic upper
bounds on loop iteration counts of a special class of loops, called the ABC-loops. The
system was successfully tried on a large number of examples. The derived symbolic
bounds express non-trivial (polynomial and harmonic) relations over loop variables.

Future work includes extending ABC to handle more complex sums, such as e.g.
fractions of polynomials [17], including more sophisticated control-flow refinement
techniques, such as [8], into ABC, and improving the loop converter of ABC for han-
dling more complex loops.
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Abstract. We investigate the complexity of preorder checking when the specifi-
cation is a flat finite-state system whereas the implementation is either a non-flat
finite-state system or a standard timed automaton. In both cases, we show that
simulation checking is EXPTIME-hard, and for the case of a non-flat implemen-
tation, the result holds even if there is no synchronization between the parallel
components and their alphabets of actions are pairwise disjoint. Moreover, we
show that the considered problems become PSPACE-complete when the specifi-
cation is assumed to be deterministic. Additionally, we establish that comparing
a synchronous non-flat system with no hiding and a flat system is PSPACE-hard
for any relation between trace containment and bisimulation equivalence.

1 Introduction

One popular approach to formal verification of reactive systems is equivalence/preorder
checking between a specification and an implementation which formally describe at a
different level of abstraction a given system. This scenario may arise either because the
design is being carried out in an incremental fashion, or because the system is too complex
and an abstraction needs to be used to verify its properties. In this context, the verification
problem is mathematically formulated as a question whether a behavioral equivalence
or preorder holds between the labeled state-transition graphs of the specification and the
implementation. Decidability and complexity issues for equivalence/preorder checking
have been addressed for various computational models of reactive systems (see [10] for
a survey of the existing results for infinite-state systems). Moreover, many notions of
equivalences or preorders have been investigated, which turn out to be useful for specific
aims. Van Glabbeek [21] classified such equivalences/preorders in a hierarchy, where
bisimulation equivalence is the finest and trace containment is the coarsest.

Non-flat finite-state systems. Finite-state systems are a natural and a primary target
in formal verification. When the systems are given as explicit (flat) state-transition
graphs, then many relevant verification problems are tractable. For example, simulation-
preorder checking and bisimulation-equivalence checking are PTIME-complete [2,15].
However, in a concurrent setting, the system under consideration is typically the parallel
composition of many components (we call such systems non-flat systems). As a con-
sequence, the size of the global state-transition graph is usually exponential in the size
of the system presentation. This phenomenon is known as ‘state explosion’, and coping
with this problem is one of the most important issues in computer-aided verification.
From a theoretical point of view, the goal is to understand better which verification
problems have to face state explosion in an intrinsic way and which special manner of
combining subsystems could avoid state explosion.

E.M. Clarke and A. Voronkov (Eds.): LPAR-16, LNAI 6355, pp. 119–135, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Different models of non-flat systems have been investigated. The simplest one is the
fully asynchronous model (synchronization-free non-flat systems), where at each step
exactly one component performs a transition [20,13]. For more complex models, the
components can communicate by shared actions (or by access to shared variables), and,
additionally, actions may be ‘hidden’ (i.e., replaced by some special action) after the par-
allel composition [7,12,14]. For synchronization-free non-flat systems, some problems
in equivalence/preorder checking are still tractable. In particular, Groote and Moller [5]
have shown that if the alphabets of actions of the components are assumed to be pair-
wise disjoint, then checking bisimulation equivalence (and other equivalences which
satisfy a certain set of axioms) is PTIME-complete. Moreover, for these systems and
also for basic synchronous non-flat systems with no hiding (where the components are
forced to synchronize on shared actions), checking trace containment/equivalence has
the same complexity as for flat systems, i.e. it is PSPACE-complete [17,20]. Simulation-
preoder checking and bisimulation-equivalence checking for synchronous non-flat sys-
tems (with or without hiding) are hard, since they are EXPTIME-complete [9,4,11,16].
Checking whether a synchronous non-flat system (where the communication is al-
lowed by access to shared variables) is simulated by a flat system remains EXPTIME-
hard [4]. Moreover, Rabinovich [14] has shown that preorder/equivalence checking
between a synchronous non-flat system with hiding and a flat system is PSPACE-hard for
any relation between trace containment and bisimulation. More recently, Muscholl and
Walukiewicz [13] have obtained a surprising result: checking whether a deterministic
flat system is simulated by a synchronization-free non-flat system whose components
are deterministic remains EXPTIME-hard. The exact complexity for the converse direc-
tion, i.e., whether a synchronization-free non-flat system is simulated by a flat system
is open.

Timed automata. Timed automata (TA) introduced by Alur and Dill [1] are a widely
accepted formalism to model the behavior of real-time systems. Equivalence/preorder
checking for this infinite-state computational model has been addressed in many papers.
Timed language containment/equivalence is undecidable [1]. Timed bisimulation and
timed simulation have been shown to be decidable and in EXPTIME in [19] and [18],
respectively; matching lower bounds have been given in [11]. Time-abstract simulation
and time-abstract bisimulation have been considered in [6] and are in EXPTIME.

Our contribution. We investigate the complexity of preorder checking when the speci-
fication is a flat system and the implementation is either a timed automaton or a non-flat
system. Note that the considered setting is relevant since the specification is more ab-
stract than the implementation, and, thus, it is usually described by a simple formalism.
The results obtained are as follows:

– Checking whether a timed automaton is time-abstract simulated by a flat system is
EXPTIME-hard.

– Checking whether a synchronization-free non-flat system is simulated by a flat sys-
tem is EXPTIME-hard even if the components of the implementation are assumed
to be deterministic and with pairwise disjoint alphabets of actions.

– The two problems above are PSPACE-hard if the specification is deterministic.
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– Comparing a synchronous non-flat system with no hiding and a flat system is
PSPACE-hard for any relation lying in between trace containment and bisimilarity.

Our first result in a sense improves the EXPTIME-hardness result for timed simulation
between timed automata, by showing that checking timed-abstract simulation remains
EXPTIME-hard even if one of the compared TA is replaced by a flat (finite-state) system.
Regarding our second and third results, they imply that refinement checking of non-flat
systems is intractable even for the simplest model (action-based parallel compositions
of deterministic components with pairwise disjoint alphabets) and even if the specifi-
cation is flat (note that for deterministic specifications, simulation preorder and trace
containment are equivalent notions). Finally, our fourth result significantly strengthens
the PSPACE-hardness result of Rabinovich [14] in which hiding is involved.

It is interesting to observe that our second result is surprising for the following rea-
sons: if the alphabets of the components are assumed to be pairwise disjoint, then bisim-
ulation checking between non-flat systems is in PTIME [5], and simulation checking
between a flat implementation and a non-flat specification (i.e., whether a flat system is
simulated by a non-flat system) is in PTIME as well [13].1

Note that the lower bounds for the first three problems are optimal since they match
well-known upper bounds in the literature (see Section 2).

Due to lack of space, for the omitted details we refer the interested reader to a forth-
coming extended version of this paper.

2 Preliminaries

Labeled transition systems and simulation preorder. A labeled transition system
(LTS) over a (possibly infinite) set of actions Act is a tuple G = 〈Act,S,s0,Δ〉, where S
is a (possibly infinite) set of states, s0 ∈ S is a designated initial state, and Δ⊆ S×Act×S
is the transition relation. A transition (s,a,s′) ∈ Δ is denoted by s

a−→ s′. We say that G is
deterministic if for all s∈ S and a∈Act, there is at most one transition of the form s

a−→ s′

for some state s′. The set of traces of G , Tr(G), is the set of finite words a1, . . . ,an over

Act such that there is a path in G from the initial state of the form s0
a1−→ s1 . . . sn−1

an−→ sn.
An Act-labeled tree is an unordered finite or infinite tree whose edges are labeled by

actions in Act. Note that an Act-labeled tree is a particular LTS over Act whose initial
state is the root. For a LTS G over Act and a state s of G , the unwinding of G from s,
written Unw(G ,s), is the Act-labeled tree defined in the usual way.

Given two LTS G1 = 〈Act1,S1,s0
1,Δ1〉 and G2 = 〈Act2,S2,s0

2,Δ2〉, a simulation from

G1 to G2 is a relation R ⊆ S1×S2 satisfying the following for all (s1,s2)∈ R : if s1
a−→ s′1

∈ Δ1 for some state s′1 ∈ S1 and a ∈ Act1, then there is some state s′2 ∈ S2 so that s2
a−→ s′2

∈ Δ2 and (s′1,s
′
2) ∈ R . If, additionally, the inverse of R is a simulation from G2 to G1,

then we say that R is a bisimulation from G1 to G2. Given states s1 ∈ S1 and s2 ∈ S2,
we say that s1 is simulated by s2 (resp., s1 and s2 are bisimilar) if there is a simulation

1 In [13], membership in PTIME is shown for the case in which the components of the speci-
fication and the implementations are assumed to be deterministic. However, the proof can be
easily extended to the case in which this requirement is relaxed.
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(resp., bisimulation) R from G1 to G2 such that (s1,s2) ∈ R . The simulation preorder
& (resp., the bisimulation equivalence ∼bis) is the binary relation over LTS defined as:
G1 & G2 (resp., G1 ∼bis G2) iff the initial state s0

1 of G1 is simulated by the initial state
s0

2 of G2 (resp., s0
1 and s0

2 are bisimilar). Moreover, the trace containment preorder �tr

is defined as: G1 �tr G2 iff Tr(G1) ⊆ Tr(G2). Note that for each � ∈ {∼bis,&,�tr},
G1 � G2 iff Unw(G1,s0

1)�Unw(G2,s0
2).

Flat and Non-flat systems. A flat system (FS) is an LTS A = 〈Act,Q,q0,Δ〉 such that
Act and the set of states Q are both finite. The size of A is |A | = |Q|+ |Δ|.

A synchronization-free Non-Flat System (NFS) is a tuple S = 〈A1, . . . ,Ak〉SF such
that each component Ai = 〈Acti,Qi,q0

i ,Δi〉 is a FS. S induces the FS [[S ]] given by

[[S ]] = 〈
i=k⋃
i=1

Acti,Q1 × . . .×Qk,(q0
1, . . . ,q

0
k),ΔSF〉

where ΔSF is defined as follows: ((q1, . . . ,qk),a,(q′1, . . . ,q
′
k)) ∈ ΔSF iff for some i,

(qi,a,q′i) ∈ Δi and for all j �= i, we have q′j = q j.
We also consider synchronous NFS S = 〈A1, . . . ,Ak〉, where the components Ai =

〈Acti,Qi,q0
i ,Δi〉 communicate by synchronization on common actions. Formally, S in-

duces the FS given by

[[S ]] = 〈
i=k⋃
i=1

Acti,Q1 × . . .×Qk,(q0
1, . . . ,q

0
k),Δ〉

where Δ is defined as: ((q1, . . . ,qk),a,(q′1, . . . ,q
′
k))∈Δ iff for each i, (qi,a,q′i)∈Δi if a∈

Acti, and q′i = qi otherwise. Note that all the components Ai with a ∈ Acti must perform
a transition labeled by a. Moreover, note that if distinct components have no actions in
common, then [[〈A1, . . . ,Ak〉]] = [[〈A1, . . . ,Ak〉SF ]]. The size of S is |S | = ∑i=n

i=1 |Ai|.

Timed automata. Let R≥0 be the set of non-negative reals. Fix a finite set of clock
variables X . The set C(X) of clock constraints (over X) is the set of boolean combina-
tions of formulas of the form x ≤ c or x < c, where x ∈ X , and c is a natural number.
A (clock) valuation (over X) is a function v : X → R≥0 that maps every clock to a
non-negative real number. Whether a valuation v satisfies a clock constraint g ∈ C(X),
denoted v |= g, is defined in a natural way. For t ∈ R≥0, the valuation v + t is defined
as (v + t)(x) = v(x)+ t for all x ∈ X . For Y ⊆ X , the valuation v[Y := 0] is defined as
(v[Y := 0])(x) = 0 if x ∈ Y and (v[Y := 0])(x) = v(x) otherwise.

Definition 1. [1] A timed automaton (TA) over a finite set of actions Act is a tuple
T = 〈Act,X ,Q,q0,ρ〉, where Q is a finite set of locations, q0 ∈ Q is the initial location,
and ρ ⊆ Q×Act×C(X)×2X ×Q is a finite transition relation.

The TA T induces an infinite-state LTS [[T ]] = 〈R≥0 × Act,S,s0,Δ〉 over R≥0 × Act,
where S is the set of pairs (q,v) such that q ∈ Q and v is a clock valuation, s0 = (q0,

−→
0 )

(
−→
0 assigns to each clock value 0), and Δ is defined as follows: (q,v)

(t,a)−−→ (q′,v′) ∈ Δ
iff there is a transition (q,a,g,Y,q′) ∈ ρ such that v + t |= g and v′ = (v + t)[Y := 0].
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The abstract LTS associated with T is [[T ]]abs = 〈Act,S,s0,Δabs〉, where (q,v) a−→
(q′,v′) ∈ Δabs iff (q,v)

(t,a)−−→ (q′,v′) ∈ Δ for some t ≥ 0. We say that T is strongly timed-
deterministic if [[T ]]abs is deterministic and for each (q,v) a−→ (q′,v′) ∈ Δabs, there is

exactly one timestamp t such that (q,v)
(t,a)−−→ (q′,v′) ∈ Δ.

Investigated problems. We consider the following decision problems:

Problem 1: given a TA T and a FS B , does [[T ]]abs & B hold?
Problem 2: given a synchronization-free NFS S and a FS B , does [[S ]] & B hold?
Problem 3(�): given a synchronous NFS S and a FS B , does [[S ]]� B hold?

where � is a fixed binary relation on LTS. We also consider the deterministic versions
of Problems 1 and 2, where the FS B above is assumed to be deterministic.

Theorem 1. Problems 1 and 2 are in EXPTIME, while their deterministic versions are
in PSPACE.

Proof. Membership in EXPTIME for Problems 1 and 2 directly follows from the fol-
lowing:

Fact 1 [2]: given two FS A1 and A2, checking whether A1 & A2 is in PTIME.
Fact 2: for a NFS S , the size of the FS [[S ]] is singly exponential in the size of S .
Fact 3 [6]: given two TA T1 and T2, checking whether [[T1]]abs & [[T2]]abs is in EXPTIME.

Membership in PSPACE for the deterministic versions of Problems 1 and 2 directly
follows from Fact 2 and the following:
Fact 4: for two LTS G1 and G2 such that G2 is deterministic, G1 & G2 iff G1 �tr G2.
Fact 5 [1]: given a TA T , one can construct a FS AT (region automaton) of size singly
exponential in the size of T such that Tr(AT ) = Tr([[T ]]abs).
Fact 6: given a deterministic FS A over Act, one can trivially construct in linear-time a
standard finite-state automaton which accepts all and only the words in Act∗ \Tr(A).
Fact 7 [8]: checking emptiness of the intersection of the languages accepted by two
(nondeterministic) finite-state automata is in NLOGSPACE.

In the rest of this paper, we provide lower bounds for Problems 1 and 2 (and their
deterministic versions) which match the upper bounds of Theorem 1. Moreover, we
show that Problem 3(�) is PSPACE-hard for any binary relation � lying in between
trace containment and bisimulation equivalence.

3 EXPTIME-Hardness of Problems 1 and 2

In this section, we show that Problems 1 and 2 are both EXPTIME-hard by polynomial-
time reductions from the acceptance problem for linearly-bounded alternating Turing
Machines (TM) with a binary branching degree, which is EXPTIME-complete [3].

In the rest of this section, we fix such a TM machine M = 〈A,Q = Q∀ ∪ Q∃ ∪
{qacc,qre j},q0,δ,{qacc}〉, where A is the input alphabet, Q∃ (resp., Q∀) is the set of
existential (resp., universal) states, q0 is the initial state, qacc /∈ Q∀∪Q∃ is the (terminal)
accepting state, qre j /∈ Q∀ ∪Q∃ is the (terminal) rejecting state, and δ : (Q∀ ∪Q∃)×A →
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(Q × A × {+1,−1})× (Q × A × {+1,−1}) is the transition function. In each non-
terminal step (i.e., the current state is in Q∀ ∪Q∃), M overwrites the tape cell being
scanned, and the tape head moves one position to the left (−1) or right (+1). Moreover,
we fix an input α ∈ A∗ and consider the parameter n = |α|.

Since M is linearly bounded, w.l.o.g. we assume that M uses exactly n tape cells
when started on the input α. Hence, a TM configuration (of M over α) is a word C =
β1,(a,q),β2 ∈ A∗ · (A×Q) ·A∗ of length exactly n denoting that the tape content is
β1,a,β2, the current state is q, and the tape head is at position |β1|+ 1. The initial
configuration Cα is given by (α(1),q0),α(2), . . . ,α(n). Moreover, w.l.o.g. we assume
that when started on Cα, no matter what are the universal and existential choices, M
always halts by reaching a terminal configuration C, i.e. such that the associated state,
denoted by q(C), is in {qacc,qre j} (this assumption is standard, see [3]).

It is convenient to define the notion of acceptance of M as follows. For each q ∈ Q,
define Val(q) = 1 if q = qacc, and Val(q) = 0 otherwise. A (full) pseudo-computation
tree T of M from a TM configuration C is a binary tree whose nodes are labeled by
TM configurations and such that the root is labeled by C, the internal nodes have two
children, and the leaves are labeled by terminal configurations. If T is finite, then its
boolean value Val(T ) ∈ {0,1} is defined as follows. If T consists just of the root, then
Val(T ) = Val(q(C)). Otherwise, let TL and TR be the trees rooted at the children of the
root of T . Then, Val(T ) is Val(TL) ∨ Val(TR) if q(C) ∈ Q∃, and Val(TL) ∧ Val(TR)
otherwise. The tree T leads to acceptance if Val(T ) = 1. A (full) computation tree is a
pseudo-computation tree which is faithful to the evolution of M . M accepts α iff the
computation tree of M over Cα, which by our assumption is finite, leads to acceptance.

In the rest of this section, we show that it is possible to construct in polynomial
time (in the sizes of the fixed TM M and input α) an instance I of Problem 1 (resp.,
Problem 2) such that M accepts α iff the instance I has a positive answer.

Preliminary step: encoding of acceptance by simulation. Before illustrating the poly-
nomial reductions to Problems 1 and 2 (in Subsections 3.1 and 3.2, respectively), we
consider a preliminary step in which we define for a given finite set of actions Act and a
given encoding of the TM configurations by words over Act, two Act-labeled trees ETCα
and VTq(Cα),1 such that M accepts the fixed input α iff the root of ETCα is simulated by
the root of VTq(Cα),1. The tree ETCα is finite and deterministic, and it is a natural encod-
ing of the computation tree of M over Cα, while the tree V Tq(Cα),1 is infinite and non-
deterministic, and encodes in a suitable way all the possible finite pseudo-computation
trees of M which lead to acceptance. The two encodings ensure that the root of ETCα
is simulated by the root of V Tq(Cα),1 iff ETCα is ‘contained’ in VTq(Cα),1, i.e. the full
computation tree of M over α leads to acceptance. Now, we define these trees.

Assumptions: we assume that Act ⊇ Q∪ (Q×{0,1})∪{L,R} and each TM configura-
tion C is encoded by a finite word over Act, denoted by code(C). We denote by Codes
the finite set of these codes, which are assumed to have the same length. The precise
definition of Act and Codes will depend on the specific problem we consider (either
Problem 1 or Problem 2).

For each code ∈ Codes, let Tcode be the finite Act-labeled tree, which is a chain and
whose unique maximal path from the root is labeled by code. For a non-terminal
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configuration C = β1,(a,q),β2 (i.e., such that q ∈ Q∀ ∪Q∃), succL(C) (resp., succR(C))
denotes the TM successor of C obtained by choosing the left (resp., right) triple in
δ(q,a). A good configuration is a configuration reachable from Cα.

Definition 2. [Emulation trees] For each good TM configuration C, the finite determin-
istic Act-labeled emulation tree of M from C, denoted by ETC, is inductively defined
as follows. The tree ETC is obtained from Tcode(C) by adding an edge from the leaf xm of
Tcode(C) (main node of level 0) to a new node xc (choice node of level 0) such that:

– C is terminal: xc is a leaf and the edge from xm to xc is labeled by (q(C),Val(q(C))).
– C is not terminal: let CL = succL(C) and CR = succR(C). Then, xc has two children

xL and xR so that the subtree rooted at xL (resp., xR) is isomorphic to ETCL (resp.,
ETCR). The edge from the main node xm to the choice node xc is labeled by q(C),
and the edge from xc to xL (resp., to xR) is labeled by L (resp., R).

The structure of the emulation trees ETC is depicted in Figure 1. The boolean value
Val(ETC) of ETC is the boolean value of the computation tree of M from C.

Remark 1. M accepts α iff Val(ETCα) = 1.
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Fig. 1. Structure of the Act-labeled emulation tree ETC for a good TM configuration C

Let TCodes be the tree encoding of Codes, i.e. the unique deterministic finite Act-labeled
tree such that the set of sequences of edge-labels associated with all maximal paths from
the root is exactly Codes. For all q ∈ Q and boolean value b ∈ {0,1}, let Choicesq,b be
the non-empty finite set of pairs 〈(q1,b1),(q2,b2)〉 such that q1,q2 ∈ Q, b1,b2 ∈ {0,1},
and b1 ∨ b2 = b if q is an existential state, and b1 ∧ b2 = b otherwise.

Definition 3. [Valuation trees] For all q ∈ Q and b ∈ {0,1}, the Act-labeled (q,b)-
valuation tree of M , denoted by VTq,b, is the Act-labeled infinite tree satisfying the
following. VTq,b is obtained from TCodes by adding for each leaf ym (main node of level
0) of TCodes exactly |Choicesq,b| edges from ym labeled by q and one edge from ym to
a leaf node labeled by (q,b). Moreover, for each 〈(qL,bL),(qR,bR)〉 ∈ Choicesq,b, one
of these new edges labeled by q leads to a node yc (choice node of level 0) so that: (1)
yc has two children yL and yR, (2) the edge from yc to yL (resp., to yR) is labeled by L
(resp., R), and (3) the subtree rooted at yL (resp., yR) is isomorphic to VTqL,bL (resp.,
VTqR,bR). Note that the subtrees rooted at the main nodes of level 0 are isomorphic. The
structure of VTq,b is depicted in Figure 2.
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Fig. 2. Structure of the infinite Act-labeled valuation tree V Tq,b

Lemma 1. Fix a good TM configuration C, a state q∈ Q, and b∈ {0,1}. Then, the root
of ETC is simulated by the root of VTq,b iff q = q(C) and b = Val(ETC).

Lemma 1 can be easily proved by structural induction over the (finite) tree ETC. By
Remark 1 and Lemma 1, we obtain the following result.

Lemma 2. M accepts α iff the root of ETCα is simulated by the root of VTq(Cα),1.

3.1 EXPTIME-Hardness of Problem 1

In the case of Problem 1, the set Act of actions is given by

Act = Q∪ (Q×{0,1})∪{L,R}∪A∪ (A×Q)∪{λ0,λ1}

The code of each TM configuration C = C(1), . . . ,C(n) is the word over Act of length
3n defined as:

code(C) = λ0,C(1),λ1, . . . ,λ0,C(n),λ1

Note that each symbol u ∈ A∪ (A×Q) is encoded by the word λ0,u,λ1. Let K be the
size of A∪ (A×Q). We fix an ordering {a1, . . . ,aK} of the elements in A∪ (A×Q) and
we associate to each ai the timestamp τ(ai) given by i.

We construct a strongly timed-deterministic TA Tem over Act and a nondeterministic
FS Aval over Act of sizes polynomial in the sizes of the fixed TM M and input α so
that: the unwinding of [[Tem]]abs from its initial state is the emulation tree ETCα of Def-
inition 2, and the unwinding of Aval from its initial state is the valuation tree V Tq(Cα),1
of Definition 3. By Lemma 2 it follows that M accepts α iff [[Tem]]abs & Aval . Hence,
EXPTIME-hardness of Problem 1 follows.

Theorem 2. Given a TA T and a nondeterministic FS A , checking whether [[T ]]abs &A
is EXPTIME-hard, even if the TA T is assumed to be strongly timed-deterministic.

In the rest of this subsection, we illustrate the construction of Tem (the construction of
Aval is an easy task). Note that for a TM configuration C = C(1), . . . ,C(n), the ‘value’
ui of the i-th symbol of the left (resp., right) successor of C is completely determined
by the values C(i−1), C(i) and C(i+1) (taking C(i+1) for i = n and C(i−1) for i = 1



Hardness of Preorder Checking for Basic Formalisms 127

to be some special symbol, say ⊥). We denote by nextL(C(i− 1),C(i),C(i + 1) (resp.,
nextR(C(i − 1),C(i),C(i + 1)) our expectation for ui (these functions can be trivially
obtained from the transition function δ of the fixed TM M ).

Tem uses n + 1 clocks x0,x1, . . . ,xn in order to ensure a correct emulation of the
evolution of M . Clock x0 is reset on generating the special action λ1 (and only in this
circumstance). On generating the special action λ0, we require (x0 = 0) to hold, on
generating u ∈ A∪ (A×Q), we require (x0 = τ(u)) to hold, and on generating λ1, we
require (x0 = K) to hold. This ensures that the durations of the consecutive three steps
at which the code λ0,u,λ1 of u ∈ A∪ (A×Q) is generated are 0, τ(u), and K − τ(u),
respectively. Hence, the overall duration of these steps is exactly K (independent on
the specific action u ∈ A∪ (A×Q)). Moreover, the overall duration of the sequence of
steps at which a code code(C) is generated is exactly nK. Furthermore, whenever an
action u ∈ A∪ (A×Q) is generated from a location associated with the i-th symbol of
a TM configuration C, clock xi is reset (and only in this circumstance). This ensures
that when the special action λ0, associated with the i-th symbol of the next generated
TM configuration Cdir with dir ∈ {L,R}, has to be generated, the following holds: the
value of clock xi is exactly nK− τ(C(i)) and (assuming i < n) the value of clock xi+1 is
exactly (n−1)K−τ(C(i+1)). Thus, Tem will time-deterministically move (by taking a
transition whose action is λ0 and whose clock constraint is x0 = 0 ∧ xi = nK−τ(C(i)) ∧
xi+1 = (n − 1)K − τ(C(i + 1)) to a location of the form p = (i,C(i − 1),C(i),C(i +
1),dir, . . .), where the ‘value’ C(i− 1) is ‘transmitted’ from the previous location. At
this point, Tem has all the information (C(i − 1),C(i),C(i + 1), and dir ∈ {L,R}) to
determine the i-th symbol of Cdir. Thus, there is exactly one transition from location p
of the form (p,u,x0 = τ(u),{xi}, p′), where u = nextdir(C(i−1),C(i),C(i+ 1)).

3.2 EXPTIME-Hardness of Problem 2

In the case of Problem 2, the set Act of actions is given by

Act = Q∪ (Q×{0,1})∪{L,R}∪
(
{1, 1̃, . . . ,n, ñ}× (A∪ (A×Q))

)
where for each i ∈ {1, . . . ,n}, ĩ denotes a fresh copy of i. The meaning of these symbols
will be explained later. The code of a TM configuration C = C(1), . . . ,C(n) is now a
word of length 2n given by

code(C) = (1̃,C(1)),(1,C(1)), . . . ,(ñ,C(n)),(n,C(n))

We construct a nondeterministic FS Bval over Act and a synchronization-free NFS
SSF over Act (whose components are deterministic and with pairwise disjoint alphabets
of actions) of sizes polynomial in the size of the fixed TM M and input α such that M
accepts α iff [[SSF ]] & Bval . Hence, EXPTIME-hardness of Problem 2 follows.

We note that a synchronization-free NFS of size polynomial in the size of M and α
cannot faithfully emulate the evolution of M over the input α. In order to cope with this
problem, we first define suitable extensions Ext ETCα and Ext VTq(Cα),1 of the emula-
tion tree ETCα (Definition 2) and valuation tree VTq(Cα),1 (Definition 3), respectively, in
such a way that the result of Lemma 2 holds even for these extensions. Then, we show
that we can construct Bval and SSF in such a way to ensure that the unwinding of [[SSF ]]
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from its initial state is the extended emulation tree Ext ETCα , and the unwinding of Bval

from its initial state is the extended valuation tree Ext VTq(Cα),1.

Extended emulation trees and Extended valuation trees.

Definition 4. [Extended emulation trees] For each good TM configuration C, an ex-
tended emulation tree of M from C is a (possibly infinite) Act-labeled tree Ext ETC

which extends the emulation tree ETC (Definition 2) in such a way that the following
conditions are inductively satisfied. There is exactly one partial path from the root which
is labeled by some code in Codes (note that by Definition 2, this path coincides with the
partial path from the root to the main node of level 0 of ETC). Moreover, each new edge
from the main node of level 0 is labeled by an action in Act \ (Q∪ (Q×{0,1})) and:

– C is terminal: each new edge from the unique leaf of ETC is labeled by an action in
Act \ {L,R}.

– C is not terminal: each new edge from the choice node xc of level 0 of ETC is
labeled by an action in Act \{L,R}. Moreover, let xL and xR be the children of xc in
ETC (recall that the subtrees rooted at xL and xR in ETC correspond to ETsuccL(C)
and ETsuccR(C), respectively). Then, we require that the subtrees rooted at xL and
xR in Ext ETC are extended emulation trees of M from succL(C) and succR(C),
respectively.

Note that for a given (good) TM configuration C, there can be many extended emulation
trees of M from C, and the definition above specifies only some properties that must
be satisfied by them. We denote by Ext(ETC) the nonempty set of extended emulation
trees of M from C. An extended code is a word over Act of the form code ·u ·dir, where
code ∈ Codes, u ∈ Q∪ (Q×{0,1}), and dir ∈ {L,R}. Let us consider the infinite Act-
labeled valuation trees VTq,b of Definition 3. A node y of VTq,b is called starting node
iff either y is the root or y is the child of some choice node (note that the subtree rooted
at a child of a choice node corresponds to some valuation tree VTq′,b′ ). We extend VTq,b

as follows, where Tf ull denotes the Act-labeled infinite tree obtained as the unwinding
of the deterministic FS having a unique state and for each u ∈ Act, a self-loop labeled
by u.

Definition 5. [Extended valuation trees] For all q ∈ Q and b ∈ {0,1}, the infinite Act-
labeled extended valuation tree Ext VTq,b is obtained from VTq,b as follows. For each
node y of VTq,b, let y0 be the first ancestor of y which is a starting node (note that y0

may be y), and let wy0,y be the word over Act labeling the partial path from y0 to y.
Note that wy0,y has length at most 2n+1 and is the proper prefix of some extended code.
Then, for each u ∈ Act such that the word wy,y0 ·u is not the prefix of any extended code,
we add an edge labeled by u from y to the root of a tree isomorphic to Tf ull .

The following lemma is the variant of Lemma 1 for extended emulation trees and ex-
tended valuation trees.

Lemma 3. Fix a good TM configuration C, a state q ∈ Q, and b ∈ {0,1}. Then, for
each extended emulation tree Ext ETC ∈ Ext(ETC), the root of Ext ETC is simulated by
the root of the extended valuation tree Ext VTq,b iff q = q(C) and b = Val(ETC).
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Constructions of the FS Bval and the synchronization-free NFS SSF .

Lemma 4. One can construct a nondeterministic FS Bval of size polynomial in the
sizes of M and α such that the unwinding of Bval from its initial state is Ext VTq(Cα),1.

Lemma 5. One can construct a synchronization-free NFS SSF (whose components are
deterministic and with pairwise disjoint alphabets of actions) of size polynomial in the
sizes of M and α such that the unwinding of [[SSF ]] from its initial state is in Ext(ETCα).

Below, we prove Lemmata 4 and 5. By Remark 1 and Lemmata 3, 4, and 5, it follows
that M accepts α iff [[SSF ]]& Bval , where Bval is the FS of Lemma 4 and SSF is the NFS
of Lemma 5. Hence, we obtain the desired result.

Theorem 3. Given a FS A and a synchronization-free non-flat system S , checking
whether [[S ]] & A is EXPTIME-hard, even if the components of S are assumed to be
deterministic and their alphabets are assumed to be pairwise disjoint.

Proof of Lemma 4. We need some additional definition. Let 0 ≤ i < 2n, last⊥ ∈
{⊥}∪ ({1, 1̃, . . . ,n, ñ}× (A∪ (A×Q))) (⊥ is for undefined), and f ∈ {yes,no} such
that last⊥ = ⊥ iff i = 0. A (i, last⊥, f )-word is a proper prefix wp of a code in Codes
such that |wp| = i, last⊥ is the last symbol of wp if i > 0, and f = yes iff wp contains
some occurrence of a symbol in {1̃, . . . , ñ}× (A×Q). For each u ∈ Act, we consider the
predicate Prefix(i, last⊥, f ,u) which holds iff there exists a (i, last⊥, f )-word wp such
that wp ·u is the prefix of some code in Codes. Note that by definition of Codes, the sat-
isfaction of Prefix(i, last⊥, f ,u) is independent on what representative is chosen in the
set of (i, last⊥, f )-words, i.e., for all (i, last⊥, f )-words wp and w′

p, it holds that wp · u
is the prefix of some code in Codes iff w′

p ·u is the prefix of some code in Codes.
The FS Bval = 〈Act,Pval, p0

val ,Δval〉 satisfying the statement of Lemma 4 is defined
as follows. The set of states is Pval = {p f ull}∪Pcod ∪Pmain ∪Pchoice ∪{p#}, where:

– From state p f ull there are self-loops on all actions from Act. Thus, the unwinding
of Bval from p f ull corresponds to Tf ull (see Definition 5).

– Pcod consists of states of the form pcod = (q,b, i, last⊥, f ), where (q,b)∈Q×{0,1},
1 ≤ i ≤ 2n, last⊥ ∈ {⊥}∪ ({1, 1̃, . . . ,n, ñ} × (A ∪ (A ×Q))), and f ∈ {yes,no},
where last⊥ = ⊥ iff i = 1. The states in Pcod are used to generate all the codes in
Codes. Intuitively, (q,b) is the currently processed pair TM state/ boolean value,
i is the currently processed position of a code. Moreover, last⊥ keeps track of the
last generated symbol if i > 1, and the flag f is used to keep track whether a symbol
of the form ( j̃,u) with u ∈ A×Q has already been generated in the previous i− 1
steps. From state pcod , Bval generates all the actions u ∈ Act in such a way that the
following holds. If Prefix(i−1, last⊥, f ,u) holds (this means that the word wp · u
is the prefix of some code in Codes, where wp is the (i, last⊥, f )-word generated
in the previous i−1 steps), then Cval generates the letter u and moves to a state in
Pcod of the form (q,b, i + 1,u, f ′) if i < n and to the main state (q,b) (see below)
otherwise. If instead Prefix(i−1, last⊥, f ) does not hold, then Bval generates the
action u and moves to the state p f ull .

– Pmain = Q × {0,1}. States in Pmain are associated with the main nodes of
Ext V Tq(Cα),1 (corresponding to the main nodes of VTq(Cα),1).
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– Pchoice = (Q×{0,1})×(Q×{0,1}). States in Pchoice are associated with the choice
nodes of Ext VTq(Cα),1 (corresponding to the choice nodes of VTq(Cα),1).

– State p# is associated with the nodes of Ext VTq(Cα),1 corresponding to the leaf
nodes of VTq(Cα),1.

The initial state p0
val is (q(Cα),1,1,⊥,no) and the transition relation Δval is defined as:

1. Transitions from p f ull: for each u ∈ Act, we have the transition p f ull
u−→ p f ull

2. Transitions to generate the codes in Codes: from each state (q,b, i, last⊥, f ) ∈ Pcod

and for each u ∈ Act, we have the following transition:
– Prefix(i−1, last⊥, f ,u) does not hold: (q,b, i, last⊥, f ) u−→ p f ull

– Prefix(i−1, last⊥, f ,u) holds and i < 2n: (q,b, i, last⊥, f ) u−→ (q,b, i+ 1,u, f ′)
where f ′ = yes if u ∈ {1̃, . . . , ñ}× (A×Q), and f ′ = f otherwise.

– Prefix(i−1, last⊥, f ,u) holds and i = 2n: (q,b, i, last⊥, f ) u−→ (q,b)
3. Transitions from main states (q,b) ∈ Q×{0,1}:

– (q,b)
q−→ ((q1,b1),(q2,b2)) for each 〈(q1,b1),(q2,b2)〉 ∈ Choicesq,b.

– (q,b)
(q,b)−−→ p#

– (q,b) u−→ p f ull for all u ∈ Act \ (Q∪ (Q×{0,1})).
4. Transitions from choice states ((q1,b1),(q2,b2)) ∈ (Q×{0,1})× (Q×{0,1}):

– ((q1,b1),(q2,b2))
L−→ (q1,b1,1,⊥,no)

– ((q1,b1),(q2,b2))
R−→ (q2,b2,1,⊥,no)

– ((q1,b1),(q2,b2))
u−→ p f ull for each u ∈ Act \ {L,R}.

5. Transitions from state p#: p#
u−→ p f ull for each u ∈ Act \ {L,R}.

Correctness of construction easily follows.

Proof of Lemma 5. The synchronization-free NFS SSF satisfying the statement of
Lemma 5 is given by SSF = 〈Cell1, . . . ,Celln,Control〉SF . Intuitively, Cell j (1 ≤ j ≤ n)
keeps track by its finite control of the j-th symbol of a TM configuration, and it can gen-
erate only the actions of the form ( j,u) (where u ∈ A∪ (A×Q)). Note that the action
( j,u) corresponds to the 2nd symbol in the j-th pair ( j̃,u),( j,u) of the code of some
TM configuration. Control is instead used to model the control unit of M , and it can
generate only the actions in Act \ ({1, . . . ,n}× (A∪ (A×Q))). After having ‘correctly’
generated the code of a TM configuration C, Cell j is in state C( j) and Control is in
a state which keeps track of the position i of the tape head of C together with the i-th
symbol of C. Assume that C is not terminal. In order to generate for each dir ∈ {L,R},
the j-th pair ( j̃,u),( j,u) (1 ≤ j ≤ n) of the code of the dir-successor succdir(C) of C,
the SSF -components behave as follows. Assume that j �= i and j is not the position of
the tape head in succdir(C) (the other cases are similar). Since Control keeps track of
the pair (i,C(i)) and the current position j, it can check (by using the transition function
δ of the TM M ) whether this condition is satisfied or not. Note that in this case, the j-th
symbol of succdir(C) coincides with the j-th symbol of C, i.e. u = C( j), and, addition-
ally u ∈ A. Then, Control guesses a pair ( j̃,u′) with u′ ∈ A and generates it. Component
Cell j, which is in state C( j), will be able to generate in the next step the matching
pair ( j,u′) iff u′ = C( j). In this way, the SSF -components ensure that for each choice
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dir ∈ {L,R}, exactly one code in Codes will be generated, and this code is precisely the
encoding of succdir(C). The crucial point is that even if other words of length 2n will
be generated (due to all the possible interleaving of the individual and asynchronous
computational steps of the single components), exactly one of these words of length 2n
will be a code in Codes. The SSF -components are formally defined below.

Cell j = 〈{ j}× (A∪ (A×Q)),{p0
j}∪A∪ (A×Q), p0

j,Δ j〉, where Δ j is defined as:

1. p0
j

( j,Cα( j))−−−−−→Cα( j)

2. a
( j,a)−−→ a and a

( j,a,q)−−−→ (a,q) for all a ∈ A and q ∈ Q

3. (a,q)
( j,a′)−−−→ a′ for all a,a′ ∈ A and q ∈ Q

The first transition is used to generate the 2nd symbol of the j-th pair of the code of the
initial TM configuration Cα. Transitions of type 2 (resp., 3) are used to generate the 2nd
symbol of the j-th pair of the code of the next TM configuration when the tape head
is at position i �= j (resp., i = j). Note that the source state of transitions of type 2–3
represents the j-th symbol of the current TM configuration.

Control = 〈Act \ ({1, . . . ,n}× (A∪ (A×Q))),P,1,Δ〉 is defined as follows. The set of
states is given by P = {p f in}∪Pinit ∪Pcon f ∪Pmain ∪Pchoice, where:

– p f in is a state with no outgoing transitions.
– Pinit = {1, . . . ,n}. States in Pinit are used to generate the code of Cα, and 1 is the

initial state.
– Pcon f consists of states of the form pcon f = ( j,(i,a,q),a⊥,dir), where 1 ≤ j, i ≤ n,

a ∈ A, q ∈ Q \ {qacc,qre j}, a⊥ ∈ A∪{⊥} (⊥ is for undefined), and dir ∈ {L,R}.
Intuitively, i is the position of the tape head for the current non-terminal TM con-
figuration C and (a,q) = C(i). Let δ(q,a) = 〈(qL,aL,θL),(qR,aR,θR)〉. Then, from
state pcon f , Control guesses and generates an action of the form ( j̃,u) with the con-
straint that u = adir if j = i, u = (a′,qdir) for some a′ ∈ A if j = i+ θdir, and u ∈ A
if j /∈ {i, i+ θdir} (note that adir is the i-th symbol of succdir(C) and i+ θdir is the
position of the tape head in succdir(C)). If the guess is correct (i.e., u is the j-th
symbol of succdir(C)), then Cell j is able to generate the matching action ( j,u) in
the next step. In this case, a⊥ is the content of the succdir(C)-cell pointed by the
tape head if the position of this cell is smaller than j, and a⊥ = ⊥ otherwise.

– Pmain consists of states of the form pmain = (main,(i,a,q)), where 1 ≤ i ≤ n, a ∈
A, and q ∈ Q. Intuitively, i represents the position of the tape head for the new
generated TM configuration C and (a,q) = C(i). From state pmain, Control moves
to the choice state (choice,(i,a,q)) (see below) by generating the action q if q /∈
{qacc,qre j}, and to the state p f in by generating the action (q,Val(q)) otherwise.

– Pchoice consists of states of the form (choice,(i,a,q)), where (i,a,q) has the same
meaning as above. From these states, Control generates the two actions L and R.

The transition relation Δ of Control is defined as follows.

1. Initialization (transitions to generate the code of Cα):

– 1
(1̃,Cα(1))−−−−−→ 2, . . . ,n

(ñ,Cα(n))−−−−−→ (main,(1,α(0),q0))
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2. Transitions to generate the next TM configuration: from each state ( j,(i,a,q),
a⊥,dir) ∈ Pcon f with δ(q,a) = 〈(qL,aL,θL),(qR,aR,θR)〉 and 1 ≤ i+ θdir ≤ n, and
for each a′ ∈ A such that a′ = adir if j = i, we have the following transitions:

– j �= i+ θdir, j < n: ( j,(i,a,q),a⊥,dir)
( j̃,a′)−−−→ ( j + 1,(i,a,q),a⊥,dir)

– j �= i+θdir, j = n, a⊥ �=⊥: (n,(i,a,q),a⊥,dir)
(ñ,a′)−−−→ (main,(i+θdir,a⊥,qdir))

– j = i+ θdir, j < n: ( j,(i,a,q),a⊥,dir)
( j̃,a′,qdir)−−−−−→ ( j + 1,(i,a,q),a′,dir)

– j = i+ θdir = n: (n,(i,a,q),a⊥,dir)
(ñ,a′,qdir)−−−−−→ (main,(n,a′,qdir))

3. Transitions from main states (main,(i,a,q)) ∈ Pmain:
– q /∈ {qacc,qre j}: (main,(i,a,q))

q−→ (choice,(i,a,q))

– q ∈ {qacc,qre j}: (main,(i,a,q))
(q,Val(q))−−−−−→ p f in

4. Transitions from choice states (choice,(i,a,q)) ∈ Pchoice:

– (choice,(i,a,q)) L−→ (1,(i,a,q),⊥,L) and (choice,(i,a,q)) R−→ (1,(i,a,q),⊥,R)

Now, we prove that the construction is correct. Let C be a non-terminal good TM
configuration and dir ∈ {L,R}. The starting (C,dir)-state is the state of SSF in which
component Cell j is in state C( j) and Control is in the state (1,(i,a,q),⊥,dir) ∈ Pcon f ,
where i is the position of the tape head in C and (a,q) = C(i). Moreover, for each
dir ∈ {L,R}, the starting (⊥,dir)-state is the initial state of SSF . By construction, the
following result easily follows.

Lemma 6. Fix a starting (C⊥,dir)-state pstart , and let C = Cα if C⊥ = ⊥, and C =
succdir(C⊥) otherwise. Then, there is a unique path π of SSF starting from pstart labeled
by a code ∈ Codes. Moreover, code = code(C) and there is exactly one transition p

u−→
p′ from the last state p of π labeled by an action u ∈ Q∪(Q×{0,1}). Furthermore, the
action u and state p′ satisfies the following:

– C is terminal: u = (q(C),Val(q(C))) and there is no transition outgoing from p′

labeled by an action in {L,R}.
– C is not terminal: u = q(C) and there are exactly two transitions from state p′

labeled by actions in {L,R}. Moreover, one, labeled by L, leads to the starting
(C,L)-state, and the other one, labeled by R, leads to the starting (C,R)-state.

By Definition 4 and Lemma 6, we obtain the desired result.

Corollary 1 (Correctness). The unwinding of SSF from its initial state is in Ext(ETCα).

Note that the components of SSF are deterministic and with pairwise disjoint alphabets
of actions. Moreover, the size of SSF is polynomial in the sizes of the TM M and input
α. Thus, by the above corollary, Lemma 5 follows.

4 Additional Hardness Results

We can show that the deterministic versions of Problems 1 and 2 are PSPACE-hard by
polynomial-time reductions from the word problem for linearly-bounded deterministic
Turing Machines. The proposed constructions can be seen as a simplification of those
illustrated in the previous section.
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Theorem 4. The deterministic versions of Problems 1 and 2 are PSPACE-hard, and for
Problems 2, PSPACE-hardness holds even if the components of the synchronization-free
non-flat system are assumed to be deterministic and with pairwise disjoint alphabets.

The rest of this section is devoted to the proof of the following theorem.

Theorem 5. For any relation � on LTS lying between trace containment and bisimula-
tion equivalence, checking whether [[S ]]� A for a given synchronous NFS S and a FS
A is PSPACE-hard even if A and the S -components are assumed to be deterministic.

Proof of Theorem 5. By a polynomial-time reduction from the acceptance problem
for non-halting linearly-bounded deterministic Turing Machines (TM). Fix such a TM
machine M = 〈A,Q,q0,δ,{qacc}〉, where A, Q, q0, qacc (with q0 �= qacc) are as for alter-
nating Turing Machines, and δ : Q×A → (Q×A×{+1,−1}) is the transition function,
where +1 (resp., −1) denotes a right (resp., left) tape head move. Fix an input α ∈ A∗

and let n = |α|. Since M is linearly bounded, we can assume that a TM configuration
(of M over α) is a word C = β1,(a,q),β2 ∈ A∗ · (A×Q) ·A∗ of length exactly n. M
accepts α iff the unique (infinite) computation of M over α visits an accepting config-
uration. W.l.o.g. we assume that the alphabet A contains a special symbol, say #, such
that if the computation of M over α visits an accepting configuration Cacc, then Cacc is
#-homogeneous, i.e. the content of each cell of Cacc is the special symbol #.

Preliminary step: encoding of acceptance. Let Act = ({1, . . . ,n}× (A∪ (A×Q)))∪
{�}, where � is a special action. For each TM configuration C, code(C) is the word over
Act \{�} given by (1,C(1)), . . . ,(n,C(n)). Let Codes be the finite set of these codes and
TCodes be the deterministic tree encoding of Codes (as defined in Section 3).

Definition 6 (Valuation tree). The valuation tree Tval is the infinite Act \ {�}-labeled
tree obtained as the limit of the sequence of finite trees (T k

Codes)k∈N, where: T 0
Codes =

TCodes and T k+1
Codes results from rooting a fresh copy of TCodes at each leaf of T k

Codes.

Note that Tval is a deterministic and all its maximal paths from the root are infinite and
labeled by concatenations of codes of TM configurations. The special path of Tval is the
unique maximal path from the root whose sequence of labels code(C1) · code(C2) . . . is
such that Cα,C1,C2, . . . is the computation of M over α.

Definition 7 (Emulation tree). The deterministic Act-labeled emulation tree Tem is de-
fined as follows. Let π be the special path of Tval and let code(C1) · code(C2) . . . be its
sequence of labels. For each i ≥ 1 such that Ci is an accepting #-homogeneous config-
uration, let xi

ui−→ yi be the edge along π associated with the last symbol of code(Ci).
Then, Tem is obtained from Tval by adding for each of these edges xi

ui−→ yi (if any), a new
edge labeled by the special action � from yi to a new leaf node.

Fact: if M does not accept α, then Tem = Tval . Otherwise, Tr(Tem) �⊆ Tr(Tval).

Final step. Theorem 5 directly follows from the fact above and the following two
Lemmata. The proof of Lemma 7 is trivial and we omit it.

Lemma 7. One can construct a deterministic FS Dval over Act of size polynomial in
the sizes of M and α such that the unwinding of Dval from its initial state is Tval .



134 L. Bozzelli, A. Legay, and S. Pinchinat

Lemma 8. One can construct a synchronous NFS Sem over Act (whose components
are deterministic) of size polynomial in the sizes of M and α such that the unwinding
of [[Sem]] from its initial state is Tem.

Sketched proof. Sem is a synchronous composition of n+1 componentsCell1, . . . ,Celln,
and Control. Intuitively, Cell j (1 ≤ j ≤ n) keeps track by its finite control of the j-th
symbol of a TM configuration, and its alphabet is {�}∪ ({ j}× (A∪ (A×Q))). Control
is instead used to model the control unit of M , and its alphabet is Act (hence, Control
participates in each transition of Sem). After having ‘correctly’ generated a TM con-
figuration C (this, intuitively, means that Ssem is emulating the computation of M over
α, i.e., the computational path from the initial state to the current state of Sem corre-
sponds to a prefix of the special path of Tval), Sem is in a starting good state sgood such
that component Cell j is in state C( j) and Control is in a good local state which keeps
track of the position k of the tape head of C together with the k-th symbol of C.2 From
state sgood , Sem generates in n steps by ‘computational nondeterminism’ all the possible
codes in Codes as follows. At the j-th step, Control guesses an action of the form ( j,u)
and generates it by binary synchronization with Cell j. Note that since Cell j is in state
C( j) and Control keeps track of k and C(k), either Cell j or Control is able to detect
whether for the communication action ( j,u), u is not the j-th symbol of the succes-
sor succ(C) of C. If it is the case, and Cell j (resp., Control) has detected it, then Cell j

(resp., Control) will move to the local bad state bad (resp., to a local bad state pbad, j′

associated with the step j′ = ( j + 1) mod n). From state bad, Cell j remaining in bad
may generate all the actions of its alphabet except �. From the bad state pbad, j′ , Control
can generate only the actions of the form ( j′,u) and move to a local bad state associated
with the step ( j′ +1) mod n. If instead for the generated action ( j,u), u is the j-th sym-
bol of succ(C), then Control will move to a good local state associated with the step
j′ = ( j +1) mod n and Cell j will move to the good local state [succ(C)]( j). Thus, after
having generated the code of succ(C), Sem will be in the starting good state s′good associ-
ated with succ(C). From s′good , Sem can generate the special action � (by synchronization

among all its components)3 iff succ(C) is an accepting #-homogeneous configuration.
If the action � is generated, then the target state has no outgoing transition. -.

5 Conclusions

As future research, there is an interesting question left open: the exact complexity of
bisimulation checking between a flat system and a non-flat system. Our contribution
(Theorem 5) shows that the problem is PSPACE-hard even for synchronous composi-
tion without hiding. Note that the problem is in EXPTIME. We believe that filling this
gap is a very difficult question. Simple settings are however tractable: Muscholl and
Walukiewicz [13] have recently shown that bisimulation checking can be solved in
NLOGSPACE when there is no synchronization and both the flat system and the non-flat
system components are deterministic. It would be interesting to investigate the nonde-
terministic framework.

2 Initially, Sem is in the starting good state associated with the initial TM configuration.
3 Note that � is in the alphabet of each component.



Hardness of Preorder Checking for Basic Formalisms 135

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)
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19. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes. In: Probst,
D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315. Springer, Heidel-
berg (1993)

20. Valmari, A., Kervinen, A.: Alphabet-based synchronisation is exponentially cheaper. In:
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Abstract. Jeřábek showed in 2008 that cuts in propositional-logic deep-
inference proofs can be eliminated in quasipolynomial time. The proof
is an indirect one relying on a result of Atserias, Galesi and Pudlák
about monotone sequent calculus and a correspondence between this
system and cut-free deep-inference proofs. In this paper we give a direct
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whereas they are only morally so in sequent calculus, and all structural rules can
be reduced to their atomic form, whereas this is false for contraction in sequent
calculus.

All usual logics have deep-inference deduction systems enjoying cut elimina-
tion (see [7] for a complete overview). The traditional methods of cut elimination
of sequent calculus can be adapted to a large extent to deep inference, despite
having to cope with a higher generality. New methods are also achievable. The
standard proof system for propositional classical logic in deep inference is system
SKS [4,2]. Its cut elimination has been proved in several different ways [4,2,9].

Recently, Jeřábek showed that cut elimination in SKS proofs can be done in
quasipolynomial time [10], i.e., in time nO(log(n)). The result is surprising because
all known cut-elimination methods for classical-logic proof systems require expo-
nential time, in particular for Gentzen’s sequent calculus. Jeřábek obtained his
result by relying on a construction over threshold functions by Atserias, Galesi
and Pudlák, in the monotone sequent calculus [1]. Note that, contrary to SKS,
the monotone sequent calculus specifies a weaker logic than propositional logic
because negation is not freely applicable.

The technique that Jeřábek adopts is indirect because cut elimination is per-
formed over proofs in the sequent calculus, which are, in turn, related to deep-
inference ones by polynomial simulations, originally studied in [3] and [5].

In this paper we give a direct proof of Jeřábek’s result: that is, we give a
quasipolynomial-time cut-elimination procedure in propositional-logic deep in-
ference, which, in addition to being internal, has a strong computational flavour.
This proof uses two ingredients:

1. an adaptation of Atserias-Galesi-Pudlák technique to deep inference, which
slightly simplifies the technicalities associated with the use of threshold func-
tions; in particular, the formulae and derivations that we adopt are simpler
than those in [1];

2. a computational trace of deep-inference proofs called atomic flows, which are
both very simple (they trace only structural rules and forget logical rules)
and strong enough to faithfully represent cut elimination.

Atomic flows, which can be considered as specialised Buss flow graphs [6], play
a major role in designing and controlling the cut elimination procedure presented
in this paper. They contribute to the overall clarification of the procedure, by
reducing our dependency on syntax. The techniques developed via atomic flows
tolerate variations in the proof system specification. In fact, their geometric
nature makes them largely independent of syntax, provided that certain linearity
conditions are respected (and this is usually achievable in deep inference).

The paper is self-contained. Sections 2 and 3 are devoted, respectively, to the
necessary background on deep inference and atomic flows. Threshold functions
and formulae are introduced in Sect. 5.

We normalise proofs in two steps, each of which has a dedicated section in
the paper:
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1. We transform any given proof into what we call its ‘simple form’. No use is
made of threshold formulae and no significant proof complexity is introduced.
This is presented in Sect. 4, which constitutes a good exercise on deep infer-
ence and atomic flows.

2. In Sect. 6, we show the cut elimination step, starting from proofs in simple
form. Here, threshold formulae play a major role.

Section 7 concludes the paper with some comments on future research
directions.

2 Propositional Logic in Deep Inference: The SKS System

Formulae and Contexts

Two logical constants, f (false) and t (true) and a countable set of propositional
letters, denoted by p and q, are given. A primitive negation ·̄ is defined on
propositional letters: to each propositional letter p is associated its negation p̄.
Atoms are propositional letters and their negation; they are denoted a, b, c, d
and e. Negation is extended to the set of atoms by defining ¯̄p = p, for each
negated propositional letter p̄. Being in classical logic, one can always exchange
an atom with its negation: at the level of atoms, it doesn’t matter which one is
the propositional letter or its negation.

Formulae, denoted by A, B, C and D, are freely built from logical constants
and atoms using disjunction and conjunction. The disjunction and conjunction
of two formulae A and B are denoted respectively [A ∨ B] and (A ∧ B): the
different brackets have the only purpose of improving legibility. We usually omit
external brackets of formulae and sometimes we omit superfluous brackets under
associativity. Negation can be extended to arbitrary formulae in an obvious way
using De Morgan’s laws, but we do not need it in this paper. We write A ≡ B
for literal equality of formulae.

We denote (formula) contexts, i.e., formulae with a hole, by K{ }; for example,
if K{a} is b ∧ [a ∨ c], then K{ } is b ∧ [{ } ∨ c], K{b} is b ∧ [b ∨ c] and K{a ∧ d}
is b ∧ [(a ∧ d) ∨ c].

Derivations and Proofs

An (inference) rule ρ is an expression
A

ρ −−
B

, where the formulae A and B are

called premiss and conclusion, respectively. In deep inference, rules are applied
in arbitrary contexts: an (inference) step corresponding to rule ρ is an expression

K{C}
ρ −−−−−−−
K{D}

, where K{ } is a context and
C

ρ −−
D

is an instance of
A

ρ −−
B

.

A derivation, Φ, from A (premiss) to B (conclusion) is a chain of inference

steps with A at the top and B at the bottom, and is usually indicated by
A

Φ
∥∥∥∥S
B

,

where S is the name of the deduction system or a set of inference rules (we might
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omit Φ and S); we also use the notation Φ : A → B. Sometimes we group n ≥ 0
inference steps of the same rule ρ together into one step, and we label the step
with n × ρ. Besides Φ, we denote derivations with Ψ .

A proof, often denoted by Π , is a derivation with premiss t.
The size |A| of a formula A is the number of unit and atom occurrences

appearing in it. The size |Φ| of a derivation Φ is the sum of the sizes of the
formulae occurring in it. The length of a derivation is the number of inference
steps applied in the derivation. The width of a derivation is the maximal size of
the formulae occurring in it.

Substitution

By A{a1/B1, . . . , ah/Bh}, we denote the operation of simultaneously substitut-
ing formulae B1, . . . , Bh into all the occurrences of the atoms a1, . . . , ah in the
formula A, respectively. By defining the substitution at the level of atoms, where
atoms and their negation are equal citizen, we mean that the substitution to the
occurrences of an atom doesn’t touch the occurrences of its negation. Often, we
only substitute certain occurrences of atoms: there will be no ambiguity because
this is done in the context of atomic flows, where occurrences are distinguished
with superscripts. The notion of substitution is extended to derivations in the
natural way.

Inference Rules of SKS

Structural inference rules:
t

ai↓ −−−−−
a ∨ ā

f
aw↓ −−

a

a ∨ a
ac↓ −−−−−

a

identity (interaction) weakening contraction

a ∧ ā
ai↑ −−−−−

f

a
aw↑ −−

t

a
ac↑ −−−−−

a ∧ a

cut (cointeraction) coweakening cocontraction

.

Logical inference rules:

A ∧ [B ∨ C]
s −−−−−−−−−−−−−
(A ∧ B) ∨ C

(A ∧ B) ∨ (C ∧ D)
m −−−−−−−−−−−−−−−−−−−−−

[A ∨ C] ∧ [B ∨ D]
switch medial

.

There are also equality rules
C

= −−
D

, for C and D on opposite sides in one of the
following equations:

A ∨ B = B ∨ A A ∨ f = A

A ∧ B = B ∧ A A ∧ t = A

[A ∨ B] ∨ C = A ∨ [B ∨ C] t ∨ t = t

(A ∧ B) ∧ C = A ∧ (B ∧ C) f ∧ f = f

. (1)
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Conventions

(a) In derivations we freely use equality rules without mentioning them. For
instance

A
= −−−−−

A ∧ t
= −−−−−

t ∧ A
ai↓ −−−−−−−−−−−

[p ∨ p̄] ∧ A

is written
A

ai↓ −−−−−−−−−−−
[p ∨ p̄] ∧ A

.

(b) The structural rules have been given in atomic form in SKS. This is possible
because in deep inference the general form of the structural rules, given below,
is derivable from their atomic form, moreover it is derivable with a polynomial
cost.

t
i↓ −−−−−−

A ∨ Ā

f
w↓ −−

A

A ∨ A
c↓ −−−−−−

A

A ∧ Ā
i↑ −−−−−−

f

A
w↑ −−

t

A
c↑ −−−−−−

A ∧ A

.

We will freely use a nonatomic rule instance to stand for some derivation in SKS
that derives that instance.

Operations on Derivations

Inference rules being applicable in any context, given a context K{ } and a
derivation Φ : A → B, one can form a derivation K{Φ} : K{A} → K{B} by
adding the context K{ } at each inference step of the derivation. Given two
derivations Φ : A → B and Ψ : C → D, one can form in this way the derivations
Φ ∧ C : A ∧ C → B ∧ C and B ∧ Ψ : B ∧ C → B ∧ D. Then one can put one

after the other to get a derivation
A ∧ C∥∥∥∥
B ∧ D

of B ∧ D from A ∧ C; we denote by

Φ ∧ Ψ : A ∧ C → B ∧ D this derivation which consists in making Φ and then Ψ .
In the same way, one can get a derivation Φ ∨ Ψ : A ∨ C → B ∨ D of B ∨ D from
A ∨ C. We will freely use these constructions throughout the paper.

3 Atomic Flows

Atomic flows, which have been introduced in [9], are, essentially, specialised Buss
flow graphs [6]. They are particular directed graphs associated with SKS deriva-
tions: every derivation yields one atomic flow obtained by tracing the atoms
(propositional letters and their negation) occurrences in the derivation. More
precisely, one traces the behaviour of these occurrences through the structural
rules: creation / destruction / duplication. No information about instances of
logical rules is kept, only structural rules play a role and, as a consequence,
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infinitely many derivations correspond to each atomic flow. As shown in [9], it
turns out that atomic flows contain sufficient structure to control cut elimina-
tion procedures, providing in particular induction measures that can be used
to ensure termination. Such cut-elimination procedures require exponential time
on the size of the derivation to be normalised. In the present work, we improve
the complexity of cut elimination to quasipolynomial time, using in addition
threshold formulae, which are independent from the given proof.

Atomic Flow Associated to a Derivation

We first index occurrences of atoms in derivations with natural numbers in such
a way that:

– different occurrences of atoms in formulae have different indexes;
– indexes are preserved by logical rules and the context part of structural rules;
– in each instance of a structural rule, active occurrences of atoms have dif-

ferent indexes; for example an instance of the contraction rule becomes
a1 ∨ a2

ac↓ −−−−−−−−
a3 .

We associate inductively (say, in a top-down manner) to each derivation with
indexed occurrences of atoms an atomic flow as follows:

– to a formula A(a1, . . . , an) with exactly n occurrences of atoms, the following
flow, consisting of n edges, is associated:

1 · · · n ;

– the logical rules and the context part of structural rule do not change the
flow;

– each instance of a structural rule adds a vertex, whose incident edges corre-
spond to active occurrences of atoms in the rule; the association of vertices
to structural rules is illustrated below:

t
ai↓ −−−−−−−−

a1 ∨ ā2 → 1 2
f

aw↓ −−
a1 → 1

a1 ∨ a2

ac↓ −−−−−−−−
a3 → 1 2

3

a1 ∧ ā2

ai↑ −−−−−−−−
f

→ 1 2
a1

aw↑ −−
t

→ 1
a3

ac↑ −−−−−−−−
a1 ∧ a2 →

1 2

3

The left-hand side of each arrow shows an instance of a structural rule, whose
atom occurrences are labelled by small numerals. Correspondingly, the right-
hand side of the same arrow, shows the vertex associated to the given rule in-
stance: the labelling of incident edges respects the labelling of atom occurrences.
In a top-down inductive reading of the proof, the upper edges of the vertices are
meant to be associated to the already defined flow and the lower edges are new
ones. Moreover, we qualify each vertex according to the rule it corresponds to:
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for example, in a given atomic flow, we might talk about a contraction vertex,
or a cut vertex, and so on. Instead of small numerals, sometimes we use ε or ι to
label edges (as well as atom occurrences), but we do not always use labels.

All edges are directed, but we do not explicitly show the orientation. Instead,
we consider it as implicitly given by the way we draw them, i.e., edges are ori-
ented along the vertical direction. So, the vertices corresponding to dual rules,
are mutually distinct: for example, an identity vertex and a cut vertex are dif-
ferent because the orientation of their edges is different. On the other hand, the
horizontal direction plays no role in distinguishing atomic flows; this corresponds
to commutativity of logical relations. Here are for instance three representations
of the same flow:

4

21 5

3

,
1

3 4

2 5
and 3 4

21 5

.

It should be noted that atomic flows built from derivations have no directed
cycles and bear a natural polarity assignment (corresponding to atoms versus
negated atoms in the derivation), that is a mapping of each edge to an element
of {−, +}, such that the two edges of each identity or cut vertex map to different
values and the three edges of each contraction or cocontraction vertex map to
the same value. We denote atomic flows by φ and ψ.

Examples of Atomic Flows Associated to Derivations

a1 ∧
[
b2 ∨

[
a3 ∨ a4

]]
ac↓ −−−−−−−−−−−−−−−−−−−−−−−

a1 ∧
[
b2 ∨ a5

] → 1 2 3 4

5
.(

a1 ∧
[
ā3 ∨ t

])
∧ ā8

ai↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(
a1 ∧

[
ā3 ∨

[
ā4 ∨ a5

]])
∧ ā8

= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(
a1 ∧

[[
ā3 ∨ ā4

]
∨ a5

])
∧ ā8

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[(
a1 ∧

[
ā3 ∨ ā4

])
∨ a5

]
∧ ā8

ac↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−[(
a1 ∧ ā2

)
∨ a5

]
∧ ā8

ai↑ −−−−−−−−−−−−−−−−−−−−−−−−[
f ∨ a5

]
∧ ā8

= −−−−−−−−−−−−−−
a5 ∧ ā8

ac↑ −−−−−−−−−−−−−−−−(
a6 ∧ a7

)
∧ ā8

= −−−−−−−−−−−−−−−−
a6 ∧

(
a7 ∧ ā8

)
ai↑ −−−−−−−−−−−−−−−−

a6 ∧ f

→

31 8

4

2 7

5

6

.

Abstract Notation of Atomic Flows

When certain details of a flow are not important, but only the vertex kinds and
its upper and lower edges are, we can use boxes, labelled with all the vertex
kinds that can appear in the flow they represent. For example:
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φ
,

ψ ψ ′

and .

When no vertex labels appear on a box, we assume that the vertices in the
corresponding flow can be any (so, it does not mean that there are no vertices
in the flow).

We sometimes use a double line notation for representing multiple edges. For
example, the following diagrams represent the same flow:

ε1 · · · εl

ψ

ι1 · · · ιm

and

ε l
1

ψ

ιm
1

,

where l, m ≥ 0; note that we use εl
1 to denote the vector (ε1, . . . , εl). We might

label multiple edges with either a vector of the associated atom occurrences in a
derivation or one of the formulae the associated atom occurrences belong to in
a derivation.

We extend the double line notation to collections of isomorphic flows. For
example, for l ≥ 0, the following diagrams represent the same flow:

ε1
· · ·

εl and ε l
1 .

We observe that the flow of every SKS derivation can always be represented
as follows:

φ ψ
.

4 Normalisation Step 1: Simple Form

The first step in our normalisation procedure, defined here, consists in routine
deep-inference manipulations, which are best understood in conjunction with
atomic flows. For this reason, this section is a useful exercise for a reader who is
not familiar with deep inference and atomic flows.

In Theorem 5 of this section, we show that every proof can be transformed into
‘simple form’. Proofs in simple form are such that we can substitute formulae
for all the atom occurrences that appear in cut instances, without substituting
for atom occurrences that appear in the conclusion of the derivation. Of course,
doing this would invalidate identity and cut instances, but in Sect. 6 we see
how we can build a valid cut-free proof from the broken derivations obtained by
substituing formulae into derivations in simple form.
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We first show some standard deep-inference results. We will see how we can
permute all the identity (resp., cut) rule instances to the top (resp., bottom) of
a proof, without changing the atomic flow of the proof, and without significantly
changing the size of the proof.

Lemma 1. Given a context K{ } and a formula A, there exist derivations

A ∧ K{t}∥∥∥∥{s}
K{A}

and
K{A}∥∥∥∥{s}

K{f} ∨ A
,

each of whose width is the size of K{A} plus one and length is bounded by a
polynomial in the size of K{ }.

Proof. The result follows by structural induction on K{ }: The base cases are:

A ∧ {t}
= −−−−−−−−

{A}
and

{A}
= −−−−−−−−
{f} ∨ A

.

The inductive cases are

A ∧ (B ∧ K{t})
= −−−−−−−−−−−−−−−−−−

B ∧ (A ∧ K{t})∥∥∥∥{s}
B ∧ K{A}

,

A ∧ [B ∨ K{t}]
s −−−−−−−−−−−−−−−−−−
B ∨ (A ∧ K{t})∥∥∥∥{s}

B ∨ K{A}

and

B ∧ K{A}∥∥∥∥{s}
B ∧ [K{f} ∨ A]

s −−−−−−−−−−−−−−−−−−
(B ∧ K{f}) ∨ A

,

B ∨ K{A}∥∥∥∥{s}
B ∨ [K{f} ∨ A]

= −−−−−−−−−−−−−−−−−
[B ∨ K{f}] ∨ A

.

-.

Lemma 2. Given a derivation Φ : A → B, with flow

φ =

A an
1 ān

1

φ ′

bm
1 b̄m

1 B

,

there exists a derivation

Ψ =

A
n×ai↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A ∧ [a1 ∨ ā1] ∧ · · · ∧ [an ∨ ān]
Ψ ′∥∥∥∥(

b1 ∧ b̄1
)
∨ · · · ∨

(
bm ∧ b̄m

)
∨ B

m×ai↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B

,

for some atoms a1, . . . , an, b1, . . . , bm and some derivation Ψ ′, such that the
flow of Ψ is φ, the flow of Ψ ′ is φ′ and the size of Ψ is bounded by a polynomial
in the size of Φ.
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Proof. For every relevant interaction we perform the following transformation:

A
Φ′∥∥∥∥
K{t}

ai↓ −−−−−−−−−−
K{a ∨ ā}

Φ′′∥∥∥∥
B

is transformed into

A
ai↓ −−−−−−−−−−−

[a ∨ ā] ∧ A
[a∨ā]∧Φ′∥∥∥∥
[a ∨ ā] ∧ K{t}∥∥∥∥{s}

K{a ∨ ā}
Φ′′∥∥∥∥

B

,

which is possible by Lemma 1. Instances of cut rules can be dealt with in a
symmetric way.

Each transformation increases the width of the derivation by a constant and
increases the length by at most a polynomial in the width of the derivation.
Hence, the size of Ψ is bounded by a polynomial in the size of Φ. -.

We now show how to extend substitutions from formulae to derivations. Using
atomic flows, we single out some atom occurrences that we substitute for. Sub-
stitutions play a crucial role in Theorem 5 and in Theorem 11. It is important
to notice that a substitution only copies atomic flows, it does not introduce new
vertices; and that the cost of substitution is polynomial.

Lemma 3. Given a derivation Φ : A → B, let its associated flow have shape

A

φ

B

a1

ψ1

a1

· · ·

an

ψn

an

,

such that, for 1 ≤ i ≤ n, all the edges of ψi are mapped to from occurrences of
ai, then, for any formulae C1, . . . , Cn there exists a derivation

Ψ =
A{aψ1

1 /C1, . . . , a
ψn
n /Cn}∥∥∥∥

B{aψ1
1 /C1, . . . , a

ψn
n /Cn}

,

whose flow is

A

φ

B

c1,1

ψ1

c1,1

· · ·

c1,m1

ψ1

c1,m1︸ ︷︷ ︸
m1

· · ·

cn,1

ψn

cn,1

· · ·

cn,mn

ψn

cn,mn︸ ︷︷ ︸
mn

,

where, for every 1 ≤ i ≤ n, the atom occurrences of Ci are ci,1, . . . , ci,mi ;
moreover, the size of Ψ is bounded by a polynomial in the size of Φ and, for
each 1 ≤ i ≤ n, the size of Ci.
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Proof. We sketch the proof: For each 1 ≤ i ≤ n, we can proceed by structural
induction on Ci and then on ψi. For the two cases of Ci ≡ D ∨ E and Ci ≡ D ∧ E
we have to consider, for each vertex of ψi, one of the following situations (notice
that ψi can not contain interaction or cut vertices):

f
w↓ −−

E
w↓ −−−−−−−

D ∨ E

,

f
w↓ −−−−−

f ∧ E
w↓ −−−−−−−

D ∧ E

,

D ∨ D ∨ E ∨ E
c↓ −−−−−−−−−−−−−−−−−

D ∨ D ∨ E
c↓ −−−−−−−−−−−−

D ∨ E

,

(D ∧ E) ∨ (D ∧ E)
m −−−−−−−−−−−−−−−−−−−−−

[D ∨ D] ∧ [E ∨ E]
c↓ −−−−−−−−−−−−−−−−−−−−

[D ∨ D] ∧ E
c↓ −−−−−−−−−−−−−

D ∧ E

,

and their dual ones. -.

Notation 4. When we write Φ{aψ1
1 /C1, . . . , a

ψn
n /Cn}, we mean the derivation

Ψ obtained in the proof of Lemma 3.

We now present the main result of this section. We show that any derivation can
be transformed into a derivation whose atomic flow is on what we call ‘simple
form’. Referring to the second flow in Theorem 5, we observe that we could
substitue for the atom occurrences corresponding to the rightmost copy of φ
without substituting for any atom occurrence appearing in the conclusion of the
proof. This is one of the two main ingredients in our normalisation procedure.

Theorem 5. Given a proof Φ of A, with flow

an
1 ān

1
φ ψ

A A
bm

1 b̄m
1

,

there exists a proof Ψ of A, with flow

an
1

ān
1

an
1

φ ψ φ

A bm
1 b̄m

1 A
bm

1A

,

such that the size of Ψ is bounded by a polynomial in the size of Φ.

Proof. Consider the derivation[
aφ
1 ∨ āψ

1

]
∧ · · · ∧

[
aφ

n ∨ āψ
n

]
Φ′∥∥∥∥(

bφ
1 ∧ b̄ψ

1

)
∨ · · · ∨

(
bφ
m ∧ b̄ψ

m

)
∨ A

,
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with atomic flow
an

1 ān
1

φ ψ

A bm
1 b̄m

1 A

,

which exists and whose size is bounded by a polynomial in the size of Φ by
Lemma 2. Let a1, . . . , an, b1, . . . , bm, c1, . . . , cl be all the atoms whose occur-
rences are mapped to edges in φ and let

σ = {aφ
1/ (a1 ∧ a1) , . . . , aφ

n/ (an ∧ an) , bφ
1/ (b1 ∧ b1) , . . . ,

bφ
m/ (bm ∧ bm) , cφ

1/ (c1 ∧ c1) , . . . , cφ
l / (cl ∧ cl)} .

We then construct Ψ :

t
2n×ai↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[a1 ∨ ā1] ∧ [a1 ∨ ā1] ∧ · · · ∧ [an ∨ ān] ∧ [an ∨ ān]
2n×s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[(a1 ∧ a1) ∨ ā1 ∨ ā1] ∧ · · · ∧ [(an ∧ an) ∨ ān ∨ ān]
n×ac↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[(a1 ∧ a1) ∨ ā1] ∧ · · · ∧ [(an ∧ an) ∨ ān]
Φ′σ

∥∥∥∥(
(b1 ∧ b1) ∧ b̄1

)
∨ · · · ∨

(
(bm ∧ bm) ∧ b̄m

)
∨ Aσ∥∥∥∥{aw↑}(

b1 ∧ b̄1
)
∨ · · · ∨

(
bm ∧ b̄m

)
∨ A

m×ai↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A

,

with the required atomic flow, where, by Lemma 3, the derivation Φ′σ exists and
its size is bounded by a polynomial in the size of Φ′. -.

5 Threshold Formulae

Threshold formulae realise boolean threshold functions, which are defined as
boolean functions that are true if and only if at least k of n inputs are true (see
[11] for a thorough reference on threshold functions).

There are several ways of encoding threshold functions into formulae, and
the problem is to find, among them, an encoding that allows us to obtain Theo-
rem 10. Efficiently obtaining the property stated in Theorem 10 crucially depends
also on the proof system we adopt.

The following class of threshold formulae, which we found to work for system
SKS, is a simplification of the one adopted in [1].

In the rest of this paper, whenever we have a sequence of atoms a1, . . . , an,
we will assume, without loss of generality, that n is a power of two.

Definition 6. For every n = 2m, with m ≥ 0, and k ≥ 0, we define the operator
θn

k inductively as follows:
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θn
k (a1, . . . , an) =

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t if k = 0
f if k > n

a1 if n = k = 1∨
i+j=k
0≤i,j≤n/2

(
θn/2

i (a1, . . . , an/2) ∧ θn/2
j (an/2+1, . . . , an)

)
otherwise.

For any n atoms a1, . . . , an, we call θn
k (a1, . . . , an) the threshold formula at

level k (with respect to a1, . . . , an).

The size of the threshold formulae dominates the cost of the normalisation pro-
cedure, so, we evaluate their size.

Lemma 7. For any n = 2m, with m ≥ 0, and k ≥ 0 the size of θn
k (a1, . . . , an)

has a quasipolynomial bound in n.

Proof. We show that the size of θn
k (a1, . . . , an) is bounded by n2 log n. We reason

by induction on n; the case n = 1 trivially holds. For n > 1, we consider that
the size of θn

k (a1, . . . , an) is bounded by∑
i+j=k
0≤i≤n
0≤j≤n

2n/22 log n/2
.

We then have∑
i+j=k
0≤i≤n
0≤j≤n

2n/22 log n/2 ≤
∑

i+j=n/2
0≤i≤n
0≤j≤n

2n/22 log n/2 ≤ (n + 2)n/22 log n/2
,

and since n + 2 ≤ n2 and n/2 < n, we have

(n + 2)n/22 log n/2 ≤ n2n2 log n/2 = n2 log n−2 log 2+2 = n2 log n ,

as required. -.

Lemma 8. For any n = 2m, with m ≥ 0, k ≥ 0 and 1 ≤ i ≤ n, there exists a
derivation

Γ i
k =

θn
k (a1, . . . , an){ai/f}∥∥∥∥{aw↓,aw↑}

θn
k+1(a1, . . . , an){ai/t}

,

whose size has a quasipolynomial bound in n.

Proof. The result follows by Lemma 7 and structural induction on Definition 6.
It is worth noting that both the premiss and the conclusion of Γ i

k are logically
equivalent to θn−1

k (a1, . . . , ai−1, ai+1, . . . , an). -.
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Lemma 9. Given a formula A and an atom a that occurs in A, there exist

derivations
a ∧ A{a/t}∥∥∥∥{ac↑,s}

A
and

A∥∥∥∥{ac↓,s}
A{a/f} ∨ a

such that their sizes are both bounded

by a polynomial in the size of A.

Proof. The result follows by induction on the number of occurrences of a in A,
and Lemma 1. -.
We now present the main result of this section. We show that, using thresh-
old functions, we are able to deduce a conjunction of disjunctions from a dis-
junction of (slightly different) conjunctions. This construction is based on (seen
top-down) contractions meeting cocontrations, and can be thought of as a gen-
eralisation of the simple sharing mechanism that allows us to deduce a ∧ · · · ∧ a
from a ∨ · · · ∨ a .

In Theorem 11 we will see how using this sharing mechanism allows us to glue
together several ‘broken’ derivations in order to build a cut-free proof.

Theorem 10. Let, for some n = 2m with m ≥ 0, a1, . . . , an be distinct atoms.
Then, for every 1 ≤ k ≤ n + 1, there exists a derivation

Γk =

(
a1 ∧ θn

k−1(a1, . . . , an){a1/f}
)
∨ · · · ∨

(
an ∧ θn

k−1(a1, . . . , an){an/f}
)

∥∥∥∥∥∥∥SKS\{ai↓,ai↑}

[a1 ∨ θn
k (a1, . . . , an){a1/f}] ∧ · · · ∧ [an ∨ θn

k (a1, . . . , an){an/f}]
,

such that the size of Γk has a quasipolynomial bound in n.

Proof. For 1 ≤ k ≤ n + 1, we construct:

Γk =

(
a1 ∧ θn

k−1(a1, . . . , an){a1/f}
)
∨ · · · ∨

(
an ∧ θn

k−1(a1, . . . , an){an/f}
)

Γ 1
k

∨···∨Γ n
k

∥∥∥∥{aw↓,aw↑}
(a1 ∧ θn

k (a1, . . . , an){a1/t}) ∨ · · · ∨ (an ∧ θn
k (a1, . . . , an){an/t})

Φ1
∥∥∥∥{ac↑,s}∨

1≤i≤n θn
k (a1, . . . , an)∥∥∥∥{c↓}

θn
k (a1, . . . , an)∥∥∥∥{c↑}∧

1≤i≤n θn
k (a1, . . . , an)

Φ2
∥∥∥∥{ac↓,s}

[a1 ∨ θn
k (a1, . . . , an){a1/f}] ∧ · · · ∧ [an ∨ θn

k (a1, . . . , an){an/f}]

,

where Φ1 and Φ2 exist by Lemma 9 and, for 1 ≤ i ≤ n, Γ i
k exists by Lemma 8.

The size of Γk is quasipolynomial in n, by Lemma 8 and Lemma 9. -.

6 Normalisation Step 2: Cut Elimination

We now show the main construction of this paper. A cut-elimination result for
derivations in simple form. The procedure uses a class of external and indepen-
dent derivations in order to glue together pieces of the original proof. One valid
class of such derivations are the ones shown in Sect. 5.
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Theorem 11. Let

1. N > 0 be an integer;
2. a1, . . . , an be distinct atoms, where n = 2m for some m ≥ 0;
3. there be, for every 0 < k < N and 1 ≤ i ≤ n, a formula Cai

k ;
4. there be, for every 1 ≤ k ≤ N , a derivation

Γk =

(
a1 ∧ Ca1

k−1

)
∨ · · · ∨

(
an ∧ Can

k−1

)
∥∥∥∥∥∥∥SKS\{ai↓,ai↑}

[a1 ∨ Ca1
k ] ∧ · · · ∧ [an ∨ Can

k ]

,

where Ca1
0 ≡ · · · ≡ Can

0 ≡ t and Ca1
N ≡ · · · ≡ Can

N ≡ f .

For every proof Φ of A, whose flow is

ān
1 an

1
φ ψ

A
ān

1 an
1

,

where only occurrences of the atoms ā1, . . . , ān are mapped to edges in φ, there
exists a cut-free proof Ψ of A whose size is bounded by a polynomial in N , the
size of Φ and, for 1 ≤ k ≤ N , the size of Γk.

Proof. For every 1 ≤ i ≤ n, let mi (resp., m′
i) be the number of interactions

(resp., cuts) where aψ
i and āφ

i appears in Φ, and consider the derivation

Φ′ =

∧
1≤j≤m1

[
aψ
1 ∨ āφ

1

]
∧ · · · ∧

∨
1≤j≤mn

[
aψ

n ∨ āφ
n

]
∥∥∥∥

A ∨
∨

1≤j≤m′
1

(
aψ
1 ∧ āφ

1

)
∨ · · · ∨

∨
1≤j≤m′

n

(
aψ

n ∧ āφ
n

) ,

with atomic flow
ān

1 an
1

φ ψ

ān
1 an

1 A

,

which exists by Lemma 2. Then, for 0 ≤ k ≤ N , construct the following deriva-
tion:

Φk =

[a1 ∨ Ca1
k ] ∧ · · · ∧ [an ∨ Can

k ]∥∥∥∥{c↑,w↑}∧
1≤j≤m1

[a1 ∨ Ca1
k ] ∧ · · · ∧

∨
1≤j≤mn

[an ∨ Can

k ]
Φ′{āφ

1 /C
a1
k ,...,āφ

n/Can
k }

∥∥∥∥SKS\{ai↑}
A ∨

∨
1≤j≤m′

1
(a1 ∧ Ca1

k ) ∨ · · · ∨
∨

1≤j≤m′
n

(an ∧ Can

k )∥∥∥∥{c↓,w↓}
A ∨ (a1 ∧ Ca1

k ) ∨ · · · ∨ (an ∧ Can

k )

,
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which exists, and whose size is bounded by a polynomial in the size of Φ and the
size of Γk, by Lemma 3. We then construct the cut-free derivation Ψ as follows:

t
n×aw↓ −−−−−−−−−−−−−−−−−−−−−−−−−−

([a1 ∨ t] ∧ · · · ∧ [an ∨ t])
Φ0

∥∥∥∥SKS\{ai↑}
A ∨ (a1 ∧ Ca1

0 ) ∨ · · · ∨ (an ∧ Can
0 )

A∨Γ1
∥∥∥∥SKS\{ai↓,ai↑}

A ∨ ([a1 ∨ Ca1
1 ] ∧ · · · ∧ [an ∨ Can

1 ])
A∨Φ1

∥∥∥∥SKS\{ai↑}
A ∨ [A ∨ (a1 ∧ Ca1

1 ) ∨ · · · ∨ (an ∧ Can
1 )]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

A∨A∨···∨A∨ΓN−1
∥∥∥∥SKS\{ai↓,ai↑}

A ∨ A ∨ · · · ∨ A ∨
([

a1 ∨ Ca1
N−1

]
∧ · · · ∧

[
an ∨ Can

N−1

])
A∨A∨···∨A∨ΦN−1

∥∥∥∥SKS\{ai↑}
A ∨ A ∨ · · · ∨ A ∨

[
A ∨

(
a1 ∧ Ca1

N−1

)
∨ · · · ∨

(
an ∧ Can

N−1

)]
A∨A∨···∨A∨A∨ΓN

∥∥∥∥SKS\{ai↓,ai↑}
A ∨ A ∨ · · · ∨ A ∨ A ∨ ([a1 ∨ Ca1

N ] ∧ · · · ∧ [an ∨ Can

N ])
A∨A∨···∨A∨A∨ΦN

∥∥∥∥SKS\{ai↑}
A ∨ A ∨ · · · ∨ A ∨ A ∨ [A ∨ (a1 ∧ f) ∨ · · · ∨ (an ∧ f)]

n×aw↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A ∨ A ∨ · · · ∨ A ∨ A ∨ A

(N−1)×c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−
A

.

-.

It is worth noting that if we fix N = n + 1 in Theorem 11, the formulae Cai

k are
bound to be threshold formulae.

Corollary 12. Given a proof Φ of A, there exists a cut-free proof Ψ of A, whose
size is bounded by a quasipolynomial in the size of Φ.

Proof. The result follows by Theorem 5, Theorem 10 and Theorem 11. -.

7 Final Comments

The quasipolynomial cut-elimination procedure makes use of the cocontraction
rule. But the cocontraction rule can also be eliminated. A natural question is
whether one can extend the quasipolynomial cut elimination to a cocontrac-
tion elimination or to say it in another way, whether one can eliminate cuts in
quasipolynomial time without the help of cocontractions. This is probably an
important question because all indications we have point to an essential role
being played by cocontraction in keeping the complexity low. Cocontraction has
something to do with sharing, it seems to provide a typical ‘dag-like’ speed-up
over the corresponding ‘tree-like’ expansion.

The role played by cocontractions is the most immediate explanation of why
quasipolynomial cut elimination works in Deep Inference and not, at the present
stage, in the sequent calculus (for full propositional logic). The reason seems
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to be that exploiting cocontraction in the absence of cut is an intrinsic feature
of deep inference, not achievable in Gentzen theory because of the lack of a
top-down symmetry therein.

Another natural question is whether quasipolynomial time is the best we can
do: there is no obvious objection to the existence of a polynomial cut-elimination
procedure. It is possible to express threshold functions with polynomial formulae,
but the hardest problem seems to be to obtain corresponding derivations of
polynomial length. Deep inference flexibility in constructing derivations might
help here.

The cut-elimination procedure presented here is peculiar because it achieves
its result by using an external scheme, constituted by the threshold functions and
the corresponding derivations, which does not depend on the particular deriva-
tion we are working on. It is as if the threshold construction was a catalyzer
that shorten the cut elimination. It would be interesting to interpret this phe-
nomenon computationally, in some sort of Curry-Howard correspondence, where
the threshold construction implements a clever operator. We intend to explore
this path in the near future.

This leads to the wider question of a computational interpretation of deep
inference. Atomic flows are a weak computational trace, which takes only the
structural rules into account. It is surprising that such a trace, which forgets
all the information given by the logical rules, is powerful enough to drive the
cut-elimination procedure. We intend to carefully study its computational power
and to see whether one can construct on this ground an original computational
interpretation of proofs.
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Pairwise Cardinality Networks�

Michael Codish and Moshe Zazon-Ivry
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Abstract. We introduce pairwise cardinality networks, networks of com-
parators, derived from pairwise sorting networks, which express cardinal-
ity constraints. We show that pairwise cardinality networks are superior
to the cardinality networks introduced in previous work which are derived
from odd-even sorting networks. Our presentation identifies the precise re-
lationship between odd-even and pairwise sorting networks. This relation-
ship also clarifies why pairwise sorting networks have significantly better
propagation properties for the application of cardinality constraints.

1 Introduction

Cardinality constraints take the form, x1 + x2 + · · ·+ xn ≺ k, where x1, . . . , xn

are Boolean variables, k is a natural number, and ≺ is one of {<,≤, >,≥,=}.
Cardinality constraints are well studied and arise in many different contexts.
One typical example is the Max-SAT problem where for a given propositional
formula (in CNF) with clauses {C1, . . . , Cn}, we seek an assignment that satisfies
a maximal number of clauses. One approach is to add a fresh blocking variable
to each clause giving ϕ = {C1 ∨ x1, . . . , Cn ∨ xn}. Now we seek a minimal value
k such that ϕ∧(x1 +x2 + · · ·+xn < k) is satisfiable. We can do this by encoding
the cardinality constraint to a propositional formula ψk and repeatedly applying
a SAT solver to find the smallest k such that ϕ ∧ ψk is satisfiable.

There are many works that describe techniques to encode cardinality con-
straints to propositional formulas. The starting points for this paper are the work
by Asin et al.[1] and an earlier paper [4] which describes how pseudo Boolean
constraints (which are more general than cardinality constraints) are translated
to SAT in the MiniSAT solver. Both of these papers consider an encoding tech-
nique based on the use of sorting networks.

A (Boolean) sorting network is a circuit that receives n Boolean inputs
x1, . . . , xn, and permutes them to obtain the sorted outputs y1, . . . , yn. The
circuit consists of a network of comparators connected by “wires”. Each com-
parator has two inputs, u1, u2 and two outputs, v1, v2. The “upper” output,
v1, is the maximal value on the inputs, u1 ∨ u2. The “lower” output, v2, is the
minimal value, u1 ∧ u2. In brief, naming the wires between the comparators as
propositional variables, we can view a sorting network with inputs x1, . . . , xn

� Supported by the G.I.F. grant 966-116.6 and by the Frankel Center for Computer
Science at the Ben-Gurion University.

E.M. Clarke and A. Voronkov (Eds.): LPAR-16, LNAI 6355, pp. 154–172, 2010.
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and outputs y1, . . . , yn as a propositional formula, ψ, obtained as the conjunc-
tion of its comparators. In the context of the Max-SAT problem described above
the formula ψk expressing the cardinality constraint x1 + x2 + · · · + xn < k,
is obtained by sorting the x1, . . . , xn (in decreasing order), and setting the kth

largest output to 0. As the outputs are sorted, this implies that all outputs from
position k are zero and hence that there are less than k ones amongst the input
values. If the outputs are y1, . . . , yn, the cardinality constraint is expressed as
ψk = ψ ∧ ¬yk.

Adding a clause ¬yk to the formula ψ that represents a sorting network with
input wires x1, . . . , xn and output wires y1, . . . , yn, assigns a value (zero) to an
output wire. This, in turn, imposes constraints on other input and output wires.
So in some sense, we are running the network backwards. That sorting networks
are bi-directional is well-understood, see for example [2]. However, this point is
often overlooked. It is this bi-directionality that impacts the choice of sorting
network construction best suited for application to cardinality constraints.

Sorting networks have been intensively studied since the mid 1960’s. For an
overview see for example, Knuth [5], or Parberry [6]. One of the best sorting
network constructions, and possibly the one used most in applications, is due to
Batcher as presented in [2]. Parberry [7] describes this network as follows:

For all practical values of n > 16, the best known sorting network is the
odd-even sorting network of Batcher, which is constructed recursively
and has depth (logn)(logn+ 1)/2 and size n(logn)(log n− 1)/4 +n− 1.

The presentations in [1] and in [4] describe the use of odd-even sorting net-
works to encode cardinality constraints. In this paper we take a similar approach
but apply the so called “pairwise sorting network” instead. Parberry [7], intro-
duces the pairwise network:

It is the first sorting network to be competitive with the odd-even sort
for all values of n. The value of the pairwise sorting network is not that
it is superior to the odd-even sorting network in any sense, but that it
is the first serious rival to appear in over 20 years.

In this paper, almost 20 years after the introduction of pairwise sorting net-
works, we are in the position to state that pairwise sorting networks are signif-
icantly superior to odd-even sorting networks, at least for encoding cardinality
constraints. To obtain our results, we first observe that both types of networks
are composed of two main components, which we term: pairwise splitters and
pairwise mergers. Usually, the odd-even sorting network is viewed as a network
of odd-even mergers. However, we show that each such odd-even merger is pre-
cisely equivalent to the composition of a pairwise splitter and a pairwise merger.
Consequently, in the odd-even sorting network, pairwise splitters and mergers
alternate, whilst in the pairwise network, the splitters and mergers occur in
separate blocks, splitters before mergers.

The precise and clear presentation of the relationship between pairwise and
odd-even sorting networks is new and is a contribution on its own right. It is also
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the basis for our results. As we illustrate in the rest of the paper, the splitters
inhibit the propagation of data from the sorted outputs y1, . . . , yn towards the
original inputs x1, . . . , xn occurring in the cardinality constraint. Hence, when
encoding cardinality constraints, the splitters are best positioned closer to the
xi’s than to the yi’s.

Cardinality networks, similar to sorting networks, are networks of comparators
that express cardinality constraints. As described above, a cardinality network is
easily constructed using a sorting network. However, both the odd-even as well
as the pairwise sorting networks involve O(n log2 n) comparators to sort n bits.
Earlier work describes cardinality networks of size O(n log2 k) for constraints of
the form x1+x2+· · ·+xn ≺ k which is an improvement for the typical case where
k is considerably smaller than n. For example, in [8], Wah and Chen illustrate
a O(n log2 k) construction for the (k, n) selection problem which is to select the
k smallest (or largest) elements from a set of n numbers. Also in [1], Asin et al.
define a simplified (odd-even) merge component and illustrate its application to
construct a cardinality network of size O(n log2 k).

In this paper we show that when expressing a cardinality constraint x1 +
x2 + · · · + xn ≺ k in terms of a pairwise or an odd-even sorting network, the
network collapses automatically (by partial evaluation) to a cardinality network
with O(n log2 k) comparators. No further construction is required. Experimen-
tal evaluation indicates that the choice of a pairiwse sorting network results in
smaller encodings.

In Section 2 we present the classic odd-even and pairwise sorting networks.
Section 3 clarifies a precise relationship between these two types of networks.
This simplifies, and perhaps demystifies, the presentation of the pairwise net-
work. In Section 4 we show that a cardinality network of size O(n log2 k) is
derived by partial evaluation from a pairwise sorting network. Section 5 presents
a preliminary experimental evaluation and Section 6 concludes.

2 Sorting Networks – From Batcher to Parberry

Sorting networks were originally described as circuits, composed using compara-
tors, which given values on their input positions compute (in parallel) the sorted
values on their output positions. In the context of cardinality networks, it is ben-
eficial to view sorting networks as relations between the “input” and “output”
positions. Given such a relation, and values for some of the (input or output)
positions, we seek values for the rest of the positions that satisfy the relation.

We represent a comparator as a relation comparator(a, b, c, d) where intu-
itively a and b are two Boolean inputs and 〈c, d〉 a permutation of 〈a, b〉 with
c ≥ d. More formally, the relation is defined as follows:

comparator(a, b, c, d) ↔ (c↔ a ∨ b) ∧ (d↔ a ∧ b)

A network of comparators is a conjunction of their corresponding relations. A
sorting network is a relation on tuples of Boolean variables expressed in terms of
a network of comparators. To ease presentation, we will assume that the lengths
of tuples are powers of 2.



Pairwise Cardinality Networks 157

Fig. 1. An odd-even sorting network as a network of odd-even mergers

The Odd-Even Sorting Network

The odd-even sorting network, due to Batcher [2], is based on the merge-sort
approach: to sort a list of 2n values, first partition the list into two lists with
n values each, then recursively sort these two lists, and finally merge the two
sorted lists. The network is termed “odd-even” because of the way the merge
component is defined.

We present the odd-even merge component as a ternary relation on tuples of
Boolean values. The relation OEMerge(A,B,C) is defined as a conjunction of
comparators and expresses that merging sorted lists A and B, each of length
n gives sorted list C, of length 2n. The relation is defined for n = 1 and then
recursively for n > 1 as follows:

OEMerge(〈a1〉, 〈b1〉, 〈c1, c2〉) ↔ comparator(a1, b1, c1, c2).

OEMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈d1, c2, . . . , c2n−1, en〉) ↔
OEMerge(〈a1, a3 . . . , an−1〉, 〈b1, b3 . . . , bn−1〉, 〈d1, . . . , dn〉)

∧
OEMerge(〈a2, a4 . . . , an〉, 〈b2, b4 . . . , bn〉, 〈e1, . . . , en〉)

∧∧n−1
i=1 comparator(ei, di+1, c2i, c2i+1).

The odd-even sorting network [2] is a binary relation on sequences of length 2m

and is defined as follows for m = 0 and recursively for m > 0. For m > 0 we
denote the sequence length 2m = 2n.

OESort(〈a1〉, 〈a1〉).
OESort(〈a1, . . . , a2n〉, 〈c1, . . . , c2n〉) ↔

OESort(〈a1, . . . , an〉, 〈d1, . . . , dn〉)
∧

OESort(〈an+1, . . . , a2n〉, 〈d′1, . . . , d′n〉)
∧

OEMerge(〈d1, . . . , dn〉, 〈d′1, . . . , d′n〉, 〈c1, . . . , c2n〉).
The recursive definition of an odd-even sorting network unravels to a network

of merge components. Figure 1 illustrates the network that defines the relation
between 8 unsorted “inputs”, on the left, and their 8 sorted “outputs”, on the
right. Each depicted odd-even merger represents a relation between two sorted
sequences of length n (on its left side) and their sorted merge of length 2n (on
its right side).
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The Pairwise Sorting Network

The pairwise sorting network, due to Parberry [7], is also based on the merge-
sort approach but with one simple, yet influential, difference in the first stage
of the construction: To sort a list of 2n values, first split the list “pairwise” into
two lists, the first with the n “larger” values from these pairs, and the second
with the n smaller values. The resulting network is termed “pairwise” because
of the way the elements to be sorted are pairwise split before recursively sorting
the two parts and merging the resulting sorted lists.

PWSplit(〈a1, . . . , a2n〉, 〈b1, . . . bn〉, 〈c1, . . . , cn〉) ↔∧
1≤i≤n

comparator(a2i−1 , a2i, bi, ci).

The pairwise sorting network [7] is a binary relation on sequences of length 2m

and is defined as follows for m = 0 and recursively for m > 0. For m > 0 we
denote the sequence length 2m = 2n.

PWSort(〈a1〉, 〈a1〉).
PWSort(〈a1, . . . , a2n〉, 〈d1, . . . , d2n〉) ↔

PWSplit(〈a1, . . . , a2n〉, 〈b1, . . . bn〉, 〈c1, . . . , cn〉)
∧

PWSort(〈b1, . . . , bn〉, 〈b′1, . . . , b′n〉)
∧

PWSort(〈c1, . . . , cn〉, 〈c′1, . . . , c′n〉)
∧

PWMerge(〈b′1, . . . , b′n〉, 〈c′1, . . . , c′n〉, 〈d1, . . . , d2n〉).

The description of the pairwise merger (PWMerge) given by Parberry in [7] is
not straightforward to follow. We provide a simple specification of the PWMerge
relation in the next section. For now, let us note a property of the pairwise
merger by comparison to the odd-even merger. Consider the merging of two lists
of bits, 〈a1, . . . , an〉 and 〈b1, . . . , bn〉. The odd-even merger assumes only that the
two lists are sorted. In contrast, the pairwise merger assumes also that each pair
〈ai, bi〉 is sorted “internally”. Namely, that ai ≥ bi. Indeed, in [7], the pairwise
merger is called: “sorting sorted pairs”.

The recursive definition of a pairwise sorting network unravels to a network
of split and merge components. Figure 2 illustrates the network that defines the
relation between 8 unsorted “inputs”, on the left, and their 8 sorted “outputs”,

Fig. 2. A pairwise sorting network as a network of splitters and pairwise mergers
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on the right. Scanning from left to right, we first have the network of splitters
and then a network of mergers.

3 Sorting Networks – From Parberry Back to Batcher

In this section we clarify a precise relationship between the odd-even and pairwise
sorting networks. While very simple, this relationship is not to be found in the
literature. This relationship will provide the basis for our argument that pairwise
sorting networks are significantly better than odd-even networks in the context of
cardinality constraints. Parberry, in [7], provides little insight when stating that
(1) “one can prove by induction on n that the n input pairwise sorting network
is not isomorphic to the odd-even sorting network”; and (2) “it is also easy to
prove that the pairwise sorting network has the same size and depth bounds as
Batcher’s odd-even sorting network”.

We first introduce a simple recursive definition for the pairwise merger and
claim that it is indeed a suitable pairwise merger and that it has the same size
and depth bounds as Parberry’s pairwise merger.

Theorem 1 (pairwise merge). Consider the following specification of a pair-
wise merger for merging sequences of length n defined for n = 1 and then recur-
sively for n > 1.

PWMerge(〈a1〉, 〈b1〉, 〈a1, b1〉).
PWMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈d1, c2, . . . , c2n−1, en〉) ↔

PWMerge(〈a1, a3 . . . , an−1〉, 〈b1, b3 . . . , bn−1〉, 〈d1, . . . , dn〉)
∧

PWMerge(〈a2, a4 . . . , an〉, 〈b2, b4 . . . , bn〉, 〈e1, . . . , en〉)
∧∧n−1

i=1 comparator(ei, di+1, c2i, c2i+1).

This specification is: (1) a correct merger for the pairwise sorting network; (2) a
network of depth logn and size n logn−n+1; and (3) isomorphic to the iterative
specification given by Parberry in [7] (pg.4).

Proof. (sketch) For (1) we need to show that if 〈a1, . . . , an〉 and 〈b1 . . . , bn〉 are
sorted sequences and for each position ai ≥ bi, then 〈d1, c2, . . . , c2n−1, en〉 is
sorted (and has the same total number of 1’s and 0’s as in 〈a1, . . . , an〉 and
〈b1 . . . , bn〉). This follows by a simple induction. Showing (2), is also straightfor-
ward, solving S(1) = 0 and S(n) = 2S(n/2)+ (n−1) for the size, and D(1) = 0,
D(n) = D(n/2) + 1 for the depth. (3) Follows by induction on n, which we
assume to be a power of 2. Assuming that the two recursive calls to PWMerge
are isomorphic to their iterative specifications, we have that they each consist in
(log2 n − 1) layers generated by the iterations of Parberry’s specification. Each
respective pair of these layers (one from the odd call and one from the even call)
are shown to combine to give a corresponding layer of the full network. The last
iteration layer in the full network is precisely that introduced by the conjunction∧n−1

i=1 comparator(ei, di+1, c2i, c2i+1).

We now proceed to observe the relationship between the pairwise and odd-even
mergers.
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Theorem 2 (odd-even merge). An odd-even merger is equivalent to the com-
position of a pairwise split and a pairwise merger. For n ≥ 1,

OEMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, . . . , c2n〉) ↔
PWSplit(〈a1, b1, a2, b2, . . . , an, bn〉, 〈a′1, a′2 . . . , a′n〉, 〈b′1, b′2 . . . , b′n〉)

∧
PWMerge(〈a′1, a′2 . . . , a′n〉, 〈b′1, b′2 . . . , b′n〉, 〈c1, . . . , c2n〉).

Proof. (brief description) The proof is by induction on n and follows the struc-
ture of the definition of OEMerge where the theorem holds for the recursive calls
to OEMerge. (See Appendix.)

Figure 3 illustrates the relationship between the two types of sorting networks.
There are three networks in the figure. On the left, we have a pairwise sorting
network (of size 8). In the middle of this network, the column of four splitters
(each of size 2) followed by the column of four pairwise mergers (also of size 2),
form together a single column of four odd-even mergers, each of which is a 2× 2
sorter. These 2 × 2 sorters are boxed in the left network. Now, the column of
two splitters (each of size 4) can migrate to the right, because splitting before or
after sorting has the same effect. This migration results in the middle network
of the figure. In this middle network we now have, in the middle of the network,
two 4× 4 odd-even sorters. These 4× 4 sorters are boxed in the middle network.
The transition to the right network is once again by migrating a splitter over
the two smaller sorting networks. This results in an 8 × 8 odd-even network.
Figure 4 provides a high-level perspective on this transition. The left is a pairwise
sorting network, composed of a split component followed by two recursive sorting
networks and finishing with a pairwise merger. The splitter can be migrated to

Fig. 3. Migration of splitters: from pairwise to odd-even

Fig. 4. High-level view on: from pairwise to odd-even
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the right, as splitting and sorting (twice) has the same effect as (twice) sorting
and then splitting.

In [4] and in [1], the authors prove that for the CNF encodings of cardinality
constraints using odd-even sorting networks, unit propagation preserves arc con-
sistency. This means that for a constraint of the form x1 + x2 + · · ·+ xn < k, as
soon as k−1 of the xi variables have become true, then the rest will become false
by unit propagation. If 〈x1, . . . , xn〉 and 〈y1, . . . , yn〉 are the inputs and outputs
of an odd-even sorting network, it means that setting any k − 1 variables from
〈x1, . . . , xn〉 the value 1, then by unit propagation the first k − 1 variables in
〈y1, . . . , yn〉 will be assigned the value 1. Moreover, if also yk = 0 then the rest
of the n− k + 1 variables from 〈x1, . . . , xn〉 will be assigned the value 0 by unit
propagation. We note that pairwise sorting networks enjoy all of the same arc
consistency properties as do the odd-even networks. The proofs of these claims
are similar to those presented in [1]. We will see that pairwise networks enjoy one
additional propagation property which does not hold for the odd-even networks.

4 The Pairwise Cardinality Network

In this section we show how the application of a pairwise sorting network to
encode a cardinality constraint x1 + x2 + · · · + xn ≺ k can be collapsed to a
network with O(n log2 k) comparators. To obtain this result we first enhance the
definition of the pairwise merger, adding a linear number of clauses which express
that the outputs of the merger are sorted. These clauses are redundant in the
sense that in any satisfying assignment of the formula representing a pairwise
sorting network, the outputs of the mergers are sorted anyway. Their purpose is
to amplify propagation. We focus on the case when ≺ is the less-than relation.
We assume that n is a power of 2 and that k ≤ n/2 + 1. Otherwise we can
encode the dual constraint (counting the number of empty seats is easier than
counting the passengers in an almost full aircraft). In general, it is common that
k is significantly smaller than n and in the worst case k = n/2+1. The following
definition specifies the enhanced pairwise merger.

Definition 1 (enhanced pairwise merger). The enhanced pairwise merger
is defined for n ≥ 1

PWMerge′(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, c2, . . . , c2n〉) ↔
PWMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, c2, . . . , c2n〉)

∧
sorted(〈c1, c2, . . . , c2n〉.

where
sorted(〈c1, . . . , c2n〉) ↔

∧2n−1
i=1 (ci ∨ ¬ci+1).

The pairwise cardinality network for x1 + x2 + · · · + xn < k is obtained as
a pairwise sorting network with inputs x1, . . . , xn and outputs y1, . . . , yn. We
assume that the pairwise mergers in the network are enhanced and we set the
kth output yk to zero (by adding the clause ¬yk). The network then collapses to
a smaller network by propagating the known value yk = 0 (backwards) through
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the network. In particular, from the rightmost enhanced pairwise merger we
have sorted(〈y1, . . . , yn〉) and obtain from yk = 0 by unit propagation yi = 0 for
k < i ≤ n.

The following definition specifies how comparators may be eliminated due to
partially known inputs. It works like this (we focus on the propagation of zero’s):
For each comparator, if the upper output value is zero then we can remove the
comparator, setting the other output bit to zero as well as the two input bits;
and if either one of the input bits is zero, then we can remove the comparator
setting the lower output bit to zero while the upper output bit is identified
with the other input bit. The elimination of comparators is a simple form of
partial evaluation and applied at the comparator level, before representing the
network as a CNF formula. Except for the identification of an output bit with
an input bit (e.g. b = c in the definition below), it could also be performed as
unit propagation at the CNF level.

Definition 2 (partial evaluation of comparators).

comparator(a, b, c, d) ∧ ¬c |=pe ¬a ∧ ¬b ∧ ¬d
comparator(a, b, c, d) ∧ ¬a |=pe ¬d ∧ (b = c)
comparator(a, b, c, d) ∧ ¬b |=pe ¬d ∧ (a = c)

Figure 5 illustrates an 8 by 8 pairwise sorter and details the comparators in each
of the components (as vertical lines between the wires). The figure highlights
the rightmost merger

PWMerge(〈a1, . . . , a4〉, 〈b1, . . . , b4〉, 〈c1, . . . , c8〉)

To express the cardinality constraint x1 +x2 + · · ·+x8 < 4, we set the output c4
to 0. In the figure, applying partial evaluation, five of the nineteen comparators
consequently become redundant (indicated by dashed lines) and can be removed.
The reader is encouraged to check that in the corresponding odd-even network
only 4 comparators can be eliminated.

Fig. 5. A size 8 pairwise cardinality network (dashed comparators are redundant)
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The next two theorems express a propagation property of the pairwise merger.
First, consider the relation PWMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, c2, . . . , c2n〉)
specified in Theorem 1. In the context of the pairwise sorting network, the in-
puts, upper 〈a1, . . . , an〉 and lower 〈b1 . . . , bn〉 to the merger, are both sorted as
sequences as well as sorted pairwise. It means that (in any satisfying assignment)
there are at least as many ones in the upper inputs as in the lower inputs. Hence,
if there are less than k ones in the output sequence (namely, ck = 0), then there
must be less than 
k/2� ones in the lower input sequence (namely b�k/2� = 0).
This facilitates constraint propagation in the design of the pairwise cardinality
network. For example, in Figure 5, The zero on output c4 of the rightmost merger
propagates to a zero on its lower input, b2. This process continues as b2 is also
an output of the next merger (to the left).

The next theorem states that if there are less than k ones in the outputs
of the merger, then it follows from the definition of the merger and partial
evaluation alone that there are less than 
k/2� ones in the lower set of inputs.
The consequence itself is obvious for each merger in the context of the sorting
network (because in any satisfying assignment there are more ones in the upper
set of inputs than in the lower). That it follows (independent of the context of
the merger) by partial evaluation is not obvious and is useful below to simplify
a pairwise network. Note that the claim is with regards to the non-enhanced
pairwise merger. Namely it does not rely on the fact that the outputs of the
merger are sorted.

Theorem 3. For k ≤ n,

PWMerge
(
〈a1, . . . , an〉, 〈b1 . . . , bn〉,
〈c1, c2, . . . , c2n−1, c2n〉

)
∧ (

∧2n
i=k ci) |=pe (

∧n
j=�k/2� bj)

Proof. (brief description) The proof is by induction on n. It follows from the
recursive definition of PWMerge focusing on the parity of k and of 
k/2�. (See
Appendix.)

The next theorem is similar. It states that if there are less than k ones in the
outputs of the merger, then it follows from partial evaluation that for the smallest
k′ ≥ k which is a power of 2, the k′-th bit in the upper set of inputs is a zero.
Once again, it is obvious that in the actual context of the merger in the sorting
network, all of the inputs ak, . . . , an will be set to zero. But the weaker result
(for k′) follows from the definition of the merger and partial evaluation alone.

Theorem 4. Let k ≤ n and let k′ be the smallest power of 2 that is greater or
equal to k. Then

PWMerge
(
〈a1, . . . , an〉, 〈b1 . . . , bn〉,
〈c1, c2, . . . , c2n−1, c2n〉

)
∧ (

∧2n
i=k ci) |=pe ak′

The proof is similar to that of Theorem 3 but with fewer cases due to the fact
that k′ is a power of 2.
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Proof. (by induction on n) The base case for n = 1 is trivial. For n > 1 assume
that the statement holds for all n′ < n and denote k′ = 2p. We have(∧n−1

i=1 comparator(ei, di+1, c2i, c2i+1)
∧ (

∧2n
i=k ci)

)
|=pe

n∧
i=p

ei (1)

The inductive hypothesis implies that the pth element, a2p = ak′ , of the sequence
〈a2, a4, . . . , an〉 is zero. So we get ak′ as claimed.

It is important to note that Theorem 4 does not claim that all of the aj with
j ≥ k′ become negated by partial evaluation. This does not hold. However, when
using enhanced pairwise mergers we have sorted(〈a1, . . . , an〉) from the corre-
sponding merger where 〈a1, . . . , an〉 are outputs. This gives by unit propagation
that aj = 0 for k′ ≤ j ≤ n.

The next theorem is inspired by the work presented in [1] where the authors
observe, in the context of the n× n → 2n odd-even sorting network, that if we
are only interested in the n+1 largest elements of the output, the merger can be
simplified to a network with two inputs, each of length n and an output of length
n + 1. We show a similar result for the pairwise merger but emphasize that if
we are only interested in the n + 1 largest outputs because cn+1=0, . . . , c2n=0
(as in the context of a cardinality constraint with k ≤ n + 1), then we obtain
by partial evaluation a simplified merge network with n + 1 outputs in which
the last output is surely a zero. We keep it in the presentation to simplify the
proofs.

Theorem 5. Consider the following specification for a simplified pairwise merger.

SMerge(〈a1〉, 〈b1〉, 〈a1, b1〉).
SMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈d1, c2, . . . , cn+1〉) ↔

SMerge(〈a1, a3 . . . , an−1〉, 〈b1, b3 . . . , bn−1〉, 〈d1, . . . , dn/2+1〉)
∧

SMerge(〈a2, a4 . . . , an〉, 〈b2, b4 . . . , bn〉, 〈e1, . . . , en/2+1〉)
∧

en/2+1 ∧
∧n/2

i=1 comparator(ei, di+1, c2i, c2i+1).

Then,

PWMerge
(
〈a1, . . . , an〉, 〈b1 . . . , bn〉,
〈c1, c2, . . . , c2n−1, c2n〉

)
∧

2n∧
i=n+1

ci |=pe SMerge

⎛⎝ 〈a1, . . . , an〉,
〈b1 . . . , bn〉,
〈c1, . . . , cn+1〉

⎞⎠
Proof. (by induction on n) For n = 1 there is nothing to prove. Let us observe
the case, n = 2. We have from the definitions

PWMerge(〈a1, a2〉, 〈b1, b2〉, 〈a1, c2, c3, b2〉) = comparator(a2, b1, c2, c3)
SMerge(〈a1, a2〉, 〈b1, b2〉, 〈a1, c2, c3〉) = b2 ∧ comparator(a2, b1, c2, c3)

And the result holds:

PWMerge
(
〈a1, a2〉, 〈b1, b2〉, 〈a1, c2, c3, b2〉

)
∧b2 |=pe SMerge

(
〈a1, a2〉, 〈b1, b2〉,
〈a1, c2, c3〉

)
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For the general case n > 2. Assume that
∧2n

i=n+1 ci. Partial evaluation of the
comparator(ei, di+1, c2i, c2i+1) from the definition of PWMerge (for n/2 + 1 ≤
i ≤ n− 1) gives

∧n
i=n/2+2 di and

∧n
j=n/2+1 ej , and from the same definition we

obtain that c2n = en. The remaining comparators from this part of the definition
are

S1 =
∧i=n/2

i=1 {comparator(ei, di+1, c2i, c2i+1)}
Now, applying the inductive hypothesis on the odd and the even cases we get:

S2 =
(

SMerge(〈a1, a3 . . . , an−1〉, 〈b1, b3 . . . , bn−1〉, 〈d1, . . . , dn/2+1〉)
∧

SMerge(〈a2, a4 . . . , an〉, 〈b2, b4 . . . , bn〉, 〈e1, . . . , en/2+1〉) ∧ en/2+1

)
The result follows because SMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, . . . , cn+1〉) ↔
S1 ∧ S2.

The next theorem complements the previous one. Consider

PWMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, c2, . . . , c2n−1, c2n〉)

When negating the outputs 〈ck, . . . , c2n〉 and assuming that 〈a1, . . . , an〉 are con-
strained to be sorted, the pairwise merger reduces by partial evaluation to a
simplified merger, the size and depth of which depend exclusively on k. This is
the key property that enables the construction of a cardinality network of size
O(n log2 k). Looking over a pairwise sorting network from outputs to inputs,
we have a series of mergers followed by a series of splitters. If the first merger
(from the outputs) has zeros from its kth position then at the next level there
are zeros from the kth and from the (k/2)th positions. After log k levels, some of
the mergers become trivial (zeros on all inputs and outputs).

Theorem 6. Let k ≤ n and let k′ be the smallest power of 2 that is greater or
equal to k. Then

PWMerge

⎛⎝ 〈a1, . . . , an〉,
〈b1, . . . , bn〉,
〈c1, . . . , c2n〉

⎞⎠ ∧ sorted(〈a1, . . . , an〉) ∧
∧2n

i=k ci |=pe

SMerge
(
〈a1, . . . , ak′〉, 〈b1, . . . , bk′〉, 〈c1, . . . ck′+1〉

)
Proof. (See Appendix.)

We are now in position to state the main theorem of the paper.

Theorem 7. The pairwise cardinality network encoding a cardinality constraint
x1+x2+· · ·+xn ≺ k collapses by partial evaluation to a network with O(n log2 k)
comparators.

Proof. (sketch) Construct an n × n pairwise sorting network. For simplicity,
assume that k and n are powers of 2 and that k ≤ n/2.

1. View the network like this: in the middle we have n/k sorting networks of
size k × k. These give a total size of O(n/k ∗ k log2 k) = O(n log2 k).
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2. On the “right” of these k × k networks we have 1 + 2 + · · · + n
2k = n

k − 1
pairwise mergers, each of size O(k log k) after partial evaluation. This gives
another O(n log k).

3. Now view the full sorting network. Let c(n, k) denote the number of compara-
tors in the split components of the network after partial evaluation originat-
ing from setting the kth output to zero. That c(n, k) is in O(n log2 k) comes
from the recurrence

c(n, k) =

⎧⎨⎩
0 if k = 1
k log2 k if n = k and k > 1
c(n/2, k) + c(n/2, k/2) + n/2 otherwise.

That the pairwise cardinality network for n variables and bound k reduces by
partial evaluation to a network with O(n log2 k) comparators is theoretically
pleasing. However, note that it is also possible to build the same reduced network
directly using simplified pairwise mergers and propagating the bound k which is
halved in each step for the lower recursively defined pairwise sorter.

Finally, we note that Theorem 7 holds also when encoding a cardinality net-
work using an odd-even sorting network. The proof is based on the observation
that an odd-even merger OEMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, . . . , c2n〉) where
ck = 0 simplifies to a network of size O(k log k).

5 A Preliminary Evaluation

This section describes a preliminary comparison of the use of odd-even and
pairwise sorting networks for the applications involving cardinality constraints.

Table 1 shows some statistics regarding the size of the networks obtained from
sorting networks after application of partial evaluation. Here size is measured
counting number of comparators. Note that each comparator can be encoded
using 6 CNF clauses, or alternatively, based on the technique proposed in [1] as
a “half comparator” and encoded using only 3 clauses.

The first column in Table 1 indicates the size of the network, the second
column indicates the number of comparators before application of unit propaga-
tion. The third column indicates the type of network considered, pairwise (pw)

Table 1. # of comparators for cardinality networks obtained via partial evaluation

n full Method k=4 k=8 k=16 k=32 k=n/2
128 1471 pw 258 416 644 955 1248

oe 315 572 879 1148 1335
256 3839 pw 515 812 1226 1841 3288

oe 635 1164 1851 2532 3510
1024 24063 pw 2053 3143 4475 6425 20933

oe 2555 4716 7683 11268 22260
2048 58367 pw 4102 6230 8680 12056 51130

oe 5115 9452 15459 23048 54259
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Table 2. Results for Boolean cardinality matrix problems (n, k1, k2) with n = 100

Measure Method k1=5 k1=10 k1=15 k1=20 k1=25
cnf size pw 350 542 763 761 782
(×1000) oe 467 683 883 896 920

k2 = k1 + 2 card 473 665 760 878 914
cpu time pw 6 19 27 89 270

(sec.) oe 23 1152 2395 946 1250
card 41 382 2916 1110 832

cnf size pw 350 554 763 766 782
(×1000) oe 467 697 883 901 920

k2 = k1 + 3 card 509 684 840 904 924
cpu time pw 5 8 46 100 280

(sec.) oe 37 257 2583 1122 1546
card 27 621 1798 1317 1158

or odd-even (oe). The next columns indicate the size of the network after unit
propagation for various values of k. The last column considers the worst case
with k = n/2. The table indicates that cardinality networks expressed using
pairwise sorting networks are more amenable to partial evaluation.

Table 2 describes results when solving a Boolean cardinality matrix problem
encoded using three techniques. An instance, (n, k1, k2), is to find values for the
elements of an n × n matrix of Boolean variables where the cardinality of each
row and column is between values k1 and k2. The table summarizes results for
n = 100, for various values of k1 with k2 = k1 + 2 and k2 = k1 + 3.

The first column indicates the value of k2 in terms of k1: k2 = k1 + 2 or
k2 = k1 + 3. The second column indicates what is being measured: CNF size
after partial evaluation (in 1000’s of clauses) or CPU time for solving the problem
(in seconds). We are running MiniSAT version 2 through its Prolog interface
as described in [3]. The machine is a laptop running Linux with 2 Genuine
Intel(R) CPUs, each 2GHz with 1GB RAM. The third column indicates the
encoding method: using a pairwise cardinality network (based on a pairwise
sorting network) (pw), or using an odd-even sorting network (oe), or using the
cardinality network described in [1] (based on a construction built from a cascade
of odd-even sorting networks). The next columns provide the data for various
values of k1. The results indicate a clear advantage for the use of pairwise sorting
networks.

6 Summary and Conclusion

Sorting networks are often applied when encoding cardinality constraints. We
argue the advantage in basing such encodings on the pairwise sorting network
instead of on the odd-even sorting network as typically chosen, for example in
[4] and in [1].

Our presentation clarifies the precise relationship between the pairwise net-
work introduced in 1992 and the odd-even network from 1968. The simplicity
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of this connection is surprising and perhaps demystifies the intuition underlying
the pairwise network, which from 1992 is not referred to at all in the literature.

In contrast to previous works, such as [8] and [1], which encode cardinality
constraints by application of specially constructed networks of comparators, our
contribution is based directly on the (automatic) simplification of a sorting net-
work. It is straightforward to apply this kind of simplification directly on the
procedure that generates the network for x1 + x2 + · · ·+ xn ≺ k, instead of first
generating the O(n log2 n) sorting network and then simplifying it to a network
of size O(n log2 k).

Acknowledgement. We thank the anonymous reviewers for useful comments on
the earlier version of this paper.
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A Appendix: Proof Sketches

Proof. (of Theorem 2) By induction on n. The base case, n = 1, follows directly
from the definitions. For n > 1, assume that the theorem holds for all n′ < n.
By definition,

OEMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈d1, c2, . . . , c2n−1, en〉) ↔
OEMerge(〈a1, a3 . . . , an−1〉, 〈b1, b3 . . . , bn−1〉, 〈d1, . . . , dn〉)

∧
OEMerge(〈a2, a4 . . . , an〉, 〈b2, b4 . . . , bn〉, 〈e1, . . . , en〉)

∧∧n−1
i=1 comparator(ei, di+1, c2i, c2i+1)

and the induction hypothesis holds for the recursive odd and even cases giving:
OEMerge(〈a1, a3, . . . , an−1〉, 〈b1, b3, . . . , bn−1〉, 〈d1, . . . , dn〉) ↔

PWSplit
(
〈a1, b1, a3, b3, . . . , an−1, bn−1〉
〈a′

1, a
′
3 . . . , a′

n−1〉, 〈b′1, b′3 . . . , b′n−1〉
)
∧

PWMerge(〈a′1, a′3, . . . , a′n−1〉, 〈b′1, b′3, . . . , b′n−1〉, 〈d1, . . . , dn〉)
OEMerge(〈a2, a4, . . . , an〉, 〈b2, b4, . . . , bn〉, 〈e1, . . . , en〉) ↔

PWSplit
(
〈a2, b2, a4, b4, . . . , an, bn〉,
〈a′

2, a
′
4 . . . , a′

n〉, 〈b′2, b′4 . . . , b′n〉
)
∧

PWMerge(〈a′2, a′4, . . . , a′n〉, 〈b′2, b′4, . . . , b′n〉, 〈e1, . . . , en〉)
substituting this in the definition (and rearranging the conjuncts) gives:

OEMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, . . . , c2n〉) ↔

PWSplit
(
〈a1, b1, a3, b3, . . . , an−1, bn−1〉
〈a′1, a′3 . . . , a′n−1〉, 〈b′1, b′3 . . . , b′n−1〉

)
∧

PWSplit
(
〈a2, b2, a4, b4, . . . , an, bn〉,
〈a′2, a′4 . . . , a′n〉, 〈b′2, b′4 . . . , b′n〉

)
∧

PWMerge(〈a′1, a′3, . . . , a′n−1〉, 〈b′1, b′3, . . . , b′n−1〉, 〈d1, . . . , dn〉)∧
PWMerge(〈a′2, a′4, . . . , a′n〉, 〈b′2, b′4, . . . , b′n〉, 〈e1, . . . , en〉)∧∧n−1

i=1 comparator(ei, di+1, c2i, c2i+1)
which by definitions of PWSplit and PWMerge gives the required result.

OEMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈c1, . . . , c2n〉) ↔
PWSplit(〈a1, b1, a2, b2, . . . , an, bn〉, 〈a′1, a′2 . . . , a′n〉, 〈b′1, b′2 . . . , b′n〉)

∧
PWMerge(〈a′1, a′2 . . . , a′n〉, 〈b′1, b′2 . . . , b′n〉, 〈c1, . . . , c2n〉)

Proof. (of Theorem 3). By induction on n. The base case, n = 1, holds vacuously.
For n > 1, assume that the statement holds for all n′ < n and consider the
following cases according to the parities of k and 
k/2�. Recall that,

PWMerge(〈a1, . . . , an〉, 〈b1 . . . , bn〉, 〈d1, c2, . . . , c2n−1, en〉) ↔
PWMerge(〈a1, a3 . . . , an−1〉, 〈b1, b3 . . . , bn−1〉, 〈d1, . . . , dn〉)

∧
PWMerge(〈a2, a4 . . . , an〉, 〈b2, b4 . . . , bn〉, 〈e1, . . . , en〉)

∧∧n−1
i=1 comparator(ei, di+1, c2i, c2i+1).

Let {b′1, b′2, . . . , b′n/2}, and {b′′1 , b′′2 , . . . , b′′n/2} be the the odd and the even subse-
quences of {b1, b2, . . . , bn} respectively. We consider two cases depending on the
parity of k.
k is even: Denote k = 2p. We have(∧n−1

i=1 comparator(ei, di+1, c2i, c2i+1)
∧ (

∧2n
i=k ci)

)
|=pe (

n∧
i=p+1

di) ∧ (
n∧

j=p

ej) (2)
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Now consider two subcases depending on the parity of p: (1) Assume p = 2q.
From Equation (2) and the inductive hypothesis we get

∧n/2
i=q+1 b

′
i and

∧n/2
j=q b

′′
j

which together imply that
∧n

i=k/2 bi. (2) Assume p = 2q+ 1. From Equation (2)

and the inductive hypothesis we get
∧n/2

i=q+1 b
′
i and

∧n/2
j=q+1 b

′′
j which together

imply that
∧n

i=p bi or in terms of k that
∧n

i=k/2 bi.
k is odd: Denote k = 2p+ 1. We have(∧n−1

i=1 comparator(ei, di+1, c2i, c2i+1)
∧ (

∧2n
i=k ci)

)
|=pe (

n∧
i=p+2

di) ∧ (
n∧

j=p+1

ej). (3)

Two subcases are considered for the parity of p: (1) Assume p = 2q. From Equa-
tion (3) and the inductive hypothesis we get

∧n/2
i=q+1 b

′
i and

∧n/2
j=q+1 b

′′
j . There-

fore,
∧n

i=p+1 bi or
∧n

i=�k/2� bi. (2) Assume p = 2q+1. From Equation (3) and the

inductive hypothesis we get
∧n/2

i=q+2 b
′
i and

∧n/2
j=q+1 b

′′
j . Therefore,

∧n
i=p+1 bi or∧n

i=�k/2� bi. In all four subcases we have
∧n

i=�k/2� bi which proves the theorem.

To prove Theorem 6 we use the following lemmata

Lemma 1. For n > 1,

PWMerge

⎛⎝ 〈a1, . . . , an〉,
〈b1 . . . , bn〉,
〈c1, . . . , c2n〉

⎞⎠ ∧
n∧

i=n/2+1

(ai ∧ bi) |=pe PWMerge

⎛⎝ 〈a1, . . . , an/2〉,
〈b1 . . . , bn/2〉,
〈c1, . . . , cn〉

⎞⎠ ∧
2n∧

i=n+1

ci

Proof. (by induction on n). For the base case n = 2 we have (by definition)
PWMerge(〈a1, a2〉, 〈b1, b2〉, 〈a1, c2, c3, b2〉) ↔ comparator(a2, b1, c2, c3)

PWMerge(〈a1〉, 〈b1〉, 〈a1, b1〉) ↔ true

We need to show that if a2 and b2 are negated then c3 and b2 become negated,
and that 〈a1, b1〉 = 〈a1, c2〉. Both facts follow because when a2 = 0 the compara-
tor gives by partial evaluation that c3 = 0 and b1 = c2.

For the general case, we apply the inductive hypothesis (*) to the odd and
the even cases in the definition of the pairwise merger. Giving respectively:

PWMerge

⎛⎝ 〈a1, a3, . . . , an−1〉,
〈b1, b3 . . . , bn−1〉,
〈d1, . . . , dn〉

⎞⎠ ∧∧n/2
i=n/4+1(a2i−1 ∧ b2i−1) |=pe

PWMerge

⎛⎝ 〈a1, a3, . . . , an/2−1〉,
〈b1, b3 . . . , bn/2−1〉,
〈d1, . . . , dn/2〉

⎞⎠ ∧∧n
i=n/2+1 di

PWMerge

⎛⎝ 〈a2, a4, . . . , an〉,
〈b2, b4 . . . , bn〉,
〈e1, . . . , en〉

⎞⎠ ∧∧n/2
i=n/4+1(a2i ∧ b2i) |=pe

PWMerge

⎛⎝ 〈a2, a4, . . . , an/2〉,
〈b2, b4 . . . , bn/2〉,
〈e1, . . . , en/2〉

⎞⎠ ∧∧n
i=n/2+1 ei

Several of the comparators from this application (*) are reduced by partial
evaluation as follows:

en ∧
n−1∧

i=n/2+1

ei ∧ di+1 ∧ comparator(ei, di+1, c2i, c2i+1) |=pe

2n∧
i=n+2

ci
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en/2 ∧ dn/2+1 ∧ comparator(en/2, dn/2+1, cn, cn+1) |=pe cn+1

Together this gives
∧2n

i=n+1 ci, and now the required result follows directly from
the definition of the pairwise merger.

Lemma 2. Let k ≤ n and let k′ be the smallest power of 2 which is greater or
equal to k. Then,

PWMerge

⎛⎝ 〈a1, . . . , an〉,
〈b1 . . . , bn〉,
〈c1, . . . , c2n〉

⎞⎠ ∧ ∧n
i=k′+1 ai ∧ bi |=pe PWMerge

⎛⎝ 〈a1, . . . , ak′ 〉,
〈b1 . . . , bk′ 〉,
〈c1, . . . , c2k′ 〉

⎞⎠ ∧ ∧2n
i=2k′+1 ci

Proof. The proof is by induction on n. For n = k′ it is trivial. For the general
case, n > k′, we apply the induction hypothesis (*) to the odd and even cases
in the definition of the pairwise merger. Note that each such application gives a
pairwise merger of size k′:

PWMerge

⎛⎝ 〈a1, a3, . . . , an−1〉,
〈b1, b3 . . . , bn−1〉,
〈d1, . . . , dn〉

⎞⎠ ∧∧n/2

i=k′/2+1(a2i−1 ∧ b2i−1) |=pe

PWMerge

⎛⎝ 〈a1, a3, . . . , a2k′−1〉,
〈b1, b3 . . . , b2k′−1〉,
〈d1, . . . , d2k′〉

⎞⎠ ∧∧n
i=2k′+1 di

PWMerge

⎛⎝ 〈a2, a4, . . . , an〉,
〈b2, b4 . . . , bn〉,
〈e1, . . . , en〉

⎞⎠ ∧∧n/2

i=k′/2+1 a2i ∧ b2i∧ |=pe

PWMerge

⎛⎝ 〈a2, a4, . . . , a2k′〉,
〈b2, b4 . . . , b2k′〉,
〈e1, . . . , e2k′〉

⎞⎠ ∧∧n
i=2k′+1 ei

The application (*) of the pairwise merger definition introduces comparators
which are reduced by partial evaluation:

en ∧
n−1∧

i=2k′+1

ei ∧ di+1 ∧ comparator(ei, di+1, c2i, c2i+1) |=pe

2n∧
i=4k+2

ci

e2k′ ∧ d2k′+1 ∧ comparator(e2k′ , d2k′+1, c4k′ , c4k′+1) |=pe c4k′+1

Together this gives
∧2n

i=4k′+1 ci and from the definition of the pairwise merger
we get PWMerge(〈a1, . . . , a2k′〉, 〈b1 . . . , b2k′〉, 〈c1, . . . , c4k′ 〉) ∧ ∧2n

i=4k′+1 ci which to-
gether with the lemma statement and application of the previous lemma gives:
PWMerge(〈a1, . . . , a2k′〉, 〈b1 . . . , b2k′〉, 〈c1, . . . , c4k′〉) ∧

∧2k′

i=k′+1 ai ∧ bi |=pe

PWMerge(〈a1, . . . , ak′ 〉, 〈b1 . . . , bk′〉, 〈c1, . . . , c2k′ 〉) ∧
∧4k

i=2k′+1 ci.

These two give us the required PWMerge(〈a1, . . . , ak′〉, 〈b1 . . . , bk′〉, 〈c1, . . . , c2k′〉)
∧
∧2n

i=2k′+1 ci.

Proof. (of Theorem 6) From Theorem 3 we have:

PWMerge
(
〈a1, . . . , an〉, 〈b1 . . . , bn〉,
〈c1, c2, . . . , c2n−1, c2n〉

)
∧ (

∧2n
i=k′ ci) |=pe (

∧n
j=k′/2 bj)

In particular we have
∧n

i=k′+1 bi. In addition, from Theorem 4 we have:

PWMerge
(
〈a1, . . . , an〉, 〈b1 . . . , bn〉,
〈c1, c2, . . . , c2n−1, c2n〉

)
∧ (

∧2n
i=k′ ci) |=pe ak′
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and consequently that ak′ ∧sorted(〈a1, . . . , an〉) |=pe

∧n
i=k′+1 ai. From lemma 2,

and the above we obtain PWMerge(〈a1, . . . , ak′〉, 〈b1, . . . , bk′〉, 〈c1, . . . , c2k′〉).
We are given that

∧2k′

i=k′+1 ci. Hence, according to Theorem 5 we get
SMerge(〈a1, . . . , ak′〉, 〈b1, . . . , bk′〉, 〈c1, . . . ck′+1〉).

B Appendix: Specifying Sorting Networks in Prolog

This appendix illustrates working Prolog specifications for the sorting network
constructions presented in the paper. The code is simplified assuming that in-
put/output sizes are powers of 2. Networks are represented as lists of compara-
tors. Comparators are atoms of the form comparator(A,B,C,D) where A,B are
the inputs and C,D are the outputs.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct a Batcher odd-even sorting network %

% (see 4th page of article) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

oe_sort(As,Cs,Comparators) :-

oe_sort(As,Cs,Comparators-[]).

oe_sort([A],[A],Cmp-Cmp) :- !.

oe_sort(As,Cs,Cmp1-Cmp4) :-

split(As,As1,As2),

oe_sort(As1,Ds1,Cmp1-Cmp2),

oe_sort(As2,Ds2,Cmp2-Cmp3),

oe_merge(Ds1,Ds2,Cs,Cmp3-Cmp4).

% merge two sorted sequences to a sorted sequence

oe_merge([A],[B],[C1,C2],

[comparator(A,B,C1,C2)|Cmp]-Cmp) :- !.

oe_merge(As,Bs,[D|Cs],Cmp1-Cmp4) :-

oddEven(As,AsOdd,AsEven),

oddEven(Bs,BsOdd,BsEven),

pw_merge(AsOdd,BsOdd,[D|Ds],Cmp1-Cmp2),

pw_merge(AsEven,BsEven,Es,Cmp2-Cmp3),

combine(Ds,Es,Cs,Cmp3-Cmp4).

% split down the middle

split(Xs,As,Bs) :-

length(Xs,N), N1 is ceil(N/2),

length(As,N1), append(As,Bs,Xs).

% split to odd and even

oddEven([Odd,Even|As],[Odd|Odds],[Even|Evens]) :-

oddEven(As,Odds,Evens).

oddEven([],[],[]).

% combines the even and odd sorted elements

combine([],[B],[B],Cmp-Cmp).

combine([A|As],[B|Bs],[C1,C2|Cs],

[comparator(A,B,C1,C2)|Cmp1]-Cmp2) :-

combine(As,Bs,Cs,Cmp1-Cmp2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct an (alternative) odd-even merger. %

% It is specifified as the combination of a %

% pairwise split and a pairwise merge %

% (see Theorem 2) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

alternative_oe_merge(As,Bs,Cs,Cmp1-Cmp3) :-

interleave(As,Bs,ABs),

pw_split(ABs,ABs1,ABs2,Cmp1-Cmp2),

pw_merge(ABs1,ABs2,Cs,Cmp2-Cmp3).

interleave([],[],[]).

interleave([A|As],[B|Bs],[A,B|ABs]) :-

interleave(As,Bs,ABs).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct a pairwise sorting network %

% (see 5th page of article) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pw_sort(As,Cs,Comparators) :-

pw_sort(As,Cs,Comparators-[]).

pw_sort([A],[A],Cmp-Cmp) :- !.

pw_sort(As,Cs,Cmp1-Cmp5) :-

pw_split(As,As1,As2,Cmp1-Cmp2),

pw_sort(As1,Ds1,Cmp2-Cmp3),

pw_sort(As2,Ds2,Cmp3-Cmp4),

pw_merge(Ds1,Ds2,Cs,Cmp4-Cmp5).

% split pairs from a sequence to their larger and smaller elements

pw_split([],[],[],Cmp-Cmp).

pw_split([A1,A2|As],[B|Bs],[C|Cs],

[comparator(A1,A2,B,C)|Cmp1]-Cmp2) :-

pw_split(As,Bs,Cs,Cmp1-Cmp2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct a pairwise merger. It merges %

% two sorted sequences of sorted pairs %

% (see Theorem 1, page 5) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pw_merge([A],[B],[A,B], Cmp-Cmp) :- !.

pw_merge(As, Bs, [D|Cs], Cmp1-Cmp4) :-

oddEven(As,AsOdd,AsEven),

oddEven(Bs,BsOdd,BsEven),

pw_merge(AsOdd,BsOdd,[D|Ds],Cmp1-Cmp2),

pw_merge(AsEven,BsEven,Es,Cmp2-Cmp3),

combine(Ds,Es,Cs,Cmp3-Cmp4).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct a pairwise merger following the %

% description from page 4 of [Parberry92]. %

% This is the network referred to in the %

% proof of Theorem 2. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

parberry_pw_merge(As,Bs,Cs,Ds,Cmp1-Cmp2) :-

length(As,K),

parberry_pw_merge_by_level(K,As,Bs,Cs,Ds,Cmp1-Cmp2).

parberry_pw_merge_by_level(1,As,Bs,As,Bs,Cmp-Cmp).

parberry_pw_merge_by_level(M,As,Bs,Cs,Ds,Cmp1-Cmp3) :-

M>1, !, M1 is M//2,

length(NewAs1,M1), append(NewAs1,As2,As),

length(NewBs2,M1), append(Bs1,NewBs2,Bs),

compare(Bs1,As2,NewBs1,NewAs2,Cmp1-Cmp2),

append(NewAs1,NewAs2,NewAs), append(NewBs1,NewBs2,NewBs),

parberry_pw_merge_by_level(M1,NewAs,NewBs,Cs,Ds,Cmp2-Cmp3).

compare([],[],[],[],Cmp-Cmp).

compare([A|As],[B|Bs],[C|Cs],[D|Ds],

[comparator(A,B,C,D)|Cmp1]-Cmp2) :-

compare(As,Bs,Cs,Ds, Cmp1-Cmp2).
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Abstract. We present an explicitly typed lambda calculus “à la Church” based
on the union and intersection types discipline; this system is the counterpart of
the standard type assignment calculus “à la Curry.” Our typed calculus enjoys the
Subject Reduction and Church-Rosser properties, and typed terms are strongly
normalizing when the universal type is omitted. Moreover both type checking and
type reconstruction are decidable. In contrast to other typed calculi, a system with
union types will fail to be “coherent” in the sense of Tannen, Coquand, Gunter,
and Scedrov: different proofs of the same typing judgment will not necessarily
have the same meaning. In response, we introduce a decidable notion of equality
on type-assignment derivations inspired by the equational theory of bicartesian-
closed categories.

1 Introduction

We address the problem of designing a λ-calculus à la Church corresponding to Curry-
style type assignment to an untyped λ-calculus with intersection and union types [16,3].
In particular, we define a typed language such that its relationship with the intersection-
union type assignment system fulfills the following desiderata: (i) typed and type as-
signment derivations are isomorphic, i.e., the application of an erasing function on all
typed terms and contexts (in a typed derivation judgment) produces a derivable type
assignment derivation with the same structure, and every type assignment derivation
is obtained from a typed one with the same structure by applying the same erasure;
(ii) type checking and type reconstruction are decidable; (iii) reduction on typed terms
has the same fundamental nice properties of reduction on terms receiving a type in the
type-assignment system, such as confluence, preservation of typing under reduction,
and strong normalization of terms typable without the universal type ω.

The challenges in defining such a calculus are already present in the context of in-
tersection types, as evidenced by the polymorphic identity, with the following type-
derivation in Curry style:

x:σ1 � x : σ1

� λx.x : σ1→ σ1

(→I)
x:σ2 � x : σ2

� λx.x : σ2→ σ2

(→I)

� λx.x : (σ1→ σ1)∧ (σ2→ σ2)
(∧I)
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This is untypable using a naı̈ve corresponding rule à la Church for the introduction of
intersection types:

x:σ1 � x : σ1

� λx:σ1.x : σ1→ σ1

(→I)
x:σ2 � x : σ2

� λx:σ2.x : σ2→ σ2

(→I)

� λx: ? .x : (σ1→ σ1)∧ (σ2→ σ2)
(∧I)

A solution to this problem was introduced in [15] where a calculus is designed whose
terms comprise two parts, carrying computational and logical information respectively.
The first component (the marked-term) is a simply typed λ-term, but types are variable-
marks. The second component (the proof-term) records both the associations between
variable-marks and types and the structure of the derivation. The technical tool for real-
izing this is an unusual formulation of context, which assigning types to term-variables
at a given mark/location. The calculus of proof-terms can be seen as an encoding of
a fragment of intuitionistic logic; it codifies a set of proofs that is strictly bigger than
those corresponding to intersection type derivations (see [23]). There are other propos-
als in the literature for a λ-calculus typed with intersection types [17,20,4,26,22]. The
languages proposed in these papers have been designed with various purposes, and they
do not satisfy one or more of our desiderata above. A fuller discussion of this related
work can be found in [15].

In this paper we extend the system of [15] to a calculus with union types. This is
non-trivial, essentially because the standard typing rule for ∨-elimination is, as has
been noted by many authors, so awkward. The difficulty manifests itself primarily in
the (necessary) complexity of the definition of β-reduction on typed terms (see Sec-
tion 5.2). On the other hand our solution exposes an interesting duality between the
techniques required for intersections and for unions (Remark 5.2). Our typed reduction
is well-behaved: it confluent, obeys subject reduction, and is strongly normalizing on
terms typed with the universal type. But it must be taken on its own terms, not as a
commentary on the untyped system.

Beyond solving the technical problem of extending the proof-term technique to han-
dle union types, this paper makes a contribution to the study of the semantics of typed
calculi viewed as foundations for typed programming language with unions, specifi-
cally to the investigation of coherence. In a typed programming language typing is an
integral part of the semantics of a term. Indeed, the meaning of a typed term is not a
function of the raw term but rather of the typing judgment of which the term is the sub-
ject. Reynolds [21] has dubbed this the intrinsic approach to semantics, as opposed to
the extrinsic semantics given to terms in a type assignment system.

Now, in many type systems typing judgments can be derived in several ways, so
the question of the relationship between the meanings of these judgments arises nat-
urally. This question has been addressed in the literature in several settings, including
languages with subtyping and generic operators [18], languages with subtyping and
intersection types [19], and languages with polymorphism and recursive types [24,8].
The answer in all these cases has been, “all derivations of the same type judgment have
the same meaning.” Following [24] this phenomenon has come to be called coherence.
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In the cited work judgments take their meaning in categories where intersections are
modeled as categorical products: for a discussion of this point see [21] Section 16.6.

But coherence fails for a language with union types, if unions are modeled in the
natural way as categorical coproducts. As a simple example, let σ be any type and con-
sider the judgment � λx.x : (σ→ σ)∨ (σ→ σ). There are obviously two derivations of
this judgment, one corresponding to injection “from the left” and the other to injection
“from the right.” No reasonable semantics will equate these injections: it is an easy ex-
ercise to show that for any σ, if the two injections from σ to (σ∨σ) are equal, then any
two arrows with source σ will be equal.

So the coherence question requires new analysis in the presence of union types. In
this paper we reformulate the question as, “when are two different derivations of the
same typing judgment equal?” (Cf. the discussion in [14], page 117, of the coherence
problem for monoidal categories.) In Section 6 we show decidability of coherence under
two important “type theories” (in the sense of [3]).

The failure of coherence has consequences for reduction of typed terms. In an intrin-
sic semantics the meaning of a term is a function of its type-derivation. Since reduction
must, above all else, respect semantics, it follows that reduction should “respect” the
type-derivation. When the language is coherent this is no constraint, and reduction can
be defined purely in terms of the raw term that is the subject of the typing judgment.
Thus, in typical typed calculi, reduction on typed terms is simply β-reduction, “ignoring
the types.” But in a system where coherence fails it is crucially important that reduction
avoid the blunder of reducing a typed term and failing to preserve the semantics of the
term’s type-derivation. In the system presented in this paper this condition is reflected in
the rather complex definition of reduction in Section 5 and in the fact that typed reduc-
tion can even “get stuck” relative to untyped reduction. For similar reasons the Subject
Expansion property fails even though the type system has a universal type ω.

Some details have been omitted here for lack of space. Familiarity with [3] and with
[15] will be helpful; the latter paper is a good source of examples restricted to the
intersection types setting.

2 Intersection and Union Types

2.1 Λ∧∨u : Curry-Style Type Assignment with Intersections and Unions

The set Λ is the set of untyped terms of the λ-calculus:

M ::= x | λx.M |M M

We consider terms modulo α-conversion. Capture-avoiding substitution M[N/x] of term
N for variable x into term M is defined in the usual way. The reduction relation →β
is defined on untyped terms as the compatible closure of the relation (λx.M)N →β
M[N/x].

Fix a set V of type variables and let ω be a distinguished type constant. The set T
of types is generated from V and ω by the binary constructors→,∧, and ∨. We use
lowercase Greek letters to range over types.
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Definition 1. The Intersection-Union Type Assignment System Λ∧∨u is the set of infer-
ence rules in Figure 1 for assigning intersection and union types to terms of the untyped
λ-calculus.

Let B
�={x1:σ1, . . . ,xn:σn} (i �= j implies xi �≡ x j), and B,x:σ �=B∪{x:σ}

B �M : ω
(ω)

x:σ ∈ B

B � x : σ
(Var)

B,x:σ1 �M : σ2

B � λx.M : σ1→ σ2

(→I)
B �M : σ1→ σ2 B � N : σ1

B �M N : σ2

(→E)

B �M : σ1 B �M : σ2

B �M : σ1∧σ2

(∧I)
B �M : σ1∧σ2 i = 1,2

B �M : σi

(∧Ei)

B �M : σi i = 1,2

B �M : σ1∨σ2

(∨Ii)
B,x:σ1 �M : σ3 B,x:σ2 �M : σ3 B � N : σ1∨σ2

B �M[N/x] : σ3

(∨E)

Fig. 1. The Intersection-Union Type Assignment System Λ∧∨u

Here are two crucial properties of the system Λ∧∨u .

Theorem 2. [3]

– The terms typable without use of the ω rule are precisely the strongly normalizing
terms.

– If B � M : σ and M →gk N then B � N : σ. Here →gk is the well-known “Gross-
Knuth” parallel reduction [13].

2.2 Λ∧∨t : Church-Style Typing with Intersections and Unions

The key idea in the design of the intersection-union typed system is to split the term
into two parts, carrying out the computational and the logical information respectively.
Namely, the first one is a term of a typed λ-calculus, while the second one is a proof-
term describing the shape of the type derivation.

The technical tool for connecting the two parts is an unusual formulation of contexts.
In fact, a context associates to a variable both a variable-mark and a type, such that
different variables are associated to different variable-marks.

2.3 The Proof-Term Calculus ΛP∧∨

The terms of ΛP∧∨ are encodings, via the Curry-Howard isomorphism, of the proofs
of type-assignment derivations. The main peculiarity of this calculus is that it is defined
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on another categories of variables called variable-marks; the calculus will be used to
record the structure of a derivation through an association between variable-marks and
types.

Definition 3. Fix a set of variable-marks ι. The raw terms of ΛP∧∨ are given as fol-
lows:

Δ ::= ι | ∗ | λι:σ.Δ | ΔΔ | 〈Δ , Δ〉 | [Δ , Δ] | priΔ | iniΔ i = 1,2

The ΛP∧∨ calculus works modulo α-conversion (denoted by =α ) defined as usual.
Capture-avoiding substitution of the proof-term Δ2 for variable ι in term Δ1 is denoted
Δ1[Δ2/ι].

Definition 4. The typing judgments for proof-terms ΛP∧∨ are defined by the rules in
Figure 2.

Let G
�={ι1:σ1, . . . , ιn:σn} (i �= j implies ιi �≡ ι j), and G, ι:σ �=G∪{ι:σ}

G � ∗ : ω
(ω)

ι:σ ∈G

G � ι : σ
(Var)

G, ι:σ1 � Δ : σ2

G � λι:σ1.Δ : σ1→ σ2

(→I)
G � Δ1 : σ1→ σ2 G � Δ2 : σ1

G � Δ1 Δ2 : σ2

(→E)

G � Δ1 : σ1 G � Δ2 : σ2

G � 〈Δ1 , Δ2〉 : σ1∧σ2

(∧I)
G � Δ : σ1∧σ2 i = 1,2

G � priΔ : σi

(∧Ei)

G � Δ : σi i = 1,2

G � iniΔ : σ1∨σ2

(∨Ii)
G, ι1:σ1 � Δ1 : σ3 G, ι2:σ2 � Δ2 : σ3 G � Δ3 : σ1∨σ2

G � [λι1:σ1.Δ1 , λι2:σ2.Δ1]Δ3 : σ3

(∨E)

Fig. 2. The type system for the proof calculus ΛP∧∨

Since ΛP∧∨ is a simply-typed λ-calculus it can naturally be interpreted in cartesian
closed categories. A term [Δ1 , Δ2] corresponds to the “co-pairing” of two arrows Δi

to build an arrow out of a coproduct type. Then the term [λι1:σ1.Δ1 , λι2:σ2.Δ1]Δ3

corresponds to the familiar case statement.
The type ω plays the role of a terminal object, that is to say it is an object with a

single element. The connection with type-assignment is this: every term can be assigned
type ω so all “proofs” of that judgment have no content: all these proofs are considered
identical ([21], page 372). It is typical to name the unique element of the terminal object
as ∗. This explains the typing rule for ∗ in Figure 2.

There is a natural equality theory for the terms ΛP∧∨; we record it now and will
return to it in Section 5.
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Definition 5. The equational theory ∼= on proof-terms is defined by the following ax-
ioms (we assume that in each equation the two sides have the same type).

(λι:σ.Δ1)Δ2 = Δ1[Δ2/ι] (1)

pri〈Δ1 , Δ2〉= Δi i = 1,2 (2)

[λι1:σ1.Δ1 , λι2:σ2.Δ2] iniΔ = Δi[Δ/ι] i = 1,2 (3)

λι:σ1.Δι = Δ ι �∈ Fv(Δ) (4)

〈pr1Δ , pr2Δ〉= Δ (5)

[λι:σ1.Δ(in1ι) , λι:σ2.Δ(in2ι)](ι) = Δ(ι) (6)

Δ = ∗ at type ω (7)

The first three equations are the familiar “computational” axioms for the arrow, prod-
uct, and sum data-types. The next four equation capture various “uniqueness” criteria
which induce the ∧, ∨, and ω type constructors to behave as categorical products, co-
products, and terminal object. The terminal type acts as an empty product; in terms of
the proof theory this corresponds to saying that ω admits a unique proof, and is reflected
in Equation 7, which says that all proofs of type ω are equal to ∗.

2.4 Typed Terms with Intersections and Unions

Definition 6. Fix a set of variable-marks ι. The set of marked-terms are given as fol-
lows:

M ::= x | λx:ι.M |M M

The set of Λ∧∨t of typed terms is the set of expressions M@Δ where M is a marked-term
and Δ is a proof-term.

As usual we consider terms modulo renaming of bound variables. Formally this is de-
fined via the notion of α-conversion, which requires some extra care in our setting, so
we give the definition explicitly:

Definition 7 (α-conversion). The α-conversion, denoted by =α , on well formed terms
can be defined as the symmetric, transitive, reflexive, and contextual closure of :

(λx:ι.M)@Δ→α (λy:ι.M[y/x])@Δ y fresh in M

M@(λι1:σ.Δ)→α M[ι2/ι1]@(λι2:σ.Δ[ι2/ι1]) ι2 fresh in Δ

Definition 8 (Church-style typing). The typing rules are presented in Figure 3. The
system proves judgments of the shape Γ �M@Δ : σ, where Γ is a context and M@Δ is a
typed term.

Intuitively: in the judgment, the type-context Γ assigns union types to the free-variables
of M annotated by variable-marks; if Γ �M@Δ : σ, then we say that M@Δ is a term of
Λ∧∨t . The proof-term keeps track of the type of the used mark together with a trace of
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Let Γ �={x1@ι1:σ1, . . . ,xn@ι2:σn} (i �= j implies xi �≡ x j), and Γ,x@ι:σ �=Γ∪{x@ι:σ}

Γ �M@∗ : ω
(ω)

x@ι:σ ∈ Γ

Γ � x@ι : σ
(Var)

Γ,x@ι:σ1 �M@Δ : σ2

Γ � λx:ι.M@λι:σ1.Δ : σ1→ σ2

(→I)
Γ �M@Δ1 : σ1→ σ2 Γ � N@Δ2 : σ1

Γ �M N@Δ1 Δ2 : σ2

(→E)

Γ �M@Δ1 : σ1 Γ �M@Δ2 : σ2

Γ �M@〈Δ1 , Δ2〉 : σ1∧σ2

(∧I)
Γ �M@Δ : σ1∧σ2 i = 1,2

Γ �M@priΔ : σi

(∧Ei)

Γ �M@Δ : σi i = 1,2

Γ �M@iniΔ : σ1∨σ2

(∨Ii)

Γ,x@ι1:σ1 �M@Δ1 : σ3
Γ,x@ι2:σ2 �M@Δ2 : σ3 Γ � N@Δ3 : σ1∨σ2

Γ �M[N/x]@[λι1:σ1.Δ1 , λι2:σ2.Δ2]Δ3 : σ3

(∨E)

Fig. 3. The type system for the typed calculus Λ∧∨t

the skeleton of the derivation tree. The proof-term Δ plays the role of a road map to
backtrack (i.e. roll back) the derivation tree.

2.5 Example of Typing for Λ∧∨t

The reader will find a good number of examples showing some typing in the intersection
type system in [15]. As an example of the present system using intersection and union
types in an essential way, we treat the example (due to Pierce) that shows the failure
of subject reduction for simple, non parallel, reduction in [3]. Let I denote the identity.
Then, the untyped (parallel) reduction is: x(I(yz))(I(yz)) ⇒β x (yz)(yz). Under the

type context B �=x:(σ1→ σ1→ τ)∧ (σ2→ σ2→ τ),y:ρ→ σ1∨σ2,z : ρ, the redex can
be typed as follows (the derivation for the reductum being simpler):

B,w:σ1 � x : σ1→ σ1→ τ
B,w:σ1 � w : σ1

B,w:σ1 � xw : σ1→ τ
B,w:σ1 � w : σ1

B,w:σ1 � xww : τ

B,w:σ2 � x : σ2→ σ2→ τ
B,w:σ2 � w : σ2

B,w:σ2 � xw : σ2→ τ
B,w:σ2 � w : σ2

B,w:σ2 � xww : τ

B � I : σ1∨σ2→ σ1∨σ2
B � yz : σ1∨σ2

B � I(yz) : σ1∨σ2

B � x (I(yz))(I(yz)) : τ
(∨E)

We look now for the corresponding typed derivations. The corresponding typed term
of x(I(yz))(I(yz)) is

x((λv:ι3.v)︸ ︷︷ ︸
It

(yz))((λv:ι3.v)︸ ︷︷ ︸
It

(yz))@[λι1:σ1.(pr1ι) ι1 ι1︸ ︷︷ ︸
Δ1

, λι2:σ2.(pr2ι) ι2 ι2︸ ︷︷ ︸
Δ2

] ((λι3:σ1∨σ2.ι3)︸ ︷︷ ︸
Δ3

(ι4 ι5))
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Under the type context Γ �=x@ι:(σ1→σ1→ τ)∧(σ2→σ2→ τ),y@ι4:ρ→σ1∨σ2,z@ι5 :
ρ, and Γ1 = Γ,w@ι1:σ1 and Γ2 = Γ,w@ι2:σ2, the above term can be typed as follows:

Γ1 � x@pr1ι : σ1→ σ1→ τ
Γ1 � w@ι1 : σ1

Γ1 � xw@(pr1ι) ι1 : σ1→ τ
Γ1 � w@ι1 : σ1

Γ1 � xww@(pr1ι) ι1 ι1 : τ

Γ2 � x@pr2ι : σ2→ σ2→ τ
Γ2 � w@ι2 : σ2

Γ2 � xw@(pr2ι) ι2 : σ2→ τ
Γ2 � w@ι2 : σ2

Γ2 � xww@(pr2ι) ι2 ι2 : τ

Γ � It@Δ3 : σ1∨σ2→ σ1∨σ2
Γ � yz@ι4 ι5 : σ1∨σ2

Γ � It (yz)@(Δ3 (ι4 ι5)) : σ1∨σ2

Γ � x (It (yz))(It (yz))@[Δ1 , Δ2] (Δ3 (ι4 ι5)) : τ

3 The Isomorphism between Λ∧∨u and Λ∧∨t

In this section we prove that the type system for Λ∧∨t is isomorphic to the classical
system for Λ∧∨u of [3]. The isomorphism is given for a customization of the general
definition of isomorphism given in [25], to the case of union types and proof-terms.

From the logical point of view, the existence of an isomorphism means that there
is a one-to-one correspondence between the judgments that can be proved in the two
systems, and the derivations correspond with each other rule by rule. In what follows,
and with a little abuse of notation, marked-terms and untyped terms of the λ-calculus
will be ranged over by M,N, . . ., the difference between marked-terms and untyped-
terms being clear from the context (i.e. the judgment to be proved).

Definition 9 (Church vs. Curry).

1. The type-erasing function E : Λ∧∨t ⇒ Λ is inductively defined on terms as follows:

E(x@ ) �=x E(λx:ι.M@ ) �=λx.E(M@ ) E(M N@ ) �=E(M@ )E(N@ )

E is pointwise extended to contexts in the obvious way.
2. Let DerΛ∧u and DerΛ∧t be the sets of all (un)typed derivations, and let Du

, and Du

denote (un)typed derivations, respectively. The functions F : DerΛ∧t ⇒DerΛ∧u and
G : DerΛ∧u ⇒DerΛ∧t are indicated in Figures 4 and 5.

Theorem 10 (Isomorphism). The systems Λ∧∨t and Λ∧∨u are isomorphic in the follow-
ing sense. F ◦G is the identity in DerΛ∧u and G ◦F is the identity in DerΛ∧t modulo
uniform naming of variable-marks. I.e.,

G(F (Γ �M@Δ : σ)) = ren(Γ) � ren(M@Δ) : σ

where ren is a simple function renaming the free occurrences of variable-marks.

Proof. By induction on the structure of derivations.
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F

(
x@ι:σ ∈ Γ

Γ � x@ι : σ
(Var)

)
�=

⎧⎪⎨⎪⎩
x:σ ∈ B

B � x : σ
(Var)

E(Γ) = B

F
(

Γ �M@∗ : ω
(ω)

)
�=

⎧⎨⎩ B �M : ω
(ω)

E(Γ) = B

F

⎛⎝ D t
: Γ,x@ι:σ1 �M@Δ : σ2

Γ � λx:ι.M@λι:σ1.Δ : σ1→ σ2

(→I)

⎞⎠ �=

⎧⎪⎪⎨⎪⎪⎩
F (D t

) : B,x:σ1 �M′ : σ2

B � λx.M′ : σ1→ σ2

(→I)

E(Γ,x@ι:σ1) = B,x:σ1 & E(M@Δ) = M′

F

⎛⎜⎜⎝
D

t

1 : Γ �M@Δ1 : σ1→ σ2

D t

2 : Γ � N@Δ2 : σ1

Γ �M N@Δ1 Δ2 : σ2

(→E)

⎞⎟⎟⎠ �=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F (D

t

1) : B �M′ : σ1→ σ2

F (D t

2) : B � N′ : σ1

B �M′N′ : σ2

(→E)

E(Γ) = B & E(M@Δ1) = M′ & E(N@Δ2) = N′

F

⎛⎜⎜⎝
D t

1 : Γ �M@Δ1 : σ1

D
t

2 : Γ �M@Δ2 : σ2

Γ �M@〈Δ1 , Δ2〉 : σ1∧σ2

(∧I)

⎞⎟⎟⎠ �=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F (D t

1) : B �M′ : σ1

F (D t

2) : B �M′ : σ2

B �M′ : σ1∧σ2

(∧I)

E(Γ) = B & E(M@〈Δ1 , Δ2〉) = M′

F

⎛⎝ D t
: Γ �M@Δ : σ1∧σ2

Γ �M@priΔ : σi

i = 1,2

(∧Ei)

⎞⎠ �=

⎧⎪⎪⎨⎪⎪⎩
F (D t

) : B �M′ : σ1∧σ2

B �M′ : σi

i = 1,2

(∧Ei)

E(Γ) = B & E(M@Δ) = M′

F

⎛⎝ D
t

1 : Γ �M@Δ : σi

Γ �M@iniΔ : σ1∨σ2

i = 1,2

(∨Ii)

⎞⎠ �=

⎧⎪⎪⎨⎪⎪⎩
F (D t

) : B �M′ : σi

B �M′ : σ1∨σ2

i = 1,2

(∨Ii)

E(Γ) = B & E(M@iniΔ) = M′

F

⎛⎜⎜⎜⎜⎜⎜⎝

D t

1 : Γ,x@ι1:σ1 �M@Δ1 : σ3

D t

2 : Γ,x@ι2:σ2 �M@Δ2 : σ3

D
t

3 : Γ � N@Δ3 : σ1∨σ2

Γ �M[N/x]@
[

λι1:σ1.Δ1,
λι2:σ2.Δ2

]
Δ3 : σ3

(∨E)

⎞⎟⎟⎟⎟⎟⎟⎠
�=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (D t

1) : B,x:σ1 �M′′ : σ3

F (D t

2) : B,x:σ2 �M′′ : σ3

F (D t

3) : B � N′ : σ1∨σ2

B �M′ : σ3

(∨E)

E(Γ) = B & E(M[N/x]@
[

λι1:σ1.Δ1,
λι2:σ2.Δ2

]
Δ3) = M′

E(M@Δ1,2) = M′′ & E(N@Δ3) = N′

Fig. 4. The Function F

4 Type Reconstruction and Type Checking Algorithms

The type reconstruction and the type checking algorithms are presented in Figure 6, and
the following theorems holds.

Theorem 11 (Type Reconstruction for Λ∧∨t ).

(Soundness) If Type(Γ,M@Δ) = σ, then Γ �M@Δ : σ;
(Completeness) If Γ �M@Δ : σ, then Type(Γ,M@Δ) = σ.

Proof. Soundness is proved by induction over the computation that Type(Γ,M@Δ) = σ;
completeness is proved by induction on the derivation of Γ �M@Δ : σ.
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G

(
x:σ ∈ B

B � x : σ
(Var)

)
�=

⎧⎪⎨⎪⎩
x@ι:σ ∈ Γ

Γ � x@ι : σ
(Var)

E(Γ) = B ι is fresh

G
(

B �M′ : ω
(ω)

)
�=

⎧⎨⎩ Γ �M@∗ : ω
(ω)

E(Γ) = B & E(M) = M′

G

⎛⎝ D
u
: B,x:σ1 �M′ : σ2

B � λx.M′ : σ1→ σ2

(→I)

⎞⎠ �=

⎧⎪⎨⎪⎩
G(Du

) : Γ,x@ι:σ1 �M@Δ : σ2

Γ � (λx:ι.M)@(λι:σ1.Δ) : σ1→ σ2

(→I)

E(Γ,x@ι:σ1) = B,x:σ1 & E(M@Δ) = M′

G

⎛⎜⎜⎝
Du

1 : B �M′ : σ1→ σ2
Du

2 : B � N′ : σ1

B �M′N′ : σ2

(→E)

⎞⎟⎟⎠�=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G(Du

1) : Γ �M@Δ1 : σ1→ σ2
G(Du

2) : Γ � N@Δ2 : σ1

Γ �M N@Δ1 Δ2 : σ2

(→E)

E(Γ) = B & E(M@Δ1) = M′ & E(N@Δ2) = N′

G

⎛⎜⎜⎝
Du

1 : B �M′ : σ1
Du

2 : B �M′ : σ2

B �M′ : σ1∧σ2

(∧I)

⎞⎟⎟⎠ �=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G(Du

1) : Γ �M@Δ1 : σ1
G(Du

2) : Γ �M@Δ2 : σ2

Γ �M@〈Δ1 , Δ2〉 : σ1∧σ2

(∧I)

E(Γ) = B & E(M@〈Δ1 , Δ2〉) = M′

G

⎛⎝ Du
: B �M′ : σ1∧σ2

B �M′ : σi

i = 1,2

(∧Ei)

⎞⎠ �=

⎧⎪⎨⎪⎩
G(D

u
) : Γ �M@Δ : σ1∧σ2

Γ �M@priΔ : σi

i = 1,2

(∧Ei)

E(Γ) = B & E(M@Δ) = M′

G

⎛⎝ Du
: B �M′ : σi

B �M′ : σ1∨σ2

i = 1,2

(∨Ii)

⎞⎠ �=

⎧⎪⎨⎪⎩
G(Du

) : Γ �M@Δ : σi

Γ �M@iniΔ : σ1∨σ2

i = 1,2

(∨Ii)

E(Γ) = B & E(M@iniΔ) = M′

G

⎛⎜⎜⎜⎜⎝
Du

1 : B,x:σ1 �M′ : σ3
Du

2 : B,x:σ2 �M′ : σ3
Du

3 : B � N′ : σ1∨σ2

B �M′[N′/x] : σ3

(∨E)

⎞⎟⎟⎟⎟⎠ �=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(Du

1) : Γ,x@ι1:σ1 �M@Δ1 : σ3
G(Du

2) : Γ,x@ι2:σ2 �M@Δ2 : σ3
G(Du

3) : Γ � N@Δ3 : σ1∨σ2

Γ �M[N/x]@
[

λι1:σ1.Δ1,
λι2:σ2.Δ2

]
Δ3 : σ3

(∨E)

E(Γ) = B & E(M[N/x]@
[

λι1:σ1.Δ1,
λι2:σ2.Δ2

]
Δ3) = M′[N′/x]

E(M@Δ1,2) = M′ & E(N@Δ3) = N′

Fig. 5. The Function G

Theorem 12 (Type Checking for Λ∧∨t ). Γ � M@Δ : σ, if and only if
Typecheck(Γ,M@Δ,σ) = true.

Proof. The ⇒ part can be proved using completeness of the type reconstruction al-
gorithm (Theorem 11), while the ⇐ part can be proved using soundness of the type
reconstruction algorithm.

Corollary 13 (Λ∧∨t Judgment Decidability). It is decidable whether Γ � M@Δ : σ is
derivable.
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Type(Γ,M@Δ) �= match M@Δ with

@∗ ⇒ ω
@priΔ1 ⇒ σi i = 1,2 if Type(Γ,M@Δ1) = σ1∧σ2

@〈Δ1 , Δ2〉 ⇒ σ1∧σ2 if Type(Γ,M@Δ1) = σ1
and Type(Γ,M@Δ2) = σ2

@iniΔ1 ⇒ σ1∨σ2 if Type(Γ,M@Δ1) = σi i = 1,2

@

[
λι1:σ1.Δ1,
λι2:σ2.Δ2

]
Δ3 ⇒ σ3 if Type((Γ,x@ι1:σ1),M′@Δ1) = σ3

and Type((Γ,x@ι2:σ2),M′@Δ2) = σ3
and Type(Γ,N@Δ3) = σ1∨σ3 and
and M ≡M′[N/x]

x@ι ⇒ σ if x@ι:σ ∈ Γ
λx:ι.M1@λι:σ1.Δ1 ⇒ σ1→ σ2 if Type((Γ,x@ι:σ1),M1@Δ1) = σ2

M1 M2@Δ1 Δ2 ⇒ σ2 if Type(Γ,M1@Δ1) = σ1→ σ2
and Type(Γ,M2@Δ2) = σ1

@ ⇒ false otherwise

Typecheck(Γ,M@Δ,σ) �= Type(Γ,M@Δ) ?= σ

Fig. 6. The Type Reconstruction and Type Checking Algorithms for Λ∧∨t

5 Reduction in Λ∧∨t

As we have seen there is natural erasing function from typed Λ∧∨t terms to untyped
terms of Λ∧∨u . And reduction in the untyped λ-calculus is simply β-reduction. But as
we have discussed in the introduction it would be a mistake to conflate typed and un-
typed reduction, in part due to the failure of coherence. Reduction on typed terms must
respect the semantics of the type derivations, which is to say, reduction on marked-terms
must respect the semantics of the proof-terms. The definition of the relation⇒β below
ensures this. On the other hand it is useful to perform steps that keep the marked-term
unchanged but reduce the proof-term, as long as the semantics of the type-derivation
encoded by the proof-term is preserved. This is the role of the relation⇒Δ.

5.1 Synchronization

For a given term M@Δ, the computational part (M) and the logical part (Δ) grow up
together while they are built through application of rules (Var), (→ I), and (→ E), but
they get disconnected when we apply the (∧I), (∨I) or (∧E) rules, which change the
Δ but not the M. This disconnection is “logged” in the Δ via occurrences of operators
〈− , −〉, [− , −], pri, and ini. In order to correctly identify the reductions that need to
be performed in parallel in order to preserve the correct syntax of the term, we will
define the notion of overlapping. Namely a redex is defining taking into account the
surrounding context.
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To define β-reduction on typed terms some care is required to manage the variable-
marks. For this purpose we view M@Δ as a pair of trees, so subterms are associated by
tree-addresses, as usual, sequences of integers.

Definition 14. For a well-typed M@Δ, we define the binary “synchronization” relation
Sync between tree-addresses in M and tree-addresses in Δ. The definition is by induction
over the typing derivation (see Figure 3). We present a representative set of cases here.

– When M@Δ is x@ι: we of course take the roots to be related: Sync(〈〉,〈〉)
– Case

Γ �M@Δ1 : σ1→ σ2 Γ � N@Δ2 : σ1

Γ �M N@Δ1 Δ2 : σ2

(→E)

For an address a from M N and an address a′ from Δ1 Δ2: Sync(a,a′) if and only if
either
• a is from M and a′ is from Δ1, that is a = 1b and a′ = 1b′ and they were

synchronized in M@Δ1, that is Sync(b,b′), or
• a and a′ are from N and Δ2 respectively and were synchronized in N@Δ2.

– Case
Γ �M@Δ1 : σ1 Γ �M@Δ2 : σ2

Γ �M@〈Δ1 , Δ2〉 : σ1∧σ2

(∧I)

Let a be an address in M and a′ an address in 〈Δ1 , Δ2〉. Then Sync(a,a′) if and
only if a′ = 1b and Sync(a,b) from M@Δ1 or a′ = 2b and Sync(a,b) from M@Δ2.

– Case

Γ,x@ι1:σ1 �M@Δ1 : σ3 Γ,x@ι2:σ2 �M@Δ2 : σ3 Γ � N@Δ3 : σ1∨σ2

Γ �M[N/x]@[λι1:σ1.Δ1 , λι2:σ2.Δ2]Δ3 : σ3

(∨E)

Let a be an address in M[N/x]. Then for an address a′ from [λι1:σ1.Δ1 , λι2:σ2.Δ2]Δ3

we have Sync(a,a′) just in case one of the following holds
• a is an address in M other than that of x, and for some i and some address b′ of

Δi we have Sync(a,b′) and a′ is the corresponding Δi subterm in
[λι1:σ1.Δ1 , λι2:σ2.Δ2]Δ3 (precisely: a′ = 1ib′)
• a is an address corresponding to an address b in N after the substitution (pre-

cisely, a = db where x occurs at address d in M), a′ is an address corresponding
to an address b′ in Δ3 (a′ = 2b′) and we have Sync(b,b′).

Definition 15. Consider M@Δ. Let a and b be addresses in M. Say that a ∼ b if there
is some c an address in Δ with both Sync(a,c) and Sync(b,c). In a precisely analogous
way we define∼ on addresses in Δ.

It easy to check that if two addresses are ∼ then the corresponding subterms are identi-
cal. It is also clear that if Sync(a,a′) and a is the address of a β-redex in M then b is the
address of a β-redex in Δ and conversely. It is clear that ∼ is an equivalence relation.
So we may define: a synchronized pair to be a pair (S,S′) of sets of addresses in M and
Δ respectively such that S and S′ are each ∼-equivalence classes pointwise related by
Sync; that is for each a ∈ S and each a′ ∈ S′ we have Sync(a,a′).
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5.2 The Reduction Relation⇒

We define ⇒ as the union of two reductions: ⇒β deals with β-reduction occurring
in both the marked- and the proof-term; while⇒Δ deals with reductions arising from
proof-term simplifications. Proof-term reduction is defined from the equations in Defi-
nition 5.

Definition 16. The reduction relation→∧∨ on proof-terms is defined by orienting equa-
tions (2), (3), and (7) from Definition 5 from left to right.

Definition 17.

(⇒β) Let C{}i∈I (resp, C′{}i∈I ) be a multihole marked-term context (resp. proof-term
context), and consider

C{}@C′{}

where the indicated occurrences of holes form a synchronized pair of sets of sub-
terms. Then the⇒β reduction is defined as follows:

C{(λx:ι.M)N}i∈I @C′{(λι:σ j.Δ j)Δ′j} j∈J
⇒β C{M[N/x]}i∈I @C′{Δ j[Δ′j/ι]}

j∈J

C{(λx:ι.M)N}i∈I @C′{∗} j∈J ⇒β C{M[N/x]}i∈I @C′{∗} j∈J

(⇒Δ) Let C′{} be a plain (one-hole) proof-context. Then the ⇒Δ reduction is of the
form:

M@C′{Δ}⇒Δ M@C′{Δ′} where Δ→∧∨ Δ′.

Note that the reduction⇒β is characterized by the two distinct patterns written above.
There is no overlap between these two cases, since, as observed just after the definition
of ∼ a term (λx:ι.M)N cannot be synchronized with both an occurrence of (λι:σ.Δ)Δ′
and an occurrence of ∗.

Remarks

– In the definition of ⇒β: it is interesting to note the following duality: the typing
rule (∧I) is what leads us to synchronize one variable-mark ι occurring in a redex
in the marked-term (the computation), e.g. (λx:ι.M)N, with potentially many re-
dexes in the proof-term, e.g. (λι:σ j.Δ j)Δ′j with j ∈ J. Symmetrically, the typing
rule (∨E) is what leads us to synchronize one variable-mark occurring in a redex
in the logic part, e.g. (λι:σ.Δ)Δ′, with potentially many (but equal) redexes in the
computational part, e.g. i-occurrences of (λx:ι.M)N with i ∈ I.

– Implementation of⇒ is potentially complicated by the need to manage the ∼ rela-
tion. But in an implementation in which subterm-occurrences can be shared there
is no real need for a “many-to-many” relation on addresses.

– The erasure of the relation⇒β is similar to (though not identical with) the parallel
reduction relation defined in [3].
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5.3 Example of Reduction for Λ∧∨t (Continued)

As an example of the treatment of intersection and union types in our system we ex-
amine Pierce’s example in [3] showing the failure of subject reduction for simple, non
parallel, reduction. The term in question is a good example to show the role of synchro-
nization in reduction on Λ∧∨t terms. Then the complete untyped reduction is:

x(I(yz))(I(yz))⇒β
�β x (yz)(I(yz)) �β
�β x (I(yz))(yz) �β x (yz)(yz).

Under the type context B �=x:(σ1→ σ1→ τ)∧ (σ2 → σ2→ τ),y:ρ→ σ1∨σ2,z : ρ, the
first and the last terms can be typed with τ, while terms in the “fork” are not because of
the mismatch of the premises in the (∨E) type assignment rule. The typed term is

x ((λv:ι3.v)︸ ︷︷ ︸
It

(yz))((λv:ι3.v)︸ ︷︷ ︸
It

(yz))@[λι1:σ1.(pr1ι) ι1 ι1︸ ︷︷ ︸
Δ1

, λι2:σ2.(pr2ι) ι2 ι2︸ ︷︷ ︸
Δ2

] ((λι3:σ1.ι3)︸ ︷︷ ︸
Δ3

(ι4 ι5))

and the typed synchronized reduction goes as follows

x(It (yz))(It (yz))@[Δ1 , Δ2] (Δ3 (ι4 ι5)) ⇒Δ

x (

→β︷ ︸︸ ︷
It (yz))(

→β︷ ︸︸ ︷
It (yz))@[Δ1 , Δ2] (

→β︷ ︸︸ ︷
Δ3 (ι4 ι5))(

→β︷ ︸︸ ︷
Δ3 (ι4 ι5))︸ ︷︷ ︸

fire a ⇒β redex

⇒β x(yz)(yz)@[Δ1 , Δ2] (ι4 ι5)

5.4 Properties of⇒
We have seen that the relationship between the corresponding type systems of Λ∧∨u and
Λ∧∨t is essentially one of isomorphism. The relationship between the reduction relations
in the two calculi is more interesting. First, modulo erasing there is a sense in which⇒
is a sub-relation of untyped =β . More precisely:

Lemma 18. If M@Δ⇒ N@Δ′ then E(M@Δ)→ E(N@Δ′).

Proof. Straightforward, using the auxiliary result that E(M[N/x]@Δ)≡E(M)[E(N)/x].

Reduction out of typed terms is well-behaved in the sense witnessed by the following
traditional properties.

Theorem 19. Let M@Δ be a typable term of Λ∧∨t .

1. (Subject Reduction) If Γ �M@Δ : σ and M@Δ⇒M′@Δ′, then Γ �M′@Δ′ : σ.
2. (Church-Rosser) The reduction relation⇒β is confluent out of M@Δ.
3. (Strong Normalization) If M@Δ is a typable without using rule ω then⇒β is strongly

normalizing out of M@Δ.

Proof. The proof of Subject Reduction is routine. It should be noted that the typical
obstacle to Subject Reduction in the presence of a rule such as (∨E) does not arise for
us, since our reduction relation is already necessarily of a “parallel” character due to
the requirement of maintaining synchronization. Confluence can be shown by an easy
application of standard techniques (for example, the Tait&Martin-Löf parallel reduc-
tion argument). Strong Normalization is immediate from the fact that→∧∨ is strongly
normalizing.
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On the other hand we may point out two (related) aspects of typed reduction that are at
first glance anomalous.

Getting stuck. The need for marked-term β-redexes to be synchronized with proof-
term β-redexes mean that a marked-term β-redex might not be able to participate in
a reduction. This can happen when a term P@[λι1:σ1.Δ1 , λι2:σ2.Δ2]Δ3 is typed by
(∨E) and the marked-term P ≡ M[N/x] is β-redex. Since the corresponding proof-
term [λι1:σ1.Δ1 , λι2:σ2.Δ2]Δ3 is not a β-redex in the proof-term calculus we can view
the typed term as being “stuck.” Now the proof-term may reduce via ⇒Δ and even-
tually become a β-redex. Indeed it is not hard to show that if the term is closed (or
if every free variable has Harrop type, defined in Section 6.1) then this will always
happen. But in general we can have normal forms in the typed calculus whose
erasures contain β-redexes in the sense of untyped λ-calculus. This phenomenon is in-
herent in having a typed calculus with unions. The β-reductions available in the Curry-
style system have a character from the coproduct reductions on proof-terms: a term
[λι1:σ1.Δ1 , λι2:σ2.Δ2]Δ3 has to wait for its argument Δ3 to manifest itself as being of
the form iniΔ4. And in order to maintain the synchronization between marked-terms
and proof-terms, the marked-term β-redex must wait as well.

Another manifestation of the constraint that the marked- and proof- components of
a term must be compatible is the fact that—even though the type system has a universal
type ω—the system does not have the Subject Expansion property.

Failure of Subject Expansion. There exist typed terms M@Δ and M′@Δ′ such that
M@Δ⇒M′@Δ′ and M′@Δ′ is typable but M@Δ is not typable. For example

(λx:ι1.x)@pr1〈λι1:σ.ι1 , λι1:σ.λι2:τ.ι1〉 ⇒ (λx:ι1.x)@(λι1:σ.ι1)

The latter is clearly a typed term with type σ→ σ. But it is easy to see that in order for
the former term to be typed it would have to be the case that
(λx:σ1.x)@pr1〈λι1:σ.ι1 , λι1:σ.λι2:τ.ι1〉 is a typed term, which means in turn that
(λx:ι1.x)@(λι1:σ.λι2:τ.ι1) is a typed term; and this is not the case.

Of course in untyped λ-calculus we may use ω to type terms which are “erased” in a
reduction: this is the essence of why Subject Expansion holds in the presence of ω. But
this move is not available to us here. The problem with (λx:σ1.x)@(λι1:σ.λι2:τ.ι1) as a
typed term is not the lack of a general-enough type, it is the fact that (λι1:σ.λι2:τ.ι1)
cannot encode the shape of a derivation of a type-assignment to (λx.x).

6 Deciding Type-Derivation Equality

As described in the introduction, when semantics is given to typing derivations in
Church-style, the question arises: “what is the relationship between the semantics of dif-
ferent derivations of the same typing judgment?” In this section we explore the closely
related question “when should two derivations of the same judgment be considered
equal?”

We locate the semantics of type-derivations in a cartesian closed category with binary
coproducts (i.e., a bicartesian closed category but without an initial type). Since we are
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interested here in those equalities between derivations which hold in all such categories
interpreting the derivations, we focus on the equalities holding in the free bi-cartesian
closed category over the graph whose objects are the type-variables and the constant
ω and whose arrows include the primitive coercion-constants Σ. These equalities are
determined by the equational theory ∼=.

The theory of these equations is surprisingly subtle. On the positive side, it is proved
in [10] that a Friedman completeness theorem holds for the theory, that is, that the
equations provable in this theory are precisely the equations true in the category of sets.
On the other hand the rewriting behavior of the equations is problematic: as described
in [9], confluence fails for the known presentations, and there cannot exist a left-linear
confluent presentation.

When the equation [λι:σ1.Δ(in1ι) , λι:σ2.Δ(in2ι)] = Δ is dropped, yielding the the-
ory of cartesian closed categories with weak sums, the theory admits a strongly nor-
malizing and confluent presentation, so the resulting theory is decidable. In fact the
rewriting theory of the cartesian closed categories with weak sums was the object of
intense research activity in the 1990’s: a selection of relevant papers might include
[6,1,9,5,12,7].

So there are rich and well-behaved rewriting theories capturing fragments of ∼=. But
if we want to embrace ∼= in its entirety we need to work harder. Ghani [11] presented a
complex proof of decidability of the theory via an analysis of a non-confluent rewriting
system. The most successful analysis of the theory to date is that by Altenkirch, Dy-
bjer, Hofmann, and Scott [2] based on the semantical technique of Normalization by
Evaluation. In that paper a computable function nf is defined mapping terms to “nor-
mal forms,” together with a computable function d mapping normal forms to terms,
satisfying the following theorem.

Theorem 20 ([2]). For every Δ, Δ∼= d(nf(Δ)), and for every Δ1 and Δ2, Δ1 ∼= Δ2 if
and only if d(nf(Δ1) and d(nf(Δ2) are identical.

Corollary 21. Equality between type-derivations is decidable.

6.1 Type Theories

It is traditional in treatments of Curry-style typing to consider types modulo a subtyp-
ing relation ≤ under which the set of types makes a partially ordered set. Following
[3] we refer to such a set of inequalities as a type theory. It is fairly straightforward to
incorporate theories of subtyping into our Church-style system; we outline the devel-
opment briefly here. It is best to start with the proof-terms, as the carriers of semantic
information. As suggested in [18,24] we need to view subtyping semantically not as
simple set-inclusion but as a relationship witnessed by coercion functions. So in the
syntax of proof-terms we postulate a signature Σ of names for primitive coercion func-
tions c : σ→ τ. Fixing a signature Σ of coercion constants corresponds to a type theory
in the sense of [3] in an intuitively obvious way: each c : σ→ τ corresponds to an axiom
σ≤ τ in the theory.

Conversely, certain type theories can be naturally captured by defining an appropriate
signature. The minimal type theory Θ from [3] will correspond to coercions defined by
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the proof-terms as in Figure 2 (without the subtyping rule). That is, Θ, corresponds to
the empty signature Σ.

Another important type theory is the theory Π obtained from Θ by adding equations
making the lattice of types distributive and adding an “Extended Disjunction Property”
axiom

σ→ (ρ∨ τ)≤ (σ→ ρ)∨ (σ→ τ) when φ is a Harrop type.

(A type is a Harrop type if the disjunction constructor ∨ occurs only in negative po-
sition.) The importance of the type theory Π in the Curry-style setting is that under Π
Subject Reduction holds for ordinary β-reduction: if B � M : σ and either M =β N or
M→η N then B � N : σ.

We now describe how to construct a signature ΣΠ corresponding to the type theory
Π. Recall that this theory is obtained from Θ by adding axioms for distributivity and
for the extended disjunction property. The latter rule can be captured by a family of
constants

dp : (σ→ (ρ∨ τ))→ ((σ→ ρ)∨ (σ→ τ))

We need not add constants capturing the distributivity axiom, since the semantics of
our proof-terms is based on categories that are cartesian closed with binary coproducts,
and in such categories products always distribute over coproducts. Now to introduce
coercions into our Church-style typing system we add the following rule

Γ �M@Δ : σ1 c : σ1→ σ2 ∈ Σ

Γ �M@cΔ : σ2

(Coerce)

Concerning equality between type-derivations, if we want to reason about equality be-
tween type-derivations under the type theory Π we need to take into account the behav-
ior of the basic coercion functions dp : (σ→ (ρ∨ τ))→ ((σ→ ρ)∨ (σ→ τ)).

Whenever the coercions dp are injective we have that for two proof-terms Δ1 and Δ2,
dpΔ1 = dpΔ2 only if Δ1 = Δ2. So in reasoning about such coercions syntactically, there
are no additional axioms or rules of inference that apply, in other words we can treat
the dp constants as free variables. Since the techniques of [2] apply perfectly well to
open terms, we conclude the following.

Corollary 22. Equality between type-derivations under the type theory Π is decidable.

7 Future Work

The reduction semantics of our calculus is complex, due to the well-known awkward-
ness of the (∨E) rule. Since this is largely due to the global nature of the substitution
in the conclusion; this suggests that an explicit substitutions calculus might be better-
behaved.

There is a wealth of research yet to be done exploring coherence in the presence of
union types: as we have seen the structure of the category of types affects the semantics
of derivations. For instance, decidability of equality when coercions are not assumed to
be injective needs attention.
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We took a fairly naive approach to the semantics of type-derivations in this paper; we
were content to derive some results that assumed nothing more about the semantics than
cartesian closure and coproducts. But the failure of coherence, implying that the mean-
ings of type-derivations are not “generic,” suggests that there is interesting structure to
be explored in the semantics of coercions in the presence of unions.

Acknowledgments. We are grateful to Mariangiola Dezani-Ciancaglini for several il-
luminating discussions about this work.
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Abstract. Graded modalities enrich the universal and existential quan-
tifiers with the capability to express the concept of at least k or all but k,
for a non-negative integer k. Recently, temporal logics such as μ-calculus
and Computational Tree Logic, Ctl, augmented with graded modali-
ties have received attention from the scientific community, both from
a theoretical side and from an applicative perspective. Both μ-calculus
and Ctl naturally apply as specification languages for closed systems: in
this paper, we add graded modalities to the Alternating-time Temporal
Logic (Atl) introduced by Alur et al., to study how these modalities
may affect specification languages for open systems. We present, and
compare with each other, three different semantics. We first consider a
natural interpretation which seems suitable to off-line synthesis applica-
tions and then we restrict it to the case where players can only employ
memoryless strategies. Finally, we strengthen the logic by means of a
different interpretation which may find application in the verification of
fault-tolerant controllers. For all the interpretations, we efficiently solve
the model-checking problem both in the concurrent and turn-based set-
tings, proving its PTIME-completeness. To this aim we also exploit also
a characterization of the maximum grading value of a given formula.

1 Introduction

Graded modalities are logical operators allowing to express quantitative bounds
on the set of individuals satisfying a certain property [11]. They are well-known
in the knowledge representation field, as well as in classical logic [12] and in
description logics [13]. Such modalities have received renewed attention by the
theoretical computer science community, especially in the formal verification
field: in [15,7] they are applied to the μ-calculus logic, while in [8,10,4] to Ctl.
Here, we add graded modalities to Atl, as a step from closed to open systems,
and provide efficient model-checking algorithms for the resulting logic. At the
best of our knowledge, this is the first time that such notions are applied in the
game-theoretic setting.

Atl was introduced by Alur et al. [2] as a derivative of Ctl that is interpreted
on games, rather than transition systems. Since its inception, Atl has been
quickly adopted in different areas of computer science dealing with multi-agent
systems, and it has provided the basis for further extensions [1,20,5].

The temporal part of Atl coincides with the one of Ctl, while the path quan-
tifiers of Ctl are replaced by team quantifiers, that quantify over the strategies
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of a given team. For instance, for a suitable subformula θ, the Atl formula 〈〈1〉〉θ
expresses the fact that the team composed of Player 1 alone can ensure that θ
holds. More in detail, said formula hides two classical quantifiers: there exists
a strategy of Player 1, such that, whatever the other players do, θ holds in the
resulting outcomes. (Standard Ctl path quantifiers can be obtained as special
cases of Atl quantifiers.

In this paper, we enrich the Atl quantifiers with an integral grade, and we
interpret the resulting formulas using three alternative semantics. First, we con-
sider a very natural extension of the semantics of Atl formulas: for a natural
number k, the graded Atl formula 〈〈X〉〉kθ affirms that the players belonging
to the team X have k different strategies to enforce θ, that is, the team has k
different ways of winning, each satisfying θ, whatever the remaining players do.
Intuitively, two distinct runs of the play are counted as different if they present a
difference in the choice of the moves leading to satisfy the winning condition. We
call this semantics off-line, as it seems suitable to off-line synthesis applications.
In this context, a two-player game is a model of a control system, and the two
players represent the controller and its environment, respectively. Verifying the
property 〈〈1〉〉kθ, and possibly computing k witnessing strategies for Player 1,
corresponds to synthesizing k different controllers, that may later (i.e., off-line)
be compared w.r.t. some external criterion.

However, as shown in the following, some cases may exhibit infinitely many
winning strategies, calling for a refined counting notion. We therefore introduce
the memoryless semantics, that only counts the number of different memoryless
winning strategies, i.e., strategies whose choices only depend on the current state
in the game. This restriction makes perfect sense in the controller synthesis
scenario, where memoryless controllers are highly desirable for their simplicity.

Then, we turn to the application of automatic verification of fault-tolerant
controllers for open systems. In this case, we do not wish to restrict the moves of
a player (i.e., synthesize a controller), but rather we assume that the controller
may take any of the (redundant) actions that are present in the game, and we
want to evaluate how many faults the controller can tolerate at most before
violating its specification, where a fault is represented by the absence at run-
time of a move that is present in the model. To this purpose, we introduce a
new semantics to count the number of different winning paths that a team can
follow, in the worst possible case w.r.t. the choices of the opposite team. We
call this semantics “on-line” because it is related to the ability of the player
to dynamically alter its behavior to overcome faults. In this sense, the graded
Atl formula 〈〈X〉〉kθ, interpreted in the on-line semantics, becomes a necessary
condition to guarantee that team X can force θ even in the presence of k − 1
faults.

To prove our results, we first consider the case of turn-based games, where
states are partitioned among the players and at each state the player who owns it
moves along one of the outgoing edges. We compare the semantics and prove that
the on-line satisfaction of a negation-free graded Atl formula implies its off-line
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satisfaction, while the vice versa is not true. The on-line and the memoryless
semantics turn out to be incomparable.

For all semantics we then solve the model-checking problem, computing the
truth values of graded Atl formulas on the states of a given game. We provide
algorithms that are executed in polynomial time w.r.t. the size of the input
game and the number of logical operators in the input formula. A matching
lower bound shows that these problems are in fact PTIME-complete. For the
off-line and the on-line semantics, the time complexity does not even depend
on the constants occurring in the graded team quantifiers. In particular, for the
off-line semantics we retain the same complexity as in Atl.

Given an Atl formula, an extended form of model checking is to determine
the value of the maximum grade for which that formula is true on a given state
of a game. For the off-line and the on-line interpretations, we provide a fixpoint
characterization for that value. A fixpoint characterization also suggests the sim-
ple Picard iteration method for computing such value. However, in our case, two
issues prevent Picard iteration from being applied effectively. First, the maxi-
mum grade of a formula can be infinity. Second, even if grade infinity was to be
treated separately, Picard iteration would still require a number of iterations pro-
portional to the integer value being computed. For these reasons, the algorithms
we give are ad-hoc, and compute the maximum grade of a formula avoiding the
above-mentioned issues, while still exploiting the fixpoint characterization.

Finally, we consider concurrent game structures and show that the model-
checking problem is PTIME-complete and can be solved with the same com-
plexity as for turn based games.

Atl has been implemented in several tools for the analysis of open sys-
tems [3,17], and graded modalities for Ctl have been integrated in the NuSMV
tool [9,6]. We plan to extend this in the near future to consider graded Atl

specifications.
The rest of the paper is organized as follows. Section 2 shows an example.

Section 3 presents the basic definitions, including the three alternative semantics
for graded Atl. Section 4 presents a fixpoint characterization of the off-line
and on-line semantics. Section 5 performs a comparison between the semantics.
Section 6 describes the model-checking algorithms, computing the truth values
of graded Atl formulas on the states of a given game. In Section 7 we deal with
concurrent games.

2 A Motivating Example

We give now an example, before introducing our logic. Consider the game in
Figure 1, representing the steps required to open an attachment sent by an
external agent in one of three possible file formats. The game is played by two
players with a turn-based modality: each state belongs only to one of the players
and at each turn the player who owns the current state chooses one of its outgoing
edges. In the figure, states of Player 1 are circles and those of Player 2 are squares.
In the initial state s0, Player 2 picks a file type, among PostScript, Adobe PDF,
and Microsoft Word. Then, Player 1 tries to open the file (i.e., reach state s4)
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by using appropriate programs. The Atl formula 〈〈1〉〉�s4, meaning “Player 1
has a strategy to reach state s4”, is true at s0, because, no matter what file
type Player 2 chooses, Player 1 has a way (sometimes more than one) to reach
s4. Graded Atl provide the means to count how many different ways to win
Player 1 has and this, clearly, cannot be achieved with classical Atl.

s0 s2

s1

s3

s4

ps

pdf

doc
ps2pdf

ghostviewpd
f2

ps

xpdf

oow
rite

Fig. 1. An attachment-opening game

Assume first that the aim for analyzing the game in Figure 1 is to automat-
ically generate as many scripts as possible, each one of them able to open all
types of attachment (i.e., win the game). If we apply the off-line semantics, it
turns out that Player 1 has infinitely many winning strategies: When receiving a
ps or pdf file, she can choose to run the converting programs ps2pdf and pdf2ps
as many times as she likes, going back and forth between the two formats, before
opening the file and reaching the target state s4. In graded Atl terms, in the off-
line semantics the formula 〈〈1〉〉k�s4 holds at s0 for all k ≥ 1. Clearly, we are not
interested in synthesizing infinitely many scripts that only differ in the amount
of useless work they perform. Hence, we introduce the memoryless semantics,
that only counts the number of memoryless winning strategies. In the current
example, there are three memoryless winning strategies: the one that uses no
converters, the one that uses only ps2pdf and the one that uses only pdf2ps.
Using both converting programs leads to an infinite loop that does not reach
state s4. Formally, in the memoryless semantics the formula 〈〈1〉〉k�s4 holds at
s0 for all k ≤ 3. This suggests that we can synthesize three substantially different
scripts for our problem.

On the other hand, assume that we want to know the degree of fault-tolerance
of our configuration in the worst case (w.r.t. the choices of Player 2), where a
fault is represented by the malfunction of one of the available programs. The on-
line semantics tells us that if Player 2 inadvertently chooses the doc file format,
Player 1 can only reach s4 in one way. In graded Atl terms, k = 1 is the
maximum integer such that 〈〈1〉〉k�s4 holds at s0 in the on-line semantics. Thus,
the example under consideration shows no fault-tolerance in our sense, since a
single fault (i.e., the absence of the “oowrite” program) can prevent Player 1
from opening the attachment.



196 M. Faella, M. Napoli, and M. Parente

3 Preliminaries

We consider games played by m players on a finite graph, whose set of states is
partitioned inm subsets, each one corresponding to one of the players. The game
starts in a state of the graph, and at each step the player who owns the current
state chooses one of its outgoing edges. As a consequence, the game moves to
the destination of that edge. The game continues in this fashion, until an infinite
path is formed. Such games are called turn-based, as opposed to concurrent, since
at each step only one player is responsible for the next move. Throughout the
paper, we consider a fixed set Σ of atomic propositions. The following definitions
make this framework formal.

Turn based games. A Turn Based Game (in the following, simply game) is a
tuple G = (m,S, pl , δ, [·]) such that: m > 0 is the number of players; S is a
finite set of states; pl : S → {1, . . . ,m} is a function mapping each state s to
the player who owns it; δ ⊆ S × S is the transition relation which provides the
moves of the players and [·] : S → 2Σ is the function assigning to each state s the
set of atomic propositions that are true at s. In the following, unless otherwise
noted, we consider a fixed game G = (m,S, pl , δ, [·]). We assume that games
are non-blocking, i.e., each state has at least one successor in δ, to which it can
move. The players can join to form a team which is a subset of {1, . . . ,m}. For
a team X ⊆ {1, . . . ,m}, we denote by SX the set of states belonging to team
X , i.e. SX = {s ∈ S | pl(s) ∈ X}, and we denote by ¬X the opposite team, i.e.,
¬X = {1, . . . ,m} \X . A (finite or infinite) path in G is a (finite or infinite) path
in the directed graph (S, δ). Given a path ρ, we denote by ρ(i) its i-th state, by
first(ρ) its first state, and by last(ρ) its last state, when ρ is finite.

Strategies. A strategy in G is a pair (X, f), where X ⊆ {1, . . . ,m} is the team to
which the strategy belongs, and f : S+ → S is a function such that for all ρ ∈ S+,
(last(ρ), f(ρ)) ∈ δ. Our strategies are deterministic, or, in game-theoretic terms,
pure. A strategy σ = (X, f) is memoryless if f(ρ) only depends on the last state
of ρ, that is, for all ρ, ρ′ ∈ S+, if last(ρ) = last(ρ′) then f(ρ) = f(ρ′). We say
that an infinite path s0s1 . . . in G is consistent with a strategy σ = (X, f) if,
for all i ≥ 0, if si ∈ SX then si+1 = f(s0s1 . . . si). Observe that the infinite
paths in G which start from a state and are consistent with a given strategy
of a team X form a tree where the states of team X only have one child. We
denote by OutcG(s, σ) the set of all infinite paths in G which start from s and are
consistent with σ (in the following, we omit the subscript G when it is obvious
from the context). For two strategies σ = (X, f) and τ = (¬X, g), and a state
s, we denote by Outc(s, σ, τ) the unique infinite path which starts from s and is
consistent with both σ and τ .

3.1 Graded ATL: Definitions

In this subsection we give the definition of graded ATL. We extend ATL, defined
in [2], by adding grading capabilities to the team quantifiers.
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Syntax. Consider the path formulas θ and state formulas ψ defined via the
inductive clauses below.

θ ::= ©ψ | ψ Uψ | �ψ;

ψ ::= q | ¬ψ | ψ ∨ ψ | 〈〈X〉〉kθ,

where q ∈ Σ is an atomic proposition, X ⊆ {1, . . . ,m} is a team, and k is a
natural number. Graded Atl is the set of all state formulas.

The operators U (until), � (globally) and © (next) are the temporal oper-
ators. As usual, also the operator � (eventually) can be introduced using the
equivalence �ψ ≡ true Uψ. The syntax of Atl is the same as the one of graded
Atl, except that the team quantifier 〈〈·〉〉 exhibits no natural superscript.

Semantics. We present three alternative semantics for graded Atl, called off-line
semantics, memoryless semantics and on-line semantics for reasons explained
in the Introduction. Their satisfaction relations are denoted by |=off , |=mless and
|=on, respectively, and they only differ in the interpretation of the team quantifier
〈〈.〉〉. We start with the operators whose meaning is invariant in all semantics.
Let ρ be an infinite path in the game, s be a state, and ψ1, ψ2 be state formulas.
For x ∈ {on, off,mless}, the satisfaction relations are defined as follows.

ρ |=x ©ψ1 iff ρ(1) |=x ψ1

ρ |=x
�ψ1 iff ∀i ∈ N . ρ(i) |=x ψ1

ρ |=x ψ1 Uψ2 iff ∃j ∈ N . ρ(j) |=x ψ2 and ∀0 ≤ i < j . ρ(i) |=x ψ1 (†)

s |=x q iff q ∈ [s]
s |=x ¬ψ1 iff s �|=x ψ1

s |=x ψ1 ∨ ψ2 iff s |=x ψ1 or s |=x ψ2.

As explained in the following, graded Atl formulas have the ability to count
how many different paths (in the on-line semantics) or strategies (in the off-line
semantics) satisfy a certain property. However, it is not obvious when two paths
should be considered “different”. For instance, consider the formula pUq, for
some atomic propositions p and q, and two infinite paths that start in the same
state s, where s satisfies q and not p. Both paths satisfy pUq, but only due to
their initial state (i.e., j = 0 is the only witness for the definition (†)). Thus,
we claim that these two paths should not be counted as two different ways to
satisfy pUq, because they only become different after they have satisfied pUq.
The notion of dissimilar (sets of) paths captures this intuition.

We say that two finite paths ρ and ρ′ are dissimilar iff there exists 0 ≤ i ≤
min{|ρ|, |ρ′|} such that ρ(i) �= ρ′(i). Observe that if ρ is a prefix of ρ′, then ρ and
ρ′ are not dissimilar. For a path ρ and an integer i, we denote by ρ≤i the prefix
of ρ comprising i+ 1 states, i.e. ρ≤i = ρ(0), ρ(1), . . . , ρ(i). Given ϕ = 〈〈X〉〉θ, for
a path formula θ and a team X ⊆ {1, . . . ,m}, and x ∈ {on, off,mless}, we say
that two infinite paths ρ and ρ′ are (ϕ, x)-dissimilar iff:
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– θ = ©ψ and ρ(1) �= ρ′(1), or
– θ = �ψ and ρ(i) �= ρ′(i) for some i, or
– θ = ψ1 Uψ2 and there are two integers j and j′ such that:

• ρ(j) |=x ψ2,
• ρ′(j′) |=x ψ2,
• for all 0 ≤ i < j, ρ(i) |=x ψ1 and ρ(i) |=x 〈〈X〉〉ψ1 Uψ2, and
• for all 0 ≤ i′ < j′, ρ′(i′) |=x ψ1, and ρ′(i′) |=x 〈〈X〉〉ψ1 Uψ2, and
• ρ≤j and ρ′≤j′ are dissimilar.

Finally, two sets of infinite paths are (ϕ, x)-dissimilar iff one set contains a path
which is (ϕ, x)-dissimilar to all the paths in the other set, and, given a state s, two
strategies σ1, σ2 are (ϕ, x)-dissimilar at s if the sets Outc(s, σ1) and Outc(s, σ2)
are (ϕ, x)-dissimilar.

Off-line semantics. The meaning of the team quantifier is defined as follows, for
a state s and a path formula θ.

s |=off 〈〈X〉〉kθ iff there exist k strategies σ1 = (X, f1), . . . , σk = (X, fk) s.t. for
all i, j such that i �= j, σi and σj are (〈〈X〉〉θ, off)-dissimilar
at s and for all ρ ∈ Outc(s, σi), we have ρ |=off θ .

Memoryless semantics. In the memoryless semantics, the meaning of the team
quantifier is defined as follows, for a state s and a path formula θ.

s |=mless 〈〈X〉〉kθ iff there exist k memoryless strategies σ1 = (X, f1), . . . , σk =
(X, fk) s.t. for all i, j such that i �= j, σi and σj are
(〈〈X〉〉θ, off)-dissimilar at s and for all ρ ∈ Outc(s, σi), we
have ρ |=mless θ .

On-line semantics. The meaning of the team quantifier is defined as follows, for
a state s and a path formula θ.

s |=on 〈〈X〉〉kθ iff for all strategies τ = (¬X, f) there exist k pairwise
(〈〈X〉〉θ, on)-dissimilar paths ρ ∈ Outc(s, τ) s.t. ρ |=on θ.

In the following we omit the superscript k of a team quantifier when k = 1.
If ϕ is a classical Atl formula, we simply say in the following that a state s
satisfies ϕ or, equivalently, we say that ϕ holds in s. Moreover, we denote by
[[ϕ]] = {s ∈ S | s |= ϕ} the set of states that satisfy ϕ. A simple formula has the
form 〈〈X〉〉θ, for θ = �ψ or θ = ψ1 Uψ2. For a simple formula ϕ = 〈〈X〉〉θ, we
denote by δϕ the restriction of the transition function δ to [[ϕ]]× [[ϕ]] such that if
(s, s′) ∈ δϕ and θ = ψ1 Uψ2 then ψ1 holds in s. For a simple formula ϕ = 〈〈X〉〉θ,
a tag x ∈ {on, off,mless}, and a state s, we set gradex(s, ϕ) to be the greatest
integer k such that s |=x 〈〈X〉〉kθ holds. In particular, we set gradex(s, ϕ) = 0
if s �|=x ϕ and gradex(s, ϕ) = ∞ if s |=x 〈〈X〉〉kθ for all k ≥ 0. Finally, we set
N̂ = N ∪ {∞}, where N is the set of non-negative integers.
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4 Fixpoint Characterization

In this section we provide a fixpoint characterization of the functions gradex, for
x ∈ {on, off}. We start with the off-line semantics. Define the following operator
F off

ϕ : ([[ϕ]] → N̂)→ ([[ϕ]] → N̂).

F off
ϕ (f)(s) = 1 �

{∑
(s,s′)∈δϕ

f(s′) if s ∈ SX∏
(s,s′)∈δϕ

f(s′) otherwise,
(1)

where x � y denotes max{x, y}. The following result motivates the introduction
of the F off

ϕ operator. Observe that gradeoff(s, ϕ) = 0 (and also gradeon(s, ϕ) = 0)
for all s ∈ S \ [[ϕ]].

Lemma 1. Let ϕ be a simple formula and f : [[ϕ]] → N̂ be such that f(s) =
gradeoff(s, ϕ), for s ∈ [[ϕ]]. The function f is the least fixpoint of F off

ϕ .

Proof. First, we prove that f is a fixpoint of F off
ϕ . Let ϕ = 〈〈X〉〉θ and s ∈ [[ϕ]],

and, for all successors si of s such that (s, si) ∈ δϕ, let us set ki = gradeoff(si, ϕ).
That is, ki strategies of team X exist which determine ki (ϕ, off)-dissimilar sets
of paths, consistent with the strategies and satisfying θ. If s ∈ SX , then the
total number of winning strategies for X from s is the sum of the ki’s. Indeed,
each winning strategy starting from si remains winning if started from s (if
θ = ψ1 Uψ2, it is essential the hypothesis that s |= ψ1 ensured by the definition
of δϕ). If s /∈ SX , then for each si, the players of the team X can choose one
of the ki dissimilar winning strategies. Each combination gives rise to a winning
strategy from s, that is dissimilar to the one obtained by any other combination.
Therefore, the total number of dissimilar winning strategies from s is the product
of the ki’s.

Next, we prove that f is the least fixpoint of F off
ϕ . Precisely, we prove by

induction on n the following statement: Let g be a fixpoint of F off
ϕ and let

s ∈ [[ϕ]], if g(s) ≤ n then f(s) ≤ g(s). Assume that θ = �ψ (the other case is
similar). If n = 1, by hypothesis g(s) = 1. Considering the definition of F off

ϕ ,
there are the following three possibilities: (i) s has no successors according to δϕ;
(ii) s belongs to SX and has only one successor in δϕ; (iii) s does not belong to
SX and g(t) = 1, for all states t such that (s, t) ∈ δϕ. Option (i) can be discarded
because [[ϕ]] is the set of states where 〈〈X〉〉�ψ holds, and thus each state in [[ϕ]]
has at least one successor in δϕ. Given the remaining two options, one can see
that ¬X can force the game in a loop where all states x have value g(x) = 1,
and the players of X cannot exit this loop. Accordingly, we have f(s) = 1, as
requested. If n > 1, by contradiction, let g be a fixpoint of F off

ϕ which is smaller
than f . I.e., there is a state s ∈ [[ϕ]] such that g(s) < f(s). Clearly, it must be
f(s) > 1. Assume w.l.o.g. that also g(s) > 1, otherwise proceed as in the case
for n = 1. Starting from s, build a path in the game in the following way. Let t
be the current last state of the path (at the beginning, t = s): if t has only one
successor u according to δϕ, pick u as the next state (notice that g(u) = g(t) and
f(u) = f(t)); if t /∈ SX and t has more than one successor according to δϕ, pick
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as the next state of the path a successor u such that g(u) < f(u) (it is a simple
matter of algebra to show that such a state exists); finally, if t ∈ SX and t has
more than one successor according to δϕ, stop. If the above process continues
forever, it means that the adversaries (players not in X) can force the game in
a loop from which players in X cannot exit. This means that f(s) = 1, which
is a contradiction. Otherwise, the above process stops in a state t ∈ SX , such
that g(t) ≤ g(s) and g(t) < f(t). Since t has more than one successor, by (1),
for all successors u of t we have g(u) < g(t) ≤ g(s) ≤ n and thus g(u) ≤ n− 1.
Moreover, there is a successor u∗ of t such that g(u∗) < f(u∗). On the other
hand, by inductive hypothesis g(u∗) ≥ f(u∗), which is a contradiction.

Now, we provide a similar characterization for the on-line semantics. Define
the following operator F on

ϕ : ([[ϕ]] → N̂)→ ([[ϕ]] → N̂).

F on
ϕ (f)(s) = 1 �

{∑
(s,s′)∈δϕ

f(s′) if s ∈ SX

min(s,s′)∈δϕ
f(s′) otherwise.

(2)

Lemma 2. Let ϕ be a simple formula and f : [[ϕ]] → N̂ be such that f(s) =
gradeon(s, ϕ), for s ∈ [[ϕ]]. The function f is the least fixpoint of F on

ϕ .

Proof. First, we prove that f is a fixpoint of F on
ϕ . Let ϕ = 〈〈X〉〉θ and s ∈ [[ϕ]].

Suppose that there is at least one successor of s in δϕ (otherwise θ = ψ1 Uψ2,
s |=on ψ2, and F on

ϕ (f)(s) = f(s) = 1). For all successors si of s in δϕ, let
ki = gradeon(si, 〈〈X〉〉θ). For each strategy τ of ¬X , there are ki dissimilar paths
starting from si, consistent with τ , and satisfying θ. Therefore, if s ∈ SX , by
adding state s in front of each of these paths, we obtain

∑
i ki dissimilar paths

starting from s, consistent with τ , and satisfying θ. In fact, if θ = �ψ, since
s |=on 〈〈X〉〉θ, we have that s |=on ψ, while, if θ = ψ1 Uψ2, then s |=on ψ1 (if it
is not the case, there are no successors si of s such that (s, si) ∈ δϕ). If instead
s /∈ SX , let i = arg(minj kj). Consider the memoryless strategy τ of ¬X that
picks si when the game is in s. Under τ , there are ki dissimilar paths starting
from s and satisfying θ. From the choice of i, it follows that all strategies of ¬X
have at least as many dissimilar paths from s.

Next, we prove that f is the least fixpoint of F on
ϕ . Similarly to the proof of

Lemma 1, we prove by induction on n the following statement: Let g be a fixpoint
of F on

ϕ and let s ∈ [[ϕ]], if g(s) ≤ n then f(s) ≤ g(s). Assume for simplicity that
θ = �ψ, as the other case can be proved along similar lines. The case for n = 1
can be proved similarly to the proof of Lemma 1. If n > 1, by contradiction, let
g be a fixpoint of F on

ϕ which is smaller than f . I.e., there is a state s ∈ [[ϕ]] such
that g(s) < f(s). Clearly, it must be f(s) > 1. Starting from s, build a path in
the game in the following way. Let t be the current last state of the path (at
the beginning, t = s): if t /∈ SX , pick as the next state of the path a successor
u of t such that g(u) = g(t) and (t, u) ∈ δϕ (notice that f(u) ≥ f(t)); if t ∈ SX

and t has only one successor u with (t, u) ∈ δϕ, pick u as the next state (notice
that g(u) = g(t) and f(u) = f(t)); finally, if t ∈ SX and t has more than one
such successor, stop. If the above process continues forever, team ¬X can force
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the game in a loop from which team X cannot exit. This means that f(s) = 1,
which is a contradiction. Otherwise, the above process stops in a state t ∈ S1,
such that g(t) = g(s) and f(t) ≥ f(s). Therefore, f(t) > g(t). Since t has more
than one successor according to δϕ, by (2), for all successors u of t we have
g(u) < g(t) = g(s) ≤ n and thus g(u) ≤ n − 1. Moreover, there is a successor
u∗ of t such that g(u∗) < f(u∗). On the other hand, by inductive hypothesis
g(u∗) ≥ f(u∗), which is a contradiction.

5 Comparing the Semantics

The example in Figure 1 shows that the three semantics are different in general.
In this section we clarify the relationship between the semantics. In the following
examples we consider two players, Player 1 and Player 2. As before, states of
Player 1 are represented by circles and those of Player 2 by squares.

s0

s1

s2

s3

s4

q

s5

q

(a)

s0 s1 s2

q

(b)

Fig. 2. Two games where the semantics differ

The first example shows that the memoryless semantics can give a smaller
grading value than the offline semantics, even when the latter produces a finite
value.

Example 1. Consider the game in Figure 2a, where the goal for Player 1 is to
reach the proposition q, which is true in states s4 and s5. According to the off-line
semantics, there are 4 possible strategies to achieve that goal. Namely, for each
choice of Player 2 in s0, Player 1 has two options once the game is in s3. Thus,
we have s0 |=off 〈〈1〉〉4�q and s0 �|=off 〈〈1〉〉5�q. On the other hand, according to
the memoryless semantics, there are only two memoryless strategies for Player 1,
the one that leads to s4 and the one leading to s5. Thus, s0 |=mless 〈〈1〉〉2�q and
s0 �|=mless 〈〈1〉〉3�q.

The example in the introduction shows that the memoryless semantics may
attribute to a formula a higher grading value than the on-line semantics. The
following example shows that the converse is also possible, hence proving that
the two semantics are incomparable.

Example 2. Consider the game in Figure 2b, where the goal for Player 1 is
again to reach the proposition q, which is true in s2. According to the on-line
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semantics, there are infinitely many strategies to achieve that goal. For all k > 0,
there is a strategy of Player 1 that makes k visits to s1 before going to s2. Thus,
we have s0 |=on 〈〈1〉〉k�q, for all k > 0. On the other hand, there is only one
memoryless winning strategy, i.e., the one that goes directly from s1 to s2. Thus,
s0 |=mless 〈〈1〉〉1�q and s0 �|=mless 〈〈1〉〉2�q.

When all quantifiers have grade 1, the semantics coincide. Indeed, the classical
quantifiers embedded in each Atl team quantifier (there is a strategy of team X
such that for all strategies of team ¬X , etc.) can be exchanged, due to the well-
known result by Martin on the determinacy of games with Borel objectives [18].
Notice that the languages of infinite words defined by the linear part of Atl are
trivially Borel languages. This leads to the following result.

Theorem 1. For all states s and Atl state formulas ϕ, it holds that

s |=off ϕ iff s |=mless ϕ iff s |=on ϕ.

Now we prove that, if a graded Atl formula in which the negation does not
occur is satisfied under the on-line semantics, then it is satisfied under the off-line
semantics as well. Observe that the same result cannot hold for a general graded
Atl formula, since we know that the off-line and the on-line semantics do not
coincide. For example, for the game in Figure 1, we have that s0 |=on ¬〈〈1〉〉2�s4,
but, on the contrary, it is false that s0 |=off ¬〈〈1〉〉2�s4. Let us consider the F off

ϕ

and F on
ϕ operators, defined in the previous section, and their iteration, starting

from the constant function 1: F x,0
ϕ (s) = 1 and F x,i+1

ϕ (s) = F x
ϕ (F x,i

ϕ )(s), for
x ∈ {on, off} and an Atl formula ϕ. It is easy to see that both the sequences
F on,i

ϕ (s) and F off,i
ϕ (s) are nondecreasing, for every state s, and then, by Lemma 1

and Lemma 2, the following proposition follows.

Proposition 1. Let ϕ be a simple formula and let s ∈ [[ϕ]].

– The value gradex(s, ϕ) is the least upper bound of the sequence {F x,i
ϕ (s)}i≥0,

for x ∈ {on, off}.
– For every i ≥ 0, F on,i

ϕ (s) ≤ F off,i
ϕ (s) .

Theorem 2. For all states s and negation-free graded Atl formulas ψ,

if s |=on ψ then s |=off ψ.

Proof. Let ψ = 〈〈X〉〉kθ, with either θ = �q or θ = pUq, p, q ∈ Σ, and
ϕ = 〈〈X〉〉θ. From Proposition 1, gradeon(s, ϕ) ≤ gradeoff(s, ϕ), otherwise
gradeon(s, ϕ) would not be the least upper bound of {F on,i

ϕ (s)}i≥0. Thus s |=on ψ

only if s |=off ψ. To complete the proof of our statement, we proceed by structural
induction on a generic negation-free graded Atl formula. The proof is trivial for
the atomic propositions and for the disjunction operator. Let ψ be a graded Atl

formula for which we inductively suppose that if r |=on ψ then r |=off ψ, for any
state r of G. If s |=on 〈〈X〉〉k © ψ, the statement trivially follows. Suppose now
that s |=on 〈〈X〉〉k�ψ and let Ĝ be a new game obtained from G by adding a
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new atomic proposition qψ, holding true in all the states r such that r |=on ψ.
Clearly, s |=on

Ĝ
〈〈X〉〉k�qψ and, as shown above, s |=off

Ĝ
〈〈X〉〉k�qψ. This implies

that s |=off 〈〈X〉〉k�ψ as well. The proof for the U operator is similar.

6 Model Checking

The model checking problem for the semantics x ∈ {on, off,mless} takes as
input a game G, a state s in G and a graded Atl formula ψ, and asks whether
s |=x ψ. In this section, we efficiently solve the model checking problem for all the
considered semantics, in polynomial time w.r.t. the size of the input game and
the number of logical operators in the input formula. Moreover, for the off-line
and the on-line semantics, the time complexities do not depend on the constants
occurring in the graded team quantifiers.

We say that a state is a decision point for X (or simply a decision point, when
the team X is clear from the context) if it belongs to a player of team X and
it has at least two successors. Moreover, a strongly connected component of a
graph is a sink if there are no outgoing edges from it.

Off-line semantics. We first consider ψ = 〈〈X〉〉kθ with θ = �q or θ = pUq,
and provide algorithms for solving a stronger form of model checking, that is we
compute gradex(s, 〈〈X〉〉θ).

Algorithm 1 . The algorithm computing gradeoff(·, ϕ), given ϕ = 〈〈X〉〉θ, with
θ = �q or θ = pUq.
1. Using standard Atl algorithms, compute the set of states [[ϕ]], and assign 0 to the

states in S \ [[ϕ]]. Then, compute the subgame with state-space [[ϕ]] and transition
relation δϕ.

2. On the sub-game, compute the strongly connected components.
3. Proceed backwards starting from the sink components, according to the following

rules:
(a) Sink components which do not contain decision points are assigned grade 1.
(b) Sink and non-sink components having more than one state and containing a

decision point (of the subgame) are assigned grade ∞.
(c) Non-sink components having more than one state and do not fall in case 3b

are assigned ∞ if they have a successor component with grade greater than 1;
otherwise, they are assigned 1.

(d) Non-sink components containing only one state: if this state belongs to SX

then it is assigned the sum of the grades of the successor components; while if
the state does not belong to SX , then it is assigned the product of the grades
of the successor components.

Lemma 3. For each state s, Algorithm 1 computes gradeoff(s, ϕ), for ϕ =
〈〈X〉〉θ, with θ = �q or θ = pUq. The algorithm runs in linear time.
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Proof. The algorithm first computes the states satisfying the Atl formula 〈〈X〉〉θ,
and removes all other states s, for which it indeed holds gradeoff(s, 〈〈X〉〉θ) = 0.
Then, it computes in the new game the strongly connected components (we as-
sume that there exists at least one such component, otherwise the statement triv-
ially holds). Observe that all the states belonging to the same strongly connected
component have the same grade. The algorithm then looks for sink components
not containing a decision point, assigning the value 1 to them. Components hav-
ing more than one state and containing a decision point, get the value ∞. Let us
prove that this is correct. Let r be a decision point and suppose that r belongs
to Player j, and call r1, r2 two of its successors. For all h > 0 there is a strategy
of team X such that Player j, in state r, chooses to visit r1 h times, before
visiting r2. Clearly, for each h > 0, the strategies σi, i ≤ h, determine pairwise
(〈〈X〉〉θ, off)-dissimilar Outc(r2, σi) and thus, r2 |=off 〈〈X〉〉kθ, for all k > 0. The
same reasoning holds for non-sink components and, thus, steps 3a and 3b are
correct. Consider now a non-sink component C having more than one state and
not containing a decision point (step 3c). Edges outgoing from C are moves of
players not belonging to X and thus, if the algorithm has assigned 1 to all the
successor components of C, there is only one strategy for the team X . Otherwise,
suppose that there is a state r in C having a successor r′ in another component
and that there exist two strategies of X starting from r′. Then, for any way of
alternating between these two strategies, whenever the state r′ is entered, there
is a strategy of X from r, and thus the algorithm correctly assigns grade infinite.
The correctness of case 3d follows from Lemma 1. Finally, observe that the al-
gorithm is complete as all cases have been examined and assuming an adjacency
list representation for the game, the above algorithm runs in linear time.

To solve the model checking problem for graded Atl we can use Lemma 3 thus,
the following theorem holds. The complexity result assumes that each basic
operation on integers is performed in constant time.

Theorem 3. Given a state s and a graded Atl formula ψ, the graded model
checking problem, s |=off ψ, can be solved in time O(|δ| · |ψ|), where |ψ| is the
number of operators occurring in ψ.

Memoryless semantics. For θ ∈ {�q, p Uq}, in order to model-check a graded
Atl formula 〈〈X〉〉kθ on a state s in the memoryless semantics, we call the func-
tion count mless(G,ϕ, k, s) (Algorithm 2), with ϕ = 〈〈X〉〉θ. We have that s
satisfies 〈〈X〉〉kθ if and only if the result of this call is k. To describe Algo-
rithm 2, we need some extra definitions. Given an Atl formula, we say that a
state s is winning w.r.t. ϕ if there exists a strategy σ of team X such that for
all ρ ∈ Outc(s, σ), we have ρ |= θ (i.e., s |= ϕ). In that case we also say that σ
is winning from s. We say that a strategy is uniformly winning if it is winning
from all winning states. For two states s and u, and a strategy σ, we say that
the distance of u from s according to σ is the shortest distance between s and u
considering only paths consistent with σ.

In general, count mless(G,ϕ = 〈〈X〉〉θ, k, s) computes the minimum between
k and the number of memoryless strategies of team X , (ϕ, off)-dissimilar at s,
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that are winning from s. The idea of the algorithm is the following. We start by
computing the set of states W where the Atl formula ϕ holds, using standard
Atl algorithms (line 1). If s does not belong to W , it does not satisfy 〈〈X〉〉kθ,
for any k > 0. If s belongs to W , we analyze the subgame with state-space
W and transition relation δϕ (see Section 3.1). On this subgame, we compute
an arbitrary memoryless uniformly winning strategy. After removing the edge
(u, π(u)) on line 8, every strategy π′ in the residual game must be distinct from
π, because it cannot use that edge. When θ = pUq, two distinct infinite paths
that satisfy θ need not be dissimilar. It is necessary that the paths become
distinct before an occurrence of q. This property is ensured by the subgame only
containing winning states and by all the computed strategies being uniformly
winning.

We then put back the edge (u, π(u)) and on line 12 we remove all other edges
leaving u. This ensures that the strategies computed in the following iterations
are dissimilar from the ones computed so far. This structure is inspired by the
algorithms for computing the k shortest simple paths in a graph [21,16].

The following result establishes an upper bound on the value returned by
count mless, showing that it cannot return a value higher than the number of
mutually dissimilar memoryless winning strategies present in the game. Due to
space constraints, we omit the proof and refer the reader to the extended version
of this paper.

Lemma 4. All strategies computed on line 4 by Algorithm 2 are mutually
(ϕ, off)-dissimilar at s.

The following result privides a lower bound on the value returned by count mless.
Together with Lemma 4, this result implies the correctness of the algorithm.

Lemma 5. Given a state s, if there are n memoryless strategies that
are mutually (ϕ, off)-dissimilar at s, and that are winning from s, then
count mless(G,ϕ, k, s) returns at least n, for all k ≥ n.

The following result characterizes the time complexity of Algorithm 2, in terms
of calls to the procedures get winning set and get uniformly winning strategy.

Lemma 6. A call to count mless(G,ϕ, k, s) which returns value n > 0
makes at most 1 + n · |S| calls to get winning set and at most n calls to
get uniformly winning strategy.

Proof. We proceed by induction on n. For n = 0, the statement is trivially
true, because the value zero can only be returned on line 2, after one call to
get winning set.

For n > 0, if the algorithm returns on line 5, the statement is trivially true.
Otherwise, the algorithm enters the “for all” loop after one call to get winning set
and one call to get uniformly winning strategy. Let ni be the value returned by
the i-th recursive call on line 9. We have that n = 1 +

∑
i ni and the number of

iterations of the loop is at most |S|. By inductive hypothesis, the i-th recursive
call is responsible for at most 1 + ni · |S| calls to get winning set and at most
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ni calls to get uniformly winning strategy. Hence, the total number of calls to
get winning set is

1 +
∑

i

(1 + ni · |S|) = 1 +
∑

i

1 + |S|
∑

i

ni ≤ 1 + |S|+ |S| · (n− 1) = 1 + n · |S|.

The total number of calls to get uniformly winning strategy is instead 1 +∑
i ni = n, as required.

Considering that Atl model checking can be performed in linear time w.r.t. the
adjacency list representation of the game, from Lemma 6 we obtain the following.

Corollary 1. The time complexity of count mless(G,ϕ, k, s) is O(k · |S| · (|S|+
|δ|)) = O(k · |S| · |δ|).

Algorithm 2. The procedure count mless(G,ϕ, k, s).
Require: G = (m,S, pl , δ, [·]): game, ϕ ∈ {〈〈X〉〉�q, 〈〈X〉〉p Uq}, k: natural number, s:

state of G
1: W := get winning set(G, ϕ)
2: if s �∈ W then return 0
3: G′ := (m,S, pl , δϕ, [·])
4: π := get uniformly winning strategy(G′, ϕ)
5: if k = 1 then return 1
6: n := 1
7: for all decision points u of team X, reachable from s according to π, in non-

decreasing order of distance from s according to π do
8: remove edge(G′, (u, π(u)))
9: n := n+ count mless(G′, ϕ, k − n, s)

10: add edge(G′, (u, π(u)))
11: if n = k then return n
12: remove edges(G′, {(u, x) | x �= π(u)})
13: end for
14: return n

From the previous lemmas and by using standard arguments, we obtain a
solution to the model-checking problem for a graded Atl formula, under the
memoryless semantics.

Theorem 4. Given a state s and a graded Atl formula ψ, the graded model
checking problem, in the memoryless semantics, can be solved in time O(k̂ · |S| ·
|δ| · |ψ|), where k̂ is the maximum value of a constant appearing in ψ.

On-line semantics. Similarly to the case of off-line semantics, we describe an
algorithm for computing gradeon(s, 〈〈X〉〉θ) for θ = �q or θ = pUq, and for
all states s ∈ S. Given a path formula θ = �q or θ = pUq, Algorithm 3
computes gradeon(s, 〈〈X〉〉θ), for all states s ∈ S. The complexity of the algorithm
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Algorithm 3 . The algorithm computing gradeon(·, ϕ), given ϕ = 〈〈X〉〉θ, with
θ = �q or θ = pUq.
1. Using standard Atl algorithms, compute the set of states [[ϕ]]. The following steps

are performed in the subgame with state-space [[ϕ]] and transition relation δϕ.
Assign grade 0 to the states in S \ [[ϕ]].

2. Let d be a new atomic proposition which holds in the decision points (of the
subgame). Find the states where 〈〈¬X〉〉�¬d holds, and assign grade 1 to them.

3. Find the states from which team X can enforce infinitely many visits to a decision
point (i.e., states where the Atl

∗ formula 〈〈X〉〉��d holds), and assign grade ∞
to them.

4. For the remaining states, compute their value by inductively applying equation (2)
to those states whose successors have already been assigned a value.

is dominated by step 3, which involves the solution of a Büchi game [19]. This
task can be performed in time O(|S| · |δ|), i.e., quadratic in the size of the
adjacency-list representation of the game.

It is not obvious that the algorithm assigns a value to each state in the game.
Indeed, step 4 assigns a value to a state only if all of its successors have already
received a value. If, at some point, each state that does not have a value has
a successor that in turn does not have a value, the algorithm stops. For the
above situation to arise, there must be a loop of states with no value. The
following lemma states that the above situation cannot arise, and therefore that
the algorithm ultimately assigns a value to each state.

Lemma 7. At the end of step 3 of Algorithm 3, there is no loop of states with
no value.

We can now state the correctness and complexity of Algorithm 3.

Lemma 8. Given a path formula θ = �q or θ = pUq, at the end of Algorithm 3,
each state s has value gradeon(s, 〈〈X〉〉θ). The algorithm runs in quadratic time.

Proof. We proceed by examining the four steps of the algorithm. If s receives
its value (zero) during step 1, it means that s �|=on 〈〈X〉〉θ. Therefore, zero is the
largest integer k such that s |=on 〈〈X〉〉kθ holds.

If s receives its value (one) during step 2, it means that s |=on 〈〈¬X〉〉�¬d.
Consider a strategy of team ¬X ensuring the truth of �¬d. According to this
strategy, a player of the team X can never choose between two different succes-
sors. Therefore, there is a unique infinite path consistent with this strategy of
¬X . This implies that 1 is the greatest integer k such that s |=on 〈〈X〉〉kθ holds.

If s receives its value (infinity) during step 3, it means that s |=on 〈〈X〉〉��d.
Consider any strategy τ of ¬X , and a strategy σ of X ensuring ��d. The
resulting infinite path ρ contains infinitely many decision points for X . For each
decision point ρ(i), let σi be a strategy of X with the following properties: (i) σi

coincides with σ until the prefix ρ≤i is formed, (ii) after ρ≤i, σi picks a different
successor than σ, and then keeps ensuring θ. It is possible to find such a σi
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because ρ(i) is a decision point in the subgame. For all i �= j such that ρ(i) and
ρ(j) are decision points, the outcome of τ and σi is dissimilar from the outcome
of τ and σj . Therefore, s |=on 〈〈X〉〉kθ holds for all k > 0.

Finally, if s receives its value during step 4, the correctness of the value is a
consequence of Lemma 2. The complexity of the algorithm is discussed previously
in this section.

Due to the above complexity result, and the discussion already made for the
off-line semantics, we obtain the following conclusion.

Theorem 5. Given a state s and a graded Atl formula ψ, the graded model
checking problem, s |=on ψ, can be solved in time O(|S| · |δ| · |ψ|), where |ψ| is
the number of operators occurring in ψ.

As before, under the constant-time assumption for basic integer operations, the
above complexity is independent of the integer constants appearing in the for-
mula. Finally, from the PTIME hardness of the reachability problem for AND-
OR graphs [14], this corollary follows.

Corollary 2. The graded Atl model checking problem is PTIME-complete, un-
der the off-line, memoryless and on-line semantics, with respect to the size of
the game.

7 Model Checking Concurrent Games

In this section we consider graded Atl when interpreted over concurrent games,
i.e., games where at each step all players contribute to the choice of the next
move. We show that the model-checking problem for concurrent games can be
reduced to the turn-based setting.

Concurrent game structures. A concurrent game structure is a tuple G =
(m,S, d, δ, [·]) where: m > 0 is the number of players; S is a finite set of states;
for each player i ∈ {1, . . . ,m} and state s ∈ S, di(s) ≥ 1 is an integer represent-
ing the number of moves of player i at state s; and [·] : S → 2Σ is the function
assigning to each state s the set of atomic propositions that are true at s. In the
following, we use integers from 1 to di(s) for the moves of player i in state s. In
a state s, the vector 〈j1, . . . , jm〉 is the move vector such that ji ≤ di(s). For a
state s, we define the move function D(s) = {1, . . . , d1(s)}× . . .×{1, . . . , dm(s)}
that lists all the joint moves available to the players. The transition function
assigns to each s ∈ S and j ∈ D(s) the state δ(s, j).

Strategies can be defined naturally as in the case of the turn-based setting.
In particular, a strategy of player i assigns a move in the range 1, . . . , di(s) to
each run ending in state s. As far as the dissimilarity is concerned, we have to
decide whether moves are sufficient for distinguishing two strategies (or paths).
In the following, we answer the above question in the positive: two strategies
(or paths) that only differ in the moves chosen by a player, and not in the
sequences of states, are considered different, and hence potentially dissimilar.
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This corresponds to the assumption that different moves in the game represent
different real-world actions, that we are interested in counting. The satisfaction
relations |=off and |=on are defined accordingly.

Model-checking complexity. We briefly report the construction of a 2-player turn-
based game GX from a concurrent game G played by the team X [2]. Consider
a concurrent game structure G = (m,S, d, δ, [·]) and a team X of players in
{1, . . . ,m}. For a state s ∈ S, an X-move is a possible combination of moves
of the players in X when the game is in state s. We denote by C(X, s) the set
of X-moves in s, and by C(X) = ∪s∈SC(X, s) the set of all X-moves. For an
X-move c in s, a state s′ is said to be a c-successor of s if s′ = δ(s, j), where
j = 〈j1, . . . , jm〉 and each ja, for a ∈ X , is determined by the X-move c.

The 2-player turn-based game structure GX = (2, S′, pl , δ′, [·]′) is defined as
follows: the set of atomic propositions is augmented with a special proposition
aux, the set of states is S′ = S ∪ C(X), that is it contains S and, for each
X-move, a new state which is now labeled with aux by the labeling function
(the states in S have the same label as in G). Player 1 owns the states s ∈ S,
while Player 2 owns the new states, and the behaviour is the following: there
is an edge from a state s ∈ S to each state c ∈ C(X, s), and there is an edge
from c ∈ C(X, s), for some s, to s′ ∈ S if s′ is a c-successor of s. Clearly GX

has O(|δ|) states and edges. Moreover it is easy to see that for each strategy
σ of team X in G there exists a corresponding strategy σ′ in GX such that
every path π′ in OutcGX (s, σ′) is of the type . . . , si, ai, si+1, ai+1, . . ., where the
s states are in S, and the a states are in C(X), and π′ uniquely corresponds to
a path (. . . , si, si+1, . . .) ∈ OutcG(s, σ). Consider now a path formula θ = �p or
θ = pUq, for atomic propositions p and q. The considerations above imply that
the number of (〈〈X〉〉θ, off)-dissimilar strategies of X in G is equal to the number
of (〈〈1〉〉θ, off)-dissimilar strategies of Player 1 in GX .

Proposition 2. Let G be a concurrent game, s ∈ S, p, q ∈ Σ, and X ⊆
{1, . . . ,m}. Then the following hold for all k > 0:

s |=off
G 〈〈X〉〉k�p iff s |=off

GX
〈〈1〉〉k�(p ∨ aux)

s |=off
G 〈〈X〉〉kpUq iff s |=off

GX
〈〈1〉〉k(p ∨ aux)Uq.

For the on-line case, we consider the 2-player turn-based game G¬X in which
Player 1 plays the role of the team ¬X of the concurrent game G. Thus the
number of (〈〈¬X〉〉θ, on)-dissimilar paths in each OutcG(s, σ), for a strategy σ of
team ¬X is equal to the number of (〈〈1〉〉θ, on)-dissimilar paths in OutcG¬X (s, σ′)
for the corresponding strategy σ′ of player 1 in G¬X .

Proposition 3. Let G be a concurrent game, s ∈ S, p, q ∈ Σ and X ⊆
{1, . . . ,m}. Then the following hold for all k > 0:

s |=on
G 〈〈X〉〉k�p iff s |=on

G¬X
〈〈2〉〉k�(p ∨ aux)

s |=on
G 〈〈X〉〉kpUq iff s |=on

G¬X
〈〈2〉〉k(p ∨ aux)Uq.
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Let us remark that the above propositions allow us to model check a formula
ψ with one team quantifier 〈〈X〉〉 by using the algorithms for the turn-based
games given in the previuos sections. By applying standard techniques one can
model-check formulas with any number of nested team quantifiers. A PTIME -
completeness result thus follows from Corollary 2 and the construction of the
2-player turn-based game described above.

Theorem 6. The model-checking problem for graded Atl on concurrent games
is PTIME-complete with respect to the size of the game. Moreover, it can be
solved in time O(|δ| · |ψ|) in the off-line semantics and in time O(|δ|2 · |ψ|) in
the on-line semantics, for a concurrent game with transition function δ and for
a graded Atl formula ψ.
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Abstract. We study strategy improvement algorithms for mean-payoff
and parity games. We describe a structural property of these games,
and we show that these structures can affect the behaviour of strategy
improvement. We show how awareness of these structures can be used to
accelerate strategy improvement algorithms. We call our algorithms non-
oblivious because they remember properties of the game that they have
discovered in previous iterations. We show that non-oblivious strategy
improvement algorithms perform well on examples that are known to be
hard for oblivious strategy improvement. Hence, we argue that previous
strategy improvement algorithms fail because they ignore the structural
properties of the game that they are solving.

1 Introduction

In this paper we study strategy improvement for two player infinite games played
on finite graphs. In this setting the vertices of a graph are divided between two
players. A token is placed on one of the vertices, and in each step the owner
of the vertex upon which the token is placed must move the token along one
of the outgoing edges of that vertex. In this fashion, the two players form an
infinite path in the graph. The payoff of the game is then some property of
this path, which depends on the type of game that is being played. Strategy
improvement is a technique that originated from Markov decision processes [7],
and has since been applied many types of games in this setting, including simple
stochastic games [3], discounted-payoff games [12], mean-payoff games [2], and
parity games [15,1]. In this paper we will focus on the strategy improvement
algorithm of Björklund and Vorobyov [2], which is designed to solve mean-payoff
games, but can also be applied to parity games.

Algorithms that solve parity and mean-payoff games have received much in-
terest. One reason for this is that the model checking problem for the modal
μ-calculus is polynomial time equivalent to the problem of solving a parity
game [4,14], and there is a polynomial time reduction from parity games to
mean-payoff games [12]. Therefore, faster algorithms for these games lead to
faster model checkers for the μ-calculus. Secondly, both of these games lie in
NP ∩ co-NP, which implies that neither of the two problems are likely to be
complete for either class. Despite this, no polynomial time algorithms have been
found.

The approach of strategy improvement can be described as follows. The algo-
rithm begins by choosing one of the players to be the strategy improver, and then
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picks an arbitrary strategy for that player. A strategy for a player consists of a
function that picks one edge for each of that player’s vertices. Strategy improve-
ment then computes a set of profitable edges for that strategy. If the strategy
is switched so that it chooses some subset of the profitable edges, rather than
the edges that are currently chosen, then strategy improvement guarantees that
the resulting strategy is better in some well-defined measure. So, the algorithm
picks some subset of the profitable edges to create a new, improved, strategy to
be considered in the next iteration. This process is repeated until a strategy is
found that has no profitable edges, and this strategy is guaranteed optimal for
the strategy improver. Since any subset of the profitable edges could be used to
create an improved strategy in each iteration, some method is needed to deter-
mine which subset to choose in each iteration. We call this method a switching
policy, and the choice of switching policy can have a dramatic effect on the
running time of the algorithm.

A significant amount of research has been dedicated to finding good switch-
ing policies. In terms of complexity bounds, the current best switching policies
are randomized, and run in an expected O(2

√
n log n) number of iterations [2].

Another interesting switching policy is the optimal switching policy given by
Schewe [13]. An optimal switching policy always picks the subset of profitable
edges that yields the best possible successor strategy, according to the measure
that strategy improvement uses to compare strategies. It is not difficult to show
that such a subset of profitable edges must exist, but computing an optimal sub-
set of profitable edges seemed to be difficult, since there can be exponentially
many subsets of profitable edges to check. Nevertheless, Schewe’s result is a
polynomial time algorithm that computes an optimal subset of edges. Therefore,
optimal switching policies can now be realistically implemented. It is important
to note that the word “optimal” applies only to the subset of profitable edges
that is chosen to be switched in each iteration. It is not the case that a strategy
improvement algorithm equipped with an optimal switching policy will have an
optimal running time.

Perhaps the most widely studied switching policy is the all-switches policy,
which simply selects the entire set of profitable edges in every iteration. Although
the best upper bound for this policy is O(2n/n) iterations [11], it has been found
to work extremely well in practice. Indeed, for a period of ten years there were no
known examples upon which the all switches policy took significantly more than
a linear number of iterations. It was for this reason that the all-switches policy
was widely held to be a contender for a proof of polynomial time termination.

However, Friedmann has recently found a family of examples that force a
strategy improvement algorithm equipped with the all-switches policy to take an
exponential number of steps [5]. Using the standard reductions [12,16], these ex-
amples can be generalised to provide exponential lower bounds for all-switches on
mean-payoff and discounted-payoff games. Even more surprisingly, Friedmann’s
example can be generalised to provide an exponential lower bound for strategy
improvement algorithms equipped with an optimal switching policy [6]. This re-
cent revelation appears to imply that there is no longer any hope for strategy
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improvement, since an exponential number of iterations can be forced even if
the best possible improvement is made in every step.

Our contributions. Despite ten years of research into strategy improvement al-
gorithms, and the recent advances in the complexity of some widely studied
switching policies, the underlying combinatorial structure of mean-payoff and
parity games remains somewhat mysterious. There is no previous work which
links the structural properties of a parity or mean-payoff game with the be-
haviour of strategy improvement on those games. In this paper, we introduce
a structural property of these games that we call a snare. We show how the
existence of a snare in a parity or mean-payoff game places a restriction on the
form that a winning strategy can take for these games.

We argue that snares play a fundamental role in the behaviour of strategy
improvement algorithms. We show that there is a certain type of profitable edge,
which we call a back edge, that is the mechanism that strategy improvement
uses to deal with snares. We show how each profitable back edge encountered
by strategy improvement corresponds to some snare that exists in the game.
Hence, we argue that the concept of a snare is a new tool that can be used in
the analysis of strategy improvement algorithms.

We then go on to show that, in addition to being an analytical tool, aware-
ness of snares can be used to accelerate the process of strategy improvement. We
propose that strategy improvement algorithms should remember the snares that
they have seen in previous iterations, and we give a procedure that uses a pre-
viously recorded snare to improve a strategy. Strategy improvement algorithms
can choose to apply this procedure instead of switching a subset of profitable
edges. We give one reasonable example of a strategy improvement algorithm
that uses these techniques. We call our algorithms non-oblivious strategy im-
provement algorithms because they remember information about their previous
iterations, whereas previous techniques make their decisions based only on the
information available in the current iteration.

In order to demonstrate how non-oblivious techniques can be more powerful
than traditional strategy improvement, we study Friedmann’s family of examples
that cause the all-switches and the optimal switching policies to take exponential
time. We show that in certain situations non-oblivious strategy improvement
makes better progress than even the optimal oblivious switching policy. We go
on to show that this behaviour allows our non-oblivious strategy improvement
algorithms to terminate in polynomial time on Friedmann’s examples. This fact
implies that it is ignorance of snares that is a key failing of oblivious strategy
improvement.

2 Preliminaries

A mean-payoff game is defined by a tuple (V, VMax, VMin, E, w) where V is a set
of vertices and E is a set of edges, which together form a finite graph. Every
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vertex must have at least one outgoing edge. The sets VMax and VMin partition V
into vertices belonging to player Max and vertices belonging to player Min,
respectively. The function w : V → Z assigns an integer weight to every vertex.

The game begins by placing a token on a starting vertex v0. In each step,
the player that owns the vertex upon which the token is placed must choose
one outgoing edge of that vertex and move the token along it. In this fashion,
the two players form an infinite path π = 〈v0, v1, v2, . . . 〉, where (vi, vi+1) is
in E for every i in N. The payoff of an infinite path is defined to be M(π) =
lim infn→∞(1/n)

∑n
i=0 w(vi). The objective of Max is to maximize the value

of M(π), and the objective of Min is to minimize it.
A positional strategy for Max is a function that chooses one outgoing edge for

every vertex belonging to Max. A strategy is denoted by σ : VMax → V , with
the condition that (v, σ(v)) is in E, for every Max vertex v. Positional strategies
for player Min are defined analogously. The sets of positional strategies for Max
and Min are denoted by ΠMax and ΠMin, respectively. Given two positional
strategies, σ and τ for Max and Min respectively, and a starting vertex v0,
there is a unique path 〈v0, v1, v2 . . . 〉, where vi+1 = σ(vi) if vi is owned by Max
and vi+1 = τ(vi) if vi is owned by Min. This path is known as the play induced
by the two strategies σ and τ , and will be denoted by Play(v0, σ, τ).

For all v in V we define:

Value∗(v) = max
σ∈ΠMax

min
τ∈ΠMin

M(Play(v, σ, τ))

Value∗(v) = min
τ∈ΠMin

max
σ∈ΠMax

M(Play(v, σ, τ))

These are known as the lower and upper values, respectively. For mean-payoff
games we have that the two quantities are equal, a property called determinacy.

Theorem 1 ([10]). For every starting vertex v in every mean-payoff game we
have Value∗(v) = Value∗(v).

For this reason, we define Value(v) to be the value of the game starting at the
vertex v, which is equal to both Value∗(v) and Value∗(v). The computational
task associated with mean-payoff games is to find Value(v) for every vertex v.

Computing the 0-mean partition is a decision version of this problem. This
requires us to decide whether Value(v) > 0, for every vertex v. Björklund and
Vorobyov have shown that only a polynomial number of calls to an algorithm
for finding the 0-mean partition are needed to find the value for every vertex in
a mean-payoff game [2].

A Max strategy σ is a winning strategy for a set of verticesW ifM(v, σ, τ) > 0
for every Min strategy τ and every vertex v in W . Similarly, a Min strategy τ
is a winning strategy for W if M(v, σ, τ) ≤ 0 for every Max strategy σ and
every vertex v in W . To solve the 0-mean partition problem we are required to
partition the vertices of the graph into the sets (WMax,WMin), where Max has
a winning strategy for WMax and Min has a winning strategy for WMin.
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3 Snares

In this section we introduce a structure called that we call a “snare”. The dic-
tionary definition1 of the word snare is “something that serves to entangle the
unwary”. This is a particularly apt metaphor for these structures since, as we
will show, a winning strategy for a player must be careful to avoid being trapped
by the snares that are present in that player’s winning set.

The definitions in this section could be formalized for either player. We choose
to focus on player Max because we will later choose Max to be the strategy
improver. For a set of vertices W we define G � W to be the sub-game induced
by W , which is G with every vertex not in W removed. A snare for player Max
is defined to be a subgame for which player Max can guarantee a win from every
vertex.

Definition 2 (Max Snare). For a game G, a snare is defined to be a tuple
(W,χ) where W ⊆ V and χ : W ∩ VMax → W is a partial strategy for player
Max that is winning for every vertex in the subgame G � W .

This should be compared with the concept of a dominion that was introduced
by Jurdziński, Paterson, and Zwick [8]. A dominion is also a subgame in which
one of the players can guarantee a win, but with the additional constraint that
the opponent is unable to leave the dominion. By contrast, the opponent may
be capable of leaving a snare. We define an escape edge for Min to be an edge
that Min can use to leave a Max snare.

Definition 3 (Escapes). Let W be a set of vertices. We define the escapes
from W as Esc(W ) = {(v, u) ∈ E : v ∈W ∩ VMin and u /∈ W}.

It is in Min’s interests to use at least one escape edge from a snare, since if
Min stays in a Max snare forever, then Max can use the strategy χ to ensure
a positive payoff. In fact, we can prove that if τ is a winning strategy for Min
for some subset of vertices then τ must use at least one escape from every Max
snare that exists in that subset of vertices.

Theorem 4. Suppose that τ is a winning strategy for Min on a set of vertices
S. If (W,χ) is a Max snare where W ⊂ S, then there is some edge (v, u) in
Esc(W ) such that τ(v) = u.

10

v u

Fig. 1. A simple snare

Figure 1 shows an example of a subgame upon which a snare can be defined. In
all of our diagrams, boxes are used to represent Max vertices and triangles are
1 American Heritage Dictionary of the English Language, Fourth Edition.
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used to represent Min vertices. The weight assigned to each vertex is shown on
that vertex. If we takeW = {v, u} and χ(v) = u then (W,χ) will be a Max snare
in every game that contains this structure as a subgame. This is because the cycle
is positive, and therefore χ is a winning for Max on the subgame induced by W .
There is one escape from this snare, which is the edge Min can use to break the
cycle at u.

Since the example is so simple, Theorem 4 gives a particularly strong property
for this snare: every winning strategy for Min must use the escape edge at u. If
Min uses the edge (u, v) in some strategy, then Max could respond by using the
edge (v, u) to guarantee a positive cycle, and therefore the strategy would not be
winning for Min. This is a strong property because we can essentially ignore the
edge (u, v) in every game into which the example is embedded. This property
does not hold for snares that have more than one escape.

4 Strategy Improvement

In this section we will summarise Björklund and Vorobyov’s strategy improve-
ment algorithm for finding the 0-mean partition of a mean-payoff game [2]. Their
algorithm requires that the game is modified by adding retreat edges from every
Max vertex to a special sink vertex.

Definition 5 (Modified Game). A game (V, VMax, VMin, E, w) will be modi-
fied to create (V ∪ {s}, VMax ∪ {s}, VMin, E

′, w′), where E′ = E ∪ {(v, s) : v ∈
VMax}, and w′(v) = w(v) for all vertices v in V , and w′(s) = 0.

Strategy improvement always works with the modified game, and for the rest of
the paper we will assume that the game has been modified.

Given two strategies, one for each player, the play induced by the two strate-
gies is either a finite path that ends at the sink or a finite initial path followed
by an infinitely repeated cycle. This is used to define the valuation of a vertex.

Definition 6 (Valuation). Let σ be a positional strategy for Max and τ be
a positional strategy for Min. If Play(v0, σ, τ) = 〈v0, v1, . . . vk, 〈c0, c1, . . . cl〉ω〉,
for some vertex v0, then we define Valσ,τ (v0) = −∞ if

∑l
i=0 w(ci) ≤ 0 and

∞ otherwise. Alternatively, if Play(v, σ, τ) = 〈v0, v1, . . . vk, s〉 then we define
Valσ,τ (v0) =

∑k
i=0 w(vi).

Strategy improvement algorithms choose one player to be the strategy improver,
which we choose to be Max. For a Max strategy σ, we define br(σ) to be the best
response to σ, which is a Min strategy with the property Valσ,br(σ)(v) ≤ Valσ,τ (v)
for every vertex v and every Min strategy τ . Such a strategy always exists, and
Björklund and Vorobyov give a method to compute it in polynomial time [2].
We will frequently want to refer to the valuation of a vertex v when the Max
strategy σ is played against br(σ), so we define Valσ(v) to be shorthand for
Valσ,br(σ)(v). Occasionally, we will need to refer to valuations from multiple
games. We use ValσG(v) to give the valuation of the vertex v when σ is played
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against br(σ) in the game G. We extend all of our notations in a similar manner,
by placing the game in the subscript.

For a Max strategy σ and an edge (v, u) that is not chosen by σ, we say (v, u)
is profitable in σ if Valσ(σ(v)) < Valσ(u). Switching an edge (v, u) in σ is denoted
by σ[v !→ u]. This operation creates a new strategy where, for a vertex w ∈ VMax
we have σ[v !→ u](w) = u if w = v, and σ(w) otherwise. Let F be a set of edges
that contains at most one outgoing edge from each vertex. We define σ[F ] to
be σ with every edge in F switched. The concept of profitability is important
because switching profitable edges creates an improved strategy.

Theorem 7 ([2]). Let σ be a strategy and P be the set of edges that are profitable
in σ. Let F ⊆ P be a subset of the profitable edges that contains at most one
outgoing edge from each vertex. For every vertex v we have Valσ(v) ≤ Valσ[W ](v),
and there is a vertex for which the inequality is strict.

The second property that can be shown is that a strategy with no profitable edges
is optimal. An optimal strategy is a Max strategy σ such that Valσ(v) ≥ Valχ(v)
for every Max strategy χ and every vertex v. The 0-mean partition can be
derived from an optimal strategy σ: the set WMax contains every vertex v with
Valσ(v) = ∞, and WMin contains every vertex v with Valσ(v) <∞.

Theorem 8 ([2]). A strategy with no profitable edges is optimal.

Strategy improvement begins by choosing a strategy σ0 with the property that
Valσ0(v) > −∞ for every vertex v. One way to achieve this is to set σ0(v) = s for
every vertex v in VMax. This guarantees the property unless there is some nega-
tive cycle that Min can enforce without passing through a Max vertex. Clearly,
for a vertex v on one of these cycles, Max has no strategy σ with Valσ(v) > −∞.
These vertices can therefore be removed in a preprocessing step and placed
in WMin.

For every strategy σi a new strategy σi+1 = σi[F ] will be computed, where F
is a subset of the profitable edges in σi, which contains at most one outgoing edge
from each vertex. Theorem 7 implies that Valσi+1(v) ≥ Valσi(v) for every vertex
v, and that there is a vertex for which the inequality is strict. This implies that a
strategy cannot be visited twice by strategy improvement. The fact that there is a
finite number of positional strategies for Max implies that strategy improvement
must eventually reach a strategy σk in which no edges are profitable. Theorem 8
implies that σk is the optimal strategy, and strategy improvement terminates.

Strategy improvement requires a rule that determines which profitable edges
are switched in each iteration. We will call this a switching policy. Oblivious
switching policies are defined as α : 2E → 2E, where for every set P ⊆ E, we
have that α(P ) contains at most one outgoing edge for each vertex.

Some of the most widely studied switching policies are all-switches policies.
These policies always switch every vertex that has a profitable edge, and when
a vertex has more than one profitable edge an additional rule must be given to
determine which edge to choose. Traditionally this choice is made by choosing
the successor with the highest valuation. We must also be careful to break ties
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when there are two or more successors with the highest valuation. Therefore, for
the purposes of defining this switching policy we will assume that each vertex
v is given a unique index in the range {1, 2, . . . , |V |}, which we will denote as
Index(v).

All(F ) = {(v, u) : There is no edge (v, w) ∈ F with Valσ(u) < Valσ(w)
or with Valσ(u) = Valσ(w) and Index(u) < Index(w)}.

In the introduction we described optimal switching policies, which we can
now formally define. A switching policy is optimal if it selects a subset of prof-
itable edges F that satisfies Valσ[H](v) ≤ Valσ[F ](v) for every subset of profitable
edges H and every vertex v. Schewe has given a method to compute such a set
in polynomial time [13]. We will denote an optimal switching policy as Optimal.

5 Strategy Trees

The purpose of this section is to show how a strategy and its best response can
be viewed as a tree, and to classify profitable edges by their position in this tree.
We will classify edges as either cross edges or back edges. We will later show
how profitable back edges are closely related to snares.

It is technically convenient for us to make the assumption that every vertex has
a finite valuation under every strategy. The choice of starting strategy ensures
that for every strategy σ considered by strategy improvement, we have Valσ(v) >
−∞ for every vertex v. Obviously, there may be strategies under which some
vertices have a valuation of ∞. The first part of this section is dedicated to
rephrasing the problem so that our assumption can be made.

We define the positive cycle problem to be the problem of finding a strategy σ
with Valσ(v) = ∞ for some vertex v, or to prove that there is no strategy with
this property. The latter can be done by finding an optimal strategy σ with
Valσ(v) < ∞ for every vertex v. We can prove that a strategy improvement
algorithm for the positive cycle problem can be adapted to find the 0-mean
partition.

Proposition 9. Let α be a strategy improvement algorithm that solves the pos-
itive cycle problem in O(κ) time. There is a strategy improvement algorithm
which finds the 0-mean partition in O(|V | · κ) time.

We consider switching policies that solve the positive cycle problem, and so we
can assume that every vertex has a finite valuation under every strategy that our
algorithms consider. Our switching policies will terminate when a vertex with
infinite valuation is found. With this assumption we can define the strategy tree.

Definition 10 (Strategy Tree). Given a Max strategy σ and a Min strategy
τ we define the tree T σ,τ = (V,E′) where E′ = {(v, u) : σ(v) = u or τ(v) = u}.

In other words, T σ,τ is a tree rooted at the sink whose edges are those chosen by
σ and τ . We define T σ to be shorthand for T σ,br(σ), and Subtreeσ(v) : V → 2V
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Fig. 2. A strategy tree

to be the function that gives the vertices in the subtree rooted at the vertex v
in T σ.

We can now define our classification for profitable edges. Let (v, u) be a
profitable edge in the strategy σ. We call this a profitable back edge if u is
in Subtreeσ(v), otherwise we call it a profitable cross edge.

Figure 2 gives an example of a strategy tree. In all of our diagrams, the dashed
lines give a strategy σ for Max, and the dotted lines show br(σ). The strategy tree
contains every vertex, and every edge that is either dashed or dotted. The subtree
of v is the set {v, b, c, d, u}. The edge (v, u) is profitable because Valσ(v) = 0
and Valσ(u) = 1. Since u is contained in the subtree of v, the edge (v, u) is a
profitable back edge.

6 Profitable Back Edges

In this section we will expose the intimate connection between profitable back
edges and snares. We will show how every profitable back edge corresponds to
some snare that exists in the game. We will also define the concept of snare
consistency, and we will show how this concept is linked with the conditions
implied by Theorem 4.

Our first task is to show how each profitable back edge corresponds to some
Max snare in the game. Recall that a Max snare consists of a set of vertices, and
a strategy for Max that is winning for the subgame induced by those vertices.
We will begin by defining the set of vertices for the snare that corresponds to a
profitable back edge. For a profitable back edge (v, u) in a strategy σ we define
the critical set, which is the vertices in Subtreeσ(v) that Min can reach when
Max plays σ.

Definition 11 (Critical Set). If (v, u) is a profitable back edge in the strat-
egy σ, then we define the critical set as Criticalσ(v, u) = {w ∈ Subtreeσ(v) :
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There is a path 〈u, u1, . . . uk = w〉 where for all i with 1 ≤ i ≤ k we have
ui ∈ Subtreeσ(v) and if ui ∈ VMax then ui+1 = σ(ui)}.

In the example given in Figure 2, the critical set for the edge (v, u) is {v, b, d, u}.
The vertex b is in the critical set because it is in the subtree of v, and Min can
reach it from u when Max plays σ. In contrast, the vertex c is not in the critical
set because σ(d) = v, and therefore Min cannot reach c from u when Max plays
σ. The vertex a is not in the critical set because it is not in the subtree of v.

Note that in the example, σ[v !→ u] is a winning strategy for the subgame
induced by critical set. The definition of the critical set is intended to capture
the largest connected subset of vertices contained in the subtree of v for which
σ[v !→ u] is guaranteed to be a winning strategy.

Proposition 12. Let (v, u) be a profitable back edge in the strategy σ and let C
be Criticalσ(v, u). The strategy σ[v !→ u] is winning for every vertex in G � C.

We can now formally define the snare that is associated with each profitable
back edge that is encountered by strategy improvement. For a profitable back
edge (v, u) in a strategy σ we define Snareσ(v, u) = (Criticalσ(v, u), χ) where
χ(v) = σ[v !→ u](v) if v ∈ Criticalσ(v, u), and undefined at other vertices.
Proposition 12 confirms that this meets the definition of a snare.

We will now argue that the conditions given by Theorem 4 must be observed
in order for strategy improvement to terminate. We begin by defining a concept
that we call snare consistency. We say that a Max strategy is consistent with a
snare if Min’s best response chooses an escape from that snare.

Definition 13 (Snare Consistency). A strategy σ is said to be consistent with
the snare (W,χ) if br(σ) uses some edge in Esc(W ).

In the example given in Figure 2 we can see that σ is not consistent with
Snareσ(v, u). This is because br(σ) does not choose the edge (b, a). However,
once the edge (v, u) is switched we can prove that br(σ[v !→ u]) must use the
edge (b, a). This is because Min has no other way of connecting every vertex in
Subtreeσ(v) to the sink, and if some vertex is not connected to the sink then its
valuation will rise to ∞.

Proposition 14. Let (v, u) be a profitable back edge in the strategy σ. There is
some edge (x, y) in Esc(Criticalσ(v, u)) such that br(σ[v !→ u])(x) = y.

We can show that strategy improvement cannot terminate unless the current
strategy is consistent with every snare that exists in the game. This is because
every strategy that is not consistent with some snare must contain a profitable
edge.

Proposition 15. Let σ be a strategy that is not consistent with a snare (W,χ).
There is a profitable edge (v, u) in σ such that χ(v) = u.

These two propositions give us a new tool to study the process of strategy
improvement. Instead of viewing strategy improvement as a process that tries to
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increase valuations, we can view it as a process that tries to force consistency with
Max snares. Proposition 15 implies that this process can only terminate when
the current strategy is consistent with every Max snare in the game. Therefore,
the behaviour of strategy improvement on an example is strongly related with
the snares that exist for the strategy improver in that example.

7 Using Snares to Guide Strategy Improvement

In the previous sections, we have shown the strong link between snares and
strategy improvement. In this section we will show how this insight can be used
to guide strategy improvement. We will give a procedure that takes a strategy
that is inconsistent with some snare, and returns an improved strategy that is
consistent with that snare. Since the procedure is guaranteed to produce an im-
proved strategy, it can be used during strategy improvement as an alternative
to switching a profitable edge. We call algorithms that make use of this proce-
dure non-oblivious strategy improvement algorithms, and we give a reasonable
example of such an algorithm.

To define our procedure we will use Proposition 15. Recall that this proposi-
tion implies that if a strategy σ is inconsistent with a snare (W,χ), then there is
some profitable edge (v, u) in σ such that χ(v) = u. Our procedure will actually
be a strategy improvement switching policy. This policy will always choose to
switch an edge that is chosen by χ but not by the current strategy. As long as
the current strategy remains inconsistent with (W,χ) such an edge is guaranteed
to exist, and the policy terminates once the current strategy is consistent with
the snare. This procedure is shown as Algorithm 1.

Algorithm 1. FixSnare(σ, (W,χ))
while σ is inconsistent with (W, χ) do

(v, w) := Some edge where χ(v) = w and (v, w) is profitable in σ.
σ := σ[v �→ u]

end while
return σ

In each iteration the switching policy switches one vertex v to an edge (v, u)
with the property that χ(v) = u, and it never switches a vertex at which the
current strategy agrees with χ. It is therefore not difficult to see that if the
algorithm has not terminated after |W | iterations then the current strategy will
agree with χ on every vertex in W . We can prove that such a strategy must be
consistent with (W,χ), and therefore the switching policy must terminate after
at most |W | iterations.

Proposition 16. Let σ be a strategy that is not consistent with a snare (W,χ).
Algorithm 1 will arrive at a strategy σ′ which is consistent with (W,χ) after at
most |W | iterations.



Non-oblivious Strategy Improvement 223

Since FixSnare is implemented as a strategy improvement switching policy that
switches only profitable edges, the strategy that is produced must be an improved
strategy. Therefore, at any point during the execution of strategy improvement
we can choose not to switch a subset of profitable edges and run FixSnare in-
stead. Note that the strategy produced by FixSnare may not be reachable from
the current strategy by switching a subset of profitable edges. This is because
FixSnare switches a sequence of profitable edges, some of which may not have
been profitable in the original strategy.

We propose a new class of strategy improvement algorithms that are aware
of snares. These algorithms will record a snare for every profitable back edge
that they encounter during their execution. In each iteration these algorithms
can either switch a subset of profitable edges or run the procedure FixSnare
on some recorded snare that the current strategy is inconsistent with. We call
these algorithms non-oblivious strategy improvement algorithms, and the general
schema that these algorithms follow is shown in Algorithm 2.

Algorithm 2. NonOblivious(σ)
S := ∅
while σ has a profitable edge do

S := S ∪ {Snareσ(v, u) : (v, u) is a profitable back edge in σ}
σ := Policy(σ, S)

end while
return σ

Recall that oblivious strategy improvement algorithms required a switching
policy to specify which profitable edges should be switched in each iteration.
Clearly, non-oblivious strategy improvement algorithms require a similar method
to decide whether to apply the procedure FixSnare or to pick some subset of
profitable edges to switch. Moreover, they must decide which snare should be
used when the procedure FixSnare is applied. We do not claim to have the
definitive non-oblivious switching policy, but in the rest of this section we will
present one reasonable method of constructing a non-oblivious version of an
oblivious switching policy. We will later show that our non-oblivious strategy
improvement algorithms behave well on the examples that are known to cause
exponential time behaviour for oblivious strategy improvement.

We intend to take an oblivious switching policy α as the base of our non-
oblivious switching policy. This means that when we do not choose to use the
procedure FixSnare, we will switch the subset of profitable edges that would be
chosen by α. Our goal is to only use FixSnare when doing so is guaranteed to
yield a larger increase in valuation than applying α. Clearly, in order to achieve
this we must know how much the valuations increase when α is applied and how
much the valuations increase when FixSnare is applied.

Determining the increase in valuation that is produced by applying an oblivi-
ous switching policy is easy. Since every iteration of oblivious strategy improve-
ment takes polynomial time, We can simply switch the edges and measure the
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difference between the current strategy and the one that would be produced. Let
σ be a strategy and let P be the set of edges that are profitable in σ. For an
oblivious switching policy α the increase of applying α is defined to be:

Increase(α, σ) =
∑
v∈V

(Valσ[α(P )](v)−Valσ(v))

We now give a lower bound on the increase in valuation that an application of
FixSnare produces. Let (W,χ) be a snare and suppose that the current strategy
σ is inconsistent with this snare. Our lower bound is based on the fact that
FixSnare will produce a strategy that is consistent with the snare. This means
that Min’s best response is not currently choosing an escape from the snare,
but it will be forced to do so after FixSnare has been applied. It is easy to see
that forcing the best response to use a different edge will cause an increase in
valuation, since otherwise the best response would already be using that edge.
Therefore, we can use the increase in valuation that will be obtained when Min
is forced to use and escape. We define:

SnareIncreaseσ(W,χ) = min{(Valσ(y) + w(x)) −Valσ(x) : (x, y) ∈ Esc(W )}

This expression gives the smallest possible increase in valuation that can happen
when Min is forced to use an edge in Esc(W ). We can prove that applying
FixSnare will cause an increase in valuation of at least this amount.

Proposition 17. Let σ be a strategy that is not consistent with a snare (W,χ),
and let σ′ be the result of FixSnare(σ, (W,χ)). We have:∑

v∈V

(Valσ
′
(v) −Valσ(v)) ≥ SnareIncreaseσ(W,χ)

We now have the tools necessary to construct our proposed augmentation
scheme, which is shown as Algorithm 3. The idea is to compare the increase
obtained by applying α and the increase obtained by applying FixSnare with the
best snare that has been previously recorded, and then to only apply FixSnare
when it is guaranteed to yield a larger increase in valuation.

Algorithm 3. (Augment(α))(σ, S)
(W,χ) := argmax(X,μ)∈S SnareIncreaseσ(X, μ)
if Increase(α, σ) > SnareIncreaseσ(W,χ) then

P := {(v, u) : (v, u) is profitable in σ}
σ := σ[α(P )]

else
σ := FixSnare(σ, (W, χ))

end if
return σ
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8 Comparison with Oblivious Strategy Improvement

In this section we will demonstrate how non-oblivious strategy improvement can
behave well in situations where oblivious strategy improvement has exponential
time behaviour. Unfortunately, there is only one source of examples with such
properties in the literature, and that is the family of examples given by Fried-
mann. In fact, Friedmann gives two slightly different families of hard examples.
The first type is the family that that forces exponential behaviour for the all-
switches policy [5], and the second type is the family that forces exponential
behaviour for both all-switches and optimal switching policies [6]. Although our
algorithm performs well on both families, we will focus on the example that was
designed for optimal switching policies because it is the most interesting of the
two.

This section is split into two parts. In the first half of this section we will study
a component part of Friedmann’s example upon which the procedure FixSnare
can out perform an optimal switching policy. This implies that there are situ-
ations in which our augmentation scheme will choose to use FixSnare. In the
second half, we will show how the good performance on the component part is
the key property that allows our non-oblivious strategy improvement algorithms
to terminate quickly on Friedmann’s examples.

8.1 Optimal Switching Policies

We have claimed that the procedure FixSnare can cause a greater increase in
valuation than switching any subset of profitable edges. We will now give an
example upon which this property holds. The example that we will consider is
shown in Figure 3, and it is one of the component parts of Friedmann’s family of
examples that force optimal policies to take an exponential number of steps [6].

The diagram shows a strategy for Max as a set of dashed edges. It also shows
Min’s best response to this strategy as a dotted edge. Even though this example
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Fig. 3. A component of Friedmann’s exponential time example



226 J. Fearnley

could be embedded in an arbitrary game, we can reason about the behaviour of
strategy improvement by specifying, for each edge that leaves the example, the
valuation of the successor vertex that the edge leads to. These valuations are
shown as numbers at the end of each edge that leaves the example.

In order to understand how strategy improvement behaves we must determine
the set of edges that are profitable for our strategy. There are two edges that are
profitable: the edge (z, v) is profitable because the valuation of v is 2 which is
greater than 0, and the edge at x that leaves the example is profitable because
leaving the example gives a valuation of 2 and the valuation of y is 1. The
edge (y, z) is not profitable because the valuation of z is 0, which is smaller than
the valuation of 1 obtained by leaving the example at y.

For the purposes of demonstration, we will assume that no other edge is
profitable in the game into which the example is embedded. Furthermore, we
will assume that no matter what profitable edges are chosen to be switched,
the valuation of every vertex not contained in the example will remain constant.
Therefore, the all-switches policy will switch the edges (z, v) and the edge leading
away from the example at the vertex x. It can easily be verified that this is also
the optimal subset of profitable edges, and so the all-switches and the optimal
policies make the same decisions for this strategy. After switching the edges
chosen by the two policies, the valuation of x will rise to 2, the valuation of z
will rise to 3, and the valuation of y remain at 1.

By contrast, we will now argue that non-oblivious strategy improvement would
raise the valuations of x, y, and z to 2100 + 1. Firstly, it is critical to note that
the example is a snare. If we set W = {v, x, y, z} and choose χ to be the partial
strategy for Max that chooses the edges (x, y), (y, z), and (z, v), then (W,χ) will
be a snare in every game into which the example is embedded. This is because
there is only one cycle in the subgame induced by W when Max plays χ, and
this cycle has positive weight.

Now, if the non-oblivious strategy improvement algorithm was aware of the
snare (W,χ) then the lower bound given by Proposition 17 would be 2100. This
is because closing the cycle forces Min’s best response to use escape edge to
avoid losing the game. Since 2100 is much larger than the increase obtained by
the optimal switching policy, the policies Augment(All) and Augment(Optimal)
will choose to run FixSnare on the snare (W,χ). Once consequence of this is that
the policy Optimal is no longer optimal in the non-oblivious setting.

8.2 Friedmann’s Exponential Time Examples

The example that we gave in the previous subsection may appear to be trivial.
After all, if the valuations outside the example remain constant then both the
all-switches and optimal switching policies will close the cycle in two iterations.
A problem arises, however, when the valuations can change. Note that when
we applied the oblivious policies to the example, no progress was made towards
closing the cycle. We started with a strategy that chose to close the cycle at only
one vertex, and we produced a strategy that chose to close the cycle at only one
vertex. When the assumption that valuations outside the example are constant
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is removed, it becomes possible for a well designed game to delay the closing of
the cycle for an arbitrarily large number of iterations simply by repeating the
pattern of valuations that is shown in Figure 3.

2k+n 2k+2 2k+1

0

0

0

1

0

0

0

1

0

0

0

1

. . .

Fig. 4. The bits of a binary counter

Friedmann’s family of examples exploits this property to build a binary
counter, which uses the subgame shown in Figure 3 to represent the bits. The
general idea of this approach is shown in Figure 4. Friedmann’s example uses
n instances of the cycle, indexed 1 through n. These bits are interconnected
in a way that enforces two properties on both the all-switches and the optimal
switching policies. Firstly, the ability to prevent a cycle from closing that we have
described is used to ensure that the cycle with index i can only be closed after
every cycle with index smaller than i has been closed. Secondly, when the cycle
with index i is closed, every cycle with index smaller than i is forced to open.
Finally, every cycle is closed in the optimal strategy for the example. Now, if the
initial strategy is chosen so that every cycle is open, then these three properties
are sufficient to force both switching policies to take at least 2n steps before
terminating.

The example works by forcing the oblivious switching policy to make the same
mistakes repeatedly. To see this, consider the cycle with index n− 1. When the
cycle with index n is closed for the first time, this cycle is forced open. The
oblivious optimal switching policy will then not close it again for at least an-
other 2n−1 steps. By contrast, the policies Augment(All) and Augment(Optimal)
would close the cycle again after a single iteration. This breaks the exponential
time behaviour, and it turns out that both of our policies terminate in polyno-
mial time on Friedmann’s examples.

Of course, for Friedmann’s examples we can tell by inspection that Max al-
ways wants to keep the cycle closed. It is not difficult, however, to imagine an
example which replaces the four vertex cycle with a complicated subgame, for
which Max had a winning strategy and Min’s only escape is to play to the ver-
tex with a large weight. This would still be a snare, but the fact that it is a
snare would only become apparent during the execution of strategy improve-
ment. Nevertheless, as long as the subgame can be solved in polynomial time



228 J. Fearnley

by non-oblivious strategy improvement, the whole game will also be solved in
polynomial time. This holds for exactly the same reason as the polynomial be-
haviour on Friedmann’s examples: once the snare representing the subgame has
been recorded then consistency with that snare can be enforced in the future.

9 Conclusions and Further Work

This paper has uncovered and formalized a strong link between the snares that
exist in a game and the behaviour of strategy improvement on that game. We
have shown how this link can be used to guide the process of strategy improve-
ment. With our augmentation procedure we gave one reasonable method of in-
corporating non-oblivious techniques into traditional strategy improvement, and
we have demonstrated how these techniques give rise to good behaviour on the
known exponential time examples.

It must be stressed that we are not claiming that simply terminating in poly-
nomial time on Friedmann’s examples is a major step forward. After all, the
randomized switching policies of Björklund and Vorobyov [2] have the same
property. What is important is that our strategy improvement algorithms are
polynomial because they have a better understanding of the underlying structure
of strategy improvement. Friedmann’s examples provide an excellent cautionary
tale that shows how ignorance of this underlying structure can lead to exponen-
tial time behaviour.

There are a wide variety of questions that are raised by this work. Firstly,
we have the structure of snares in parity and mean-payoff games. Theorem 4
implies that all algorithms that find winning strategies for parity and mean
payoff games must, at least implicitly, consider snares. We therefore propose
that a thorough and complete understanding of how snares arise in a game is a
necessary condition for devising a polynomial time algorithm for these games.

It is not currently clear how the snares in a game affect the difficulty of solving
that game. It is not difficult, for example, to construct a game in which there an
exponential number of Max snares: in a game in which every weight is positive
there will be a snare for every connected subset of vertices. However, games with
only positive weights have been shown to be very easy to solve [9]. Clearly, the
first challenge is to give a clear formulation of how the structure of the snares
in a given game affects the difficulty of solving it.

In our attempts to construct intelligent non-oblivious strategy improvement
algorithms we have continually had problems with examples in which Max and
Min snares overlap. By this we mean that the set of vertices that define the
subgames of the snares have a non empty intersection. We therefore think that
studying how complex the overlapping of snares can be in a game may lead to
further insight. There are reasons to believe that these overlappings cannot be
totally arbitrary, since they arise from the structure of the game graph and the
weights assigned to the vertices.

We have presented a non-oblivious strategy improvement algorithm that pas-
sively records the snares that are discovered by an oblivious switching policy, and
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then uses those snares when doing so is guaranteed to lead to a larger increase
in valuations. While we have shown that this approach can clearly outperform
traditional strategy improvement, it does not appear to immediately lead to a
proof of polynomial time termination. It would be interesting to find an expo-
nential time example for the augmented versions of the all-switches policy or of
the optimal policy. This may be significantly more difficult since it is no longer
possible to trick strategy improvement into making slow progress by forcing it
to repeatedly close a small number of snares.

There is no inherent reason why strategy improvement algorithms should be
obsessed with trying to increase valuations as much as possible in each iteration.
Friedmann’s exponential time example for the optimal policy demonstrates that
doing so in no way guarantees that the algorithm will always make good progress.
Our work uncovers an alternate objective that strategy improvement algorithms
can use to measure their progress. Strategy improvement algorithms could ac-
tively try to discover the snares that exist in the game, or they could try and
maintain consistency with as many snares as possible, for example. There is
much scope for an intelligent snare based strategy improvement algorithm.

We have had some limited success in designing intelligent snare based strategy
improvement algorithms for parity games. We have developed a non-oblivious
strategy improvement algorithm which, when given a list of known snares in the
game, either solves the game or finds a snare that is not in the list of known
snares. This gives the rather weak result of a strategy improvement algorithm
whose running time is polynomial in |V | and k, where k is the number of Max
snares that exist in the game. This is clearly unsatisfactory since we have already
argued that k could be exponential in the number of vertices. However, this is
one example of how snares can be applied to obtain new bounds for strategy
improvement. As an aside, the techniques that we used to obtain this algorithm
do not generalize to mean-payoff games. Finding a way to accomplish this task
for mean-payoff games is an obvious starting point for designing intelligent snare
based algorithms for this type of game.

Acknowledgements. I am indebted to Marcin Jurdziński for his guidance,
support, and encouragement during the preparation of this paper.
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15. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games (Extended abstract). In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

16. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theo-
retical Computer Science 158(1-2), 343–359 (1996)



A Simple Class of Kripke-Style Models in Which
Logic and Computation Have Equal Standing�

Michael Gabbay1,�� and Murdoch J. Gabbay2

1 http://www.kcl.ac.uk/philosophy/people/fellows/mgabbay.html
2 www.gabbay.org.uk

Abstract. We present a sound and complete model of lambda-calculus
reductions based on structures inspired by modal logic (closely related to
Kripke structures). Accordingly we can construct a logic which is sound
and complete for the same models, and we identify lambda-terms with
certain simple sentences (predicates) in this logic, by direct compositional
translation. Reduction then becomes identified with logical entailment.

Thus, the models suggest a new way to identify logic and computation.
Both have elementary and concrete representations in our models; where
these representations overlap, they coincide.

In a concluding speculation, we note a certain subclass of the models
which seems to play a role analogous to that played by the cumulative
hierarchy models in axiomatic set theory and the natural numbers in
formal arithmetic — there are many models of the respective theories,
but only some, characterised by a fully second order interpretation, are
the ‘intended’ ones.

1 Introduction

We try to unify logic and computation by using a class of structures which
are (very nearly) Kripke structures. It turns out that these structures allow
sound and complete interpretations of both a logic (an extension of second-order
propositional logic), and computation (the untyped λ-calculus). Furthermore, we
are able to compositionally translate λ-terms and formulae into our logic, and
when we do so, the ‘computational’ reduction � maps to logical entailment, and
λ maps to a kind of logical quantifier.

Combining logic and computation is of course not a new idea. The two notions
are clearly related and intertwined, and there are good theoretical and practical
reasons to be interested in these questions.

A naive combination of logic and computation can lead to some famous con-
tradictions. Consider untyped λ-calculus quotiented by computational equiva-
lence, e.g. β-equivalence. Suppose also the naive addition of some basic logical
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operations, e.g. negation ¬. Then we can form a term encoding the Liar paradox
L = λp.¬(p·p)·λp.¬(p·p). Then L = ¬L and from this a contradiction quickly
follows. This is, in a nutshell, the argument in [15].1

We can persist with adding logic to λ-terms. This motivated the development
of types, as in higher-order logic [21], where the paradox is avoided by restricting
which terms can receive an interpretation. Also, with the same intuitions but
different design decisions, illative combinatory logics [3,2] can admit an untyped
system but restrict which λ-terms count as ‘logical’.

Conversely, we can view, e.g. the negation of a λ-term as a category error, and
think of computation as an object or vehicle of logical systems. So for example
rewriting logic has a logic with an oriented equality � representing reduction;
whereas deduction modulo [4,7] has a background ‘computational engine’ which
may be triggered to efficiently compute equalities between terms, but the logic is
modulo this and reasons up to computational equivalence. In both cases the inter-
pretations of the logical and computational parts of the languages are separated,
like sentences are separated from terms in first-order languages and semantics.

The model of logic and computation of this paper is like rewriting logic in that
we explicitly represent computations (reductions) by an arrow, →. However, in
line with the original intuition equivocating logic and computation, → is the
same arrow as is used to represent logical implication.

In our models, λ-terms are interpreted as sets on a domain and → is in-
terpreted as ‘complement union’. Entailment and reduction are both therefore
represented in the models as subset inclusion (see Definition 2.13). That is, this
arrow → really is standard implication, just as the reader is used to. We discuss
in Section 5.1 how this relates to the paradox above.

The kernel of the ideas in this paper is a class of models, presented in Sec-
tion 2.1; the rest of the paper can be considered to arise just by considering
their structure. It turns out that it is possible to consider λ-abstraction as a
kind of quantifier and to consider reduction as subset inclusion (Section 2.2).
The models are sets-based: The usual logical connectives such as conjunction,
negation, and quantification are interpreted in the models as operations on sets;
and logical entailment is interpreted as subset inclusion. We obtain an extension
of classical second-order propositional logic with quantifiers (Section 2.3). We
make our logic rich enough that it captures the structure we used to interpret λ-
abstraction and reduction; because reduction is interpreted as subset inclusion,
it maps directly to logical entailment.

The idea of modelling λ-reduction is not new. Models of reduction where terms
are interpreted as points in an ordering are discussed by Selinger in [19]; and
models, based on graph models, where terms are interpreted as sets on a domain
of functions, are given in [16]. The models in Section 2 have similarities with
these. One significant difference is that our models have a Boolean structure, in
particular every denotation has a complement and a universal quantification. So

1 Historically, Church wanted to base maths on the notion of function as opposed to a
notion of set. The λ-calculus was invented as a foundation for logic, not a foundation
for computation. [15] proved that this foundation was logically inconsistent.
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the denotational domains for λ-terms also display the structure of denotational
domains of propositions of classical logic.

So: logic and computation are not identical in this story (we do not claim
that logic is computation, or vice versa) — but the two notions overlap in the
models, and in this overlap, they coincide.

One possible use for our models is that they might provide a relatively ele-
mentary and systematic framework for extensions of the pure λ-calculus with
‘logical’ constructs, and indeed the design of other logics. We do not consider
that there is anything sacred about the particular languages we use in this paper.
However, they do have the virtues of being simple and well-behaved. In particu-
lar we can give tight soundness and completeness results for both the logic and
the λ-calculus (Theorems 2.27 and 4.13).

The structure and main results of this paper are as follows: We develop a
simple model theory and the syntax it motivates in Section 2; in Section 3 we
verify that we can faithfully translate a system of λ-reduction into this syntax
(and thus obtain a new model theory for λ-reduction); in Section 4 we prove
completeness for an axiomatisation of the model theory. We conclude with some
comments on the significance of the models presented here both for current and
further research.

2 The Models, Computation, Logic

2.1 Frames

Definition 2.1. If W is a set, write P(W ) for the set of subsets of W .
A frame F is a 3-tuple (W , •,H) of

−W a set of worlds,
− • an application function from W ×W to P(W ), and
−H ⊆ P(W ).

Remark 2.2. Frames are not monoids or any other form of applicative structure
— an applicative structure would map W ×W to W and not, as we do here, to
P(W ). One reasonable way to think of • is as a non-deterministic ‘application’
operation, although we suggest a better way in the concluding section 5.2 (where
we also discuss in more detail the differences between frames and other known
structures that ‘look’ like frames).

Subsets ofW will serve as denotations of sentences (Definitions 2.7 and 2.13). We
can interpret both computational and logical connectives as elementary opera-
tions on sets of worlds (e.g. we interpret logical conjunction as sets intersection).

Remark 2.3. H ⊆ P(W ) (‘H’ for ‘Henkin’) plays a similar role to the structure
of Henkin models for higher-order logic [1,12,20]. This makes our completeness
results possible and is a famous issue for second- and higher-order logics. Power-
sets are too large; for completeness results to be possible we must cut them down
— at least when we quantify. This is why in Definitions 2.7 and 2.13, the binders
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restrict quantification from P(W ) down to H . More on this in the concluding
section 5.2.

The reader familiar with modal logic can think of • as a ternary ‘accessibility
relation’ R such that Rw1w2w3 if and only if w3 ∈ w1 • w2. We can also think
of • is as a non-deterministic ‘application’ operation, but note that frames are
not applicative structures — an applicative structure would map W ×W to W ,
whereas in the case of frames, W ×W maps to P(W ). However, • does induce
an applicative structure on P(W ):

Definition 2.4. Suppose F = (W , •,H) is a frame. Suppose S1,S2 ⊆ W and
w ∈W .

The function • induces functions fromW×P(W ) and P(W )×P(W ) to P(W )
by:

w • S1 =
⋃
{w • w′ | w′ ∈ S1} S1 • S2 =

⋃
{w1 • w2 | w1 ∈ S1, w2 ∈ S2}

2.2 λ-Terms

Definition 2.5. Fix a countably infinite set of variables. p, q, r will range over
distinct variables (we call this a permutative convention).

Define a language Lλ of λ-terms by:

t ::= p | λp.t | t·t

λp binds in λp.t. For example, p is bound (not free) in λp.p·q. We identify terms
up to α-equivalence.

We write t[p::=s] for the usual capture-avoiding substitution. For example,
(λp′.q)[q::=p] = λp′.p, and (λp.q)[q::=p] = λp′.p where p′ is a fixed but arbitrary
choice of fresh variable.

Definition 2.6. Suppose F = (W , •,H) is a frame. A valuation (to F ) is
a map from variables to sets of worlds (elements of P(W )). v will range over
valuations.

If p is a variable, S ⊆ W , and v is a valuation, then write v[p::=S] for the
valuation mapping q to v(q) and mapping p to S.

Definition 2.7. Define an denotation of t inductively by:

[[p]]v = v(p) [[t·s]]v = [[t]]v • [[s]]v

[[λp.t]]v = {w | w • h ⊆ [[t]]v[p::=h] for all h ∈ H}

Reduction on terms is defined in Figure 1 on page 239.

Remark 2.8. We will be particularly interested in models where the denotation
of every λ-term is a member of H . This is because Definition 2.7 interprets λ as
a kind of quantifier over all members of H . β-reduction then becomes a form of
universal instantiation and so requires that all possible instantiations (i.e. the
denotation of any term) is a member of H . More on this in Section 5.2.
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Lemma 2.9. β-reduction and η-expansion are sound, if we interpret reduction
as subset inclusion:

β-reduction [[λp.t]]v • [[s]]v ⊆ [[t[p::=s]]]v (if [[s]]v ∈ H)
η-expansion [[t]]v ⊆ [[λp.(t·p)]]v (p not free in t)

Proof. By routine calculations from the definitions. We prove a more general
result in Theorem 2.23.

Remark 2.10. It may help to give some indication of what the canonical frame
used in the completeness proof for Lλ (Definition 3.5) looks like: worlds are β-
reduction-η-expansion closures of λ-terms t, and for each h ∈ H there exists
some t such that h is the set of worlds that contain t.

As we emphasised in Remark 2.2, our frames are not applicative structures,
and the denotations of λ-terms are not worlds, but sets of worlds. Thus, in the
canonical frame, the denotation of a λ-term t is not the set of its reducts (i.e.
not some world in the canonical frame). Rather, the denotation of t is the set
of all worlds that reduce to t.

We can identify a world with its ‘top’ term, so roughly speaking, in the canon-
ical model a world w ∈ W is a term t, and an h ∈ H (or any denotation) is a
set of all terms which reduce to some particular term s.

Remark 2.11. We suggest an intuition why our models ‘have to’ satisfy β-
reduction and η-expansion. Both β-reduction and η-expansion lose information:
in the case of β we perform the substitution as is usual; in the case of η-expansion
λp.(t·p) has lost any intensional information that might reside in t. So we con-
sider validating η-expansion as an interesting feature, and not necessarily a bug.

Others have also noted good properties and justification in models for η-
expansion [14]. It is possible to refine the models to eliminate η-expansion, at
some cost in complexity; see the Conclusions.

We will fill in more details of the semantics of λ-terms in Section 2.4, including
the role of H , once we have built the logic in Section 2.3.

2.3 The Logic

Definition 2.12. Define a language L with sentences φ by:

φ ::= p, q, r . . . | φ→ φ | ∀p.φ | �φ | φ·φ | φ� φ | ⊥

∀p binds in ∀p.φ. For example, p is bound in ∀p. (p·q). We identify sentences up
to α-equivalence.

We now give notions of logical entailment and denotation for L. In Section 2.4 we
discuss expressive power and in Sections 3 and 4 we sketch proofs of soundness
and completeness.
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Definition 2.13. Suppose F = (W , •,H) is a frame and v is a valuation to F .
Define [[φ]]v the denotation of φ by:

[[p]]v = v(p) [[⊥]]v = ∅

[[φ·ψ]]v = [[φ]]v • [[ψ]]v [[φ � ψ]]v = {w | w • [[φ]]v ⊆ [[ψ]]v}
[[φ→ ψ]]v = (W \ [[φ]]v) ∪ [[ψ]]v [[∀p.φ]]v =

⋂
h∈H [[φ]]v[p�→h]

[[�φ]]v =

{
W [[φ]]v = W

∅ [[φ]]v �= W

Remark 2.14. Intuitions are as follows:

− p, q, r, are variables ranging over subsets of W .
− φ→ ψ is classical implication.
−∀p.φ is a quantification over elements of H . Think of ∀p.φ as ‘the intersection
of the denotation of φ for all of a pre-selection of possible denotations of p’. The
possible denotation of p are subsets of W and not elements of the W ; pre-
selection is done by H , which identifies those denotations that ‘exist’ in the
sense of being in the ranges of the quantifiers. More on this later.
−�φ is a notion of necessity. �φ is either W or ∅ depending on whether φ is
itself W or not.
� is the modality of S5 [11].
− φ·ψ is a notion of application; the construction in Definition 2.4 ensures that
the interpretation of · it is monotonic with respect to subset inclusion.2

The maps φ·- and -·ψ behave like the box operator of the modal logic K.
−� is the right adjoint to · with respect to →. It is easily verified from Def-
inition 2.13 that [[φ·ψ]]v ⊆ [[μ]]v exactly when [[φ]]v ⊆ [[ψ � μ]]v. So φ � ψ is
interpreted as the largest subset of W that when applied to φ, is included in ψ.

L is a second-order classical propositional logic enriched with the necessity
modality � from S5, and notions of application · and its right adjoint � (with
respect to logical implication →).

When we mix all these ingredients, interesting things become expressible, as
we now explore.

2.4 Expressivity

Remark 2.15. We can express truth, negation, conjunction, disjunction, if-and-
only-if and existential quantification as below. We also unpack Definition 2.13
to see this denotationally:

# = (⊥→⊥) [[#]]v = W
¬φ = φ→⊥ [[¬φ]]v = W \ [[φ]]v

φ ∧ ψ = ¬(φ→¬ψ) [[φ ∧ ψ]]v = [[φ]]v ∩ [[ψ]]v

φ ∨ ψ = (¬φ)→ ψ [[φ ∨ ψ]]v = [[φ]]v ∪ [[ψ]]v

∃p.φ = ¬(∀p.¬φ) [[∃p.φ]]v =
⋃

h∈H [[φ]]v[p�→h].

2 That is, [[φ]]v ⊆ [[φ′]]v and [[ψ]]v ⊆ [[ψ′]]v implies [[φ·ψ]]v ⊆ [[φ′·ψ′]]v .
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Note that ∃. quantifies over elements of H . This is all standard, which is the
point.

Remark 2.16. For the reader familiar with the expression of product and other
types in System F [10], note that [[¬(φ→¬ψ)]]v �= [[∀p. (φ→ψ→p)→p]]v in general;
H may be too sparse. The equality holds in a frame if [[φ]]v ∈ H for every φ. We
can specify this condition as an (infinite) theory using an ‘existence’ predicate
E (Definition 2.18).

Definition 2.17. We can express that two predicates are equal by: φ ≈ ψ =
�(φ↔ ψ).

We unpack the denotation of φ ≈ ψ and for comparison also that of φ ↔ ψ
((φ→ ψ) ∧ (ψ→ φ)):

[[φ ≈ ψ]]v =

{
W [[φ]]v = [[ψ]]v

∅ [[φ]]v �= [[ψ]]v

[[φ↔ ψ]]v = {w ∈ W | (w ∈ [[φ]]v ∧ w ∈ [[ψ]]v) ∨ (w �∈ [[φ]]v ∧ w �∈ [[ψ]]v)}

Intuitively, φ↔ ψ holds at the worlds where φ and ψ are either both true or
both false, whereas φ ≈ ψ represents the statement ‘φ and ψ are true of the
same worlds’.

Definition 2.18. We can express that a predicate is in H by Eφ = ∃p. (φ ≈ p),
read ‘φ exists’. This is usually called an existence predicate [13, Ch.16].

It is not hard to verify that Eφ has the following denotation:

[[Eφ]]v =

{
W [[φ]]v ∈ H
∅ [[φ]]v /∈ H

We are now ready to interpret λ-abstraction in our logic. We also mention a
notion of matching, because it comes very naturally out of the logic as a ‘dual’
to the construction for λ:

Definition 2.19. λp.φ = ∀p. (p� φ) match p.φ = ∀p. (φ� p).

Intuitively, λp.φ reads as: ‘for any p, if p is an argument (of the function in-
stantiated at this world), then we get φ’. As a kind of inverse to this, match p.φ
reads as: ‘for any p, if φ is an argument, then we get p’. So match p.φ is a kind
of pattern-matching or inverse-λ .

λis a logical quantifier, so we name it reversed by analogy with the reversed
A and E of universal and existential quantification.

Theorem 2.20. − [[ λp.φ)]]v = {w | w • h ⊆ [[φ]]v[p�→h] for all h ∈ H}
− [[match p.φ]]v = {w | w • [[φ]]v[p�→h] ⊆ h for all h ∈ H}
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Proof.

[[ λp.φ]]v = [[∀p. (p� φ)]]v Definition 2.19
=

⋂
h∈H [[p� φ]]v[p�→h] Definition 2.13

=
⋂

h∈H{w | w • [[p]]v[p�→h] ⊆ [[φ]]v[p�→h]} Definition 2.13
= {w | w • h ⊆ [[φ]]v[p�→h] for all h ∈ H} Definition 2.4

The case for match p. is similar.

Lemma 2.21. If p is not free in φ, then for any h ∈ H, [[φ]]v = [[φ]]v[p�→h].

Proof. An easy induction on φ.

Lemma 2.22 (Substitution Lemma). For any v, [[φ[p::=ψ]]]v =[[φ]]v[p�→[[ψ]]v].

Proof. By induction on φ, we present the cases for ∀q and ·:

[[(∀q.μ)[p::=ψ]]]v =
⋂

h∈H [[μ[p::=ψ]]]v[q �→h] Definition 2.13
=

⋂
h∈H [[μ]]v[q �→h,p�→[[ψ]]v[q �→h]] Induction Hypothesis

=
⋂

h∈H [[μ]]v[q �→h,p�→[[ψ]]v ] Lemma 2.21
= [[∀q.μ]]v[p�→[[ψ]]v] Definition 2.13

[[(μ1·μ2)[p::=ψ]]]v = [[μ1[p::=ψ]]]v • [[μ2[p::=ψ]]]v Definition 2.13
= [[μ1]]v[p�→[[ψ]]v] • [[μ2]]v[p�→[[ψ]]v] Induction Hypothesis
= [[μ1·μ2]]v[p�→[[ψ]]v] Definition 2.13

Theorem 2.23. The following hold in any frame:

(β-reduction) [[( λp.φ)·ψ]]v ⊆ [[φ[p::=ψ]]]v (for [[ψ]]v ∈ H)
(η-expansion) [[φ]]v ⊆ [[ λp. (φ·p)]]v (for p not free in φ)
(matching) [[(match p.φ)·(φ[p::=ψ])]]v ⊆ [[ψ]]v (for [[ψ]]v ∈ H)

Proof.

[[∀p. (p� φ)·ψ]]v

= [[∀p. (p� φ)]]v • [[ψ]]v Definition 2.13
=

⋂
h∈H{w | w • h ⊆ [[φ]]v[p�→h]} • [[ψ]]v Definition 2.13

⊆ {w | w • [[ψ]]v ⊆ [[φ]]v[p�→[[ψ]]v ]} • [[ψ]]v [[ψ]]v ∈ H
⊆ [[φ]]v[p�→[[ψ]]v ] Definition 2.4
= [[φ[p::=ψ]]]v Lemma 2.22

[[φ]]v ⊆ {w | w • S ⊆ [[φ]]v • S for any S ∈ H} Definition 2.4
=

⋂
h∈H{w | w • S ⊆ [[φ·p]]v[p�→h]} p not free in [[ψ]]v

= [[ λp. (φ·p)]]v Definition 2.19

(matching) follows by a similarly routine calculation.
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(Eq) t � t (β) (λp.t)·s � t[p::=s] (η) t � λp.(t·p) (p not free in t)

(ξ)
t � s

λp.t � λp.s (cong)
t1 � s1 t2 � s2
t1·t2 � s1·s2 (trans)

t1 � t2 t2 � t3
t1 � t3

Fig. 1. λ -reduction

Corollary 2.24.

− If p is not free in φ and [[⊥]]v ∈ H then [[(match p.φ)·φ]]v = ∅.
− If [[ψ]]v ∈ H then [[(match p.φ)·(( λp.φ)·ψ)]]v ⊆ [[ψ]]v.
−match p. p = λp. p.

Proof. The first two parts follow easily from Theorem 2.23. The third part follows
unpacking definitions, since both are equal to ∀p. (p� p).

Read (match p.φ)·μ as returning the intersection of all ψ such that μ is equiv-
alent to φ[p::=ψ]. If there are many such ψ, e.g. when p is not free in φ, then
(match p.φ)·μ→ψ for all such ψ and so (match p.φ)·μ is included in their inter-
section.

Definition 2.25. Define a translation τ from Lλ (Definition 2.5) to L (Defini-
tion 2.12) by:

pτ = p (t1·t2)τ = (tτ
1 ·tτ

2) (λp.t)τ = λp. tτ

Definition 2.26. Write t � s if t � s is derivable using the axioms of Figure 1.

Our implementation of λ is sound in the following sense:

Theorem 2.27. t � s only if [[tτ → sτ ]]v = W for all v and F = (W , •,H)
such that [[uτ ]]v ∈ H for all u.3

Proof. This follows (mostly) by Theorem 2.23.

3 Completeness for λ-Reduction

In this section we show that the axiomatisation of λ-reduction of Figure 1 is
complete for our interpretation of λ-terms in terms of λ. We do this by proving
the converse of Theorem 2.27.

To complete Theorem 2.27 we must show that if t �� s then there is a frame
and valuation v where [[uτ ]]v ∈ H for all u and [[tτ → sτ ]]v �= W (where τ is the
translation of Definition 2.25).

3 In other words, if [[E(uτ )]]v = W for all terms u.
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Definition 3.1. Say a λ-term is complex if it contains term formers, i.e. is not
simply a variable. The size of a λ-term is the number of term formers within it.

Now we can begin the construction of the desired frame. First we add infinitely
many new variables r1, r2 . . . to the language Lλ. Since the language is countable
we can enumerate its complex terms t1, t2 . . . and these new variables r1, r2 . . . .
We describe a one-one function f from terms to variables.

f(ti) = rj where j is the least number such that j > i and rj is not free
in ti nor is the value under f of any tk for k < i.

Thus f is a one-one function that assigns a distinct ‘fresh’ variable to each
complex term of the language. Thus f(t) is a variable that ‘names’ t. These
play the role of witness constants in the construction of the canonical frame in
Theorem 3.7. The f(t) also help us carry out inductions on the size of λ-terms,
as t[p::=f(s)] is smaller than λp.t even if t[p::=s] might not be.

Definition 3.2. Next we add two new axioms of reduction, denote them by (ζf ):

t � f(t) f(t) � t (ζf )

Write t �ζf s when t � s is derivable using the (ζf ) rules in addition to the
rules of Figure 1.

Lemma 3.3. If t �ζf s and neither s or t contain any of the new variables
r1, r2 . . . , then t � s.

Proof. By simultaneously substituting each instance of f(ti) with ti each in-
stance of (ζf ) becomes an instance of (Eq) without affecting the rest of the
derivation.

Definition 3.4. If t is a term let wt = {s | t �ζf s}. Thus wt is the closure of
t under �ζf .

Definition 3.5. Define the canonical λ-frame Fλ = 〈Wλ, •λ,Hλ〉 as follows:

−Wλ = {wt | t is a term}
− For any wt1 ,wt2 ∈ W , wt1 •λwt2 = {w ∈ Wλ | t1·t2 ∈ w}
−Hλ =

{
{w ∈ Wλ | t ∈ w} | t is a term

}
Definition 3.6. Given Fλ = 〈Wλ, •λ,Hλ〉 and a term t. Let ‖t‖ = {w ∈ Wλ |
t ∈ w}.

Theorem 3.7. Let Fλ be the canonical λ-frame (Definition 3.5). Let τ be the
translation from λ-terms t to sentences φ (Definition 2.25). Let v(p) = ‖p‖ for
any variable p. Then for any term t, [[tτ ]]v = ‖t‖.

Proof. By induction on the size of t we show that w ∈ ‖t‖ (i.e. t ∈ w) if and
only if w ∈ [[tτ ]]v.
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− t is a variable p. Then ‖p‖ = v(p) = [[p]]v by the definition of v.
− t is t1·t2. Then (t1·t2)τ = tτ

1 ·tτ
2 .

Suppose t1·t2 ∈ w, and consider the worlds wt1 and wt2 in Wλ. If s1 ∈ wt1

and s2 ∈ wt2 then by Definition 3.4, t1 �ζf s1 and t2 �ζf s2. Thus t1·t2 �ζf

s1·s2 and s1·s2 ∈ w. Then by the definition of •λ we have that w ∈ wt1 •λwt2 .
Furthermore, wt1 ∈ ‖t1‖ and so by the induction hypothesis, wt1 ∈ [[tτ

1 ]]v.
Similarly wt2 ∈ [[tτ

2 ]]v. Hence w ∈ [[tτ
1 ·tτ

2 ]]v by Definition 2.13.

Conversely, suppose that w ∈ [[tτ
1 ·tτ

2 ]]v. Then there are ws1 ,ws2 such that
ws1 ∈ [[tτ

1 ]]v and ws2 ∈ [[tτ
2 ]]v and w ∈ ws1 •λws2 . By the induction hypothesis

ws1 ∈ ‖t1‖ and ws2 ∈ ‖t2‖. Then � s1 �ζf t1 and � s2 �ζf t2. Furthermore,
by the construction of •λ, s1·s2 ∈ w and hence by (cong) t1·t2 ∈ w.
− t is λp.s. Then [[(λp.s)τ ]]v = [[ λp. sτ ]]v = {w | ∀h ∈ Hλ.w •λh ⊆ [[sτ ]]v[p�→h]}.

Suppose λp.s ∈ w1. Suppose that w3 ∈ w1 •λw2, and that w2 ∈ h for some
h ∈ Hλ, then h = ‖u‖ for some term u. By (ζf ) we have that u �ζf r and r �ζf u
for some r. So h = ‖r‖ and r ∈ w2. By the construction of •λ, λp.s·r ∈ w3 and
so s[p::=r] ∈ w3, i.e. w3 ∈ ‖s[p::=r]‖. By the induction hypothesis ‖s[p::=r]‖ =
[[sτ [p::=r]]]v. Furthermore by Lemma 2.22 [[sτ [p::=r]]]v = [[sτ ]]v[p�→[[r]]v]. But by
the definition of v, [[r]]v = ‖r‖, and so w3 ∈ [[sτ ]]v[p�→‖r‖]. But h = ‖r‖ so
w3 ∈ [[sτ ]]v[p�→h]. Thus w1 ∈ {w | ∀h ∈ Hλ.w •λ h ⊆ [[sτ ]]v[p�→h]} = [[(λp.s)τ ]]v.
Hence, ‖λp.s‖ ⊆ [[(λp.s)τ ]]v.

Conversely, suppose that λp.s /∈ wu for some u. Let q be a variable not
free in u or s and consider the worlds wq and wu·q. If s[p::=q] ∈ wu·q then
u·q �ζf s[p::=q], so λq.(u·q) �ζf λq(s[p::=q]) by (ξ). But by our choice of q, (η)
entails that u �ζf λq.(u·q). So u �ζf λq.s[p::=q], which contradicts our initial
supposition that λp.s /∈ wu, therefore s[p::=q] /∈ wu·q. In other words wu·q /∈
‖s[p::=q]‖. Therefore, by the induction hypothesis, wu·q /∈ [[sτ [p::=q]]]v. Since
[[q]]v = ‖q‖, it follows by Lemma 2.22 that wu·q /∈ [[sτ ]]v[p�→‖q‖]. But clearly
wu·q ∈ wu •λwq, so it follows that wu /∈ {w | ∀h ∈ Hλ.w •λh ⊆ [[sτ ]]v[p�→h]}. By
the semantics of (λq.s)τ (i.e. λq. sτ ), this means that wu /∈ [[(λq.s)τ ]]v. Hence,
since every w ∈ Wλ is wu for some u, [[(λp.s)τ ]]v ⊆ ‖λp.s‖.
We can now prove the converse of Theorem 2.27:

Theorem 3.8. t � s if and only if [[tτ → sτ ]]v = W for all v and all frames
F = (W , •,H) such that [[uτ ]]v ∈ H for all u.4

Proof. The left-right direction is Theorem 2.27.
If t �� s then t ��ζf s and so s /∈ wt in Fλ. Therefore ‖t‖ �⊆ ‖s‖ and so

by Theorem 3.7 there is a valuation v such that [[tτ ]]v �⊆ [[sτ ]]v. Furthermore,
Hλ = {[[uτ ]]v | u is a λ-term}.

4 The Axioms, Soundness and Completeness

We can axiomatise the interpretation of L given by Definition 2.13. Axioms are
given in Figure 2.
4 In other words, if [[E(uτ )]]v = W for all terms u.
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(∀R) φ→∀p.φ (p /∈ φ)
(∀L) ∀p.φ→ Eψ → φ[p::=ψ]
(∀A) ∀p. (φ→ ψ)→ (∀p.φ→∀p.ψ)

(Gen)
Ep→ φ

∀p.φ

(·K)
φ·(ψ ∨ μ)→ (φ·ψ) ∨ (φ·μ)
(ψ ∨ μ)·φ→ (ψ·φ) ∨ (μ·φ)

(·C)
φ·∃p.ψ →∃p. (φ·ψ)
(∃p.ψ)·φ→∃p. (ψ·φ) (p /∈ φ)

(�K)
(φ � ψ) ∧ (φ � μ)→ φ � (ψ ∧ μ)
(ψ � φ) ∧ (μ � φ)→ (ψ ∨ μ) � φ

(�C)
∀p. (φ � ψ)→ φ � ∀p.ψ
∀p. (ψ � φ)→ (∃p.ψ � φ)

(p /∈ φ)

(Prop)
Propositional Tautologies
and Modus Ponens

(�L) ((φ � ψ)·φ)→ ψ
(�R) φ→ (ψ � φ·ψ)

(⊥)
(φ·⊥)→⊥
(⊥·φ)→⊥

(N)
φ1 → · · · → φn → ψ

�φ1 → · · · → �φn → �ψ
0 ≤ n

(T ) �φ→ φ
(5) ¬�φ→ �¬�φ

(�·) �(φ→ ψ)→ (φ·μ)→ (ψ·μ)
�(φ→ ψ)→ (μ·φ)→ (μ·ψ)

(��)
�(φ→ ψ)→ (ψ � μ)→ (φ � μ)
�(φ→ ψ)→ (μ � φ)→ (μ � ψ)

Fig. 2. Axioms for L, we write ‘p /∈ φ’ as short ‘p is not free in φ’

Definition 4.1. Let Γ ,Δ . . . denote sets of sentences. Write � φ if φ is derivable
using the rules of Figure 2. Write Γ � A when there are φ1 . . . φn ∈ Γ such that
� φ1 → . . . φn → φ (associating to the right).

4.1 Theorems and Admissible Rules

Theorem 4.2. The converses of (·K),(·C),(�K), and (�C) are all derivable.
Also derivable are:

∀p.φ↔∀p. (Ep→ φ) (�φ·ψ)→ �φ �φ→ (ψ·μ)→ (ψ·(�φ ∧ μ))
∀p. �φ↔ �∀p.φ (ψ·�φ)→ �φ �φ→ (ψ·μ)→ ((�φ ∧ ψ)·μ)
φ�# ¬�φ→ (�φ � ψ) �φ→ (ψ � μ)→ (ψ � (�φ ∧ μ))
⊥� φ ¬�φ→ (ψ � ¬�φ) �φ→ ((�φ ∧ ψ) � μ)→ (ψ � μ)

Notice that the second sentence of the leftmost column is the Barcan formula [13,
Ch.13].

If n = 0 then (N) becomes a simple necessitation rule stating that � A implies
� �A. From this we get the following group of inference rules, (Subs):

(Subs)

φ→ ψ

(φ·μ)→ (ψ·μ)
φ→ ψ

(μ·φ)→ (μ·ψ)

φ→ ψ

(ψ � μ)→ (φ� μ)
φ→ ψ

(μ� φ)→ (μ� ψ)
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4.2 Soundness

Theorem 4.3. Suppose F = (W , •,H) is a frame. Then � φ implies [[φ]]v = W
for any v.

Proof. By induction on derivations. Assume � φ. We consider each axiom and
inference rule in turn.

To show that an axiom of the form φ→ ψ is sound it is enough to show that
[[φ]]v ⊆ [[ψ]]v for any v, for that implies that (W \ [[φ]]v) ∪ [[ψ]]v = W .

− φ and is an instance of (Prop). The soundness of tautological consequence
for the chosen interpretation of → is well known.
− Instances of (∀L). Given Lemma 2.22

⋂
h∈H [[φ]]v[p�→h] ⊆

⋂
h∈H [[φ]]v[p�→[[ψ]]v ]

provided that [[ψ]]v ∈ H . But if [[ψ]]v /∈ H then [[Eψ]]v = ∅ and the axiom is
validated.
−The cases for (∀R) and (∀A) are equally straightforward.
− Instances of (Gen). By induction hypothesis [[Ep→ φ]]v = W for any v so
[[Ep]]v[p�→h] ⊆ [[φ]]v[p�→h] for any h. But [[Eφ]]v[p�→h] = W for all h and so [[∀p.A]]v =
W .
− Instances of (�L) and (�R). We reason using Definitions 2.13 and 2.4:

[[(φ � ψ)·φ]]v = [[φ � ψ]]v • [[φ]]v Definition 2.13
= {w | w • [[φ]]v ⊆ [[ψ]]v} • [[φ]]v Definition 2.13
⊆ [[ψ]]v Definition 2.4

[[φ]]v ⊆ {w | w • [[ψ]]v ⊆ [[φ]]v • [[ψ]]v} Definition 2.4
= {w | w • [[ψ]]v ⊆ [[φ·ψ]]v} Definition 2.13
= [[(ψ � φ·ψ)]]v Definition 2.13

− Instances of (·K).

[[(φ·ψ) ∨ (φ·μ)]]v

= ([[φ]]v • [[ψ]]v) ∪ ([[φ]]v • [[μ]]v) Remark 2.15

=
⋃
{w1 • w2 | w1 ∈ [[φ]]v & w2 ∈ [[ψ]]v}

∪
⋃
{w1 • w2 | w1 ∈ [[φ]]v& w2 ∈ [[μ]]v} Definition 2.4

=
⋃
{w1 • w2 | w1 ∈ [[φ]]v & w2 ∈ ([[ψ]]v ∪ [[μ]]v)} Definition 2.4

= [[φ·(ψ ∨ μ)]]v Remark 2.15

The other case for (·K) and the cases for (�K) are similar.
− Instances of (·C) and (�C).

[[φ·∃p.ψ]]v = [[φ]]v •
⋃

h∈H [[ψ]]v[p�→h] Remark 2.15
=

⋃
h∈H([[φ]]v • [[ψ]]v[p�→h]) Definition 2.4

=
⋃

h∈H([[φ]]v[p�→h] • [[ψ]]v[p�→h]) Lemma 2.21
= [[∃p. (φ·ψ)]]v Remark 2.15

The other cases are similar.



244 M. Gabbay and M.J. Gabbay

− Instances of (⊥). [[⊥·φ]]v = [[φ·⊥]]v = [[φ]]v • [[⊥]]v = ∅ etc.
− Instances of (�)̇. We must show that [[�(φ→ ψ)]]v ∩ [[φ·μ]]v ⊆ [[ψ·μ]]v. This
is trivial if [[φ → ψ]]v �= W , so we may assume that [[φ]]v ⊆ [[ψ]]v. But then
[[φ·μ]]v ⊆ [[ψ·μ]]v. The argument is similar for (��).
− Instances of (N). By induction hypothesis

⋂
i[[φi]]v ⊆ ψ for any v. If for some

φi, [[φi]]v �= W then [[�φi]]v = ∅ and so
⋂

i[[�φi]]v ⊆ �ψ. On the other hand, if
[[φi]]v = W then [[ψ]]v = [[�ψ]]v = W and again

⋂
i[[�φi]]v ⊆ �ψ.

−Axioms (T ) and (5) are easily seen to be sound from semantic conditions for
�.

4.3 Completeness

Definition 4.4. Say that a set of sentences Γ is consistent if Γ � ⊥.

We will show that given a consistent set of sentences Γ we can construct a frame
F and a valuation v such that

⋂
φ∈Γ [[φ]]v �= ∅.

Definition 4.5. A maximal set Δ is a consistent set such that

(1) φ ∈ Δ or ¬φ ∈ Δ for any φ,
(2) for every sentence φ there is some variable p such that φ ≈ p ∈ Δ (see
Definition 2.17), and
(3) if ¬∀p.φ ∈ Δ then ¬φ[p::=q], Eq ∈ Δ for some variable symbol q.

Remark 4.6. The second requirement on maximality ensures that every sen-
tence φ is ‘named’ by some atomic variable. The third requirement is the more
familiar condition that every existential quantifier have a ‘Henkin witness’.

Lemma 4.7. If Δ consistent then there exists a maximal set Δ′ such that Δ ⊆
Δ′.

Proof. Add two infinite collections of new propositional variable symbols r1,
r2 . . . , c1, c2 . . . to L, then enumerate all sentences φ0,φ1 . . . and describe two
one-one functions f , g from predicates to variables:

f(φi) = rj where j is the least number such that j > i and rj is not free in
φi nor in Δ nor is the value under f of any φk < φi.

g(∀p.φi) = cj where j is the least number such that j > i and cj is not free
in φi nor in Δ nor is the value under f of any ∀p.φk < ∀p.φi. We also write
g(∀p.ψ) as g∀p.ψ.

We now construct Δ0, Δ1,. . . as follows (using the enumeration φ0,φ1 . . . above,
or a new one):

Δ0 = Δ ∪ {φ ≈ f(φ)} ∪ {¬∀p.φ→
(
¬φ[p::=g∀p. φ] ∧ E(g∀p.φ)

)
} for all φ.

If Δn ∪ {φn} is inconsistent then Δn+1 = Δn ∪ {¬φn}, otherwise Δn+1 =
Δn ∪ {φn}.
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Note that Δi ⊆ Δj if i ≤ j. Let Θ =
⋃

nΔn. By construction Δ ⊆ Θ. We must
prove Θ is maximal:

−Δ0 is consistent: Suppose Δ0 is inconsistent, then there are μ1 . . . μn ∈ Δ0
such that � μ1 → · · · → μn →⊥. Suppose the μi that do not occur in Δ are:

φ1 ≈ f(φ1) . . . φk ≈ f(φk)

and

¬∀p.ψ1 →¬ψ1[p::=g∀p. ψ1 ] . . .¬∀p.ψl →¬ψl[p::=g∀p. ψl
]

First simultaneously substitute f(φi) with φi. We get that � μ′1→· · ·→μ′n→⊥
where each μ′i is either in Δ or is φ ≈ φ or is ¬∀p.ψ′ →¬ψ′[p::=g∀p.ψ] (where
ψ′ = ψ[f(φi)::=φi]).

Let ρ be ¬∀p.ψ′
j →

(
¬ψ′

j [p::=g∀p. ψj ] ∧ E(g∀p.ψj )
)

where ψ′
j is latest in the

enumeration of all sentences. We may assume that ρ = μ′n = μ′m+1. Since
� μ′1 → · · · → μ′m → ρ→⊥ we have by (Prop) that

� μ′1 → · · · → μ′m →¬∀p.ψ′
j

and

� μ′1 → · · · → μ′m → E(g∀p. ψ′
j
)→ (∀p.ψ′

j → ψ′
j [p::=g∀p.ψ′

j
])

but by our choice of g∀p.ψ′
j

it follows by the quantifier axioms that � μ′1→· · ·→
μ′m →∀p.ψ′

j . So � μ′1 → · · · → μ′m →⊥.
We may conclude from this that μ′1 → · · ·→ μ′l →⊥ is derivable where each

μ′i (i < l ≤ n) is either of the form φ ≈ φ or is in Δ. But this is impossible by
the consistency of Δ.
− For every φ, either φ ∈ Θ or ¬φ ∈ Θ: By the construction, either φ or ¬φ is
added to some Δi. By the consistency of Θ, it is also deductively closed.
−By the construction of Δ0, for every sentence φ, there is some variable p such
that φ↔ p ∈ Δ0 ⊆ Θ.
− If ¬∀p.φ ∈ Θ then for some c, ¬∀p.φ→ (¬φ[p::=c] ∧ Ec) ∈ Δ0 ⊆ Δ′ and so
¬φ[p::=c], Ec ∈ Θ.

Thus Θ is indeed maximal.

Definition 4.8. If Θ is a maximal set then CΘ = {Δ | Δ is maximal and �φ ∈
Θ implies φ ∈ Δ}.

Definition 4.9. Define the canonical frame FCΘ = 〈CΘ, •CΘ ,HCΘ〉:
− For any w1,w2 ∈ CΘ, w1•CΘw2 = {w ∈ CΘ | φ ∈ w1 & ψ ∈ w2 implies φ·ψ ∈
w}.
−HCΘ =

{
{w ∈ CΘ | φ ∈ w} | Eφ ∈ Θ

}
.

It follows by (T ) that Θ ∈ CΘ.

Definition 4.10. Given FCΘ = (CΘ, •CΘ ,HCΘ ) and a sentence φ. Let ‖φ‖ =
{w ∈ CΘ | φ ∈ w}.
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Theorem 4.11. Let FCΘ be the canonical frame, and let v(p) = ‖p‖ for any
(sentential) variable p. Then for any sentence φ, [[φ]]v = ‖φ‖.

Proof. By induction on φ.

− φ is p for some variable p. Then ‖p‖ = v(p) = [[p]]v by the definition of v.
− φ is φ1 → φ2.
Suppose that φ1 → φ2 ∈ w. If w ∈ [[φ1]]v, then by the induction hypothesis
w ∈ ‖φ1‖, i.e. φ1 ∈ w. So φ2 ∈ w and w ∈ [[φ2]]v by the induction hypothesis.
Thus w ∈W \ [[φ1]]v ∪ [[φ2]]v.

Conversely, suppose that φ1→φ2 /∈ w. Then by (Prop) ¬φ1 /∈ w and φ2 /∈ w.
By the induction hypothesis, and the maximality of w, we may conclude that
w /∈ W \ [[φ1]]v and w /∈ [[φ2]]v.

− φ is ⊥. By the consistency of every w ∈ CΘ, ‖⊥‖ = ∅ = [[⊥]]v.
− φ is �ψ.

If �ψ ∈ w then by (5) and the construction of CΘ, ¬�ψ /∈ Θ. So �ψ ∈ Θ and
ψ ∈ w′ for all w′ ∈ CΘ.

For the converse case suppose that ψ ∈ w for all w ∈ CΘ. Then since CΘ

contains all maximal consistent sets containing {μ | �μ ∈ Θ} it follows that
{μ | �μ ∈ Θ} � ψ. So by (N), {�μ | �μ ∈ Θ} � �ψ and so �ψ ∈ Θ. But by
(T ), (N) and (5), � �ψ→ ��ψ, so �ψ ∈ w′ for any w′ ∈ CΘ.
− φ is ∀p.ψ.

Suppose that ∀p.ψ ∈ w then by (∀L) ψ[p::=μ] ∈ w whenever Eμ ∈ w. By the
cases above for �, ψ[p::=μ] ∈ w whenever Eμ ∈ Θ.5 By the maximality of Θ, for
each μ, there is a variable fμ such that μ ≈ fμ ∈ Θ. Thus ‖μ‖ = ‖fμ‖ and every
h ∈ HCΘ is ‖fμ‖ for some μ such that Eμ ∈ Θ. By the induction hypothesis and
Lemma 2.22, w ∈ [[ψ[p::=fμ]]]v[fμ �→h] for all h ∈ HCΘ . Thus w ∈ [[∀p.μ]]v.

Conversely, suppose that ∀p.ψ /∈ w. Then by the maximality of w, ¬∀p.ψ ∈
w and so ¬ψ′[p::=c] ∧ Ec ∈ w for some c. By the induction hypothesis and
Lemma 2.22 we have that w /∈ [[ψ′]]v[p�→[[c]]v], we also have Ec ∈ Θ, so w /∈
[[∀p.ψ]]v.
− φ is φ1·φ2.

Suppose w3 ∈ [[φ1·φ2]]v. Then there are w1,w2 such that w1 ∈ [[φ1]]v and
w2 ∈ [[φ2]]v and w3 ∈ w1 •CΘ w2. By the induction hypothesis w1 ∈ ‖φ1‖ and
w2 ∈ ‖φ2‖, so φ1 ∈ w1 and φ2 ∈ w2. This implies φ1·φ2 ∈ w3.

For the converse case suppose that φ1·φ2 ∈ w3, we must show that there
are w1,w2 such that w1 ∈ [[φ1]]v, w2 ∈ [[φ2]]v and w3 ∈ w1 •CΘ w2. Given the
induction hypothesis, it is enough to construct two maximal sets Δ1,Δ2 such
that φ1 ∈ Δ1,φ2 ∈ Δ2 and ψ1·ψ2 ∈ w3 for every ψ1 ∈ Δ1,ψ2 ∈ Δ2. We must
then verify that these two sets are in CΘ by showing that {ψ | �ψ ∈ Θ} ⊆
Δ1 ∩Δ2. This is done in Lemma 4.12.

5 Eμ is short for ∃p. �(p↔μ). The axioms for S5 (N),(T ) and (5) entail that � ∃p.�(p↔
μ) → �∃p. �(p ↔ μ). So, by the case for �, Eμ ∈ w iff Eμ ∈ w′ for any w, w′ ∈ CΘ.
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−The case where φ is φ1 � φ2 is similar to that for φ1·φ2 and uses a lemma
similar to Lemma 4.12.

Lemma 4.12. If Δ ∈ CΘ and φ1·φ2 ∈ Δ, then there are two maximal sets
Δ1,Δ2 ∈ CΘ such that

(1) φ1 ∈ Δ1,φ2 ∈ Δ2

(2) ψ1·ψ2 ∈ Δ for every ψ1 ∈ Δ1,ψ2 ∈ Δ2

(3) �ψ ∈ Θ implies ψ ∈ Δ1 ∩Δ2 for any ψ.

Proof. Enumerate all sentences ψ0,ψ1 . . . and construct two sequences Φ0,
Φ1, . . . and Ψ0,Ψ1, . . . :

Φ0 = {¬¬φ1} and Ψ0 = {¬¬φ2}

If ψn is not of the form ∀p.μ then:

Φn+1 =
{
Φn ∪ {¬ψn} if (

∧
Φn∧¬ψn)·(

∧
Ψn)∈Δ

Φn ∪ {ψn} otherwise

Ψn+1 =
{
Ψn ∪ {¬ψn} if(

∧
Φn+1)·(

∧
Ψn∧¬ψn)∈Δ

Ψn ∪ {ψn} otherwise

If ψn is of the form ∀p.μ then:

Φn+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φn ∪ {¬∀p.μ,¬μ[p::=c], Ec}

if (
∧

Φn ∧ ¬∀p.μ ∧ ¬μ[p::=c] ∧ Ec)·(∧Ψn) ∈ Δ
for some variable c

Φn ∪ {∀p.μ} otherwise

Ψn+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ψn ∪ {¬∀p.μ,¬μ[x::=c], Ec}

if (
∧

Φn+1)·(∧Ψn ∧ ¬∀p. μ ∧ ¬μ[p::=c] ∧ Ec) ∈ Δ
for some variable c

Ψn ∪ {∀p.μ} otherwise

Note that Φi ⊆ Φj and Ψi ⊆ Ψj if i ≤ j. Let Δ1 =
⋃

n Φn and Δ2 =
⋃

n Ψn.

−Each (
∧
Φn)·(

∧
Ψn) ∈ Δ:

By induction on n. If n = 0 then since φ1·φ2 ∈ Δ it follows by (Prop) and (Subs)
that ¬¬φ1·¬¬φ2 ∈ Δ.

Assume that (
∧
Φn)·(

∧
Ψn) ∈ Δ but (

∧
Φn+1)·(

∧
Ψn) /∈ Δ. First we must

show that

(
∧
Φn ∧ ¬ψn)·(

∧
Ψn) /∈ Δ implies (

∧
Φn ∧ ψn)·(

∧
Ψn) ∈ Δ. (†)

By (·K), (Prop) and the consistency of Δ if (
∧
Φn ∧ ¬ψn)·(

∧
Ψn) /∈ Δ and

(
∧
Φn ∧ ψn)·(

∧
Ψn) /∈ Δ then(∧

(Φn ∧ ψn) ∨ (
∧
Φn ∧ ¬ψn)

)
·(
∧
Ψn) /∈ Δ.
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So by (Prop) and (Subs)
(
(
∧
Φn∧ (ψn∨¬ψn))·(

∧
Ψn)

)
/∈ Δ. But this entails that

(
∧
Φn)·(

∧
Ψn) /∈ Δ which is contrary to our assumption.

So the lemma holds if ψn is not of the form ∀p.μ. Suppose ψn is of the form
∀p.μ. We must show that:

(
∧
Φn ∧ ¬∀p.μ ∧ ¬μ[p::=c] ∧ Ec)·(

∧
Ψn) /∈ Δ for all c,

implies that

(
∧
Φn ∧ ∀p.μ)·(

∧
Ψn) ∈ Δ

Given †, we need only show that

(
∧
Φn ∧ ¬∀p.μ ∧ ¬μ[p::=c] ∧ Ec)·(

∧
Ψn) /∈ Δ for all c,

implies that

(
∧
Φn ∧ ¬∀p.μ)·(

∧
Ψn) /∈ Δ

If (
∧
Φn∧¬∀p.μ)·(

∧
Ψn) ∈ Δ then by (·C), ¬∀p.¬

(
(
∧
Φn∧¬∀p.μ∧¬μ)·(

∧
Ψn)

)
∈

Δ.6 But since Δ is maximal and every negated universal quantification has a
witness:

¬
(
(
∧
Φn ∧ ¬∀p.μ ∧ ¬μ[p::=c])·(

∧
Ψn)

)
∧ Ec ∈ Δ for some c

But then (
∧
Φn ∧ ¬∀p.μ ∧ ¬μ[p::=c] ∧ Ec)·(

∧
Ψn) /∈ Δ (for some c).

So we can conclude that (
∧
Φn)·(

∧
Ψn) ∈ Δ implies that (

∧
Φn+1)·(

∧
Ψn) ∈ Δ.

Analogous reasoning shows that this in turn implies that (
∧
Φn+1)·(

∧
Ψn+1) ∈ Δ

−Δ1,Δ2 are consistent:
Suppose Δ1 is inconsistent, then there are μ1 . . . μn ∈ Δ1 such that � μ1→· · ·→
μn →⊥. The μi must all be in some Φk ⊆ Δ1, but as (

∧
Φk)·(

∧
Ψk) ∈ Δ this

implies by (⊥) that ⊥ ∈ Δ. This is impossible since Δ is consistent. We may
conclude analogously that Δ2 is not inconsistent.
− For any φ, either φ ∈ Δ1 or ¬φ ∈ Δ1:
This follows from the fact that every φ ∈ Δ1 is a ψi, and so either it or its
negation is added to Φi. Similarly, φ ∈ Δ2 or ¬φ ∈ Δ2 for any φ.
−¬∀p.μ ∈ Δ1 implies ¬μ[p::=c], Ec ∈ Δ1 for some c:
¬∀p.μ is a ψi+1 and so is added to Φi+1, but Φi+2 = Φi+1∪{¬∀p.μ,¬μ[p::=c], Ec}
for some c.7 Similarly for Δ2.

So Δ1 and Δ2 are maximal, now we verify that they satisfy the conditions of
the lemma.

(1) φ1 ∈ Δ1 and φ2 ∈ Δ2: By choice of Φ0,Ψ0 we have that ¬¬φ1 ∈ Δ1 and
¬¬φ2 ∈ Δ2, so by (Prop) and the maximality of Δ1 and Δ2 it follows that
φ1 ∈ Δ1 and φ2 ∈ Δ2.
6 As we may assume that p is not free in

∧
Φn.

7 We chose Φ0 and Ψ0 to be {¬¬φ1} and {¬¬φ2}, to guarantee the that the construc-
tion did not begin with a sentence of the form ¬∀p. μ.
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(2) ψ1·ψ2 ∈ Δ for every ψ1 ∈ Δ1,ψ2 ∈ Δ2. Choosing some suitable large i, we
have that ψ1 ∈ Φi and ψ2 ∈ Ψi and the result follows by (Prop), (Subs) and the
fact that

∧
Φi·

∧
Ψi ∈ Δ

(3) If �ψ ∈ Θ then ��ψ ∈ Θ and so, since Δ ∈ CΘ, �ψ ∈ Δ. Now, if ¬�ψ ∈
Δ1 or ¬�ψ ∈ Δ2 then, by (1) and (2), (¬�ψ)·φ2 ∈ Δ or φ1·(¬�ψ) ∈ Δ.
But �ψ ∈ Δ, so by Theorem 4.2 this implies that (�ψ ∧ ¬�ψ)·φ2 ∈ Δ or
φ1·(�ψ ∧ ¬�ψ) ∈ Δ. This is impossible since Δ1 and Δ2 are consistent. So
�ψ ∈ Δ1 ∩Δ2 and by (T ) ψ ∈ Δ1 ∩Δ2.

Theorem 4.13. If Δ is consistent then
⋂

φ∈Δ[[φ]]v �= ∅ for some frame F and
valuation v.

Proof. We have shown that Δ can be extended to a maximal set Θ which is in
the canonical frame FCΘ . Then by Theorem 4.11, φ ∈ Δ implies that Θ ∈ [[φ]]v ∈
WCΘ ∈ FCΘ , so Θ ∈

⋂
φ∈Δ[[φ]]v �= ∅.

Corollary 4.14. If [[φ]]v = W for all frames F , then � φ.

Proof. If � φ then {¬φ} is consistent, so there is a frame F such that [[¬φ]]v �= ∅.
By the semantics of negation it follows that [[φ]]v �= W .

We can use this result together with Definition 4.1 to simplify Theorem 3.8.

Corollary 4.15. t � s if and only if {Euτ | u is a λ-term} � tτ → sτ .

It is a further issue whether Corollory 4.15 holds if {Etτ | t is a λ-term} is
replaced with {Eφ | φ is a sentence}, or even {Eφ | φ is a closed sentence}. A
result equivalent to the fact that the corollory does not hold for the assumptions
{Euτ | u is a closed λ-term} was shown by Plotkin in [18].

5 Conclusion

5.1 Negation and the Liar

How does our logic resolve the paradoxes that affected Church’s original sys-
tem? We can extend τ (Definition 2.25) to translate (¬t)τ to either ¬(tτ ) or
( λp.¬p)·tτ . The first case corresponds to negation as a term-former in λ-term
syntax; the second case corresponds to treating negation as a constant-symbol.

In the first case, let Lτ be short for λp.¬(p·p)· λp.¬(p·p). Then we may use
Theorem 2.27 and Corollary 4.14 to conclude that {E(uτ) | u is a λ-term} �
Lτ →¬Lτ . So just as with Church’s system we get a sentence Lτ that implies its
own negation. Since [[¬Lτ ]]v = W \ [[Lτ ]]v there is only one possible interpretation
of Lτ : the empty set.

In the second case similar reasoning applies, but more interpretations of Lτ

are available. This is because ( λp.¬p)·tτ may receive a different interpretation
from ¬tτ , even if we assume E(uτ ) for all terms u. The reason for this is that
[[ λp.¬p]]v =

⋂
h∈H{w | w • h ⊆ W \ h} and so contains only those w ∈ W
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that relate, by ·, members of H to their complements. So although h ∈ H has
a complement in P(W ), there may be no w ∈ W to serve in the extension of
[[ λp.¬p]]v.

For example, if F is a frame where [[#]]v = W ∈ H then w ∈ [[ λp.¬p]]v implies
w •W ⊆ ∅ and so w • S ⊆ ∅ for any S ⊆W (as • is monotonic with respect to
⊆). So w ∈ [[ λp.¬p]]v implies w • w′ = ∅ for all w′ ∈ W . So for such a frame F ,
[[( λp.¬p)·φ]]v = ∅ = [[⊥]]v for any φ!

What moral can we draw from this? The negations of λ-terms can be inter-
preted perfectly naturally in our models. Paradoxes are averted because they
may translate to impossible structural properties on the frames. Our models
might help design other extensions of the λ-calculus, by considering how these
extensions behave when interpreted in the models.

5.2 Related Work

Multiplicative conjunction. L with its connective · (Definition 2.12) looks like a
(classical) logic with a multiplicative conjunction ⊗, as in linear logic or bunched
implications [8,17]. Multiplicative conjunction ⊗ does not have contraction, so
that for example A⊗A is not equivalent to A.

However · is not a species of multiplicative conjunction. This is because multi-
plicative conjunction is usually taken to be associative and commutative, whereas
· is neither; it models application, and we do not usually want f(x) to equal x(f),
or f(g(x)) to equal (f(g))(x).8

Phase spaces. On a related point, a frame F based on a set W with its function
• from Definition 2.1 looks like a phase space [9]. Indeed the denotation for λ in
Definition 2.7 uses the same idea as the denotation of multiplicative implication
� (see for example [9, Section 2.1.1]).

However F is unlike a phase space in one very important respect: • does not
make W into a commutative monoid because it maps W ×W to P(W ), and not
to W . This is also, as we have mentioned, whyW is not an applicative structure.

An interesting interpretation of our models. The ‘application operation’ • re-
turns not worlds but sets of worlds. In Section 2.1 we have already suggested that
we can read • as a ternary Kripke accessability relation, or as a non-deterministic
application operation. We would now like to suggest another reading, which we
have found useful.

Think of worlds w ∈ W as objects, programs, and/or data. What happens
when we apply one object to another (e.g. a rock to a nut; a puncher to some
tape; a program to an input; a predicate to a datum)? On the one hand, we obtain
an output (a nut that is broken; strip of perforated tape; a return value; a truth-
value). Yet, on its own, an output is meaningless. What makes the execution
of some action a computation is not the raw output, but the concept that this
output signifies. That is, we apply w1 to w2 not to obtain some w3, but to obtain
8 There is some interest in non-commutative multiplicative conjunction, but this does

not change the basic point.
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some meaning that w3 signifies. A raw output like ‘42’ tells us nothing; it is only
significant relative to the meaning we give it.

The output of a computation, rather than a mere action, is a concept.
As is standard, we can interpret concepts extensionally as sets of data. So,

when • maps W ×W to P(W ) we can read this as follows: • takes two objects
and applies one to the other to obtain a concept.

By this reading, when we write λp.t or ∀p.φ, p quantifies over concepts — not
over data. Data is certainly there, and resides in W , but when we compute on
W this returns us to the world of concepts. It is certainly possible to envisage
frames in which w1 • w2 is always a singleton {w3} — but this is just a very
special case (and our completeness proofs do not generate such frames).

The fact that • maps to P(W ) is a key point of the semantics in this paper. It
turns out that this is sufficient to unify logic and computation, as we have seen.

Relevance logic. The notion of a function from W ×W to P(W ) does appear
in the form of a ternary relation R on W , when giving denotations to relevant
implication in relevance logic [5], and to implication in other provability and
substructural logics such as independence logic [22]. For example, the clause for
� in Definition 2.13 is just like the clause for relevant implication → in [5, §3.7,
p.69].

However, these logics impose extra structure on R; see for example conditions
(1) to (4) in [5, §3.7, p.68]. In the notation of this paper, • for relevance logic and
other substructural logics models a form of logical conjunction and has structural
properties like associativity and commutativity. In our frames • models function
application, which does not have these structural properties.

H and Henkin models for higher-order logic. Another feature of frames is the set
H ⊆ P(W ). We mentioned in Remark 2.3 that we useH to restrict quantification
and ‘cut down the size’ of powersets so as to obtain completeness. This idea is
standard from Henkin semantics for higher-order logics.

Here, two classes of frame are particularly interesting: full frames in which
H = P(W ) (which we return to below), and faithful frames in which the de-
notation of every possible sentence is in H (see [20, Section 4.3]). Full frames
are simple, and may be represented as a pair F full = (W , •), but they inherit an
overwhelming richness of structure from the full powerset. Henkin models are
simpler ‘first order’ [20, Corollary 3.6] — and therefore completely axiomatisable
— approximations to the full models.

Henkin semantics for higher-order logic are actually unsound without the as-
sumption of faithfulness. We do not impose a general condition that models must
be faithful because we built the models in the general case without committing
to one specific logic. Once we fix a logic, conditions analogous to faithfulness
begin to appear. See for example Theorems 2.27 and 3.8, and Corollary 4.15.

Investigating the properties of full models is possible further work.

5.3 Summary, and Further Work

We have presented models in which logic and computation have equal standing.
They combine, among other things, the expressive power of untyped λ-calculus
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and quantificational logic, in a single package. This has allowed us to give inter-
esting answers to two specific questions:

Q. What is the negation of a λ-term?
A. Its sets complement.

Q. What logical connective corresponds to functional (λ) abstraction?
A. λfrom Definition 2.19.

There are many questions to which we do not have answers.
The logic L is very expressive; interesting things can be expressed other than

the λ-calculus, including encodings of first-order logic and simple types, and also
less standard constructs. We note in particular matching (Definition 2.19) as a
‘dual’ to λ. What other programming constructs do the semantics and the logic
L invite?

We can take inspiration from modal logic, and note how different conditions
on accessibility in Kripke models match up with different systems of model
logic [13]. It is very interesting to imagine that conditions on H and • might
match up with systems of λ-reduction and equality.

Can we tweak the frames so that Theorem 2.27 becomes provable for a reduc-
tion relation that does not include (η), or perhaps does include its converse (yes,
but there is no space here for details). λ-calculus embeds in L, so can a sequent
system be given for L extending the sequent system for λ-reduction of [6]?

Note that logic-programming and the Curry-Howard correspondence both
combine logic and computation, where computation resides in proof-search and
proof-normalisation respectively.

Where does our combination of logic and computation fit into this picture, if
at all?

We can only speculate on applications of all this.
Models can be computationally very useful. For instance, we may falsify a

predicate by building a model that does not satisfy it. Our models might have
something specific to offer here, because they are fairly elementary to construct
and the tie-in to the languages Lλ and L is very tight, with completeness results
for arbitrary theories (see Definition 4.1 and Corollary 4.14).

We have already touched on possible applications to language design; we might
use the models and the logic to design new language constructs. We note in
passing that the models have a built-in notion of location, given by reading
w ∈ W as a ‘world’. It is not entirely implausible that this might be useful
to give semantics to languages with subtle constructs reflecting that not all
computation takes place on a single thread. To illustrate what we have in mind,
consider a simple ‘if. . . then. . . else’ λ-term λp.ψ

{
t1
t2

which is such that λp.ψ
{
t1
t2
·s

reduces to t1[p::=s] if ψ, and to t2[p::=s] otherwise. But ‘where’ should ψ be
checked? Should it be checked at the world where the function resides, where the
argument resides, or where the result resides? Translations into our logic reflect
these possibilities:
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At the function: ∀p.
(
(ψ→ (p� φ1)) ∧ (¬ψ→ (p� φ2))

)
At the argument: ∀p.

(
((p ∧ ψ) � φ1) ∧ ((p ∧ ¬ψ) � φ2)

)
At the result: ∀p.

(
p� ((ψ→ φ1) ∧ (¬ψ→ φ2))

)
Note that p may be free in ψ.

We conclude the paper with a hypothesis. Consider the full frames where
H = P(W ) and using the translation τ of Definition 2.25 consider the relation
�2 defined such that t �2 s when [[tτ → sτ ]]v = W for any valuation v on any
full frame. Our hypothesis is this: there are t and s such that t�2 s but t��� s;
furthermore, t �2 s is ‘true’ in the sense that t intuitively does compute to
s. In other words, we hypothesise that the intuitive concept of computation is
captured by the F full, just like our intuitive concept of natural number is cap-
tured by the standard model N . We suggest that λ-calculi and axiomatisations
of computation are actually first order implementations of �2.
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Abstract. In this paper we propose proof systems without labels for the
intuitionistic modal logic IS5 that are based on a new multi-contextual
sequent structure appropriate to deal with such a logic. We first give a
label-free natural deduction system and thus derive natural deduction
systems for the classical modal logic S5 and also for an intermediate
logic IM5. Then we define a label-free sequent calculus for IS5 and prove
its soundness and completeness. The study of this calculus leads to a
decision procedure for IS5 and thus to an alternative syntactic proof of
its decidability.

1 Introduction

Intuitionistic modal logics have important applications in computer science, for
instance for the formal verification of computer hardware [7] and for the defini-
tion of programming languages [6,10]. Here, we focus on the intuitionistic modal
logic IS5, introduced by Prior [13] and initially named MIPQ, that is the intuition-
istic version of the modal logic S5. It satisfies the requirements given in [16] for
the correct intuitionistic analogues of the modal logics. An algebraic semantics
for IS5 has been introduced in [3] and the finite model property w.r.t. this se-
mantics and consequently the decidability of this logic have been proved [11,15].
Moreover a translation of this logic into the monadic fragment of the intuition-
istic predicate logic has been defined [4] and relations between some extensions
of IS5 and intermediate predicate logics have been investigated [12]. In addition
a Kripke semantics for IS5 was defined using frames where the accessibility rela-
tion is reflexive, transitive and symmetric [16]. As it is an equivalence relation,
there exists an equivalent semantics with frames without accessibility relation
like in the case of classical modal logic S5.

Here we mainly focus on proof theory for IS5 and on the design of new proof
systems without labels for this logic. A Gentzen calculus was proposed in [11],
but it does not satisfy the cut-elimination property. A natural deduction and
cut-free Gentzen systems for IS5 have been proposed in [16], but a key point
is that they are not considered as syntactically pure because of the presence
of labels and relations between them corresponding to semantic information. In
fact, they were introduced in order to support accessibility relations with arbi-
trary properties. There exist labelled systems without relations between labels
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but for the fragment without ⊥ and ∨ [10]. Moreover a hybrid version of IS5 has
been introduced in [5,9] in order to reason about places with assertions of the
form A@p meaning that A is true at p. We observe that, by restricting the nat-
ural deduction system for this hybrid version, we can obtain a labelled natural
deduction system for IS5.

In this paper, we aim at studying proof systems without labels for IS5. Then
a first contribution is a label-free natural deduction system, called NDIS5. It is
based on a new sequent structure, called MC-sequent, that is multi-contextual
and without labels, allowing the distribution of hypotheses in a multi-contextual
environment. Compared to the hypersequent structure [1] that is adapted to clas-
sical logic the MC-sequent structure is more appropriate to deal with intuition-
istic and modal operators. From this system we can deduce label-free natural
deduction systems for S5 but also for IM5 [8] that is an intermediate logic be-
tween IS5 and S5. These natural deduction systems, without labels, illustrates
the appropriateness of the MC-sequent structure for logics defined over IS5.

To complete these results another contribution is the definition of a sequent
system for IS5 that is based on the MC-sequent structure and called GIS5. Its
soundness and completeness are proved from its equivalence with the natural
deduction system. We also prove that GIS5 satisfies the cut-elimination property.
Moreover from the subformula property satisfied by the cut-free derivations, we
introduce a notion of redundancy so that any valid MC-sequent has an irredun-
dant derivation. Therefore we provide a new decision procedure for IS5 and thus
obtain an alternative proof of the decidability of IS5 from our label-free sequent
calculus.

2 The Intuitionistic Modal Logic IS5

The language of IS5 is obtained from the one of propositional intuitionistic logic
IPL by adding the unary operators � and ♦. Let Prop be a countably set of
propositional symbols. We use p, q, r, . . . to range over Prop. The formulas of IS5
are given by the grammar:

F ::= p | ⊥ | F ∧ F | F ∨ F | F ⊃ F | �F | ♦F

The negation is defined by ¬A � A ⊃ ⊥. A Hilbert axiomatic system for IS5 is
given in Figure 1 (see [16]).

Note that the interdefinability between � and ♦ given by ♦A � ¬�¬A breaks
down in intuitionistic modal logics. That is similar to the fact that ∀ and ∃ are
independent in intuitionistic first-order logic.

Definition 1. A Kripke model is a tuple (W,�, {Dw}w∈W , {Vw}w∈W ) where
- W is a non-empty set (of ’worlds’) partially ordered by �;
- for each w ∈ W , Dw is a non-empty set such that w � w′ implies Dw ⊆ Dw′

and
- for each w ∈ W , Vw is a function that assigns to each p ∈ Prop a subset of Dw

such that w � w′ implies Vw(p) ⊆ Vw′(p).
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0) All substitution instances of theorems of IPL.
1) �(A ⊃ B) ⊃ (�A ⊃ �B).
2) �(A ⊃ B) ⊃ (♦A ⊃♦B).
3) ♦⊥⊃⊥.
4) ♦(A ∨ B) ⊃ (♦A ∨ ♦B).
5) (♦A ⊃ �B) ⊃ �(A ⊃ B).
6) (�A ⊃ A) ∧ (A ⊃♦A).
7) (♦�A ⊃ �A) ∧ (♦A ⊃ �♦A).

A ⊃ B A

B
[MP ]

A

�A
[Nec]

Fig. 1. An Axiomatization of IS5

Definition 2. Let M = (W,�, {Dw}w∈W , {Vw}w∈W ) be a Kripke model, w ∈
W , d ∈ Dw and A be a formula, we define M, w, d � A inductively as follows:

- M, w, d � p iff d ∈ Vw(p);
- M, w, d � ⊥ never;
- M, w, d � A ∧B iff M, w, d � A and M, w, d � B;
- M, w, d � A ∨B iff M, w, d � A or M, w, d � B;
- M, w, d � A⊃B iff for all v � w, M, v, d � A implies M, v, d � B;
- M, w, d � �A iff for all v � w, e ∈ Dv, M, v, e � A;
- M, w, d � ♦A iff there exists e ∈ Dw such that M, w, e � A.

A formula A is valid in M = (W,�, {Dw}w∈W , {Vw}w∈W ), written M � A, if
and only if M, w, d � A for every w ∈ W and every d ∈ Dw. A formula is valid
in IS5, written IS5 � A, if and only if M � A for every Kripke model M.

IS5 has an equivalent Kripke semantics using frames where there is an acces-
sibility relation which is reflexive, transitive and symmetric [16]. A simple way
to prove the soundness and the completeness of the Kripke semantics defined
here consists in the use of the translation of IS5 in the monadic fragment of the
intuitionistic predicate logic [4]. This translation, denoted (.)∗, is defined by:

- (⊥)∗ = ⊥; (p)∗ = P (x);
- (A⊗B)∗ = (A)∗ ⊗ (B)∗, for ⊗ = ∧,∨,⊃;
- (�A)∗ = ∀x.(A)∗;
- (♦A)∗ = ∃x.(A)∗.

Proposition 3 (Monotonicity). If we have M, w, d � A and w � w′, then we
have M, w′, d � A.

Proof. By structural induction on A.

3 Label-Free Natural Deduction for IS5

In this section, we introduce a natural deduction system for IS5, called NDIS5,
based on the definition of a particular sequent structure, called MC-sequent. The
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soundness of this system is proved using Kripke semantics and its completeness
is proved via the axiomatization given in Figure 1.

3.1 The MC-Sequent Structure

Let us recall that a context, denoted by the letters Γ and Δ, is a finite multiset
of formulae and that a sequent is a structure of the form Γ � C where Γ is a
context and C is a formula.

Definition 4 (MC-sequent). An MC-sequent is a structure Γ1; . . . ;Γk�Γ �C
where {Γ1, . . . , Γk} is a finite multiset of contexts, called LL-context, and Γ �C
is a sequent, called contextual conclusion.

Let G � Γ � C be a MC-sequent. If Γ is the empty context ∅, then we write
G � �C instead of G � ∅ �C. Concerning the empty contexts in G (LL-context),
they are not omitted.

The MC-sequent structure simply captures the fact that all the assumptions
are relative and not absolute in the sense that if a formula is true in a given con-
text, it is not necessary true in the other contexts. Intuitively, this can be seen as
a spatial distribution of the assumptions. Indeed, each context represents a world
in Kripke semantics with the fact that two different contexts do not necessarily
represent two different worlds. This fact is highlighted by the corresponding for-
mula of any MC-sequent, namely the MC-sequent Γ1; . . . ;Γk�Γ �C corresponds
to the formula (♦(

∧
Γ1) ∧ . . . ∧ ♦(

∧
Γk)) ⊃ ((

∧
Γ ) ⊃ C). We use the notation∧

Γ as a shorthand for A1 ∧ . . . ∧ Ak when Γ = A1, . . . , Ak. If Γ is empty, we
identify

∧
Γ with #.

This structure is similar to the hypersequent structure that is a multiset of
sequents, called components, separated by a symbol denoting disjunction [1], in
the sense that it is a multi-contextual structure. Since IS5 satisfies the disjunction
property, namely if A∨B is a theorem then A is a theorem or B is a theorem, the
hypersequent structure does not really enrich the sequent structure in this case
and it appears that MC-sequent is more appropriate to deal with intuitionistic
and modal operators. However, our approach is similar to the one in [14] where
a hypersequent calculus for the classical modal logic S5 was introduced.

3.2 A Natural Deduction System for IS5

The rules of the natural deduction system NDIS5 are given in Figure 2. Let us
remark that if we consider the set of rules obtained from NDIS5 by replacing any
MC-sequent occurring in any rule by its contextual conclusion and by removing
all the modal rules and the [∨2

E ] and [⊥2] rules then we obtain a set of rules
corresponding to the known natural deduction system of IPL [17]. Hence, we
obtain the following proposition:

Proposition 5. If A is a substitution instance of a theorem of IPL then � � A
has a proof in NDIS5.
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G � Γ, A � A
[Id]

G � Γ � ⊥
G � Γ � A

[⊥1]
G; Γ � Γ ′ � ⊥
G; Γ ′ � Γ � A

[⊥2]

G � Γ � Ai

G � Γ � A1 ∨ A2
[∨i

I ]
G � Γ � A ∨ B G � Γ, A � C G � Γ, B � C

G � Γ � C
[∨1

E ]

G; Γ ′ � Γ � A ∨ B G; Γ, A � Γ ′ � C G; Γ, B � Γ ′ � C

G; Γ � Γ ′ � C
[∨2

E ]

G � Γ � A G � Γ � B

G � Γ � A ∧ B
[∧I ]

G � Γ � A1 ∧ A2

G � Γ � Ai

[∧i
E ]

G � Γ, A � B

G � Γ � A ⊃ B
[⊃I ]

G � Γ � A ⊃ B G � Γ � A

G � Γ � B
[⊃E ]

G � Γ � A

G � Γ � ♦A
[♦1

I ]
G; Γ ′ � Γ � A

G; Γ � Γ ′ � ♦A
[♦2

I ]
G � Γ � ♦A G; A � Γ � C

G � Γ � C
[♦1

E]

G; Γ ′ � Γ � ♦A G; Γ ; A � Γ ′ � C

G; Γ � Γ ′ � C
[♦2

E ]

G; Γ � �A

G � Γ � �A
[�I ]

G � Γ � �A

G � Γ � A
[�1

E ]
G; Γ ′ � Γ � �A

G; Γ � Γ ′ � A
[�2

E ]

Fig. 2. The Natural Deduction System NDIS5

Let us comment now the modal rules of NDIS5. The rule [�I ] internalizes the
fact that if a formula A is true in a given context without any assumption, then
�A is true in any context. [�1

E ] internalizes the notion that if �A is true in a
given context then A is true in this context. [�2

E ] internalizes the notion that if
�A is true in a given context then A is true in any other context. Indeed, this
rule consists in an elimination of � combined with a switch from the current
context Γ to an other context Γ ′. So [�1

E ] and [�2
E ] both internalize the fact

that if �A is true then A is true in any context. The rules of ♦ are dual to these
of �. [♦1

I ] and [♦2
I ] both internalize the fact that if A is true in a given context

then ♦A is true in any context. [♦1
E] and [♦2

E ] both internalize the fact that the
assumption ”A is true in a context without any other assumption” is equivalent
to the assumption ”♦A is true”. This comes from the fact that if ♦A is true
then we may not necessary know in what context.

Let us illustrate our system by considering the formula ♦(A∨B)⊃(♦A∨♦B).
A proof of this formula in NDIS5 is given by:

[Id]
�♦(A ∨ B) � ♦(A ∨ B)

[Id]
♦(A ∨ B) � A ∨ B � A ∨ B D1 D2

[∨E2]
A ∨ B � ♦(A ∨ B) � ♦A ∨ ♦B

[♦E1]
�♦(A ∨ B) � ♦A ∨ ♦B
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with

D1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[Id]

♦(A ∨ B) � A ∨ B, A � A
[♦I2]

A ∨ B, A � ♦(A ∨ B) � ♦A
[∨I1]

A ∨ B, A � ♦(A ∨ B) � ♦A ∨ ♦B

D2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[Id]

♦(A ∨ B) � A ∨ B, B � B
[♦I2]

A ∨ B, B � ♦(A ∨ B) � ♦B
[∨I2]

A ∨ B, B � ♦(A ∨ B) � ♦A ∨ ♦B

Now we give a proof of the soundness of NDIS5 using Kripke semantics. It consists
in showing that for every rule, if its premise(s) are valid, then its conclusion is
valid.

Theorem 6 (Soundness). NDIS5 is sound, i.e., if a MC-sequent of IS5 is prov-
able in NDIS5 then it is valid in IS5.

Proof. Proceeding contrapositively, for every rule, we suppose that its conclu-
sion is not valid and prove that one of its premises is not valid. Here, we only
show the cases of [�I ], [�2

E ] and [♦1
E ].

- Case [�I ]. Let M = (W,�, {Dw}w∈W , {Vw}w∈W ) be a countermodel of G �
Γ � �A. Then there exist w0 in W and d0 ∈ Dw0 such that for all Γ ′ ∈ G,
w0, d0 � ♦

∧
Γ ′ and w0, d0 �

∧
Γ and w0, d0 � �A.

From w0, d0 � �A, there exist w1 ∈ W and d1 ∈ Dw1 such that w0 � w1 and
w1, d1 � A. Using Kripke monotonicity (Proposition 3), for all Γ ′ ∈ G ∪ {Γ},
w1, d1 � ♦

∧
Γ ′. Thus, we deduce that M is a countermodel of G;Γ � �A.

- Case [�2
E ]. LetM = (W,�, {Dw}w∈W , {Vw}w∈W ) be a countermodel of G;Γ �

Γ ′ �A. Then there exists w0 in W and d0 ∈ Dw0 such that for all Γ ′′ ∈ G∪{Γ},
w0, d0 � ♦

∧
Γ ′′, w0, d0 �

∧
Γ ′ and w0, d0 � A.

Using w0, d0 � ♦
∧
Γ , there exists d1 in Dw0 such that w0, d1 �

∧
Γ . Using

w0, d0 �
∧
Γ ′, w0, d1 � ♦

∧
Γ ′ holds. Using w0, d0 � A, w0, d1 � �A holds. Thus,

we deduce that M is a countermodel of G;Γ ′ � Γ ��A.

- Case [♦1
E]. Let M = (W,�, {Dw}w∈W , {Vw}w∈W ) be a countermodel of G �

Γ � C. Then there exist w0 in W and d0 ∈ Dw0 such that for all Γ ′ ∈ G,
w0, d0 � ♦

∧
Γ ′ and w0, d0 �

∧
Γ and w0, d0 � C.

If w0, d0 � ♦A then M is a countermodel of G �Γ �♦A. Otherwise, w0, d0 �
♦A and then M is a countermodel of G;A � Γ � C.

Proposition 7. The following MC-sequents are provable in NDIS5

1) � ��(A⊃B)⊃ (�A⊃�B) 2) � � ♦⊥⊃⊥
3) � ��(A⊃B)⊃ (♦A⊃♦B) 4) � � ♦(A ∨B)⊃ (♦A ∨ ♦B)
5) � � (♦A⊃�B)⊃�(A⊃B) 6) � � (�A⊃A) ∧ (A⊃♦A)
7) � � (♦�A⊃�A) ∧ (♦A⊃�♦A)

Proof. For 4) the proof is given as example before.
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- For 1) we have

[Id]
∅ � �(A ⊃ B), �A � �(A ⊃ B)

[�2
E ]

�(A ⊃ B), �A � �A ⊃ B

[Id]
∅ � �(A ⊃ B), �A � �A

[�2
E ]

�(A ⊃ B), �A � �A
[⊃E ]

�(A ⊃ B), �A � �B
[�I ]

��(A ⊃ B), �A � �B
[⊃I ]

��(A ⊃ B) � �A ⊃ �B
[⊃I ]

� � �(A ⊃ B) ⊃ (�A ⊃ �B)

- For 2) we have

[Id]
�♦⊥ � ♦⊥

[Id]
♦⊥ � ⊥ � ⊥

[⊥2]
⊥ � ♦⊥ � ⊥

[♦1
E ]

�♦⊥ � ⊥
[⊃I ]

� � ♦⊥ ⊃ ⊥

- For 3) we have

[Id]
��(A ⊃ B),♦A � ♦A

[Id]
A � �(A ⊃ B),♦A � �(A ⊃ B)

[�2
E ]

�(A ⊃ B),♦A � A � A ⊃ B
[Id]

�(A ⊃ B),♦A � A � A
[⊃E ]

�(A ⊃ B),♦A � A � B
[♦2

I ]
A � �(A ⊃ B),♦A � ♦B

[♦1
E ]

��(A ⊃ B),♦A � ♦B
[⊃I ]

��(A ⊃ B) � ♦A ⊃ ♦B
[⊃I ]

� � �(A ⊃ B) ⊃ (♦A ⊃ ♦B)

- For 5) we have

[Id]
A � ♦A ⊃ �B � ♦A ⊃ �B

[Id]
♦A ⊃ �B � A � A

[♦2
I ]

A � ♦A ⊃ �B � ♦A
[⊃E ]

A � ♦A ⊃ �B � �B
[�2

E ]
♦A ⊃ �B � A � B

[⊃I ]
♦A ⊃ �B � �A ⊃ B

[�I ]
�♦A ⊃ �B � �(A ⊃ B)

[⊃I ]
� � (♦A ⊃ �B) ⊃ �(A ⊃ B)

- For 6) we have

[Id]
��A � �A

[�1
E ]

��A � A
[⊃I ]

� � �A ⊃ A

[Id]
♦A ⊃ �B � A � A

[♦2
I ]

A � ♦A ⊃ �B � ♦A
[Id]

�A � A
[♦1

I ]
�A � ♦A

[⊃I ]
� � A ⊃ ♦A

[∧I ]
� � (�A ⊃ A) ∧ (A ⊃ ♦A)
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- For 7) we have

[Id]
�♦�A � ♦�A

[Id]
∅;♦�A � �A � �A

[�2
E ]

�A;♦�A � �A
[�I ]

�A � ♦�A � �A
[♦1

E ]
�♦�A � �A

[⊃I ]
� � ♦�A ⊃ �A

[Id]
∅;�♦A � ♦A

[Id]
∅;♦A � A � A

[♦2
I ]

♦A; A � �♦A
[♦2

E ]
♦A � �♦A

[�I ]
�♦A � �♦A

[⊃I ]
� � ♦A ⊃ �♦A

[∧I ]
� � (♦�A ⊃ �A) ∧ (♦A ⊃ �♦A)

Proposition 8. The following properties are satisfied:

1. if G � Γ � C has a proof in NDIS5 then G � Γ,A � C has a proof in NDIS5;
2. if G;Γ ′ � Γ � C has a proof in NDIS5 then G;Γ ′, A � Γ � C has a proof in

NDIS5;
3. if G � Γ � C has a proof in NDIS5 then G;Γ ′ � Γ � C has a proof in NDIS5.

Proof. The first two properties are proved by mutual induction on the proof of
their assumptions. The third one is simply proved by induction on the proof of
its assumption.

Theorem 9. If A is valid in IS5 then � �A has a proof in NDIS5.

Proof. We identify the validity in IS5 through the axiomatization given in Fig-
ure 1 and consider an induction on the proof of A in this axiomatization.

If A is an axiom then � �A is provable in NDIS5 (Proposition 5 and Proposi-
tion 7).

Now, let us consider the last rule applied.

- If it is [MP ] then by applying the induction hypothesis, we have ��A⊃B and
� �A have proofs in NDIS5. Using the rule [⊃E ], we show that � �B has also a
proof.
- Otherwise, if it is [Nec] then by applying the induction hypothesis, � � A has
a proof in NDIS5. Using Proposition 8, ∅ � �A has a proof in NDIS5 and with the
rule [�I ], we show that � ��A has also a proof.

The following two propositions allow us to state that for every MC-sequent, if
its corresponding formula has a proof then it has also a proof.

Proposition 10. G � Γ � A ⊃ B has a proof if and only if G � Γ,A � B has a
proof.

Proof. The if part comes from the rule [⊃I ]. For the only if part, using Proposi-
tion 8, G � Γ,A � A ⊃ B has a proof. Then G � Γ,A � B has a proof using the
rule [⊃I ] as follows:

G � Γ, A � A ⊃ B
[Id]

G � Γ, A � A
[⊃E ]

G � Γ, A � B
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Proposition 11. The following properties are satisfied:

1. if G � Γ,A ∧B � C has a proof then G � Γ,A,B � C has a proof;
2. if G;Γ,A ∧B � Γ ′ � C has a proof then G;Γ,A,B � Γ ′ � C has a proof;
3. if G � Γ,♦A � C has a proof then G;A � Γ � C has a proof;
4. if G;Γ,♦A � Γ ′ � C has a proof then G;Γ ;A � Γ ′ � C has a proof.

Proof. By mutual induction on the proofs of their assumptions.

Theorem 12 (Completeness). NDIS5 is complete, i.e., if a MC-sequent of IS5
is valid then it has a proof in NDIS5.

Proof. Let S = Γ1; . . . ;Γk �Γ �C be a valid MC-sequent. Then FS = (♦
∧
Γ1∧

. . . ∧ ♦
∧
Γk ∧

∧
Γ ) ⊃ C is valid in IS5. Using Theorem 9 � � FS has a proof.

Using Proposition 10, �♦
∧
Γ1 ∧ . . . ∧ ♦

∧
Γk ∧

∧
Γ � C has a proof. Finally,

using Proposition 11, we deduce that S has a proof.

Proposition 13 (Admissibility of cut rules).

- If G � Γ �A and G � Γ,A �B have proofs, then G � Γ �B has also a proof.
- If G;Γ � Γ ′ � A and G;Γ ′, A � Γ � B have proofs, then G;Γ ′ � Γ � B has

also a proof.

Proof. By using Kripke semantics similarly to Theorem 6.

3.3 Natural Deduction Systems for S5 and IM5

In this section, we provide two natural deduction systems for S5 and one for
IM5. We recall that IM5 is the logic obtained from IS5 by adding the axiom
¬�¬A⊃♦A [8]. It is an intermediate logic in the sense that the set of formulas
valid in this logic is between the sets of formulas valid in IS5 and S5 w.r.t. in-
clusion: IS5 ⊂ IM5 ⊂ S5.
A natural deduction system for the classical modal logic S5 is obtained by re-
placing [⊥1] and [⊥2] in NDIS5 by the following two rules:

G � Γ,¬A � ⊥
G � Γ �A [⊥1

c ]
G;Γ,¬A � Γ ′ � ⊥
G;Γ ′ � Γ �A

[⊥2
c ]

This comes from the fact that the addition of the axiom A ∨ ¬A to IS5 yields
S5 [16]. As an example, we give a proof of ¬♦¬A⊃�A:

[Id]
¬A � ¬♦¬A � ¬♦¬A

[Id]
¬♦¬A � ¬A � ¬A

[♦2
I ]¬A � ¬♦¬A � ♦¬A

[⊃E]
¬A � ¬♦¬A � ⊥

[⊥2
c]¬♦¬A � �A

[�I ]�¬♦¬A � �A
[⊃I ]� � ¬♦¬A ⊃ �A
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Another natural deduction system for S5 is obtained by replacing the same rules
by the following rules

G � Γ,♦¬A � ⊥
G � Γ ��A

[⊥1
c ]

G;Γ,♦¬A � Γ ′ � ⊥
G;Γ ′ � Γ ��A

[⊥2
c ]

This rule internalizes the axiom ¬♦¬A⊃�A and we know that the addition of
this axiom to IS5 yields S5 [2].

Now, we consider the intermediate logic IM5 to show that the MC-sequent
structure is appropriate to deal with some logics defined over IS5. Similarly to
the case of S5, a natural deduction system for this logic is obtained by replacing
[⊥1] and [⊥2] in NDIS5 by the following two rules:

G � Γ,�¬A � ⊥
G � Γ � ♦A [⊥1

w]
G;Γ,�¬A � Γ ′ � ⊥
G;Γ ′ � Γ � ♦A

[⊥2
w]

The soundness of our systems for IM5 and S5 is obtained using the soundness of
the rules of NDIS5 and the axiomatizations of these logics. To prove completeness,
we just have to use the axiomatization similarly to the proof of completeness of
NDIS5.

4 A Label-Free Sequent Calculus for IS5

In this section, we introduce a Gentzen calculus, called GIS5, using the MC-
sequent structure. Its soundness and completeness are proved using the natural
deduction system NDIS5. We prove that our calculus satisfies the key property of
cut-elimination. Finally, from the subformula property satisfied by the cut-free
proofs, we provide a new decision procedure for IS5. The rules of GIS5 are given
in Figure 3.

Note that GIS5 is sound, complete and satisfies the cut-elimination property
without the restriction on [Id] that p ∈ Prop. However, without this restriction,
GIS5 fails an important property necessary in our approach to prove the cut-
elimination property, namely the depth-preserving admissibility of contraction
property.

Proposition 14. The MC-sequent G � Γ,A �A is provable in GIS5 for any A.

Proof. By structural induction on A.

Weakening and contraction rules are not in GIS5 because they have been absorbed
into the rules and axioms. This approach is similar to the one used to obtain
the calculus G3i for the intuitionistic logic [17]. For instance, the choice of the
axioms G � Γ, p � p, G � Γ,⊥ � C and G;Γ ′,⊥ � Γ � C instead of respectively
�p � p, �⊥ � C and ⊥ � �C allows us to absorb weakening.



Label-Free Proof Systems for IS5 265

G � Γ, p � p
[Id](p ∈ Prop)

G � Γ,⊥ � C
[⊥1]

G; Γ ′,⊥ � Γ � C
[⊥2]

G � Γ, A, B � C

G � Γ, A ∧ B � C
[∧L]

G; Γ ′, A, B � Γ � C

G; Γ ′, A ∧ B � Γ � C
[∧LL]

G � Γ � A G � Γ � B

G � Γ � A ∧ B
[∧R]

G � Γ, A � C G � Γ, B � C

G � Γ, A ∨ B � C
[∨L]

G; Γ ′, A � Γ � C G; Γ ′, B � Γ � C

G; Γ ′, A ∨ B � Γ � C
[∨LL]

G � Γ � A

G � Γ � A ∨ B
[∨1

R]
G � Γ � B

G � Γ � A ∨ B
[∨2

R]

G � Γ, A ⊃ B � A G � Γ, B � C

G � Γ, A ⊃ B � C
[⊃L]

G; Γ � Γ ′, A ⊃ B � A G; Γ ′, B � Γ � C

G; Γ ′, A ⊃ B � Γ � C
[⊃LL]

G � Γ, A � B

G � Γ � A ⊃ B
[⊃R]

G � Γ, �A, A � C

G � Γ, �A � C
[�1

L]
G; Γ ′, A � Γ, �A � C

G; Γ ′ � Γ, �A � C
[�2

L]

G; Γ ′, �A � Γ, A � C

G; Γ ′, �A � Γ � C
[�1

LL]
G; Γ ′, �A,A � Γ � C

G; Γ ′, �A � Γ � C
[�2a

LL]
G; Γ ′′, A; Γ ′, �A � Γ � C

G; Γ ′′; Γ ′, �A � Γ � C
[�2b

LL]

G; Γ � �A

G � Γ � �A
[�R]

G; A � Γ � C

G � Γ,♦A � C
[♦L]

G; A; Γ ′ � Γ � C

G; Γ ′,♦A � Γ � C
[♦LL]

G � Γ � A

G � Γ � ♦A
[♦1

R]
G; Γ � Γ ′ � A

G; Γ ′ � Γ � ♦A
[♦2

R]

G � Γ � A G � Γ, A � C

G � Γ � C
[Cut1]

G; Γ � Γ ′ � A G; Γ ′, A � Γ � C

G; Γ ′ � Γ � C
[Cut2]

Fig. 3. The MC-sequent Calculus GIS5

Theorem 15 (Soundness). If a MC-sequent is provable in GIS5 then it is prov-
able in NDIS5.

Proof. By induction on the proof of the MC-sequent in GIS5 using Proposition 13.
We only have to consider the cases of the last rule of this proof. Here, we only
develop the cases of [�1

L], [�2
L] and [♦LL].

- Case of [�1
L]: using the induction hypothesis G � Γ,�A,A � C is provable

in NDIS5. A proof of G � Γ,�A � C in NDIS5 is given by:
[Id]

G � Γ, �A � �A
[�1

E ]
G � Γ, �A � A G � Γ, �A, A � C

[Cut1]
G � Γ, �A � C

- Case of [�2
L]: using the induction hypothesis G;Γ ′, A � Γ,�A � C is provable

in NDIS5. A proof of G;Γ ′ � Γ,�A � C in NDIS5 is given by:
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[Id]
G; Γ ′ � Γ, �A � �A

[�2
E ]

G;Γ ; �A � Γ ′ � A G; Γ ′, A � Γ, �A � C
[Cut2]

G;Γ ′ � Γ, �A � C

- Case of [♦LL]: using the induction hypothesis G;A;Γ ′ � Γ � C is provable
in NDIS5. Therefore, G;A;Γ ′,♦A � Γ � C is also provable in NDIS5. A proof of
G;Γ ′,♦A � Γ � C in NDIS5 is given by:

[Id]
G; Γ � Γ ′, ♦A � ♦A G; A; Γ ′,♦A � Γ � C

[♦2
E ]

G; Γ ′,♦A � Γ � C

Theorem 16 (Completeness). if a MC-sequent is provable in NDIS5 then it
is provable in GIS5.

Proof. We proceed by induction on the proof of the MC-sequent in NDIS5. We
only have to consider the cases of the last rule applied in this proof. Here, we
only develop the cases of [�2

E ], [♦1
E ] and [♦2

E ].

- Case of [�2
E ]: using the induction hypothesis, G;Γ ′ � Γ � �A is provable in

GIS5. Then, a proof of G;Γ � Γ ′ �A in GIS5 is given by:

G; Γ ′ � Γ � �A

[Id]
G; Γ, �A � Γ ′, A � A

[�1
LL]

G;Γ, �A � Γ ′ � A
[Cut2]

G; Γ � Γ ′ � A

- Case of [♦1
E]: using the induction hypothesis, G�Γ �♦A and G;A�Γ �C are

provable in GIS5. Then a proof of G � Γ � C is given by:

G � Γ � ♦A

G;A � Γ � C
[♦L]

G � Γ,♦A � C
[Cut1]

G � Γ � C

- Case of [♦2
E ]: using the induction hypothesis, G;Γ ′�Γ �♦A and G;A;Γ �Γ ′�C

are provable in GIS5. Then, a proof of G;Γ � Γ ′ � C is given by:

G; Γ ′ � Γ � ♦A

G;A; Γ � Γ ′ � C
[♦LL]

G; Γ,♦A � Γ ′ � C
[Cut2]

G; Γ � Γ ′ � C

Let us illustrate GIS5 by considering the MC-sequent � � (♦�A⊃�A) ∧ (♦A⊃
�♦A). A proof of this sequent is given by:

[Id]
�A; ∅ � A � A

[�1
LL]

�A; ∅ � �A
[♦LL]

♦�A � �A
[�R]

�♦�A � �A
[⊃R]

� � ♦�A ⊃ �A

[Id]
∅ � A � A

[♦2
R]

A; ∅ � �♦A
[♦LL]

♦A � �♦A
[�R]

�♦A � �♦A
[⊃R]

� � ♦A ⊃ �♦A
[∧R]

� � (♦�A ⊃ �A) ∧ (♦A ⊃ �♦A)
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4.1 Depth-Preserving Admissibility of Weakening and Contraction

We write �GS if the MC-sequent S has a proof in a calculus G. Moreover, we
write �n

GS if S has a proof in G of depth smaller or equal to n. Let us recall the
notion of depth-preserving admissibility.

Definition 17. A rule [R] is said to be admissible for a calculus G, if for all

instances H1 . . . Hk

C
[R] of [R], if for all i ∈ [1, k] �GHi then �GC.

A rule [R] is said to be depth-preserving admissible for G, if for all n, if for all
i ∈ [1, k] �n

GHi then �n
GC.

We note G−
IS5 the sequent calculus GIS5 without cut rules. The following propo-

sition corresponds to the depth-preserving admissibility property of weakening.

Proposition 18.

1. If �n
G−

IS5

G � Γ � C then �n
G−

IS5

G � Γ,A � C.

2. If �n
G−

IS5

G;Γ ′ � Γ � C then �n
G−

IS5

G;Γ ′, A � Γ � C.

3. If �n
G−

IS5

G � Γ � C then �n
G−

IS5

G;Γ ′ � Γ � C.

Proof. 1. and 2. are proved by mutual induction on n and 3. by induction on n.

The following proposition is used to prove the depth-preserving admissibility of
contraction. It is similar to the inversion lemma given in [17]. For some rules
of G−

IS5, if the conclusion has a proof of depth n, then some of its premises has
proofs of depth smaller or equal to n.

Proposition 19.

1. a) If �n
G−

IS5

G � Γ,A ∧B � C then �n
G−

IS5

G � Γ,A,B � C.

b) If �n
G−

IS5

G;Γ ′, A ∧B � Γ � C then �n
G−

IS5

G;Γ ′, A,B � Γ � C.

2. a) If �n
G−

IS5

G � Γ,A1 ∨A2 � C then �n
SG−

IS5

G � Γ,Ai � C for i ∈ {1, 2}.
b) If �n

G−
IS5

G;Γ ′, A1 ∨A2 �Γ �C then �n
SG−

IS5

G;Γ ′, Ai �Γ �C for i ∈ {1, 2}.
3. If �n

G−
IS5

G � Γ �A1 ∧A2 then �n
G−

IS5

G � Γ �Ai for i ∈ {1, 2}.
4. If �n

G−
IS5

G � Γ �A⊃B then �n
G−

IS5

G � Γ,A �B.

5. a) If �n
G−

IS5

G � Γ,A⊃B � C then �n
G−

IS5

G � Γ,B � C.

b) If �n
G−

IS5

G;Γ ′, A⊃B � Γ � C then �n
G−

IS5

G;Γ,B � Γ � C.
6. If �n

G−
IS5

G � Γ ��A then �n
G−

IS5

G;Γ � �A.

7. a) If �n
G−

IS5

G � Γ,♦A � C then �n
G−

IS5

G;A � Γ � C.

b) If �n
G−

IS5

G;Γ ′,♦A � Γ � C then �n
G−

IS5

G;Γ ′;A � Γ � C.

Proof. 3., 4. and 6. are proved by induction on n. The other cases are proved by
mutual induction. Here we only develop the proof of 6.
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- If n = 0 then G�Γ ��A is an instance of [⊥1] or [⊥2]. Indeed, this sequent is
not an instance of [Id] because of �A /∈ Prop. Therefore, �0

G−
IS5

G;Γ � �A holds.

- We assume that �n+1
G−

IS5

G � Γ ��A by a proof D. If �A is not principal in the

last rule applied in D, then by applying induction hypothesis to the premise(s)
and using the same rule, �n+1

G−
IS5

G;Γ � �A holds. Otherwise, �A is principal and
D ends with

G; Γ � �A

G � Γ � �A
[�R]

By taking the immediate subdeduction of the premise, �n+1
G−

IS5

G;Γ � �A holds.

The following proposition corresponds to the depth-preserving admissibility
property of contraction.

Proposition 20.

1. If �n
G−

IS5

G � Γ,A,A � C then �n
G−

IS5

G � Γ,A � C.
2. If �n

G−
IS5

G;Γ ′, A,A � Γ � C then �n
G−

IS5

G;Γ ′, A � Γ � C.
3. If �n

G−
IS5

G;Γ � Γ � C then �n
G−

IS5

G � Γ � C.
4. If �n

G−
IS5

G;Γ ′;Γ ′ � Γ � C then �n
G−

IS5

G;Γ ′ � Γ � C.

Proof. By mutual induction on n using Proposition 19

4.2 Cut-Elimination in GIS5

In order to prove the cut-elimination property, we use a variant of Gentzen’s
original proof of this property for classical and intuitionistic logic [17].

Theorem 21 (Cut-elimination). The cut-elimination property holds for GIS5.

Proof. It consists in transforming the applications of cut rules to applications
of cut rules on smaller formulae or applications of less height. For our calculus,
because of the presence of two cut rules, the cut-elimination is proved by mutual
induction. Here we only consider some cases.

If we have
G; Γ � �A

[�R]
G � Γ � �A

G � Γ, �A, A � C
[�1

L]
G � Γ, �A � C

[Cut1]
G � Γ � C

Then, to apply the induction hypothesis, we transform this derivation as follows:

G; Γ � �A
[Prop 18]

G; Γ � Γ � A

G � Γ � �A
[Prop 18]

G;Γ � Γ, A � �A

G � Γ, �A, A � C
[Prop 18]

G; Γ � Γ, �A, A � C
[Cut1]

G; Γ � Γ, A � C
[Cut1]

G; Γ � Γ � C
[Prop 20]

G � Γ � C
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If we have
G′; Γ ′; Γ � �A

[�R]
G′; Γ ′ � Γ � �A

G′; Γ ′, A � Γ, �A � C
[�2

L]
G′; Γ ′ � Γ, �A � C

[cut1]
G′; Γ ′ � Γ � C

Then, to apply the induction hypothesis, we transform this derivation as follows:

G′;Γ ′;Γ � �A
[Prop 18]

G′;Γ ;Γ ′ � Γ ′ �A

G′;Γ ′ � Γ ��A
[Prop 18]

G′;Γ ′;Γ ′, A � Γ ��A

G′;Γ ′, A � Γ,�A � C
[Prop 18]

G′;Γ ′;Γ ′, A � Γ,�A � C
[cut1]

G;Γ ′;Γ ′, A � Γ � C
[cut2]

G;Γ ′;Γ ′ � Γ � C
[Prop 20]

G;Γ ′ � Γ � C

Corollary 22 (Subformula Property). Any formula in any cut-free proof in
GIS5 of a MC-sequent S is a subformula of a formula appearing in S.

Proof. Each rule of GIS5 except [Cut1] and [Cut2] has the property that every
subformula of the formulae in the premise(s) is also a subformula of a formula
in the conclusion.

5 A New Decision Procedure for IS5

In this section we provide a decision procedure for IS5 based on the use of GIS5.
The key point is the introduction of a notion of redundancy on the cut-free proof
in GIS5 satisfying the fact that any MC-sequent valid has an irredundant proof.
And then using the subformula property, we prove that there is no infinite proof
which is not irredundant. Finally, by an exhaustive search for an irredundant
proof, we can decide any sequent.

We are interested in the size of proofs, i.e, the number of nodes. Previously, we
proved that weakening and contraction are depth-preserving admissible for G−

IS5.
Weakening and contraction are also size-preserving admissible for G−

IS5. We can
prove this similarly to the proofs of Proposition 18 and Proposition 20. We use
set(Γ ) to denote the set underlying the multiset Γ (the set of the formulas of Γ ).
We define a preorder, denoted �, on MC-sequent as follows: Γ1; . . . ;Γk�Γ �A �
Δ1; . . . ;Δl �Δ � B iff A = B, set(Γ ) ⊆ set(Δ) and for all i ∈ [1, k] there exists
j ∈ [1, l] such that set(Γi) ⊆ set(Δj).

Proposition 23. Let S1 and S2 be two MC-sequents. If S1 � S2 then if S1 has
a proof of size n then S2 has a proof of size smaller or equal to n.

Proof. This follows directly from the size-preserving admissibility of weakening
and contraction.

Definition 24. A derivation is said to be redundant if it contains two MC-
sequents S1 and S2, with S1 occurring strictly above S2 in the same branch, such
that S1 � S2. A derivation is irredundant if it is not redundant.

Now, let us give our decision procedure for the MC-sequents in IS5.
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Let S be a MC-sequent.

- Step 1. We start with the derivation containing only S which is the unique
irredundant derivation of size 1. If this derivation is a proof then we return it.
Otherwise we move to the next step.

- Step i+1. We construct the set of all the irredundant derivations of size i+1.
If this set contains a proof of S then we return it. Otherwise if this set is empty
then the decision algorithm fails, else we move to the next step.

There are only a finite number of possible rule applications. Thus, the set of the
irredundant derivations of size i + 1 is finite. Moreover, this set can be built in
a finite time because the � relation is decidable.

Theorem 25. IS5 is decidable.

Proof. Using Corollary 22, we know that there is no infinite irredundant deriva-
tion. Thus, we deduce that our algorithm terminates. Therefore, IS5 is decidable.

6 Conclusion and Perspectives

In this work, we introduce a new multi-contextual structure in order to deal with
the intuitionistic modal logic IS5. An important contribution is the definition of
a label-free natural deduction system for IS5 based on this structure. Then we
deduce natural deduction systems for the modal logic S5 and the intermediate
logic IM5. Another important contribution is the definition of a label-free sequent
calculus satisfying the cut-elimination property. Then we define a new decision
procedure from the subformula property satisfied by the cut-free derivation in
this calculus. In further works, we will define natural deduction systems and
sequent calculi for logics defined over IS5, for instance the ones in [12].
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Abstract. In the celebrated Gödel Prize winning papers, Herlihy, Shavit,
Saks and Zaharoglou gave topological characterization of waitfree com-
putation. In this paper, we characterize waitfree communication logically.
First, we give an intuitionistic epistemic logic K∨ for asynchronous com-
munication. The semantics for the logic K∨ is an abstraction of Herlihy
and Shavit’s topological model. In the same way Kripke model for intu-
itionistic logic informally describes an agent increasing its knowledge over
time, the semantics of K∨ describes multiple agents passing proofs around
and developing their knowledge together. On top of the logic K∨, we give
an axiom type that characterizes sequential consistency on shared mem-
ory. The advantage of intuitionistic logic over classical logic then becomes
apparent as the axioms for sequential consistency are meaningless for clas-
sical logic because they are classical tautologies. The axioms are similar to
the axiom type for prelinearity (ϕ ⊃ ψ)∨ (ψ ⊃ ϕ). This similarity reflects
the analogy between sequential consistency for shared memory schedul-
ing and linearity for Kripke frames: both require total order on schedules
or models. Finally, under sequential consistency, we give soundness and
completeness between a set of logical formulas called waitfree assertions
and a set of models called waitfree schedule models.

1 Introduction

Waitfree Computation. The main purpose of this paper is to characterize wait-
free communication logically (Theorem 7) in a language as simple as possible.
Waitfreedom [10] is a restriction on distributed programs over shared memory.
It forbids any process to wait for another process. Some tasks can be solved by
a well-chosen waitfree protocol while the others cannot.

For example, it is waitfreely impossible for each one of two processes to attain
the input value of the other process. On the other hand, it is waitfreely possible
for either one of two processes to attain the input value of the other process.
A waitfree protocol that solves this task is:

– process p tells the memory m that ϕ holds, and then m replies back to p,
– process q tells the memory m that ψ holds, and then m replies back to q.

After this protocol finishes, either ϕ has been communicated from p to q or ψ
has been communicated from q to p. In the logic K∨, this fact is represented by

E.M. Clarke and A. Voronkov (Eds.): LPAR-16, LNAI 6355, pp. 272–289, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a formula (KpKmKpϕ ∧KqKmKqψ) ⊃ (KpKqψ ∨KqKpϕ), which is deducible
in K∨with sequential consistency (Figure 2).

Herlihy and Shavit [11] characterized waitfree computation using simplicial
topology (See Section 6). Using their characterization, Gafni and Koutsoupias [8]
showed that it is undecidable whether a task is waitfreely solvable or not. In this
paper we show that, when tasks are restricted to communication defined by a
class of logical formulas we call waitfree assertions, it is decidable whether a task
is waitfreely solvable or not (Subsection 4.1).

Sequential Consistency. The topological characterization by Herlihy and Shavit
[11] implicitly assumes sequential consistency [17] for shared memory. Since we
seek to use a simple language, we state sequential consistency explicitly in the
language. We characterize sequential consistency with an axiom type (Kmϕ ⊃
Kmψ) ∨ (Kmψ ⊃ Kmϕ) in the logic K∨ for asynchronous computation. The
axiom type informally states that for any two propositions ϕ and ψ, either one
become known to the memory no later than the other. The axiom type is sound
(Theorem 4) and strongly complete (Theorem 6) for a class of models called
sequential models where memory states are temporally lined up in a total order.

Asynchronous Communication. We define an intuitionistic modal propositional
logic that we call K∨ and show soundness (Theorem 4) and strong complete-
ness (Theorem 5) for Kripke semantics. The syntax of K∨ is the same as that of
the classical epistemic logic [13] although the informal reading of the epistemic
modality Ka is new. In the classical epistemic logic, the formula Kaϕ informally
reads “ϕ is valid in any possible worlds of agent a.” while in K∨ the same for-
mula informally reads “agent a has received a proof of ϕ.” The semantics of
K∨ is simple: it has only one function for each agent in addition to the Kripke
model for intuitionistic propositional logic. We deliberately identify the partial
order in Kripke frame with the temporal relation. Intuitionistic logic can be seen
as a logic describing an agent whose knowledge increases over time. The logic
K∨ can be seen as a logic describing multiple agents that asynchronously com-
municate with each other and increase their knowledge. Although K∨deals with
communication, the logic has only epistemic modalities so that it has simpler
syntax than many other logics for communication.

There are other choices: there have been proposed a huge number of epistemic
logics for communication [3–6, 9, 14, 18, 21, 22, 28] and a huge number of intuition-
istic modal logics [1, 7, 20, 21, 23]. In both cases, when considered under Kripke
semantics, the huge variety of logics comes from the diversity of relationships be-
tween two binary relations on the state space. In intuitionistic modal logic, the
two relations are: (a) which state is prior to which state with regard to Kripke
monotonicity and (b) the modality in which state refers to which state. In logics
for communication, the two relations are: (a’) which state is temporally prior to
which state and (b’) from which state to which state communication occurs.

The semantics of K∨uses a binary relation and functions on possible worlds
instead of additional binary relations. This choice dramatically limits the room
for design choice. Also, we identify relations (a) with (a’) and (b) with (b’) in
order to make the language of K∨ simpler.



274 Y. Hirai

Structure of Paper. Although this introduction so far is organized in the top-
to-bottom order, the rest of this paper is in the opposite bottom-to-top order.
Sections 2–4 respectively treat asynchronous computation in general, sequential
consistency and waitfree communication.

2 Intuitionistic Epistemic Logic for Asynchronous
Communication

2.1 Syntax

We fix a countably infinite set of propositional variables PV ar and a set of agents
A. We use the meta-variables P,Q, . . . running over PV ar and a, b, . . . , p, q, . . .
running over A.

Definition 1. We define a formula ϕ by the BNF:

ϕ ::= ⊥ | P | (Kaϕ) | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ ⊃ ϕ).

The unary operators connect more strongly than the binary operators. We some-
times omit the parentheses when no confusion occurs. We use = for syntactic
equality of formulas. The notation (¬ϕ) stands for (ϕ ⊃ ⊥). For a sequence of
formulas Γ = (ϕi)i∈I or a set of formulas Γ , the notation KaΓ stands for the
sequence (Kaϕi)i∈I or the set {Kaϕ | ϕ ∈ Γ} respectively.

Definition 2. We define the proof system of K∨ by Figure 1.

For a set of formula Γ and a formula ϕ, notation Γ � ϕ denotes a relation where
there is such a finite sequence Γ0 that Γ0 � ϕ is deducible and that Γ0 contains
only formulas in Γ .

2.2 Semantics

We define validity of a formula on a state in a model. A model is a Kripke
model for propositional intuitionistic logic equipped with an additional mapping
fa : W → W for each agent a ∈ A where W is the set of possible states.
Informally1, the function fa represents the “view” of agent a. When the current
state is w ∈W, agent a sees that the current state is fa(w) ∈W, in other words,
agent a knows everything valid in fa(w). Agent a also sees that agent b sees that
the current state is fb(fa(w)) ∈W because we assume that all agents know the
frame structure and the functions fx explicitly or implicitly. This is in contrast
to the classical epistemic logic, where an agent’s view is represented by not a
state but a set of states. This model is an abstraction of Herlihy and Shavit’s
model of waitfree computation [11]. See Section 6 for details.

1 This account is informal in that we do not attempt to define the terms “view” and
“current state”.
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(ax)
ϕ � ϕ

Γ � ϕ
(w)

ψ, Γ � ϕ

ϕ, ϕ, Γ � ϕ′
(c)

ϕ, Γ � ϕ′

Γ, ϕ, ψ, Γ ′ � ϕ′
(ex)

Γ, ψ, ϕ, Γ ′ � ϕ′
Γ � ϕ Γ ′ � ψ

(∧-I)
Γ, Γ ′ � ϕ ∧ ψ

Γ � ϕ
(∨-I0)

Γ � ϕ ∨ ψ
Γ � ϕ

(∨-I1)
Γ � ψ ∨ ϕ

Γ � ϕ ∧ ψ
(∧-E0)

Γ � ϕ

Γ � ϕ ∧ ψ
(∧-E1)

Γ � ψ
Γ � ψ0 ∨ ψ1 Γ, ψ0 � ϕ Γ, ψ1 � ϕ

(∨-E)
Γ � ϕ

ϕ, Γ � ψ
(⊃-I)

Γ � ϕ ⊃ ψ

Γ � ψ0 ⊃ ψ1 Γ � ψ0(⊃-E)
Γ � ψ1

Γ � ⊥(⊥-E)
Γ � ϕ

(T)
Kaϕ � ϕ

(introspection)
Kaϕ � KaKaϕ

Γ � ϕ
(nec)

KaΓ � Kaϕ
(∨K)

Ka(ϕ ∨ ψ) � (Kaϕ) ∨ Kaψ

Fig. 1. Deduction rules of K∨

Definition 3. A model 〈W,*, (fa)a∈A, ρ〉 is a tuple of following things:

1. 〈W,*〉 is a partial order,
2. fa:W → W is a function satisfying all of the following conditions for any
w ∈W :
(a) (descending) fa(w) * w,
(b) (idempotency) fa(fa(w)) = fa(w),
(c) (monotonicity) w * v implies fa(w) * fa(v),

3. ρ:PV ar → P(W ) is a function such that each ρ(P ) is upward-closed with
respect to *, i.e., w′ + w ∈ ρ(P ) implies w′ ∈ ρ(P ).

With the informal account in mind, the conditions on fa have rationales: de-
scending condition says an agent a recognizes only truth, idempotency says an
agent a recognizes that a recognizes something whenever the agent a recognizes
that thing, and monotonicity says an agent a does not forget things once they
recognized.

Definition 4. We define the validity relation |= of a model 〈W,*, (fa)a∈A, ρ〉, a
state w ∈W and a formula ϕ. Let us fix a model M = 〈W,*, f, ρ〉 and abbreviate
M,w |= ϕ into w |= ϕ. The definition of |= is inductive on the structure of ϕ.

(Case ϕ = ⊥) w |= ⊥ never holds.
(Case ϕ = P ) w |= P if and only if w ∈ ρ(P ).
(Case ϕ = Kaψ) w |= Kaψ if and only if fa(w) |= ψ.
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(Case ϕ = ψ0 ∧ ψ1) w |= ψ0 ∧ ψ1 if and only if both w |= ψ0 and w |= ψ1 hold.
(Case ϕ = ψ0 ∨ ψ1) w |= ψ0∨ψ1 if and only if either w |= ψ0 or w |= ψ1 holds.
(Case ϕ = ψ0 ⊃ ψ1) w |= ψ0 ⊃ ψ1 if and only if for any w′ ∈ W , w′ + w and

w′ |= ψ0 imply w′ |= ψ1.

Theorem 1 (Kripke monotonicity). M,w |= ϕ and w * v imply M, v |= ϕ.

Proof. By simple structural induction on ϕ.

Notation 2. For a model M , a state w of M and a set of formulas Γ , we write
M,w |= Γ when M,w |= ϕ holds for any formula ϕ ∈ Γ .

Notation 3. Γ |= ϕ stands for the relation of a set of a formula Γ and a for-
mula ϕ where M,w |= Γ implies M,w |= ϕ for any modelM and a state w ∈ M .

2.3 Soundness

Theorem 4 (Soundness). Γ � ϕ implies Γ |= ϕ.

Proof. We prove soundness with induction on the definition of �. We fix a model
M and we abbreviate M,w |= ϕ into w |= ϕ.

(⊃-I). Assume Γ, ϕ |= ψ. Assume w |= Γ . Also assume that there is such a state
w′ in M that w′ + w and w′ |= ϕ hold. By Lemma 1, w′ |= Γ holds. Since
Γ, ϕ |= ψ, the relation Γ,w′ |= ψ holds.

(⊃-E). Assume Γ |= ϕ ⊃ ψ and Γ |= ϕ. By the second assumption, w |= ϕ
holds. The first assumption says w |= ϕ ⊃ ψ. Since w + w, the relation
w |= ψ holds.

(T). By induction hypothesis, Lemma 1 and the descending property of fa.
(introspection). By induction hypothesis and the idempotency of fa.
(nec). Immediately by the induction hypothesis.
(∨Ka). Immediately by the induction hypothesis and the fact that the semantics

of the modality Ka is defined in terms of a function.
(axiom)(weakening)(contraction)(exchange)
(∧-I)(∨-I0)(∨-I1)(∨-E)(∧-E0)(∧-E1) Trivial.

2.4 Strong Completeness

We show strong completeness for K∨with a canonical model construction as
in [27, Ch. 2].

Definition 5. A set of formulas Γ is saturated if and only if all of these condi-
tions are satisfied:

1. Γ is deductively closed, i.e., Γ � ϕ⇒ ϕ ∈ Γ ,
2. ϕ ∨ ψ ∈ Γ ⇒ ϕ ∈ Γ or ψ ∈ Γ ,
3. Γ �� ⊥.
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Proposition 1. For any set Γ of formulas and two formulas ϕ, ψ, conditions
Γ � ϕ and Γ, ϕ � ψ imply Γ � ψ.

Proof. By simple induction on the definition of Γ, ϕ � ψ. Note that the induction
goes without fixing Γ, ϕ or ψ.

Lemma 1 (Saturation lemma). For a set of formulas Γ with Γ �� ϕ, there
exists a saturated set Γω with Γω �� ϕ and Γ ⊆ Γω.

Proof. We can enumerate all formulas in a sequence (ϕi)i∈N+ . We define Γ i

inductively on i ∈ N:

(Case i = 0) Γ 0 = Γ ,
(Case i > 0) if {ϕi}∪Γ i−1 �� ϕ, Γ i={ϕi}∪Γ i−1; otherwise, Γ i=Γ i−1∪{ϕi ⊃ ϕ}.

Using these Γ i, we define Γω =
⋃

i∈ω Γ
i.

Claim: Γω �� ϕ. Seeking contradiction, assume Γω � ϕ. Since only finite number
of formulas in Γ are used to prove ϕ, there exists a minimal i with Γ i � ϕ. Since
Γ �� ϕ, i �= 0. Either Γ i = {ϕi} ∪ Γ i−1 or Γ i = {ϕi ⊃ ϕ} ∪ Γ i−1. The first case
is explicitly forbidden. In the second case, Γ i−1, ϕi ⊃ ϕ � ϕ holds. That means
Γ i−1 � (ϕi ⊃ ϕ) ⊃ ϕ. Also, since we could not take the first case, Γ i−1, ϕi � ϕ
holds. That means Γ i−1 � ϕi ⊃ ϕ. These combined with Proposition 1 prove
Γ i−1 � ϕ, which contradicts to the minimality of i.

Claim: Γω is a saturated set. We check each condition for a saturated set (Def-
inition 5).

1. Assume Γω � ψ. There is i ∈ N+ with ϕi = ψ. We know that Γ i−1∪{ϕi} �� ϕ.
It means ψ ∈ Γω.

2. Assume ψ0∨ψ1 ∈ Γω. Seeking contradiction, assume ψ0 /∈ Γω and ψ1 /∈ Γω.
By construction, Γω � ψ0 ⊃ ϕ and Γω � ψ1 ⊃ ϕ. Since Γω is deductively
closed, by (∨-E) rule, we have Γω � ϕ, which contradicts to the previous
fact.

3. Since Γω �� ϕ, Γω �� ⊥.

Since Γ = Γ 0, Γω contains Γ 0. The lemma is now proved.

Definition 6 (Canonical model candidate). We define a tuple
Mc = 〈W c,*c, (fca )a∈A, ρ

c〉 where

– W c is the set of saturated sets of formulas,
– Γ *c Δ if and only if Γ ⊆ Δ,
– fca (Γ ) = {ϕ | Kaϕ ∈ Γ},
– ρc(P ) = {Γ | P ∈ Γ}.

Lemma 2 (Canonical model). The tuple Mc = 〈W c,*c, (fca )a∈A, ρ
c〉 is a

model.

Proof. First, let us check fc
a is actually a function W c →W c. Assume Γ ∈W c.

To prove that fa(Γ ) is a saturated set of formulas, we check each condition
on the Definition 5 of saturated sets.
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1. Assume fc
a (Γ ) � ϕ. By rule (nec),Ka(fa(Γ )) � Kaϕ. Since Ka(fc

a (Γ )) ⊆ Γ ,
the relation Γ � Kaϕ holds. Since Γ is deductively closed, Kaϕ ∈ Γ . By
definition of fc

a , ϕ ∈ fc
a (Γ ).

2. Assume ϕ ∨ψ ∈ fc
a (Γ ). By definition of fc

a , Ka(ϕ∨ ψ) ∈ Γ . By rule (∨Ka),
Ka(ϕ ∨ ψ) � Kaϕ ∨ Kaψ. Since Γ is deductively closed, Kaϕ ∨ Kaψ ∈ Γ .
Since Γ is saturated, either Kaϕ ∈ Γ or Kaψ ∈ Γ . By definition of fc

a , either
ϕ ∈ fc

a (Γ ) or ψ ∈ fc
a (Γ ).

3. Seeking contradiction, assume fc
a (Γ ) � ⊥. Since fc

a (Γ ) is deductively closed,
⊥ ∈ fc

a (Γ ). By definition of fc
a , Ka⊥ ∈ Γ . Because of the rule (T), Γ � ⊥.

This contradicts to the assumption of Γ being a saturated set.

Now, let us check each condition in Definition 3 to make sure the tuple Mc is
actually a model:

1. *c is a partial order because the set theoretic inclusion ⊆ is a partial order.
2. (a) fc

a (Γ ) *c Γ by the rule (T).
(b) fc

a (fc
a (Γ )) *c fc

a (Γ ) is now obvious from the previous line. Let us show
the opposite. Assume ϕ ∈ fc

a (Γ ). By the definition of fc
a , Kaϕ ∈ Γ .

By rule (introspection), Γ � KaKaϕ. Since Γ is deductively closed,
KaKaϕ ∈ Γ . Thus ϕ ∈ fc

a (fc
a (Γ )).

(c) Assume Γ * Δ. Every Kaϕ ∈ Δ is also in Γ . Thus fc
a (Γ ) * fc

a (Δ).
3. Assume Γ ′ + Γ ∈ ρc(P ). P ∈ Γ . So P ∈ Γ ′. Thus Γ ′ ∈ ρc(P ).

Lemma 3. For a saturated set of formula Γ and the canonical model Mc, an
equivalence ϕ ∈ Γ ⇔Mc, Γ � ϕ holds.

Proof. By induction on ϕ.

(Case ϕ = ⊥). Neither side ever holds.
(Case ϕ = P ). By the definition of ρc, ϕ ∈ Γ ⇔ Γ ∈ ρ(P ) ⇔Mc, Γ |= P .
(Case ϕ = ψ0 ∧ ψ1)(Case ϕ = ψ0 ∨ ψ1)(Case ϕ = Kaψ). Directly from the

induction hypotheses.
(Case ϕ = ψ0 ⊃ ψ1). (⇒) Assume Mc, Γ |= ψ0 ⊃ ψ1. Seeking contradiction,

assume ψ0 ⊃ ψ1 /∈ Γ . Since Γ is deductively closed, Γ, ψ0 �� ψ1. By Lemma 1,
there exists a saturated set Γ ′ with Γ ′ ⊇ Γ ∪{ψ0} and Γ ′ �� ψ1. By induction
hypothesis,Mc, Γ ′ |= ψ0 but notMc, Γ ′ |= ψ1. Since Γ ′ + Γ , this contradicts
to Mc, Γ |= ψ0 ⊃ ψ1.
(⇐) Assume ψ0 ⊃ ψ1 ∈ Δ, Δ′ + Δ and Mc, Δ′ |= ψ0. Showing Mc, Δ′ |= ψ1
is enough. By induction hypothesis, ψ0 ∈ Δ′. Since Δ′ is deductively closed
and ψ0 ⊃ ψ1 ∈ Δ′, ψ1 ∈ Δ′. By induction hypothesis, Mc, Δ′ |= ψ1.

Theorem 5 (Strong completeness). Γ |= ϕ implies Γ � ϕ.

Proof. We show the contraposition: assuming Γ �� ϕ, we show Γ �|= ϕ. By
Lemma 1, there is a saturated set of formula Γ ′ with Γ ′ �� ϕ and Γ ′ ⊇ Γ .
By Lemma 3, Mc, Γ ′ |= Γ but not Mc, Γ ′ |= ϕ. This denies Γ |= ϕ.
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3 Axiom Type for Sequential Consistency

A schedule determines a temporal partial order of events such as message sending
and receiving. A correct program must behave correctly under every schedule.
Shared memory consistency is a restriction on schedules. When a stronger mem-
ory consistency is posed, it is easier for programs to behave correctly. This is
analogous to the fact that when a stronger condition on models implies more
valid formulas.

In this section, we characterize sequential consistency with a set of axioms.
Sequential consistency defined by Lamport [17] is essentially a condition requir-
ing the states of memory to be lined up in a total order. We define a deduc-
tion system �SC by adding an axiom type to K∨ and characterize sequential
consistency.

Henceforth, we assume A = {m} ∪ P (m /∈ P ), where P is the set of pro-
cesses and m represents the shared memory. A memory state is a state w with
fm(w) = w.

Definition 7. We let SC be the set of formula of the form (Kmϕ ⊃ Kmψ) ∨
(Kmψ ⊃ Kmϕ).

We add a rule (SC) to the previous calculus �: (SC) � ϕ where ϕ ∈ SC.
Except this additional rule, we define Γ �SC ϕ in the same way as Γ � ϕ.

Note that all axioms in the set SC are classical tautologies so that adding these
axioms to classical logic is meaningless. In other words, if we force the intuition-
istic epistemic logic to be classical by adding the double negation elimination
rule, we obtain an epistemic logic where every truth is known to every agent,
where shared memory consistency is meaningless. This clarifies the merit of using
intuitionistic logic instead of classical logic.

Definition 8. A sequential model is a model where any two memory states w
and w′ satisfy either w * w′ or w′ * w.

3.1 Soundness

Lemma 4. �SC ϕ⇒M |= ϕ for any sequential model M .

Proof. We extend the inductive proof of Lemma 4 with a clause for the rule (SC).

(SC) Seeking contradiction, assume M,w �|= (Kmϕ ⊃ Kmψ) ∨ (Kmψ ⊃ Kmϕ).
The definition for |= says that there exist states w0, w1 + w with M,w0 |=
Kmϕ, M,w1 |= Kmψ, M,w1 �|= Kmψ and M,w0 �|= Kmϕ. These and
Kripke monotonicity (Lemma 1) showM is not a pre-sequential model. Thus
M is not a sequential model.

Other cases are the same as Lemma 4.
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3.2 Strong Completeness

Definition 9. A pre-sequential model is a model where any two memory states w
and w′ with a common ancestor satisfy either w * w′ or w′ * w.

In this definition, a common ancestor x of w and w′ is a state x with both x * w
and x * w′.

Definition 10. A set of formulas Γ is SC-saturated if and only if all of these
conditions are satisfied:

1. Γ is SC-deductively closed, i.e., Γ �sc ϕ⇒ ϕ ∈ Γ ,
2. ϕ ∨ ψ ∈ Γ ⇒ ϕ ∈ Γ or ψ ∈ Γ ,
3. Γ ��sc ⊥.

Lemma 5 (Saturation lemma). For a set of formulas Γ with Γ ��sc ϕ, there
exists a saturated set of formulas Γω with Γω ��sc ϕ and Γ ⊂ Γω.

Proof. The same as Lemma 1 where each � is replaced by �sc.

Definition 11 (Canonical model candidate for sequential consistency).
We define a tuple Msc = 〈W sc,*sc, (fsc

a )a∈A, ρ
sc〉 in the same way as Defini-

tion 6 of Mc except that W sc is the set of SC-saturated sets of formulas.

Lemma 6 (Canonical model for sequential consistency). The tuple Msc

is a pre-sequential model.

Proof. First, we can show, in the same way as before, that checking fsc
a is actu-

ally a function W sc →W sc. Also, checking each condition in Definition 3 is sim-
ilar so that we seeMsc is actually a model. Finally, to see that the model Msc is
sequential, let Γ,Δ and Θ be states ofMsc and assume all of Θ *sc Γ , Θ *sc Δ,
fsc
m (Γ ) = Γ and fsc

m (Δ) = Δ. We claim that either Δ *sc Γ or Γ *sc Δ holds.
Seeking contradiction, deny the claim. Since the relation *sc is actually the set
theoretic inclusion, there exist formulas ϕ and ψ with ϕ ∈ Γ , ϕ /∈ Δ, ψ ∈ Δ and
ψ /∈ Γ . Since fsc

m (Γ ) = Γ , Kaψ /∈ Γ and Kaϕ ∈ Γ hold. Similarly, Kaϕ /∈ Δ and
Kaψ ∈ Δ hold. Since Θ is SC-saturated, (Kaϕ ⊃ Kaψ) ∨ (Kaϕ ⊃ Kaψ) is in Θ.
The definition of saturation says either Kaϕ ⊃ Kaψ ∈ Θ or Kaψ ⊃ Kaϕ ∈ Θ.
Consequently, either Kaϕ ⊃ Kaψ ∈ Γ or Kaψ ⊃ Kaϕ ∈ Δ holds. Each case
leads to contradiction by deductive closedness of Γ and Δ.

Lemma 7. For an SC-saturated set of formulas Γ and the canonical model for
sequential consistency Msc, an equivalence ϕ ∈ Γ ⇐⇒Msc, Γ �sc ϕ holds.

Proof. This lemma can be proved in the same way as Lemma 3.

Lemma 8. For a pre-sequential model M and a state w of M , there exists a
sequential model M ′ and a state w′ of M ′ such that M,w |= ψ if and only if
M ′, w′ |= ψ for any formula ψ.
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Proof. Let M be 〈W,* (fa)a∈A, ρ〉. We define W ′ to be the set {v ∈ W |
there exists x ∈ W with x * v and x * w}. Also, we define *′, f ′a and ρ′ to
be *, fa and ρ respectively restricted on W ′.

To check M ′ = 〈W ′,*′, (f ′a)a∈A, ρ
′〉 is actually a sequential model, the only

non-trivial part is showing fa(W ′) ⊆ W ′. Let us take v ∈ W ′ arbitrarily. There
exists x ∈W with x * v and x * w. Since fa is monotonic, fa(x) * fa(v). Since
fa is descending, fa(x) * x * w. These combined show fa(v) ∈ W .

Showing the equivalence M,w |= ψ ⇐⇒ M ′, w |= ψ is a straightforward
induction on ψ.

Theorem 6 (Strong completeness for sequential consistency). Γ �sc ϕ
holds if M |= Γ implies M |= ϕ for every sequential model M .

Proof. We show the contraposition: assuming Γ ��sc ϕ, we show that there exists
a sequential model M that satisfies M |= Γ but not M |= ϕ. By Lemma 5, there
is an SC-saturated set of formula Γ ′ with Γ ′ �� ϕ and Γ ′ ⊃ Γ . By Lemma 7,
Msc, Γ ′ |= Γ but not Msc, Γ ′ |= ϕ. By Lemma 6 and Lemma 8, there exists
a sequential model M ′ with a state w′ ∈ M ′ such that M ′, w′ |= Γ but not
M ′, w′ |= ϕ.

Example Theorem. In the introduction, we gave an example of theorems of �sc:
(KpKmKpϕ∧KqKmKqψ) ⊃ (KpKqψ∨KqKpϕ). We give a proof for this theorem
in Figure 2.

4 Waitfree Computation

We define a class of formulas called waitfree assertions, which have a special
finite model property (Theorem 7): if a waitfree assertion is consistent2, there is
a finite model of a special shape where the assertion is valid. The special shape
mimics the scheduling of shared memory defined by Saks and Zaharoglou [24].

Definition 12. Assume there is a vector of atomic formulas (Ip)p∈P .
A waitfree protocol description ϕ is a formula of the form

ϕ =
∧
p∈P

KpKmKp · · ·KmKpIp

where Kp and Km appear alternatively in and around “· · ·”.
A waitfree task specification ψ is defined with the BNF:

ψ ::= Kpψ | ψ ∧ ψ | ψ ∨ ψ | Ip

where p stands for a process in P.
A waitfree assertion is a formula ϕ ⊃ ψ where ϕ is a waitfree protocol de-

scription and ψ is a waitfree task specification.
2 A formula ϕ is consistent if and only if ⊥ cannot be proved even if ϕ is added as an

axiom.
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We are only interested in reasoning about a fixed protocol so that each process
interacts with the memory for only finite times. In addition to this restriction,
there is no process–process communication although there is process–memory
communication so that a protocol can be described by a formula without nesting
of different process modalities such as KpKq. Finally, we forcefully decide that
we are only interested in existence of knowledge at the end of protocols so that
the requirement of a task can be represented in a positive formula. The formula
(KpKmKpϕ∧KqKmKqψ) ⊃ (KpKqψ∨KqKpϕ) proved in Figure 2 is a waitfree
assertion.

Definition 13. A partial schedule (σi)i∈I is a finite sequence of subsets of P .

Definition 14. For a process p ∈ P and a partial schedule σ, countp(σ) is the
cardinality |{i ∈ I | p ∈ σi}|.

For a waitfree protocol description ϕ =
∧

p∈P KpKm · · ·KpIp, countp(ϕ) is
the number of Km occurrences in KpKm · · ·KpIp.

A partial schedule σ is compatible to a waitfree protocol description ϕ if
countp(ϕ) = countp(σ) for any process p ∈ P .

Definition 15. For a waitfree protocol description ϕ and a compatible partial
schedule (σi)i∈I , we define a waitfree schedule model R(ϕ, σ)=〈W,*, (fa)a∈A, ρ〉
as:

– W = {(p, i) ∈ P × N | p ∈ σi} ∪ {(p, i)′ ∈ P × N | p ∈ σi} ∪ {(m, i) | i ∈
I} ∪ {(o, i) | i ∈ I} ∪ {⊥}

– (p, i) * (m, i + 1) * (p, i)′ for p ∈ P ; (a, j) * (o, i) if and only if j ≤ i for
a ∈ A; ⊥ * w for all w ∈ W ; and (a, j)′ * (o, i) if and only if j ≤ i for
a ∈ A.

– fa(w) =

⎧⎨⎩
the least (a, j) with (a, j) * w (if there exists such (a, j))
(the definition of * assures there is the least such (a, j)),
⊥ (if such (a, j) does not exist).

– ρ(Ip) = {w ∈ W | (p, 0) * w}.

An example of a model induced by a partial schedule is shown in Figure 3.
Using the definitions above, we can state the logical characterization of wait-

free communication.

Theorem 7 (Completeness for waitfree communication). Assume ϕ ⊃ ψ
is a waitfree assertion. The relation �SC ϕ ⊃ ψ holds if the relation
R(ϕ, σ), (o, n) |= ψ holds for any compatible partial schedule σ where the state
(o, n) is the last state of the waitfree model R(ϕ, σ).

To prove completeness, we only use special models called singleton models in-
duced by a permutation of processes.

Definition 16. For a set of processes P, we define S(P ) to be the set of the
permutations of P .
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(o,0)

(o,1)

(o,2)

(m,0)
(m,1)

(m,2)

(p,0) (p,0)'
(p,1)'

(p,1)

(q,0)

(q,0)'

(q,2)

(q,2)'

Fig. 3. A model induced by the partial schedule {p, q}, {p}, {q}. A solid arrow pointing
to (a, n) shows an fa mapping. Dotted arrows show 
 relations. We omit inferable
arrows and the valuation.

Definition 17. For π ∈ S(P ) and 0 ≤ k ≤ |P |, we define SC(π, k) to be the
set {KmKpIp ⊃ KmKqIq | there exist i and j with j ≤ i ≤ k such that πi =
a and πj = b}.

Lemma 9. �sc
∨

π∈S(P ) SC(π, |P |) holds.

Proof. It suffices to use rule (SC) many times.

Definition 18. For a permutation π of P and a waitfree protocol description
ϕ, we define a partial schedule σ(ϕ, π) as

σ(ϕ, π) =

countπ0(ϕ)︷ ︸︸ ︷
π0, · · · , π0,

countπ1(ϕ)︷ ︸︸ ︷
π1, · · · , π1, · · · · · · · · · ,

countπn(ϕ)︷ ︸︸ ︷
πn, · · · , πn .

Definition 19. A singleton model is a model of the form R(ϕ, σ(ϕ, π)). We
abbreviate this to R(ϕ, π).

For a singleton model and an index k ∈ I, wk denotes the minimum external
observer state above all πj states for j < k.

Definition 20. For a waitfree protocol description ϕ=
∧

p∈P

np︷ ︸︸ ︷
KpKmKp · · ·Kp Ip,

we define the restriction

ϕ �p,k=
∧

p∈P �p,k

np︷ ︸︸ ︷
KpKmKp · · ·Kp Ip where P �p,k= {p ∈ P | pj = p for some

j < k}.

Lemma 10. R(ϕ, π), (o, k) |= ψ =⇒ SC(π, k) � ϕ �π,k⊃ ψ.

Proof (Proof of Lemma 10). By induction on k.
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(Case k = 0). We show a stronger proposition: (o, 0) |= ψ implies fp0(o, 0) |=
ψ, � ϕ �p,0⊃ ψ and
� ϕ �p,0⊃ Kaψ by inner induction on ψ.
(When ψ is an atomic formula P ). P = Iπ0 holds.

Since ϕ �π,0= Kπ0KmKπ0 · · ·KmKπ0Iπ0 , � ϕ �π,0⊃ Kπ0P holds. So,
SC(π, 0) � ϕ �π,0⊃ Kπ0P holds. Consequently, SC(π, 0) � ϕ �π,0⊃ P
also holds.

(When ψ = ψ0 ∧ ψ1 or ψ0 ∨ ψ1). Induction goes smoothly.
(When ψ = Kaψ

′). Assume (o, 0) |= Kaψ
′. Claim: a = π0 holds. Seeking

contradiction, assume a �= π0. That means fa((o, 0)) = ⊥. However,
no waitfree task specification is satisfied at the state ⊥. Contradiction.
We have proved a = π0. Using this, we can show that fa((o, 0)) |= ψ′

holds. By idempotency of fa, fa(fa((o, 0))) |= ψ′ holds. This means
fa((o, 0)) |= Kaψ

′. Since (o, 0) |= ψ′, by inner induction hypothesis,
� ϕ �π,0⊃ Kaψ

′
a. By proof theoretic consideration, � ϕ �π,0⊃ KaKaψ

′

holds.
(Case k = k′ + 1). Like the base case, we show a stronger proposition (o, k) |=

ψ ⇔ fπk
((o, k)) |= ψ ⇒ SC(π, k) � ϕ �π,k⊃ ψ and SC(π, k) � ϕ �π,k⊃

Kπk
ψ, using inner induction on ψ.

(When ψ = P , an atomic formula). EitherR(ϕ, π), wk′ |= P or Iπk
= P

holds. In the former case, by induction hypothesis. In the latter case,
similarly as the base case.

(When ψ = ψ0 ∧ ψ1 or ψ0 ∨ ψ1). Induction goes smoothly.
(When ψ = Kaψ

′). If πk �= a, fπk
((o, k)) |= Kaψ

′ implies (o, k′) |= Kaψ
′.

By outer induction hypothesis, SC(π, k′) � ϕ �π,k′⊃ Kaψ
′ and

SC(π, k′) � ϕ �π,k′� ϕ �π,k′⊃ Kaψ
′ hold. Here, we can safely replace

k′ with k. If πk = a, (o, k) |= Kaψ
′ imply (o, k) |= ψ′. By inner induc-

tion hypothesis, we obtain SC(π, k) � ϕ �π,k⊃ Kaψ
′. This also implies

SC(π, k) � ϕ �π,k⊃ KaKaψ
′.

After showing this generalized lemma, proving Theorem 7 is easy.

Proof (Proof of Theorem 7). Since R(ϕ, p), w|P | |= ψ, SC(p, |P |) � ϕ ⊃ ψ. By
Lemma 9, �sc ϕ ⊃ ψ.

Any model induced by a partial schedule is finite. For a waitfree assertion ϕ, it
is decidable whether �sc ϕ holds or not.

4.1 Decidability of Solvability of Waitfree Task Specification

Definition 21. A waitfree task specification ψ is solvable if there is such a wait-
free protocol description ϕ that the relation R(ϕ, σ), (o, n) |= ψ holds for any
compatible partial schedule σ where the state (o, n) is the last state of the model
R(ϕ, σ).

Fact. By Theorem 7, the set of solvable waitfree task specifications are recur-
sively enumerable because the relation �sc is axiomatized.
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Fact. The set of unsolvable waitfree task specifications are recursively enumer-
able because schedule-induced models are recursively enumerable.

These two facts imply that it is decidable whether a waitfree task specification
is solvable or not. This does not contradict the undecidability of waitfreely solv-
able tasks by Gafni and Koutsoupias [8] because the undecidability proof utilizes
tasks that cannot be expressed by waitfree task specifications. They use tasks
involving consensus: the tasks involving making agreements among processes,
where whether an output value is allowed or not depends on other processes’
output values. Waitfree tasks specifications cannot describe such tasks.

5 Related Work

Ondrej Majer’s Epistemic Logic with Relevant Agents [19] is similar to K∨ in
that both logics have epistemic modalities and that both logics are not classical.
However, the logic given in [19] contains only one modality K for knowledge.
This implicitly assumes that there is a single agent, not multiple agents so that
it is impossible for their logic to treat communication between multiple agents.

Many logics have both temporal and epistemic modalities. Ewald [7] proposes
an intuitionistic logic with temporal modality. In Kobayashi and Yonezawa’s
logic [15], processes appear in formulas but time does not appear in formulas
because time is implicit in the system of logic programming. This logic is different
from K∨ in that this logic is based on linear logic and that their usage is logic
programming.

6 Discussions

Waitfree Computation. The Gödel Prize in 2004 was given to Herlihy and Shavit
[11] and Saks and Zaharoglou [24]. This work was motivated by these papers.
Herlihy and Shavit [11] used subdivision of colored simplicial complex to model
waitfree computation. Each vertex v ∈ V is colored by an agent. Each simplex s ∈
S ⊆ P(V ) contains vertices with distinct colors. A vertex may have an ancestor
simplex called carrier. The union of the ancestor relation and the relation ∈ can
be turned into an order � on V �S by taking the reflexive and transitive closure.
We can define a partial fa : S → S where S is the set of simplex in a simplicial
complex by letting fa(s) = {x} where x is the maximum vertex below s (w.r.t.
�) whose color is a. When we add a bottom simplex ⊥ and make fa total, we
can regard a simplicial complex as a model of K∨ as in an example (Figure 4).

Saks and Zaharoglou [24] use full-information protocols [29]. Even the shared
variables remember the whole history. In every component, knowledge increases
monotonically through time. This monotonicity suggests that their model can
be analyzed effectively in Kripke models for intuitionistic logic. Saks and Za-
haroglou [24] also suggest that “it will be worthwhile to explore the connection
with the formal theory of distributed knowledge.” This work is following their
suggestion by treating waitfree communication in a formal way, especially using
a logic with epistemic modalities.
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Fig. 4. How subdivision of simplicial complexes is transformed into a K∨ frame. Left: A
simplex s0 = {va, vb} is subdivided into s1 = {va, wb}, s2 = {wa, wb} and s3 = {wa, vb}.
Right: K∨ frame obtained from the left subdivision.

Other Consistency Models. Steinke and Nutt [25] gave a lattice of consistency
properties including: sequential, causal, processor, PRAM, cache, slow, and local
consistency. It remains to model these other consistency properties with axiom
schemata in K∨ .

Sequential Consistency or Linearizability. Attiya and Welch [2] pointed out that
sequential consistency [17] and linearizability [12] are often confused. We make
sure that the deduction system �SC does not characterize linearizability. Her-
lihy [12] stated that linearizability is a local property; in other words, when each
memory object satisfies linearizability, the combined system also has lineariz-
ability. However, the axiom type SC is not local. To see that, let us consider
two variants of the axiom type SC for different two memory objects m and m′,
namely, (Kmϕ ⊃ Kmψ)∨(Kmψ ⊃ Kmϕ) and (Km′ϕ ⊃ Km′ψ)∨(Km′ψ ⊃ Km′ϕ).
Even with both of these, the mixed axiom type (Km′ϕ ⊃ Kmψ)∨(Kmψ ⊃ Km′ϕ)
is not derivable.

Latency versus Throughput. Our logic is more suitable for a situation where
latency is more important than throughput. Since we consider time as the partial
order of intuitionistic Kripke models, all knowledge must be preserved during
time progress. Communication must be done in full-information manner (as in
full-information protocols in [29]) because messages define the partial order. Our
logic is advantageous when latency is important so that it is important to know
how many message interactions are needed to accomplish a certain task. We plan
to investigate network protocols with K∨ .

Disjunction Distribution Over K Modality. Since the semantics for modalities
is defined by functions on Kripke frames, the disjunction distributes modalities
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in K∨. Kojima and Igarashi [16] avoids the distribution of modalities over dis-
junction by giving up functional modality. On the other hand, K∨has distribu-
tion. We speculate that the difference comes from the different interpretations of
modalities according to time: in [16], inner subformulas within the scope of the
modality are interpreted in the future; while in K∨ , inner subformulas within
the scope of the modalities are interpreted in the past.

By translation of Suzuki [26], when A is a singleton set, K∨ corresponds to
the intuitionistic predicate logic with singleton domain in the same manner the
models of the logic L3 of Ono [20] correspond to the models of intuitionistic
predicate logic with constant domain. This fact suggests that the semantics of
K∨ is very simple when there is only one agent. Simplicity was our aim at the
beginning.

Acknowledgments. The author thanks Masami Hagiya and Yoshihiko Kakutani
for encouragements and valuable advice. The anonymous refrees’ careful com-
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Abstract. Disunification is an extension of unification to first-order for-
mulae over syntactic equality atoms. Instead of considering only syntac-
tic equality, I extend a disunification algorithm by Comon and Delor to
ultimately periodic interpretations, i.e. minimal many-sorted Herbrand
models of predicative Horn clauses and, for some sorts, equations of the
form sl(x)�sk(x). The extended algorithm is terminating and correct
for ultimately periodic interpretations over a finite signature and gives
rise to a decision procedure for the satisfiability of equational formulae
in ultimately periodic interpretations.

As an application, I show how to apply disunification to compute the
completion of predicates with respect to an ultimately periodic inter-
pretation. Such completions are a key ingredient to several inductionless
induction methods.

1 Introduction

Originally, unification [23] was the task of finding solutions to an equation t.t′ of
terms with respect to the free term algebra T (F), i.e. substitutions σ that instan-
tiate the free variables of t and t′ in such a way that tσ and t′σ are syntactically
equal. The notion was then generalized to solving systems (i.e. conjunctions) of
equations, and unification was recognized as a procedure that can be expressed
using transformations of such systems [16,1].

From there on, the idea of unification was extended in at least two directions
that are relevant for this work: On the one hand, Lassez et al. [18] examined sys-
tems of disequations, and later on a unified framework for the analysis of both
equations and disequations was finally found in disunification [21,20,9]. Algorith-
mically, disunification procedures are algorithms rewriting first-order formulae
over syntactic equality atoms into an equivalent normal form. On the theoretical
side, they provide a decision procedure for the satisfiability in T (F) of (possibly
quantified) formulae containing equality . as the only predicate symbol. Disuni-
fication has various applications, in particular in areas as logic programming [5],
automated model building [3,12] and inductive theorem proving [7,10,14,15].

On the other hand, Plotkin [22] integrated sets E of equational axioms into
the transformation rules used for unification, effectively unifying with respect
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not to T (F) but to quotients T (F)/E (see also [17]). Similar extensions were
also made to disunification: Comon [6] developed disunification algorithms with
respect to quotients T (F)/E where E is a so-called quasi-free or compact ax-
iomatization. Examples of such axiomatizations include sets of associativity and
commutativity axioms. Fernández [13] used a narrowing-based approach to show
that if E is a ground convergent rewrite system, the existential fragment of dis-
unification is semi-decidable but in general undecidable even if E-unification is
decidable and finitary.

In this article, I extend disunification to more general interpretations: Instead
of considering only quotients of T (F), I allow minimal many-sorted Herbrand
models of predicative Horn clauses and equations of the form sl(x).sk(x) for
some sorts. I will call such interpretations ultimately periodic. They occur nat-
urally as quotients of the natural numbers or when models of formulae from
propositional linear time temporal logics are described by clause sets [19]. The
extended algorithm gives rise to a decision procedure for the satisfiability of
equational formulae in ultimately periodic interpretations.

My algorithm is based on the disunification algorithm by Comon and Delor [8].
While there are other disunification algorithms available, this one has the advan-
tage of being flexible in the sense that the control on its rules is kept as weak as
possible.1 Earlier algorithms like [9,7] required an often inefficient normal form
(e.g. conjunctive normal form) computation after every step. The weak control
used by Comon and Delor leaves wide space for the development of efficient in-
stances in concrete implementations, which is important because disunification
is NP-hard (SAT can easily be encoded by x !→ x.true and ¬x !→ x.false). On
the downside, the weak control makes the termination argument considerably
more complicated than when formulae are kept normalized.

Predicative atoms are often integrated into a multi-sorted equational frame-
work not explicitly but by adding a new sort bool, replacing each predicative
atom P (t1, . . . , tn) by an equation fp(t1, . . . , tn).true between terms of this sort,
and then using algorithms designed for the purely equational setting. This is not
so trivial for disunification because it does not prevent the need to extend dis-
unification to a quotient T (F)/E , where E encodes the set of valid predicative
atoms.

The addition of predicative atoms often makes disunification applicable for
the completion of predicates, i.e. for the computation of those instances of a
predicate that do not hold in a given interpretation. Comon and Nieuwenhuis [10]
gave an algorithm how to complete predicates in Herbrand models of universally
reductive Horn clause sets but did not formally prove its correctness. I will
generalize their approach to ultimately periodic models and prove its correctness,
which also implies the correctness of the original algorithm.

1 In addition to flexibility, the emphasis in Comon and Delor’s algorithm lies in a
very rich constraint-based sort structure. This sort structure and the consideration
of quotient algebras are orthogonal problems. To restrict the presentation of the
current results to its essential kernel, I will mostly ignore the sort constraints in this
paper.
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This paper is structured as follows: After recalling the relevant notation in
Section 2, I will present a disunification algorithm for ultimately periodic inter-
pretations and prove it correct and terminating in Section 3. As a first applica-
tion, I will show in Section 4 how to use disunification to compute the completion
of predicates with respect to ultimately periodic interpretations. In Section 5,
I combine results from the previous sections to prove that the satisfiability of
equational formulae in ultimately periodic interpretations is decidable.

2 Preliminaries

I build on the notions of [1,8,14] and shortly recall here the most important
concepts.

Terms and Formulas. Let X be an infinite set of variables. A signature Σ =
(S,P ,F , τ) consists of (i) three finite sets S, P , F of sorts, predicate symbols and
function symbols such that S and F are non-empty and X , P and F are disjoint,
and (ii) a mapping τ that assigns to every variable in X a sort, to every symbol
in P a tuple of sorts and to every symbol in F a non-empty tuple of sorts. Sort
assignments τ(P ) = (S1, . . . , Sn) and τ(f) = (S1, . . . , Sn, S) for P ∈ P , f ∈ F
and n ≥ 0 are written as P : S1, . . . , Sn and f : S1, . . . , Sn → S. We assume that
there are infinitely many variables and at least one term of each sort.

Let T (F , X) be the set of all well-sorted terms over F and X defined as usual.
Let T (F) be the set of all ground terms over F . To improve readability, a list
t1, . . . , tn of terms is often written as �t, and the n-fold application f(. . . (f(t)) . . .)
of a unary function symbol f to a term t is written as fn(t).

A predicative atom over Σ is a well-sorted expression P (t1, . . . , tn), where
P : S1, . . . , Sn is a predicate symbol t1 : S1, . . . , tn : Sn are terms of the corre-
sponding sorts. An equation (or disequation, respectively) is a multiset of two
terms of the same sort, usually written as t.t′ (or t �.t′). The expression t.̇t′
stands for either t.t′ or t �.t′. An atom is either a predicative atom or an equation
or one of the symbols #,⊥ (true and false). A literal is an atom or a disequation
or a negated predicative atom. Formulae are constructed from atoms by the
constructors ∃x., ∀x.,∧,∨ and ¬. The notation ∃�x.φ is a shorthand notation for
∃x1. · · · ∃xn.φ, and analogously for ∀�x.φ. In both cases, �x may be empty. Equa-
tional formulae are formulae that do not contain predicative atoms. A formula
is in negation normal form if the symbol ¬ appears only in literals. By push-
ing down all negations and eliminating double negations, each formula can be
transformed into an equivalent negation normal form.

The set of variables occurring freely in a formula φ is denoted by vars(φ). The
expression φ|p denotes the subformula at position p, and φ[ψ]p denotes the result
of replacing φ|p by ψ. For terms t, vars(t), t|p and t[t′]p are defined analogously.

Rewrite Systems. A rewrite rule is a pair (l, r) of two terms of the same sort
or of two formulae, written l → r, such that all variables in r also occur in l. A
set of rewrite rules is called a rewrite system. For a given rewrite system R, a
term (or formula) t rewrites to a term (or formula) t′, written t→R t

′, if t|p = lσ
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and t′ = t[rσ]p, for some rule l → r in R, position p in t, and substitution σ. A
term (or formula) t is called irreducible or a normal form if there is no term (or
formula) t′ such that t→R t

′.
A rewrite system R is terminating if there is no infinite chain t1 →R t2 →R . . .;

it is convergent if it is terminating and every term rewrites to a unique normal
form.

Substitutions. A substitution σ is a map from X to T (F , X) that maps each
variable to a term of the same sort and acts as the identity map on all but a
finite number of variables. A substitution is identified with its homomorphic ex-
tensions to terms and atoms, and with its capure-free extension to formulae. The
application of a substitution σ mapping variables x1, . . . , xn to terms t1, . . . , tn
to a term t (or a formula φ) is written as tσ or t{x1 !→ t1, . . . , xn} (or φσ or
φ{x1 !→ t1, . . . , xn}).

Orderings. A (strict) partial ordering > on a set T is a binary relation that is
antisymmetric (t1 > t2 implies t2 �> t1) and transitive (t1 > t2 and t2 > t3 implies
t1 > t3). A partial ordering > on a set T can be extended to a partial ordering
>mul on multisets over T , i.e. maps from T into the non-negative integers, as
follows: M >mul N if M �= N and whenever there is a t ∈ T such that N(t) >
M(t) then M(t′) > N(t′) for some t′ > t. It can be extended to a partial
ordering >lex on n-tuples over T as follows: (t1, . . . , tn) >lex (t′1, . . . , t

′
n) if there

is an index 1 ≤ i ≤ n such that tj = t′j for all 1 ≤ j < i and ti > t′i.
There are several ways to extend orderings on the set F of function symbols

to terms over F . The ones used in this article are the recursive path ordering [11]
and the associative path ordering [2]. Let F be a set of function symbols equipped
with a partial ordering < and let stat : F → {lex,mul} be a function assigning
to every function symbol either lexicographic or multiset status.

The recursive path ordering >rpo on T (F) is given as follows: For terms t =
f(t1, . . . , tm), t′ = g(t′1, . . . , t

′
n) ∈ T (F , X), t >rpo t

′ if either (i) ti = t′ or
ti >rpo t

′ for some i or (ii) t >rpo t
′
i for all 1 ≤ i ≤ n and either f > g, or f = g

and (t1, . . . , tm) >stat(f)
rpo (t′1, . . . , t

′
n).

Let F contain the symbols ∧ and ∨. For a term t ∈ T (F), let t↓ be the normal
form of t with respect to the distributivity rule t0∧(t1∨t2)→ (t0∧t1)∨(t0∧t2).
Define the associative path ordering >apo on T (F) as follows: t >apo t

′ iff (i)
t↓ >rpo t

′↓ or (ii) t↓ = t′↓ and |t′| > |t|.
Note that >apo is compatible with AC identities, monotonic (i.e. t >apo t

′

implies u[s] >apo u[t]), has the subterm property (i.e. t[t′]p �.t′ implies t[t′]p >apo
t′), and is well-founded.

Clauses and Herbrand Interpretations. A clause is a pair of multisets of
atoms, written Γ → Δ. A clause is Horn if Δ contains at most one atom. It is
predicative if all atoms in Γ and Δ are predicative. A Horn clause C = Γ → A
is universally reductive if all variables that occur in C also occur in A.

A Herbrand interpretation I over the signature Σ is a set of ground atoms
over Σ that is closed under rewriting with the rewrite system consisting of all
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rules t→ t′ and t′ → t such that t.t′ ∈ I (i.e. . is interpreted as a congruence
in I). A Herbrand interpretation I is a model of a set N of clauses if for every
ground instance Γ → Δ of a clause in N it holds that Γ ⊆ I implies Δ∩ I �= ∅.
The unique minimal model with respect to set inclusion of a satisfiable set N of
Horn clauses is denoted by IN .

3 Disunification

3.1 The Disunification Algorithm PDU

Disunification provides a means to transform an equational formula φ into a
simpler equational formula φ′ for which satisfiability with respect to the consid-
ered interpretation is easily decidable.

Example 1. Consider the elementary case of reasoning modulo the free term
algebra. In the formula φ = ∃y.f(x, y)�.f(s(s(x)), 0) ∧ f(x, y)�.f(s(s(x)), s(0))
over a signature containing two sorts S, T and the function symbols 0 : S, s : S →
S and f : S, S → T , the disequations can be decomposed as x�.(s(s(x))) ∨ y �.0
and x�.(s(s(x)))∨y �.s(0), respectively. The subformula x�.(s(s(x))) is equivalent
to the constant #, which means that the whole formula can be transformed to
#. Since # is trivially satisfiable with respect to T ({0,s,f}), so is the initial
formula φ.

Disunification algorithms usually have the aim to simplify a formula while pre-
serving its solution set with respect to an interpretation.

Definition 2 (Solutions). Let I be an interpretation, X a set of variables, and
φ a formula over Σ = (S,P ,F , τ). The substitution set Sol(φ,X, I) of solutions
of φ with respect to X and I is defined as

Sol(φ,X, I) = {σ ∈ X → T (F) | I |= φσ} .

Two formulae φ, φ′ are called equivalent with respect to I if Sol(φ,X, I) =
Sol(φ′, X, I), where X consists of the free variables of φ and φ′.

Disunification can in general not compute the solutions with respect to a general
equational theory T (F)/E , where E is a set of equations: For E = {s(s(x)).x},
the formula φ from Example 1 is unsatisfiable in T ({0,s,f})/E. One of the prob-
lems is that x�.(s(s(x))) is not equivalent to # in this interpretation.

Because a terminating disunification procedure with respect to an equational
theory T (F)/E results in a decision procedure for satisfiability in T (F)/E , dis-
unification with respect to equational theories is in general not possible. I will
now show that disunification can nevertheless be extended to interpretations as
in the previous example, where the equalities in E are restricted to the form
sl(x).sk(x).

Definition 3 (Ultimately Periodic Interpretation). Let Σ = (S,P ,F , τ)
be a signature. Let S1, . . . , Sn be n different sorts such that all ground terms
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Formulae are always kept normalized with respect to these rules.

Propagation of Negation:
¬� → ⊥
¬⊥ → �

¬(φ ∨ φ′) → ¬φ ∧ ¬φ′

¬(φ ∧ φ′) → ¬φ ∨ ¬φ′
¬(∃x.φ) → ∀x.¬φ
¬(∀x.φ) → ∃x.¬φ

¬¬φ → φ

Propagation of Truth and Falsity:
� ∧ φ → φ
⊥ ∧ φ → ⊥
φ ∧ � → φ
φ ∧ ⊥ → ⊥

� ∨ φ → �
⊥∨ φ → φ
φ ∨ � → �
φ ∨ ⊥ → ⊥

∃x.� → �
∃x.⊥ → ⊥
∀x.� → �
∀x.⊥ → ⊥

Quantifier Accumulation:
P1: ∀�x.φ[∀�y.φ′]p → ∀�x, �y.φ[φ′]p
P2: ∃�x.φ[∃�y.φ′]p → ∃�x, �y.φ[φ′]p
if �x and �y are not empty in P1,P2 and there is none of the symbols ¬, ∀,∃ between
the two melted quantifiers; if a variable of �y occurs in φ[�]p, it is renamed to
avoid capturing.

Fig. 1. Normalization Rules

of sort Si are of the form smi (0i) for two function symbols si, 0i. Let E =
{sl11 (x).sk1

1 (x), . . . , slnn (x).skn
n (x)} be a finite set of equations between terms

in S1, . . . , Sn, with li > ki for all i. Each sort Si, 1 ≤ i ≤ n, is called ultimately
periodic of type (ki, li). All other sorts are called free.

Let N be a finite set of predicative Horn clauses such that N ∪E is satisfiable.
The minimal Herbrand model IN∪E of N ∪ E is called an ultimately periodic
interpretation.

The disunification procedure for ultimately periodic interpretations is based on
a disunification algorithm by Comon and Delor [8], which I will call DU. They
treat the sorting discipline explicitly by enriching formulae (over an unsorted
signature) with sorting constraints of the form t ∈ S, where t is a term and
S is a so-called sort expression, e.g. Nat ∨ f(Nat,Nat). On the one hand, this
allows very rich sort structures. On the other hand, it constitutes an additional
considerable technical complication of the algorithm. Since multi-sorting can
nicely be expressed by formulae over a sorted signature and the addition of sort
constraints is a rather orthogonal problem, the variation of the algorithm used
below does not rely on explicit sort constraints but on implicit well-sortedness.

Definition 4 (PDU). Let I be an ultimately periodic interpretation. The peri-
odic disunification calculus PDU for I consists of the rules in Figures 1–3.2

2 The rules of Figures 1 and 2 are essentially identical to the rules of DU. The only
exceptions are Q7/8, Finite Sort Reduction, and Explosion, which differ from the
formulation in [8] in that they are a straightforward combination of originally un-
sorted rules with rules that manipulate explicit sorting constraints. The original rule
Ex1 also always required �x to be non-empty. This is too weak for the completion
algorithm of Section 4, which is why PDU uses a version of Ex1 by Comon and
Lescanne [9].
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Decomposition, Clash, and Occurrence Check:
D1: f(u1, . . . , un)�f(u′

1, . . . , u
′
n) → u1�u′

1 ∧ . . . ∧ un�u′
n

D2: f(u1, . . . , un) ��f(u′
1, . . . , u

′
n) → u1 ��u′

1 ∨ . . . ∨ un ��u′
n

C1: f(u1, . . . , um)�g(u′
1, . . . , u

′
n) → ⊥ if f �= g

C2: f(u1, . . . , um) ��g(u′
1, . . . , u

′
n) → � if f �= g

O1: t�u[t] → ⊥ if u[t] �= t
O2: t ��u[t] → � if u[t] �= t
if f(u1, . . . , un), t and u[t] belong to a free sort

Quantifier Elimination:
Q1: ∃�x.φ1 ∨ φ2 → (∃�x.φ1) ∨ (∃�x.φ2) if �x ∩ vars(φ1, φ2) �= ∅
Q2: ∀�x.φ1 ∧ φ2 → (∀�x.φ1) ∧ (∀�x.φ2) if �x ∩ vars(φ1, φ2) �= ∅
Q3: ∃�x, x.φ → ∃�x.φ if x �∈ vars(φ)
Q4: ∀�x, x.φ → ∀�x.φ if x �∈ vars(φ)
Q5: ∀�x, x.x ��t ∨ φ → ∀�x.φ{x �→ t} if x �∈ vars(t)
Q6: ∃�x, x.x�t ∧ φ → ∃�x.φ{x �→ t} if x �∈ vars(t)
Q7: ∀�z, �x.y1�t1 ∨ . . . ∨ yn�tn ∨ φ → ∀�z.φ
Q8: ∃�z, �x.y1 ��t1 ∧ . . . ∧ yn ��tn ∧ φ → ∃�z.φ
if in Q7 and Q8 yi �= ti and vars(yi�̇ti) ∩ �x �= ∅ for all i and vars(φ) ∩ �x = ∅
and the sorts of all variables in �x contain infinitely many ground terms (in
particular, all ti are of a free sort).
Q1 and Q2 also require that no redex for P1 or P2 is created.

Finite Sort Reduction:
S1: ∀�x, x.φ → ∀�x.φ{x �→ t1} ∧ . . . ∧ φ{x �→ tn}
S2: ∃�x, x.φ → ∃�x.φ{x �→ t1} ∨ . . . ∨ φ{x �→ tn}
if the sort S of x is free and finite and t1, . . . , tn are the finitely many ground
terms in S.

Distribution:
N1: ∀�x.φ[φ0 ∨ (φ1 ∧ φ2)]p → ∀�x.φ[(φ0 ∨ φ1) ∧ (φ0 ∨ φ2)]p
N2: ∃�x.φ[φ0 ∧ (φ1 ∨ φ2)]p → ∃�x.φ[(φ0 ∧ φ1) ∨ (φ0 ∧ φ2)]p
if φ0, φ1, φ2 are quantifier-free, vars(φ1) ∩ �x �= ∅, φ1 is not a conjunction in N1
and not a disjunction in N2 and does not contain a redex for N1 or N2, and there
is no negation and no quantifier in φ along the path p.

Explosion:
Ex1: ∃�x.φ → ∨

f∈F′ ∃�x, �xf .y�f(�xf ) ∧ φ{y �→ f(�xf )}
if y is free in φ and ∀�x′.φ′, respectively, no other rule except Ex2 can be applied,
there is in φ a literal y�̇t where t contains a universally quantified variable, and
�x is non-empty or φ = ∀�x′.φ′. If y is of sort S, then F ′ ⊆ F is the set of function
symbols of sort S1, . . . , Sn → S.
Ex2: ∀�x.φ → ∧

f∈F′ ∀�x, �xf .y ��f(�xf ) ∨ φ{y �→ f(�xf )}
if y is free in φ, no other rule can be applied, there is in φ a literal y�t or y ��t
where t contains an existentially quantified variable, and �x is non-empty. If y is
of sort S, then F ′ ⊆ F is the set of function symbols of sort S1, . . . , Sn → S.

Fig. 2. Rules for both Free and Ultimately Periodic Sorts
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Periodic Reduction:
PR: A[sl(t)]p → A[sk(t)]p
if A is an atom and sl(t) belongs to an ultimately periodic sort of type (k, l).

Periodic Decomposition:

PD1: s(t)�s(t′) →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t�t′ if t and t′ are ground
t�sk−1(0) ∨ t�sl−1(0) if t is not ground

and s(t′) = sk(0)
t�t′ if t is not ground

and t′ is ground
and s(t′) �= sk(0)

t�t′ ∨ (t�sk−1(0) ∧ t′�sl−1(0))
∨ (t�sl−1(0) ∧ t′�sk−1(0)) if t, t′ are not ground

PD2: s(t) ��s(t′) →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ��t′ if t and t′ are ground
t ��sk−1(0) ∧ t ��sl−1(0) if t is not ground

and s(t′) = sk(0)
t ��t′ if t is not ground

and t′ is ground
and s(t′) �= sk(0)

t ��t′ ∧ (t ��sk−1(0) ∨ t′ ��sl−1(0))
∧ (t ��sl−1(0) ∨ t′ ��sk−1(0)) if t, t′ are not ground

if s(t) belongs to an ultimately periodic sort of type (k, l) and s(t)�̇s(t′) is
irreducible by PR. For k = 0, the atom ⊥ replaces t�sk−1(0) and � replaces
t ��sk−1(0).

Periodic Clash Test:

PC1: s(t)�0 →
{

t�sl−1(0) if k = 0 and t is not ground
⊥ if k > 0 or t is ground

PC2: s(t) ��0 →
{

t ��sl−1(0) if k = 0 and t is not ground
� if k > 0 or t is ground

if s(t) belongs to an ultimately periodic sort of type (k, l) and s(t)�̇0 is irreducible
by PR.

Periodic Occurrence:

PO1: x�sn(x) →
{

x�sk(0) ∨ . . . ∨ x�sl−1(0) if l − k divides n
⊥ if l − k does not divide n

PO2: x ��sn(x) →
{

x ��sk(0) ∧ . . . ∧ x ��sl−1(0) if l − k divides n
� if l − k does not divide n

if x and sn(x) belong to an ultimately periodic sort of type (k, l) and n > 0.
Periodic Sort Reduction:

PS1: ∀�x, x.φ → ∀�x.φ{x �→ 0} ∧ . . . ∧ φ{x �→ sl−1(0)}
PS2: ∃�x.x.φ → ∃�x.φ{x �→ 0} ∨ . . . ∨ φ{x �→ sl−1(0)}
if x belongs to an ultimately periodic sort of type (k, l) and x occurs in φ.

Fig. 3. Rules for Ultimately Periodic Sorts
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All rules can be applied at any position in a formula and they are applied
modulo associativity and commutativity of ∨ and ∧ and modulo the identities
∃�x, �y.φ = ∃�y, �x.φ and ∀�x, �y.φ = ∀�y, �x.φ.

Example 5. For Example 1 and E = {s(s(x)).x}, the normalization with re-
spect to PDU runs as follows:

φ→∗
D2 ∃y.(x�.s(s(x)) ∨ y �.0) ∧ (x�.s(s(x)) ∨ y �.s(0))

→∗
PR ∃y.(x�.x ∨ y �.0) ∧ (x�.x ∨ y �.s(0))→∗

normalize ∃y.y �.0 ∧ y �.s(0)
→PS2 (0 �.0 ∧ 0 �.s(0)) ∨ (s(0)�.0 ∧ s(0)�.s(0)) →∗

normalize ⊥

3.2 Correctness and Termination

I will first show that →PDU rewrite steps do not change the solutions of a
formula.

Theorem 6 (Correctness). Let I be an ultimately periodic interpretation and
let φ, φ′ be two formulae such that φ →PDU φ′. Let X be a set of variables
containing the free variables of φ. Then Sol(φ,X, I) = Sol(φ′, X, I).

Proof. For free sorts and all rules but Ex1, this has been proved in [8, Proposition
1]. For any sort, correctness of Ex1 has been shown in [9, Proposition 3]. For
ultimately periodic sorts, correctness of all the rules in Figures 1 and 2 and
Periodic Sort Reduction is follows easily.

Periodic Reduction is correct because I |= sl(x).sk(x) implies that I |=
A[sl(t)]pσ ⇔ I |= A[sk(t)]pσ.

For Periodic Decomposition, let I |= (s(t).s(t′))σ. For free sorts, this is of
course equivalent to I |= (t.t′)σ, but for periodic sorts, it is also possible that
s(t)σ.s(t′)σ.sk(0) and tσ �.t′σ, namely if tσ.sl−1(0) and t′σ �.sl−1(0) or vice
versa. In this case, t′σ (or tσ, respectively) must be equal to sk−1(0) in I.
On the other hand, it is easy to verify that every solution of the reduct is
also a solution of s(t).s(t′): If, e.g., I |= (t.sk−1(0) ∧ t′.sl−1(0))σ, then I |=
s(t).sk(0).sl(0).s(t′).

For Periodic Clash Test, assume that I |= (s(t).0)σ. This is equivalent to
s(t)σ →∗

E 0. For k �= 0, such a reduction is not possible. For k = 0, sl(0) →E 0
implies that I |= (s(t).0)σ is equivalent to I |= (s(t).sl(0))σ. The equivalence
with I |= (t.sl−1(0))σ follows as for PD, using k = 0.

If Periodic Occurrence is applicable to a literal x.̇sn(x), n ≥ 0, then any
ground instance of the literal must be of the form sm(0).̇sn+m(0). Then it
holds that sm(0)↔∗

E s
n+m(0) iff l − k divides n and m ≥ k.

To prove the termination of the system, I will use many ideas of the termination
proof for DU from [8]. However, the original course of action makes extensive
use of symmetries in the rules and cannot be taken over because the generalized
Explosion creates an asymmetry.
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The proof consists of two steps: First I prove that the number of rule applica-
tions between two successive applications of the Explosion rules is finite, then I
show that the number of applications of the Explosion rules is also finite. Both
parts of the proof rely on a transformation of formulae, during which variable
occurrences are annotated by two values: The number of ∀∃ quantifier alterna-
tions above the binding position and the number of variables bound by the same
quantifier.

Definition 7 (Nφ(x), slφ(x)). Let φ be a formula in which each variable is bound
at most once and let x be a variable occurring in φ. Associate to x and φ two
integers Nφ(x) and slφ(x): If x is free in φ, define slφ(x) to be the number of
free variables in φ and Nφ(x) = 0. If x is bound in φ at position p, define slφ(x)
to be the number of variables bound at the same position of φ, and Nφ(x) is one
plus the number of ∀∃ quantifier alternations in φ above p.

This definition of Nφ(x) is slightly different from the one in [8], where all quan-
tifier alternations are counted. This difference is negligible for rules that do not
introduce any quantifiers because Nφ(x) (non-strictly) decreases for all variables
with respect to both definitions. However, the difference is crucial when the
generalized Explosion rule Ex1 is considered.

Definition 8 (>I). For a signature Σ = (S,P ,F , τ), let the set F ′ = F ∪ P ∪
{., �., ∃,#,⊥,∧,∨,¬, g, h, a} be an extension of F by fresh symbols. All elements
of F ′ are considered as function symbols over a single sort S. The symbols #,⊥, a
are constants, ∃,¬, h are unary, and ., �.,∧,∨, g are binary. For a formula φ
over Σ, that is assumed to be renamed such that each variable is bound at most
once in φ, inductively define a function Iφ(.) from formulae over Σ and terms
over F to terms over F ′ as follows. First every universal quantifier occurrence
∀�x.ψ′ in the argument is replaced by ¬∃�x.¬ψ′ and the result is normalized by the
Normalization rules from Figure 1 except ¬(∃�x.φ) �→ ∀�x.¬φ. Finally

Iφ(ψ1 ◦ ψ2) = Iφ(ψ1) ◦ Iφ(ψ2) for ◦ ∈ {∧,∨}
Iφ(∃x1, . . . , xn.ψ) = ∃n(Iφ(ψ))

Iφ(¬P (�t)) = Iφ(P (�t))
Iφ(¬ψ) = ¬Iφ(ψ) if ψ is not an atom

Iφ(◦(t1, . . . , tn)) = ◦(Iφ(t1), . . . , Iφ(tn)) for ◦ ∈ F ∪ P ∪ {#,⊥,., �.}
Iφ(x) = g(hNφ(x)(a), hslφ(x)(a))

Assume the partial ordering ¬ > g > h > f > a > . > �. > P > # > ⊥ > ∃ >
∧ > ∨ on F ′, where f is any symbol in F and P is any symbol in P, and symbols
within F and within P, respectively, are incomparable. The symbols ∧,∨,., �.
have multiset status and g and all symbols in P and F have lexicographic status.
Define an ordering >I by φ >I φ

′ ⇐⇒ Iφ(φ) >apo Iφ′(φ′).

Example 9. If t is a term that contains at least one variable and t′ is a ground
term, then Iφ(t) >apo Iφ′(t′) for any formulae φ, φ′. In fact, Iφ(t) contains a
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subterm of the form g(hn(a), hm(a)) which is already greater than Iφ′(t′) because
the latter term contains only symbols from F ∪ {., �.} and g is greater than all
these symbols.

I will show that the combination of a rule application and the following nor-
malization decreases >I for all rules except Explosion. Since normalization is
obviously terminating, this implies that only a finite number of transformation
steps can occur between two successive explosions.

Proposition 10. There is no infinite chain φ1, φ2, φ3, . . . of formulae such that
φ1 →PDU φ2 →PDU φ3 →PDU · · · and none of the steps is an Explosion.

Proof. If φ→PDU φ
′ by application of a non-Explosion rule implies φ >I φ

′, the
proposition follows because the associative path ordering >I is well-founded.

For the rules in Figures 1 and 2, φ >I φ
′ was proved by Comon and Delor [8,

Lemmas 3–9]. Periodic Sort Reduction is a syntactic variation of Finite Sort
Reduction, so the proofs for both rules are identical.

For Periodic Reduction A[t] → A[t′], note that Nφ(x) = Nφ′(x) and slφ(x) =
slφ′(x). This implies that Iφ′(t′) is a strict subterm of Iφ(t). So Iφ(t) >apo Iφ′(t′),
i.e. Iφ(φ) >apo Iφ′(φ′) by monotonicity of >apo.

For Periodic Clash Test and k > 0 or ground t, the proposition follows from
the ordering .̇ > #,⊥ on the top symbols and monotonicity of >apo. For k = 0
and non-ground t, consider the rewriting s(t).̇0 → t.̇sl−1(0). By monotonicity
of >apo, I have to show that Iφ(s(t).̇0) >apo Iφ′(t.̇sl−1(0)), which reduces after
application of the definition of I to s(Iφ(t)).̇0 >apo Iφ′(t).̇sl−1(0). Again, N
and sl do not change in this step, and so Iφ(t) = Iφ′(t).

By definition of>apo, it suffices to show that the three relations s(Iφ(t)).0 >apo
Iφ(t) and s(Iφ(t)).0 >apo s

l−1(0) and {s(Iφ(t)), 0} >mul
apo {Iφ(t), sl−1(0)} hold. All

three relations follow from s(Iφ(t)) >apo s
l−1(0) (c.f. Example 9), and the subterm

property of >apo.
For Periodic Decomposition, it suffices to show Iφ(s(t).̇s(t′)) >apo Iφ′(A) for

all newly introduced atoms A (remember that .̇ > ∧ and .̇ > ∨). Clearly
Iφ(s(t).̇s(t′)) >apo Iφ′(t.̇t′) by the subterm property of >apo. For all other
atoms, the relation Iφ(s(t).̇s(t′)) >apo Iφ′(A) follows as in the case of Periodic
Clash Test and k = 0.

For Periodic Occurrence, the proposition follows from monotonicity and the
ordering .̇ > #,⊥ on the top symbols if the literal is replaced by # or ⊥; the
argument is analogous to the one for Periodic Decomposition if the literal is
replaced by a conjunction or disjunction.

An application of Explosion to a formula does not reduce the formula with
respect to >I . Because of this, a different ordering is needed to handle explosions.
This ordering will be a lexicographic combination of orderings based on Iφ(ψ).

Lemma 11. For a formula φ, let H(φ) be one plus the maximal number of ∀∃
quantifier alternations along a path in φ. Then every application of a rule in
PDU non-strictly decreases H.
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Proof. The only rules that can add new quantifier symbols to a formula are Q1/2
and the Sort Reduction, Distribution and Explosion rules. Q1/2, Sort Reduction
and Distribution only duplicate existing quantifiers and cannot introduce new
quantifier alternations. Both Ex1 applied at an existential quantifier position and
Ex2 obviously do not introduce a new quantifier alternation. Because Explosion
only applies to a formula to which the rule P1 is not applicable, Ex1 also does
not introduce a new ∀∃ quantifier alternation if it is applied to at a universal
quantifier position.

Definition 12 (>ω). Let φ, ψ be formulae over the signature Σ = (S,P ,F , τ),
let ω be a new function symbol, and let i ≥ 1. Define the formula Ωφ,i(ψ) as the
normal form of ψ under the following rewrite system that is confluent modulo
associativity and commutativity [8, Lemma 12]:

◦(ω, . . . , ω)→ ω if ◦ ∈ F ∪ P ∪ {., �.,∨,¬}
x→ ω if Nφ(x) < i

ψ1 ∧ ω → ω

¬ψ1 ∨ ω → ¬ψ1

∀�x.ψ1 → ¬∃�x.¬ψ1

∃x.ψ1 → ψ1 if x �∈ vars(ψ1)
(∃x.ψ1) ∨ ω → ∃x.ψ1 if ∃x.ψ1 is irreducible

Let Ωi(φ) = Ωφ,i(φ). Extend the previous ordering from Definition 8 by # > ω >
∃. Moreover, define partial orderings >i and >ω by φ >i φ

′ ⇐⇒ Iφ(Ωi(φ)) >apo

Iφ′(Ωi(φ′)) and φ >ω φ′ ⇐⇒ there is an index i such that Iφ(Ωj(φ)) =
Iφ′(Ωj(φ′)) for all j > i and φ >i φ

′.

Lemma 11 implies Ωj(φn) = ω for all formulae φn in a derivation φ1 →PDU

φ2 →PDU · · · and all j above the fixed boundary H(φ1). Hence >ω is well-
founded on {φ1, φ2, . . .} as a lexicographic combination of the well-founded par-
tial orderings >H(φ1), . . . , >2, >1 .

Lemma 13. Let φ→ φ′ not be an Explosion. Then φ ≥i φ
′ for all i ≥ 1.

Proof. For the rules in Figures 1 and 2, this was proved by Comon and Delor [8,
Lemma 15].

For Periodic Reduction A[t]p → A[t′]p, Nx(φ) = Nx(φ′) implies that Ωφ′,i(t′)
is a subterm of Ωφ,i(t).

For Periodic Clash Test and k > 0 or ground t, note that the top symbol of
Ωφ,i(s(t).̇0) is either .̇ or ω, and both are larger than ⊥. For k = 0 and non-
ground t, consider the rewriting s(t).̇0 → t.̇sl−1(0). Again, N does not change
in this step, and so applying Ωφ,i and Ωφ′,i, respectively, yields the normal form
ω for both sides if t reduces to ω, and the literals s(t′).̇ω and t′.̇ω if t reduces to
some other term t′. In both cases, Iφ(Ωφ,i(s(t).̇0)) ≥apo Iφ′(Ωφ′,i(t.̇sl−1(0))).

For Periodic Decomposition, let ψ = s(t).̇s(t′) reduce to ψ′. If t and t′

are ground, then Ωφ,i(ψ) = Ωφ′,i(ψ′) = ω. So let t not be ground. It suffices
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to show that Iφ(Ωφ,i(ψ)) is at least as large as Iφ(Ωφ,i(A)) = Iφ′(Ωφ′,i(A))
for all newly introduced literals A. Iφ(Ωφ,i(ψ)) ≥apo Iφ(Ωφ,i(t.̇t′)) holds be-
cause Iφ(Ωφ,i(ψ)) ≥apo Iφ(Ωφ,i(t)) and Iφ(Ωφ,i(ψ)) ≥apo Iφ(Ωφ,i(t′)) and also
{Iφ(Ωφ,i(s(t))), Iφ(Ωφ,i(s(t′)))} ≥mul

apo {Iφ(Ωφ,i(t)), Iφ(Ωφ,i(t′))}, all by the sub-
term property of >apo. The ground term sl−1(0) reduces to the minimal term
ω, and so Iφ(Ωφ,i(ψ)) ≥apo Iφ(Ωφ,i(t.̇t′)) ≥apo Iφ(Ωφ,i(t.̇sl−1(0))). The same
holds for the literals t′.̇sl−1(0), t.̇sk−1(0), and t′.̇sk−1(0).

For Periodic Occurrence, the proposition follows from Ωφ′,i(#) = Ωφ′,i(⊥) =
ω and the ordering .̇, ω ≥ ω if the literal is replaced by # or ⊥; otherwise it
follows as for Periodic Decomposition.

The ordering >ω is still not strong enough to show directly that the Explo-
sion rules are decreasing in some sense. In fact, if φ →Ex1/2 φ

′, then φ′ >ω φ.
However, the non-Explosion rule applications following such a step revert this
increase. The proofs of the following Lemmas 15–17 are almost identical to the
respective proofs for DU [8, Lemmas 16–18]; they are presented anyway because
it is there that the difference in definitions of Nφ(x) is of importance.

Definition 14 (Explosion Level Lφ). Let φ→Ex1/2 φ
′ be an explosion using

the literal y.̇t[z]. The explosion level Lφ is defined as Lφ = Nφ(z).

By the control on Ex1/2, it holds that Nφ(z) ≥ Nφ(y).

Lemma 15. Let φ →Ex1
∨

f φf or φ →Ex2
∧

f φf be an explosion at the root
position of φ and let φf →∗

PDU\{Ex1,Ex2} ψf such that every ψf is irreducible
with respect to PDU \ {Ex1, Ex2}. Then for every f there is an index i ≥ Lφ

such that (i) Iφf
(Ωj(φf )) = Iψf

(Ωj(ψf )) for every j > i and (ii) φf >i ψf .

Proof. Let i be the largest index such that Iφf
(Ωi(φf )) �= Iψf

(Ωi(ψf )). By the
side conditions of Ex1/2, i exists and i ≥ Lφ. By Lemma 13, Iφf

(Ωi(φf )) ≥
Iψf

(Ωi(ψf )) and since, by definition of i, they are distinct, φf >i ψf follows.

Lemma 16. Let φ →Ex1
∨

f φf or φ →Ex2
∧

f φf be an explosion at the root
position of φ and let

∨
f φf →∗

PDU\{Ex1,Ex2} ψ, or
∧

f φf →∗
PDU\{Ex1,Ex2} ψ,

respectively, such that ψ is irreducible with respect to PDU \ {Ex1, Ex2}. Then
φ >ω ψ.

Proof. I show the proposition for Ex1; the case of Ex2 is analogous. By definition
of Ω and Lφ, Iφ(Ωi(φ)) = Iφf

(Ωi(φf )) for every f and every i ≥ Lφ.3 No rule
can affect two disjuncts at the same time unless one becomes equal to # and
the whole problem reduces to # and hence obviously decreases wrt. >ω. So let
ψ =

∨
f ψf and φf →∗

PDU\{Ex1,Ex2} ψf . Then φ >ω ψf for every f because of
Lemma 15. Let if be the index from this lemma for φf and let i be the maximum
of the if . The top symbol of φ can only be a quantifier, i.e. the top of Iφ(Ωi(φ))
is either ∃¬ or ¬ and hence greater than the top symbol of Iψ(Ωi(ψ)). Hence
φ >ω ψ.
3 For Ex1, this does not hold for the original definition of Nφ(x), because an additional

quantifier level may have been introduced!
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Lemma 17. Let φ→Ex1/2 φ
′ →∗

PDU\{Ex1,Ex2} ψ →Ex1/2 · · · . Then φ >ω ψ.

Proof. Lemma 16 shows this when Ex1 or Ex2 is applied at the top position of φ.
At other positions, no rule can modify the context of the exploded subformula,
unless this subformula itself reduces to # or ⊥. But if this happens, the part
which disappears is deeper than the part which is modified and φ >ω ψ.

Theorem 18 (Termination). There is no infinite chain φ1, φ2, φ3, . . . of for-
mulae such that φ1 →PDU φ2 →PDU φ3 →PDU · · · .

Proof. Because of Lemma 17, each chain can only contain a finite number of
Explosion steps. Because of Proposition 10, there can also only be finitely many
successive non-Explosion steps.

4 Predicate Completion

When an interpretation is given as the minimal model IN of a set N of Horn
clauses, it is often of interest to enrich N to a set N ′ in such a way that N ′ does
not have any Herbrand models other than IN . The key to this enrichment is the
so-called completion of predicates [4]: For each predicate P , the set N ′ has to
describe for which arguments P does not hold in IN .

Example 19. If NEven = {Even(0), Even(x) → Even(s(s(x)))} describes the
even numbers over the signature ΣEven = ({Nat}, {Even}, {s, 0}, {s : Nat →
Nat, 0 : Nat, Even : Nat}), then Even(sn(0)) holds in the minimal model
INEven if and only if n is an even number. Let N ′

Even contain NEven and the
additional clauses Even(s(0)) → and Even(s(s(x))) → Even(x). Then INEven is
the only Herbrand model of N ′

Even over ΣEven.

For predicative Horn clause sets N , . is interpreted as syntactic equality in IN .
Comon and Nieuwenhuis [10, Section 7.3] used this fact to develop a predicate
completion procedure for predicative and universally reductive Horn clause sets
based on a disunification algorithm. They did not, however, give a formal proof
of the correctness of the procedure. In this section, I will extend the predicate
completion algorithm to clause sets describing ultimately periodic interpretations
and prove its correctness and termination.

Definition 20 (PC). Let Σ = (S,P ,F , τ) be a signature and let IN∪E be an
ultimately periodic interpretation over Σ as in Definition 3 and let all clauses
in N be universally reductive.

The predicate completion algorithm PC works as follows:

(1) For P ∈ P, let NP ⊆ N be the set of clauses in N of the form Γ → P (�t).
Combine all these clauses into the single formula ∀�x.(φP → P (�x)) where

φP = ∃�y.
∨

Γ→P (�t)∈NP

(x1.t1 ∧ . . . ∧ xn.tn ∧
∧

A∈Γ

A) ,

the yi are the variables appearing in NP , and the xj are fresh variables.
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(2) In the interpretation IN , the formula ∀�x.(φP → P (�x)) is equivalent to
∀�x.(¬φP → ¬P (�x)). Transform ¬φP using the algorithm PDU with respect
to IN∪E into an equivalent formula φ′P that does not contain any universal
quantifiers.

(3) Write the formula ∀�x.(φ′P → ¬P (�x)) as a set finite N ′
P of clauses.

(4) Let N ′ be the union of N and all sets N ′
P , P ∈ P.

Clark [4] showed that, given that the transformation of ¬φP to φ′P is correct
and ∀�x.(φ′P → ¬P (�x)) does correspond to a set of clauses, N ′ is a completion of
N . So the critical steps are (2) and (3): It is neither obvious that the universal
quantifiers can be eliminated from ¬φP , nor is it obvious that, once the universal
quantifiers are gone, the result can be written as a finite set of clauses. To address
the second issue, I can make use of the fact that certain normal forms with respect
to PDU can be transformed into a particularly simple form:

Definition 21 (Solved Form). A formula φ is a solved form if φ = #, φ = ⊥,
or φ is a disjunction φ = φ1 ∨ . . . ∨ φm and each φj is of the shape

φj = ∃�y.xi1.t1∧. . .∧xin.tn∧A1∧. . .∧Ak∧¬B1∧. . .∧¬Bk′∧z1 �.t′1∧. . .∧zl �.t′l ,

where xi1 , . . . , xin occur only once in φj , the Ai and Bi are predicative atoms,
the zi are variables and zi �= t′i.

Lemma 22. Let I be an ultimately periodic interpretation and let φ be a formula
in negation normal form that does not contain any universal quantifiers. Then φ
can be transformed into an equivalent solved form. If furthermore φ is irreducible
by PDU, then all bound variables of the solved from are of infinite sorts.4

Proof. A terminating algorithm to perform the conversion for equational formu-
lae was given by Comon and Lescanne [9, Section 5.3] and Comon and Delor [8,
Sections 6.2 and 6.3]. This algorithm preserves the solutions of a formula with
respect to every interpretation I. It mainly uses variations of the rules Q1, Q6
and N2 and the rule x.t ∧ x.u→ x.t ∧ t.u (where t is not a variable). Pred-
icative atoms P (�t) can be encoded as equations fP (�t).true, where fP and true
are new function symbols.

If φ is irreducible by PDU, then it is in particular irreducible by Finite and Pe-
riodic Sort Reduction and does not contain any bound variables of a finite free or
ultimately periodic sort. Since the transformation algorithm does not introduce
any new quantifiers, this invariant is preserved throughout the transformation.

So the formula ∀�x.(φ′P → ¬P (�x)) is equivalent to either # or ∀x.¬P (�x) (i.e. to
the empty clause set or to the single clause {P (�x) →}), or to ∀�x.

∧
j(φ

′
j →

¬P (�x)), and each conjunct can equivalently be written as a clause of the form
A1, . . . , Ak, P (�x){xi1 !→ t1, . . . , xin !→ tn} → B1, . . . , Bk, z1.t′1, . . . , zl.t′l.
4 The second part of this lemma is not relevant to the current considerations, but it

will be used in Section 5.
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To prove that the universal quantifiers can in fact be eliminated from ¬φP , I
will examine an invariant that holds for ¬φP (Lemma 23), is preserved during
the application of PDU (Lemma 24), and holds only for normal forms that do
not contain universal quantifiers (Lemma 27).

Invariant 1. Let φ↓ be the normal form of a formula φ under the Normalization
rules, Decomposition, Periodic Decomposition and Distribution. Consider the
following properties of φ:

(1) No subformula of φ↓ of the form ∀�x.φ′ contains a quantifier.
(2) Universally quantified variables occur in φ↓ only in predicative literals or in

disequations t[x]�.t′ where all variables in t′ are free or existentially quanti-
fied.

For every predicative literal occurrence Ax in φ↓ containing a universally
quantified variable x, there is a subformula of φ↓ of the form Ax ∨ Bx ∨ φx

where Bx is a disequation containing x.

Lemma 23. Let N be a universally reductive Horn clause set and let φP be
defined as in Definition 20. Then the invariant holds for ¬φP .

Proof. The normal form (¬φP )↓ of ¬φP is

(¬φP )↓ = ∀�y.
∧

Γ→P (�t)∈NP

(x1 �.t1 ∨ . . . ∨ xn �.tn ∨
∨

A∈Γ

¬A) .

Invariant 1 holds because there are no nested quantifiers in (¬φP )↓. Invariant 2
holds because all clauses in N are universally reductive, and so every variable
that occurs in a predicative literal A also occurs in one of the disequations xi �.ti
in the same conjunct of (¬φP )↓.

Lemma 24. Let φ→PDU φ
′. If φ satisfies the invariant then so does φ′.

Proof. Invariant 1: The only rule to introduce a possibly critical quantifier sym-
bol is the rule Ex1 applied to a subformula of the form ∀�x.ψ′, i.e. φ[∀�x.ψ′]p →
φ[
∨

f∈F ′ ∃�xf .y.f(�xf )∧∀�x.ψ′{y !→ f(�xf )}]p. If the new existential quantifier ∃�xf

is in the scope of a universal quantifier in φ′ and φ′↓, then so was the original
universal quantifier ∀�x in φ and φ↓.
Invariant 2: This invariant can only be destroyed by introducing new universally
quantified variables into a literal, by disconnecting Ax and Bx, or by altering a
disequation Bx.

It is easy to see that all rules that do not replace variables or reduce Bx

preserve the invariant.
If C2, O2, PC2 or PO2 reduces Bx to #, then the whole subformula Ax ∨

Bx ∨ φx is reduced to # by the normalization rules, i.e. the invariant is main-
tained. Alternatively, PC2 can alter Bx by s(t[x])�.0 → t �.sl−1(0). By PD2 and
Normalization, this literal either reduces to # or to a formula ψ consisting of
disjunctions, conjunctions and literals such that ψ contains x in disequations
t′′[x]�.t′ as required for the invariant. In the former case, the whole disjunction
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Ax ∨ ψ ∨ φx reduces to #; in the latter, the distribution rule is applicable be-
cause the disequation is in the scope of a universal quantifier and Invariant 1
guarantees that there is no existential quantifier in between. Distribution brings
Ax∨ψ∨φx into the form ψ′

1∧. . .∧ψ′
n where each ψ′

i is of the form Ax∨x�.t′∨ψ′′
i ,

i.e. the invariant is preserved.
PO2 is not applicable to a disequationBx because one side contains a universal

quantifier and the other one does not.
The Sort Reduction rules only replace variables by ground terms and thus are

harmless.
If Q5: φ[∀�x, x.x�.t ∨ ψ]p → φ[∀�x.ψ{x !→ t}]p works on a universally quan-

tified variable x (and Bx may or may not be x�.t), then every occurrence of
x is replaced by a term that, by Invariant 1, does not contain any universally
quantified variables, which maintains the invariant.

When Q6: φ[∃�y, y.y.t ∧ ψ]p → φ[∃�y.ψ{y !→ t}]p is applied, then t contains
only free or existentially quantified variables because of Invariant 1. Again, the
invariant is not affected.

An Explosion Ex1: φ[∃�x.ψ]p → φ[
∨

f∈F ′ ∃�x, �xf .y.f(�xf ) ∧ ψ{y !→ f(�xf )}]p
replaces a variable y that is free in ψ. By Invariant 1, this variable is existentially
quantified or free in φ and the replacement f(�xf ) contains only existentially
quantified variables. The same holds for the second version of Ex1.

An Explosion Ex2: φ[∀�x.ψ]p → φ[
∧

f∈F ′ ∀�x, �xf .y �.f(�xf ) ∨ ψ{y !→ f(�xf )}]p
cannot be executed because it relies on the existence of a variable that is exis-
tentially quantified in ψ, which is excluded by Invariant 1.

Lemma 25. Let φ[ψ]p be a formula containing a subformula ψ that is reducible
by PDU. Then φ is also reducible by PDU.

Proof. The only contextual conditions in the control part of the rules are irre-
ducibility conditions; the only situations where the control can prevent a reduc-
tion φ[ψ]p →PDU φ[ψ′]p when ψ →PDU ψ

′ are such that there is another redex
in φ.5

Lemma 26. A normal form with respect to PDU does not contain nested quan-
tifiers.

Proof. Comon and Delor showed that normal forms with respect to DU do not
contain nested quantifiers [8, Lemma 22]. Every well-sorted formula that is re-
ducible by DU is also reducible by PDU.

Lemma 27. A normal form with respect to PDU is free of universal quantifiers
if it (i) fulfills the invariant or (ii) does not contain any predicative literals.

Proof. Consider a formula that fulfills the invariant or does not contain any
predicative atoms but contains a subformula ∀�x.φ. Assume that the whole for-
mula and hence, by Lemma 25, ∀�x.φ is irreducible by PDU. This will result in
a contradiction.
5 This proof is identical to the proof of the corresponding lemma for DU [8, Lemma

21].
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By Lemma 26, φ can only be a disjunction, a conjunction, or a literal. If it
is a conjunction, then Q2 is applicable. The case that φ is a literal arises as the
special case of a disjunction with only one disjunct. So let φ be a disjunction.
If a disjunct contains a variable from �x, then it must be a literal: If it is a
conjunction then rule N2 applies, and the top symbol cannot be a quantifier
because of Lemma 26.

So φ can be written as φ = φ1∨. . .∨φn∨φ′, where the φi are literals containing
universal variables and φ′ does not contain any universal variables. Because of
the Normalization rules, each φi can only be a predicative literal or an equational
literal.
φi cannot be a disequation: Because of the decomposition rules, it would be

either x�.t or y �.t[x] where x ∈ �x and y is free in φ. In the former case, Q5 is
applicable, in the latter Ex1.
φi can only be predicative in variant (i) of the lemma, and then Invariant 2

requires that one of the other φj is a disequation containing a variable from �x.
This possibility has already been refuted.

If φi is an equation, the decomposition rules only leave the possibilities x.t
and y.t[x] where x ∈ �x and y is free in φ. In the latter case, Ex1 applies, so
only x.t is possible.

All in all, φ is of the form φ = xi1.t1 ∨ . . . ∨ xin.tn ∨ φ′ and Q6 applies.

Lemmas 23, 24, and 27(i) imply that PDU eliminates the universal quantifiers
from ¬φP . Together with Lemma 22 and the correctness and termination of
disunification (Theorems 6 and 18), this implies the applicability and the termi-
nation of the predicate completion algorithm PC.

Theorem 28 (Predicate Completion). Let Σ = (S,P ,F , τ) be a signature
and let IN∪E be an ultimately periodic interpretation over Σ as in definition 3.

If N is universally reductive, then PC terminates on IN∪E with a completion
of N .

Example 29. For Example 19, φEven = x.0 ∨ ∃y.y.s(s(x)) ∧ Even(y) and a
normal form of ¬φEven with respect to PDU and an equation E = {sl(x).x} is

φ′Even =

⎧⎨⎩
x�.sl−1(0) ∧ ¬Even(x) for l ∈ {1, 2}
(x.s(0) ∧ ¬Even(sl−1(0)))
∨ (∃z.x.s(s(z)) ∧ ¬Even(z) ∧ z �.sl−2(0)) for l > 2 .

This formula corresponds to the following clauses in N ′
Even:⎧⎨⎩

Even(x) → Even(x), x.sl−1(0) for l ∈ {1, 2}
Even(s(0)) → Even(sl−1(0))

and Even(s(s(z))) → Even(z), z.sl−2(0) for l > 2

5 Decidability of the Satisfiability of Equational Formulae

It is obvious that the decidability of the satisfiability of equational formulae
in models over free sorts implies the decidability of the satisfiability of equa-
tional formulae in models over both free and ultimately periodic sorts: As there
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are only finitely many non-equivalent terms of each ultimately periodic sort,
variables of such sorts can be eliminated by immediate grounding of quantified
variables (e.g. with the rules PS1, PS2) and free variables (by the transformation
φ → φ{x !→ 0} ∨ . . . ∨ φ{x !→ sl−1(0)}) in both model description and query
formula. If then every term of an ultimately periodic sort is replaced by a unique
representative of its equivalence class, the original disunification algorithm de-
cides satisfiability.

The eager grounding leads, however, to a huge blow-up of both the set N
of clauses describing the model and the query formula. The combination of the
results of the previous sections provides a more flexible decision procedure for
the satisfiability of an equational formula φ in a given ultimately periodic inter-
pretation I that allows to postpone grounding and thus improve the practical
efficiency of the decision procedure:

Lemma 30. Let I be an ultimately periodic interpretation and let φ �= ⊥ be a
solved form in which all variables are of infinite sorts and all atoms are equa-
tional. Then φ has at least one solution in I.

Proof. For φ = #, this is trivial. Otherwise consider a disjunct as in Defini-
tion 21. Since all variables appearing in z1 �.t′1 ∧ . . . ∧ zl �.t′l are of infinite sorts,
these disequations have a common solution σ (cf. e.g. [8, Lemma 2]). Then
{xi1 !→ t1σ, . . . , xin !→ tnσ} is a solution of the considered disjunct (and hence
also of φ) with respect to I and the variables xi1 , . . . , xin . This solution can
trivially be extended to a solution for all free variables of φ.

Theorem 31 (Decidability of Satisfiability). Let I be an ultimately periodic
interpretation over the signature Σ. Then satisfiability in I of an equational
formula φ over Σ is decidable.

Proof. Let �x be the free variables in φ of finite (e.g. ultimately periodic) sorts.
Then φ is satisfiable in I iff ∃�x.φ is. Using PDU, ∃�x.φ can be transformed into
an equivalent normal form φ′. Because φ does not contain any predicative atoms,
neither does φ′. Lemma 27(ii) implies that φ′ is free of universal quantifiers and
Lemma 22 states that it can be transformed into an equivalent solved form. By
Lemma 30, it is decidable whether this solved form (and hence also φ) has a
solution in I.

The same does not hold for formulae containing predicative atoms, as e.g. the
formula ∀y.P (y) is a normal form with respect to PDU if y is of a free and
infinite sort.

6 Implementation

A single-sorted version of the presented algorithms has been implemented on top
of the automated theorem prover Spass [25]. Spass is a theorem prover for full
first-order logic with equality and a number of non-classical logics and provides
support for first-order formulas with both equational and predicative atoms.
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I represent ultimate periodicity equation using a globally accessible data struc-
ture that provides easy access to the defining equation sl(x).sk(x) itself as well
as the values k and l. Formulas are represented using the term module of Spass.
To improve the efficiency of the implementation of PDU, I adapted the data
structures to grant instant access to regularly needed information. In particular,
I used parent links to efficiently navigate through formulas. Since some rules like
Q5/6, Sort Reduction and Explosion perform non-local changes in the formula, it
is not possible to normalize the formula in one run, e.g. bottom up, but multiple
successive runs are needed. To keep track of which subformulas are normalized,
every subformula is additionally equipped with a normality marker that is set
when the subformula is normalized and only reset for subformulas in which a
replacement takes place and avoids traversing subtrees where all reduction steps
have already been performed.

The implementation of PC consists of several steps: First the input is parsed,
the ultimate periodicity information extracted and the input clauses partitioned
with respect to the predicate of their maximal succedent atom. For each pred-
icate, the formula φP is then created and the implementation of PDU is used
to compute a normalization of ¬φP . The solved form computation is performed
by the same implementation in a post-processing step. Finally, the resulting
completion is extracted in a straightforward way.

Since the completed clause set can directly be used as an input for Spass,
this implementation effectively allows Spass to perform minimal model reason-
ing with a first-order machinery. The implementation has been tested on and
optimized with the help of the problems in the TPTP library [24]. To be able
to use a broad range of problems from the different problem classes in this li-
brary, I allowed every first-order problem from this library as an input. To make
them match the applicability restrictions of PC, I eliminated those clauses in
each problem that were not Horn or not obviously universally reductive or that
contained equations. The implementation is available from the Spass homepage
(www.spass-prover.org/prototypes/).

7 Conclusion

In this article, I have presented the disunification algorithm PDU for ultimately
periodic interpretations, proved its correctness and termination, and used the
algorithm to establish the decidability of satisfiability for equational formulae
in such interpretations. I have also presented the disunification-based predicate
completion algorithm PC for ultimately periodic interpretations defined by uni-
versally reductive Horn clauses. This extends work by Comon and Delor [8] and
Comon and Nieuwenhuis [10]. An instance of both PDU and PC has been im-
plemented as part of a predicate completion procedure on top of the first-order
theorem prover Spass [25]. Predicate completion can easily be generalized to
non-Horn clauses (cf. [14]). However, this requires additional machinery that is
beyond the scope of this paper, like a saturation concept, an adapted notion
of universally reductive clauses and the consideration of non-unique minimal
models.

www.spass-prover.org/prototypes/
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The algorithms have been implemented. To my best knowledge, this pro-
vides the first publicly available implementation of disunification and predicate
completion.

The approach of widening the scope of disunification that is most closely
connected to mine is the one by Comon [6], who adapted a predecessor of the
algorithm by Comon and Delor to interpretations T (F)/E where E is a so-called
quasi-free or compact axiomatization. This approach only results in a terminat-
ing procedure if (among other conditions) all equations have depth at most 1.
Another way to extend disunification is by considering not only term algebras
but more general structures. Comon and Lescanne [9] and Maher [20] considered
rational tree algebras and Comon and Delor [8] extended disunification to classes
of non-regular tree algebras.

One possible application of both disunification for ultimately periodic inter-
pretations in general and predicate completion in particular is resolution-based
inductive theorem proving: Ultimately periodic interpretations appear naturally
as models of formulae of propositional linear time linear logic [19]. Moreover,
it should be possible to generalize recent decidability results by Horbach and
Weidenbach for inductive reasoning with respect to models represented e.g. by
disjunctions of implicit generalizations [14,15].

Acknowledgements. I want to thank Michel Ludwig and Ullrich Hustadt for
sharing their interest in ultimately periodic interpretations, which initiated this
research. This work is supported by the German Transregional Collaborative
Research Center SFB/TR 14 AVACS.
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Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 332–347. Springer,
Heidelberg (2009)

16. Jouannaud, J.-P., Kirchner, C.: Solving equations in abstract algebras: A rule-based
survey of unification. In: Lassez, J.-L., Plotkin, G. (eds.) Computational Logic -
Essays in Honor of Alan Robinson, pp. 257–321. MIT Press, Cambridge (1991)

17. Jouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM J. Comput. 15(4), 1155–1194 (1986)

18. Lassez, J.-L., Maher, M.J., Marriott, K.: Unification revisited. In: Boscarol, M.,
Levi, G., Aiello, L.C. (eds.) Foundations of Logic and Functional Programming.
LNCS, vol. 306, pp. 67–113. Springer, Heidelberg (1988)

19. Ludwig, M., Hustadt, U.: Resolution-based model construction for PLTL. In: Lutz,
C., Raskin, J.-F. (eds.) TIME, pp. 73–80. IEEE Computer Society, Los Alamitos
(2009)

20. Maher, M.J.: Complete axiomatizations of the algebras of finite, rational and infi-
nite trees. In: LICS, pp. 348–357. IEEE Computer Society, Los Alamitos (1988)

21. Mal’cev, A.I.: Axiomatizable classes of locally free algebra of various type. In:
Wells, B.F. (ed.) The Metamathematics of Algebraic Systems: Collected Papers
1936–1967, ch. 23, pp. 262–281. North Holland, Amsterdam (1971)

22. Plotkin, G.: Building in equational theories. In: Meltzer, B.N., Michie, D. (eds.)
Machine Intelligence, vol. 7, pp. 73–90. Edinburgh University Press (1972)

23. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal
of the ACM 12(1), 23–41 (1965)

24. Sutcliffe, G.: The TPTP problem library and associated infrastructure. Journal of
Automomated Reasoning 43(4), 337–362 (2009)

25. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS version 3.5. In: Schmidt, R.A. (ed.) Automated Deduction – CADE-22.
LNCS, vol. 5663, pp. 140–145. Springer, Heidelberg (2009)



Synthesis of Trigger Properties�

Orna Kupferman1 and Moshe Y. Vardi2

1 Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
orna@cs.huji.ac.il

http://www.cs.huji.ac.il/∼orna
2 Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.

vardi@cs.rice.edu
http://www.cs.rice.edu/∼vardi

Abstract. In automated synthesis, we transform a specification into a system
that is guaranteed to satisfy the specification. In spite of the rich theory devel-
oped for temporal synthesis, little of this theory has been reduced to practice.
This is in contrast with model-checking theory, which has led to industrial de-
velopment and use of formal verification tools. We address this problem here by
considering a certain class of PSL properties; this class covers most of the prop-
erties used in practice by system designers. We refer to this class as the class of
trigger properties.

We show that the synthesis problem for trigger properties is more amenable
to implementation than that of general PSL properties. While the problem is still
2EXPTIME-complete, it can be solved using techniques that are significantly
simpler than the techniques used in general temporal synthesis. Not only can we
avoid the use of Safra’s determinization, but we can also avoid the use of progress
ranks. Rather, the techniques used are based on classical subset constructions.
This makes our approach amenable also to symbolic implementation, as well as
an incremental implementation, in which the specification evolves over time.

1 Introduction

One of the most significant developments in the area of program verification over the
last two decades has been the development of algorithmic methods for verifying tempo-
ral specifications of finite-state programs; see [CGP99]. A frequent criticism against this
approach, however, is that verification is done after significant resources have already
been invested in the development of the program. Since programs invariably contain er-
rors, verification simply becomes part of the debugging process. The critics argue that
the desired goal is to use the specification in the program development process in order
to guarantee the design of correct programs. This is called program synthesis.

The classical approach to program synthesis is to extract a program from a proof that
the specification is satisfiable [BDF+04, EC82, MW80, MW84]. In the late 1980s, sev-
eral researchers realized that the classical approach to program synthesis is well suited to
closed systems, but not to open (also called reactive) systems [ALW89, Dil89, PR89a].
In reactive systems, the program interacts with the environment, and a correct program

� Work supported in part by NSF grant CCF-0728882, by BSF grant 9800096, and by gift from
Intel. Part of this work was done while the second author was on sabbatical at the Hebrew
University of Jerusalem.
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should satisfy the specification with respect to all environments. Accordingly, the right
way to approach synthesis of reactive systems is to consider the situation as a (possibly
infinite) game between the environment and the program. A correct program can be then
viewed as a winning strategy in this game. It turns out that satisfiability of the specifi-
cation is not sufficient to guarantee the existence of such a strategy. Abadi et al. called
specifications for which a winning strategy exists realizable. Thus, a strategy for a pro-
gram with inputs in I and outputs in O maps finite sequences of inputs (words in (2I)∗

– the actions of the environment so far) to an output in 2O – a suggested action for the
program. Thus, a strategy can be viewed as a labeling of a tree with directions in 2I by
labels in 2O.

The traditional algorithm for finding a winning strategy transforms the specifica-
tion into a parity automaton over such trees such that a program is realizable pre-
cisely when this tree automaton is nonempty, i.e., it accepts some infinite tree [PR89a].
A finite generator of an infinite tree accepted by this automaton can be viewed as a
finite-state program realizing the specification. This is closely related to the approach
taken in [BL69, Rab72] in order to solve Church’s solvability problem [Chu63]. In
[KV00, PR89b, WD91, Var95] it was shown how this approach to program synthesis
can be carried out in a variety of settings.

In spite of the rich theory developed for program synthesis, and recent demonstra-
tions of its applicability [BGJ+07], little of this theory has been reduced to practice.
Some people argue that this is because the realizability problem for linear-temporal
logic (LTL) specifications is 2EXPTIME-complete [PR89a, Ros92], but this argument
is not compelling. First, experience with verification shows that even nonelementary
algorithms can be practical, since the worst-case complexity does not arise often. For
example, while the model-checking problem for specifications in second-order logic
has nonelementary complexity, the model-checking tool MONA [EKM98, Kla98] suc-
cessfully verifies many specifications given in second-order logic. Furthermore, in some
sense, synthesis is not harder than verification. This may seem to contradict the known
fact that while verification is “easy” (linear in the size of the model and at most exponen-
tial in the size of the specification [LP85]), synthesis is hard (2EXPTIME-complete).
There is, however, something misleading in this fact: while the complexity of synthesis
is given with respect to the specification only, the complexity of verification is given
with respect to the specification and the program, which can be much larger than the
specification. In particular, it is shown in [Ros92] that there are temporal specifications
for which every realizing program must be at least doubly exponentially larger than the
specifications. Clearly, the verification of such programs is doubly exponential in the
specification, just as the cost of synthesis.

As argued in [KPV06], we believe that there are two reasons for the lack of practi-
cal impact of synthesis theory. The first is algorithmic and the second is methodolog-
ical. Consider first the algorithmic problem. The traditional approach for constructing
tree automata for realizing strategies uses determinization of Büchi automata. Safra’s
determinization construction has been notoriously resistant to efficient implementa-
tions [ATW05, THB95] 1, results in automata with a very complicated state space, and

1 An alternative construction is equally hard [ATW05]. Piterman’s improvement of Safra in-
cludes the tree structures that proved hard to implement [Pit07].
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involves the parity acceptance condition. The best-known algorithms for parity-tree-
automata emptiness [Jur00] are nontrivial already when applied to simple state spaces.
Implementing them on top of the messy state space that results from determinization
is highly complex, and is not amenable to optimizations and a symbolic implementa-
tion. In [KV05c, KPV06], we suggested an alternative approach, which avoids deter-
minization and circumvents the parity condition. While the Safraless approach is much
simpler and can be implemented symbolically, it is based on progress ranks. The need
to manipulate ranks requires multi-valued data structures, making the symbolic imple-
mentation difficult [TV07, DR09]. This is in contrast with symbolic implementations
of algorithms based on the subset construction without ranks, which perform well in
practice [MS08a, MS08b].

Another major issue is methodological. The current theory of program synthesis
assumes that one gets a comprehensive set of temporal assertions as a starting point.
This cannot be realistic in practice. A more realistic approach would be to assume an
evolving formal specification: temporal assertions can be added, deleted, or modified.
Since it is rare to have a complete set of assertions at the very start of the design process,
there is a need to develop incremental synthesis algorithms. Such algorithms can, for
example, refine designs when provided with additional temporal properties.

One approach to tackle the algorithmic problems has been to restrict the class of al-
lowed specification. In [AMPS98], the authors studied the case where the LTL formulas
are of the form � p, � p, � � p, or � � p.2 In [AT04], the authors considered the frag-
ment of LTL consisting of boolean combinations of formulas of the form � p, as well as
a richer fragment in which the � operator is allowed. Since the games corresponding
to formulas of these restricted fragments are simpler, the synthesis problem is much
simpler; it can be solved in PSPACE or EXPSPACE, depending on the specific frag-
ment. Anther fragment of LTL, termed GR(1), was studied in [PPS06]. In the GR(1)
fragment (generalized reactivity(1)) the formulas are of the form (� � p1 ∧ � � p2 ∧
· · ·� � pm) → (� � q1 ∧ � � q2 ∧ · · ·� � qn), where each pi and qi is a Boolean
combination of atomic propositions. It is shown in [PPS06] that for this fragment, the
synthesis problem can be solved in EXPTIME, and with only O((mn · 2|AP |)3) sym-
bolic operations, where AP is the set of atomic propositions.

We continue the approach on special classes of temporal properties, with the aim
of focusing on properties that are used in practice. We study here the synthesis prob-
lem for TRIGGER LOGIC. Modern industrial-strength property-specification languages
such as Sugar [BBE+01], ForSpec [AFF+02], and the recent standards PSL [EF06],
and SVA [VR05] include regular expressions. TRIGGER LOGIC is a fragment of these
logics that covers most of the properties used in practice by system designers. Techni-
cally, TRIGGER LOGIC consists of positive Boolean combinations of assertions about
regular events, connected by the usual regular operators as well as temporal implica-
tion, !→ (“triggers”). For example, the TRIGGER LOGIC formula (true[∗]; req; ack ) !→
(true[∗]; grant) holds in an infinite computation if every request that is immediately
followed by an acknowledge is eventually followed by a grant. Also, the TRIGGER

LOGIC formula (true[∗]; err)!→!(true[∗]; ack) holds in a computation if once an er-
ror is detected, no acks can be sent.

2 The setting in [AMPS98] is of real-time games, which generalizes synthesis.
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We show that TRIGGER LOGIC formulas can be translated to deterministic Büchi
automata using the two classical subset constructions: the determinization construction
of [RS59] and the break-point construction of [MH84]. Accordingly, while the synthesis
problem for TRIGGER LOGIC is still 2EXPTIME-complete, our synthesis algorithm is
significantly simpler than the one used in general temporal synthesis. We show that this
also yields several practical consequences: our approach is quite amenable to symbolic
implementation, it can be applied to evolving specifications in an incremental fashion,
and it can also be applied in an assume-guarantee setting. We believe that the simplicity
of the algorithm and its practical advantages, coupled with the practical expressiveness
of TRIGGER LOGIC, make an important step in bridging the gap between temporal-
synthesis theory and practice.

2 Trigger Logic

The introduction of temporal logic to computer science, in [Pnu77], was a watershed
point in the specification of reactive systems, which led to the development of model
checking [CGP99]. The success of model checking in industrial applications led to
efforts to develop “industrial” temporal logics such as Sugar [BBE+01] and ForSpec
[AFF+02], as well as two industry-standard languages, PSL [EF06] and SVA [VR05].

A common feature of these languages is the use of regular expressions to describe
temporal patterns. For example, the regular expression request ; true+; grant ; true+; ack
describes an occurrence of request , followed by grant , followed by ack , where these
events are separated by nonempty intervals of arbitrary length. The advantage of using
regular expressions over the classical temporal operators of LTL is that it avoids the
need for deep nesting of untils. For that reason, regular expressions have proved to be
quite popular with verification engineers,3 to the point that the regular layer is that main
layer of SVA [VR05]. The key observation is that a very large fraction of temporal
properties that arise in practice can be expressed in the form of e1 !→e2 or e1 !→!e2 (we
generally use PSL syntax in this paper), which means that an e1 pattern should, or
should not, be followed by an e2 pattern; see, for example, [SDC01]. As an example,
consider the property: “If a snoop hits a modified line in the L1 cache, then the next
transaction must be a snoop writeback.” It can be expressed using the PSL formula

(true[∗]; snoop&&modified)!→(!trans start [∗]; trans start&&writeback).

The extension of LTL with regular expressions is called RELTL [BFG+05]. Here
we study TRIGGER LOGIC– the fragment of RELTL consisting of positive Boolean
combinations of formulas of the form e1 !→e2 or e1 !→!e2. We now describe this logic
formally.

LetΣ be a finite alphabet. A finite word overΣ is a (possibly empty) finite sequence
w = σ0 · σ1 · · ·σn of concatenated letters in Σ. The length of a word w is denoted
by |w|. The symbol ε denotes the empty word. We use w[i, j] to denote the subword
σi · · ·σj of w. If i > j, then w[i, j] = ε. Regular Expressions (REs) define languages
by inductively applying union, concatenation, and repetition operators. Formally, an RE
over an alphabetΣ is one of the following.

3 See http://www.cs.rice.edu/˜vardi/accelera-properties.pdf.

http://www.cs.rice.edu/~vardi/accelera-properties.pdf
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– ∅, ε, or σ, for σ ∈ Σ.
– r1|r2, r1; r2, r[∗], or r[+], for REs r, r1, and r2.
We use L(r) to denote the language that r defines. For the base cases, we have

L(∅) = ∅, L(ε) = {ε}, andL(σ) = {σ}. The operators |, ;, [∗] , and [+] stand for union,
concatenation, possibly empty repetition, and strict repetition, respectively. Formally,

– L(r1|r2) = L(r1) ∪ L(r2).
– L(r1; r2) = {w1;w2 : w1 ∈ L(r1) and w2 ∈ L(r2)}.
– Let r0 = {ε} and let ri = ri−1; r1, for i ≥ 1. Thus, L(ri) contains words that are

the concatenation of i words in L(r1). Then, L(r[∗]) =
⋃

i≥0 r
i and L(r[+]) =⋃

i≥1 r
i.

For a set X of elements, let B(X) denote the set of all Boolean functions b : 2X →
{true, false}. In practice, members of B(X) are expressed by Boolean expressions
over X , using with disjunction (||), conjunction (&&), and negation (!). Let B+(X)
be the restriction of B(X) to positive Boolean functions. That is, functions induced by
formulas constructed from atoms in X with disjunction and conjunction, and we also
allow the constants true and false. For a function b ∈ B(X) and a set Y ⊆ X , we say
that Y satisfies b if assigning true to the elements in Y and false to the elements in
X \ Y satisfies b.

For a set AP of atomic propositions, let Σ = B(AP ), and letR be a set of atoms of
the form r or !r, for a regular expression r overΣ. For example, forAP = {p, q}, the set
R contains the regular expression (p|!q)[∗]|(p; p) and also contains !((p|!q)[∗]|(p; p)).

The linear temporal logic TRIGGER LOGIC is a formalism to express temporal im-
plication between regular events. We consider TRIGGER LOGIC in a positive normal
form, where formulas are constructed from atoms inR by means of Boolean operators,
regular expressions, and temporal implication ( !→). The syntax of TRIGGER LOGIC is
defined as follows (we assume a fixed set AP of atomic propositions, which induces
the fixed sets Σ andR).
1. A regular assertion is a positive Boolean formula overR.
2. A trigger formula is of the form r !→θ, for a regular expression r over Σ and a

regular assertion θ.
3. A TRIGGER LOGIC formula is a positive Boolean formula over trigger formulas.

Intuitively, r !→θ asserts that all prefixes satisfying r are followed by a suffix satisfy-
ing θ. The linear temporal logic TRIGGER LOGIC is a formalism to express temporal
implication between regular events. For example, (true[∗]; p)!→(true[∗]; q) is regular
formula, equivalent to the LTL formulaG(p→ Fq). We use θ(e1, . . . , ek, !e′1, . . . , !e

′
k′)

to indicate that the regular assertion θ is over the regular expressions e1, . . . , ek and the
negations of the regular expressions e′1, . . . , e

′
k′ . Note that we do not allow nesting of

!→ in our formulas.
The semantics of TRIGGER LOGIC formulas is defined with respect to infinite words

over the alphabet 2AP . Consider an infinite word π = π0, π1, . . . ∈ (2AP )ω. For indices
i and j with 0 ≤ i ≤ j, and a language L ⊆ Σ∗, we say that πi, . . . , πj−1 tightly
satisfies L, denoted π, i, j, |= L, if there is a word b0 · b1 · · · bj−1−i ∈ L such that for all
0 ≤ k ≤ j − 1 − i, we have that bi(πi+k) = true. Note that when i = j, the interval
πi, . . . , πj−1 is empty, in which case π, i, j |= L iff ε ∈ L. For an index i ≥ 0 and a
language L ⊆ Σ∗, we say that πi, πi+1, . . . satisfies L, denoted π, i |= L, if π, i, j |= L
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for some j ≥ i. Dually, πi, πi+1, . . . satisfies !L, denoted π, i |=!L, if there is no j ≥ i
such that π, i, j |= L. Note that π, i |=!L iff π, i �|= L; note that both are different from
π, i |= Σ∗ \ L. For a regular assertion θ, we say that πi, πi+1, . . . satisfies θ, denoted
π, i |= θ if there is a set Y ⊆ R such that Y satisfies θ, π, i |= L(r) for all r ∈ Y , and
π, i |=!L(r) for all !r ∈ Y ,

We can now define the semantics of the !→ operator.
– π, i |= (r !→θ) if for all j ≥ i such that π, i, j |= L(r), we have π, j |= θ.

For a TRIGGER LOGIC formula ψ, a path π satisfies ψ in index i, denoted π, i |= ψ, if
π, i satisfies a setX of regular formulas such thatX satisfies ψ. Finally, π satisfies ψ if
π satisfies ψ in index 0.

Thus, the formula (true[∗]; p)!→(true[∗]; q) holds in an infinite word π ∈ 2{p,q} if
every p is eventually followed by q. Indeed, for all j ≥ 0, if π, 0, j |= L(true[∗]; p),
which holds iff πj |= p, then π, j |= true[∗]; q. The latter holds iff there is k ≥ j such
that π, j, k |= true[∗]; q, which holds iff πk |= q.

3 Automata on Words and Trees

An automaton on infinite words is a tuple A = 〈Σ,Q, q0, ρ, α〉, where Σ is the input
alphabet, Q is a finite set of states, ρ : Q × Σ → 2Q is a transition function, q0 ∈ Q
is an initial state, and α is an acceptance condition (a condition that defines a subset of
Qω). Intuitively, ρ(q, σ) is the set of states that A can move into when it is in state q
and it reads the letter σ. Since the transition function of A may specify many possible
transitions for each state and letter, A is not deterministic. If ρ is such that for every
q ∈ Q and σ ∈ Σ, we have that |ρ(q, σ)| = 1, then A is a deterministic automaton.
We extend ρ to sets of states in the expected way, thus, for S ⊆ Q, we have that
ρ(S, σ) =

⋃
s∈S ρ(s, σ).

A run of A on w is a function r : IN → Q where r(0) = q0 (i.e., the run starts in
the initial state) and for every l ≥ 0, we have r(l + 1) ∈ ρ(r(l), σl) (i.e., the run obeys
the transition function). In automata over finite words, acceptance is defined according
to the last state visited by the run. When the words are infinite, there is no such thing
“last state”, and acceptance is defined according to the set Inf (r) of states that r visits
infinitely often, i.e., Inf (r) = {q ∈ Q : for infinitely many l ∈ IN,we have r(l) = q}.
As Q is finite, it is guaranteed that Inf (r) �= ∅. The way we refer to Inf (r) depends
on the acceptance condition of A. In Büchi automata, α ⊆ Q, and r is accepting iff
Inf (r) ∩ α �= ∅. Dually, In co-Büchi automata, α ⊆ Q, and r is accepting iff Inf (r) ∩
α = ∅.

Since A is not deterministic, it may have many runs on w. In contrast, a determin-
istic automaton has a single run on w. There are two dual ways in which we can refer
to the many runs. When A is an existential automaton (or simply a nondeterministic
automaton, as we shall call it in the sequel), it accepts an input word w iff there exists
an accepting run of A on w.

Automata can also run on trees. For our application, we only need deterministic
Büchi tree automata. Given a set D of directions, a D-tree is a set T ⊆ D∗ such that if
x · c ∈ T , where x ∈ D∗ and c ∈ D, then also x ∈ T . If T = D∗, we say that T is a
fullD-tree. The elements of T are called nodes, and the empty word ε is the root of T .
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For every x ∈ T , the nodes x · c, for c ∈ D, are the successors of x. Each nodeD∗ has
a direction inD. The direction of the root is d0, for some designated d0 ∈ D, called the
root direction. The direction of a node x · d is d. We denote by dir(x) the direction of
node x. A path π of a tree T is a set π ⊆ T such that ε ∈ π and for every x ∈ π, either
x is a leaf or there exists a unique c ∈ D such that x · c ∈ π. Given an alphabet Σ, a
Σ-labeledD-tree is a pair 〈T, τ〉 where T is a tree and τ : T → Σ maps each node of
T to a letter in Σ.

A deterministic Büchi tree automaton is A = 〈Σ,D,Q, δ, q0, α〉, where Σ, Q, q0,
and α, are as in Büchi word automata, and δ : Q × Σ → Q|D| is a (deterministic)
transition function. Intuitively, in each of its transitions, A splits into |D| copies, each
proceeding to a subtree whose root is the successor of the current node. For a direction
d ∈ D, having δ(q, σ)(d) = q′ means that if A is now in state q and it reads the letter
σ, then the copy that proceeds to direction d moves to state q′.

Formally, a run of A on an input Σ-labeled D-tree 〈D∗, τ〉, is a Q-labeled tree
〈D∗, r〉 such that r(ε) = q0 and for every x ∈ D∗, and direction d ∈ D, we have that
r(x · d) = δ(r(x), τ(x))(d). If, for instance, D = {0, 1}, r(0) = q2, τ(0) = a, and
δ(q2, a)(0) = q1 and δ(q2, a)(1) = q2, then r(0 ·0) = q1 and r(0 ·1) = q2. Given a run
〈D∗, r〉 and a path π ⊂ D∗, we define inf(r|π) = {q ∈ Q : for infinitely many x ∈
π,we have r(x) = q}.A run r is accepting iff for all paths π ⊂ D∗, we have inf(r|π)∩
α �= ∅. That is, iff for each path π ⊂ D∗ there exists a state in α that r visits infinitely
often along π. An automatonA accepts 〈D∗, τ〉 its run on it is accepting.

We use three-letter acronyms in {D,N} × {B,C} × {W,T } to describe types of
automata. The first letter describes the transition structure (deterministic or nondeter-
ministic), the second letter describes the acceptance condition (Büchi or co-Büchi), and
the third letter designates the objects recognized by the automata (words or trees). Thus,
for example, NCW stands for nondeterministic Büchi word automata and NBT stands
for nondeterministic Büchi tree automata.

4 Expressiveness

In this section we characterize the expressive power of TRIGGER LOGIC and show that
is equivalent to that of DBW.

Proposition 1. Given a regular formula ψ of the form r !→θ(e1, . . . , ek, !e′1, . . . , !e′k′),
we can construct an NCW with |r| + (2|e1|+···+|ek||e′1| · · · |e′k′ |) states that accepts ex-
actly all computations that violate ψ.

Proof. We start with the special case where k = k′ = 1 and θ is a disjunction, thus the
formula we consider is ψ = r !→(e∨!e′). A path π = π0, π1, . . . violates the formula
r !→(e∨!e′) iff there is i ≥ 0 such that π, 0, i |= L(r), π, i |= L(e′), and π, i |=!L(e).

We describe an NCW U that accepts paths that violate ψ. Let A1,A2, and A3 be
NFWs for r, e, and e′, respectively. Let A′

2 be the DCW obtained by determinizing
A2, replacing its accepting states by rejecting sinks, and making all other states ac-
cepting. Also, let A′

3 be the NCW obtained by replacing the accepting states of A3
by accepting sinks. Finally, Let A be the product of A′

2 and A′
3. The NCW U starts

with A1. From every accepting state of A1, it can start executing A. The acceptance
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condition requires a run to eventually get stuck in an accepting sink of A′
3 that is not

a rejecting sink of A′
2. Formally, for i ∈ {1, 2, 3}, let Ai = 〈Σ,Qi, δi, Q

0
i , αi〉. Then,

A′
2 = 〈Σ, 2Q2 , δ′2, {Q0

2}, α′
2〉, where α′

2 = {S : S ∩ α2 = ∅}, and for all S ∈ 2Q2 and
σ ∈ Σ, we have

δ′2(S, σ) =
[
δ2(S, σ) if S ∩ α2 = ∅
S otherwise

Note that A′
2 accepts exactly all infinite words none of whose prefixes are accepted by

A2. Also, A′
3 = 〈Σ,Q3, δ

′
3, Q

0
3, α3〉, where for all q ∈ Q3 and σ ∈ Σ, we have

δ′3(q, σ) =
[
δ3(q, σ) if q �∈ α3
{q} otherwise

Note that A′
2 accepts exactly all infinite words that have a prefix accepted by A3.

Now, U = 〈Σ,Q1 ∪ (2Q2 ×Q3), δ, Q0
1, α〉, where for all q ∈ Q1 and σ ∈ Σ, we

have

δ(q, σ) =
[
δ1(q, σ) if q �∈ α1
δ1(q, σ) ∪ ({δ′2(Q0

2, σ)} × δ′3(Q0
3, σ)) otherwise

Also, for all 〈S, q〉 ∈ 2Q2 ×Q3 and σ ∈ Σ, we have

δ(〈S, q〉, σ) = {δ′2(S, σ)} × δ′3(q, σ).

We can partition the state space of U to three sets:
– P1 = Q1 ∪ {〈S, q〉 : S ∩ α2 = ∅ and q �∈ α3},
– P2 = {〈S, q〉 : S ∩ α2 = ∅ and q ∈ α3}, and
– P3 = {〈S, q〉 : S ∩ α2 �= ∅ and q ∈ Q3}.

The acceptance condition requires an accepting run to eventually leave the automaton
A1 and then, in the product of A′

2 with A′
3, avoid the rejecting sinks of A′

2 and get
stuck in the accepting sinks ofA′

3. By the definition of δ, each run of U eventually gets
trapped in a set Pi. Hence, the above goal can be achieved by defining the co-Büchi
condition α = P1 ∪ P3.

In the general case, where the formula is of the form r !→θ(e1, . . . , ek, !e′1, . . . , !e′k′),
we define, in a similar way, an NCW U for paths that violate the formula. As in the
special case detailed above, we determinize the NFWs for e1, . . . , ek and make their
accepting states rejecting sinks. LetA1

2, . . . ,Ak
2 be the automata obtained as described

above. Then, we take the NFWs for e′1, . . . , e
′
k′ and make their accepting states accept-

ing sinks. Let A1
3, . . . ,Ak′

3 be the automata obtained as described above. The NCW U
starts with the NFW A1 for r. From every accepting state of A1 it can take the transi-
tions from the initial states of the productA ofA1

2, . . . ,Ak
2 ,A1

3, . . . ,Ak′
3 . In the product

A, each state is of the form 〈S1, . . . , Sk, q1, . . . , qk′〉 and we partition the states to sets
according to the membership of the underlying states in the sinks. Thus, U is partitioned
to 1 + 2k+k′

sets: one for the states of A1, and then a set Pv , for each v ∈ 2k+k′
. For

v ∈ 2k+k′
, the set Pv contains exactly all states 〈S1, . . . , Sk, q1, . . . , qk′〉 such that for

all 1 ≤ i ≤ k, we have Si∩αi
2 �= ∅ iff v[i] = 0 and for all 1 ≤ j ≤ k′, we have qj ∈ αj

3
iff v[k + j] = 0.

It is not hard to see that the sets Pv are ordered: Pv ≥ Pv′ (that is, a transition from
Pv to Pv′ is possible) iff for each index 1 ≤ i ≤ k + k′, we have v[i] ≥ v′[i]. It is
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left to define the acceptance condition. Recall that θ is a is positive Boolean formula
over e1, . . . , ek, !e′1, . . . , !e

′
k′ . In order to violate a requirement associated with ei, the

projection of a run of U on the component of A′i
2 has to avoid its rejecting sinks. In

order to violate a requirement associated with !e′j , the projection of a run of U on the

component of A′j
3 has to reach an accepting sink. Accordingly, given θ, we say that

v ∈ 2k+k′
satisfies θ if assigning true to ei, for 1 ≤ i ≤ k, such that v[i] = 0 and

to !e′j , for 1 ≤ j ≤ k′, such that v[k + j] = 1, and assigning false to all other atoms,
satisfies θ. Now, we define the acceptance condition of U to that a run is accepting if
it gets stack in a set Pv for which v satisfies θ. Thus, α is the union of the sets Pv for
which v does not satisfies α. As required, U has |r|+ (2|e1|+···+|ek||e′1| · · · |e′k′ |) states.

Note that we determinize only NFWs associated with regular expressions that are not
in the scope of ! . Also, a tighter construction can take the structure of θ into an account
and handle conjunctions in θ by nondeterminism rather than by taking the product.

Theorem 1. A TRIGGER LOGIC formula can be translated to equivalent DBW. The
blow-up in the translation is doubly exponential.

Proof. Consider an NCW A with n states. By applying to A a construction dual to
the break-point construction of [MH84] we get a DCW A′ equivalent to A with 3O(n)

states. For completeness, we describe the construction below. Intuitively,A′ follows the
standard subset construction applied toA. In order to make sure that every infinite path
visits states in α only finitely often, A′ maintains in addition to the set S that follows
the subset construction, a subset O of S consisting of states along runs that have not
visited α since the last time the O component was empty. The acceptance condition of
A′ then requires O to become empty only finitely often. Indeed, this captures the fact
that there is a run of A that eventually prevents the set O from becoming empty, and
thus it is a run along which α is visited only finitely often.

Formally, let A = 〈Σ,Q, q0, ρ, α〉. Then,A′ = 〈Σ,Q′, q′0, ρ
′, α′〉, where

– Q′ ⊆ 2Q × 2Q is such that 〈S,O〉 ∈ Q′ if O ⊆ S ⊆ Q.
– q′0 = 〈{qin}, ∅〉,
– ρ′ : Q′ ×Σ → Q′ is defined, for all 〈S,O〉 ∈ Q′ and σ ∈ Σ, as follows.

ρ′(〈S,O〉, σ) =
[
〈ρ(S, σ), ρ(O, σ) \ α〉 if O �= ∅
〈ρ(S, σ), ρ(S, σ) \ α〉 if O = ∅.

– α′ = 2Q × {∅}.
Given a TRIGGER LOGIC formula Ψ , let ψ1, . . . , ψn be its underlying regular formu-

las. Consider a regular formula ψ of the form r !→θ(e1, . . . , ei, !e′k, . . . , !e′k′). We saw in
Proposition 1 that givenψ, we can construct an NCW with |r| + (2|e1|+···+|ek||e′1| · · · |e′k′ |)
states that accepts exactly all computations that violateψ. LetA1, . . . ,An be the NCWs
corresponding to the negations of ψ1, . . . , ψn. For every 1 ≤ i ≤ n, we can construct,
as described above, a DCW A′

i equivalent to Ai. By dualizing A′
i, we get a DBW for

ψi. Now, since DBWs are closed under union and intersection (cf. [Cho74]), we can
construct a DBW A for Ψ . Note that A is doubly exponential in the size of Ψ .

It remains to show that we can translate from DBW to TRIGGER LOGIC.
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Theorem 2. Given a DBW A, we can construct a TRIGGER LOGIC formulas of size
exponential in |A| that is satisfed precisely by the computations that are accepted byA.

Proof. LetA = 〈Σ,Q, q0, ρ, α〉. For q ∈ α, letAq be the DFWA = 〈Σ,Q, q0, ρ, {q}〉,
and letAq

q be the DFWA = 〈Σ,Q, q, ρ, {q}〉. We do not wantAq andAq
q to accept the

empty word ε, so the initial state can be renamed if needed. Let eq and eqq be regular ex-
pressions equivalent toAq andAq

q . By [HU79], the lengths of eq and qq
q are exponential

in A.
A word w ∈ Σω is accepted by A iff there is q ∈ α such that the run of A on w

visits q infinitely often. Thus, the run visits q eventually, and all visits to q are followed
by another visits in the (strict) future. We can therefore specifies the set of words that
are accepted by A using the TRIGGER LOGIC formula∨

q∈α

((true !→eq) ∧ (eq !→eqq).

The class of linear temporal properties that can be expressed by DBW was studied in
[KV05b], where it is shown to be precisely the class of linear temporal properties that
can be expressed in the alternation-free μ-calculus (AFMC). The translation is with
respect to Kripke structures. A given DBW A can be translated to an AFMC formula
ϕA such that for every Kripke structure K we have that K |= A iff K |= ϕA, where
K |= A if all computations ofK are accepted byA. Generally, the translation to AFMC
requires going through DBW, which may involve a doubly exponentially blow-up, as
in our translation from TRIGGER LOGIC to DBW. For TRIGGER LOGIC, we can go
to AFMC via the NCW constructed Proposition 1, with an exponential, rather than a
doubly exponential blow-up.

5 Synthesis

A transducer is a labeled finite graph with a designated start node, where the edges are
labeled byD (“input alphabet”) and the nodes are labeled by Σ (“output alphabet”). A
Σ-labeledD-tree is regular if it is the unwinding of some transducer. More formally, a
transducer is a tuple T = 〈D,Σ, S, sin, η, L〉, where D is a finite set of directions, Σ
is a finite alphabet, S is a finite set of states, sin ∈ S is an initial state, η : S ×D → S
is a deterministic transition function, and L : S → Σ is a labeling function. We define
η : D∗ → S in the standard way: η(ε) = sin, and for x ∈ D∗ and d ∈ D, we
have η(x · d) = η(η(x), d). Now, a Σ-labeled D-tree 〈D∗, τ〉 is regular if there exists
a transducer T = 〈D,Σ, S, sin, η, L〉 such that for every x ∈ D∗, we have τ(x) =
L(η(x)). We then say that the size of the regular tree 〈D∗, τ〉, denoted ‖τ‖, is |S|, the
number of states of T .

Given a TRIGGER LOGIC formula ψ over sets I and O of input and output signals
(that is, AP = I ∪ O), the realizability problem for ψ is to decide whether there is a
strategy f : (2I)∗ → 2O, generated by a transducer4 such that all the computations of

4 It is known that if some transducer that generates f exists, then there is also a finite-state
transducer [PR89a].
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the system generated by f satisfy ψ [PR89a]. Formally, a computation ρ ∈ (2I∪O)ω

is generated by f if ρ = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . and for all j ≥ 1, we have
oj = f(i0 · i1 · · · ij−1).

5.1 Upper Bound

In this section we show that the translation of TRIGGER LOGIC formulas to automata,
described earlier, yields a 2EXPTIME synthesis algorithm for TRIGGER LOGIC.

Theorem 3. The synthesis problem for TRIGGER LOGIC is in 2EXPTIME.

Proof. Consider a TRIGGER LOGIC formula Ψ over I ∪ O. By Theorem 1, the for-
mula Ψ can be translated to a DBW A. The size of A is doubly exponential in the
length of Ψ , and its alphabet is Σ = 2I∪O. Let A = 〈2I∪O, Q, q0, δ, α〉, and let
At = 〈2O, 2I , Q, q0, δt, α〉 be the DBT obtained by expanding A to 2O-labeled 2I-
trees. Thus, for every q ∈ Q and and o ∈ 2O, we have5

δt(q, o) = ∧i∈2I (i, δ(q, i ∪ o)).

We now have that A is realizable iff At is not empty. Indeed, At accepts exactly
all 2O-labeled 2I-trees all of whose computations are in L(A). Furthermore, by the
nonemptiness-test algorithm of [VW86], the DBT At is not empty iff there is a finite
state transducer that realizes L(A).

We discuss the practical advantages of our synthesis algorithm for TRIGGER LOGIC in
Section 6.

5.2 Lower Bound

The doubly-exponential lower bound for LTL synthesis is tightly related to the fact
a translation of an LTL formula to a deterministic automaton may involve a doubly-
exponential blow-up [KV98a]. For TRIGGER LOGIC formulas, such a blow-up seems
less likely, as the translation of regular expressions to nondeterministic automata is
linear, while the translation of LTL to automata is exponential [VW94]. As we show
below, the translation does involve a doubly exponential blow-up, even for formulas
of the form r !→e, that is, when the underlying regular expressions appear positively.
Intuitively, it follows from the need to monitor all the possible runs of an NFW for e on
different suffixes (these whose corresponding prefix satisfies r) of the input word.

Theorem 4. There is a regular expression r and a family of regular expression e1,
e2, . . . such that for all n ≥ 1, the length of en is polynomial in n and the smallest
DBW for the TRIGGER LOGIC formula r !→en is doubly-exponential in n.

Proof. Let ψn = r !→en. We define r and en overΣ = {0, 1,#, $} so that the language
of !ψn constains exactly all words w such that there is a position j with w[j] = #,

5 Note that the fact A is deterministic is crucial. A similar construction for a nondeterministic
A results in At whose language may be strictly contained in the required language.
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w[j + 1, j + n + 1] ∈ (0|1)n, and either there is no position k > j with w[k] = $, or
w[j+1, j+n+1] = w[k+1, k+n+1] for the minimal position k > j with w[k] = $.

By [CKS81], the smallest deterministic automaton that recognizes !ψn has at least
22n

states. The proof in [CKS81] considers a language of the finite words. The key idea,
however, is valid also for our setting, and implies that the smallest DBW for ψ has at
least 22n

states: whenever the automaton reads $, it should remember the set of words
in #; (0|1)n that have appeared since the last $ (or the beginning of the word, if we are
in the first $).

We define r = (0|1|#)[∗]; #, and en is the union of the following REs:
– truei; (#|$), for 1 ≤ i ≤ n: the suffix does not begin with a word in (0|1)n.
– (truei; 0; (!$)[∗]; $; truei; !0), for 1 ≤ i ≤ n: there is 1 ≤ i ≤ n such that the

letter in the i-th position is 0 and is different from the letter in the i-th position after
the first $ in the suffix.

– (truei; 1; (!$)[∗]; $; truei; !1), for 1 ≤ i ≤ n: there is 1 ≤ i ≤ n such that the
letter in the i-th position is 1 and is different from the letter in the i-th position after
the first $ in the suffix.

It is not hard to see that a word w satisfies ψn if for every position j, if w[j] = #,
then either w[j + 1, j + n + 1] �∈ (0|1)n or there is k > j such that w[k] = $ and
w[j + 1, j + n + 1] �= w[k + 1, k + n + 1], for the minimal k > j with w[k] =
$. Thus, as required, a word w satisfies !ψn if there is a position j with w[j] = #,
w[j + 1, j + n + 1] ∈ (0|1)n, and either there is no position k > j with w[k] = $, or
w[j+1, j+n+1] = w[k+1, k+n+1] for the minimal position k > j with w[k] = $.

Theorem 4 implies that our algorithm, which involves a translation of TRIGGER LOGIC

formulas to DBWs, may indeed have a doubly-exponential time complexity. In Theo-
rem 5 below we show that one cannot do better, as the synthesis problem is 2EXPTIME-
hard. Thus, our algorithm is optimal and the synthesis problem for TRIGGER LOGIC is
2EXPTIME-complete.

Theorem 5. The synthesis problem for TRIGGER LOGIC formulas is 2EXPTIME-hard.

Proof. As in the 2EXPTIME-hardness for CLT
 satisfiability [VS85], we do a reduc-
tion from the problem whether an alternating exponential-space Turing machine T ac-
cepts the empty tape. That is, given such a machine T and a number n in unary, we
construct a trigger formula ψ such that T accepts the empty tape using space 2n iff
ψ is realizable. Let T = 〈Γ,Qu, Qe,→, q0, qacc〉, where Γ is the tape alphabet, the
sets Qu and Qe of states are disjoint, and contain the universal and the existential
states, respectively, q0 is the initial state, and qacc is the accepting state. We denote
the unionQu∪Qe byQ. Our model of alternation prescribes that the transition relation
→⊆ Q×Γ ×Q×Γ ×{L,R} has branching degree two, q0 ∈ Qe, and the machine T
alternates between existential and universal set. When a universal or an existential state
of T branches into two states, we distinguish between the left and the right branches.
Accordingly, we use (q, σ) → 〈(ql, bl, Δl), (qr, br, Δr)〉 to indicate that when T is in
state q ∈ Qu∪Qe reading a symbol σ, it branches to the left with (ql, bl, Δl) and to the
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right with (qr, br, Δr). (Note that the directions left and right here have nothing to do
with the movement direction of the head; these are determined byΔl andΔr.)

For a configuration c of T , let succl(c) and succr(c) be the successors of c when
applying to it the left and right choices in→, respectively. Given an input w, a compu-
tation tree of T on w is a tree in which each node corresponds to a configuration of T .
The root of the tree corresponds to the initial configuration. A node that corresponds to
a universal configuration c has two successors, corresponding to succl(c) and succr(c).
A node that corresponds to an existential configuration c has a single successor, corre-
sponding to either succl(c) or succr(c). The tree is an accepting computation tree if
all its branches eventually reach an accepting configuration – one in which the state is
qacc. We assume that once a computation reaches an accepting configuration it stays in
qacc forever.

We encode a configuration of T by a word γ1γ2 . . . (q, γi) . . . γ2n . That is, all the
letters in the configuration are in Γ , except for one letter in Q × Γ . The meaning of
such a configuration is that the j’s cell of T , for 1 ≤ j ≤ 2n, is labeled γj , the reading
head points on cell i, and T is in state q. For example, the initial configuration of T
on the empty tape is @1, (q0,#),# · · ·#,@2, where # stands for the empty cell, and
@1 and @2 are special tape-end symbols. We can now encode a computation of T by a
sequence of configurations.

LetΣ = Γ∪(Q×Γ ). We can encode the letters inΣ by a setAP (T ) = {p1, . . . , pm,
p′1, . . . , p′m} (withm = 
log|Σ|�) of atomic propositions. The propositions p′1, . . . , p

′
m

are auxiliary; their roles is made clear shortly. We define our formulas over the set
AP = AP (T )∪{v1, . . . , vn, v

′
1, . . . , v

′
n}∪{real , left in , leftout , e} of atomic proposi-

tions. The propositions v1, . . . , vn encode the locations of the cells in a configuration.
The propositions v′1, . . . , v

′
n help in increasing the value encoded by v1, . . . , vn prop-

erly. The task of the last four atoms is explained shortly.
The set AP of propositions is divided into input and output propositions. The input

propositions are real and left in . All other propositions are output propositions. With
two input propositions, a strategy can be viewed as a 4-ary tree. Recall that the branch-
ing degree of T is 2. Why then do we need a 4-ary tree? Intuitively, the strategy should
describe a legal and accepting computation tree of T in a “real” 2-ary tree embodied
in the strategy tree. This real 2-ary tree is the one in which the input proposition real
always holds. Branches in which real is eventually false do not correspond to compu-
tations of T and have a different role. Within the real tree, the input proposition left in
is used in order to distinguish between the left and right successors of a configurations.

The propositions v1, . . . , vn encode the location of a cell in a configuration of T ,
with v1 being the most significant bit. Since T is an exponential-space Turing machine,
this location is a number between 0 and 2n−1. To ensure that v1, . . . , vn act as an n-bit
counters we need the following formulas:
1. The counter starts at 0.

– true !→&&n
i=1!vi

2. The counter is increased properly. For this we use v′1, . . . , v
′
n as carry bits.

– true[+]!→v′n
– (true[∗]; (vi&&v′i))!→true; (!vi&&v′i−1), for i = 2, . . . , n
– (true[∗]; ((vi&&(!v′i))||((!vi)&&v′i)))!→true; (vi&&(!v′i−1)), for i = 2, . . . , n
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– (true[∗]; ((!vi)&&(!v′i)))!→true; ((!vi)&&(!v′i−1)), for i = 2, . . . , n
– (true[∗]; ((v1&&v′1)||((!v1)&&(!v′1))))!→true; !v1
– (true[∗]; ((v1&&(!v′1))||((!v1)&&v′1)))!→true; v1

Let σ1 . . . σ2n , σ′1 . . . σ
′
2n be two successive configurations of T . For each triple

〈σi−1, σi, σi+1〉 with 1 < i < 2n, we know for each transition relation of T , what
σ′i should be. Let next(〈σi−1, σi, σi+1〉) denote our expectation for σ′i. I.e. 6

– next(〈γi−1, γi, γi+1〉) = γi.

– next(〈(q, γi−1), γi, γi+1〉) =
{
γi If (q, γi−1) → (q′, γ′i−1, L).
(q′, γi) If (q, γi−1) → (q′, γ′i−1, R).

– next(〈γi−1, (q, γi), γi+1〉) = γ′i where (q, γi)→ (q′, γ′i, Δ).

– next(〈γi−1, γi, (q, γi+1)〉) =
{
γi If (q, γi+1)→ (q′, γ′i+1, R).
(q′, γi) If (q, γi+1)→ (q′, γ′i, L).

Since we have two transitions relations, we actually obtain two functions, nextl and
nextr.

Consistency with next gives us a necessary condition for a path in the computation
tree to encode a legal computation. In addition, the computation should start with the
initial configuration and reach an accepting state. It is easy to specify the requirements
about the initial and accepting configurations. For a letter σ ∈ Σ, let η(σ) be the propo-
sitional formula overAP in which p1, . . . , pn encode σ. That is, η(σ) holds in a node iff
the truth value of the propositions p1 . . . , pm in that node encodes the symbol σ. Simi-
larly, η′(σ) is the propositional formula over AP in which p′1, . . . , p

′
n encode σ. Thus,

to say that the first configuration correspond to the empty word we use the following
formulas, where ones abbreviates ∧n

i=1vi, and # denotes the empty symbol:
– true !→η(@1); η(〈q0,#〉
– (true; true; (!ones)[+])!→η(#)
– ((!ones)[+]; ones)!→true; η(@2)

We come back to the acceptance condition shortly.
The propositions p′1, . . . , p′m capture the symbol encoded in the previous cell, and

special symbols at initial cells. We use the following formula, where zeros abbreviates
∧n

i=1(!vi).
– (true[∗]; zero)!→η′(@2)
– (true[∗]; ((!ones)&&pj)!→(true; p′j)
– (true[∗]; ((!ones)&&(!pj))!→(true; (!p′j))
The output proposition e marks existential configurations. Recall that computations

of T start in existential configurations and alternate between universal and existential
configurations. The value of e is maintained throughout the configuration. This is ex-
pressed using the following formulas:

– true !→e
– (true[∗]; ((!ones)&&e))!→(true; e)
– (true[∗]; ((!ones)&&(!e))!→(true; (!e))
– (true[∗]; (ones&&e)))!→(true; (!e)
– (true[∗]; (ones&&(!e))!→(true; e)

6 Special handling of end cases is needed, when the head of T read the left or right end markers.
For simplicity, we ignore this technicality here.



326 O. Kupferman and M.Y. Vardi

The output proposition leftout marks configurations that are left successors. The value
of leftout is determined according to the value of left in at the end of the previous
configuration, and is maintained throughout the configuration, where it is used in order
to decide whether the configuration should be consistent with nextl or with nextr.
The following formulas ensure that the value is indeed maintained and that universal
configurations are followed by both left and right configurations. On the other hand, for
the successors of existential configurations, the strategy has no restrictions on the value
of leftout , and can choose the same value for the two successors.

– (true[∗]; ((!ones)&&leftout ))!→(true; leftout)
– (true[∗]; ((!ones)&&(!leftout ))!→(true; (!leftout))
– (true[∗]; (ones&&(!e)&&(!left in)))!→(true; leftout)
– (true[∗]; (ones&&(!e)&&left in))!→(true; (!leftout))
The difficult part in the reduction is in guaranteeing that the sequence of config-

urations is indeed consistent with nextl and nextr. To enforce this, we have to re-
late σi−1, σi, and σi+1 with σ′i for each i in every two successive configurations
σ1 . . . σ2n , σ′1 . . . σ′2n . One natural way to do so is by a conjunction of formulas like
“whenever we meet a cell at location i− 1 and the labeling of the next three cells forms
the triple 〈σi−1, σi, σi+1〉, then the next time we meet a cell at location i, this cell is
labeled next(〈σi−1, σi, σi+1〉)”. The problem is that, as i can take a value from 0 to
2n − 1, there are exponentially many such conjuncts. This is where the non-real part of
the tree is helpful [VS85].

Recall that the input proposition real is used to labeled the “real” part of the strategy
tree – the one that corresponds to the computation tree of T . Once we branch according
to !real , we move to the auxiliary part of the tree. Consider now an arbitrary trace,
either it is a real trace, on which real is always true, or it reaches the auxiliary part of
the tree, where real is false. We refer to the latter trace as an auxiliary trace. The point
at which real is true for the last time is the end of this auxiliary trace.

Consider a point x on an auxiliary trace that is followed by the end point y. There
are the following possibilities:
1. ones holds less than or more than once between x and y, which means that x and
y do not belong to successive configurations.

2. ones holds once between x and y, which means that they belong to successive
configurations, but the assignment to p1, . . . , pn at x and y disagree, which means
that they are not corresponding cells.

3. ones holds once between x and y, which means that they belong to success con-
figurations, and the assignments to p1, . . . , pn at x and y agree, which means that
they are corresponding cells.

Accordingly, in order to ensure correct succession of configurations of T , we use the
formula

– real [+]!→ψ,
where ψ is a union of the following regular expressions:

– (true[+];
∨

γ∈Γ η(〈sa, γ〉): the trace reaches an accepting configuration;
– (!ones&&real)[+]; ones: the points x and y belong to same configuration;
– real [∗]; ones&&real; real [+]; ones&&real: the points belong to non-successive

configurations;
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– vi&&real ; real [+]; (!vi)&&real ; !real , for i = 1, . . . , n: the points do not agree on
the value of the i-th bit in the encoding of their address and therefore they have
different cell locations;

– η′(σ1)&&η(σ2)&&real ; η(σ3)&&real ; real [+]; leftout&&nextl(σ1, σ2, σ3)&&real ; !real ,
for σ1, σ2, σ3 ∈ Σ: the points x and y are in the same cell of a configuration and
its left successor, and nextl is respected. Note that the propositions p′i are used in
order to refer to the cell before x.

– η′(σ1)&&η(σ2)&&real ; η(σ3)&&real ; real [+]; (!leftout)&&nextr(σ1, σ2, σ3)&&real ; !real ,
for σ1, σ2, σ3 ∈ Σ: the points x and y are in the same cell of a configuration
and its right successor, and nextl is respected.

Note that the TRIGGER LOGIC formula constructed in the reduction is a conjunction
of formulas of the form r !→e. Thus, the problem is 2EXPTIME-hard already for this
fragment of TRIGGER LOGIC.

6 Practice Issues

In Section 5.1, we proved that the synthesis problem for TRIGGER LOGIC can be solved
in doubly-exponential time. This bound is no better on its face than the doubly-
exponential time upper bound proved in [PR89a, KV05c] for LTL synthesis. A closer
examination reveals, however, that the algorithms in [PR89a, KV05c] have time com-
plexity of the form 44n

, while the algorithm described here has time complexity of the
form 42n

. This, however, is not what we view as the main advantage of this algorithm.
Rather, its main advantage is that it is significantly simpler. Unlike the algorithm in
[PR89a], we need not apply Safra’s determinization construction nor solving complex
games. Unlike [KV05b], we need not use progress measures. Our algorithm is based
solely on using the subset construction and solving the emptiness problem for Büchi
tree automata.

In this section we show that our algorithm for TRIGGER LOGIC has additional ap-
pealing properties in practice.

A symbolic implementation. Theorem 3 reduces the TRIGGER LOGIC synthesis prob-
lem to the nonemptiness problem of a DBT obtained by dualizing a DCW that is the
result of applying the break-point construction of [MH84] to the NCW that corresponds
to the negation of the TRIGGER LOGIC formula. In [MS08a, MS08b], the authors de-
scribed a symbolic implementation of the break-point construction for word automata.
For tree automata, the symbolic algorithm for the nonemptiness construction is not
more difficult, as both word emptiness and tree emptiness for Büchi automata are based
on nested-fixpoint algorithms [EL86, VW86], using a quadratic number of symbolic
operations.

In more details, the state space of the DBT consists of sets of states, it can be en-
coded by Boolean variables, and the DBT’s transitions can be encoded by relations on
these variables and a primed version of them. The fixpoint solution for the nonempti-
ness problem of DBT (c.f., [VW86]) then yields a symbolic solution to the synthesis
problem. Moreover, the BDDs that are generated by the symbolic decision procedure
can be used to generate a symbolic witness strategy. The Boolean nature of BDDs then
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makes it very easy to go from this BDD to a sequential circuit for the strategy. It is
known that a BDD can be viewed as an expression (in DAG form) that uses the “if then
else” as a single ternary operator. Thus, a BDD can be viewed as a circuit built from if-
then-else gates. More advantages of the symbolic approach are described in [HRS05].
As mentioned above, [HRS05] also suggests a symbolic solution for the LTL synthesis
problem. However, the need to circumvent Safra’s determinization causes the algorithm
in [HRS05] to be complete only for a subset of LTL. Likewise, the need to implement
the progress ranks of [KV05a] using a binary encoding challenges BDD-based imple-
mentations [TV07]. Our approach here circumvents both Safra’s determinization and
ranks, facilitating a symbolic implementation.

Incremental synthesis. A serious drawback of current synthesis algorithms is that they
assume a comprehensive set of temporal assertions as a starting point. In practice, how-
ever, specifications are evolving: temporal assertions are added, deleted, or modified
during the design process. Here, we describe how our synthesis algorithm can support
incremental synthesis, where the temporal assertions are given one by one. We show
how working with DBWs enables us, when we check the realizability of ψ&&ψ′, to
use much of the work done in checking the realizability of ψ and ψ′ in isolation.

Essentially, we show that when we construct and check the emptiness of the DBT to
which realizability of ψ&&ψ′ is reduced, we can use much of the work done in the pro-
cess of checking the emptiness of the two (much smaller) DBTs to which realizability
of ψ and ψ′ is reduced (in isolation). Let A and A′ be the DBTs to which realizability
of ψ and ψ′ is reduced, respectively. Recall that A and A′ are obtained from NCWs
with state spaces Q and Q′. A non-incremental approach generates the DBT that cor-
responds to ψ&&ψ′. By Theorem 3, this results in a DBT U with state space 3Q∪Q′

.
On the other hand, the state spaces of A and A′ are much smaller, and are 3Q and 3Q′

,
respectively.

Let us examine the structure of the state space of U more carefully. Each of its states
can be viewed as a pair 〈S ∪ S′, O ∪O′〉, forO ⊆ S ⊆ Q andO′ ⊆ S′ ⊆ Q′. The state
corresponds to the states 〈S,O〉 of A and 〈S′, O′〉 of A′. Clearly, if one of these states
is empty (that is, if the automaton accept no tree starting from these states), then so is
〈S ∪ S′, O ∪O′〉. Thus, an incremental algorithm can start by marking all such states
as empty and continue the emptiness check only with the (hopefully much smaller) state
space.

(Note that this idea does not apply to disjunctions. Suppose that neither ψ nor ψ′ is
realizable, and we want to check if ψ||ψ′ is realizable. It is not clear how to leverage
realizability checking of ψ and ψ′, when we check realizability of ψ||ψ′.)

Adding assumptions. The method described above cannot be applied for formulas of
the form ψ′ → ψ, with ψ′ and ψ formulas in TRIGGER LOGIC. Note that since TRIG-
GER LOGIC is not closed under negation, the specification ψ′ → ψ is not a TRIGGER

LOGIC formula. Still, such an implication arises naturally when we want to synthesize
ψ with respect to environments satisfying ψ′. To handle such specifications, we ap-
ply the automata-theoretic constructions of Section 5.1 to both ψ′ and ψ obtaining DBT
Aψ′

t andAψ
t , with acceptance conditionsα′ and α. We now take the product ofAψ′

t and
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Aψ
t , and use as acceptance condition the Streett pair 〈α′, α〉. A symbolic algorithm for

Streett tree automata is described in [KV98b]. For Street(1) condition, that is, a single
pair Streett condition, the algorithm requires a cubic number of symbolic operations.
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Abstract. In this paper we introduce an extension of propositional logic that al-
lows clauses to be weighted with values from a generic semiring. The main inter-
est of this extension is that different instantiations of the semiring model different
interesting computational problems such as finding a model, counting the number
of models, finding the best model with respect to an objective function, finding the
best model with respect to several independent objective functions, or finding the
set of pareto-optimal models with respect to several objective functions.

Then we show that this framework unifies several solving techniques and, even
more importantly, rephrases them from an algorithmic language to a logical lan-
guage. As a result, several solving techniques can be trivially and elegantly trans-
ferred from one computational problem to another. As an example, we extend the
basic DPLL algorithm to our framework producing an algorithm that we call SD-
PLL. Then we enhance the basic SDPLL in order to incorporate the three features
that are common in all modern SAT solvers: backjumping, learning and restarts.

As a result, we obtain an extremely simple algorithm that captures, unifies and
extends in a well-defined logical language several techniques that are valid for ar-
bitrary semirings.

Keywords: semiring, marginalization problem, DPLL.

1 Introduction

The importance of semirings to unify apparently unrelated combinatorial computational
problems has been known and studied for a long time [28,27,5,19,1]. Some well-known
unifiable problems occur in (soft) constraint networks, probabilistic networks or rela-
tional databases, each of them having many real-life domains of application.

There are many advantages for semiring unification. On the one hand, it provides a
very general formalism for algorithmic development: instead of re-discovering the same
technique for each particular type of problem, it can be formulated in an abstract form
and immediately applied to any problem that fits into the framework (e.g. Adaptive
Consistency [12], Directional Resolution [11], Nonserial Dynamic Programming [3],
the basic pseudo-boolean method [9], and many others [1] are essentially independent
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developments of the same algorithm). On the other hand, the unification provides a
convenient formalism for algorithmic generalization (see e.g. [8] and [29]).

In this paper we study this idea in the context of propositional logic. First of all, we
extend propositional logic by incorporating a generic semiring and allowing boolean
formulas to be weighted with semiring values. We define its semantics and extend clas-
sical notions such as logical implication (|=) or equivalence (≡).

Then we show that semiring-induced propositional logic can model in a natural way
very important combinatorial problems over boolean variables such as finding a model
(SAT), counting the number of models (#SAT), finding the best model with respect to an
objective function, finding the best model with respect to several independent objective
functions or finding the set of pareto-optimal models with respect to several objective
functions.

The principal advantage of the extension is conceptual because techniques for these
problems are mostly defined in a procedural way and it is difficult to see the logic that is
behind the execution of the procedure (see e.g. [7,13,30]). With our approach, solving
techniques can be explained in logical terms. As an example, we extend the basic DPLL
algorithm [10] to semiring-induced logic producing an algorithm that we call SDPLL.
When SDPLL is instantiated with different semirings to model, for example, SAT, #SAT
or Max-SAT, it is faithful to the simplest algorithms for each problem [10,4,7]. There-
fore, we show that these algorithms were in fact the same algorithm modulo the corre-
sponding semiring. Additionally, it immediately provides basic enumeration algorithms
to not-so-studied problems such as multi-objective model optimization. Then, we en-
hance the basic SDPLL with three features that are present in all modern SAT solvers
[22]: backjumping, learning and restarts. Thus, we show that they are also valid in our
much more general framework.

2 Semirings

In this paper, a semiringA = (A,⊕,⊗) consists of a non-empty setA together with two
binary operations ⊕ and ⊗ such that both operations are commutative and associative,
and ⊗ distributes over ⊕1.

If there is an element 0 ∈ A such that 0 ⊕ a = a and 0 ⊗ a = 0 for all a ∈ A
then A is a semiring with zero element. Similarly, if there is an element 1 ∈ A such
that 1⊗ a = a for all a ∈ A then A is a semiring with unit element. It can be assumed
without loss of generality that a semiring has a zero element, as noted in [19]. Semirings
admit at most one zero and one unit element.

Given a semiringA, a binary relation≤A can be defined as follows: for any a, b ∈ A,
a ≤A b holds if there exists c ∈ A such that a ⊕ c = b. This relation can be shown to
be a pre-order [19]; i.e., i) for all a ∈ A, a ≤A a (reflexivity), and ii) if a ≤A b and
b ≤A c then a ≤A c (transitivity). In this paper we will restrict ourselves to semirings
with zero and unit elements, noted A = (A,⊕,⊗,0,1), whose pre-order is a partial
order (i.e., it holds that a ≤A b and b ≤A a implies a = b).

The semiring order also has the properties that iii) a ≤A b and a′ ≤A b′ imply
a ⊕ a′ ≤A b ⊕ b′ and a ⊗ a′ ≤A b ⊗ b′; and iv) for all a ∈ A, 0 ≤A a. As a

1 This definition corresponds to what is called a commutative semiring elsewhere [15].
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semiring A ⊕ ⊗ 0 1 applic.
Abool {0, 1} ∨ ∧ 0 1 SAT
Acount R+ + × 0 1 #SAT
Amax× R+ max × 0 1 Max-SAT
Amin+ R+ ∪ {∞} min + ∞ 0 Max-SAT
An An ⊕n ⊗n (0, . . . ,0) (1, . . . ,1)
Af Af ⊕f ⊗f {0} {1}

Fig. 1. The first four rows show four different semirings with immediate application. The last two
rows show two different semiring constructors (multidimensional and frontier extensions) which
are relevant to model multi-criteria problems.

consequence,⊕ increases monotonically (i.e., a ≤A a⊕ b); and when applied to values
smaller than or equal to 1, then ⊗ decreases monotonically (i.e., if a, b ≤A 1 then
a⊗ b ≤A a). As usual, a �= b and a ≤A b will be noted as a <A b.

The first four rows of Figure 1 summarize well-known semirings that will be used
to highlight the expressivity of semiring-induced logic. The first column indicates the
semiring name, columns 2 − 6 show their components and column 7 indicates their
paradigmatic application (to be seen in Section 4). In all of them the induced order≤A
is the usual (total) order, except for Amin+ where it is reversed (e.g. 5 ≤Amin+ 2).

Sometimes it is useful to derive a new semiring from an already existing one. In the
following we consider two useful extensions (they are summarized in the last two rows
of Figure 1). The multidimensional extension generates a new semiring whose values
are vectors of semiring values.

Definition 1. Let A = (A,⊕,⊗,0,1) be a semiring. Its multidimensional extension
[19] is An = ( An, ⊕n, ⊗n, 0n, 1n) where

– An = A× . . .×A
– (a1, . . . , an)⊕n (b1, . . . , bn) = (a1 ⊕ b1, . . . , an ⊕ bn)
– (a1, . . . , an)⊗n (b1, . . . , bn) = (a1 ⊗ b1, . . . , an ⊗ bn)
– 0n = (0, . . . ,0)
– 1n = (1, . . . ,1)

In this case, (a1, . . . , an) ≤An (b1, . . . , bn) if and only if ∀1≤j≤n, aj ≤A bj . Observe
that if ≤A is a total order then ≤An is the usual product order in a product of posets. If
a ≤An b one says that b dominates a.

Given a semiring, the frontier extension [6] generates a new semiring whose values
are sets of non-dominated values from the original semiring.

Definition 2. Let A = (A,⊕,⊗,0,1) be a semiring. The set of non-dominated ele-
ments of S ⊆ A is defined as

||S|| = {v ∈ S | ∀w∈S v ≮ w} .
The frontier extension of A is Af =(Af , ⊕f , ⊗f , 0f , 1f ), where

– Af = {||S|| | S ⊆ A}
– S ⊕f R = ||S ∪R||
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– S ⊗f R = ||{a⊗ b | a ∈ S, b ∈ R}||
– 0f = {0}
– 1f = {1}

In this case S ≤Af R holds if and only if for all a ∈ S there is b ∈ R such that a ≤A b.
This is the so-called frontier order widely used in multi-objective optimization.

Example 1. Consider semiringAbool = ({0, 1},∨,∧, 0, 1). Its bidimensional extension
A2

bool is the set of two-dimensional bit vectors such as a = (0, 1) and b = (1, 1). Note
that a ≤A2

bool
b as 0 ≤Abool

1 and 1 ≤Abool
1, a∨2b = (0∨1, 1∨1) = (1, 1) and a∧2b =

(0∧1, 1∧1) = (0, 1). The frontier extension ofA2
bool is (A2

bool)
f . Its values are sets of

non-dominated two-dimensional bit vectors such as a = {(0, 1), (1, 0)} or b = {(1, 1)}.
The set {(0, 1), (1, 1)} does not belong to the semiring as (1, 1) dominates (0, 1). Note
that a ≤(A2

bool)f b as every element of a is dominated by an element of b. Furthermore,
a ∨2f b = ||{(0, 1), (1, 0), (1, 1)}|| = {(1, 1)} and a ∧2f b = {(0, 1), (1, 0)}.

3 Semiring-Induced Propositional Logic

3.1 Syntax

Let P be a finite set of propositional symbols that will remain fixed throughout the
paper. If p ∈ P , then p and ¬p are literals. The negation of a literal l, written ¬l,
denotes ¬p if l is p, and p if l is ¬p. A clause C is a (possibly empty) finite disjunction
of literals. A unit clause consists of a single literal. The empty clause is noted �.

A (partial truth) assignment M is a set of literals such that if l is in M , then ¬l is
not. A literal l is true in M if l ∈ M , is false in M if ¬l ∈ M , and is undefined in M
otherwise. The assignmentM is total if every symbol of P is defined in M . The set of
total assignments is notedM.

An assignment M satisfies a clause C if at least one of its literals is true in M . It
falsifies C if all the literals of C are false in M . Otherwise, C is undefined in M . Note
that the empty clause is falsified by anyM .

Let A = (A,⊕,⊗,0,1) be a semiring. A weighted clause is a pair (C,w) such
that C is a clause and w ∈ A with w <A 1 denotes its weight. A semiring-induced
propositional formula is a set of weighted clauses F = {(C1, w1), . . . , (Ce, we)}2.

3.2 Semantics

Definition 3. Consider a formula F ={(C1, w1), . . ., (Ce, we)}. Each weighted clause
(Ci, wi) defines a function over total assignments,

φi(M) =
{
wi : M falsifies Ci

1 : otherwise

2 For the sake of simplicity, we will restrict ourselves to clausal form formulas. The extension
to the general case is direct: just let each Ci be an arbitrary boolean expression.
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The formula F defines an evaluation function as

φA,F (M) =
e⊗

i=1

φi(M) ,

where M is a total assignment and φi is the function induced by (Ci, wi). A total
assignmentM such that φA,F (M) > 0 is called a model of F .

Definition 4. The pair (A, F ) defines the marginalization problem consisting in finding

mrg(A, F ) =
⊕

M∈M
φA,F (M)

As we will see,mrg is a very general computational problem. Note that, since ∀a∈A 0⊕
a = a, only models of F contribute to mrg.

The following two definitions present two important relations among formulas. The
effect of the α value on the definitions will be clear in Section 5. For the moment, it is
just fine to ignore it or, what is equivalent, assume α = 0.

Definition 5. Let F and F ′ be two formulas over a common set of propositional sym-
bols, and α a semiring value. We say that F A-implies F ′ subject to threshold α, noted
F |=A

α F
′, if for all total assignmentM , α⊕ φA,F (M) ≤ α⊕ φA,F ′(M).

Definition 6. When F |=A
α F ′ and F ′ |=A

α F we say that F and F ′ are A-equivalent
subject to threshold α and we note it F ≡A

α F
′.

If F |=A
α {(�,0)} we say that F is an α-contradiction. In Section 5 we will take

advantage of the following property.

Property 1. If F |=A
α {(�,0)} andM is a total assignment, then α⊕ φA,F (M) = α.

Zero-weighted clauses (i.e, of the form (C,0)) are called hard clauses. Note that, since
∀a∈A 0 ⊗ a = 0, if M is a total assignment that falsifies a hard clause, then M is not
a model. If we restrict ourselves to hard clauses and assume α = 0, implication and
equivalence correspond to the usual definitions in classical propositional logic.

For simplicity we will drop the semiring superscript when there is no ambiguity.

4 Applications

This section is devoted to illustrate the richness of semiring-induced propositional logic.
It can be considered semi-tutorial because similar applications have been already iden-
tified in different contexts (e.g. [29,27,5,19,6]). Consider a formula F = {(C1, w1),
. . . , (Ce, we)} defined over the symbols P where weights belong to a semiringA.

4.1 Decision Problems (Abool)

If we consider semiring Abool, the weight of all clauses must be zero as A = {0, 1}
and, by definition, weights are smaller than 1. The corresponding evaluation function
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is φF (M) = φ1(M) ∧ . . . ∧ φe(M). It is easy to see that φF (M) = 1 iff M satisfies
every clause in F . Moreover, the marginalization problemmrg(F ) = ∨M∈M φF (M)
is 1 iff F is satisfiable. In other words, mrg(Abool, F ) is equivalent to the boolean
satisfiability problem (SAT) [24]. As logical consequence and logical equivalence can
be reduced to SAT testing, the logic induced by semiring Abool can also be used to
model such problems.

Example 2. Consider a set of three boolean variables P = {x1, x2, x3}, and the prob-
lem of assigning them in such a way that x1 = x2 and x2 �= x3. If we want to know if
the problem has any solution (i.e. it is satisfiable) we can use semiringAbool. This prob-
lem is encoded in the formula F = {(x1 ∨¬x2, 0), (¬x1 ∨ x2, 0), (x2 ∨ x3, 0), (¬x2 ∨
¬x3, 0)}. The first column in Figure 2 shows the set of total assignmentsM. The sec-
ond column shows, for each assignment M , the value φF (M) of the evaluation func-
tion. For instance φF (x1,¬x2, x3) = 0 since this assignment does not satisfy clause
¬x1 ∨x2. The bottom row shows the result of the marginalization problemmrg(F ). In
this case it is the logical OR of all φF (M) values. It is 1 as there are assignments for
which the evaluation function is 1.

4.2 Summation Problems (Acount)

If we consider semiringAcount, the corresponding evaluation function and the marginal-
ization problem are φF (M) =

∏e
i=1 φi(M) and mrg(F ) =

∑
M∈M φF (M), respec-

tively. If the weight of all clauses is wi = 0 ∈ R+, then φF (M) = 1 iffM satisfies all
clauses. So computingmrg(F ) is equivalent to the model counting problem, #SAT [4].

Example 3. Consider the same problem as in the previous example. If we want to know
the number of solutions we should use semiring Acount. The encoding of the problem
is the same as before. The third column in Figure 2 shows the values of the evaluation
function φF (M). As ∧ and × are equivalent when restricted to {0, 1}, the evaluations
do not change from the previous example. The last cell of the column shows the result
of computingmrg(F ). It is 2 as there are two assignments whose evaluation is 1.

Alternatively, if we allow different clauses to have different weights, mrg can model
important problems such as the computation of marginals in Bayesian networks [26].

4.3 Optimization Problems (Amin+, Amax×)

If we consider semiring Amin+, the corresponding evaluation function and marginal-
ization problem are φF (M) =

∑e
i=1 φi(M) and mrg(F ) = minM∈M{φF (M)},

respectively. If the weight of all clauses is wi = 1 ∈ R+, then φF (M) = “number of
clauses falsified by M”. Therefore computingmrg(F ) is equivalent to the problem of
maximizing the number of satisfied clauses (Max-SAT) [24].

If we allow different clauses to have different weights,mrg is equivalent to the par-
tial weighted Max-SAT problem [24,20], which models a variety of interesting additive
optimization problems with applications in bioinformatics, circuit design, electronic
markets, resource allocation, etc. [16].
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Example 4. Consider the same problem as in the previous examples. Let P be the set
of models of the formula F . Suppose we want to find the model with the least number
of variables set to true, minM∈P

∑
1≤i≤3 xi. We can express this problem with semir-

ing Amin+. The clauses already existing in the previous example should be made hard
and for each symbol xi a unit clause (¬xi, 1) should be added. The fourth column in
Figure 2 shows the values of the resulting evaluation function φF (M). For instance,
φF ({x1, x2,¬x3}) = 2 as {x1, x2,¬x3} falsifies clauses (¬x1, 1) and (¬x2, 1). The
bottom cell of the column showsmrg(F ). In this casemrg(F ) = 1, the minimum over
all evaluations of total assignments.

SemiringsAmax× andAmin+ are isomorphic since we can transform the former into the
latter via a logarithmic mapping [25]. Therefore, they have the same expressive power.
Nevertheless, semiring Amax× seems to be a more natural choice for modeling prob-
abilistic problems such as the most probable explanation problem (MPE) in Bayesian
networks [26] or the MAP inference problem in Markov random fields [18] with appli-
cations in diagnosis, vision, signal encoding, etc.

4.4 Multi-criteria Optimization Problems (An, Af )

Consider the multidimensional extensionAn of a semiringA=(A,⊕,⊗,0,1). Weights
are now n-dimension vectors, wi = (w1

i , . . . , w
n
i ). It is easy to see that the result-

ing evaluation function satisfies φAn,F (M) = (φA,F 1(M), . . . , φA,F n(M)), where
F j = {(C1, w

j
1), . . . , (Ce, w

j
e)} is the projection of F onto the j-th vector dimension.

In words, the evaluation function treats each dimension independently from the others.
Further, the marginalization satisfiesmrg(An, F ) = (mrg(A, F 1), . . . ,mrg(A, Fn)),
which corresponds to the independent marginalization problem of each dimension.
Therefore, one can use An to model (and, as we will see in Section 5, solve) in one
shot n independent problems over the same set of symbols.

Example 5. Consider again our running example, now with two objectives. The first
one, as in the previous example, is to minimize the variables set to true. The second one
is to minimize the number of variable pairs simultaneously set to false. Formally,

min
M∈P

(
∑

1≤i≤3

xi,
∑

1≤i<j≤3

(1 − xi)(1− xj)) .

We can model it using semiring A2
min+. Note that its zero and unit elements are

(∞,∞) and (0, 0), respectively. Hard clauses must have the new zero element,

{(x1∨¬x2, (∞,∞)), (¬x1∨x2, (∞,∞)), (x2∨x3, (∞,∞)), (¬x2∨¬x3, (∞,∞))} .

The first objective can be encoded with the following set of clauses,

{(¬x1, (1, 0)), (¬x2, (1, 0)), (¬x3, (1, 0))} .
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M Abool Acount Amin+ A2
min+ (A2

min+)f

{x1, x2, x3} 0 0 ∞ (∞,∞) {(∞,∞)}
{x1, x2,¬x3} 1 1 2 (2, 0) {(2, 0)}
{x1,¬x2, x3} 0 0 ∞ (∞,∞) {(∞,∞)}
{x1,¬x2,¬x3} 0 0 ∞ (∞,∞) {(∞,∞)}
{¬x1, x2, x3} 0 0 ∞ (∞,∞) {(∞,∞)}
{¬x1, x2,¬x3} 0 0 ∞ (∞,∞) {(∞,∞)}
{¬x1,¬x2, x3} 1 1 1 (1, 1) {(1, 1)}
{¬x1,¬x2,¬x3} 0 0 ∞ (∞,∞) {(∞,∞)}

mrg(A, F ) 1 2 1 (1, 0) {(2, 0), (1, 1)}

Fig. 2. Evaluation functions and marginalization problems induced by different semirings. The
set of symbols is P = {x1, x2, x3}. The set of clauses changes from one case to another.

The second objective can be encoded with the following set of clauses,

{(x1 ∨ x2, (0, 1)), (x1 ∨ x3, (0, 1)), (x2 ∨ x3, (0, 1))} .

The fifth column in Figure 2 shows the values of the corresponding evaluation function.
For instance, φF ({¬x1,¬x2, x3}) = (1, 1) as it falsifies clauses (¬x3, (1, 0)) and (x1∨
x2, (0, 1)), and (1, 0) +2 (0, 1) = (1, 1). The last cell of the column shows the result
of the marginalization problem. In this case it is the point-wise minimum over all the
column entries.

Given a formula F = {(C1, w1), . . . , (Ce, we)} its frontier extension is F ′ =
{(C1, w

′
1), . . . , (Ce, w

′
e)}, where w′

j = {wj}. It can be proved [6] that φAf ,F ′(M) =
{φA,F (M)} and

mrg(Af, F ′)={φA,F (M)| ∀N∈M, φA,F (M)≮φA,F (N)},

which is the set of maximal evaluations of φA,F (M).
An immediate application is to model a multi-objective problem with n objectives

with semiring (An)f . Each objective is encoded in one dimension ofAn. The marginal-
ization problem corresponds to the so-called efficient frontier of the problem, which is
the most general notion of optimality in multi-objective optimization.

Example 6. If we want to compute the efficient frontier of the previous bi-objective
problem, we can use the frontier extension of the previous semiring, (A2

min+)f , and
replace vector weights by singleton vector weights. The sixth column in Figure 2 shows
the values of the corresponding evaluation function. The last cell of the column shows
the result of the corresponding marginalization problem. In this case it is the union of all
the values followed by the removal of the non optimal elements, which is the efficient
frontier of the original bi-objective optimization problem.
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5 A DPLL Algorithm for Semiring-Induced Propositional Logic

In this section we show how DPLL for satisfiability testing and its most prominent en-
hancements can be naturally generalized to compute the marginalization problem of a
semiring-induced propositional logic formula. Following [23], we describe the algo-
rithm using a transition system.

5.1 Transition Systems

We will model our semiring-induced DPLL procedures by means of a set of states
together with a binary relation⇒ over these states, called the transition relation. If S ⇒
S′ we say that there is a transition from S to S′. We call any sequence of transitions of
the form S0 ⇒ S1, S1 ⇒ S2, . . . a derivation, and denote it by S0 ⇒ S1 ⇒ S2 ⇒
. . . We call any subsequence of a derivation a subderivation.

In what follows, transition relations will be defined by means of conditional tran-
sition rules. For a given state S, a transition rule precisely defines whether there is a
transition from S by this rule and, if so, to which state S′. Such a transition is called an
application step of the rule.

A transition system is a set of transition rules defined over some given set of states.
Note that if more than one transition is possible from S, any option is valid. If there is
no transition from S, we will say that S is final.

5.2 States in SDPLL Transition Systems

Semiring-induced DPLL (SDPLL) can be fully described by simply considering that a
state of the procedure is of the form (α,M,F ), where F is a formula, M is a (partial)
assignment and α ∈ A is a semiring element. Additionally, we define states of the form
(α, done, F ) to represent final states.

More precisely, M is a sequence of literals, never containing both a literal and its
negation. Each literal has an annotation, a bit that marks it as a decision literal or not.
Essentially, a decision literal is a literal that is added in the context of a split case
and, at some point, its negation needs to be considered. The concatenation of two such
sequences will be denoted by simple juxtaposition. When we want to emphasize that a
literal l is a decision literal we will write it as ld. We will denote the empty sequence of
literals (or the empty assignment) by ∅.

Adding a literal l to M means that we are conditioning the formula F with l. This
is equivalent to adding a unit hard clause (l,0) to F . Accordingly, we will frequently
considerM as a set of unit hard clauses, ignoring the annotations, the order between its
elements and assuming an implicit zero weight. Therefore,M ∪ F with M = l1 . . . ln
will be a shorthand for {(l1,0), . . . (ln,0)} ∪ F .

5.3 The Basic SDPLL Procedure

A basic backtracking-based algorithm that enumerates all total assignments can be de-
fined with the following three rules. Since none of them changes the input formula F ,
we do not include it in the state descriptions.
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Definition 7. Backtracking-based enumeration rules.

Decide : (α,M) ⇒ (α,Mld) if
{
l is undefined inM

BacktrackSuccess : (α,MldN) ⇒ (α′,M¬l) if

⎧⎨⎩
α′ = α⊕ φF (M ld N)
M ld N is total
N has no decision literals

DoneSuccess : (α,M) ⇒ (α′, done) if

⎧⎨⎩
α′ = α⊕ φF (M)
M is total
M has no decision literals

One can use the previous system for solving a semiring-induced marginalization prob-
lemmrg(F ) by simply generating an arbitrary derivation (0, ∅)⇒ . . . ⇒ (α, done).
The α value of the final state is the solution of the marginalization problem. The al-
gorithm generates all total assignments M and adds their φF (M) contribution to the
semiring value.

Consider an arbitrary state (α,M). IfM is a partial assignment, rule Decide models
the split case. The assignment M is extended with a so far undefined literal l. The
literal is annotated as a decision literal to denote that once all the extensions of Ml
have been taken into account, the extensions of M¬l must still be considered. If M is
a total assignment, then the contribution of φF (M) must be added to α (i.e, α′ = α ⊕
φF (M)). IfM does not contain any decision literals, it means that all total assignments
have already been considered, so the value of α is the final result and we can end
the application of rules. This is the situation considered by the DoneSuccess rule.
Alternatively, if M contains decision literals the algorithm backtracks by replacing the
most recent decision literal by its negation and removing all subsequent literals in M .
This is the situation considered by the BacktrackSuccess rule. Clearly, the algorithm
terminates in a finite number of steps and, in a final state, α contains the result of
the marginalization problem. Note that the α value increases monotonically during the
execution.

Example 7. Consider an arbitrary intermediate state (α,M). If the semiring is Abool,
then α = 1 iff “some total assignment in a previous state was a model”. If the semiring
is Acount, then α =”number of models found so far”. If the semiring is Amin+, then
α =”evaluation of the best (i.e, minimum cost) model so far”. Finally, if the semiring is
Anf

min+, then α =”set of evaluations of pareto-optimal models with respect to already
inspected total assignments”.

Obviously, the previous algorithm is extremely inefficient. It can be improved with
the addition of pruning. We say that state (α,M) is in a conflict if M ∪ F is an α-
contradiction (i.e, M ∪ F |=α {(�,0)}). Property 1 indicates that the algorithm can
discard (i.e. prune) all the extensions of the assignmentM since they will not contribute
to the solution. Pruning is specified with the following rules.

Definition 8. The basic SDPLL algorithm is the system defined by the previous three
and the following three pruning rules.
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Propagate : (α,M)⇒ (α,Ml) if
{

(M¬l) ∪ F |=α {(�,0)}
l is undefined inM

BacktrackFail : (α,MldN)⇒ (α,M¬l) if
{

(MldN) ∪ F |=α {(�,0)}
N has no decision literals

DoneFail : (α,M)⇒ (α, done) if
{
M ∪ F |=α {(�,0)}
M has no decision literals

Rule DoneFail considers the case in which the current assignment M is in a conflict
and does not contain any decision literal. In that case we can end the execution. Rule
BacktrackFail considers the case in whichM is in a conflict and contains decision lit-
erals. In that case the algorithm backtracks by replacing the most recent decision literal
by its negation and removing all subsequent literals of M . Rule Propagate considers
the case whenM is not in a conflict, butM¬l is. In that case, the algorithm extendsM
with l. Note that l is not marked as a decision, as its negation needs not to be considered.

Unlike the three earlier rules, the applicability of the pruning rules is not easy to
check since detecting conflicts is in general NP-hard. Therefore, practical algorithms
rely on sufficient conditions that can be efficiently computed. The following property
presents a very naive, but still widely used one.

Property 2. Consider a transition state (α,M). Let V ⊆ F be the set of clauses falsified
byM , and β =

⊗
(C,w)∈V w the product of costs of violated clauses. Then, α⊕β = α

is a sufficient condition forM ∪ F |=α {(�,0)}.

Example 8. Consider the simplest semiring Abool. The previous pruning condition be-
comes α = 1 ∨ V �= ∅. It occurs when either a model has already been found or the
current assignmentM falsifies some clause. With semiring Amin +, the previous prun-
ing condition becomes min{α, β} = α. It will occur if either α = 0 (a solution that
cannot be improved has already been found) or α ≤ β (the current assignment M is
already worse than the best solution found so far). Consider the more complex semiring
(A2

min +)f (i.e, the frontier extension of a two-dimensional optimization semiring). In
this case, α is the set of optimal evaluations found so far and β = {(w1, w2)} is a single-
ton that adds up the violations ofM . The pruning condition is ||α ∪ {(w1, w2)}|| = α,
which occurs when (w1, w2) is dominated by some element of α.

Observe that when Propagate can be applied, so is Decide. For efficiency reasons, it
is desirable to always chose Propagate.

The SDPLL algorithm using the previous pruning condition is a faithful generaliza-
tion of several algorithms: If the semiring isAbool it becomes DPLL [10] for satisfiabil-
ity testing. If the semiring isAcount it becomes the algorithm in [4] for model counting.
If the semiring is Amin+ it becomes the algorithm in [7] for Max-SAT. Finally, if the
semiring is (An

min+)f it becomes essentially equivalent to the algorithm described in
[14] for multi-objective optimization.
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6 Extending SAT Techniques

In the previous section we showed how our formalism allows one to unify several ba-
sic enumeration algorithms by abstracting away algorithmic details. Here we show its
convenience for generalizing more sophisticated techniques. We consider three features
common to all modern DPLL-based SAT solvers: backjumping, learning and restarts.

6.1 Backjumping, Learning and Restarts

The purpose of backjumping is to undo several decisions at once, going back to a lower
decision level than the previous level and adding some new literal to that lower level.
The Backjump rule below models this idea.

Backjump : (α,MldN)⇒ (α′,Ml′) if

⎧⎪⎪⎨⎪⎪⎩
there is a previous state
(α′,M) such that:
(M¬l′) ∪ F |=α′ {(�,0)}
l′ is undefined in M

It can be seen as a delayed propagation. In words, the rule is triggered if the algo-
rithm detects that a propagation instead of a decision could have been done at an earlier
state (α′,M). This occurs when the condition for propagation, i.e. (M¬l′) ∪ F |=α′

{(�,0)}, was not detected at the earlier state (recall that simple sufficient conditions are
usually used) but can be detected now (possibly, from an analysis of the current state).
Note that α′ ≤ α as α′ is taken from a previous state. Therefore with the Backjump
rule the semiring value does not grow monotonically anymore during the execution of
the algorithm.

The purpose of learning is to make explicit in the original formula implicit clauses,
because they may help in the future identification of conflicts. Similarly, when a clause
seems not to be useful for that purpose according to some measure, it can be removed.
The Learn and Forget rules below generalize this idea. Since these rules modify the
formula F , we add it to the state description.

Learn : (α,M,F ) ⇒ (α,M,F ∪ {(C,w)}) if
{
F |=0 F ∪ {(C,w)}

Forget : (α,M,F ∪ {(C,w)}) ⇒ (α,M,F ) if
{
F |=0 F ∪ {(C,w)}

Observe that the Learn and Forget rules allow one to add and remove from the
current formula F an arbitrary clause C as long as it is 0-entailed by F . The addition
and removal is safe, even in combination with Backjump and Restart (to be seen later)
which decrease the α value, precisely because the entailment is required with respect to
the lowest possible α value.

Finally, it may be useful to restart the DPLL procedure whenever the search is not
making enough progress according to some measure. The rationale behind this idea
is that upon each restart, the additional knowledge of the search space compiled into
the newly learned clauses will lead the heuristics for Decide to behave differently, and
possibly in a wiser way. The following rule models this idea.

Restart : (α,M,F ) ⇒ (0, ∅, F )



344 J. Larrosa, A. Oliveras, and E. Rodrı́guez-Carbonell

If Learn and Forget are applied, termination of the procedure can be achieved by
avoiding infinite subderivations with only Learn and Forget steps. On the other hand, if
the Restart rule is also applied, in order to get termination in practice one periodically
increases the minimum number of applications of the other rules between each pair of
restart steps. This is formalized below.

Definition 9. Let us consider a derivation by the basic SDPLL rules together with the
Backjump, Learn, Forget and Restart rules. We say that Restart has increasing peri-
odicity in the derivation if, for each subderivation Si ⇒ . . .⇒ Sj ⇒ . . .⇒ Sk where
the steps producing Si, Sj , and Sk are the only Restart steps, the number of steps of
the other rules in Si ⇒ . . .⇒ Sj is strictly smaller than in Sj ⇒ . . .⇒ Sk.

Finally, the following theorem shows how the SDPLL algorithm can be used to effec-
tively compute the marginalization of a given formula.

Theorem 1. Let us consider the basic SDPLL rules together with the Backjump, Learn,
Forget and Restart rules. If infinite subderivations consisting of only Learn and Forget
steps are not allowed and Restarthas increasing periodicity, any derivation (0, ∅, F )⇒
. . .⇒ S is finite. Moreover, if S is final then it is of the form (mrg(F ), done,G).

6.2 Conflict-Driven Backjumping and Learning

The previous four rules have been presented in their most general form. In principle,
they can be applied independently. Still, the experience from modern SAT solvers is that
it is their combination what produces the best results. Besides, their application should
be driven by conflicting states. In our framework the description of this idea requires
the specialization of the Backjump rule as follows.

ConflictDrivenBackjump :

(α,MldN) ⇒ (α′,Ml′) if

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

MldN ∪ F |=α {(�,0)}
there exists a previous state(α′,M) and
some clause l1 ∨ · · · ∨ ln ∨ l′ such that:
F |=α′ {(l1 ∨ · · · ∨ ln ∨ l′,0)}
∀1≤i≤n, M ∪ F |=α′ {(¬li,0)}
l′ is undefined in M

We call the clause l1 ∨ . . . ∨ ln ∨ l′ in ConflictDrivenBackjump a backjump clause.
This rule is more specific than the previous Backjump because it can be only applied
when the current state is a conflict. Furthermore, the analysis of the conflict has to reveal
the existence of a backjump clause. It can be easily proved that the two conditions for
a backjump clause imply the condition (M¬l′) ∪ F |=α′ {(�,0)} of the more general
Backjump rule. Conflict-driven-learning restricts the Learn and Forget rules to add
and remove only backjump clauses, which in turn restricts the new knowledge after
each restart.

Conflict analysis [31] is the efficient detection of useful backjump clauses. It is only
well-studied in the SAT case. However, the following example shows that our abstract
description provides direct generalizations to other problems.
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Example 9. Consider semiring Amin+ and a formula with, among others, the follow-
ing clauses, {(¬x1 ∨ x2,∞), (¬x2 ∨ x3, 8), (¬x4 ∨ x5, 7), (¬x7 ∨ x8,∞), (¬x7 ∨
¬x8, 7), (¬x2, 1), (¬x3, 1), (¬x5, 1)}. Suppose that an execution of SDPLL that uses
the pruning condition of Prop. 2 has generated state (9,M) such thatM does not violate
any clause and x1, . . . , x8 are undefined in M . A possible subderivation is

. . .⇒ (9,M)⇒ (9,Mxd
1)⇒ (9,Mxd

1x2)⇒ (9,Mxd
1x2x3)⇒ (9,Mxd

1x2x3x
d
4) ⇒

⇒ (9,Mxd
1x2x3x

d
4x5)⇒ (9,Mxd

1x2x3x
d
4x5x

d
6) ⇒⇒ (9,Mxd

1x2x3x
d
4x5x

d
6x

d
7)⇒

⇒ (9,Mxd
1x2x3x

d
4x5x

d
6x

d
7x8)

The current state is in a conflict since it satisfies the pruning condition (the sum of
weights of clauses falsified by the current assignment is 10 and min{9, 10} = 9). If we
analyze the conflict, we observe that decisions xd

4 and xd
6 are irrelevant for the pruning

condition (if we remove their contribution and the contribution of their implications,
the state is still in a conflict). From the analysis of the conflict, we can obtain backjump
clause ¬x2 ∨ ¬x7. The application of the rule ConflictDrivenBackjump produces the
following state (9,Mxd

1x2x3¬x7).
It is important to note that state-of-the-art Max-SAT solvers [16,21] are very naive

in terms of backjumping (they only backjump when the conflict is exclusively caused
by hard clauses). Thus, our backjump rule does not only cover this basic case, but also
opens a new perspective for new cases as the one in this example.

6.3 Semirings with Idempotent ⊕
Semirings with idempotent⊕ include all applications discussed in Section 4, except for
counting problems (Acount). Although the purpose of this paper is to consider general
definitions and techniques, the ⊕-idempotent case is still so general that we will men-
tion some algorithmic improvements for it. They are all based on the fact that during the
execution of SDPLL, it is always possible to replace the semiring value of a previous
state by the higher semiring value of the current state and resume the execution from
that earlier state. Formally,

Property 3. Let F be a formula defined over a ⊕-idempotent semiring. Consider an
arbitrary derivation of the basic SDPLL (without the enhancements of Section 6.1),
(0,∅) ⇒ (α1,M1) ⇒ . . . ⇒ (αj ,Mj). For any 1 ≤ i ≤ j, any derivation from the
state (αj ,Mi) to a final state (αn, done) satisfies that αn = mrg(F ).

The first implication of this is that in the Backjump (and ConflictDrivenBackjump)
rule the occurrences of α′ can be replaced by α. Therefore, the rule models a return to
an earlier state but preserving the better semiring value of the current state. This allows
one to take advantage of the work done so far for, e.g., propagating unassigned literals
or detecting new conflicts after backjumping. An interesting feature of the resulting rule
is that ConflictDrivenBackjump subsumes chronological backtracking, as the negation
of all decision literals of the current assignmentM is a backjump clause.

The second implication of Property 3 is that the Restart rule can restart the search
preserving the semiring value of the current state. Finally, the Learn and Forget rules
can add and remove α-implied clauses where α is not 0 but the semiring value of the
current state, which broadens the range of clauses that can be used for learning.
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7 Conclusions and Future Work

In this paper we introduce semiring-induced propositional logic, which extends propo-
sitional logic by allowing clauses to be weighted with semiring values. We show that
it provides a convenient formalism for modeling a variety of important computational
problems. Further, it serves as an elegant and well-defined presentation of general solv-
ing techniques by focusing on the general idea and abstracting away algorithmic details.

In our future work we want to incorporate to the SDPLL algorithm decomposition
techniques, which have proven fundamental in counting problems [17,2].

This paper has focused on enumeration-based algorithmic techniques. We want to
investigate which inference-based algorithms can also be unified. In particular, we want
to study under which conditions the resolution rule for Max-SAT introduced in [20] can
be generalized to arbitrary semirings, while preserving completeness.
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Abstract. Traditionally, the full verification of a program’s functional
correctness has been obtained with pen and paper or with interactive
proof assistants, whereas only reduced verification tasks, such as ex-
tended static checking, have enjoyed the automation offered by
satisfiability-modulo-theories (SMT) solvers. More recently, powerful
SMT solvers and well-designed program verifiers are starting to break
that tradition, thus reducing the effort involved in doing full verification.

This paper gives a tour of the language and verifier Dafny, which has
been used to verify the functional correctness of a number of challenging
pointer-based programs. The paper describes the features incorporated
in Dafny, illustrating their use by small examples and giving a taste of
how they are coded for an SMT solver. As a larger case study, the paper
shows the full functional specification of the Schorr-Waite algorithm in
Dafny.

0 Introduction

Applications of program verification technology fall into a spectrum of assur-
ance levels, at one extreme proving that the program lives up to its functional
specification (e.g., [8,23,28]), at the other extreme just finding some likely bugs
(e.g., [19, 24]). Traditionally, program verifiers at the high end of the spectrum
have used interactive proof assistants, which require the user to have a high
degree of prover expertise, invoking tactics or guiding the tool through its vari-
ous symbolic manipulations. Because they limit which program properties they
reason about, tools at the low end of the spectrum have been able to take ad-
vantage of satisfiability-modulo-theories (SMT) solvers, which offer some fixed
set of automatic decision procedures [18, 5].

An SMT-based program verifier is automatic in that it requires no user inter-
action with the solver. This is not to say it is effortless, for it usually requires
interaction at the level of the program being analyzed. Used analogously to type
checkers, the automatic verifier takes a program with specifications (analogously,
type annotations) and produces error messages about where the program may
be violating a rule of the language (like an index bounds error) or a programmer-
supplied specification (like a failure to establish a declared postcondition). The
error messages speak about the program (e.g., “MyProgram.dfy(212,23): loop

invariant might not hold on entry”) and can be computed continuously in the
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background of an integrated development environment. Compared with the use
of an interactive proof assistant, the added automation and the interaction closer
to the programmer’s domain stand a chance of reducing the effort involved in
using the verifier and reducing the amount of expertise needed to use it.

Recently, some functional-correctness verification has been performed using
automatic program verifiers based on SMT solvers or other automatic decision
procedures [45, 52, 14, 33]. This has been made possible by increased power and
speed of state-of-the-art SMT solvers and by carefully crafted program verifiers
that make use of the SMT solver. For example, the input language for programs
and specifications affects how effective the verifier is. Moreover, SMT solvers
obtain an important kind of user extensionality by supporting quantifiers, and
these quantifiers are steered by matching triggers. The design of good triggers
is a central ingredient in making effective use of SMT solvers (for various issues
in using matching triggers, see [34]).

In this paper, I describe the language and verifier Dafny. The language is im-
perative, sequential, supports generic classes and dynamic allocation, and builds
in specification constructs (as in Eiffel [42], JML [29], and Spec# [4]). The spec-
ifications include standard pre- and postconditions, framing constructs, and ter-
mination metrics. Devoid of convenient but restricting ownership constructs for
structuring the heap, the specification style (based on dynamic frames [27]) is
flexible, if sometimes verbose. To aid in specifications, the language includes
user-defined mathematical functions and ghost variables. These features permit
programs to be specified for modular verification, so that the separate verifica-
tion of each part of the program implies the correctness of the whole program.
Finally, in addition to class types, the language supports sets, sequences, and
algebraic datatypes.

Dafny’s basic features and statements are presented in Marktoberdorf lectures
notes [33]. Those lecture notes give a detailed account of the logical encoding of
Dafny, including the modeling of the heap and objects, methods and statements,
and user-defined functions. The additional features described in this paper and
present in the current implementation of the language and verifier include generic
types, algebraic datatypes, ghost constructs, and termination metrics.

Dafny’s program verifier works by translating a given Dafny program into the
intermediate verification language Boogie 2 [2, 40, 32] in such a way that the
correctness of the Boogie program implies the correctness of the Dafny program.
Thus, the semantics of Dafny are defined in terms of Boogie (a technique applied
by many automatic program verifiers, e.g., [14,21]). The Boogie tool is then used
to generate first-order verification conditions that are passed to a theorem prover,
in particular to the SMT solver Z3 [17].

Dafny has been used to specify and verify some challenging algorithms. The
specifications are understandable and verification times are usually low. To show-
case the composition of Dafny’s features, I describe the Schorr-Waite algorithm
in Dafny. In fact, I include its entire program text (including its full functional
correctness specifications), which as far as I know is a first in a conference paper.
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Feeding this program through the Dafny verifier, the verification takes less than
5 seconds.

Dafny is available as open source at boogie.codeplex.com.

1 Dafny Language Features

Dafny is an imperative, class-based language. In this section, I describe some of
its more advanced features and sketch how these are encoded in Boogie 2 by the
Dafny verifier.

In principle, the language can be compiled to executable code, but the current
implementation includes only a verifier, not a compiler. For a verified program,
a compiler would not need to generate any run-time representation for specifi-
cations and ghost state, which are needed only for the verification itself.

1.0 Types

The types available in Dafny are booleans, mathematical integers, (possibly null)
references to instances of user-defined generic classes, sets, sequences, and user-
defined algebraic datatypes. There is no subtyping, except that all class types are
subtypes of the built-in type object. Programs are type safe, that is, the static
type of an expression accurately describes the run-time values to which the
expression can evaluate. Generic type instantiations and types of local variables
are inferred. Because of the references and dynamic allocation, Dafny can be used
to write interesting pointer algorithms. Sets are especially useful when specifying
framing (described below), and sequences and algebraic datatypes are especially
useful when writing specifications for functional correctness (more about that
below, too).

1.1 Pre- and Postconditions

Methods have standard declarations for preconditions (keyword requires) and
postconditions (keyword ensures), like those in Eiffel, JML, and Spec#. For
example, the following method declaration promises to set the output parameter
r to the integer square root of the input parameter n, provided n is non-negative.

method ISqrt(n : int) returns (r : int)

requires 0 ≤ n;

ensures r*r ≤ n ∧ n < (r+1)*(r+1);

{ /* method body goes here. . . */ }

It is the caller’s responsibility to establish the precondition and the implemen-
tation’s responsibility to establish the postcondition. As usual, failure by either
side to live up to its responsibility is reported by the verifier as an error.

boogie.codeplex.com
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1.2 Ghost State

A simple and useful feature of the language is that variables can be marked as
ghost. This says that the variables are used in the verification of the program
but are not needed at run time. Thus, a compiler can omit allocating space and
generating code for the ghost variables. For this to work, values of ghost variables
are not allowed to flow into non-ghost (“physical”) variables, which is enforced
by syntactic checks.

Like other variables, ghost variables are updated by assignment statements.
For example, the following program snippet maintains the relation g = 2*x:

class C {

var x : int; var y : int; ghost var g : int;

method Update() modifies {this};

{ x := x + 1; g := g + 2; }

}

(I will explain the modifies clause in Sec. 1.3.) Dafny follows the standard con-
vention of object-oriented languages to let this.x be abbreviated as x, where
this denotes the implicit receiver parameter of the method.

As far as the verifier is concerned, there is no difference between ghost vari-
ables and physical variables. In particular, their types and the way they undergo
change are the same as for physical variables. At the cost of the explicit updates,
this makes them much easier to deal with than model variables or pure methods
(e.g., [29]), whose values change as a consequence of other variables changing.

1.3 Modifications

An important part of a method specification is to say which pieces of the pro-
gram state are allowed to be changed. This is called framing and is specified in
Dafny by a modifies clause, like the one in the Update example above. For sim-
plicity, all framing in Dafny is done at the object granularity, not the object-field
granularity. So, a modifies clause indicates a set of objects, and that allows the
method to modify any field of any of those objects.

For example, the Update method above is also allowed to modify this.y. If
callers need to know that the method has no effect on y, the method specification
can be strengthened by a postcondition ensures y = old(y);, where old(E),
which can be used in postconditions, stands for the expression E evaluated on
entry to the method.

A method’s modifies clause must account for all possible updates of methods.
This may seem unwieldy, since the set of objects a method affects can be both
large and dynamically determined. There are various solutions to this problem;
for example, Spec# makes use of a programmer-specified ownership hierarchy
among objects [3, 38], JML uses ownership and data groups [43, 31], and sepa-
ration logic and permission-based verifiers infer the frame from the given pre-
condition [44,49,37]. Inspired by dynamic frames [27], Dafny uses the crude and
simple modifies clauses just described, which allows the frame to be specified by
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the value of a ghost variable. The standard idiom is to declare a set-valued ghost
field, say Repr, to dynamically maintain Repr as the set of objects that are part
of the receiver’s representation, and to use Repr in modifies clauses (see [33]).
For example:

class MyClass {

ghost var Repr : set<object>;

method SomeMethod() modifies Repr; { /* . . . */ }

}

Recall, this modifies clause gives the method license to modify any field of any
object in Repr. If this is a member of the set Repr, then the modifies clause also
gives the method license to modify the field Repr itself.

In retrospect, I find that this language design—explicit, set-valued modifies

clauses that specify modifications at the granularity of objects—has contributed
greatly to the flexibility and simplicity of Dafny.

1.4 Functions

A class can declare mathematical functions. These are given a signature, which
can include type parameters, a function specification, and a body. For illustra-
tion, consider the following prototypical function, declared in a class C:

function F(x : T) requires P; reads R; decreases D; { Body }

where T is some type, P is a boolean expression, R is a set-valued expression,
D is a list of expressions, and Body is an expression (not a statement). The
requires clause says in which states the function is allowed to be used; in other
words, the function can be partial and its domain is defined by the requires

clause. Just like Dafny checks for division-by-zero errors, it also checks that
invocations of a function satisfy the function’s precondition. The reads clause
gives a frame for the function, saying which objects the function may depend
on. Analogously to modifies clauses of methods, the reads clause describes a
set of objects and the function is then allowed to depend on any field of any
of those objects. Dafny enforces the reads clause in the function body. The
decreases clause gives a termination metric (also known as a variant function
or a ranking function), which specifies a well-founded order among recursive
function invocations. Finally, Body defines the value of the function.

By default, function are “ghost” and can be used in specifications only. But by
declaring the function with function method, the function definition is checked
to be free of specification-only constructs and the function can then be used in
compiled code.

The Dafny function is translated into a Boogie function with the name C.F
(in Boogie, dot is just another character that can be used in identifier names).
In addition to the explicit Dafny parameters of the function, the Boogie func-
tion takes as parameters the heap and the receiver parameter. The prototypical
function above gives rise to a Boogie axiom of the form:
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(∀H:HeapType , this : [[C]], x: [[T]] •
GoodHeap(H) ∧ this �= null ∧ [[P]] ⇒ C.F (H, this, x) = [[Body]] )

where HeapType denotes the type of the heap, [[ · ]] denotes the translation func-
tion from Dafny types and expressions into Boogie types and expressions, and
GoodHeap holds of well-formed heaps (see [33]). The Dafny function declaration
is allowed to omit the body, in which case this definitional axiom is omitted and
the function remains uninterpreted.

When generating axioms, one needs to be concerned about the logical consis-
tency of those axioms. Unless the user-supplied body is restricted, the definitional
axiom could easily be inconsistent, in particular if the function is defined (mu-
tually) recursively. To guard against this, Dafny insists that any recursion be
well-founded, which is enforced in two phases. First, Dafny builds a call graph
from the syntactic declarations of functions. Then, for any function that may be
(mutually) recursive, the language makes use of the termination metric supplied
by the decreases clause. Such a metric is a lexicographic tuple whose components
can be expressions of any type. Dafny enforces that any call between mutually
recursive functions leads to a strictly smaller metric value. In doing the compari-
son, it first truncates the caller’s tuple and callee’s tuple to the longest commonly
typed prefix. Integers are ordered as usual, false is ordered below true, null
is ordered below all other references, sets are ordered by subset, sequences are
ordered by their length, and algebraic datatypes are ordered by their rank (see
Sec. 1.9). All of these are finite and naturally bounded from below, except inte-
gers, for which a lower bound of 0 is enforced. The lower bound is checked of the
caller’s decreases clause, but the check is performed at the time of a (mutually)
recursive call, not on entry to the caller. This makes the specification of some
decreases clauses more natural.

An omitted decreases clause defaults to the set of objects denoted by the
reads clause.

There is one more detail about the encoding of the definitional axiom. In
Boogie, all declared axioms are available when discharging proof obligations.
Thus, if the axioms are inconsistent, then all proof obligations can be discharged
trivially, even the proof obligations designed to ensure the consistency of the
axioms! To avoid such circularities, Dafny adds an antecedent to each definitional
axiom; this lets the axiom be activated selectively. Let the height of a function
be its order in a topological sort of all functions according to the call graph.
For example, mutually recursive functions have the same height. The antecedent
added to the definitional axiom of a function F of height h is h < ContextHeight ,
where ContextHeight is an uninterpreted constant. To activate the definitional
axioms of non-recursive calls, the consistency check of function F is given the
assumption ContextHeight = h. Proof obligations related to methods get to
assume what amounts to ContextHeight = ∞, thus activating all definitional
axioms.

To further explain the Boogie encoding of Dafny’s functions, it is necessary
first to give more details of the encoding of the heap [33]. The Dafny verifier
models the heap as a map from object references and field names to values. The
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type of a Dafny field-selection expression o.f depends on the type of the field
f, which is modeled directly using Boogie’s polymorphic type system. All object
references in Dafny are modeled by a single Boogie type Ref . A field f of type T

declared in a class C is modeled as a constant C.f of type Field [[T]], where Field
is a unary type constructor. The type of the heap, HeapType , is a polymorphic
map type 〈α〉[Ref ,Field α]α; in words, for any type α, given a Ref and a Field α,
the map returns an α [40]. For example, if f is of type int and o has type C, then
the Boogie encoding declares a constant C.f of type Field int and, in a heap H,
o.f is modeled as H[o, C.f ], which has the Boogie type int.

Back to the encoding of functions. The reads clause of the prototypical func-
tion above produces the following frame axiom:

(∀H,K:HeapType , this : [[C]], x: [[T]] •
GoodHeap(H) ∧ GoodHeap(K) ∧
(∀ 〈α〉 o:Ref , f :Field α • o �= null ∧ [[o ∈ R]] ⇒ H[o, f ] = K[o, f ] )
⇒ C.F (H, this , x) = C.F (K, this , x) )

where “∀〈α〉 o:Ref , f :Field α” quantifies over all types α, all references o, and
all fields names f of type Field α. The frame axiom says that if two heaps H and
K agree on the values of all fields of all non-null objects in R, then C.F returns
the same value in the two heaps.

At first, it may seem odd to have a frame axiom, since the function’s defini-
tional axiom is more precise, but the frame axiom serves several purposes. First,
if Body is omitted, the frame axiom still gives a partial interpretation of the func-
tion. Second, the frame axiom opens the possibility of using scope rules where
Dafny hides the exact definition, except in certain restricted scopes, for exam-
ple when verifying the enclosing class. By emitting the definitional axiom only
when verifying the program text in the restricted scopes, other scopes then only
get to know what the function depends on, not its exact definition. Such scope
rules are still under experimentation in the current version of Dafny (but see,
e.g., [30, 49]). Third, for certain recursively defined functions, the frame axiom
can sometimes keep the underlying SMT solver away from matching loops.

Dafny allows the frame of a function to be given as reads *;, in which case the
function is allowed to depend on anything and the frame axiom is not emitted.

The logical consistency of the frame axiom plus the definitional axiom is jus-
tified by reads check that are part of the function body’s consistency check: each
heap dereference is checked to be in the declared reads clause [33]. Meanwhile,
the frame axiom by itself is consistent, so it is always activated.

1.5 Specifying Data-Structure Invariants

When specifying a program built as a layers of modules, it is important to
have specifications that let one abstract over the details of each module. Several
approaches exist, for example built around ownership systems [13, 12], explicit
validity bits [3], separation logic [46], region logic [1], and permissions [9]. Dafny
follows an approach inspired by dynamic frames [27], where the idea is to specify
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frames as dynamically changing sets and where the consistency of data structures
(that is, object invariants [42, 3]) are specified by validity functions [19, 39, 44].
The sets, functions, ghost variables, and modifies clauses of Dafny are all that
is needed to provide idiomatic support for this approach.

Let me illustrate the idiom that encodes dynamic frames in Dafny with this
program skeleton:

class C {

ghost var Repr : set<object>;

function Valid() : bool

reads {this} ∪ Repr;

{ this ∈ Repr ∧ . . . }
method Init()

modifies {this};

ensures Valid() ∧ fresh(Repr - {this});

{ . . . Repr := {this} ∪ . . .; }

method Update()

requires Valid();

modifies Repr;

ensures Valid() ∧ fresh(Repr - old(Repr));

{ . . . }
. . .

}

The ghost variable Repr is the dynamic frame of the object’s representation. The
Dafny program needs to explicitly update the variable Repr when the object’s
representation changes. Dafny does not build in any notion of an object invariant.
Instead, the body of function Valid() is used to define what it means for an
object to be in a consistent state.

Dafny does not have any special constructs to support object construction.
Instead, one declares a method, named Init in the skeleton above, that performs
the initialization. A client then typically allocates and initializes an object as
follows:

var c := new C; call c.Init();

Method Init says it may modify the fields of the object being initialized, which
includes the ghost field Repr. Its postcondition says the method will return in
a state where Valid() is true. Since Init is allowed to modify Repr, it declares
a postcondition that says something about how it changes Repr. An expression
fresh(S), which is allowed in postconditions, says that all non-null objects in the
set S have been allocated since the invocation of the method. The postcondition
of Init says that all objects it adds to Repr, except this itself, have been allocated
by Init. Thus, the typical client above can conclude that c.Repr is disjoint from
any previous set of objects in the program.

The program skeleton also shows a typical mutating method, Update. It re-
quires and maintains the object invariant, Valid(), and it only modifies objects
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in the object’s representation. Since Update can modify the ghost variable Repr,
the postcondition fresh(. . .) promises to add only newly allocated objects to
Repr, which lets clients conclude that the object’s representation does not bleed
into previous object representations.

More about this idiom and some examples are found in the Marktoberdorf
lecture notes [33].

Note that the specifications in the program skeleton above are just idiomatic.
It is easy to deviate from this idiom. For example, to specify that the Append

method of a List class will reuse the linked-list representation of the argument,
one might use the following specification:

method Append(that : List)

requires Valid() ∧ that.Valid();

modifies Repr ∪ that.Repr;

ensures Valid() ∧ fresh(Repr - old(Repr) - old(that.Repr));

Here, nothing is said about the final value of that.Repr; in particular, the caller
cannot assume this and that to have disjoint representations after the call. More-
over, the value of that.Valid() is also under-specified on return, so the caller can-
not assume that to still be in a consistent state. One may need to strengthen the
precondition above with Repr ∩ that.Repr = {}, which says that the representa-
tions of this and that are disjoint, or perhaps with Repr ∩ that.Repr ⊆ {null},
which says that they share at most the null reference.

The code in the skeleton shows only the specifications one needs to talk about
the object structure. To also specify functional correctness, one typically adds
more ghost variables (for example,

ghost var Contents : seq<T>;

for a linked list of T objects) and uses these variables in method pre- and post-
conditions.

1.6 Type Parameters

Classes, methods, functions, algebraic datatypes, and datatype constructors are
generic, that is, they can take type parameters. Here is an example generic class,
where T denotes a type parameter of the class:

class Pair<T> {

var a : T; var b : T;

method Flip() modifies {this}; ensures a = old(b) ∧ b = old(a);

{ var tmp := a; a := b; b := tmp; }

}

Uses of generic features require some type instantiation, which can often be
inferred. For example, this code fragment allocates an integer pair and invokes
the Flip method:
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var p := new Pair<int>; p.b := 7; call p.Flip(); assert p.a = 7;

Expressions whose type is a type parameter can only be treated parametrically,
that is, Dafny does not provide any type cast or type query operation for such
expressions. For example, the body of the Flip method cannot use a and b as
integers, but the client code above can, since, there, the type parameter has been
instantiated with int.

Dafny types are translated into Boogie types, which generally are coarser.
For example, bool and int translate to the same types in Boogie, and all class
types translate into one user-defined Boogie type Ref , which is used to model all
references. Procedures and functions in Boogie can also take type parameters,
but the Dafny verifier does not make use of them for Dafny generics. The reason
for this primarily has to do with the types of field values in the heap. As explained
above in Sec. 1.4, each Dafny field gives rise to one Boogie constant that denotes
the field name. This is important, because it allows generic code to be verified
just once; for example, the implementation of the Flip method is verified without
considering any specific instantiation of type parameter T. But in contexts where
a use of a field like a or b is known to produce a specific type, like in the client
code for Flip above, retrieving that field from the heap needs to produce the
specific type. That goes beyond what the type constructor Field can do. So,
rather than using type parameters in Boogie to deal with the generics in Dafny,
the Dafny verifier introduces one Boogie type Box to stand for all values whose
type is a type parameter. It then also introduces conversion functions from each
type to Box and vice versa. The verifier is careful not to box an already boxed
value, which can be ensured by looking at the static types of expressions.

In my personal experience with the Spec# program verifier, I have found the
encoding of generic types to be an error prone enterprise. In retrospect, I think
the reason has been that boxed entities in Spec# are encoded as references,
which is what they look like in the .NET virtual machine. Admittedly, Dafny’s
generics are simpler, but my feeling is that the decision of encoding generic types
using a separate Boogie type has led to a more straightforward encoding.

1.7 Sets

Dafny supports finite sets. A set of T-valued elements has type set<T>. Operations
on sets are the usual ones, like membership, union, difference, and subset, but
not complement and not cardinality. Sets are encoded as maps from values to
booleans. The axiomatization defines all operations in terms of set membership;
for example, there are no axioms that directly state the distribution of union
over intersection. This axiomatization seems to work smoothly in practice—it is
fast, simple, and gets the verification done.

In that spirit, set equality is translated into a Boogie function SetEqual , which
is defined by equality in membership. Because Boogie does not promise exten-
sionality of its maps [32], the reverse does not necessarily hold. For example, if F
is a function on sets and s and t are sets, the Dafny verifier may not succeed in
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proving F(s) = F(t) even if it has enough information to establish that s and t

have the same members. The verifier therefore includes the axiom

(∀ a, b:Set • SetEqual(a, b) ⇒ a = b )

but because of the way quantifiers are handled in SMT solvers like Z3, this axiom
is put into play only if the prover has a ground term SetEqual(s, t). If that term
is not available, the Dafny user may need to help the verifier along by supplying
the statement assert s = t;, which both introduces the term SetEqual(s, t) and
adds it as a proof obligation.

A final remark about sets is that the Dafny encoding only ever uses sets of
boxes. That is, the translation boxes values before adding them to sets. The
reason for this is similar to the reason for introducing boxes for type parameters
described in Sec. 1.6.

1.8 Sequences

Dafny also supports sequences, with operations like member selection, concate-
nation, and length. They are encoded analogously to sets, except that they do
not use Boogie’s built-in maps, but instead use a user-defined type Seq with a
separate member-select function and a function for retrieving the length of the
sequence. However, my experience with sequences has not been as smooth as
with sets.

In particular, quantifying over sequence elements like in (∀ i • . . .s[i]. . .),
but where the index into the sequence involves not just the quantified variable
i but also some arithmetic, does not always lead to useful quantifier triggering.
Although this problem has more to do with mixing triggers and interpreted
symbols (like +), the problem can become noticeable when specifying properties
of sequences. The workaround, once one has a hunch that this is the problem,
is either to rewrite the quantifier or to supply an assertion that mentions an
appropriate term to be triggered. For example, the list reversal program in the
Marktoberdorf lecture notes [33] needs an assertion of the form:

assert list[0] = data;

1.9 Algebraic Datatypes

An algebraic datatype defines a set of structural values. For example, generic
nonempty binaries trees with data stored at the leaves can be defined as follows:

datatype Tree<T> { Leaf(T); Branch(Tree<T>, Tree<T>); }

This declaration defines two constructors for Tree values, Leaf and Branch. A
use of a constructor is written like #Tree.Leaf(5), an expression whose type is
Tree<int>.

The most useful feature of a datatype is provided by the match expression,
which indicates one case per constructor of the datatype. For example,
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function LeafCount<T>(d : Tree<T>) : int decreases d;

{

match d

case Leaf(t) ⇒ 1

case Branch(u,v) ⇒ LeafCount(u) + LeafCount(v)

}

is a function that returns the number of leaves of a given tree.
All datatypes are modeled using a single user-defined Boogie type, Datatype,

and constructors are modeled as Boogie functions. There are five properties of
interest in the axiomatization of such functions:

0. each constructor is injective in each of its arguments,
1. different constructors produce different values,
2. every datatype value is produced from some constructor of its type,
3. datatype values are (partially) ordered, and
4. the ordering is well-founded.

Dafny emits Boogie axioms for three of these properties.
Properties (0) and (1) are axiomatized in the usual way, by giving the inverse

functions and providing a category code, respectively. Property (2) is currently
not encoded by the Dafny verifier, because it can give rise to enormously expen-
sive disjunctions. Luckily, the property is usually not needed, because the only
case-split facility that Dafny provides on datatypes is the match expression and
Dafny insists, through a simple syntactic check, that all cases are covered (which
means there is usually no need to prove in the logic that all cases are handled).

Property (3) is encoded using an integer function rank and axioms that pos-
tulate datatype arguments of a constructor to have a smaller rank than the value
constructed. For example, Dafny emits the following axiom for Branch:

(∀ a0, a1:Datatype • rank(a0) < rank(Tree.Branch(a0, a1)) )

Property (4) is of interest when one wants to do induction on the structure of
datatypes. It holds if the datatypes in a program can be stratified so that every
datatype includes some constructor all of whose datatype arguments come from
a lower stratum. Dafny enforces such a stratification, but it does not actually
emit an axiom for this property (which otherwise would simply have postulated
rank to return non-negative integers only), because the SMT solver never sees
any proof obligation that requires it.

If the underlying SMT solver provides native support for algebraic datatypes
(which Z3 actually does, as does CVC-3 [6]), then Dafny could tap into that
support (which presumably provides all five properties) instead of rolling its own
axioms. However, that would also require the intermediate verification language
to support algebraic datatypes (which Boogie currently does not).

One final, important thing remains to be said about the encoding of datatypes,
and it concerns the definitional axioms generated for Dafny functions. Recursive
functions are delicate to define in an SMT solver, because of the possibility
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that axioms will be endlessly instantiated (a phenomenon known as a matching
loop [18], see also [34]). The problem can be mitigated by specifying triggers
that are structurally larger than the new terms produced by the instantiations.
Following VeriFast [26], Dafny emits, for any function whose body is a match

expression on one of the function’s arguments, a series of definitional axioms,
one corresponding to each case. The crucial point is that the trigger of each
axiom discriminates according to the form of the function’s argument used in
the match.

For example, one of the definitional axioms for function LeafCount above is:

(∀u, v:Datatype •
LeafCount(Tree.Branch(u, v)) = LeafCount(u) + LeafCount(v) )

where the trigger is specified to be the left-hand side of the equality (for brevity,
I omitted the H and this arguments to LeafCount). Note that the new LeafCount
terms introduced by instantiations of this axiom would cause further instantia-
tions only if the SMT solver has already equated u or v with some Tree.Branch
term. In contrast, consider the following axiom, where I write b0 and b1 for the
inverse functions of Tree.Branch :

(∀ d:Datatype • LeafCount(d) = LeafCount(b0(d)) + LeafCount(b1(d)) )

If triggered on the term LeafCount(d), this axiom is likely to lead to a matching
loop, since each instantiation gives rise to new terms that also match the trigger.

1.10 Termination Metrics

As a final language-feature topic, let me say more about termination, and in
particular about the termination of loops. Loops can be declared with loop in-
variants and a termination metric, the latter being supplied with a decreases

clause that takes a lexicographic tuple, just as for functions. Dafny verifies that,
each time the loop’s back edge is taken (that is, each time control reaches the
end of the body of the while statement and proceeds to the top of a new itera-
tion where it will evaluate the loop guard), the (“post-iteration”) metric value is
strictly smaller than the (“pre-iteration”) metric value at the top of the current
iteration.

As I mentioned in Sec. 1.4, each Dafny type has an ordering, has finite val-
ues only, and, except for integers, is bounded from below. If the decrement of
the metric involves decreasing an integer-valued component of the lexicographic
tuple, then Dafny checks, at the time of the back edge, that the pre-iteration
value of that component had been at least 0. The complicated form of this rule
(compared to, say, the simpler rule of enforcing as a loop invariant that every
integer-valued component of the metric is non-negative) gives more freedom in
choosing the termination metric. For example, the following loop verifies with
the simple decreases clause given, despite the fact that n will be negative after
the loop:
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while (0 ≤ n) decreases n; { . . . n := n - 1; }

To support applications where it is not desirable to insist on loop termination,
Dafny lets a loop be declared with decreases *;, which skips the termination
check for the loop.

Dafny also supports decreases clauses for methods, giving protection against
infinite recursion. As for functions, Dafny proceeds in two phases, in the first
phase building a call graph and in the second phase checking the decreases

clauses of (mutually) recursive calls. Use of the two phases reduces the number
of decreases clauses that programs need to contain.

2 Case Study: Schorr-Waite Algorithm

The famous Schorr-Waite algorithm marks all nodes reachable in a graph from
a given root node [47]. What makes the algorithm attractive, and challenging
for verification, is that it keeps track of most of the state of its depth-first search
by reversing edges in the graph itself. This can be appropriate in the marking
phase of a garbage collector, which is run at a time when space is low. The
functional correctness of the algorithm has four parts: (C0) all reachable nodes
are marked, (C1) only reachable nodes are marked, (C2) there is no net effect
on the structure of the graph, and (C3) the algorithm terminates.

In this section, I present the entire Dafny program text for the Schorr-Waite
algorithm. Using this 120-line program as input, Dafny (using Boogie 2 and
Z3 version 2.4) verifies its correctness in less than 5 seconds. A large number
of proofs have been constructed for the algorithm through both pen-and-paper
proofs and mechanical verifications (see, e.g., [10, 0, 41, 25, 11]). The previous
shortest mechanical-verifier input for this algorithm appears to be 400 lines of
Isabelle proof scripts by Mehta and Nipkow [41], whereas many other attempts
have been far longer. To my knowledge, no previous Schorr-Waite proof has
been carried out solely by an SMT solver, and never before has all necessary
specifications and loop invariants been presented in one conference paper.

Here is a description of highlights of the program:
Class Node (lines 0–5 in the program below) represents the nodes in the

graph, each with some arbitrary out-degree as represented by field children.
The Schorr-Waite algorithm adds the childrenVisited field for bookkeeping,
and the ghost field pathFromRoot is used only for the verification.

Datatype Path (lines 7–10) represents lists of Node’s and is used by function
Reachable (line 13) to describe the list of intermediate nodes between from and
to. Function ReachableVia (line 18) is defined recursively according to that list
of intermediate nodes. Reachability predicates are notoriously difficult for first-
order SMT solvers, but the trigger-aware encoding of the definitional axiom
(explained in Sec. 1.9) makes it work honorably for this program.

The method itself is defined starting at line 28 and its specification is given
on lines 29–41. The preconditions say that the method parameters describe a
proper graph with marks and auxiliary fields cleared. Correctness property (C0)
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is specified by the postconditions on lines 36–37, (C1) on line 39, and (C2)
on line 41. Noteworthy about this specification is that (C0) is specified as a
closure property, using quantifiers, whereas (C1) uses the reachability predicate.
Alternatively, one could have also specified (C0) with the reachability predicate,
as the dual of (C1), but that would have led to a more complicated proof (using
a loop invariant like Hubert and Marché’s I4c in [25], which they describe as “the
trickiest annotation”). Correctness property (C3) is implicit, since Dafny checks
that loops and methods terminate.

The heart of the algorithm is implemented by a loop with 3 cases (lines 85–
112), one for going deeper into the graph (“push”), one for considering the next
child of the current node, and one for backtracking to the previous node on the
stack (“pop”). The program maintains a ghost variable stackNodes that stores
the visitation stack of the depth-first traversal. This ghost variable, which is
updated explicitly (lines 48, 95, and 106), plays a vital part in the proof. It is
used in most of the loop invariants. Lines 74–76 declare the relation between
stackNodes and the Schorr-Waite reversed edges.

The loop invariant helps establish the postconditions as follows: Correctness
property (C0) is maintained as a loop invariant (lines 51 and 61–62), except
for those nodes that are on the stack. Ditto for (C2) (lines 63–65). Correctness
property (C1) is also maintained as a loop invariant (line 72). It uses function
Reachable, which is defined in terms of an existential quantifier. The prover needs
help in establishing this existential quantifier when a node is marked (lines 46 and
109), so the program supplies a witness by using a local ghost variable path and
an associated loop invariant (line 70). To maintain that invariant in the pop case,
intermediate reachability paths are recorded in the ghost field pathFromRoot, see
the loop invariant on line 71.

The termination metric for the loop is given as a lexicographic triple on line
83. The first component of the triple is a set, the second a sequence, and the
third an integer. Dafny verifies that each iteration of the loop decreases this
triple and that its integer component is bounded from below. Since sets are fi-
nite in Dafny, this establishes a well-founded order and thus implies that the loop
terminates. In comparison, proving termination of the Schorr-Waite algorithm
using Caduceus [21], a verifier equipped to use SMT solvers when possible, in-
volved using a second-order formula even just to express the well-foundedness of
the termination metric used, which necessitated the use of an interactive proof
assistant to complete the proof [25].

0 class Node {
1 var children : seq<Node>;
2 var marked : bool;
3 var childrenVisited : int;
4 ghost var pathFromRoot : Path;
5 }
6
7 datatype Path {
8 Empty;
9 Extend(Path, Node);

10 }
11
12 class Main {
13 function Reachable(from : Node, to: Node, S: set<Node>) : bool
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14 requires null �∈ S;
15 reads S;
16 { (∃ via: Path • ReachableVia(from, via, to, S)) }
17
18 function ReachableVia(from : Node, via: Path, to: Node, S: set<Node>): bool
19 requires null �∈ S;
20 reads S;
21 decreases via;
22 {
23 match via
24 case Empty ⇒ from = to
25 case Extend(prefix, n) ⇒ n ∈ S ∧ to ∈ n.children ∧ ReachableVia(from, prefix, n, S)
26 }
27
28 method SchorrWaite(root : Node, ghost S: set<Node>)
29 requires root ∈ S;
30 // S is closed under ’children’:
31 requires (∀ n • n ∈ S =⇒ n �= null ∧ (∀ ch • ch ∈ n.children =⇒ ch = null ∨ ch ∈ S));
32 // graph starts with nothing marked and nothing being indicated as currently being visited :
33 requires (∀ n • n ∈ S =⇒¬n.marked ∧ n.childrenVisited = 0);
34 modifies S;
35 // nodes reachable from ’root’ are marked :
36 ensures root.marked;
37 ensures (∀ n • n ∈ S ∧ n.marked =⇒ (∀ ch • ch ∈ n.children ∧ ch �= null =⇒ ch.marked));
38 // every marked node was reachable from ’root’ in the pre-state :
39 ensures (∀ n • n ∈ S ∧ n.marked =⇒ old(Reachable(root, n, S)));
40 // the structure of the graph has not changed :
41 ensures (∀ n • n ∈ S =⇒ n.childrenVisited = old(n.childrenVisited) ∧

n.children = old(n.children));
42 {
43 var t := root;
44 var p: Node := null; // parent of t in original graph
45 ghost var path := #Path.Empty;
46 t.marked := true;
47 t.pathFromRoot := path;
48 ghost var stackNodes := [];
49 ghost var unmarkedNodes := S - {t};
50 while (true)
51 invariant root.marked ∧ t �= null ∧ t ∈ S ∧ t �∈ stackNodes;
52 invariant |stackNodes| = 0 ⇐⇒ p = null;
53 invariant 0 < |stackNodes| =⇒ p = stackNodes[|stackNodes|-1];
54 // stackNodes has no duplicates :
55 invariant (∀ i, j • 0 ≤ i ∧ i < j ∧ j < |stackNodes| =⇒ stackNodes[i] �= stackNodes[j]);
56 invariant (∀ n • n ∈ stackNodes =⇒ n ∈ S);
57 invariant (∀ n • n ∈ stackNodes ∨ n = t =⇒
58 n.marked ∧ 0 ≤ n.childrenVisited ∧ n.childrenVisited ≤ |n.children| ∧
59 (∀ j • 0 ≤ j ∧ j < n.childrenVisited =⇒ n.children[j] = null ∨ n.children[j].marked));
60 invariant (∀ n • n ∈ stackNodes =⇒ n.childrenVisited < |n.children|);
61 invariant (∀ n • n ∈ S ∧ n.marked ∧ n �∈ stackNodes ∧ n �= t =⇒
62 (∀ ch • ch ∈ n.children ∧ ch �= null =⇒ ch.marked));
63 invariant (∀ n • n ∈ S ∧ n �∈ stackNodes ∧ n �= t =⇒
64 n.childrenVisited = old(n.childrenVisited));
65 invariant (∀ n • n ∈ S =⇒ n ∈ stackNodes ∨ n.children = old(n.children));
66 invariant (∀ n • n ∈ stackNodes =⇒
67 |n.children| = old(|n.children|) ∧
68 (∀ j • 0 ≤ j ∧ j < |n.children| =⇒

j = n.childrenVisited ∨ n.children[j] = old(n.children[j])));
69 // every marked node is reachable :
70 invariant old(ReachableVia(root, path, t, S));
71 invariant (∀ n, pth • n ∈ S ∧ n.marked ∧ pth = n.pathFromRoot =⇒

old(ReachableVia(root, pth, n, S)));
72 invariant (∀ n • n ∈ S ∧ n.marked =⇒ old(Reachable(root, n, S)));
73 // the current values of m.children[m.childrenVisited] for m’s on the stack :
74 invariant 0 < |stackNodes| =⇒

stackNodes[0].children[stackNodes[0].childrenVisited] = null;
75 invariant (∀ k • 0 < k ∧ k < |stackNodes| =⇒
76 stackNodes[k].children[stackNodes[k].childrenVisited] = stackNodes[k-1]);
77 // the original values of m.children[m.childrenVisited] for m’s on the stack :
78 invariant (∀ k • 0 ≤ k ∧ k+1 < |stackNodes| =⇒
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79 old(stackNodes[k].children)[stackNodes[k].childrenVisited] = stackNodes[k+1]);
80 invariant 0 < |stackNodes| =⇒
81 old(stackNodes[|stackNodes|-1].children)[stackNodes[|stackNodes|-1].childrenVisited] =

t;
82 invariant (∀ n • n ∈ S ∧¬n.marked =⇒ n ∈ unmarkedNodes);
83 decreases unmarkedNodes, stackNodes, |t.children| - t.childrenVisited;
84 {
85 if (t.childrenVisited = |t.children|) {
86 // pop
87 t.childrenVisited := 0;
88 if (p = null) {
89 return;
90 }
91 var oldP := p.children[p.childrenVisited];
92 p.children := p.children[..p.childrenVisited] + [t] +

p.children[p.childrenVisited + 1..];
93 t := p;
94 p := oldP;
95 stackNodes := stackNodes[..|stackNodes| - 1];
96 t.childrenVisited := t.childrenVisited + 1;
97 path := t.pathFromRoot;
98 } else if (t.children[t.childrenVisited] = null ∨ t.children[t.childrenVisited].marked) {
99 // just advance to next child

100 t.childrenVisited := t.childrenVisited + 1;
101 } else {
102 // push
103 var newT := t.children[t.childrenVisited];
104 t.children := t.children[..t.childrenVisited] + [p] +

t.children[t.childrenVisited + 1..];
105 p := t;
106 stackNodes := stackNodes + [t];
107 path := #Path.Extend(path, t);
108 t := newT;
109 t.marked := true;
110 t.pathFromRoot := path;
111 unmarkedNodes := unmarkedNodes - {t};
112 }
113 }
114 }
115 }
116

Here is a breakdown of the effort involved in constructing this Dafny program.
I spent 5 hours one night, writing the algorithm (starting from a standard depth-
first traversal with an explicit stack) and specifications (C0) and (C2), along
with the loop invariants necessary for verification. The next day, I implemented
decreases clauses for loops in Dafny, which let me write the lexicographic triple
on line 83 to prove (C3). I then spent 2–3 days trying to define ReachableVia

using a seq<Node>, after which I gave up and hand-coded algebraic datatypes
into the Dafny-generated Boogie program. That seemed to lead to a proof. After
a many-month hiatus from Dafny, I then added datatypes to Dafny and, within
a few more hours, completed the full proof.

In conclusion, while the specification of the algorithm is clear and reading
any one line of the loop invariants is likely to receive nods from a programmer,
the 32 lines of quantifier-filled loop invariants can be a mouthful. The hardest
thing in writing the program is deciphering the verifier’s error messages so that
one can figure out what loop invariant to add or change. That task is not yet
for non-experts. Although I am pleased to have done the proof, I find the loop
invariants to be complicated because they are so concrete, and think I would
prefer a refinement approach like that used by Abrial [0].
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3 Related Work

To a large extent, the language, specification constructs, and logical encoding
of Dafny borrow from other languages and verifiers. The particular combination
adds up to a flexible and powerful system. In this section, I give a more detailed
comparison with some of the most closely related tools.

The Java Modeling Language (JML) [29] is a rich specification language for
Java. It has many of the same specification features as Dafny. The biggest dif-
ference with Dafny lies on the tool side, where JML lacks an automatic verifier.
The KeY tool [7] accepts JML specifications, but the tool uses an interactive
verifier. ESC/Java [22,15] uses JML specifications and uses an underlying SMT
solver, but it performs extended static checking (that is, it intentionally misses
some program errors in order to reduce the cost of using the tool [19]), not full
verification.

In the specification language itself, JML supports behavioral subtyping for
subclasses in Java. It has advanced support for ghosts, including model classes
and model code. It does not build in algebraic datatypes, and termination metrics
are more developed in Dafny. A larger difference is the way modular verification
is done: JML uses object invariants and data groups [43,31] whereas Dafny uses
dynamic frames.

Spec# [4, 38] is an object-oriented language with specifications, defined as a
superset of C# 2.0. It has an SMT-based automatic verifier [2] and provides
modular verification by enforcing an ownership discipline among objects in the
heap. For programs that fit this discipline, the necessary specifications are concise
and natural. Spec# also has rich support for subclasses and immutable classes.
However, Spec# lacks the mathematical specification constructs needed to carry
out full functional correctness verification. For example, it has no ghost variables,
no built-in sets or sequences, no algebraic datatypes, no termination metrics, and
quantifiers are restricted to be ones that are executable. As a further comparison
with Dafny, its support for verifying generic classes is not nearly as developed.

JML and Spec# use pure methods instead of mathematical functions. A pure
method is a side-effect free method, written using statements in the program-
ming language. The advantage of pure methods is that they leverage an existing
language feature, and programs often contain query methods that return the
value a mathematical function would have. However, pure methods are sur-
prisingly complicated to get right. A major problem is that pure methods do
have effects; for example, a pure method may allocate a hashtable that it uses
during its computation. Another problem is that pure methods often are not
deterministic, because they may return a newly allocated object (perhaps a
non-interned string or an object representing a set of integers). These problems
make it tricky to provide the programming logic with the desirable illusion that
pure methods are functions (see, e.g., [16, 36]). In contrast, the treatment of
mathematical functions in Dafny, and the logic functions in Caduceus [20] from
which they were first inspired, is simple (as is the treatment of functions in other
logics that only provide functions, not statements and other programming con-
structs). Dafny’s function method declaration achieves the advantage of using



366 K.R.M. Leino

one language mechanism for both (restricted) specifications and code, but does
so by letting the function be used in code rather than letting code be used as a
function. I conclude with a slogan: pure methods are hard, functions are easy.

VeriCool 1 [50] has provided much inspiration for Dafny. It is also based
on dynamic frames, but the prevailing style is to use VeriCool’s pure methods
(which are mostly like functions) instead of ghost variables. When such frames
are defined recursively, they can bring about problems with matching loops in the
SMT solver. Whereas Dafny does framing at the granularity of objects, VeriCool
uses the more detailed object-field granularity. VeriCool has been extended to
concurrency [48]. It does not support generic classes, algebraic datatypes, or
termination metrics.

The idea in Dafny of using set-valued expressions for framing comes from the
original work on dynamic frames by Kassios [27]. The difference lies in how the
dynamic frames are represented, which impacts automation. The original dy-
namic frames are represented by specification variables, which are functions of
other variables in the program. They are therefore more like Dafny’s functions
than Dafny’s ghost variables. Because ghost variables are independent coordi-
nates in the heap, they avoid the problems with recursively defined functions
that, like in VeriCool 1, can be an issue for the SMT solver.

As for the notation, Kassios’s preservation operator Ξ can be written us-
ing quantifiers and old in Dafny, the modification operator Δ corresponds to
modifies clauses in Dafny, and Kassios’s operator Λ for the swinging pivots re-
quirement [39] corresponds to the idiom that uses fresh in Dafny (Sec. 1.5).
Specification variables correspond to functions in Dafny, and the frames predi-
cate corresponds to reads clauses in Dafny.

A recent trend seems to be to add more specification features to program-
ming languages. For example, the Jahob verification system admits specifica-
tions written in higher-order logic [52]. This differs from interactive higher-order
proof assistants in that the input mostly looks like a program, not a series of
proof steps. Jahob also includes some features that can be used to write proofs,
as does, to a lesser extent, Boogie [32]. VeriFast [26] integrates into C features
for writing and proving lemmas.

Others are using SMT solvers for functional correctness verification. Régis-
Gianas and Pottier used an SMT solver in their proof of Kaplar and Tarjan’s
algorithm for functional double-ended queues [45]. VCC [14] is being used to
verify the Microsoft Hyper-V hypervisor. As part of that project, VCC has been
used to prove the functional correctness (sans termination) of several challenging
data structures.

From the other direction, various interactive proof assistants are using SMT
solvers as part of their grind tactics.

4 Conclusions

In this paper, I have shown the design of Dafny, a language and verifier. Al-
though it does not support all functional-correctness verification tasks—to do so
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is likely to require more data types and perhaps some higher-order features—it
has already demonstrated its use in automatic functional-correctness verification.
Rosemary Monahan and I have also used Dafny to complete the 8 verification
benchmarks proposed by Weide et al. [51], except for one aspect of one bench-
mark, which requires a form of lambda closure [35].

Dafny had started as an experiment to encode dynamic frames, but it has
grown to become more of a general-purpose specification language and verifier
(where modular verification is achieved via dynamic frames). As part of future
work on Dafny, I intend to build a compiler that generates executable code.

I expect that more full functional correctness verifications will be done by
SMT-based verifiers in the future.
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Abstract. Temporal logics are a well investigated formalism for the specifica-
tion, verification, and synthesis of reactive systems. Within this family, alter-
nating temporal logic, ATL*, has been introduced as a useful generalization of
classical linear- and branching-time temporal logics by allowing temporal op-
erators to be indexed by coalitions of agents. Classically, temporal logics are
memoryless: once a path in the computation tree is quantified at a given node,
the computation that has led to that node is forgotten. Recently, mCTL* has been
defined as a memoryful variant of CTL*, where path quantification is memoryful.
In the context of multi-agent planning, memoryful quantification enables agents
to “relent” and change their goals and strategies depending on their past history.
In this paper, we define mATL*, a memoryful extension of ATL*, in which a for-
mula is satisfied at a certain node of a path by taking into account both the future
and the past. We study the expressive power of mATL*, its succinctness, as well
as related decision problems. We also investigate the relationship between mem-
oryful quantification and past modalities and show their equivalence. We show
that both the memoryful and the past extensions come without any computa-
tional price; indeed, we prove that both the satisfiability and the model-checking
problems are 2EXPTIME-COMPLETE, as they are for ATL*.

1 Introduction

Multi-agent systems recently emerged as a new paradigm for better understanding dis-
tributed systems [FHMV95, WW01]. In multi-agent systems, different processes can
have different goals and the interactions between them may be adversarial or coopera-
tive. Interactions between processes in multi-agent systems can thus be seen as games
in the classical framework of game theory, with adversarial coalitions [OR94]. Classical
branching-time temporal logics, such as CTL* [EH86], turn out to be of limited power
when applied to multi-agent systems. For example, consider the property Prop: “pro-
cesses 1 and 2 cooperate to ensure that a system (having more than two processes) never
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enters a fail state”. It is well known that CTL* cannot express Prop [AHK02]. Rather,
CTL* can only say whether the set of all agents can or cannot prevent the system from
entering a fail state.

In order to allow the temporal-logic framework to work within the setting of multi-
agent systems, Alur, Henzinger, and Kupferman introduced Alternating-Time Tempo-
ral Logic (ATL*, for short) [AHK02]. This is a generalization of CTL* obtained by
replacing the path quantifiers, “E” (there exists) and “A” (for all), with “cooperation
modalities” of the form 〈〈A〉〉 and [[A]], where A is a set of agents, which can be used to
represent the power that a coalition of agents has to achieve certain results. In particular,
these modalities express selective quantifications over those paths that can be effected
as outcomes of infinite games between the coalition and its complement. ATL* formulas
are interpreted over game structures (closely related to systems in [FHMV95]), which
model a set of interacting processes. Given a game structure G and a set A of agents, the
ATL* formula 〈〈A〉〉ψ is satisfied at a state s iff there is a strategy for the agents in A such
that, no matter the strategy that is executed by agents not in A, the resulting outcome of
the interaction satisfies ψ at s. Coming back to the previous example, one can see that
the property Prop can be expressed by the ATL* formula 〈〈{1,2}〉〉G¬fail, where G is
the classical temporal modality “globally”.

Traditionally, temporal logics are memoryless: once a path in the underlying struc-
ture (usually a computation tree) is quantified at a given state, the computation that led
to that state is forgotten [KV06]. In the case of ATL*, we have even more: the logic
is also “relentless”, in the sense that the agents are not able to formulate their strate-
gies depending on the history of the computation; when 〈〈A〉〉ψ is asserted in a state s,
its truth is independent of the path that led to s. Inspired by a work on strong cyclic
planning [DTV00], Pistore and Vardi proposed a logic that can express the spectrum
between strong goal Aψ and the weak goal Eψ in planning [PV07]. A novel aspect
of the Pistore-Vardi logic is that it is “memoryful”, in the sense that the satisfiability
of a formula at a state s depends on the future as well as on the past, i.e., the trace
starting from the initial state and leading to s. Nevertheless, this logic does not have a
standard temporal logical syntax (for example, it is not closed under conjunction and
disjunction). Also, it is less expressive than CTL*. This has lead Kupferman and Vardi
[KV06] to introduce a memoryful variant of CTL* (mCTL*, for short), which unifies in
a common framework both CTL* and the Pistore-Vardi logic. Syntactically, mCTL* is
obtained from CTL* by simply adding a special proposition present, which is needed
to emulate the ability of CTL* to talk about the “present” time. Semantically, mCTL* is
obtained from CTL* by reinterpreting the path quantifiers of the logic to be memoryful.

Recently, ATL* has become very popular in the context of multi-agent system plan-
ning [vdHWW02, Jam04]. In such a framework, a memoryful enhancement of ATL*
enables “relentful” planning, that is, agents can relent and change their goals, depend-
ing on their history1. That is, when a specific goal at a certain state is checked, agents
may learn from the past to change their goals. Note that this does not mean that agents
change their strategy, but that they can choose a strategy that allows them to change
their goals. For example, consider the ATL* formula 〈〈 /0〉〉G 〈〈A〉〉ψ. In the memoryful

1 In Middle English to relent means to melt. In modern English it is used only in the combination
of “relentless”.



Relentful Strategic Reasoning in Alternating-Time Temporal Logic 373

framework, this formula is satisfied by a game structure G (at its starting node) iff for
each possible trace (history) ρ the agents in A can ensure that the evolution of G that
extends ρ satisfies ψ from the start state.

In this paper, we introduce and study the logic mATL*, a memoryful extension of
ATL*. Thus, mATL* can be thought of as a fusion of mCTL* and ATL* in a common
framework. Similarly to mCTL*, the syntax of mATL* is obtained from ATL* by sim-
ply adding a special proposition present. Semantically, mATL* is obtained from ATL*
by reinterpreting the path quantifiers of the logic to be memoryful. More specifically,
for a game structure G , the mATL* formula 〈〈A〉〉ψ holds at a state s of G if there is a
strategy for agents in A such that, no matter which is the strategy of the agents not in
A, the resulting outcome of the game, obtained by extending the execution trace of the
system ending in s, satisfies ψ. As an example for the usefulness of the relentful rea-
soning, consider the situation in which the agents in a set A have the goal to eventually
satisfy q and, if they see r, they can also change their goal to eventually satisfy v. It is
easy to formalize this property in ATL* with the formula 〈〈A〉〉(F (q∨ r)∧G f ), where f
is r→ 〈〈A〉〉(F v). Consider, instead, the situation in which the agents in A have the goal
to satisfy p until q holds, unless they see r in which case they change their goal to sat-
isfy u until v holds from the start of the computation. This cannot be easily handled in
ATL*, since the specification depends on the past. On the other hand, it can be handled
in mATL*, with the formula 〈〈A〉〉((p U (q∨ r))∧G f ), where f is r→ 〈〈A〉〉(u U v).

In the paper, we also consider an extension of mATL* with past operators (mpATL*,
for short). As for classical temporal logics, past operators allow reasoning about the past
in a computation [LPZ85]. In mpATL*, we can further require that coalitions of agents
had a memoryful goal in the past. In more details, we can write a formula whose satis-
faction, at a state s, depends on the trace starting from the initial state and leading to a
state s′ occurring before s. Coming back to the previous example, by using P as the dual
of F , we can change the alternative goal f of agents in A to be r→ P (h∧〈〈A〉〉(u U v)),
which requires that once r occurs at a state s, at a previous state s′ of s in which h holds,
the subformula u until v from the start of the computation must be true.

An important contribuition of this work is to show for the first time a clear and com-
plete picture of the relationships among ATL* and its various extensions with memo-
riful quantification and past modalities, which goes beyond the expressiveness results
obtained in [KV06] for mCTL*. Since memoryfulness refers to behavior from the start
of the computation, which occurred in the past, memoryfulness is intimately connected
to the past. Indeed, we prove this formally. We study the expressive power and the suc-
cinctness of mATL* w.r.t ATL*, as well as the memoryless fragment of mpATL* (i.e.,
the extension of ATL* with past modalities), which we call pATL*. We show that the
three logics have the same expressive power, but both mATL* and pATL* are at least
exponentially more succinct than ATL*. As for m−ATL* (where the minus stands for the
variant of the logic without the “present” proposition but the path interpretation is still
memoryful), we prove that it is strictly less expressive than ATL*. On the other hand,
we prove that pATL* is equivalent to p−ATL*, but exponentially more succinct.

From an algorithmic point of view, we examine two decision problems for mpATL*,
model checking and satisfiability. We show that model checking is not easier than sat-
isfiability and in particular that both are 2EXPTIME-COMPLETE, as for ATL*. We
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recall that this is not the case for mCTL*, where the model checking is EXPSPACE-
COMPLETE, while satisfiability is 2EXPTIME-COMPLETE. For upper bounds, we fol-
low an automata-theoretic approach [KVW00]. In order to develop a decision proce-
dure for a logic with the tree-model property, one first develops an appropriate notion of
tree automata and studies their emptiness problem. Then, the decision problem for the
logic can be reduced to the emptiness problem of such automata. To this aim, we intro-
duce a new automaton model, the agent-action tree automata with satellites (AGCTAS,
for short), which extends both automata over concurrent game structures in [SF06]
and alternating automata with satellites in [KV06], in a common setting. For techni-
cal convenience, AGCTAS states are partitioned into states regarding the satellite and
those regarding the rest of the automaton, which we call the main automaton. The com-
plexity results then come from the fact that mpATL* formulas can be translated into an
AGCTAS with an exponential number of states for the main automaton and doubly ex-
ponential number of states for the satellite, and from the fact that the emptiness problem
for AGCTAS is solvable in EXPTIME w.r.t. both the size of the main automaton and the
logarithm of the size of the satellite.

As for mCTL*, the interesting properties shown for mATL* make this logic not only
useful to its own, but also advantageous to efficiently decide other logics (once it is
shown a tight reduction to it). In the case of mCTL*, we recall that this logic has
been useful to decide the embedded CTL* logic (EmCTL*, for short), recently intro-
duced in [NPP08]. EmCTL* allows to quantify over good and bad system executions.
In [NPP08], the authors also introduce a new model checking methodology, which al-
lows to group the system executions as good and bad, w.r.t the satisfiability of a base
LTL specification. By using an EmCTL* specification, this model checking algorithm
allows checking not only whether the base specification holds or fails to hold in a sys-
tem, but also how it does so. In [NPP08], the authors use a polynomial translation of
EmCTL* into mCTL* to solve efficiently decision problems related to EmCTL*. In
the context of coalition logics, the use of an “embedded” framework seems even more
interesting. In particular, an embedded ATL* logic (EmATL*, for short) could allow
to quantify coalition of agents over good and bad system executions. Analogously to
EmCTL*, one may show a polynomial translation from EmATL* to mATL* and use
this result to efficiently solve decision problems concerning EmATL*. We postpone the
details to the full version of this paper.

The outline of the paper follows. In Section 2, we recall the basic notions regarding
concurrent game structures, strategies, plays, trees, and unwinding. In Section 3, we first
introduce mATL* and define its syntax and semantics. Then, we introduce its extension
mpATL* and study the expressiveness and succinctness of both mATL* and mpATL*.
Finally, in Section 4, we introduce AGCTAS and show how to solve the satisfiability
and model-checking problems for both mATL* and mpATL*.

2 Preliminaries

A concurrent game structure (CGS, for short) is a tuple G = 〈AP,Ag,Ac,St,λ,τ,s0〉,
where AP and Ag are finite non-empty sets of atomic propositions and agents, Ac
and St are enumerable non-empty sets of actions and states, λ : St 	→ 2AP is a label-
ing function that maps each state s to the set of atomic propositions true in that state,
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τ : St×AcAg 	→ St is a transition function that maps a state and a global decision d
(i.e., a function from Ag to Ac) to a state, and s0 ∈ St is a designated initial state.
By |G | = |St| · |Ac||Ag| we denote the size of the G . If the set of actions is finite, i.e.,
b = |Ac|< ∞, we say that G is b-bounded or simply bounded. If both the sets of actions
and states are finite, we say that G is finite. It is easy to note that G is finite iff it has
a finite size. For a set of agents A, a decision for A is dA ∈ AcA and a counterdecision
for A is a decision dc

A ∈ AcAg\A for agents not in A. By d = (dA,dc
A), we denote the

composition of dA and dc
A.

A trace (resp., a path) is a finite (resp., an infinite) sequence of states ρ ∈ St∗ (resp.,
π ∈ Stω) such that, for all 0 ≤ i < |ρ|− 1 (resp., i ∈ N), there exists a global decision
di such that ρi+1 = τ(ρi,di) (resp., πi+1 = τ(πi,di)). Intuitively, traces and paths are
legal sequences of reachable states. A trace ρ is said non-empty iff |ρ|> 0 and initial iff
ρ0 = s0, i.e., if ρ starts in the initial state. Moreover, with π≤i we indicate the prefix up
to the state of index i of the path π, i.e., the trace built by the first i+1 states π0, · · · ,πi.
Finally, we use Trc⊆ St∗ to indicate the sets of all the non-empty traces.

A strategy for a set of agents A⊆ Ag is a partial function fA : Trc ⇀ AcA that maps
a non-empty trace ρ to a decision fA(ρ) of agents in A. A strategy fA is called memo-
ryless iff all its values depend only on the last state of the trace; otherwise, it is called
memoryful. Formally, fA is memoryless iff, for all traces ρ and states s with ρ · s be-
longing to the domain dom(fA) of fA, it holds that fA(ρ · s) = fA(s). For a state s, we
also say that fA is s-defined iff it is defined on all the non-empty traces starting in
s that are reachable through fA. Formally, fA is s-defined if s ∈ dom(fA) and for all
traces ρ ∈ dom(fA), it holds that ρ0 = s and, for all counterdecisions dc

A, it holds that
ρ · τ(ρ|ρ|−1,(fA(ρ),dc

A)) ∈ dom(fA). A path π is a play w.r.t. a π0-defined strategy fA of
agents in A (fA-play, for short), iff for all i ∈N, there is a counterdecision dc

A,i such that
πi+1 = τ(πi,di), where di = (fA(π≤i),dc

A,i).
For a set Δ, a Δ-tree is a prefix-closed set T⊆ Δ∗, i.e., if x · x′ ∈ T, with x′ ∈ Δ, then

also x ∈ T. Elements of T are nodes and ε is its root. For every x ∈ T and x′ ∈ Δ, the
node x · x′ ∈ T is a successor of x in T. T is b-bounded if the maximal number b of its
node successors is finite. For a finite set Σ, a Σ-labeled Δ-tree is a pair 〈T,v〉, where T is
a Δ-tree and v : T 	→ Σ is a labeling function. We drop Δ and Σ when they are clear from
the context. For a node x = y0 · · ·yk ∈ T, we denote by trcto(x) and wrdto(x), respec-
tively, the trace (ε) ·(y0) · · · (y0 · · ·yk) ∈ T∗, and the word v(ε) ·v(y0) · · ·v(y0 · · ·yk)∈ Σ∗.
Finally, a Σ-labeled agent-action tree (AAT, for short) is a tuple T = 〈Ag,Ac,T,v〉,
where Ag and Ac are as in CGSs and 〈T,v〉 is a Σ-labeled AcAg-tree.

A CGS U = 〈AP,Ag,Ac,St,λ,τ,s0〉, where St is an AcAg-tree, s0 = ε, and τ(s,d) =
s ·d, is called concurrent game tree (CGT, for short). With each CGT U we can associate
a 2AP-labeled AAT T = 〈Ag,Ac,T,v〉, in which T = St and v(x) = λ(x), for all nodes
x. Note that a b-bounded CGT has as set of states a b|Ag|-bounded tree. Given a CGS

G = 〈AP,Ag,Ac,St,λ,τ,s0〉, the unwinding UG of G is the CGT 〈AP,Ag,Ac,St′,λ′,τ′,
ε〉 for which there is a surjective function unw : St′ 	→ St such that unw(ε) = s0 and, for
all nodes x and decisions d, we have unw(x ·d) = τ(unw(x),d) and λ′(x) = λ(unw(x)).
Note that each CGS G has a unique associated unwinding UG and so a unique AAT TG .
Finally, all above definitions of trace, path, strategy, and play easily extend to AAT.
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3 Memoryful Alternating-Time Temporal Logic

In this section, we introduce the memoryful alternating-time temporal logic (mATL*,
for short), obtained by allowing the alternating-time temporal logic ATL* [AHK02] to
use memoryful quantification over paths, in a similar way it has been done for the mem-
oryful branching-time temporal logic mCTL* [KV06]. mATL* inherits from ATL* the
existential 〈〈A〉〉 and the universal [[A]] strategy(-play) quantifiers, where A denotes a set
of agents. We recall that these two quantifiers can be read as “there exists a collective
strategy for agents in A” and “for all collective strategies for agents in A”, respectively.
The syntax of mATL* is similar to that for ATL*: there are state formulas and path for-
mulas. Strategy quantifiers can prefix an assertion composed of an arbitrary Boolean
combination and nesting of the linear-time operators X (“next”), U (“until”), and R
(“release”). The only syntactical difference between the two logics is that mATL* for-
mulas can refer to a special atomic proposition present, which enables us to refer to
the present. Readers familiar with mCTL* can see mATL* as mCTL* where strategy
quantifiers substitute path quantifiers. The formal syntax of mATL* follows.

Definition 1. Let AP and Ag be the sets of atomic propositions and agents. mATL*
state (ϕ) and path (ψ) formulas are built inductively by the following context-free gram-
mar, with p ∈ AP and A⊆ Ag:

1. ϕ ::= present | p | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | 〈〈A〉〉ψ | [[A]]ψ;
2. ψ ::= ϕ | ¬ψ | ψ∧ψ | ψ∨ψ | Xψ | ψUψ | ψR ψ.

The class of mATL* formulas is the set of all the state formulas generated by the above
grammar, in which the occurrences of the special atomic proposition present is in the
scope of a strategy quantifier.

The length |ϕ| of a formula ϕ is defined inductively on the structure of ϕ itself, in the
classical way, by also considering |〈〈A〉〉ϕ| and |[[A]]ϕ| to be equal to 1 + |A|+ |ϕ|.

As for ATL*, the semantics of mATL* is defined w.r.t. a concurrent game structure.
However, the two logics differ on interpreting state formulas. First, in mATL* the satis-
faction of a state formula is related to a specific trace, while in ATL* it is related only to
a state. Moreover, path quantification in mATL* ranges over paths that start at the initial
state and contain as prefix the trace that lead to the present state; we refer to this trace
as the present trace. This is what we refer to as memoryful quantification. In contrast, in
ATL* path quantification ranges over paths that start at the present state. For example,
consider the formula ϕ = [[A]]G 〈〈B〉〉ψ. Considered as an ATL* formula, ϕ holds in the
initial state of a structure if the agents in B can force a path satisfying ψ from every
state that can be reached by a strategy of the agents in A. In contrast, considered as an
mATL* formula, ϕ holds in the initial state of the structure if the agents in B can extend
to a path satisfying ψ every trace generated by a strategy of the agent in A. Thus, when
evaluating path formulas in mATL* one cannot ignore the past, and satisfaction may
depend on the event that preceded the point of quantification. In ATL*, state formulas
are evaluated w.r.t. states in the structure and path formulas are evaluated w.r.t. paths
in the structure. In mATL* we add an additional parameter, the present trace, which is
the trace that led from the initial state to the point of quantification. Path formulas are
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again evaluated w.r.t. paths, but state formulas are now evaluated w.r.t. traces, which are
viewed as partial executions. We now formally define mATL* semantics w.r.t. a CGSG .

For two non-empty initial traces ρ and ρp, where ρp is the present trace, we write
G ,ρ,ρp |= ϕ to indicate that the state formula ϕ holds at ρ, with ρp being the present.
Similarly, for a path π, a non-empty present trace ρp and a natural number k, we write
G ,π,k,ρp |= ψ to indicate that the path formula ψ holds at the position k of π, with ρp

being the present. The semantics of the mATL* state formulas involving ¬, ∧, and ∨,
as well as that for mATL* path formulas, except for the state formula case, is defined as
usual in CTL* (see Appendix A, for a full definition). The semantics of the remaining
part, which involves the memoryful feature, follows:

Definition 2. Given a CGS G = 〈AP,Ag,Ac,St,λ,τ,s0〉, two initial traces ρ,ρp ∈ Trc,
a path π, and a number k ∈N, where ρ = ρ′ · s, ρ′ ∈ Trc∪{ε}, and s ∈ St, it holds that:

1. G ,ρ,ρp |= present iff ρ = ρp;
2. G ,ρ,ρp |= p, for p ∈ AP, iff p ∈ λ(s);
3. G ,ρ,ρp |= 〈〈A〉〉ψ iff there exists an s-defined strategy fA of agents in A such that for

all fA-plays π it holds that G ,ρ′ ·π,0,ρ |= ψ;
4. G ,ρ,ρp |= [[A]]ψ iff for all the s-defined strategies fA of agents in A there exists an

fA-play π such that G ,ρ′ ·π,0,ρ |= ψ;
5. G ,π,k,ρp |= ϕ iff G ,π≤k,ρp |= ϕ.

Note that the present trace ρp comes into the above definition only at item 1 and that
formulas of the form 〈〈A〉〉ψ and [[A]]ψ “reset the present”, i.e., their satisfaction w.r.t ρ
and ρp is independent of ρp, and the present trace, for the path formula ψ, is set to ρ.

We say that a CGS G is a model of an mATL* formula ϕ, denoting this by G |= ϕ, iff
G ,s0,s0 |= ϕ. Moreover, ϕ is said satisfiable iff there exists a model G for it. For two
mATL* formulas ϕ1 and ϕ2 we say that ϕ1 is equivalent to ϕ2, formally ϕ1 ≡ ϕ2, iff, for
all CGSs G , and non-empty traces ρ and ρp, it holds that G ,ρ,ρp |= ϕ1 iff G ,ρ,ρp |= ϕ2.

By induction on the syntactical structure of the sentences, it is possible to prove the
following classical result. Note that this is a basic step towards the automata-theoretic
approach we use to solve the model-checking and the satisfiability problems for mATL*.

Theorem 1. mATL* satisfies the tree model property. In fact, for each CGS G and
formula ϕ, it holds that G |= ϕ iff UG |= ϕ.

From this result and the one-to-one connection between the CGT UG (obtained as the
unwinding of the CGS G) and the related AAT TG , we say that TG satisfies ϕ iff G |= ϕ.

When we compare two logics, the basic comparison is in terms of expressiveness.
A logic L1 is as expressive as a logic L2 iff every formula in L2 is logically equivalent
to some formula in L1. If L1 is as expressive as L2, but there is a formula in L1 that
is not logically equivalent to any formula in L2, then L1 is more expressive than L2. If
L1 is as expressive as L2 and vice versa, then L1 and L2 are expressively equivalent.
We can compare the logics L1 and L2 also in terms of succinctness, which measures
the necessary blow-up when translating between the logics. Note that comparing logics
in terms of succinctness makes sense, when the logics are not expressively equivalent,
focusing then on their common fragment. In fact, a logic L1 can be more expressive
than a logic L2, but at the same time, less succinct than the latter.



378 F. Mogavero, A. Murano, and M.Y. Vardi

We now discuss expressiveness and succinctness of mATL* w.r.t. ATL* as well as
some extensions/restrictions of mATL*. In particular we consider the logics mpATL*
and pATL* to be, respectively, mATL* and ATL* augmented with the past-time op-
erators “previous” and “since”, which dualize the future-time operators “next” and
“until” as in pLTL [LPZ85] and pCTL* [KP95] (see Appendix A, for more). Note that
pATL* still contains the present proposition and that, as for pCTL*, the semantics of
its quantifiers is as for ATL*, where the past is considered linear, i.e., deterministic.
Moreover, we consider the logic m−ATL*, p−ATL*, and mp−ATL* to be, respectively, the
syntactical restriction of mATL*, pATL*, and mpATL* in which the use of the atomic
proposition present is not allowed. On one hand, we have that all mentioned logics are
expressively equivalent, except for m−ATL* and p−ATL*. On the other hand, the abil-
ity to refer to the past makes all of them at least exponentially more succinct than the
corresponding ones without the past. For example, a pATL* formula ϕ can be trans-
lated into an equivalent ATL* one ϕ′, but ϕ′ may require a nonelementary space in |ϕ|
(shortly, we say that pATL* is nonelementary reducible to ATL*). Note that, to get a
better complexity for this translation is not an easy question. Indeed, it would improve
the non-elementary reduction from first order logic to LTL, which is an outstanding
open problem [Gab87]. All the discussed results are reported in the following theorem.

Theorem 2. The following properties hold:

1. ATL* (resp., pATL*) is linearly reducible to mATL* (resp., mpATL*);
2. mpATL* (resp., mp−ATL*) is linearly reducible to pATL* (resp., p−ATL*);
3. mpATL* (resp., mp−ATL*) is nonelementarily reducible to mATL* (resp., m−ATL*);
4. pATL* is nonelementarily reducible to ATL*;
5. m−ATL* and p−ATL* are at least exponentially more succinct than ATL*;
6. m−ATL* is less expressive then ATL*.

Proof (Sketch). Let ϕ be an input formula for items 1-4. Items 1 and 2 follow by re-
placing each subformula 〈〈A〉〉ψ in ϕ by 〈〈A〉〉F (present ∧ψ) and 〈〈A〉〉P ((Ỹ false)∧ψ),
respectively, where P ψ′ is the corresponding past-time operator for F ψ′ and Ỹ ψ′ is
the hypothetical previous time operator, which is true if either ψ′ is true in the pre-
vious time-step or such a time-step does not exist. Item 3 follows by replacing each
subformula 〈〈A〉〉ψ in ϕ by 〈〈A〉〉ψ′, where ψ′ is obtained by the Separation Theorem (see
Theorem 2.4 of [Gab87]), which allows to eliminate all pure-past formulas2. Note that
all the above substitutions start from the innermost subformula. Item 4 proceeds as for
the translation of pCTL* into CTL (see Lemma 3.3 and Theorem 3.4 of [KP95]). The
only difference here is that, when we apply the Separation Theorem to obtain a path for-
mula as a disjunction of formulas of the form ps∧ pr∧ f t, where ps, pr, f t are respec-
tively pure-past, pure-present and pure-future formulas, we need to substitute present
by false in ps and f t and by true in pr. For items 3 and 4 the non-elementary blow-
up is inherited from the use of the Separation Theorem. Item 5 follows by using the
formula ϕ = 〈〈A〉〉G (

∧n
i=1(pi⇔ [[ /0]]pi)⇒ (p0⇔ [[ /0]]p0)) (resp., ϕ = 〈〈A〉〉G (

∧n
i=1(pi⇔

2 A pure-past formula contains only past-time operators. In item 4, we also consider pure-future
formulas, which contain only future-time operators, and pure-present formulas, which do not
contain any temporal operator at all.
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P ((Ỹ false)∧ pi))⇒ (p0⇔P ((Ỹ false)∧ p0)))), which is similar to that used to prove
that pLTL is exponentially more succinct than LTL (see Theorem 3.1 of [LMS02]). By
using an argument similar to that used in [LMS02], we obtain the desired result. Item 6
follows by using a proof similar to that used for m−CTL* (see Theorem 3.4 of [KV06]),
and so showing that the ATL formula ϕ = 〈〈A〉〉F (([[ /0]]X p)∧([[ /0]]X¬p)) has no m−ATL*
equivalent formula.

As an immediate consequence of combinations of the results shown into the previous
theorem, it is easy to prove the following corollary.

Corollary 1. mATL*, p−ATL*, pATL*, and mpATL* have the same expressive power
of ATL*. m−ATL* and mp−ATL* have the same expressive power, but are less expressive
than ATL*. Moreover, all of them are at least exponentially more succinct than ATL*.
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Fig. 1. Hierarchy of expressive power and suc-
cinctness

Fig. 1 summarizes all the above results
regarding expressiveness and succinctness.
The acronym “lin” (resp., “ne”) means
that the translation exists and it is linear
(resp., nonelementarily) in the size of the
formula, and “/” means that such a transla-
tion is impossible. The numbers in brackets
represent the item of Theorem 2 in which
the translation is shown. We use no num-
bers when the translation is trivial or comes
by a composition of existing ones.

4 Decision Procedures

In this section, we study the satisfiability and model-checking problems for mpATL*.
We directly study the richer mpATL* logic, since we prove the 2EXPTIME upper bound
for this logic. To obtain such upper bounds, we use an automata-theoretic approach by
introducing a novel automaton model: agent-action tree automata with satellites.

4.1 Agent-Action Tree Automata with Satellites

Alternating tree automata [MS87] are a generalization of nondeterministic tree au-
tomata. Intuitively, while a nondeterministic automaton that visits a node of the input
tree sends exactly one copy of itself to each of the successors of the node, an alternating
automaton can send several copies of itself to the same successor. Symmetric automata
[JW95] are a variation of classical (asymmetric) alternating automata in which it is
not necessary to specify the direction (i.e., the choice of the successors) of the tree on
which a copy is sent. In fact, through two generalized directions (existential and uni-
versal moves), it is possible to send a copy of the automaton, starting from a node of
the input tree, to some of its successors or to all its successors. Hence, the automaton
does not distinguish between directions. As a generalization of alternating automata
(both in the symmetric and asymmetric cases), here we consider agent-action tree au-
tomata (AGCTA, for short), which can send copies to successor nodes, according to
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agents’ decisions. These automata are a slight variation of automata over concurrent
game structures, which were introduced in [SF06]. Moreover, we also consider AGCTA
along with the satellite framework (AGCTAS, for short), in a similar way it has been
done in [KV06]. The satellite is used to take a bounded memory of the evaluated part
of a path in a given structure and it is kept apart from the main automaton as it allows to
show easily a tight complexity of the considered problems w.r.t. the size of the specifi-
cation. We use symmetric AGCTAS for the satisfiability and asymmetric AGCTAS for
the model-checking. In the following, we simply write AGCTA when we indifferently
refer to its symmetric or asymmetric version. The formal definitions of AGCTA and
AGCTAS follow.

Definition 3. A symmetric AGCTA is a tuple A = 〈Σ,Ag,Q,δ,q0,F〉, where Σ, Ag, and
Q are non-empty finite sets of input symbols, agents, and states, respectively, q0 ∈ Q
is an initial state, F is an acceptance condition to be defined later, and δ : Q×Σ 	→
B+(D×Q) is an alternating transition function, where D = {♦,�}×2Ag is an extended
set of abstract directions, which maps a state and an input symbol to a positive boolean
combination of two kinds of atoms: existential atoms ((♦,A),q′) and universal atoms
((�,A),q′). Moreover, A is asymmetric if it also contains a set Ac of actions (i.e.,
A = 〈Σ,Ag,Ac,Q,δ,q0,F〉) and δ : Q×Σ 	→ B+(AcAg×Q) contains atoms of the form
(d,q′), where d is a decision of the agents in Ag.

Definition 4. A run of a symmetric AGCTA A on a Σ-labeled AAT T = 〈Ag,Ac,T,v〉
is a (Q×T)-labeled N-tree R = 〈Tr, r〉 such that (i) r(ε) = (q0,ε) and (ii) for all y∈ Tr,
with r(y) = (q,x), there is a set S⊆ D×Q, with S |= δ(q,v(x)), such that for all atoms
(a,q′) ∈ S it holds that

– if a = (♦,A) then there exists a decision dA ∈AcA such that for all counterdecisions
dc

A ∈ AcAg\A it holds that (q′,x · (dA,dc
A)) ∈ L(y), where L(y) is the set {r(y · y′) |

y′ ∈ N,y · y′ ∈ Tr} of labels of successors of y in R ;
– if a = (�,A) then for all decisions dA ∈ AcA there exists a counterdecision dc

A ∈
AcAg\A such that (q′,x · (dA,dc

A)) ∈ L(y).

If A is asymmetric, then the above item (ii) is substituted by the following: (ii’) for all
y ∈ Tr, with r(y) = (q,x), there exists a set S ⊆ D×Q, with S |= δ(q,v(x)), such that
for all atoms (d,q′) ∈ S it holds that (q′,x ·d) ∈ L(y).

In this paper, we only consider automata along with a co-Büchi acceptance condition
F⊆ Q. A run R on a AAT T for an AGCTA A with a co-Büchi condition is accepting
iff for all its paths all states in F only occur finitely often. A tree T is accepted by A iff
there is an accepting run of A on it. By L(A) we denote the language accepted by the
automaton A , i.e., the set of all the AATs that A accepts. A is said empty if L(A) = /0.
The emptiness problem for A is to decide whether L(A) = /0.

We now define AGCTA with satellite.

Definition 5. An asymmetric (resp., symmetric) AGCTA with satellite (AGCTAS) is
a tuple 〈A ,D〉, where A = 〈Σ×Q′,Ag,Ac,Q,δ,q0,F〉 (resp., A = 〈Σ×Q′,Ag,Q,δ,
q0,F〉) is an asymmetric (resp., symmetric) AGCTA and D is a satellite 〈Σ′,Q′,δ′,q′0〉,
where Σ ⊆ Σ′ and Q′ are non-empty finite sets of input symbols and states, q′0 ∈ Q′ is
an initial state, and δ′ : Q′ ×Σ′ 	→ Q′ is a deterministic transition function.
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For the coming definition we need an extra notation. Let f be a Boolean formula, by
f [p/q] we denote the formula in which all occurrences of p in f are replaced by q.

Definition 6. An AAT T is accepted by an asymmetric (resp., symmetric) AGCTAS
〈A ,D〉 iff T is accepted by the AGCTA product-automata A∗ = 〈Σ,Ag,Ac,Q×Q′,
δ∗,(q0,q′0),F

∗〉 (resp., A∗ = 〈Σ,Ag,Q×Q′,δ∗,(q0,q′0),F
∗〉), where F∗ is the accep-

tance condition directly derived from F and δ∗ is such that: δ∗((q, p),σ) = δ(q,(σ,
p))[q′/(q′,δ′(p,σ))], for σ ∈ Σ and (q, p) ∈Q×Q′.

In words, δ∗((q, p),σ) is obtained by substituting in δ(q,(σ, p)) each occurrence of a
state q′ with a tuple of the form (q′, p′), where p′ = δ′(p,σ) is the new state of the satel-
lite. As for AGCTA, we consider AGCTAS along with a co-Büchi acceptance condition.
W.r.t. Definition 6, we have that F∗ = F×Q′. Moreover, we set L(〈A ,U〉) = L(A∗).

Note that satellites are just a convenient way to describe an AGCTA in which the
state space can be partitioned into two components, one of which is deterministic and
independent from the other, and has no influence on the acceptance. Indeed, it is just a
matter of technicality to see that AGCTAS inherit all the closure properties of the alter-
nating automata. In particular, the following theorem shows how the separation between
A and U enables a tight analysis of the complexity of the relative emptiness problem.

Theorem 3. The emptiness problem for a symmetric (resp., asymmetric) co-Büchi
AGCTAS 〈A ,D〉, where A has m agents and n states and D has n′ states, can be
decided in time 2O((n·log(n·n′))m).

Proof (Sketch). The proof proceeds as follow. First, we use the bounded model theo-
rem for symmetric AGCTA (see Theorem 2 of [SF06]), which asserts that an AGCTA
accepts an AAT iff it accepts a |atom(A)×Ag||Ag|-bounded AAT, in order to obtain
a linear translation from the symmetric AGCTA A to an asymmetric one A ′ with the
same sets of agents and states and |atom(A)×Ag| actions, such that L(A ′) ⊆ L(A),
and L(A ′) = /0 iff L(A) = /0. The transition function of A ′ is obtained from that of A by
substituting each existential atom ((♦,A),q′) (resp., universal atom ((�,A),q′)) with
the formula

∨
dA∈AcA

∧
dc

A∈AcAg\A((dA,dc
A),q′) (resp.,

∧
dA∈AcA

∨
dc

A∈AcAg\A((dA,dc
A),q′).

As second step, since A ′ can be seen as a classical alternating co-Büchi tree automa-
ton with (atom(A)×Ag)Ag as set of directions, we use an exponential-time translation
that leads to an asymmetric nondeterministic Büchi AGCTA A ′′ with the same sets of
agents and actions and 2O(n·log(n)) states such that L(A ′′) = L(A) (see Theorem 1.2 of
[MS95]). At this point, taking the product-automata between A ′′ and the satellite D we
obtain another asymmetric nondeterministic Büchi AGCTA A ′′′ with 2O(n·log(n·n′)) states
such that L(〈A ′′,D〉) = L(A ′′′). Now, by construction, it is evident that L(〈A ,D〉) = /0
iff L(A ′′′) = /0. Finally, the emptiness of A ′′′ can be checked in a quadratic running-time
in the size of the transition function, which is polynomial in the number of states and
exponential in the number of directions (see Theorem 2.2 of [VW86]). Overall, with
this procedure, we obtain that the emptiness problem for symmetric (resp., asymmet-
ric) co-Büchi AGCTAS is solveable in exponential time w.r.t. n · log(n ·n′) and double
exponential in the number m of agents. Precisely, in time 2O((n·log(n·n′))m).
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4.2 From Path Formulas to Satellites

As mentioned before, an mATL* path formula is satisfied at a certain node of a path
by taking into account both the future and the past. Although the past is unlimited, it
only requires a finite representation. This is due to the fact that LTL formulas with past
operators (pLTL) [Gab87, LPZ85] can be translated into automata on infinite words of
bounded size [Var88], and that pLTL represents the temporal path core of mpATL* (as
LTL is the corresponding one for ATL*). Here, we show how to build the satellite that
represents the memory on the past in order to solve satisfiability and model-checking
for mpATL*. To this aim, we introduce the following notation. A basic formula b in
ϕ is a subformula of ϕ of the form b = 〈〈Ab〉〉ψb. Observe that the present trace for b
is irrelevant, so we directly write G ,ρ |= b. By sub(ϕ) we denote the set of all basic
subformulas of ϕ and by dsub(ϕ) ⊆ sub(ϕ) the immediate subformulas of ϕ. Finally,
we use the following abbreviations APϕ = AP∪dsub(ϕ), AP∗ϕ = AP∪ sub(ϕ), APpr

ϕ =
APϕ∪{present}, and AP∗,pr

ϕ = AP∗ϕ∪{present}.
Before showing the full satellite construction, we first show how to build it from a

single basic formula b = 〈〈Ab〉〉ψb. Let ψ̂b be the pLTL formula obtained by replacing in
ψb all the occurrences of direct basic subformulas b′ ∈ dsub(b) by the label b′ read as
atomic proposition. By using a slight variation of the procedure developed in [Var88],
we can translate ψ̂b into a universal co-Büchi word automaton3 Ub = 〈2APpr

b,Qb,δb,Q0b,
Fb〉, with a number of states at most exponential in |ψb|, that accepts all and only the
infinite words on 2APpr

b that are models of ψ̂b. By applying the classical subset construc-
tion to Ub, we obtain the satellite Db = 〈2APpr

b ,2Qb ,δd
b ,Q0b〉, where, for all sets Q⊆ Qb

and labels σ ⊆ APpr
b , it holds that δd

b(Q,σ) =
⋃

q∈Q δb(q,σ). To better understand the
usefulness of the satellite Db, consider Ub after that a prefix w′ of an infinite word
w ∈ (2APpr

b )ω is read. Since Ub is universal, there exists a number of active states that
are ready to continue with the evaluation of the remaining part of the word w. Consider
now the satellite Db after that the same prefix w′ is read. Since Db is deterministic,
there is only one active state that, by construction, is the set of all the active states of
Ub. It is clear then that, using Db, we are able to maintain all possible computations
of Ub.

We now define two different satellites, which we use for satisfiability and model-
checking. Regarding satisfiability, we have to maintain, at the same time, a memory
for all path formulas ψb contained in the mpATL* formula ϕ that we want to check. To
this aim, we build the product-satellite Dϕ = 〈2AP∗,pr

ϕ ,∏b∈sub(ϕ) 2Qb ,δd
ϕ,∏b∈sub(ϕ){Q0b}〉

over all the satellites Db, with b∈ sub(ϕ), where, for all Qb⊆Qb and σ⊆AP∗,pr
ϕ , it is set

δd
ϕ(∏b∈sub(ϕ) Qb,σ) = ∏b∈sub(ϕ){δd

b(Qb,σ∩APpr
b )}. Regarding model-checking, since

we verify one basic formulas b∈ sub(ϕ) at a time, we build the product-satellite D∗b,P =

〈2AP∗,pr
b ,Q∗b,δ

∗
b,P〉 over all the satellites Db′ , with b′ ∈ sub(b), where, for all Qb′ ⊆

Qb′ and σ ⊆ AP∗,pr
b , it is set Q∗b = ∏b′∈sub(b) 2Qb′ , P ∈ Q∗b, and δ∗b(∏b′∈sub(b) Qb′ ,σ) =

∏b′∈sub(b){δd
b′(Qb′ ,σ∩APpr

b′ )}. Note that the size of the satellites Dϕ and D∗b,P, i.e., the

number of their states, is bounded by 2O(2|ϕ|) and 2O(2|ψb|), respectively.

3 Word automata can be seen as tree automata in which the tree has just one path. Moreover, a
universal word automaton accepts a word iff all its runs are accepting.
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4.3 Satisfiability

The satisfiability procedure we now propose technically extends that used for ATL* in
[Sch08] along with that for mCTL* in [KV06]. Such an extension is possible due to
the fact that the memoryful quantification has no direct interaction with the strategic
features of the logic. In particular as for ATL*, it is possible to show that every CGS

model of an mpATL* formula ϕ can be transformed into an explicit CGT model of ϕ.
Such a model includes a certificate for both the truth of each of its basic subformula
b in the respective node of the tree and the strategy used by the agents Ab to achieve
the goal described by the corresponding path formula ψb (for a formal definition see
[Sch08]). The main difference of our definition of explicit models w.r.t. that given in
[Sch08] is in the fact that the witness of a basic formula b does not start in the node
from which the path formula ψb needs to be satisfied, but from the node in which the
quantification is applied, i.e., the present node. This difference, which directly derives
from the memoryful feature of mpATL*, is due to the request that ψb needs to be sat-
isfied on a path that starts at the root of the model. The proof of an explicit model
existence is exploited by constructing an AGCTAS that accepts all and only the explicit
models of the specification. The proof follows that used in Theorem 4 of [Sch08] and
changes w.r.t. the use of the satellite Dϕ that helps the main automaton A whenever
it needs to start with the verification of a given path formula ψb, with b ∈ sub(ϕ). In
particular, A needs to send to the successors of a node x labeled with b in the AAT

given in input, all the states of the universal co-Büchi automaton Ub that are active
after Ub has read the word derived by the trace starting in the root of the tree and
ending in x. By extending an idea given in [KV06], this requirement is satisfied by A
by defining the transition function, for the part of interest, as follows: δ(qb,(σ,Q)) =
((�,Ag),qb)∧

∧
q∈Q|b

∧
q′∈δb(q,σ∩APb∪{present})((�,Ag),(q′,new)), where b∈σ and Q|b

is the state of Db in the product-state set Q. Putting the above reasoning all together, the
following result holds.

Theorem 4. Given a mpATL* formula ϕ, we can build a symmetric co-Büchi AGCTAS

〈A ,Dϕ〉, where Dϕ has 2O(2|ϕ|) states and A has O(2|ϕ|) states and contains all and only
the agents used in ϕ, such that L(〈A ,Dϕ〉) is exactly the set of all the tree models of ϕ.

Using Theorems 3 and 4, we obtain that the check of the existence of a model for a
given mpATL* specification ϕ can be done in time 22O(|ϕ|2 )

, resulting in a 2EXPTIME

algorithm in the size of ϕ. Since mpATL* subsumes mCTL*, which has a satisfiability
problem 2EXPTIME-HARD [KV06], we then derive the following result.

Theorem 5. The satisfiability problem for mpATL* is 2EXPTIME-COMPLETE.

4.4 Model Checking

As for ATL*, for mpATL* we use a bottom-up model-checking algorithm. The proce-
dure we propose extends that used for ATL* in [AHK02] by means of the satellite. Note
that this procedure is different from that used for mCTL* in [KV06], which is top-down
and uses a local model-checking method. I.e., it checks whether the initial state satisfies
the formula. Contrarily, our procedure is a global model checking that returns all states
satisfying the formula. We now give the main idea behind our procedure.
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Consider a CGS G and an mpATL* formula ϕ. If one uses directly the procedure
from [AHK02], each state s of G turns labeled by a basic subformula b of ϕ together
with a possible initial trace ρ ending in s iff G ,ρ |= b. Then, one can check whether
G ,ρ |= b by building an AGCTA A such that L(A) �= /0 iff G ,ρ |= b. Usually, A is
the product of two different automata A1 and A2, where A1 is used to select, according
to Ab agents’ strategy, all subtrees coming from the unwinding of G starting at s and
A2 is used to verify that such subtrees satisfy ψb with ρ being the present. Although
this procedure seems reasonable, it cannot be used because of the fact that we have
infinitely many possible initial traces, while the set of atomic proposition in a CGS, as
well as the number of checks the procedure can perform, have to be finite. A solution
we propose here is to substitute ρ with “finite information”, which is supplied by a
satellite. In particular observe that, to manage the memoryful quantification, we only
need an amount of memory whose size just depends on the size of the formula. Indeed,
suppose b is the innermost basic subformula of ϕ, it is possible to prove that, if we have
two traces ρ1 and ρ2 with the same final state and such that the satellites Db reading the
two words related to ρ1 and ρ2 reach the same state, then G ,ρ1 |= b iff G ,ρ2 |= b. Using
this fact, we can substitute the trace of the above procedure, with the relative state of the
satellite, thus partitioning the information carried by the traces into equivalence classes.

We now describe the complete model-checking procedure for mpATL*. We start with
the innermost basic formulas b of ϕ and terminate with its direct basic subformulas. For
the base case, we use an automaton similar to that used in the previous sketch. So, we
can build an extended CGS G ′ such that each state s of G ′ is labeled by a pair (b,Q),
with Q ∈ 2Qb , iff G ,ρ |= b, for all the traces ρ ending in s such that, when Db reads the
word related to ρ it reaches the state Q. For the iterative case, assume that there is an
extended CGS Gb for which the satisfaction of all the basic subformulas of b has already
been determined. Then, using Gb, we can build an AGCTAS AP,Q, with D∗b,P as satellite,

where P ∈Q∗b and Q ∈ 2Qb , such that L(AP,Q) �= /0 iff G ,ρ |= b, where the word related
to ρ on the extended CGS Gb carries the satellite D∗b,P0

, with P0 = ∏b′∈sub(b) 2Q0b′ , to
the state P and the satellite Db to the state Q. As for the classical procedure, also the
main automaton of AP,Q is the product of two different automata. The first one selects,
using the satellite and accordingly to Ab agents’ strategy, all subtrees coming from the
unwinding of G starting at s, which carry in their labeling also the atomic propositions
related to the basic subformulas of b. The second one verifies that such subtrees satisfy
ψb with P “being the present”. The resulting automaton is then used to have an extended
structure that also includes the satisfaction of the formula b. By applying the procedure
recursively, we obtain an enriched model for each basic formula b ∈ sub(ϕ). Hence, we
can determine whether the input formula ϕ is satisfied by the original structure G or not
(for more technical details, see the full version of the paper). By a simple calculation, it

follows that the over all procedure takes time |G |2O(|ϕ|2 )
, resulting in an algorithm that

is in PTIME w.r.t. the size of G and in 2EXPTIME w.r.t. the size of ϕ. Since, by item
1 of Theorem 2, there is a linear translation from ATL* to mpATL* and ATL* has a
model-checking problem that is PTIME-HARD w.r.t. G and 2EXPTIME-HARD w.r.t ϕ
[AHK02], we then derive the following result.

Theorem 6. The model checking problem for mpATL* is PTIME-COMPLETE w.r.t. the
size of the model and 2EXPTIME-COMPLETE w.r.t. the size of the specification.
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A Full Definition of mpATL* Syntax and Semantics

The syntax of mpATL* is formally defined as follows.

Definition 7. mpATL* state (ϕ) and path (ψ) formulas are built inductively from the
sets of atomic propositions AP and agents Ag using the following context-free grammar,
where p ∈AP and A⊆ Ag:

1. ϕ ::= present | p | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | 〈〈A〉〉ψ | [[A]]ψ;
2. ψ ::= ϕ | ¬ψ | ψ∧ψ | ψ∨ψ | Xψ | Y ψ | Ỹ ψ | ψUψ | ψSψ | ψR ψ | ψBψ.

The class of mpATL* formulas is the set of all the state formulas generated by the above
grammar, in which the occurrences of the special atomic proposition present is in the
scope of a strategy quantifier.

The semantics of mpATL* is formally defined as follows.

Definition 8. Given a CGS G = 〈AP,Ag,Ac,St,λ,τ,s0〉 and two initial traces ρ,ρp ∈
Trc, where ρ = ρ′ · s, ρ′ ∈ Trc∪{ε}, and s ∈ St, it holds that:

1. G ,ρ,ρp |= present iff ρ = ρp;
2. G ,ρ,ρp |= p, for p ∈ AP, iff p ∈ λ(s);
3. G ,ρ,ρp |= ¬ϕ iff not G ,ρ,ρp |= ϕ, that is G ,ρ,ρp �|= ϕ;
4. G ,ρ,ρp |= ϕ1∧ϕ2 iff G ,ρ,ρp |= ϕ1 and G ,ρ,ρp |= ϕ2;
5. G ,ρ,ρp |= ϕ1∨ϕ2 iff G ,ρ,ρp |= ϕ1 or G ,ρ,ρp |= ϕ2;
6. G ,ρ,ρp |= 〈〈A〉〉ψ iff there exists an s-defined strategy fA of agents in A such that for

all fA-plays π it holds that G ,ρ′ ·π,0,ρ |= ψ;
7. G ,ρ,ρp |= [[A]]ψ iff for all the s-defined strategies fA of agents in A there exists an

fA-play π such that G ,ρ′ ·π,0,ρ |= ψ.

Moreover, for a path π, and a number k ∈N, it holds that:

8. G ,π,k,ρp |= ϕ iff G ,π≤k,ρp |= ϕ;
9. G ,π,k,ρp |= ¬ψ iff not G ,π,k,ρp |= ψ, that is G ,π,k,ρp �|= ψ;

10. G ,π,k,ρp |= ψ1∧ψ2 iff G ,π,k,ρp |= ψ1 and G ,π,k,ρp |= ψ2;
11. G ,π,k,ρp |= ψ1∨ψ2 iff G ,π,k,ρp |= ψ1 or G ,π,k,ρp |= ψ2;
12. G ,π,k,ρp |= Xψ iff G ,π,k + 1,ρp |= ψ;
13. G ,π,k,ρp |= Y ψ iff k > 0 and G ,π,k−1,ρp |= ψ;
14. G ,π,k,ρp |= Ỹ ψ iff k = 0 or G ,π,k−1,ρp |= ψ;
15. G ,π,k,ρp |= ψ1U ψ2 iff there is an index i, with k ≤ i, such that G ,π, i,ρp |= ψ2

and, for all indexes j, with k ≤ j < i, it holds G ,π, j,ρp |= ψ1;
16. G ,π,k,ρp |= ψ1S ψ2 iff there is an index i, with i ≤ k, such that G ,π, i,ρp |= ψ2

and, for all indexes j, with i < j ≤ k, it holds G ,π, j,ρp |= ψ1;
17. G ,π,k,ρp |= ψ1Rψ2 iff for all indexes i, with k≤ i, it holds that G ,π, i,ρp |= ψ2 or

there is an index j, with k ≤ j < i, such that G ,π, j,ρp |= ψ1;
18. G ,π,k,ρp |= ψ1Bψ2 iff for all indexes i, with i≤ k, it holds that G ,π, i,ρp |= ψ2 or

there is an index j, with i < j ≤ k, such that G ,π, j,ρp |= ψ1;
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Abstract. By Courcelle’s Theorem we know that any property of finite structures
definable in monadic second-order logic (MSO) becomes tractable over structures
with bounded treewidth. This result was extended to counting problems by Arn-
borg et al. and to enumeration problems by Flum et al. Despite the undisputed
importance of these results for proving fixed-parameter tractability, they do not
directly yield implementable algorithms. Recently, Gottlob et al. presented a new
approach using monadic datalog to close the gap between theoretical tractability
and practical computability for MSO-definable decision problems. In the current
work we show how counting and enumeration problems can be tackled by an
appropriate extension of the datalog approach.

1 Introduction

The most common problem type studied in algorithms and complexity theory is the
class of decision problems, which usually ask whether a solution to a given problem
instance exists, e.g., whether a given graph has a valid 3-coloring. On the other hand,
counting problems ask how many solutions an instance possesses, e.g., how many dif-
ferent 3-colorings are possible in the given graph. Finally, enumeration problems re-
quire as an answer the output of all possible solutions, e.g., all possible 3-colorings
of the graph. Unfortunately, many interesting decision problems are computationally
intractable. Clearly, the corresponding counting and enumeration problems then are
intractable as well. A promising approach for dealing with intractability comes from
the area of parameterized complexity theory (see [9,12] for an overview). Thereby the
complexity analysis is not only based on the input size but also on some additional
(structural) property of the input, the parameter. Imagine that some problem admits an
algorithm with running time f(k) · nO(1), where n is the input size, k is the parameter
and f is some arbitrary (usually exponential) function. Problems which can be solved
by such algorithms are called fixed-parameter tractable (FPT). The basic idea is that
the running time of those algorithms is still feasible, as long as k remains sufficiently
small. The treewidth of an input structure, which measures the degree of cyclicity (see
Section 2 for a formal definition), is a commonly studied parameter.

Courcelle’s Theorem [7] states that every decision problem definable in MSO is FPT
(in fact, even linear in the input size) when parameterized by the treewidth of the input
structure. This result was extended to counting problems by Arnborg et al. [2] as well
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as to enumeration problems by Flum et al. [11]. Moreover, Bagan [3] and Courcelle [8]
showed that for enumeration problems, this result can be refined by stating that the
delay between the output of two successive solutions is fixed-parameter linear. Those
proofs are constructive in the sense that they transform the problem of evaluating an
MSO formula into a tree language recognition problem, which is then solved via a finite
tree automaton (FTA). Although those results are very useful for verifying that a given
problem is FPT, they do not help in finding algorithms that are usable in practice, since
even very simple MSO formulae quickly lead to a “state explosion” of the FTA [13].
Consequently, it was already stated in [15] that the algorithms derived via Courcelle’s
Theorem are “useless for practical applications”. This creates the need for other tools
that help the algorithm designer developing FPT algorithms for specific problems.

An alternative approach using monadic datalog was presented by Gottlob et al. [14].
They proved that for decision problems, the MSO evaluation problem can be trans-
formed into a monadic datalog program, of which the evaluation is FPT (and even lin-
ear in the input size). Although the general transformation presented there does not lead
to a better running time than the MSO to FTA transformation, it has been shown, that
this datalog framework helps to find algorithms for specific problems that are indeed
feasible in practice [14]. In [17], datalog was already used in an ad hoc manner to solve
some MSO-definable counting problems (including #SAT – the problem of counting
the number of satisfying truth assignments of a given propositional formula). However,
it remained an open question, whether there exists an appropriate extension of monadic
datalog, that is capable of solving every MSO-definable counting problem. Moreover,
enumeration problems have been completely left out so far.

The goal of the current work is to systematically extend the datalog approach from
[14] to counting and enumeration problems in order to give an affirmative answer to
the question mentioned above. We identify a nontrivial extension of monadic datalog,
which we call quasi-guarded fragment of extended datalog and show that this fragment
allows us to solve every MSO-definable counting problem over structures with bounded
treewidth. As a by-product, these extended datalog programs generate intermediate re-
sults which can be exploited by a post-processing algorithm to solve the corresponding
enumeration problem.

As for the complexity, we prove a fixed-parameter linear time bound for our count-
ing algorithms (assuming unit cost for arithmetic operations) and a delay between two
successive solutions for the enumeration algorithms, that is fixed-parameter linear in
the size of the input. Note that Bagan [3] and Courcelle [8] presented enumeration al-
gorithms having a delay that is fixed-parameter linear in the size of the next solution.
But since these approaches depend on an MSO to FTA transformation, their usefulness
for solving concrete problems in practice is restricted for the same reason as stated for
Courcelle’s Theorem above.

Results. Our main contributions are:

– Counting. We identify an appropriate extension of datalog, capable of expressing
every MSO-definable counting problem. Algorithms based on our MSO to data-
log transformation solve these counting problems in fixed-parameter linear time,
parameterized by the treewidth of the input structure (assuming unit cost for arith-
metic operations).
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– Enumeration. Building upon our algorithms for counting problems, we devise a
post-processing method which solves the corresponding MSO-definable enumer-
ation problems. We thus get an algorithm which outputs the results with fixed-
parameter linear delay, parameterized by the treewidth of the input structure (as-
suming unit cost for arithmetic operations).

The paper is organized as follows. After recalling basic notations and results in Sec-
tion 2, we prove the main result regarding MSO-definable counting problems in Sec-
tion 3. In Section 4, we present a novel post-processing algorithm, which solves the
corresponding enumeration problem. In Section 5, we illustrate our approach by the
example of 3-COLORABILITY. A conclusion is given in Section 6.

2 Preliminaries

Finite Structures and Treewidth. A (relational) signature σ = {R1, . . . , Rn} is a set
of relation (or predicate) symbols. Each relation symbol R ∈ σ has an associated arity
arity(R) ≥ 1. A finite structure A over signature σ (or simply a σ-structure) consists
of a finite domain A = dom(A) plus a relation RA ⊆ Aarity(R) for each R ∈ σ.

A tree decomposition T of a σ-structure A is a pair (T, χ), where T is a tree and
χ maps each node n of T (we use n ∈ T as a shorthand below) to a bag χ(n) ⊆
dom(A) = A with the following properties: (1) For each a ∈ A, there is an n ∈ T ,
s.t. a ∈ χ(n). (2) For each R ∈ σ and each (a1, . . . , aα) ∈ RA, there is an n ∈ T ,
s.t. {a1, . . . , aα} ⊆ χ(n). (3) For each n1, n2, n3 ∈ T , s.t. n2 lies on the path from
n1 to n3, χ(n1) ∩ χ(n3) ⊆ χ(n2) holds. The third condition is usually referred to as
the connectedness condition. The width of a tree decomposition T = (T, χ) is defined
as max{|χ(n)| | n ∈ T } − 1. The treewidth of A, denoted as tw(A), is the minimal
width of all tree decompositions of A. For given w ≥ 1, deciding if a given structure
has treewidth ≤ w and, if so, to compute a tree decomposition of width w, is FPT [4].
We often have to assume that the elements in a bag χ(n) are ordered (in an arbitrary
way). In this case, χ(n) is a tuple of elements, denoted as a. By slight abuse of notation,
we shall nevertheless apply set operations to such tuples (e.g., a ∈ a, a ∩ b) with the
obvious meaning.

A tree decomposition T = (T, χ) is called normalized (or nice) [19] if: (1) Each
n ∈ T has at most two children. (2) For each n ∈ T with two children n1, n2, χ(n) =
χ(n1) = χ(n2). (3) For each n ∈ T with one child n′, χ(n) and χ(n′) differ in at most
one element (i.e., |χ(n)Δχ(n′)| ≤ 1). (4) Leaf nodes n ∈ T have empty bags (i.e.,
χ(n) = ∅). W.l.o.g., we assume that every tree decomposition is normalized, since this
normalization can be obtained in linear time without increasing the width [19].

A σ-structure A can be extended in order to additionally represent a tree decompo-
sition T of A. To this end, we extend σ to σtd = σ ∪ {root, leaf, child1, child2, bag}
by unary relation symbols root and leaf with the obvious meaning and binary relation
symbols child1 and child2. Thereby child1(n1, n) denotes that n1 is the first or the only
child of n and child2(n2, n) denotes that n2 is the second child of n. Finally, bag has
arity w + 2, where bag(n, a0, . . . , aw) expresses χ(n) = (a0, . . . , aw). For bags of
smaller size, we assume that the remaining positions in the bag-predicate are padded
with dummy elements. We write Atd to denote the σtd-structure representing both A
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and T , i.e., the domain of Atd consists of dom(A) plus the nodes of T . Moreover,
the relations in Atd coincide with A for every R ∈ σ and in addition, Atd contains a
representation of T via appropriate relations for R ∈ {root, leaf, child1, child2, bag}.

The nodes of tree decompositions are either element introduction (EI), element re-
moval (ER), permutation (P), branch (B), or leaf (L) nodes. Thereby “element intro-
duction”, “element removal”, and “permutation” refers to the way in which the bag of
some node is obtained from the bag of its child.

Monadic Second-Order Logic (MSO). MSO extends first-order logic by the use of set
variables or second-order variables (denoted by upper case letters), which range over
sets of domain elements. In contrast, the individual variables or first-order variables
(denoted by lower case letters) range over single domain elements. The quantifier depth
of an MSO-formula ϕ is defined as the maximum degree of nesting of quantifiers (both
for individual and set variables) in ϕ.

Let ϕ(x,X) be an MSO-formula with free variables x = (x1, . . . , xn) and X =
(X1, . . . , Xm). Furthermore, letA be a σ-structure with A = dom(A), let a ∈ An and
A ∈ P(A)m, where P(A) denotes the powerset of A. We write (A,a,A) |= ϕ(x,X)
to denote that ϕ(a,A) evaluates to true in A. Usually, we refer to (A,a,A) simply
as a “structure” rather than a “structure with distinguished elements and sets”. We call
(a,A) a model of ϕ overA and denote by ϕ(A) the set of all models overA.

We call structures (A,a,A) and (B, b,B) k-equivalent and write (A,a,A) ≡MSO
k

(B, b,B), iff for every MSO-formula ϕ(x,X) of quantifier depth ≤ k, the equiva-
lence (A,a,A) |= ϕ(x,X) ⇔ (B, b,B) |= ϕ(x,X) holds. By definition, ≡MSO

k

is an equivalence relation possessing only finitely many equivalence classes for any k.
These classes are referred to as k-types or simply as types. There is a nice characteriza-
tion of k-equivalence by Ehrenfeucht-Fraı̈ssé games: The k-round MSO-game on two
structures (A,a,A) and (B, b,B) is played between two players – the spoiler and the
duplicator. Thereby (A,a,A) and (B, b,B) are k-equivalent iff the duplicator has a
winning strategy in the game on these structures. For details, see e.g. [21].

Datalog. We assume some familiarity with datalog, see e.g. [5]. Syntactically, a datalog
program Π is a set of function-free, definite Horn clauses, i.e., each clause consists of
a non-empty head and a possibly empty body. The (minimal-model) semantics can be
defined as the least fixpoint (LFP) of applying the immediate consequence operator. A
predicate is called extensional if it occurs only in the body of the rules in Π , whereas
predicates also occurring in the heads are called intensional.

Let A be a σ-structure. In the context of datalog, it is convenient to think of the
relations RA with R ∈ σ as sets of ground atoms. The set of all such ground atoms
of a structure A is referred to as the extensional database (EDB) of A, which we shall
denote as E(A). We have R(a) ∈ E(A) iff a ∈ RA.

The fragment of quasi-guarded datalog has been recently introduced in [14]:

Definition 1. Let σtd be the extension of a signature σ and let Π be a datalog pro-
gram over σtd. Moreover, let r be a rule in Π and let x, y be variables in r. Then y
is called functionally dependent on x in one step, if the body of r contains an atom
of one of the following forms: child1(x, y), child1(y, x), child2(x, y), child2(y, x), or
bag(x, a0, . . . , ak) with y = ai for some i ∈ {1, . . . , k}.
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Consequently, y is called functionally dependent on x if there exists some n ≥ 1
and variables z0, . . . , zn in r with z0 = x, zn = y and, for every i ∈ {1, . . . , n}, zi is
functionally dependent on zi−1 in one step.

Furthermore,Π is called quasi-guarded if every rule r ∈ Π contains an extensional
atom B, s.t., every variable occurring in r either occurs in B or is functionally depen-
dent on some variable in B.

Evaluating a datalog program Π over a structure A is EXPTIME-complete [23] in
general. It becomes NP-complete [10] if the arity of the intensional predicate symbols
is bounded. Quasi-guarded datalog programs Π can be evaluated over σtd-structures
Atd in time O(|Π | ∗ |Atd|) [14].

We extend quasi-guarded datalog by adding counter variables. Such variables are
integers which may be used as an additional argument for intensional predicates. An
intensional predicate p havingn arguments plus a counter is denoted by p(t1, . . . , tn, j).
Thereby the value of j is required to be fully determined by the grounding of t1, . . . , tn.
If the predicate p occurs in the head of some rule r, then the counter j may have one of
the following four forms: (1) j is initialized by a constant c (e.g., p(t1, . . . , tn, c)). (2) j
takes the value of some j′ being already present in the body of r (e.g., p(t1, . . . , tn, j′)).
(3) j is the product of two counters j1, j2 occurring in r’s body (e.g., p(t1, . . . , tn, j1 ∗
j2)). Additionally, we allow rules without being quasi-guarded but having the following
strict form:

p(t1, . . . , tn, SUM(j)) ← q(t1, . . . , tm, j).

where p, q are intensional predicates and m > n. In this case the semantics is similar
to the SUM-aggregate function in ordinary SQL, where one first applies a GROUP BY
over the variables t1, . . . , tn. Consider for example the predicates instLecture(n, j)
stating that there are j lectures held at institute n, as well as persLecture(n, p, j) stating
that there are j lectures held by lecturer p at institute n. A possible rule expressing the
relationship between these two predicates would be

instLecture(n, SUM(j)) ← persLecture(n, p, j).

whose meaning is also captured by the SQL query

SELECT n, SUM(j) FROM persLecture GROUP BY n.

We call the resulting fragment quasi-guarded extended datalog. For a formal definition
of the semantics of SUM, see [18]. Aggregate functions are well studied, starting with
the first formalizations of Klug [20] through to more recent work, e.g. [1,6,16].

3 Counting Problems

In this section, we consider MSO-definable counting problems. We start by giving a
formal definition of a more general counting problem. LetC denote a class of structures
and Φ a class of logical formulae. Then the counting variant of model checking (MC)
is defined as follows:
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#MC(C ,Φ)
Instance: A structureA ∈ C and a formula ϕ ∈ Φ.

Parameter: ‖ϕ‖.
Problem: Compute |ϕ(A)|.

Thereby ‖·‖ denotes the size of a reasonable encoding. In this paper, we only con-
sider the case Φ = MSO, i.e., ϕ is an MSO-formula. Moreover, when we study the re-
lationship between #MC(C ,MSO) problems and datalog, C will be restricted to struc-
tures whose treewidth is bounded by some constant.

We illustrate the above concepts by expressing #3-COLORABILITY (i.e., the count-
ing variant of 3-COLORABILITY) as a #MC(C ,MSO)-problem. As the classC we have
the set of finite, undirected graphs or, equivalently, the σ-structures where σ consists of
a single, binary relation symbol edge . We can define an MSO-formula ϕ(R,G,B) as
follows, expressing that the sets R,G,B form a valid 3-coloring:

ϕ(R,G,B) ≡ Partition(R,G,B) ∧ ∀v1∀v2[edge(v1, v2) →
(¬R(v1) ∨ ¬R(v2)) ∧ (¬G(v1) ∨ ¬G(v2)) ∧ (¬B(v1) ∨ ¬B(v2))],

where Partition(R,G,B) is used as a short-hand for the following formula:

Partition(R,G,B) ≡ ∀v[(R(v) ∨G(v) ∨B(v)) ∧
(¬R(v) ∨ ¬G(v)) ∧ (¬R(v) ∨ ¬B(v)) ∧ (¬G(v) ∨ ¬B(v))].

Suppose that a graph (V,E) is given by an {edge}-structure A having domain
dom(A) = V and relation edgeA = E. The above formula ϕ(R,G,B) is one pos-
sible way of expressing that the sets R,G,B of vertices form a valid 3-coloring, i.e.,
R,G,B form a partition of V and, for every pair of vertices v1, v2, if they are adjacent
then they are not both in R or both in G or both in B. Then we obtain the number of
valid 3-colorings of (V,E) as∣∣{A ∈ P(V )3 | (A,A) |= ϕ(R,G,B)}

∣∣ ,
i.e., the number of possible assignments to the free set-variables R,G,B in ϕ to make
ϕ true in A.

It is convenient to define MSO-definable counting problems as #MC(C ,MSO) prob-
lems for formulae ϕ without free first-order variables. Note that this means no loss of
generality since any free individual variable x can be replaced by a set variableX plus
an appropriate conjunct in ϕ which guarantees that X is a singleton.

The primary goal of this section is to show that every MSO-definable counting prob-
lem over structures with bounded treewidth can be expressed by a program Π in the
quasi-guarded extended datalog fragment defined in Section 2. Actually, expressing a
problem in datalog also means solving the problem since, in contrast to MSO, data-
log also has an operational semantics in addition to its declarative semantics. We shall
therefore also analyze the complexity of evaluating such programs. This will ultimately
allow us to give an alternative proof of the fixed-parameter linear time upper bound
(assuming unit cost for arithmetic operations) on this class of counting problems.
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The generic construction of a program Π corresponding to an MSO-formula ϕ
(which will be detailed in the proof of Theorem 1) crucially depends on traversing a
tree decomposition T in a bottom-up manner and reasoning about the k-type of the
structure induced by the subtree of T rooted at each node n. Lemma 1 below allows us
to establish the connection between the k-type of the structure induced by the subtree
rooted at n and the k-type of the structure(s) induced by the subtree(s) rooted at the
only child (resp. the two children) of n. We first define some additional terminology,
which will be helpful for the formulation of this lemma.

Definition 2. Let T be a tree with a node n ∈ T . Then we denote the subtree rooted at
n as Tn. Likewise, letA be a finite structure and let T = (T, χ) be a tree decomposition
ofA. Then we define Tn as the restriction of T to the nodes of Tn and we denote byAn

the substructure ofA induced by the elements of the bags of Tn.

Definition 3. Let m ≥ 1 be an integer and let A and B be σ-structures. Moreover,
let a = (a0, . . . , am) and b = (b0, . . . , bm) be tuples with ai ∈ dom(A) and bi ∈
dom(B). We call a and b equivalent and write a ≡ b, iff for all predicate symbols R ∈
σ with α = arity(R) and for all tuples (i1, . . . , iα) ∈ {0, . . . ,m}α, the equivalence
RA(ai1 , . . . , aiα)⇔ RB(bi1 , . . . , biα) holds.

Lemma 1. Given σ-structures A and B, let S (resp. T ) be a normalized tree decom-
position of A (resp. B) having width w and let n (resp. m) be an internal node in
S (resp. T ). Let n′ (resp. m′) denote the only or left child of n (resp. m) and let
n′′ (resp. m′′) denote the optional right child. Let a,a′,a′′, b, b′, and b′′ denote the
bags of nodes n, n′, n′′,m,m′, andm′′, respectively. Furthermore consider l-tuples of
domain-subsets X ∈ P(dom(An))l, X ′ ∈ P(dom(An′))l, X ′′ ∈ P(dom(An′′ ))l,
Y ∈ P(dom(Bm))l, Y ′ ∈ P(dom(Bm′))l and Y ′′ ∈ P(dom(Bm′′))l.

(P) nodes: Let n andm be of type (P). If X = X ′, Y = Y ′ and there exists a permu-
tation π, s.t. a = π(a′) and b = π(b′), then (An′ ,a′,X ′) ≡MSO

k (Bm′ , b′,Y ′)
implies (An,a,X) ≡MSO

k (Bm, b,Y ).
(ER) nodes: Let n and m be of type (ER), s.t. a′ \ a = {aj} and b′ \ b = {bj},

i.e. the removed elements have the same index. If X = X ′ and Y = Y ′, then
(An′ ,a′,X ′) ≡MSO

k (Bm′ , b′,Y ′) implies (An,a,X) ≡MSO
k (Bm, b,Y ).

(EI) nodes: Let n and m be of type (EI), s.t. a \ a′ = {aj} and b \ b′ = {bj}. If
a ≡ b and there exists (ε1, . . . , εl) ∈ {0, 1}l, s.t. Xi = X ′

i respectively Yi = Y ′
i

if εi = 0, and Xi = X ′
i ∪ {aj} respectively Yi = Y ′

i ∪ {bj} if εi = 1, then
(An′ ,a′,X ′) ≡MSO

k (Bm′ , b′,Y ′) implies (An,a,X) ≡MSO
k (Bm, b,Y ).

(B) nodes: Let n and m be of type (B). If X = (X ′
1 ∪ X ′′

1 , . . . , X
′
n ∪ X ′′

n) and
Y = (Y ′

1 ∪ Y ′′
1 , . . . , Y

′
n ∪ Y ′′

n ), then (An′ ,a′,X ′) ≡MSO
k (Bm′ , b′,Y ′) and

(An′′ ,a′′,X ′′) ≡MSO
k (Bm′′ , b′′,Y ′′) imply (An,a,X) ≡MSO

k (Bm, b,Y ).

Proof Idea. The proof proceeds by a case distinction over the four possible types of
internal nodes n and m in a normalized tree decomposition. All cases are shown by
an easy argument using Ehrenfeucht-Fraı̈ssé games (see [21]). By the k-equivalence
(An′ ,a′,X ′) ≡MSO

k (Bm′ , b′,Y ′) and, optionally, (An′′ ,a′′,X ′′) ≡MSO
k (Bm′′ , b′′,

Y ′′), the duplicator has a winning strategy in the k-round game played on the struc-
tures (An′ ,a′,X ′) and (Bm′ , b′,Y ′) as well as on the structures (An′′ ,a′′,X ′′) and
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(Bm′′ , b′′,Y ′′). Then the winning strategy at the only child node of n and m (resp. at
the two child nodes of n andm) can be extended (resp. combined) to a winning strategy
in the game played on the structures (An,a,X) and (Bm, b,Y ). Actually, in case of
(P) and (ER) nodes, the winning strategy for (An′ ,a′,X ′) and (Bm′ , b′,Y ′) may even
be left unchanged. In order to extend the winning strategy in case of an (EI)-node and
to combine the winning strategies in case of a (B)-node, the connectedness condition of
tree decompositions is crucial. 2�
Lemma 1 gives us the intuition how to determine the k-type of the substructure induced
by a subtree Tn via a bottom-up traversal of the tree decomposition T . Essentially, the
type of the structure induced by Tn is fully determined by three components: (i) the type
of the structure induced by the subtree rooted at the child node(s) of n, (ii) the relations
between elements in the bag at node n, and (iii) the intersection of the distinguished
domain elements a and distinguished sets X with the elements in the bag at node n.

We now have a closer look at the distinguished sets and their effect on the type of
a structure. Suppose that we have fixed some structure A together with distinguished
elements a. Then the question is if different choices A and B of distinguished sets
necessarily lead to different types. In the following lemma we give a positive answer to
this question for the case that A and B differ on an element in a. This lemma will be
very useful when, on our bottom-up traversal of the tree decomposition, we encounter
an element introduction node: Let a denote the element that is new w.r.t. the bag at
the child node and suppose that we are considering l distinguished sets. Then, by the
lemma below, we know that each of the 2l possible choices of either adding the element
a to each of the l distinguished sets or not necessarily produces a different type. This
property in turn is important for solving the #MC(C ,MSO) problem since it guarantees
that we do not count any solution twice. Similarly, in Section 4, it will keep us from
outputting a solution twice.

Lemma 2. Given a σ-structure A with a ∈ dom(A)m and A,B ∈ P(dom(A))l.
If there exists an index i ∈ {1, . . . ,m}, s.t. Ai ∩ a �= Bi ∩ a, then it follows that
(A,a,A) �≡MSO

k (A,a,B).

Proof. This follows directly from the definition of ≡MSO
k through Ehrenfeucht-Fraı̈ssé

games. Indeed, suppose that some domain element a ∈ a is contained in some Ai but
not in Bi (or vice versa). Then the spoiler can win the game on the structures (A,a,A)
and (A,a,B) in a single move, simply by choosing a. 2�

We introduce one more auxiliary definition and then we will be ready to formulate and
prove the main result of this section, namely Theorem 1.

Definition 4. Let A be a σ-structure and let a be a tuple of elements of dom(A). Then
R(a) denotes the set of all ground atoms with predicates in σ and arguments in a, i.e.
R(a) = {R(a1, . . . , aα) | R ∈ σ, α = arity(R), a1, . . . , aα ∈ a}.

Theorem 1. Let signature σ and integer w ≥ 1 be arbitrary but fixed. For the class C
of σ-structures of treewidth at most w, the problem #MC(C ,MSO) is definable in the
quasi-guarded fragment of extended datalog over σtd.
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Proof. Let ϕ(X) be an arbitrary MSO-formula with free second-order variables X =
X1, . . . , Xl and quantifier depth k. We will construct a quasi-guarded extended datalog
program Π with a distinguished predicate solution, s.t. for any σ-structure C ∈ C,
solution(j) is in the LFP ofΠ ∪ Ctd iff |ϕ(C)| = j.

During the construction we maintain a set Θ of rank-k types ϑ of structures of the
form (A,a,A), where tw(A) ≤ w, T is a tree decomposition of A with width tw(A),
n = root(T ), a = bag(n) and A ∈ P(dom(A))l. For each type ϑ ∈ Θ, we save a
witness denoted byW (ϑ) = (A,a,A). The types ϑ ∈ Θ will serve as names of binary
predicates in our program P as well as names for constants. No confusion will arise
from this “overloading” since the meaning will always be clear from the context.

It is important to notice that the construction of programΠ only depends on ϕ(X)
and the upper bound w on the treewidth of the structures in C but not on a concrete
structure C ∈ C. But of course, Π will ultimately be used to compute |ϕ(C)| for a
concrete input structure C. The intended meaning of the ϑ-predicate (which holds for
any structure C ∈ C) in our program construction is captured by Property A below.

Let ϑ ∈ Θ, let C ∈ C and let n be a node in a tree decomposition T of C, s.t. the bag
at n is b. Then we define the set Γ (n, ϑ) as

Γ (n, ϑ) = {B ∈ P(dom(Cn))l | (Cn, b,B) ≡MSO
k W (ϑ)}.

(Recall from Definition 2 that Cn denotes the substructure of C induced by the elements
in the bags of the subtree Tn rooted at n.) Then, we have

Property A. For every j ≥ 1, there exists an atom ϑ(n, j) in the LFP of Π ∪ Ctd iff
|Γ (n, ϑ)| = j. Furthermore, there exists no atom ϑ(n, ) in the LFP, iff |Γ (n, ϑ)| = 0.

We shall show that Property A indeed holds at the end of the proof. First, we give
the details of the construction of program Π . Initially, we set Θ = Π = ∅. Then we
construct Θ by structural induction over normalized tree decompositions. Since there
are only finitely many MSO rank-k types for structures (A,a,A) [21], the induction
will eventually halt. For the base case of the induction, we consider a tree decomposition
T consisting of a single node n with empty bag a. To create structure (A,a,A) having
tree decomposition T , let A be the σ-structure with dom(A) = ∅. Moreover A =
(∅, . . . , ∅). Now we invent a new token ϑ, add it to Θ and save the witness W (ϑ) =
(A,a,A). Additionally we add the following rule toΠ :

ϑ(n, 1)← leaf(n).

In the induction step, we construct all possible structures (A,a,A) that can be created
by extending the tree decomposition of witness W (ϑ′) = (A′,a′,A′) for any ϑ′ ∈ Θ
in a “bottom-up” manner by introducing a new root node. Let a′ = (a0, . . . , am) be the
bag of the old root n′. The new root n can be of any of the following node types:

(P) node: Consider all possible permutations π of the indices {0, . . . ,m} and set a =
(aπ(0), . . . , aπ(m)), A = A′, and A = A′. For each of these (A,a,A), we check
whether there exists ϑ ∈ Θ with witness W (ϑ) = (B, b,B), s.t. (A,a,A) ≡MSO

k

(B, b,B). If such a ϑ is found we take it, otherwise we invent a new token ϑ, add it to
Θ and save the witness W (ϑ) = (A,a,A). In either case, we add the following rules
toΠ . Note that we do not write down the dummy elements for smaller bags.
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auxP (n, ϑ, ϑ′, j)← bag(n, xπ(0), . . . , xπ(m)), child(n′, n),
bag(n′, x0, . . . , xm), ϑ′(n′, j).

ϑ(n, j) ← auxP (n, ϑ, , j).

(ER) node: Set a = (a1, . . . , am), A = A′ and A = A′. For each of these (A,a,A)
we check whether there exists ϑ ∈ Θ with W (ϑ) = (B, b,B), s.t. (A,a,A) ≡MSO

k

(B, b,B). If no such ϑ is found, we invent a new token ϑ, add it to Θ and saveW (ϑ) =
(A,a,A). In either case, the following rule is added toΠ :

auxR(n, ϑ, ϑ′, j) ← bag(n, x1, . . . , xm), child1(n′, n),
bag(n′, x0, x1, . . . , xm), ϑ′(n′, j).

For all ϑ ∈ Θ for which we created the rule above, we also add:

ϑ(n, SUM(j)) ← auxR(n, ϑ, , j).

(EI) node: Adding an (EI) node is only possible if m < w. We take a new element
am+1 �∈ dom(A) and let a = (a0, . . . , am, am+1). All possible structures A can be
generated by setting dom(A) = dom(A′)∪ {am+1} and by extending the EDB E(A′)
to E(A) in the following way. Let Δ = E(A) \ E(A′) be an arbitrary set of tuples, s.t.
Δ ⊆ R(a) and am+1 occurs as an argument of all tuples inΔ. Furthermore we consider
all possible tuples ε = (ε1, . . . , εl) ∈ {0, 1}l and extend A′ to A, s.t. Ai = A′

i if
εi = 0 and Ai = A′

i ∪ {am+1} if εi = 1. For every such structure, i.e. for each
combination ofA and A, we check whether there exists ϑ ∈ ΘwithW (ϑ) = (B, b,B),
s.t. (A,a,A) ≡MSO

k (B, b,B). If no such ϑ is found, we invent a new token ϑ, add it
to Θ and save W (ϑ) = (A,a,A). In either case, the following rule is added toΠ :

auxI(n, ϑ, ϑ′, ε, j)← bag(n, x0, . . . , xm+1), child1(n′, n),
bag(n′, x0, . . . , xm), ϑ′(n′, j),
{R(xi1 , . . . , xir ) | R(ai1 , . . . , air ) ∈ E(A)},
{¬R(xi1 , . . . , xir ) | R(ai1 , . . . , air ) �∈ E(A)}.

For all ϑ ∈ Θ for which we created the rule above, we also add:

ϑ(n, SUM(j)) ← auxI(n, ϑ, , , j).

(B) node: Let ϑ′′ ∈ Θ be a type with W (ϑ′′) = (A′′,a′′,A′′), not necessarily distinct
from ϑ′. W.l.o.g. we require a′ = a′′ and dom(A′) ∩ dom(A′′) = a′. Note that this
can easily be achieved by renaming the elements of one of the two structures. Further-
more we check for inconsistency of the EDBs of the two structures (A′,a′,A′) and
(A′′,a′,A′′), i.e. we check whether E(A′) ∩ R(a′) �= E(A′′) ∩ R(a′) or A′ ∩ a′ �=
A′′ ∩ a′. If this is true, we ignore the pair, otherwise we create the new structure
(A,a,A) by setting dom(A) = dom(A′) ∪ dom(A′′), E(A) = E(A′) ∪ E(A′′),
a = a′ and Ai = A′

i ∪ A′′
i . For every such structure, we check whether there exists

ϑ ∈ Θ with witness W (ϑ) = (B, b,B), s.t. (A,a,A) ≡MSO
k (B, b,B). If such a ϑ is
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found we take it, otherwise we invent a new token ϑ, add it to Θ and save the witness
W (ϑ) = (A,a,A). In either case, we add the following rule toΠ :

auxB(n, ϑ, ϑ1, ϑ2, j1 ∗ j2)← child1(n1, n), bag(n1, x0, . . . , xm),
child2(n2, n), bag(n2, x0, . . . , xm),
bag(n, x0, . . . , xm), ϑ1(n1, j1), ϑ2(n2, j2).

For all ϑ ∈ Θ for which we created the rule above, we also add:

ϑ(n, SUM(j)) ← auxB(n, ϑ, , , j).

Now that we have constructed Θ, the only thing left to do is the actual counting of
solutions. To this end, we check for every ϑ ∈ Θ with W (ϑ) = (A,a,A), whether
A |= ϕ(A) holds and, if the answer is affirmative, we add the following rule to P :

auxroot(ϑ, j) ← root(n), ϑ(n, j).

Finally we also add:

solution(SUM(j)) ← auxroot( , j).

The bottom-up construction ofΘ guarantees that we construct all possible rank-k types
of structures (A,a,A), where tw(A) ≤ w and a is the bag of the root node of a tree
decomposition ofA. This follows from Lemma 1 and an easy induction argument.

Now consider an arbitrary input structure C ∈ C with tree decomposition T . We
have to show that solution(j) is in the LFP ofΠ ∪Ctd iff |ϕ(C)| = j. By the above two
rules with head predicates auxroot and solution, it suffices to show that the ϑ-predicate
has the desired Property A. We prove this by discussing the program rules added for
each node type. Below, we restrict ourselves to the case that |Γ (n, ϑ)| ≥ 1. The case
|Γ (n, ϑ)| = 0 (i.e., no fact ϑ(n, ) is in the LFP ofΠ ∪ Ctd) is obvious.

(L) nodes: For an (L) node n with type ϑ, Γ (n, ϑ) = {(∅, . . . , ∅)}. Since the only rule
for deriving ϑ(n, j) sets j = 1, the statement holds.

(P) nodes: Rules for a (P) node n with type ϑ do not alter the counter j. But neither does
a permutation of the elements in the root bag change the corresponding set Γ (n, ϑ).

(ER) nodes: For an (ER) node n with type ϑ, the rule deriving auxR does not alter j. If
the type ϑ′ of child n′ changes for solution A′ stored in W (ϑ′) to the type ϑ, then by
Lemma 1, this is also true for all B′ ∈ Γ (n′, ϑ′). For the second rule note that, for two
types ϑ′ and ϑ′′ both leading to ϑ, we have Γ (n′, ϑ′) ∩ Γ (n′, ϑ′′) = ∅. Thus |Γ (n, ϑ)|
can be computed by summation over all the counters appearing in a derived fact auxR.

(EI) nodes: For an (EI) node n with type ϑ, the rule deriving auxI does not alter j
either. If the modification of solution A′ stored in W (ϑ′) according to the tuple ε =
(ε1, . . . , εl) changes the type ϑ′ of child n′ to the type ϑ, then by Lemma 1, this is
also true for all B′ ∈ Γ (v′, ϑ′) under the same modification ε. Lemma 2 states that a
different modification ε′ leads to a type different from ϑ. Therefore and by the same
argument as for (ER) nodes, |Γ (n, ϑ)| can be computed by summation over all the
counters appearing in a derived fact auxI .

(B) nodes: For a (B) node n, we know by Lemma 1, if the combination of solution A1

in W (ϑ1) with solution A2 in W (ϑ2) leads to ϑ, then any solution B1 ∈ Γ (n1, ϑ1)
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combined with any solution B2 ∈ Γ (n2, ϑ2) leads to ϑ. Since B1 ∩B2 = ∅ and from
the connectedness condition of tree decompositions, it follows that there are indeed
|Γ (n1, ϑ1)| ∗ |Γ (n2, ϑ2)| = j1 ∗ j2 possible different solutions that lead to ϑ through
combination of ϑ1 and ϑ2. The second rule groups all solutions leading to ϑ together.

From the discussion above and from the rules for auxroot and solution, it follows thatΠ
is the desired quasi-guarded extended datalog program. 2�

So far, we have shown hat every MSO-definable counting problem is indeed solvable by
quasi-guarded extended datalog. The following result complements this expressibility
result by showing that quasi-guarded extended datalog programs can be evaluated in
linear time.

Theorem 2. LetΠ be a quasi-guarded extended datalog program and letA be a finite
structure. Then Π can be evaluated over A in time O(‖Π‖ ∗ ‖A‖), assuming unit
cost for arithmetic operations. Thereby ‖Π‖ denotes the size of the extended datalog
program and ‖A‖ denotes the size of the data.

Proof. Gottlob et al. [14] showed that this theorem holds for quasi-guarded datalog
without the extension by counter variables. By definition, the counter is fully deter-
mined from the other arguments of the predicate. Therefore, the number of possible
groundings of a rule r does not increase and hence the argument in [14] is still valid for
quasi-guarded extended datalog without the SUM(·) operator. On the other hand, it is
easy to see, that adding rules with this operator does not harm the linear time bound,
since we could replace rule r by rule r′, where SUM(j) is substituted by j. The facts
for r can then be derived by summation of the counter of r′. Since we assume unit cost
for arithmetic operations, this does not violate the linear time bound. 2�

Note that the construction and, therefore, the size of the datalog programΠ in the proof
of Theorem 1 only depends on the length of the formula ϕ and the treewidth w, but not
on the structure A. Hence, combining Theorem 1 and 2 immediately yields an alterna-
tive proof of the counting variant of Courcelle’s Theorem as a corollary. Originally, this
result was shown in [2] via the correspondence of MSO with FTAs.

Corollary 1. Let C be the class of structures whose treewidth is bounded by some
constant w. Then #MC(C ,MSO) is solvable in fixed-parameter linear time, i.e. for
each structureA ∈ C and formula ϕ ∈ MSO it is solvable in timeO(f(‖ϕ‖, w) · ‖A‖).

4 Enumeration Problems

We now show how the extended datalog programs from Theorem 1 can be used to solve
also MSO-definable enumeration problems. Similarly as in Section 3, we start with a
formal definition of the enumeration variant of model checking (MC).

#ENUM-MC(C ,Φ)
Instance: A structureA ∈ C and a formula ϕ ∈ Φ.

Parameter: ‖ϕ‖.
Problem: Compute ϕ(A).
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As before, ϕ(A) denotes the set of possible assignments to the free variables in ϕ that
make ϕ true in A. Again, we only consider the case that Φ = MSO and C is a class of
structures with bounded treewidth. By MSO-definable enumeration problems we mean
#ENUM-MC(C ,MSO) problems for formulae ϕ without free first-order variables.

Let ϕ(X) be an MSO-formula,Π be the extended datalog program from Theorem 1
to solve the counting problem defined by ϕ(X),A be a σ-structure, andAtd denote the
σtd-structure representing both A and a tree decomposition T of A. We cannot expect
to useΠ directly to compute the solutions ofϕ(X). This would mean computing tuples
of sets, which clearly surpasses the expressive power of datalog. However, we can use
the facts in the LFP ofΠ ∪Atd (i.e., the intermediate results of our counting algorithm)
and generate all solutions of ϕ(X) in a postprocessing step. In Figure 1, we present the
program enumerateSolutions, which is designed for precisely this purpose.

Our enumeration algorithm thus starts at the root node of T rather than at the leaves.
Note that this is exactly what we have to do, since the root is the only node where
types ϑwhich correspond to some solutions of ϕ(X) are identified. More precisely, our
algorithm iterates over all types ϑ, s.t. the LFP ofΠ ∪Atd contains a fact auxroot(ϑ, j).
By construction, these types correspond to the solutions of ϕ(X). More formally, let a
be the tuple of elements in the bag at the root of T and let A be a tuple of sets. Then the
k-type of (A,a,A) is some ϑ, s.t. auxroot(ϑ, ) is in the LFP ofΠ ∪Atd iffA |= ϕ(A).

We can then exploit further facts from the LFP of Π ∪ Atd to construct the actual
solutions. Hereby, we collect for all nodes in T the types which contributed to the
currently processed ϑ. We do so by constructing a new tree Υ for each such ϑ, which
is stored in an internal data structure and described in detail below. Function getSol(·)
in Figure 1 then traverses Υ several times until all solutions A of ϕ(X) corresponding
to ϑ are found. Below, we give a more detailed description of this procedure and all the
auxiliary procedures used inside it.

Let us first describe the construction of the tree Υ for a type ϑ. This is done in
the auxiliary procedure initTree(ϑ) of enumerateSolutions. In fact, Υ has as root node
(n, ϑ), where n is the root node of tree decomposition T . We then recursively add to a
node (n′, ϑ′) in Υ a child node (n′′, ϑ′′), if child1(n′′, n′) and auxλ(n′, ϑ′, ϑ′′, . . .) (for
λ ∈ {P,R, I}) are in the LFP of Π ∪ Atd. In case n′ is a (B) node, we analogously
add nodes using auxB(n′, ϑ′, ϑ1, ϑ2, ) but distinguish between left and right children.
We store the children of a node as an ordered list of pointers (for (B) nodes, we have
two such lists) together with a mark which sits on exactly one pointer in each such list.
initTree(ϑ) initializes all marks to the first pointer in the respective lists. We will see
below how marks are moved to obtain a new solution in each call of getSol(·) from
enumerateSolutions.

We now describe function getSol(·) (ignoring the flag isLast and the function
hasNextChild(·) which both are described below). Roughly speaking, getSol(·) tra-
verses Υ following the marked pointers using getChildren(n, ϑ) which yields the result
of the pointer marked in the list for the current node (for (B) nodes, this method accord-
ingly returns two nodes, one for each of the two child nodes in the tree decomposition).
This way, we go down the tree Υ by recursive calls of getSol(·) until the leaves are
reached. In the leaves, we start with an empty solution and update it on the way back to
the root. The only modifications are done when we are at an (EI) node or at a (B) node.
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Program enumerateSolutions Function getSol(n, ϑ, isLast)
begin input: node n, type ϑ, boolean isLast

take node n, s.t. root(n) return: tuple of sets X , boolean isLast
for each ϑ with auxroot(ϑ, ) do begin
initTree(ϑ) if n is (L) node then
repeat X = (∅, . . . , ∅)
(X , isLast) = getSol(n, ϑ, true) elseif n is (B) node then
output X ((n′, ϑ′), (n′′, ϑ′′)) = getChildren(n, ϑ)

until isLast (X ′, isLast) = getSol(n′, ϑ′, isLast)
done (X ′′, isLast) = getSol(n′′, ϑ′′, isLast)

end X = X ′ ∪ X ′′

elseif n is (EI) node then
Function hasNextChild(n, ϑ) (n′, ϑ′) = getChildren(n, ϑ)
input: node n, type ϑ (X ′, isLast) = getSol(n′, ϑ′, isLast)
return: boolean isLast X = addElement(n, ϑ, X ′)
begin else /∗ (ER) or (P) node ∗/

l = number of children of (n, ϑ) (n′, ϑ′) = getChildren(n, ϑ)
if (n, ϑ).mark < l − 1 then (X , isLast) = getSol(n′, ϑ′, isLast)
(n, ϑ).mark++ endif
return true if isLast then

endif isLast = hasNextChild(n, ϑ)
(n, ϑ).mark = 0 endif
return false return (X , isLast)

end end

Fig. 1. Program enumerateSolutions

For (EI) nodes, addElement(n, ϑ,X ′) alters X ′ according to ε in auxI(n, ϑ, ϑ′, ε, j).
For (B) nodes, X is simply the componentwise union of the respective results X ′,X′′.

Finally, we describe how the flag isLast works and how the marks on pointers are
moved when traversing the tree (this is done in function hasNextChild(n, ϑ)). Flag
isLast plays a kind of dual role. Being a parameter, it indicates whether we are cur-
rently allowed to move the mark, and this flag is passed down the recursive calls (note
that the call from enumerateSolutions always sets this flag to 1, but this is not necessar-
ily the case when going down the second subtree in a (B) node). Being a return value,
flag isLast indicates whether all possible positions of marks have been run through in
the processed subtree. If this is the case, we may also move the mark of the current
node; otherwise we do not touch it. Function hasNextChild(n, ϑ) takes care of the re-
quired manipulation of marks: it moves the mark to the next pointer, or in case the mark
was already on the last pointer, it moves the mark back to the first pointer of the list;
in both cases, the function returns the pointer which is now marked; however, in the
former case, it returns as second value false , in the latter case (the mark is reset to the
first pointer), it returns true. Thus, if true is returned to enumerateSolutions we are
done, since all possible positions of marks have been run through. Therefore, this algo-
rithm guarantees that (i) each solution leading to the current ϑ in enumerateSolutions
is found; (ii) no such solution is returned twice to enumerateSolutions.
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Theorem 3. Let σ and w ≥ 1 be arbitrary but fixed. For the class C of σ-structures
of treewidth w, the solutions of problem #ENUM-MC(C ,MSO) for input A ∈ C and
ϕ ∈ MSO can be enumerated with delay O(f(‖ϕ‖, w) · ‖A‖), where f is a function
that only depends on w and |ϕ|.

Proof. We call the boundO(f(‖ϕ‖, w) · ‖A‖) fixed-parameter linear (FPL). Since the
evaluation of the program Π over A in the proof of Theorem 1 is FPL, the number of
atoms in the LFP of Π over A is also FPL. Therefore the creation and the size of Υ
is FPL. Moreover, a traversal of Υ can also be done in FPL, and enumerateSolutions
outputs the solutions with a delay in FPL. 2�

Program Π3−C (#3-COLORABILITY)
/* (L) node */
solve(n, ∅, ∅, ∅, 1) ← leaf(s).
/* (EI) node */
forbidden(n, Y ) ← bag(n, X), Y ⊆ X, edge(u, v), u ∈ Y , v ∈ Y .
allowed(n, Y ) ← not forbidden(n, Y ).
auxI(n, R � {v}, G, B, R, G, B, j) ← bag(n, X � {v}), child1(n1, n), bag(n1, X),

solve(n1, R, G, B, j), allowed(n, R � {v}).
auxI(n, R, G � {v}, B, R, G, B, j) ← bag(n, X � {v}), child1(n1, n), bag(n1, X),

solve(n1, R, G, B, j), allowed(n, G � {v}).
auxI(n, R, G, B � {v}, R, G, B, j) ← bag(n, X � {v}), child1(n1, n), bag(n1, X),

solve(n1, R, G, B, j), allowed(n, B � {v}).
solve(n, R, G, B, j) ← auxI(n, R,G, B, , , , j).
/* (ER) node */
auxR(n, R, G, B, R � {v}, G, B, j) ← bag(n, X), child1(n1, n), bag(n1, X � {v}),

solve(n1, R � {v}, G, B, j).
auxR(n, R, G, B, R, G � {v}, B, j) ← bag(n, X), child1(n1, n), bag(n1, X � {v}),

solve(n1, R, G � {v}, B, j).
auxR(n, R, G, B, R, G, B � {v}, j) ← bag(n, X), child1(n1, n), bag(n1, X � {v}),

solve(n1, R, G, B � {v}, j).
solve(n, R, G, B, SUM(j)) ← auxR(n, R, G, B, , , , j).
/* (B) node */
auxB(n, R,G, B, R,G, B, j1 ∗ j2) ← bag(n, X), child1(n1, n), child2(n2, n), bag(n1, X),

bag(n2, X), solve(n1, R, G, B, j1), solve(n2, R, G, B, j2).
solve(n, R, G, B, j) ← auxB(n, R, G, B, , , , j).
/* result (at the root node) */
count(SUM(j)) ← root(n), solve(n, , , , j).

Fig. 2. Counting 3-colorings

5 3-Colorability

In this section, we illustrate our approach with the aid of the counting and enumer-
ation variant of 3-COLORABILITY, whose MSO-encoding ϕ(R,G,B) was given in
Section 3. A graph (V,E) with vertices V and edges E is represented as a σ-structure
Awith σ = {edge}. ByAtd we denote the σtd-structure which, in addition to the graph,
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also represents a tree decomposition T of A of width ≤ w for some constant w. We
write C(A) to denote the set of valid 3-colorings of A, i.e., C(A) = {(R̄, Ḡ, B̄) | A |=
ϕ(R̄, Ḡ, B̄)}. The program in Figure 2 takes a σtd-structureAtd as input and calculates
|C(A)|.

Note that the set variables used in Figure 2 are not sets in the general sense, since their
cardinality is restricted by the sizew+1 of the bags, wherew is a fixed constant. Hence,
these “fixed-size” sets can be simply implemented by means of k-tuples over {0, 1}
with k ≤ (w + 1). For the sake of readability, we also use the non-datalog operator 3
(disjoint union), which could be easily replaced by a “proper” datalog expression. By
considering the bags as sets, we no longer need the node type (P).

At the heart of this program is the intensional predicate solve(n,R,G,B, j) with the
following intended meaning: n denotes a node in T , the setsR,G,B are the projections
of some coloring on An onto bag(n) and j denotes the number of different colorings
on An having this projection. More precisely, let Λ(An, R,G,B) = {(R̄, Ḡ, B̄) ∈
C(An) with projection (R,G,B) onto bag(n)}, then a fact solve(n,R,G,B, j) shall
be in the LFP ofΠ3−C ∪Atd, iff |Λ(An, R,G,B)| = j ≥ 1.

The main task of the program is the computation of all facts solve(n,R,G,B, j) via
a bottom-up traversal of the tree decomposition. The predicate count holds the final
result.Π3−C solves the #3-COLORABILITY problem in the following way:

Theorem 4. Given an instance of #3-COLORABILITY, i.e., an {edge}-structure A,
together with a tree decomposition T of A having width w, then count(j) with j ≥
1 is in the LFP of Π3−C ∪ Atd iff A has exactly j possible 3-colorings. Moreover,
both the construction of Atd and the evaluation of Π3−C ∪ Atd can be computed in
O(32w+2) · ‖A‖, assuming unit cost for arithmetic operations.

Proof Idea. The correctness of the programΠ3−C follows immediately as soon as it has
been shown that solve(n,R,G,B, j) indeed has the intended meaning described above.
This in turn can be easily shown by structural induction over the tree decomposition T
via a case distinction for the possible node types (L), (EI), (ER), and (B) of n.

For the complexity, we notice that program Π3−C is essentially a succinct rep-
resentation of a quasi-guarded extended datalog program. For instance, in the atom
solve(n,R,G,B, j), the sets R, G, and B are subsets of size ≤ w of bag An at
node n. Hence, each combination R,G,B could be represented by three sets r, s, t ⊆
{0, . . . , w} referring to indices of elements in An. Hence, solve(n,R,G,B, j) is a suc-
cinct representation of constantly many predicates of the form solver,s,t(n, j). Then
bag(n,X) is a quasi-guard in each rule. The fixed-parameter linearity follows from
Theorem 2. A finer analysis of the program reveals, that for #3-COLORABILITY the
function f(‖ϕ‖, w) can be explicitly stated as 32w+2, since there are at most 3w+1 par-
titionsR,G,B at each noden. Hence, the combination of two partitions as the argument
of predicates (e.g., auxI(n,R,G,B,R′, G′, B′, j)) yield at most 32w+2 groundings of
these predicates. 2�

The enumeration variant of 3-COLORABILITY can be solved with linear delay by a
slight modification of the program in Figure 1. Instead of nodes (n, ϑ) in Υ , we consider
nodes of the form (n,R,G,B). Then we again use the child(·) and auxλ(·) facts in the
LFP of Π3−C ∪ Atd to establish a parent-child relation between nodes (n,R,G,B)
and (n′, R′, G′, B′). Analogously to the program in Figure 1, each solution R̄, Ḡ, B̄ is
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constructed in a bottom-up way, starting with an empty solution at the leaves. When
we reach an (EI) node n, the set difference between R,G,B and R′, G′, B′ of a fact
auxI(n,R,G,B,R′, G′, B′, j) determines how the sets R̄, Ḡ, B̄ are extended.

Discussion. The generic construction of a program Π from some MSO-formula ϕ in
the proof of Theorem 1 is “constructive” in theory but not feasible in practice. However,
in contrast to the MSO-to-FTA approach, datalog allows us to construct tailor-made
programs like programΠ3−C , which follow the intuition of the generic programsΠ but
incorporates several short-cuts that make it indeed feasible: Above all, as the intended
meaning of the solve-predicate suggests, we only propagate those “types” (represented
by the solve-facts) which can possibly be extended in bottom-up direction to a solution.
Moreover, the solve-facts do not exactly correspond to the types in Theorem 1 but only
describe the properties of each type which are crucial for the target formulaϕ(R,G,B).

6 Conclusion

We have extended the monadic datalog approach [14] to MSO-definable counting and
enumeration problems. For the latter, we have thus shown that they can be solved with
linear delay in case of bounded treewidth. We have also illustrated the potential of our
approach for constructing efficient algorithms by solving the counting and enumeration
variant of 3-COLORABILITY. As future work, we plan to apply our approach to fur-
ther MSO-definable problems. Finally, we also want to tackle extensions of MSO with
our approach; in particular extensions by optimization (i.e., counting/enumerating the
minimal or the maximal solutions only) [2] and by local cardinality constraints [22].

References

1. Afrati, F.N., Chirkova, R.: Selecting and using views to compute aggregate queries. In: Eiter,
T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 383–397. Springer, Heidelberg (2004)

2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. Journal
of Algorithms 12(2), 308–340 (1991)

3. Bagan, G.: MSO queries on tree decomposable structures are computable with linear delay.
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Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 601–612. Springer,
Heidelberg (2008)

23. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proc.
STOC 1982, pp. 137–146. ACM, New York (1982)



The Nullness Analyser of julia

Fausto Spoto

Dipartimento di Informatica, Università di Verona, Italy
fausto.spoto@univr.it

Abstract. This experimental paper describes the implementation and
evaluation of a static nullness analyser for single-threaded Java and Java
bytecode programs, built inside the julia tool. Nullness analysis deter-
mines, at compile-time, those program points where the null value might
be dereferenced, leading to a run-time exception. In order to improve the
quality of software, it is important to prove that such situation does not
occur. Our analyser is based on a denotational abstract interpretation
of Java bytecode through Boolean logical formulas, strengthened with a
set of denotational and constraint-based supporting analyses for locally
non-null fields and full arrays and collections. The complete integration
of all such analyses results in a correct system of very high precision
whose time of analysis remains in the order of minutes, as we show with
some examples of analysis of large software.

1 Introduction

Software is everywhere nowadays. From computers, it has subsequently been em-
bedded in phones, home appliances, industries, aircraft, nuclear power stations,
with more applications coming every day. As a consequence, its complexity is
increasing and bugs spread with the software itself. While bugs are harmless in
some situations, in others they have economical, human or civil consequences.
Therefore, software verification is increasingly recognised as an important aspect
of software technology and consumes larger and larger portions of the budget of
software development houses.

Software verification aims at proving software error-free. The notion of error is
in general very large, spanning from actual run-time errors to bad programming
practices to badly-devised visual interfaces. Techniques for software verification
are also manifold. It is generally accepted that the programming language of
choice affects the quality of software: languages with strong static (compile-
time) checks, simple syntax and simple semantics reduce the risk of errors. Good
programming practices are also a key element of software quality. The reuse of
trusted libraries is another. Nevertheless, bugs keep being present in modern
software.

Hence, the big step in software verification should be automatic software ver-
ification tools, able to find, automatically and in reasonable time, the bugs in
a program. Of course, no tool can be both correct (finding all bugs) and com-
plete (finding only bugs), because of the well-known undecidability property of
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software. But a tool can well be useful if it approximates the set of bugs in a
precise way, as a set of warnings, yet leaving to the programmer the burden of
determining which warnings are real bugs.

In this paper we describe our implementation of a software verifier for null-
pointer analysis, also called nullness analysis, embedded inside the julia tool,
carried out in the last three years. We show the structure of the implementation,
its precision and strengths. Its goal is to spot program points in Java and Java
bytecode where a null-pointer exception might be raised at run-time, because
the value null is dereferenced during the access to a field, a call to a method or
during synchronisation. Although julia works over bytecode, it can be applied
to Java source code by compiling it into bytecode and we only report examples,
here, over Java source code, more easily understood by the reader.

It is important to stress that we do not claim the absolute superiority of our
implementation w.r.t. other tools for automatic software verification of Java.
We only want to highlight the specific features of our tool that make it rele-
vant in the context of software verification, possibly in coexistence with other
tools. Namely, a software verification tool can be judged w.r.t. many orthogonal
aspects, including:

correctness/completeness. A correct verifier has the advantage of definitely
excluding the presence of bugs outside the list of warnings provided to the
user. Nevertheless, it is understandable that some tools have decided to
sacrifice correctness (and completeness), since this lets them shrink the list
of warnings to the most realistic ones: a long list of warnings can only scare
the user, who will not use the tool anymore. Our choice is to stay correct
and restrict the list of warnings as much as possible with the help of the
most advanced techniques for static analysis;

annotations/no annotations. A verifier using annotations requires the pro-
grammer to decorate the source code with invariants that can be exploited
but must also be checked by the tool. Examples are method pre- and post-
conditions and loop invariants. This approach burdens the programmer with
an extra task, but it obliges him to reason on what he writes and clean and
document the code. Moreover, a tool exploiting annotations can be extremely
precise and its analysis can be modular, that is, parts of the program can
be changed without having to verify everything again. Our choice has been
not to use annotations;

genericity. A generic verifier performs many kinds of software verifications
and is consequently more useful. Nevertheless, an implementation centered
around a given verification problem can be more focused on its specific target
and more optimised. Our choice is to have a general analyser (julia), but
our limited time has been used to build advanced instantiations for nullness
verification and termination analysis [20] only;

real-time/off-line. A real-time verifier runs every time the source code is modi-
fied and provides immediate feedback to the programmer. It is typically mod-
ular, i.e., it performs local reasonings on each method and requires source
code annotations. Sometimes (but not always) some incorrect assumptions
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are made, such as assuming that methods are always called with non-null
arguments that do not share any data structure, which is not always true.
Real-time verifiers are very effective during software development. Off-line
verifiers require larger resources and are consequently used at fixed mile-
stones during software development. But they can afford the most precise
verification techniques and can provide a correct and thorough report on the
analysed program. Our choice is that of an off-line analyser, although its
run-times are kept in the order of minutes on a standard computer.

Many different tools provide some form of nullness analysis. The Eclipse

IDE [1] provides a real-time, very limited, incorrect, largely imprecise null-
ness analysis, as a plug-in. ESC/Java2 [4] is a generic tool, evolved from
ESC/Java [8], that uses theorem-proving to perform an off-line nullness anal-
ysis, using annotations provided by the programmer. The tool can also work
without annotations, but then the number of warnings for null-pointer derefer-
ences becomes very large [15]. It is possible to infer typical nullness annotations
with a tool called Houdini [7], which calls ESC/Java to validate or refuse the
annotations. It does not work with ESC/Java2 and the latest version is from
2001. Since then, Java has largely changed. We did not manage to build Houdini

and ESC/Java on our Linux machine. FindBugs [10] is another generic tool
that performs an only syntactical off-line nullness analysis, in general incorrect
(see later for an example). Nevertheless, this tool is considered very effective at
spotting typical erroneous programming patterns where null-pointer bugs oc-
cur. Jlint [2] performs a simple, only syntactical analysis of the code to spot
some possible null-pointer dereferences of variables. It did not compile on our
Linux machine, so we could not experiment with it. According to the README
file, it is updated to Java version 1.4 only. Daikon [6] is a tool that infers likely
nullness annotations, but there is no guarantee of their correctness. A compar-
ison of those tools, beyond the case of nullness analysis, is presented in [15]. It
must be stated that they do not only verify null-pointer dereferences, but also
other properties of Java programs. Nit [11], instead, is a tool explicitly targeted
at nullness analysis. It performs a provably correct, fast off-line nullness analysis
of Java bytecode programs. This tool is the most similar to julia, since both are
based on semantical static analysis through abstract interpretation [5] of Java
bytecode. It is faster than julia, but this comes at the price of precision, since its
latest version 0.5d is almost as precise as an old version of julia (see the exper-
iments in [18]) that used only the techniques up to Subsection 3.2 of this paper.

The contribution of this paper is the presentation of the structure of the
nullness analysis implemented inside julia, together with a brief overview of
the techniques that it exploits, partially based on logical formulas. As such,
it is an example of implementation of logical systems for static analysis, with
strong correctness guarantees. Our goal has been precision and correctness, which
entails that julia will not be so fast as other tools, although it is already able
to analyse around 5000 methods in a few minutes on standard hardware.

The rest of the paper is organised as follows. Section 2 yields an introduc-
tory example of nullness analysis with julia, FindBugs and Nit. Section 3



408 F. Spoto

describes the structure of the nullness analysis of julia and how each component
contributes to the precision of the overall result. Section 4 describes how julia

creates an annotation file collecting nullness information, that can later be used
by other tools. Section 5 concludes the paper. The theoretical results that form
the basis of our implementation have already been published elsewhere. In partic-
ular, [17] reports a formal description and proofs of correctness for the techniques
of Subsections 3.1 and 3.2; [18] includes the same for Subsection 3.3 also; [19]
reports definitions and proofs for the rawness analysis of Section 4 and formalises
the constraint-based techniques used in julia. The new analyses for arrays and
collections in Subsections 3.4 and 3.5 have never been published before.

2 An Introductory Example

In order to show the kind of precision that can be expected from our null-
ness analysis, consider the Java program in Figure 1. Methods equals() and
hashCode() are reachable since they are called, indirectly, by the calls at lines
30 and 32 to the library method java.util.HashSet.add(). The analysis of
that program through julia does not signal any warning. According to the cor-
rectness guarantee of julia, this means that the program will never dereference
the null value at run-time. The analysis of the same program with Nit yields
8 warnings:

line 14: unsafe call to bool equals(Object)

line 16: unsafe call to bool equals(Object)

line 19: unsafe call to int hashCode()

line 24: unsafe call to String replace(char,char)

line 26: unsafe call to String replace(char,char)

line 31: unsafe field read of C inner

line 34: unsafe call to void println(String)

line 35: unsafe call to void println(String)

They are false alarms, since:

– at lines 14 and 19, field name is always non-null in the objects of class C (look
at lines 24 and 26 and consider that the return value of String.replace()
is always non-null). Hence the call to equals() does not dereference null;

– at line 16, the non-nullness of field inner has been already checked at line
15 (Java implements a short-circuit semantics for ||);

– at lines 24 and 26, args[i] is non-null, since the Java Virtual Machine
passes to main() an array args containing non-null values only, and there
is no other call to main() in the program;

– at line 31, variable t cannot hold null since it iterates over the elements of
the array ts (line 29), which is filled with non-null values by the loop at
lines 23− 27;

– at lines 34 and 35, the static field System.out cannot hold null since it
is initialised to a non-null value by the Java Virtual Machine and is not
modified after by the program in Figure 1 (it never calls System.setOut()
with a possibly null argument).
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0: import java.util.*;

1: public class C {

2: private String name;

3: private C inner;

4: public C(String name, C inner) {

5: this.name = name;

6: this.inner = inner;

7: }

8: public String toString() {

9: if (inner != null) return "[" + inner + "]";

10: else return "[]";

11: }

12: public boolean equals(Object other) {

13: return other instanceof C &&

14: ((C) other).name.equals(name) &&

15: (((C) other).inner == null ||

16: ((C) other).inner.equals(inner));

17: }

18: public int hashCode() {

19: return name.hashCode();

20: }

21: public static void main(String[] args) {

22: C[] ts = new C[args.length];

23: for (int i = 0; i < ts.length; i++) {

24: ts[i] = new C(args[i].replace(’\\’,’/’), null);

25: if (i < ts.length - 1)

26: ts[++i] = new C(args[i].replace(’\\’,’/’), ts[i - 1]);

27: }

28: Set<C> s1 = new HashSet<C>(), s2 = new HashSet<C>();

29: for (C t: ts) {

30: s1.add(t);

31: if (t.inner != null)

32: s2.add(t.inner);

33: }

34: for (C t: s1) System.out.println(t.toString());

35: for (C t: s2) System.out.println(t.toString());

36: }

37: }

Fig. 1. A Java program exposing interesting considerations about nullness

The analysis of the same program with FindBugs yields no warnings. How-
ever, this result is the consequence of some optimistic (and in general incorrect)
hypotheses assumed by FindBugs on the behaviour of the program under anal-
ysis: it cannot be taken as a proof of the fact that the program in Figure 1 never
dereferences null. Namely, assume to comment out lines 15 and 31 in Figure 1.
The program contains two bugs now: at line 16, method equals() is called on a
possibly null field inner; at line 35, method toString() is called on a possibly
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null variable t, since the set s2 might contain null now, introduced at line 32.
julia correctly spots these situations and issues two warnings:

line 16: call with possibly-null receiver to C.equals(Object)

line 35: call with possibly-null receiver to C.toString()

However, FindBugs keeps signalling no warning at all and hence is not able to
find those two bugs and is incorrect. Nit keeps signalling the same 8 warnings
seen above. It somehow misses the bug at line 35, since, there, no warning is
signalled for the incorrect call to toString() but only a false alarm about the
call to println(). However, this must be just a bug in the implementation of
Nit, that might be corrected in next releases, since the underlying theory has
been certified in Coq to be correct.

3 Nullness Analysis in Julia

We describe here the phases of the nullness analyser implemented inside the ju-

lia analysis tool and their contribution to the overall precision. We had to use
many techniques in order to achieve a very high level of precision. julia currently
performs semantical static analyses based on denotational abstract interpreta-
tion and on constraint-based abstract interpretation. Both come in different
flavors here, for inferring properties of local variables, fields, arrays of references
and collections. We test each technique with all the previous techniques turned
on as well, so we will see progressively increasing times and precision.

Before the actual nullness analysis starts, julia must of course load and
parse the .class or .jar files containing the analysed Java bytecode applica-
tion. Moreover, it must extract the control flow of the program, linking method
calls with the method implementations that they actually call. We perform this
through a nowadays traditional class analysis [13]. Type inference for local vari-
ables and Java bytecode stack elements is performed as in the official documen-
tation [12]. These aspects of julia are completely independent from the actual
analysis which is later performed, nullness, termination or other.

3.1 Nullness Analysis of Local Variables

Given a program point p, the number of local variables accessible at p is finite,
although arbitrarily large. In particular, it is possible to access all and only the
local variables declared by the method before p, which include the formal param-
eters of the method. This entails that it is possible to build a finite constraint
expressing the nullness behaviour of the variables at p w.r.t. the nullness behav-
ior of the variables at a subsequent program point p′. In [17], this constraint is
defined as a Boolean logical formula whose models include all possible nullness
behaviours for the local variables.

Assume for instance that p is line 22 in Figure 1. The only variable in scope at p
is args, since ts is not yet declared at p. Program p′ is the logically subsequent
statement in that program, i.e., the assignment int i = 0 at line 23. At p′,
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variables args and ts are declared. The Boolean formula built by julia to
relate the nullness of the variables at p to that of the nullness at p′ uses Boolean
variables of two forms: v̌ stands for the value of variable v at p; v̂ stands for
its value just after p, that is, at p′. A special variable e is used to represent
exceptional states. Namely, that formula is:

¬ě ∧ (¬ê→ (¬ ˆargs ∧ ¬t̂s)) (1)

meaning that, if the assignment at line 22 is executed, then no exception must
be raised immediately before p (¬ě); moreover, if no exception is raised by the
assignment (¬ê) then both args and ts are non-null at p′ (¬ ˆargs ∧ ¬t̂s).
In (1), program variables of reference type have been translated into Boolean
variables of two kinds: input variables, such as ˇargs, stand for the nullness of
the corresponding program variable at the beginning of p, while output variables,
such as ˆargs, stand for the nullness of the corresponding variable at the end of p,
i.e., at beginning of p′. The special variable e stands for an exceptional situation
(in the sense of a raised Java exception, implicit or explicit).

Consider now the assignment int i = 0 at line 23. For it julia builds the
Boolean formula:

¬ě ∧ ¬ê ∧ ( ˇargs↔ ˆargs) ∧ (ťs↔ t̂s) (2)

that is, if that assignment is executed then no exception must be raised just
before it (¬ě); no exception is ever raised by that assignment (¬ê); the nullness
of args and ts is not affected by the assignment to i (( ˇargs↔ ˆargs) ∧ (ťs↔
t̂s)). Nothing is said about variable i, since it has primitive type so its value is
abstracted away.

In order to analyse the sequential execution of more statements, julia per-
forms the abstract sequential execution of Boolean formulas, each abstracting
one of the statements. For instance, the abstract sequential execution of (1)
and then (2) is computed by matching the output variables of (1) with the in-
put variables of (2). That is, those variables are renamed into the same new,
fresh variables, the resulting two formulas are conjuncted (∧) and the new fresh
variables are projected away through an existential quantification. The result is

¬ě ∧ ¬ê ∧ ¬ ˆargs ∧ ¬t̂s (3)

The latter is an abstraction of the state at the beginning of the execution of the
loop at line 23, after the initialisation of i. It clearly states that ts is non-null
there.

These Boolean formulas can be built in a methodological way as a bottom-up
abstraction of the code. Their construction is based on the abstract sequential
composition of formulas but also on the logical disjunction of two formulas, to
abstract conditionals and virtual methods calls with multiple target implementa-
tions. Method calls are abstracted by plugging the analysis (denotation) of their
body in the point of call, so that the resulting analysis is inter-procedural and
completely context-sensitive. The latter means that the approximation of the fi-
nal state, after a method call, is not fixed, but depends on the approximation of
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the input state before the same call. Loops and recursion are modelled through
a fixpoint calculation. We have used no widening, since the abstract domain of
Boolean formulas has finite height (at each program point, the number of local
variables in scope is fixed and finite) and we have never experienced the need of
accelerating the convergence of the fixpoint calculations.

The detailed formalisation of this analysis and its proof of correctness are done
in [17] by using abstract interpretation. The analysis can be used to guarantee
the absence of null dereferences in the code. For instance, Equation (3), together
with a formula built for the body of the loop at lines 23 − 27 and stating that
the nullness of ts does not change inside the loop, is enough to conclude that
the dereference ts.length at line 23 does not raise any null-pointer exception.

The implementation of this analysis is quite efficient since binary decision
diagrams [3] are used to represent the Boolean formulas and no aliasing in-
formation must be computed before the analysis: the abstraction into Boolean
formulas abstracts away the heap memory completely and only considers the
activation records of the methods, where the local variables live. This means,
for instance, that we do not have to bother that the call to the constructor of
C at line 22 modifies the nullness of args since this is just impossible: in Java,
the callee cannot modify the value of the local variables of the caller, but only,
possibly, the fields and array elements reachable from those local variables and
the static fields and everything reachable from them, which are not local vari-
ables. This simplicity comes at a price: the relative imprecision of the results.
For instance, the analysis of the program in Figure 1 with julia tuned down to
use this technique only yields the following set of warnings (false alarms):

line 14: call with possibly-null receiver to String.equals(Object)

line 16: call with possibly-null receiver to String.equals(Object)

line 19: call with possibly-null receiver to String.hashCode()

line 24: call with possibly-null receiver to String.replace(char,char)

line 26: call with possibly-null receiver to String.replace(char,char)

line 31: read with possibly-null receiver of field inner

line 34: call with possibly-null receiver to C.toString()

line 35: call with possibly-null receiver to C.toString()

We report below the precision of this analysis, as the amount derefs of deref-
erences that are proved safe in the analysed programs, i.e., having a provably
non-null receiver. The analysed programs do not contain unsafe dereferences,
as we have verified by checking, manually, the warnings issued by the most pre-
cise analysis (Subsection 3.5). Then a very precise analyser could in principle
find out that 100% of their dereferences are safe. The only exception is EJE,
that contains three bugs, that is, three dereferences that can actually happen
on null sometimes. For EJE, a very precise analyser could in principle find out
that 99.89% of the dereferences are safe.

We also report below the number of safe dereferences restricted to some fre-
quent examples, namely, those related to field accesses (access), field modifica-
tions (update) and method calls (call ). In this and the following tables, we have
analysed the programs by including the whole java.* hierarchy in the analysis,
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which is reflected in the relatively high number of methods analysed. Fewer li-
brary methods might be included, but worst-case assumptions would then be
made for them by the analyser, compromising the precision of the results. The
time of the analysis, in seconds, includes that for parsing the class files of the
application and of the libraries. OurTunes is an open source cross-platform file
sharing client which allows users to connect to iTunes and share music files.
EJE is a text editor. JFlex is a lexical analysers generator. utilMDE are Michael
Ernst’s supporting classes for Daikon; they include test applications, that is
what we analyse. The Annotation File Utilities (in the following just AFU)
are tools that allow to apply or extract annotations into Java source code (see
also Section 4). The experiments have been performed on a quad-core Intel Xeon
computer running at 2.66Ghz, with 8 gigabytes of RAM and Linux 2.6.27.

program methods time derefs access update call warnings
OurTunes 3036 24.49 86.48% 92.95% 99.64% 79.12% 425

EJE 3077 33.31 77.04% 99.43% 100.00% 57.37% 926
JFlex 3735 39.05 81.29% 76.79% 98.33% 81.71% 1254

utilMDE 3706 43.05 92.85% 93.68% 99.06% 88.42% 252
Annotation File Utilities 3625 39.48 91.09% 88.45% 99.66% 86.64% 523

For verification purposes, this first technique does not have a satisfying preci-
sion. Nevertheless, it is interesting for optimisation (removal of useless nullness
tests), which is less fussy about precision. Moreover, it is correct for the analysis
of multi-threaded applications, while the other techniques that we are going to
describe give, in special situations, incorrect results on multi-threaded programs
(their adaptation to multi-threaded applications is on its way).

3.2 Globally non-null Fields

The warning at line 14 in Subsection 3.1 is a consequence of the fact that method
equals() is called on field name of variable other rather than on a variable.
Hence the technique of that subsection cannot prove that that call does not
raise any null-pointer exception. The same happens for the warning at line 19.
To solve this problem, we need information on the nullness of the fields also, not
just of the local variables of the program. Field definitions are finite in any Java
program, but an unbound number of objects can be allocated by a program,
thus allowing an unbound number of field instances. Hence, it is not possible to
allocate a Boolean variable for each of those instances. Even considering field
definitions only, and merging their instances in the same approximation, the
number of field definitions is typically too high to be reflected in the same num-
ber of Boolean variables. In [17], we have solved this problem by labelling fields
as non-null whenever they are always initialised by all the constructors of their
defining class, are never accessed before that initialisation and the program only
stores a non-null values inside them (in constructors or methods). If this is the
case, we are sure that these non-null fields always hold a non-null value when
they are accessed. Since their identification requires nullness information about
the values that are written into them, this new nullness analysis is performed in
an oracle-based way: it is first assumed that all fields that are always initialised



414 F. Spoto

by all the constructors of their defining class, before being read, are non-null.
That is, we use an initial oracle that contains all such fields. A first nullness
analysis is computed as in Subsection 3.1, exploiting such (optimistic) hypothe-
sis. Then some fields are discarded from the oracle as potentially null whenever
the last nullness analysis cannot prove that only non-null values are written
into them. Hence a new nullness analysis is performed and the oracle further
shrunk. This process is repeated until the oracle does not shrink anymore. This
oracle-based technique, proved correct in [17], will be exploited also in the sub-
sequent subsections, since the extra analyses that we will introduce there, for
extra precision, need nullness information themselves.

This technique identifies globally non-null fields, since they stay non-null,
forever, after their initialisation. Not surprisingly, it is computationally more
expensive than that in Subsection 3.1. This is not only a consequence of the
repeated execution of the nullness analysis, which is tamed by using caches. The
actual complication is that it needs some form of definite aliasing information in
order to identify the non-null fields. Namely, in order to spot the fields of this
that are initialised by each constructor, it is not sufficient to look for assignments
to this.field, since many assignments may occur, indirectly, by writing inside
x.field, where x is a definite alias of this. This is particularly the case in Java
bytecode, where, typically, the stack contains aliases of local variables (such as
this). Moreover, helper functions are frequently used to help constructors build
the state of this and definite aliasing is needed to track the information flow
from constructors to helper functions. To that purpose, one needs to prove that
the call to the helper function happens on a definite alias of this.

In conclusion, the cost of this analysis is higher, as well as its precision, than
that of the analysis in Subsection 3.1 alone. For instance, for the program in
Figure 1, julia reports now only 6 of the 8 warnings reported in Subsection 3.1
(we write inside square brackets the warnings that have been removed):

[line 14: call with possibly-null receiver to String.equals(Object)]

line 16: call with possibly-null receiver to String.equals(Object)

[line 19: call with possibly-null receiver to String.hashCode()]

line 24: call with possibly-null receiver to String.replace(char,char)

line 26: call with possibly-null receiver to String.replace(char,char)

line 31: read with possibly-null receiver of field inner

line 34: call with possibly-null receiver to C.toString()

line 35: call with possibly-null receiver to C.toString()

The following table shows time and precision for the analysis of the same
applications analysed in Subsection 3.1 (the number of analysed methods does
not change w.r.t. what is reported in that subsection). It reports, for comparison,
inside brackets, some numbers as they were in that subsection:

program time derefs access update call warnings
OurTunes 31.94 (was 24.49) 95.09% (was 86.48%) 97.65% 100.00% 90.90% 173 (was 425)

EJE 43.34 (was 33.31) 98.25% (was 77.04%) 99.85% 100.00% 96.78% 74 (was 926)
JFlex 56.89 (was 39.05) 90.35% (was 81.29%) 85.23% 98.95% 93.71% 750 (was 1254)

utilMDE 64.17 (was 43.05) 95.11% (was 92.85%) 94.03% 100.00% 92.20% 195 (was 252)
AFU 52.37 (was 39.48) 96.04% (was 91.09%) 96.97% 100.00% 94.19% 231 (was 523)
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This technique yields almost the same results as Nit, as the experiments
in [18] show. Nit is in general faster but only slightly less precise than this
technique, possibly because the analysis in Subsection 3.1 is completely context-
sensitive, which is not the case for Nit.

In general, this technique, as well as those of the next subsections, is not
correct for multi-threaded programs. This is because, although it assumes a
field of an object o to be non-null only when it is always initialised by all
constructors of the class of o before being read and only assigned non-null
values in the program, it is possible, according to the Java memory model, that
its initialisation is not immediately visible to other threads than that creating
o. Hence, those threads might find null in the field [9]. Nit incurs in the same
problem, since its proof of correctness considers a simplified memory model,
which is not that of multi-threaded Java.

3.3 Locally non-null Fields

Some fields are not globally non-null. Namely, there are fields that are not
initialised by all the constructors of their defining class, or that are accessed
before being initialised, or that are assigned null somewhere in the program.
For them, programmers often test their non-nullness before actually accessing
them, with programming patterns such as that at lines 15 and 16 in Figure 1,
where method equals() is called on field inner of other only if that field
is found to contain a non-null value. In [18], a static analysis is coupled to
that described in Subsection 3.2, which computes a set of definitely non-null
fields at a given program point. This local non-nullness information is performed
through a denotational, bottom-up analysis of the program, which is proved
correct in [18]. In this analysis, the abstraction of a piece of code contains a set of
definitely non-null fields for each variable in scope. These sets are implemented
as bitmaps, for better efficiency and for keeping down the memory consumption.

Differently from Subsection 3.1, method calls might modify the approxima-
tion of the local variables of the caller here, which are sets of fields definitely
non-null and hence possibly reset to null by the callee, since they are not glob-
ally non-null as in Subsection 3.2. This is a major complication, which requires
a preliminary sharing analysis to infer which local variables might be affected
by each method call. We perform that analysis with a denotational abstract
interpretation, defined and proved correct in [16], implemented with Boolean
formulas. For better precision, we couple it with a constraint-based creation
points analysis, which provides the set of object creation statements in the pro-
gram where the values bound to a given variable at a given program point or
to a given field might have been created. A constraint is a graph whose nodes
stand for the approximation of each variable at each program point and of each
field and whose arcs bind those approximations, reflecting the program’s infor-
mation flow. A constraint-based analysis builds a large constraint for the whole
program and lets information flow inside it. In our case, creation points flow
along the arcs. Sets are, again, implemented as bitmaps. We use the creation
points analysis at each method call to compare the creation points of each field
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update instruction reachable from the code of the callee with the creation points
of each local variable of the callee: if they do not intersect, the execution of
the callee cannot affect the approximation for that variable. Note that sharing
and creation points analysis are complementary: the former is context-sensitive
(in our implementation), which is not the case for the latter that, however, lets
us reason on the receiver of each single field update operations that might be
performed during the execution of the callee. Moreover, constraint-based anal-
yses allow a precise approximation of properties of the fields, which is not easy
with denotational static analyses. For a formal definition of a constraint-based
analysis and proof of correctness, see the case of rawness analysis in [19].

This technique increases the precision of the nullness analysis, but also its
computational cost, mainly because of sharing and creation points analysis. For
instance, julia, using this technique, reports only 5 of the 6 warnings reported
in Subsection 3.2 for the program in Figure 1:

[line 16: call with possibly-null receiver to String.equals(Object)]

line 24: call with possibly-null receiver to String.replace(char,char)

line 26: call with possibly-null receiver to String.replace(char,char)

line 31: read with possibly-null receiver of field inner

line 34: call with possibly-null receiver to C.toString()

line 35: call with possibly-null receiver to C.toString()

The subsequent table shows times and precision of larger analyses with this
technique:

program time derefs access update call warnings
OurTunes 102.91 (was 31.94) 98.47% (was 95.09%) 97.94% 100.00% 97.91% 54 (was 173)

EJE 128.66 (was 43.34) 98.66% (was 98.25%) 99.85% 100.00% 97.55% 56 (was 74)
JFlex 151.60 (was 56.89) 94.75% (was 90.35%) 86.44% 100.00% 97.49% 460 (was 750)

utilMDE 235.76 (was 64.17) 97.40% (was 95.11%) 94.03% 100.00% 96.34% 117 (was 195)
AFU 182.16 (was 52.37) 98.66% (was 96.04%) 97.19% 100.00% 98.27% 126 (was 231)

3.4 Full Arrays

The analyses described so far always assume that the elements of an array of
references are potentially null. Hence, for instance, in Subsection 3.3 we still get
the three warnings at lines 24, 26 and 31 of the program in Figure 1. For better
precision, we need a static analysis that spots those arrays of references that only
contain non-null elements. We call such arrays full. Examples of full arrays are
the args parameter passed by the Java Virtual Machine to method main() or
explicitly initialised arrays such as Object[] arr = { a, b, c }, provided it
is possible to prove that a, b and c hold non-null values at run-time. Other
examples are arrays iteratively initialised with loops such as that at lines 23−27
of the program in Figure 1. Those loops must provably initialise all elements of
the array with definitely non-null values. Note that this property is relatively
complex to prove, since the initialisation of the array elements can proceed in
many ways and orders. For instance, in Figure 1, each iteration initialises two
elements of ts at a time. Moreover, the initialising loop might end at the final
element of the array (or, downwards, at the first) and this might be expressed
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through a variable rather than the .length notation as in Figure 1. Furthermore,
the loop is often a for loop, but it might also be a while loop or a do...while
loop (since we analyse Java bytecode, there is no real difference between those
loops). In general, it is hence unrealistic to consider all possible initialisation
strategies, but some analysis is needed, that captures the most frequent scenarios.
Moreover, a semantical analysis is preferable, rather than a weak syntactical
pattern matching over the analysed code. In our implementation, definite aliasing
information is used to prove that ts.length (in Figure 1) is the size of an
array that is definitely initialised inside the body of the loop at lines 23 − 27.
If this is the case, a denotational analysis based on regular expressions builds
the shape of the body of this loop: if this shape (i.e., regular expression) looks
as an initialisation of some variable i (the same compared to ts.length) to 0,
followed by an alternation of array stores at i of non-null values and unitary
increments of i, then the array is assumed to hold non-null values at the natural
exit point of the loop, but not at exceptional exit points, i.e., those that end the
loop if it terminates abnormally because of some exception. We are currently
working at improving this analysis, by considering more iteration strategies in
the initialising loop. We also plan to consider the case when the array is held in
a field rather than in a local variable.

Full arrays can be copied, stored into fields or passed as parameters to meth-
ods. Hence, we use a constraint-based static analysis that tracks the flow of the
arrays in the program. During this analysis, we consider that full arrays may
lose their property of being full as soon as an array store operation is executed,
which writes a possibly null value. For better precision, we exploit the available
static type information and use the creation points analysis, the same of Subsec-
tion 3.3, to determine the variables, holding full arrays, that might be affected
by each array store operation.

It must be said that julia is able to reason on single array elements as well,
if they are first tested for non-nullness and then dereferenced. For instance, it
knows that args[i] does not hold null immediately after line 24 in Figure 1,
even if it were not able to prove that args is full. This is because args[i] has
been dereferenced there, so it cannot hold null immediately after (or otherwise
an exception would interrupt the method). Of course, this requires julia to prove
that the constructor of C and method replace() do not write null into args,
by using sharing and creation points analysis. We have embedded this local
array non-nullness analysis inside the technique of Subsection 3.3, since local
non-nullness of fields and of array elements can be considered in a uniform way.

The improvements induced by all these approximations of the nullness of the
array elements increase the precision of the nullness analysis. For instance, the
analysis with julia of the program in Figure 1, using these extra techniques,
yields only 2 of the 5 warnings reported in Subsection 3.3 now:
[line 24: call with possibly-null receiver to String.replace(char,char)]

[line 26: call with possibly-null receiver to String.replace(char,char)]

[line 31: read with possibly-null receiver of field inner]

line 34: call with possibly-null receiver to C.toString()

line 35: call with possibly-null receiver to C.toString()
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These techniques increase precision and time of the nullness analysis of larger
applications as well:

program time derefs access update call warnings
OurTunes 160.63 (was 102.91) 98.47% (was 98.47%) 97.94% 100.00% 97.91% 54 (was 54)

EJE 164.58 (was 128.66) 98.83% (was 98.66%) 100.00% 100.00% 97.81% 47 (was 56)
JFlex 173.02 (was 151.60) 95.27% (was 94.75%) 86.44% 100.00% 97.59% 409 (was 460)

utilMDE 298.88 (was 235.76) 97.90% (was 97.40%) 94.03% 100.00% 97.24% 81 (was 117)
AFU 222.24 (was 182.16) 98.86% (was 98.66%) 97.19% 100.00% 98.63% 107 (was 126)

3.5 Collection Classes

The Java programming language comes with an extensive library. Some promi-
nent library classes are the collection classes, such as Vector, HashSet and
HashMap. They are largely used in Java programs, but complicate the nullness
analysis, since most of their instances are allowed to contain null elements, keys
or values. As a consequence, there is no syntactical guarantee, for instance, that
the iterations at lines 34 and 35 in Figure 1 happen over non-null elements only.
This is why julia signals two warnings there, up to the technique of Subsec-
tion 3.4. The techniques described up to now do not help here since, for instance,
the elements of a hashset are stored inside a backing hashmap, which contains
an array of key/value entries. The technique of Subsection 3.2 might be able to
prove that the field holding the key or that holding the value in all entries are
globally non-null, but this is not the case: in Figure 1 hashmaps are not only
used inside the two hashsets s1 and s2, but also internally by the Java libraries
themselves. In some of those uses, not apparent from Figure 1, null is stored
(or seems to julia to be stored) as a value or key in a hashmap. In any case,
the technique of Subsection 3.2 would be very weak here because it flattens all
collections into the same, global abstraction for the nullness of the fields of the
entries inside a hashmap: a program may use more hashsets or hashmaps (as
is the case in Figure 1) and it is important, for better precision, to distinguish
the collections possibly having null among their elements from those that only
contain non-null elements: in Section 2 we have seen that commenting out line
31 introduces a warning at line 35 but not at line 34. The technique of Subsec-
tion 3.3 does not help either. The method get() of a hashmap or the method
next() of an iterator over the keys or values of a hashmap does not check for
the non-nullness of the field of the hashmap entry holding the returned value (as
method equals() in Figure 1 does for field inner) nor assigns it to a definitely
non-null value before returning its value.

To prove that the two calls to toString() in Figure 1 happen on a non-
null variable t, we use a new technique. Namely, we let julia prove that s1
and s2 are sets of non-null elements. To that purpose, we have developed a
constraint-based analysis that approximates each local variable at each given
program point and each field with a flag, stating if the value of the variable or
field is an instance of a collection class that does not contain null. Whenever a
method is called, such as HashSet.add(), which might modify the flag of some
variable, the analysis checks if it can prove that the call adds a non-null value to
the collection. If this is not the case, the affected variables and fields lose the flag
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stating that they do not contain null elements. In order to over-approximate
the variables and fields affected, we use sharing and creation points analysis, as
in Subsection 3.3.

The property of containing non-null elements only is propagated by the
constraint-based analysis, following variable assignments, method calls and re-
turn. Also, if an iterator is built from a collection that does not contain null
elements, then we flag that iterator as iterating over non-null elements only. If
a possibly null element is added, later, to that iterator, it will lose its flag, and
this will happen also to the variables holding the backing collection.

Our implementation of this analysis currently considers around 20 collection
classes but we plan to consider more in the future. In order to simplify the
addition of new classes, the analysis consults some Java annotations that we
have written for the methods of the collection classes. Adding more classes is
hence a matter of writing new annotations. In particular, one does not need to
modify the analysis itself.

By using this technique, the nullness analysis with julia of the program in
Figure 1 issues no warning, instead of the 2 of Subsection 3.4. The following
table shows that this technique improves the precision of the analysis of larger
applications as well:

program time derefs access update call warnings
OurTunes 162.82 (was 160.63) 99.01% (was 98.47%) 99.11% 100.00% 98.58% 38 (was 54)

EJE 157.61 (was 164.58) 99.07% (was 98.83%) 100.00% 100.00% 98.26% 36 (was 36)
JFlex 176.61 (was 173.02) 98.66% (was 95.27%) 99.14% 100.00% 97.80% 118 (was 409)

utilMDE 257.01 (was 298.88) 98.76% (was 97.90%) 100.00% 100.00% 97.78% 58 (was 81)
AFU 231.42 (was 222.24) 99.05% (was 98.86%) 98.31% 100.00% 98.72% 91 (was 107)

The time for analysing EJE and utilMDE has actually decreased w.r.t. Sub-
section 3.4, since the extra precision has accelerated the convergence of the
oracle-based nullness analysis. Three of the warnings issued for EJE are actual
null-pointer bugs of that program. The others are false alarms.

This analysis and that of Subsection 3.4 are strictly intertwined. The analysis
in Subsection 3.4 must first determine the program points that initialise a full
array. Then, the property of being full is propagated across the program, to-
gether with the same property for collection classes. The fullness for arrays and
collections actually interact: if a collection is full, then its toArray() methods
return a full array.

4 Construction of the Annotation File

In Section 3, we have seen the different phases of the nullness analysis of julia

and how they provide different levels of precision for software verification, i.e.,
different numbers of warnings. But nullness analysis can also be used to build
an annotation of the program under analysis, reporting which fields, parameters
or return values of methods might hold null at run-time. This is interesting to
the programmer, is useful for documentation and can also be seen as a standard
description of the nullness behaviour of the program. As such, it can be imported
and exported between different tools for software analysis.
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We did not devise our own annotation language for nullness, but used one
that has been developed for the Checker Framework for Java [14]. The latter is
a generic tool for software verification, based on type checking. Types can be
specified and written into Java source code as Java annotations. The system type-
checks those types and reports inconsistencies. The checker framework contains
a type-system for nullness and is bundled with a tool (file annotation utilities)
that imports a succinct description of the nullness behaviour of the program (a
jaif file, in their terminology) into Java source code. This is perfect for julia:
since our tool analyses Java bytecode, it has no direct view of the source code,
but it can generate a jaif file which is then importable into source code, by using
the file annotation utilities.

class C:

field inner: @Nullable

method <init>(Ljava.lang.String;LC;)V:

parameter #1: @Nullable

method equals(Ljava.lang.Object;)Z:

parameter #0: @Nullable

Fig. 2. Jaif file generated by julia for the program in Figure 1

Figure 2 reports the jaif file generated by julia for the program in Figure 1.
The default hypothesis is that everything is non-null, so that only possible null-
ness must be explicitly reported in the file. Hence Figure 2 says, implicitly, that
field name in Figure 1 is non-null and that the constructor of class C (method
<init>) always receives a non-null value as its first parameter (numbered as
0). Jaif files report also the nullness of the elements of an array of references or
of an object of a collection class. Hence, since nothing is explicitly reported in
Figure 2 about method main(), that figure tells us that main() in Figure 1 is
always called with a parameter which is a non-null array of non-null strings.

For another example, consider the program in Figure 3 and the corresponding
jaif file generated by julia, shown in Figure 4. This jaif file tells us that julia has
been able to conclude that every call to methods main() and first() happens
with a non-null argument of non-null strings, as well as every call to the
constructor of Test. The same is not stated for method second(), since in some
cases null is passed to second() for x. Moreover, the calls to method inLoop()
are reported to happen with a non-null argument x, but whose elements might
be null (see the annotation inner-type 0: @Nullable). This is true, since
inLoop() is called with an array s as actual parameter that is not always full
at the point of call. Field g is reported as possibly-null and there are actual
cases when it contains null at run-time. Field map is reported as non-null but its
inner-type 1 is possibly-null: this is the value component of the map. Instead,
its key component is definitely non-null, since there is no annotation for map
about inner-type 0 and the default is non-null.
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The Checker Framework benefits from information about which values are
raw, that is, are objects whose non-null fields might not have been assigned yet.
This is important since, when a value is raw, the type-checker of the Framework
correctly assumes its non-null fields to be potentially null. This is the case
of this at the beginning of the constructor of Test, since its fields map and f
(reported to be non-null in the jaif file) have not been yet initialised there. Hence
also this inside inLoop() and first() is raw. But this inside second() is not
raw since all its non-null fields have been already initialised when second() is
called. In the jaif file in Figure 4, rawness information is reported with the @Raw
annotation, applied to the receiver this, although, in more complex examples,
we might find it reported for fields, parameters and return types as well. julia

never reports it for the receiver of a constructor (such as that of Test), since it
is the default there.

julia computes rawness information with a constraint-based rawness analy-
sis, performed after the nullness analysis of Section 3. Rawness analysis is imple-
mented as a constraint-based static analysis, where each variable at each given
program point and each field is approximated with the set of its non-null fields
that have been definitely initialised there. Those sets flow along the constraint,

import java.util.*;

public class Test {

private Map<String, Object> map;

private String f, g;

public static void main(String[] args) {

new Test(args);

}

private Test(String[] args) {

map = new LinkedHashMap<String, Object>();

String[] s = new String[args.length / 2];

for (int i = 0; i < s.length; i++) {

map.put(s[i] = args[i * 2], null);

inLoop(s);

}

System.out.println(first(s));

f = "name";

if (args.length > 5)

g = "surname";

second(g);

}

private void inLoop(String[] x) {}

private String first(String[] s) {

return s.length > 0 ? s[0] : null;

}

private void second(String x) {}

}

Fig. 3. A simple Java program
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class Test:

field g: @Nullable

field map:

inner-type 1: @Nullable

method second(Ljava.lang.String;)V:

parameter #0: @Nullable

method first([Ljava.lang.String;)Ljava.lang.String;:

return: @Nullable

receiver: @Raw

method inLoop([Ljava.lang.String;)V:

parameter #0:

inner-type 0: @Nullable

receiver: @Raw

Fig. 4. The jaif file generated by julia for the program in Figure 3

reflecting assignments, parameter passing and method returns, and are enlarged
at field assignments. A formal definition and a proof of correctness of this anal-
ysis are contained in [19].

Although the jaif files built by julia are correct, this does not mean that
their application to the source code type-checks w.r.t. the type-checker of the
Checker Framework. This is because the techniques of Section 3 are data-flow,
much different from those applied by that type-checker. Nevertheless, we have
been working at making julia and the Checker Framework closer.

The Daikon tool is also able to generate jaif files, but they are only likely
correct. Nit generates jaif files also and computes some rawness information
during its nullness analysis. Nevertheless, it does not dump the rawness infor-
mation into the jaif file. Since Nit is less precise than the full-featured nullness
analysis of julia, the generated jaif files are less precise too.

5 Conclusion

We have described and experimented with the nullness analysis implemented
inside julia. It is correct and very precise, with a cost in time which is still
acceptable for off-line analyses (a few minutes). Note that the only other correct
nullness analysis for Java is that in [11], whose precision is similar to that of
Subsection 3.2, as experimentally validated in [17].

Our nullness analysis is the composition of many static analyses, denota-
tional and constraint-based. In general, denotational analyses provide context-
sensitivity, while constraint-based analyses provide better support for the analy-
sis of fields. In terms of software engineering, julia contains two implementations
of those classes of analysis, from which all concrete static analyses are derived
by subclassing. This has simplified the development of new analyses and allowed
the optimisation of the shared components and their debugging.

Our work is not finished yet. First of all, we aim at making julia more scal-
able, up to including the whole javax.* hierarchy in the analysis. This will
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benefit the precision of the results, particularly for the analysis of those ap-
plications that make use of the Swing graphical library. We are also working
at making the results correct for multi-threaded applications. In this direction,
we are developing a static analysis that identifies those fields that are only ac-
cessed by the thread that has assigned them. If this is the case, all techniques
from Section 3 are correct for them. For the other fields (hopefully not many)
a worst-case assumption will be made. The web interface of julia must also be
improved in order to provide better graphical effects and more feedback to the
user. It is available at the address http://julia.scienze.univr.it, where the
reader can test the tool without any local installation.
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Abstract. We describe a technique and a tool called Qex for generating
input tables and parameter values for a given parameterized SQL query.
The evaluation semantics of an SQL query is translated into a specific
background theory for a satisfiability modulo theories (SMT) solver as a
set of equational axioms. Symbolic evaluation of a goal formula together
with the background theory yields a model from which concrete tables
and values are extracted. We use the SMT solver Z3 in the concrete
implementation of Qex and provide an evaluation of its performance.

1 Introduction

The original motivation behind Qex comes from unit testing of relational data-
bases, where a key challenge is the automatic generation of input tables and
parameters for a given query and a given test condition, where a typical test
condition is that the result of the query is a nonempty table. An early prototype
of Qex as a proof-of-concept and an integration of Qex into the Visual Studio
Database edition is discussed in [23,28]. Here we present a new approach for
encoding queries that uses algebraic data types and equational axioms, taking
advantage of recent advances in SMT technology. The encoding is much simpler
than the one described in [28], and boosted the performance of Qex by several
orders of magnitude. In [28] algebraic data types were not available and queries
were encoded into an intermediate background theory T Σ using bags and a
summation operator. The resulting formula was eagerly expanded, for a given
size of the database, into a quantifier free formula that was then asserted to the
SMT solver. The expansion often caused an exponential blowup in the size of
the expanded formula, even when some parts of the expansion were irrelevant
with respect to the test condition. The new approach not only avoids the eager
expansion but avoids also the need for nonlinear constraints that arise when
dealing with multiplicities of rows in bags and aggregates over bags. Moreover,
the axiomatic approach makes it possible to encode frequently occurring like-
patterns through an automata based technique, and other string constraints.
To this end, Qex now encodes strings faithfully as character sequences, whereas
in [28] strings were abstracted to integers with no support for general string oper-
ations. Furthermore, algebraic data types provide a straightforward encoding for
value types that allow null. In addition, Qex now also handles table constraints
and uses symmetry breaking formulas for search space reduction.

E.M. Clarke and A. Voronkov (Eds.): LPAR-16, LNAI 6355, pp. 425–446, 2010.
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The core idea is as follows. A given SQL query q is translated into a term [[q]]
over a rich background theory that comes with a collection of built-in (prede-
fined) functions. Tables are represented by lists of tuples, where lists are built-in
algebraic data types. In addition to built-in functions (such as arithmetical op-
erations) the term [[q]] may also use functions whose meaning is governed by a
set of additional axioms referred to as Th(q). These custom axioms describe the
evaluation rules of SQL queries and are in most cases defined as recursive list
axioms that resemble functional programs. Table 1 provides a rough overview
of the SQL constructs supported in Qex and the corresponding theories used
for mapping a given construct into a formula for Z3 [30,10] that is used as the
underlying SMT solver in the implementation of Qex. As indicated in the table,
in all of the cases there is also an additional set of custom axioms that are used
in addition to the built-in ones.

Table 1. Overview of features in Qex and related use of SMT theories

Built-in theories Custom
Features Arithmetic Bitvectors Sets Arrays Algebraic d.t. Tuples theories

Table constraints
√ √ √ √ √

SELECT clauses
√ √ √

Aggregates
√ √ √ √ √ √

LIKE patterns
√ √ √

Null
√ √

For input tables and other parameters, the term [[q]] uses uninterpreted con-
stants. Given a condition ϕ over the result of [[q]], e.g., [[q]] �= nil ([[q]] is nonempty),
ϕ is asserted to the SMT solver as a goal formula and Th(q) is asserted to the
SMT solver as an additional set of axioms, sometimes called a soft theory. Next,
a satisfiability check is performed together with model generation. If ϕ is satisfi-
able then the generated model is used to extract concrete values (interpretations)
for the input table constants and other additional parameter constants.

The rest of the paper is structured as follows. Section 2 introduces some basic
notions that are used throughout the paper. Section 3 defines a custom theory
of axioms over lists that are used in Section 4 to translate queries into formulas.
Section 5 discusses the implementation of Qex with a focus on its interaction
with Z3. Section 6 provides some experimental evaluation of Qex. Section 7 is
about related work, and Section 8 provides some final remarks.

2 Preliminaries

We assume that the reader is familiar with elementary concepts in logic and
model theory, our terminology is consistent with [15] in this regard.

We are working in a fixed multi-sorted universe U of values. For each sort σ,
Uσ is a separate subuniverse of U . The basic sorts needed in this paper are the
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Boolean sort B, (UB = {true, false}), the integer sort Z, and the n-tuple sort
T〈σ0, . . . , σn−1〉 for n ≥ 1 of some given basic sorts σi for i < n. We also use
other sorts but they are introduced at the point when they are first needed.

There is a collection of functions with a fixed meaning associated with the
universe, e.g., arithmetical operations over UZ. These functions and the corre-
sponding function symbols are called built-in. Each function symbol f of ar-
ity n ≥ 0 has a fixed domain sort σ0 × · · · × σn−1 and a fixed range sort σ,
f : σ0 × · · · × σn−1 → σ. For example, there is a built-in relation or predicate
(Boolean function) symbol < : Z × Z → B that denotes the standard order on
integers. One can also declare fresh (new) uninterpreted function symbols f of
arity n ≥ 0, for a given domain sort and a given range sort. Using model theoretic
terminology, these new symbols expand the signature.

Terms and formulas (or Boolean terms) are defined by induction as usual and
are assumed to be well-sorted. We write FV (t) for the set of free variables in a
term (or formula) t. A term or formula without free variables is closed.

A model is a mapping from function symbols to their interpretations (values).
The built-in function symbols have the same interpretation in all models that we
are considering, keeping that in mind, we may omit mentioning them in a model.
A model M satisfies a closed formula ϕ, M |= ϕ, if it provides an interpretation
for all the uninterpreted function symbols in ϕ that makes ϕ true. For example,
let f : Z → Z be an uninterpreted function symbol and c : Z be an uninterpreted
constant. Let M be a model where cM (the interpretation of c in M) is 0 and
fM is a function that maps all values to 1. Then M |= 0 < f(c) but M �|= 0 < c.

A closed formula ϕ is satisfiable if it has a model. A formula ϕ with FV (ϕ) = x̄
is satisfiable if its existential closure ∃x̄ϕ is satisfiable. We write |=U ϕ, or |= ϕ,
if ϕ is valid (true in all models). Some examples: 0 < 1 ∧ 2 < 10 is valid;
4 < x ∧ x < 5, where x : Z is a free variable, is unsatisfiable because there exists
no integer between 4 and 5; 0 < x ∧ x < 3, where x : Z is a free variable, is
satisfiable.

3 Equational Axioms over Lists

The representation of a table in Qex is a list of rows, where a row is a tuple.
While bags of rows rather than lists would model the semantics of SQL more
directly (order of rows is irrelevant, but multiple occurrences of the same row are
relevant), the inductive structure of a list provides a way to define the evaluation
semantics of queries by recursion. The mapping of queries to axioms, discussed in
Section 4, uses a collection of axioms over lists that are defined next. Intuitively,
the axioms correspond to definitions of standard (higher order) functionals that
are typical in functional programming. The definitions of the axioms below,
although more concise, correspond precisely to their actual implementation in
Qex using the Z3 API. Before describing the actual axioms, we explain the
intuition behind a particular kind of axioms, that we call equational, when used
in an SMT solver.
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3.1 Equational Axioms and E-Matching in SMT Solvers

During proof search in an SMT solver, axioms are triggered by matching subex-
pressions in the goal. Qex uses particular kinds of axioms, all of which are equa-
tions of the form

∀x̄(tlhs = trhs) (1)

where FV (tlhs) = x̄ and FV (trhs) ⊆ x̄. The left-hand-side tlhs of (1) is called the
pattern of (1).

While SMT solvers support various kinds of patterns in general, in this
paper we use the convention that the pattern of an equational axiom is
always its left-hand-side.

The high-level idea behind E-matching is as follows. The axiom (1) is triggered
by the current goal ψ of the solver, if ψ contains a subterm u and there exists
a substitution θ such that u =E tlhsθ, i.e., u matches the pattern of the axiom
(modulo the built-in theories E). If (1) is triggered, then the current goal is
replaced by the logically equivalent formula where u has been replaced by trhsθ.

Thus, the axioms that are used in Qex can be viewed as “rewrite rules”, and
each application of an axiom preserves the logical equivalence to the original
goal. As long as there exists an axiom in the current goal that can be triggered,
then triggering is guaranteed. Thus, termination is in general not guaranteed in
the presence of (mutually) recursive axioms. Note that, unlike in term rewrite
systems, there is no notion of term orderings or well-defined customizable strate-
gies (at least not in the current version of Z3) that could be used to guide the
triggering process of the axioms.

3.2 Axioms over Lists

For each sort σ there is a built-in list sort L〈σ〉 and a corresponding subuniverse
UL〈σ〉. (In Z3, lists are provided as built-in algebraic data types and are associ-
ated with standard constructors and accessors.) For a given element sort σ there
is an empty list nil (of sort L〈σ〉) and if e is an element of sort σ and l is a list
of sort L〈σ〉 then cons(e, l) is a list of sort L〈σ〉. The accessors are, as usual, hd
(head) and tl (tail). In the following consider a fixed element sort σ. Observe
that one can define a well-ordering such that, in all of the recursive cases of the
axioms, the right-hand-side decreases with respect to that ordering, which guar-
antees that triggering terminates and implies that the axioms are well-defined. In
all of the cases, the use of the list constructors in the patterns is fundamental. In
most cases one can provide more compact and logically equivalent definitions of
the axioms where the right-hand-sides are combined in a disjunction, but where
the pattern is too general and may cause nontermination of axiom triggering in
an SMT solver.
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Filter. Let ϕ be a formula with a single free variable x0 :σ. Declare the function
symbol Filter [ϕ] : L〈σ〉 → L〈σ〉 and define the following axioms:

Filter [ϕ](nil ) = nil
∀x0 x1 (Filter [ϕ](cons(x0, x1)) = Ite(ϕ, cons(x0,Filter [ϕ](x1)),Filter [ϕ](x1)))

The Ite-term Ite(φ, t1, t2) equals t1, if φ is true; it equals t2, otherwise. Ite is a
built-in function.

Map. Let t : ρ be a term with a single free variable x0 :σ. Declare the function
symbol Map[t] :L〈σ〉 → L〈ρ〉 and define:

Map[t](nil) = nil
∀x0 x1 (Map[t](cons(x0, x1)) = cons(t,Map[t](x1)))

Reduce. Let t : ρ be a term with two free variables x0 :σ and x1 : ρ. Declare the
function symbol Reduce[t] : L〈σ〉 × ρ→ ρ and define:

∀x (Reduce[t](nil , x) = x)
∀x0 x1 x2 (Reduce[t](cons(x0, x2), x1) = Reduce[t](x2, t))

For example, if l : L〈Z〉 is a list of integers, then Reduce[x0 + x1](l, 0) is equal to
the sum of the integers in l, or 0 if l is empty (in any model that satisfies the
corresponding Reduce[]-axioms).

Cross product. Declare the function symbols Cross : L〈σ〉×L〈ρ〉 → L〈T〈σ, ρ〉〉
and Cr :σ × L〈σ〉 × L〈ρ〉 × L〈ρ〉 → L〈T〈σ, ρ〉〉, and define

∀x (Cross(nil , x) = nil)
∀x (Cross(x,nil) = nil)

∀x̄ (Cross(cons(x0, x1), cons(x2, x3)) = Cr (x0, x1, cons(x2, x3), cons(x2, x3)))
∀x̄ (Cr (x0, x1,nil , x2) = Cross(x1, x2))

∀x̄ (Cr(x0, x1, cons(x2, x3), x4) = cons(T (x0, x2),Cr (x0, x1, x3, x4)))

where T :σ × ρ → T〈σ, ρ〉 is the built-in tuple constructor (for the given sorts).
For example, the term Cross(cons(1, cons(2,nil)), cons(3, cons(4,nil))) is equal
to the term

cons(T (1, 3), cons(T (1, 4), cons(T (2, 3), cons(T (2, 4),nil)))).

Remove duplicates. The function RemoveDuplicates is used to remove dupli-
cates from a list. The definition makes use of built-in sets and set operations;
the set sort of element sort σ is denoted S〈σ〉.
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Declare: RemoveDuplicates :L〈σ〉 → L〈σ〉, Rd : L〈σ〉 × S〈σ〉 → L〈σ〉. Define:

∀x (RemoveDuplicates(x) = Rd(x, ∅))
∀x (Rd(nil , x) = nil)

∀x̄ (Rd(cons(x0, x1), x2) = Ite(x0 ∈ x2,Rd(x1, x2),
cons(x0,Rd(x1, {x0} ∪ x2))))

Select with grouping and aggregates. Select clauses with aggregates and
grouping are translated into formulas using the following axioms. Each aggregate
function α (either MIN , MAX , or SUM ) for a sort σ is defined as a binary
operation over the lifted sort ?〈σ〉, i.e., α : ?〈σ〉 × ?〈σ〉 → ?〈σ〉. The data type
?〈σ〉 is associated with the constructors NotNull : σ → ?〈σ〉, Null : ?〈σ〉, the
accessor Value : ?〈σ〉 → σ (that maps any value NotNull(a) to a), and the testers
IsNotNull : ?〈σ〉 → B, IsNull : ?〈σ〉 → B. Regarding implementation, such data
types are directly supported in the underlying solver Z3. (For COUNT the range
sort is ?〈Z〉.) In SQL, aggregation over an empty collection yields null and null
elements in the collection are discarded, e.g., sum aggregation over an empty
collection yields null. The definition of MAX (similarly for MIN ) is:

MAX (x0, x1)
def= Ite(IsNull(x0), x1, Ite(IsNull(x1), x0,

Ite(Value(x0) > Value(x1), x0, x1)))

The definition of SUM is:

SUM (x0, x1)
def= Ite(IsNull(x0), x1, Ite(IsNull(x1), x0,

NotNull(Value(x0) + Value(x1))))

Let t : ρ be a term with a single free variable x0 :σ. Let a : ζ be a term with a
single free variable x0 :σ. Intuitively, σ is a tuple sort, both t and a are projec-
tions, and a corresponds to an aggregate parameter. For example (see the schema
in Example 1 below) x0 is a row in the Scores table, t corresponds to the pro-
jection Scores.StudentID, and a corresponds to the projection Scores.Points
in MAX(Scores.points).

We declare the function symbol Selectα[t, a] : L〈σ〉 → L〈T〈ρ, ζ〉〉 and define
a set of recursive axioms for it that for each element in the list collect the
aggregated value with respect to a and then create a list of pairs that for each
projection t provides that aggregated value. In order to define these axioms,
arrays (mathematical maps) are used.

Given domain sort σ1 and range sort σ2, A〈σ1, σ2〉 is the corresponding array
sort. (In particular, the set sort S〈σ1〉 is synonymous with A〈σ1,B〉.) Declare

Selectα[t, a] : L〈σ〉 → L〈T〈ρ, ζ〉〉,
Collect : L〈σ〉 × A〈ρ, ζ〉 × L〈σ〉 → L〈T〈ρ, ζ〉〉,

List : L〈σ〉 × A〈ρ, ζ〉 → L〈T〈ρ, ζ〉〉
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and define the following axioms, where Read : A〈ρ, ζ〉×ρ→ ζ and Store : A〈ρ, ζ〉×
ρ×ζ → A〈ρ, ζ〉 are the standard built-in functions of the array theory. The empty
array ε maps all elements of the domain sort to the default value of the range
sort. For lifted sorts the default value is null.

∀x (Selectα[t, a](x) = Collect(x, ε, x))

∀x̄ (Collect (cons(x0, x1), x2, x3) = Collect(x1,Store(x2, t, α(a,Read(x2, t))), x3))
∀x̄ (Collect(nil , x0, x1) = List(x1, x0))

∀x̄ (List(cons(x0, x1), x2) = cons(T (t,Read(x2, t)),List(x1, x2)))
∀x (List(nil , x) = nil)

In the current implementation, the above axioms are specialized to the case when
the aggregate argument is required to be non null (for performance reasons),
and the sort of a is not lifted. Although lifted sorts are avoided, this limitation
requires special treatment of the cases when the collection is empty and implies
that aggregates do not work with nullable column types.

4 From SQL to Formulas

In this section we show how we translate an SQL query q into a set of axioms
Th(q) that is suitable as an input soft theory to an SMT solver. The transla-
tion makes use of the list axioms discussed in Section 3. Although functional
encodings of queries through comprehensions and combinators have been used
earlier for compiler construction and query optimization (e.g. [14]), we are not
aware of such encodings having been used for symbolic analysis or SMT solving.
We illustrate the encodings here in order to make the paper self-contained. The
concrete implementation with Z3 terms is very similar.

We omit full details of the translation and illustrate it through examples and
templates, which should be adequate for understanding how the general case
works. The focus is on the purely relational subset of SQL (without side-effects).
We start by describing how tables are represented.

4.1 Tables and Table Constraints

Tables are represented by lists of rows where each row is a tuple. The sorts of the
elements in the tuple are derived from the types of the corresponding columns
that are given in the database schema. The currently supported column types
in Qex are: BigInt, Int, SmallInt, TinyInt, Bit, and Char. The first four
types are mapped to Z (and associated with a corresponding range constraint,
e.g., between 0 and 255 for TinyInt). Bit is mapped to B. Char (that in SQL
stands for a sequence of characters) is mapped to the string sort (or word sort)
W = L〈C〉, where C is the built-in sort of n-bitvectors for some fixed n that
depends on the character range: UTF-16 (n = 16), basic ASCII (n = 7), extended
ASCII (n = 8).
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The order of rows in a table is irrelevant regarding the evaluation semantics
of queries. The number of times the same row occurs in a table is the multiplicity
of the row. In general, duplicate rows are allowed in tables so the multiplicity
may be more than one. However, in most cases input tables have primary keys
that disallow duplicates. Tables may also be associated with other constraints
such as foreign key constraints and restrictions on the values in the columns.
In Qex, these constraints are translated into corresponding formulas on the list
elements. The following example illustrates that aspect of Qex.

Example 1. Consider the following schema for a school database.

CREATE TABLE [School].[Scores]

(StudentID tinyint not null FOREIGN KEY REFERENCES Students(StudentNr),

CourseID tinyint not null CHECK(1 <= CourseID and CourseID <= 100),

Points tinyint not null CHECK(Points <= 10),

PRIMARY KEY (StudentID, CourseID),

CHECK(NOT(1 <= CourseID and CourseID <= 10) or Points < 6));

CREATE TABLE [School].[Students]

(StudentNr tinyint not null PRIMARY KEY,

StudentName char(100) not null);

The (primary) key of the Scores table is the pair containing a student id and
a course id and each row provides the number of points the student has received
for the given course. The additional constraints are that the course ids go from
1 to 100, no course gives more than 10 points and courses 1 through 10 give a
maximum of 5 points.

Qex declares the variables Scores : L〈T〈Z,Z,Z〉〉 and Students : L〈T〈Z,W〉〉 for
tables. There is a given bound k on the number of rows in each table. (In general
there is a separate bound per table and the bounds are increased during model
generation discussed in Section 5.) The following equalities are generated:

Scores = cons(Scores0, . . . , cons(Scoresk−1,nil))
Students = cons(Students0, . . . , cons(Studentsk−1,nil))

where Scoresi : T〈Z,Z,Z〉 and Studentsi : T〈Z,W〉 for i < k. For the primary key
constraints, the following formulas are generated. The distinctness predicate and
the projections functions πi on tuples are built-in. We use t.i to abbreviate the
term πi(t).

Distinct(T (Scores0.0,Scores0.1), . . . , T (Scoresk−1.0,Scoresk−1.1))
Distinct(Students0.0, . . . ,Studentsk−1.0)

For expressing the foreign key constraint, Qex uses the built-in sets and the
subset predicate:

{Scores i.0}i<k ⊆ {Studentsi.0}i<k
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Currently, foreign key constraints are not supported over nullable types. The
remaining constraints are conjunctions of check-constraints on individual rows,
e.g., ∧

i<k

(¬(1 ≤ Scores i.1 ∧ Scores i.1 ≤ 10) ∨ Scores i.2 < 6)

asserts that courses 1 through 10 give a maximum of 5 points.

4.2 Nullable Values

If a column in a table is optional, it may contain “null” as a placeholder. Any
column in SQL (other than a primary key column) is optional unless a not
null type constraint is associated with the column type. Algebraic data types
provide a convenient mechanism to represent optional values through lifted sorts
as defined in Section 3.2.

When an SQL expression E is encoded as a term [[E]], it is assumed that E
is well-formed : in the current implementation, operations using optional values
are assumed to occur in a context where the value is known to be not null. SQL
includes particular predicates IS NULL and IS NOT NULL for this purpose. In the
translation the corresponding testers are used and the Value accessor is applied
to cast the optional value to its underlying sort.

For example, assuming the column Points of the Scores table is declared
NOT NULL (as in Example 1), the expression E = Points > 3 is translated to
Scores .2 > 3, but if Points is nullable, the expression E would have to occur in a
context that is guarded by Points IS NOT NULL, e.g.,E =Points IS NOT NULL
AND Points > 3, in which case [[E]] is IsNotNull(Scores .2)∧Value(Scores .2) > 3.

Currently, well-formedness is not automatically detected and automatic sup-
port for such transformations is on the to-do-list. Regarding aggregates, the
current implementation of Qex does not support aggregation over nullable types
and a proper support for nullable values in combination of aggregates requires
and adaptation of the corresponding axioms, which is yet another item on the
to-do-list.

4.3 Formulas for Queries

As the concrete input of queries, Qex uses a subset of the abstract syntax of
the TSQL [1] grammar and the parser TSql100Parser that is available in the
VSTS’08 database edition. The currently supported constructs, some of which
are also illustrated in the examples, are

– Selection, projection, group-by with having clause, inner join, nested queries.
– Aggregates: MIN, MAX, COUNT, SUM.
– Check constraints (composite), foreign and primary key constraints (com-

posite).
– Arithmetic operations including negative numbers.
– Like-patterns and string length constraints.
– Restricted form of null support in table schemas.
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We refer to the supported fragment by SQL−. For dealing with null, the current
translation does not fully support key constraints where values may be null
or aggregates over columns where null is possible. Some of the corner cases
require careful special handling in order to stay faithful to the semantics of
SQL. Similarly, variable length string types and various character encodings are
currently not supported. Although the underlying solver is capable of supporting
full Unicode, the current experiments assume ASCII character encoding. The
following constructs are currently not supported.

– Nested queries in from clauses. Correlated nested queries. Other join opera-
tions besides inner join.

– Set-type operands in where clauses, exists-expressions and in-expressions.
Set operations such as union, intersection and difference.

– Order by.
– Store procedures.

Regarding the first two items, there is a plan to support most common cases.
Order by clauses are viewed as postprocessing of the result and are currently
not planned to be supported as part of model generation. Store procedures fall
outside the scope of this paper, although there are future plans to look into
symbolic execution of store procedures.

It is not feasible to fit the details of the translation from queries to formulas
into the paper, instead, we look at a collection of representative samples that
illustrate the core ideas behind the translation. In the samples, we reuse the
schema from Example 1. We denote the term resulting from an SQL− expression
E by [[E]]. The overall goal of the translation is summarized by the following
proposition. Given a list l let {{l}} denote the corresponding multiset where the
order of list elements is removed.

Proposition 1. Let q be an SQL− query using input table references Xi, i < n,
let ψ be a formula expressing the input table constraints, and let ϕ be a condition
over the result Y of q. If Th(q)∧ψ∧ϕ∧Y = [[q]] has a model M then {{XM

i }}, i <
n, is a set of input tables satisfying ψ and the evaluation of q with respect to the
input tables produces the result {{YM}} satisfying ϕ.

Proof (Proof (sketch).). The complete proof uses induction over the structure of
SQL− expressions and is contingent upon a complete definition of SQL− as well
as a formal mapping of SQL types to the corresponding background sorts. For
example, the select clause has the following abstract syntax in simplified form:

select clause ::= SELECT [DISTINCT] select list
FROM table src [WHERE condition] [group by having]

The translation of a select clause depends on whether grouping is used and
whether aggregates occur in the select list. Suppose q is a simple select clause
SELECTL FROMT WHEREC without aggregates. The expression FROMT WHEREC is
translated to t = Filter [[[C]]]([[T ]]) that filters out all elements in the list [[T ]] that
do not satisfy the condition [[C]]. Note that this translation preserves the multi-
plicities of the elements in [[T ]] and is consistent with the multiset semantics. The
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translation [[q]] of q is Map[[[L]]](t) where the elements of t are projected according
to L. This translation also preserves the multiset semantics even if the projection
[[L]] is not injective, i.e., several occurrences of the same element may arise as a
result of the map operation. Other SQL− expressions are treated similarly.

SELECT clauses. The main component of a query is a select clause. A select
clause refers to a particular selection of columns from a given table by using a
select list. The table is often a derived table, as the result of a join operation.
Consider the query q:

SELECT StudentName, Points

FROM Students JOIN Scores ON Scores.StudentID = Students.StudentNr

WHERE Scores.CourseID = 10 AND Scores.Points > 0

The formula [[q]] is:

Map[T (x.0.1, x.1.2)](Filter [x.1.1 = 10 ∧ x.1.2 > 0](
Filter [x.0.0 = x.1.0](Cross(Students,Scores))))

where x : T〈T〈Z,W〉,T〈Z,Z,Z〉〉. Such formulas get unreadable very quickly. Dur-
ing the process of creating [[q]], usually several list axioms are created. This set
of axioms is referred to as Th(q). In particular, in this case Th(q) includes the
axioms for the map, filter, and cross product function symbols that occur in [[q]].

Aggregates. Aggregates are used to combine values from a group of rows in a
table. The most common aggregates are MIN, MAX, SUM, and COUNT. For example,
the following query q1 selects the maximum points from the Scores table.

SELECT MAX(Points) from Scores

Depending on the use of q1, the translation [[q1]] is either the singleton list:

cons(T (Reduce[Ite(x0.2 ≥ x1, x0.2, x1)](Scores ,MinValue(Z))),nil )

or just the Reduce[]-term:

Reduce[Ite(x0.2 ≥ x1, x0.2, x1)](Scores ,MinValue(Z))

The first case applies if q1 is used as a top-level query, the second case applies if q1
is used as a subquery expression. The second case applies in the following query
q2 that also uses the MAX aggregate in the top level select list in combination
with GROUP BY that eliminates duplicates from the resulting table:

SELECT StudentID, MAX(Points) FROM Scores GROUP BY StudentID

HAVING MAX(Points) = (SELECT MAX(Points) from Scores)

The query q2 selects all students that have the most points at some course.
The translation of [[q2]] is as follows where the Filter [] application corresponds
to the HAVING clause that is applied to the result of the grouping.

Filter [x.1 = [[q1]]](RemoveDuplicates(SelectMAX [x0.0, x0.3](Scores)))
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LIKE-patterns. Like-patterns are particular regular expressions that can be
used as constraints on strings. A like-pattern r is converted into a symbolic finite
automaton [27] (SFA) Ar that is similar to a classical finite automaton except
that moves are labeled by formulas denoting sets of characters rather than single
characters. The full expressiveness of patterns r that is currently supported by
the conversion Ar is that of .NET regexes (except for anchors \G, \b, \B, named
groups, lookahead, lookbehind, as-few-times-as-possible quantifiers, backrefer-
ences, conditional alternation, and substitution).

The automaton Ar is translated into a theory Th(Ar). The theory describes
the acceptance condition for words in L(Ar). In particular, Th(Ar) defines a
predicate

AccAr : W× N → B,

where N is an algebraic datatype for unary natural numbers with the constructors
0 : N and s :N → N. We write k + 1 for s(k). Intuitively, AccAr (t, k) expresses
that t is a word of at most k characters that matches the pattern r. We use the
following property of the theory of Ar [27, Theorem 1]:

Proposition 2. Let t be a closed term of sort W, k a nonnegative integer, and
M a model of Th(Ar). Then M |= AccAr(t, k) iff tM ∈ L(Ar) and |tM | ≤ k.

In column type declarations of SQL database schemas, a maximum string length
is associated with the char type (default being 1), e.g., the type char(100)
of a column allows strings containing at most 100 characters. In the formula
AccAr (t, k), where t refers to a column whose values are strings, k is the maxi-
mum length of the strings in that column.

Example 2. Consider the query q that selects students whose name starts with
the letter B followed by any letter between a and n followed by 0 or more addi-
tional characters:

SELECT StudentName FROM Students WHERE StudentName like "B[a-n]%"

The SFA A for "B[a-n]%" is
S0 S1

#=B
S2

true

(#>=a)&(#<=n)

where # is a
free variable of sort C and each symbolic move (i, ϕ[#], j) denotes the set of
transitions {(i, a, j) | a ∈ UC, |= ϕ[a]}. For each state S0,S1,S2 of A there are
two axioms in Th(A), one for length bound = 0 and the other one for length
bound > 0:

S0 : ∀x (Acc(x, 0)⇔ false)
∀x y (Acc(x, s(y)) ⇔ x �= nil ∧ hd(x) = B ∧ Acc1(tl(x), y))

S1 : ∀x (Acc1(x, 0)⇔ false)
∀x y (Acc1(x, s(y)) ⇔ x �= nil ∧ hd(x) ≥ a ∧ hd(x) ≤ n ∧ Acc2(tl(x), y))

S2 : ∀x (Acc2(x, 0)⇔ x = nil)
∀x y (Acc2(x, s(y)) ⇔ x = nil ∨ (x �= nil ∧Acc2(tl(x), y)))

The term [[q]] is Map[T (x0.1)](Filter [Acc(x0.1, 100)](Students)). Note that Th(A)
is a subset of Th(q).
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The automata based approach opens up several transformation techniques that
can be performed in the process of encoding queries and theories of queries
that involve like-patterns. These upfront transformations can greatly simplify
the formulas. We illustrate this with an example involving the use of product
of SFAs. The following proposition follows directly from the product definition
(see [27]).

Proposition 3. Let A and B be SFAs, then L(A⊗B) = L(A) ∩ L(B).

Example 3. Consider the following query qLIKE with n+ 1 occurrences of “ ” in
the first like-pattern and n occurrences of “ ” in the second like-pattern:

SELECT StudentName FROM Students

WHERE StudentName like "%a_____" AND StudentName like "%b____"

The first like-pattern corresponds to the regex r1=.*a.{n+1} and the second
like-pattern corresponds to the regex r2=.*b.{n}. The query is essentially an
intersection constraint of r1 and r2. In a direct encoding of qLIKE, Th(qLIKE)
includes both the axioms for Ar1 as well as Ar2 . Rather than using Ar1 and Ar2

separately, the product Ar1 ⊗ Ar2 of Ar1 and Ar2 can be used together with
the theory Th(Ar1 ⊗ Ar2) instead of Th(Ar1) ∪ Th(Ar2). Thus, with product
encoding,

[[qLIKE]] = Map[T (x0.1)](Filter [AccAr1⊗Ar2 (x0.1, 100)](Students))

and with direct encoding,

[[qLIKE]]=Map[T (x0.1)](Filter [AccAr1 (x0.1, 100) ∧ AccAr2 (x0.1, 100)](Students))

The gain in performance is discussed in Section 6.

Note that correctness of the transformation illustrated in Example 3 follows from
Propositions 2 and 3.

5 Implementation

Qex uses the SMT solver Z3 [30,10]. Interaction with Z3 is implemented through
its programmatic API rather than using a textual format, such as the smt-lib
format [24]. The main reasons for working with the API are: access to built-in
data types; model generation; working within a given context. The first point is
fundamental, since algebraic data types are central to the whole approach and
are not part of the smt-lib standard.

Besides allowing to check satisfiability, perhaps the most important feature
exposed by some SMT solvers (including Z3) for the purposes of test input
generation is generating a model as a witness of the satisfiability check, i.e., a
mapping of the uninterpreted function symbols to their interpretations. Z3 has
a separate method for satisfiability checking with model generation. This code
snippet illustrates the use of that functionality:
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Model m;

z3.AssertCnstr(f);

LBool sat = z3.CheckAndGetModel(out m);

Term v = m.Eval(s); ...

A context includes declarations for a set of symbols, and assertions for a set of
formulas. A context is essentially a layering mechanism for signature expansions
with related constraints. There is a current context and a backtrack stack of
previous contexts. Contexts can be saved through pushing and restored through
popping. When a satisfiability check is performed in a given context, the context
may become inconsistent. Qex uses contexts during table generation and in SFA
algorithms during theory generation for like-patterns.

5.1 Incremental Table Generation

Let q be a fixed query and assume that X1, . . . , Xn are the input table variables.
Assume [[q]] :σ and let ϕ[Y ] be a formula with the free variable Y :σ. Intuitively,
ϕ is a test condition on the result of the query, e.g. Y �= nil . The following basic
table generation procedure describes the input table generation for q and ϕ.

1. Assert Th(q), i.e. add the axioms of q to the current context.
2. Let k = (k1, . . . , kn) = (1, . . . , 1) be the initial sizes of the input tables.

Repeat the following until a model M is found or a timeout occurs.
(a) Push the current context, i.e., create a backtrack point.
(b) Create constraints for X1, . . . , Xn using k to fix the table sizes.
(c) Assert ϕ[[[q]]]
(d) Check and get the model M . If the check fails, increase k systematically

(e.g., by using a variation of Cantor’s enumeration of rationals), and pop
the context.

3. Get the values of X1, . . . , Xn in M .

There are several possible variations of the basic procedure. The table constraints
can be updated incrementally when the table sizes are increased. The table
constraints can also be created for upper bounds rather than exact bounds on
the table sizes. One way to do so is as follows:

table = cons(row1 , rest1 ) ∧ (rest1 = nil ∨ (rest1 = cons(row2 , rest2 ) ∧ · · ·))

The size of the overall resulting formula is always polynomial in the size of
the original query and k. In practice, Qex uses bounds on k and overall time
constraints to guarantee termination, as deciding the satisfiability of queries is
undecidable in general [9].

5.2 Symmetry Breaking Formulas

The translation of a query q into a formula [[q]] together with Th(q) and the
additional table constraints looks very much like a “functional program with
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constraints”. This intuition is correct as far as the logical meaning of the trans-
lation is concerned. There are, however, no mechanisms to control the evaluation
order of patterns (such as, “outermost first”) and no notion of term orderings.
The search space for [[q]] is typically vast.

Recall that although Qex uses lists to encode tables, the order of rows is not
relevant according to the SQL semantics. We can therefore assert predicates
that constrain the input tables to be ordered (thus eliminating all symmetrical
models where the ordering does not hold). Consider a table

cons(row0, cons(row1, · · · cons(rown,nil)))

of sort L〈σ〉. Define a lexicographic order predicate * :σ×σ → B. The definition
of * on integers is just the built-in order ≤, similarly for bitvectors. For tuples, it
is the standard lexicographic order defined in terms of the orders of the respective
element sorts. For strings (lists of bitvectors) the order predicate can be defined
using recursion over lists. Assert the symmetry breaking formula∧

i<n−1

row i * row i+1

In some situations the symmetry breaking formula can be strengthened. For
example, when the table has a primary key then the formula can be strengthened
by using the strict order ≺ instead of *. Moreover, if all of the columns are part
of the primary key then the primary key constraint itself becomes redundant.

6 Experiments

We provide some performance evaluation results of Qex on a collection of sample
queries.1 In the first set of experiments we look at the performance of the basic
table generation procedure. In these experiments we use the same bound k for
both tables. The test condition used here is that the result is nonempty. Table 2
summarizes the overall time t (in ms) for each query q, which includes the
parsing time, the generation time of Th(q), and the model generation time.
(Note that query #3 is a valid SQL query without a group-by clause.) The
column k shows the number of rows generated for the input tables. Some of the
queries include parameters, indicated with @, the values of parameters are also
generated. (The actual data that was generated is not shown here.) We reuse
the schema introduced in Example 1. The last query uses an additional table
called Courses with the schema:

CREATE TABLE [School].Courses

(CourseNr tinyint not null PRIMARY KEY, CourseName char(15) not null);

Using symmetry breaking over lists did not improve the performance for these
examples. In some cases it had the opposite effect, e.g., for query #3 the time
1 The experiments were run on a Lenovo T61 laptop with Intel dual core T7500 2.2GHz

processor.
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Table 2. Sample queries

# Query t[ms] k

1

DECLARE @x as tinyint;
SELECT Scores.StudentID, SUM(Scores.Points)
FROM Scores
WHERE Scores.Points > 2
GROUP BY Scores.StudentID
HAVING SUM(Scores.Points) >= @x AND @x > 5

20 1

2
SELECT Scores.StudentID, MAX(Scores.Points)
FROM Scores
GROUP BY Scores.StudentID
HAVING MAX(Scores.Points) = (SELECT MAX(Scores.Points) FROM Scores)

20 1

3

DECLARE @x as tinyint;
SELECT COUNT(S.StudentName)
FROM Students as S
WHERE S.StudentName LIKE "%Mar[gkc]us%" AND S.StudentNr > @x
HAVING COUNT(S.StudentName) > @x AND @x > 2

1300 4

4

DECLARE @x as tinyint;
SELECT Students.StudentName, SUM(Points)
FROM Scores JOIN Students ON Scores.StudentID = Students.StudentNr
WHERE Scores.Points > 2 AND Students.StudentName LIKE "John%"
GROUP BY Students.StudentName
HAVING SUM(Points) >= @x AND @x > 15

200 2

5
SELECT Students.StudentName, Scores.Points
FROM Students JOIN Scores ON Scores.StudentID = Students.StudentNr
WHERE Scores.CourseID = 10 AND Scores.Points > 0

30 1

6

SELECT Students.StudentName, Courses.CourseName, Scores.Points
FROM Scores JOIN Students ON Scores.StudentID = Students.StudentNr
JOIN Courses ON Courses.CourseNr = Scores.CourseID
WHERE Scores.Points > 2 AND Students.StudentName LIKE "bob%"
AND Courses.CourseName LIKE "AI"

80 1

increase is 30%. Although symmetry breaking was crucial for the examples
in [28], here the benefits are unclear. If we consider the test condition that the
result has 4 rows, and also that the input tables all have 9 rows then, for query
#6 the total time to generate the three input tables is 75s without symmetry
breaking and 45s with symmetry breaking. However, in general it seems that
the ordering constraints on strings are expensive. At this point we do not have
enough experience to draw clear conclusions when it pays off to use them.

The total size of the query seems to have very little effect on the time t. The
key factor is the use of aggregates and the constraints they introduce that cause
the input tables to grow, thus, causing backtracking during model generation,
that is clearly seen for query #3. Consider the following experiment. Take query
#3 and replace the constant 2 in it with the constant n for n = 1, . . . , 15. Figure 1
shows the time t in seconds as a function of n; k is always n+ 2.

Given a query q, several optimizations or transformations can be performed
on the term [[q]] as well as the set of axioms Th(q) prior to asserting them to
the solver. Figure 2 shows a drastic decrease in model generation time for qLIKE
from Example 3 in Qex when the product construction is used. By performing
localized SMT solver queries during product construction of SFAs, the size of
the resulting automata can often dramatically decrease. We have experimented
with a few special cases of this nature, but have not systematically applied such
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Fig. 1. Exploration times (sec) for query #3 in Table 2 when the constant 2 is replaced
with n for n = 1, . . . , 15

Fig. 2. Exploration times (sec) for query qLIKE without (scattered crosses) and with
(solid line of dots at the bottom) product construction for n = 1, . . . , 98

transformations or other transformations such as combining several consecutive
filters as a single filter.

We also reevaluated the performance of Qex on the benchmarks reported
in [28, Table 1] that use a different sample database schema (where strings do
not occur). In all of the cases the performance improvement was between 10x
and 100x. As we suspected, the eager expansion time reported as texp in [28],
that was by an order of magnitude larger than the model generation time tz3,
is avoided completely in the new approach. The initial cost of creating [[q]] is
negligible, since the size of [[q]] is polynomial in the size of q in theory, and close
to linear in practice. The added overhead during model generation due to the
use of axioms only marginally increased the model generation time tz3.

The final example illustrates an application of the tool on normal form analysis
of schemas.
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Example 4. Consider the following additional schema of a table Learning.

CREATE TABLE [School].Learning

(Student TINYINT NOT NULL, Course TINYINT NOT NULL,

Teacher TINYINT NOT NULL,

PRIMARY KEY (Student, Course),

UNIQUE (Student, Teacher));

It is easy to see that the table satisfies 3NF (3rd normal form) since all
attributes are prime (belong to a candidate key of Learning). Suppose that
there is a functional dependency Teacher → Course. One can show that the
table does not satisfy BCNF (Boyce-Codd normal form, it is a slightly stronger
version of 3NF), where for each functional dependency X → Y , X must be
a superkey (i.e. a candidate key or a superset of a candidate key). One can
show that Teacher is not a superkey of the Learning table by showing that the
following query can yield a nonempty answer:

SELECT X.Teacher

FROM Learning AS X JOIN Learning AS Y ON (X.Teacher = Y.Teacher)

WHERE X.Course < Y.Course;

(2)

The basic table generation procedure for (2) provides the following solution for
Learning:

Student Course Teacher

0 69 133
1 70 133

The following query can be used to serve the same purpose:

SELECT Teacher, COUNT(Course)

FROM Learning

GROUP BY Teacher HAVING COUNT(Course) > 1;

(3)

For both queries (2) and (3) the total execution time is around 20 milliseconds: we
repeated the experiment for (2) 100 times with total execution time of 2 seconds,
and we repeated the experiment with (3) 100 times as well, with total execution
time of 2 seconds also. The actual model generation time for a single run was
around 10 milliseconds for both queries, the rest of the time was due to the
overhead of the startup, file handling and parsing. However, by changing query
(3) slightly, by replacing COUNT(Course) > 1 by COUNT(Course) > n, for n > 1,
one can detect exponential increase in model generation time: for n = 4; 5; 6 the
experiment took 0.1; 0.2; 0.4 seconds.

7 Related Work

The first prototype of Qex was introduced in [28]. The current paper presents a
continuation of the Qex project [23], and a redesign of the encoding of queries
into formulas based on a lazy axiomatic approach that was briefly mentioned
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in [28] but required support for algebraic data types in the underlying solver.
Moreover, Qex now also supports a substantially larger fragment of SQL (such
as subquery expressions) and like-patterns on strings, as discussed above.

Deciding satisfiability of SQL queries requires a formal semantics. While we
give meaning to SQL queries by an embedding into the theory of an SMT solver,
there are other approaches, e.g., defining the semantics in the Extended Three
Valued Predicate Calculus [19], or using bags as a foundation [7]. Satisfiability
of queries is also related to logic-based approaches to semantic query optimiza-
tion [5]. The general problem of satisfiability of SQL queries is undecidable and
computationally hard for very restricted fragments, e.g., deciding if a query has
a nonempty answer is NEXP-hard for nonrecursive range-restricted queries [9].

Several research efforts have considered formal analysis and verification of
aspects of database systems, usually employing a possibly interactive theorem
prover. For example, one system [25] checks whether a transaction is guaranteed
to maintain integrity constraints in a relational database; the system is based
on Boyer and Moore-style theorem proving [4].

There are many existing approaches to generate database tables as test inputs.
Most approaches create data in an ad-hoc fashion. Only few consider a target
query. Tsai et.al. present an approach for test input generation for relational
algebra queries [26]. They do not use lists to represent tables. They propose a
translation of queries to a set of systems of linear inequalities, for which they
implemented an ad-hoc solving framework which compares favorably to random
guessing of solutions. A practical system for testing database transactions is
AGENDA [12]. It generates test inputs satisfying a database schema by combin-
ing user-provided data, and it supports checking of complex integrity constraints
by breaking them into simpler constraints that can be enforced by the database.
While this system does not employ a constraint solver, it has been recently re-
fined with the TGQG [6] algorithm: Based on given SQL statements, it generates
test generation queries; execution of these queries against a user-provided set of
data groups yields test inputs which cover desired properties of the given SQL
statements.

Some recent approaches to test input generation for databases employ au-
tomated reasoning. The relational logic solver Alloy [16,17] has been used by
Khalek et.al. [18] to generate input data for database queries. Their implemen-
tation supports a subset of SQL with a simplified syntax. In queries, they can
reason about relational operations on integers, equality operations on strings,
and logical operations, but not about nullable values, or grouping with aggre-
gates such as SUM; they also do not reason about duplicates in the query results.
QAGen [3] is another approach to query-solving. It first processes a query in
an adhoc-way, which requires numerous user-provided “knob” settings as addi-
tional inputs. From the query, a propositional logic formula is generated, which
is then decided by the Cogent [8] solver to generate the test inputs. In [2] a
model-checking based approach, called Reverse Query Processing, is introduced
that, given a query and a result table as input, returns a possible database in-
stance that could have produced that result for that query, the approach uses
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reverse relational algebra. In [29] an intentional approach is presented in which
the database states required for testing are specified as constrained queries using
a domain specific language. Recently, test input generation of queries has been
combined with test input generation of programs that contain embedded queries
in the program text [13], using ad-hoc heuristic solvers for some of the arising
constraints from the program and the queries.

Generating sample input data for databases is related to generating sample
data for dataflow programs, the work in [20] discusses input data generation for
Pig Latin [21], developed at Yahoo! Research, that is a query language in between
SQL and the mapreduce [11] programming model. The approach in [20] focuses
on certain core aspects of Pig Latin that can also handle aggregation through
group and transform constructs of the language. The algorithm in [20] does
not use off-the-shelf tools or symbolic analysis techniques but is a stand-alone
multi-pass dataflow analysis algorithm. It is unclear as to how the approach can
be combined with additional constraints, for example arithmetical constraints
or string constraints in form of regular patterns.

8 Conclusion and Future Work

The current implementation of the Qex project is still in its early stages, but
we were highly encouraged by the performance improvements when switching
to the lazy approach and reducing the need for nonlinear constraints through a
different representation of tables. There are many more possible optimizations
that can be performed as a preprocessing step on formulas generated by Qex,
before asserting them to the SMT solver. One such optimization, using automata
theory, was illustrated in Example 3 and Figure 2 when multiple like-patterns
occur in a query. Systematic preprocessing can also often reveal that a query is
trivially false, independent of the size of input tables, e.g., if an ‘_’ is missed in
the first like-pattern in Example 3 then the product automaton would be empty.

For practical usage in an industrial context, where SQL queries are usually
embedded in other programs or in store procedures, we are looking at integrating
Qex in Pex [22]. For efficient support for regex constraints in Pex, integration of
Rex [27] is a first step in that integration.

It is also possible to apply a translation similar to the one described in the
paper to LINQ queries, although, unlike in SQL, the semantics of LINQ queries
depends on the order of the rows in the tables. This fits well with the list represen-
tation of tables but imposes some limitations on the use of certain optimizations
(such as the use of symmetry breaking formulas).

A practical limitation of Qex is if queries use multiple joins and aggregates and
the input tables need to contain a high number of rows in order to satisfy the test
condition. Another limitation is the use nonlinear constraints over unbounded
integers, in particular multiplication, that has currently only limited support in
Z3. We consider using bitvectors instead. Despite these limitations, the mere size
of queries does not seem to be a concern, neither the size of Th(q) for a given
query q. The size of Th(q) may easily be in hundreds, in particular when several
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like-patterns are used, where the number of axioms is proportional to the size of
the finite automaton accepting the pattern.
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Abstract. State-of-the-art automated theorem provers (ATPs) are to-
day able to solve relatively complicated mathematical problems. But as
ATPs become stronger and more used by mathematicians, the length and
human unreadability of the automatically found proofs become a serious
problem for the ATP users. One remedy is automated proof compression
by invention of new definitions.

We propose a new algorithm for automated compression of arbitrary
sets of terms (like mathematical proofs) by invention of new definitions,
using a heuristics based on substitution trees. The algorithm has been
implemented and tested on a number of automatically found proofs. The
results of the tests are included.

1 Introduction, Motivation, and Related Work

State-of-the-art automated theorem provers (ATPs) are today able to solve rel-
atively complicated mathematical problems [McC97], [PS08], and are becoming
a standard part of interactive theorem provers and verification tools [MP08],
[Urb08]. But as ATPs become stronger and more used by mathematicians, un-
derstanding and refactoring the automatically found proofs becomes more and
more important.

There is a number of examples, and significant amount of more or less success-
ful relevant work in the field of formal proof refactoring. The most well-known
example is the proof of the Robbins conjecture found automatically by EQP. This
proof has been semi-automatically simplified by the ILF system [Dahn98], and
later also rewritten as a Mizar formalization [Gra01]. Other examples include the
refactoring of the proof of the Four Color Theorem by Gonthier [Gon07], the hint
strategy used regularly to simplify the proofs found automatically by the Prover9
system [Ver01], translation of resolution proofs into assertion level natural de-
duction proofs [Hua96], various utilities for formal proof refactoring in the Mizar
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system, and visualization of proofs and their compactification based on various
interestingness criteria in the IDV and AGiNT systems [TPS07], [PGS06]. In-
troduction of definitions is a common part of state-of-the-art first-order ATPs,
used to compute efficient clause normal forms [NW01]. Introduction of defini-
tions is also an important part of unfold-definition-fold transformation in logic
programming1, the main purpose there is usually speed-up of the logic programs
(reducing number of computation steps).

The work presented here tries to help understanding of formal proofs by au-
tomated finding of repeated patterns in the proofs, suggesting new definitions
that capture the patterns and shorten the proofs, and help to develop a struc-
tured theory. We believe that this approach might not only help mathematicians
to better understand the long automatically found proofs, but also that follow-
ing the recent experiments with meta-systems for automated reasoning in large
structured theories [USPV08] this approach could provide another way to attack
hard problems automatically by enriching the theory first with new concepts,
and smart heuristic abstracting away ("forgetting about") some of the concepts’
properties irrelevant for the particular proof. The last mentioned is probably
not the only machine-oriented application of proof compactification: compact
proofs are likely to be more easy to verify, and also to combine and transform
automatically in various ways.

The structure and content of this paper is as follows. Section 2 formally de-
scribes the approach used for proof compression by invention of new definitions.
In Section 3 an efficient heuristic algorithm for finding best definitions based
on substitution trees is suggested and its first implementation is described. In
Section 4 the implementation is evaluated on ca. 8000 proofs from the TPTP
library, and on several algebraic proofs. In Section 5 several examples demon-
strating the work of the algorithm are shown and discussed. Section 6 discusses
the possible extensions, improvements, testing, and uses of this approach, and
concludes.

2 Problem Statement

As mentioned above, the problem of proof improvement and refactoring is quite
wide, and it can be attacked by different methods, and by employing different
criteria.

The motivation for the approach taken here is that given the original proof,
it can contain a large number of “similar” complex terms (terms with a large
weight). Mathematicians would typically quickly simplify such proofs by intro-
ducing suitable new concepts and notation. While it is nontrivial to tell what
exactly makes a new definition mathematically plausible and worth introducing
in a certain proof or theory, there is at least one well-defined and easy-to-use
measure of the “plausibility” of a new definition, namely the degree in which it
reduces weight of the particular proof. The problem then is to find the definitions
1 It was firstly well defined in [TS84] then extended in [PP95] and also automated in

[VV07].
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that suitably generalize the largest number of similar terms, or more precisely,
to find definitions that have the best value in terms of decreasing the overall
weight of the proof after replacing terms with the newly defined symbol.

The precise definition of the problem is as follows.

2.1 Problem of Proof Compression by New Definitions

Proof: A formal mathematical proof is understood generally, as a sequence
(list, or DAG, tree, etc.) of formulae (or sequents, or just arbitrary Prolog terms)
connected by inference rules. The inference rules are not relevant for the initial
approach, only the formulae matter. For the purpose of this work, it suffices to
treat proofs as (a set of) arbitrary Prolog terms over some initial signature of
symbols (e.g., predicate and function symbols used in the proof, and logical con-
nectives). Particular instance of this approach are the first-order proofs written
in the TPTP language2, which are just sequences of first-order TPTP formulae
and clauses (written as Prolog terms) annotated with their inference informa-
tion. The input data for our algorithm are then just the formulae and clauses
(set of Prolog terms), without the inference data.3

Weight: A weight assignment w is a function from the proof signature to inte-
gers, together with an integer value for variables. The weight of a proof signature
symbol or variable is equal to the value of the weight assignment function on
it. The weight of a term, formula, or proof is a sum of the weights of the sym-
bols and variables contained in it. The weights of symbols, terms, formulae, and
proofs under a particular weight assignment w are denoted w(s), w(t), w(F ),
w(P ). Unless specified otherwise, the simple “symbol-counting” weight assign-
ment giving value 1 to all symbols and variables will be used as default in what
follows.

New definition: Given a proof (Prolog term) P , a new definition D wrt P is
a binary Prolog clause D of the form

s(X1, ..., Xn):- T (X1, ..., Xn) (D)

where s is a symbol not appearing in P , T (X1, ..., Xn) is a Prolog term over the
signature of P , and 0 ≤ n. Note that this approach does not allow recursive defi-
nitions, and does not allow new variables in the body of the definition (otherwise

2 http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html
3 Note that the bound variables in TPTP first-order formulae are represented by Prolog

variables in the TPTP syntax, however, these variables are not really "free" in the
Prolog (and also first-order) sense. A proper treatment for our algorithm would be
to e.g., rename such bound variables to de Bruijn indices, however the first version
of our algorithm does not do this. This treatment is suboptimal, in the sense that a
definition with a redundant variable can be introduced, however this has no impact
on the correctness of the algorithm.

http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html
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the most compressing definition problem below becomes Turing-complete). Un-
less specified otherwise, we will also require that with a given weight assignment
w, the definition D satisfies the strict monotonicity condition

w(s(X1, ..., Xn)) < w(T (X1, ..., Xn))

Definition application at a position: When S is a term matching the body of
the definition D (ie., there is a substitution σ such that
T (X1, ..., Xn)σ = S), then D(S) will denote the replacing of S by the appro-
priately instantiated head of the definition (ie., s(X1, ...Xn)σ, where σ is as
above). Similarly, D(P |p) will denote the (unique) replacement of the subterm
at position p in a term P .

Exhaustive definition application on the whole term: Now consider the
following definition

s(X) :- f(f(X)) (D1)

and the term
f(f(f(a))) (P1)

Then D1 can be applied either at the topmost position, yielding s(f(a)), or
at the first subterm, yielding f(s(a)). However simultaneous application at both
positions is not possible. In both cases, the default weight of the original term
decreased from 4 to 3. Then consider the term

f(f(f(f(a)))) (P2)

The first application of D1 can now be done at three different positions, yielding
s(f(f(a))), f(s(f(a))), and f(f(s(a))). For the first and third result, D1 can
be applied again, yielding s(s(a)) with weight 3 in both cases, while the second
result with weight 4 cannot be further reduced using D1. Hence the order of
application of the definitions matters. The notation D∗(P ) will therefore denote
any of the (possibly many and different) exhaustive applications of definition D
to term P , i.e.,D∗(P ) is a term whereD can no longer be applied at any position.
D∗

minw
(P ) (or just D∗

min(P ) when the weight assignment is fixed) will denote
those exhaustive applications (again, generally many) such that the weight of
the resulting term is minimal. Note (on terms P1 and P2 and definition D1) that
D∗(P ) andD∗

min(P ) are not unique, and can be obtained by different application
paths, however in what follows we will be interested mostly only in the minimal
weight and irreducibility by D.

The proof compression problems: There are several well-defined problems
in this setting. The most compressing definition problem is, for a given proof
P to find the new definition D wrt to P that compresses the proof most, i.e.,
w(D)+w(D∗

min(P )) is minimal across all possible definitions D. Since D∗
min(P )
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is non-deterministic, in practice this problem also includes finding the particular
sequence of applications of D to P that result in a particular D∗

min(P ).
The greatest proof compression problem is, to find a set of definitions

D1, . . . , Dn and a sequence of their combined applications D∗
1..n(P ) such that

w(D1)+ · · ·+w(Dn)+w(D∗
1..n(P )) is minimal wrt to a given proof P and weight

assignment w. Let us again denote by D∗
1..nmin

(P ) the sequences of definition ap-
plications for which this final measure is minimal. In this setting, the definitions
can have in their bodies the symbols newly introduced by earlier definitions,
however mutual recursivity is not possible, because the definitions applied first
cannot refer to the symbols introduced later.

There are two (“greedy”) ways to make the general greatest proof compression
problem simpler and efficiently implementable. The first simplification consists
in restricting the search space to only those sequences of definition applications
where each new definition is applied exhaustively, before another new definition
is considered. So the sequence of definition applications is then determined by
an initial linear ordering of the set of definitions. This restriction can obviously
result in worse proof compression than is possible in the general case that allows
mixed application of the definitions.

The second simplification applies greediness once more, restricting the initial
linear ordering of the set of definition to be done according to the compression
power of the definitions. This means that first the most compressing definition
D1 is exhaustively applied to the proof, yielding a new proof D∗

1min
(P ) together

with the added clause D1. Let us denote this new proof P1. Then again, the most
compressing definition D2 is found for P1 (containing also D1), and added and
applied exhaustively, yielding proof P2. This greedy process generates (provided
all weights are positive and definitions monotone wrt w) a finite sequence of
definitions and proofs. The final proof Pn can then no longer be compressed
by introducing any new definition. This greedy algorithm, based on efficiently
approximated algorithm for finding the most compressing definition is the basis
for our implementation and experiments.

Is compressed proof really a proof? One could argue that, after performing
compression on a proof, the result is not a proof anymore. Consider, for example,
the following fragment of a resolution proof:

. . . , a | b, ¬a, b, . . .

Using the definition d = a | b, we obtain

. . . , d, ¬a, b, . . .

Strictly speaking, this is not a resolution proof anymore, the inference is broken.
The way we understand a compressed sequence as a proof is, using “macro-
inferences”, which means inference rules that, first, expand all occurences of def-
initions, then perform the original inference, and finally fold the result using the



452 J. Vyskočil, D. Stanovský, and J. Urban

definitions.This is a common phenomenon when dealing with formal proofs and
their presentation in e.g. formal proof assistants: Some knowledge (typically the
rewriting and the definitional knowledge) is applied implicitly, without explicit
reference to it and its explicit application.

2.2 Motivating Example

Let’s work out an example of the most compressing definition in a very simple
setting: let the input consist of a single term

f(f(. . . (f(a)))),

or shortly fn(a), for a single unary symbol f , constant a and some n. The weight
of the term is n+ 1. Any compressing definition D has to be

d(X) = fm(X)

for some m, and the shortest compression D∗
min(fn(a)) is, up to the order of

function symbols,
dn div mfn mod m(a).

The weight of the definition ism+4, the weight of the resulting term is n divm+
nmodm + 1. Hence, finding the most compressing definition is equivalent to
finding m minimizing the expression

m+ n divm+ nmodm.

This problem has obviously polynomial complexity with respect to the input
size, but it suggests that arithmetic can be involved.

3 Implementation

3.1 The Most Compressing Definition and the Least General
Generalization

First it is necessary to describe all the possible candidates for a new definition,
and count their number (note that we are searching only for the bodies of the
definitional clauses, because the heads are formed by a new symbol and a list of
free variables occurring in the body). Searching for the most compressing defini-
tion for a set of terms M (representing a given proof) corresponds to searching
for some least general generalization (lgg - see [Plo69] for exact definition) over
a subset of all subterms of M . Not all compressing definitions are lgg’s, and not
even the most compressing one has to be an lgg, however, the latter case is very
rare. Our heuristics for compressing proofs will be based on searching for the
most compressing lgg.
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Let us look at an example which shows limits of our approach. Let M consist
of a single term

f(g(X, . . . ,X), . . . , g(X, . . . ,X)),

where f is an n-ary symbol, g is an m-ary symbol, and the total weight is
(m+ 1) · n+ 1. The lgg set consists of the following terms:

{f(g(X, . . . ,X), . . . , g(X, . . . ,X)), g(X, . . . ,X), X}

Now, there are two reasonable candidates for the most compressing definition:

– d(X) = f(X, . . . ,X). Then D∗
min(M) = d(g(X, . . . ,X)) and the total weight

is m+ n+ 6.
– d(X) = g(X, . . . ,X). Then D∗

min(M) = f(d(X), . . . , d(X)) and the total
weight is m+ 2n+ 5.

So, if n = 1, both definitions are the most compressing, while for n > 1 the first
definition wins. However, lgg always gives the second one.

3.2 Finding the Most Compressing Definition Using Substitution
Trees

In this subsection, we describe our heuristics for the problem of finding the
most compressing definition for a set of terms M . Our approach is based on
a data structure called substitution tree (see [Gra96]), which has several useful
properties:

1. Substitution trees are standard way to effectively save all subterms from M .
2. All nodes of the tree then always represent the use of lgg on a subset of

all subterms of M . Moreover, there is always a tree containing a node that
represents the body of the most compressing definition.

3. From the tree it is possible to quickly compute the upper estimate of the
efficiency of the proof compression in the case of using a particular node as
the body of the definition.

Now we will describe Algorithm 1. The input is a set of terms that correspond
to some proof. The output is a term, an approximation of the most compressing
definition. When such a definition does not exist, the algorithm returns “fail”.
At line 7 the variable U is used to denote all subterms from the input. Then
a substitution tree T is created from U . T additionally remembers in its leaves
the frequency of the occurrences of terms from U . At line 9, procedure propa-
gate_freq_into_tree is called with T , described in Algorithm 2. This procedure
recursively adds to each node of T the frequency corresponding to the sum of its
children. From this information it is possible to compute the upper estimate for
the number of application of the definitions that correspond to the node of T .

The function at line 10 described at Algorithm 3 counts recursively the gain
from the variable in all nodes of T that appear in the substitutions at the left-
hand side. In the leaves the gain is computed from each variable at the left-hand
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Algorithm 1. The most compressing definition
1. function most_compressing_definition (proof : set of terms) : term;

% this function returns the most compressing definition as term of the form
% def(x1, ..., xn):- T (x1, ..., xn) of input proof where x1, ...xn are variables,
% T is some term with at least one occurrence of every variable x1, ...xnand
% def is a new function symbol. If there is no compressing definition of proof
% then the function returns fail.

2. var
3. U : multiset of terms;
4. T : substitution tree;
5. L : list of tuples of the form:

〈gain : integer, tag: (upper_bound, exact), definition : term〉;
6. {
7. U := union of all subterms of every element of proof;
8. T := construct a substitution tree from U with frequencies of all terms from

U in leaves;
9. propagate_freqs_into_tree(T );

10. (root T ).substitution_gain :=
propagate_gains_of_substitutions_into_tree(T );

11. L := empty;
12. for each node N of tree T do {
13. L := L + 〈G, upper_bound, D〉 where % concatenates tuple to list
14. D := create_definition_form_node(N),
15. G := (N .freq−1)∗k(D) + (j(D, N) - p(D) where
16. k(d :- b) := w(b) − w(d), % definition gain
17. j(d :- b, v) := h′(b) − h′(d) where % definition gain of subst.

18. h′(x)
{

n if 〈x,n〉 ∈ v.substitution_gain
w(x) otherwise ,

19. p(d :- b) := w(d :- b)+1, % penalization of def. declaration
20. }
21. sort L with decreasing order by gain, tag where tag exact > tag upper_bound;
22. while (L[1].tag = upper_bound) and (L[1].gain>0) do {
23. L[1].gain := calculate the exact L[1].definition gain as: w(proof) -

w(greedy application of L[1].definition on proof) - p(L[1].definition) where
24. p(d :- b) := w(d :- b)+1; % penalization of def. declaration
25. L[1].tag := exact; % changes tag of the first element of list L
26. L := merge L[1] with L[2..];

% merges the first element of list with its tail by the same rules as at 21.
27. }
28. if L[1].gain > 0 then return L[1].definition else return fail;
29. }

Algorithm 2. Propagate frequencies into tree
1. procedure propagate_freqs_into_tree (T : substitution_tree) ;
2. {
3. if T is leaf then exit; % Frequency of leaf is already calculated.
4. (root T ).substitution_gain := empty;
5. for each son S of root T do {
6. propagate_freqs_into_tree(subtree of T where S is root); % Calculates

freqs in subtree S.
7. (root T ).freq := (root T ).freq + S.freq;
8. }
9. }
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Algorithm 3. Propagate gains of substitutions into tree
1. function propagate_gains_of_substitutions_into_tree

(T : substitution_tree)
: set of couples of the form: 〈var : subst. variable, gain : integer〉 ;

2. var R : set of couples of the form: 〈var : subst. variable, gain : integer〉 ;
3. {
4. (root T ).substitution_gain := empty; % there are no subst. variables

in leaves.
5. for each son S of root T do {
6. (root T ).substitution_gain := merge (root T ).substitution_gain

with propagate_gains_of_substitutions_into_tree(subtree of T where S is
root) so that, couples with the same variable is merged into one couple and
its gain is a sum of gains of all original couples with the same variable;

7. }
8. R := empty;
9. for each substitution θ=T of substitution set in root T do {

10. R := R∪〈θ,h(T )〉 where

11. h(x)

{
n if 〈x, n〉 ∈ (root T ).substitution_gain
w(x) otherwise

;

12. }
13. if T is leaf then
14. for each couple 〈x,n〉 of R do {
15. R := (R \ 〈x,n〉)∪〈x, n*(root T ).freq〉;
16. }
17. return R;
18. }

Algorithm 4. The greatest proof compressing
1. function greatest_proof_compressing (proof : set of terms) : set of terms;
2. var
3. R : set of terms;
4. T : definition;
5. {
6. R := proof;
7. T := most_compressing_definition(R);
8. while T �= fail do {
9. R := T∪(application of definition T on R);

10. T := most_compressing_definition(R);
11. }
12. return R;
13. }
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side of the substitution as the frequency of the leaf times the weight of the
term on the right hand side of each substitution where the weight of the term is
computed using the function w. In the nodes that are not leaves the gain from
each variable on the left-hand side is computed as the weight of the term on the
right-hand side, where the weight of the term is determined using the function h
(see line 11 in Algorithm 3). The gains for function h are computed by merging
the gains of the node’s children by summing the values at the same variables
(lines 5, 6 in Algorithm 3). The gains obtained in this way will be used for fast
computing of the estimate of the efficiency of the searched-for definition (lines
11 to 20 in Algorithm 1).

Now we will describe the upper estimate of the efficiency of the definition
given by node N in the tree T . First we create the definition D corresponding
to the node. This is done by composing all substitutions from the root to N .
The resulting substitution will define the body of the definition, and all its
substitutional variables, and variables that appeared in the terms inserted into
the tree (these variables have to be distinguished, see [Gra96]) will be defined as
the arguments in the head of the definition.

The upper estimate of the definition’s efficiency - the definition’s gain (i.e. the
upper estimate of w(proof before application of the definition) - w(proof after
application of the definition) is described at lines 15 to 19.

Upper estimates are computed, because an exact computing of the definition’s
gain is quite inefficient (we have to go through the whole proof, and apply the
definition). On the other hand, the computation of the upper estimate of all
nodes from T in the way described above has the same complexity as just building
the substitution tree T .

The resulting estimate is inserted into the list L as a tuple 〈upper estimate,
tag: upper_bound, definition D〉 (see line 13). After inserting all the upper
estimates of all the nodes of T , the list L is sorted decreasingly by the size of
the upper estimate. If the upper estimates are equal, the tuple with tag “exact”
is preferred to the tuple with tag “upper_bound”.

Now we always test if the first member of the list L is already an exact effi-
ciency value denoted with the tag “exact”. If so, the valueD in this member is the
searched-for most compressing definition. This definition is the best among all
the nodes of the tree T , but it does not have to be the best definition absolutely,
because we are selecting only from the nodes of the tree T . If the value is not
exact, we compute the exact value of D for the proof (by replacing). The result
is saved as the first element of the list, and is tagged “exact”. Then we sort the
list, and repeat, see lines 22 to 27.

If the resulting gain is more than 0, it means that the applied definition
shortens the proof and this definition is returned at the output. If not, we return
“fail”, because no compressing definition appears among the nodes of T .

Algorithm 4 describes the greedy approach (see Subsection 2.1) for finding an
approximation of the greatest proof compression.
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4 Testing

The initial implementation described above has been tested on the whole TPTP
library [Sut09], and on two families of proofs coming from recent research in
algebra. In both cases the simplest symbol-counting weight function was used
for measuring the proof improvement.

4.1 Testing on the TPTP Library

The TPTP library contains a large number of ATP problems from various ar-
eas of ATP use, which makes it suitable for large-scale evaluation of the proof
compression algorithm. For the testing described here, TPTP version 4.0.1 was
used, containing 16512 problems. All available TPTP proofs found by the EP
version 1.1 theorem prover [Sch02] were obtained from the TPTP developer Ge-
off Sutcliffe. This is a testing set of 7807 ATP proofs in the TPTP syntax, which
is a subset of the Prolog syntax. These proofs were postprocessed by a simple
Perl script into a list of formulae (i.e., forgetting about the inference structure).
This again can be considered to be just a list of Prolog terms, and hence it is
already an input to the proof compression algorithm explained above.

The testing was done on an eight-core 64bit Intel Xeon E5520 2.27 GHz Linux
machine with 8GB of RAM. SWI Prolog was used to run the proof compression
algorithm. SWI Prolog has some internal memory limits that do not allow it to
get past 2GB boundary, so for very large proofs the implementation can now fail
for lack of memory. Because the implementation can also take quite a long time
for large proofs (the longest example we are aware of was about one hour), we
have given each of the TPTP proofs a time limit of 60 seconds to be able to finish
the large-scale testing in reasonable time. 4890 of the 7807 proofs (63%) were
completely compressed within the time limit, i.e., the algorithm has successfully
finished in 60 seconds. For the remaining 2917 proofs the algorithm typically
has found the initial most compressing definitions, but has not converged to
the point where no more compressing definitions exist. The final compression
ratios for the 4890 successful runs can be viewed online at our webpage4, and all
the TPTP proofs together with the algorithm inputs and outputs can also be
viewed there5. The interesting data extracted from the testing are summarized
in Table 1, and Figure 1 shows the graph of the compression performance on the
4890 finished proofs.

Table 1. Results of testing the proof compression algorithm on the TPTP library

TPTP problems proved by EP compressed in 60s timeout in 60s
16512 7807 4890 2917
greatest comp. ratio least comp. ratio median ratio comp. below 50%
0.1844 0.9969 0.8100 135

4 http://mws.cs.ru.nl/~urban/compression/00tstp_final_ratios
5 http://mws.cs.ru.nl/~urban/compression/Solutions_tstp/

http://mws.cs.ru.nl/~urban/compression/00tstp_final_ratios
http://mws.cs.ru.nl/~urban/compression/Solutions_tstp/
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Fig. 1. Proof compression ratios on the TPTP library, sorted from the best to the
worst

4.2 Testing on Algebraic Problems

One of the aspects of the present work is, to address the problem of human
understanding of machine generated proofs. For this reason, we tested our im-
plementation on two families of proofs, coming from different areas of current
research in algebra.

Loops with abelian inner mappings. We investigated a proof, obtained by
Waldmeister, that every uniquely 2-divisible loop with abelian inner mapping
group of exponent 2, is commutative and associative [PS08]6. In both cases, the
very first definition the implementation found, was the right inverse operation
(that is, the term 1/x), and the left inverse followed soon. Other interesting
definitions were shortcuts for various compositions of the inner mappings. Both
proofs had final ratio about 0.75.

Symmetric-by-medial groupoids. We investigated three related proofs, ob-
tained in [Sta08] with Prover97. The importance of the term xy ·zu in the theory
of distributive groupoids was recognized immediately in each case. In the latter
two cases, it cuts the proof weight by more than 10%. Sadly, other definitions
found by the implementation seem to have little mathematical meaning. The
final ratios were 0.65, 0.72, and 0.75, respectively.

Algebraic problems in TPTP. Many algebraic problems were recently sub-
mitted to TPTP [PS08], for instance, problems in the interval GRP654 to
GRP763. Our notes in Section 5.2 are also based on the inspection of the results
on these problems.
6 http://mws.cs.ru.nl/~urban/compression/aim_2div/
7 http://mws.cs.ru.nl/~urban/compression/symbymed/

http://mws.cs.ru.nl/~urban/compression/aim_2div/
http://mws.cs.ru.nl/~urban/compression/symbymed/
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Fig. 2. Proof shortening ratios by the most compressing definition on the TPTP library,
sorted from the best to the worst

5 Examples and Discussion

5.1 A Good and a Bad Example

To get a taste of the results, we shall look closer at one of the most successful,
and one of the most unsuccessful compressions produced by our implementation
on the TPTP problems.

The champion is SWV158, with final compression ratio 0.1844 (from 2277 to
420)8. The first definition is of enormous weight, 86, and its application saves
almost half of the proof weight. This is an equality, with a variable on one side,
and a very nested term on the other side, with many constant leaves and just
one free variable with 6 occurrences. Three more heavy definitions of a similar
kind, and 10 lighter ones, finish the compression.

To the other extreme, let’s mention GRP754, with final compression ratio
0.9710 (from 726 to 705)9. There is a single compressing definition, setting
def1(A, B, C)= (A=mult(B, C)), which is applied on roughly two thirds of
the proof lines.

Generally speaking, heavy definitions are rare. Most definitions save just very
few symbols, but are applied many times in the proof.

5.2 Understanding Machine Generated Proofs

Our experiments show that introducing a new definition that formally reduces
weight of the proof, rarely gives a notion interesting from mathematician’s point
8 http://mws.cs.ru.nl/~urban/compression/Solutions_tstp/SWV/SWV158+1/
9 http://mws.cs.ru.nl/~urban/compression/Solutions_tstp/GRP/GRP754-1/

http://mws.cs.ru.nl/~urban/compression/Solutions_tstp/SWV/SWV158+1/
http://mws.cs.ru.nl/~urban/compression/Solutions_tstp/GRP/GRP754-1/
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of view. Interesting exceptions exist: the implementation discovered notions like
left and right inverse, and in some cases isolated important concepts that occur
frequently in the proof.

Yet, reading the result of the overall greedy algorithm, it is a mess. The
problem seems to have several layers. First of all, only few definitions have a
good mathematical meaning. It is desirable, to introduce other measures, to
judge which definitions are “good” and which are “bad”, perhaps in the spirit of
AGInT [PGS06]. The most compressing criterion is a reasonable heuristic, but
far from perfect.

Another aspect is that, for human readers, learning new definitions is costly.
In fact, looking at the examples, we realized that many definitions save just one
character, even the top ones (their choice by the algorithm comes from the fact
that they can be used many times). Perhaps we shall add a penalty to each new
definition, based on how difficult is it to grasp it, relatively to how useful it is.
Too short definitions, or those that are used only few times, shall be discarded.

One particular example of “bad” definition is the following. For the sake of
simplicity, assume the signature consists of a single binary function symbol f .
Then, (almost) any proof can be simplified introducing the predicate P (x, y, z),
defined by f(x, y) = z, saving one symbol per (almost every) line. Further in
this direction, the formulae in the proof are actually very likely to be in the form
f(_,_) = f(_,_), and the corresponding 4-ary predicate symbol shortens the
proof by 5/7. Indeed, such definitions don’t bring any better understanding. The
weight function, or the “beauty criterion”, shall avoid this sort of definitions.

6 Future Work and Conclusions

The presented system provides a useful means for experimenting with introduc-
ing new definitions based on the frequency and weight of subterms in a proof. The
general problem of greatest proof compression seems to be quite hard, however
our heuristic greedy implementation seems to perform reasonably well already
in its first version. It seems to be an interesting open problem, to determine the
complexity class of finding the greatest proof compression.

The initial evaluation using the most straightforward weight assignment has
allowed us to immediately see some deficiencies in overly greedy introduction of
new definitions. The system is sometimes capable of identifying mathematically
interesting concepts that significantly compress the proofs, however many times
the introduced definitions seem to be of little mathematical value, and only
complicate the proof understanding. As already mentioned above, this will likely
lead to further research about the proper offset between the benefits of the
proof compression, and the benefits of not having to deal with too many similar
concepts in one’s head. It is obvious that shorter proofs don’t always have to be
“nicer” (whatever it means), but it is obviously also good to have tools that can
produce the best result according to a precisely defined criterion.
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The advantage of our system is that a lot of experimenting can be done using
the weight assignments. For example, we could try:

– to weight equality symbol with zero (this is sufficient to avoid definitions of
the form f(x, y) = z),

– to add learning penalties, for instance, by setting the weight of a new symbol
by the maximal weight of symbols in its defining term, plus one,

– try to learn weight assignment patterns by data-mining techniques on a large
body of available structured mathematics, e.g., the formal Mizar library.

The last option even suggests some more interesting experiments in the context
of a large formal body of human-written mathematics. For example, it is feasible
(using the MPTP system) to expand the whole Mizar library (or a suitable part
of it) into a basic set-theoretical notation, i.e., using just the membership and
equality predicates, and eliminating all definitions introduced by humans. This
will likely result in a very large, but manageable (e.g. with complete term sharing
in the implementation) blow-up of the library. Then the system can be used to
search for interesting definitions automatically, and the results can be compared
with the definitions introduced by human authors.

Another potential use that we are very interested in, is the use of the subsys-
tem as a “concept developing” component in larger meta-systems (like MaLARea
[USPV08]) for theorem proving in structured and large theories. The experience
with ATP in large theories so far shows that blind recursive inclusion of all
available definitions and all the theorems known about them significantly de-
creases the ATP performance in the large theories. Introducing new concepts,
and only selecting some of their important properties (like commutativity) is also
a very common feature of abstract mathematical developments done by human
mathematicians. Both the human evidence, and the evidence from doing ATP
in large theories therefore points to the importance of including good concept
creation into the overall process of mathematical theorem proving and theory
development.
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Abstract. The careful introduction of cut inferences can be used to
structure and possibly compress formal sequent calculus proofs. This pa-
per presents CIRes, an algorithm for the introduction of atomic cuts based
on various modifications and improvements of the CERes method, which
was originally devised for efficient cut-elimination. It is also demonstrated
that CIRes is capable of compressing proofs, and the amount of compres-
sion is shown to be exponential in the length of proofs.

1 Introduction

It is well-known that eliminating cuts frequently increases the size and length of
proofs. In the worst case, cut-elimination can produce non-elementarily larger
and longer proofs [18,17]. Given this fact, it is natural to attempt to devise meth-
ods that could introduce cuts and compress sequent calculus proofs. However,
this has been a notoriously difficult task. Indeed, the problem of answering, given
a proof ϕ and a number l such that l ≤ length(ϕ), whether there is a proof ψ of the
same theorem and such that length(ψ) < l is known to be undecidable [8]. Nev-
ertheless, a lower bound for compressibility based on specific cut-introduction
methods that are inverse of reductive cut-elimination methods is known [12]1,
and some ad-hoc methods to introduce cuts of restricted forms have been pro-
posed. They are based on techniques from automated theorem proving, such
as conflict-driven formula learning [11], and from logic programming, such as
tabling [16,15].

Besides compression, cut-introduction can also be used for structuring and
extracting interesting concepts from proofs. In [10], for example, it is shown that
many translation and pre-processing techniques of automated deduction can be
seen as introduction of cuts, from a proof-theoretical point of view. Furthermore,
in the formalization of mathematical proofs, lemmas correspond to cuts, and
hence the automatic introduction of cuts is, in a formal level, the automatic
discovery of lemmas that are potentially useful for structuring mathematical

1 A cut-introduction method g is inverse of a reductive cut-elimination method if and
only if, for any cut-free proof ϕ, the proof with cuts g(ϕ) rewrites to ϕ according to
the rewriting rules in Appendix B.

E.M. Clarke and A. Voronkov (Eds.): LPAR-16, LNAI 6355, pp. 463–480, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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knowledge. Naturally, the use of cut-introduction techniques could in principle
also be applied to the structuring of knowledge in other fields of Science, as
argued in [21,22].

This paper presents a new method for the introduction of atomic cuts: CIRes.
The method is described in a simplified and self-contained manner2 in Section 3,
and a proof that it is able to provide an exponential compression in the length
of proofs is given in Section 4.

2 The Sequent Calculus

The inference rules of the sequent calculus used in this paper are shown below.
A sequent is a pair of multisets of formulas. The sequent below the line of an
inference rule is its conclusion, while the sequents above the line are its premises.
The formulas highlighted in red color are called main formulas of the rules, while
the formulas highlighted in blue color are called auxiliary formulas. Main and
auxiliary formulas are called active. An inference is said to operate on its ac-
tive formulas. Auxiliary formulas are immediate ancetors of main formulas. The
non-active formulas in the premises of an inference are immediate ancestors of
the correponding formulas in its conclusion. The ancestor relation is the reflexive
transitive closure of the immediate ancestor relation. A cut-ancestor is an ances-
tor of an auxiliary formula of a cut inference. Note that CERes and the methods
described in this paper are robust and work with other kinds of sequent calculi,
as long as weakening and contraction are available in some (possibly implicit)
form.

– The Axiom Rule:
A � A axiom

where A is any atomic formula.
– Propositional Rules:

F1,F2, Γ � Δ
F1 ∧ F2, Γ � Δ ∧l

Γ1 � Δ1,F1 Γ2 � Δ2,F2

Γ1, Γ2 � Δ1, Δ2, F1 ∧ F2
∧r

F1, Γ1 � Δ1 F2, Γ2 � Δ2

F1 ∨ F2, Γ1, Γ2 � Δ1, Δ2
∨l

Γ1 � Δ1, F1 F2, Γ2 � Δ2

F1 → F2, Γ1, Γ2 � Δ1, Δ2
→l

F1, Γ � Δ,F2

Γ � Δ,F1 → F2
→r

Γ � Δ,F1,F2

Γ � Δ,F1 ∨ F2
∨r

Γ � Δ,F
¬F, Γ � Δ ¬l

F, Γ � Δ
Γ � Δ,¬F

¬r

– Structural Rules (Weakening and Contraction):

Γ � Δ
F, Γ � Δ wl

Γ � Δ
Γ � Δ, F wr

F, F, Γ � Δ
F, Γ � Δ cl

Γ � Δ, F, F
Γ � Δ, F cr

– The Cut Rule:
Γ1 � Δ1, F F, Γ2 � Δ2

Γ1, Γ2 � Δ1, Δ2
cut

2 A more general and technically more detailed definition of the CIRes method is
available in [21].
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– Quantifier Rules:

F{x← t}, Γ � Δ
(∀x)F, Γ � Δ ∀l

Γ � Δ, F{x← α}
Γ � Δ, (∀x)F

∀r

F{x← α}, Γ � Δ
(∃x)F, Γ � Δ ∃l

Γ � Δ, F{x← t}
Γ � Δ, (∃x)F

∃r

For the ∀r and the ∃l rules, the variable α must not occur in Γ nor in Δ nor
in F. This is the eigenvariable condition. For the ∀l and the ∃r rules the term
t must not contain a variable that is bound in F.

3 The CIRes Method

Curiously, even though CIRes aims at introducing cuts, it makes use of the
CERes method [4], which was originally developed for efficient cut-elimination
[5]. The CERes method extracts an unsatisfiable clause set from the input proof
with cuts and refutes it by resolution. The resolution refutation then serves as
a skeleton for a proof containing only atomic cuts, obtained by combining the
refutation with projections (i.e. cut-free parts) of the input proof with respect
to the clauses of the refuted clause set. The essential idea behind CIRes is based
on two simple observations about reductive cut-elimination and CERes:

– In a naive attempt to introduce cuts by applying the proof rewriting rules of
reductive cut-elimination methods (i.e. gentzen-style cut-elimination meth-
ods) shown in Appendix B in an inverse direction, the first step, which is the
introduction of atomic cuts on the top of cut-free proofs, is trivial. However,
pushing the cuts further down (by applying inverse rank reduction rules),
combining the cuts to make more complex cuts (i.e. increasing the grade),
and exploiting redundancies in the form of contractions is highly non-trivial.

– If applied to a proof ψ containing only atomic cuts in the top, CERes outputs
a proof ψ′ containing atomic cuts in the bottom. This is so because ψ′ is
constructed by adding the projections to the top of the resolution refutation.
The refutation occurs in the bottom of ψ′, and hence the atomic cuts of ψ′,
which are nothing else but the resolution inferences of the refutation, also
occur in the bottom of ψ′.

The CIRes method exploits these observations in a conceptually simple way:
it trivially adds atomic cuts to every leaf of the cut-free proof; and then it applies
CERes to push these cuts down.

Compression can be achieved mainly due to two ways by which CERes is able
to reduce or avoid redundancies:

– It is possible that the refutation uses only some clauses of the clause set of
ψ. The effect is that large parts of ψ (i.e. the projections with respect to the
unused clauses) can be deleted and replaced by weakening, thus resulting in
a smaller proof.
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– If the refutation contains factoring inferences, ψ′ will contain contractions
operating on ancestors of cut-formulas (note that, in the construction of ψ′,
resolution inferences become atomic cuts, and factoring inferences become
contractions). Since the presence of contractions operating on ancestors of
cut-formulas is a major reason for the increase of size and length during cut-
elimination, adding such contractions (via factoring) can lead to compression.

However, the original (standard) CERes method [4] also introduces other kinds
of redundancies, in the form of unnecessary duplications that occur during the
construction of (standard) clause sets and (S-)projections. Therefore, it would
be hopeless to expect proof compression by CIRes if it used the standard CERes
method. Fortunately, these redundancies can be avoided by using the improved
concepts of swapped clause sets and O-projections that are presented in this
paper.

The following subsections define and illustrate all steps of the CIRes method.

3.1 Step 1: Introduction of Atomic Cuts on Top
The first step is the introduction of atomic cuts on the top of the cut-free proof,
and it can easily be done according to Definition 1.

Definition 1 (Introduction of Atomic Cuts). Let ϕ be a cut-free proof.
Then ϕa denotes the proof obtained from ϕ by replacing every axiom inference
with conclusion sequent of the form A � A by a subproof of the form:

A � A A � A cut
A � A

Example 1. Let ϕ be the cut-free proof3 below, whose end-sequent was adapted
from an instance of a sequence of clause sets used in [9] to show that the res-
olution calculus can produce significantly shorter proofs than analytic tableaux
calculi. Predicate symbols having different subscript or superscript indexes4 de-
note distinct atoms.

P1 � P1 ¬l
P1 ,¬P1 �

P1 � P1 ¬l
P1 ,¬P1 �

P2− � P2− ¬l
P2− ,¬P2− � ∨l

P2− ,P1 ,¬P1 ∨ ¬P2− � ∨l
P1 ,P1 ,¬P1 ∨ P2− ,¬P1 ∨ ¬P2− � cl

P1 ,¬P1 ∨ P2− ,¬P1 ∨¬P2− �

P1 � P1 ¬l
P1 ,¬P1 �

P1 � P1 ¬l
P1 ,¬P1 �

P2− � P2− ¬l
P2− ,¬P2− � ∨l

P2− ,P1 ,¬P1 ∨ ¬P2− � ∨l
P1 ,P1 ,¬P1 ∨ P2− ,¬P1 ∨ ¬P2− � cl

P1 ,¬P1 ∨ P2− ,¬P1 ∨ ¬P2− �
P2
+ � P2

+ ¬l
P2
+ ,¬P2

+ � ∨l
P2
+ ,P

1 ∨ ¬P2
+ ,¬P1 ∨ P2− ,¬P1 ∨ ¬P2− � ∨l

P1 ∨ P2
+ ,¬P1 ∨ P2− ,¬P1 ∨ ¬P2− ,P1 ∨ ¬P2

+ ,¬P1 ∨ P2− ,¬P1 ∨¬P2− � cl
P1 ∨ P2

+ ,¬P1 ∨ P2− ,¬P1 ∨ ¬P2− ,P1 ∨ ¬P2
+ ,¬P1 ∨¬P2− � cl

P1 ∨ P2
+ ,¬P1 ∨ P2− ,P1 ∨ ¬P2

+ ,¬P1 ∨ ¬P2− �

3 Note that ϕ is purely propositional: quantifier rules are not used. Even though the
examples shown in this paper are propositional and a sequence of propositional
proofs is sufficient to show the possibility of exponential compression, CERes and
CIRes work in classical first-order logic too. Moreover, extensions of CERes to higher-
order logics and non-classical logics exist [20,6,1], and it can be expected that CIRes
works for these logics too.

4 Indexes are used because they are convenient for definining the rule that generates
the whole sequence of clause sets, as explained in Section 4.
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Following the first step of the CIRes method, ϕa is obtained by adding atomic
cuts to the leaves of ϕ:

ϕa
l ϕa

r ∨1
lP1 ∨ P2

+,¬P1 ∨ P2−,¬P1 ∨ ¬P2−,P1 ∨ ¬P2
+,¬P1 ∨ P2−,¬P1 ∨ ¬P2− � cl

P1 ∨ P2
+,¬P1 ∨ P2−,¬P1 ∨ ¬P2−,P1 ∨ ¬P2

+,¬P1 ∨ ¬P2− � cl
P1 ∨ P2

+,¬P1 ∨ P2−,P1 ∨ ¬P2
+,¬P1 ∨ ¬P2− �

where ϕa
l is:

P1 � P1 P1 � P1
cut

P1 � P1 ¬l
P1,¬P1 �

P1 � P1 P1 � P1
cut

P1 � P1 ¬l
P1,¬P1 �

P2− � P2− P2− � P2−
cut

P2− � P2− ¬l
P2−,¬P2− � ∨3

lP2−,P1,¬P1 ∨ ¬P2− � ∨2
lP1,P1,¬P1 ∨ P2−,¬P1 ∨ ¬P2− � cl

P1,¬P1 ∨ P2−,¬P1 ∨ ¬P2− �

and ϕa
r is:

P1 � P1 P1 � P1
cut

P1 � P1 ¬l
P1 ,¬P1 �

P1 � P1 P1 � P1
cut

P1 � P1 ¬l
P1 ,¬P1 �

P2− � P2− P2− � P2−
cut

P2− � P2− ¬l
P2− ,¬P2− � ∨6

l
P2− ,P1 ,¬P1 ∨ ¬P2− � ∨5

l
P1 ,P1 ,¬P1 ∨ P2− ,¬P1 ∨¬P2− � cl

P1 ,¬P1 ∨ P2− ,¬P1 ∨ ¬P2− �

P2
+ � P2

+ P2
+ � P2

+
cut

P2
+ � P2

+ ¬l
P2
+ ,¬P2

+ � ∨4
l

P2
+ ,P

1 ∨¬P2
+ ,¬P1 ∨ P2− ,¬P1 ∨ ¬P2− �

In ϕa above, each axiom sequent was highlighted with a different color. Other
atomic formulas were highlighted with the same color of the axiom from which
they descend. Atomic formulas that descend from more than one axiom, in case
of contractions, were kept in black color. Each of the six ∨l inferences was marked
with a distinct label from 1 to 6 so that they can be conveniently referred.

3.2 Step 2: Extraction of the Struct

The second step is the extraction of the struct Sϕa of ϕa. The struct of ϕa contains
information about all the relevant atomic sub-formulas (and their polarities) of
all cut-formulas of ϕa as well as information about the branching structure of
ϕa. A branching inference in ϕa corresponds to either a ⊕ or a ⊗ connective in
Sϕa , depending on whether it operates on ancestors of cut-formulas or not. The
struct is a compact representation of all information pertinent to cuts in a proof.

Definition 2 (Struct). The struct Sψ of a proof ψ is defined inductively, as
follows:

– If ψ consists of an axiom inference ρ with axiom sequent A � A only, then:
• If only the formula in the succedent is a cut-ancestor, then Sψ � A.
• If only the formula in the antecedent is a cut-ancestor, then Sψ � ¬A.
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• If both formulas of the axiom sequent are cut-ancestors, then Sψ � ¬A⊗
A.

• If none of the formulas are cut-ancestors, then Sψ � ε⊗.
– If ψ ends with a unary inference ρ, then Sψ � Sψ′ , where ψ′ is the immediate

subproof of ψ (i.e. the subproof whose end-sequent is the premise sequent
of ρ).

– If ψ ends with a binary inference ρ that operates on cut-ancestors: Let ψ1

and ψ2 be the immediate subproofs of ψ. Then:

Sψ � Sψ1 ⊕ρ Sψ2

– If ψ ends with a binary inference ρ that does not operate on cut-ancestors:
Let ψ1 and ψ2 be the immediate subproofs of ψ. Then:

Sψ � Sψ1 ⊗ρ Sψ2

The subscript of a connective may be omitted, if it is clear or unimportant to
which inference it corresponds.

Example 2. The struct Sϕa of ϕa is:

Sϕa ≡ ((P1 ⊕ ¬P1)
∗∗⊗2 ((P1 ⊕ ¬P1)

∗∗⊗3 (P2− ⊕ ¬P2−)))
∗∗∗⊗1 (((P1 ⊕ ¬P1)

∗∗⊗5 ((P1 ⊕ ¬P1)
∗∗⊗6 (P2− ⊕ ¬P2−)))

∗∗∗⊗4 (P2
+ ⊕ ¬P2

+))

It is easy to verify that the connective ⊗i indeed corresponds to the ∨l inference
marked with label i. The ⊕ connectives correspond to the atomic cuts on the
top of ϕa and their subscripts have been omitted. Each ⊗i connective has been
additionally marked with ∗ labels, whose colors are all the colors of ancestors of
formulas on which ∨i

l operates. Although not strictly necessary, these labels are
convenient, as shown in Example 3.

3.3 Step 3: Construction of the Swapped Clause Set

The connectives ⊗ and ⊕ can be interpreted as disjunction and conjunction,
respectively. In this case, it is possible to prove that the struct is always unsatis-
fiable [21,4]. Informally and intuitively, this fact is also not so hard to see, since
the struct contains (the atomic components of) all cut-formulas, which always
occur in pairs of opposite polarity. Consequently, the struct contains pairs of
dual substructs that cannot be simultaneously satisfied.

In order to refute the unsatisfiable struct by resolution, first it has to be trans-
formed into clause normal form. This could be done by a standard conjunctive
normal form transformation, as shown in Definition 3. This is essentially what
is done in the standard CERes method.

Definition 3 (�
s
). The standard struct normalization is defined by the follow-

ing struct rewriting rules:
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S ⊗ (S1 ⊕ . . . ⊕ Sn)�
s

(S ⊗ S1) ⊕ . . . ⊕ (S ⊗ Sn)

(S1 ⊕ . . . ⊕ Sn) ⊗ S�
s

(S1 ⊗ S) ⊕ . . . ⊕ (Sn ⊗ S)

However,�
s

causes several duplications as ⊗ is distributed over ⊕, which can

make the normalized struct exponentially bigger [2]. These duplications must be
avoided, if proof compression is intended. One possible solution to reduce the
duplications would be a pre-processing of ϕa that swaps5 independent inferences
that correspond to ⊗ upward. The resulting pre-processed proof would have a
struct where ⊗ connectives already appear more deeply nested and do not need to
be distributed over so many ⊕ connectives. This pre-processing of proofs would
be computationally expensive, though. Fortunately, there is a better alternative,
which involves normalizing the struct while implicitly taking into account the
possibility of swapping inferences in the corresponding proof, as shown in the
struct rewriting system of Definition 4.

Definition 4 (�
w

). Let Ωρ(ϕ) be the set of atomic formula occurrences of ϕ that
are descendants of axioms that contain ancestors of active formulas of ρ. The
rewriting rules below distribute ⊗ only to those ⊕-juncts that contain an occur-
rence in Ωρ(ϕ). More precisely, Sn+1, . . . , Sn+m and S must contain at least one
occurrence from Ωρ(ϕ) each (i.e. there is an atomic substruct S′n+k of Sn+k such
that S′n+k ∈ Ωρ(ϕ)), and S1, . . . , Sn and Sl and Sr should not contain any occur-
rence from Ωρ(ϕ). Moreover, an innermost rewriting strategy is enforced: only
minimal reducible substructs (i.e. structs having no reducible proper substruct)
can be rewritten6.

S⊗ρ(S1 ⊕ . . .⊕ Sn ⊕ Sn+1 ⊕ . . .⊕ Sn+m)�
w

S1 ⊕ . . .⊕ Sn ⊕ (S⊗ρSn+1)⊕ . . .⊕ (S⊗ρSn+m)

(S1 ⊕ . . .⊕ Sn ⊕ Sn+1 ⊕ . . .⊕ Sn+m)⊗ρS�
w

S1 ⊕ . . .⊕ Sn ⊕ (Sn+1⊗ρS)⊕ . . .⊕ (Sn+m⊗ρS)

Sl⊗ρSr �
w

Sl Sl⊗ρSr �
w

Sr Sl⊕ρSr �
w

Sl Sl⊕ρSr �
w

Sr

S⊕ρSr �
w

Sr Sl⊕ρS�
w

Sl

The fact that normalization of the struct according to �
w

corresponds to
inference swapping taking into account the independence of inferences is stated
in Lemma 1. This complements the rather technical Definition 4 with a more
intuitive understanding of the reason why it works.
5 The proof rewriting system for swapping inferences is shown in Appendix C and

defines the relation �.
6 Note that m can be equal to zero, in which case the first two rewriting rules simply

degenerate to:

S⊗ρ(S1 ⊕ . . . ⊕ Sn)�
w

S1 ⊕ . . . ⊕ Sn (S1 ⊕ . . . ⊕ Sn)⊗ρS�
w

S1 ⊕ . . . ⊕ Sn
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Lemma 1 (Correspondence between �
w

and �). If ϕ is skolemized7 and

Sϕ �
w

S, then there exists a proof ψ such that ϕ�∗ ψ and Sψ = S.

Proof. The proof and an example of the correspondence are available in [21].
The first two struct rewriting rules correspond to a simple upward swapping of
the inference ρ, where ρ is distributed only to some branches of the proof. The
next four struct rewriting rules correspond to cases in which ancestors of both
auxiliary formulas of ρ were introduced by weakening inferences. In such cases,
it is possible to arbitrarily delete one of the branches of ρ and replace ρ by
weakening inferences. Correpondingly, one of the substructs can be deleted. The
last two struct rewriting rules correspond to cases in which ancestors of only one
of the auxiliary formulas of ρ were introduced by weakening. It is then possible
to delete a particular branch and its corresponding substruct.

Example 3. Sϕa can be normalized as follows:
By inspecting ϕa, note that ∨3

l operates on formulas highlighted in grey and
purple. Hence, Ω∨3

l
(ϕa) contains all formulas highlighted in grey and purple in

ϕa (and also some of the formulas in black). Consequently, ⊗3 should only be
distributed to substructs that contain formulas highlighted in these colors, and
that is why, for convenience, the color label ∗∗ was added on top of ⊗3. The first
rewriting step is shown below:

Sϕa ≡ ((P1 ⊕ ¬P1)
∗∗⊗2 ((P1 ⊕ ¬P1)

∗∗⊗3 (P2− ⊕ ¬P2−)))
∗∗∗⊗1 (((P1 ⊕ ¬P1)

∗∗⊗5 ((P1 ⊕ ¬P1)
∗∗⊗6 (P2− ⊕ ¬P2−)))

∗∗∗⊗4 (P2
+ ⊕ ¬P2

+))

�
w

((P1 ⊕ ¬P1)
∗∗⊗2 (P2− ⊕ ((P1 ⊕ ¬P1)

∗∗⊗3 ¬P2−)))
∗∗∗⊗1 (((P1 ⊕ ¬P1)

∗∗⊗5 ((P1 ⊕ ¬P1)
∗∗⊗6 (P2− ⊕ ¬P2−)))

∗∗∗⊗4 (P2
+ ⊕ ¬P2

+))

Note that (P1 ⊕ ¬P1) (which contains something highlighted in grey) was
distributed only to ¬P2− (which is highlighted in purple) but not to P2− (which is
highlighted in neither of those colors but rather in red-orange). Analogously, in
the next rewriting step, ¬P2− is distributed only to ¬P1, but not to P1:

. . . �
w

((P1 ⊕ ¬P1)
∗∗⊗2 (P2− ⊕ ((P1 ⊕ ¬P1)

∗∗⊗3 ¬P2−)))
∗∗∗⊗1 (((P1 ⊕ ¬P1)

∗∗⊗5 ((P1 ⊕ ¬P1)
∗∗⊗6 (P2− ⊕ ¬P2−)))

∗∗∗⊗4 (P2
+ ⊕ ¬P2

+))

�
w

((P1 ⊕ ¬P1)
∗∗⊗2 (P1 ⊕ P2− ⊕ (¬P1 ∗∗⊗3 ¬P2−)))

∗∗∗⊗1 (((P1 ⊕ ¬P1)
∗∗⊗5 ((P1 ⊕ ¬P1)

∗∗⊗6 (P2− ⊕ ¬P2−)))
∗∗∗⊗4 (P2

+ ⊕ ¬P2
+))

The rest of the normalization procedure is analogous, as shown below:

. . . �
w
∗ (P1 ⊕ P1 ⊕ (¬P1 ∗∗⊗ P2−) ⊕ (¬P1 ∗∗⊗ ¬P2−))

∗∗∗⊗ (((P1 ⊕ ¬P1)
∗∗⊗ ((P1 ⊕ ¬P1)

∗∗⊗ (P2− ⊕ ¬P2−)))
∗∗∗⊗ (P2

+ ⊕ ¬P2
+))

�
w
∗ (P1 ⊕ P1 ⊕ (¬P1 ∗∗⊗ P2−) ⊕ (¬P1 ∗∗⊗ ¬P2−))

∗∗∗⊗ (((P1 ⊕ ¬P1)
∗∗⊗ (P1 ⊕ P2− ⊕ (¬P1 ∗∗⊗ ¬P2−)))

∗∗∗⊗ (P2
+ ⊕ ¬P2

+))

�
w
∗ (P1 ⊕ P1 ⊕ (¬P1 ∗∗⊗ P2−) ⊕ (¬P1 ∗∗⊗ ¬P2−))

∗∗∗⊗ ((P1 ⊕ P1 ⊕ (¬P1 ∗∗⊗ P2−) ⊕ (¬P1 ∗∗⊗ ¬P2−))
∗∗∗⊗ (P2

+ ⊕ ¬P2
+))

�
w
∗ (P1 ⊕ P1 ⊕ (¬P1 ∗∗⊗ P2−) ⊕ (¬P1 ∗∗⊗ ¬P2−))

∗∗∗⊗ ((P1 ∗∗∗⊗ ¬P2
+) ⊕ (P1 ∗∗∗⊗ ¬P2

+) ⊕ (¬P1 ∗∗⊗ P2−) ⊕ (¬P1 ∗∗⊗ ¬P2−) ⊕ P2
+)

�
w
∗ ((P1 ∗∗∗⊗ P2

+) ⊕ (P1 ∗∗∗⊗ P2
+) ⊕ (¬P1 ∗∗⊗ P2−) ⊕ (¬P1 ∗∗⊗ ¬P2−)) ⊕ ((P1 ∗∗∗⊗ ¬P2

+) ⊕ (P1 ∗∗∗⊗ ¬P2
+) ⊕ (¬P1 ∗∗⊗ P2−) ⊕ (¬P1 ∗∗⊗ ¬P2−))

≡ (P1 ∗∗∗⊗ P2
+) ⊕ (P1 ∗∗∗⊗ P2

+) ⊕ (¬P1 ∗∗⊗ P2−) ⊕ (¬P1 ∗∗⊗ ¬P2−) ⊕ (P1 ∗∗∗⊗ ¬P2
+) ⊕ (P1 ∗∗∗⊗ ¬P2

+) ⊕ (¬P1 ∗∗⊗ P2−) ⊕ (¬P1 ∗∗⊗ ¬P2−)

7 A proof is skolemized if and only if it contains no ∀r or ∃l inferences operating on
ancestors of formulas occurring in the end-sequent. Skolemization of proofs plays no
role in the propositional proofs of the examples shown in this paper, and hence it
is not discussed in detail here. There are algorithms that can easily skolemize first-
order proofs; skolemization of higher-order proofs, on the other hand, is significantly
harder [20].
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Definition 5 (Swapped Clause Set). A swapped clause set8 CW
ϕ|S of a proof

ϕ with respect to a �
w

-normal-form S of Sϕ is the set of clauses (in sequent

notation) obtained from S by interpreting ⊗ as ∨ and ⊕ as ∧. In cases where a
proof ϕ has only one cut-pertinent swapped clause set, it can be denoted simply
as CW

ϕ .

Example 4. The swapped clause set CW
ϕa is shown below. Note how each ⊕-junct

of the normal form of Sϕa shown in Example 3 corresponds to a clause in CW
ϕa .

CW
ϕa ≡ { � P1,P2

+ ; � P1,P2
+ ; P1 � P2

− ; P1,P2
− � ; P2

+ � P1 ; P2
+ � P1 ; P1 � P2

− ; P1,P2
− � }

3.4 Step 4: Refutation of the Swapped Clause Set by Resolution

The fourth step is the search for a resolution refutation of the swapped clause
set.

Example 5. CW
ϕa can be refuted by the refutation δ below:

� P1,P2
+ P2

+ � P1

r� P1,P1
fr� P1

P1 � P2− P1,P2− � r
P1,P1 �

fr
P1 � r�

3.5 Step 5: Construction of O-Projections

A projection’s purpose is to replace a leaf in a refutation of the clause set. There-
fore, its end-sequent must contain the leaf’s clause as a subsequent. Moreover, if
we consider the composition of projections on the refutation described in Sub-
section 3.6, it is clear that any other formula F in the end-sequent of a projection
will also appear in the end-sequent of the proof with atomic cuts produced by
CIRes. Since the end-sequent of the proof produced by CIRes should be the
same as the end-sequent of the original proof without cuts, it must not be the
case that the end-sequent of a projection contains a formula F that does not al-
ready appear in the end-sequent of the original proof without cuts or in the leaf
clause that the projection will replace. These conditions are formally expressed
in Definition 6.

Definition 6 (Projection). Let ϕ be a proof with end-sequent Γ � Δ and
c ≡ Γc � Δc ∈ CW

ϕ . Any cut-free proof of (Γ′, Γc � Δ′, Δc)σ, where Γ′ ⊆ Γ, Δ′ ⊆ Δ
and σ is a substitution, is a projection of ϕ with respect to c.

8 Historically, swapped clause sets were developed during an attempt to give a more
intuitive definition for profile clause sets [13]. The deeper understanding acquired
during this attempt allowed the development of swapped clause sets, which are tech-
nically better than profile clause sets in handling proofs with weakening inferences
[21].
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The standard method for the construction of projections is usually presented
together with descriptions of the CERes method [3,7,4,14]. It can be easily de-
scribed, but unfortunately results in redundant projections, because parts of ϕ
tend to appear several times in different projections of ϕ, even though it would
suffice if they appeared in only one of these projections. Projections of this stan-
dard but redundant kind are here called S-projections. This paper describes an
alternative method that constructs so-called O-projections (Definition 9). They
are less redundant and thus essential for compressing proofs via CIRes. Their
construction relies on the auxiliary Y rule (Definition 7) and on the concept of
axiom-linkage (Definition 8).

Definition 7 (Y Rule). The Y rule of inference is shown below:

ϕ1

Γ1 � Δ1 . . .

ϕn

Γn � Δn Y
Γ1, . . . , Γn � Δ1 . . . , Δn

Definition 8 (Axiom Linkage). Two atomic (sub)formulas A1 and A2 in a
proof ϕ are axiom-linked9 if and only if they have ancestors in the same axiom
sequent.

Definition 9 (O-Projection). The O-projection10 �ϕ�Oc of the proof ϕ with
respect to the clause c is constructed according to the following steps:

1. replace inferences that operate on cut-ancestors by Y-inferences.
2. replace by Y-inferences also those inferences such that none of its active

formulas is axiom-linked to a formula of ϕ appearing in c.
3. delete formulas that are not axiom-linked to the formulas appearing in c.
4. if the previous step deleted an auxiliary formula of an inference, fix the in-

ference by adding a weakening inference that re-introduces the auxiliary for-
mula.

5. eliminate the Y-inferences, according to Definition 10.

Definition 10 (Y-Elimination). The elimination of Y inferences follows the
proof rewriting rule shown below. For the rewriting rule to be applicable, ϕ j is
required to be a correct proof containing no Y-inferences.

ϕ1

Γ1 � Δ1 . . .

ϕn

Γn � Δn Y
Γ1, . . . , Γn � Δ1 . . . , Δn

⇓
ϕ j

Γ j � Δ j
w∗

Γ1, . . . , Γn � Δ1 . . . , Δn

9 By definition of axiom-linkage, it is clear that formulas highlighted with the same
color in Example 1 are axiom-linked to each other.

10 A technically more detailed definition of O-projection is available in [21].
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Example 6. In the construction of the projection �ϕa�O�P1,P2
+

, the first four steps
result in the (partial) proof with Y inferences shown below. Note that the only
remaining formulas are those axiom linked to P1 and P2

+. All other were deleted.
And the only remaining non-Y inference is ∨1

l , because it is the only one that
operates on formulas that are axiom-linked to P1 and P2

+.

P1 � P1 �
Y

P1 � P1
Y

P1 � P1

� � Y� Y�
� � Y� Y�

Y�
Y

P1 � P1
Y

P1 � P1 ψ ∨1
lP1 ∨ P2

+ � P1,P2
+ Y

P1 ∨ P2
+ � P1,P2

+ Y
P1 ∨ P2

+ � P1,P2
+

where ψ is:

� �
Y�

Y�

� �
Y�

Y�
� �

Y�
Y�
Y�

Y� Y�

P2
+ � P2

+ �
Y

P2
+ � P2

+ Y
P2
+ � P2

+
Y

P2
+ � P2

+

The last step in the construction of O-projections is the elimination of Y-
inferences, and it gives the O-projection �ϕa�O�P1,P2

+

shown below. The projections
with respect to the other three clauses that appear in the leaves of the refutation
are also shown below:

�ϕa�O�P1,P2
+

:

P1 � P1 P2
+ � P2

+ ∨l
P1 ∨ P2

+ � P1,P2
+

�ϕa�O
P2
+�P1 :

P1 � P1

P2
+ � P2

+ ¬l
P2
+,¬P2

+ � ∨l
P2
+,P

1 ∨ ¬P2
+ � P1

�ϕa�O
P1�P2−

:

P1 � P1 ¬l
P1,¬P1 � P2− � P2− ∨l

P1,¬P1 ∨ P2− � P2−

�ϕa�O
P1,P2−�:

P1 � P1 ¬l
P1,¬P1 �

P2− � P2− ¬l
P2−,¬P2− � ∨l

P1,P2−,¬P1 ∨ ¬P2− �
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Theorem 1 (Correctness of O-Projections). If ϕ is a skolemized proof,
then �ϕ�Oc is a projection of ϕ with respect to c.

Proof. In order to prove this theorem, it is necessary to show that the algo-
rithm for construction of O-projections described in Definition 9 outputs a proof
that satisfies the requirements expressed in Definition 6. A detailed technical
proof is available in [21], and only a few informal remarks are presented here.
Note that �ϕ�Oc is obviously cut-free, because of step 1 in Definition 9. Step 1
also guarantees that c appears as a subsequent of the end-sequent of �ϕ�Oc : the
atoms of c originate from atomic formulas that occur in axiom sequents and
are ancestors of cut-formulas, and since all inferences that operate on ancestors
of cut-formulas are replaced by Y-inferences, these atoms are free to propagate
down to the end-sequent of �ϕ�Oc (i.e. they will not be used by propositional or
quantifier inferences to compose more complex formulas and they will not be
consumed by cut inferences, because all these inferences are replaced). Step 3
guarantees that propagated atoms of other clauses of Cϕ are deleted from the
end-sequent of �ϕ�Oc , so that only the propagated atoms of c remain. Moreover,
note that �ϕ�Oc will still contain those inferences of ϕ that operate on formulas
that are axiom-linked to formulas of c and are not ancestors of cut-formulas. If
these formulas are not ancestors of cut-formulas, they have (also axiom-linked)
descendants occurring in the end-sequent of ϕ, which were not deleted by any
step in the construction of the projection. Therefore, the end-sequent of �ϕ�Oc is
of the form Γ′, Γc � Δ′, Δc, where Γ′ � Δ′ is the subsequent of the end-sequent of ϕ
whose formulas are axiom-linked to formulas that appear in c, and Γc � Δc = c,
since other propagated atoms are deleted by step 3. ϕ is required to be skolem-
ized in order to prevent violations of eigen-variable conditions by the atoms that
are propagated down after step 1.

3.6 Step 6: Composing the O-Projections on Top of the Refutation

The last step is the replacement of each leaf of the ground11 refutation by its
corresponding projection, and the renaming of resolution inferences to cuts and
of factoring inferences to contractions. It may be necessary to add contractions
and weakening inferences in the bottom of the resulting proof in order to correct
the multiplicity of the formulas in its end-sequent (i.e. to guarantee that each
formula appears as many times as it appeared in the input proof).

Example 7. The final proof with atomic cuts, obtained by composing the refu-
tation and the projections, is CIResO

W(ϕ, δ) shown below:

11 Although the example shown here is purely propositional, CIRes works in predicate
logic too. In this case, it is necessary to ground the resolution refutation by applying a
substitution that is the composition of all most general unifiers used in the refutation.
Only then the resolution inferences can be converted to atomic cuts. The grounding
substitution must be applied to the projections too.
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P1 � P1 P2
+ � P2

+ ∨l
P1 ∨ P2

+ � P1,P2
+

P1 � P1

P2
+ � P2

+ ¬l
P2
+,¬P2

+ � ∨l
P2
+,P

1 ∨ ¬P2
+ � P1

cut
P1 ∨ P2

+,P
1 ∨ ¬P2

+ � P1,P1
cr

P1 ∨ P2
+,P

1 ∨ ¬P2
+ � P1

P1 � P1 ¬l
P1,¬P1 � P2− � P2− ∨l

P1,¬P1 ∨ P2− � P2−

P1 � P1 ¬l
P1,¬P1 �

P2− � P2− ¬l
P2−,¬P2− � ∨l

P1,P2−,¬P1 ∨ ¬P2− � cut
P1,P1,¬P1 ∨ P2−,¬P1 ∨ ¬P2− � cr

P1,¬P1 ∨ P2−,¬P1 ∨ ¬P2− � cut
P1 ∨ P2

+,P
1 ∨ ¬P2

+,¬P1 ∨ P2−,¬P1 ∨ ¬P2− �

Table 1 compares the sizes of ϕ and CIResO
W(ϕ, δ), and thus shows that CIRes

is indeed able to compress proofs. Three different measures are used: proof length,
which is the number of inferences in the proof; symbolic proof size, which counts
the total number of symbols in formulas occurring in the proof; and atomic
proof size, which counts only the total number of predicate symbols in formulas
occurring in the proof.

Table 1. Compression by CIRes

ϕ CIResO
W(ϕ, δ)

Proof Length 17 13
Symbolic Proof Size 169 105
Atomic Proof Size 97 70

Theorem 2 (Correctness of CIRes). Let ψ be a skolemized proof with end-
sequent s. Then, for any refutation δ of any swapped clause set CW

ψa |S, CIResO
W(ψ, δ)

is a correct proof (with atomic cuts) with end-sequent s.

Proof. The correctness of CIRes follows immediately from the correctness of
CERes. Note that every inference of CIResO

W(ψ, δ) is either a cut or contraction
originating from resolution or factoring inferences in the refutation of the clause,
or an inference occurring in a projection, or a contraction or weakening to fix the
multiplicity of formulas in the end-sequent. In any of these cases, the inference
is clearly sound: inferences occurring in projections are sound, due to the cor-
rectness of projections; and the cuts and contractions are sound, given that the
ground resolution refutation of the clause set is correct. The end-sequent of any
projection contains only formulas of s or formulas of a clause of the end-sequent,
but these are all eliminated by the resolutions/cuts in the refutation. Hence,
the only formulas that remain in the end-sequent after the projections are com-
bined with the refutation are formulas of s, possibly with a different multiplicity.
The sound contractions and weakenings in the bottom of CIResO

W(ψ, δ) therefore
guarantee that the end-sequent of CIResO

W(ψ, δ) is exactly s.

4 Exponential Proof Compression

The following lemmas and theorems use a set of disjunctions Dm that is associ-
ated with the complete binary tree of depth m, as described in [9,19]. Dm contains
2m disjunctions of the form12 ◦P1 ∨ ◦P2± ∨ ◦P3±± ∨ . . . ∨ ◦Pm±...±, where ◦ is either
12 Parentheses have been ommited from these disjunctions, and the ∨ connective is

assumed to be left-associative.
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empty or ¬ and the i-th ± is either +, if the ◦ preceding Pi±...± is empty, or −, if the
◦ preceding Pi±...± is ¬. For example, D2 = {P1∨P2

+,¬P1∨P2−,P1∨¬P2
+,¬P1∨¬P2−}.

Cm is defined as the set of clauses corresponding to the disjunctions of Dm

(e.g. C2 = {� P1,P2
+ ; P1 � P2− ; P2

+ � P1 ; P1,P2− �}). And Tm is defined
as the sequent having all the disjunctions of Cm in its antecedent (e.g. T2 =
P1 ∨ P2

+,¬P1 ∨ P2−,P1 ∨ ¬P2
+,¬P1 ∨ ¬P2− �).

�

�

P1

�

P2
+

�

¬P2
+

�

¬P1

�

P2−
�

¬P2−

Note that T2 is exactly the end-sequent of the proofs considered in the ex-
amples of the previous section. The asymptotic results about the compression
achievable by CIRes are obtained by quantitatively analyzing what happens in
the general case, when CIRes is applied to Tm. The general phenomenon is es-
sentially the same as what has been observed for T2, and hence the examples
of the previous section are helpful for the comprehension of the lemmas in this
section.

Lemma 2. Let ψm be a shortest analytic tableaux refutation of Dm. Then
length(ψm) > 2k12m

, for some positive rational constant k1.

Proof. This lemma was mentioned in [9] and then proved in [19].

Lemma 3. Let ϕm be the shortest cut-free sequent calculus proof of Tm corre-
sponding to ψm. Then length(ϕm) > 2k22m

,for some positive rational constant k2.

Proof. This lemma follows immediately from Lemma 2 and from the fact that
cut-free sequent calculus p-simulates analytic tableaux [19].

Lemma 4. Let δm be the shortest resolution refutation of Cm. Then length(δm) <
2k3m, for some positive rational constant k3.

Proof. This lemma is mentioned without proof in [9]. Its proof is easy, though. δm

can be constructed by resolving first the literals that correspond to the deepest
nodes in the complete binary tree that generates Dm and Cm, then resolving the
literals that correspond to the nodes on the level immediately above, and so
on, until all literals have been resolved. In this way, it is clear that the number
of resolution and factoring inferences in δm is linearly related to the number of
nodes in the binary tree, which is exponential in m.
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Lemma 5. Cm ⊆ CW
ϕa

m
.

Proof. Let cd ∈ Cm. By definition of Cm, Dm and Tm, there is a disjunction
d � L1 ∨1 . . . ∨m−1 Lm in the antecedent of the end-sequent Tm of the proof ϕa

m
such that cd is the clause form of d in sequent notation. Let Ai be one of the
atomic ancestors of Li occurring in an axiom sequent si of ϕa

m. Let A′i be the
formula occurring in the other cedent of si. Note that:

– Ai and A′i are syntactically equal, by definition of axiom sequents.
– A′i is a cut-ancestor.
– A′i occurs in the succedent of si, if Li is a positive literal, and in the an-

tecedent, otherwise.

Let Si be the substruct of Sϕa
m

corresponding to the axiom rule having conclusion
sequent si. By definition, Si = A′i = Li, if A′i occurs in the succedent of si, and
Si = ¬A′i = Li, otherwise. Let ρ j be the ∨l inference in ϕa

m which operates on
descendents of A1, . . . , Am and introduces the connective ∨ j in the disjunction
d. Let ⊗ j be the connective in Sϕa

m
that corresponds to ρ j. By Definition 4,

the normalization of Sϕa
m

is such that ⊗ j is distributed to substructs containing
formulas that are axiom-linked to ancestors of formulas on which ρ j operates
(i.e. containing A′1, . . . , A′m). Consequently, the normal form S of Sϕa

m
contains

the substruct Sd � S1 ⊗1 . . .⊗m−1 Sm. When S is transformed to CW
ϕa

m
, Sd becomes

the clause cd, because Si = Li, for all i, and ⊗ is interpreted as ∨. Therefore,
cd ∈ CW

ϕa
m

and hence Cm ⊆ CW
ϕa

m
.

Lemma 6. δm is a refutation of CW
ϕa

m
.

Proof. This lemma follows immediately from Lemma 5.

Lemma 7. Let c ∈ CW
ϕa

m
. Then length(�ϕa

m�Oc ) < k4m, for some positive constant
k4.

Proof. By definition, the O-projection �ϕa
m�Oc contains only those inferences of

ϕa
m that operate on descendants of axiom sequents that contain occurences of

c. These are the inferences that construct one of the disjunctions in the end-
sequent Tm of ϕa

m, namely the disjunction whose clause form in sequent notation
is equal to c. c has exactly m literals, and thus �ϕa

m�Oc contains exactly m − 1
inferences of ∨l kind. Since literals can appear negated, �ϕa

m�Oc can contain at
most m inferences of ¬l kind. No other inferences appear in �ϕa

m�Oc . Therefore,
length(�ϕa

m�Oc ) < 2m − 1.

Theorem 3 (Exponential Proof Compression via CIRes). There exists a
sequence of sequents Tm such that:

– if ϕm is a sequence of shorthest cut-free proofs of Tm, then length(ϕm) > 2k52m

(for some positive constant k5).
– there exists δm such that length(CIRes(ϕm, δm)) < m.2k6m (for some positive

constant k6).
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Proof. The first item of this theorem is just Lemma 3. For the second item, let
δm be the shortest refutation of Cm, as in Lemma 4. By lemma 6, δm is also a
refutation of CW

ϕa
m
, and hence it can be used in the construction of the proof with

atomic cuts by CIRes. Then note that CIRes(ϕm, δm) is the composition of δm,
whose length is exponentially upperbounded (Lemma 4), and 2m O-projections
of linear size (as in Lemma 7). Therefore:

length(CIRes(ϕm, δm)) < 2k3m + 2m(2m − 1) < m.2k6m

for some constant k6.

5 Conclusions

This paper has introduced the CIRes method of cut-introduction and shown that
it can compress proofs exponentially. This was only possible with the develop-
ment of swapped clause sets and O-projections, which are less redundant than
the standard clause sets and projections traditionally used by CERes. These new
concepts could be employed for cut-elimination as well.

The further development of CIRes can proceed in various directions. Firstly,
similarly to what has already been done for cut-elimination [21], the swapped
clause set could be enriched with additional information from the proof, and this
information could then be used to define refinements of the resolution calculus in
order to facilitate the search for refutations and, consequently, the introduction
of cuts.

Secondly, O-projections and the method for combining them with the refu-
tation could still be improved. In the example considered in this paper, the
(antecedent of the) end-sequent of cut-free proof is essentially already a set of
clauses and the shortest proof with cuts is a proof whose atomic cuts all occur in
the bottom. These facts are particularly convenient for a method like CIRes, that
uses resolution and outputs proofs with cuts in the bottom. However, in other
cases (i.e. when the optimal proof with atomic cuts is such that the atomic cuts
do not occur in the bottom of the proof; or, equivalently, when the end-sequent of
the cut-free proof is not in such a clause form), CIRes will produce sub-optimally
compressed proofs, because the O-projections will contain redundancies that are
only necessary because CIRes currently requires the atomic cuts to be in the very
bottom and the projections to be on the top. This indicates that CIRes could be
improved by developing different notions of projections and more flexible ways
of composing them with the refutation. However, this is highly non-trivial.

Finally, much more significant (i.e. non-elementary) compression could in
principle be obtained via introduction of quantified cuts. The CIRes method
described in this chapter introduces only atomic cuts and is therefore just a
first step toward the harder task of introducing complex quantified cuts. An
intermediary step could be the introduction of propositional cuts, possibly by
using definitional and swapped definitional clause sets [21]. But even then, (sub-
optimal) compressive quantified-cut-introduction would still be a distant goal,
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and an algorithm that would generally guarantee optimal compression is forever
out of reach; it cannot exist, due to the undecidability results in [8].
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Appendix A: Cut-Elimination Proof Rewriting Rules

Due to the page limit, the rewriting rules are included only in the extended
electronic version available in http://www.logic.at/people/bruno/.

Appendix B: Inference Swapping

Due to the page limit, the inference swapping rewriting rules are included only
in the extended electronic version available in http://www.logic.at/people/
bruno/.

http://www.logic.at/people/bruno/
http://www.logic.at/people/bruno/
http://www.logic.at/people/bruno/


Satisfiability of
Non-linear (Ir)rational Arithmetic�
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Abstract. We present a novel way for reasoning about (possibly ir)ratio-
nal quantifier-free non-linear arithmetic by a reduction to SAT/SMT. The
approach is incomplete and dedicated to satisfiable instances only but is
able to produce models for satisfiable problems quickly. These characteris-
tics suffice for applications such as termination analysis of rewrite systems.
Our prototype implementation, called MiniSmt, is made freely available.
Extensive experiments show that it outperforms current SMT solvers es-
pecially on rational and irrational domains.

Keywords: non-linear arithmetic, SMT solving, term rewriting, termi-
nation, matrix interpretations.

1 Introduction

Establishing termination of programs (automatically) is essential for many as-
pects of software verification. Contemporary termination analyzers for term
rewrite systems (TRSs) rely on solving (non-)linear arithmetic, mostly—but
not exclusively—over the natural numbers. Hence designated solvers for non-
linear arithmetic are very handy when implementing termination criteria for
term rewriting (e.g. recently in [7, 13, 14, 20, 31]) but also in different research
domains dealing with verification (e.g. recently in [18]).

In this paper we explain the theory underlying our SMT solver MiniSmt, which
is freely available under terms of the GNU lesser general public license version 3
from http://cl-informatik.uibk.ac.at/software/minismt. This tool is de-
signed to find models for satisfiable instances of non-linear arithmetic quickly.
Integral domains are handled by bit-blasting to SAT and, alternatively, by an
appropriate transformation to bit-vector arithmetic before solvers for these logics
are employed. Non-integral domains are also supported by a suitable reduction
to the integral setting. To solve constraints over rational domains efficiently we
propose a heuristic which is easy to implement. Experiments on various bench-
marks show gains in power and efficiency compared to contemporary existing
approaches. The support for irrational domains (by approximating comparisons
involving

√
2) distinguishes our tool.

We expect two major effects of our contribution: MiniSmt eases the job to
develop a new termination tool (fast reasoning about arithmetic is also relevant
� This research is supported by FWF (Austrian Science Fund) project P18763.

E.M. Clarke and A. Voronkov (Eds.): LPAR-16, LNAI 6355, pp. 481–500, 2010.
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for implementing other termination criteria) and our test benches will spark
further research in the SMT community on non-linear arithmetic.

The remainder of the paper is organized as follows. How we reduce non-linear
non-integral arithmetic over (possibly ir)rational domains to integral arithmetic
is outlined in Section 2. Experiments showing the benefit of our approach are
presented in Section 3 before Section 4 compares our approach with related work.
For the convenience of the reader an encoding of (bounded) integral non-linear
arithmetic in SAT is given in Appendix A. These encodings are similar to known
ones but take overflows into account. To obtain benchmarks for non-integral
domains we generalize a popular termination criterion for rewrite systems—
matrix interpretations [13,20]—to non-negative real coefficients in Appendix B.
To automate the method, models for non-linear arithmetic constraints must be
found quickly for satisfiable instances.

2 Encoding Non-linear Non-integral Arithmetic

In this section we introduce a grammar for non-linear arithmetic constraints
(which appear when automating matrix interpretations, among other termina-
tion criteria for term rewriting) and show how to reduce constraints over non-
integral arithmetic to the integral case.

Definition 1. An arithmetic constraint ϕ is described by the BNFs

ϕ ::= ⊥ | # | p | (¬ϕ) | (ϕ ◦ ϕ) | (α " α) and α ::= a | r | (α 5 α) | (ϕ ?α :α)

where ◦ ∈ {∨,∧,→,↔}, " ∈ {>,=}, and 5 ∈ {+,−,×}.

Here ⊥ (#) denotes contradiction (tautology), p (a) ranges over Boolean (arith-
metical) variables, ¬ (∨, ∧, →, ↔) is logical not (or, and, implication, bi-
implication), > (=) greater (equal), r ranges over the real numbers, and +
(−, ×) denotes addition (subtraction, multiplication). If-then-else is written as
(· ? · : ·). The following example shows some (non-)well-formed constraints.

Example 2. The expressions 5, p100, (p10 ? (2.1× a12) : 0), and ((((a12 + (
√

2 ×
a30)) + 7.2) > (0 − a5)) ∧ p2) are well-formed whereas −a10 (unary minus) and
a + 3 (parenthesis missing) are not.

The binding precedence × 6 +,− 6 >,= 6 ¬ 6 ∨,∧ 6 →,↔, (· ? · : ·)
allows to save parentheses. Furthermore the operators +, ×, ∨, ∧, and ↔ are
left-associative while − and → associate to the right. Taking these conventions
into account the most complex constraint from the previous example simplifies
to a12 +

√
2× a30 + 7.2 > 0− a5 ∧ p2. To obtain smaller constraints already at

the time of encoding trivial simplifications like ϕ ∧ # → ϕ, ϕ ∧ ⊥ → ⊥, · · · are
performed.

In Appendix A we show how to mimic arithmetic over N and Z in SAT.
Similar encodings have been presented (either for fixed bit width or for non-
negative numbers only) in [13,14,23,31]. To our knowledge the two’s complement
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encoding taking overflows into account is new. In the remainder of this section
we show how arithmetic over Q and (a fragment of) R can be reduced to the
integral case. By N, Z, Q, and R we denote the encodings of numbers from N,
Z, Q, and R, respectively. To clarify the domain we index operations by these
sets whenever confusion can arise.

2.1 Rational Arithmetic

Rational numbers are represented as a pair consisting of the numerator and
denominator similar as in [15]. The numerator is a bit-vector representing an
integer (compared to a natural number in [15]) whereas the denominator is a
positive integer (negative denominators would demand a case analysis for >Q).
We also experimented with a fixed point representation, yielding slightly worse
performance and less flexibility. All operations with the exception of ×Q require
identical denominators. This can easily be established by expanding the fractions
beforehand (as demonstrated in Example 4).

Comparisons are performed just on the numerators if the denominators coin-
cide. The operations +Q, −Q, and ×Q are inspired from arithmetic over frac-
tions.

Definition 3. For (a, d), (b, d), and (b, d′) representing rationals we define:

(a, d) >Q (b, d) := a >Z b

(a, d) =Q (b, d) := a =Z b

(a, d) +Q (b, d) := (a +Z b, d)
(a, d) −Q (b, d) := (a−Z b, d)
(a, d) ×Q (b, d′) := (a×Z b, d× d′)

Next we demonstrate addition.

Example 4. Consider 3
2 +Q

−1
4 = 5

4 . In the sequence below first both denomi-
nators are made equal. Then addition of the numerators is performed using +Z
(see Appendix A for an explanation of the notation):

(〈⊥,#,#〉, 2) +Q (〈#,#〉, 4) = (〈⊥,#,#,⊥〉, 4) +Q (〈#,#〉, 4)
= (〈⊥,#,#,⊥〉+Z 〈#,#〉, 4) = (〈⊥,⊥,#,⊥,#〉, 4)

We conclude this subsection by introducing a concept that drastically improves
performance of rational arithmetic. Consider the following computation where
(intermediate) results are not canceled:(

1
2
× 4

2

)
× 3

2
+

1
2

=
4
4
× 3

2
+

1
2

=
12
8

+
1
2

=
16
8

(1)

Exactly this happens in the implementation since there the numerator is a bit-
vector consisting of Boolean formulas. Hence its concrete value is unknown and
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no cancellation is possible. We propose the following elegant escape which is very
easy to implement and has positive effects on run-times (as shown in Section 3).
We force that a fraction is canceled if the denominator exceeds some given limit.
Computation (2) shows the positive aspects of this heuristic by allowing a de-
nominator of at most 2:(

1
2
× 4

2

)
× 3

2
+

1
2

=
2
2
× 3

2
+

1
2

=
3
2

+
1
2

=
4
2

(2)

After every addition or multiplication the fraction is canceled whenever the de-
nominator exceeds 2. The negative aspects become apparent if the denominator
is chosen too small. Then some computations can no longer be performed, e.g.,
when allowing a denominator of 1, computation (3) gets stuck in the second step
since 3

2 cannot be canceled:(
1
2
× 4

2

)
× 3

2
+

1
2

=
1
1
× 3

2
+

1
2

=
?
1

+
1
2

(3)

In the implementation, canceling by two is achieved by dividing the denominator
by two and dropping the least significant bit of the numerator while demanding
that this bit evaluates to false. The latter is achieved by adding a suitable con-
straint. Hence in contrast to the example above, computations do not get stuck
but may produce unsatisfiable formulas. In Section 3 we will see that this does
not happen very frequently. Furthermore, there also the effectiveness of this very
simple but efficient heuristic is demonstrated.

Some remarks are in order. Although our representation of rationals allows
fractions like a

3 , choosing the denominators as multiples of two is beneficial. This
allows to efficiently extend fractions to equal denominators by bit-shifting the
numerators. Furthermore, the heuristic (canceling by two) is most effective for
even denominators. Obviously the technique extends to different denominators
in principle but division by two can again be performed by bit-shifting while
division by, e.g., three cannot and hence is more costly. However, for termination
analysis the main benefit of rationals is that some number between zero and
one can be represented while the exact value of this number is usually not so
important.

2.2 Extending Rational Arithmetic by Roots of Numbers

Arithmetic over irrational numbers is the most challenging. To allow a finite
representation we only consider a subset of R using a pair (c,d) where c and d are
numbers from Q. Such a pair (c,d) has the intended semantics of c+d

√
2. But

problems arise when comparing two abstract numbers. Therefore the definition of
>R given below is just an approximation of>R. The idea is to under-approximate
d
√

2 on the left-hand side while over-approximating it on the right-hand side.
We under-approximate d

√
2 by (5, 4)×Qd if d is not negative and by (3, 2)×Qd

if d is negative.1 The approach is justified since 5
4 = 1.25 <R 1.41 ≈

√
2 and

1 We abbreviate numbers by denoting them in boldface, i.e., 5 represents 〈⊥,�,⊥,�〉
from Z and (〈⊥,�,⊥,�〉,1) from Q. The context clarifies which one is meant.
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similarly − 3
2 = −1.5 <R −1.41 ≈ −

√
2. Analogous reasoning yields the over-

approximation. This trick allows to implement >R (an approximation of >R)
based on >Q which can be expressed exactly (cf. Definition 3).

Next we formally define the under- and over-approximation of a
√

2 based
on a from Q depending on the sign (denoted sign(a) with obvious definition)
using the if-then-else operator. Recall that sign # indicates negative numbers
(cf. Appendix A).

Definition 5. For a number a from Q we define:

under(a) := (sign(a) ? (3, 2) : (5, 4))×Q a
over(a) := (sign(a) ? (5, 4) : (3, 2))×Q a

Using the under- and over-approximations we define >R and =R. Note that
since >R is just an approximation, it may not appear at negative positions in
Boolean formulas. We remark that designing suitable approximations for >R at
negative positions is easy and, moreover, that >R does not appear at negative
positions in the benchmarks that we consider.

Definition 6. For pairs (c,d) and (e, f) from R we define:

(c,d) >R (e, f) := c +Q under(d) >Q e +Q over(f)
(c,d) =R (e, f) := c =Q e ∧ d =Q f

For readability we unravel the pair notation in the sequel whenever useful, i.e.,
(3,1) is identified with 3 +R

√
2.

Example 7. The expression (1,1) >R (2,0) approximates 1 +
√

2 >R 2. The
√

2
on the left-hand side is under-approximated by 5

4 which allows to replace >R

by >Q. The resulting 1 + 5
4 >Q 2, i.e., 9

4 >Q
8
4 shows that the above comparison

is valid. Note that (0,6) >R (0,5) does not hold since obviously 6× 5
4 >Q 5× 3

2
evaluates to false.

The definitions for +R, −R, and ×R are directly inspired from the intended
semantics of pairs.

Definition 8. For pairs (c,d) and (e, f) from R we define:

(c,d) +R (e, f) := (c +Q e,d +Q f)
(c,d)−R (e, f) := (c−Q e,d−Q f)
(c,d)×R (e, f) := (c×Q e +Q 2×Q d×Q f , c×Q f +Q d×Q e)

The next example demonstrates addition and multiplication for reals.

Example 9. The equality (1,2) +R (5,3) = (6,5) is justified since the left-hand
side represents the calculation 1 + 2

√
2 + 5 + 3

√
2 which simplifies to 6 + 5

√
2

corresponding to the right-hand side. The product (1,2)×R (5,3) = (17,13) is
justified by (1 + 2

√
2)× (5 + 3

√
2) = 5 + 10

√
2 + 3

√
2 + 6

√
2
√

2 = 17 + 13
√

2.
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A natural question is if the approach from this section can be extended to a
larger fragment of the reals. Before the limitations of the approach are discussed
we mention possible generalizations. Triples (c,d,n) with c,d ∈ Q and n ∈ N
(i.e., n is a variable taking non-negative integral values) allow to represent num-
bers of the shape c + d

√
n. Adapting the constant factor for multiplication in

Definition 8 and providing suitable under- and over-approximations for
√

n al-
lows to replace

√
2 by a square root of some arbitrary natural number. But

intrinsic to the approach is that the same (square) root must be used within all
constraints to keep the triple representation of numbers. The reason is that e.g.,
(a,b,n)×R (c,d,n) = (ac+Rnbd, ad +R bc,n) but in general there is no triple
corresponding to (a,b,n) ×R (c,d,m) if n and m represent different numbers.
Similar problems occur if non-square roots should be considered. Although the
shape of real numbers allowed appears restricted at first sight, it suffices to prove
the key system of [25] (see Example 10).

3 Experimental Evaluation

In the experiments2 we considered the 470 problems from the quantifier-free non-
linear integer arithmetic benchmarks (QF NIA) of SMT-LIB 20093 and the 1391
TRSs in the termination problems database (TPDB) version 5.0 (available via
http://termination-portal.org/wiki/TPDB). All tests have been performed
on a server equipped with 8 dual-core AMD Opteron R© processors 885 running
at a clock rate of 2.6 GHz and 64 GB of main memory. Unless stated otherwise
only a single core of the server was used.

We implemented the approach presented in Appendix A and Section 2 and
used MiniSat [11] as back-end (after a satisfiability preserving transformation
to CNF [28]). The result, called MiniSmt, accepts the SMT-LIB syntax for
quantifier-free non-linear arithmetic. For a comparison of MiniSmt with other
SMT solvers see Section 3.1. We also integrated matrix interpretations as pre-
sented in Appendix B in the termination prover TTT2 [22] based on the constraint
language of Definition 1. The constraints within TTT2 are solved with an inter-
faced version of MiniSmt. Experiments are discussed in Section 3.2.

3.1 Comparison with SMT Solvers

First we compare MiniSmt with other recent SMT solvers. Since 2009 the QF NIA
category is part of SMT-COMP in which Barcelogic [27] and CVC3 [5] partic-
ipated. The results when comparing these tools on the QF NIA benchmarks
of SMT-LIB are given in Table 1. The column labeled yes (no) counts how
many systems could be proved (un)satisfiable while time indicates the total
time needed by the tool in seconds. A “–” indicates that the solver does not
support the corresponding setting. If no answer was produced within 60 seconds
the execution is killed (column t/o). The row labeled

∑
shows the accumulative

2 See http://cl-informatik.uibk.ac.at/ttt2/arithmetic for full details.
3 See http://www.smtcomp.org/2009 for information on SMT-COMP and SMT-LIB.

http://termination-portal.org/wiki/TPDB
http://cl-informatik.uibk.ac.at/ttt2/arithmetic
http://www.smtcomp.org/2009
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Table 1. SMT solvers on 470 problems from SMT-LIB

yes no time t/o
Barcelogic 266 189 1188 15
CVC3 113 139 13169 218
MiniSmt(sat) 267 – 6427 54
MiniSmt(bv) 268 – 3190 42∑

269 194

Table 2. Statistics on various benchmarks

# #var #add #mul
avg max avg max avg max

SMT-LIB (calypto) 303 10 50 6 36 6 33
SMT-LIB (leipzig) 167 301 2606 113 1136 164 1420
SMT-LIB (calypto + leipzig) 470 113 2606 44 1136 62 1420
matrices (dimension 1) 1391 25 811 145 5824 226 10688
matrices (dimension 2) 1391 78 2726 1420 164276 1863 164452

yes (no) score for the corresponding column. In Table 1 MiniSmt makes use of
the multi-core architecture of the server and searches for satisfying assignments
based on two different settings. Instances where small domains suffice are han-
dled by the configuration which uses 3 bits for arithmetic variables and 4 bits
for intermediate results. The second setting employs 33 and 50 bits, respectively.
As an alternative to the SAT back-end (denoted MiniSmt(sat)) in MiniSmt we
also developed a transformation that allows to use SMT solvers for bit-vector
logic to solve arithmetic constraints (called MiniSmt(bv)). Although bit-vector
arithmetic cannot be used blindly for our setting—it does not take overflows
into account and hence can produce unsound results—it can be adapted for
solving non-linear arithmetic by sign-extension operations. Given the details in
Appendix A this transformation is straightforward to implement. As a back-end
for MiniSmt(bv) we use Yices [10] as designated SMT solver for bit-vector logic.
As can be inferred from Table 1 even when dealing with large numbers MiniSmt
performs competitively, i.e., it solves the most satisfiable instances. MiniSmt(bv)
finds models for the problems calypto/problem-006547.cvc.1, leipzig/term-gZE9f0,
and leipzig/term-lFYv5w while Barcelogic finds a model for leipzig/term-BKc7xf
which MiniSmt(bv) misses. MiniSmt(sat) cannot handle leipzig/term-XbWQfu in
contrast to its bit-vector pendant.

Since the SMT-LIB benchmarks consider only the integers as domain we also
generated (with TTT2) typical constraints from termination analysis. More pre-
cisely we generated for every TRS a constraint that is satisfiable if and only if
a direct proof with matrix interpretations over a non-negative carrier of a fixed
dimension removes at least one rewrite rule.4 This constraint is then solved

4 Our benchmarks are available from the URL in Footnote 2.
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Table 3. SMT solvers on 1391 matrix constraints (dimension 1)

N Z Q

yes no time t/o yes no time t/o yes no time t/o
Barcelogic 335 3 23k 172 414 3 16k 95 – – – –
CVC3 168 415 45k 748 197 380 45k 754 120 409 48k 802
MiniSmt(sat) 337 – 1701 5 539 – 7279 40 337 – 1592 3
MiniSmt(bv) 337 – 902 5 553 – 1387 8 337 – 1258 6
nlsol 332 – 3203 14 479 – 8158 83 333 – 3924 20∑

338 415 553 380 338 409

Table 4. SMT solvers on 1391 matrix constraints (dimension 2)

N Z Q

yes no time t/o yes no time t/o yes no time t/o
Barcelogic 408 3 41k 578 832 3 17k 204 – – – –
CVC3 117 130 66k 1084 112 84 68k 1135 58 125 69k 1147
MiniSmt(sat) 402 – 7193 63 995 – 23k 214 407 – 6505 60
MiniSmt(bv) 405 – 5248 57 1068 – 13k 140 400 – 6418 69
nlsol 301 – 18k 190 454 – 51k 771 289 – 20k 240∑

412 130 1142 84 409 125

over various domains, to allow a comprehensive comparison with nlsol [6], a
recent solver for polynomial arithmetic, which follows a similar approach as
Barcelogic but in addition handles non-integral domains. Our benchmarks are
in the QF NIA syntax but are of a different structure than the SMT-LIB in-
stances. Specifically, our problems admit more arithmetic operations while typi-
cally having less variables. In Table 2 some statistics and comparisons regarding
the different test benches are given. There the column # indicates the num-
ber of systems in the respective benchmark family and the other columns give
accumulated information on the size (i.e., number of variables, additions, and
multiplications) of the problems. Since nlsol requires a slightly different input
format our benchmarks are preprocessed for this tool.

Table 3 presents the results for the matrix benchmarks of dimension one.
Times postfixed with “k” should be multiplied by a factor of 1000. For the solvers
nlsol and MiniSmt variables range over the domain {0, . . . , 15} (N), {−16, . . . , 15}
(Z), and { 0

2 ,
1
2 ,

2
2 , . . . ,

15
2 } (Q). Table 4 considers the benchmarks with matrices

of dimension two. Since these constraints are much larger, MiniSmt and nlsol use
one bit less for representing numbers. We also considered different domains which
produced similar results. In Tables 3 and 4 only the benchmarks considering the
domains N and Q correspond to valid (parts of) termination proofs. The reason
for including the Z benchmarks in the tables is that they allow the bit-vector
back-end of MiniSmt to show its performance best.

We note that nlsol allows more flexibility in choosing the variable domain
since MiniSmt bounds variables by powers of two. However our approach admits
more freedom in bounding intermediate results which reduces the search space
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Table 5. Matrices with dependency pairs for 1391 TRSs

1 × 1 2 × 2 3 × 3
yes time t/o yes time t/o yes time t/o

∑
N 545 8885 83 618 23820 326 627 25055 349 659
Q 599 8574 67 597 20238 261 496 19490 252 638
Q1 606 5906 46 655 15279 173 643 14062 164 685
Q2 627 10109 93 651 23102 308 619 23806 330 687
R 535 17029 198 630 16517 200 599 29346 415 648∑

639 674 664 703

(e.g. for columns Q in Tables 3 and 4 we require that intermediate results are
integers) which results in efficiency gains. For the sake of a fair comparison we
configured our tool such that arithmetic variables are represented in as many
bits as intermediate results. However, usually it is a good idea to allow more bits
for intermediate results.

We summarize the tables with the following observations: (a) MiniSmt is sur-
prisingly powerful on the SMT-LIB benchmarks (containing few multiplications
but large numbers, i.e., requiring more than 30 bits), (b) our tool performs best
(note its speed) on the matrix benchmarks (containing many multiplications and
usually small domains suffice), (c) MiniSmt is by far the most powerful tool on
rational domains, (d) while in general the SMT back-end of MiniSmt is favorable,
for column Q in Table 4 the SAT back-end shows more problems satisfiable than
the SMT counterpart, and (e) CVC3 could be used to cancel termination proof
attempts early due to its power concerning unsatisfiability.

Our tool fills two gaps that current SMT solvers admit. It is fastest on small
and rational domains and to our knowledge the only solver that efficiently sup-
ports irrational domains, e.g., only our tool can solve the constraint 2 = x×x for
a real-valued variable x. Due to a lack of interesting benchmarks and competitor
tools, MiniSmt cannot show its full strength here.

3.2 Evaluation within a Termination Prover

Next we compare matrix interpretations over N, Q, and R (cf. Appendix B) and
show that MiniSmt admits a fast automation of the method. The coefficients of a
matrix over dimension d are represented in max{2, 5− d} bits (for reals we allow
max{1, 3−d} bits due to the more expensive pair representation). Every rational
coefficient is represented as a fraction with denominator two. Hence a matrix
of dimension two admits natural coefficients {0, 1, . . . , 7}, rational coefficients
{0, 1

2 , 1, 1
1
2 , 2, 2

1
2 , 3, 3

1
2}, and real coefficients {0, 1,

√
2, 1 +

√
2}. The number of

bits for representing intermediate computations was chosen to be one more than
the number of bits allowed for the coefficients. Restricting the bit-width is es-
sential for performance, especially for larger dimensions. It is well-known that
for interpretation based termination criteria usually small coefficients suffice.

In Table 5 matrices of dimensions one to three are considered. The rows
labeled N indicate that only natural numbers are allowed as coefficients whereas
Q refers to the naive representation of rationals without canceling the fractions



490 H. Zankl and A. Middeldorp

and R to the subset of real coefficients mentioned above. The rows Qn indicate
that a fraction is canceled if its denominator exceeds n. The column labeled
yes shows the number of successful termination proofs while time indicates the
total time needed by the tool in seconds. If no answer was produced within 60
seconds the execution is killed (column t/o). The row (column) labeled

∑
shows

the accumulative yes score for the corresponding column (row).
Matrix interpretations over N are used by most contemporary termination

tools and serve as a reference. The performance of Q is satisfactory for matri-
ces with dimension one (which correspond to linear polynomial interpretations
and confirms the results in [15]) but poor for larger dimensions. In contrast, the
overall performance of Q1 is excellent, i.e., it is much faster than N and more
powerful. The combination of all 15 methods from Table 5 together can prove
703 systems terminating, yielding a gain of almost 50 systems compared to the
standard setting allowing natural coefficients only. This number is remarkable
since Jambox [12]—a powerful termination prover based on various termination
criteria—proved 750 systems terminating in the 2008 competition and took 3rd
place. Since the competition execution software allows to run 16 processes in par-
allel the (single!) method we propose is a good starting point for new termination
analyzers. Looking beyond TPDB, our implementation also shows its strength
for real coefficients. It masters the TRS RR from Example 10 below. This system
stems from [25] where it was proved that no direct termination proof based on
polynomial interpretations over the natural or rational numbers can exist which
orients all rules strictly. However a proof over the reals is possible and our im-
plementation finds such a proof fully automatically. Due to the statement “. . .
only the techniques [. . . ] which concern non-negative rational numbers have been
included in Mu-term . . . ” in [26], we believe that TTT2 is the only automatic
termination analyzer for TRSs that supports reasoning about irrational domains.

Example 10. For the TRS RR from [25] consisting of the seven rules

k(x, x, b1) → k(g(x), b2, b2) g(c(x)) → f(c(f(x)))
k(x, a2, b1) → k(a1, x, b1) f(f(x)) → g(x)
k(a4, x, b1) → k(x, a3, b1) f(f(f(f(x)))) → k(x, x, x)

k(g(x), b3, b3) → k(x, x, b4)

TTT2 finds the following interpretation that orients all rules strictly

a1R = 0 b1R = 2 +
√

2 fR(x) =
√

2x+
√

2

a2R = 1 + 2
√

2 b2R = 0 gR(x) = 2x+ 1 +
√

2

a3R = 0 b3R = 1 +
√

2 cR(x) = x+ 1 + 2
√

2

a4R = 1 +
√

2 b4R =
√

2 kR(x, y, z) = x+ y +
√

2z + 3
√

2

within a fraction of a second. While a direct proof with polynomials over N is
not possible, natural coefficients suffice in the dependency pair setting (after
computing the SCCs of the dependency graph). Hence all modern termination
tools can prove this system terminating.
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4 Related Work and Concluding Remarks

First we discuss related approaches for solving non-linear arithmetic. Barcelogic
follows [6] where constraints are linearized by assigning a finite domain to vari-
ables occurring in non-linear constraints. The resulting linear arithmetic formula
is solved by a variant of the simplex algorithm. In contrast to the work in [6]
which mentions heuristics (decide which variables should be used for the lin-
earization) our approach does not require such considerations. However both
approaches require some fixed domain for the variables. CVC3 implements a
Fourier-Motzkin procedure for linear arithmetic while treating non-linear terms
as if they were linear (Dejan Jovanović, personal conversation, 2009). The last
tool we considered for comparison, nlsol, uses a similar approach as Barcelogic but
also supports non-integral domains. It transforms non-linear constraints to lin-
ear arithmetic before it calls Yices as back-end. The difference to MiniSmt(bv) is
that nlsol employs Yices for solving linear arithmetic whereas our tool uses it for
bit-vector arithmetic. We are aware of the fact that the first order theory of real
arithmetic is decidable [29] but because of the underlying computational com-
plexity of the method the result is mainly of theoretical interest. Improvements
of the original procedure are still of double exponential time complexity [8].
Nevertheless it might be interesting to investigate how this worst case complex-
ity affects the performance for applications. Note that SAT solving techniques
and the simplex method admit exponential time worst case complexity but are
surprisingly efficient in practice.

Next we discuss related work on matrix interpretations. An extension to ratio-
nal domains was already proposed in 2007 [16] (for termination proofs of string
rewrite systems) where evolutionary algorithms [3] were suggested to find suit-
able rational coefficients. However, no benchmarks are given there that show a
gain in power. In [15] polynomial interpretations are extended to rational coeffi-
cients. This work is related since linear polynomial interpretations coincide with
matrix interpretations of dimension one. Our experiments confirm the gains in
power when using matrices of dimension one but the method from [15] results in
a poor performance for larger dimensions without further ado. Independently to
our research, [1] extends the theory of matrix interpretations to coefficients over
the reals. However their (preliminary) implementation can only deal with ratio-
nals. Furthermore no benchmarks are given in [1] showing any gains in power by
allowing rationals. Hence our contribution for the first time gives evidence that
matrix interpretations over the non-negative reals do really extend the power of
termination criteria in practice. Recently non-linear matrix interpretations have
been introduced [9] by considering matrix domains instead of vector domains.
We would like to investigate if this more general setting can also benefit from
rational domains.

Before we conclude this section with ideas for future work we mention one
specialty of MiniSmt. Due to the bottom-up representation of domains (natu-
rals, integers, rationals, reals) our solver can be used for instances that require
arithmetic variables of different types. This distinguishes MiniSmt from the other
solvers that do currently not support such problems appropriately. In the future
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we would like to add support for reasoning about unsatisfiable instances. As
an immediate consequence this would improve the cumulative execution time of
MiniSmt and as a side effect this would also be beneficial for termination analysis
of rewriting; a termination proof can be aborted immediately if the correspond-
ing constraints are unsatisfiable and a different termination criterion can be
considered. Another extension aims at improving the handling of real domains.
Instead of restricting to approximations of

√
2 one could consider

√
n where n

is some abstract expression representing a non-negative integer (as discussed at
the end of Section 2.2). Moreover, allowing n to be negative admits reasoning
about complex domains. However, we are not aware of any termination criteria
that require such a domain.

Acknowledgments. We thank Nikolaj Bjørner for encouraging us to investigate
the bit-vector back-end, René Thiemann for pointing out a bug, and the anony-
mous referees for numerous suggestions that helped to improve the presentation.
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A Encoding Non-linear Integral Arithmetic in SAT

In this section arithmetic constraints (cf. the grammar in Definition 1) are re-
duced to SAT. To obtain formulas of finite size, every arithmetic variable is
represented by a given number of bits. Then operations such as +N and ×N

are unfolded according to their definitions using circuits. Such definitions for
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+N and ×N have already been presented in [13] for bit-vectors of a fixed width.
In contrast, we take overflows into account. The encodings of >N and =N for
bit-vectors given below are similar to the ones in [7].

A.1 Arithmetic over N

We fix the number k of bits that is available for representing natural numbers in
binary. Let a < 2k. We denote by ak = 〈ak, . . . , a1〉 the binary representation of a
where ak is the most significant bit. Hence e.g. 〈#,#,⊥〉 = 6. Whenever k is not
essential we abbreviate ak to a. Furthermore the operation (·)k on bit-vectors is
used to drop bits, i.e., 〈a4, a3, a2, a1〉2 = 〈a2, a1〉.

Definition 11. For natural numbers in binary representation we define:

ak >N bk :=

{
⊥ if k = 0
(ak ∧ ¬bk) ∨

(
(bk → ak) ∧ ak−1 >N bk−1

)
if k > 0

ak =N bk :=
k∧

i=1

(ai ↔ bi)

Since two k-bit bit-vectors sum up to a (k + 1)-bit number an additional bit
is needed for the result. Hence the case arises when two summands are not
of equal bit-width. Thus, before adding ak and bk′ the shorter one is padded
with |k − k′| ⊥’s. To keep the presentation simple we assume that ⊥-padding is
implicitly performed before the operations +N, >N, and =N.

Definition 12. We define ak +N bk as 〈ck, sk, . . . , s1〉 for 1 � i � k with

c0 = ⊥ si = ai ⊗ bi ⊗ ci−1 ci = (ai ∧ bi) ∨ (ai ∧ ci−1) ∨ (bi ∧ ci−1)

were ⊗ denotes exclusive or, i.e., x⊗ y := ¬(x↔ y).

Note that in practice it is essential to introduce new variables for the carry
and the sum since in consecutive additions each bit ai and bi is duplicated
(twice for the carry and once for the sum). Using fresh variables for the sum
prevents an exponential blowup of the resulting formula. A further method to
keep formulas small is to limit the bit-width when representing naturals. This can
be accomplished after addition (or multiplication) by fixing a maximal number
m of bits. To restrict ak to m bits we demand that all ai for m + 1 � i � k
are ⊥ as a side constraint. Then it is sound (i.e., restricting bits can result
in unsatisfiable formulas but never produce models for unsatisfiable input) to
continue any computations with am instead of ak.

The next example demonstrates addition. To ease readability we only use ⊥
and # in the following examples and immediately simplify formulas.

Example 13. We compute 3 +N 14 = 17. In the sequence below the first step
performs ⊥-padding. Afterwards Definition 12 applies.

〈#,#〉+N 〈#,#,#,⊥〉 = 〈⊥,⊥,#,#〉+N 〈#,#,#,⊥〉 = 〈#,⊥,⊥,⊥,#〉
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Multiplication is implemented by addition and bit-shifting. Here a << n denotes
a left-shift of a by n bits, e.g., 〈x, y〉 << 3 yields 〈x, y,⊥,⊥,⊥〉. The operation
(·) takes a bit-vector and a Boolean variable and performs scalar multiplication,
i.e., ak · x = 〈ak ∧ x, . . . , a1 ∧ x〉. In the sequel the operator (·) binds stronger
than <<, i.e., a · x << 2 abbreviates (a · x) << 2.

The product of two bit-vectors with m and n bits has m+ n bits.

Definition 14. For bit-vectors am and bn we define:

am ×N bn :=
(
(am · b1 << 0) +N · · ·+N (am · bn << (n− 1))

)
m+n

In the following example we demonstrate multiplication.

Example 15. Let a = 〈#,⊥,#〉 and b = 〈#,#,⊥〉, i.e., we compute 5×N 6 = 30.
The first step below unfolds Definition 14. Then the scalar multiplications are
evaluated before shifting is performed. After addition (using +N) the sum is
restricted to six bits.

a×N b =
(
(a · ⊥ << 0) +N (a · # << 1) +N (a · # << 2)

)
6

=
(
(〈⊥,⊥,⊥〉 << 0) +N (a << 1) +N (a << 2)

)
6

=
(
〈⊥,⊥,⊥〉+N 〈#,⊥,#,⊥〉+N 〈#,⊥,#,⊥,⊥〉

)
6 = 〈⊥,#,#,#,#,⊥〉

If-then-else is an abbreviation, i.e., x ? a :b := (a·x)+N (b·¬x). This expression
evaluates to a if x is true and to b otherwise. We omit its straightforward redef-
initions when considering arithmetic over Z, Q, and R. Note that this operator
can encode the maximum of two numbers, i.e., max(a,b) := a >N b ?a :b.

A.2 Arithmetic over Z

We represent integers using two’s complement which allows a straightforward
encoding of arithmetic operations. For a k-bit number the most significant bit
denotes the sign, e.g., ak = 〈ak, . . . , a1〉 with sign ak and bits ak−1, . . . , a1. Sign
# indicates negative values. Again some definitions expect operands to be of
equal bit-width. This is accomplished by implicitly sign-extending the shorter
operand. The operation (·)k is abused for both sign-extending and discarding
bits, e.g., 〈⊥,#〉4 = 〈⊥,⊥,⊥,#〉, 〈#,#〉4 = 〈#,#,#,#〉, and 〈#,#,#〉2 =
〈#,#〉. The integer represented by the bit-vector does not change when sign-
extending. Similar to the case for N, a bit-vector ak can be restricted to m bits.
If the dropped bits take the same value as the sign, then ak and am denote the
same number. Adding a side constraint ak ↔ ai for m � i � k allows to proceed
with am instead of ak.

Comparisons are defined based on the corresponding operations over N.
For >Z a separate check on the sign is needed, i.e., a is greater than b if b
is negative while a is not and otherwise the bits are compared using >N. For
+Z and ×Z numbers are first sign-extended before the corresponding operation
over N is employed. Superfluous bits are discarded afterwards.
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Definition 16. The operations >Z, =Z, +Z, and ×Z are defined as follows:

ak >Z bk :=
(
¬ak ∧ bk

)
∨
(
(ak → bk) ∧ ak−1 >N bk−1

)
ak =Z bk := ak =N bk

ak +Z bk := (ak+1 +N bk+1)k+1

am ×Z bn := (am+n ×N bm+n)m+n

Subtraction is encoded using addition and two’s complement, i.e., a −Z b :=
a +Z tcZ(b) with tcZ(·) as defined below.

Definition 17. For a bit-vector ak we define ones’ and two’s complement as:

oc(ak) := 〈¬ak, . . . ,¬a1〉 tcZ(ak) :=
(
oc(ak+1) +N 〈#〉

)
k+1

Ones’ complement flips all bits and two’s complement computes ones’ comple-
ment incremented by one. To avoid a case distinction on the sign for two’s
complement the operand first is sign-extended by one auxiliary bit. After com-
puting ones’ complement, one is added and then the overflow bit is discarded as
shown in the next example.

Example 18. Since −2k can be represented in k bits but 2k cannot, tcZ(ak) must
have k+1 bits (recall that we take overflows into account). For two’s complement
of 0 it is essential to first sign-extend the operand and then restrict the result
to k + 1 bits. We demonstrate this with 0 represented by two bits, using an
additional bit for the sign:

tcZ(〈⊥,⊥,⊥〉) =
(
oc(〈⊥,⊥,⊥〉4) +N 〈#〉

)
4 =

(
oc(〈⊥,⊥,⊥,⊥〉) +N 〈#〉

)
4

=
(
〈#,#,#,#〉+N 〈#〉

)
4 =

(
〈#,⊥,⊥,⊥,⊥〉

)
4 = 〈⊥,⊥,⊥,⊥〉

Next we calculate two’s complement of −4 which evaluates to 4:

tcZ(〈#,⊥,⊥〉) =
(
oc(〈#,⊥,⊥〉4) +N 〈#〉

)
4 =

(
oc(〈#,#,⊥,⊥〉) +N 〈#〉

)
4

=
(
〈⊥,⊥,#,#〉+N 〈#〉

)
4 =

(
〈⊥,⊥,#,⊥,⊥〉

)
4 = 〈⊥,#,⊥,⊥〉

The next example illustrates addition/subtraction and multiplication.

Example 19. We compute 5−Z 2 = 3. The sequence below translates subtraction
(−Z) into addition (+Z) in the first step. Then two’s complement of 2 is calcu-
lated. Afterwards addition for integers is performed by first sign-extending both
operands by one additional bit and then performing addition for naturals (+N).
After this step the superfluous carry bit is disregarded, i.e.,

〈⊥,#,⊥,#〉−Z 〈⊥,#,⊥〉 = 〈⊥,#,⊥,#〉+Z tc(〈⊥,#,⊥〉)
= 〈⊥,#,⊥,#〉+Z 〈#,#,#,⊥〉 =

(
〈⊥,#,⊥,#〉5 +N 〈#,#,#,⊥〉5

)
5

=
(
〈⊥,⊥,#,⊥,#〉+N 〈#,#,#,#,⊥〉

)
5 =

(
〈#,⊥,⊥,⊥,#,#〉

)
5

= 〈⊥,⊥,⊥,#,#〉.
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Multiplication is similar, i.e., both operands am and bn are first sign-extended
to have m + n bits. After multiplication (×N) only the relevant m+ n bits are
taken. We demonstrate multiplication by computing −2×Z 5 = −10:

〈#,#,⊥〉 ×Z 〈⊥,#,⊥,#〉 =
(
〈#,#,⊥〉7 ×N 〈⊥,#,⊥,#〉7

)
7

=
(
〈#,#,#,#,#,#,⊥〉×N 〈⊥,⊥,⊥,⊥,#,⊥,#〉

)
7

=
(
〈⊥,⊥,⊥,⊥,#,⊥,⊥,#,#,#,⊥,#,#,⊥〉

)
7 = 〈#,#,#,⊥,#,#,⊥〉

B Matrix Interpretations over the Reals

This section unifies two termination criteria for rewrite systems—matrix in-
terpretations [13, 20] and polynomial interpretations over the non-negative re-
als [24,25]—to obtain matrix interpretations over the reals.

B.1 Preliminaries

We assume familiarity with the basics of rewriting [4] and termination [32].
A signature F is a set of function symbols with fixed arities. Let V denote

an infinite set of variables disjoint from F . Then T (F ,V) forms the set of terms
over the signature F using variables from V . Next we shortly recapitulate the
key features of the dependency pair framework [2,17,19]. Let R be a finite TRS
over a signature F . Function symbols that appear as a root of a left-hand side
are called defined. The signature F is extended with dependency pair symbols
f � for every defined symbol f , where f � has the same arity as f , resulting in
the signature F �. If l → r ∈ R and t is a subterm of r with a defined root
symbol that is not a proper subterm of l then the rule l� → t� is a dependency
pair of R. Here l� and t� are the result of replacing the root symbols in l and t
by the corresponding dependency pair symbols. The dependency pairs of R are
denoted by DP(R).

A DP problem (P ,R) is a pair of TRSs P and R such that the root symbols
of rules in P do neither occur in R nor in proper subterms of the left- and
right-hand sides of rules in P . The problem is said to be finite if there exists no
infinite sequence s1 →P t1 →∗

R s2 →P t2 →∗
R · · · such that all terms t1, t2, . . .

are terminating with respect to R. The main result underlying the dependency
pair approach states that termination of a TRS R is equivalent to finiteness of
the DP problem (DP(R),R).

To prove a DP problem finite, a number of DP processors have been developed.
DP processors are functions that take a DP problem (P ,R) as input and return
a set of DP problems as output. In order to be employed for proving termination
DP processors must be sound, i.e., if all DP problems returned by a DP processor
are finite then (P ,R) is finite.

Reduction pairs provide a standard approach for obtaining sound DP pro-
cessors. Formally, a reduction pair (�, >) consists of a rewrite pre-order �
(a pre-order on terms that is closed under contexts and substitutions) and a
well-founded order > that is closed under substitutions such that the inclusion
> · � ⊆ > (compatibility) holds. Here · denotes composition of relations.
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Theorem 20 (cf. [2,17,19]). Let (�, >) be a reduction pair. The processor that
maps a DP problem (P ,R) to {(P \ >,R)} if P ⊆ � ∪ > and R ⊆ � and to
{(P ,R)} otherwise is sound. 2�

Next we address how to obtain reduction pairs. For a signature F an F -algebraA
consists of a carrier A and an interpretation fA for every f ∈ F . If F is irrelevant
or clear from the context we call an F -algebra simply algebra.

Definition 21. An F-algebra A over the non-empty carrier A together with two
relations � and > on A is called weakly monotone if fA is monotone in all its
coordinates with respect to �, > is well-founded, and > ·� ⊆ >.

Let A be an algebra over a non-empty carrier A. An assignment α for A is a
mapping from the set of term variables V to A. Interpretations are lifted from
function symbols to terms, using assignments, as usual. The induced mapping is
denoted by [α]A(·). For two terms s and t we define s >A t if [α]A(s) > [α]A(t)
holds for all assignments α. The comparison �A is similarly defined. Whenever
α is irrelevant we abbreviate [α]A(s) to [s]A.

Weakly monotone algebras give rise to reduction pairs.

Theorem 22. If (A,�, >) is weakly monotone then (�A, >A) is a reduction
pair.

Proof. Immediate from [13, Theorem 2, part 2] which is a stronger result. 2�

B.2 Matrix Interpretations

Next we present a DP processor based on matrix interpretations over the re-
als. Formally, matrix interpretations are weakly monotone algebras (M,�, >)
where M is an algebra over some carrier Md for a fixed d ∈ N>0. In the se-
quel we consider M = R�0. To define the relations � and > that compare
elements from Md, i.e., vectors with non-negative real entries, we must fix how
to compare elements from M first. The obvious candidate >R is not suitable
because it is not well-founded. As already suggested in earlier works on poly-
nomial interpretations [21, 24, 25], >R can be approximated by >δ

R defined as
x >δ

R y := x − y �R δ for x, y ∈ R and any δ ∈ R>0. The next lemma shows
that >δ

R has the desired property.

Lemma 23. The order >δ
R is well-founded on R�0 for any δ ∈ R>0.

Proof. Obvious. 2�

With the help of >δ
R it is now possible to define a well-founded order on Md

similar as in [13].

Definition 24. For vectors u and v from Md we define:

u � v := ui �R vi for 1 � i � d u >δ v := u1 >
δ
R v1 and u � v
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Next the shape of the interpretations is fixed. For an n-ary function symbol
f ∈ F � we consider linear interpretations fMd(x1, . . . ,xn) = F1x1+· · ·+Fnxn+f
where F1, . . . , Fn ∈ Md×d and f ∈ Md if f ∈ F and F1, . . . , Fn ∈ M1×d and
f ∈M if f ∈ F � \F . (As discussed in [13], using matrices of a different shape for
dependency pair symbols reduces the search space while preserving the power
of the method.) Before addressing how to compare terms with respect to some
interpretation we fix the comparison of matrices. Let m,n ∈ N. For B,C ∈
Mm×n we define:

B � C := Bij �R Cij for all 1 � i � m, 1 � j � n

Because of the linear shape of the interpretations, for a rewrite rule l → r with
variables x1, . . . , xk, matrices L1, . . . , Lk, R1, . . . , Rk and vectors l and r can be
computed such that

[α]M(l) = L1x1 + · · ·+ Lkxk + l (4)
[α]M(r) = R1x1 + · · ·+Rkxk + r (5)

where α(x) = x for x ∈ V . The next lemma states how to test s >δ
M t (i.e.,

[α]M(s) >δ [α]M(t) for all assignments α) and s �M t effectively.

Lemma 25. Let l → r be a rewrite rule with [α]M(l) and [α]M(r) as in (4)
and (5), respectively. Then for any δ ∈ R>0

– l �M r if and only if Li � Ri (1 � i � k) and l � r,
– l >δ

M r if and only if Li � Ri (1 � i � k) and l >δ r.

Proof. Immediate from the proof of [13, Lemma 4]. 2�

Matrix interpretations over the reals yield weakly monotone algebras.

Theorem 26. Let F be a signature, M = R�0, and M an F-algebra over the
carrier Md for some d ∈ N>0 with fMd of the shape described above for all
f ∈ F . Then for any δ ∈ R>0 the algebra (M,�, >δ) is weakly monotone.

Proof. The interpretation functions are monotone with respect to � because
of the non-negative carrier. From Definition 24 it is obvious that >δ is well-
founded (on the carrier Md) since >δ

R is well-founded on R�0 for any δ ∈ R>0.
The latter holds by Lemma 23. The last condition for a weakly monotone algebra
is compatibility, i.e., >δ · � ⊆ >δ, which trivially holds. 2�

Matrix interpretations yield reduction pairs due to Theorems 26 and 22, making
them suitable for termination proofs in the dependency pair setting.

Corollary 27. If (M,�, >δ) is a weakly monotone algebra then (�M, >δ
M) is

a reduction pair. 2�

We demonstrate matrix interpretations on a simple example.
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Example 28. The DP problem ({f�(s(x), s(y)) → f�(x, y)},∅) can be solved by
the following interpretation of dimension 2 with δ = 1:

f�M2 (x,y) =
(
1 0

)
x sM2(x) =

(
1 0
0 1

)
x +

(√
2
0

)
We have [f�(s(x), s(y))]M =

(
1 0

)
x+

√
2 >1

(
1 0

)
x = [f�(x, y)]M. By Lemma 25

and Definition 24 we get
(
1 0

)
�

(
1 0

)
and

√
2 >1

R 0. The latter holds since√
2− 0 �R 1.

Since δ influences if a rule can be oriented strictly or not, it cannot be chosen
arbitrarily. E.g., the interpretation from Example 28 with δ = 2 can no longer
orient the rule strictly since

√
2 �>2

R 0. For DP problems containing only finitely
many rules (this is the usual setting) a suitable δ can easily be computed. The
reason is that for such DP problems only finitely many rules are involved in the
strict comparison, i.e., to test for a rule s→ t if s >δ

M t the comparison s >δ t
is needed (cf. Lemma 25) which boils down to s1 >δ

R t1 (cf. Definition 24). Since
s1 − t1 �R δ is tested for only finitely many rules s → t, the minimum of all
s1−t1 is well-defined and provides a suitable δ. The next lemma (generalizing [24,
Section 5.1] to matrices) states that actually there is no need to compute δ
explicitly.

Lemma 29. Let (P ,R) be a DP problem. If P contains finitely many rules
then δ need not be computed.

Proof. The discussion preceding Lemma 29 allows to obtain a δ ∈ R>0 such that
for every s→ t ∈ P we have s1 >δ

R t1 if and only if s1 >R t1. Hence for all strict
comparisons that occur the relations >δ

R and >R coincide. Consequently it is
safe if an implementation uses >R instead of >δ

R in Definition 24 and ignores the
exact δ. 2�

This section is concluded with some comments on automating matrix interpre-
tation, i.e., the problem to find for a given DP problem a matrix interpreta-
tion that achieves some progress in the termination proof. Implementing matrix
interpretations is a search problem. After fixing the dimension d, for every n-
ary function symbol f we obtain matrices F1, . . . , Fn and a vector f filled with
arithmetic variables. Lifting addition, multiplication, and comparisons from co-
efficients to matrices as usual allows to interpret terms. Comparing the term
interpretations using Lemma 25 yields an encoding of the DP processor from
Theorem 20. For details see [13, 30]. From a model returned by the underlying
solver the rules which are deleted by the DP processor and the corresponding
(part of the) termination proof can be determined. We stress that for matrix
interpretations (and many other termination criteria) a plain YES/NO answer
from the underlying SMT solver is not sufficient whenever a (modular) proof
should be constructed.
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Abstract. A rational and selfish environment may have an incentive
to cheat the system it interacts with. Cheating the system amounts to
reporting a stream of inputs that is different from the one correspond-
ing to the real behavior of the environment. The system may cope with
cheating by charging penalties to cheats it detects. In this paper, we for-
malize this setting by means of weighted automata and their resilience
to selfish environments. Automata have proven to be a successful for-
malism for modeling the on-going interaction between a system and its
environment. In particular, weighted finite automata (WFAs), which as-
sign a cost to each input word, are useful in modeling an interaction
that has a quantitative outcome. Consider a WFA A over the alphabet
Σ. At each moment in time, the environment may cheat A by reporting
a letter different from the one it actually generates. A penalty function
η : Σ × Σ → IR≥0 maps each possible false-report to a penalty, charged
whenever the false-report is detected. A detection-probability function
p : Σ×Σ → [0, 1] gives the probability of detecting each false-report. We
say that A is (η, p)-resilient to cheating if 〈η, p〉 ensures that the mini-
mal expected cost of an input word is achieved with no cheating. Thus,
a rational environment has no incentive to cheat A.

We study the basic problems arising in the analysis of this setting. In
particular, we consider the problem of deciding whether a given WFA
A is (η, p)-resilient with respect to a given penalty function η and a
detection-probability function p; and the problem of achieving resilience
with minimum resources, namely, given A and η, finding the minimal
(with respect to

∑
σ,σ′ η(σ, σ′) · p(σ, σ′)) detection-probability function

p, such that A is (η, p)-resilient. While for general WFAs both problems
are shown to be PSPACE-hard, we present polynomial-time algorithms
for deterministic WFAs.

1 Introduction

The environment of modern systems often consists of other systems, having ob-
jectives of their own. For example, an e-commerce applications interacts with
sellers and buyers. A seller may provide a non-reliable description of the goods
he is selling. Furthermore, sellers may provide false feedback and twisted rating
of their competitors. Buyers may commit to some transaction but not accom-
plish it, or may provide a bid that is lower than the real value they are willing
to pay, hoping to win even with it. As another example, the environment of
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various service-providing systems are clients that wish to minimize their pay-
ment. Clients’ payments may be based on their self-reports, which are usually
screened but may be false. In the same way, biased users may affect the quality
of recommendation systems for various products or services.

The above examples demonstrate the fact that environments have two types
of behaviors: the truthful behavior – the one they would produce if they follow
their protocol, and the reported behavior – the one they actually output, hoping
it would lead to a better outcome for them. While the design of systems cannot
assume that the environment would take its truthful behavior, we can assume
that environments are rational, in the sense they always take a behavior that
maximizes their outcome.

Mechanism design is a field in game theory and economics studying the design
of games for rational players. A game is incentive compatible if no player has an
incentive to deviate from his truthful behavior [NR99, NRTV07]. The outcome
of traditional games depend on the final position of the game. In contrast, the
systems we want to reason about maintain an on-going interaction with their
environment [HP85], and reasoning about their behavior refer not to their final
state (in fact, much of the research in the area considers non-terminating sys-
tems, with no final state) but rather to the language of computations that they
generate. In [FKL10], the authors study rational synthesis, where the synthe-
sized systems are guaranteed to satisfy their specifications when they interact
with rational environments (rather than with hostile environments that do not
have objectives other than to fail the system [PR89]). In this paper, we suggest
and study a possible model for reasoning about incentive capacity in the con-
text of on-going behaviors and quantitative properties, or formal power series.
Reporting of trustworthy information is an essential component also in service-
providing systems.

Automata have proven to be a successful formalism for modelling on-going
behaviors. Consider a system with a set P of atomic propositions. Each assign-
ment to the atomic propositions corresponds to a letter σ in the alphabet 2P .
Accordingly, a computation of the system, which is a sequence of such assign-
ments, is a word over the alphabet 2P , and a specification for the system is a
language over this alphabet, describing the desired properties of the system. By
translating specifications to automata, it is possible to reduce questions about
systems and their specifications to questions about automata [VW94]. For exam-
ple, a system S satisfies a specification ψ if the language that contains exactly all
the computations generated by S is contained in the language of an automaton
that accepts exactly all words satisfying ψ.

A boolean language maps words to true or false. A qualitative language maps
words to values from a richer domain [CCH+05, Hen07]. A Weighted automaton
A on finite words (WFAs, for short) [Eil74, SS78, Moh97, DKe09] defines a
quantitative language L : Σ∗ → IR≥0 ∪ {∞}. Technically, each transition of A
has a traversal cost, each state has an acceptance cost, and the cost of a run is
the sum of the costs of the transitions taken along the run plus the acceptance
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cost of its last state. The cost of a word is then the minimum cost over all runs
on it (note that the cost may be infinite).

A rational and selfish environment may have an incentive to cheat the WFA
and report a word different from the one generated by its truthful behavior. The
WFA may cope with cheating by charging penalties to cheats it detects. Formally,
at each moment in time, the environment may cheat the WFA by reporting a let-
ter different from the one its truthful behavior generates. A detection-probability
function p : Σ ×Σ → [0, 1] gives the probability of detecting each false-report.
A penalty function η : Σ × Σ → IR≥0 gives the penalty charged whenever a
particular false-report is detected. Thus, when the environment reports that a
letter σ is σ′, then the WFA detects the cheating with probability p(σ, σ′), in
which case the environment is charged η(σ, σ′). The expected cost of a word w is
then the minimum (over all words w′ of the same length as w) cost of w′ plus the
expected cost of reporting w to be w′. We say that a WFA A is (η, p)-resilient
to cheating if 〈η, p〉 ensures that, for all words, the above minimal expected cost
is achieved in a cheat-free run. Thus, a dominant strategy for the environment
is one that does not cheat.

We study the basic problems arising in the analysis of this setting. First, we
observe that, by linearity of expectation, a detection probability function p and
a penalty function η can be combined to a single expected-fee function θ = η ◦ p;
that is, for all σ, σ′ ∈ Σ, we have θ(σ, σ′) = η(σ, σ′) ·p(σ, σ′). Accordingly, we can
study θ-resilience, which simplifies the probabilistic reasoning. Second, we make
use of the fact it is possible to construct, given a WFA A and an expected-fee
function θ, a WFA Cheat(A, θ) that takes cheating into account and in which
the cost of a word is its minimal possible cost (achieved by a best cheating
strategy). We show that θ-resilience to cheating is a semantic property. Thus,
given a weighted language L : Σ∗ → IR≥0 ∪ {∞}, and a penalty function θ,
then either all WFAs for A are θ-resilient to cheating, or none of them is. It
follows that the natural problem of translating a given WFA A that need not
be θ-resilient to cheating to an equivalent WFA that is θ-resilient to cheating is
not interesting, as equivalent WFAs have the same resilience.

With these observations and constructions, we turn to study the practical
problems of the setting. From the environment’s point of view, we consider the
problem of finding, given A, θ, and a word w ∈ Σ∗, a word w′ such that the
environment can minimize the cost of w in A by reporting it to be w′. We show
that the problem can be reduced to the problem of finding a shortest path in a
graph, which can be solved in polynomial time [Dij59].

We then turn to study problems from the designer’s point of view. We start
with the problem of deciding whether a given WFA A is θ-resilient to cheating
with respect to a given expected fee function θ. We show that the problem is
PSPACE-hard, but present a polynomial-time solution for the case A is deter-
ministic. Our solution is based on dynamic programming, taking into account
words of increasing lengths. In particular, we show that cycles along which cheat-
ing is beneficial (and can therefore lead to an unbounded incentive to cheat) can
be detected after quadratically many iterations.
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A system with no limits on penalties and with unbounded resources can pre-
vent cheating by fixing a high expected-fee function. In practice, penalties may
be limited by an external authority, and increasing the probability of detecting
cheats requires resources. Consider a WFA A and two expected-fee functions θ1
and θ2 such that θ1 ≤ θ2 (that is θ1(σ, σ′) ≤ θ2(σ, σ′) for all σ, σ′ ∈ Σ). If A
is θ1-resilient to cheating, then A is clearly also θ2-resilient to cheating, yet θ1
achieves resilience more efficiently. In particular, θ1 can be obtained from θ2 by
reducing the probability of cheat detection, hence saving on resources required
for cheat detection. Recall that θ = η◦p, for a penalty function η and a detection
probability function p. Assuming that the penalty function η is determined by
an external authority, and that system’s resources are allocated to increase the
detection probability, we consider the following problem of minimal resources
resilience: Given a WFA A and a penalty function η, find a probability detec-
tion function p such that A is (η ◦ p)-resilient, and the detection budget, given
by

∑
σ,σ′ η(σ, σ′)p(σ, σ′), is minimal. Note that the probabilities in our objective

function are weighted by η. This reflects the fact that detecting a cheat with
a high penalty tends to require high resources. Indeed, in practice, the higher
is the responsibility of a guard, the higher is his salary. We study the minimal
resources resilience problem and show that it is PSPACE-hard. As in resilience
testing, the problem is easier in the deterministic case, for which we present a
polynomial-time solution, based on describing the problem as a linear program.
Essentially, the constraints of the linear program are induced by the restrictions
used in the testing algorithm, with the expected-fee values being variables. The
same method can be used in order to solve additional minimal-budget problems,
with any desired linear objective function over the detection-probability function
or the penalty function.

We also consider two variants of the setting. In the rising-penalty variant, the
expected penalty for cheating increases with the number of cheats. This variant
reflects the realistic response of systems to user’s false report: allocating more
resources to cheat detection, or formally, increasing the detection probability
with each detected cheat. In the bounded cheating variant the number of times the
environment can cheat or the total budget it can invest in penalties is bounded.

2 Preliminaries

In this section we give a formal description of the model we consider, and present
several observations and constructions that will be used throughout the paper.

2.1 Weighted Finite Automaton

Given an alphabet Σ, a weighted language is a function L : Σ∗ → IR≥0 ∪ {∞}
mapping each word in Σ∗ to a positive (possibly ∞) cost. A weighted finite
automaton (WFA, for short) is A = 〈Σ,Q,Δ, c,Q0, τ〉, where Σ is a finite input
alphabet, Q is a finite set of states, Δ ⊆ Q × Σ × Q is a transition relation,
c : Δ → IR≥0 is a cost function, Q0 ⊆ Q is a set of initial states, and τ : Q →
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IR≥0 ∪ {∞} is a final cost function. A transition d = 〈q, σ, p〉 ∈ Δ (also written
Δ(q, σ, p)) can be taken when reading the input letter σ ∈ Σ, and it causes A to
move from state q to state p with cost c(d). The transition relation Δ induces a
transition function δ : Q×Σ → 2Q, where for a state q ∈ Q and a letter σ ∈ Σ,
we have δ(q, σ) := {p : Δ(q, σ, p)}. We extend δ to sets of states, by letting
δ(S, a) :=

⋃
q∈S δ(q, a), and recursively to words in Σ∗, by letting δ(q, ε) = q,

and δ(q, u · σ) := δ(δ(q, u), σ), for every u ∈ Σ∗ and σ ∈ Σ.
Note that a WFA A may be nondeterministic in the sense that it may have

many initial states, and the transition function may lead to several successor
states. If |Q0| = 1 and for every state q ∈ Q and letter σ ∈ Σ we have |δ(q, σ)| ≤
1, then A is a deterministic WFA (for short, DWFA).

For a word w = w1 . . . wn ∈ Σ∗, a run of A on w is a sequence r =
r0, r1, . . . , rn ∈ Qn+1, where r0 ∈ Q0 and for every 1 ≤ i ≤ n, we have
Δ(ri−1, wi, ri). The cost of a run is the sum of the costs of the transitions that
constitute the run, along with the final cost. 1 Formally, let r = r0, r1, . . . , rn
be a run of A on w, and let d = d1 . . . dn ∈ Δ∗ be the corresponding sequence
of transitions. The cost of r is cost(A, r) =

∑n
i=1 c(di) + τ(rn). For two indices

1 ≤ j1 < j2 ≤ n, we use cost(A, r, j1, j2) to denote the cost of the sub-run
leading from qj1−1 to qj2 . Thus, cost(A, r, j1, j2) =

∑j2
i=j1

c(di) The cost of w
in A, denoted cost(A, w), is the minimal cost over all runs of A on w. Thus,
cost(A, w) = min{cost(A, r) : r is an accepting run of A on w}. Note that while
WFAs do not have a set of acceptance states, runs that reach states q for which
τ(q) = ∞ have cost ∞, thus the function τ can be viewed as a refinement of
the partition of the state space to accepting and rejecting states. The weighted
language of A, denoted L(A), maps each word w ∈ Σ∗ to cost(A, w).

We assume that all states q ∈ Q are reachable in A. We assume that all states,
except maybe the initial states are not empty, in the sense they map at least one
word to a finite cost. Thus, for all q ∈ Q there is w ∈ Σ∗ such that the cost of
w in A with initial state q is in IR. Finally, given two WFAs A and A′, we say
that A is cheaper than A′, denoted A * A′, if for every word w ∈ Σ∗, we have
that cost(A, w) ≤ cost(A′, w).

2.2 Input Cheating and Resilience of Automata

Recall that a WFA induces a weighted language that maps each word to a cost
in IR≥0∪{∞}. Words may cheat the automaton hoping to be mapped to a lower
cost: When the automaton runs on a word w = w1 . . . wn ∈ Σ∗, then in each
position 1 ≤ i ≤ n, the word can cheat the automaton and report that the letter
wi is a different letter w′

i ∈ Σ. Cheating has a price, and the setting includes
a penalty function η : Σ × Σ → IR≥0, satisfying η(σ, σ) = 0, and a detection-
probability function p : Σ × Σ → [0, 1] indicating the probability of catching
1 In general, a WFA may be defined with respect to any semiring 〈IK,⊕,⊗, 0, 1〉. The

cost of a run is then the semiring product of the weights along it, and the cost of a
word is the semiring sum over all runs on it. For our purposes, we focus on weighted
automata defined with respect to the min-sum semiring, 〈IR≥0 ∪ {∞}, min, +,∞, 0〉
(sometimes called the tropical semiring), as defined above.
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each specific cheat. Formally, whenever σ is reported to be σ′, the automaton
detects the cheating with probability p(σ, σ′), in which case it charges η(σ, σ′).
The expected penalty for reporting σ to be σ′ is therefore η(σ, σ′) · p(σ, σ′).

For two words w = w1, w2, . . . , wn and w′ = w′
1, w

′
2, . . . , w

′
n, the expected cost

of reporting w to be w′ is
∑n

i=1 η(wi, w
′
i) · p(wi, w

′
i). Given a WFA A, a penalty

function η, a detection-probability function p, and two words w,w′ such that
|w| = |w′|, the expected cost of w in A when w is reported to be w′, denoted
expected faked cost(A, η, p, w,w′), is cost(A, w′)+

∑n
i=1 η(wi, w

′
i) · p(wi, w

′
i). Fi-

nally, expected best cost(A, η, p, w) is the lowest expected cost with which w can
be read by A (with or without cheating). Thus, expected best cost(A, η, p, w) =
minw′:|w′|=|w| expected faked cost(A, η, p, w,w′). We refer to the word w′ with
which the minimum is achieved as the cheating pattern for w.

We say that A is (η, p)-resilient to cheating if it is not worthwhile to cheat
A given the penalty function η and the detection-probability function p. For-
mally, A is (η, p)-resilient to cheating if for every input word w, it holds that
cost(A, w) = expected best cost(A, η, p, w).

Studying resilience of automata, it is convenient to consider a non-probabilistic
setting in which cheats are always detected. We use 1̂ denote the detection-
probability function satisfying 1̂(σ, σ′) = 1 for all σ, σ′ ∈ Σ. As argued in
Theorem 1 below, the probabilistic setting can be easily reduced to the non-
probabilistic one. The theorem follows easily from the linearity of expectation.

Theorem 1. Consider a WFA A, penalty function η, and detection-probability
function p. Let θ = η ◦ p. Thus, θ : Σ ×Σ → IR≥0 is such that for all σ, σ′ ∈ Σ,
we have that θ(σ, σ′) = η(σ, σ′) · p(σ, σ′). Then, for every w ∈ Σ∗, we have
expected best cost(A, η, p, w) = expected best cost(A, θ, 1̂, w).

Thus, by considering the penalty function θ = η ◦ p, we can reduce a proba-
bilistic setting with η and p to a non-probabilistic one. The cost of a word in
A is still an expected one, but for simplicity of notations, we use the terms
faked cost(A, θ, w, w′) and best cost(A, θ, w), which are analogue to the terms
expected faked cost(A, η, p, w,w′) and expected best cost(A, η, p, w), and refer to
θ-resilience to cheating, rather than (η, p)-resilience.

Example 1. Consider the DWFA A in Figure 1. Every state qi in the figure is
labelled by its final cost. For example, τ(q4) = 4, and τ(q3) = x, for some x ∈ IR.
Every transition is labelled by the letter and cost associated with it. For example,
Δ(q2, b, q5) and c(q2, b, q5) = 1. Assume that the penalty function is uniform and
for all σ, σ′ ∈ {a, b, c} with σ �= σ′, we have θ(σ, σ′) = 2.

The DWFA A demonstrates two of the phenomenon that makes the analysis
of cheating challenging. First, testing an WFA for θ-resilience (even a DWFA,
and even with a uniform θ) may not be local. In our example, if we take x = 0,
then it is easy to see that for every three states q, q′, and q′′, and two letters
σ and σ′, it holds that c(q, σ, q′) + τ(q′) ≤ c(q, σ′, q′′) + τ(q′′) + θ(σ, σ′); that
is, for all words of length 1 it is not beneficial to cheat, independent of the
initial state. Clearly, this is a necessary condition for A to be θ-resilient: if
there are q, q′, q′′, σ, and σ′ that violate the condition, then the word w · σ
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for which δ(q0, w) = q, has faked cost(A, θ, w · σ,w · σ′) < cost(A, w · σ), thus
best cost(A, θ, w · σ) < cost(A, w · σ) and w · σ has an incentive to cheat and
pretend to be w · σ′. This condition, however, is not sufficient. For example,
cost(A′, aa) = 8 while faked cost(A, θ, aa, bb) = 2 + 2θ(a, b) = 6. That is, aa has
an incentive to cheat and pretend to be bb.

Second, A demonstrates that cheating may be beneficial only for words
that are unboundedly long. To see this, note that cost(A, bck) = k + 1 and
cost(A, ck+1) = x + 1. Since cheating in the first letter costs 2, we have that
best cost(A, θ, bck) = min(k + 1, x + 3) and best cost(A, θ, ck+1) = min(k +
3, x+1). Thus, the larger x is, the longer are the shortest input words that have
an incentive to cheat.
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a,3     c,1

a,0 
b,0 
c,0

a,2

b,1
a,4 
b,4 
c,4

a,4 
b,4 
c,4

b,4     c,4

q0,0

q1,0

q2,0

q3,x

q4,4

q5,0

a,2

b,1

c,1

a,3     c,1

a,0 
b,0 
c,0

a,2

b,1
a,4 
b,4 
c,4

a,4 
b,4 
c,4
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Fig. 1. The DWFA A

A basic challenge in the setting of rational environments is to design systems in
which the environment has no incentive to cheat. In our setting, one could ask
whether a given WFA A that is not θ-resilient to cheating can be modified to an
equivalent WFA A′ that is θ-resilient to cheating. Theorem 2 below states that
this is impossible.

Theorem 2. Resilience to cheating is a semantic property. That is, given a
weighted language L : Σ∗ → IR≥0 ∪ {∞} and a penalty function θ, either all
WFAs for L are θ-resilient to cheating, or none of them is θ-resilient to cheating.

Note that Theorem 2 applies for both nondeterministic and deterministic WFAs.
Thus, nondeterminism cannot help a WFA to cope with cheats. Note also that
Theorem 2 considers a given penalty function θ and does not include the pos-
sibility of achieving resilience by modifying the penalty function, possibly using
the same budget. We will get back to this problem in Section 4.

2.3 The Cheating-Allowed Automaton

Reasoning about a WFA A and its resilience to cheating, one has to take into
account the infinitely many possible cheating patterns that A should be resilient
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too. In this section we show that these patterns can be modelled by a single
WFA obtained from A by adding transitions that mimics cheating.

Theorem 3. Consider a WFA A and a penalty function θ : Σ × Σ → IR≥0.
There is a WFA A′, with the same state space as A, such that cost(A′, w) =
best cost(A, θ, w).

Proof. Let A = 〈Σ,Q,Δ, c, q0, τ〉. We define A′ = 〈Σ,Q,Δ′, c′, q0, τ〉, where the
transition relation Δ′ and the cost function c′ are defined as follows. For every
two states q, q′ ∈ Q, if there is σ′ ∈ Σ such that Δ(q, σ′, q′), then Δ′(q, σ, q′)
for every σ ∈ Σ, and c′(q, σ, q′) = minσ′:Δ(q,σ′,q′){c(q, σ′, q′) + θ(σ, σ′)}. That is,
if the set Σ′ of letters with which A can move from q to q′ is not empty, then
A′ can move from q to q′ with all letters – by reporting them to be some letter
in Σ′. The cost of this transition for a letter σ is calculated by taking the most
beneficial replacement from Σ′: the one that minimizes the sum of the cost of
the transition and the cost of cheating.

It is not hard to see the correspondence between the nondeterminism of A′

and the choices of cheating patterns. Formally, for every word w, a cheating
pattern w′ for w induces a run of A′ on w whose cost is faked cost(A, θ, w, w′).
Likewise, every run of A′ on w induces a word w′ that can serve as a cheating
pattern for w. Hence, since the cost of w in A′ is the minimal cost of some run
of A′ on w, we have that best cost(A, θ, w) = cost(A′, w), and we are done.

Given a WFA A and a penalty function θ, we refer to the WFA A′ constructed
in Theorem 3 as Cheat(A, θ). For example, the WFA in Figure 2 is Cheat(A, θ),
for the WFA A described in Figure 1 and θ(σ, σ′) = 2 for all σ, σ′ ∈ Σ with
σ �= σ′.
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Fig. 2. The WFA A′ =Cheat(A, θ), with uniform θ = 2

Corollary 1. For every WFA A and penalty function θ, we have that A is θ-
resilient to cheating iff A * Cheat(A, θ), that is, for every word w ∈ Σ∗, we
have that cost(A, w) ≤ cost(Cheat(A, θ), w).
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Theorem 4. Given a WFA A, a penalty function θ, and a word w ∈ Σ∗, the
problem of finding best cost(A, θ, w) and a cheating pattern for it, can be solved
in polynomial time.

Proof. Given a WFA A and a word w ∈ Σ∗, it is possible to find cost(A, w) as
follows (note that we refer here to cost without cheating). If A is deterministic,
we traverse the single run of A on w and find its cost. If A is nondeterministic,
we first restrict A to runs along which w is read, and then find the cheapest such
run. Formally, we define the product Aw of A with an un-weighted automaton
with |w|+1 states whose language is {w}. The WFA Aw describes exactly all the
run of A on w and it has no cycles. We apply to Aw a shortest-path algorithm
[Dij59] and find the shortest path from an initial state to a final state.

Now, given A and θ, let A′ be Cheat(A, θ). Then, for every word w, we
have that best cost(A, θ, w) = cost(A′, w), which can be calculated as described
above. Also, the run r′ of A′ on w for which cost(A′, w) = cost(r′, w) reveals the
cheating pattern.

Limited Cheating and Rising Penalty Variants: In the above described
setting, an input word can cheat as many times as it wants. Also, the penalties
are fixed throughout the interaction. It is easy to modify the construction of
Cheat(A, θ) and, consequently, our results below, to account for variant models.
For example, by taking several copies of Cheat(A, θ), it is possible to give a
constant bound on the number of allowed cheats (the states maintain the number
of cheats detected so far) or constant bound on the budget a word can use
for cheating (the states maintain the total cheating costs detected so far). By
taking several copies of Cheat(A, θ) and modifying the costs in the different
copies, it is possible to let A increase the penalties when cheats are detected
(this corresponds to increasing either the detection-probability function or the
penalties themselves; as indeed happens in practice when cheats are detected).

3 Resilience Testing

In this section we study the problem of deciding, given a WFA A and a penalty
function θ, whether A is θ-resilient to cheating. Recall that A is θ-resilient
to cheating if cost(A, w) = best cost(A, θ, w). We show that the problem is
PSPACE-hard for WFA but can be solved in polynomial time for DWFA.

3.1 Hardness Proof for WFA

Theorem 5. Consider a WFA A and a penalty function θ. The problem of
deciding whether A is θ-resilient is PSPACE-hard.

Proof. We do a reduction from the universality problem for NFAs, proven to be
PSPACE-hard in [RS59]. Given an NFA U , we construct a WFA AU such that
AU is 0-resilient (that is, θ(σ, σ′) = 0 for all σ, σ′ ∈ Σ) iff U is universal. Note
that an automaton is 0-resilient iff no input word has an incentive to cheat even
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if cheating is free. The idea behind the construction is that words not in L(U)
would induce words that have an incentive to cheat AU . Thus, U is universal iff
no word has an incentive to cheat AU , so even the 0 penalties suffice to ensure
resilience. Formally, let U = 〈Σ,Q,Δ,Q0, F 〉, where F ⊆ Q is a set of final
states, and let a be some letter in Σ. We assume that |Σ| > 1. We define AU
to go with the letter a to a copy of U and to go with all letters Σ \ {a} to an
accepting sink (see Figure 3). Thus, AU = 〈Σ,Q∪{q0, qqcc}, Δ′, {q0}, c, τ〉, where
Δ′ = Δ∪ ({q0}×{a}×Q0)∪ ({q0}× (Σ \ {a})×{qacc})∪ ({qacc}×Σ×{qacc}).

q0,0
 U             

a,0

qacc,0

Σ-{a},0

Σ,0

q0,0
 U             

a,0

qacc,0

Σ-{a},0

Σ,0

Fig. 3. The WFA AU

Also, for all 〈q, σ, q′〉 ∈ Δ′, we have c(〈q, σ, q′〉) = 0 and for all q ∈ Q∪{q0, qqcc}
we have τ(q) = 0. It is easy to see that AU accepts (with cost 0) all words of
the form a · w, for w ∈ L(U), or of the form σ · w, for σ �= a and w ∈ Σ∗.
Accordingly, if U is universal, then AU accepts all words in Σ∗ with cost 0, and
is therefore 0-resilient. Also, if U is not universal, then there is w �∈ L(U) such
that cost(AU , a · w) = ∞, while faked cost(AU , a · w, b · w) = θ(a, b), for any
b ∈ Σ \ {a}. Hence, AU is not 0-resilient, and we are done.

Many fundamental problems about WFAs are still open. Unlike standard (non-
weighted) automata, not all weighted automata can be determinized [Moh97].
In fact, even the problem of deciding whether a given WFA has an equivalent
DWFA is open, and so are problems that use determinization in their solution,
like deciding whether A * A′ for two WFAs A and A′ [Kro94, CDH08]. We note
that the problem of deciding whether A * A′ is open even when A is a DWFA
– it is the nondeterminism in A′ that makes the problem challenging. Thus,
even for the case A is deterministic, we cannot reduce the problem of deciding
whether A * Cheat(A, θ) to a problem whose solution is known. As we describe
below, we are still able to present a polynomial solution to the problem.

3.2 A Polynomial Algorithm for DWFA

We turn to consider the case where A is deterministic. We show that in this case,
the problem of deciding whether A is θ-resilient, for a given penalty function θ,
can be solved in polynomial time. LetA = 〈Σ,Q,Δ, c, q0, τ〉 be a DWFA. Let n =
|Q|. For a given penalty function θ, let A′ = 〈Σ,Q,Δ′, c′, q0, τ〉 be Cheat(A, θ).
We describe an algorithm for deciding whether A * A′. By Corollary 1, the
latter holds iff A is θ-resilient to cheating.
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Our algorithm is similar to the algorithm for deciding whether a given DWFA
is equivalent to a WFA in which it is embodied [AKL09]. We define a sequence
of functions h0, h1, . . . : Q×Q→ IR∪{∞,−∞}, as follows. 2 Intuitively, hi(q, q′)
indicates how much a word of length at most i can gain if instead of a run of
A that leads to q it takes a run of A′ that leads to q′. This difference does not
include the final costs of q, and q′. Note that there may not be words of length
at most i along which q and q′ are reachable, in which case hi(q, q′) would be
−∞. Also, it may be that for all words w of length at most i, the cheapest run
in A′ that reads w and leads to q′ costs more than the run of A that reads w
and leads to q, in which case hi(q, q′) is negative.

It is easy to see that if for some i ∈ IN and q, q′ ∈ Q, we have that hi(q, q′) >
τ(q′) − τ(q), then there is a word of length at most i for which cost(A, w) >
cost(A′, w), thus A �* A′. We show that hi can be calculated efficiently, and
that even though the sequence of functions may not reach a fixed-point, it is
possible to determine whether A * A′ after calculating hi for i = 0, . . . , O(n2).
Intuitively, it follows from the fact that not reaching a fixed-point after O(n2)
iterations points to cycles along which the gain of A′ with respect to A is un-
bounded.

We initialize h0(q0, q0) = 0 and h0(q, q′) = −∞ for all other pairs. Indeed,
(q0, q0) is the only pair of states to which an empty word might reach on A
and A′.

The calculation of hi+1, for i ≥ 0, uses a function gi+1 : Q × Q × Σ →
IR∪ {∞,−∞}. Intuitively, gi+1(q, q′, σ) indicates how much a word of length at
most i+1 that ends with the letter σ can gain if instead of a run of A that leads
to q it takes a run of A′ that leads to q′. Then,

gi+1(q, q′, σ) = max
p,p′:Δ(p,σ,q) ∧ Δ′(p′,σ,q′)

(hi(p, p′) + c(p, σ, q) − c′(p′, σ, q′)). (1)

Thus, the calculation of gi+1(q, q′, σ) considers all pairs 〈p, p′〉 ∈ Q from which
q and q′ can be reached, respectively, when a is read. Since gi+1(q, q′, σ) is the
gain obtained by running in A′ instead of in A, we add to hi(p, p′) the cost of
the transition 〈p, σ, q〉 in A and subtract the cost of the transition 〈p′, σ, q′〉 in
A′. Now, for i ≥ 0, we have

hi+1(q, q′) = max{hi(q, q′),max
σ∈Σ

gi+1(q, q′, σ)}. (2)

For i ≥ 0 and q, q′ ∈ Q, we say that a word w witnesses hi(q, q′) if |w| ≤ i
and there is a run of A′ on w that leads to q′ and traversing its transitions costs
hi(q, q′) less than traversing the transitions of the run of A on w, which leads
to q. Note that since the functions hi ignore the final costs, the above refers to
the cost of traversing the transitions along the runs, rather than the cost of the
runs. Clearly, if hi(q, q′) is finite, then it has at least one witness.

2 In the definition of hi we use addition and subtraction on the elements of IR ∪
{∞,−∞}. For every finite x ∈ IR, we have ∞ − x = ∞, and x − ∞ = −∞. Also
∞−∞ = 0.
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We can now present the algorithm for deciding whether A * A′:

1. For i = 0, . . . , n2: Calculate hi; if for some q, q′ ∈ Q, we have hi(q, q′) >
τ(q′)− τ(q), then return (A �* A′).

2. For i=n2+1, . . . , 2n2: Calculate hi; if for some q, q′∈Q, we have hi−1(q, q′) <
hi(q, q′), then return (A �* A′).

3. Return(A * A′).

The correctness of the algorithm is proven in the full version. The function
h0 can be calculated in polynomial time, and so is the function hi+1, given hi.
Hence, since we need only a polynomial number of iterations, we can conclude
with the following.

Theorem 6. Consider a DWFA A and a penalty function θ. The problem of
deciding whether A is θ-resilient can be solved in polynomial time.

4 Achieving Resilience with Minimum Resources

A system with no limit on penalties and with unbounded resources can prevent
cheating by fixing a high penalty function. In practice, penalties may be limited
by an external authority, and increasing the probability of detecting cheats re-
quires resources. In this section we study the problem of minimizing the resources
required in order to guarantee resilience.

We assume that the penalty function η is determined by an external authority
and that A is (η, 1̂)-resilient. Thus, the environment has no incentive to cheat
if cheating is always detected.3 Given a WFA A, and a penalty function η,
our goal is to find a detection-probability function p, such that A is (η, p)-
resilient to cheating and the budget B =

∑
σ,σ′∈Σ η(σ, σ

′) · p(σ, σ′) is minimal.
The rationale behind our goal is that the system can control the probability of
catching cheats. In practice, detection probability can be increased by investing
in “guards”, each responsible for a specific possible cheat. The budget we have
is the total payment for the guards. The payment to the guard responsible for
detecting σ being reported as σ′ is independent of the actual number of times
σ is being reported as σ′. On the other hand, the payment is proportional to
the penalty η(σ, σ′) charged whenever the guard detects the cheat. Indeed, in
practice, detecting a cheat with a high penalty tends to require high resources:
knowing that his success leads to a high revenue, a guard would require high
salary. We say that A can achieve resilience with budget B if there are η and p
such that the budget of η and p is B, and A is (η, p)-resilient to cheating.

As explained in Section 2.2, we can consider an equivalent non-probabilistic
setting in which all cheats are always detected and are charged according to
the penalty function θ = η ◦ p. In the rest of this section we therefore consider
the problem of deciding, given a WFA A and a budget B ∈ IR≥0, whether A
can achieve resilience with budget B, as well as the optimization problem of
3 Note that this is a reasonable assumption as otherwise, the authority providing the

penalty function encourages cheating.
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finding the minimal budget with which A can achieve resilience. A solution for
the above problems induces the expected-fee function θ. Having θ in hand, we
use the given penalty function η to fix p(σ, σ′) = θ(σ,σ′)

η(σ,σ′) . In order to guaranteed
that our solution is feasible, that is, the probability function is over the rage
[0, 1], our algorithm only considers solutions in which for all σ, σ′ ∈ Σ we have
η(σ, σ′) ≥ θ(σ, σ′).

4.1 Hardness Proof for WFA

We first show that, as in the resilience testing problem, the nondeterministic
setting is much more difficult.

Theorem 7. Consider a WFA A. Given a budget B, the problem of deciding
whether there is a penalty function θ with budget B such that A is θ-resilient to
cheating is PSPACE-hard.

Proof. As in the proof of Theorem 5, we do a reduction from the universality
problem for NFAs. Given an NFA U , we construct a WFA AU such that there
is a penalty function θ with budget 0 with which AU is θ-resilient to cheating iff
U is universal.

The construction is similar to the one described in the proof of Theorem 5,
except that now the transition from q0 to qacc is labelled by both all the letters
in Σ\{a}, with cost 0, and the letter a, with cost 1. It is easy to see that the cost
in AU of words of the form a ·w is 0 for w ∈ L(A) and is 1 for w �∈ L(A). Also, for
σ �= a, the cost of words of the form σ ·w is 0, regardless of the membership of w
in L(A). Accordingly, if U is universal, then AU accepts all words in Σ∗ with cost
0, and is therefore 0-resilient, in which a budget 0 suffices to ensure resilience.
Also, if U is not universal, then there is w �∈ L(U) such that cost(AU , a ·w) = 1,
while faked cost(AU , a ·w, b ·w) = θ(a, b), for any b ∈ Σ \ {a}. Hence, in order to
ensure θ-resilience, a penalty function θ must satisfy θ(a, b) ≥ 1, thus the budget
required to θ is at least |Σ| − 1, and we are done.

4.2 A Polynomial Algorithm for DWFA

We turn to consider deterministic WFAs. Note that if we define an order ≤ be-
tween penalty functions, where θ1 ≤ θ2 iff θ1(σ, σ′) ≤ θ2(σ, σ′) for all σ, σ′ ∈ Σ,
then the penalty functions that ensure resilience are not linearly ordered. This
last observation hints that the problem of finding a minimal sufficient penalty
with respect to which A is resilient cannot be solved in a straightforward way,
as it cannot be based on a search in a linearly ordered domain. Still, as we show
below, when A is a deterministic DFA, it is possible to describe the resilience
requirements as a set of linear inequality constraints. Since the optimization
objective can be also described as a linear function, it is possible to determine
the minimal sufficient penalty function using linear programming (LP). LP is a
mathematical tool suitable for determining an optimal solution for a linear objec-
tive function defined over a set of variables, while obeying a set of requirements
represented as linear equations [Chv83].
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We describe the problem as a linear programming optimization problem with
a polynomial number of variables and constraints. Given a WFA A and a penalty
function η, the algorithm returns a new penalty function θ such that:

1.
∑

σ,σ′∈Σ θ(σ, σ
′) is minimal.

2. For all σ, σ′ ∈ Σ, we have 0 ≤ θ(σ,σ′)
η(σ,σ′) ≤ 1.

3. A is θ-resilient.

Note that the second property assures that θ = η ◦ p, for some probability
function p satisfying p(σ, σ′) ∈ [0, 1].

The first property defines the objective function of the LP. The LP constraints
assure the second and third properties. Specifically, for the third property, the LP
constraints assure that the algorithm described in Section 3.2, for testing whether
A is θ-resilient, would return A * Cheat(A, θ). Accordingly, the variables we use
are the following:

– For all σ, σ′ ∈ Σ, the variable θσ,σ′ maintains the penalty function θ(σ, σ′).
– For 0 ≤ i ≤ 2n2 and q, q′ ∈ Q, the variable hi,q,q′ maintains hi(q, q′).
– For 0 ≤ i ≤ 2n2, q, q′ ∈ Q, and σ ∈ Σ, the variable gi,q,q′,σ maintains
gi(q, q′, σ).

The objective function is min
∑

σ,σ′ θσ,σ′ . Since the penalty function is non-
negative, we have |Σ|2 constraints θσ,σ′ ≥ 0 for all σ, σ′ ∈ Σ. In addition, θσ,σ = 0
for all σ ∈ Σ. Also, in order to guarantee that the detection-probability function
is feasible, we have, for all σ, σ′ ∈ Σ, the constraint θσ,σ′ ≤ ησ,σ′ .

The additional constraints follow the structure of the algorithm presented in
Section 3.2. For k = 1, . . . , n2, the k-th set of constraints assures that no word of
length at most k should benefit from cheating. For k = n2 + 1, . . . , 2n2, the k-th
set of constraints assures that no cycle that can lead to unlimited gain exists.
Each such set consists of a polynomial number of constraints and introduces a
polynomial number of variables. Specifically, variables of type hi,q,q′ bound the
gain of words of length at most i, and variables of type gi,q,q′,σ bound this gain
for words of length at most i ending with σ. While the variables hi,q,q′ , gi,q,q′,σ
are defined for every 0 ≤ i ≤ 2n2, q, q′ ∈ Q, and σ ∈ Σ, in practice, many of
these variables are not constrained, as it might be that no word of length at
most i can reach state q in A and q′ in A′.

We first describe the constraints considering words of length 1, and then the
constraints for general k. Note that the first set of constraints can be viewed
as a special case of the general set, however, since we know that q0 is the only
possible state preceding states reachable by a single letter, the presentation of
this set is simpler. We also note that in order to clarify the intuition behind each
constraint, the constraints are not necessarily presented in the canonical form of
an LP (that is, with all variables in the left hand side and all constants in the
right hand side).

In order to assure that words of length 1 will not cheat, we have a variable
h1,q,q′ for all q, q′ ∈ Q, and a variable g1,q,q′,σ for all q, q′ ∈ Q, σ ∈ Σ. To reflect
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Equation (1) in the algorithm described in Section 3.2, we have, for all σ′ ∈
Σ such that Δ(q0, σ, q) and Δ(q0, σ′, q′), the constraint g1,q,q′,σ ≥ c(q0, σ, q) −
c(q0, σ′, q′) − θ(σ, σ′). To reflect Equation (2), we have, for all q, q′ ∈ Q and
σ ∈ Σ for which g1,q,q′,σ is bounded, the constraint h1,q,q′ ≥ g1,q,q′,σ. Since
h0(q0, q0) = 0 and the sequence of functions h0, h1, . . . is non-decreasing, we
also have, for the state q0, the constraint h1(q0, q0) ≥ 0. Finally, to reflect the
comparison done in Step 1 of the resilience-testing algorithm, for all q, q′ ∈ Q
we have the constraint h1,q,q′ ≤ τ(q′)− τ(q).

In order to assure that words of length i do not cheat, we have a variable
hi,q,q′ for all q, q′ ∈ Q, and a variable gi,q,q′,σ for all q, q′ ∈ Q and σ ∈ Σ. To
reflect Equation (1), we have, for all p, p′ ∈ Q and σ′ ∈ Σ such that Δ(p, σ, q)
and Δ(p′, σ′, q′), the constraint

gi,q,q′,σ ≥ hi−1,p,p′ + c(p, σ, q) − c(p′, σ′, q′)− θ(σ, σ′).

To reflect Equation (2), we have, for all q, q′ ∈ Q and σ ∈ Σ for which gi,q,q′,σ
is bounded, the constraint hi,q,q′ ≥ gi,q,q′,σ. Also, for all q, q′ ∈ Q we have the
constraints hi,q,q′ ≥ hi−1,q,q′ . Finally, for all q, q′ ∈ Q we have the constraint
hi,q,q′ ≤ τ(q′) − τ(q). This last type of constraints, considering the final costs,
corresponds to the comparison done in Step 1 of the resilience-testing algorithm.

For k = n2 + 1 . . . 2k2, the set of variables and the set of constraints are very
similar to these sets for k ≤ n2. The only difference is the last type of constraints
for every q, q′ ∈ Q. Instead of hi,q,q′ ≤ τ(q′) − τ(q), we have hi,q,q′ ≤ hi−1,q,q′ .
These constraints corresponds to the detection of gain increasing cycles, done in
step 2 of the resilience testing algorithm.

The correctness of the following claim follows from the construction of the
constraints.

Claim. The set of penalty functions in all feasible solutions to the LP is identical
to the set of penalty functions for which the resilience algorithm provides a
positive answer.

In particular, the feasible solution for which
∑

σ,σ′ θσ,σ′ is minimized, corre-
sponds to a penalty function with minimal total budget. The total number of
constraints and variables in our LP is polynomial in |Q| and |Σ|. Therefore, it
is possible to find an optimal solution for it [Kha79, Chv83] in polynomial time.
This implies a polynomial algorithm for the minimum cost resilience problem of
a DWFA. An example of a DWFA and its corresponding LP is given in the full
version.

Acknowledgment. We thank Pnina and Yosef Bernholtz for many helpful
discussions.

References

[AKL09] Aminof, B., Kupferman, O., Lampert, R.: Reasoning about online al-
gorithms with weighted automata. In: Proc. 20th ACM-SIAM Symp.
on Discrete Algorithms, pp. 835–844 (2009)



516 O. Kupferman and T. Tamir

[CCH+05] Chakrabarti, A., Chatterjee, K., Henzinger, T.A., Kupferman, O., Ma-
jumdar, R.: Verifying quantitative properties using bound functions.
In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp.
50–64. Springer, Heidelberg (2005)

[CDH08] Chatterjee, K., Doyen, L., Henzinger, T.: Quantative languages. In:
Proc. 17th Annual Conf. of the European Association for Computer
Science Logic, pp. 385–400 (2008)

[Chv83] Chvatal, V.: Linear Programming. W.H. Freeman and Company, New
York (1983)

[Dij59] Dijkstra, E.W.: A note on two problems in connexion with graphs.
Numerische Mathematik 1, 269–271 (1959)

[DKe09] Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Au-
tomata. Springer, Heidelberg (2009)

[Eil74] Eilenberg, S.: Automata, Languages and Machines. Academic Press,
San Diego (1974)

[FKL10] Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Proc.
16th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems. LNCS. Springer, Heidelberg (2010)

[Hen07] Henzinger, T.A.: Quantitative generalizations of languages. In: Devel-
opment in Language Theory, pp. 20–22 (2007)

[HP85] Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt,
K. (ed.) Logics and Models of Concurrent Systems. NATO Advanced
Summer Institutes, vol. F-13, pp. 477–498. Springer, Heidelberg (1985)

[Kha79] Khachiyan, L.G.: A polynomial algorithm in linear programming. Dok-
lady Akademii Nauk SSSR 244, 1093–1096 (1979)

[Kro94] Krob, D.: The equality problem for rational series with multiplicities
in the tropical emiring is undecidable. Journal of Algebra and Compu-
tation 4, 405–425 (1994)

[Moh97] Mohri, M.: Finite-state transducers in language and speech processing.
Computational Linguistics 23(2), 269–311 (1997)

[NR99] Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proc. 31st
ACM Symp. on Theory of Computing, pp. 129–140 (1999)

[NRTV07] Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic
Game Theory. Cambridge University Press, Cambridge (2007)

[PR89] Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc.
16th ACM Symp. on Principles of Programming Languages, pp. 179–
190 (1989)

[RS59] Rabin, M.O., Scott, D.: Finite automata and their decision problems.
IBM Journal of Research and Development 3, 115–125 (1959)

[SS78] Salomaa, A., Soittola, M.: Automata: Theoretic Aspects of Formal
Power Series. Springer, New York (1978)

[VW94] Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. In-
formation and Computation 115(1), 1–37 (1994)



Author Index

Aavani, Amir 13

Banda, Gourinath 27
Barthe, Gilles 46
Berger, Martin 64
Beringer, Lennart 82
Blanc, Régis 103
Bozzelli, Laura 119
Bruscoli, Paola 136

Codish, Michael 154

Daubignard, Marion 46
de Halleux, Jonathan 425
Dougherty, Daniel J. 173

Faella, Marco 192
Fearnley, John 212

Gabbay, Michael 231
Gabbay, Murdoch J. 231
Gallagher, John P. 27
Galmiche, Didier 255
Grabowski, Robert 82
Guglielmi, Alessio 136
Gundersen, Tom 136

Henzinger, Thomas A. 103
Hirai, Yoichi 272
Hofmann, Martin 82
Horbach, Matthias 290
Hottelier, Thibaud 103

Kapron, Bruce 46
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