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LNCS Transactions on Computational Science 

Computational science, an emerging and increasingly vital field, is now widely 
recognized as an integral part of scientific and technical investigations, affecting 
researchers and practitioners in areas ranging from aerospace and automotive research 
to biochemistry, electronics, geosciences, mathematics, and physics. Computer 
systems research and the exploitation of applied research naturally complement each 
other. The increased complexity of many challenges in computational science 
demands the use of supercomputing, parallel processing, sophisticated algorithms, 
and advanced system software and architecture. It is therefore invaluable to have 
input by systems research experts in applied computational science research. 

Transactions on Computational Science focuses on original high-quality research
in the realm of computational science in parallel and distributed environments, also 
encompassing the underlying theoretical foundations and the applications of large-
scale computation. The journal offers practitioners and researchers the opportunity to 
share computational techniques and solutions in this area, to identify new issues, and 
to shape future directions for research, and it enables industrial users to apply leading-
edge, large-scale, high-performance computational methods. 

In addition to addressing various research and application issues, the journal aims 
to present material that is validated – crucial to the application and advancement of 
the research conducted in academic and industrial settings. In this spirit, the journal 
focuses on publications that present results and computational techniques that are 
verifiable.  

Scope 

The scope of the journal includes, but is not limited to, the following computational 
methods and applications: 

• Aeronautics and Aerospace  
• Astrophysics  
• Bioinformatics  
• Climate and Weather Modeling  
• Communication and Data Networks  
• Compilers and Operating Systems  
• Computer Graphics  
• Computational Biology  
• Computational Chemistry  
• Computational Finance and Econometrics  
• Computational Fluid Dynamics  
• Computational Geometry  
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• Computational Number Theory  
• Computational Physics  
• Data Storage and Information Retrieval 
• Data Mining and Data Warehousing  
• Grid Computing  
• Hardware/Software Co-design  
• High-Energy Physics  
• High-Performance Computing  
• Numerical and Scientific Computing  
• Parallel and Distributed Computing  
• Reconfigurable Hardware  
• Scientific Visualization 
• Supercomputing  
• System-on-Chip Design and Engineering  



Editorial 

The Transactions on Computational Science journal is part of the Springer series 
Lecture Notes in Computer Science, and is devoted to the gamut of computational 
science issues, from theoretical aspects to application-dependent studies and the vali-
dation of emerging technologies. 

The journal focuses on original high-quality research in the realm of computational 
science in parallel and distributed environments, encompassing the facilitating theo-
retical foundations and the applications of large-scale computations and massive data 
processing.  Practitioners and researchers share computational techniques and solu-
tions in the area, identify new issues, and shape future directions for research, as well 
as enable industrial users to apply the techniques presented. 

The current volume is devoted to Security in Computing (Part 1) and is edited by 
Edward David Moreno. It is comprised of 14 selected papers that represent the di-
verse applications and designs being addressed today by the security and crypto-
graphic research community. This special issue is devoted to state-of-the-art research 
on security in computing and includes a broad spectrum of applications such as new 
architectures, novel hardware implementations, cryptographic algorithms, and secu-
rity protocols.  

We would like to extend our sincere appreciation to Special Issue Guest Editor 
Edward David Moreno for his dedication and insights in preparing this high-quality 
special issue. We also would like to thank all authors for submitting their papers to 
the special issue, and to all associate editors and referees for their valuable work. We 
would like to express our gratitude to the LNCS editorial staff of Springer, in particu-
lar Alfred Hofmann, Ursula Barth, and Anna Kramer, who supported us at every stage 
of the project.  

It is our hope that the fine collection of papers presented in this special issue will 
be a valuable resource for Transactions on Computational Science readers and will 
stimulate further research into the vibrant area of computational science applications. 

September 2010 Marina L. Gavrilova 
C.J. Kenneth Tan 



Security in Computing:  
Research and Perspectives, Part I 

Special Issue Guest Editor’s Preface 

In an increasingly connected world, security has become an essential component of 
modern information systems. Our ever-increasing dependence on information implies 
that the importance of information security is growing. Several examples of security 
applications are present in everyday life such as mobile phone communication, inter-
net banking, secure e-mail, data encryption, etc. 

The thrust of embedded computing has both diversified and intensified in recent 
years as the focus on mobile computing, ubiquitous computing, and traditional em-
bedded applications has begun to converge. A side effect of this intensity is the desire 
to support sophisticated applications such as speech recognition, visual feature recog-
nition, and secure wireless networking in a mobile, battery-powered platform. Unfor-
tunately these applications are currently intractable for the embedded space.  

Another consideration is related to mobile computing, and, especially, security in 
these environments. The first step in developing new architectures and systems that 
can adequately support these applications is to obtain a precise understanding of the 
techniques and methods that come close to meeting the needs of security, perform-
ance, and energy requirements; with an emphasis on security aspects. 

This special issue brings together high-quality and state-of-the-art contributions on 
security in computing. The papers included in this issue deal with some hot topics in 
the security research sphere: new architectures, novel hardware implementations, 
cryptographic algorithms and security protocols, and new tools and applications. 
Concretely, the special issue contains 14 selected papers that represent the diverse 
applications and designs being addressed today by the security and cryptographic 
research community.  

As a whole, this special issue provides a vision on research and new perspectives 
in security research. With authors from around the world, these articles bring us an 
international sample of significant work.  

The title of the first paper is “A Dynamic Security Framework for Ambient Intel-
ligent Systems: Design Implementation of a Smart-Home-Based eHealth Application” 
by Luca Compagna, Paul El Khoury, Fabio Massacci, and Ayda Saidane. This paper 
presents a flexible and generic security and dependability framework for the dynamic 
provision of security and dependability (S&D) solutions at runtime. The aim of the 
framework is to support security in AmI environments and in particular the automated 
integration, monitoring, and adaptation of security and dependability mechanisms for 
such ecosystems. Finally, the authors show the effectiveness and feasibility of their 
approach in a reference eHealth case study. In this eHealth scenario, patients are con-
tinuously monitored by ambient sensors of a smart home and by wearable health  
sensors. 



X Guest Editor’s Preface 

In the second contribution, which is entitled “Ntru-like Public Key Cryptosystems 
beyond Dedekind Domain up to Alternative Algebra”, Ehsan Malekian and Ali 
Zakerolhosseini introduce two practical cryptosystems similar to NTRU, and they 
illustrate that the algebraic structure of NTRU is not limited to Euclidean or Dedekind 
domains and can be extended to an algebra which is not necessarily commutative or 
associative. The first cryptosystem, QTRU, works based on quaternions and the sec-
ond one, OTRU, is constructed based on the octonions algebra, which is a non-
associative but alternative algebra. They have analyzed, the security of the proposed 
non-associative public key cryptosystem against lattice attack and they believe that 
the OTRU could be more secure than NTRU, because its lattice structure does not 
completely fit into the category of convolutional modular lattices. 

In the third contribution, which is entitled “Identity-Based Key Exchange Proto-
cols without Pairings”, Dario Fiore and Rosario Gennaro propose a new identity- 
based key agreement protocol. The authors prove that it that can be implemented over 
any cyclic group in which the Diffie-Hellman problem is supposed to be hard.  
Another relevant point is that it is more efficient than any KA protocols in the public 
key model, and its performance is competitive with respect to the MQV protocol. 

In the fourth contribution, which is entitled “Building a Side Channel Based Dis-
assembler”, Thomas Eisenbarth, Christof Paar, and Björn Weghenkel exploit side 
channel information to recover large parts of the program executed on an embedded 
processor. The authors show that a program running on a microcontroller can be re-
constructed by passively monitoring the power consumption or other electromagnetic 
emanations only. For this purpose, they apply methods from side channel analysis that 
are known to be optimal for extracting information to reconstruct executed instruction 
sequences, and their employed recognition methods achieve a high average instruc-
tion recognition rate of up to 70% for tests with a PIC microcontroller. 

In the fifth contribution, which is entitled “A Versatile Framework for Implemen-
tation Attacks on Cryptographic and Embedded Devices”, by Timo Kasper, David 
Oswald, and Christof Paar, researchers specialized in embedded security present a 
versatile and unified framework that allows the implementation of different attacks on 
virtually all types of cryptographic devices (such as RFIDs, smartcards, microcontrol-
lers, ASICs, FPGAs, and mobile computing devices). They demonstrate the effective-
ness of the system by profiling a contactless smartcard and identifying the appropriate 
leakage model. On this basis, they perform and report successful full key-recovery of 
a commercial cryptographic RFID employing Triple-DES by means of DEMA.  
Another aspect is that the authors prove the feasibility of multiple successive fault 
injections on a widespread PIC microcontroller using power glitches. Finally, they 
show that most implementation attacks, including the injection of multiple faults, can 
be conducted with a low-cost, public domain LAB. 

In the sixth paper, “An Adaptive Robust Watermarking Algorithm for Audio Sig-
nal Using SVD” by Malay Kishore Dutta, Vinay K. Pathak, and Phalguni Gupta,  
a synchronization code is embedded in the audio signal with reference to the high 
energy peaks. This synchronization code is used for countering the positive false 
alarm generated due to data modification as a result of watermark embedding. The 
watermarking is done in the SVD (Singular Value Decomposition) domain, which 
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makes the process perceptually transparent. The results obtained from robustness tests 
against signal processing attacks conclude that the proposed method is quite robust to 
attacks.  

In the seventh paper, which is entitled “Trust-Based Security Level Evaluation Us-
ing Bayesian Belief Networks”, Siv Hilde Houmb, Indrakshi Ray, Indrajit Ray, and 
Sudip Chakraborty propose an approach for evaluating the security level of a system 
using information collected from a number of different sources, including subjective 
judgments such as those of evaluators and the like. It is well known that the trustwor-
thiness of an information source depends on two factors, namely, its knowledge level 
and expertise level; and they show how to evaluate these two factors and quantify the 
trustworthiness of sources and from that derive a security level prediction. The ap-
proach is quantitative and implemented as a Bayesian Belief Network (BBN) topol-
ogy, and for this reason scalable. The authors conclude that their approach can also be 
used in the context of security solution trade-off analysis. 

In the eighth paper, which is entitled “Implementation of QoSS (Quality of Secu-
rity Service) for NoC Protection”, Johanna Sepúlveda, Ricardo Pires, Marius Strum, 
and Wang Jiang present the implementation of QoSS to overcome present SoC (Sys-
tem-on-Chip) vulnerabilities. For this study, the authors developed power models for 
the main components in the NoC (Network-on-Chip) architecture and integrated these 
models into a NoC simulator, taking the architectural and technological-parameters 
into account. In terms of security, the authors propose the implementation of two 
security services: access control and authentication; and they show that the inclusion 
of security issues in an NoC implies a tradeoff between trustworthiness and perform-
ance, and the designer can select the more suited among different security levels in 
order to satisfy both (security and performance) requirements. 

In the ninth paper, “Signcryption with Non-interactive Non-repudiation without 
Random Oracles”, by Jia Fan, Yuliang Zheng, and Xiaohu Tang, a model for sign-
cryption with NINR (non-interactive non-repudiation) that can be proved secure with-
out random oracles is presented. The new signcryption scheme is based on the signa-
ture scheme of Boneh et al. The authors show that adding two more security require-
ments, their scheme is very compact when compared with the underling signature 
scheme. 

The paper “Block-Level Added Redundancy Explicit Authentication for Parallelized  
Encryption and Integrity Checking of Processor-Memory Transactions”, authored by Reou-
ven Elbaz, Lionel Torres, Gilles Sassatelli, Pierre Guillemin, Michel Bardouillet, and Albert 
Martinez, focuses on physical non-invasive attacks (i.e., such attacks do not necessitate any 
modifications of the processor chip) called board level attacks. These attacks are conducted 
on buses between the SoC and off-chip volatile memory or directly in the RAM memory. 
According to the authors, hardware mechanisms must ensure the confidentiality and the 
integrity of the off-chip memory content while considering the constraints relative to the 
processor context – particularly random access of variable data size – to optimize hardware 
resources, memory access latencies, and the memory bandwidth at runtime. Then, the au-
thors propose, describe and evaluate an engine, PE-ICE (Parallelized Encryption and Integ-
rity Checking Engine), based on the concept of BLAREA, to highlight its relevance and 
efficiency in ensuring data integrity in addition to data confidentiality in the context of proc-
essor-memory transaction. PE-ICE provides integrity checking in addition to encryption for 
a low hardware overhead and for a low run-time performance hit (less than 4%). 



XII Guest Editor’s Preface 

The paper “A Weakest Precondition Approach to Robustness”, by Musard Balliu 
and Isabella Mastroeni, shows that in the presence of active attackers, the weakest 
precondition semantics computation can be exploited for characterizing the informa-
tion disclosed, and therefore for revealing program vulnerabilities. The authors also 
propose using the weakest precondition-based analysis in order to certify the robust-
ness of programs. Then, they introduce the notion of relative robustness which is a 
relaxation of robustness dealing with a restricted class of attacks. Finally, the authors 
conclude with two real applications: the analysis of the API for PIN verification and 
the analysis of code vulnerable to XSS attacks. 

The paper “PET SNAKE: A Special Purpose Architecture to Implement an Alge-
braic Attack in Hardware”, by Willi Geiselmann, Kenneth Matheis, and Rainer 
Steinwandt, proposes a dedicated hardware design to implement an algebraic attack 
against block ciphers, specifically MRHS (Multiple Right Hand Sides) to handle 
polynomial systems of equations over F2, which according to their analysis enables 
significant performance gains compared with an MRHS implementation in software. 

The paper “Green Secure Processors: Towards Power-Efficient Secure Proces-
sors”, authored by Siddhartha Chhabra and Yan Solihin, studied the power implica-
tions of using secure processor architectures. The authors evaluated the sources of 
power in currently proposed secure processor mechanisms and analyzed the power 
overheads of various hardware security mechanisms for general purpose as well as 
embedded systems. Finally, they outlined the design of a hybrid cryptographic engine 
that has been designed with the primary goal of minimizing power overheads, but at 
the same time ensuring an insignificant loss in performance. 

The last paper in this special issue, “A New Peer-to-Peer Micropayment Protocol 
Based on Transferable Tokens” by Sung-Ming Yen, Kuo-Zhe Chiou, Je Zhang, and 
Po-Han Lee, shows that PPay and OFPPay schemes, which are two representative 
P2P (peer-to-peer) micropayment protocols, are vulnerable to double spending by 
presenting a replay attack and a collusion attack against them, respectively. Then, 
they propose a new P2P micropayment scheme by exploiting the idea of a transferable 
debt token. Finally, the authors use security analysis and show that their new scheme 
is secure against double spending, and when performance analysis is applied, the 
proposed scheme is superior to the PPay scheme and the OFPPay scheme. 

Finally, we sincerely hope that this special issue stimulates your interest in the 
many subjects surrounding the area of security. The topics covered in the papers are 
timely and important, and the authors have done an excellent job of presenting their 
different approaches and their promptness. Regarding the reviewing process, our 
referees (integrated by recognized researchers from the international community) 
made a great effort to evaluate the papers. We would like to acknowledge their effort 
in providing us the excellent feedback at the right time. So, we wish to thank all the 
authors and reviewers. To conclude, we would also like to express our gratitude to the 
Editor-in-Chief of TCS, Dr. Marina L. Gavrilova, for her advice, vision, and support. 

September 2010 Edward David Moreno 
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Abstract. Providing context-dependent security services is an important chal-
lenge for ambient intelligent systems. The complexity and the unbounded nature
of such systems make it difficult even for the most experienced and knowledge-
able security engineers, to foresee all possible situations and interactions when
developing the system. In order to solve this problem context based self- diagno-
sis and reconfiguration at runtime should be provided.

We present in this paper a generic security and dependability framework for
the dynamic provision of Security and Dependability (S&D) solutions at run-
time1. Through out the paper, we use a smart items based e-health scenario to
illustrate our approach. The eHealth prototype has been implemented and demon-
strated in many scientific and industrial events2 ,3.

1 Introduction

Future Ambient Intelligence (AmI) environments will contain a large number of het-
erogeneous computing and communication infrastructures hosted by devices providing
new functionalities, enhancing productivity, and facilitating everyday tasks. In the new
AmI scenarios, not only systems but also applications will have to make effective use of
the resources that are available on-the-fly, and adapt to different hardware, software and
even firmware configurations. The combination of heterogeneity, mobility, dynamism
and just the sheer number of devices will make the provisioning of security solutions
more challenging.

Let’s make a simple example based on the AmI scenario that we will use throughout
the paper: a doctor wishing to remotely monitor the conditions of a patient. Clearly we
would like some authentication from the doctor (so that, e.g., a passer-by cannot take the

1 This work has been done in the context of the SERENITY project
www.serenity-project.org

2 http://ec.europa.eu/information_society/events/cf/ict2008/
item-display.cfm?id=171

3 http://www.strategiestm.com/serenity/serenity_day.htm

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. X, LNCS 6340, pp. 1–24, 2010.
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pulse of our old father) but also from the device (e.g., we do not want the same passer-
by to send false alarms to the doctor). If actors are confined (e.g., a domotic home or a
hospital) the problem is well understood: we specify the communication facilities and
sensors in use and look in the vast literature of security protocols and sensors networks
[35] to find the right solutions. No need of an autonomous system.

The challenge is that actors do move and by moving they change the context and
the part of the ambient in charge of security. For instance, patients might exit to meet
their relatives, or doctors might be on call from a public place. A designer might have
identified a good security protocol which no longer works (e.g., the PDA of the doctor
might not be able to support strong cryptography) or is no longer appropriate (e.g.,
sensors transmit authentic data as if everything is still, while our patient is dead and the
doctor went out for a beer).

We need an autonomous system that can detect changes of the environment by the
mobile agents and can provide new security solutions that fit the new environment and
the new facilities and capabilities of the actors in these new surroundings.

Unfortunately, while a large number of old and new security infrastructures exist
they do not deal with the dynamic provision of security solutions (such as a different
authentication protocol suitable for the new context), but rather with the dynamic access
of different users to distributed servers. The general idea of Akenti [38], PERMIS [11],
Secure Mediator [5], SPKI [17] projects and many others [41,22,8,43,6,21], is that the
information needed for an access decision, such as identity, authorization, and attributes
is stored and conveyed in certificates, which are widely dispersed over the Internet (e.g.,
LDAP (Lightweight Directory Access Protocol) directories, Web servers). The autho-
rization engine has to gather and verify the certificates needed for the user’s request and
then evaluate them to compute an access decision (see Figure 1 taken from [11]).

Fig. 1. Sample Interactions - PERMIS Architecture

In this paper we present a flexible and generic framework for the provision of se-
curity and dependability solutions at runtime. The aim of the framework is to support
security in AmI environments and in particular the automated integration, monitoring
and adaptation of security and dependability mechanisms for such ecosystems.
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We also demonstrate the effectiveness and feasibility of our approach on a reference
eHealth case study, that integrates the AmI aspect in its security and privacy sensitive
nature. We describe the development process of the eHealth prototype in detail: re-
quirements, security analysis and mitigation through runtime monitoring and security
patterns. In the scope of our research, this approach has been validated with three addi-
tional case studies, i.e. eBusiness, Air Trafic Management and eGovernment [37], that
opens security and dependability challenges. The main purpose for adopting a smart
items prototype4 is to capture, in a sample, the essense of the security challenges in an
AmI environment.

In the next section we describe our case study that will be the running example
throughout the paper. Section 3 presents the general features of AmI environments that
an autonomic system must consider. Section 4 details the outcome of the security anal-
ysis aiming at identifying the potential threats. Section 5 describes our approach and
its application to the case study while the description of the prototype is described in
Section 6. Section 7 presents an overview of the main security architectures proposed
in the literature with a comparison with our approach. Finally we conclude the paper.

2 Case Study: Smart Items Based eHealth Application

The objective of remote healthcare systems is to remotely monitor the patient health
status and provide the necessary assistance. To reach this objective, healthcare systems
should support the interaction and collaboration between doctors, pharmacists, patients,
social workers and emergency medical teams especially during emergency situations.

The case study is an eHealth scenario: patients are continuously monitored by ambi-
ent sensors of a smart home and by wearable health sensors.

Example 1. Bob, a cardiopatic patient, wears a Smart T-Shirt that regularly measures
his heart rate, blood pressure and some other critical data. The Smart T-Shirt is linked
to an eHealth mobile terminal (e.g., a standard PDA phone available in the market)
that provides, in addition to the usual mobile services, an advanced eHealth application
ranging from reminding Bob to take his daily medicines to promptly communicating
Bob’s medical data to his doctor. Bob’s smart home has been enhanced with sensors to
monitor and adjust room’s temperature, lamp status, people’s movement, etc.

Since houses, t-shirts, PDAs, etc. cannot do diagnoses (and even if they could [4] the
final opinion of a human will always be sought) the process requires interaction and
collaboration with several human and organizational actors.

Example 2. The Monitoring and Emergency Response Centre (MERC) reacts to the
different situations and orchestrates other actors in order to deliver effective medical
care for the patients. Doctors, Pharmacists, Social workers and Emergency Medical
teams can act as rescuers assisting Bob in his medical treatment while abiding to the
European Health Care regulations.

4 Demonstrated in different scientific and industrial events, e.g. http://ec.europa.eu/
information_society/events/cf/ict2008/item-display.cfm?id=171
and http://www.strategiestm.com/serenity/serenity_day.htm

http://ec.europa.eu/information_society/events/cf/ict2008/item-display.cfm?id=171
http://ec.europa.eu/information_society/events/cf/ict2008/item-display.cfm?id=171
http://www.strategiestm.com/serenity/serenity_day.htm
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This eHealth scenario constitutes a complex social-technical system with strong secu-
rity, safety and privacy requirements. In this paper, we limit the discussion to
the security analysis of the system considering the emergency use case depicted in
Figure 2.

Fig. 2. Emergency Scene

Example 3. The health sensors of Bob’s Smart T-Shirt report a decrease in Bob’s blood
pressure and body temperature. Bob’s PDA analyses the critical situation and sends
immediately an alert to the MERC (2). The MERC receives the request and analyzes it.
Low priority alert comprises medical situations where a doctor’s remote diagnosis (e.g.,
to prescribe to Bob a new medecine) usually is sufficient. High priority emergency
situations require an urgent on-site intervention by rescue teams (4 and 5). In the latter
case the MERC must determine Bob’s location (3).

Table 1 summarizes the main features to be considered when building such system with
regards to the aspects cited previously.

At this stage one may ask: this is all nice and good, but where is the autonomous
aspect of the scenario? After-all we just said that we want have humans in the loop. The
key observation is that the humans in our scenario have no network security expertise
whatsoever.

So we do not expect the doctor, the nurse or the operator at the MERC to know the
appropriate security protocol to authenticate the doctor or the appropriate cryptographic
mechanism to protect the confidentiality of the patient’s data. The system should rely on
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Table 1. Major features of the case study

Autonomy &
Ambient Intelli-
gence

The patient may not be in the position to act, but still the system
should be able to carry-out the work without any intervention
from him. Moreover, the system should be able to adapt and
react to the behavior of the patient and to the context change.
The main AmI aspect of the case study corresponds to the
deployment of a set of diversified passive unattended sensors
dispersed over the environment that collect, transmit, and au-
thenticate local data. Those sensors might not implement all
these functionalities at once.

Genericity &
Heterogeneity

The system-to-be is not designed to be used by Bob only. There-
fore, it is mandatory to envisage at design time inter-operability
of wide range of processes, communication protocols, sensors
and devices.

Mobility It reflects the changing context of the system. In fact, the pa-
tients are mobile. Essentially we consider two locations: 1)
Home (prevalent) location and 2) Mobile locations. We bor-
rowed this terminology from the mobile IP standard [7]. So in a
different context the “Home location” might not be at home.

Dynamism It is related to the need for adaptability and context-awareness.
In fact, in order to ensure permanently the critical services for
the patient different AmI entities should be available in the dif-
ferent locations.

Security, Privacy
and Dependabil-
ity

The scenario presents strong requirements on integrity and con-
fidentiality of exchanged data and reliability of the infrastruc-
ture that allows the acquisition and transmission of relevent
information about patient rescue. Moreover, the sentivity of
the processed data implies requirements on the compliance
with privacy regulations (i.e: EU Data Protection Directive,
95/46/EC2 and EU Directive on Privacy in Electronic Commu-
nications).

humans to make medical decision, but should be autonomous in making decisions on
security solutions and in their deployment.

3 Abstract Components of an AmI Environment

In order to produce a general architecture that can be deployed in a variety of scenarios
we must elicit the characteristics of our AmI environment. Our baseline is a generic
ubiquitous application for monitoring a mobile subject with strong requirements on
security and privacy for data sharing between the different entities and safety of the
monitored subject.
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As an intellectual exercise, one could ask oneself what would change if Bob was
not an elderly patient but rather a bear and our objective avoiding its prowls on domes-
tic cattle5. The system could be easily adapted to the monitoring of these animals by
replacing the Smart T-Shirt by a collar that could be used to detect the position of the
animal. The clever cave would replace the smart home, the clever collar would take the
place of the Smart T-Shirt and so on.

In order to function, each component may play one or more of the above roles:

Sensors/Actuators. They collect data from the environment and/or execute actions on
the environment.

Hot Spots. Communication end points that are used to connect remote entities to one
another.

Servents. They are responsible for computing i.e., decision making. We use the P2P
term servent as it might both act as a client and as server depending on the context.

A system component can play one or a combination of the above classes.
In this way we separate functionalities that are blurred in traditional wireless sensor

networks literature. Indeed, as noted in [25], proper sensors do not network: the tradi-
tional configuration of sensors network [2] is in reality the combination of two different
conceptual components:

– a sink is just a hot-spot which is close to the sensor just because of power limitation
of the communication link, but conceptually it can be located anywhere;

– a sensor node in a wireless sensor network is a combination of a proper unattended
sensor and an hot-spot.

An orthogonal classification identifies their ability to move with the subjects:

Localized entities offer or request services that are available locally. Different services
can be offered or requested in different locations.

Carry-on entities move jointly with the mobile subject. They might be always tied on
to the subject or may be dropped off.

In the sequel we will use the wording servent for the combination of the hot-spot with
the processor.

Example 4. The Smart T-Shirt of Bob is an example of a carry-on entity with sensors.
The PDA of the doctor is an example of a carry-on entity which combines a servent,
a hot-spot and a sensor (to read the Smart T-Shirt local data). If it could read sensors
directly (e.g., with an RFID reader), it would incorporate sensors capabilities as well.
The smart home is an example of a localized entity combining the three functionalities.

As we show in Figure 3 certain components group together all three functionalities:
the Smart T-Shirt combined with Bob’s eHealth terminal is a carry-on servent with
sensors.

5 Bears are being re-introduced in the Alps with significant fuss on the German and Italian sides.
In particular, a wild bear was roaming the German countryside where it was eventually killed.
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Fig. 3. Carry-on and Localized entities in the eHealth Scenario

Some of the services offered by servents might be functional services or might be
non-functional services such as security services:

Example 5. It is required to have some kind of identification (e.g., facial recognition,
RFID tags or bluetooth authentication) for the patient in order to ensure that the services
are provided to the right subject. However the information provided for identification
might be sensitive (e.g., biometrics) and therefore has to be protected to meet the privacy
requirements.

For our case study, the interactions between the sensors, hot-spots, and servents, whether
localized or carry-on, must be subject to a threat analysis to identify risks and mitigation
mechanisms suitable to address the security requirements.

A change in the context, for instance due to the mobility of the agents, might require a
change in the security solution. A mechanism for autonomous decisions is thus needed.
The autonomous aspect could be refined into different functionalities to be implemented
in the system-to-be:

– Runtime monitoring. We are targeting safety-critical systems with strong require-
ments on reliability of the provided services. Thus runtime monitoring allows prompt
failures detection and reaction. Here, we monitor both the environment and the in-
ternal system status together with the S&D solutions.

– Self-diagnosis. The information provided by the runtime monitoring should be au-
tomatically processed in order to identify the causes of the detected errors/failures.

– Self-reconfiguration. Once the corrupted components are identified, a reconfigura-
tion step is required in order to bring the system back in a safe state.
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Table 2. Some sample security, safety, and privacy requirements for the Emergency scene

Req 1 If the patient (i) loses consciousness, (ii) requests assistance, or (iii) feels guidy, then the
patient eHealth terminal shall receive enough data from the patient Smart T-Shirt to promptly
identify the dangerous status and send an urgent alert to the MERC.

Req 2 If the emergency procedure has started, then the MERC shall discover a medical team or a
doctor able and available to go to rescue/assist the patient.

Req 3 The doctor discovery process shall successfully terminate (i.e., one and only one doctor shall
proceed in assisting the patient) in due time.

Req 4 The system shall guarantee that the commitment of actors (e.g., doctors, rescue teams) to
actions cannot be later repudiated and that such commitment is actually followed by the
corresponding actions.

Req 5 Each communication between the MERC and the eHealth terminals of the selected doctor
and of the medical team shall guarantee integrity and confidentiality of the data exchanged,
and mutual authentication.

Req 6 Similarly, each communication between the eHealth terminal of the selected doctor, the med-
ical team and the patient eHealth terminal shall guarantee integrity and confidentiality of the
data exchanged, and mutual authentication.

Req 7 The selected doctor and the medical team using the eHealth terminal shall remotely be iden-
tified and granted access to the patient eHealth terminal to retrieve patient health status.

4 Security Analysis

Performing a systematic threat analysis consists in identifying all possible attack scenar-
ios exploiting the vulnerabilities of the system and the capabilities of attackers needed
to succeed (see e.g. the OCTAVE Methodology6). Thus, while analyzing different con-
texts, we come out with different threat models that require different security solutions
to be deployed in order to mitigate them [10]. In this study, we base the security anal-
ysis on the exploration of failures scenarios affecting the security requirements cited in
Table 2. We may decide that certain attacks scenarios are not worth to be considered as
the probability of their occurrence is very low.

It is not difficult to lift the requirements in Table 2 to our abstract components: carry-
on sensors identify a pre-defined alarm situation, a carry-on servent with sensors capa-
bilities reads the alert and uses an hot-spot to connect to a localized servent. Localized
servents communicate mutually to orchestrate a result. Along the whole process they
need to use security solutions to identify the players and to protect their privacy. A se-
curity solution may require the intervention of different localized and Carry-on entities.

Let us analyze the threat models corresponding to the emergency scene. Consider-
ing the security requirements in Table 2, we are going to identify the different security
threats obstructing their fulfillment. Table 3 presents the dependencies between the se-
curity requirements and the system components.

At this level we provide some intuition and constraints on possible solutions. More
details are given in the implementation section later on.

Req 1. This requirement emphasizes on the reliability of the Smart T-Shirt. Any fail-
ure due to both malicious (i.e., someone intentionally changes the configuration,

6 http://www.cert.org/octave/

http://www.cert.org/octave/
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Table 3. Dependencies between the identified security requirements and system’s components

Component Req 1 Req 2 Req 3 Req 4 Req 5 Req 6 Req 7
MERC’s server - X X X X X -
MERC’s Database - - - X - - -
Bob’s PDA X - - - - X -
GPS - X - - - - -
EHR - - - - - - X
Doctor’s PDA - X - X X X X
Directory service - X - - - - -
Doctor’s registry - X - - - - -
Smart T-Shirt X - - - - - -

buffer over flow on the diagnosis software via interaction with Bob’s PDA, etc.)
or accidental (i.e., software bug, Smart T-Shirt not correctly installed, etc.) would
compromise Bob’s safety. It is necessary to provide monitoring services that ensure
that the software and hardware infrastructure are functioning correctly.

Req 2,3. It is critical for the patient’s safety to securely and reliably identify Bob’s
location (and a close doctor). The sensors communicate on demand information
about Bob’s location to the MERC. After processing of this information, MERC
requests complementary information to the GPS server. The main threats to reli-
ably identify Bob’s location concern: 1) failure of MERC’s server, 2) corrupted
information stored on Doctor’s repository, 3) wrong information provided by GPS,
and 4) failure on Doctor’s PDA. Any of these threats would make it impossible the
safe termination of the doctor’s search.

When a critical information needs to be reliably retrieved from the Carry-on
entities, some fault tolerance techniques should be deployed to ensure the informa-
tion collection, storage and communication. These techniques should decrease risk
level related to the identified threats since they increase the resiliency capabilities
of the system.

Req 4. This is a composite requirement combining both non repudiation of commit-
ment by the doctor and proof of fulfilment of the emergency call.

In order to meet the first element of the requirement, a PKI based authentication
can with a signed confirmation message sent by the selected doctor to the MERC.
This only provides a non-repudiation of committment. It would not be enough to
fulfill the whole requirement because it doesn’t prove that the doctor actually went
to visit Bob. We need to add another proximity-based authentication between Bob’s
Smart T-Shirt (or his health terminal) and the doctor’s PDA that would satisfy the
proof on fulfilment of the rescue. Any corruption of Doctor’s PDA would allow the
intruder to falsify confirmation messages, or reject rescue requests when available,
etc.

Req 5. There are three security properties that should be ensured during the
communications between MERC and Doctor’s PDA: Integrity, Confidentiality and
mutual authentication. An encryption based solution could be used, namely PKI
infrastructure. Some of the identified threats for the PDA are equivalent to those
related to Req 4.
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Additional flexibility would be required to cope with diversified mobile devices
that may be used by doctors [20]. For example, a failure may occur on the doc-
tor’s device after confirmation sent and he may use a less performant or resource
restricted device for further interaction with MERC, in this case different context-
aware authentication schemas should be allowed.

Req 6. Integrity, confidentiality and mutual authentication are required for interactions
between Bob’s and doctor’s devices. This case is similar to the previous one.

Req 7. An authorization solution managing Bob’s medical data could be deployed.
The enforcement point (where requests are intercepted for access control) and the
decision points (where evaluation between requests and access control policies are
determined) could be implemented on the same component or separated according
to the latter computational capabilities, in other word we can place a decision point
where a trusted servent is located.

Example 6. In our scenario, we may deploy a simple XACML based authorization so-
lution where the MERC integrates both the enforcement and decision points as it repre-
sents the provider for the services and data requested by doctors and rescuers through
their PDAs. Moreover, due to the privacy requirements on the patient data, only the
minimal required data are sent on demand to the patient’s PDA. The access to these
data is granted according to the credential provided by the doctor’s eHealth terminal
with a lightweight authentication mechanism. In this way any successful Bob’s device
would not allow a complete access to Bob’s data.

5 An Autonomic Framework for Dynamic Security Provisioning

Before presenting our autonomic framework, it is necessary to introduce some basic
notions:

Context. It is the set of elements that are recorded and tracked by the Framework
in order to evaluate the state of the system as a whole and assist in choosing the
appropriate patterns or undertaking pre-active or pro-active actions.

Pattern. It is a self-contained description of a security solution including context in
which it can be applied and a set of functions defining a public interface to be used
by our security framework compliant applications.

Implementation. It represents the actual working solution. These solutions are made
accessible to applications thanks to our autonomic framework.

The basic idea behind our autonomic framework is that as the context changes we
should be able to deliver to the interested parties a new security solution.

If we consider a security requirement related to the confidentiality of some data.
According to the application context, we may need an SSL (Secure Socket Layer) con-
nection or a one time password or combination of both solution. This implies that all
these security solutions provide the same security property and should be put in the
same class within the S&D patterns’ library. In fact, not only each S&D requirement
can have different solutions, but also each solution may have different implementations.
As a mere example, SSL or TLS describe a protocol that has different implementations
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depending on the provider (e.g., OpenSSL from BSD and JSSE from Java are just two
of the most popular implementations of SSL). Depending on the facilities available one
or the other implementations might be selected.

For each available implementation, a different implementation document is included
in the library, describing: the specific system requirements, the necessary interface to
use when calling the implementation, and the location of the Executable Component.
So that once a solution is selected by the framework, a pointer to that implementation is
made available for the application connected to the framework. As a concrete solution
can be implemented not only via a programming language, but also via hardware ele-
ments such as a TPM (Trusted Platform Module) or a SmartCard, an implementation
might also refer to a programming module, but to a physical (perhaps human) element.

The Autonomic Security Framework (ASF) has been designed to allow different se-
curity requirements to be fulfilled through a number of available patterns and imple-
mentations. The ASF architecture developed within the SERENITY project is shown in
Figure 4. It is composed by the following components:

– S&D Library: it is a collection of patterns and implementations as defined previ-
ously. At runtime, the S&D library includes a limited set of appropriate solutions
that are specific to the actual platform and applications that may be used on the
device.

– Query System: it is responsible for contacting the Library and retrieving either
patterns or implementations and forwarding them to the component that requested
them. The query is like a translator used by the ASF Manager to get a specific
implementation of the ASF Library.

– Pattern Manager: it implements the logic of patterns by combining application
requirements, available patterns and current system context in order to choose the
appropriate implementation that needs to be activated. The Manager is the compo-
nent responsible for activating and deactivating pattern implementations and will
also be accountable for taking necessary actions (based on the monitoring rules)
when informed by the Monitor Service of a violation.

– Event Manager: it is responsible for collecting events from the Event Collector,
updating the context based on these events and forwarding them to the Monitor
Service for processing.

– Console: it is the main interface through which the ASF Manager will interact with
end users (e.g., pop-up windows providing awareness about the current security
solution in place).

– Context Manager: it is in charge of the context, as previously defined for the ASF
environment. It gives the system a vision of the environment. The ASF Context
Manager is responsible for updating it and responding to requests for specific ele-
ments.

– Monitoring Service: it is in charge of analyzing events and mapping them onto
the monitoring rules, in order to identify any violations and consequently inform
the ASF Manager. The monitor service can be located internally or externally
to the ASF.

The application will be able to request either general requirements in the form of pat-
terns or even explicitly request for a pattern implementation. Due to the dynamic nature
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Fig. 4. Autonomic Security Framework

of the framework, the application must be able to interchange pattern implementations
at run-time. As such the application should be designed in such a way as to refer to
specific interfaces and not explicit run-time code. In practice, it must have an execution
implementation handler that is programmed in such a way as to use at runtime different
pattern implementations (using technologies such as jini or web services).

Hereafter we describe the objectives associated to each of the ASF components and
show possible links to active research work in the research community. In general,
the objectives tackled with the ASF can be achieved by an engineering approach, that
requires no more than integrating concepts from different research topics varying from
semantic querying, explanation, design by contract and different others.

The role of Event Manager in this framework is to capture events to be used as
triggers for obligations on the selection of S&D patterns at the S&D Manager level.
These obligations are in principal actions halting the execution of specific S&D pat-
terns and/or swapping between S&D patterns. In some sense, we figure out similar-
ities between these goals and ones in distributed systems. In particular, we highlight
”events”” definition in the Ponder project. The events in Ponder trigger policies in the
rationale of initiating negotiation between different ones [13]. For sure it is convenient
to define events separately, and re-use them in multiple obligation policies, which is the
approach followed by Ponder. With this perspective, we imagine events at the Event
Manager level and policies at the S&D Manager level. By definition a policy in Ponder
is a rule that can be used to change the behavior of a system. According our initial spec-
ification/expectation from 〈Event Manager, S&D Manager〉, obviously this brick from
Ponder serves well our study. To protect the client and servers resources in distributed
systems, [14] proposes a policy-based approach. These policies represent a semantic
annotation of the constraints and capabilities required to initiate a negotiation between
clients and servers. During negotiation, these annotations are used to reason about and
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communicate the need to reveal requested credentials from the other participant (client
or server). The advantages in adding a negotiation framework in the S&D Manager of
the ASF enables reasoning on the candidate S&D patterns.

We should adapt our framework to the use of contrasting requirements from soft-
ware developers and security experts. Software developers are common users for our
framework, with no technical training in computer security, nevertheless should be able
to formulate their own queries to our S&D library. In [9] the authors arguments the
need for high level specification and query languages requirement to satisfy such goals.
Later, in [32], they propose their declarative rule-based language to specify policies
in order to enable reasoning (such the one required above). Their proposal focuses on
explanation mechanism for answering why, why-not, how-to, and what-if queries on
rule-based policies. Similar objective is tackled in [26] from Stanford University for the
explanation for (Semantic) Web based systems. Both of those approaches can be largely
re-used in our work.

In the S&D library we will describe our security patterns in two different compo-
nents. The first component comprises the executable code, while the second one pro-
vides the necessary information to reason on it. The actual code should be described in
a plug-and-play form. The component required by the ASF for reasoning is actually de-
scribed in the “design by contract” approach [29,27,28]: we will have to adjust the con-
tract describing the relevant security behavior and the constraints for applicability. We
complement this design approach by moving preconditions, invariants, post-conditions
from just internal annotations in the code to be publicly exposed in the library. There-
fore the previously described techniques for trust negotiation and semantic web match-
ing using security policies [14,9,32] can be applied for selecting patterns. Actually, the
mentioned reasoning and negotiation tools such as Ponder or Protune can be used to
find out a consistent selection of various S&D patterns.

6 The eHealth Scenario Prototype

This section describes how we implement the case study presented in Section 2 and
demonstrates how the security needs of the case study can be answered through the
integration with the ASF.

Figure 5 depicts the communication architecture underlying our eHealth prototype.
The overall logistics required for the development of the described prototype and de-
picted in Figure 5 is provided in Table 4. Patients’ remote assistance is accomplished
by means of a set of workflows properly defined, stored, and maintained by the MERC.
These workflows define the tasks to be performed to accomplish the medical request
and how these tasks should be orchestrated among the different actors. Tasks are real-
ized by means of web services and human intervention. For instance, to cope with an
emergency request (cf., Figure 2), the MERC activates and executes the workflow of
Figure 6: a web service AlertMERC WS running at the MERC interprets the alert re-
quest sent by the patient’s Smart T-shirt through the patient’s PDA and depending on the
alert level (either low or high), it proceeds either calling for a doctor’s diagnostic via
the FindAndSelectDoctor WS web service or asking for rescuers’ intervention by
means of the Rescue WS web service.



14 L. Compagna et al.

Fig. 5. Smart Items Architecture

Fig. 6. Emergency alert handling process

To implement all these features, the MERC mounts activeBPEL as workflow en-
gine to orchestrate remote medical tasks [1], an Apache Tomcat server configured with
Axis2 to provide several remote medical web services using Apache and HSQLDB as
relational database management system to store and maintain medical data of patients,
doctors, etc. Table 4 summarizes the implementation choices made for the components
of our eHealth prototype. In more details, the Smart T-Shirt is simulated as a JavaServer
Page (JSP) invoking a web service to signal a medical alert.7 As patient’s Smart Home
we have recently integrated in our case study the AmI infrastructure developed at the
DOMUS laboratory8. It relies on RFIDs, sensors, effectors and other advanced com-
munication technologies to provide eHealth monitoring capabilities [33]. The eHealth
terminals used by patients, doctors and rescue teams will be PDA phones running a
proper eHealth client application. For simulation and testing purposes, we emulate that
application as a JSP running on a standard computer.

7 Smart T-shirts to monitor patient’s vital health parameters is a promising business area. Few
prototypes are available in the research community.

8 http://domus.usherbrooke.ca/

http://domus.usherbrooke.ca/


A Dynamic Security Framework for Ambient Intelligent Systems 15

Table 4. Prototype implementation

Component Implementation AmI Class Type
Smart T-Shirt Simulated as a GUI — JSP hosted on an

Apache Tomcat server
carry-on — sensor

Smart Home DOMUS AmI infrastructure — Power-
Line equipment, sensitive mats, RFIDs,
Programmable Logic Controller, Server
and Ethernet infrastructure, Video over
IP, Crestron software, etc

localized — sen-
sor, servent, hot
spot

eHealth terminals
(for patients, doctors,
etc)

PDA phones simulated as a GUI — JSP
hosted on an Apache Tomcat server

carry-on — ser-
vent, hot spot

MERC Workflow management system, web ser-
vices, and DB management system — ac-
tiveBPEL, Apache Tomcat server, Axis2,
HSQLDB

localized — ser-
vent, hot spot

The eHealth prototype so far described addresses the remote assistance capabilities
required for patients monitoring, but it does not answer to any of the security require-
ments identified in Section 4. For instance, (SOAP) messages exchanged between the
doctor’s PDA and the MERC are sent in plain text and without any digital signature by
exposing patient’s sensible data (e.g., Electronic Health Records, Emergency Records)
to the public and by missing any guarantee on the sender’s identity (see Req. 5). Specific
built-in security mechanisms could be put in place to answer to this and other security
requirements, but they would likely be not adaptable.

Decoupling the system from its security functionalities would allow for adapting the
security mechanisms at runtime. Through its enhanced notion of patterns and monitor-
ing features, the ASF tries to answer to these needs. For this smart items scenario we
find convenient to adopt a centralized deployment of the ASF under the control of the
MERC.

The basic idea is to enforce security by means of security patterns referring to plug-
and-play software code. The execution of these pieces of software integrates the security
functionalities into the prototype. Of course, entry points for these pieces of software
need to be considered already during the design phase of the prototype.

At the current stage, the ASF library comprises several security patterns and a few
plug-and-play implementations. Some examples are presented in our previous work
[12,34]. Out of this library we select four security patterns to demonstrate the integra-
tion of the ASF into our eHealth prototype:

– Dependable Alert Communication. Is a classical dependability pattern that is
achieved through replicated and independent communication lines;

– Direct authentication. Is a peer-to-peer authentication pattern based on shared
keys providing confidentiality and proof of origin of the requester;
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– Brokered authentication. Is an authentication pattern working in different config-
uration than Direct authentication since it requires a trusted third party to authenti-
cate the requesters. It tackles the same security requirement (i.e., proof of origin);

– Authorization using a PMI9. Provides context-aware access control to resources.

In order to achieve the dependability requirements for the communication link used
for receiving the alert, we designed our prototype with a classical redundancy pattern:
the on-line selection of three publicly available infrastructures (namely the Internet,
the GSM, and the GPRS communication networks) results in a hybrid communication
architecture that meets the reliability needs of our eHealth case study.

A more sophisticated example shows how our eHealth prototype can take advantage
of the ASF.

Example 7. The eHealth prototype developer queries the ASF for security patterns ap-
plicable in the context of the eHealth prototype and providing authentication in the
communication between the doctor’s PDA and the MERC. The direct authentication
pattern is proposed by the ASF. The applicability conditions of the pattern implemen-
tation match the technology underlying the prototype. The prototype developer invokes
the pattern auto-deployment function, with the parameters properly instantiated, and
the pattern is thus deployed on both the client (the doctor’s PDA) and the server (the
MERC). SOAP messages sent by the doctor’s PDA to the MERC are then digitally
signed to guarantee the proof-of-origin requirement.

Behind the scenes, the pattern’s auto-deployment function acts on both the client and
the server workspaces to properly enable the Rampart module (see10) for encryption and
signature of the SOAP messages. This is totally transparent to the prototype developer.

The direct authentication pattern is a suited solution for proof-of-origin as long as
the two communication parties trust each other. On the contrary, in an distrustful envi-
ronment where two endpoints need to exchanging data with lack in trust, a trusted third
party should authenticate the service requester to the service provider.

Example 8. If a doctor receives suspect emails requesting for his services, a stronger
authentication mechanism than direct authentication is recommended to restore trust-
worthiness in the eHealth infrastructure.

The ASF monitoring capability recognizes the need to replace the direct authentica-
tion mechanism with a more suited one, based on a trusted third party. Thus, the ASF
looks up for such an authentication pattern and the brokered authentication pattern is
retrieved.

All this happens during the execution of the system and therefore the deployment
of the brokered authentication pattern cannot take advantage of the knowledge of the
prototype developer. The ASF has to deal with this deployment by its own, involving the
prototype’s security and IT administrators anytime that decisions and/or actions cannot
be made automatically: pattern deployment at runtime might require for re-starting the
eHealth prototype system.

9 PMI stands for Privilege Management Infrastructure.
10 http : //ws.apache.org/axis2/modules/rampart/12/security−module.html
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Fig. 7. Deployment of Authorization using XACML Executable Component

During deployment, the monitoring events signals a re-deployment of the authen-
tication mechanism. Hence, ASF checks the compatibility of the new authentication
mechanism with the already available authorization mechanism. PERMIS authoriza-
tion already installed in the prototype fails to be integrated with the new authentication
pattern, referred to as (P2). The tokens sent by P2 and the one required by PERMIS are
incompatible. Again, the ASF will have to query for an adequate authorization mech-
anism. The pattern Authorization using XACML referred to as (P3) provides similar
granularity for PERMIS authorization.

In the attempt to exchange the authorization using PERMIS with P3 while keeping
transparency, ASF checks for the availability of an adapter able to extract the RBAC
policies of PERMIS and feed them to P3 as XACML policies.

This runtime illustration of ASF is illustrative rather than prescriptive and thus we
could have a much wider spectrum of combinations.

6.1 Access Control Executable Component Artefact

The EC we have developed is based on the reference implementation of SUN XACML.
XACML (eXtensible Access Control Markup Language), the newest standard for access
control for web services, makes possible a simple, flexible way to express and enforce
access control policies in a variety of environments, using a single language [31].

In order to correctly integrate this Security Pattern within the library, we (playing
the role of security experts) defined at this step the EC and its Executable Component
Description. To create the EC, we implemented the function calls for the XACML so-
lution, we anticipated dependency errors through exceptions and then we overwrote
required interfaces. The description is packaged into the security patterns library as an
EC for the access control security pattern provided earlier.

When the access control security pattern and its correspondent authorization using
XACML description are populated in the security patterns library, software developers
will have to query for them and then deploy the EC in their application. In Figure 7 we
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Fig. 8. Snapshot from the Prototype Showing the Enforcement of the XACML based EC of the
Access Control Pattern

Table 5. Effective Deployment of Sample S& D Patterns

S& D Patterns Implemenation Fully autonomic
Alert Communication yes yes
Central authentication standard tech. yes
E-to-E authentication yes yes
Brokered authentication yes yes
Context-aware Auth. XACML yes yes
PeRMIS Auth. XACML yes current application may require

wrapper to become plug and play
Localization services yes yes

provide the information required from the software developer to use this authorization
solution. Specifically, the P: presented at line 6 corresponds to the Security Pattern ar-
tifact. At line 9 “authorization” corresponds to the operation exposed by the interface
for this Security Pattern.

Executable Component Usage in the Case Study. In the lines of Figure 7 the soft-
ware developer needs to add the address of the resource to be secured, the address of
the access control policies annotated as configuration for the security pattern and fi-
nally creates the enforcement point and link it to the environment where it needs to be
deployed. Similarly, as in the same scenes of the pattern, the case study will use the
Executable Component based on XACML prior to any access to the earlier specified
resources. The deployment of the EC in the case study and the interaction with the
Autonomic Security Framework are depicted in Figures 8 and Figure 9 respectively.

Table 5 shows the status of the patterns that we have just described in the eHealth-
prototype.

Though preliminary, our experiments with the running eHealth prototype indicate
that the approach is feasible and promising. At design time the integration of security
functionalities through the enhanced concept of security patterns operates smoothly and
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simplifies significantly the work of system developers for what concerns provision of
security in the system. Not surprisingly, the ASF runtime support is more challenging
and subtle as deployment of patterns during the system execution might requires the
intervention of system’s administrators and/or the re-booting of the system itself. Nev-
ertheless the approach is innovative and significantly advances the state-of-the-art in the
monitoring and adaptation of security at runtime.

7 Related Works

The majority of proposals for security architectures (Akenti, PERMIS, etc.) focus on
a particular aspect of security like providing authentication or access control whereas
our run-time framework is a generic security provisioning framework. For example,
the PERMIS PMI architecture [11] consists of a privilege allocation subsystem and a
privilege verification subsystem. The privilege allocation subsystem allocates privileges
to the users by generating X.509 role assignment attribute certificates that are stored
in an LDAP directory. Authentication is performed in an application-specific manner,
but authorization is performed in an application-independent manner according to the
PERMIS RBAC authorization policy. All these authentication solutions are considered
in our framework as different security patterns which implementation, configuration and
applicability condition are stored in the S&D library. The selection of the appropriate
pattern is driven by context change.

Other systems focused on providing autonomous operations based on monitoring
and reconfiguration. Even if implementations and experiments have been done in order
to prove the generality and adaptability of the frameworks they lack the mechanism of
patterns. For example, Abendroth et al. [3] propose a Unified Security Framework for
Networked Applications based on active software capabilities. It is able to support most
of the existing access control models. The proposed framework consists of four layers:
1) Security model; 2) Security Policy; 3) Security mechanism; and 4) Security Protocol.
Each abstraction layer provides requirements and constraints on the following layer but
such notions are soldered into the application.

The Willow survivability architecture [23] is a secure, automated framework for a
wide spectrum of both proactive and reactive reconfigurations of distributed systems. It
is based on the notion that survivability of a network requires reconfiguration at both
the system and the application levels. The Willow notion of reconfiguration is very gen-
eral, and the architecture provides reconfiguration mechanisms for both automatic and
manual network control. Once again, the individual schemes for dealing with different
reconfiguration scenarios might be different, but conceptually they are instances of a
common control paradigm that pervades the architecture.

PASIS (Perpetually Available and Secure Information Storage) [16] is a survivable
storage system. It provides intrusion tolerance on both server and client sides. To do so,
on the server side, it uses a strategy of decentralization so that any M-out-of-N storage
nodes can collectively provide valid information. On the client side, it enables intrusion
diagnosis and recovery. Covington et al [15] propose another context-aware security
architecture for emerging applications. Their architecture focuses on authentication and
access control.
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Fig. 9. Snapshot from the Prototype Showing the Execution Flow Between eHealth Applica-
tion, the ASF and the authorization using XACML based Executable Component for the request
getPhysicalCharacteristics() from the web service exposing the EHR

Moloney et al [30] propose a context-aware Trust-based security framework. The
proposed framework allow the system to take appropriate security decisions according
the current context where it is evolving. The architecture consists of four main com-
ponents: Entity recognition (ER) , Trust/Risk engines, Evidence Manager (EM) and
Decision-making component. The ER collects context information, that will be evalu-
ated by the trust and risk engines according to the information stored by the EM. The
decision is taken according to the outcome of the trust and risk analysis. There is no
monitoring service to make sure that the required security level is maintained during
the execution of the system.

What makes the ASF more flexible than the above proposals is the use of patterns
[36]. This makes it possible to provide automated support in the development of secure
systems. A well-known work on the field of security patterns is the one presented by
IBM in 2003 [40] as result of a set of interviews with institutions in financial services,
government, manufacturing, health, transportation, retail and other sectors. The patterns
focus is on implementation of efficient and effective security as an integral part of a
business delivering value to its customers by measuring risk. Business security patterns
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Table 6. Adequacy of the prototype

Autonomy &
Ambient Intelli-
gence

The ASF ensures autonomy of the system. In fact, the security manger is de-
signed to take all decisions at runtime without external intervention.

Genericity &
Heterogeneity

The system can be adapted to other scenarios where runtime monitoring and
reaction are required for passive subjects.

Mobility We have demonstrated the feasibility of the solution by checking that services
will be available both inside and outside the smart home.

Dynamism The system dynamic aspects are based on the ASF.
Security and De-
pendability

The security patterns provided by the ASF allow a continuous fulfillment of
the S&D requirements.

such as Web Presence, Business-to-Consumer or Operational Security are presented as
valuable guidelines for a Chief Security Officer. Still, those patterns are only available
at business level and lack a formal semantics.

In general, most security patterns are expressed in textual form, as informal indica-
tions on how to solve some security problem [24,42,36]. Some of them do use more
precise representations based on UML diagrams, but even these patterns do not include
sufficient semantic descriptions in order to automate their processing and to extend their
use [18].

Wassermann and Cheng [39] revised most patterns from [42,19] and categorized
them according their abstraction level (i.e. Application, Host or Network). The pro-
posal conveys additional information such as behavior (UML State diagrams), structure
(UML Class diagrams), constraints and related security principles.

The critical innovation in our work is that patterns are actually deployed at run-
time, rather than being selected by designers during system development. They must of
course be specified in a way that is suitable for automatic replacement.

8 Conclusions

The key innovation of our Autonomic Security Framework is the computer aided run-
time proactive and reactive support for identification of potential threats and attacks of
implemented security solutions, the adaptation of attacked applications, and the amend-
ment of patterns to address weaknesses identified during their deployment through ap-
propriate evolution mechanisms.

We are now in the position to evaluate qualitatively the adequacy of the implemen-
tation with regards to the functional and non-functional requirements expressed pre-
viously. Table 6 summarizes the outcomes of the analysis and explains how we have
addressed the challenges previously identified. A full fledged experimentation of the
system-as-a-whole is our next step. We are currently doing the integration of the full
run-time ASF. The ability of the system to adapt itself when the monitored subject is
moving from trusted environments to hostile ones would be one of the main challenges.

At runtime the ASF, monitoring the application, needs to perform several reasoning
activities in order to fetch and deploy appropriate security solutions suitable for cor-
recting the available vulnerabilities in the application. These interactions between the
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ASF and application are driven by priorities set by the threat models and the available
resources. The balance between availability of resources and their protection could be
the final benchmark.
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Abstract. The main purpose of this paper is to illustrate the fundamen-

tal concepts behind the NTRU public key cryptosystem can be extended

to a broader algebra than Dedekind domains and the NTRU underly-

ing ring may be replaced by a non-commutative or even non-associative

algebra.

To cross the border of Dedekind or Euclidean domains, we prove that

it is possible to extend NTRU to the algebra of polynomials with co-

efficients in the non-commutative ring of quaternions as well as the

non-associative octonions algebra (a power-associative and alternative

algebra of dimension eight over a principal ideal domain).

We also demonstrate that the security of the proposed non-associative

cryptosystem relies on the intractability of shortest vector problem in a

certain type of lattice. The least advantage of the non-associativity of the

underlying algebra is that the resulting lattice is not fully classified under

Convolutional Modular Lattice (CML). To the best of our knowledge, no

non-associative public key cryptosystem based on non-associative algebra

has been proposed in the literature.

Keywords: Public Key Cryptography, Lattice-based Cryptosystems,

NTRU Extension, Non-associative Cryptosystems.

1 Introduction

The NTRU public key cryptosystem which was officially introduced in 1998 [10],
is the only practical lattice-based cryptosystem that finally managed to win pub-
lic trust after numerous modifications and optimizations [12] and it has now been
fully standardized within IEEE P1363.1 NTRUEncrypt [14]. Compared to other
well-known cryptosystems such as RSA, ECC or ElGamal, the greatest advan-
tage of NTRU is that the basic operations take place in the ring of convolution
polynomials of rank N over Z with the worst-case running time O(N2). Com-
putational efficiency along with low cost of implementation have turned NTRU
into a very suitable choice for a large number of applications such as embedded
systems, mobile phones, RFID tags, portable devices and resource constrained
devices [3,15].

Most sophisticated attacks against NTRU are based on lattice reduction tech-
niques [6,19]. Although it has been shown that the Closest Vector Problem

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. X, LNCS 6340, pp. 25–41, 2010.
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(CVP) is NP-hard and the Shortest Vector Problem (SVP) is also NP-hard
under randomized reduction [1,20,21], however, the NTRU lattice is classified as
a Cyclic Modular Lattice (CML) and it is not determined, yet, whether or not
the cyclic structure and Hermite normal form of CML is going to help reducing
the complexity of CVP or SVP [9].

After recognition of NTRU as a secure and safe scheme, several researches
were conducted on generalization of the NTRU algebraic structure to different
Euclidean rings beyond Z, including the non-commutative ring of k × k matri-
ces of polynomials in Z[x]/(xN − 1) (MaTRU) [4], GF (2k)[x] (CTRU) [7] and
generally Dedekind domains such as Z[i] [17], Z[

√−2], Z[ζ3] and Z[ζ5] (ETRU)
[16,23]. Although generalization of NTRU to GF (2k)[x] in [7] never had a de-
sirable result and was broken soon after [17], however, it resulted in a better
understanding of the NTRU cryptosystem and suggested the idea of replacing
NTRU algebraic structure with other rings, free modules and algebras.

NTRU relies on two fundamental concepts: According to the first concept,
this cryptosystem has acquired its inherent security from intractability of the
Shortest Vector Problem (SVP) in a certain type of lattice which is assumed
to be NP-hard. From this aspect, NTRU is different from all known number-
theoretic cryptosystems like RSA or ECC. According to the second concept that
has not been considered in the sense of algebraic generalization, is the possibility
of decryption failure, which may lead to the concept of provable security based on
worst-case intractability assumptions (though this feature has not been proven
yet). In NTRU, decryption failure arises from the fact that there is no well-
defined and non-trivial homomorphism between two rings Zp and Zq as well as
the polynomial rings Zp[x] and Zq [x] (assuming gcd(p, q) = 1). Despite this fact,
one may impose some restrictions on the coset representatives and switch over
Zp[x] and Zq[x].

In this paper, by introducing two practical cryptosystems similar to NTRU,
we illustrate that the algebraic structure of NTRU is not limited to Euclidean or
Dedekind domains and can be extended to an algebra which is not necessarily
commutative or associative. Those two examples are public key cryptosystems
with non-associative and non-commutative algebraic structure which can be im-
plemented in software or hardware in addition to crossing borders of Dedekind
domain. We also show that similar to NTRU, the security of the proposed non-
associative cryptosystem relies on the intractability of shortest vector problem
in a non-circular lattice.

This paper is organized as follows: Section 2 summarizes the NTRU cryptosys-
tem over any arbitrary Dedekind domain including Z. In section 3, we provide a
sketch of the theory on which the proposed cryptosystems are based. In section 4,
we describe two NTRU-like public key cryptosystems that are constructed based
on polynomial algebra with coefficient in the non-commutative ring of quater-
nions and non-associative octonions, respectively. Section 5 is dedicated to the
security analysis of the proposed non-associative public key cryptosystem.
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2 NTRU Cryptosystem over a Dedekind Domain

This section briefly introduces the NTRU cryptosystem over a Dedekind domain
including Z. It is presumed that the reader is familiar with precise details of this
cryptosystem as well as concepts of abstract algebra. Otherwise, references [11]
and [25] are recommended for comprehensive introduction to NTRU and abstract
algebra concepts, respectively.

Suppose D is a Dedekind domain and consider the convolution polynomial
ring R = D[x]/(xN − 1) with multiplication denoted by the symbol � , where N
is a fixed prime number. The convolution product h := f � g can be explicitly
defined as follows

f(x) : =
N−1∑
i=0

fix
i = [f0, f1, . . . , fN−1]1×N

, fi ∈ D

g(x) : =
N−1∑
i=0

gix
i = [g0, g1, . . . , gN−1]1×N

, gi ∈ D

h(x) : =
N−1∑
i=0

hix
i = [h0, h1, . . . , hN−1]1×N

, hi ∈ D

hk : =
k∑

i=0

fi.gk−i +
N−1∑

i=k+1

fi.gN+k−i =
∑

i+j
N≡ k

fi.gi.

(1)

Let a be an arbitrary element in D and 〈a〉 be the ideal generated by a. Let Ra

denote (D/〈a〉)[x]/(xN − 1) which is evidently isomorphic to R/〈a〉. Let p and q
be two elements in D such that 〈p〉 ∩ 〈q〉 = {1}. Also let Lf , Lg, Lm and Lφ, be
suitable subsets of R. By suitable we mean a subset of relatively sparse polyno-
mials with coefficients of small norm. Note that the process of key generation,
encryption and decryption are exactly the same as NTRUEncrypt but with two
differences: (i) Z has been replaced with an arbitrary Dedekind domain D, (ii)
Modular arithmetic is generalized to its abstract equivalent, i.e., modular arith-
metic modulo an ideal generated by a ∈ D. Having set the above notations, the
NTRU cryptosystem over a Dedekind domain can now be described as follows.

Public Parameters. The following parameters in (Generalized) NTRU are as-
sumed to be fixed and public and must be agreed upon by both the sender and
the receiver: N is a prime number which determines the structure of the ring
D[x]/(xN − 1) and p and q are two elements in D such that 〈p〉 ∩ 〈q〉 = {1} and
‖q‖ is much greater than ‖p‖, where ‖.‖ denotes Euclidean function (when D is
also Euclidean Domain) or a function that admit unique remainder for a specific
subset of D with respect to the ring operations. df , dg, dm, and dφ are constant
integers less than N which determine the distribution of the coefficients of the
polynomials in the subsets Lf , Lg, Lm and Lφ.
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Key Generation. In the key generation process, two small polynomials f and g
are randomly chosen from Lf and Lg, respectively. The polynomial f must be
invertible in Rp and Rq (Ra = (D/〈a〉)[x]/(xN − 1)). Upon suitable selection of
public parameters, when f is randomly selected from the subset Lf , the proba-
bility for this polynomial to be invertible in Rp and Rq is very high. However, in
rare event that f is not invertible, a new polynomial f can be easily generated.
The inverse of f over Rp and Rq are computed using the generalized extended
Euclid algorithm. As is pointed out in [16,23], when p and q are prime elements
(or power of a prime) in a Dedekind domain D, there exist a polynomial time al-
gorithm for computing the inverse of a unit element in Rp and Rq. We call those
two inverses f−1

p and f−1
q , respectively. Hence, we have f−1

p �f ≡ 1 (mod p) and
f−1

q � f ≡ 1 (mod q). While f , g, f−1
p , and f−1

q are kept private, the public key
h is computed as follows

h = f−1
q � g (mod q).

Encryption. The cryptosystem generates a random polynomial φ ∈ Lφ, called
the blinding polynomial (or ephemeral key), and converts the input message to
a polynomial m ∈ Lm. The ciphertext is computed as follows

e = p.(h � φ) + m (mod q).

Reduction modulo the ideal 〈q〉 is performed based on a predefined mapping
which assigns a member of D as a representative to each equivalence class D/〈q〉.
Let denote the set of all representatives for each equivalence class modulo the
ideal 〈q〉 as S.

Decryption. The first step of decryption process starts by multiplying (convolv-
ing) the received polynomial e by the private key f

a := f � e (mod q) = f � (p.h � φ + m) (mod q)

= p.f � f−1
q � g � φ + f � m (mod q)

= p.g � φ + f � m (mod q).

In the second step, the coefficients of a ∈ Rq are identified with the equivalent
representatives in S. Assuming that the public parameters have been chosen
properly, the resulting polynomial is exactly equal to p.g � φ + f � m in R. With
this assumption, when we reduce the coefficients of a modulo p, the term p.g � φ
vanishes and f � m (mod p) remains. In order to extract the message m, it is
enough to multiply f � m (mod p) by f−1

p .

Successful Decryption. In order to ensure that the decryption process never fails
or has a very high probability of succeeding, we have to impose some constraints
on the cryptosystem constants and derive conditions under which the coefficients
of p.g � φ + f � m in R lie in S almost always. For example, in standard NTRU
if the public parameters (N, p, q, d) are chosen to satisfy q > (6d + 1).p (where
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d := df = dg = dφ as defined above) then decryption process will never fail.
However, to have a better performance and also to reduce the size of the public
key, smaller value of q may be chosen for q such that the probability of decryption
failure be very small of order 2−80 [11, p. 395].

Security of Generalized NTRU over Dedekind Domains. When one selects an
arbitrary Dedekind or Euclidean domain as D, an efficient and functional cryp-
tosystem will emerge, but the security and efficiency of the cryptosystem have
no connection to its abstract definition and must be studied precisely and in-
dependently. In [17,16], it has been proven that besides Z, if we choose D to
be one of the Dedekind domains: Z[i], Z[

√−2], Z[ζ3] and Z[ζ5], a NTRU-like
cryptosystem will emerge that works well and enjoys high security. On the other
hand, in CTRU where the ring of integers is replaced by the finite field GF (2k),
the emerged cryptosystem is totally insecure [17].

3 A Sketch of the Underlying Algebra in the Proposed
Cryptosystems

In this section we fix some definitions and notations and review a few basic
properties of the algebras which will be used in the sequel. By algebra it means
a vector space V over a field F (or generally a R-module over any ring R denoted
by R-algebra) that is equipped with a bilinear map.

Real quaternions and octonions, denoted respectively by H := {α + β.i +
γ.j + δ.k | α, β, γ, δ ∈ R} and O :=

{
x0 +

∑7
i=1 xi.ei | x0, · · · , x7 ∈ R

}
, are

the second and third normed division algebra in the sense of Cayley-Dickson
doubling method. As a vector space, addition and scalar multiplication in H and
O are defined by ordinary element-wise vector addition and scalar multiplication.
However, multiplication of two quaternions in H (which is not commutative) is
defined according to the rules:

i2 = j2 = k2 = −1 and ij = −ji = k. (2)

For non-associative octonions with the basis { 1, e1, e2, e3, e4, e5, e6, e7 }, mul-
tiplication is given by the following rules{

1 is the multiplicative identity, e2
i = −1, ei.ej = −ej .ei, i 	= j,

ei.ej = ek → ei+1.ej+1 = ek+1, ei.ej = ek → e2i.e2j = e2k, i 	= j
(3)

where the indices greater than 7 should be reduced mod 7.
The octonion algebra is alternative, i.e., a non-associative algebra in which

the subalgebra generated by any two elements is associative. [26, p. 17] In a
non-associative but alternative algebra, the following three identities which are
known as the Moufang Identities hold

∀ a, x, y ∈ O→
⎧⎨
⎩

a(x(ay)) = (axa)y,
((xa)y)a = x(aya),
(ax)(ya) = a(xy)a

(4)
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The set of all integral quaternions L, i.e., quaternions whose components are
all in Z, is known as Lipschitz integers and indeed forms a subring of the real
quaternions H. Similarly, the set of all integral octonions G, which is sometimes
called Gravesian or Cayley integers, is regarded as a normed division algebra
of signature (8,0) that form a lattice inside O. Lipschitz and Gravesian integers
may be considered as two lattices in R

4 and R
8 which are not densely well-packed

in the sense of Conway-Smith [5]. Consequently, the unique prime factorization
property in L and G will fail [5].

The concepts of the homomorphism, kernel of a homomorphism and coset
representatives, do not involve associativity of multiplication and have the same
definitions for algebras in general. Let A and A

′ be two quaternionic or oc-
tonionic algebras over the commutative rings R and R′ respectively, and let
◦ : A × A → A denote corresponding bilinear multiplication. Assume there
exists a homomorphism ρ from the ring R into R′. Evidently, there exists a
homomorphism φ between two algebras A and A

′ defined as follows

φ : A→ A
′

∀x
∼

∈ A, x
∼

:=
n∑

i=1

xibi, φ(x
∼

) =
n∑

i=1

ρ(xi)bi

where bi’s are the basis of the corresponding algebra (i.e., 〈1, i, j, k〉 for H or
〈1, e1, · · · , e7〉 for O) and xi’s are scalars in R. When A is one of the known
quaternion or octonion algebra, the multiplication in A can be determined by
the rules (2) or (3), but in general, for an arbitrary algebra A, the bilinear
multiplication can be completely determined by mean of structure coefficients
via the following rule

bibj =
n∑

k=1

ci,j,kbk (5)

where ci,j,k are scalars in R (called structure coefficients or multiplication con-
stants) and must be specified such that the resulting multiplication satisfies the
algebra laws. (For more comprehensive details see [26].)

Now let us turn our attention to the NTRU underlying algebra. Dedekind
domains has been chosen as NTRU base ring in order to guarantee that there
exist an efficient algorithm for finding the inverse of an invertible polynomial in
Ra = (D/〈a〉)[x]/(xN − 1) [16]. Since every prime ideal in a Dedekind domain
is maximal, it would allow us to use the polynomial time extended Euclidean
algorithm to find the inverse of a scalar in R. By choosing A to be one of the
quaternions or octonions algebra defined over a Dedekind domain R, the algebra
A satisfies the following properties:

– Finding the inverse of an element depends on finding the inverse of its norm
over the ground ring/field on which the algebra is defined. Thus, A has an
explicit rule for finding the inverse of a unit element in polynomial time. For
quaternions (H) or octonions (O), the inverse of a unit element x

∼

is computed
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by the explicit rule x
∼

−1 = N(x
∼

)−1.x
∼

∗, provided that it has a nonzero norm,

i.e., N(x
∼

) 	= 0. The symbol ∗ denotes conjugate of x
∼

and N(.) : A → R is a
multiplicative norm function that assigns to every elements in A a scalar in
the ground ring R.

– Let R be the base ring on which the quaternionic or octonionic algebra A

is defined. Assume that there exist two nontrivial homomorphisms ρ1 and
ρ2 from R into the rings R1 and R2, respectively. It can be verified that

φ1(x
∼

) =
n∑

i=1
ρ1(xi)bi and φ2(x

∼

) =
n∑

i=1
ρ2(xi)bi are two nontrivial algebra

homomorphisms.
– Assume that there exist a surjective homomorphism from quaternionic or

octonionic algebra A into finite split algebras A1 and A2 respectively. Obvi-
ously, every element in the finite split algebras A1 and A2 can be represented
by a coset representative in A.

4 Description of Two Cryptosystems Based on R-Algebra
beyond Dedekind Domain

In this section, we show that the ring of convolution polynomials of rank N over
Z (i.e., Z[x]/(xN − 1)) in the NTRU scheme can be replaced by the algebra
of polynomials with coefficients in the non-commutative ring of quaternions H

or non-associative octonions O. If we replace the underlying ring of NTRU by
the quaternions or octonions algebra, then a new multi-dimensional public key
cryptosystem will be emerged that is at least as secure against lattice attack as
NTRU and also provides more capability for protocol design. The main difference
between the proposed cryptosystems and those proposed in [23,17,4] is that
the underlying algebra can be even non-associative. In this paper we focus on
the quaternions and octonions algebras but we conjecture that the proposed
extension may also be adapted to some other type of algebras.

4.1 A NTRU-Like Cryptosystem Based on Quaternions Algebra

In this cryptosystem, the underlying ring in the NTRU scheme is assumed to
be quaternions non-commutative algebra. Let us call the proposed cryptosystem
QTRU. Detailed and analytical description of the proposed cryptosystem are
beyond the scope of this paper; see our report [18] for further details. Similar to
NTRU we fix an integer prime N and two co-prime moduli1 and we define the
polynomial algebras A, Ap and Aq as follows

A :={f0(x) + f1(x).i + f2(x).j + f3(x).k | f0, f1, f2, f3 ∈ Z[x]/(xN − 1)}.
Ap :={f0(x) + f1(x).i + f2(x).j + f3(x).k | f0, f1, f2, f3 ∈ Zp[x]/(xN − 1)}.
Aq :={f0(x) + f1(x).i + f2(x).j + f3(x).k | f0, f1, f2, f3 ∈ Zq[x]/(xN − 1)}.

1 Assuming p = 3, the best choice for q would be a prime number of the form 2s ± 1.
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One can easily conclude that A, A0 and A1 are split algebras. In other words,
A, A0 and A1 algebras possess all characteristics of quaternion algebra, except
that there are some nonzero elements whose norm is zero and naturally such
elements do not have a multiplicative inverse. (See references [5] and [27] for an
introduction to quaternion algebra.)

Note that for the sake of simplicity, from here on the arguments (x) have
been dropped, i.e., we denote F

∼

∈ A by f0 + f1.i + f2.j + f3.k instead of f0(x)+

f1(x).i+f2(x).j+f3(x).k. The symbol ◦ denotes the quaternionic multiplication
and can be computed as follows

F
∼

◦G
∼

= (f0 + f1.i + f2.j + f3.k) ◦ (g0 + g1.i + g2.j + g3.k)

=(f0�g0−f1�g1−f3�g3−f2�g2)+(f0�g1+f1�g0−f3�g2+f2�g3).i

+(f3�g1+f2�g0+f0�g2−f1�g3).j+(f1�g2+f0�g3−f2�g1+f3�g0).k

(6)

where � denotes the convolution product. We denote the conjugate of a quater-
nion F

∼

= (f0+f1.i+f2.j+f3.k) by F
∼

∗ = (f0−f1.i−f2.j−f3.k). Let the subsets

Lf , Lg, Lm and Lφ have the same definitions as defined in NTRU (i.e. the sub-
sets of binary or ternary polynomials with some degree of sparseness determined
by the public constant d). The QTRU cryptosystem can now be described as
follows.

Key Generation. In order to generate a pair of public and private keys, two
small quaternions F

∼

and G
∼

(i.e., quaternions with small norm) are randomly
generated.

F
∼

= f0 + f1.i + f2.j + f3.k, such that f0, f1, f2, f3 ∈ Lf ⊂ A,

G
∼

= g0 + g1.i + g2.j + g3.k, such that g0, g1, g2, g3 ∈ Lg ⊂ A.

The quaternion F
∼

must be invertible in Ap and Aq. The necessary and sufficient

condition for F
∼

to be invertible in Ap and Aq is that the polynomial
∥∥∥F

∼

∥∥∥ =

(f2
0 +f2

1 +f2
2 +f2

3 ) is invertible over the rings Zp[x]/(xN −1) and Zq[x]/(xN −1).
The inverses (denoted by F

∼
p and F

∼
q ) will be computed as follows.

F
∼

p := (f2
0 + f2

1 + f2
2 + f2

3 )−1·F
∼

∗ � μ0 + μ1.i + μ2.j + μ3.k,

F
∼

q := (f2
0 + f2

1 + f2
2 + f2

3 )−1·F
∼

∗ � η0 + η1.i + η2.j + η3.k

Now, the public key, which is a quaternion, is computed as follows

H
∼

= F
∼

q ◦G
∼

=(η0�g0−η1�g1−η3�g3−η2�g2)+(η0�g1+η1�g0−η3�g2+η2�g3).i+

(η3�g1+η2�g0+η0�g2−η1�g3).j+(η1�g2+η0�g3−η2�g1+η3�g0).k.

(7)

The quaternions F
∼

, F
∼

p and F
∼

q will be kept secret in order to be used in the
decryption phase.
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Encryption. In the encryption process, the cryptosystem first generates a ran-
dom quaternion Φ

∼

. The plaintext must be converted into a quaternion M
∼

∈ Lm

including four small polynomials. The messages could be generated from the
same or four different sources but transformed into one quaternion based on a
simple and pre-determined encoding scheme. The ciphertext will be computed
as follows

E
∼

= p.H
∼

◦ Φ
∼

+ M
∼

∈ Aq.

Decryption. In the first step, the received ciphertext E
∼

is first multiplied by the
private key F

∼

on the left

B
∼

:= F
∼

◦ E
∼

= F
∼

◦ (p.H
∼

◦ Φ
∼

+ M
∼

) mod q

= (p.F
∼

◦ F
∼

q ◦G
∼

◦ Φ
∼

+ F
∼

◦M
∼

) mod q

= (p.G
∼

◦ Φ
∼

+ F
∼

◦M
∼

) ∈ Zq[x]/(xN − 1).

The components of the resulting quaternions (including 4.N coefficients from
the ground ring) must be reduced mod q into the interval (−q/2, +q/2], i.e.,
Ω = {−q/2 + 1, · · · , +q/2} is regarded as the set of representatives. Assuming
that B

∼

∈ Zq[x]/(xN−1) is exactly equal to p.G
∼

◦Φ
∼

+F
∼

◦M
∼

in A, when B
∼

is reduced

mod p, the term p.G
∼

◦Φ
∼

vanishes and F
∼

◦M
∼

( mod p) remains. In order to extract

the original message M
∼

, it will suffice to multiply F
∼

◦M
∼

(modp) by F
∼

p on the

left and adjust the resulting coefficients within the interval Λ = [−p/2, +p/2].
In [18] using some simple calculations we have shown that in QTRU, the

variance of the coefficients p.G
∼

◦ Φ
∼

+ F
∼

◦ M
∼

increases by a factor of 4 (since
4 coefficients with the same distribution must be added in every quaternionic
multiplication) and, hence, the probability for decryption failure increases. In
return, constant parameters of the cryptosystem, including dφ , dg, df , q, and
N , can be chosen in such a way that the decryption failure rate in QTRU remains
equal to that of NTRU.

Although in totally equal circumstances (i.e., choosing the same parameters
for both NTRU and QTRU cryptosystems), QTRU seems to be about four times
slower than NTRU, one can partially compensate for the speed by reducing N
and still obtain the same level of security. In addition, it can be optimized for
efficiency based on the various methods proposed in [12].

In [18] we have shown that lattice attack on QTRU may be applied using two
methods Partial Lattice Attack and Full Quaternionic Lattice Attack and both
of the methods will not succeed in finding a short quaternion for full or partial
recovery of the plaintext. Since the quaternions algebra may be regarded as an
associative subalgebra of the octonions algebra, thus, QTRU may be regarded
as a sub-cryptosystem of the OTRU that will be described in the following
subsection. Thus, the lattice of QTRU may be considered as a sub-lattice of the
OTRU lattice, analyzed in Section 5.
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4.2 A NTRU-Like Cryptosystem Based on Non-associative
Octonions Algebra

In this cryptosystem, called OTRU, the underlying ring in the NTRU scheme has
been replaced by octonions non-associative algebra. Although this cryptosystem
resembles to QTRU and NTRU with regard to key generation and encryption
algorithm, however, the non-associativity of the cryptosystem algebraic structure
improves the security.

We begin by assuming that the reader is fully familiar with the theoretical
background of non-associative algebra and octonions. (See [2,5] for comprehen-
sive introduction to the octonions.) Consider three public parameters (N, p, q)
as well as four subsets Lf , Lg, Lm and Lφ with definitions similar to QTRU or
NTRU. Let us define the required polynomial algebras A, Ap and Aq as follows.

A := {f0(x) +
7∑

i=1

fi(x).ei | f0(x), · · · , f7(x) ∈ Z[x]/(xN − 1)}

Ap := {f0(x) +
7∑

i=1

fi(x).ei | f0(x), · · · , f7(x) ∈ Zp[x]/(xN − 1)}

Aq := {f0(x) +
7∑

i=1

fi(x).ei | f0(x), · · · , f7(x) ∈ Zq[x]/(xN − 1)}

(8)

Let F
∼

:= f0(x)+f1(x)e1+f2(x)e2+f3(x)e3+f4(x)e4+f5(x)e5+f6(x)e6+f7(x)e7

and G
∼

:= g0(x) + g1(x)e1 + g2(x)e2 + g3(x)e3 + g4(x)e4 + g5(x)e5 + g6(x)e6 +

g7(x)e7 be two octonions in A. The multiplication operation is defined in the
following way (here again, for ease of notation, we omit the argument (x) when
no ambiguity arises)

F
∼

◦G
∼

=(f0.g0−f1.g1−f2.g2−f3.g3−f4.g4−f5.g5−f6.g6−f7.g7)

+(f0.g1+f1.g0+f2.g4+f3.g7−f4.g2+f5.g6−f6.g5−f7.g3).e1

+(f0.g2−f1.g4+f2.g0+f3.g5+f4.g1−f5.g3+f6.g7−f7.g6).e2

+(f0.g3−f1.g7−f2.g5+f3.g0+f4.g6+f5.g2−f6.g4+f7.g1).e3

+(f0.g4+f1.g2−f2.g1−f3.g6+f4.g0+f5.g7+f6.g3−f7.g5).e4

+(f0.g5−f1.g6+f2.g3−f3.g2−f4.g7+f5.g0+f6.g1+f7.g4).e5

+(f0.g6+f1.g5−f2.g7+f3.g4−f4.g3−f5.g1+f6.g0+f7.g2).e6

+(f0.g7+f1.g3+f2.g6−f3.g1+f4.g5−f5.g4−f6.g2+f7.g0).e7

(9)

Note that in the algebras A, Ap and Aq, scalars are polynomials in the con-
volution polynomial rings Z[x]/(xN − 1), Zp[x]/(xN − 1) and Zq[x]/(xN − 1)
respectively, and the operations of addition, subtraction and multiplication will
be performed over the underlying ring. Let denote the conjugate and inverse

of an octonion F
∼

= f0 +
7∑

i=1
fi(x).ei by F

∼

∗ = f0 −
7∑

i=1
fi(x).ei and F

∼

−1 =
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(
7∑

i=0
f2

i (x))−1.F
∼

∗ , respectively. Let us fix a set Ω of coset representatives in a

way that every elements in Aq could be identified with a unique coset represen-
tative in A. Also, let Λ be the set of representatives for every elements of Ap in
A. OTRU operates as described below.

Key Generation. Similar to QTRU, two small octonions F
∼

and G
∼

are randomly
generated.

F
∼

:= f0 + f1.e1 + · · ·+ f7.e7 ∈ A, f0, · · · , f7 ∈ Lf ⊂ A

G
∼

:= g0 + g1.e1 + · · ·+ g7.e7 ∈ A, g0, · · · , g7 ∈ Lg ⊂ A

The octonion F
∼

must be invertible over Ap and Aq. If such an inverse does not

exist (i.e., when
7∑

i=0
f2

i (x) is not a unit element in Zp[x]/(xN−1) or Zq[x]/(xN−1)

), a new octonion F
∼

will be generated. The inverses of F
∼

over the algebras Ap

and Aq are denoted by F
∼

−1
p and F

∼

−1
q . The public key, which is an octonion, is

computed as follows
H
∼

= F
∼

−1
q ◦G

∼

∈ Aq.

Encryption. Initially, a random octonion Φ
∼

is generated. The incoming data must
be converted into an octonion including eight polynomial in Lφ. This can be
performed according to a simple and predetermined convention. The ciphertext
E
∼

is then calculated as follows

E
∼

= p.H
∼

◦ Φ
∼

+ M
∼

∈ Aq.

Decryption. Since the octonions algebra is non-associative, not only the terms of
(F

∼

−1
q ◦G∼ )◦Φ

∼

do not commute, but also the parentheses order can not be changed,
and this will reveal some problem during decryption, because one cannot simply
remove the term F

∼

−1
q from ((F

∼

−1
q ◦G

∼

) ◦ Φ
∼

) by multiplying F
∼

on the left. Thus,
in order to decrypt, first of all, the received octonion E

∼

is multiplied on the left
by the private key F

∼

and then on the right as follows

B
∼

: = (F
∼

◦ E
∼

) ◦ F
∼

∈ Aq

= (p.F
∼

◦ (H
∼

◦ Φ
∼

+ M
∼

)) ◦ F
∼

∈ Aq

= p.(F
∼

◦ (H
∼

◦ Φ
∼

)) ◦ F
∼

+ (F
∼

◦M
∼

) ◦ F
∼

∈ Aq

Based on the Moufang Identity (4) we can rearrange the parentheses as follows

= p.(F
∼

◦H
∼

) ◦ (Φ
∼

◦ F
∼

) + (F
∼

◦M
∼

) ◦ F
∼

∈ Aq

= p.(F
∼

◦ (F
∼

−1
q ◦G

∼

)) ◦ (Φ
∼

◦ F
∼

) + (F
∼

◦M
∼

) ◦ F
∼

∈ Aq

= p.G
∼

◦ (Φ
∼

◦ F
∼

) + (F
∼

◦M
∼

) ◦ F
∼

∈ Aq.



36 E. Malekian and A. Zakerolhosseini

In the second step, B
∼

∈ Aq should be identified with its equivalent representative
in Ω and then, all the coefficients in the polynomials should be reduced mod p.
Thus we have (B

∼

mod p) = (F
∼

◦M
∼

) ◦ F
∼

∈ Ap. In order to extract message M
∼

,

simply multiply B
∼

on the right by F
∼

−1
p and then repeat the same operation on

the left and adjust the resulting coefficients in [−p/2, +p/2].

The cost of encryption and decryption in OTRU. Let us assume that NTRU
and OTRU work with public parameters (N, q, p = 3, d = N/3)(where d :=
df = dg = dφ) and (N ′, q′, p′ = 3, d′ ≈ N ′/3), respectively. Thus, the public key
size in NTRU is �N. log2 q� bits and the key size in OTRU is �8N ′. log2 q′�. Also,
in each encryption (decryption) round, NTRU encrypts (decrypts) N. log2 p bits
of plaintext, whereas in OTRU 8.N ′. log2 p bits of data are encrypted (decrypted)
in every round.

A single block encryption in NTRU takes approximately 2N2/3 steps (see
[11][p. 396]) while in each ecryption round, OTRU needs to convolve 64 polyno-
mials of length N ′ and consequently, the same operation in the proposed scheme
takes about 64(2N ′2/3) steps (see Eqn. 9). Similarly, the decryption algorithm
in (standard) NTRU takes 2(2N2/3) steps while in OTRU it needs 256(2N ′2/3)
steps (2 octonionic multiplication including 64 polynomial convolutions in the
first and second phase of decryption).

The encryption process in OTRU compared with NTRU (with an equal di-
mension) is almost eight times slower than NTRU (since in OTRU, 8 data vectors
are encrypted simultaneously) and its decryption process runs almost 16 times
slower. On the other hand, considering that the complexity of the convolution
multiplication is O(N2), the reduction of N with the power of two affects the
speed of the calculations. Therefore, the NTRU cryptosystem with a dimension
of 8.N is almost 64 times slower than NTRU with a dimension of N . Hence, we
claim that with the reduction of N within a reasonable range (see Section 5),
one can compensate for the decrease of the speed of OTRU in such a way that
a higher security is achieved. In addition, there are multiple parallelism levels in
OTRU that can be exploited to improve encryption and decryption speed.

Now, let us turn our attention to the security of OTRU against lattice attack.

5 Security Analysis of the Proposed Non-associative
Cryptosystem against Lattice Attack

In this section in order to have a more rigorous security analysis, we show that
the security of the OTRU cryptosystems relies on the intractability of shortest
vector problem (SVP) in a certain type of lattice. The octonions do not have
a matrix isomorphic representation and consequently, for finding a small norm
octonion satisfying F

∼

◦H
∼

= G
∼

( mod q), one cannot form an octonionic lattice by
building a matrix with octonionic entries and use a lattice reduction algorithm to
find an octonions with any desired norm. Since the public key in the proposed
scheme is in the form H

∼

= F
∼

−1
q ◦ G

∼

∈ Aq, the only way which remains for
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attacking this special scheme and finding a suitable key for decryption is to
expand F

∼

◦H
∼

= G
∼

(mod q) as a system of linear equations and form a lattice
of dimension 16.N . In the following proposition we prove that the security of
the proposed scheme relies on the intractability of the SVP in a certain type of
lattice.

Proposition 1. Given the octonion H
∼

∈ Aq and assuming that the octonionic

equation F
∼

◦H
∼

= G
∼

has at least a pair of solutions 〈F
∼

,G
∼

〉 in Aq, then

(a) the set of all pairs of solutions (which are not all distinct), forms the

integer lattice LH := Row Span

⎡
⎣ I8N×8N H(H

∼

)
8N×8N

0−
8N×8N

q.I8N×8N

⎤
⎦ of determinant q8.N

and dimension 16.N in Z
16N .

(b) Let
∥∥∥F

∼

∥∥∥
2

� λ and
∥∥∥∥G∼

∥∥∥∥
2

� λ. If λ <
√

8N.q
πe , then with a probability greater

than 1 − λ

2
√

N.q
πe

, finding 〈F
∼

,G
∼

〉 will be transformed into an SVP in the lattice

LH.

Proof. (a) Let F
∼

:= 〈f0(x), · · · , f7(x)〉 ∈ Aq and G
∼

:= 〈g0(x), · · · , g7(x)〉 ∈ Aq be

a pair of solutions for the octonionic equation F
∼

◦H
∼

= G
∼

. Let expand F
∼

◦H
∼

= G
∼

as a system of linear equations as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
s+t

N≡ k

f0,s.h0,t −
∑

s+t
N≡ k

f1,s.h1,t − ...−
∑

s+t
N≡ k

f7,s.h7,t = g0,k + qk0,k

∑
s+t

N≡ k

f0,s.h1,t +
∑

s+t
N≡ k

f1,s.h0,t + ...−
∑

s+t
N≡ k

f7,s.h3,t = g1,k + qk1,k

...∑
s+t

N≡ k

f0,s.h7,t +
∑

s+t
N≡ k

f1,s.h3,t + ... +
∑

s+t
N≡ k

f7,s.h0,t = g7,k + qk7,k

(10)

Let represent the polynomials h0, h1, ..., h7 ∈ Z[x]/(xN − 1) in their circulant
matrix isomorphic representation as follows

(Hi)N×N
Δ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hi,0 hi,1 hi,2 · · · hi,N−1
hi,N−1 hi,0 hi,1 hi,N−2
hi,N−2 hi,N−1 hi,0 hi,N−3

...
. . .

...

hi,2 hi,3
hi,1 hi,2 · · · hi,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i = 0, 1, · · · , 7. (11)

where hi(x) =
N−1∑
j=0

hi,j .x
i � [hi,0, hi,1, ..., hi,N−1].
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Based upon the above notations, we can form the lattice LH of dimension
16.N spanned by the rows of the following matrix

MH :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . . . 0 +H0 +H1 +H2 +H3 +H4 +H5 +H6 +H7
0 1 . −H1 +H0 −H4 −H7 +H2 −H6 +H5 +H3
. . . −H2 +H4 +H0 −H5 −H1 +H3 −H7 +H6
. . . −H3 +H7 +H5 +H0 −H6 −H2 +H4 −H1
. . . −H4 −H2 +H1 +H6 +H0 −H7 −H3 +H5
. . . −H5 +H6 −H3 +H2 +H7 +H0 −H1 −H4
. 1 0 −H6 −H5 +H7 −H4 +H3 +H1 +H0 −H2
0 . . . . 0 0 1 −H7 −H3 −H6 +H1 −H5 +H4 +H2 +H0

0 0 . . . . . 0 q 0 . . . . . 0
0 0 . . 0 q .
. . . . q .
. . . . . .
. . . . . .
. . . . . .
. 0 . . q 0
0 . . . . . . 0 0 . . . . . 0 q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

As we can see from the system of linear equations (10) and the matrix MH, it
is clear that the vector 〈f0, f1, · · · , f7, g0, g1, · · · , g7〉1×16.N is in the lattice LH,
because we can get this vector as a Z-linear combination of the rows ofMH as
follows

〈f0,0,f0,1,...,f0,N−1︸ ︷︷ ︸
〈f0〉

,...,f7,0,f7,1,...,f7,N−1︸ ︷︷ ︸
〈f7〉

,−k0,0,...,−k0,N−1︸ ︷︷ ︸
〈k0〉

,...,−k7,0,...,−k7,N−1︸ ︷︷ ︸
〈k7〉

〉1×16.N ·Mh=

〈f0,0,f0,1,...,f0,N−1︸ ︷︷ ︸
〈f0〉

,...,f7,0,f7,1,...,f7,N−1︸ ︷︷ ︸
〈f7〉

, g0,0,g0,1,...,g0,N−1︸ ︷︷ ︸
〈g0〉

,...,g7,0,g7,1,...,g7,N−1︸ ︷︷ ︸
〈g7〉

〉1×16.N

Thus we have 〈f0, f1, · · · , f7, g0, g1, · · · , g7〉1×16.N ∈ LH.
(b) Since

∥∥∥F
∼

∥∥∥
2
,
∥∥∥G

∼

∥∥∥
2

� λ, it is clear that ‖〈f0, f1, . . . , f7, g0, g1, . . . , g7〉‖2 �
√

2λ. Based on the Gaussian heuristic, the average length of the shortest nonzero
vector in LH is

E {‖vShortest‖} =
√

n

2πe
. det (LH)

1
n =

√
16N

2πe
.(q8N )

1
16N =

√
8N.q

πe
. (13)

Hence, if we have ‖〈f0, f1, . . . , f7, g0, g1, . . . , g7〉‖2 �
√

8N.q
πe , then based on

the Markov inequality (which states that Pr {Y > αE[Y ]} < 1
α ) the vector

〈f0, f1, · · · , f7, g0, g1, · · · , g7〉1×16.N will be one of the shortest vector in LH with
a probability greater than 1−

√
2λ√
8N.q

πe

= 1 − λ

2
√

N.q
πe

. Consequently, finding a so-

lution to the octonionic equation F
∼

◦H
∼

= G
∼

such that
∥∥∥F

∼

∥∥∥
2
,
∥∥∥G

∼

∥∥∥
2

�
√

8N.q
πe , is

transformed into an SVP in the lattice LH of dimension 16.N and determinant
Det(LH) = q8.N . ��
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It is clear that the pair of private keys 〈f0, f1, · · · , f7, g0, g1, · · · , g7〉1×16.N is in
LH and finding a short vector in this lattice may be used as the decryption
key. As in NTRU, assuming that d ≈ N/3, we can estimate that the length
of the decryption key is about λ = ‖〈f0, f1, · · · , f7〉‖ = ‖〈g0, g1, · · · , g7〉‖ ≈√

16.d ≈ 2.3
√

N . Thus, based on the above proposition, the target vectors in
LH are about O(

√
q) shorter than the Gaussian expected shortest length and

with a probability greater than 1 − 2.3
√

N

2
√

N.q
πe

≈ 1− 3.36√
q , the problem of finding a

decryption (spurious) key for the proposed scheme is equal to solving SVP to
within a factor of approximately

√
q, which is believed to be intractable for a

lattice of dimension greater than 334 (2 × 167) [13,28].
Let us sum up this section with the following argument: Assuming the average

Hermite factor (1.01)n for the best lattice reduction algorithm [9,24,22] and
given the octonion H

∼

∈ Aq, solving the octonionic equation F
∼

◦ H
∼

= G
∼

over
the algebra A and finding a spurious key for OTRU, is intractable for N >
21 (16N > 334). We argue that because the OTRU lattice is not completely
convolutional, the open problems and doubts which exist with respect to the
exceptional structure of the NTRU lattice [8] are not there in the case and we
believe that the Hermite factor (1.01)n could not be achieved with the existing
lattice reduction algorithms.

6 Conclusion

In this paper we have focused on the fact that the underlying algebra of the
NTRU public key cryptosystem is not limited to Dedekind domains and can be
extended to the non-commutative quaternions algebra as well as non-associative
octonions algebra. For this purpose, by introducing two cryptosystems (which
have been simulated and implemented by the authors) we have shown that using
non-commutativity and non-associativity in a lattice-based cryptosystem is not
only possible but also if we design a non-associative public key cryptosystem
exactly identical to the NTRU scheme, it will remain both secure and efficient.

The first cryptosystem, QTRU, works based on quaternions and the second
one, OTRU, is constructed based on the octonions algebra which is a non-
associative but alternative algebra. The proposed cryptosystems may be re-
garded as multi-dimensional probabilistic public key cryptosystems over Z which
encrypts four/eight data vectors in parallel.

We have analyzed the security of the proposed non-associative public key
cryptosystem against lattice attack. We believe that the proposed cryptosystems
(specially OTRU) could be more secure than NTRU, because its lattice structure
does not completely fit into the category of Convolutional Modular Lattices. We
claim that the proposed cryptosystem is the first functional cryptosystem with a
non-associative algebra that its security relies on the intractability of the shortest
vector problem (SVP) in a special type of lattice.
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7 Future Works

We would like to emphasize that in order to take full advantage of the non-
associativity in the octonions algebra, it is not necessary to follow the encryp-
tion/decryption scheme used in OTRU. We are working on a different non-linear
scheme for a public key cryptosystem based on non-associative algebra which is
different from the NTRU scheme. If we use a different non-linear scheme other
than proposed for NTRU or OTRU, a public key cryptosystem will emerged
which will be hard to break using lattice attack techniques; an idea which may
result in more fruitful research in secure public key cryptosystem studies.
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Abstract. This paper presents a new identity based key agreement pro-

tocol. In id-based cryptography (introduced by Adi Shamir in [34]) each

party uses its own identity as public key and receives his secret key from

a master Key Generation Center, whose public parameters are publicly

known.

The novelty of our protocol is that it can be implemented over any

cyclic group of prime order, where the Diffie-Hellman problem is sup-

posed to be hard. It does not require the computation of expensive bi-

linear maps, or additional assumptions such as factoring or RSA.

The protocol is extremely efficient, requiring only twice the amount of

bandwidth and computation of the unauthenticated basic Diffie-Hellman

protocol. The design of our protocol was inspired by MQV (the most

efficient authenticated Diffie-Hellman based protocol in the public-key

model) and indeed its performance is competitive with respect to MQV

(especially when one includes the transmission and verification of cer-

tificates in the MQV protocol, which are not required in an id-based

scheme). Our protocol requires a single round of communication in which

each party sends only 2 group elements: a very short message, especially

when the protocol is implemented over elliptic curves.

We provide a full proof of security in the Canetti-Krawczyk security

model for key exchange, including a proof that our protocol satisfies

additional security properties such as forward secrecy, and resistance to

reflection and key-compromise impersonation attacks.

1 Introduction

Identity-based cryptography was introduced in 1984 by Adi Shamir [34]. The goal
was to simplify the management of public keys and in particular the association
of a public key to the identity of its holder. Usually such binding of a public key
to an identity is achieved by means of certificates which are signed statements by
trusted third parties that a given public key belongs to a user. This requires users

� An extended abstract of this paper appears in the proceedings of CT-RSA 2010 [18].
�� Part of this work have been done while student at University of Catania and visiting

NYU and IBM Research.
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to obtain and verify certificates whenever they want to use a specific public key,
and the management of public key certificates remains a technically challenging
problem.

Shamir’s idea was to allow parties to use their identities as public keys. An
id-based scheme works as follows. A trusted Key Generation Center (KGC)
generates a master public/secret key pair, which is known to all the users. A user
with identity ID receives from the KGC a secret key SID which is a function of
the string ID and the KGC’s secret key (one can think of SID as a signature by
the KGC on the string ID). Using SID the user can then perform cryptographic
tasks. For example in the case of id-based encryption any party can send an
encrypted message to the user with identity ID using the string ID as a public
key and the user (and only the user and the KGC) will be able to decrypt it
using SID. Note that the sender can do this even if the recipient has not obtained
yet his secret key from the KGC. All the sender needs to know is the recipient’s
identity and the public parameters of the KGC. This is the major advantage of
id-based encryption.

Id-Based Key Agreement and its Motivations. This paper is concerned
with the task of id-based key agreement. Here two parties Alice and Bob, with
identities A, B and secret keys SA, SB respectively, want to agree on a common
shared key, in an authenticated manner (i.e. Alice must be sure that once the
key is established, only Bob knows it – and viceversa). Since key agreement is
inherently an interactive protocol (both parties are “live” and ready to establish
a session) there is a smaller gain in using an id-based solution: indeed certificates
and public keys can be easily sent as part of the protocol communication.

Yet the ability to avoid sending and verifying public key certificates is a signifi-
cant practical advantage (see e.g. [37]). Indeed known shortcomings of the public
key setting are the requirement of centralized certification authorities, the need
for parties to cross-certify each other (via possibly long certificate chains), and
the management of some form of large-scale coordination and communication
(possibly on-line) to propagate certificate revocation information. Identity-based
schemes significantly simplify identity management by bypassing the certifica-
tion issues. All a party needs to know in order to generate a shared key is its own
secret key, the public information of the KGC, and the identity of the commu-
nication peer (clearly, the need to know the peer’s identity exists in any scheme
including a certificate-based one).

Another advantage of identity-based systems is the versatility with which
identities may be chosen. Since identities can be arbitrary string, they can be
selected according to the function and attributes of the parties (rather than its
actual “name”). For example in vehicular networks a party may be identified
by its location (“the checkpoint at the intersection of a and b”) or in military
applications a party can be identified by its role (“platoon x commander”). This
allows parties to communicate securely with the intended recipient even without
knowing its “true” identity but simply by the definition of its function in the
network.
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Finally, identities can also include additional attributes which are temporal
in nature: in particular an “expiration date” for an identity makes revocation of
the corresponding secret key much easier to achieve.

For the reasons described above, id-based KA protocols are very useful in
many systems where bandwidth and computation are at a premium (e.g. sensor
networks), and also in ad-hoc networks where large scale coordination is unde-
sirable, if not outright impossible. Therefore it is an important question to come
up with very efficient and secure id-based KA protocols.

Previous work on id-based key agreement. Following Shamir’s proposal
of the concept of id-based cryptography, some early proposals for id-based key
agreement appeared in the literature: we refer in particular to the works of
Okamoto [29] (later improved in [30]) and Gunther [22]. A new impetus to this
research area came with the breakthrough discovery of bilinear maps and their
application to id-based encryption in [5]: starting with the work of Sakai et al.
[33] a large number of id-based KA protocols were designed that use pairings
as tool. We refer the readers to [6] and [12] for surveys of these pairing-based
protocols.

The main problem with the current state of the art is that many of these
protocols lack a proof of security, and some have even been broken. Indeed only
a few (e.g., [8, 38]) have been proven according to a formal definition of security.

Our Contribution. By looking at prior work we see that provably secure id-
based KAs require either groups that admit bilinear maps [8, 38], or to work
over a composite RSA modulus [30].

This motivated us to ask the following question: can we find an efficient and
provably secure id-based KA protocol such that:

1. it that can be implemented over any cyclic group in which the Diffie-Hellman
problem is supposed to be hard. The advantages of such a KA protocol would
be several, in particular: (i) it would avoid the use of computationally expen-
sive pairing computations; (ii) it could be implemented over much smaller
groups (since we could use ’regular’ elliptic curves, rather than the ones that
admit efficient pairings computations for high security levels, or the group
Z∗

N for a composite N needed for Okamoto-Tanaka).
2. it is more efficient than any KA protocols in the public key model (such as

MQV [27]), when one includes the transmission and verification of certificates
which are not required in an id-based scheme. This is a very important point
since, as we pointed out earlier in this Section, id-based KA protocols are
only relevant if they outperform PKI based ones in efficiency.

Our new protocol presented in this paper (whose description appears in Figure
1), achieves all these features.

It can be implemented over any cyclic group over which the Diffie-Hellman
problem is assumed to be hard. In addition it requires an amount of bandwidth
and computation similar to the unauthenticated basic Diffie-Hellman protocol.
Indeed our new protocol requires a single round of communication in which each
party sends just two group elements (as opposed to one in the Diffie-Hellman
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The IB-KA Protocol

Setting: A Key Generation Center (KGC) chooses a group G of prime

order q together with a random generator g ∈ G and an exponent x
$← Zq.

KGC publishes G, q, g, y = gx and two hash functions H1, H2.

Key Derivation: A user with identity U receives its private key

(rU , sU ) from the KGC computed as the Schnorr’s signature of the

string U under public key y. That is rU = gkU for kU
$← Zq and

sU = kU + xH1(U, rU ) mod q.

Key agreement: A and B choose ephemeral private exponents tA and tB,

respectively.

A A, rA, uA = gtA

� B

B, rB, uB = gtB

�

z1 = (uBrByH1(B,rB))tA+sA z1 = (uArAyH1(A,rA))tB+sB

z2 = utA
B z2 = utB

A

Z = H2(z1, z2)

Fig. 1. A and B share session key Z. See Section 3 for more specific details.

protocol). Each party must compute four exponentiations to compute the session
key (as opposed to two in the Diffie-Hellman protocol).

A similar favorable comparison holds with the Okamoto-Tanaka protocol in
[30]. While that protocol requires only two exponentiations, it does works over
Z∗

N therefore requiring the use of a larger group size, which almost totally absorbs
the computational advantage, and immediately implies a much larger bandwidth
requirement. Detailed efficiency comparisons to other protocols in the literature
are discussed in Section 6.

We present a full proof of security of our protocol in the Canetti-Krawczyk
security model. Our results hold in the random oracle model, under the Strong
Diffie-Hellman Assumption. We also present some variations of our protocol that
can be proven secure under the basic Computational Diffie-Hellman Assumption.
Our protocol can be proven to satisfy additional desirable security properties
such as perfect forward secrecy1, and resistance to reflection and key-compromise
impersonation attacks.

1 We can prove PFS only in the case the adversary was passive in the session that

he is attacking – though he can be active in other sessions. As proven by Krawczyk

in [26], this is the best that can be achieved for 1-round protocols with implicit
authentication, such as ours.
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Our Approach. The first direction we took in our approach was to attempt
to analyze the id-based KA protocols by Gunther [22] and Saeednia [32]. They
also work over any cyclic group where the Diffie-Hellman problem is assumed to
be hard, but their protocols lack a formal proof of security. While the original
protocols cannot be shown to be secure, we were able to prove the security
of modified versions of them. Nevertheless these two protocols were not very
satisfactory solutions for the problem we had set out to solve, particularly for
reasons of efficiency since they required a large number of exponentiations, which
made them less efficient than say MQV with certificates.

Our protocol improves over these two protocols by using Schnorr’s signatures
[35], rather than ElGamal, to issue secret keys to the users. The simpler structure
of Schnorr’s signatures permits a much more efficient computation of the session
key, resulting in less exponentiations and a single round protocol. Our approach
was inspired by the way the MQV protocol [27] achieves implicit authentication
of the session key. Indeed our protocol can be seen as an id-based version of the
MQV protocol.

Organization. In Section 2 we recall a few preliminary notions, such as
the Canetti-Krawczyk security model for KA protocols, and the computational
assumptions that we will use in our proofs. Our new protocol is described in
Section 3, and its proof in Section 4. Comparison to other id-based KA proto-
cols is in Section 6. The modifications and proofs of the Gunther and Saeednia
protocols are in Section 7.

2 Preliminaries

In this section we present some standard definitions needed in the rest of the
paper.

Let N the set of natural numbers. We will denote with � ∈ N the security
parameter. The participants to our protocols are modeled as probabilistic Turing
machines whose running time is bounded by some polynomial in �. If S is a set,
we denote with s

$← S the process of selecting an element uniformly at random
from S.

Definition 1 (Negligible function). A function ε(�) is said to be negligible if
for every polynomial p(�) there exists a positive integer c ∈ N such that ∀� > c
we have ε(�) < 1/p(�).

In the following assume G to be a cyclic multiplicative group of order q where q
is a �-bit long prime. We assume that there are efficient algorithms to perform
multiplication and membership test in G. Finally we denote with g a generator
of G.

Assumption 1 (Computational Diffie-Hellman [16]). We say that the
Computational Diffie-Hellman (CDH) Assumption (for G and g) holds if for
any probabilistic polynomial time adversary A the probability that A on input
(G, g, gu, gv) outputs W such that W = guv is negligible in �. The probability of
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success of A is taken over the uniform random choice of u, v ∈ Zq and the coin
tosses of A.

The CDH Assumption has a Decisional version in which no adversary can actu-
ally recognize the value guv when given gu, gv. In the proof of our basic protocol
we are going to need the ability to perform such decisions when one of the two
elements is fixed, while still assuming that the CDH holds. The assumption be-
low basically says that the CDH Assumption still holds in the presence of an
oracle DH(U, ·, ·) that solves the decisional problem2 for a fixed U .

Assumption 2 (Strong-DH Assumption [1]). We say that the Strong-DH
(SDH) Assumption holds (for G and g) if the CDH Assumption holds even in the
presence of an oracle DH(U, ·, ·) that on input two elements V̂ , Ŵ in the group
generated by g, output ”yes” if and only if Ŵ is the Diffie-Hellman of U and V̂ .

Finally we recall the Gap-DH assumption that is stronger than the Strong-DH
in that the oracle can be queried on an arbitrary triple (U, V, W ).

Assumption 3 (Gap-DH Assumption). We say that the Gap-DH Assump-
tion holds (for G and g) if the CDH Assumption holds even in the presence of
an oracle DH(·, ·, ·) that on input three elements U = gu, V = gv, W = gw in the
group generated by g, output ”yes” if and only if W = guv.

The oracle DH for the Decisional DH problem exists for some groups G, e.g. the
ones that admit a bilinear map. We stress, however that we need the oracle only
for the proof of security, and it is not needed in the execution of the protocol by
the real-life parties. This means that we can efficiently implement our protocol
over any cyclic group G.

The question, then, is the real-life meaning of a proof under the Strong-DH
assumption when the protocol is implemented over a group G that does not
admit such oracle DH. If we prove the security of our protocol under the SDH
assumption, then if a successful adversary can be constructed one of two things
must be true:

1. either the CDH Assumption is false
2. or we have a proof that the hardness of the Decisional problem is implied by

the CDH Assumption (in other words the CDH and DDH Assumptions are
equivalent). Indeed in this case the CDH holds, and the protocol is insecure,
this means that the oracle DH cannot exists (if it existed, given that the
CDH holds, the protocol should be secure).

In other words, while proofs under the Strong-DH assumption do not necessarily
offer a constructive cryptanalysis of a conjectured hard problem in case of a
successful attack, they do offer the “dual” ability to prove the equivalence of the
CDH Assumption (with any other additional assumption required by the proof)
with the DDH Assumption over the underlying group.
2 We remark that in recent papers the name strong Diffie-Hellman assumption was

used to denote a different conjecture defined over bilinear groups [4]. In this paper,

we refer to the original terminology from [1].
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2.1 Definitions for Identity-Based Key Agreement

The security of our protocols is analyzed in a version of the Canetti-Krawczyk
(CK) [9, 10] model for key agreement, adapted to the identity-based setting. We
present an informal summary of the model and we refer the reader to [9, 10] for
details.

An identity-based key-agreement protocol is runned by parties interacting in
a network where each party is identified by a unique identity which is publicly
known to all the other parties (e.g. Alice’s identity is a string IDA). In addition
there exists a trusted entity called Key Generation Center (KGC) that generates
the public parameters of the system and also issues secret keys to users associated
with their public identities, e.g. the KGC generates a secret key SKA associated
to IDA.

An instance of the protocol is called a session. The two parties participating
in the session are called its peers. Each peer maintains a session state which
contains incoming and outgoing messages and its random coins. If the session is
completed then each party outputs a session key and erases its session state. A
session may also be aborted. In this case no session key is generated.

Each party assigns an unique identifier to a session he is participating in.
For simplicity, we assume it to be the quadruple (Alice, Bob, mOut, mIn) where
Alice is the identity of the party, Bob its peer, mOut and mIn are the out-
going and incoming messages, respectively, for Alice. If Alice holds a session
(Alice, Bob, mOut, mIn) and Bob holds a session (Bob, Alice, mIn, mOut) then
the two sessions are matching.

The adversary. The CK definition models a very realistic adversary which
basically controls all communication in the network. In particular it can intercept
and modify messages exchanged by parties, delay or block their delivery, inject
its own messages, schedule sessions etc. The adversary is allowed to choose the
identities of the parties, and obtain private keys from the KGC for identities of
its choice.

Finally we allow the adversary to access some of the parties’ secret informa-
tion, via the following attacks: party corruption, state-reveal queries and session-
key queries. When an adversary corrupts a party, it learns its private information
(the private key and all session states and session keys currently stored), and it
later controls its actions. In a state-reveal query to a party running a session, the
adversary learns the session state for that session (since we assume that session
states are erased at the end of the session, such query makes sense only against
sessions that are still incomplete). Finally a session-key query allows the adver-
sary to learn the session key of a complete session. A session is called exposed
if it or its matching session (if existing) is compromised by one of the attacks
above.

Security Definition. Let A be a probabilistic polynomial time adversary mod-
eled as described above. Then consider the following experiment running A.
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At the beginning of the game the adversary receives as input the public pa-
rameters of the system (generated by the KGC) and then can perform all the
actions described in the section before.

At some point, A chooses a test session among all the completed and unex-
posed sessions. We toss a random bit b

$← {0, 1}. If b = 0 we give A the session
key K0 of the test session. Otherwise we take a random session key K1 and
provide A with K1.

After having received Kb, the adversary can continue to perform its actions
against the protocol with the exception that it cannot expose the test session.
At the end of the game A outputs a bit b′ as its guess for b.

Definition 2. An identity-based key-agreement protocol is said to be secure if
for any PPT adversary A the following holds:

1. if two uncorrupted parties complete matching sessions then they output the
same session key with overwhelming probability;

2. the probability that A guesses the correct b in the above experiment is at most
1/2 plus a negligible fraction of the security parameter.

We define the advantage of A as AdvIB−KA

A = |Pr[b = b′]− 1/2|.

Additional security properties. In addition to the notion of session key se-
curity presented above, an identity-based key-agreement protocol should satisfy
other important properties: resistance to reflection attacks, forward secrecy and
resistance to key-compromise impersonation attacks.

A reflection attack occurs when an adversary can compromise a session in
which the two parties have the same identity (and the same private key). Though,
at first glance, this seems to be only of theoretical interest, there are real-life
situations in which this scenario occurs. For example consider the case when
Alice is at her office and wants to establish a secure connection with her PC at
home, therefore running a session between two computers with the same identity
and private key.

We would also like to achieve resistance to key compromise impersonation
(KCI) attacks. Suppose that the adversary learns Alice’s private key. Then, it is
trivial to see that this knowledge enables the adversary to impersonate Alice to
other parties. A KCI attack can be carried out when the knowledge of Alice’s
private key allows the adversary to impersonate another party to Alice.

Finally, Forward secrecy is probably the most important additional security
property we would like to achieve. We say that a KA protocol has forward
secrecy, if after a session is completed and its session key erased, the adversary
cannot learn it even if it corrupts the parties involved in that session. In other
words, learning the private keys of parties should not jeopardize the security of
past completed sessions.

A relaxed notion of forward secrecy (which we call weak) assumes that only
past sessions in which the adversary was passive (i.e. did not choose the mes-
sages) are not jeopardized.
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3 The New Protocol IB-KA

Protocol setup. The Key Generation Center (KGC) chooses a group G of
prime order q (where q is �-bits long), a random generator g ∈ G and two
hash functions H1 : {0, 1}∗ → Zq and H2 : Zq × Zq → {0, 1}	. Then it picks a
random x

$← Zq and sets y = gx. Finally the KGC outputs the public parameters
MPK = (G, g, y, H1, H2) and keeps the master secret key MSK = x for itself.

Key Derivation. A user with identity ID receives, as its secret key, a Schnorr’s
signature [35] of the message m = ID under public key y. More specifically,
the KGC after verifying the user’s identity, creates the associated secret key as
follows. First it picks a random k

$← Zq and sets rID = gk. Then it uses the
master secret key x to compute sID = k+H1(ID, rID)x. (rID, sID) is the secret
key returned to the user. The user can verify the correctness of its secret key by
using the public key y and checking the equation gsID

?= rID · yH1(ID,rID).

A protocol session. Let’s assume that Alice wants to establish a session key
with Bob. Alice owns secret key (rA, sA) and identity A while Bob has secret
key (rB , sB) and identity B.

Alice selects a random tA
$← Zq, computes uA = gtA and sends the message

〈A, rA, uA〉 to Bob. Analogously Bob picks a random tB
$← Zq, computes uB =

gtB and sends 〈B, rB , uB〉 to Alice. After the parties have exchanged these two
messages, they are able to compute the same session key Z = H2(z1, z2). In
particular Alice computes

z1 = (uBrByH1(B,rB))tA+sA and z2 = utA

B .

On the other hand Bob computes

z1 = (uArAyH1(A,rA))tB+sB and z2 = utB

A .

It is easy to see that both the parties are computing the same values z1 =
g(tA+sA)(tB+sB) and z2 = gtAtB . The state of a user ID during a protocol session
contains only the fresh random exponent tID. We assume that after a session is
completed, the parties erase their state and keep only the session key.

Remark: In the next section we show that protocol IB-KA is secure under the
Strong Diffie-Hellman Assumption. However, in Section 5 we show how to modify
IB-KA to obtain security under the basic CDH Assumption, at the cost of a slight
degradation in efficiency.

4 Security Proof

We prove the security of the protocol by a usual reduction argument. More pre-
cisely we show how to reduce the existence of an adversary breaking the protocol
into an algorithm that is able to break the SDH Assumption with non-negligible
probability. The adversary is modeled as a CK attacker: (see Section 2.1 for
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details): in particular it will choose a test session among the complete and un-
exposed sessions and will try to distinguish between its real session key and a
random one.

In our reduction we will make use of the General Forking Lemma, stated by
Bellare and Neven in [2]. It follows the original forking lemma of Pointcheval
and Stern [31], but, unlike that, it makes no mention of signature schemes and
random oracles. In this sense it is more general and it can be used to prove the
security of our protocol. We briefly recall it in the following.

Lemma 1 (General Forking Lemma [2]). Fix an integer Q ≥ 1 and a set
H of size |H | ≥ 2. Let B be a randomized algorithm that on input x, h1, . . . , hQ

returns a pair (J, σ) where J ∈ {0, . . . , Q} and σ is referred as side output. Let
IG be a randomized algorithm called the input generator. Let accB = Pr[J ≥ 1 :
x

$← IG, h1, . . . , hQ
$← H ; (J, σ) $← B(x, h1, . . . , hQ)] be the accepting probability

of B.
The forking algorithm FB associated to B is the randomized algorithm that

takes as input x and proceeds as follows:

Algorithm FB(x)
Pick random coins ρ for B
h1, . . . , hQ

$← H

(J, σ) $← B(x, h1, . . . , hQ; ρ)
If J = 0 then return (0,⊥,⊥)
h′

1, . . . , h
′
Q

$← H

(J ′, σ′) $← B(x, h1, . . . , hJ−1, h
′
J , . . . , h′

Q; ρ)
If (J = J ′ and hJ 	= h′

J) then return (1, σ, σ′)
Else return (0,⊥,⊥).

Let frk = Pr[b = 1 : x
$← IG; (b, σ, σ′) $← FB(x)]. Then frk ≥ accB(accB

Q − 1
|H| ).

Roughly speaking the lemma says that if an algorithm B accepts with some non-
negligible probability, then a “rewind” of B is likely to accept with a polynomially
related probability (more specifically squared). If we look at the details of this
lemma, the intuitions are that: (1) h1, . . . , hQ can be seen as the set of replies
to random oracle queries made by the original adversary and (2) the forking
algorithm implements the rewinding. Moreover it is important that in FB the
two executions of B are run with the same random coins ρ. We defer to [2] for
the proof of the lemma.

Theorem 4. Under the Strong-DH Assumption, if we model H1 and H2 as
random oracles, then protocol IB-KA is a secure identity-based key agreement
protocol.

Proof. For sake of contradiction let us suppose there exists a PPT adversary A
that has non-negligible advantage ε into breaking the protocol IB-KA , then we
show how to build a solver algorithm S for the CDH problem.
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In our reduction we will proceed into two steps. First, we describe an inter-
mediate algorithm B (i.e. the simulator) that interacts with the IB-KA adversary
A and returns a side output σ. Second, we will show how to build an algorithm
S that exploits FB, the forking algorithm associated with B, to solve the CDH
problem under the Strong-DH Assumption.
B receives as input a tuple (G, g, U, V ), where U = gu, V = gv and u, v are

random exponents in Zq, and a set of random elements h1, . . . , hQ ∈ Zq. The
simulator is also given access to a DH oracle DH(U, ·, ·) that on input (V̂ , Ŵ )
answers “yes” if (U, V̂ , Ŵ ) is a valid DDH tuple . The side output of B is σ ∈
G×Zq or ⊥. Let n be an upper bound to the number of sessions of the protocol
run by the adversary A and Q1 and Q2 be the number of queries made by A
to the random oracles H1, H2 respectively. Moreover, let Qc be the number of
users corrupted by A and Q = Q1 + Qc + 1.

Algorithm BDH(U,·,·)(G, g, U, V, h1, . . . , hQ)
Initialize ctr ← 0; bad← false; empty tables H1, H2;
Run A on input (G, g, y = U) as the public parameters of the protocol and

simulates the protocol’s environment for A as follows:
Guess the test session by choosing at random the user (let us call him

Bob) and the order number of the test session. If n is an upper bound
to the number of all the sessions initiated by A then the guess is right
with probability at least 1/n.

H2 queries: On input a pair (z1, z2):
If H2[z1, z2] = ⊥: choose a random string Z ∈ {0, 1}	 and store
H2[z1, z2] = Z
Return H2[z1, z2] to A

H1 queries: On input (ID, r):
If H1[ID, r] = ⊥, then ctr← ctr + 1; H1[ID, r] = hctr

Return H1[ID, r] to A
Party Corruption: When A asks to corrupt party ID 	= B, then:

ctr ← ctr + 1; s $← Zq; r = gsy−hctr

If H1[ID, r] 	= ⊥ then bad← true
Store H1[ID, r] = hctr and return (r, s) as ID’s private key.

For the case of Bob, the simulator simply chooses the rB compo-
nent of Bob’s private key by picking a random kB

$← Zq and setting
rB = gkB . We observe that in this case B is not able to compute
the corresponding sB. However, since Bob is the user guessed for the
test session, we can assume that the adversary will not ask for his
secret key.

Simulating sessions: First we describe how to simulate sessions differ-
ent from the test session. Here the main point is that the adversary
is allowed to ask session-key queries and thus the simulator must be
able to produce the correct session key for each of these sessions. The
simulator has full information about all the users’ secret keys except
Bob. Therefore B can easily simulate all the protocol sessions that
do not include Bob, and answer any of the attacker’s queries about
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these sessions. Hence we concentrate on describing how B simulates
interactions with Bob.

Assume that Bob has a session with Charlie (whose identity is
the string C). If Charlie is an uncorrupted party this means that
B will generate the messages on his behalf. In this case B knows
Charlie’s secret key and also has chosen his ephemeral exponent
tC . Thus it is trivial to see that B has enough information to com-
pute the correct session key. The case when the adversary presents a
message 〈C, rC , uC〉 to Bob as coming from Charlie is more compli-
cated. Here is where B makes use of the oracle DH(y, ·, ·) to answer
a session-key query about this session. The simulator replies with a
message 〈B, rB , uB = gtB〉 where tB is chosen by B. Recall that the
session key is H2(z1, z2) with z1 = g(sC+tC)(sB+tB) and z2 = utB

C .
So z1 is the Diffie-Hellman result of the values uCgsC and uBgsB ,
where gsC = rCyH1(C,rC) and gsB = rByH1(B,rB) can be com-
puted by the simulator. Notice also that the simulator knows tB
and kB (the discrete log of rB in base g). Therefore it checks if
H2[z1, z2] = Z where z2 = utB

C and DH(y, uCgsC , z̄1) = “yes′′ where
z1 = z1

(uCgsC )(kB+tB)H1(B,rB )−1 . If B finds a match then it outputs the
corresponding Z as session key for Bob. Otherwise it generates a
random ζ

$← {0, 1}	 and gives it as response to the adversary. Later,
for each query (z1, z2) to H2, if (z1, z2) satisfies the equation above
it sets H2[z1, z2] = ζ and answers with ζ. This makes the oracle’s
answers consistent.

In addition observe that the simulator can easily answer any state
reveal queries as it chooses the fresh exponents on its own.

Simulating the test session: Let 〈B, ρB, uB = gtB 〉 be the message
from Bob to Alice sent in the test session. We notice that such mes-
sage may be sent by the adversary who is trying to impersonate Bob.
In this case A may use a value ρB = gλB of its choice as the public
component of Bob’s private key (i.e. different than rB = gkB which B
simulated and for which it knows kB). B responds with the message
〈A, rA, uA = V 〉 as coming from Alice. Finally B provides A with a
random session key.

Run until A halts and outputs its decision bit
If H1[B, ρB] = ⊥ then set ctr← ctr + 1 and H1[B, ρB] = hctr

If bad = true then return (0,⊥)
Let i ∈ {1, . . . , Q} such that H1(B, ρB) = hi

Let Z = H2(z1, z2) be the correct session key for the test session where
z1 = (uArAyH1(A,rA))(tB+λB+xhi) and z2 = utB

A .
If A has success into distinguishing Z from a random value it must nec-

essarily query the correct pair (z1, z2) to the random oracle H2. This
means that B can efficiently find the pair (z1, z2) in the table H2 using
the Strong-DH oracle.
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Compute τ = z1
z2(uBρByhi )sA

= ρv
BWhi

Return (i, (τ, hi))

Let IG be the algorithm that generates a random Diffie-Hellman tuple (G, g, U, V )
and accB be the accepting probability of B.3 Then we have that:

accB ≥ ε

n
− Pr[bad = true].

The probability that bad = true is the probability that the adversary has guessed
the “right” r for a corrupted party ID before corrupting it, in one of the H1
oracle queries beforehand. Since r is uniformly distributed the probability of
guessing it is 1/q, and since the adversary makes at most Q queries to H1 and
corrupts at most Qc parties (and q > 2	) we have that

accB ≥ ε

n
− Qc(Q)

2	
.

which is still non-negligible, since ε is non-negligible.
Once we have described the algorithm B we can now show how to build a

solver algorithm S that can exploit FB, the forking algorithm associated with
the above B.

The algorithm S plays the role of a CDH solver under the Strong-DH As-
sumption. It receives as input a CDH tuple (G, g, U, V ) where U = gu, V = gv

and u, v are random exponents in Zq. S is also given access to a decision oracle
DH(U, ·, ·) that on input (V̂ , Ŵ ) answers “yes” if (U, V̂ , Ŵ ) is a valid DH tuple .

Algorithm SDH(U,·,·)(G, g, U, V )

(b, τ, τ ′) $← F
DH(U,·,·)
B (G, g, U, V )

If b = 0 then return 0 and halt
Parse σ as (τ, h) and σ′ as (τ ′, h′)
Return W = (τ/τ ′)(h−h′)−1

If the forking algorithm FB has success, this means that there exist random coins
ρ, an index J ≥ 1 and h1, . . . , hQ, h′

J , . . . , h′
Q ∈ Zq with h = hJ 	= h′

J = h′ such
that: the first execution of B(G, g, U, V, h1, . . . , hQ; ρ) outputs τ = ρv

BWh where
H1[B, ρB] = h; the second execution of B(G, g, U, V, h1, . . . , hJ−1, h

′
J , . . . , h′

Q; ρ)
outputs τ ′ = (ρ′B′)vWh′

where H1[B′, ρ′B′ ] = h′. Since the two executions of
B are the same until the response to the J-th query to H1, then we must have
B = B′ and ρB = ρ′B′ . Thus it is easy to see that S achieves its goal by computing
W = (τ/τ ′)

1
h−h′ = guv.

Finally, by the General Forking Lemma, we have that if A has non-negligible
advantage into breaking the security of IB-KA , then S’s success probability is
also non-negligible.

3 We say that B accepts if it outputs (J, σ) such that J ≥ 1.
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4.1 Additional Security Properties of IB-KA

Below we describe the additional security properties enjoyed by IB-KA .

Forward secrecy. The following theorem shows that the protocol IB-KA satis-
fies weak forward secrecy as described in Section 2.1.

Theorem 5. Let A be a PPT adversary that is able to break the weak forward
secrecy of the IB-KA protocol with advantage ε. Let n be the an upper bound to
the number of sessions of the protocol run by A and Q1 and Q2 be the number of
queries made by the adversary to the random oracles H1, H2 respectively. Then
we can solve the CDH problem with probability at least ε/(nQ2).

Proof. For sake of contradiction let us suppose there exists a PPT adversary
A that is able to break the weak forward secrecy of the protocol IB-KA with
non-negligible advantage ε. Then we show how to build a simulator S that uses
A to solve the CDH problem with probability at least ε/nQ2. S receives as input
a tuple (G, g, U, V ) where U = gu, V = gv and u, v are random exponents in Zq.
The simulator plays the role of the CDH solver and its goal it to compute the
value W = guv.

Setup. S sets up a simulated execution of the protocol, with simulated KGC,
users and sessions. First of all S defines the public parameters of the protocol
simulating the KGC. So it chooses a random x

$← Zq and sets y = gx. Then it
provides the adversary with input (G, g, y) and oracle access to H1 and H2. Since
H1 and H2 are modeled as random oracles, S can program their output. For each
input (ID, rID) S chooses a random eID

$← Zq and sets H1(ID, rID) = eID.
Since S knows the master secret key x, it can simulate the KGC in full, and

give secret keys to all the parties in the network, including answering private
key queries from the adversary.

At the beginning of the game S guesses the test session and its peers Alice
and Bob.

Simulating protocol sessions. Sessions different from the test session are
easily simulated since S knows all the information needed to compute the session
keys and answer any query (including session key and state reveal queries) from
the adversary.

Simulating the test session. We now show how to simulate the test session
in order to extract W = guv from the adversary. Since in this game the adversary
is assumed to be passive during the test session, the parties (i.e. the simulator
in this case) choose the messages exchanged in this session.

Let (A, rA, sA), (B, rB , sB) be the identity information and the secret keys
of Alice and Bob respectively (S knows these values). The simulator sets Al-
ice’s message as (A, rA, uA = U) while the one from Bob is (B, rB , uB = V ).
S is implicitly setting tA = u, tB = v. In this case the correct session key is
Z = H2(g(sA+u)(sB+v), guv). Since H2 is modeled as a random oracle, if A has
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success into distinguishing Z from a random value, it must have queried H2 on
the correct input (z1 = g(sA+u)(sB+v), z2 = guv). Thus S can choose a random
value among all the queries that it received from the adversary. Since the number
of queries Q2 is polynomially bounded, S can find the correct z2 = W with non-
negligible probability ε/nQ2. This completes the proof of this case4.

Resistance to reflection attacks. A reflection attack occurs when an adver-
sary can compromise a session in which the two parties have the same identity
(and the same private key). Though, at first glance, this seems to be only of
theoretical interest, there are real-life situations in which this scenario occurs.
For example consider the case when Alice is at her office and wants to establish
a secure connection with her PC at home, therefore running a session between
two computers with the same identity and private key.

Here we extend the proof of security given in Section 4 to support reflection
attacks. We observe that in the case when the test session has a matching session
the proof remains valid even if the test session is between Bob and himself. On
the other hand, when there is no matching session we have to show a little
modification of the proof. In fact the current proof actually does not work when
the adversary sends a message with the same value rB provided by the KGC
(for which the simulator knows the discrete logarithm kB , but cannot compute
the corresponding sB). The issue is that the knowledge of sB would be needed
to extract the solution of the CDH problem.

We point out that a reflection attack using a value ρB 	= rB is captured by the
current proof. Moreover it is reasonable to assume that a honest party refuses
connections from itself that use a “wrong” key. However it is possible to adapt
the proof in this specific case. In particular we can show that a successful run of
the adversary enables the simulator to compute gu2

instead of guv. As showed
in [28] by Maurer and Wolf, such an algorithm can be easily turned into a solver
for CDH.

In this section we show how to adapt the proof in this specific case. In par-
ticular, we show that a successful run of the adversary enables the simulator
to compute gu2

instead of guv. As showed in [28] by Maurer and Wolf, such an
algorithm can be easily turned into a solver for CDH.

Let us consider the following modification of the proof given in Section 4.
If in the test session the adversary sends a message from Bob to Bob of type
〈B, rB , uB = gtB 〉 then the simulator picks a random e

$← Zq and replies with
message 〈B, rB , u′

B = Ue〉. Let h∗ be the random oracle response to H1(B, rB).
We observe that in this case the correct session key is the hash Z = H2(z1, z2)
where z1 = g(kB+uh∗+ue)(kB+uh∗+tB) and z2 = guetB . If the adversary has success
into distinguishing Z from a random value it must necessarily query the correct
pair (z1, z2) to the random oracle H2. This means that S can efficiently find the
4 We could give the simulator access to the Strong-DH oracle DH, and then S could

use it to “test” all queries to H2 to find the correct W . The reduction would be

tighter (removing the factor of Q−1
2 from the success probability) but would require

the Strong-DH Assumption also in this case.
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pair (z1, z2) in the table H2 using the Strong-DH oracle. Once it has recovered
these values, it can compute:

gu2
=

(
z1

gk2
BU2kBh∗UekB ukB

B z2z
h∗/e
2

) 1
h∗(h∗+e)

.

Resistance to Key Compromise Impersonation. Suppose that the adver-
sary learns Alice’s private key. Then, it is trivial to see that this knowledge
enables the adversary to impersonate Alice to other parties. A key compromise
impersonation (KCI) attack can be carried out when the knowledge of Alice’s
private key allows the adversary to impersonate another party to Alice.

To see that the protocol IB-KA is resistant to KCI attacks it suffices to observe
that in the proof of security, when the adversary tries to impersonate Bob to
Alice, we are able to output Alice’s private key whenever it is asked by the
adversary. This means that the proof continues to be valid even in this case.

Ephemeral Key Compromise Impersonation. A recent paper by Cheng
and Ma [14] shows that our protocol is susceptible to an ephemeral key compro-
mise attack. Roughly speaking this attack considers the case when the adversary
can make state-reveal queries (in order to learn the ephemeral key of a user) even
in the test session. Though the paper is correct, we point out that this kind of
attack is not part of the standard Canetti-Krawczyk security model that is con-
sidered in this paper.

5 A Protocol Secure under CDH

The protocol IB-KA given in section Section 3 is proven secure under the Strong-
DH Assumption. In this section we show how to modify that protocol so that its
security can be based directly on CDH. The cost is a few more exchanged ele-
ments and a few more exponentiations. We call this modified protocol 2IB− KA.

The basic idea is to use the Twin Diffie-Hellman (2DH) Assumption intro-
duced by Cash et al. in [11]. Informally 2DH states that an adversary which
is given in input random U1, U2, V ∈ G, should not be able to compute a pair
(W1, W2) such that W1 and W2 are the DH of U1, V and U2, V respectively. It
is easy to see that this assumption is equivalent to the well known CDH. The
valuable contribution of [11] was to show that its “strong” version is equivalent
to CDH too.

Informally the Strong-2DH assumption says that 2DH holds even in the pres-
ence of an oracle 2DH(U1, U2, ·, ·, ·) that solves its decisional version for fixed
U1, U2.

Therefore we modify the IB-KA protocol in such a way it can be proven secure
under the Strong-2DH Assumption. Then, since Cash et al. proved in [11] that
Strong-2DH and CDH are equivalent, we obtain a protocol secure under CDH.
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In order to modify the protocol we apply the idea of “twinning” some elements
so that the construction can be proven under the Strong-2DH assumption. The
new protocol is almost the same as IB-KA except for the following:

– the master public key consists of two group elements y1, y2. This means that
each user ID owns a secret key (r1

ID, s1
ID, r2

ID, s2
ID) which are two Schnorr’s

signatures of its identity corresponding to public keys y1, y2 respectively.
– each user ID generates two elements u1

ID = gt1ID , u2
ID = gt2ID and sends

〈r1
ID, r2

ID, u1
ID, u2

ID〉.
– the session key of a session between users with identities A and B is

K = H(z11, z12, z21, z22, ω11, ω12, ω21, ω22)

where z11 = g(s1
A+t1A)(s1

B+t1B), z12 = g(s1
A+t1A)(s2

B+t2B), z21 = g(s2
A+t2A)(s1

B+t1B),
z22 = g(s2

A+t2A)(s2
B+t2B), ω11 = gt1At1B , ω12 = gt1At2B , ω21 = gt2At1B and ω22 =

gt2At2B .

It is also possible to instantiate a simpler version of this protocol in which the
public key is only y as in IB-KA . This is slightly more efficient since a user has
to send one less element. This variant can also be proven secure under the CDH
provided that the adversary is not allowed to issue state-reveal queries.

The following theorem prove the security of the above protocol.

Theorem 6. Under the CDH Assumption, if we model H1 and H2 as random
oracles, then protocol 2IB-KA is a secure identity-based key agreement protocol.

Proof. For sake of contradiction let us suppose there exists a PPT adversary A
that has non-negligible advantage ε into breaking the protocol 2IB-KA , then we
show how to build a solver algorithm S for the CDH problem under Strong-2DH.

In our reduction we will proceed into two steps. First, we describe an inter-
mediate algorithm B (i.e. the simulator) that interacts with the IB-KA adversary
A and returns a side output σ. Second, we will show how to build an algorithm
S that exploits FB, the forking algorithm associated with B, to solve the CDH
problem under the Strong-2DH Assumption.
B receives as input a set of random elements h1, . . . , h2Q ∈ Zq and a tuple

(q, G, g, U1, U2, V ), where U1 = gu1 , U2 = gu2 , V = gv and u1, u2, v are random
exponents in Zq. The simulator is also given access to a 2DH oracle 2DH(U1, U2,

·, ·, ·) that on input (V̂ , Ŵ1, Ŵ2) answers “yes” if (U1, V̂ , Ŵ1) and (U2, V̂ , Ŵ2)
are valid DDH tuples. The side output of B is σ ∈ G

2 × Z
2
q or ⊥. Let n be an

upper bound to the number of sessions of the protocol run by the adversary
A and Q1 and Q2 be the number of queries made by A to the random oracles
H1, H2 respectively. Moreover, let Qc be the number of users corrupted by A
and Q = Q1 + Qc + 1.

Algorithm B2DH(U1,U2,·,·,·)(q, G, g, U1, U2, V, h1, . . . , h2Q)
Initialize ctr ← 0; bad← false; empty tables H1, H2;
Run A on input (q, G, g, y1 = U1, y2 = U2) as the public parameters of the

protocol and simulates the protocol’s environment for A as follows:
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Guess the test session by choosing at random the user (let us call him
Bob) and the order number of the test session. If n is an upper bound
to the number of all the sessions initiated by A then the guess is right
with probability at least 1/n.

H2 queries: On input a tuple z = (z11, z12, z21, z22, ω11, ω12, ω21, ω22):
If H2[z] = ⊥: choose a random string Z ∈ {0, 1}	 and store H2[z] = Z
Return H2[z] to A

H1 queries: On input (ID, r):
If H1[ID, r] = ⊥, then ctr← ctr + 1; H1[ID, r] = hctr

Return H1[ID, r] to A
Party Corruption: When A asks to corrupt party ID 	= B, then:

ctr ← ctr+1; s1
ID

$← Zq; r1
ID = gs1

IDy−hctr ; Store H1[ID, r1
ID] = hctr

ctr ← ctr + 1; s2
ID

$← Zq; r2
ID = gs2

IDy−hctr Store H1[ID, r2
ID] = hctr

If H1[ID, r1
ID] 	= ⊥ or H1[ID, r2

ID] 	= ⊥ then bad← true
Return (r1

ID, s1
ID, r2

ID, s2
ID) as ID’s private key.

For the case of Bob, the simulator simply chooses the “r com-
ponents” of Bob’s private key by picking random k1

B, k2
B

$← Zq and
setting r1

B = gk1
B , r2

B = gk2
B . We observe that in this case B is not able

to compute the corresponding s1
B, s2

B. However, since Bob is the user
guessed for the test session, we can assume that the adversary will
not ask for his secret key. Moreover the simulator sets ctr ← ctr + 2
and store H1[B, r1

B] = hctr−1, H1[B, r2
B] = hctr.

Simulating sessions: First we describe how to simulate sessions differ-
ent from the test session. Here the main point is that the adversary
is allowed to ask session-key queries and thus the simulator must be
able to produce the correct session key for each of these sessions. The
simulator has full information about all the users’ secret keys except
Bob. Therefore B can easily simulate all the protocol sessions that
do not include Bob, and answer any of the attacker’s queries about
these sessions. Hence we concentrate on describing how B simulates
interactions with Bob.

Assume that Bob has a session with Charlie (whose identity is the
string C). If Charlie is an uncorrupted party this means that B will
generate the messages on behalf of him. In this case B knows Char-
lie’s secret key and also has chosen his ephemeral exponents. Thus
it is trivial to see that B has enough information to compute the
correct session key. The case when the adversary presents a message
〈C, r1

C , r2
C , u1

C , u2
C〉 to Bob as coming from Charlie is more compli-

cated. Here is where B makes use of the oracle 2DH(y1, y2, ·, ·, ·) to
answer a session-key query about this session. The simulator replies
with a message 〈B, r1

B, r2
B , u1

B = gt1B , u2
B = gt2B 〉 where t1B and t2B are

chosen by B. Recall that the session key is

K = H(z11, z12, z21, z22, ω11, ω12, ω21, ω22).
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Since the simulator knows t1B, t2B, k1
B and k2

B it can check if

H2[z11, z12, z21, z22, ω11, ω12, ω21, ω22] = Z

such that all the ωij have the right form (notice that B can compute
them since it knows t1B and t2B) and 2DH(y1, y2, u

1
Cgs1

C , z11, z12) =
“yes′′ and 2DH(y1, y2, u

2
Cgs2

C , z21, z22) = “yes′′ where zij ’s are com-
puted as follows:

z11 =
z11

(u1
Cgs1

C )(k1
B+t1B)H1(B,r1

B)−1 = g(s1
C+t1C)x1 ,

z12 =
z12

(u1
Cgs1

C )(k2
B+t2B)H1(B,r2

B)−1 = g(s1
C+t1C)x2 ,

z21 =
z21

(u2
Cgs2

C )(k1
B+t1B)H1(B,r1

B)−1 = g(s2
C+t2C)x1

and z22 = z12

(u2
Cgs2

C )(k
2
B

+t2
B

)H1(B,r2
B

)−1 = g(s2
C+t2C)x2 .

If B finds a match then it outputs the corresponding Z as session
key for Bob. Otherwise it generates a random ζ

$← {0, 1}	 and gives
it as response to the adversary. Later, for each query to H2, if the
queried tuple z satisfies the equation above it sets H2[z] = ζ and
answers with ζ. This makes oracle’s answers consistent.
In addition observe that the simulator can easily answer to state
reveal queries as it chooses the fresh exponents on its own.

Simulating the test session: Let 〈B, ρ1
B , ρ2

B, u1
B = gt1B , u2

B = gt2B 〉 be
the message from Bob to Alice sent in the test session. We notice that
such message may be sent by the adversary who is trying to imper-
sonate Bob. B responds with the message 〈A, r1

A, r2
A, u1

A = V, u2
A =

V e, 〉 (where e
$← Zq) as coming from Alice. Finally B provides A

with a random session key.
Run until A halts and outputs its decision bit
If H1[B, ρ1

B] = ⊥ and H1[B, ρ2
B] = ⊥ then set ctr ← ctr+2 and H1[B, ρ1

B] =
hctr−1, H1[B, ρ2

B] = hctr

If bad = true then return (0,⊥)
Let i ∈ {1, . . . , 2Q} such that H1(B, ρ1

B) = hi and H1(B, ρ2
B) = hi+1

Let Z = H2(z11, z12, z21, z22, ω11, ω12, ω21, ω22) be the correct session key
for the test session.

If A has success into distinguishing Z from a random value it must neces-
sarily query the correct tuple to the random oracle H2. This means that
B can efficiently find such tuple in the table H2 using the Strong-DH
oracle.

Compute τ1 = z11

ω11(u1
Bρ1

By
hi
1 )s1

A
= (ρ1

B)vWhi
1 and τ2 = z12

ω12(u2
Bρ2

By
hi+1
2 )s1

A
=

(ρ2
B)vW

hi+1
2

Return (i, (τ1, τ2, hi, hi+1))



Identity-Based Key Exchange Protocols without Pairings 61

Let IG be the algorithm that generates a random Diffie-Hellman tuple (q, G, g,
U1, U2, V ) and accB be the accepting probability of B. Then we have that:

accB ≥ ε

n
− Pr[bad = true].

The probability that bad = true is the probability that the adversary has guessed
the “right” r’s for a corrupted party ID before corrupting it, in one of the H1
oracle queries beforehand. Since r is uniformly distributed the probability of
guessing it is 1/q, and since the adversary makes at most 2Q queries to H1 and
corrupts at most Qc parties (and q > 2	) we have that

accB ≥ ε

n
− Qc(2Q)

2	
.

which is still non-negligible, since ε is non-negligible.
Once we have described the algorithm B we can now show how to build a

solver algorithm S that can exploit FB, the forking algorithm associated with
the above B.

The algorithm S plays the role of a CDH solver under the Strong-2DH As-
sumption. It receives as input a CDH tuple (q, G, g, U1, U2, V ) where U1 =
gu1 , U2 = gu2 , V = gv and u1, u2, v are random exponents in Zq. S is also given
access to a decision oracle 2DH(U1, U2, ·, ·, ·) that on input (V̂ , Ŵ1, Ŵ2) answers
“yes” if (U1, V̂ , Ŵ1) and (U2, V̂ , Ŵ2) are a valid DH tuples .

Algorithm S2DH(U1,U2,·,·,·)(q, G, g, U1, U2, V )
(b, σ, σ′) $← F

2DH(U1,U2,·,·,·)
B (q, G, g, U1, U2, V )

If b = 0 then return 0 and halt
Parse σ as (τ1, τ2, h1, h2) and σ′ as (τ ′

1, τ
′
2, h

′
1, h

′
2)

Return W1 = (τ1/τ ′
1)(h1−h′

1)
−1

, W2 = (τ2/τ ′
2)(h2−h′

2)
−1

If the forking algorithm FB has success, this means that there exist random coins
γ, an index J ≥ 1 and h1, . . . , h2Q, h′

J , . . . , h′
2Q ∈ Zq with h1 = hJ 	= h′

J = h′
1 and

h2 = hJ+1 	= h′
J+1 = h′

2 such that: the first execution of B(q, G, g, U1, V, h1, . . . ,

h2Q; γ) outputs τ1 = (ρ1
B)vWh1

1 and τ2 = (ρ2
B)vWh2

2 where H1[B, ρ1
B] = h1 and

H1[B, ρ2
B] = h2; the second execution of B(q, G, g, U1, U2, V, h1, . . . , hJ−1, h

′
J , . . . ,

h′
2Q; ρ) outputs τ ′

1 = (ρ
′1
B′)vW

h′
1

1 and τ ′
2 = (ρ

′2
B′)vW

h′
2

2 where H1[B′, ρ
′1
B′ ] = h′

1

and H1[B′, ρ
′2
B′ ] = h′

2. Since the two executions of B are the same until the re-
sponse to the J-th query to H1, then we must have B = B′, ρ1

B = ρ
′1
B′ and

ρ2
B = ρ

′2
B′ . It is worth noting that responses to H1(B, r1

B) and H1(B, r2
B) are

always answered with consecutive values hctr and hctr+1 respectively. Thus it is

easy to see that S achieves its goal by computing W1 = (τ1/τ ′
1)

1
h1−h′

1 = gu1v and

W2 = (τ2/τ ′
2)

1
h2−h′

2 = gu2v.
Finally, by the General Forking Lemma, we have that if A has non-negligible

advantage into breaking the security of 2IB-KA , then S’s success probability is
also non-negligible.
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5.1 Forward Secrecy

The id-based key agreement protocol 2IB-KA described in the previous section
satisfies weak forward secrecy as proven in the following theorem.

Theorem 7. Under the 2DH Assumption, if we model H1 and H2 as random
oracles then the protocol 2IB-KA has weak forward secrecy.

Proof. For sake of contradiction let us suppose there exists a PPT adversary
A that is able to break the weak forward secrecy of the protocol 2IB-KA with
non-negligible advantage ε. Let n be an upper bound to the number of sessions
of the protocol run by A and Q1 and Q2 be the number of queries made by
the adversary to the random oracles H1, H2 respectively. Then we show how to
build a simulator S that uses A to solve the 2DH problem with probability at
least ε/nQ2. S receives as input a tuple (q, G, g, U1, U2, V ) where U1 = gu1 , U2 =
gu2 , V = gv and u1, u2, v are random exponents in Zq. The simulator plays the
role of the CDH solver and its goal it to compute the values W1 = gu1v and
W2 = gu2v.

Setup. S sets up a simulated execution of the protocol, with simulated KGC,
users and sessions. First of all S defines the public parameters of the protocol
simulating the KGC. So it chooses random x1, x2

$← Zq and sets y1 = gx1, y2 =
gx2 . Then it provides the adversary with input (q, G, g, y1, y2) and oracle access
to H1 and H2. Since H1 and H2 are modeled as random oracles, S can program
their output. For each input (ID, r) S chooses a random eID

$← Zq and sets
H1(ID, r) = eID. Similar work is done for H2.

Since S knows the master secret key (x1, x2), it can simulate the KGC in full,
and give secret keys to all the parties in the network, including answering private
key queries from the adversary. At the beginning of the game S guesses the test
session and its peers Alice and Bob.
Simulating protocol sessions. Sessions different from the test session are
easily simulated since S knows all the information needed to compute the session
keys and answer any query (including session key and state reveal queries) from
the adversary.

Simulating the test session. We now show how to simulate the test session
in order to extract W1, W2 from the adversary. Since in this game the adversary
is assumed to be passive during the test session, the parties (i.e. the simulator
in this case) choose the messages exchanged in this session.

Let (A, r1
A, r2

A, s1
A, s2

A), (B, r1
B , r2

B, s1
B, s2

B) be the identity information and the
secret keys of Alice and Bob respectively (S knows these values). The simulator
sets Alice’s message as 〈A, r1

A, r2
A, u1

A = U1, u
2
A = U2〉 while the one from Bob is

〈B, r1
B , r2

B, u1
B = V, u2

B = V d〉 (for random d
$← Zq). S is implicitly setting t1A =

u1, t
2
A = u2, t

1
B = v, t2B = vd. In this case the correct session key contains ω11 =

gu1v, ω21 = gu2v. Since H2 is modeled as a random oracle, if A has success into
distinguishing Z from a random value, it must have queried H2 on the correct
input. Thus S can choose a random value among all the queries that it received
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from the adversary. Since the number of queries Q2 is polynomially bounded, S
can find the correct ω11 = W1, ω21 = W2 with non-negligible probability ε/nQ2.
This completes the proof of this case5.

6 Comparisons with Other IB-KA Protocols

In this section we compare IB-KA with other id-based KA protocols from the
literature. In particular, we consider the protocol by Chen and Kudla [13] (SCK-
2) (which is a modification of Smart’s [36]) and two protocols proposed very
recently by Boyd et al. [7] (BCNP1, BCNP2).

For our efficiency comparisons we consider a security parameter of 128 and
implementations of SCK-2, BCNP1 and BCNP2 with Type 3 pairings6, which
are the most efficient pairings for this kind of security level (higher than 80).
Our protocol is assumed to be implemented in an elliptic curves group G with
the same security parameter. In this scenario elements of G and G1 need 256 bit
to be represented, while 512 bits are needed for G2 elements and 3072 bits for
an element of GT .

We estimate the computational cost of all the protocols using the costs per
operation for Type 3 pairings given by Chen et al. in [12]. The bandwidth cost is
expressed as the amount of data in bits sent by each party to complete a session
of the protocol7.

According to the work of Chen et al. [12] SCK-2 is the most efficient protocol
with a proof of security in the CK model for all types of pairings. It is proved
secure using random oracles under the Bilinear Diffie-Hellman Assumption and
requires one round of communication with only one group element sent by each
party. To be precise, we point out that the protocol of Boyd et al. (BMP) [8]
would appear computationally more efficient than SCK-2, but unfortunately it
works only in type 1 and type 4 pairings and is proven secure only in symmetric
pairings. BCNP1 and BCNP2 are generic constructions based on any CCA-
secure IB-KEM. When implemented (as suggested by the authors of [7]) using
one of the IB-KEMs by Kiltz [24], Kiltz-Galindo [25] or Gentry [21] they lead
to a two-pass single-round protocol with (CK) security in the standard model.
BCNP2 provides weak FS and resistance to KCI attacks, while BCNP1 satisfies
only the former property.

The results are summarized in Table 1 assuming protocols BCNP1 and BCNP2
to be implemented with Kiltz’s IB-KEM (the most efficient for this application
according to the work of Boyd et al. [7]). We defer to the original papers of SCK-
2 [13] and BCNP1, BCNP2 [7] for more details about these costs. As described
5 We could give the simulator access to the Strong-2DH oracle 2DH, and then S could

use it to “test” all queries to H2 to find the correct W1, W2. The reduction would be

tighter (removing the factor of Q−1
2 from the success probability) but would require

the Strong-2DH Assumption also in this case.
6 This classification of pairing groups into several types is provided by Galbraith

et al. in [19].
7 We do not consider the identity string sent with the messages as it can be implicit

and, in any way, appears in all the protocols.
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Table 1. Comparisons between IB-KA protocols

weak
KCI

Standard Efficiency

FS model Bandwidth Cost per party

BCNP1 ✗ ✓ ✓ 768 56

BCNP2 ✓ ✓ ✓ 1024 59

SCK-2 ✓ ✓ ✗ 256 43

IB-KA ✓ ✓ ✗ 512 6

in the table, our protocol has a reasonable bandwidth requirement and achieves
the best computational efficiency among the other id-based KA protocols.

Comparison with PKI-based protocols. We also compare our protocol
to MQV [27], and its provably secure version HMQV [26], which is the most
efficient protocol in the public-key setting. When comparing our protocol to
a PKI-based scheme, like MQV, we must also consider the additional cost of
sending and verifying certificates.

We measure the computation costs of the protocols in terms of the number of
exponentiations in the underlying group needed to compute the session key. If
the exponentiations is done with an exponent that is half the length of the group
size, then obviously we count it as 1/2 exponentiation. Also if an exponentiation
is done over a fixed basis, we apply precomputation schemes to speed up the
computation, e.g. [20].

Our protocol requires each party to send a single message consisting of two
group elements. To compute the session key, the parties perform 2 full expo-
nentiations over variable basis, and one half exponentiation over a fixed basis8.
For our security parameter, following [20], the latter half exponentiation can be
computed with less than 20 group multiplications, with a precomputation table
of moderate size.

In MQV, each party sends a single message consisiting of one group ele-
ment, and performs 1.5 exponentiations to compute the session key. Moreover,
in HMQV certificates are sent and verified. Here we distinguish two cases: the
certificate is based either on an RSA signature, or on a discrete-log signature,
e.g. Schnorr’s.

In the RSA case, a short exponent e.g. e = 216 + 1, is typically used, and the
verification cost is basically equivalent to the cost of the half exponentiation with
precomputation in our protocol above. Therefore in this case, MQV is faster, but
by a mere half exponentiation. The price to pay however is a massive increase
in bandwidth to send the RSA signature (i.e. 3072 bits), and the introduction
of the RSA Assumption in order to prove security of the entire scheme.

If we use a Schnorr signature for the certificate, then MQV require sending two
more group elements, and therefore its bandwidth requirement is already worse
than our protocol (by one group element). The parties then must compute one

8 Indeed since the input to the hash function H1 is randomized, we can set its output

length to be half of the length of the group size.
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full and one half exponentiation, both with fixed basis9 to verify the certificate.
This extra computational cost can be compared to an additional half exponen-
tiation, making the computation requirement of MQV with Schnorr certificates
equivalent to that of our protocol.

In conclusion, when comparing our protocol with MQV with certificates we
find that our protocol: (i) has comparable computational cost; (ii) has better
bandwidth (by far in the case of RSA certificates) and (iii) simplifies protocol
implementation by removing entirely the need to manage certificates and to
interact with a PKI10.

7 Security Analysis of Related Protocols

As an additional contribution of the paper, in this section we present a formal
security analysis of two id-based KA protocols that use techniques that inspired
our work: the first by Gunther [22] and the second by Saeednia [32] (which
is is an improvement of the previous one). In particular we show variants of
these protocols that allow to prove their security in the CK model while only an
intuition of security was stated in the original works [22, 32].

7.1 Gunther’s Protocol

We present a slightly different variant of Gunther’s protocol [22] which we prove
secure under the Gap-DH and KEA assumptions.

The Knowledge of Exponent Assumption (KEA) was first stated by Damg̊ard
in [15] and later discussed in [3, 23]. Let G be a group of prime order q with
generator g. Then we say that KEA holds over G if: for any efficient algorithm
A that on input (g, ga) outputs a pair (B, C) such that C = Ba there exists
an efficient “extractor” algorithm A′ that given the same input of A outputs
(B, C, b) such that C = Ba and B = gb.

The modified protocol is summarized in Figure 2. We recall that the session
key in the original protocol was just z1z2z3 and the key generation process com-
puted the hash only on the identity string H(ID). So what we change is: to hash
the session key and include the value rID when hashing the identity. Since the
key derivation process is essentially an El Gamal signature on the identity string,
the latter modification follows what Pointcheval and Stern proposed in [31] to
prove the security of the El Gamal signature scheme.

The following theorem proves the security of the protocol.

Theorem 8. If H1 and H2 are modeled as random oracles and the Gap-DH
and KEA assumptions hold, then Gunther’s protocol is a secure identity-based
key agreement protocol.
9 Though different basis, which means that in order to apply precomputation tech-

niques, the parties need to maintain two tables.
10 In the above, we did not account for the cost of verifying group membership for the

elements sent by the parties, which is necessary both in the case of MQV and our

protocol, and is the same in both protocols.
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Gunther’s protocol

Setting: A Key Generation Center (KGC) chooses a group G of prime

order q together with a random generator g ∈ G and an exponent x
$← Zq.

KGC publishes G, q, g, y = gx and two hash functions H1, H2. It distributes

to each user with identity U a private key (rU , sU ) computed as follows:

rU = gk, sU = k−1(H1(U, rU ) − xrU )mod q for random k
$← Zq.

Key agreement: A and B choose ephemeral private exponents tA, wA

and tB , wB, respectively.

A IDA, rA � B

IDB , rB�
uA = rtA

B , vA = gwA

�
uB = rtB

A , vB = gwB

�

z1 = usA
B z1 = (gH1(IDA,rA)/y−rA)tB

z2 = (gH1(IDB ,rB)/y−rB )tA z2 = usB
A

z3 = vwA
B z3 = vwB

A

Z = H2(z1z2z3)

Fig. 2. A and B share session key Z

Proof. For sake of contradiction let us suppose there exists a PPT adversary A
that has non-negligible advantage ε into breaking Gunther’s protocol, then we
show how to build a solver algorithm S for the CDH problem.

In our reduction we will proceed into two steps. First, we describe an interme-
diate algorithm B (i.e. the simulator) that interacts with the protocol adversary
A and returns a side output σ. Second, we will show how to build an algorithm
S that exploits FB, the forking algorithm associated with B, to solve the CDH
problem under the Gap-DH Assumption.
B receives as input a tuple (G, g, U, V ), where U = gu, V = gv and u, v are

random exponents in Zq, and a set of random elements h1, . . . , hQ ∈ Zq. The
simulator is also given access to a DH oracle DH(·, ·, ·) that on input (U, V, W )
answers “yes” if (U, V, W ) is a valid DDH tuple . The side output of B is σ ∈
G

2×Zq or ⊥. Let n be an upper bound to the number of sessions of the protocol
run by the adversary A and Q1 and Q2 be the number of queries made by A
to the random oracles H1, H2 respectively. Moreover, let Qc be the number of
users corrupted by A and Q = Q1 + Qc + 1.
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Algorithm BDH(U,·,·)(G, g, U, V, h1, . . . , hQ)
Initialize ctr ← 0; bad← false; empty tables H1, H2;
Run A on input (G, g, y = U) as the public parameters of the protocol and

simulates the protocol’s environment for A as follows:
Guess the test session by choosing at random the user (let us call him

Bob) and the order number of the test session. If n is an upper bound
to the number of all the sessions initiated by A then the guess is right
with probability at least 1/n.

H2 queries: On input a value z:
If H2[z] = ⊥: choose a random string Z ∈ {0, 1}	 and store H2[z] = Z
Return H2[z] to A

H1 queries: On input (ID, r):
If H1[ID, r] = ⊥, then ctr← ctr + 1; H1[ID, r] = hctr

Return H1[ID, r] to A
Party Corruption: When A asks to corrupt party ID 	= B, then:

ctr ← ctr + 1; d $← Zq; r = ghctryd; s = −rd−1

If H1[ID, r] 	= ⊥ then bad← true
Store H1[ID, r] = hctrs and return (r, s) as ID’s private key.

For the case of Bob, the simulator simply chooses the rB compo-
nent of Bob’s private key by picking a random kB

$← Zq and setting
rB = gkB and H1[B, rB ] = hctr. We observe that in this case B is
not able to compute the corresponding sB. However, since Bob is the
user guessed for the test session, we can assume that the adversary
will not ask for his secret key.

Simulating sessions: First we describe how to simulate sessions differ-
ent from the test session. Here the main point is that the adversary
is allowed to ask session-key queries and thus the simulator must be
able to produce the correct session key for each of these sessions. The
simulator has full information about all the users’ secret keys except
Bob. Therefore B can easily simulate all the protocol sessions that
do not include Bob, and answer any of the attacker’s queries about
these sessions. Hence we concentrate on describing how B simulates
interactions with Bob.

Assume that Bob has a session with Charlie (whose identity is
the string C). If Charlie is an uncorrupted party this means that B
will generate the messages on behalf of him. In this case B knows
Charlie’s secret key and also has chosen his ephemeral exponents
tC , wC . Thus it is trivial to see that B has enough information
to compute the correct session key. The case when the adversary
presents messages 〈C, rC〉, 〈uC , vC〉 to Bob as coming from Char-
lie is more complicated. Here is where B makes use of the oracle
DH(·, ·, ·) to answer a session-key query about this session. The simu-
lator replies with messages 〈B, rB〉, 〈uB = gtB , vB = gwB 〉 where tB
and wB are chosen by B. Recall that the session key is H2(z1z2z3)
with z1 = usC

B , z2 = usB

C and z3 = gwBwC . Notice that z2 is the
Diffie-Hellman result of the values uC = rtC

B and rsB

B . Since the
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simulator can compute rsB

B = gH1(B,rB)−xrB , it can check if H2[z] =
Z where DH(rsB

B , uC , z̄) = “yes′′ and z̄ = z/z1z3. If B finds a match
then it outputs the corresponding Z as session key for Bob. Other-
wise it generates a random ζ

$← {0, 1}	 and gives it as response to
the adversary. Later, for each query z to H2, if z satisfies the equa-
tion above it sets H2[z] = ζ and answers with ζ. This makes oracle’s
answers consistent.

In addition observe that the simulator can easily answer to state
reveal queries as it chooses the fresh exponents on its own.

Simulating the test session: Let 〈B, ρB〉, 〈uB = rtB

A , vB = gwB 〉 be
the messages from Bob to Alice sent in the test session. We notice
that such message may be sent by the adversary who is trying to
impersonate Bob. In this case A may use a value ρB = gλB of its
choice as the public component of Bob’s private key (i.e. different
than rB = gkB which B simulated and for which it knows kB). B
responds with the messages 〈A, rA〉, 〈uA = V, vA = gwA〉 as coming
from Alice. Finally B provides A with a random session key.

Run until A halts and outputs its decision bit
If H1[B, ρB] = ⊥ then set ctr← ctr + 1 and H1[B, ρB] = hctr

If bad = true then return (0,⊥)
Let i ∈ {1, . . . , Q} such that H1(B, ρB) = hi

Let Z = H2(z1z2z3) be the correct session key for the test session where
z1 = usA

B , z2 = ρ
(hi−xρB)tA

B and z3 = vwA

B .
If A has success into distinguishing Z from a random value it must neces-

sarily query the correct value z = z1z2z3 to the random oracle H2. This
means that B can efficiently find z in the table H2 using the Gap-DH
oracle.

Compute τ = z
z1z3

= V hi/λBW−ρB/λB

Return (i, (τ, hi, ρB))

Let IG be the algorithm that generates a random Diffie-Hellman tuple (G, g, U, V )
and accB be the accepting probability of B. Then we have that:

accB ≥ ε

n
− Pr[bad = true].

For the same argument given in Section 4 we have that

accB ≥ ε

n
− Qc(Q)

2	
.

which is still non-negligible, since ε is non-negligible.
Once we have described the algorithm B we show how to build an algorithm

S′ that exploits FB, the forking algorithm associated with the above B. Then we
will show another algorithm S that solves CDH under the Gap-DH Assumption.

Algorithm S′DH(·,·,·)(G, g, U, V )
(b, σ, σ′) $← F

DH(U,·,·)
B (G, g, U, V )
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If b = 0 then return 0 and halt
Parse σ as (τ, h, ρ) and σ′ as (τ ′, h′, ρ′)
Compute V ′ = V λ−1

B = (τ/τ ′)(h−h′)−1
and output (V ′, ρ, τ, h).

If the forking algorithmFB has success, this means that there exist random coins γ,
an index J ≥ 1 and h1, . . . , hQ, h′

J , . . . , h′
Q ∈ Zq with h = hJ 	= h′

J = h′ such that:
the first execution of B(G, g, U, V, h1, . . . , hQ; γ) outputs τ = gvh/λW−ρ/λ where
H1[B, ρ] = h; the second execution of B(G, g, U, V, h1, . . . , hJ−1, h

′
J , . . . , h′

Q; γ)
outputs τ ′ = gvh′/λ′

W−ρ′/λ′
such that H1[B′, ρ′] = h′. Since the two executions

of B are the same until the response to the J-th query to H1, then we must have
B = B′ and ρ = ρ′ (and λ = λ′). In other words we have an algorithm that given
in input a pair (g, gv) is returning in output (V ′, ρ = gλ) such that V ′ = gv/λ.
If the KEA assumption holds then there exists an extractor algorithm that given
the same input (g, gv) outputs (V ′, ρ, λ). Therefore we can run such algorithm to
get λ. We can define S as the algorithm that runs the corresponding extractor
algorithm of S′ on its same input and gets (V ′, ρ, λ, τ, h). Finally S can compute

W = (
τ

V λ/h
)−ρ−1

= guv.

By the General Forking Lemma, we have that if A has non-negligible advantage
into breaking the security of Gunther’s protocol, then the probability that S has
success is also non-negligible.

Vulnerability to reflection attack. In this section we show that Gunther’s
protocol is vulnerable to the reflection attack. We recall that this attack occurs
when an adversary tries to impersonate a party, e.g. Bob to Bob himself. In
the case of Gunther’s protocol we can restrict this attack to the case when an
adversary presents to Bob the first message containing Bob’s identity B and the
key rB . In particular, we do not consider the case in which the adversary uses
a value r′B 	= rB because one can imagine that the honest Bob (who knows his
secret key rB) refuses the connections from himself with r′B 	= rB.

In this scenario, when (the honest) Bob generates uB = gtB , vB = gwB and the
adversary sends u′

B = gt′B , v′B = gw′
B the session key will be (rsB

B )tB+t′B gwBw′
B .

Thus an adversary, after seeing the message from Bob, can set u′
B = gt/uB

and v′B = gw′
B and then is able to compute the session key H(z̄) where z̄ =

(rsB

B )t · vw′
B

B = (gH(B,rB)y−rB)t · vw′
B

B .

Other security properties of Gunther’s protocol. Following an argument
similar to that used for protocol IB-KA in Section 4.1, it is possible to show that
Gunther’s protocol is resistant to KCI attacks. Moreover we prove the following
theorem to show that it satisfies weak forward secrecy.

Theorem 9. Let A be a PPT adversary that is able to break the weak forward
secrecy of Gunther’s protocol with advantage ε. Let n be the an upper bound to
the number of sessions of the protocol run by A and Q1 and Q2 be the number of
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queries made by the adversary to the random oracles H1, H2 respectively. Then
we can solve the CDH problem with probability at least ε/(nQ2).

In the following we show how to build an efficient algorithm S that can solve
the CDH problem.

S receives as input a tuple (G, q, g, U = gu, V = gv) and wants to compute
W = guv. First S simulates the KGC setting up the public parameters of the
protocol. It chooses a random x

$← Zq and sets y = gx. Then it provides the
adversary with input (G, q, g, y) and oracle access to H1 and H2. Since H1 and
H2 are modeled as random oracles, S can program their output. For each input
(ID, rID) S chooses a random eID

$← Zq and sets H1(ID, rID) = eID. Similar
work is done for H2.

The adversary is allowed to ask the KGC for the secret keys of users of its
choice and thus S must be able to simulate the key derivation process. As one
can notice, when the adversary asks for the secret key of a user, the simulator
is always able to respond, since it has chosen the master secret key x by itself.

At the beginning of the game S guesses the test session and its holder (let us
call him Bob). Also let Alice be the other party of the session. If n is an upper
bound to the number of all the sessions initiated by A then the guess is right
with probability at least 1/n.

Without loss of generality we assume that the test session is at Bob (thus the
corresponding matching session is at Alice). Since we are in the case when the
adversary is passive during the execution of the protocol, the simulator chooses
the messages exchanged in the test session.

Let (A, rA, sA), (B, rB , sB) be the identity informations and the secret keys
of Alice and Bob respectively. The simulator uses these values to create the first
two messages between the parties. To generate the other ones S chooses random
tA, tB

$← Zq and sets 〈uA = rtA

B , vA = U〉 and 〈uB = rtB

A , vB = V 〉. Thus S is
implicitly setting wA = u, wB = v. Since H2 is modeled as a random oracle, if
the adversary has success into distinguishing the real session key from a random
value, it must have queried H2 on the correct input z̄ = usA

B usB

A guv. Thus S can
choose a random value among all the queries that it received from the adversary
and then extract W = z̄/(usA

B usB

A ) from it. In conclusion S can find W with
non-negligible probability ε/nQ2. This completes the proof of this case.

Remark 1. If we would assume the simulator having access to a Gap-DH ora-
cle, S might use the oracle to test, for all queries z made by the adversary, if
DH(U, V, z3) = “yes′′ (where z3 is computed as z/z1z2) and then output z3 for
which the test is satisfied. In this case the security of Gunther’s protocol would
reduce to the Gap-DH Assumption instead of CDH, but we would not have the
Q2 loss factor.

7.2 Saeednia’s Protocol

Saeednia proposed in [32] a variant of Gunther’s protocol that allows to reduce
to 2 the number of messages exchanged by the parties. The idea of Saeednia was
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basically to use a different equation for computing the El Gamal signature to
generate users’ keys. Here we propose a variant of Saeednia’s protocol that can
be proved secure in the CK model under the Gap-DH assumption. The modified
protocol is summarized in Figure 3.

Saeednia’s protocol

Setting: A Key Generation Center (KGC) chooses a group G of prime

order q together with a random generator g ∈ G and an exponent x
$← Zq.

KGC publishes G, q, g, y = gx and two hash functions H1, H2. It distributes

to each user with identity U a private key (rU , sU ) computed as follows:

rU = gk, sU = kH1(U, rU ) + xrU mod q for random k
$← Zq.

Key agreement: A and B choose ephemeral private exponents tA and tB,

respectively.

A IDA, rA, uA = gtA

� B

IDB , rB, uB = gtB

�

z1 = usA
B z1 = (r

H1(IDA,rA)
A yrA)tB

z2 = (r
H1(IDB ,rB)
B yrB )tA z2 = usB

A

z3 = utA
B z3 = utB

A

Z = H2(z1z2, z3)

Fig. 3. A and B share session key Z

We did almost the same modifications proposed for Gunther’s protocol in
Section 7.1, namely adding the value r when hashing the identity and hashing
the session key. We recall that the session key in the original version of the
protocol is the value z1z2z3 where z3 is needed to obtain (weak) FS. In our
variant we include z3 in the hash of the session key as H2(z1z2, z3).

The following theorem proves the security of the modified Saeednia’s protocol.

Theorem 10. If H1 and H2 are modeled as random oracles and the Gap-DH
assumption holds, then Saeednia’s protocol is a secure identity-based key agree-
ment protocol.

Proof. For sake of contradiction let us suppose there exists a PPT adversary A
that has non-negligible advantage ε into breaking Saeednia’s protocol, then we
show how to build a solver algorithm S for the CDH problem.

In our reduction we will proceed into two steps. First, we describe an interme-
diate algorithm B (i.e. the simulator) that interacts with the protocol adversary
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A and returns a side output σ. Second, we will show how to build an algorithm
S that exploits FB, the forking algorithm associated with B, to solve the CDH
problem under the Gap-DH Assumption.
B receives as input a tuple (G, g, U, V ), where U = gu, V = gv and u, v are

random exponents in Zq, and a set of random elements h1, . . . , hQ ∈ Zq. The
simulator is also given access to a DH oracle DH(·, ·, ·) that on input (U, V, W )
answers “yes” if (U, V, W ) is a valid DDH tuple . The side output of B is σ ∈
G

2×Zq or ⊥. Let n be an upper bound to the number of sessions of the protocol
run by the adversary A and Q1 and Q2 be the number of queries made by A
to the random oracles H1, H2 respectively. Moreover, let Qc be the number of
users corrupted by A and Q = Q1 + Qc + 1.

Algorithm BDH(U,·,·)(G, g, U, V, h1, . . . , hQ)
Initialize ctr ← 0; bad← false; empty tables H1, H2;
Run A on input (G, g, y = U) as the public parameters of the protocol and

simulates the protocol’s environment for A as follows:
Guess the test session by choosing at random the user (let us call him

Bob) and the order number of the test session. If n is an upper bound
to the number of all the sessions initiated by A then the guess is right
with probability at least 1/n.

H2 queries: On input a pair (z, z3):
If H2[z, z3] = ⊥: choose a random string Z ∈ {0, 1}	 and store
H2[z, z3] = Z
Return H2[z, z3] to A

H1 queries: On input (ID, r):
If H1[ID, r] = ⊥, then ctr← ctr + 1; H1[ID, r] = hctr

Return H1[ID, r] to A
Party Corruption: When A asks to corrupt party ID 	= B, then:

ctr ← ctr + 1; e $← Zq; r = geyhctr ; s = −erd−1

If H1[ID, r] 	= ⊥ then bad← true
Store H1[ID, r] = −rh−1

ctr and return (r, s) as ID’s private key.
For the case of Bob, the simulator simply chooses the rB compo-

nent of Bob’s private key by picking a random kB
$← Zq and setting

rB = gkB . Moreover it sets H1[B, rB ] = hctr. We observe that in this
case B is not able to compute the corresponding sB. However, since
Bob is the user guessed for the test session, we can assume that the
adversary will not ask for his secret key.

Simulating sessions: First we describe how to simulate sessions differ-
ent from the test session. Here the main point is that the adversary
is allowed to ask session-key queries and thus the simulator must be
able to produce the correct session key for each of these sessions. The
simulator has full information about all the users’ secret keys except
Bob. Therefore B can easily simulate all the protocol sessions that
do not include Bob, and answer any of the attacker’s queries about
these sessions. Hence we concentrate on describing how B simulates
interactions with Bob.
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Assume that Bob has a session with Charlie (whose identity is
the string C). If Charlie is an uncorrupted party this means that B
will generate the messages on behalf of him. In this case B knows
Charlie’s secret key and also has chosen his ephemeral exponent tC .
Thus it is trivial to see that B has enough information to compute the
correct session key. The case when the adversary present a message
〈C, rC , uC〉 to Bob as coming from Charlie is more complicated. Here
is where B makes use of the oracle DH(·, ·, ·) to answer a session-
key query about this session. The simulator replies with the message
〈B, rB , uB = gtB〉 where tB is chosen by B. Recall that the session
key is H2(z1z2, z3) with z1 = usC

B , z2 = usB

C and z3 = guBuC . Notice
that z2 is the Diffie-Hellman result of the values uC and gsB , where
gsB = r

H1(B,rB)
B yrB . Since the simulator can compute z1 and z3 =

utB

C , it can check if H2[z, z3] = Z where DH(gsB , uC , z̄) = “yes′′ and
z̄ = z/z1. If B finds a match then it outputs the corresponding Z as
session key for Bob. Otherwise it generates a random ζ

$← {0, 1}	 and
gives it as response to the adversary. Later, for each query (z, z3) to
H2, if z satisfies the equation above it sets H2[z, z3] = ζ and answers
with ζ. This makes oracle’s answers consistent.

In addition observe that the simulator can easily answer to state
reveal queries as it chooses the fresh exponents on its own.

Simulating the test session: Let 〈B, ρB, uB = gtB 〉 be the message
from Bob to Alice sent in the test session. We notice that such mes-
sage may be sent by the adversary who is trying to impersonate Bob.
In this case A may use a value ρB = gλB of its choice as the public
component of Bob’s private key (i.e. different than rB = gkB which B
simulated and for which it knows kB). B responds with the message
〈A, rA, uA = V 〉 as coming from Alice. Finally B provides A with a
random session key.

Run until A halts and outputs its decision bit
If H1[B, ρB] = ⊥ then set ctr← ctr + 1 and H1[B, ρB] = hctr

If bad = true then return (0,⊥)
Let i ∈ {1, . . . , Q} such that H1(B, ρB) = hi

Let Z = H2(z1z2, z3) be the correct session key for the test session where
z1 = usA

B , z2 = g(λBhi+xρB)tA and z3 = utA

B .
If A has success into distinguishing Z from a random value it must neces-

sarily query the correct value (z1z2, z3) to the random oracle H2. This
means that B can efficiently find such a pair in the table H2 using the
Gap-DH oracle.

Compute τ = z
z1

= V λBhiW ρB

Return (i, (τ, hi, ρB))

Let IG be the algorithm that generates a random Diffie-Hellman tuple (G, g, U, V )
and accB be the accepting probability of B. Then we have that:

accB ≥ ε

n
− Pr[bad = true].
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For the same argument of Section 4 we have that

accB ≥ ε

n
− Qc(Q)

2	

which is still non-negligible, since ε is non-negligible.
Once we have described the algorithm B we can now show how to build a

solver algorithm S that can exploit FB, the forking algorithm associated with
the above B.

The algorithm S plays the role of a CDH solver under the Gap-DH Assump-
tion. It receives in input a CDH tuple (G, g, U, V ) where U = gu, V = gv and u, v
are random exponents in Zq. S is also given access to a decision oracle DH(·, ·, ·)
that on input (U, V, W ) answers “yes” if (U, V, W ) is a valid DH tuple .

Algorithm SDH(·,·,·)(q, G, g, U, V )
(b, σ, σ′) $← F

DH(U,·,·)
B (G, g, U, V )

If b = 0 then return 0 and halt
Parse σ as (τ, h, ρ) and σ′ as (τ ′, h′, ρ′)
Compute ω = (τ/τ ′)(h−h′)−1

and output W = ( τ
ωh )ρ−1

.

If the forking algorithm FB has success, this means that there exist random coins
γ, an index J ≥ 1 and h1, . . . , hQ, h′

J , . . . , h′
Q ∈ Zq with h = hJ 	= h′

J = h′ such
that: the first execution of B(G, g, U, V, h1, . . . , hQ; γ) outputs τ = V hλW ρ where
H1[B, ρ] = h; the second execution of B(G, g, U, V, h1, . . . , hJ−1, h

′
J , . . . , h′

Q; γ)
outputs τ ′ = V h′λ′

W ρ′
where H1[B′, ρ′] = h′. Since the two executions of B are

the same until the response to the J-th query to H1, then we must have B = B′

and ρ = ρ′ (and λ = λ′). Therefore it is easy to see that S compute W = guv.
By the General Forking Lemma, we have that if A has non-negligible advan-

tage into breaking the security of Saeednia’s protocol, then the probability that
S has success is also non-negligible.

Other security properties of Saeednia’s protocol. Saeednia’s protocol
with the modifications presented above satisfies resistance to KCI and reflection
attacks. To see this, it is possible to observe that the same arguments given in
Section 4.1 for the IB-KA protocol apply to this case. In particular, resistance
to reflection attacks can be proven under the Square-DH assumption as well,
namely we can build an algorithm that computes gu2

when given in input g, gu.
Moreover we can prove the following theorem to show that the protocol has

weak forward secrecy.

Theorem 11. Let A be a PPT adversary that is able to break the weak forward
secrecy of Saeednia’s protocol with advantage ε. Let n be the an upper bound to
the number of sessions of the protocol run by A and Q1 and Q2 be the number of
queries made by the adversary to the random oracles H1, H2 respectively. Then
we can solve the CDH problem with probability at least ε/(nQ2).
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In the following we show how to build an efficient algorithm S that can solve
the CDH problem.

S receives as input a tuple (G, q, g, U = gu, V = gv) and wants to compute
W = guv. First S simulates the KGC setting up the public parameters of the
protocol. It chooses a random x

$← Zq and sets y = gx. Then it provides the
adversary with input (G, q, g, y) and oracle access to H1 and H2. Since H1 and
H2 are modeled as random oracles, S can program their output. For each input
(ID, rID) S chooses a random eID

$← Zq and sets H1(ID, rID) = eID. Similar
work is done for H2.

The adversary is allowed to ask the KGC for the secret keys of users of its
choice and thus S must be able to simulate the key derivation process. As one
can notice, when the adversary asks for the secret key of a user, the simulator
is always able to respond, since it has chosen the master secret key x by itself.

At the beginning of the game S guesses the test session and its holder (let us
call him Bob). Also let Alice be the other party of the session. Sessions different
from the test session are easily simulated since S knows all the informations
needed to compute the session keys and answer to session key queries.

Without loss of generality we assume that the test session is at Bob (and
thus the corresponding matching session is at Alice). Since we are in the case
when the adversary is passive during the execution of the protocol, the simulator
chooses the messages of the test session.

Let (A, rA, sA), (B, rB , sB) be the identity informations and the secret keys of
Alice and Bob respectively. The simulator sets Alice’s message as (A, rA, uA = U)
while the one from Bob is (B, rB , uB = V ). S is implicitly setting tA = u, tB =
v. Since H2 is modeled as a random oracle, if the adversary has success into
distinguishing the real session key from a random value, it must have queried
H2 on the correct input (z = usA

B usB

A , z3 = guv). Thus S chooses a random value
among all the queries that it received from the adversary. Since the number
of queries Q2 is polynomially bounded, the simulator can find z3 = W with
non-negligible probability ε/nQ2. This completes the proof of this case.

Remark 2. If we would assume the simulator having access to a Gap-DH oracle,
S might use the oracle to test, for all queries (z, z3) made by the adversary, if
DH(U, V, z3) = “yes′′ and then output z3 for which the test is true. In this case
the security of Saeednia’s protocol would reduce to the Gap-DH Assumption
instead of CDH, but we would not have the Q2 loss factor.
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Abstract. For the last ten years, side channel research has focused on
extracting data leakage with the goal of recovering secret keys of em-
bedded cryptographic implementations. For about the same time it has
been known that side channel leakage contains information about many
other internal processes of a computing device.

In this work we exploit side channel information to recover large parts
of the program executed on an embedded processor. We present the first
complete methodology to recover the program code of a microcontroller
by evaluating its power consumption only. Besides well-studied methods
from side channel analysis, we apply Hidden Markov Models to exploit
prior knowledge about the program code. In addition to quantifying the
potential of the created side channel based disassembler, we highlight its
diverse and unique application scenarios.

1 Motivation

Reverse engineering code of embedded devices is often difficult, as the code is
stored in secure on-chip memory. Many companies rely on the privacy of their
code to secure their intellectual property (IP) and to prevent product counter-
feiting. Yet, in some cases reverse engineering is necessary for various reasons. A
company might rely on a discontinued product it does not get any information
about from its previous vendor. Or no information is available to ensure flawless
interoperability of a component. Often, companies are interested in the details
of a competitors new product. Finally, companies may want to identify possible
copyright or patent infringements by competitors. In most of these cases that
are quite common in embedded product design a disassembler for reconstructing
an embedded program is necessary or at least helpful. On most embedded pro-
cessors, access to code sections can be restricted via so-called lock bits. While
it has been shown that for many processors the read protection of the on-chip
memory can be circumvented with advanced methods [20], we show in this work
that code can be reconstructed with strictly passive methods by analyzing side
channel information such as the power consumption of the CPU during code
execution.
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Side channel analysis has changed the way of implementing security critical
embedded applications in the last ten years. Many methods for physical crypt-
analysis have been proposed, such as differential power/EM analysis, fault at-
tacks and timing analysis [9,1,10]. Since then, methods in side channel analysis as
well as countermeasures have been greatly improved by a broad research effort in
the cryptographic community. Up to now, most efforts in power and EM analysis
have been put into reconstructing data dependencies in the side channel. Yet, all
activity within a device leaves a ‘fingerprint’ in the power trace. When Kocher
et al. [10] published power based side channel attacks in 1999, they already
mentioned the feasibility of reverse engineering code using side channel analysis.
Despite this, virtually all previous work in the are of side channel analysis focus
on breaking cryptographic implementations.

We want to show that a program running on a microcontroller can be recon-
structed by passively monitoring the power consumption or other electromag-
netic emanations only.

1.1 Related Work

Although Kocher et al. [10] already mentioned the feasibility of reverse engineer-
ing algorithms using side channel analysis, only little work following this idea
has been performed. Novak [14] presents a method to recover substitution tables
of the secret A3/A8 algorithm. For Novak’s attack, one of the two substitution
tables and the secret key must be known. Clavier [4] improves reverse engineer-
ing of A3/A8 by proposing an attack retrieving the values of both permutation
tables and the key without any prior knowledge. Yet, both works concentrate
on one specific look-up table and do not consider other parts of the algorithm.
In [24], Vermoen shows how to acquire information about bytecodes executed
on a Java smart card. The method used in his work is based on averaging traces
of certain bytecodes in order to correlate them to an averaged trace of an un-
known sequence of bytecodes. Further, Quisquater et al. [16] present a method
that recognizes executed instructions in single traces by means of self-organizing
maps, which is a special form of neural network. Both works restate the general
feasibility without quantifying success rates.

1.2 Our Approach

Our final goal is the reconstruction of the program flow and program code. In
other words, we want to reconstruct the executed instructions and their execu-
tion order of the device under test, the microcontroller, from a passive physical
measurement (i.e., an EM measurement or a power trace).

The approach we follow is different from the previous ones, since it is the
intention to retrieve information of a program running on a microcontroller by
means of single measurements. Under this premise, averaging like in Vermoens
approach is not (at least not in the general case) practicable. Although [16]
states the general feasibility of a side channel based disassembler, no quantified
results are presented. Furthermore, the use of self-organizing maps seems to be
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inadequate since the possibilities to readjust this approach in case of insufficient
results is highly limited.

We apply methods from side channel analysis that are known to be optimal
for extracting information to reconstruct executed instruction sequences. We
further explore methods to utilize prior information we have about the executed
instructions, which is a new approach in side channel analysis. Many publications
in side channel analysis borrow methods from other disciplines to enhance side
channel cryptanalysis. We want to reverse this trend by showing that methods
from side channel analysis can be applied to interesting problems outside of the
context of cryptology.

The remaining work is structured as follows: In Section 2 we present methods
that recover as much information from the physical channel as possible. Here
we apply the most advanced models from side channel analysis research. In Sec-
tion 3 we apply a hidden Markov model to our problem and introduce methods
that increase the performance of our disassembler. All methods are applied to a
sample microcontroller platform in Section 4. We also describe and compare the
performances of all previously introduced methods. Section 5 discusses possible
applications of the proposed methods and Section 6 concludes our work.

2 Extracting Information from Side Channel Leakage

Monitoring side channels for gaining information about a non-accessible or not
easily-accessible system is a classical engineering problem, e.g., in control engi-
neering. But especially in cryptography, a lot of effort has been put into methods
for retrieving information from emanations of a microcontroller. Hence, we ex-
plore the state-of-the-art in side channel information extraction in cryptography
to find optimal methods for our purposes. Yet, our goal is different as we extract
information about the instruction rather than data.

But how does information about an instruction leak via the side channel? For
data in processors, we assume that the leakage originates from the buses which
move the data, as well as the ALU processing the data and registers storing the
data. The physical representation of an instruction in a microcontroller is more
subtle. A unique feature of each instruction is the opcode stored in program
memory and moved to the instruction decoder before execution. Besides this, an
instruction is characterized by a certain behavior of the ALU, the buses, etc.,
and possibly other components.

When trying to determine which instruction has been executed, we have in
a worst case scenario only one observation of the instruction. Even if we are
able to repeat the measurement, the behavior of the instruction will remain
the same. Hence we are not able to follow a DPA approach, but rather have
to do simple power analysis. In order to succeed, we assume that when trying
to recover a program from a microcontroller, we have access to an identical
microcontroller which we can analyze and profile. We can use this profiling step
to train a Bayesian classifier, as is typically done in template attacks [3]. A
Bayesian classifier is a better choice than, e.g., stochastic models [19] when the
underlying leakage function is not known [22].
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Template Construction. The first step of template classification is the con-
struction of a template for every class [3]. Classes are in our case equivalent
to individual microcontroller instructions. Each template is constructed by esti-
mating the instructions’ distribution of the power consumption from the sample
data. Later, during the attack phase, the template recognition is then performed
by assigning each new observation of power consumption to the most probable
class.

As sample data we consider N D-dimensional observations of the processor’s
power consumption {xn}, where xn ∈ R

D, n = 1, . . . , N . Each observation be-
longs to exactly one of K classes Ck, representing the instructions modeled by a
finite set of instruction states qk, k = 1, . . . , K. Each class Ck contains Nk = |Ck|
elements. We assume that for each class our samples are drawn from a multi-
variate normal distribution

N (x|μk,Sk) =
1

(2π)D/2 |Sk|1/2 exp
(
−1

2
(x− μk)T S−1

k (x− μk)
)

. (1)

Given the sample data {xn}, the maximum-likelihood estimations for the class
mean μk and the class covariance Sk are given by

μk =
1

Nk

∑
xn∈Ck

xn (2)

and
Sk =

1
Nk

∑
xn∈Ck

(xn − μk)(xn − μk)T . (3)

Thus, the template for each class is defined by (μk,Sk).

Template Classification. During the classification phase, a new observation
of power consumption x is assigned to one of the possible instruction states qk.
This is done by evaluating every template and determining the class state q̃ with
the highest posterior probability. Considering the Bayes rule, we get:

q̃ = arg max
qk

p (qk|x) = arg max
qk

p (x|qk) Pr (qk) , (4)

where p (x|qk) = N (x|μk,Sk) and Pr(qk) is the prior probability of instruction
state qk.

In practice, the observations xn available for training a template are too high
dimensional and too closely correlated to generate a well-conditioned covariance
matrix Sk, making its inversion impossible [18]. Building the templates in a
suitable subspace can solve these problems. In the subspace, less observations
xn are necessary to create a regular covariance matrix and the estimated class
distributions become more reliable.

Several methods for the reduction of the size of the observations xn have
been proposed in the context of side channel analysis [18,21]. Even more are
available in the standard literature [2]. We tried Principal Component Analysis
and Fisher’s Linear Discriminant Analysis.



82 T. Eisenbarth, C. Paar, and B. Weghenkel

Principal Component Analysis. Principal Component Analysis (PCA) is a
technique to reduce the dimensionality of our data while keeping as much of its
variance as possible. This is achieved by orthogonally projecting the data onto
a lower dimensional subspace.

Consider again the N observations of power consumption {xn}, n = 1, . . . , N ,
and their global covariance matrix S which is built in analogy to (3). A one-
dimensional subspace in this Euclidean space can be defined by a D-dimensional
unit vector u1. The projection of each data point xn onto that subspace is
given by uT

1 xn. It can be shown that the direction that maximizes the projected
variance uT

1 Su1 with respect to u1 corresponds to the eigenvector of S with the
largest eigenvalue λ1 [2]. Analogous, an M -dimensional subspace, M < D, that
maximizes the projected variance is given by the M eigenvectors u1, . . . ,uM of
S corresponding to the M largest eigenvalues λ1, . . . , λM .

Since our goal is the reliable distinction of many different instructions it seems
reasonable not only to maximize the overall variance of the data but alternatively
to maximize the variance of the different class means μk. If moving the class
means away from each other also results in less overlapping, the classification
will be easier. We apply PCA in both ways, i.e., for the whole data and for class
means.

Fisher’s Linear Discriminant Analysis. Similar to PCA, with Fisher’s Lin-
ear Discriminant Analysis (or Fisher LDA) we have another method for dimen-
sionality reduction. But instead of just maximizing the variance of the projected
data, information about the different classes and their covariances is taken into
consideration.

Again, we have our N observations {xn} in a D-dimensional Euclidean space.
Each observation belongs to one of K different classes Ck, k = 1, . . . , K, of size
Nk = |Ck|.

Then, the within-class covariance SW for all classes is given by

SW =
K∑

k=1

NkSk (5)

and the covariance of the class means, the between-class covariance SB, given
by

SB =
K∑

k=1

Nk(μk − μ)(μk − μ)T , (6)

where μ is the mean of the total data set and μk and Sk are the individual class
mean and covariance as defined in (2) and (3).

Now consider again a D-dimensional unit vector u1 defining a one-dimensional
subspace onto which the data is projected. This time, the objective used to be
maximized in the subspace is the ratio of the projected between-class variance
to the projected within-class variance:

J(u1) = (uT
1 SWu1)−1(uT

1 SBu1). (7)
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As for PCA it can be shown that this objective is maximized when u1 corre-
sponds to the eigenvector of S−1

W SB with the largest eigenvalue λ1, leading to
a one-dimensional subspace in which the class means are wide-spread and the
average class variance will be small [2]. Again, the M -dimensional subspace,
M ≤ K − 1, created by the first M orthogonal directions that maximize the ob-
jective J are given by the M eigenvectors u1, . . . ,uM of S−1

W SB with the largest
eigenvalues λ1, . . . , λM .

The PCA approach of maximizing the variance will not always lead to good
separability of the classes. In these cases Fisher LDA can be clearly superior.
On the other hand it is more prone to overfitting since more model parameters
have to be estimated.

In addition to the described template recognition we also tried different multi-
class Support Vector Machines implemented in the Shark machine learning li-
brary [8]. Unfortunately, with 41 classes and 2000 training examples per class
(cf. Section 4) the computational costs were too high for a thorough search for
parameters. Furthermore, the first results we received were not very promising.
Therefore we did not further pursue this approach.

3 How to Include Code Properties

In this section we extend the model of a microcontroller’s power consumption
by a second level. In the previous section we modeled the power consumption
of single instruction states. We expand our approach by additionally exploiting
general knowledge about microcontroller code.

Up to now we did not consider a priori knowledge we have about the code
we want to reverse engineer. Even in a scenario where we do not know anything
specific about the target code, we have prior knowledge about source code in
general. For instance, some instructions occur more often than others. As an ex-
ample we can focus on the PIC microcontroller we analyze in Section 4.2. Since
one of the operands of two-operand instructions must be stored in the accumu-
lator, move commands to and from the accu are frequent. Other instructions
such as NOP (no operation) are quite rare in most programs. By performing an
instruction frequency analysis we can provide meaningful prior probabilities to
the instruction distinguisher from Section 2. In particular, the performance of
the template recognition can be boosted by including the prior probabilities in
Equation (4).

For many microprocessor architectures instruction frequency analyses have
been performed, mainly for optimizing instruction sets. Unfortunately, for micro-
controllers and especially the PIC, no major previous work has been performed.
The analysis we performed is described in Section 4.2.

Besides a simple instruction frequency analysis, additional information can
be gained by looking at tuples of instructions that usually are executed subse-
quently. One example are the few two-cycle instructions such as CALL and GOTO,
which are always followed by their second instruction part. But it is also true for
conditional commands such as BTFSS (bit test a register, skip next instruction
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if zero), which is commonly used to build a conditional branch, hence followed
by a GOTO (when branching) or by a virtual NOP (when skipping the GOTO). The
Microchip Assembler itself supports 13 built-in macros which virtually extend
the instruction set and are replaced by more than one physical instruction at
compile time [13]. Their use will consequently influence the occurrence probabil-
ity of the corresponding tuples. Similar effects occur if a compiler like a certain
C compiler has been used for code generation. Tuple frequency analysis is also
a classical method for doing cryptanalysis of historic ciphers.

Other information about the code can also be helpful. A crypto implementa-
tion uses different instructions than a communication application or a control
algorithm. Additional information can be gained by exact knowledge about cer-
tain compiler behavior if the code was compiled, e.g., from C source code. Differ-
ent compilers can generate assembly code with different properties. Hence, prior
knowledge about the application or the compiler can be exploited to improve
recognition results.

Hidden Markov Model. The microprocessor can be considered as a state
machine, for which we want to reconstruct the sequence of taken states. Each
state corresponds to an instruction, or, more precisely, to a part of an instruction
if the instruction needs several cycles to be executed. We cannot directly observe
the state. Instead, the only information we have is the side channel information
provided by the power measurement of a full instruction cycle. Yet, we assume
that the physical information depends on the state, i.e., the executed instruction
of the microcontroller.

We define our system to be described by a hidden Markov model (HMM). At
each discrete time instance i we make one observation xi, resulting in a sequence
of observations x̂. These observations are generated by a hidden Markov chain
passing through a state sequence π, with πi = qk being the state the model is in
at time instance i. Each state qk is followed by a new state ql with a probability
of akl = Pr(πi = ql|πi−1 = qk). We implicitly assume that the probability of
the new state ql depends only on the preceding state qk, but not on any earlier
states. The Markov process cannot directly be observed, instead we observe
certain emissions of that process. We expect to see an observation xi with a
certain probability ek(xi) = p(xi|πi = qk), depending on the actual state qk of
the processor.

A simple Markov model with three states A, B and C is given in Figure 1.
Unlike for classical HMMs, for which the observations are drawn from a discrete
set of symbols, our observations xi are continuous distributions over R

D and our
emission probabilities are consequently described by the continuous probability
density functions ek(xi) = p(xi|πi = qk).

Our system can completely be described as a hidden Markov model (HMM)
consisting of the state transition probability distribution A = {akl}, the emis-
sion probability distribution E = ek(xi), and an initial state distribution κ =
{κk|κk = Pr(qk)}. We will use tuple analysis of executed instruction sequences to
derive the transition probabilities A of the hidden Markov chain. The instruction
probabilities derived from the frequency analysis can also serve as an initial state
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Fig. 1. HMM with three hidden states A, B and C. Only the output on the right of
the dashed line is observable.

distribution κ for the HMM. Finally, the emission probability distribution E is
provided by the templates described in Section 2. The process of the actual pa-
rameter derivation for our model (A,E,κ) is described in Section 4. Having the
model and a set of observations x, several methods for optimal reconstruction of
the state sequence π exist.

3.1 Optimal Instruction Reconstruction

Assuming that we have reconstructed all parameters of our HMM, namely A, E
and κ, we assume a sequence of observations x for which we want to reconstruct
the state sequence π of the hidden Markov process, namely the instructions
executed on the microprocessor. Given our model (A,E,κ), we are able to re-
construct either

– the state sequence that was executed most likely, or
– the most probable state executed at a certain time instance, given the set of

observations.

Though similar, the solutions are not always the same and are derived using two
different algorithms. We evaluate both algorithms, the Viterbi algorithm and the
Forward-Backward algorithm.

Viterbi Algorithm. The Viterbi algorithm determines the most probable state
path π = {πi} that might have caused the observations x̂ = {xi} [17,6]. The
path with the highest probability is given by

π∗ = argmaxπp(π|x̂) = argmaxπ

p(x̂, π)
p(x̂)

= argmaxπp(x̂, π)

and can be determined recursively by vl(i + 1) = el(xi+1)maxk(vk(i)akl) and
vk(1) = κkek(x1), where vk(i) is the probability of the most probable path end-
ing in state qk. Hence we drop all transition probabilities leading to state qk,
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except for the one with the highest probability. Usually for every vl(i + 1) a
pointer to the preceding state probability vk(i) is stored together with the prob-
ability itself. After reaching the last observation, the path yielding the optimal
state sequence is computed by simple back tracking from the final winning state.

When viewing the states as nodes and the transitions as edges of a trellis, as is
typically done in (de-) coding theory, the algorithm becomes more ostensive [11].

The Forward-Backward Algorithm. The forward-backward algorithm max-
imizes the posterior probability that an observation xi came from state qk, given
the full observed sequence x̂, i.e., the algorithm optimizes p(πi = qk|x̂) for every
i [17,6]. In contrast to the Viterbi algorithm, it includes the probabilities of all
transitions leading to one state, and browses all transitions twice, once in the
forward direction like the Viterbi, and once in the backward direction.

For the forward direction we define αk(i) = p(x1x2 . . . xi, πi = qk), α being
the probability of the observed sequence up to xt, and πi = qk. The forward algo-
rithm is performed recursively by evaluating all αk(i). The backward algorithm is
performed in the same way, just backwards, i.e., βk(i) = p(xi+1xi+2 . . . xL|πi =
qk). The computation of βk(i) and αk(i) is performed recursively by evaluating

αl(i + 1) = el(xi+1)
∑

k

αk(i)akl and

βk(i) =
∑

l

βl(i + 1)aklel(xi+1).

The initial values for the recursions are αk(1) = κkek(x1) and βk(T ) = 1, respec-
tively. By simply multiplying αk(i) and βk(i) we gain the production probability
of the observed sequence with the ith symbol being produced by state qk:

p(x, πi = k) = αk(i)βk(i) = p(x1x2 . . . xi, πi = k)p(xi+1xi+2 . . . xL|πi = k)

We can now easily derive the posterior probability γk(i) = p(πi = k|x̂) by simply
dividing p(x̂, πi = k) by p(x̂):

γk(i) =
αk(i)βk(i)

p(x̂)
=

αk(i)βk(i)∑
k αk(i)βk(i)

The forward-backward algorithm consequently calculates the maximum a-
posteriori probability for each observation, hence minimizes the number of state
errors. This can sometimes cause problems as the resulting state sequence might
not be an executable one. The forward-backward algorithm is also known as
’MAP algorithm’, or ’BCJR algorithm’.

For a complete description of both algorithms, refer to [17,5,11]. The Viterbi
algorithm used to be more popular for decoding of convolutional codes (at least
until the advent of Turbo codes) due to its lower computational complexity and
almost equally good results. It is also easier to take care of numerical difficulties
that often occur for both algorithms.
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4 Reconstructing a Program from Side Channel Leakage

This section presents the practical results of the code reconstruction from ac-
tual power measurements. The methods and models we introduced in the previ-
ous two sections are applied to a PIC microcontroller. The PIC microcontroller
makes a good choice for a proof-of-concept implementation of the side-channel
disassembler, since it features a comparably small instruction set, a short pipeline
and is a well-understood target for side-channel attacks [21]. We present the re-
sults of every step taken and compare alternative methods where available.

All measurements were done on a PIC16F687 microcontroller mounted on a
printed circuit board. The board enables easy measurement of the power con-
sumption of the running microcontroller. The power consumption is measured
via the voltage drop over a shunt resistor connecting the PIC’s ground pin to
the ground of the power supply. The PIC is clocked at 1 MHz using its internal
clock generator. Measurements are performed using an Agilent Infiniium 54832D
digital sampling oscilloscope featuring a maximum sampling rate of 4 GS/s at
1 GHz bandwidth. All measurements have been sampled at 1 GS/s. The same
measurement setup is used for the generation of sample measurements for tem-
plate generation, template verification, and the measurement of sample programs
we used to verify our final choice of methods.

The analyzed PIC16F687 microcontroller features an instruction set of 35
different instructions. We excluded instructions like SLEEP that will not occur
in the program flow. Most of the instructions are one-cycle instructions. Yet some
instructions, especially branching instructions, can last two instruction cycles.
In those cases we created two different templates for each instruction cycle,
resulting in a set of 41 different templates or instruction classes, respectively.

Each instruction cycle of the PIC lasts four clock cycles. The power consump-
tion of each peak depends on different properties, of which we can only assume a
limited number to be known or predictable. Two typical power traces of the PIC
are shown in Figure 2. Each trace depicts the power consumption during the ex-
ecution of three instructions. Every instruction lasts four clock cycles, each clock
cycle being indicated by a peak in the power trace. The first instruction, executed
during the first four clock cycles Q1 through Q4, is the same in both cases, i.e., a
NOP instruction. The second executed instruction is either an ADDLW or a MOVWF,
as indicated. As can be easily seen, the power consumption of two different in-
structions differs even before the execution cycle of the instruction itself. The PIC
features a pipeline of one instruction, hence an instruction is prefetched while the
previous instruction is being executed. The different Hamming weights (for ADDLW
and MOVWF the difference is 6 of 14 bit) of the prefetched opcodes account in part
for the differences in Q1 through Q3. In Q5, at the first execution clock cycle of
the monitored instruction, the data is mapped to the ALU, e.g., via the data bus.
Hence, the replacement of values on the data bus affects the power consumption
in Q5. In Q6, the ALU actually reads the applied data, before processing it and
putting the result on the bus in Q7. In Q8, the result is stored at the target reg-
ister. Of course, these are only some of the effects that show up in the power trace.
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Fig. 2. Power trace showing three examples for the execution of NOP and ADDLW versus
the execution of NOP and MOVWF
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Fig. 3. Sum of the PCA components (top figure) and the three first components of the
PCA of the both instructions of Figure 2

Again, we saw that data values, especially those written to the bus, have a signif-
icant influence on the variation of the power consumption.

Unfortunately, the data dependencies do not help identifying the instruction.
They rather obfuscate smaller changes caused by the control logic, the ALU and
other instruction-dependent power consumers. Hence, for effective instruction
reconstruction, we apply the methods introduced in Section 2 to extract the
maximum amount of information from the observed power trace x.



Building a Side Channel Based Disassembler 89

4.1 Template Construction

The first step for building templates is the profiling step. To build templates
for the instructions, we need several different power measurements of the same
instruction. For this purpose we executed specifically generated training code on
the training device described above. Since the template must be independent of
other factors except the instruction itself, we varied all other variables influenc-
ing the power consumption. We generated several code snippets containing the
target instruction while varying the processed data, memory location, as well as
the instructions before and after the target instruction. The new code is pro-
grammed into the microcontroller and executed while the oscilloscope samples
the power consumption. The post-processing is explained after the explanation
of the training code snippets for the profiling.

To generate a training code set for the profiling of a chosen instruction, this
instruction is executed several times. For each execution the data processed by
the instruction is initialized to a random value. If the instruction operates on a
register, one of the general purpose registers is chosen at random and is initialized
with random data prior to being accessed. The accu is always initialized with a
random value for every instruction, even if it is not accessed. This is due to the
observation in [7] that the Hamming weight of the working registers content has
a noticeable effect on the PICs power consumption even while executing a NOP
instruction.

Due to the pipeline, we also have to vary the pre-instruction and the post-
instruction surrounding the target instruction we want to profile. We also made
the pre-instructions and post-instructions operate on random data. Since we
included the measurement of the pre- and the post-instruction into the templates,
the post-instruction was also followed by another random instruction working
on random data. By this we are able to minimize the bias that the surrounding
instructions can have on our observations. Finally, we also varied the position of
the instructions in program memory, just in case this could influence the power
consumption as well.

Target instructions taking two instruction cycles to execute are treated as
two consecutive instructions, hence two templates are generated for these in-
structions. Of course, only the post-instruction or the pre-instruction can be
varied in this case. For each of the 41 instruction classes we generated 2500 ob-
servations with randomly varying data and surrounding instructions. The raw
power traces including pre- and the post-instruction are then aligned to an ar-
bitrary reference instruction to neutralize small variations in the length of clock
cycles.

PCA. When performing a template attack in a principal subspace, the dimen-
sionality M of the subspace has to be chosen carefully. On one hand, if M is too
low, too much of the variance of the original data gets lost and with it, most
likely, important information about the class distribution. If M gets too large, on
the other hand, the templates get less reliable again. One reason for this could
be the bad conditioning of a large covariance matrix. Another reason is the risk
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of overfitting model parameters to distributions which we kept random in the
template creation process, such as surrounding instructions and processed data.

As the plots of the power consumption profile shows (cf. Figure 2), there are
twelve large peaks and another twelve small peaks for three instruction cycles.
Thus, we can assume an upper bound of 24 for the number of components
containing information. Indeed, as shown in Figure 4, our experiments for PCA
show no significant improvements in performance after M = 16 dimensions,
leading to an average recognition rate of 65.6%.

To find a good subspace, the performance for a given number of dimensions is
determined using 5-fold cross validation: 2000 examples per class are split into
five parts and, successively, one part is kept as test data, one as training data for
the PCA and the remaining three parts as training data for the templates. The
PCA is applied to the test data, which is then evaluated using the generated
templates. The final result of the cross validation run is the average recognition
rate on all five unseen (i.e., not included in any manner in the template building
process) test data sets.

After deciding that M = 16 is a good choice for the subspace, the 2000
examples per class were taken to compute a new model (750 examples for PCA,
1250 for the templates) which was validated on 41 × 500 yet unseen examples,
resulting again in a recognition rate of 65.2%.

We also tried to normalize the data to [0 . . . 1] and to zero mean and standard
deviation σ = 1, respectively. The normalization steps did not result in better
recognition rates.

Following another approach, we used PCA to create a subspace that maxi-
mizes the variance between the different class means instead of maximizing the
overall variance [21]. This variation of PCA resulted in an improved average
recognition rate of 66.5% for M = 20. Again, we used 5-fold cross validation to
determine the success rate and additional normalization lead to worse results.

Figure 3 shows the sum of all PCA components (upper plot) and the first
three PCA components separately (three lower plots) of the PCA-based template
means of the ADDLW and MOVWF instructions. The plots show that the four in-
struction cycles of the post-instruction contain no information for the instruction
recognition. Parts of the pre-instructions, however, contain useful information,
due to the instruction prefetch.

Fisher LDA. Since the Fisher-LDA, like our second PCA approach, not only
takes into consideration the variance of the class means, but also the variance
of the different classes, we expect a subspace with less overlaps of the classes
and thus better classification results. In accordance to the cross-validation steps
above, we reached a recognition rate of 70.1% with M = 17 on unseen data.
However, for subspaces with M < 15 the performance has been significantly
higher than for PCA, as shown in Figure 4. Hence, LDA needs less dimensions
resulting in smaller templates to achieve comparable results.

A comparison of the recognition rates for the different instructions reveals
large differences between instructions. Table 1 shows a part of the recognition
rates for selected instructions. The recognition rates vary from 30% for DECF
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Fig. 4. Results of 5-fold cross validation on generated training data

instruction to 100% for CALL. Furthermore, one observes similarities between
certain instructions. For instance, there are many false positives amongst in-
structions working on file registers, e.g., ADDWF, ANDWF, DECF. Some instructions,
like BTFSC and BTFSS, seem especially hard to distinguish while others, like
RETURN, show very few false positives or false negatives.

Similar to BTFSC and BTFSS or the file register instructions, there seem to be
several families of instructions with a template distribution very close to each
other, resulting in a huge cross-error. Therefore we also tried an hierarchical
LDA which performs the recognition in a layered manner, first identifying a
family of instructions and then, applying a second set of templates, identifying
the actual instruction within the family. However, this approach did not result
in an increased recognition rate and was hence not further explored.

Until approximately 16 dimensions, LDA clearly outperforms the two PCA
approaches. The class mean PCA shows a better performance to the classical
PCA and should hence be preferred. All three sets of templates make a decent
choice for the generation of the emission probabilities E for our HMM, as they
all achieve a similar recognition rate of almost 65% for a choice of 16 or more
dimensions.

4.2 Source Code Analysis

For the instruction frequency analysis and tuple frequency analysis we analyzed
the source code of several programs. We built up a code base by using publicly
available source code from various web sites, e.g., the microchip PIC sample
source code [23,15,25]. We also included several implementations of own source
code, cryptographic as well as general purpose code.



92 T. Eisenbarth, C. Paar, and B. Weghenkel

Table 1. Percentage of true positives (bold) and false positives during recognition of
selected instructions with 17 dimensional Fisher-LDA on unseen test data. The columns
indicate the recognized instructions while the line indicates the executed instruction.

Instruction Recognized as [%]
ADDWF ANDWF BTFSC BTFSS CALL DECF MOVLW MOVWF RETURN

ADDWF 41 8 1 5 0 5 0 1 0
ANDWF 4 38 3 1 0 11 0 2 0
BTFSC 2 5 45 19 0 1 0 0 0
BTFSS 1 2 23 54 0 0 0 0 0
CALL 0 0 0 0 100 0 0 0 0
DECF 3 9 0 0 0 30 0 3 0
MOVLW 0 0 0 0 0 0 79 0 0
MOVWF 1 1 0 0 0 3 0 56 0
RETURN 0 0 0 0 0 0 0 0 99

Table 2. Results for instruction frequency from code analysis

Instruction Freq. [%] Instruction Freq. [%]

MOVWF 10.72 BSF 6.95
BCF 9.68 MOVF 6.14
MOVLW 8.22 BTFSS 3.69
GOTO 8.12 BTFSC 3.67
CALL 8.06 RETURN 3.48

Due to loops and branches, the instruction frequency of source code is not
equal to the instruction frequency of actually executed code. In absence of a
reliable simulator platform which is needed to perform an analysis of the executed
code, we decided to further process the disassembly listings of the code base.
We extracted function calls and loops and unrolled them into the code, just as
they would be executed. Also lookup-tables, which are implemented as a list of
RETLW (assign literal to accu and return) were reduced to a single RETLW, as
would be executed by a program.

Still, actually executed code can deviate from the assessed probabilities for
various reasons. One should keep in mind that microcontroller code is often very
special-purpose and can deviate strongly from one application to another. We
included different kinds of programs in the code frequency and tuple analysis.
Classical controller applications such as reading A/D converter info or driving
displays and other outputs involves a lot of ’bit-banging’, i.e., instructions like
BCF or BSF (clear/set bit of register). Other applications that involve more
complex data processing such as crypto applications, include more arithmetic.

The result of the instruction frequency analysis is shown in Table 2. Move in-
structions are the most frequent ones. The PIC increases their general common-
ness on most microprocessor platforms further by limiting arithmetic to always
include the accu and one other register. Table 3 shows the 12 most common
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Table 3. Frequency of 12 most frequent instruction tuples

Instruction Pair Freq. Instruction Pair Freq.
first second [%] first second [%]

MOVLW MOVWF 3.40 MOVWF BCF 2.09
BCF BSF 2.36 ANDLW MOVWF 1.83
MOVLW CALL 2.35 BSF BSF 1.78
BTFSS GOTO 2.31 MOVWF MOVLW 1.75
MOVWF MOVF 2.25 CALL MOVLW 1.70
BTFSC GOTO 2.11 MOVF MOVWF 1.65

instruction tuples. The MOVLW-MOVWF combination is typical for loading values
from the code to registers. Also quite common is a conditional skip (BTFSC or
BTFSS) followed by a GOTO, hence the emulation of a branch instruction. If, as
shown here, some tuples are much more common than others (the expected tuple
frequency for a uniform distribution of the tuples is 0.08%), the post processing
step based on HMM presented in Section 3 will further increase the detection
rate considerably.

With the instruction frequency and tuples analyzed, we can now build the
HMM of the microprocessor. As mentioned in Section 3, the instruction fre-
quency and tuple frequency are used to construct the initial state distribution κ
and the state transition probabilities A, respectively. We constructed the HMM
transition matrix A by performing the following steps:

For non-jumping instructions the post-instructions are directly taken from the
tuple analysis. Instructions always lasting two cycles, i.e., CALL and GOTO, consist
of two states. While CALL1 (or GOTO1) is always succeeded by CALL2 (GOTO2), the
latter is assumed to be succeeded by their target address instruction (due to the
jump). For the transition probabilities of conditionally branching instructions,
like BTFSC, we analyzed the first succeeding instruction as well as the second
succeeding instruction. The second succeeding instruction were counted as post-
instruction for the second part, e.g., BTFSC2, while the first successors became
the weighted post-instructions for the first part of the instruction. The weight is
necessary, because in a certain number of cases the first part of the instruction
will be succeeded by its second part rather than the following instruction. In
lack of better information we chose the weight to be 50%. Hence, in half the
cases the instruction was considered jumping and its second part was counted
as post-instruction (e.g., BTFSC-BTFSC2). Finally the resulting transition matrix
is normalized row-wise to represent a proper probability distribution and aver-
aged with uniformly distributed transition probabilities. For the latter step, all
impossible transitions are excluded, e.g., ADDLW-CALL2.

The initial state distribution κ is simply directly set to the derived instruc-
tion frequency. Here we only have to take care of assigning probabilities to the
non-included second parts of the two-cycle instructions which are equal or half
the occurrence number of the first part instruction, depending on whether the
execution is conditional or static.
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Fig. 5. Recognition rate on 1000 examples of random code. Each time, 750 training
examples were used to calculate the subspace and 1750 others for the templates.

Together with the emission probabilities given by the templates, we now have
the full HMM specified and can apply it to the measurements of real programs.

4.3 Analyzing Programs

During the generation of test data we paid special attention to randomization
of everything that could bias the distribution of the target instruction. It is
unlikely, however, that the same distribution will hold for real code. Indeed we
are, as shown in Section 4.2, far away from uniformly distributed instructions
or tuples of instructions. The same holds for data: for instance, in real code we
can expect to find far more data words like 0x00 or 0xFF than in uniformly
distributed data. As a consequence, the recognition rate of our template attack
will drop as soon as the distribution of data values changes. The data dependency
can be shown through executing random (in this case non-jumping) instructions
without taking care of the content of file registers and the working register. Thus,
the main difference to the known distribution is the data the instructions work
on. As Figure 5 shows that in this case the best recognition rate reached by our
templates is only 35% while, for a similar set of instructions from the test set,
we expect a recognition rate of 47%.

As an example for real code we picked an implementation of the KeeLoq
crypto algorithm and measured the execution of the first 500 instructions. Now,
the highest recognition rate achieved was 40.7% with M = 19 and Fisher-LDA,
while about 60% could have been expected on similar instructions from the test
set. For the template evaluation (cf. Equation (4)) the prior probabilities from
the code analysis have been taken into account.



Building a Side Channel Based Disassembler 95

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Dimensions

R
ec

og
ni

tio
n 

R
at

e

 

 

PCA
Mean−PCA
Fisher−LDA

Fig. 6. Recognition rate on the first 500 instructions of the KeeLoq crypto algorithm.
Each time, 750 training examples were used to calculate the subspace and 1750 others
for the templates.
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Fig. 7. Recognition rate for the first 500 examples of the Keeloq algorithm in different
subspaces after applying the Viterbi algorithm to determine the most probable path

After having modeled the complete Hidden Markov Model with the results
from the source code analysis we are now able to apply the Viterbi algorithm and
the Forward-Backward-Algorithm to the results from Section 4.1 to calculate the
most probable sequence of instruction states as well as the instructions with the
highest a posteriori probability. Given the above code example of the KeeLoq
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crypto algorithm, Viterbi algorithm helps to improve the recognition rate by
another 17% points to up to 58% as shown in Figure 7. With recognition rates
of up to 52% the Forward-Backward-Algorithm performed slightly worse on this
code example.

5 Applications and Implications

The most obvious application of the side channel disassembler is reverse engi-
neering of embedded programs. Reverse engineering of software is an established
method not only for product counterfeiting, but also for many legal applications.
A common application is re-design, where an existing functionality is analyzed
and possibly rebuilt. The reasons for this can be manifold, e.g., lost documenta-
tion, lost source code, or product discontinuation. But often, reverse engineering
does not go that far. Reversing of interfaces is often applied to ensure interoper-
ability with other systems. Debugging is another important application scenario
of reverse engineering. It can also be performed for learning purposes, to under-
stand how a code works. Then reverse engineering is very important for security
auditing, where a user has to ensure code properties such as the absence of
malware.

Many of these applications are highly relevant for embedded applications
where access to the code is usually even more difficult than in PC software
cases. Usually the program memory is read protected. Often the whole system
is proprietary and supplied as-is by a single manufacturer. Many times the user
has almost no access to any internal information of the underlying device. In
such scenarios the side channel disassembler can be an effective tool for reverse
engineering and other applications. Compared to other reverse engineering tools,
the side channel disassembler features several advantages:

– it is a low-cost method, as it does not require special equipment, except for
a digital sampling oscilloscope which nowadays is available for as little as
1500 $ or can be found in almost every electronics lab.

– it is a non-invasive procedure. Either the power is measured on one of the
power supply pins of the target device or, even easier, only the electromag-
netic emanation is used for reversing the code. In both cases only limited
access to the microprocessor is needed.

– contrary to classical disassembler designs, the side channel disassembler di-
rectly gives information on the program flow, as the executed code rather
than the code in program memory is analyzed.

Especially the last advantage makes the side channel disassembler unique and
hence a useful and innovative addition to other existing reverse engineering meth-
ods. Out of the many possible scenarios for usage, we have extracted three appli-
cation scenarios that highlight the advantages of the side channel disassembler.

Code Recognition. One scenario where the side channel disassembler is useful
is in cases where known code needs to be recognized. The presented methods can
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be used to locate certain code segments, e.g. to detect where an error occurred or
even to detect a firmware version executed on an embedded system. In a similar
application a company might suspect a copyright breach or a potential patent
infringement by a similar product. It can then use the side channel disassembler
to identify such an infringement or breach by showing that an own known code is
executed on the suspicious device, even if the program memory is read-protected.

In general, the disassembler can be operated on a portable device equipped
with an antenna. Ideally, holding an antenna close to the processor might be
sufficient to track the program flow executed on the target device1. The disas-
sembler is then used to locate the relevant code parts.

Code Flow Analysis. A related problem in embedded software analysis is
tracking which parts of a code are executed at a certain time. This case occurs
when the code is known, but the functionality is not, a typical scenario in re-
verse engineering. Using the methodology described in this paper allows mapping
known code to a certain functionality. The user might also just be interested in
learning which parts of the code are used most often, e.g., for evaluating possible
beneficiary targets for performance optimization.

Code Reverse Engineering. The side channel disassembler can be used to
reconstruct unknown executed code. Ideally, if well trained, it can directly recon-
struct the program code, identify functions etc. Furthermore, it might be able to
identify higher language properties, the used compiler (if the code was generated
from a higher language) etc. The latter points can be achieved in combination
with other available code reverse engineering tools.

Reverse engineering can also be very interesting for analyzing embedded crypto
applications. Especially in cases where the applied cipher is unknown, the dis-
assembler is a great tool to reconstruct unknown routines. It can also be used
to align code as a preparatory step for DPA attacks on code with a varying
execution time or the shuffling countermeasure.

It might not always be desirable by the implementer that his code can be re-
verse engineered by a power disassembler. Since the methods of the side channel
disassembler are borrowed from side channel research, we can do the same for the
countermeasures. One should keep in mind that we are not targeting data, hence
masking or shuffling of data will not increase resistance. Instead, the additional
variation of data might be used to get better results through repeated measure-
ments. Hence, countermeasures in hardware show better properties to prevent
side channel disassembly. Hardware countermeasures have been proposed on dif-
ferent design levels and can be found on smart card processors and also on other
secure microcontrollers [12]. All of them are very strong against SPA approaches
such as the side channel disassembler. Keep in mind that the countermeasures
need only be as good as the protection of the program code itself. So if the code
can be easily extracted, simple countermeasures against power analysis suffice.

1 Standaert et al. [21] showed in a setup similar to ours that the EM side channel can
be expected to contain more information than the power side channel.
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6 Conclusion

In this work we have presented a methodology for recovering the instruction flow
of microcontrollers based on side channel information only. We proved the cho-
sen methods by applying them to a PIC microcontroller. We have shown that
subspace based template recognition makes an excellent choice for classifying
power leakage of a processor. The employed recognition methods achieve a high
average instruction recognition rate of up to 70%. To exploit prior general knowl-
edge about microcontroller code we proposed Markov modeling of the processor
to further increase the recognition rate of the template process. Depending on
the chosen algorithm, the recognition rate was increased by up to 17% points.

The recognition performance is strongly influenced by the assumed distri-
bution of data, resulting in a decreased recognition rate of up to 58% for real
programs. Though the recognition rates on real code are leaving space for further
improvements, they are more than an order of magnitude higher than the lower
boundary given by simply guessing the instructions.

Hence, we can positively assure that side channel based code reverse engineer-
ing is more than just a theoretic possibility. Applying the presented methodology
allows for building a side channel disassembler that will be a helpful tool in many
areas of reverse engineering for embedded systems.
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Abstract. We present a unified framework for advanced implementa-
tion attacks that allows for conducting automated side-channel analysis
and fault injection targeting all kinds of embedded cryptographic de-
vices including RFIDs. Our proposed low-cost setup consists of modular
functional units that can be interchanged, depending on the demands
of a concrete attack scenario. We give details of customized modules
for the communication with many types of embedded devices and other
modules that allow to inject various types of faults. An FPGA-based ap-
proach enables very accurate timing and flexible adaption to any exten-
sion module. The corresponding data acquisition system for side-channel
attacks makes precise power and EM analyses possible. Our setup fa-
cilitates the promising combination of active and passive techniques,
which is known to render many established security countermeasures
ineffective. We introduce several methods for the automatic profiling of
cryptographic devices and model their behaviour both with respect to
side-channel analysis and fault injection. To demonstrate the capabilities
of our framework, we perform the first practical full key-recovery on a
cryptographic contactless smartcard employing Triple-DES reported in
the literature and inject multiple faults in a widespread microcontroller.
We thereby disprove the common belief that highly sophisticated and
expensive equipment is required to conduct such attacks. Rather, we il-
lustrate a cost-effective setup that can be tailored to any desired type of
security evaluation or penetration test.

Keywords: Side-channel, fault injection, security evaluation, models,
RFID, mobile and embedded computing.

1 Introduction

There exist solutions for both symmetric and asymmetric cryptography that are
highly secure from the mathematical point of view. It is well-known that, when
these cryptographic mechanisms are realised in practice, unprotected implemen-
tations are vulnerable to passive attacks, i.e., power analysis (Differential Power
Analysis (DPA), Simple Power Analysis (SPA), template attacks), and active
attacks, i.e., fault injection or microprobing. This especially matters in the case
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of embedded devices, such as Radio Frequency Identification Devices (RFIDs),
smartcards, remote controls and mobile computing devices, which potential at-
tackers can obtain in large numbers.

Countermeasures exist for both types of attacks, however, it is not clear how
susceptible the secured devices are to a combination of power analysis with var-
ious fault-injection techniques. Furthermore, many manufacturers do not seem
to care or are not aware of the attacks, hence many unprotected (or badly pro-
tected) cryptographic devices are currently used in security-sensitive applications
in the field.

There is a lack of realistic, practically verified models of the adversary, es-
pecially in the case of fault injections. Each cryptographic device can show a
significantly different behaviour, that is, an RFID device is vulnerable to differ-
ent types of attacks than the microcontroller of a smartcard or an Application
Specific Integrated Circuit (ASIC). Hence it is necessary to investigate the sus-
ceptibility of each new target, e.g., which types of faults can be injected with
which success rate or whether multiple fault injections are realistic. For each de-
vice, an in-depth profiling is necessary, which accordingly has to be automated.
We focus on those attacks that are realistic for an adversary with a limited bud-
get (typical university lab equipment) and that rely on public domain or publicly
available, self-made solutions for the equipment, where possible.

The general structure of our versatile framework enabling active and passive
implementation attacks, as well as their combination, is presented in Sect. 2.
One part of our setup are modules as detailed in Sect. 3 that provide the means
to communicate with any device, including wireless interfaces. Extensions al-
lowing for the injection of various types of faults are covered in Sect. 4, while
Sect. 5 is dedicated to the acquisition of information leakage emanated by the
device under test. In Sect. 6 we exemplify the comprehensive capabilities of our
framework by practically analysing the security of two widespread commercial
products, i.e., a cryptographic contactless smartcard and a microcontroller. We
demonstrate a full key-recovery of the secret key of the Triple-DES hardware
employed in the former RFID device by means of side-channel analysis, and an
automatic profiling with respect to faults of the latter, revealing the parameters
for a subsequent, practically verified injection of multiple faults with a success
rate of almost 100%. We aim to show that penetration tests, tampering with
cryptographic devices and complex side-channel analyses do not require costly
tools and equipment as used in the labs of the industry, but can rather be per-
formed with inexpensive or self-built equipment.

1.1 Classification of Implementation Attacks

Implementation attacks are well documented in the literature [30,28,27], hence
we do not give a detailed compendium of the possible implementation attacks
here, but rather classify the attacks and specify the scope of our framework.
Figure 1 highlights the focus of this article, i.e., DPA, SPA, fault injection and
their combination. We do not cover invasive attacks here which rely on directly
tampering with the silicon wafer, e.g., probing attacks [16] or reverse engineering
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Fig. 1. Classification of implementation attacks

by taking microscopic photos of all layers of a chip [33]. For state-of-the-art
implementations of cryptographic algorithms, these attacks generally demand
for highly sophisticated equipment and require a very strong and well-funded
adversary, while we are considering an ordinary attacker and low-cost equipment.

2 System Overview

The here proposed system is designed on a flexible modular basis such that it can
be adapted to test the security of any cryptographic device. The different func-
tional units are categorised in modules for the communication with the DUT,
modules for side-channel analysis, and modules for fault injection. These mod-
ules may in turn consist of a set of smaller sub-modules that are detailed in the
following subsections, and that allow for arbitrary extensions of the framework
according to the requirements of the evaluator. Note that their tasks may par-
tially overlap, e.g., parallel and serial communication can be carried out directly
from the controlling Personal Computer (PC), from a microcontroller of any sub-
module, or by means of the Field Programmable Gate Array (FPGA) mainly
used for fault injection. Likewise, processing of the data and digital filtering is
not restricted to software inside the PC but can also be realised in hardware on
the FPGA.

Fig. 2. Modules for side-channel analysis of a cryptographic device
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AsaDeviceUnderTest (DUT)we take into account anymicrocontroller, FPGA,
ASIC, or other embedded system including contactless devices and RFIDs. In case
of specialities, e.g., concerning communication viaRadioFrequency (RF), or if spe-
cial faults are desired, it is straightforward to incorporate additional modules to
the ones described in this article. Figure 2 illustrates the structure of the functional
units as detailed in the following.

For carrying out side-channel attacks, generally an adversary must have access
to the plain- or ciphertext that is processed by the DUT, in order to evaluate
measurements or determine whether a fault was successful. This information is
in most cases delivered by the communication modules described in Sect. 3.

For passive side-channel attacks, the behaviour of the DUT with respect to
timing, power consumption, Electro-Magnetic (EM) emanation, etc. has to be
accurately monitored. The corresponding data acquisition module described in
Sect. 5 serves for this purpose, while the recorded data is often post-processed
and evaluated by a controlling PC.

The fault injection module detailed in Sect. 4 takes care of the active aspects
of side-channel analysis. Due to the variety of faults that can be injected to the
DUT, this FPGA-based functional group is designed most versatile, such that it
can be extended to induce literally any type of fault.

3 Communication Modules

Though it is possible to carry out most side-channel attacks using commercially
available equipment, customised hardware for communicating with the DUT is
highly advantageous. Commercial readers often rely on proprietary Integrated
Circuits (ICs) that carry out certain tasks automatically, e.g., a built-in Random
Number Generator (RNG) will generate the nonces for a challenge-response-
protocol, compute the correct parity bits and checksums, data will be encrypted,
encoded, and sent, and this all happens without that an adversary can directly
influence the process. Thus, in the following we present customised readers for
the relevant standards that are tailored to the requirements of implementation
attacks, in order to gain complete control over the communication, i.e., send
arbitrary bits, send repeatedly the same chosen plaintext, intentionally compute
wrong checksums and — most important in the context of side-channel attacks
— have complete control over the timing and generate reliable trigger signals.
Note that it is often sufficient to implement only some part of the protocol, until
the DUT performs the targeted cryptographic operation, e.g., encryption, which
happens often at the beginning of the communication.

For many practical attacks, additionally a device is required that can serve
as a replacement for the original DUT, e.g., an emulated smartcard that can
be fully controlled by the adversary. For each form of communication covered
in this article, we describe such an emulation extension that is compatible with
the corresponding reader. Accordingly, in combination with the self-built reader
devices, communication data can be monitored and unknown protocols can be
automatically reverse-engineered.
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3.1 Communication with RFIDs

A minimum RFID system consists of two main components, namely a reader
generating a sinusoidal magnetic field which supplies the second component of
the system often called tag, transponder or contactless smartcard, with energy
and often a clock. Both components are equipped with a coupling element,
e.g., a coil, that allows for data transfer in both directions. In the literature,
a reader is sometimes named Proximity Coupling Device (PCD), and a contact-
less smartcard called Proximity Integrated Circuit Card (PICC). In the context
of wireless devices, attacks based on measuring the EM field, e.g., a Differential
Electro-Magnetic Analysis (DEMA) [9,23], are obviously most convenient, since
the whole circuitry is packaged, e.g., in plastic cards, and hence neither a contact
interface nor the chip itself is accessible to an attacker in a non-invasive attack
scenario. Previous results [2,15,36] suggest that this approach is suitable for a
wide range of RFID devices.

The following section we detail communication modules for contactless smart-
cards according to the ISO 14443 standard [20], operating at a frequency of
fc = 13.56 MHz, that are widely deployed in various security sensitive appli-
cations such as the electronic passport to store biometric data, RFID-enabled
credit cards, and access control systems. Contactless smartcards have sufficient
energy to perform complex computations and are hence capable of using both
symmetric and asymmetric state-of-the-art cryptography, e.g., an Elliptic Curve
Cryptography (ECC) engine in the electronic passport (ePass) is used to verify
signatures, and 3DES or AES is often used to encrypt the current balance in the
context of contactless payment systems.

A similar module has been developed for communicating with RFIDs op-
erating on 125 kHz (as presented in Sect. 3.1), which are mainly used for car
immobilizers and access control. Compared to contactless smartcards, these de-
vices possess less computational power, thus often simple (and often insecure)
proprietary ciphers are used here, if cryptography is used at all.

Contactless Smartcards. For the communication with contactless smart-
cards, we employ a self-built embedded system [22] consisting of a multi-purpose
reader that is based on a freely programmable Atmel ATMega32 [6] microcon-
troller, an ISO 14443 compliant RF interface and some components for signal
processing. Various types of antennas and amplifiers can be connected, e.g., for
increasing the activation- or eavesdropping range. A second device that coop-
erates with the reader is designed to appear like an authentic tag to an RFID
reader, i.e., can emulate any contactless smartcard, and furthermore can acquire
the information contained in the field. Both devices allow for a comprehensive
control of the communication on the physical layer, i.e., every single bit sent and
received as well as the RF field is completely controlled by the adversary with
an accurate timing of ≈ 75 ns. Communication with a controlling PC takes place
via an USB interface, and reliable trigger signals can be issued at any instant
during the protocol. Further details as well as all schematics and layouts to build
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the here employed devices for contactless smartcards at a cost of less than 40 $
are fully made public in [21].

While for side-channel analysis of RFIDs as practically detailed in Sect. 6.1
mainly the reader functionality is used, it is also possible to practically perform
other attacks, e.g., a simple replay attack or a relay attack in the field [22]. The
software running on the microcontroller has been vastly improved, such that
active relay attacks can be carried out, i.e., the information transmitted can
be modified in real-time. This is amongst others useful to falsify the Unique
Identifier (UID) of an RFID tag, that is usually fixed in the hardware, or to
enforce communication at a lower data rate than the original one.

We have fully implemented the authentication protocols for several contactless
smartcards employing 3DES, AES and proprietary ciphers. The precise timing
control of the RF field has amongst others been advantageous in the context
of spoofing the random number generator built into Mifare Classic cards [34].
By exactly fixing the timing when the RF field is switched on and when the
commands are sent during the authentication, the attacked Mifare card will al-
ways generate the same fixed value instead of random numbers, which extremely
facilitates key-recovery attacks and allows to reveal a full 48 Bit key of a Mifare
Classic card — much more efficiently than all previously reported attacks — in
seconds [24].

125 kHz RFID Tags. The module for communicating with RFID tags oper-
ating in the range of 100 kHz to 150 kHz is designed similar to the ISO 14443
module. Again, it is controlled by an ATMega32 microcontroller, while an At-
mel U2270B IC (price: approx. 1 $), which is capable of all relevant modulation
schemes and a typical data rate of 5 kBaud, takes care of the handling of the
RF communication. Due to the small data rate we opted for a standard RS232C
serial communication with the controlling PC, instead of an USB port. The
schematic is similar to the one given in Application 3 in the datasheet [7].

3.2 Communication with Contact-Based Smartcards

For the side-channel analysis of contact-based smartcards according to ISO 7816
[1] we have built an adaptor with the appropriate dimensions and the specified
contact interface on the one side, which fits into any commercial smartcard reader.
On the other side of the adaptor, a socket for smartcards allows any ISO 7816 card
to be plugged in. The device allows for relay attacks with contact-based smart-
cards, and facilitates implementation attacks on smartcards. The data and power
wires are tapped and rewired, such that the bitstreams can be relayed from and to
a standard reader, e.g., for the analysis of communication protocols. The power
lines allow to connect an external stable power supply (or our module detailed in
Sect. 4.6 for inducing power faults), while a variable resistor is inserted in series
with the ground pin of the smartcard for performing power analyses. Similar to
the tools for contactless cards and RFIDs a smartcard can be emulated, a relay
attack can be conducted or only the pure reader functionality can be used, while
simultaneously faults can be injected or measurements for side-channel analysis
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can be recorded. We have successfully tested the adaptor in combination with our
measurement setup by performing a power-analysis of an 8-Bit smartcard by At-
mel containing an AES implementation in software: The correct 128-Bit key was
revealed in minutes from approx. 100 measurements.

3.3 Arbitrary Parallel/Serial Communication

Embedded systems and cryptographic devices that do not feature an RFID- or
ISO 7816-based interface usually employ a serial or parallel protocol to com-
municate with their environment. In the context of implementation attacks, ex-
ample targets may be FPGAs that are configured with an encrypted bitstream
or cryptographically protected USB dongles. Therefore, we support a variety of
corresponding protocols, either by the controlling PC if the timing is not crucial
(e.g., USB, RS-232, or parallel port) or by means of the fault injection FPGA
platform, if precise timing is required (e.g., Serial Peripheral Interface (SPI) and
general purpose I/O pins). If necessary in future applications, further methods
can easily be added thanks to the modular nature of our setup.

4 Fault Injection Modules

Many different approaches can be utilised to inject faults in ICs. In order to unify
the application of this methods, we propose an FPGA-based control board which
is extended with fault modules that realise the actual physical effect. The FPGA
provides an RS-232 interface to the controlling PC, supervises the injection of
faults with precisely adjustable parameters (e.g., position in time, duration etc.)
and is able to communicate with the DUT if required.

4.1 Modelling Fault Injection

Before detailing the diverse methods to inject faults in ICs, we identify general
properties of faults in order to provide a model that helps to characterise the
requirements for concrete attacks.

Permanence: If a fault injection permanently alters the DUT, for instance,
destroys a hardware part or overwrites the firmware, it is said to be perma-
nent. Otherwise, if the fault only affects the outcome of a limited number of
computations, it is non-permanent or transient.

Precision of Time Position: Subsequent attacks may require the fault to oc-
cur either at a random (indeterminate) position, within some region or at a
precisely determined point in time.

Number of Affected Bits: A fault is called single-bit fault if it alters exactly
one bit, or multi-bit, if it changes≥ 2 bit, e.g., the state of a complete register.

Effect: The induced modification can manifest itself in a bit flip, i.e., logic
values are inverted, a fixed state, i.e., logic values are tied to 0 or 1, or
inconsistent behaviour of the DUT. In the latter case, the fault injection
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causes inconsistencies in the state of a device by affecting a distinct part of its
control logic. A common example of this effect is the skipping of instructions
on a microcontroller, e.g., due to the instruction pointer being incremented
but the current instruction not being executed.

Despite the need for theoretical models, we would like to stress here that in
practice it is often difficult, even in case of a successful fault injection, to ex-
actly determine which part of the device is malfunctioning due to the fault, i.e.,
what exactly happened in the internal circuits of the attacked cryptographic de-
vice when it shows a certain behaviour. This applies particularly for black box
analyses, where an attacker knows nothing about the implementation.

4.2 Types of Physical Faults in Integrated Circuits

There is a variety of ways to trigger faulty behaviour of ICs, differing (amongst
others) in complexity, cost, effectiveness and the possible effects caused by the
fault. In the following, we give a brief survey of methods that have been proposed
in the literature.

Microprobing. One of the most direct yet complicated fault injection methods
is to de-package the silicon die and contact a specific circuit path using micro-
probes. As detailed in [26], the attacker is able to exactly monitor the waveforms
present on the tapped wire, or can actively modify the value, for instance by
short-circuiting it to ground. Due to the immediate access to the DUT, virtu-
ally all types of faults can be injected. Moreover, the method allows for reverse
engineering of the circuit. However, the needed equipment is expensive (in [26],
the authors estimate a cost of 10 000 - 100 000 $) and requires considerable skill
and experience to be handled efficiently. Additionally, the invasive nature of
the attack makes it unusable in scenarios where permanent, obvious physical
modification of the DUT is not desired. For these reasons, we do not consider
microprobing attacks in this article.

Temperature Variation. Since the characteristics of circuit elements vary
with temperature, ICs only work correctly within the temperature range speci-
fied by the vendor. Thus, cooling or heating the DUT and operating it outside
of its maximum specifications can lead to faulty behaviour. High or low tem-
perature especially affects memory cells and can cause random modification of
Static Random Access Memory (SRAM) cells or disable read/write operations
of Non-volatile Memory (NVM), i.e., Electrically Erasable Programmable Read-
Only Memory (EEPROM) or Flash [14]. Generally, exact timing of the fault
is complicated due to the limited thermal conductivity of the IC package and
the die itself. Besides, most of the fault parameters mentioned in Sect. 4.1 are
hard to control with this approach, limiting the possible application scenarios.
In the current version of our setup, temperature variations can only be applied
manually, i.e., using coolant spray or heating devices.
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Optical Effects. By exposing the circuit to white or laser light, electron-hole
pairs are created that can cause current flow at p-n junctions [38,14] of semicon-
ductors, resulting in changes of logic levels in the affected region of the IC, e.g.,
switch a transistor. By applying a mask to focus a small area, optical faults allow
for precise targeting of certain parts of a circuit, down to the single-transistor
level [42], with fine control over the fault effect. Note that inducing optical faults
is a semi-invasive attack, as the plastic packaging of the chip has to be opened
mechanically or by etching, which is straightforward for standard IC packages,
e.g., Dual Inline Package (DIP) or Small-Outline Integrated Circuit (SOIC), but
can become infeasible for an adversary in the case of sophisticated smartcards.

Variation of Power Supply. Temporarily increasing (positive glitch) or re-
ducing (negative glitch) the supply voltage of an IC to a certain level is a well-
established method to inject faults [13,12], particularly with regard to the skip-
ping or misinterpretation of processor instructions. As the power is supplied via
an external pin (for the case of most embedded device) or the surrounding EM
field (for contactless (RFID) devices), the fault injection path is easily acces-
sible, allowing for non-invasive attacks. However, at the same time, this single
entry point can also be disadvantegous from an attacker’s point of view: Coun-
termeasures such as monitoring or filtering the supply voltage before it enters
the core of the circuit are relatively inexpensive, because they only need to be
implemented for one isolated section of the IC.

Electro-Magnetic Pulses. Transients of the EM field cause induction of cur-
rents in conductors and can thereby change logic levels present on an IC. In
contrast to power glitches, the fault injection is not performed over a single
wire. Rather, the fault can affect any part of the DUT, making it harder to pre-
vent and detect than variations of the supply voltage. This approach is especially
suited for RFIDs [17], for which direct access to the power supply would require
an invasive manipulation of the antenna connection.

Variation of an External Clock. For devices with external oscillators, i.e.,
for which manipulations of the clock signal are feasible, slightly modifying the
clock period for one or few (half-)cycles may lead to data corruption [26]. Due
to different delays of distinct circuit paths, values that take longer to propagate
(e.g., because they are transported over the critical path1) may not be handled
correctly in the following clock cycle.

4.3 FPGA-Based Platform for Fault Injection

The use of an FPGA has certain advantages compared to a microcontroller-based
solution, particularly with regard to precise timing of control signals at high
clock frequencies. To minimize the design time, we use the commercial Xilinx
1 The critical path is the register-to-register path with the largest delay and thus limits

the maximum clock frequency.
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Spartan-3 board [44] as a basis. The system clock frequency is set to 100 MHz, so
that the FPGA runs significantly faster than most of the considered embedded
systems, which are usually clocked at between ≈ 32 kHz and 20 MHz [11], thus
enabling the injection of faults at multiple instants during one clock cycle of the
DUT. Note that at higher frequencies, it becomes increasingly difficult to select
and apply the involved analogue (and digital) components appropriately. To
simplify the implementation of complex control logic, our design is built around
a general 8-bit microcontroller softcore (Xilinx PicoBlaze, cf. [45], available as
VHDL source file for Xilinx FPGAs) which is internally connected to several
application-specific modules, as depicted in Fig. 3.

Fig. 3. Internal structure of the control FPGA for fault injection

The PicoBlaze softcore is a Reduced Instruction Set Computing (RISC) mi-
crocontroller programmable using a simple assembler language [43]. It has low
resource requirements (96 slices + 1 block Random Access Memory (RAM) on a
Spartan 3 FPGA) and is well suited for implementing non timing-critical control
and interface logic.

All timing-critical operations that have to respond to external inputs instantly,
and require guaranteed timing behaviour, are moved into the application spe-
cific blocks. The central module in this respect is the timing controller, which is
responsible for starting previously configured faults with precise timing param-
eters. The purpose of the microcontroller is to provide a unified and extensible
interface for the controlling PC to setup the timing controller and the fault injec-
tion modules. Currently, we support fault injection by means of optical methods,
EM pulses, power glitches and variations of the clock signal.
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4.4 Optical Fault Injection

A modified electronic flash of a photo-camera serves as the basis for a low-cost
module for optical fault injections as described, e.g., in [38]. A small Printed
Circuit Board (PCB) that is connected to the flash of the camera could be re-
used for our purposes with only small modifications. It mainly consists of a High
Voltage Generator (HVG) that produces up to 400 V DC out of the 3 V battery
supply of the camera, and a 220 pF capacitor C1 that is charged with electrons
by the HVG. Figure 4 illustrates the principle of the module.

A pin of the PCB (’Ready’) that was used to drive a green Light Emitting
Diode (LED) to indicate when C1 is fully charged, i.e., a flash is ready to be
triggered, is connected to an input pin of an FPGA. The switch S1 that had been
mechanically switched when pressing the button of the camera, more precisely,
when the lens opens to take a picture, was replaced by a transistor and can now
also be controlled by the FPGA. Turning it on instantly discharges C1 into the
flash and thereby releases an optical fault. The FPGA is programmed such that
it busy-waits until the flash is ready, then starts the interaction with the DUT,
and finally triggers an optical fault at the desired instant.

If a coil is connected instead of the flash, it is reported [10] that the resulting
strong magnetic field can inject permanent faults into RFIDs such as electronic
passports, i.e., the device can be forever deactivated.

Fig. 4. Optical fault injection module Fig. 5. Injecting faults with sparks

4.5 Electro-Magnetic Fault Injection with Sparks

It is well-known in electronics that a sudden change in electric current gener-
ates an EM field (cf. Sect. 4.2) – the higher the amplitude and the faster the
alteration, the stronger will the resulting EM field be. Thus, in the following we
describe our module for the injection of faults by generating sparks, as illustrated
in Fig. 5. The idea for this module is borrowed from an ignition system for petrol
engines and allows for triggering a spark by means of an ignition coil, a switch
S1 realised by a high voltage Insulated Gate Bipolar Transistor (IGBT) [41], and
a common spark plug for cars.

The ignition coil consists of two inductances L1 and L2 with different numbers
of turns n1 and n2, that are coupled to form an electric transformer. The voltages
V1 and V2 over the coils L1 and L2 follow the equation V1

V2
= n1

n2
. The turn ratio

is such that n2 � n1, hence any voltage occurring on the side of L1 will be



A Versatile Framework for Implementation Attacks 111

amplified orders of magnitude higher on the side of L2. To ignite an arc, a large
over-voltage pulse is required: 250 V to 300 V on the side of L1, corresponding
to approx. 20 kV on the side of L2, are sufficient to generate a spark [31]. An
STP10NK50Z IGBT employed as the switch S1 withstands high voltages up to
500 V and can be turned on with a gate voltage of approx. 3 V. This allows for
diretly switching the ’Control’ signal and thereby triggering the switch S1 in
Fig. 5 by means of the controlling FPGA.

The generation of a spark consists of two phases, controlled by the time during
which S1 is switched on: During the first phase, the coil needs to be charged for
a minimum amount of time. Then, in the second phase, the spark is released by
opening the switch. While the switch S1 is turned on, a DC current flows through
the coil L1, and hence charges L1 with energy, until S1 opens the connection:
The sudden interruption of the electric current flow through L1 implies that the
magnetic field collapses rapidly, inducing a high voltage on the side of L1, whose
amplitude depends on how much energy has been stored during the charging
phase. The much higher voltage transformed to L2 instantly ignites the desired
spark at the spark plug, while the capacitor C1 limits the voltage overshooting
to protect the switch from getting damaged.

The strength of the induced fault can be steered by varying the amount of time
during which the ignition coil can store energy. During our tests, a charge phase
of 5 ms was sufficient to produce reliable, strong sparks. As a power source we are
using a 12 V car battery, as it supplies very large currents. If a standard power
supply is used, it is recommended to connect a very large capacitor (> 10 000 μF)
in parallel to the power source, to provide a sufficient amount of current. Op-
tionally, a coil could be connected instead of the spark plug to generate a purely
magnetic field.

Note that extra caution has to be taken when conducting this type of fault
injection in order to prevent destruction of the DUT or other nearby equipment2.
Hence for every unknown device tests should be carried out starting with a big
distance between the arc and the DUT. Note that, in the near field the field
strength falls as a function of the distance r to the DUT, i.e., proportional to
1
r3 , hence small changes in r have a strong effect on the outcome of the faults.

4.6 Power Fault Injection

As described in Sect. 4.2, power faults can be both triggered by positive (i.e.,
increase of the supply voltage) and negative (i.e., reduction of the supply voltage)
glitches. For maximum flexibility in this respect and for fine control over the
actual waveform, we have chosen a Digital-Analogue Converter (DAC) based
approach, as depicted in Fig. 6.

The voltage VDAC at the DAC output pin can be controlled via an 8 bit bus,
passing a binary-encoded number DDAC ∈ {0, . . . , 255}. VDAC is then given
2 In most countries it is illegal to use the here described module, because the EM

emanation can cause radio waves that disturb other electronic equipment, and the
device is thus not compatible to FCC rules. It is recommended to perform tests with
EM faults in a shielded environment (aluminum foil is usually sufficient).
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Fig. 6. Principle of the module for generating power faults

as VDAC = DDAC

255 · VDAC, max where VDAC, max denotes the maximum output
voltage. Because the DAC generates a voltage of max. ≈ 1 V and its output
current is limited to 20 mA, an additional output amplifier is required to provide
higher voltages and greater driver strength.

Implementation Details. A PCB has been designed with the structure intro-
duced above. The used DAC is the AD9708 manufactured by Analog Devices [5],
capable of running at max. 125 MSamples/s. The signal from the DAC is ampli-
fied up to a maximum of ≈ 5.5 V, using the AD8058 Operational amplifier (OP)
by Analog Devices [4], providing a theoretical bandwidth of 325 MHz at a gain
of +1 and a slew rate3 of 1000 V/μs.

Fig. 7. Output stage of the power fault module

The OP is applied in a non-inverting configuration with the gain set to ≈ 4.7.
Additionally, a bipolar transistor-based output stage according to [29] has been
implemented, which enables output currents of max. 150 mA at a supply voltage
of 7.5 V. By selecting different transistors, this value could be further improved
if required. The schematic of the output stage is shown in Fig. 7.
3 The slew rate indicates the maximum rate of change of the output voltage.



A Versatile Framework for Implementation Attacks 113

Fig. 8. Full-scale 10 ns negative voltage
glitch at amplifier output, ×10 probe

Fig. 9. Full-scale 10 ns negative voltage
glitch after transistor output stage, ×10

probe

As an example for the output waveform, Fig. 8 and 9 depict a 10 ns full-
scale pulse generated with the proposed power fault module, recorded after the
amplifier and the transistor output stage, respectively. All depicted signals have
been recorded using a probe set to ×10 attenuation to minimize the influence of
the probe capacitance on the rise and fall times.

4.7 Fault Injection with Clock Variations

Clock faults are small, temporary variations of the fraction of time the clock
signal is high in one period which is commonly referred to as the duty cycle. For
maximum flexibility, a module for this type of fault has to provide

– a wide range of output frequencies, especially covering the range of embedded
systems, and

– precise control over the duty cylce of the clock signal.

Our approach makes use of the Digital Clock Manager (DCM) of the Xilinx
FPGA which is able to generate a clock signal with very fine control over its
phase shift. By outputting both an unshifted and a shifted clock and combining
these signals logically with external circuitry, several useful waveforms can be
created. The module provides the signals o1 = clk ∧ clks and o2 = clk ∨ clks for
both shortened and stretched clock cycles. These are illustrated in Fig. 10 and
Fig. 11, in which clk denotes a clock signal, clks this signal shifted by Δt, ∧ a
logical AND and ∨ a logical OR.

Implementation Details. The generation of the shifted clock signals clks is
performed by the FPGA using a combination of a fine phase shift, followed by
clock (down-)scaling and a coarse phase shift. The phase shift function of the
Xilinx DCM is used to shift the clock by 1

256 th of its period. The input to the
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Fig. 10. Clock signal o1 = clk∧clks width
shortened clock cycles

Fig. 11. Clock signal o2 = clk∨clks witch
stretched clock cycles

DCM is the global system clock clksys and the output is termed clksys, s (shifted
by Δfine) and both are running at 100 MHz.

clksys and clksys, s are then passed to a prescaler (and coarse phase shifter),
which toggles the output clock when an internal counter reaches half of the
configured prescaling factor. The coarse phase shift by Δcoarse is accomplished
by pre-loading the internal counter on startup. This way, clks can be shifted in
multiples of the system clock period, i.e., in steps of 10 ns, with respect to clk.
The downscaled clocks clk and clks are routed via the output pins of the FPGA
to the actual fault module PCB. Figure 12 summarises the complete process.

Fig. 12. Clock signal shifting and prescaling on FPGA

On the external board, the logical operations proposed above are performed by
discrete, high speed Complementary Metal Oxide Semiconductor (CMOS) ICs.
According to the datasheets [37], these ICs can be operated at frequencies above
1 GHz, enabling precise adjustment of the signal timing. An example output
signal for o1 (i.e., a slightly shortened clock cycle) is depicted in Fig. 13, with
the prescaler set such that the output clock frequency is 16.67 MHz.
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Fig. 13. Fault on 16.67 MHz clock signal, x10 probe, 20 ns/time division

5 Data Acquisition

A controlling PC and a USB oscilloscope form the basis for the data acquisi-
tion system. The acquired data can be side-channel information (e.g., current,
voltage, EM emanation or timing information), or communication data such as
bitstreams in any format which then later can be evaluated by a PC. The soft-
ware framework follows our modular approach and allows for straightforward
substitution of its parts, e.g., when switching to a new oscilloscope or analysing
a DUT that has different requirements with regard to the data necessary for
mounting an attack.

In the context of combined active and passive attacks, the configuration of
the fault injection device and the recording of the side-channel information can
both be performed by the controlling PC, simplifying the synchronisation of the
respective processes. Additionally, the PC can process the data directly after
recording, so that adaptive attacks are possible, in which, e.g., a challenge is
selected based on the outcome of prior steps, such as a successful fault injection.

6 Practical Attacks

In this section, we present results of attacks on real-world devices. By the exam-
ple of a commercial RFID smartcard, we show the capabilities of out framework
with respect to side-channel analysis. Aside, we describe an active fault injection
on a widespread microcontroller.

6.1 Power-Analysing a 3DES Cryptographic Contactless Smartcard

Before detailing the analysis of an RFID smartcard employing Triple-DES, we
briefly outline the applied techniques used to attack the device and propose
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appropriate leakage models. For the analysis, we use the well-established method
of Correlation Power Analysis (CPA) [8]. As mentioned in Sect. 3.1, for RFIDs
it is the natural choice to mount a non-invasive attack by measuring the EM
emanation, i.e., perform a DEMA.

Modelling the Power Consumption of RFID Devices. For a simple model
of the frequencies where we would expect the EM leakage to occur, consider a
band-limited power consumption p (t) that directly affects the amplitude of the
ω0 = 2π · 13.56 MHz frequency of the reader, i.e., the amplitude of the field
will be slightly smaller in an instant when the chip requires more energy than
in an instant when no energy is consumed. This results in possibly detectable
frequency components in the side bands of the carrier, as depicted in Fig. 14.
Equation 1 describes this model more precisely, where ◦−• denotes the Fourier
transform4.

p (t) cos (ω0t) ◦−•X (jω) =
1
2

(P (jω − jω0) + P (jω + jω0)) (1)

We refer to this approach as Remote Power Analysis according to Oren and
Shamir [35], because the fluctuations in the power consumption of the device
are modulated onto the strong carrier signal of the PCD.

Fig. 14. Frequency spectrum of the carrier signal at ω0 and the assumed information
leakage for remote power analysis

Another model assumes that the internal switching of transistors on gate-level
can be detected by means of near-field probes, such that the bits of a secret key
might be extracted from signals in frequency bands that are independent of the
carrier of the PCD. The signal model in Equation 2 for this case is additive, so
that the best possible suppression of all other components - in particular the
carrier frequency - is desirable. As illustrated in Fig. 15, now P (jω) is assumed
to be band-limited with a center frequency ωs that is independent of the carrier
frequency ω0.

p (t) + cos (ω0t) ◦−•X (jω) = P (jω) +
1
2

(δ (jω − jω0) + δ (jω + jω0)) (2)

4 The Fourier transform is commonly used to transform signals from the time domain
into the frequency domain.
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Fig. 15. Frequency spectrum of the carrier signal at ω0 and the assumed information
leakage for the additive model

Difference-of-Means Test. To determine the quality of the traces acquired
with a particular measurement setup and to find out if and in which instants
the traces contain data-dependent information, a Difference-of-Means (DOM)
test can be conducted as a preparation for the key-recovery. The idea is to
send two (or more) challenges alternately that cause a different electromagnetic
emanation according to the assumed power model, acquire the corresponding
traces t(1) and t(2) of length K, and then form four equally sized sets Si with
|Si| = N the number of traces per set.

Let S1 =
{
t
(1)
0 , . . . , t

(1)
N−1

}
contain the traces of the first challenge and

S2 =
{
t
(2)
0 , . . . , t

(2)
N−1

}
those for the second challenge. The average traces t

(1)

(k) , t
(2) (k) and their DOM timeseries δ(1−2) (k), where 0 ≤ k < K denotes the

current sampling point, are given as:

t
(1) (k) =

1
N

N−1∑
n=0

t(1)n (k)

t
(2) (k) =

1
N

N−1∑
n=0

t(2)n (k)

δ(1−2) (k) = t
(1) (k) − t

(2) (k)

In order to estimate the amount of noise, let two sets S3 and S4 contain uniformly
distributed traces belonging to either challenge, i.e., assign all traces randomly
to the two sets, and define accordingly:

t
(3) (k) =

1
N

N−1∑
n=0

t(3)
n (k)

t
(4) (k) =

1
N

N−1∑
n=0

t(4)
n (k)

δ(3−4) (k) = t
(3) (k) − t

(4) (k)
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The DOM δ(3−4) (k) would ideally vanish, if the measurements contained no
noise. Accordingly, maxima of δ(1−2) correspond to the points in time where a
data-dependent behaviour occurs — the higher the ratio between the amplitude
of the peaks and the noise level, the more information is contained in the mea-
surements, hence for more traces, a higher signal-to-noise ratio is expected. In
contrast, the maxima of δ(3−4), indicating the amount of noise in the traces,
should all have a similar amplitude that becomes smaller with more traces ac-
quired and would become zero for an infinite amount of traces.

Contactless Smartcard Attack. In this section, we turn towards a more com-
plex scenario and analyse a commercially available contactless smartcard. This
time, we are facing a black-box situation, i.e., we do not know anything about the
implementation of the cipher, existent countermeasures etc., so extensive profil-
ing is necessary in preparation for a key-recovery attack. The following results
base on the analysis performed in [23], which we summarise before presenting
our new achievements.

The DUT is an ISO 14443-compliant RFID device (cf. [18,19]), operating at
13.56 MHz. It features a challenge-response authentication protocol which relies
on a 3DES using the two 56 bit halves of kC = k1||k2 as the symmetric key in
Encrypt-Decrypt-Encrypt (EDE) mode. The process of performing the analysis
can be split up into the following steps, which we will cover in this section:

1. Align the traces in time.
2. Profile the device and locate the 3DES encryption.
3. Optimise the position of the EM probe.
4. Perform the EM analysis of the 3DES encryption.

Challenge-Response Authentication Protocol. Using the RFID reader detailed
in Sect. 3.1 we reverse-engineered and implemented the whole authentication
protocol, but focus on the step relevant for our analyses as depicted in Fig. 16,
where 3DESkC (·) = DESk1

(
DES−1

k2
(DESk1 (·))) denotes a 3DES encryption in-

volving the key kC = k1||k2. The values B1 and B2 are encrypted by the PICC
during the mutual authentication. B2 originates from a random number previ-
ously generated by the PICC and is always encrypted by the PICC in order to
check the authenticity of the PCD. The protocol will abort after the encryption
of B2, in case its verification is not successful. B1, a random value chosen by the
PCD that serves for authenticating the PICC to the PCD, is mentioned here for
completeness only and is not required in the context of our analyses.

We observe that the card unconditionally encrypts any value B2 sent to it,
hence we can freely choose the plaintext. For the CPA described in the following,
we will send random, uniformly distributed plaintexts for B2 and attack the first
DES round.

Trace Preprocessing and Alignment. The raw traces recorded between the last
bit of the command sent by the reader and the first bit of the answer of the card
do not expose any distinctive pattern, hence, digital preprocessing is applied in
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PCD PICC

Choose B1, B2 −
B1, B2−−−−−−−−−−−−→ 3DESkC (B2)

Fig. 16. Excerpt of the authentication protocol relevant for a DEMA attack

order to identify interesting patterns useful for a precise alignment of the traces.
On the basis of the remote power model introduced in Sect. 6.1, we assume that
the power consumption of the smartcard modulates the amplitude of the carrier
wave at frequencies much lower than the 13.56 MHz carrier frequency, which is
justified by a preliminary spectral analysis and the well-known fact that the on-
chip components (such as capacitances, resistors, inductances) typically imply a
strong low-pass filter characteristic.

In order to obtain the relevant side-channel information, we record raw (not
demodulated) traces and perform the demodulation digitally on a standard
PC, using a straightforward incoherent demodulation approach (Fig. 17, fol-
lowing [40]). The raw trace is first rectified, then low-pass filtered using an
appropriate digital filter. An additional high-pass filter removes the constant
amplitude offset resulting from the demodulation principle and low-frequency
noise. Good values for the filter cutoff frequencies flowpass and fhighpass were
determined experimentally and are given in this section.

Fig. 17. Block diagram of incoherent digital amplitude demodulator

For precise alignment during the digital processing, we select a short reference
pattern in a demodulated reference trace. This pattern is then located in all sub-
sequent traces by finding the shift that minimises the squared difference between
the reference and the trace to align, i.e., we apply a least-squares approach. In
our experiments we found that the analysed smartcard performs the operations
in an asynchronous manner, i.e., the alignment may be wrong in portions not
belonging to the region the reference pattern is taken from. A re-alignment has
thus to be performed with respect to the part of the trace we aim to examine
by means of CPA.

Probe Positioning. The DOM test turns out to be an appropriate utility for
finding the optimal position of the near-field probe used to capture the EM
emanation. For that purpose, we implement a Live DOM application on the
controlling PC that sends the alternating challenges to the card, records and
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digitally preprocesses the EM trace. After the automatic detection of the align-
ment pattern5, all subsequent traces are aligned accordingly and passed to the
DOM algorithm. The DOM results are displayed instantly and are continously
updated while the probe can be moved. Figure 18 depicts a screenshot of the
utility, where the upper window displays the processed and aligned traces with
the alignment pattern highlighted, while the lower shows the squared DOM of
S1 and S2, i.e.,

(
δ(1−2) (k)

)2
.

Fig. 18. Screenshot of Live DOM test utility

By iteratively adjusting the probe position to maximise the DOM, we discov-
ered that the results are optimal if the probe is placed directly above the IC and
in parallel to the long side of the card, at a vertical angle of ≈ 35 ◦ (with respect
to the card plane), as shown in Fig. 19. It furthermore turned out that placing
the smartcard at a vertical distance of ≈ 5 mm to the antenna considerably
improves the amount of side-channel leakage.

Fig. 19. Optimal positioning of EM probe

Device Profiling. As the plaintext for the targeted 3DES operation is known
and the ciphertext can be computed in a known-key scenario, we are able to
isolate the location of the 3DES encryption by correlating on these values. From
the profiling phase with a known key it turns out that the smartcard uses an
5 The pattern detection is accomplished by finding the first peak whose amplitude

exceeds a fixed threshold.
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8 bit data bus to transfer plain- and ciphertexts. The corresponding values can
be clearly identified from 2000 - 5000 traces using a Hamming weight model.
Figure 20 was compiled from these profiling observations, with the shape of the
3DES operation marked. The first 3DES encryption (labeled 3DES 1) results
from a prior protocol step, the correlation with the correct ciphertext appears
after the execution of the second 3DES (labeled 3DES 2).
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Fig. 20. Overview of operations in amplitude-demodulated trace

3DES Engine. Figure 21 shows the targeted 3DES operation identified during
the profiling phase, filtered with flowpass = 8 MHz and fhighpass = 50 kHz. The
short duration of the encryption suggests that the 3DES is implemented in a
special, separate hardware module, hence we assume a Hamming distance model.
We also considered a Hamming weight model, but did not reach conclusive results
with it.

The three marked peaks seemingly appear at the end of one complete Single-
DES and are thus promising candidates as alignment patterns. We conduct a
CPA on demodulated traces aligned to each of these peaks, where we consider
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Fig. 21. Part of a trace with 3DES encryption, filtered with flowpass = 8MHz,
fhighpass = 50 kHz
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the Hamming distance between the DES registers (L0, R0) and (L1, R1), i.e, the
state before and after the first round of the first Single-DES. When performing a
standard CPA with 1 000 000 traces, correlation peaks with maximum amplitude
occur for the correct subkey candidate of each S-Box, at a position which we
consider as the start point of the first DES. The results are given in Fig. 22.

Fig. 22. Correlation coefficients for CPA after 1 000 000 traces, flowpass = 8MHz,
fhighpass = 50 kHz

We observe that 1. the correlation for the output of some S-Boxes is signif-
icantly stronger than for others (e.g., for S-Box 1 and 3, for which the correct
subkey can already be identified after 150 000 traces), 2. several peaks appear at
different points in time for one S-Box and 3. the point of maximum correlation
varies depending on the S-Box.

As the attack works (albeit after a large number of traces), we suppose that
no masking scheme [30] is used to protect the hardware engine. Rather, we
conjecture that hiding in the time dimension is used, i.e., dummy cycles with
no computation or similar measures, to prevent correct alignment of the traces.
This assumption is justified by the above observation that more than one peak
occurs in the correlation curve and further strengthened by the fact that even
when repeatedly sending the same plaintext B2 to the smartcard, the shape of
the DES operation and the position of the peaks depicted in Fig. 21 vary6.

Note that with our measurement setup, recording one million traces takes
approx. two days, i.e., we achieve a rate of approx. 700 measurements per minute.
Having extensively profiled the DUT, we are able to focus on the relevant region
of the EM trace and thus achieve substantial savings both with regard to disk
space and processing time. Therefore, our attack is still feasible in a practical
scenario, despite the considerable amount of traces.
6 This misalignment also hinders improving the SNR by means of averaging.
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6.2 Fault Injection Attacks

After demonstrating the capabilities of the developed framework with regard to
passive side-channel analysis, we address active fault injection and accordingly
carry out an attack against a widespread 8-bit microcontroller, the PIC16F687
[32]. Note that the main focus in the following is on the demonstration of the
fault injection capabilities, not on the implementation of actual attacks against
cryptographical algorithms.

Single Faults. Consequently, we start with defining a simple test scenario,
attempting to skip one instruction executed by the microcontroller. The micro-
controller executes a simple program to detect that a fault has been success-
fully injected. After the initialization, a status pin PIN_STATUS (connected to an
FPGA input) is constantly set to high in a first infinite loop. In a subsequent
infinite loop, the same pin is pulled low and additionally, another status pin
PIN_STATUS_2 is repeatedly toggled, thereby indicating whether the microcon-
troller is still alive.

Our attack targets the goto instruction at the end of the first loop. Without
external influence, the DUT never exits this loop. The aim of the fault attack is to
jump over this instruction, so that the second loop gets executed. This condition
can be detected by checking for PIN_STATUS = 0, indicating a successful fault
injection. To provide a second indicator that the DUT is definitely executing the
second loop, the toggling of PIN_STATUS_2 can be tested.

We investigate the effect of a negative voltage glitch, as this method has been
reported to be successful for other microcontrollers [25,39]. In our framework,
the following parameters (cf. Fig. 23) can be varied:

– The glitch offset toffset with respect to the trigger rising edge,
– the glitch width twidth, and
– the glitch voltage level Vlow, i.e., the value to which the supply voltage is

temporarily reduced to.

In order to systematically determine the settings that lead to the desired effect,
we implemented an application with a “sweep mode” that consecutively tests all
combinations in a certain range for each of the values. This way, the device is fully

Fig. 23. Parameters characterising a single negative power glitch
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profiled for all possible parameters without human interaction. To demonstrate
the integration of fault injection with the measurement framework and to be able
to analyse the fault effect afterwards, the application also records oscilloscope
traces of the voltage glitch on the supply rail and the state of the status pins.

Results. Using the data gathered by the parameter sweep, three effects can be
identified:

1. Injection not successful, i.e., PIN_STATUS remains set and the first loop is
not left, see Fig. 25.

2. The device is reset, resulting in PIN_STATUS to be set low for a short time
(during the initialization instructions) and then high again when the first
loop is entered, see Fig. 24.

3. The desired fault is injected, i.e., PIN_STATUS stays low permanently, indi-
cating that the microcontroller executes the second loop, see Fig. 26.

Figures 25, 24 and 26 display example oscilloscope traces for each outcome. For
case 3, Fig. 27 additionally shows the toggling waveform on PIN_STATUS_2 in
loop2 after a successful instruction skip fault.

Based on these experiments, we conclude that power glitch attacks to skip
instructions on the PIC16F687 are possible, provided that the voltage is reduced
to a value within a region from 1.65 V to 1.73 V and the fault occurs at the correct

Fig. 24. Waveform of reset after fault in-
jection on PIC16F687

Fig. 25. Waveform of unsuccessful fault
injection on PIC16F687

Fig. 26. Waveform of successful fault
injection on PIC16F687, displaying
PIN_STATUS

Fig. 27. Waveform of successful fault
injection on PIC16F687, displaying
PIN_STATUS_2
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point in time, where a rather large set of timing parameters turned out to work
for the scenario of leaving an endless loop.

Multiple Faults. On the basis of the results of the previous section, the sce-
nario is now extended to multiple fault injection. The test code has been mod-
ified: The first loop remains unchanged, while in the second loop the toggling
of PIN_STATUS_2 has been removed. The third loop catches the successful exit
from loop1 and loop2, indicating this condition by setting PIN_STATUS_3 and
toggling PIN_STATUS_2 as additional criterion for loop3.

Thus, if the first two loops can be skipped using two successive faults, this
condition is detected by checking for PIN_STATUS = 0 and PIN_STATUS_3 = 1,
which can again be accomplished automatically using the FPGA user I/O pins.
For illustration, we recorded the waveform on PIN_STATUS_2, as the toggling
provides visual evidence that the microcontroller is indeed executing loop3. The
two successive negative voltage glitches are now characterised by 6 parameters,
summarised in Fig. 28:

– The first glitch offset toffset, 1 with respect to the trigger rising edge,
– the first glitch width twidth, 1,
– the first glitch voltage level Vlow, 1,
– the second glitch offset toffset, 2 with respect to the end of the first glitch,
– the second glitch width twidth, 2, and
– the second glitch voltage level Vlow, 2.

Fig. 28. Parameters characterising a negative double power glitch

To reduce the overhead for the search through all parameter combinations,
the first glitch is fixed based on a setting that led to a successful fault in the
single fault scenario. Moreover, the low voltage level is set equal for both glitches.

Results. By conducting a parameter sweep with the first pulse fixed, we were
able to skip both loop1 and afterwards loop2, resulting in the waveform in
Fig. 29. Having profiled the device, we could repeat the experiments with iden-
tical parameters and reliably perform the fault injection, thereby achieving a
success rate close to 100 %.
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Fig. 29. Waveform of successful multiple fault injections on a PIC16F687, displaying
PIN_STATUS_2

Implications. Depending on the cryptographic primitive and its actual imple-
mentation (and on the adversary’s knowledge about the implementation), the
injection of power faults as practically demonstrated above can have various
dramatic effects on the security. Some examples are listed below, while the list
could be vastly extended.

– In the case of a block cipher, e.g., AES, that is normally executed for sev-
eral rounds to produce a cryptographically secure output, it is conceivable
to skip the appropriate jump instruction that will execute the next round
of the cipher: Having the plaintext and the output after one round, it is
straightforward to mathematically conclude to the secret key used for the
encryption.

– If a device is protected against power analysis with masking, the injection
of a fault [3], e.g, while the mask is initialised, may allow to circumvent the
countermeasure. If the mask remains set to zeroes it will have no protecting
effect and a subsequent power analysis will become possible by this combi-
nation of active and passive side-channel analysis, which is easily possible
with our proposed setup.

– Since inducing multiple faults is relatively simple, as demonstrated above,
even common countermeasures against fault injection could be circumvented:
Often two computations of, for example, the same exponentiation are carried
out and the results are compared. If they are equal, the device assumes that
no fault has occurred. To spoof the protection mechanism, hence one fault
needs to be induced during the computation, and a second fault during the
comparison.

– An induced fault could also allow for reverse-engineering of a (secret) pro-
gram code that is executed by the microcontroller: Many devices feature a
read-out protection, i.e., if a protection bit is set to one in the internal cir-
cuit of the microcontroller, the program code cannot be read out. A fault
injected at the right moment in time, whilst trying to read out the device,
could make this bit read zero, disabling the code protection mechanism.
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Since all tests can be carried out automatically with varying parameters, and
the success of the fault injection is automatically detected (the feedback via the
data acquisition module even allows to determine, whether a reset of the DUT
needs to be triggered), no human interaction is required. Thus, it is conceivable
to perform a thorough profiling and find the correct points in time for inducing
faults even in a black-box scenario.

7 Conclusion

In this article, we present a versatile framework, allowing for implementation
attacks on virtually all types of cryptographic devices. Our setup provides func-
tions for the automatic profiling and security evaluation of a cryptographic (or
non-cryptographic) device, both with respect to side-channel analysis, i.e., the
evaluation of EM or power measurements, and for fault injection, including the
determination of parameters required to actively attack a black-box device.

The introduced functional units cover amongst others the analysis of (contact-
less) smartcards, RFIDs, microcontrollers, ASICs, FPGAs and mobile computing
devices. After discussing models and possible effects of inducing faults, we de-
scribe our customised self-built hardware modules for generating faults based
on power glitches, clock variations, as well as optical and EM fault injections.
To our knowledge, we propose the first circuit for automatically inducing faults
based on sparks in cryptographic devices published in the literature. The mod-
ules allow for automatically profiling the parameters and the strength of faults
required for a particular device, as a function of the data processed and by using
the data acquisition module as a feedback channel. The data acquisition mod-
ule itself is based on a USB oscilloscope and enables inter alia for side-channel
analysis based on the EM field, current consumption, and timing of the DUT.

We exemplarily demonstrate the effectiveness of the system by profiling a
contactless smartcard and identify the appropriate leakage model. On this ba-
sis, we perform the first reported successful full key-recovery of a commercial
cryptographic RFID employing Triple-DES by means of DEMA. As a second
practical result, we prove the feasibility of multiple successive fault injections on
a widespread PIC microcontroller using power glitches. This has severe impli-
cations with respect to the effectiveness of many countermeasures that often —
due to overrating the efforts required for such an attack — protect only against
one single fault during a computation. As all parts of our framework may oper-
ate independently of each other, powerful combined active and passive attacks
are enabled. These attacks, e.g., circumventing countermeasures against power
analysis by injecting faults, have been theoretically proposed in the literature,
but so far there has been a lack of practical results regarding their feasibility.

We conclude that most implementation attacks, including the injection of
multiple faults, can be conducted with a low-cost, public domain lab setup as
described in this article. The common belief that highly sophisticated and expen-
sive equipment is required is proven to be wrong: State-of-the-art implementation
cryptanalysis can be performed by anyone who has a sufficient know-how about
the attacks.
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Abstract. This paper proposes an efficient watermarking algorithm which em-
beds watermark data adaptively in the audio signal. The algorithm embeds the 
watermark in the host audio signal in such a way that the degree of embedding 
(DOE) is adaptive in nature and is chosen in a justified manner according to the 
localized content of the audio. The watermark embedding regions are selec-
tively chosen in the high energy regions of the audio signal which make the 
embedding process robust to synchronization attacks. Synchronization codes 
are added along with the watermark in the wavelet domain and hence the  
embedded data can be subjected to self synchronization and the synchronization 
code can be used as a check to combat false alarm that results from data modifi-
cation due to watermark embedding. The watermark is embedded by quantiza-
tion of the singular value decompositions in the wavelet domain which makes 
the process perceptually transparent. The experimental results suggest that the 
proposed algorithm maintains a good perceptual quality of the audio signal and 
maintains good robustness against signal processing attacks. Comparative 
analysis indicates that the proposed algorithm of adaptive DOE has superior 
performance in comparison to existing uniform DOE.  

Keywords: Watermarking, Digital right management, Singular value decompo-
sition, Robustness, Audio Signals. 

1   Introduction 

Illegal reproduction and unauthorized distribution of digital audio has become a high 
alarming problem in protecting the copyright of digital media [1]. Digital watermark-
ing is one of the possible solutions for copyright protection and digital right manage-
ment. A watermark is designed for residing permanently in the original audio data 
even after repeated reproduction and distribution. Since human auditory system 
(HAS) is more sensitive than human visual system (HVS) embedding watermark to 
the audio signal is more difficult than embedding in an image.  According to IFPI 
(International Federation of the phonographic Industry) [2], a good audio watermark-
ing algorithm should meet requirements of imperceptibility, robustness and security. 
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Imperceptibility means that embedded watermark should be imperceptible to human 
auditory system (HAS). The watermark should be robust so that it can survive inten-
tional and unintentional signal processing attacks. The watermarking algorithm 
should be secure which means that the watermark can only be detected by the author-
ized person. These requirements are often contradictory with each other and there is a 
need to make a trade-off among them. There are some well known watermarking 
algorithms in time domain [3], [4] and in frequency domain [5], [6]. Some algorithms 
are proposed using quantization methods and cepstrum domain [7], [8]. It has been 
seen in the methods that synchronization attacks cause a severe problem in detection 
and recovery of watermark. In such an attack the watermark is actually present in the 
audio signal but cannot be detected because the synchronization is lost. Synchroniza-
tion attacks such as cropping and TSM (time-scale modification) cause dislocation 
between embedding and detection in the time domain and hence although the water-
mark is present in the audio signal it is difficult to recover it. Some methods proposed 
to solve the problem of synchronization attacks are exhaustive search [9], peak point 
extraction with special shaping [10], content based localized watermarking [11], high 
energy reference points based watermarking [12] and self synchronization for audio 
watermarking [13]. In [21] a sound synthesized process in digital instruments is pro-
posed as a real-time watermarking method.  Both musical performance and the inser-
tion of watermark can be actualized in real time. A method to enhance the security of 
vocal communication over an open network is proposed in [22]. The method divides 
speech data using the secret sharing scheme and transfers the shared data using the 
multipath routing technique to realize secure voice communication over the network. 
To solve the problems associated with de-synchronization attacks, an audio water-
marking scheme is proposed in [23] based on support-vector-machine (SVM) theory 
by using audio statistics characteristics and a synchronization code technique. In [24] 
a Multiplicative Patchwork Method (MPM) for audio watermarking is presented. The 
watermark signal is embedded by selecting two subsets of the host signal features and 
modifying one subset multiplicatively regarding the watermark data, whereas another 
subset is left unchanged. In [25], the issue of audio source separation from a single 
channel is addressed, i.e., the estimation of several source signals from a single obser-
vation of their mixture. The presented results open up new perspectives in both under-
determined source separation and audio watermarking domains 

The synchronization codes are used to locate the positions where the watermark is 
embedded in the audio. In time domain the embedding strength is limited to maintain 
perceptual transparency and hence not robust to signal processing attacks. If synchro-
nization codes are embedded in frequency domain the robustness increases to a great 
extent, but in doing so the computational cost for searching the codes also increases. 
High energy points used as reference for watermark embedding regions are also used 
in watermarking [12].  These peak points after special shaping [10] serve as reference 
points for embedding and detection of the watermark. The performance of these peak 
point extraction methods is found to be moderate and there is a requirement for en-
hancing the performance of such methods.  

This paper embeds a synchronization code in the audio signal with reference to the 
high energy peaks. In doing so the accuracy in detecting the watermark increases in 
comparison to normal high energy reference point method. This synchronization code 
is useful to combat false alarm which is generated by the modification of audio data 
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on watermark embedding. Since the synchronization code is embedded only in se-
lected high energy regions, the computation load in searching such codes decreases to 
a great extent. Hence in the proposed method the synchronization is maintained with 
higher accuracy and at lower computational cost in comparison to other existing 
methods.  

Singular value decomposition (SVD) based watermarking methods [14], [15] have 
been proposed for image watermarking, but not enough research has been reported for 
SVD based audio watermarking. In this paper an adaptive SVD based audio water-
marking method is proposed which is localized according to the content of the audio 
signal. The basis of the SVD based image watermarking method is that the singular 
values of the image remains unaltered even if some alterations are made in the image. 
Accordingly the inverse of this property where the singular values are modified with-
out changing the perceptual property of the signal is used in watermarking the signals. 

The paper is organized as follows; Section 2 gives an overview of singular value 
decomposition (SVD). The watermark generation from an image and enhancing its 
security are discussed in Section 3. The method for finding watermark embedding 
region and determining the degree of embedding for each region are described in 
Section 4. The synchronization code generation and its implementation are explained 
in Section 5. The Section 6 comprehensively describes the watermark embedding and 
detection in the SVD domain in the audio signals. Various parameters used to meas-
ure the performance of the proposed method have been discussed in Section 7. The 
experimental results are given in Section 8 and the last section concludes the paper. 

2   Singular Value Decomposition 

Singular value decomposition (SVD) is used to diagonalize matrices. It packs most of 
the signal energy into a few singular values.  The SVD belongs to the group of or-
thogonal transformations, which decompose the input matrix into several matrices and 
one of which has only nonzero values in the main diagonal. SVD has been a success-
ful method for image watermarking and in this paper it is proposed to use the SVD 
based method for watermarking of audio signals. An arbitrary matrix A of size M×N 
can be represented by its SVD as:  

A = USVT 

where U and V are M×M and N×N matrices respectively. The columns of U and V are 
mutually orthogonal unit vectors. The M × N matrix S is a pseudo-diagonal matrix 
and its diagonal elements, which are arranged by descending gradation, are all   non-
negative values. They are called SVs and the first value is far larger than others. 
While both U and V are not unique, the singular values are fully determined by A.  

To apply the SVD in an audio signal each audio frames (coefficients in time do-
main or any other domain like DWT, DCT, FFT domain etc.) is converted into two 
dimensional matrix. Once the SVD operation is done, the matrix S which has diagonal 
elements in the descending order can be modified or quantized as per the watermark 
bit to be embedded. To explain the method let us consider the original audio frame as 
A and W is the watermark bits to be embedded.  
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A = USVT 

      SW = Modified / Quantized value of S 
AW = USwVT 

 

where SW is the modified singular values and AW is the watermarked audio frame 
whose SVs are modified.  

3   Watermark Generation 

An image is used as the watermark. To ensure the security and to improve the robust-
ness of the proposed method, the watermark should be pre-processed before embed-
ded into the host signal. Due to the periodicity of the Arnold transform, the image can 
be recovered easily after permutation. So, the Arnold transform is applied to the 
original binary image watermark [16]. To use Arnold transform we make M=N. If the 
size of the image is N×N, (x, y)T   is the coordinate of the watermark image’s pixel, 
(x’, y’)T is the coordinate after the transform. Arnold transform can be expressed as:  
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The steps in converting the image into a watermark for audio signals are given below: 
 

1. Compute a global threshold that can be used to convert an intensity image to 
a binary image. The threshold has to be normalized intensity value that lies 
in the range [0, 1]. 

2. Using the above threshold convert the image into a BW image. 
3. Resize the image into M X N   as per the design requirement of the Water-

marking model.  
4. The resized image is scrambled by applying the Arnold transform.  
5. Convert the scrambled  image I into a vector W as: 

    

 for i =1:M 
        for j = 1:N 
  W (k) = I (i , j) 
  k = k + 1; 
         end 
 end 
 

6. Rescale the vector W as α X W  where α is the strength of the watermark.  
 

The choice of α depends on the design requirements of the watermarking method. 
Proper values of α can optimize imperceptibility and robustness of the watermarking 
method. Lower values of α makes the watermark imperceptible while higher values of 
α makes the watermark robust against signal processing attacks. 

4   Selection of Watermark Embedding Regions 

Finding the watermark embedding region is one of the most challenging steps in au-
dio watermarking. If the embedding regions are not properly selected, the detection 
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and recovery of the watermark under signal processing attacks can be very difficult. 
This paper proposes a method of selecting such regions on the original audio wave-
form which is based on selecting high energy peaks as reference points. 

Prominent instruments like drum, tabla (an Indian instrument), piano etc. form a 
sequence of high energy peaks. These peaks are so dominant that the other sounds are 
normally masked at that instant. Also considering the pre-masking and post masking 
of these peaks, the region around these peaks can be modified without affecting the 
quality of the audio for human auditory system. These peaks are normally 0.1 to 0.2 
second in length, so under the sampling rate of 44100 KHz they spread over 4410 to 
8820 samples. These sharp transients are less prone to synchronization attack. Thus 
these regions are ideal for watermark embedding.  It is shown in [11] that after TSM 
(time scale modification) attack although the absolute time-domain positions of those 
local regions with high energy have some change after time scaling, these shapes do 
not change  much. Fig. 1 shows an original signal and time scaled signal of a sample 
audio. It can be seen from the figure that although the positions of the high energy 
peak has changed but the surrounding localized region does not change much. Thus, 
by embedding the watermark in these areas, it is reasonable to believe that the water-
mark be safe under TSM attacks to some extent. 

This proposed method chooses the high-energy peaks and these peaks act as refer-
ence points for region of watermark embedding. For selecting high-energy peaks a 
threshold is chosen above which all such peaks are considered as reference points. 
This threshold is taken as a fraction of the maximum value of the sample in the time 
domain signal. The number of regions for watermark embedding (ROE) depends on 
the selected threshold. So the threshold for deciding the number of regions for em-
bedding of watermark data has to be properly chosen as per the characteristics and 
size of the watermark data. 

 

 

Fig. 1. Waveform of Original and -5 % TSM Audio Signal sample 

It has been shown in [17] that in synchronization attacks like time scale modifica-
tions (TSM) are performed on the harmonic components and the residual components 
separately. The harmonic portion is changed in time scale by modulating each  
harmonic component to DC, interpolating and decimating the DC signal and then 
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demodulating each component back to its original frequency. The residual portion, 
which can be further separated into high energy transients and noise in the wavelet 
transform domain. In doing so the edges and the relative distances between the edges 
are preserved and the noise component is time scaled. In contemporary music, there is 
use of percussion instruments like drum, tabla etc. The beats of these instruments are 
the high energy music edges which can be used as reference points. Also since these 
high energy edges maintain the rhythm of the music, cropping degrades the quality of 
the music to an annoying extent. Hence we can conclude that the time scale modifica-
tion method changes the audio signal in the low energy regions (minimum transients) 
and tends to conserve the high energy transients. Hence it is clearly apparent that if 
the watermark is embedded in audio segments near the high energy peaks, the effect 
of synchronization attacks is minimum. On the other hand, if the watermark is em-
bedded in the minimum transient regions synchronization attacks severely effect the 
detection and recovery of the watermark from the audio signal. 

Based on the above discussion the watermark embedding regions are chosen in 
high energy transients. The amount of watermark information to be embedded in 
these regions is kept adaptive. It is intended to embed more information in the more 
sharp music edges and less information in less sharp music edges which makes the 
embedding process adaptive in nature. The reason for this adaptive embedding proc-
ess is that more sharp edges are more resistant to synchronization attacks and hence 
more watermark information can be embedded in such regions. The number of wa-
termark bits to be embedded in a high energy region is decided by some local charac-
teristics of that particular region. 

 

            
 
The number of watermark bits to be embedded in the ROE is called as degree of 

embedding (DOE) and depend on the sharpness of the music edge at that region. 
More watermark data is embedded in more sharp regions whereas less watermark data 
is embedded in less sharp regions. So the degree of embedding of watermark is made 
localized according to the sharpness of the music edge which acts as the reference 
point for the embedding region. In doing so the watermark can embedded in a justi-
fied manner and the watermark becomes robust to synchronization attacks. The point i 
(high energy peak) is excluded from ROE so that it is not modified in the process of 
watermark embedding and creates a possibility of not detecting it in the watermark 

Algorithm 1 
 

C is vector containing reference points and F is a zero vector 
equal to the size of C. n is the degree of embedding. 

 K = zeros [length(C), n] 
F[i] = C[i]/max(C) 

              F[i] mapped to degree of embedding 
for i = 1: length(C) 
           K [F (i) X n] [i] = F[i] 
 

  for i = 1: length(c) (there is one non-zero entry in every column) 

 if K (i, j) > 0 then  
 j is the number of watermark bits to be embedded  for  the 
ROEWM(i) corresponding to  ith element of vector C. 



 An Adaptive Robust Watermarking Algorithm for Audio Signals Using SVD 137 

 

detection process. This point i is used as a reference and not for embedding of water-
mark. A generic method of selecting DOE for the reference points is given in Algo-
rithm 1. For example if ten levels of adaptive DOE are used then using Algorithm 1 
DOE can be selected from a set of pre-decided ranges as shown in Table 1.  

Table 1. Degree of Embedding for the Set of Reference Points using Algorithm 1 for Ten Level 
DOE  

    Range of Reference point (i) Degree of 
Embedding (j) 

1 [max(X(i)] > i  ≥ 0.95* [max(X(i)] 10 
2 0.95* [max(X(i)] > i ≥ 0.90* [max(X(i)] 9 
3 0.90* [max(X(i)] > i ≥ 0.85 *[max(X(i)] 8 
4 0.85* [max(X(i)] > i ≥ 0.80 *[max(X(i)] 7 
5 0.80* [max(X(i)] > i ≥ 0.75 *[max(X(i)] 6 
6 0.75* [max(X(i)] > i ≥ 0.70 *[max(X(i)] 5 
7 0.70* [max(X(i)] > i ≥ 0.65 *[max(X(i)] 4 
8 0.65* [max(X(i)] > i ≥ 0.60 *[max(X(i)] 3 
9 0.60* [max(X(i)] > i ≥ 0.55 *[max(X(i)] 2 
10 0.55* [max(X(i)] > i ≥ 0.50 *[max(X(i)] 1 

 
Once the reference points are determined and the DOE is selected the region of wa-

termarking ROE has to be determined for the reference point. Further the ROE has to 
be divided for embedding the watermark data and a synchronization code (syncode) 
as ROEWM and ROESYNC. The synchronization code is used as a tool against false 
alarm due to data modification as a result of watermark embedding. The details of this 
synchronization code are explained in the next Section. The block diagram of the 
watermark embedding method is shown in Fig. 2.  

Steps in selection of reference points and determination of ROE for watermark 
embedding are given in Algorithm 2. 

 
 

       Algorithm 2 
 

1. Let X be the Audio Signal. 
2. Find the max value of the samples X (i)

max  
in X. 

3. Find all the peaks above [(1-nα) (X (i)
max 

] where α is a fraction. Store 

these values in a vector D. 
4. A new vector C is created as  

  for n =1: |D|  
  if D(i+1) – D(i) > |A|+|WM| 
   then C(i) = D(i);  

where A = length (Audio signal) /length (watermark +p X syncode) 
 where p is the length of the block used for quantization to embed one bit 

              of the  syncode.  
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Fig. 2. Watermark Embedding  

Algorithm 2 (Contd.)  
 

5. Select DOE for each ROE corresponding to each element of Vector C 
using Algorithm 1. 

6.  z=0 
  for i = 1:length(C) 
  if K(i,j)>0 
                z = z + j; 
  C is the required set of reference points 
  else  
  n=n+1 
    go to step 3 

     The region of watermark and synchronization code embedding (ROE) is 
         given as: 

                 ROEi = [C (i) - |A| /2 – p X length (syncode): C (i) + |A| /2]  
       (Excluding the point i) 

 The embedding region ROEi is sub divided into two parts as region of  
embedding  sync code ROESYNC and region of embedding watermark 
ROEWM as: 

ROESYNC (i) =  ROEi (1:length (pX syncode)) 
 ROEWM (i)   = ROEi (length p X (syncode) +1: length (Ri)) 
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5   SYNC Code Generation and Embedding 

Under the de-synchronization attacks like cropping and time scale modifications the 
watermarked audio is prone to suffer dislocations of the watermark embedded re-
gions. The synchronization codes embedded into the original audio serves as a 
method to locate correctly the watermarked embedded regions after the signal has 
suffered de-synchronization attacks.  

The embedding of watermark data in the audio signal causes slight modifications 
in the audio signal. Although the changes are made in a strategic way so that they are 
imperceptible to human auditory system (HAS) but there may be other problems that 
may arise as a result of these modifications. In this proposed method the reference 
points and the degree of embedding are based on the magnitude of the high energy 
points considered above a certain threshold. It may happen that as a result of water-
mark embedding, a certain point which was below the threshold goes above it and a 
false alarm is generated. The reverse of this problem i.e. a point above threshold go-
ing below is not applicable in this method as the reference point is excluded from the 
ROE. To counter this kind of false alarm the synchronization code is embedded in the 
ROE which serves as a check for finding an authentic ROE in the detection and  
recovery process. It can be noted that this self-synchronization check for authentic 
detection of ROE involves less computational load in comparison to existing conven-
tional synchronization check methods. In this proposed method synchronization code 
is searched only in specific regions and not in all parts of the audio file. Hence the 
computation load is reduced to a great extent which is a good feature of the proposed 
method of watermarking. Use of such localized synchronization codes eliminates 
false alarm generated due to data modification on watermark embedding. 

In the proposed method PN sequences based on chaotic maps have been used as a 
synchronization code. If {ai} is an original synchronization code and {bi} is an un-
known sequence both having the same length. If the number of different bits between 
{ai} and {bi}, when compared bit-by-bit, is less than or equal to a predefined threshold 
τ, the {bi} is determined as the synchronization code.  

In order to generate the synchronization code chaotic maps are used. Chaotic sys-
tems are deterministic systems that are governed by non-linear dynamics. These sys-
tems show deterministic behavior which is very sensitive to initial conditions, in a way 
that the results are uncorrelated and seem to be random in nature. To increase the secu-
rity of the sync code, a random chaotic sequence generated by the hybrid chaotic dy-
namical system is used [18]. The synchronization code (sync code) is generated by 
thresholding the chaotic map. The initial point of the chaotic sequence generator is a 
secret key. By using generators of a strongly chaotic nature we can ensure that the 
system is cryptographically secure, i.e., the sequence generation mechanism cannot be 
inversely engineered even if an attacker can manage to obtain a part of the sequence. 
For example a chaotic dynamic is given below: 

 

    1 – 2 x2 ,    -1   ≤  x  < -0.5 
Chaotic (x) =  1 – ½ (-2x) 1.2,    -0.5  ≤ x  < 0 
   1 – 2x,    0  ≤  x  < 0.5 
             - (2x -1) 0.7,       0.5 <  x  ≤ 1                             (1) 
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The above chaotic map (1) can produce almost uncountable random sequences that 
are extremely sensitive to the initial secret key. Steps in generating the chaos based 
watermark are as follows: 

 

    Step 1: Generate a chaotic sequence S with an initial key (within the given limit) 
using any of the chaotic equation given in (1) of length M. (M depends on  
the design choice) 

    Step 2: Use zero as threshold for the chaotic sequence S. All elements greater than 
zero are made equal to 1 otherwise –1. 

    Step 3:  Repeat the Step 1 and Step 2 for different values of initial keys to generate 
different sequences that can be used in different audio samples. 

After the Synchronization points C(i) and the embedding segments R(i) are deter-
mined, the sync code is embedded in the audio signal. The embedding segment should 
be large enough to have room for the sync code and some watermark bits. In the pro-
posed method we choose quantization index modulation (QIM) for embedding the 
sync code because of its good robust nature. Also by using QIM method the search 
for sync is blind in nature, which means the original audio is not needed in sync code 
extraction.  

The quantization parameter is made adaptive in nature by using the mean of each 
ROESYNC segment in the QIM process. The quantization parameter is made localized 
depending on the nature of the signal. The steps used for embedding the sync code in 
the audio signal is given in Algorithm 3.  

 
 
Algorithm 3 
 

1. Divide the coefficients of 3rd level DWT using Haar filter of ROESYNC(i) into p 
sub-segments where p is the length of the syncode. 

 

2. The mean value of the coefficients of pth sub-segment of ith reference point is 
calculated as:       ROESYNC (i) (p) =  ∑ ROESYNC (i) (p) / length(pth sub-
segment)  where ∑ is the summation of all the DWT coefficients in the pth sub-
segment of the   ith  ROEWM. 

 
3.  Embed each bit of the synchronization code in each sub-segment p as   
            if syncode(p) = 1                  ______________  
           ROESYNC ′ (i) (p) = ROESYNC (i)(p) + 2 * ROESYNC (i)(p)  
            else                                              _______________ 
            ROESYNC ' (i)(p) = ROESYNC (i)(p) - 2 * ROESYNC (i)(p)  

             where ROESYNC(i)(p) and ROESYNC'(i)(p) are the original and modified  
                pth   sub-segment of the ith ROESYNC  respectively.  

 

4.  Take IDWT of the ROESYNC'(i)(p) to convert back to the time domain 



 An Adaptive Robust Watermarking Algorithm for Audio Signals Using SVD 141 

 

6   Watermark Embedding and Detection 

Once the watermark embedding regions and the degree of embedding for every region 
are decided, the watermarking is done in a content based adaptive manner in the dis-
crete wavelet domain (DWT). The choice of DWT for watermarking has several ad-
vantages such as it needs lower computation load in comparison to DCT and DFT and 
it has variable decomposition level. 

6.1   Watermark Embedding  

The high energy reference points are determined as discussed in Section 4. The indi-
ces of these points is stored in the vector C and the region of embedding for the ith 

point is determined as discussed in Section 4 and is given by:  
 

ROE (i) = [C (i) - |A| /2 – p X length (syncode) : C (i) + |A| /2 –1]                (2) 
 

DWT is performed on this ROE segment. The syncode is embedded successively into 
the low frequency sub-band of segments. The length of this ROE segment depends on 
the amount of data that is to be embedded. It should be large enough to accommodate 
the synchronization code and some watermark bits. The number of watermark bits to 
be added in a ROE segment is decided by the degree of embedding of that segment as 
was discussed in Algorithm 1 which makes the watermark embedding adaptive in 
nature according to the content of the audio.  

As discussed in Algorithm 1 for the matrix K, there is one non-zero element in 
every row corresponding to one high energy reference point. This non-zero element 
will indicates the degree of embedding. For mathematical simplicity this is restricted 
to a limited number of quantization levels and the value of this non-zero entry indi-
cated the number of watermark bits to be embedded in that ROE. However a more 
complicated relation can be customized as per contents and nature of the host audio.  

If K is and i X j matrix, where i indicate the number of reference points and j indi-
cates the degree of embedding. We need to search all the non-zero elements (every 
row has one) in K and then decide the degree of embedding. The watermarking tech-
nique used here is quantization index modulation (QIM) [19], [20] because of its 
robustness to signal processing attacks and since it is blind in nature (original signal 
not required for watermark extraction). The watermark embedding steps are given in 
Algorithm 4.  

 

 
Algorithm 4 

Step 1:    Determine the region of embedding ROE(i) using Equation 4.2.  

Step 2:    Obtain region of embedding the watermark ROEWM as discussed in                
                Section 4.4 is given as:  

           ROEWM(i) = ROE(i) (length (syncode) +1: length (R(i))  
 

Step 3:    Apply third level DWT to the audio segment using Haar wavelet. 
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Algorithm 4 (Contd.) 
 
Step 4:  Find the non-zero element in each row of matrix K. The index of this non                
              zero element is the degree of embedding (DOE). So for all the i rows of  the 
              matrix K,  there is one DOE(i).  

 
Step 5: Divide the low frequency approximate wavelet components of each 
             ROEWM(i)   segment into j  equal sub-segments where j is the degree of 
             embedding DOE(i)  for that corresponding ROEWM(i) 

 
Step 6: Convert the sub-segments into blocks ROEWM(i)(j) of size m X m                 
             (blocks are converted into matrix to apply SVD, Zero padding may be                  
             done to achieve m X m size). 

 
Step   7:  Calculate SVD for each ROEWM(i)(j) as  ROEWM(i)(j) = USVT 

              Let Sij 
  = (S11 S22 ………..Smm) be the non zero diagonal elements of the    

                  matrix   S for the jth sub- segment of the ith reference point.  
 

Step 8:  Embed the watermark using QIM. The embedding is done as follows:  
  for i = 1: length(wm) 
   if K[i][j] >0   

         Sij ’ =     |_Sij / μ_| . μ + 3μ /4      if wm (i) =1  
                             |_Sij / μ_| . μ +  μ /4       if wm (i) =0 
   i =i +1; 
  end for 
          

where |_  _| indicates the floor function and Sij and Sij
’ are the SVD of 

DWT coefficients of the low frequency sub-segment of the original and  
watermarked audio  data respectively. By increasing the value of μ one in-
creases the robustness but decreases imperceptibility. This value of μ has  
to be maximized in such a way that the watermark maintains perceptual 
transparency. 

                                                                            ______________  
Step 9: Obtain the watermarked sub-segment ROEWM(i)(j) by applying inverse 
               SVD to the modified singular values. 

 

Step10: Convert the modified audio segment from all the modified sub- 
               segments. The inverse DWT is performed to get the watermarked signal.  

6.2   Watermark Extraction 

The watermark extraction is the reverse process of the watermark embedding process. 
The first step in this process is to identify the embedding regions (ROE). Once the 
embedding regions are identified then the watermark detection and recovery can be 
performed. The synchronization points are to be determined first and then ROE is to 
be estimated. As discussed in the Section 5 there is a synchronization code that is 
embedded in the ROE. This synchronization code can now be a check in determining 
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the ROE for all the high energy reference points. The steps for detection and recovery 
of the watermark are given in Algorithm 5. 

 
Algorithm 5 

 
Step 1:  Determine vector C containing the index (i elements) of all the high                            
energy reference points as discussed in Section 4.4 using the same value of threshold 
that is used in the embedding process. 

 
Step 2:  Determine the ROESYNC(i) for all reference points i, as discussed in                
Section 4. Divide the ROESYNC(i) into p sub-segments as discussed in the embedding 
process, where p is the length of the SYNCODE.  

 

Step 3:  Calculate the mean value of each sub-segment ROESYNC(i)(j). If the                 
mean value is greater than or equal to zero, a bit “1” is detected otherwise bit “0” is 
detected. 

 

Step 4:  Use the normalized correlation (NC) to find the similarity between the                 
extracted syncode and the original syncode as follows: 

 

 
 

where sync and sync* are the original and extracted syncode, respectively and M is 
the length of the sub-segment. If the NC between sync and sync* is greater than or 
equal to a pre-defined threshold σ then sync* is accepted as a synchronization code 
and then go to Step 7. Otherwise go to Step 5 and Step 6 in an alternate repetitive 
way, i.e. go to step 5 and in next turn go to step 6 and repeat this till it goes to Step 7.  

 

Step 5: Shift the ROESYNC by 1 sample to the left, i.e. ROESYNCL(i) =ROESYNC 
(i- 1) and repeat Step2 to Step 4.   

 

Step 6: Shift the ROESYNC by 1 sample to the right, i.e ROESYNCR(i) =  
ROESYNC(i+1)and repeat Step 2 to Step 4.  

 

Step 7: Once a NC above the pre-determined value is determined it indicates the             
identification of a ROESYNC(i). The updated value of i is used to determine the 
ROE(i).  From this updated value of i, calculate the degree of embedding j.  

 

Step 8:  Calculate the ROEWM(i) from the ROE(i) calculated in step 7. Take DWT of 
this segment. This DWT segment ROEWM(i) is divided into j equal sub- segments. 
The sub-segments are converted into blocks ROEWM(i)(j)  of size  m X m (blocks are  
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Algorithm 5 (Contd.) 
 
converted into matrix to apply SVD, Zero padding may be done to achieve m X m 
size). 

 
Step 9:  Calculate SVD for each ROEWM(i)(j) as  

                 ROEWM(i)(j) = USVT 
Let Sij 

  = (S11 S22 ………..Smm) be the non zero diagonal elements of the matrix S for 
the jth sub-segment of the ith reference point.  

 

Step 10: Extract the watermark wm’ as follows: 
  wm’ (k) = 1   if Sij* − |_ Sij* / S_| · S ≥ S/2  
  wm’ (k) = 0   if Sij* − |_ Sij* / S_| · S < S/2 
k = 1: length(wm). The extracted watermark is de-scrambled using inverse Arnold  
transform to obtain the original watermark image.  

 

It is clear from the above that for extracting the watermark we need to search bit by 
bit the synchronization code for every reference points. After the synchronization 
codes are found the embedding regions of the watermark ROEWM is determined. In 
case no synchronization codes are found the search window is shifted and searched 
again alternately in both directions till the code is found. It can be seen that the origi-
nal SVD coefficients are not required in the extraction process and thus the algorithm 
is blind in nature.  

7   Performance Evaluation Parameters 

The performance of the proposed method of audio watermarking is evaluated by some 
performance coefficients as discussed below:  
a. Signal to noise ratio (SNR) 

The SNR is the objective quality measure to evaluate the  perceptual transparency 
of the watermarked signal. It can be defined as:  

SNR = 10 log
10
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where X and X′ are the original and watermarked audio signals and M is the 
length of the audio signal. 

 
b. Normalized Correlation (NC) 
       It is used to evaluate the similarity measurement of extracted binary watermark, 
       which can be defined as: 
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     where W and W* are original and extracted watermark respectively, i is the index    
     of the watermark and M is the length of the watermark. 
 
c.  Bit Error Rate (BER) 

The bit error rate (BER) is used to find the percentage of error bits between      
     original watermark and extracted watermark. The BER is given by: 

BER = 1
M
ffffffffX

i = 1

1 ≤ i ≤M

W i
` aLW

@

i
` a

 

      where W and  W
@

  are the original and the extracted watermark respectively, L  is 
      exclusive OR (XOR) operator and M is the length of the watermark.  
 
c. Subjective Listening Test  

To evaluate the audio quality, subjective listening tests can be performed to find 
the mean opinion score (MOS). These MOS is one of the most widely used sub-
jective methods for watermarked audio signal quality evaluation. Ten listeners of 
different age groups are provided with the original and the watermarked audio 
signal and they are asked to classify the difference in terms the MOS grades. The 
MOS grades are defined in Table 2. 

Table 2. MOS Grades 

Effect of Watermark 
 

Quality of Audio Score 

Imperceptible Excellent  0 
Perceptible but not annoying Good -1 
Slightly annoying Fair -2 
Annoying Poor -3 
Very Annoying Very Poor -4 

8   Experimental Results 

Experiments have been performed with different types of audio files. As discussed in 
Section 4 the degree of embedding is dependent on the localized audio characteristics 
which make a justified method of embedding data in the audio. In case of non-
adaptive data embedding more number of ROE may be required which can be 
achieved by decreasing the threshold (which is a fraction of the maximum value of 
the audio signal, as shown in Table 1). In doing so, data will be embedded in less 
sharp music edges which is more prone to synchronization attacks. In addition to that 
for embedding watermark data in the less sharp music edges, the threshold for deter-
mining ROE has to be decreased. This in turn may cause false alarm due to data 
modification on watermark embedding. 

It is found that on watermark embedding the audio signal undergoes modification 
and the SNR for the watermarked signal is shown in Table 3. Although there is  
a modification in the audio signal, but it remains imperceptible to human auditory 
system because the masking effects. The length of the SYNC code used in the  
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experiments is 64 and the size of the watermark image is 32*32 =1024. Since the 
audio samples are sampled at 44100 KHz and the high energy peaks are 0.1 sec 
length, these peaks spreads over 4410 samples. (Some peaks like that of drum last for 
0.2 sec and hence spreads over 8820 samples). So it is clearly seen that these high 
energy peaks and the pre and post-masking associated with them provides enough 
room for embedding watermark in these regions that remain imperceptible to human 
auditory system. 

Table 3. The SNR of the Watermarked Audio Signal and the Mean Opinion Score (MOS) from 
Subjective Listening Test 

No.   Watermarked 
Audio  

Sample 

 
SNR 
(dB) 

 
MOS 

No. Watermarked 
Audio  

Sample 

 
SNR 
(dB) 

 
MOS  

1 Classical 1 36.1 0 14 Piano 31.1 0 
2 Classical2 33.2 0 15 Flute 26.2 0 
3 Classical 3 34.2 0 16 Guitar1 32.1 -1 
4 Country 1 36.1 0 17 Guitar 2 33.4 0 
5 Country 2 39.0 0 18 Vocal1  27.1 -1 
6 Country 3 32.1 0 19 Vocal2 23.1 -2 
7 Pop1 33.0 0 20 Vocal3 28.3 -1 
8 Pop2 32.9 0 21 Sitar 1 28.9 0 
9 Pop 3 32.7 -1 22 Sitar 2 23.1 0 

10 Blues 31.3 0 23 Violin 1 28.1 0 
11 Folk 1 36.1 0 24 Violin2 26.1 0 
12 Folk 2 29.5 0 25 Tabla 38.1 0 
13 Folk 3 23.3 0     

 

 

Fig. 3. Original and Watermarked Audio Signals 



 An Adaptive Robust Watermarking Algorithm for Audio Signals Using SVD 147 

 

The scores MOS of the subjective listening tests are presented in Table 3. It can be 
en from Table 3 that the watermark embedded in the audio signal is imperceptible to 
human auditory system and also the SNR computed for watermarked signals is above 
20dB which is considered good according to IFPI (International Federation of the 
phonographic Industry) 

In order to test the robustness of the proposed method, different types of signal 
processing attacks are performed on the watermarked audio signal as described below:  

a) Filtering: Low pass filtering with a cut off frequency of 8 KHz. The filter 
used is a second order Butterworth filter.  

b) Resampling: The watermarked signal originally was sampled at 44.1 KHz, re 
sampled at 22 KHz and restored by sampling again at 44.1KHz. 

c) AWGN: White Gaussian noise is added to the signal so that the resulting sig-
nal has a SNR more than 20 dB. 

d) Time scale modification: TSM processing is done in the watermarked audio 
signal to change the time scale to an extent of +10% and -10%. 

e) MP3 Compression: The MPEG -1 layer 3 compression with 32 kbps is ap-
plied.  

f) Cropping: Segments of 500 samples are removed randomly from the water-
marked signal. 

In the watermark recovery process the first step is the detection of correct regions of 
embedding. To evaluate the performance of the method a parameter called ratio of 
correctly detected regions (ROCDR) is defined. It is the ratio of the number of correct 
embedded regions detected to the total embedding regions detected. It gives an indica-
tion of the false alarm that is generated in the detection process.  
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Fig. 4. (a) Positive FAR under different values of TSM foe audio sample Classical 1 with and 
without Syncode  
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Fig. 4. (b) Positive FAR under different values of TSM foe audio sample Tabla with and with-
out Syncode  

The ROCDR for the proposed method for various samples under different signal 
processing attacks are shown in Table 4. To make a comparison with existing meth-
ods comparative results are also shown in Table 4 which reveals that the proposed 
method is better in comparison to the other two methods. The integration of the syn-
chronization code makes the proposed scheme perform better since the positive false 
alarm is countered by it. Negative FAR condition does not apply since the peak refer-
ence point has not been used for data embedding. Fig. 4(a) and Fig. 4(b) shows the 
positive false alarm rate with and without the sync code under different degrees of 
TSM. It can be seen that the positive FAR is reduced specially under high degree of 
time scale modification attacks. A comparison of robustness tests against signal proc-
essing attacks for the proposed adaptive method (variable DOE) with non-adaptive 
method (uniform DOE) is given in Table 5. It can be seen clearly that performance of 
the proposed adaptive method is better than the non-adaptive uniform method. An 
image used as a watermark as discussed in Section 2 is shown in Fig. 5.  

 

Fig. 5. Binary image watermark 

The recovered watermark image under different signal processing attacks is pre-
sented in Fig 6. For comparison purpose, along with the performance of the proposed 
method the performance of the non-adaptive method is also presented. It can be seen 
the watermark recovered under serious synchronization attacks is of decent quality. 
The proposed method has good performance against low pass filtering, addition of 
white Gaussian noise, MP3 compression, cropping, re-sampling and time scale modi-
fication up to ± 5%.  



 An Adaptive Robust Watermarking Algorithm for Audio Signals Using SVD 149 

 

Table 4. RCDR of Audio Samples under Audio Signal Processing 

Attack Audio Sample ROCDR 
  Scheme  [10] Scheme [12] Proposed Scheme 

Classical 1 91% 88% 91% 
Piano 92% 86% 94% 
Multiple Instruments 91% 88% 94% 
Pop 1 94% 91% 95% 
Vocal1 92% 91% 94% 

Cropping 

Tabla 88% 85% 89% 
Classical 1 83% 80% 91.1% 
Piano 94% 88% 97.2% 
Multiple Instruments 75% 70% 93.1% 
Pop 1 73% 71% 89% 
Vocal1 91% 82% 97% 

Re 
sampling 

Tabla 93% 91% 99% 
Classical 1 77% 72% 87% 
Piano 73% 55% 81% 
Multiple Instruments 88% 79% 86% 
Pop 1 69% 71% 79% 
Vocal1 71% 67% 86% 

AWGN 

Tabla 92% 87% 97% 
Classical 1 64% 56% 79% 
Piano 85% 67% 88% 
Multiple Instruments 70% 66% 85% 
Pop 1 76% 71% 87% 
Vocal1 85% 70% 92% 

Low pass 
filtering 

Tabla 84% 80% 88% 
Classical 1 70% 45% 71% 
Piano 56% 53% 77% 
Multiple Instruments 68% 56% 71% 
Pop 1 78% 69% 81% 
Vocal1 61% 56% 69% 

MP3 
compressi
on

Tabla 79% 71% 89% 
Classical 1 81% 91%% 97% 
Piano 60% 56% 61% 
Multiple Instruments 66% 59% 62% 
Pop 1 70% 66% 72% 
Vocal1 61% 57% 64% 

TSM  
-1% 

Tabla 82% 81% 97% 
Classical 1 81% 83% 88% 
Piano 62% 51% 67% 
Multiple Instruments 39% 50% 59% 
Pop 1 47% 57% 64% 
Vocal1 28% 49% 57% 

TSM  
-2% 

Tabla 79% 78% 91% 
Classical 1 82% 91%% 93% 
Piano 42% 51% 57% 
Multiple Instruments 39% 50% 59% 
Pop 1 47% 57% 64% 
Vocal1 28% 49% 57% 

TSM 
+1% 

Tabla 81% 86% 97% 
Classical 1 79% 78% 91% 
Piano 42% 51% 57% 
Multiple Instruments 39% 50% 59% 
Pop 1 47% 57% 64% 
Vocal1 28% 49% 57% 

TSM 
+2% 

Tabla 41% 51% 51% 
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Table 5. Comparison of performance of the proposed adaptive method against signal process-
ing attacks to non-adaptive method  

Non-adaptive method (Uniform DOE)

+5% TSM -5% TSM Low pass 
filtering 

MP3 
compression Audio 

Sample 

No. of 
ROE used 
for water-
marking

Threshold 
value 

required BER NC BER NC BER NC BER NC

Tabla 4096 0.65 49% 0.52 48% 0.52 14% 0.91 17% 0.89 
Classical 1 4096 0.58 46% 0.53 47% 0.52 15% 0.90 21% 0.86 
Classical 2 4096 0.53 42% 0.57 36% 0.63 21% 0.77 25% 0.73 
Instruments 4096 0.49 24% 0.82 24% 0.83 11% 0.93 19% 0.88 
Country 1  4096 0.51 27% 0.80 29% 0.78 12% 0.92 21% 0.86 
Country 2 4096 0.57 31% 0.68 34% 0.66 19% 0.88 25% 0.79 

Pop 1 4096 0.56 32% 0.68 34% 0.66 18% 0.88 27% 0.80 
Pop 2 4096 0.58 31% 0.66 33% 0.68 20% 0.82 26% 0.81 
Blues 4096 0.54 22% 0.89 31% 0.72 13% 0.9 22% 0.75 
Folk1 4096 0.49 43% 0.57 36% 0.63 21% 0.78 24% 0.73 
Folk2 4096 0.51 31% 0.65 34% 0.67 19% 0.88 28% 0.81 
Piano 4096 0.56 26% 0.76 29% 0.69 18% 0.88 27% 0.80 
Flute 4096 0.44 28% 0.71 31% 0.67 21% 0.80 26% 0.72 
Guitar1 4096 0.53 31% 0.67 34% 0.67 20% 0.81 22% 0.80 
Guitar2 4096 0.57 30% 0.66 34% 0.66 19% 0.80 22% 0.78 
Vocal 1 4096 0.48 23% 0.82 24% 0.77 12% 0.93 20% 0.81 
Vocal 2 4096 0.43 22% 0.79 28% 0.73 26% 0.73 22% 0.79 
Sitar 1 4096 0.57 21% 0.80 26% 0.71 22% 0.81 19% 0.82 
Sitar 2 4096 0.56 31% 0.67 34% 0.67 19% 0.81 22% 0.78 
Violin 1  4096 0.42 36% 0.62 33% 0.67 24% 0.73 26% 0.73 

Proposed adaptive method (DOE based on localized property) 

Tabla 887 0.78 41% 0.61 40% 0.62 8% 0.97 11% 0.93 
Classical 1 1022 0.69 41% 0.58 40% 0.59 6% 0.96 12% 0.92 
Classical 2 1019 0.68 33% 0.66 22% 0.75 9% 0.96 15% 0.90 
Instruments 918 0.72 16% 0.90 15% 0.90 8% 0.97 11% 0.93 
Country 1  987 0.77 15% 0.90 16% 0.90 7% 0.96 10% 0.94 
Country 2 991 0.71 20% 0.79 19% 0.79 14% 0.89 14% 0.81 

Pop 1 894 0.76 13% 0.91 14% 0.91 11% 0.94 15% 0.90 
Pop 2 892 0.79 12% 0.90 12% 0.93 15% 0.92 16% 0.91 
Blues 966 0.76 11% 0.92 23% 0.81 9% 0.93 15% 0.86 
Folk1 1012 0.69 23% 0.68 22% 0.74 9% 0.96 14% 0.91 
Folk2 899 0.78 13% 0.90 17% 0.91 12% 0.91 17% 0.88 
Piano 981 0.73 17% 0.84 21% 0.80 11% 0.88 16% 0.86 
Flute 1028 0.68 18% 81% 20% 0.81 0.12 0.88 18% 0.83 
Guitar1 881 0.77 13% 0.92 14% 0.95 11% 0.93 11% 0.91 
Guitar2 902 0.74 17% 0.84 13% 0.93 14% 0.95 13% 0.88 
Vocal 1 919 0.71 15% 0.87 15% 0.92 8% 0.93 11% 0.90 
Vocal 2 1031 0.61 19% 0.81 22% 0.77 19% 0.81 15% 0.86 
Sitar 1 921 0.77 16% 0.82 19% 0.79 12% 0.89 12% 0.89 
Sitar 2 913 0.73 16% 0.83 13% 0.94 14% 0.96 13% 0.87 
Violin 1  1011 0.61 22% 0.77 25% 0.74 17% 0.82 17% 0.84  
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Fig. 6. Recovery of Binary Watermark under Signal Processing Attacks  
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9   Conclusion 

An audio watermarking method presented in this paper is robust to seriously challeng-
ing synchronization attacks. High energy regions in the audio are selected for water-
mark embedding regions since these peaks tend to mask the neighboring audio data. 
A synchronization code is used for countering the positive false alarm generated due 
to data modification as a result of watermark embedding. Since synchronization code 
is embedded in localized regions,  searching for these codes during watermark detec-
tion is computationally cheap. The watermark data is embedded in an adaptive man-
ner in the audio signal. Since sharp transients are more resistant to synchronization 
attacks more data is embedded in these regions while less watermark data is embed-
ded in less sharp transients. The watermarking is done in the SVD domain which 
makes the process perceptually transparent. The subjective listening tests have con-
firmed that the watermarking process is imperceptible to the human auditory system. 
The results obtained from robustness tests against signal processing attacks conclude 
that the proposed method is quite robust to attacks. Comparative results of the pro-
posed adaptive watermarking method against uniform watermarking method reveals 
that the proposed method has comparatively better performance. However more opti-
mized calculations for deciding DOE for reference points are required in which some 
other characteristics of the audio also needs to be taken care of.  
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Abstract. Security is not merely about technical solutions and patching vulner-
abilities. Security is about trade-offs and adhering to realistic security needs, em-
ployed to support core business processes. Also, modern systems are subject to
a highly competitive market, often demanding rapid development cycles, short
life-time, short time-to-market, and small budgets. Security evaluation standards,
such as ISO 14508 Common Criteria and ISO/IEC 27002, are not adequate for
evaluating the security of many modern systems for resource limitations, time-to-
market, and other constraints. Towards this end, we propose an alternative time
and cost effective approach for evaluating the security level of a security solution,
system or part thereof. Our approach relies on collecting information from dif-
ferent sources, who are trusted to varying degrees, and on using a trust measure
to aggregate available information when deriving security level. Our approach
is quantitative and implemented as a Bayesian Belief Network (BBN) topology,
allowing us to reason over uncertain information and seemingly aggregating dis-
parate information. We illustrate our approach by deriving the security level of
two alternative Denial of Service (DoS) solutions. Our approach can also be used
in the context of security solution trade-off analysis.

Keywords: security evaluation, trust, bayesian belief networks, common criteria.

1 Introduction

Often times there is a need to build a security solution that has a rapid development
cycle, short time-to-market, and a short life-time. It is important to predict the security
of such a system before it can be deployed, due to a number of constraints put on the
system including cost, schedule and security. One approach for evaluating the security
level of security solutions is by using standards, such as ISO 14508 Common Criteria
for Information Technology Security Evaluation [1]).

However, predicting the security level using the Common Criteria has many draw-
backs. First, the result of a Common Criteria evaluation is not given as a statement of
the security level of a system, but rather as the level of assurance that the evaluator has
in whether the set of security features present in the system in combination provide ad-
equate security. This is hard for decision makers to relate to. Second, Common Criteria
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evaluations are time and resource demanding and may not always be worth in terms
of effort and cost. In Norway, for example, where one of the authors work, a security
evaluation according to Common Criteria for EAL 4/4+ has an estimated cost of 1.5
million NOK (about 250,000 USD). It also takes 2-3 working days to arrive at a trust-
worthy estimate about the security of even a small system. Third, the documentation
and tests required by Common Criteria may not be suitable for a particular system or
deployment environment.

The above mentioned difficulties in adopting a security evaluation standards like
Common Criteria for predicting security level of a system, motivates us to develop an
alternative approach. We propose an approach for evaluating the security level of a
system using information collected from a number of different sources, including sub-
jective judgments as those of evaluators and similar. A source can be an active agent or a
domain expert. We need to consider the trustworthiness of the sources before aggregat-
ing the information provided by each of them. We propose a model of trust to formally
capture the concept of trustworthiness of information sources. Trust, in our model, is
a relationship between a truster and a trustee with respect to some given context. For
instance, a truster A may trust a trustee B in the context of understanding network pro-
tocols but may not trust B in the context of understanding database security. Here, the
entity trying to obtain information from the sources is the truster, the information source
is the trustee, and the problem for which the information is requested is the trust con-
text, also called security evaluation case. The trustworthiness of an information source
depends on two factors, namely, its knowledge level and expertise level. Knowledge
level captures the level of knowledge possessed by the information source with respect
to the security evaluation case; the trust context. Expertise level captures the experience
and qualifications of the information source.

We show how to evaluate these two factors and quantify the trustworthiness of
sources and from that derive a security level prediction. The approach is implemented
as a Bayesian Belief Network (BBN) topology, which allows us to reason over uncer-
tain information and to aggregate disparate information in a step-wise and seamless
manner. Our approach is semi-automatic in the sense that it does require some human
intervention; however, it significantly eases the burden of deciding on appropriate secu-
rity solutions in a structured and well-informed manner. We demonstrate our approach
by showing how to evaluate five information sources and aggregate the information pro-
vided by these when evaluating the security level of two alternative Denial of Service
(DoS) solutions. We chose this particular example because it relates closely to the type
of security solutions that we are targeting with our approach.

The rest of the paper is organized as follows. Section 2 summarizes the related work
to place our work into context. Section 3 discusses information sources of relevance for
security evaluations. Section 4 presents the approach for deriving the security level of a
given security solution, part of a system or a system. It shows how to evaluate the factors
on which trust depends, provides a model for calculating trustworthiness, and describes
how this can be used for aggregating the information obtained from various sources.
Section 5 gives the details of the Bayesian Belief Network (BBN) implementation, and
Section 6 illustrates our approach by showing an example of security level evaluation
of two alternative DoS security solutions. In section 7 we discuss some of the issues
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related to using this approach for predicting security levels that the user needs to be
aware of. Finally, Section 8 concludes the paper with pointers to future directions.

2 Related Work

The trust-based security level evaluation approach builds on techniques from three dis-
tinctive domains: security evaluation, expert judgment aggregation, and trust.

The literature on trust can be broadly classified into three distinct areas - (i) trust
models, (ii) trust management and negotiation, and (iii) application of trust concepts.
Here, trust models are of most relevance.

Jøsang [2,3] propose a model for trust based on a general model for expressing rela-
tively uncertain beliefs about the truth of statements. Cohen et al. [4] describe an alter-
native, more differentiated concept of trust called Argument-based Probabilistic Trust
model (APT). Yahalom et al. [5,6] outline a formal model for deriving new trust rela-
tionships from existing ones. Beth et al. [7] extend the ideas presented by Yahalom et al.
to include relative trust. Xiong and Liu [8] present a coherent adaptive trust model for
quantifying and comparing the trustworthiness of peers based on a transaction-based
feedback system. Other works include logic-based formalisms of trust [9,10,11,12] that
allow one to reason about trust relationships. While each of these models have their
individual strengths and applicability, none of them discuss which parameters should
be considered in evaluating the trustworthiness of users or systems.

Bacharach and Gambetta, on the other hand, [13] define trust as a particular belief,
which arises in games with a certain payoff structure. The authors observe that in most
games, the truster sees or observes a trustee before making any decision and, therefore,
can use these observations as evidence for the trustee’s having, or lacking, trustworthy-
making qualities. Purser [14] presents a simple, graphical approach to model trust. In
particular, the author emphasizes the relationship between trust and risk and argues that
for every trust relationship, there exists a risk associated with a breach of the trust ex-
tended. Ray and Chakraborty [15] and Ray et al. [16] were among the first to describe
the factors on which trust depends. They show how to quantify these factors, and from
that how to obtain a quantitative value for trust. In addition, there is the work by Sun
and Yang [17] on theoretical analysis and evaluation of trust models. Our approach
borrow from these works. It builds on the trust decision making aspects discussed in
Bacharach and Gambetta, the granulated trust evaluation model of Ray et al. [16] and
the perspective of direct and indirect trust relationships discussed by Sun and Yang. In
particular, our approach enables the granulated evaluation of the trustworthy-making
qualities of a trustee based on observations, and also tangible aspects related to trustee
knowledge and experience (such as education and number of years of professional ex-
perience and expertise domains). Different from most other work, our approach focuses
on the evaluation of experts as information sources in the context of expert judgment
aggregation.

In the domain of security evaluation there are mainly three categories of techniques
- (i) operational and quantitative measurement of security, (ii) security management
standards, and (iii) security evaluation and certification approaches, such as ISO 15408
the Common Criteria.
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Littlewood et al. [18] was one of the earliest works on measuring operational security.
The authors argue for the importance of extending the capabilities of current security
evaluation approaches to include techniques for quantitative measure of the perceived
level of security, as well as evaluating the operational security level. Subsequently, Or-
talo et al. [19] proposed a quantitative model for evaluating Unix security vulnerabilities
using a privilege graph. Madan et al. [20] discuss how to quantify security attributes of
software systems using traditional reliability theory for modeling random processes,
such as stochastic modeling and Markov analysis. Jonsson and Olovsson [21] look at
the problem in a more practical way by analyzing attacker behavior through controlled
experiments. Houmb et al. [22] and Houmb [23] build on these works emphasizing
the importance of quantitative measures of security and the role of security trade-off
analysis. The goal is to assist decision makers in choosing among alternative security
solutions, based on security, cost, resources, time-to-market and other trade-off parame-
ters, and to reduce time, cost and effort in security evaluations. The current work draws
upon Houmb’s earlier works [22,23].

Security management standards aid in the overall management of security in an or-
ganization. The most important standards in this area are the ISO/IEC 27002:2005 In-
formation technology – Code of Practice for information security management [24],
ISO/IEC TR 13335:2004 Information technology – Guidelines for management of
IT Security [25], and AS/NZS ISO 31000:2009, Risk management - Principles and
guidelines [26]. ISO/IEC 27002 provides recommendations for information security
management and supports those that are responsible for initiating, implementing or main-
taining security in their organization. ISO/IEC 13335 provides guidance on management
aspects of IT security. This standard’s main objectives are: to define and describe the
concepts associated with the management of IT security, to identify the relationships
between the management of IT security and management of IT in general, to present
several models which can be used to explain IT security, and to provide general guid-
ance on the management of IT security. AS/NZS ISO 31000:2009 is a widely recognized
and used standard within the field of risk assessment and management. It is a general
risk management standard that have been tailored for security critical systems in the
CORAS framework. The standard includes a risk management process, a detailed ac-
tivity description, a separate guideline companion standards, and general management
advices.

Security evaluation standards includes TCSEC [27], ITSEC [28] and ISO 14508
Common Criteria [1]. TCSEC is the oldest known standard for evaluation and certifi-
cation of information security in IT products. The standard was developed by the De-
partment of Defense (DoD) in the US in the 1980ies. The standard evaluates systems
according to six predefined classes: C1, C2, B1, B2, B3 and A1. These classes are hier-
archically arranged, meaning that A1 is the strongest and C1 is the weakest. Each class
contains both functional and assurance requirements. The functional requirements are
divided into authentication, role based access control, obligatory access control, log-
ging and reuse of objects. TCSEC is also known as the Orange Book and was tailored
for military IT systems.

The International Organization for Standardization (ISO) harmonized TCSEC, IT-
SEC and other security evaluation/assurance standards and published the first version
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of ISO 14508, also know as the Common Criteria, in 1999. The idea behind the Com-
mon Criteria was to develop a world wide approach for evaluating security properties
of IT products and systems. The standard incorporates experience from TCSEC, ITSEC
and other related standards, and provides a common set of requirements for the secu-
rity functions of IT products and systems. Among other things, the standard provides
a common evaluation methodology such that results from independent evaluations can
be compared and thereby aid decision makers in choosing between security solutions.
Certification is done according to the seven predefined classes: EAL1, EAL2, EAL3,
EAL4, EAL5, EAL6 and EAL7.

A common problem for most security evaluations, however, is the large amount of
information involved. The result of such evaluations is also subject to bias as the eval-
uation is done by one or a few evaluators. Although evaluators must be certified to
perform evaluations according to the Common Criteria, evaluations still include many
tasks that only rely on subjective assessment (someone saying something about some-
thing as it cannot be directly observed). It is these problems that our trust-based security
level evaluation approach is designed to aid. Rather than relying on single information
sources, our approach combine multiple sources and aggregates information provided
by these sources based on the trustworthiness of the source. However, this does not
mean that the biases are completely removed. The level of bias has been reduced signif-
icantly. Also, these biases are not directly related to the information provided but to the
ways in which we derive the knowledge and experience level of an information source.

Managing security is, in general, difficult and there is a lack of industry standard
security metrics. The reason for this is that there is very little empirical data available
for estimating the risks facing a system. Thus, one must often rely solely on the opinions
of domain experts and risk analysts. This is particularly problematic for risk estimation
(estimating the likelihood and impact of a potential threat). The trust-based information
aggregation part of our approach (part 1 of the approach) can aid in the process of risk
estimation by aggregating whatever information that is available. The same is the case
for quantifying operational security level, where our approach evaluates the security
level directly by the notion of trust rather than through stochastic modeling techniques.
Stochastic modeling techniques, such as Markov models, are effective, but rather time
consuming to create and suffer from the problem of state explosion. Our approach avoid
this problem as it does not model the problem itself but rather the information available
to assess the problem.

3 Information Sources for Security Level Evaluation

Evaluating the security of a system involves information, whether it is given as an ex-
pert judgment from a formally certified Common Criteria evaluator or from a log-file
of some kind. Information always comes from a source and it is the trustworthiness of
these sources that we evaluate in our approach, not the information itself. This is be-
cause an information source can be assessed in terms of observable properties, while
this is rather difficult with information. These properties can also be used to calibrate
various types of information and enables us to aggregate over all available information
of relevance.
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Definition 1. An information source is an active or a passive entity which has ob-
tained, either directly or indirectly, relevant information for evaluating the security level
of a system.

Active entities have the ability to observe events, interpret the observations, and gen-
erate additional information from these observations. A domain expert is considered
an active entity. Software and agents operating using rule sets as well as all types of
intelligent software are additional examples of active entities. Passive entities merely
record or receive information but do not interpret or manipulate the information them-
selves. An example of a passive entity is a log file. Note that neither active nor passive
entities can, by default, be completely trusted. For instance, domain experts can have
their individual biases or can be influenced, software agents may contain Trojan horses,
and configuration of a log file may be set up to disregard important information. We
call active entities indirectly observable sources and passive entities directly observ-
able sources.

Definition 2. An indirectly observable source is an information source that has inter-
preted an observed phenomenon or event of relevance to the particular security evalu-
ation case (including recommendations), and provides the information as its subjective
opinion (judgment).

Indirectly observable sources may be biased. When it comes to the use of indirectly ob-
servable information sources for evaluating the security level, two types are commonly
used: subjective expert judgment and third-party interpreted information (recommen-
dation). In subjective expert judgment, the experts have gained knowledge and experi-
ence of relevance to the security evaluation case that they use when providing informa-
tion. Third party interpreted information refers to an expert interpreting events observed
by another source, such as another expert or a directly observable source. This means
that the expert interprets the information given by other sources before providing the
information.

Definition 3. A directly observable source is an information source that either has
gathered empirical information or that has directly observed a phenomena or events
relevant for the particular security evaluation case.

Directly observable sources have not been biased by subjective influence. This means
that the sources have gained knowledge and experience by observing actual events
themselves. Commonly used directly observable information sources are real-time in-
formation sources, such as Intrusion Detection Systems (IDS), log-files from firewalls,
Internet gateways (routers), honeypots, and scanners for virus, vulnerability, and
spy-ware.

4 Model and Computational Engine for Evaluating Security Level

Our approach to security level evaluation comprises two main phases: (i) evaluate the
trustworthiness of the information sources to determine their trust level scores, and (ii)
derive the security level by combining the result of (i) with the information provided.
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The first phase deals with assessing the trustworthiness of an information source. The
trustworthiness of a source depends on two parameters: knowledge level and expertise
level of an information source. Knowledge level of an information source is defined as
a measure of awareness of the information source about the knowledge domains of rel-
evance to the particular security evaluation case. It is represented in terms of a number
called knowledge score. Expertise level of an information source is defined as a measure
of degree of ability of the information source to assess the security level of a security
solution. It is represented in terms of a number called expertise score. Trustworthiness
of an information source is defined as a measure of the competence of the information
source to act desirably and to provide information to the best of its abilities. It is repre-
sented in terms of a number called trustworthiness score. Trustworthiness score is then
derived by combining the knowledge and expertise scores.

4.1 Evaluate Knowledge Score of an Information Source

The knowledge score of an information source gives a measure of how closely the
knowledge of that information source is related to the desired knowledge for the se-
curity evaluation case (trust/problem context). The knowledge score is calculated from
two scores – reference knowledge domain score and information source knowledge do-
main score. These two scores are derived using two models – reference knowledge
domain model and information source knowledge domain model. The reference knowl-
edge domain model provides the relative importance of different knowledge domains
regarding the problem context. The information source knowledge domain model gives
an assessment, by a third party, of the relative importance of knowledge level of an in-
formation source corresponding to the knowledge domains identified in the reference
knowledge domain model.

Reference Knowledge Domain Model
Evaluating the security level of a security solution typically benefits from knowledge in
several domains, not all of which are equally important. Knowledge level of an informa-
tion source expresses his/her awareness about these knowledge domains. We develop
a reference knowledge domain model that captures the domains that are of interest
and their relative importance with respect to the security level evaluation case (prob-
lem context). The relative importance of a domain is measured in terms of importance
weight which is defined to be the percentage of the whole reference knowledge domain
covered by that particular knowledge domain. Figure 1 shows a reference knowledge
domain model for a security solution consisting of four domains: domain A (network
security) domain B (Internet Protocol), domain C (authentication) and domain D (ac-
cess control). The four domains cover the security solution to various degrees. Thus
the difference in the importance weights. Note that this is just an example reference
knowledge domain model and does not refer to any specific security level evaluation
case.

In the computation of reference knowledge domain weights, we first find out the
knowledge domains that are of relevance to the particular security level evaluation case.
A discussion on how the relevant knowledge domains are determined is beyond the
scope of this paper. Once we determine the knowledge domains that are of interest, we
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Fig. 1. Reference knowledge domain model

arrange the domains in some order and find their respective importance weight. Often,
the process of determining the knowledge domains itself will provide clues about their
relative importance. This order could also be arrived at following some specific guide-
lines of the evaluator. A vector, called reference knowledge domain scores, specifies
the relative importance of all involved knowledge domains. Each element of the vector
indicates the importance weight of the corresponding domain. This evaluation is shown
next.

Calculating Reference Knowledge Domain Score
Each knowledge domain in the reference model has a particular importance weight
associated with it. Note that multiple stakeholders are often involved in formalizing the
problem context. Consequently, different stakeholders can assign different weights for
importance. Suppose the stakeholders are denoted by the set X and the cardinality of
the set is q. We use x to denote an individual stakeholder. Suppose m is the number
of knowledge domains in the problem context. The importance of knowledge domains,
from the point of view of a stakeholder x, is represented as an m-element vector. This
vector is denoted by WKimp(x) where WKimp(x) = [wKimp(x( j))]mj=1. This is shown by
Equation 1. Here, wKimp(x( j)) ∈ [0, 1] ∀ j = 1, . . . ,m and ∑m

j=1 wKimp(x( j)) = 1. Note
that, we obtain such vector for each of the q stakeholders in the set X . The importance
of the m different domains given by q stakeholders is then represented in a q×m matrix
denoted by WallKimp(X). Equation 2 gives the formula for WallKimp(X). The next step
is to aggregate the information obtained from q stakeholders. The aggregation can be
done using some aggregation technique. The idea is to apply an aggregation function,
denoted by faggregation1, on the q×m matrix WallKimp(X) to merge the rows, resulting in
a vector of size m. Equation 3 indicates the result of this aggregation. Here we do the
aggregation by taking the arithmetic average for each m elements from all q number of
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vectors and put them into a single vector (for X), WaggregatedKimp(X), which is given by
[waggregatedKimp(X( j))]mj=1. The arithmetic average is the simplest type of expert opinion
aggregation. The reader is referred to Cooke [29] and similar sources for examples
of other aggregation techniques. To normalize this vector, the normalization factor is
obtained using Equation 4. Finally, the weight of each domain in the problem context
is obtained by normalizing each element in the vector WaggregatedKimp(X) by the above
normalization factor to obtain the vector Wre f KnowledgeDomainScore(X). This is shown in
Equation 5. This vector derives the relative importance for each knowledge domain in
the reference knowledge domain model.

WKimp(x) = [wKimp(x( j))]mj=1 (1)

WallKimp(X) = [WKimp(x)]
q
x=1 (2)

WaggregatedKimp(X) = faggregation1(WallKimp(X))
= [waggregatedKimp(X( j))]mj=1 (3)

fre f Knorm =
1

∑m
j=1 waggregatedKimp(X( j))

(4)

Wre f KnowledgeDomainScore(X) = fre f Knorm×WaggregatedKimp(X)
= [wre f KnowledgeDomainScore(X( j))]mj=1 (5)

Note, if simple average is used as an aggregation technique there is no need to normalize
the vector WaggregatedKimp(X) as each element of the vector will be in [0, 1] and sum of
all elements will be 1. In that case, we can ignore Equation 4 and WaggregatedKimp(X) =
Wre f KnowledgeDomainScore(X).

Information Source Knowledge Domain Model
An information source may not have comprehension in all the knowledge domains rep-
resented in the reference domain model. The information source knowledge domain
model is used to derive the relative importance of the knowledge level of the informa-
tion source according to the knowledge domains in the reference knowledge domain
model. This relative importance is assessed by a third party or an expert and not by the
information source itself. This helps reduce the bias involved in self-assessment.

Consider the reference knowledge domain example shown in Figure 1. For an infor-
mation source, say b, a third party assessor assesses the relative importance of knowl-
edge level of b on the identified knowledge domains as (say) 30% on domain A, 30%
on domain B, and 40% on domain D. Thus, the relative importance of b’s knowledge
level on the domains, as assessed by the third party, is [0.3,0.3,0.0,0.4].

Suppose we have n information sources, denoted by b1,b2, . . . ,bn, in a security level
evaluation. Assume Y is the set of third parties assessing the expertise of these n infor-
mation sources. Let the cardinality of Y be z, and an individual third party in the set Y
be denoted by y. Then, information source knowledge domain score is represented as
an m-element vector where each element corresponds to some knowledge domain of
the information source. Each element indicates the relative weight of that domain and
has a weight between 0 and 1. Equations 6–10 show how to compute the information
source knowledge domain score for a source bi.
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WKis(y(bi)) = [wKis(y(bi( j)))]mj=1 (6)

WallKis(Y (bi)) = [WKis(y(bi))]zy=1 (7)

WaggregatedKis(Y (bi)) = faggregation2(WallKis(Y (bi)))
= [waggregatedKis(Y (bi( j)))]mj=1 (8)

fisKnorm =
1

∑m
j=1 waggregatedKis(Y (bi( j)))

(9)

WisKnowledgeDomainScore(Y (bi)) = fisKnorm×WaggregatedKis(Y (bi))
= [wisKnowledgeDomainScore(Y (bi( j)))]mj=1 (10)

Each third party y ∈ Y provides a vector, denoted by WKis(y(bi)), of m-elements. Each
element represents the assessed weight of knowledge level of the information source
bi corresponding to the domain represented by that element as shown in Equation 6.
This step is repeated for each y in the set Y and results in z such vectors. To aggregate
information from all y for the information source bi, these z vectors are first combined
in a z×m matrix in Equation 7 and then aggregated using some aggregation function in
Equation 8. The aggregation function is denoted as faggregation2 in the equation. The ag-
gregation technique used here is arithmetic average. We normalize this vector using the
normalization factor obtained in Equation 9. Finally, the weight of each domain in the
problem context is obtained by normalizing each element in the vector WaggregatedKis by
the above normalization factor to obtain the vector WisKnowledgeDomainScore. This is shown
in Equation 10. The result gives one vector for the set Y holding the relative knowledge
domain scores for the information source bi. All these steps are then repeated n times
(as we have n number of information sources).

Calculating Knowledge Score of Information Sources
The knowledge score of an information source bi, denoted by Kscore(bi), gives a measure
of the source’s knowledge level and is calculated using the reference knowledge domain
score and the information source knowledge domain score of bi. For an information
source bi, this score is calculated as follows.

Kscore(bi) =
m

∑
j=1

{wre f KnowledgedomainScore(X( j))×wisKnowledgeDomainScore(Y (bi( j)))}
(11)

The result of the above equation is a real number derived by component-wise multipli-
cation of the two vectors Wre f KnowledgeDomainScore(X) and WisKnowledgeDomainScore(Y (bi))
and then adding all the product values.

4.2 Evaluating Expertise Score of an Information Source

Expertise level of an information source with respect to evaluating the security level
of a security solution is represented by the expertise score. We propose to evaluate
the expertise score using questionnaires to reduce the bias of self-assessment. Each
questionnaire consists of a set of calibration variables which are further divided into
categories. Table 1 provides an example questionnaire.
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Table 1. Example calibration variables for assessing expertise level of information sources

Variables Categories
level of expertise low, medium and high
age under 20, [20-25), [25-30), [30-40), [40-50), over

50
years of relevant education 1 year, 2 years, Bsc, Msc, PhD, other
years of education others 1 year, 2 years, Bsc, Msc, PhD, other
years of experience from industry [1-3) years, [3-5) years, [5-10) years, [10-15)

years, over 15 years
years of experience from academia [1-3) years, [3-5) years, [5-10) years, [10-15)

years, over 15 years
role experience database, network management, developer, de-

signer, security management and decision maker

Each information source is assessed on each calibration variable according to the
information source’s category for that variable. However, not all calibration variables
are of equal importance, neither all categories of a particular calibration variable have
the same weight. The importance value for each calibration variable and the value as-
sociated with each category is determined by some external source, such as an expert1.
To derive expertise score of an information source, we develop calibration variable
importance weight model and calibration variable category importance weight model.

Calibration Variable Importance Weight Model
The relative importance of a calibration variable is assessed by external sources. Sup-
pose the set of such external sources is denoted by X ′ and the cardinality of the set
is u. Each calibration variable that is pertinent to the problem context is associated
with an importance value. A member x′ of the set X ′ assigns an importance value from
the range (0,1] to a calibration variable such that the sum of the importance value of
all the calibration variables used is 1. Let there be p calibration variables denoted by
l1, l2, . . . , lp and Wl1 ,Wl2 , . . . ,Wlp be their relative importance value assigned by the ex-
ternal source x′. This is represented by a vector Wl(x′) = [wlj (x

′)]p
j=1 and shown in

Equation 12. All u members of X ′ will assign such values. For each calibration variable,
the final importance value is derived by applying an aggregation function, faggregation3,
on Wl(X ′). This is shown in Equation 14. A possible choice for such an aggregation
function is the arithmetic average. Since, wlj (x

′) ∈ (0, 1] for all j = 1, . . . , p and for
each x′ ∈ X ′, the aggregation function is so chosen that each element of WI(X ′) is in
(0, 1] and ∑p

j=1Wlj (X
′) = 1.

Wl(x′) = [wlj (x
′)]p

j=1 (12)

Wl(X ′) = [Wl(x′)]ux′=1 (13)

WaggregatedCalwt(X ′) = faggregation3(Wl(X ′)) (14)

1 Interested readers are referred to Cooke [29] and Goossens et al. [30] for an overview of
challenges and benefits related to expert judgments.
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Calibration Variable Category Importance Weight Model
Each category in a calibration variable is also associated with a value. This value de-
notes the importance weight of the category of that calibration variable. These values
are assigned by the external sources in X ′. Let the calibration variable l j have s cate-
gories denoted by l j1 , l j2 , . . . , l js where l jk ∈ [0, 1] for all k = 1, . . . ,s. This is shown in
Equation 15. All u members of X ′ assign weights and then an aggregation function is
used to derive the category weights for calibration variable l j (Equation 16 and Equation
17 respectively).

Wc(x′(l j)) = [wc(x′(l j(i)))]si=1 (15)

Wc(X ′(l j)) = [Wc(x′(l j))]ux′=1 (16)

WaggregatedC(X ′(l j)) = faggregation4(Wc(X ′(l j)) (17)

Therefore, WaggregatedC(X ′(l j)) holds the importance weight (as derived by all external
sources in X ′) of each category of the calibration variable l j. The above is done for all
the calibration variables ( j = 1, . . . , p). Note that not every p calibration variables will
have s categories.

Information Source Calibration Variable Category Score Model
An information source (bi) receives scores for applicable categories within each cali-
bration variable by a set Y ′ of external sources where cardinality of y′ is v. This score
is computed as follows. Each information source bi is required to fill the questionnaire.
Each member of Y ′ assesses the completed questionnaire and assigns relative scores
to applicable categories within each calibration variable. This score value lies within
[0, 1]. Equation 18 shows such scores, assigned by an y′ ∈ Y ′, for the calibration vari-
able l j. All v members of Y ′ assigns such scores and then an aggregation is used to
reduce it to single set of values. Equations 19 and 20 show this. Hence, information
source calibration variable category score model is designed as

WisCat(y′(bi(l j))) = [wisCat(y′(bi(l j(m))))]sm=1 (18)

WisCatAll(Y ′(bi(l j))) = [WisCat(y′(bi(l j)))]vy′=1 (19)

WisCatAggregated(Y ′(bi(l j))) = faggregation5(WisCatAll(Y ′(bi(l j)))) (20)

The above is normally done for all calibration variables, but one may choose to limit
the number of calibration variables depending on the resources and time available for
the security level evaluation case. Note that for some calibration variables the members
of Y ′ may not need to assign any score. For example, for the calibration variable level
of expertise, the importance weight of the applicable category (according to filled ques-
tionnaire) can work as the score. Hence, members of Y ′ can assign simply 1.0 to the
category.

Calculating Expertise Score of Information Sources
The set X ′ of external experts assign importance weights of each category within each
calibration variable. Also the information source bi receives scores for applicable cat-
egories within each calibration variable by another set of experts Y ′. These two are
combined to derive the information source’s score for each calibration variable. Equa-
tion 21 gives the value obtained by bi for calibration variable l j. The weighted sum of
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all these calibration variable scores, where the weight is the importance weight of the
corresponding calibration variable, gives the expertise score of bi, denoted by Escore(bi)
as demonstrated by Equation 22.

WcalScore(bi(l j)) =
s

∑
m=1

WaggregatedC(X ′(l j(m)))×WisCatAggregated(Y ′(bi(l j(m))))(21)

Escore(bi) =
p

∑
j=1

WaggregatedCalwt(X ′( j))×WcalScore(bi(l j)) (22)

4.3 Computing Information Source Trustworthiness

The information sources involved in the security level prediction have varying de-
grees of trustworthiness, which depends on their knowledge levels and expertise levels.
Therefore, the knowledge score and the expertise score must be combined to derive the
trustworthiness of an information source. Here again, the problem context will deter-
mine the relative importance of each score. Let k and e be the relative importance of the
knowledge and expertise score. The following relations hold: 0≤ k,e≤ 1 and k+e = 1.
The values of k and e can be set by the evaluator (or, truster). The trustworthiness score
for information source bi, denoted by Tscore(bi) is computed as follows.

Tscore(bi) = k×Kscore(bi)+ e×Escore(bi) (23)

4.4 Computing Security Level of a Security Solution

The trustworthiness score of an information source is used to compare the security level
of different security solutions. The information obtained from each source bi (in the
form of a number ∈ [0, 1]), denoted by bi(I), is multiplied by the trustworthiness score
of that source. This is done for all sources. The results are then added and divided by n.
This gives the initial security level for the security solution s j as shown by Equation 24.
This is done for all s j in the set of security solutions S. Since the r security solutions are
compared against each other, we must obtain a relative security level for each solution.
The relative security level of s j is computed using Equation 25.

FinitialSL(s j) = ∑n
i=1{bi(I)×Tscore(bi)}

n
(24)

FSL(s j) =
FinitialSL(s j)

∑r
j=1 FinitialSL(s j)

(25)

5 Trust-Based Security Level Evaluation BBN Topology

The trust-based security level evaluation is implemented as a Bayesian Belief Network
(BBN) topology to enable a flexible and effective platform for reasoning under uncer-
tainty. In the following we give some background of BBN and a short description of
the BBN topology. The next section demonstrates the use of the various parts of the
BBN topology in a step-by-step manner for evaluating the security level of two DoS
solutions.
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5.1 Bayesian Belief Network Overview

Bayesian Network (BN) or Bayesian Belief Network (BBN) is based on Bayes rule and
designed for reasoning under uncertainty. Bayes rule calculates conditional probabili-
ties of events and BBN can handle large scale conditional event expressions due to its
formalism. The BBN formalism [31,32,33,34] offers, in addition to the mathematical
formalism and computational engine, an intuitive and compact graphical model rep-
resentation. The graphical model is formed as a connected and directed acyclic graph
(DAG) that consists of a set of nodes or variables and directed arcs (or, links). Nodes
correspond to events or concepts, and are defined as stochastic or decision variables.
Possible outcomes of the nodes are specified using a set of states, and multiple vari-
ables may be used to determine the state of a node. Each state of each node is expressed
using probability density functions (pdf). Probability density expresses ones confidence
in the various outcomes of the set of variables connected to a node, and depends condi-
tionally on the status of the parent nodes at the incoming edges. There are three type of
nodes in BBN: 1) target node, which represents the target of the assessment (here, secu-
rity level evaluation case), 2) intermediate node, which is a node that one have limited
information or beliefs on (the intermediate level). The associated variables are hidden
variables that represent aspects that may increase or decrease the belief in the target
node, and 3) observable node, which represents information and evidence that can be
directly observed or in other ways obtained. These three type of nodes are then con-
nected in a topology and the status of the network is continuously updated as evidence
are entered and propagated backward and forward along the edges in the network.

5.2 Structure of the BBN Topology

The trust-based security level evaluation approach involves a variety of information and
information sources. These pieces of information are used as input to the different mod-
els described in Section 4. Figure 2 gives a schematic overview of the BBN topology
structure, which is constructed such that it resembles the underlying process. The BBN
topology has been implemented using the HUGIN software tool [35].

As shown in Figure 2, information and evidence are structured according to four
levels. The first level contains the five models used to derive the knowledge level and
expertise level of the information sources (B). This includes: 1) reference knowledge
domain model, 2) information source knowledge domain model, 3) calibration variable
importance weight model, 4) calibration variable category importance weight model,
and 5) information source calibration variable category score model. Here, the first
two are involved in knowledge score model and thus internally dependent. The other
three belongs to the expertise score model, and are also internally dependent. There is,
however, independence between these two score models. In level two, these models are
combined into the information source knowledge score model and information source
expertise score model. These two scores are further combined in the third level by the
information source trustworthiness score model. Then, to determine the security level,
the resulting trustworthiness scores are combined with the set of information provided
for all information source. This results in an security level prediction in level four.
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Fig. 2. Schematic overview of the trust-based security level evaluation BBN topology

Figure 3 shows the top-level network in the BBN topology. The notation consists of
ovals, dotted ovals, diamonds and squares. The ovals represent observable nodes, which
are nodes where evidence is directly inserted. The dotted ovals represent intermediate
nodes, meaning nodes that have a underlying subnet and that gets information as input
from one or more observable nodes in its underlying subnet. The diamonds are utility
functions which combine evidence from observable and intermediate nodes and it is
these nodes that implement the equation sets described in Section 4. All other nodes
in the topology represent the discrete variables providing input to the utility functions.
Utility functions specify the relations between their input nodes and differ from ordinary
nodes in that the probability density functions can be expressions, or equation sets that
specify how information are aggregated. The squares in the figure represent decision
nodes, which define the different outcomes from an utility function and are used to
make intermediate or target decisions. As can be seen, we have two subnets in our BBN
topology: 1) knowledge level, and 2) expertise level. In the following we describe these
subnets using an example. However, first we take a look at how the BBN topology was
constructed and how it can be evolved as new information and insight is made available.
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Fig. 3. Top-level network in the trust-based security level evaluation BBN topology

The BBN topology was constructed from available empirical data and the underly-
ing process and structure are shown in Figure 2. It is important to note, however, that
the structure of the topology is a critical factor of the BBN method, which consists
of the following three steps: (1) construction of the BBN topology, (2) elicitation of
probabilities to nodes and edges, and (3) making computations. We have used both a
top-down and a bottom-up approach when deriving the BBN topology. The top-down
approach is performed by manually modeling the associated nodes and their internal
relations according to the information flows of Figure 2 and the models from Section 4.
This resulted in a preliminary sets of DAGs together making up the BBN topology. The
bottom-up approach was then performed by structural learning from available empiri-
cal data. This means that the bottom-up approach also represents an evaluation of the
models in Section 4 and the resulting BBN topology from the top-down approach, as
the bottom-up approach only uses the empirical data and is carried out independently
of the models.

The HUGIN software tool was selected as the implementation tool because of its
structural learning capabilities. Two algorithms are available for structural learning in
the HUGIN software tool and these are the PC (Path Condition) algorithm and the NPC
(Necessary Path Condition) algorithm. The Hugin PC algorithm is a variant of the orig-
inal PC algorithm (for more information the reader is referred to [36]) and belongs to
the class of constraint-based learning algorithms. The NPC algorithm is an extension of
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the PC algorithm that solves some of the problems of the constraint-based learning in
the PC algorithm. However, both algorithms generate the skeleton of the DAG or topol-
ogy by the use of statistical tests for conditional independence. Their main difference
lies in that for the NPC algorithm one needs to provide additional information to indi-
cate the direction of dependencies in the graph, which result in a more complete DAG
when little empirical data is available. To simplify the demonstration of our bottom-up
approach, we show the result of structural learning from one data set from the example
in Section 6 using both the PC and the NPC algorithms with an informally reasoning
about the relationship between the variables of the resulting DAGs. This is shown in the
figure 4(a).

Figure 4(a) shows the resulting DAG using the NPC algorithm, while Figure 4(b)
shows the same using the PC algorithm. When using the NPC algorithm we get a
suggestion for the internal relation among the three nodes: Escore(bi), Kscore(bi) and

(a) Using NPC algorithm

(b) Using PC algorithm

Fig. 4. DAG using structural learning algorithms in HUGIN
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Tscore(bi). For demonstrational purposes, we have used the data from the input file
shown in Figure 5. This is part of the data set used for the demonstration given in
Section 6, and covers the nodes ‘Knowledge level’, ‘Expertise level’, ‘IS trustworthi-
ness cal’ and ‘IS trustworthiness Level’ in figure 3.

Fig. 5. Data in input file

The resulting DAG using the NPC algorithm shows that there are relationships be-
tween the three nodes: Escore(bi), Kscore(bi) and Tscore(bi). However, as we use a lim-
ited data set in this example, it is not clear what the nature of this relationship is. The
algorithm tells us that there is a direct relationship between the nodes Tscore(bi) and
Kscore(bi), and that there is a direct relationship either between the nodes Tscore(bi) and
Escore(bi), or between the nodes Kscore(bi) and Escore(bi). As described earlier, we as-
sume independence between the knowledge and experience subnets and thus we choose
to keep the direct relationship between the Tscore(bi) and Escore(bi) nodes. When it
comes to the direction of the relationships, it is used to specify parent-child relations
between the nodes in the DAG. Informally reasoning over the result and the assumed
independence leads to the conclusion that Tscore(bi) is the parent node. This is also the
result from structural learning from both the PC and the NPC algorithms. The same
strategy was followed for the rest of the data sets from the example. Note that there are
no utility or decision nodes in the resulting DAG from structural learning but that the re-
sulting DAGs in the BBN topology presented in the following is built around utility and
decision nodes. This is because the input data does not indicate any such constructs
and so the utility and decision node constructs are introduced during the top-down
approach.

Figures 6(a) and 6(b) show the resulting networks for the knowledge and expertise
level subnets taking both the top-down and bottom-up approaches into consideration.

Subnets are connected based on the dependency they have on each other. Since we
model calculations with some numbers and not with any state of any variable, we make
some modification to the interpretation of the BBN nodes. Each observable node (rep-
resented with oval) represents an input variable from the models in Section 4 and are
assigned values accordingly. The intermediate nodes are modeled as utility nodes, rep-
resented with diamonds in the figures, and are the formula evaluators. This means that
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(a) Knowledge level subnet

(b) Expertise level subnet

Fig. 6. Knowledge level and expertise level subnets

each utility node uses the relevant equation from the models in Section 4 to express the
relationship between its input nodes. Each target node, represented as a square in the
figures, represents a variable whose value is to be computed by the intermediate node.
This means the output variables of the respective models in Section 4.

6 Example: Evaluating the Security Level of Two DoS Solutions

We now describe how to use our approach to evaluate the security level of two solutions
for protecting against Denial of Service (DoS) attacks that can be launched at the user
authentication mechanism of ACTIVE, an e-Commerce platform that was developed
by the EU EP-27046-ACTIVE project [37]. Here, we evaluate two such mechanisms
– a cookie solution and a filtering mechanism. The cookie solution adds a patch to
the network stack software that keeps track of sessions and their states. It begins by
sending a cookie to the client. If the client does not respond within a short period of
time, the cookie expires and the client must re-start the request for a connection. If the
client responds in time, the SYN-ACK message is sent and the connection is set up.
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Adding the cookie message makes it unlikely that an attacker can respond in time to
continue setting up the connection. If the client address has been spoofed, the client
will not respond in any event. The filtering mechanism works a bit differently. The
filtering mechanism has an outbound and an inbound part, shown in Figures 7(a) and
7(b) respectively, that checks the source address (srcAddr) against a set of accepted
source IP addresses stored in internalNetAddr. The filtering mechanism is implemented
on the server side (usually on a firewall or an Internet router) and configured to block
unauthorized connection attempts.

NetworkStack-Client NetworkStack-ServerfilteringRouter

srcAddr = checkSourceAddr

[internalNetAddr->excludes (srcAddr)]
deny

[else]
outboundMessage (...)

Outbound

outboundMessage (...)

(a) Outbound

NetworkStack-Client NetworkStack-ServerfilteringRouter

srcAddr = checkSourceAddr

[internalNetAddr->includes (srcAddr)]

inBoundMessage (...)[else]

Inbound

inBoundMessage (...)

deny

(b) Inbound

Fig. 7. Filter mechanism

A decision maker (truster) A needs help to choose between the two security solutions.
For this purpose A seeks guidance from a number of information sources regarding an-
ticipated number of DoS attacks for the two solutions. In our example, we have five
information sources; one honeypot [38] and four domain experts from a pool of 18 do-
main experts. The four domain expert judgments included was drawn randomly from
the expert pool and denoted as b4,b6,b15,b18, and the honeypot is denoted by bhoneypot .
(Note that to simplify the demonstration we choose not to include all 18 domain experts
that we had consulted). These five information sources provide information on the an-
ticipated number of DoS attacks for the two involved solutions to A. The truster A has
complete trust in the abilities of ‘honeypot’ to provide accurate and correct information
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Table 2. The combined knowledge and expertise level questionnaire and the information provided
on the four domain experts

Expert
no.

Calibration variable Information provided

4 level of expertise medium
years of relevant of education Bsc
years of experience from industry 0
role experience database, security management

6 level of expertise low
years of relevant of education Bsc
years of experience from industry 0
role experience database

15 level of expertise high
years of relevant of education Bsc
years of experience from industry 0
role experience designer, developer, security management

18 level of expertise low
years of relevant of education Bsc
years of experience from industry 0.5
role experience developer

on the potential number of successful DoS attacks and therefore Tscore(bhoneypot) = 1.
Thus, no additional evaluation of the knowledge and expertise level is necessary for
honeypot. Elicitation of expert judgments are done using a combined knowledge level
and expertise level questionnaire as shown by Table 2.

6.1 Demonstration of the BBN Topology

In the first level of the BBN topology, we have five models which together are used to
derive the knowledge score and expertise score, respectively.

Implementation of reference knowledge domain model
The reference knowledge domain score is on level 1 in the information flow process
shown in Figure 2. Recall that the BBN topology must reflect this structure to ensure
accurate information aggregation and propagation. Because all models on level 1 are
independent, they can be computed in any order, and hence all score models on level 1
are implemented as series of subnets on the lowest level in the topology.

Figures 8(a) and 8(b) show the implementation of equations 4 and 5 respectively.
Note, in the example, we only use one external source x1 in X . Importance weights for
the knowledge domains in the reference knowledge domain model, as given by x1, are
denoted by the observable variables wKimp(1),wKimp(2), . . ., respectively for knowl-
edge domain 1, 2 etc. Since we only have one stakeholder (external source) x1 in X ,
WaggregatedKimp(X) = WallKimp(X) = WKimp(x1). As the knowledge domains are already
normalized with each other, we have:Wre f KnowledgeDomainScore(X)=WaggregatedKimp(X)=
WKimp(x1) ( fre f Knorm = 1 as can be seen from Figure 9).
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(a) Subnet evaluating normalization factor

(b) Subnet evaluating reference knowledge domain scores

Fig. 8. Subnets in reference knowledge domain model

Implementation of information source knowledge domain model
Similar subnets as above are constructed for the information source knowledge domain
model as defined by the equations 6 through 10. Figure 10 gives an overview of the
resulting information source knowledge domain models and scores for the four domain
experts.

Implementation of knowledge score model
The knowledge score is derived by combining the result from the reference knowl-
edge domain score subnet and the information source knowledge domain score subnet.
This is done by a component-wise multiplication of the reference knowledge domain
score by information source knowledge domain score using equation 11 from Section
4.1, and populated for each information source bi. Figure 11(a) shows the subnet that
implements the above mentioned equation. Evaluation of knowledge score of the infor-
mation source b4 using the data in our example is shown in Figure 11(b). Note that the
Kscore(b4) 1 refers to knowledge domain number 1 (security management), etc.

Implementation of information source expertise level model
The ‘expertise score’ of an information source bi is evaluated in a similar manner as
‘knowledge score’ of bi. Values obtained by an information source bi for each calibra-
tion variable l j is implemented using a separate subnet. Then another subnet is used to
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Fig. 9. Subnet calculating normalization factor with information inserted for the example

aggregate the results obtained from these subnets to evaluate the expertise score of bi

(equation 22). Since the illustrations are very similar to the above figures, we do not
show them here.

Implementation of information source trustworthiness score model
The information source trustworthiness level is implemented as a utility and decision
node in the top-level network shown in Figure 3. The trustworthiness score is dependent
on knowledge score and expertise score which are calculated by two sets of subnets
as described above. These subnets return the two scores through output nodes which,
in turn, work as input nodes of the subnet implementing trustworthiness score. These
two inputs, together with weight values k and e, derive the trustworthiness score. The
corresponding subnet topology is shown in Figure 12(a), while Figure 12(b) shows the
resulting trustworthiness score of information source b4 (using equation 23) using the
data from our example.

Deriving the security level
Recall from the example description that each of the five information sources provides
information on the number of DoS attacks for the two DoS solutions, s1 = cookiesolution
and s2 = f iltermechanism. Figure 12(b) shows the resulting trustworthiness score with
information inserted and propagated for information source b4 (expert number 4 in the
example). We can then derive and interpret the information from b4 using the utility
function ‘Security Level cal’ and the decision node ‘Security Level’ in the top level
BBN (Figure 3). The same is done for all information sources, which eventually results
in the “final” security level prediction.

In our presentation of the implementation we have shown an example-driven version
of the topology, as well as presented only parts of the implementation. This simplified
version is not ready for population of large amount of evidence and for use of several
external sources X and Y , as well as dynamic and unknown amount of knowledge do-
mains, calibration variables, and calibration variable categories. The complete version
of the BBN topology is an aggregation of the top-down and bottom-up approaches, as
described earlier. This means that the BBN topology can even be changed dynamically
by structural learning when new empirical data are made available or when new insights
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Fig. 10. Information source knowledge domain scores for b4, b6, b15, and b18

into the relationships between the involved variables are gained. This may, quite possi-
bly, change the very foundation of our model over time. Thus, the learning capability
is essential in that it makes our approach adaptable and dynamic. Evaluating security is
challenging, and new insight will become available as more experience is gained. The
benefit of our approach is that such eventuality can be countered for directly in the BBN
implementation by feeding insights into the topology as empirical data, and using the
structural learning capabilities to re-structure the topology whenever necessary.

6.2 Validation of Example Application Results

DoS attacks are becoming more sophisticated and hence increasingly difficult to de-
tect and protect against. The attacks are often performed using legitimate protocols
and services; the malicious activities differ from legitimate ones only by intent and not
by content. Since it is hard to measure intent, many of the existing DoS solutions do
not offer a proper defense. Many solutions are deployed on the network device level,
such as the filtering mechanism described in this paper. However, filtering on the net-
work device level has been demonstrated as being infeasible to deploy in an effective
manner [39]. In fact, filtering against a defined legitimate or expect type of traffic may
even contribute in completing the attacker’s task by causing legitimate services to be
denied [39].

In [40] Karig and Lee gives an overview of common DoS attacks and potential coun-
termeasures for DoS attacks. In this context, the filtering mechanism is categorized as a
network device level countermeasure while the cookie solution is categorized as an OS
level countermeasure. A network device level DoS solution provides measures to pro-
tect against potential misuse of a communication protocol. Thus, the protection is often
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(a) Evaluation of knowledge score

(b) Knowledge score of information source b4

Fig. 11. Subnets involved in calculating Kscore

on the IP or transport layer and hence there are possible ways around the mechanism,
such as those discussed in [40]. The main shortage of filtering mechanisms are their
inability to filter out spoofed packets [40]. There are, however, more efficient filtering
mechanisms available, such as the one discussed in [41].

The other DoS solution discussed in this paper, the cookie solution, operates on the
OS level. An OS level DoS solution integrates protection into the way a protocol is im-
plemented in a particular operating system. Thus, the measure is deployed on the source
(target) and refers to a host-based protection solution. Hence, the cookie solution repre-
sents a more defense-in-depth DoS solution than the filtering mechanism. Furthermore,
the cookie solution discussed in this paper is a SYN cookie, which has been well tested
and is well understood. SYN cookies have also been incorporated as a standard part of
Linux and Free BSD and are recognized as one of the most effective DoS mechanisms
[42].

In general, a DoS solution should be effective, transparent to existing Internet infras-
tructure, have low performance overhead, be invulnerable to attack aimed at the defense
system, be incrementally deployable and have no impact on the legitimate traffic [39].
The filtering mechanism is somewhat effective in stopping attacks on the spot. It is
not transparent to existing Internet infrastructure and results in some performance over-
head. The filter mechanism can also be vulnerable to attacks due to its scanning of each
packet and hence may have impact on legitimate traffic. However, the mechanism can
be incrementally deployed. The cookie solution is documented to be effective against
DoS attacks, but has been demonstrated to be somewhat unable to detect and prevent
against zombie attacks. The mechanism is transparent to the network infrastructure, but
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(a) Subnet evaluating trustworthiness score

(b) Subnet for computing the trustworthiness score of infor-
mation source b4

Fig. 12. Subnets involved in calculating Tscore)

leads to some performance overhead, but in practice no impact on legitimate traffic.
The cookie solution is already included in some operating systems and is easy to de-
ploy. Thus, we can conclude that the cookie solution is a better choice than filtering
mechanism for DoS attacks. Our trust-based information aggregation approach shows
that the cookie solution is approximately 2.76 times better than the filtering mechanism.

7 Discussion

Evaluating the security level or security of a system can be done in many ways. Exam-
ples include qualitative risk assessment and security evaluation techniques using stan-
dards such as the Common Criteria, and ad-hoc security assessments or judgments. For
the most part, these assessments are subjective since these are essentially opinions of
experts. Risk assessment of a typical size system of medium complexity is, in general,
estimated to involve approximately 200 hours of work. This number is not derived from
scientific experiments; rather it is the opinion of one of the authors who has more than15
years of experience providing risk assessment and security evaluation consultancy ser-
vices to the industry. It is also based on anecdotal evidence and experience of colleagues
of the authors. It is hard to get an exact cost and effort calculation for such activities,
so one may question its soundness, as it is merely a best effort estimate based on ex-
perience from the industry. In Norway, for example, where one of the authors work, an
evaluation according to the Common Criteria for EAL 4/4+ has an estimated cost of 1.5
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million NOK (approximately 250,000 USD). Traditional security evaluation is also time
consuming. For small systems, 2-3 days are needed to derive a good estimate/opinion.
This limits the ability to carry out risk assessments and rules out the use of any formal
security evaluation. This has been the primary motivation for our approach.

Two of the main challenges in the security evaluation process that contribute signifi-
cantly to its cost and efficiency are (i) how to gather relevant information within a short
time frame and make best use of it, and (ii) how to aggregate in a sound manner across
both empirical data and expert judgments. In our opinion, the second challenge is the
most critical and time consuming and hence has been the focus of this work. Instead
of manually performing this aggregation, we have proposed an approach that is auto-
mated for the most part. Hence, it is more cost effective and efficient than traditional
approaches. In addition, since it is the sources and not the information that are evalu-
ated, such evaluations can be reused. This (reusability) makes our approach effective
and enables it to scale as the complexity of the problem context and the number of
information sources grows.

A related challenge is how to ensure that the information collected in true. This is a
major challenge in risk assessment and security evaluations, as subjective evaluations
are involved. It is hard to assess whether humans provide accurate information and it is
hard to assess other sources as well, owing to false positives and the inability to calibrate
the information provided. There is nothing firm (observed facts) to calibrate against.
However, in our approach we calibrate information sources according to knowledge of
relevance to the particular security level evaluation case and the expertise of information
sources. We implement our model as a BBN topology, enabling the reasoning with
uncertain information. BBN is based on the Bayesian or subjective interpretation of
probability, where there does not exist a true value but only beliefs. The goal then is
to assess whether the beliefs are reasonable and accurate. We do this by introducing
the evaluation of the source providing the information and not the information itself.
We use external sources or most often experts to do the evaluation of the knowledge
level and expertise level of an information source. Furthermore, we use a structured
way for performing this evaluations using standardized knowledge level and expertise
level questionnaires. This makes the evaluations comparable and enables the decision
maker or the analyst to reason about the goodness and accuracy of the evaluations given
by the external sources.

One question that is relevant here is how the knowledge domains are determined. Es-
tablishing the reference knowledge domain model is a two-step process. First, knowl-
edge domains of relevance are identified and then their relative importance is deter-
mined. When identifying knowledge domains, one analyses the security solution being
considered. The structured way of performing this analysis is to use ISO 15408 (Com-
mon Criteria) part 2 [1] and go through all security functional components. Each of the
ISO 15408 security functional components belongs to a functional family, which again
belongs to a functional class. In our approach, the functional class is looked upon as
a knowledge domain, as they describe distinctive security functionality. One can then
aggregate over the number of relevant components in each class and normalize. This re-
sults in a coverage weight, where a functional class with more components of relevance
receives a higher coverage weight. In the paper, we do not distinguish between coverage
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and importance weight. Thus, the coverage weight is incorporated into the importance
weight. Note that other standards can be used in a similar way. This process does take
more time than having experts provide their opinions about which knowledge domains
are relevant and their relative weights. If such an approach is used we recommended
using a pool of experts divided into two groups. One group acts solely as experts while
the other group does not provide its opinions but judge the opinions of the experts. This
reduces the biases of subjective judgements, but unfortunately does not remove them.

One of the pitfalls of using this approach is that if the recommender is not trustwor-
thy, deriving trust based on the provided information has problems. This is a challenge
for almost all recommendation/reputation systems including ours. While this problem
cannot be completely eliminated, its effect can be considerably mitigated using one of
two approaches. One approach is to calibrate or assess the external sources (third par-
ties). The idea is to use an external source trust hierarchy, where other parties evaluate
the external sources. The other approach that we have used in some of our other works
is to evaluate the trust level of recommender and use that trust level to scale the rec-
ommendation score provided by her. Prior works by some of the authors have proposed
the Vector Trust model [15,16] that allows evaluating and reasoning about trust over
the three variables knowledge, experience and recommendation. Since trust is evalu-
ated from multiple angles in this model, the bias of an untrustworthy recommender is
considerably mitigated. Both the external source trust hierarchy approach as well as the
Vector trust-model approach will increase the belief in the evaluation of the informa-
tion sources. However, an extra evaluation of the external sources will no doubt add
time and cost complexity to the evaluation. In practice, one can be pragmatic and use
experts that one already has an established trust relationship with. This is a decision that
must be taken in each case, depending on whether there are experts available that can
act as external sources and the budget, time and resources available.

A second concern which is very typical in reputation systems is the possibility that if
the attackers are familiar with the trust system or aggregation algorithm, then they may
try to manipulate the final results in ways such as those discussed in [43,44]. However,
ours is not an online user opinion scheme unlike other such systems. Thus, the manipu-
lation of external sources in our approach Honeypots and IDSes cannot be automated
in the manner discussed in [43,44]. In addition, assuming that these sources can be ma-
nipulated, the evaluation is not done on the information from these sources but rather
on the sources themselves. Since the information is gathered by trained human beings
and not by automatons such manipulations can be easily detected. It is critical that the
human beings used to evaluate the Honeypots and IDS are in fact knowledgeable and
have experience with IDS and can account for the problem of false alarms and false
positives for the particular IDS. The information aggregation is done automatically by
the BBN topology; however, this tool is not remotely accessible and hence cannot be
manipulated.

8 Conclusion and Future Work

Security evaluation is inherently difficult. There have been several attempts over the
past decade but still no wide-spread industry-adopted standards or best practises are
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at hand. This article addresses parts of the gap, in particular the challenges related to
lack of resources, short time-to-market, limited budget, lack of empirical information,
and variable quality of information. Our approach to security evaluation or security
level evaluation is a BBN realization of a trust-based security level evaluation approach.
The approach derives the security level of a security solution, system or parts thereof,
resulting in quantifiable and comparable security level expressions. An earlier version
of the approach was presented in [45]. Our approach is an alternative to traditional
evaluation approaches, such as that of ISO 14508, the Common Criteria.

The approach is built on the principles of performance-based expert aggregation
techniques and is an information source ability based aggregation technique where abil-
ities are measured in terms of information source trustworthiness. Our approach allows
the company performing the evaluation, to exercise additional control of the informa-
tion provided. This is in contrast to current trends where the company hires consultants
who provide information and input to the evaluation. Moreover, as it is the sources of
information and not the information themselves that are evaluated, the company can
reuse such evaluations.

The implementation of the model as a BBN topology makes our approach scalable.
BBN has the ability to store experience and to update this experience simply by in-
serting the new or available information at the observable nodes in the BBN topol-
ogy. The computation (evidence propagation) is handled by the computational engine
in HUGIN. It splits the conditional probability graph into independent computational
subtrees, computes these in parallel and then aggregates over the result. This makes it
possible to work with multiple variables, multiple information sources, hierarchy of ex-
ternal sources, and complex probability relations. Furthermore, as the various models
of our approach (described in Section 4) are deployed directly in the BBN topology,
these are not computed manually but automatically by inserting information about ex-
pertise and knowledge of information sources into the relevant parts of the topology. In
fact, it is possible to directly observe how specific information on expertise and knowl-
edge affects the overall trustworthiness of an information source. As trustworthiness is
computed separately from the evaluation of the security level, it is possible to directly
observe the effect on the security level estimate from information of particular informa-
tion sources. This also gives the analyst or decision maker the ability to identify missing
information and understand how it affects the resulting security level estimate. In the
absence of BBN implementation, we would have to manually insert information, and
perform computation and what if analysis, thus reducing the scalability.

We have demonstrated the approach for evaluating two alternative DoS solutions.
These two DoS solutions are well known and so are their advantages and weaknesses.
This way we have been able to use empirical data and observations made on the two
solutions, to argue about the outcome of the evaluation using our approach. (We have
also used this example in earlier related publications [45,46]. Thus readers can eas-
ily see how the approach has evolved over time.) The example shows how to derive
the trustworthiness scores of information sources and how to use these trustworthiness
scores to derive the security level for each alternative solution. Our model determines
the trustworthiness using two trust variables: (1) knowledge level and (2) expertise level,
measured in terms of knowledge score and expertise score, respectively. The two scores
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are derived using associated score models, and then combined into a trustworthiness
score.

However, the resulting security level prediction is highly sensitive to the models
involved in deriving the information source trustworthiness scores (presented in Sec-
tion 4), as the trustworthiness scores are the information aggregation constraint. It is
therefore important to ensure accurate and representable trustworthiness scores. Our
case studies show that the knowledge and expertise score models covers a significant
range of relevant calibration variables to evaluate information source trustworthiness.
There is, though, room for improvement and for extending the categories of informa-
tion source calibration variables beyond knowledge and expertise, and to continuously
evaluate and improve the representation of the relationship between these. This is the
underlying reason for implementing the approach as an BBN topology and for using the
HUGIN tool, as the HUGIN tool offers the ability of structural learning capability to
construct the BBN topology, in addition to the ability of BBN to reason over uncertain
and incomplete information. The structural learning capabilities enable us to evolve the
approach as new experience is gained. This means that the implementation has evolved
based on current experience and that it will continue to evolve by absorbing experience
data as it becomes available.

Evaluation of the effectiveness of the approach is best done by applying it in a real
world industrial security evaluation study. However, before this can be achieved the in-
dustry needs to be convinced that taking part in this study will benefit it. Towards this
end, we have made a series of demonstration projects. The largest demonstration made
has been on the evaluation of the security level of a machine-to-machine (M2M) plat-
form. We have also deployed the approach in a security investment support prototype
called SecInvest (see [47]). In SecInvest, the goal is to enable aggregation of disparate
information in a trustworthy and efficient way. In practice, experts provide information
and input to security level evaluations and companies often hire security consultancy
services for such work. Our approach enables the company to do so, and at the same
time allows the company to exercise additional control of the information provided. As
it is the sources and not the information itself that is evaluated, such evaluations can
be reused (which makes sense as companies tend to use the same consultancy company
several times, sometimes even on a regular basis). This (reusability) makes our approach
effective and enables it to scale as the complexity of the problem context and the num-
ber of information sources grows. It is the design choice of evaluating the sources that
differentiates our approach from similar approaches developed in the safety domain (so
far, no similar information aggregation approach exist in the security domain), making
it more effective to use in practice.

Future work includes controlled experiments, and eventually a industrial-scale case
study, to gain realistic experience with the current version of the trust-based security
level evaluation approach and in particular to investigate the relation between the vari-
ables used to assess the knowledge and expertise level of an information source. The
result of these will be used to evolve the BBN topology to even better reflect the factors
involved when choosing between security solutions, which are not known at the current
time but that can be observed over time. Furthermore, the approach is part of a larger
trust-based information aggregation approach that takes more trust variables and trust
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relationships into account when combining information. This includes, among others,
an information source trust hierarchy and external sources X and Y hierarchies.
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Abstract. Many of the current electronic systems embedded in a SoC (System-
on-Chip) are used to capture, store, manipulate and access critical data, as well as 
to perform other key functions. In such  a scenario, security is considered as an 
important issue. The Network-on-chip (NoC), as the foreseen communication 
structure of next-generation SoC devices, can be used to efficiently incorporate 
security. Our work proposes the implementation of QoSS (Quality of Security 
Service) to overcome present SoC vulnerabilities. QoSS is a novel concept for 
data protection that introduces security as a dimension of QoS. In this paper, we 
present the implementation of two security services (access control and authenti-
cation), that may be configured to assume one from several possible levels, the 
implementation of a technique to avoid denial-of-service (DoS) attacks, evaluate 
their effectiveness and estimate their impact on NoC performance. 

Keywords: Network-on-Chip, System-on-Chip, Quality-of-Security-Service, 
Security, Performance. 

1   Introduction 

Embedded electronics applications are characterized by a set of ever increasing re-
quirements, demanding more functionality, efficiency, portability, flexibility and 
resource sharing [1]. Many of the current electronic systems embedded in a SoC (Sys-
tem-on-chip) are used to capture, store, manipulate and access sensitive data and 
perform several critical functions without security guarantee. The SoC is a computa-
tional system integrated into a single chip. The challenge is to provide SoC security 
features that result in a trustworthy system that meets the security and performance 
requirements. 

SoC design is characterized by two design strategies: meet-in-the-middle that  
combines top-down and bottom-up design strategies and orthogonality that splits the 
SoC design into communication structure and computation structure design. The 
communication structure can be based on different physical structures: crossbar, bus 
or network-on-chip (NoC). The physical structure type selection is carried out de-
pending upon to system requirements. This paper addresses the design of a NoC-
based communication structure. As the number of IP (Intellectual Property) cores 
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integrated on a single system-on-chip (SoC) has been growing, NoCs are becoming 
prevalent as the on-chip communication structure. An NoC is an integrated network 
that uses routers to allow the communication among the computation structure com-
ponents. As security requirements vary dramatically for different applications, differ-
ent levels of security services are necessary. The ability of a distributed system to 
provide services such that application requirements for timeliness and performance 
quality are met is called QoS (Quality of service). 

Current pervasive computing and flexibility in SoC design trends promote resource 
sharing and upgrading capabilities that integrates the SoC onto an aggressive world. 
SoCs can be subject of several kinds of attacks. One of the most obvious threat to SoC 
security during its normal operation occurs at its interface to external devices, fre-
quently involving reconfigurable devices or wireless communication IPs embedded 
onto the SoC. It is possible that during SoC operation vulnerable IPs fall under control 
of an external attacker. Thus, these IPs may become malicious. Under the attacker 
control, they may try, for example, to obtain sensitive information, like passwords or 
FPGA (Field-Programmable Gate Array) bitstreams, stored inside the SoC and to 
send it to the external world. An interface IP may also become a door by which vi-
ruses enter the SoC.  It is reported that previous attacks to SoCs have succeeded [2]. 
An IBM report [3] estimates an exorbitant increasing of computer attacks and foresee 
the embedded devices as the future targets of such attacks. Embedded attacks will 
cost billions of dollars [4].   

Our work proposes the implementation of QoSS (Quality of security service) to 
overcome present SoC vulnerabilities. QoSS is a novel concept for data protection 
that introduces security as a dimension of QoS. In contrast with previous works,  
different security levels deployment allow a best trade off of system security and 
performance requirements. QoSS uses a Network-on-Chip (NoC) to provide predict-
able security levels of the system by adding functionality to the routers of the network 
and consequently changing some local configuration parameters or modifying the 
network interfaces. QoSS take advantage of the NoC wide system visibility and criti-
cal role in enabling system operation, exploiting the NoC to detect and prevent a wide 
range of attacks.  

The goals of our work are: 1- to provide two security services (access control and 
authentication) that avoid modification and extraction attacks, 2- evaluate its effec-
tiveness and 3 - estimate its impact on NoC performance. Each security service offers 
four security levels: level L0 (no security) to level L3 (maximum security). All of 
them were implemented in two alternative ways: at the NoC interface and within the 
routers. The access control service works as a firewall module. Flow control was 
modified to manage packet accesses using a table which contains the access rights of 
each SoC computation component. A higher security level has a larger table, allowing 
the verification of more packet characteristics (source, type of operation and master 
role).  The authentication service verifies source integrity. Router architecture was 
modified in order to certify the information transfer through the addition of a code 
into the packets. We developed an algorithm that uses the routing technique informa-
tion to determine the correct master-slave path and compares it with the route trace 
inserted into the packet by the routers. A higher security level also allows verification 
of a sequential counting of the number of transactions between a master-slave pair 
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inserted into the packets. Experiments were performed using a SystemC-TLM 
(Transaction Level Model) timed simulation framework. It automatically carries out 
performance evaluations for a wide variety of traffic conditions (hot spot, transpose 
and uniform traffic patterns) for different NoC configurations.  

The remaining text is organized as follows: Section 2 presents an overview of pre-
vious NoC security works. Section 3 presents the main concepts of NoC security. 
Section 4 presents the NoC architecture. TLM framework used to evaluate the NoC is 
described in Section 5. Section 6 shows our experimental results. Finally we present 
our conclusions in Section 7. 

2   Previous Works 

Security-aware design of communication architectures is becoming a necessity in the 
context of overall embedded SoC/device security. However, security integration at 
SoC communication structure remains, so far, mainly unexplored. Communication 
infrastructure such as NoC may contribute to the overall security of the system, pro-
viding the ideal mean for monitoring systems behavior and detecting specific attacks 
[5,6]. Security in systems adopting NoC paradigm has been only recently addressed 
by the community [7-10].  

The work presented in [7] proposes a security interface. The NoC security mecha-
nism is implemented at NoC interface in order to ensure the secrecy of exchanged 
information through the utilization of cyphering techniques. The proposed mechanism 
ensures that no unencrypted data leaves the NoC. A key-keeper secure core is respon-
sible to key distribution on the NoC. New keys can be downloaded and stored in a 
key-keeper core through encryption techniques. The work presented in [8] proposes 
the first solution to secure a reconfigurable-based NoC. This system integrates secure 
network interfaces, for filtering possible denial-of-service attacks, and a secure net-
work manager, in order to monitor the NoC behavior. [9] identifies denial-of-service 
(DoS), draining, extraction of secret information and modification as the most com-
mon NoC attacks. They propose the implementation of an Address Protection Unit 
(APU) at NoC interface that enforces access control rules. They specify how a com-
ponent of the NoC can access the protected device. In [10] the principles of [9] are 
adopted to develop a Data Protection Unit (DPU) for MPSoCs. 

These previous works [7-10] present two main limitations. 1) they implement a 
single NoC security level through the integration of a security manager core and the 
increase of the functionality of network interfaces. However, they do not take advan-
tage of all the distributed property of the NoC structure. 2) they do not evaluate the 
effect of security mechanism upon NoC performance. The purpose of our work is to 
overcome these two limitations. 

3   SoC Security Challenges 

Current SoCs are used to perform several critical functions. They are pervading our 
lives. However, SoCs can be subject of several kinds of attacks. Pervasive computing 
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and flexibility trends in SoC design promote resource sharing and upgrading capabili-
ties. Such characteristics introduce the computational system encapsulated in a chip 
(SoC) onto an aggressive and dangerous world. Many SoCs interact with other elec-
tronic devices, in many cases wirelessly.  By interacting with other digital devices, a 
SoC may receive viruses (or other similar malicious pieces of code). Among the mo-
tivations for someone to attack a SoC, we underline three examples: 1) Economical 
gain by obtaining confidential information  (e.g. passwords, IP bitstreams) stored in a 
SoC; 2) Reputation: a hacker may attack a SoC by viewing this action as a personal 
challenge; and 3) Vandalism: the purpose is to cause loss or damage to an SoC.  
Viruses may be used for this purpose. 

4   NoC-Based Security 

4.1   NoC Architecture 

An NoC is an integrated network that uses routers and links to provide communica-
tion among processing SoC units.  It also has an interface that implements the com-
munication protocol. The NoC design flow is composed of 3 phases [11-12]: 1) NoC 
specification, whose characteristics result from the SoC communication requirements 
(IP types and number, communication protocols, network interface); 2) NoC global 
(NoC topology, size and mapping) and local (link width, buffer allocation, flow con-
trol, routing technique, arbitration mechanism) parameters instantiation; and 3) NoC 
evaluation, checking if the NoC meets communication requirements. If the NoC in-
stance does not meet the requirements, phases 2 to 3 have to be repeated. Security 
implementation is also introduced in phases 2 and 3 of NoC design (shaded regions in 
Figure 1).  The NoC router defines the path that data must follow through the network 
from the source to the destination.  

The communication structure has become the heart of the SoC [11]. It has a  
significant impact on overall SoC design. The wide system visibility turns NoC secu-
rity implementation advantageous compared to security implementation at the compu-
tation structure [7,8]. NoCs could monitor data exchange, detect violations, block 
attacks and provide diagnostic information for triggering suitable response and recov-
ery mechanisms. However, NoC-based systems can be subjected to attacks addressing 
their specific structure [8]. These attacks may succeed depending  on vulnerabilities in 
NoC design, configuration and implementation. A NoC attack is defined by [9] as any 
unauthorized attempt to access or to use the network resources.  According to the 
purpose of the attacks, they can be classified in three categories: 1) Extraction: unau-
thorized reading of critical data that is being exchanged through the network from/to a 
secure target; 2) Modification: unauthorized change of critical data. Includes writing 
actions, state modification, data creation or removal; and 3) Denial of Service, whose 
aim is to bring down the system performance. In order to prevent and to mitigate 
attacks to the NoC, security services can be implemented.  
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Fig. 1. NoC design Flow 

The main function of security services is to protect network resources and data ex-
changed by means of communication management [9,10].  There are six security 
services [10]: 1) Confidentiality: ensures the data secrecy; 2) Integrity: assurance that 
data are identically maintained during any operation; 3) Authentication: validating the 
sender IP integrity; 4) Access Control: allowing or denying the use of a particular 
resource; 5) Availability: ensuring the use of the network resources; and 6) Non-
repudiation: maintains evidence of NoC communication events. In this paper we do 
not address confidentiality and integrity security services. They can be handled with 
complementary cyphering techniques [13]. We address access control and authentica-
tion services in order to neutralize extraction and modification attacks.  The imple-
mentation of security services increases the complexity of the NoC. Optimal NoC 
configuration demands a deep exploration of the wide NoC design space.  

4.2   QoSS (Quality-of-Security-Service) 

The traffic of a single embedded application may integrate several flows, each of 
which characterized by different security requirements.  The QoSS concepts allow 
differentiated treatment to data exchange carried out through the NoC. The advantage 
of the use of QoSS is the adoption of different security levels.  Each level represents a 
tradeoff between security and performance.  The QoSS concept can be implemented 
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by adding functionality to NoC routers and consequently changing some local con-
figuration parameters or modifying network interfaces. Different security levels are 
implemented through security mechanisms.  

In this work, we study two alternatives to implement security services: 1- At the 
NoC interface and 2- inside the routers of the NoC.   Our work assumes a network 
interface compliant with the specifications of the OCP/IP (Open Core Protocol) inter-
face. Messages coming from the computation structure component are translated by 
the interface into packets compliant to the protocol used within the NoC. The adopted 
OCP compliant NoC packet format (see Figure 2) is composed of 9 fields. 

 

Fig. 2. NoC packet structure 

● Source: Identifies the master component. It is the initiator of the  
communication.  

● Destination: Identifies the slave component. It is the target of the  
communication.  

● Operation: Codes the transaction type, i.e. a read, read-linked, read-
exclusive, write, write-non-post, write-conditional, and broadcast.  

● Type: Defines the information type that is being exchanged, i.e. data, instruc-
tion or signal types. 

● Role: Represents the role of the initiator component. i.e. user, root. The roles 
are defined by the security policy of the system.  

● Priority: allows traffic priority classification.  
● Size: Defines the number of bytes contained in the payload of the packet.  
● Payload: Embodies the information generated by the master. 
● Terminator: Register the path of the packet through the NoC and the sequen-

tial number of this packet in the current transaction between this master-
slave pair.  

 

Our security mechanisms make use of information embodied within the packet to 
perform access control and authentication on the packet arriving at 1- the NoC inter-
face or 2- the router. The description of the mechanisms and the results of their effec-
tiveness and performance are presented at the next sections. 

4.3   Access Control  

Shared resources of the NoC can be targeted by intruders (unauthorized access) 
whose purpose is to modify the system status, compromising the correct execution of 
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software, or reading confidential data. Such attacks can be carried out by means of 
writing or reading operations [9]. The access control service works as a firewall mod-
ule. This service is implemented through a filter component.  It regulates NoC traffic, 
allowing or denying data exchange between a master-slave pair based upon a set of 
rules. The control flow was modified to manage packet accesses by using a table 
which contains the access rights of each SoC computation component. Table 1 shows 
the different access control levels. A higher security level has a larger table, allowing 
the verification of more packet characteristics (source, type of operation and master 
role). The filter module can be easily modified to implement different security levels. 
This module specifies the way by which each master component can access a slave. 
The filter component checks the source, role, destination and operation fields of the 
packet and verifies them consulting the rules embodied into a table (see table 2). It 
allows the verification of the rights of master M (source, role) over the slave S (desti-
nation) and allows or blocks the requested transaction (operation). Additionally, our 
mechanism verifies the existence of the message destination and that the master and 
slave components have not identical NoC addresses. Such characteristic avoid possi-
ble DoS attacks through livelock, characterized by the insertion of a packet that  
cannot reach its destination, and draining attacks, which is characterized by the inten-
tional wasting of NoC resources. 

Access control at the interface: The access control service is implemented at the 
slave interface. It examines the information embodied at the packet and verifies if the 
incoming packet satisfies access rules specified for each slave. Unauthorized packets 
are discarded.   

Table 1. Access control levels 

Level Source 
Verification 

Operation 
Verification 

Role 
Verification

L0    
L1 X   
L2 X X  
L3 X X X 

Table 2. Example of filter utilization 

Master Role Slave 1 Slave 2 Slave 3 
Master 1 User Read - - 

 Root Write Read Read/Write 
Master 2 User - Read/Write - 

 Root Read Write Read 

 
Access control at the router: The NoC uses a deterministic routing algorithm  

to route the packets. This implies that the path for each communication flow is  
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predictable. At each router, it is specified the portion of the total NoC traffic that is 
allowed to communicate according to its destination field. The size of the table im-
plemented by the filter component depends on router localization and the routing 
algorithm.  This strategy is the first attempt to implement a distributed access control 
over the NoC. Its advantage is the elimination of unauthorized packets sooner inside 
the communication path, avoiding bandwidth wasting.  

4.4   Authentication  

After access control process is finished, the authentication security service verifies the 
integrity of the source of critical data. It does this by checking if the route taken by 
the packet is consistent with the source IP field contents. For this purpose, a routing 
trace is embodied at the terminator field of the packet. This field contents are altered 
by the routers along the communication path of each packet. In this process, when a 
packet traverses a router, the packet terminator receives this router signature. A 
simple strategy to do this, adopted in this work, is to use a trace field containing R 
bits, where R is the number of routers in the NoC.  Our experiments have been carried 
out using a 4x4 NoC, having thus R=16 routers and using a trace field containing 16 
bits. The routers are numbered from 0 to (R-1). To each router r corresponds the bit in 
the trace field whose position inside the field is also r. When a packet enters the NoC, 
all of the bits of its trace field are equal to 0. Each time the packet crosses a router, 
this router makes its corresponding bit in the trace field equal to 1. Then, at the end of 
the route, the packet terminator reveals the complete path that has been taken by the 
packet, indicating with 1 which routers have been crossed by the packet and with 0 
which have not. By knowing the NoC topology, the slave can deduce what is the true 
packet sender and thus it can verify if the alleged source is in fact this sender. For this 
purpose, the slave NI has a table containing the expected value for the trace field 
coming from each possible master. In the case of a mismatch (i.e. the trace field does 
not correspond to the expected one) the packet is discarded. This strategy makes very 
difficult to a malicious master to successfully send a packet as it would be another 
master, because the contents of the trace field are determined by the routers after it is 
sent by the master, preventing that they remain under the master control. Table 3 
shows the different authentication levels. 

Table 3. Authentication levels 

Level Source 
Verification 

Path 
Calculation 

Master-Slave 
Verification 

L0    
L1 X   
L2 X X  
L3 X X X 
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Each master-slave pair may also keep track of the sequential number of its transac-
tions. In this case, this sequential number is also included in the terminator. The slave 
then verifies if the transactions occur according to the expected numbering. To over-
come this feature, an intruder would have to know the current expected sequential 
number of the transaction of the master-slave pair it intends to attack. A packet whose 
sequential number differs from the expected one is discarded. 

5   NoC Evaluation 

Experiments were performed using a SystemC-TLM (Transaction Level Model) 
timed simulation framework [14]. Our model automatically carries out performance 
evaluations for a wide variety of traffic conditions (hot spot, transpose and uniform 
traffic patterns) for different NoC configurations (see Figure 3). 

5.1   Traffic Generators  

Application specific traffic generators were used to emulate the behaviour of master 
IPs. During SoC operation, they have established different application dependent 
traffic conditions. In order to achieve a broad performance evaluation coverage we 
adopted two types of application independent traffic generators: 1) parametric and 2) 
pseudorandom. 

In this process, in order to simulate attacks, each time a master had to initiate a 
transaction, a random number p uniformly distributed between 0 and 1 has been gen-
erated inside this master, to decide if it should act as a malicious one by faking its 
identity. In order to maintain the frequency of attacks at reasonable values (the major 
part of the communication events should not be attacks, but several attacks must oc-
cur to validate the adopted security schemes), the probability of a master have lied 
about its identity have been maintained below 5% (0 < p < 0.05). In order to verify the 
system reaction to denial of service attacks, during simulation masters have sent some 
packets to nonexistent slaves (to nonexistent addresses) or to themselves. By doing 
this, an attacker may expect that these packets will run indefinitely inside the  
NoC, consuming its resources, causing congestion and wasting energy. The traffic 
receptors emulate the behavior of slave IPs. They confirm the reception of the correct 
information. 

5.2   Network-on-Chip 

In order to perform NoC evaluation, a communication model has been developed. 
This model allowed us to analyze both the global as well as the inner behav-
ior/performance of the NoC. Information flows through an NoC as packets. A packet 
is composed of headers, a payload of arbitrary size and a trail. A packet can be de-
composed into smaller sized information called flits.  
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Fig. 3. TLM NoC evaluation framework 

The exchange of information between any master-slave pair of IPs is carried out 
through data commutations (switch information at each router). In our work, each 
communication exchange is modeled as the set of events shown in Figure 4, in which 
communication exchange is composed of two commutations at routers r and r+1. 
Each line represents a packet commutation composed of the events: filtering (FIL), 
authentication process (ANA), store (STO), arbitration (ARB), switching (SWI), send 
header flit (HDR), sent the set of payload flits (PAY) and packet marking (MAR). 

 

Fig. 4. NoC communication model 

5.3   Monitor  

Monitors annotate communication events. This information is employed to calculate a 
set of performance metrics. There are 2 global metrics: 1) NoC latency (cycles) de-
fined as the average time required to complete the data exchange; 2) NoC power, 
composed of the links, interfaces and routers power. There are 3 inner metrics: 3) 
Average number of routers to complete a transaction (routers), defined as the number 
of routers required to commute a packet from its source router (RS) until its destina-
tion router (Rd); 4) Router/Interface utilization rate, that expresses the percentage of 
packet commutations performed by each router R/ interface I during simulation time; 
 



 Implementation of QoSS for NoC-Based SoC Protection 197 

 

and 5) Channel utilization rate, that expresses the percentage of the simulation time 
that each channel is keeping busy.  

6   Results 

Figures 5 to 10 show the average packet latency and NoC power results of a 4x4 
mesh-based NoC by adding each service separately and when the two security ser-
vices were implemented simultaneously. Each value of the Figures 5 to 10 corre-
sponds to the average obtained after 50 simulations and 95% as confidence interval. 
The NoC uses a XY routing scheme, round-robin (RR) arbiter and FIFO memory 
organization. 

The average packet latency corresponds to the average amount of cycles required 
to complete a transaction. The NoC Power (PNoC) is the sum of links power (PLi), inter-
faces power (PInt) and routers power (PRi) due to transaction completion. PNoC is given 
by equation (1) [16]. PLi and PRi are proportional to the channel utilization rate and 
router utilization rate respectively. 

  
                                    PNoC = PLi + PInt + PRi                                                                   (1) 
  

For this study, we developed power models for the main components in the NoC ar-
chitecture. We integrated these models into the simulator, taking the architectural and 
technological parameters into account. The characterization was made under the 0,25 
μm process constraints, 2.5 volts as a power supply and a 25º temperature. Our power 
estimation strategy is based on identifying the activity of each NoC component. In 
order to fulfill this task, the monitor annotates the communication events on the NoC. 
At the end of the simulation, the number of activity occurrences is obtained for each 
NoC component. A power consumption cost is also evaluated for each activity. At the 
end of the simulation, the activity occurrences of each component are used to calcu-
late the total power dissipation. 

We evaluate both security implementation alternatives, at network interface (A1) 
and at the routers (A2). The performance evaluation was based on three traffic pat-
terns: 1) Hot spot (each master has a preferential slave to communicate); 2) transpose 
(each (x,y) node communicates with its corresponding (y,x) node); and 3) pseudo-
random (NoC nodes communicate according to the uniform distribution). These pat-
terns were used as NoC benchmarks in previous works [15]. Each traffic pattern is 
composed five flit size packets of three types: real-time, write or read and signalling, 
characterized by a different generation rate (40.000, 160.000 and 20.000 packets per 
second respectively). The percentage of critical data varied from 30% to 70% of the 
total amount of NoC traffic.  

We compared the performance of an NoC with QoSS and a best-effort NoC. Aver-
age latency penalties due to security implementation at the interface (16%) were 
greater than those obtained by implementation at routers (9%). It was observed that in 
simulations for the latter case, latency penalties were amortized along the communi-
cation path. The security functionality did not block the routers, so that, the temporary 
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gap due to security functionality was used to commute other packets.  Such behavior 
helped to reduce average NoC latency. As the percentage of critical packets increases, 
differences between the latency penalties of the security implementations at the inter-
face and at the routers became gradually smaller. This is due to the fact that security 
actions taken at the routers cause less performance penalties because they take advan-
tage from pipeline characteristics of NoC operation, but an increase in critical traffic 
increases packet queues waiting for security treatment at each router, attenuating 
pipeline advantages. Average power penalties for the interface and router security 
implementation are 13% and 5% respectively. 

A master network interface links each master component to the NoC. When the 
NoC identifies a fake packet at a master network interface, the waste of NoC re-
sources is avoided, by immediately discarding that packet. Such mechanism reduces 
NoC latency and NoC power consumption because no extra commutations at routers 
must be performed. The percentage of the latency and power savings depends on the 
relative location of the master and slave components on the NoC and on traffic pat-
tern. The average percentages for these savings of latency for 3 traffic patterns (hot 
spot, transpose and pseudo-random) are 33%, 19% and 13% respectively. The savings 
for the hot spot case are the largest because in such traffic pattern most of the packets 
are competing for the same NoC resources. Early discarding the fake packets reduces 
NoC congestion. Inversely in the pseudo-random traffic pattern, the larger variety of 
alternative paths taken by packets through the NoC naturally reduces NoC congestion. 
Therefore, early discarding fake packets has less effect on NoC overall latency. The 
averages for NoC power savings are 21%, 16% and 14% respectively.   In the case of 
hot spot traffic pattern, the savings are tightly determined by the proximity of the 
master that is producing the fake packet to the hot spot of the NoC. For sources close 
to the hot spot, we achieve saving up to 45% for latency and 27% for power. Results 
show that security implementation at the routers of the NoC is more efficient than the 
implementation at the interface. Access control and authentication services always 
increase NoC latency and NoC power consumption.  

 

Fig. 5. NoC latency results for access control service 
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Fig. 6. NoC power results (access control) 

 

Fig. 7. NoC latency results (authentication) 

 

Fig. 8. NoC power results (authentication) 
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Fig. 9. NoC latency results (access control and authentication) 

 

Fig. 10. NoC latency results (access control and authentication) 

7   Conclusions 

In this work we proposed the implementation of two security services: access control 
and authentication.  We adopt the QoSS concept, that allows the implementation of 
different security levels. Our work shows that NoC-centric security may take advan-
tage of the distributed property of the NoC.  Results show that the inclusion of  
security issues in an NoC implies a tradeoff between trustworthy and performance. 
The inclusion of QoSS concept allows the designer to select the more suited among 
different security levels in order to satisfy both, security and performance require-
ments. Currently we are implementing cryptographic techniques to our NoC mecha-
nism in order to guarantee its security.  As a future work, we will study different 
techniques that allow an improvement in the implementation of the proposed security 
mechanisms. 
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Abstract. Non-repudiation is a very important requirement of sign-

cryption. It ensures that a sender cannot deny the fact that he has sign-

crypted a message. Non-interactive non-repudiation enables a receiver to

settle a repudiation dispute with the help of a judge without the need to

engage in costly multi-round interactive communications with the judge.

In this paper, we strengthen Malone-Lee’s security model for signcryp-

tion with non-interactive non-repudiation by introducing two additional,

more subtle and useful security requirements, one about the unforgeabil-

ity and the other about the confidentiality of non-repudiation evidence.

A further contribution of this paper is to design a concrete signcryp-

tion scheme that admits provable security without random oracles in

our strengthened security model for signcryption.

Keywords: signcryption, non-repudiation, public key cryptography, non-

interaction, random oracle, bilinear map.

1 Introduction

Asymmetric encryption and signature are two basic primitives in public-key
cryptography. They provide us with confidentiality and authenticity indepen-
dently. When both functions are required, traditionally one has to carefully sign
and encrypt the data sequentially. In 1997, Zheng [26] proposed a new primi-
tive called signcryption. It combines the functions of both primitives with a cost
much less than the sign-then-encrypt (or encrypt-then-sign) method.

Let us consider a scenario where a sender signcrypts a message which is then
forwarded to a receiver. Afterwards the sender denies the fact. We note that in
the original signcryption, only the receiver can decrypt the signcryptext, that
is, he is the only one who can check the validity of the message. The challenge
the receiver faces is what he can do to ask a judge to help prove the fact, while
without revealing to the judge more information than that is required. Non-
repudiation is defined to guarantee that the sender cannot deny the fact that
the message is signcrypted by her in the first place.

One technique suggested by Zheng [26] is to rely on a judge who can be totally
trusted. In this case, a receiver simply gives his private key to the judge. The
judge can decrypt the signcryptext and verify the validity of the message by
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c© Springer-Verlag Berlin Heidelberg 2010



Signcryption with Non-interactive Non-repudiation without Random Oracles 203

making use of the receiver’s private key. A second technique suggested by Zheng
deals with a situation where the judge is not fully trusted. With the second
method, the receiver engages an interactive zero-knowledge proof protocol with
the judge. At the end of the execution of the protocol, the judge can make a
decision as to whether the signcrytext is indeed from the sender. Clearly, the
second method suggested by Zheng is not quite efficient in practice.

Bao and Deng [3] proposed a modified signcryption scheme, with the aim
of offering non-repudiation in a non-interactive way. With their method, when
there is a dispute on a message M and a signcryptext σ between a receiver R
and a sender S, the receiver R computes some non-repudiation evidence d, and
forwards (M, σ, d) together with the public keys (PKS , PKR) to a not necessarily
trusted judge. The judge can verify whether S has signcrypted M into σ for the
receiver R. However, it was later pointed out in [15] and [20] that the non-
repudiation evidence d would destroy the confidentiality of the message.

To address problems with Bao and Deng’s scheme, Malone-Lee [15] pro-
posed a new security model specifically for signcryption with non-interactive
non-repudiation (NINR). This model ensures that the exposure of evidence d
does not ruin the security of both confidentiality and unforgeability.

Our model. Now a natural question to ask is whether a signcryption scheme
in Malone-Lee’s model can be assured to be provably secure. We will show that
the answer to the question is unfortunately negative. The main reason for this is
that Malone-Lee’s model addresses only two basic security requirements, namely
confidentiality and unforgeability, which turns out to be inadequate to properly
define the model of signcryption with NINR. We now analyze it in greater detail.

First, it is required that a given piece of evidence d can help the judge make a
correct decision, especially when a given M is not the unsigncryption result of a
given σ. It turns out that Malone-Lee’s model does not provide this guarantee.
As an example we examine a signcryption scheme proposed by Chow et al [9].
Interestingly, although that scheme can be proved to be secure in Malone-Lee’s
model, a piece of not well-formed evidence d can lead a judge to incorrectly regard
a wrong message M ′ as being the unsigncryption of a signcryptext σ. To rectify
the above problem, we consider a new security requirement for signcryption
with NINR, namely soundness of non-repudiation. Fulfilling this requirement
will guarantee that a judge can always make a right decision.

Second, we observe that in some previous schemes, such as those proposed
in [17] [18] [14] [24], non-repudiation evidence d can be generated not only by
the receiver but also by the sender. That is to say, even if a judge is sure that a
signcryptext σ is in fact signcrypted from some message M , he still can not be
sure who generated this non-repudiation evidence d. This ambiguity can cause
troubles in many practical uses. As an example, consider a patient who receives
a signcrypted medical report from his doctor. If the patient is malicious, he can
generate a piece of well-formed evidence d, and then deliberately expose the
contents of the report to a third party. Latter, he claims that it is the doctor
who exposes his report to the third party, and asks for compensation. A judge
in this case will not be able to decide who, the patient or the doctor, is on the
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wrong side. Problems of similar nature may occur in many other situations, e.g.
military scenarios, on-line business transactions etc. In order to clarify the above
ambiguity, we consider an additional new security requirement, namely unforge-
ability of non-repudiation evidence, which guarantees that only the receiver can
generate valid non-repudiation evidence d.

Our scheme. Since the concept of signcryption introduced by Zheng [26],
a number of signcryption schemes with the property of non-interactive non-
repudiation [15] [17] [18] [9] etc. have been designed and proved secure in the
random oracle model [6] which assumes that certain functions, such as one-way
hash functions, output truly random values. While the random oracle model has
been a very useful tool in the field of provable security, no real hash function be-
haves like a random function. As a result, designing a signcryption scheme with
NINR that does not rely on a random oracle for its security is both attractive
in scholarly research and useful in practice. In the past few years, a number of
research papers e.g.[22] [23] [14] have been published on the topic of signcryption
without random oracles. However, according to the best of our knowledge, none
of these schemes is provably secure for non-interactive non-repudiation.

In this paper, we design a signcryption scheme with NINR that can be proved
secure without random oracles. Our signcryption scheme is based on the signa-
ture scheme of Boneh, Shen and Waters [8], and is very compact when compared
with the underling signature scheme. We will provide a specific efficiency com-
parison in Section 5.1.

Organization. The rest of the paper is organized as follows: We introduce some
preliminary facts in Section 2. In Section 3 we describe our model for signcryption
with NINR by defining the syntax, analyzing Malone-Lee’s model, defining four
security requirements, together with in depth discussions on core aspects of the
model. In Section 4, we construct a concrete signcryption scheme with NINR,
and prove that it is secure without random oracles. In Section 5, we discuss how
to improve the efficiency of the scheme together with its practical applications.
Finally, we draw some conclusions in Section 6. As a side contribution, we note
that our contruction can be turned into an even more efficient scheme when
random oracles are allowed. We discuss this in the appendix.

2 Preliminaries

2.1 Bilinear Maps

Throughout this paper we use the following standard notations on bilinear maps.
Let G and GT be two (multiplicative) cyclic groups of prime order p. Let g

be a generator of G. A symmetric bilinear map is a map e : G × G → GT with
the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: all u, v ∈ G satisfy e(u, v) 	= 1.
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2.2 Collision Resistent Hash Functions

Throughout this paper we use ε with an appropriate subscript to indicate a
negligible function that vanishes at least as fast as the inverse of a polynomial
in an appropriate security parameter.

A hash function H is said to be collision resistant if it is infeasible for an
adversary to find two different inputs m0 and m1 such that H(m0) = H(m1). A
more formal definition follows.

Definition 1. A hash function H is (t, εH)-collision-resistant if for any adver-
sary A running in time t, it has possibility at most εH in finding two different
inputs m0 and m1 such that H(m0) = H(m1).

We require two collision resistent functions with different ranges for their out-
puts. Specifically, let G and GT be two groups of prime order p. The first collision
resistent function H1 maps input from GT ×G×G to an element in Zp, and the
second resistent function H2 maps input from G to a string in {0, 1}n.

2.3 Discrete Logarithm Assumption

The discrete logarithm problem applies to mathematical structures called groups.
Let G be a group of prime order p, and g be a generater for G. We have the
following definition for the discrete logarithm (D-Log) assumption.

Definition 2. The (t, εDLog) D-Log assumption holds in G, if for any adversary
A, given a random element g3 ∈ G, running in time t, A has possibility at most
εDLog in finding an integer x ∈ Zp such that gx = g3.

2.4 Decisional Bilinear Diffie-Hellman (DBDH) Assumption

Let G, GT be groups of a same prime order p, g be a generater of G, and
e : G×G→ GT be a bilinear map. Choose a, b, c, k from Zp at random, and let

BDH = {g, ga, gb, gc, T ← e(g, g)abc},
Random = {g, ga, gb, gc, T ← e(g, g)k}.

The DBDH assumption claims that BDH and Random are indistinguishable.
For any adversary A, consider two experiments. A is given BDH in experiment
0, and is given Random in experiment 1. A’s advantage for solving the DBDH
assumption is

εdbdh = |Pr[A = 1 in experiment 0]− Pr[A = 1 in experiment 1]|.

Definition 3. The (t, εdbdh)-DBDH assumption holds, if any adversary A run-
ning in time t has advantage at most εdbdh in solving the DBDH assumption.
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3 The Proposed Model of Signcryption with NINR

3.1 Syntax of Signcryption with NINR

A signcryption scheme with NINR is composed of six algorithms. The first four
algorithms constitute a signcryption scheme, and the last two algorithms fulfill
the requirements of NINR.

– SetupPub(1η), run by a trusted party: Given a security parameter 1η, a
trusted party generates and outputs the system’s public parameter Pub.

– KeyGen(Pub, IDP ), run by every user: User P takes the public parameter
Pub as input, outputs a pair of private/public keys (SKP , PKP ).

– Signcryption(SKS, PKR, M), run by a sender: To communicate a message
M ∈ M (M is the message space) from a sender S to a receiver R, the
algorithm produces a signcryptext σ on M by using S’s private key SKS

and R’s public key PKR. The signcryptext σ is sent to R.
– Unsigncryption(SKR, PKS, σ), run by a receiver: Upon receiving a sign-

cryptext σ from S, the algorithm first checks whether σ is valid. It returns
a plaintext M if σ is valid, or a special symbol ⊥ otherwise.

– NR-Evidence-Gen(SKR, PKS , σ), run by a receiver: If σ is a valid signcryp-
text, the algorithm computes and returns a piece of non-repudiation evidence
d. Otherwise, the algorithm returns a symbol ⊥.

– JG-Verification (σ, M, d, PKS , PKR), run by a judge: Upon receiving a sign-
cryptext/message pair (σ, M), a piece of non-repudiation evidence d, a sender
S’ public key PK, and a receiver R’s public key PKR, the algorithm returns
a special symbol � if it is S who has signcrypted the message M into σ for
R, or a symbol ⊥ otherwise.

For consistency, we require that for all σ = Signcryption(SKS, PKR, M), we
should have M = Unsigncryption(SKR, PKS , σ).

For completeness, we require that for all signcryptext σ and all possible
d = NR-Evidence-Gen(SKR, PKS , σ), if M = Unsigncryption(SKR, PKS, σ),
then we should have � ← JG-V erification(σ, d, M, PKS, PKR).

Remark 1. The public parameter Pub is not explicitly taken as input to the
last four algorithms, since we assume that all the users in the system know Pub.

3.2 Analysis of Malone-Lee’s Model

We first review security models for regular signcryption. Baek et al. [8] proposed
a formal security model for signcryption in 2001. Independently of this, An et
al. [1] also came up with similar security models for signcryption. Both models
consider two security definitions, namely confidentiality and unforgeability. And
in the models of both papers, two factors are considered:

1. If there are only two users (a sender and a receiver) in the network, then it
is called a two-user setting; otherwise if there are many (more than two) users
in the network, then it is called a multi-user setting.
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2. If the adversary is a sender (in the attack game of unforgeability) or a
receiver (in the attack game of confidentiality) in the communication for chal-
lenge, then we call it an inside attacker setting. Otherwise, we call it an outside
attacker setting.

Melone-Lee’s model [15] is different from the widely used definitions proposed
by Baek et al. [8] and An et al.[1] in the following two aspects:

1. In Molone-Lee’s model, an adversaryA is able to get the value of evidence d
by asking for non-repudiation oracles. For each non-repudiation oracle, A makes
queries with a signcryptext σ together with a sender and a receiver’s public keys,
and receives as a return from the oracle a piece of corresponding evidence d.

2. Malone-Lee’s model is defined in a multi-user attacker setting, but the
basic underling security definitions are different from the definitions proposed
by Baek et al. [8] and An et al.[1]. For example, in the attack game (for either
confidentiality or unforgeability) with a multi-user inside attacker setting in [1]
and [8], the adversary is able to generate public keys for all users in the system
except the one who is an attack target. In comparison, with the attack game
(e.g. confidentiality) of Malone-Lee’s model, the adversary is given public keys
for all users in the system at the beginning. Afterwards, he chooses one of them
as his attack target. An advantage of Malone-Lee’s model is that the user (whom
the adversary will attack against) can be arbitrarily chosen by the attacker. But
the total number of all users in the system needs to be pre-decided, and the
public keys of all users should be pre-computed by the simulator. When there
are a large number of users in the system (which happens frequently in practise),
security bounds provided by the proof become less tight.

3.3 Security Definitions in Our Model

In our model, we will consider four security requirements, namely confiden-
tiality, unforgeability, soundness of non-repudiation, and unforgeability of non-
repudiation evidence. If a signcryption scheme with NINR can be proved secure
under the first three definitions, we say that it is SCNINR secure. If a signcryp-
tion scheme with NINR is SCNINR secure and can also be proved secure under
the definition of unforgeability of non-repudiation evidence, we say that it is
strong SCNINR secure.

Our definitions do not follow Malone-Lee’s model directly. Instead we mainly
refer to the basic definitions of [8] and [1] in a multi-user inside attacker setting,
together with Malone-Lee’s idea [15] of adding non-repudiation oracles in the
attack game.

Confidentiality. The attack game for indistinguishability of signcryption under
chosen ciphertext attack (IND-SCNINR-CCA) contains five steps as follows:

– Setup system: An adversaryA is given the system’s public parameter Pub ←
SetupPub(1η),anda challengeuserB’s publickeyPKB←KeyGen(Pub,IDB).
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– Oracles before challenge: A is able to ask for a number of signcryption,
unsigncryption and non-repudiation oracle queries associated with the chal-
lenge user B.
• For each signcryption oracle query, A generates a receiver’s public key

PKR, a message M ∈ M, and outputs (PKS , PKR, M) with PKS =
PKB. This oracle returns to A with σ ← Signcryption(SKB, PKR, M).
• For each unsigncryption oracle query, A generates a sender’s public key

PKS and a signcryptext σ, outputs (PKS , PKR, σ) with PKR = PKB.
This oracle returns toAwith the result ofUnsigncryption(PKS, SKB, σ).
• For each non-repudiation oracle query, A generates a sender’s public key

PKS , a signcryptext σ, and outputs (PKS , PKR, σ) with PKR = PKB.
This oracle returns to A with the result of NR-Evidence-Gen(PKS,
SKB, σ).

– Challenge: A generates a sender’s public key PKS∗ , and produces two equal
length messages (M0, M1) in M. A outputs (PKS∗ , PKR∗ , M0, M1) with
PKR∗ = PKB, then is returned with σ∗ ← Signcryption(SKS∗, PKB, Mγ),
where γ is randomly chosen from {0, 1}.

– Oracles after challenge: This step is the same as Oracles before challenge
step, except that A is not allowed to ask for an unsigncrypiton oracle query
or a non-repudiation oracle query on σ∗ with sender/receiver public key
(PKS∗ , PKR∗ = PKB).

– Guess: A outputs a guess bit γ′ for γ.

If γ′ = γ, then A wins the above attack game. We define the advantage for A to
win this game is ε = |Pr[γ′ = γ]− 1/2|.
Definition 4. The signcryption scheme with NINR is (t, qs, qu, qn, ε) IND-
SCNINR-CCA secure, if for running in time t, any adversary A who has asked
for signcryption oracle queries qs times, unsigncryption oracle queries qu times
and non-repudiation oracle queries qn times, has advantage at most ε in winning
the IND-SCNINR-CCA game.

Unforgeability. The attack game for strong existential unforgeability of sign-
cryption with NINR under chosen message attack (SEU-SCNINR-CMA) con-
tains three steps as follows:

– Setup system: The same as the Setup system step in the IND-SCNINR-CCA
game.

– Oracles: The same as the Oracles before the challenge step in the IND-
SCNINR-CCA game.

– Forge: A generates a receiver’s public key PKR∗ , and outputs a forged sign-
cryptext σ∗ on (PKS∗ , PKR∗) with PKS∗ = PKB.

If the following two conditions are both satisfied, then we say that A wins the
SEU-SCNINR-CMA game:

1. Unsigncryption(PKB, SKR∗ , σ∗) 	= ⊥;
2. σ∗ is not a result of any the signcryption oracle queries with sender/receiver

public key (PKS∗ = PKB, PKR∗).
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Definition 5. The signcryption scheme with NINR is (t, qs, qu, qn, ε) SEU-
SCNINR-CMA secure, if for running in time t, any adversary A, who has asked
for signcryption oracle queries qs times, unsigncryption oracle queries qu times
and non-repudiation oracle queries qn times, has possibility at most ε in winning
the SEU-SCNINR-CMA game.

Soundness of Non-repudiation. As we have described in the introduction,
soundness of non-repudiation should ensure a judge always make a right decision.
That is, if a given M is not the unsigncryption result of a given σ, the judge
should not let it pass the verification. We first give an intuition for the attack
game:

To achieve this goal, our attack game described below for the soundness of
non-repudiation assumes a very strong adversary A, who can generate all users’
public/private keys, including the challenge user B. Then in the challenge, A
asks for one signcryption oracle. He outputs (M, PKS), the signcryption oracle
returns a signcryptext σ = Signcryption(SKS, PKR = PKB, M). Finally, if A
outputs another message M ′(M ′ 	= M), and a piece of evidence d′ such that
JG-V erification(σ, M ′, d′, PKS, PKB) = �, then A wins.

In this attack game, we do not have oracle stages(as in pervious attack games),
since A is stronger than the attackers (in confidentiality and unforgeability). A
knows all users’ public/private keys, therefore, he can compute all the algorithms
in the scheme himself. Finally, if A wins, it implies the judge makes a wrong
decision.

This definition is similar to the definition of proof soundness in the model of
public-key encryption with non-interactive opening by Damgard et al. [11] and
Galindo et al. [12].

The game for the soundness of non-repudiation of signcryption with NINR
consists of three steps as follows:

– Setup system: First, the adversary A is given the system’s public param-
eter Pub. Then he generates a challenge user B’s public/private key pair
(PKB, SKB), and forwards (PKB, SKB) to the system.

– Challenge: In this stage, A has access to a signcryption oracle query once. A
generates a sender’s public key PKS and a message M ∈ M, then outputs
(PKS , PKR, M) with PKR = PKB to the signcryption oracle. Finally, A is
returned with σ ← Signcryption(SKS, PKB, M).

– Output: A outputs a message M ′ together with some non-repudiation evi-
dence d′.

If JG-V erification(σ, M ′, d′, PKS , PKB) = � and M ′ 	= M , then A wins this
game.

Definition 6. A SCNINR scheme satisfies (t, ε) computational the soundness
of non-repudiation, if any adversary running in time t has probability at most ε
in winning the above game where ε is negligible. If ε = 0, the SCNINR scheme
satisfies the perfect soundness of non-repudiation.



210 J. Fan, Y. Zheng, and X. Tang

Unforgeability of Non-repudiation Evidence. The attack game is similar
to the attack game of unforgeability in most stages, but is different in the forge
stage. The adversary’s object here is to forge a piece of valid non-repudiation
evidence on a new signcryptext.

The game for existential unforgeability of non-repudiation evidence in sign-
cryption with NINR under chosen message attack (EUF-NR-evidence-SCNINR-
CMA) contains three steps as follows:

– Setup system: The same as the Setup system step in SEU-SCNINR-CMA
game.

– Oracles: The same as the Oracles step in the SEU-SCNINR-CMA game.
– Forge: A generates the sender’s public key PKS∗ , outputs a message M∗, a

piece of non-repudiation evidence d∗, and a signcryptext σ∗.

A wins the game if JG-V erification(σ∗, d∗, M∗, PKS∗ , PKR∗) = � with
PKR∗ = PKB and A has never asked for a non-repudiation oracle query
or an unsigncryption oracle query on σ∗ with sender/receiver public key
(PKS∗ , PKB).

Definition 7. The signcryption scheme with NINR is (t, qs, qu, qn, ε) EUF-NR-
evidence-SCNINR-CMA secure if for running in time t, A has asked for qs

signcryption oracle queries, qu unsigncryption oracle queries, qn non-repudiation
oracle queries and has possibility at most ε in winning this game.

3.4 Adapt Our Model to Existing Schemes

When we adapt our model to existing schemes, we find out that some schemes
e.g. Malone-Lee’s scheme in [15] and the second scheme of Chow et al. in [9]
achieve the first three security requirements1, but no schemes can fulfill the
security requirement of unforgeability of non-repudiation evidence. The reason
why none of the existing schemes (including [15] and [9]) meets the last security
requirement is that, traditionally, the evidence d is secret information (normally
the Diffie-Hellman key) embedded by the sender to prevent other users except
for the receiver from verifying the regular signature of M . In this method, the
sender is the one who directly generates d, and the receiver can regenerate the
value of d indirectly. In other words, both the sender and the receiver hold d.
In signcryption, this results in an attack on the security requirement of unforge-
ability of non-repudiation evidence (as the sender can be a successful forger).
For example, the evidence in Malone-Lee’s scheme [15] is an element k2 which
can be generated by the receiver as well as the sender.

Our construction, which will be described in detail in the next section, is
different from the traditional idea. The generation of evidence d makes use of
the identity-based technique [7]. If one takes the receiver’s private key as a master
key of the public key generator (PKG), then d can be regarded as a private key
1 Since the proofs are long and can be readily derived from existing proofs of those

schemes, we omit them from this paper.
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of identity ID whose value is determined by the current signcryptext σ. The
judge decrypts σ by making use of d, and then checks whether it matches the
value of the given message M . Informally, since d can only be used to decrypt
σ rather than other signcryptexts, the exposure of d does not pose risks to
confidentiality. Furthermore only the receiver, who is the only one holding the
master key, can generate d. Therefore, the unforgeability of non-repudiation
evidence is also ensured.

4 The Proposed Signcryption Scheme with NINR

4.1 Construction

Our signcryption scheme with NINR follows the six algorithm approach we de-
fined in Section 3.1. We first describe the SetupPub algorithm, and then list
other algorithms in Table 1 and Table 2.

– SetupPub(1η) by Trusted Party:
On input a security parameter 1η, a trusted party runs the following steps:

1. Set up {G, GT , e, g}, where G and GT are groups of prime order p, g ∈ G

is a generator, and e : G×G→ GT is a bilinear map.
2. Set up {g1, g2, g3, u0, U}: Choose random elements g1, g2, g3, u0 from

G, and a random n-length vector U = (u1, ..., un) ∈ G
n. For each i

(1 ≤ i ≤ n), ui is a random element in G.
3. Set up two collision-resistent hash functions H1 and H2, where H1 :

GT ×G ×G→ Zp and H2 : G→ {0, 1}n.
The system’s public parameter is: Pub = {G, GT , e, g, g1, g2, g3, u0, U, H1, H2}.

For consistency, one can verify that

σ0/e(σ1, g
αR
1 ) = M · e(g1, gR)t/e(gt, gαR

1 ) = M.

For completeness, we have

σ0 · e(σ2, d2)
e(σ1, d1) · e(d3, gS)

=
M · e(g1, gR)t · e(gαS

2 (u0
∏n

i=1 uci

i )t, gr)
e(gt, gαR

1 · (u0
∏n

i=1 uci

i )r) · e(gr
2 , gS)

=
M · e(g1, gR)t · e(gαS

2 , gr) · e(u0
∏n

i=1 uci

i , g)t·r

e(g1, gR)t · e(g, u0
∏n

i=1 uci

i )t·r · e(gr
2, gS)

= M.

4.2 Security Proofs

Now we will prove that the above signcryption scheme with NINR is strong
SCNINR secure.
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Table 1. KeyGen& Signcryption & Unsigncryption Algorithms

KeyGen(Pub, IDP ) by User P :

1. randomly chooses αP ∈ Zp,

2. compute gP ← gαP ,

3. let the private key be SKP ← {αP },
4. let the public key be PKP ← {gP }.
Signcryption(SKS, PKR, M) by Sender S:

To signcrypt M ∈ GT to be communicated to receiver R, sender S
runs:

1. choose random elements t, s ∈ Zp,

2. compute σ0 ← M · e(g1, gR)t,

3. compute σ1 ← gt,

4. compute θ ← H1(σ0, σ1, gS),

5. compute z ← gθg3
s,

6. compute C ← H2(z), write as (c1...cn) ∈ {0, 1}n,

7. compute σ2 ← gαS
2 (u0

n∏
i=1

uci
i )t,

8. set σ3 ← s,
9. let the signcryptext be σ ← (σ0, σ1, σ2, σ3).

Unsigncryption(SKR, PKS , σ) by Receiver R:

To unsigncrypt σ from sender S, receiver R runs:

1. compute θ ← H1(σ0, σ1, gS),

2. compute z ← gθg3
σ3 ,

3. compute C ← H2(z), and write it as (c1...cn) ∈ {0, 1}n,

4. if e(σ2, g) �= e(g2, gS) · e(σ1, u0

∏n
i=1 uci

i ), return ⊥.

5. otherwise compute and return M ← σ0/e(σ1, g
αR
1 ).

Proof of Confidentiality

Theorem 1. The signcryption scheme is (t, qs, qu, qn, εH1 + εH2 + εDlog + (qu +
qn)/p+εdbdh) IND-SCNINR-CCA secure, under the (t, εdbdh) DBDH assumption,
the (t, εDlog) Discrete Logarithm assumption in G, and the assumption that the
hash functions H1 and H2 are (t, εH1) and (t, εH2) collision resistent respectively.

Proof of Theorem 1: We are going to use the game technique [19] to prove this
theorem. Throughout this proof, we will list six games, from Game 0 to Game 5.
All the games are executed between an adversary and a simulator. Game 0 is the
IND-SCNINR-CCA game defined above, and other games will be quite similar
to Game 0 in their overall structure, and will only differ from Game 0 in terms of
how the simulator works. The key point for the proof is that we want to make sure
that for each i (1 ≤ i ≤ 5), either Pr[γ = γ′ in game i] = Pr[γ = γ′ in game i−1]
or |Pr[γ = γ′ in game i]− Pr[γ = γ′ in game i− 1]| ≤ Pr[Fi] where Pr[Fi] is
a negligible value.

In order to analyze the value of |Pr[γ = γ′ in game i]−Pr[γ = γ′ in game i−
1]|, we need the following lemma whose proof can be found in [19]:
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Table 2. NR-Evidence-Gen & JG-Verification Algorithms

NR-Evidence-Gen(SKR, PKS, σ) by Receiver R:

To compute non-repudiation evidence d, receiver R runs:

1. steps 1-4 of Unsigncryption in Table 1,

2. choose a random r ∈ Zp,

3. compute d1 ← gαR
1 (u0

∏n
i=1 uci

i )r,

4. compute d2 ← gr,

5. compute d3 ← gr
2 ,

6. return d ← (d1, d2, d3).

JG-Verification(σ,M, d,PKS , PKR) by Judge:

To verify whether M = Unsigncryption(SKR, PKS, σ), the judge

runs:

1. steps 1-4 of Unsigncryption in Table 1,

2. if e(d2, g2) �= e(g, d3), return ⊥,

3. else if e(d1, g) �= e(g1, gR) · e(u0

∏n
i=1 uci

i , d2), return ⊥,

4. else if M �= σ0·e(σ2,d2)
e(σ1,d1)·e(d3,gS)

, return ⊥,

5. otherwise return 
.

Lemma 1. Let S1, S2 and F be events defined on some probability spaces. Sup-
pose that the event S1 ∧ ¬F occurs if and only if S2 ∧ ¬F occurs. Then

| Pr[S1]− Pr[S2] |≤ Pr[F ].

We are now ready to describe the six games.

– Game 0: This game is the usual game used to define IND-SCNINR-CCA
security. Therefore, the advantage for adversary A in winning the IND-
SCNINR-CCA game is

ε = |Pr[γ = γ′ in game 0]− 1/2|. (1)

– Game 1: Game 1 is the same as Game 0, except that the sim-
ulator keeps a list of data (σ0, σ1, σ3, θ, z, C, gS , gR) for all unsign-
cryption and non-repudiation oracles, and he also keeps the data of
(σ∗

0 , σ∗
1 , σ∗

3 , θ∗, z∗, C∗, yS∗ , yR∗) produced in the challenge oracle.
At the end of the step “oracles after challenge”, the simulator checks the

whole list to find out whether the following three cases happen:

• Case (1) (σ0, σ1, gS) 	= (σ∗
0 , σ∗

1 , gS∗), θ = θ∗;
• Case (2) θ 	= θ∗, z = z∗;
• Case (3) z 	= z∗, C = C∗.

If any one of the three cases happens, it aborts.

Analysis: For Case (1) and Case (3), we can find a collision in H1 and H2
respectively. For Case (2), we can compute log g3 ← θ−θ∗

σ∗
3−σ3

. According to the
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previous security definition of H1, H2 and D-Log assumption, the possibility
for Case (1) to be true is εH1 , Case (2) is εDlog, and Case (3) is εH2 . Then,

Pr[new abort in game 1] = εH1 + εH2 + εDlog. (2)

Without this new abort, simulators in Game 0 and Game 1 run in the same
manner. Therefore, according to Lemma 1, we have

|Pr[γ =γ′ in game 1]−Pr[γ =γ′ in game 0] |≤ Pr[new abort in game 1].(3)

Now in Game 1, if the simulator does not abort, then for all unsigncryption
and non-repudiation oracles, C 	= C∗. This conclusion will be useful for
analysis in the latter games. We analyze it from the following four cases:

1. If (σ0, σ1, yS) 	= (σ∗
0 , σ∗

1 , yS∗), and since all the above three cases for
abort do not happen, then we get C 	= C∗.

2. Else if (σ0, σ1, yS) = (σ∗
0 , σ∗

1 .yS∗) and σ3 	= σ∗
3 , then z 	= z∗. Since case

(3) does not happen, we get C 	= C∗.
3. Else if (σ0, σ1, σ3) = (σ∗

0 , σ∗
1 , σ∗

3), and gS = gS∗ , according to the ver-
ification equation e(σ2, g) = e(g2, gS) · e(σ1, u0

∏n
i=1 uci

i ), we get that
σ2 = σ∗

2 when verification passed. Therefore, in this case σ = σ∗, which
is not allowed according to the attack game.

4. Else if (σ0, σ1, σ3) = (σ∗
0 , σ∗

1 , σ∗
3), and gS 	= gS∗ , then θ 	= θ∗. Case (2)

and case (3) do not happen to cause an abort, therefore, C∗ 	= C.

– Game 2: Game 2 is mostly the same as Game 1, with the following three
changes:
1. In setup system step, generate {g2, g3, u0, U} as follows:

• Choose random elements x, y ∈ Zp, and compute g2 ← gx, g3 ← gy.
• To generate U , choose random elements k1, ..., kn ∈ Zp, and from

i = 1 to n compute ui ← g1
ki .

• To generate u0, choose random elements α, λ ∈ Zp, compute z∗ ←
gα, C∗ ← H2(z∗), write C∗ as (c∗1, ..., c

∗
n) ∈ {0, 1}n. Compute τ∗ ←∑n

i=1 kic
∗
i , then u0 ← g1

−τ∗
gλ.

2. In the challenge step, the simulator generates σ∗
0 , σ∗

1 according to the
signcryption algorithm, but computes σ∗

2 , σ∗
3 as follows:

σ∗
2 ← gx

S∗ · σ∗
1

λ, σ∗
3 ←

α−H1(σ∗
0 , σ∗

1 , gS∗)
y

.

3. For all unsigncryption and non-repudiation oracles, if
∑n

i=1 kici = τ∗,
then the simulator aborts.

Analysis: We now analyze the above three changes one by one.
1. For changes in 1, it is easy to see that U ∈ G

n, u0 ∈ G, g2 ∈ G and
g3 ∈ G are still random vector and elements. Therefore, these changes
are only notational changes.
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2. For changes in 2, if we take s← α−H1(σ∗
0 ,σ∗

1 ,gS∗)
y , which is also a random

element in Zp, then it is easy to verify that σ∗
2 = gαS∗

2 (u0
∏n

i=1 u
c∗i
i )t, σ∗

3 =
s, which is a valid setting.

3. For changes in 3, recall the conclusion in Game 1 that, if not abort, for all
unsigncryption and non-repudiation C 	= C∗. And (k1, ..., kn) ∈ Z

n
p are

independent elements chosen randomly by the simulator (independent of
the adversary), and for the complexity of discrete logarithm assumption,
the value of (k1, ..., kn) are computationally hidden from the value of
(u1, .., un). Therefore, the value of (k1, ..., kn) and independent of the
adversary’s view. For each unsigncryption oracle and non-repudiation
oracle, we have Pr[

∑n
i=1 kici = τ∗] = 1/p.

Finally, we have

Pr[new abort in game 2] = (qu + qn)/p. (4)

Without this new abort, the simulator provides the same environment as in
Game 1. According to Lemma 1, we have

|Pr[γ =γ′ in game 2]−Pr[γ =γ′ in game 1] |≤ Pr[new abort in game 2].(5)

Now in Game 2, if not abort, then for all unsigncryption and non-repudiation
oracles,

∑n
i=1 kici 	= τ∗.

– Game 3: Game 3 is similar to Game 2, except that in both oracles be-
fore challenge step and oracles after challenge step, the simulator computes
answers for oracles as follows:

• For each signcryption oracle: Compute gαB

2 ← gx
B, and signcrypt the

message according to the Signcryption algorithm.
• For each non-repudiation oracle: First, run steps 1-4 in unsigncryption

algorithm. If
∑n

i=1 kici = τ∗, then the simulator aborts, otherwise it
computes d← (d1, d2, d3) as follows:

(d1 ← gB

−λ∑n
i=1 kici−τ∗

, d2 ← gB

−1∑n
i=1 kici−τ∗

, d3 ← dx
2).

• For each unsigncryption oracle: The simulator first runs the non-
repudiation oracle to get d, and then decrypt the signcryptext as follows:

M ← σ0 · e(σ2, d2)
e(σ1, d1)e(d3, gS)

.

Analysis: It is easy to verify that

d1 = gαB
1 (u0

∏
uci

i )r, d2 = gr, d3 = gr
2 , where r ← −αB∑n

i=1 kici − τ∗ .
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Recall that in Game 2, if
∑n

i=1 kici = τ∗, then the simulator also aborts.
Therefore, all the changes in the game are just notational. We have:

Pr[γ = γ′ in game 3] = Pr[γ = γ′ in game 2]. (6)

Now in Game 3, if not abort, the simulator runs the attack game perfectly
without the knowledge of αB.

– Game 4: Game 4 is mostly the same as Game 3, except that the simulator
tries to embed BDH = {g, ga, gb, gc, T ← e(g, g)abc} (a, b, c are random
elements in Zp) into the simulation by taking the following different steps:
1. In Setup system step, the simulator sets g1 ← ga, gB ← gb.
2. In Challenge step, the simulator computes σ∗

0 , σ∗
1 as follows:

σ∗
0 ← e(g, g)abc ·Mγ , σ∗

1 ← gc.

Analysis: If we take t ← c, then we have σ∗
0 = e(g1, gB)t ·M, σ∗

1 = gt. Since
a, b, c are random elements in Zp, then g1 ∈ G, gB ∈ G and t ∈ Zp are also
random elements. Therefore, the changes in Game 4 are only notational.
Then, we have:

Pr[γ = γ′ in game 4] = Pr[γ = γ′ in game 3] (7)

Now in Game 4, if not abort, the simulator runs the attack game per-
fectly with the values of {ga, gb, gc, e(g, g)abc}, but without the knowledge of
(a, b, c).

– Game 5: Game 5 represents a slightly modified version of Game 4. Specif-
ically, in this game instead of BDH , the simulator embeds Random =
{g, ga, gb, gc, T ← e(g, g)k} (k is randomly chosen from Zp) into the sim-
ulation by computing σ∗

0 ← e(g, g)k ·M in the Challenge step.

Analysis: If the adversary distinguishes the difference between Game 4 and
Game 5, then he also distinguishes the two cases of T . From the definition
of DBDH assumption, we have:

|Pr[γ = γ′ in game 5]− Pr[γ = γ′ in game 4]| ≤ εdbdh (8)

For the random and independent choice of T , the adversary’s output γ′ in
this game is independent of the hidden bit γ. We have

Pr[γ = γ′ in game 5|abort] = 1/2 (9)

Now in Game 5, the simulator aborts with the same probability as in
Game 4. If not abort, it simulates Game 5 perfectly with the value of
{ga, gb, bc, e(g, g)k}, but without the knowledge of (a, b, c, k). According to
previous analysis, we can reduce that the simulator aborts in Game 5 with



Signcryption with Non-interactive Non-repudiation without Random Oracles 217

probability εH1 + εH2 + εDlog + (qu + qn)/p, which can be regard as a con-
stant when the times of unsigncryption and non-repudiation oracles are fixed.
Therefore, we have

Pr[γ = γ′ in game 5] = Pr[γ = γ′ in game 5|abort] (10)

Combing all the above formulas in this proof, we get our conclusion that

|Pr[γ = γ′ in game 0]− 1/2| ≤ εH1 + εH2 + εDlog + (qu + qn)/p + εdbdh.

Proof of Unforgeability

Theorem 2. The signcryption scheme is (t, qs, qu, qn, ε) SEU-SCNINR-CMA
secure, assuming that the Waters signature scheme in [25] is (t, qs, ε/4) existen-
tial unforgeable, H1 is (t, ε/4) collision resistent, H2 is (t, ε/4) collision resistent
and the Discrete Logarithm assumption in G holds for (t, ε/4).

Proof of Theorem 2: In the SEU-SCNINR-CMA game, the adversary A’s goal is
to forge a valid signcryptext σ∗ = (σ∗

0 , σ∗
1 , σ∗

2 , σ∗
3) where σ∗ 	= σ(i). Throughout

this proof, the variables with superscript (i) denote the variables computed in
the i-th signcryption oracle. And the variables with superscript ∗ denote the
variables computed in the Challenge stage. According to the result ofA’s forgery,
we divide it into four types as follows:

– Type I: C∗ 	= C(i) (for all i form 1 to qs),
– Type II: C∗ = C(i) and z∗ 	= z(i) for some i ∈ {1, ..., qs},
– Type III: C∗ = C(i), z∗ = z(i) and σ∗

3 = σ
(i)
3 for some i ∈ {1, ..., qs},

– Type IV: C∗ = C(i), z∗ = z(i) and σ∗
3 	= σ

(i)
3 for some i ∈ {1, ..., qs}.

We will show that a successful type I forgery will lead to a successful attack on
the Waters signature scheme, a successful type II forgery will lead to a break for
the collision-resistent hash function H2, a successful type III forgery will lead
to a break of the collision-resistent hash function H1, and a successful type IV
forgery will lead to a solution to the Discrete Logarithm assumption in G.

Before this attack, the simulator A′ flips a random coin to guess which kind
of forgery A will output, then sets up the public parameter and performs appro-
priately, and all our simulations are perfect.

– Type I forgery: We first briefly review the Waters signature scheme [25].
Given a public parameter Pubs ← {e, G, GT , u0, U, g, g2}, {αB, gB ← gαB}
are computed as private/public key pair of user B (αB is randomly cho-
sen from Zp), the signature σs on message C = (c1, ..., cn) ∈ {0, 1}n is:
(σs0 , σs1)← (gαB

2 (u0
∏n

i=1 uci

i )t, gt). The Waters signature scheme is said to
be (t, qs, ε/4) existential unforgeable (EUF), if given user B’s public key gB,
and has access to qs times signature oracles, the adversary A′ can forge a
valid signature on a new message C∗ with probability at most ε/4.
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We let A′ be the simulator of the SEU-SCNINR-CMA game as well as an
attacker of existential unforgeability (EUF) game of Waters scheme. A′ will
simulate the SEU-SCNINR-CMA game with the knowledge he gets from the
EUF game. Next, we show how A′ deals with the simulation as follows:

• In the Setup system step: A′ first gets the public parameter and user B’s
public key PKB from the EUF game. ThenA′ chooses random x, y ∈ Zp,
computes g1 ← gx, g3 ← gy. Finally, A′ runs the SetupPub algorithm
to get the other elements of public parameter Pub, and returns Pub and
PKB to A.
• In the Oracles step: A′ is able to answer all the unsigncryption and

non-repudiation oracles easily, since A′ can computes gαB
1 ← gx

B. For
signcryption oracles, A′ answers it with the help of signature oracle
in EUF game. When A asks for a signcryption oracle on (M, PKS =
PKB, PKR), A′ chooses a random α ∈ Zp, computes C = H2(gα),
and then gets σs = (σs0 , σs1) on C from the signature oracle. Fi-
nally, A′ computes σ0 = e(σs1 , gR)x · M , σ1 ← σs1 , σ2 ← σs0 ,
σ3 ← (α−H1(σ0, σ1, gB))/y, returns σ = {σ0, σ1, σ2, σ3} to A.
• In the Forge step: If A outputs a successful type I forgery, σ∗ =

(σ∗
0 , σ∗

1 , σ∗
2 , σ∗

3). Then A′ can also generate a successful forgery σ∗
s ←

{σ∗
2 , σ∗

1} on a new message C∗ ← H2(gH1(σ∗
0 ,σ∗

1 ,gB)g
σ∗
3

3 ).

Now we can see that if A (adversary in SEU-SCNINR-CMA game) finally
makes a successful forgery, then A′ (as an attacker of EUF game) also makes
a valid forgery for the Waters scheme.

– Type II forgery: A is a type II adversary for the signcryption scheme, A′

is the simulator. Besides, A′ is aimed to find a collision for H2.
In this case, A′ simulates the game as a normal challenger in the defini-

tion. Finally, if A outputs a successful type II forgery that C∗ = C(i) and
z∗ 	= z(i) for some i ∈ {1, ..., qs}, then A′ finds a collision for hash function
H2.

– Type III forgery: A is a type III adversary for the signcryption scheme,
A′ is the simulator. Besides, A′ is aimed to find a collision for H1.

In this case, A′ simulates the game as a normal challenger in the defini-
tion. If A outputs a successful type III forgery that C∗ = C(i), z∗ = z(i) and
σ∗

3 = σ
(i)
3 for some i ∈ {1, ..., qs}, then it implies that θ(i) = θ∗. There are

two cases follows:

1. (σ(i)
0 , σ

(i)
1 ) = (σ∗

0 , σ∗
1). According to the check equation e(σ2, g) =

e(g2, gS) ·e(σ1, u0
∏n

i=1 uci

i ) in the unsigncryption algorithm, we get that
if (σ(i)

0 , σ
(i)
1 , σ

(i)
3 ) = (σ∗

0 , σ∗
1 , σ∗

3), then σ
(i)
2 = σ∗

2 . It is an impossible case,
because it contradicts with the requirement of the attack game that
σ(i) 	= σ∗.

2. (σ(i)
0 , σ

(i)
1 ) 	= (σ∗

0 , σ∗
1). Then A′ finds a collision in H1.
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– Type IV forgery: A is a type IV adversary for the signcryption scheme,
B′ is the simulator. Besides, A′ is given a random element g′3 ∈ G, and is
aimed to compute y ∈ Zp where g′3 = gy.
A′ simulates the game as a normal challenger in the definition except

that in the Setup system step, he sets g3 ← g′3. Finally, if A outputs a
successful type IV forgery that C∗ = C(i), z∗ = z(i) and σ∗

3 	= σ
(i)
3 for some

i ∈ {1, ..., q}, then A′ can computes y ← (θ∗ − θ(i))/(σ(i)
3 − σ∗

3).

Proof of Soundness of Non-repudiation

Theorem 3. The signcryption scheme has perfect soundness of non-repudiation.

Proof of Theorem 3. In this game, the adversary A is given the system’s pub-
lic parameter Pub, and he generates a challenge user B’s public/privete key
pair (PKB, SKB). A is given access to a signcryption oracle. In this ora-
cle, A outputs a pair of sender/receiver public key (PKS , PKB) and a mes-
sage M , then gets σ ← Signcryption(SKS, PKB, M). If the check equation
e(σ2, g) = e(g2, gS) · e(σ1, u0

∏n
i=1 uci

i ) holds, then the signcryptext σ must be

formed as σ = (e(g1, gR)t ·M, gt, gαS
2 (u0

n∏
i=1

uci

i )t, s) for some t ∈ Zp.

Finally, A outputs a message M ′ and a non-repudiation evidence d′. If the
check equations e(d′2, g2) = e(g, d′3) and e(d′1, g) = e(g1, gR) · e(u0

∏n
i=1 uci

i , d′2)
both hold, then the non-repudiation evidence d′ must be formed as d′ ← (gαR

1 ·
(u0

∏n
i=1 uci

i )r′
, gr′

, gr′
2 ) for some r′ ∈ Zp. Hence we have

M ′ =
σ0 · e(σ2, d

′
2)

e(σ1, d′1)e(d
′
3, gS)

= M.

It contradicts the hypothesis that M 	= M ′. Therefore, A has probability 0 in
wining this game. In other words, our proposed scheme satisfies perfect soundness
of non-repudiation.

Proof of Unforgeability of Non-repudiation Evidence

Theorem 4. The signcryption scheme is (t, qs, qu, qn, ε) EUF-NR-evidence -
SCNINR-CMA secure, assuming that the Waters signature scheme in [25] is
(t, qu + qn, ε/4) existential unforgeable, H1 is (t, ε/4) collision resistent, H2 is
(t, ε/4) collision resistent and the Discrete Logarithm assumption in G holds for
(t, ε/4).

Proof of Theorem 4. The proof for this theorem is very similar to that for un-
forgeability. In what follows we highlight key differences between them.

In the EUF-NR-evidence-SCNINR-CMA game, the adversary A’s goal is to
forge a valid non-repudiation evidence d∗ on σ∗ and M∗. According to the result
of A’s forgery, we divide it into four types as follows:
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– Type I: C∗ 	= C(i) (for all i form 1 to qu + qn),
– Type II: C∗ = C(i) and z∗ 	= z(i) for some i ∈ {1, ..., qu + qn},
– Type III: C∗ = C(i), z∗ = z(i) and σ∗

3 = σ
(i)
3 for some i ∈ {1, ..., qu + qn},

– Type IV: C∗ = C(i), z∗ = z(i) and σ∗
3 	= σ

(i)
3 for some i ∈ {1, ..., qu + qn}.

Note that in this proof, the variables with superscript (i) denote the variables
computed in the i-th unsigncryption oracle (when i ≤ qu) or in the (i − qu)-
th non-repudiation oracle (when qu < i ≤ qu + qn). And the variables with
superscript ∗ denote the variables computed in the Challenge stage.

At the beginning of the attack, the simulator A′ firstly flips a random coin to
guess which kind of forgery A will output, then sets up a public parameter and
performs appropriately. It turns out that all our simulations are perfect.

Analysis of Type II, III and IV is the same as in the proof of Theorem 2. There-
fore, we only analyze Type I forgery and omit analysis for other types here.

– Type I forgery: We let A′ be the simulator of the EUF-NR-evidence-
SCNINR-CMA game as well as an attacker of existential unforgeablility
(EUF) game of Waters scheme. We note that the Waters signature used in
this proof has one notational difference from what we have used in the proof
of Theorem 2, that is, g1 is used to replace g2. Thus, the Waters signature σs

on message C = (c1, ..., cn) ∈ {0, 1}n is: (σs0 , σs1)← (gαB
1 (u0

∏n
i=1 uci

i )t, gt).
A′ will simulate the EUF-non-repudiation evidence-SCNINR-CMA game
with the knowledge he gets from the EUF game. Next, we show how A′

simulates the game as follows:

• In the Setup system step: A′ first gets the public parameter and user
B’s public key PKB from the EUF game. Then A′ chooses random
x ∈ Zp, computes g2 ← gx. Finally, A′ runs the SetupPub algorithm in
signcryption scheme to get the other elements in public parameter Pub,
and returns Pub and PKB to A.
• In the Orales step: A′ is able to answer the all the signcryption oracles

easily, since A′ can computes gαB
2 ← gx

B. For non-repudiation oracles, A′

will answer them with the help of signature oracles in EUF game. When
A asks for a non-repudiation oracle on (σ, PKS , PKB), A′ computes C
according to the unsigncryption algorithm, and gets σs = (σs0 , σs1) on C
from the signature oracle. Finally, A′ computes d← (σs0 , σs1 , σ

x
s1

). And
for each unsigncryption oracle, A′ first runs the non-repudiation oracle
to get d, then decrypts M ← σ0·e(σ2,d2)

e(σ1,d1)e(d3,gS) .
• In the Forge step: If A outputs a successful forgery d∗ on (σ∗, M∗) with

sender/receiver public keys (PKS∗ , PKB), then A′ can also generate
a successful forgery σ∗

s ← {d∗1, d∗2} for the Waters signature on a new
message C∗ ← H2(gH1(σ∗

0 ,σ∗
1 ,gS∗ )g

σ∗
3

3 ).

Now we can see that A′ (as an attacker) will finally make a valid forgery
for Waters signature scheme, if A (the adversary in EUF-non-repudiation-
evidence-SCNINR-CMA game) makes a successful forgery.
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5 Discussions
5.1 Efficiency Comparison

Our proposed signcryption scheme is based on the signature scheme of Boneh,
Shen and Waters[8] (for short, we call it BSW signature). In order to give a
better intuition on the comparison of efficiency, we review the BSW signature
as follows:

– SetupPub: Pubbsw = {G, GT , e, g, g2, g3, u0, U, H2}. Most of the elements in
Pubbsw are generated the same way as SetupPub in in Table 1, except that
H1 : {0, 1}∗ → Zp.

– KeyGen: The same as KeyGen in Table 1.
– Sign: To sign on M ∈ SPM, the signer runs almost the same as Signcryption

in Table 1, except that there is no σ0 in the signature and θ ← H1(σ1, M).
The signature is σbsw ← (σ1, σ2, σ3).

– Verify: To verify a signature σbsw from a signer S, the verifier runs almost the
same as Unsigncryption in Table 1, except that it computes θ ← H1(σ1, M)
and there is no need to compute M in the last step. If all the check passed,
it returns �.

First, we compare our proposed signcryption scheme with the BSW signature
scheme on computational cost. From the above description, it is clear the ad-
ditional cost in signcryption is to compute σ0 (σ0 ← M · e(g1, gR)t) and the
additional cost in unsigncryption is to compute M (M ← σ0/e(σ1, g

αR
1 )).

Therefore, our signcryptext requires one additional exponentiation in GT in
signcryption and one additional bilinear computation in unsigncryption, when
pre-computation (which will be claimed latter) is applied.

Second, we compare the communication overhead with the BSW signature.
In usual communication, the BSW scheme needs to send (M, σ1, σ2, σ3, IDS),
our scheme needs to send (σ0, σ1, σ2, σ3, IDS, IDR). When |M | ≈ |GT |, there is
nearly no expansion in terms of communication overload (we assume the user
ID be a very short string compared with other elements in communication).

Third, we claim that our scheme takes advantage of the the compositional
method (either sign-then-encrypt or encrypt-then-sign). For consistency of com-
parison, we fix the underlying signature scheme as BSW scheme. Since the
cost for the compositional method is 1 + 1 = 2 (that means Total-Cost =
Costsignature +Costencryption), we only has to compare our additional cost with
the encryption scheme. For example, we choose the encryption scheme in [7].
The cost for computation cost (if pre-computation applied) is approximately 4
exponentiation in encryption and one bilinear computation in decryption. And
the ciphertext size is 2|G|+ |GT |. Clearly, the cost for the encryption scheme is
larger than our additional cost.

5.2 Improve Efficiency of the Proposed Scheme

Increase Online Computation Speed. In our scheme, the online compu-
tation efficiency can be improved if pre-computation applied. For example, a
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sender S can compute gαS
2 and a receiver can compute gαR

1 immediately after
the computation of public/private key pair. Then it can be stored for latter use.
And when a sender S communicates with a receiver R the first time, the sender
S can store the value of e(g1, gR), then he does not need to repeatedly compute
it in latter communication. Similarly, when a receiver R received a signcryp-
text from S the first time, he can also store the value of e(g2, gS). The judge
can also store the value of e(g1, gR) and e(g2, gS) after the first time of solving
computation.

This method costs a little more space for storage, but greatly improves the on-
line computation efficiency. According to an approximate estimation, the online
computation time can reduce 56.5% in Signcryption, 25.5% in Unsigncryption,
26% in NR-Evidence-Gen, and 17.3% in JG-verification2.

Considering that in practise, the cost for storage is cheaper than online com-
putation, the above per-computation method does work on improving the whole
efficiency in most cases, except the following two cases. 1. One user communi-
cates with another user once. 2. One judge just deal with repudiation problems
between two specific users once.

Reduce the Signcryptext Size. In our original scheme, the signcryptext size
is σ ∈ GT ×G

2×Zp. To get a shorter signcryptext, we can replace the symmetric
bilinear map with an asymmetric bilinear map [7]: e : G1×G2 → GT , and there
is an efficiently computable homomorphism ϕ : G2 → G1. Consider the case
where h is a generator of G2, and g ← ϕ(h) is a generator of G1. Then we can
get a shorter signcryptext σ ∈ GT × G

2
1 × Zp. The size of the representation

of elements in G1 is 1/k of that of G2, where k is the embedding degree [13].
This method results in lower computation speed, but it leads to a more compact
signcryptext and a boarder range of choices of elliptic curve implementations.
More details about bilinear maps used in cryptography can be found in [13].

The changes of bilinear maps result in a lot of changes in the scheme, which
are shown in detail in Table 3 and Table 4.

The security of this modified scheme is quite similar to the original scheme,
except with some small changes corresponding to the change of bilinear maps
(from symmetric ones to asymmetric ones).

5.3 Applications of Signcryption with NINR

Signcryption with NINR is suitable for those applications where we assume there
will be repudiation disputes between the sender and the receiver. For example,
emails, ATM networks, and cryptographic protocols that aims to transport, ex-
change or establish keys etc.

We take the above mentioned “key” related cryptographic protocols as an ex-
ample. In such scenarios, since the “key” is a very sensitive message, we normally
2 We assume for simplicity that a single computation of exponential computation cost

one unit of time, a bilinear computation takes 6 units of time, a multi-exponential

computation takes 1.5 units of time, and an n-time multiply computation costs one

unit of time.
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Table 3. SetupPub& KeyGen& Signcryption& Unsigncryption

SetupPub(1η) by Trusted Party:

1. generate (G1, G2, GT , e, g, h) as described above,

2. choose random h1, h2, w0 ∈ G2 and a random vector W ∈ G
n
2 ,

3. compute the images of elements and vector in step 2 by ϕ to get

g1, g2, u0 ∈ G1 and U ∈ G
n
1 .

4. choose a random element g3 ∈ G1,

5. set collision-resistant hash functions H1 : GT × G1 × G1 → Zp,

H2 : G1 → {0, 1}n.

6. Pub = {G1, G2, GT , e, g, h, g1, g2, g3, h1, h2, u0, w0, U, W, H1, H2}
KeyGen(Pub, IDP ) by User P :

1. private key for user P is a random αP ∈ Zp,

2. public key for user P is hP ← hαP .
Signcryption(SKS, PKR, M) by Sender S:

To signcrypt M ∈ GT to be communicated to receiver R, sender S
runs:

1. steps 1 and 3 of Signcryption in Table 1.

2. compute σ0 ← e(g1, hR)t · M ,

3. steps 4-9 of Signcryption in Table 1.

Unsigncryption(SKR, PKS , σ) by Receiver R:

To unsigncrypt σ from sender S, receiver R runs:

1. steps 1 and 3 of Unsigncryption Table 1.

2. if e(σ2, h) �= e(g2, hS)e(σ1, w0Π
n
i=1w

ci
i ), return ⊥,

3. compute M ← σ0/e(σ1, h
αR
1 ).

Table 4. NR-Evidence-Gen & JG-Verification

NR-Evidence-Gen(σ,SKR, PKS)by Receiver R:

To compute non-repudiation evidence d, receiver R runs:

1. steps 1-2 of Unsigncryption in Table 3,

2. choose a random r ∈ Zp,

3. compute d1 ← hαR
1 (w0

∏
wci

i )r,

4. steps 4-6 of NR-Evidence-Gen in Table 2.

JG-Verification(σ,M, d,PKS , PKR) by Judge:

To verify whether M = Unsigncryption(SKR, PKS, σ), the judge

runs:

1. steps 1-2 in Unsigncryption in Table 3,

2. if e(g2, d2) �= e(d3, h), return ⊥,

3. else if e(g, d1) �= e(g1, hR) · e(u0

∏
uci

i , d2), return ⊥,

4. else if M �= σ0·e(σ2,d2)
e(σ1,d1)·e(d3,hS)

, return ⊥,

5. otherwise return 
.
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have the following basic security requirements. From one aspect, the user who
generated the “key” (or part of the “key”), should never deny on it, and from
the other aspect, the user who exposes the fact that the sender translates such a
“key” by a well-formed evidence should also responsible for his act. Fortunately,
if we apply signcryption scheme with NINR to construct the cryptographic pro-
tocols, soundness of non-repudiation ensures that the non-repudiation evidence
d correctly reveals the relationship of a signcryptext σ and a message M , and
at the same time, unforgeability of non-repudiation evidence guarantees that
the receiver has to be responsible for exposing this relationship if he offered a
well-formed evidence.

6 Conclusion

In this work, we propose a model for signcryption with NINR. Compared with
the model of Malone-Lee, our model focuses more on the security of NINR by
considering two more security requirements. Soundness of non-repudiation makes
sure that the property of NINR really works. And unforgeability of evidence data
offers a strong requirement for some particular scenarios. Besides, we also come
up with a concrete scheme, which is the first signcryption scheme with NINR
that can be proved secure without random oracles.

Our scheme should be considered to be a first step in constructing provably
secure signcryption with NINR without random oracles. There is still a lot of
work that needs to be done. One interesting future research direction relates to
efficiency. Our construction makes use of bilinear maps which may take more
computational time than that can be afforded in some light applications where
low power computing devices dominate. As efficiency is the most important
motivation for signcryption, deigning more efficient signcryption schemes with
NINR (e.g. avoid using bilinear computations) will be very valuable.

References

1. An, J., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryption. In:

Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,

Heidelberg (2002)

2. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,

Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,

Heidelberg (2004)

3. Bao, F., Deng, R.H.: A signcryption scheme with signature directly verifiable by

public key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59.

Springer, Heidelberg (1998)

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM

Journal on Computing 32(3), 586–615 (2003)

5. Baek, J., Steinfeld, R., Zheng, Y.: Formal Proofs for the Security of Signcryption.

In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer,

Heidelberg (2002)



Signcryption with Non-interactive Non-repudiation without Random Oracles 225

6. Bellare, M., Rogaway, P.: Random oracle are practical: A paradigm for designing

efficient protocols. In: ACM-CCS 1993, pp. 62–73. ACM press, Fairfax (1993)

7. Boyen, X., Mei, Q., Waters, B.: Direct Chosen Ciphertext Security from Identity-

Based Techniques. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM-CCS 2005,

pp. 320–329. ACM press, Alexandria (2005)

8. Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Com-

putational Difie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)

PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

9. Chow, S.S.M., Yiu, S.M., Hui, L.C.K., Chow, K.P.: Efficient forward and provably

secure ID-based signcryption scheme with public verifiability and public ciphertext

authenticity. In: Lim, J.I., Lee, D.H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 352–

369. Springer, Heidelberg (2004)

10. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure

against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO

1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

11. Damgard, I., Holfheins, D., Kiltz, E., Thorbek, R.: Public-Key with Non-interactive

Opening. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 239–255.

Springer, Heidelberg (2008)

12. Galindo, D., Libert, B., Fischlin, M., Fuchsbauer, G., Lehmann, A., Manulis,

M., Schroder, D.: Public-Key Encryption with Non-Interactive Opening: New

Constructions and Stronger Definitions. In: Bernstein, D.J., Lange, T. (eds.)

AFRICACRYPT 2010. LNCS, vol. 6055, pp. 333–350. Springer, Heidelberg (2010)

13. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for Cryptographers, Cryp-

tology ePrint Archive: Report 2006/165, http://eprint.iacr.org/2006/165
14. Malone-Lee, J.: A general Construction for Simutaneous Signing and Encrypting.

In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 116–

135. Springer, Heidelberg (2005)

15. Malone-Lee, J.: Signcryption with Non-interactive Non-repudiation. J. Designs,

Codes and Cryptography 37(1), 81–109 (2005)

16. Li, F., Shirase, M., Takagi, T.: Efficient Signcryption Key Encapsulation with-

out Random Oracles. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS,

vol. 5487, pp. 47–59. Springer, Heidelberg (2009)

17. Libert, B., Quisquater, J.J.: Efficient signcryption with key privacy from gap

Diffie-Hellman groups. In: Bao, F., Deng, R.H., Zhou, J. (eds.) PKC 2004. LNCS,

vol. 2947, pp. 187–200. Springer, Heidelberg (2004)

18. Libert, B., Quisquater, J.J.: Improved Signcryption from q-Diffie-Hellman Prob-

lems. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 220–234.

Springer, Heidelberg (2005)

19. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.

Cryptology ePrint Archive, Report 2004/332 (2004)

20. Shin, J.B., Lee, K., Shim, K.: New DSA-verifiable signcryption schemes. In: Lee,

P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 35–47. Springer, Heidelberg

(2003)

21. Tan, C.H.: Security Analysis of Signcryption Scheme from q-Diffie-Hellman Prob-

lems. J. IEICE Transactions E89-A(1), 206–208 (2006)

22. Tan, C.H.: Insider-secure Hybrid Signcryption Scheme Without Random Oracles.

In: ARES 2007, pp. 1148–1154. IEEE Press, Vienna (2007)

23. Tan, C.H.: Insider-secure Signcryption KEM/Tag-KEM Schemes without Random

Oracles. In: ARES 2008, pp. 1275–1281. IEEE Press, Barcelona (2008)

24. Toorani, M., Shirazi, A.A.B.: An Elliptic Curve-Based Signcryption Scheme with

Forward Secrecy. J. Applied Sciences 9(6), 1025–1035 (2009)

http://eprint.iacr.org/2006/165


226 J. Fan, Y. Zheng, and X. Tang

25. Waters, B.: Efficient identity based encryption without random oracles. In: Cramer,

R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg

(2005)

26. Zheng, Y.: Digital signcryption or how to achieve cost (signature&encryption)�
cost(signature)+cost (encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.

LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

Appendix: A More Efficient Construction in the Random
Oracle Model

A.1 The Construction

If random oracle model is allowed, we can construct a modified scheme which
is more efficient from all aspects. The public parameter can be reduced from
O(log p) to O(1), the size of signcryptext can be reduced from GT ×G

2 ×Zp to
GT ×G

2, and the computational efficiency can also be improved. In this paper,
our main goal is to generate signcryption with NINR without random oracles,
but we stress that this modified scheme is also meaningful. Since even in the
random oracle model, there are no existing signcryption schemes with NINR
that fulfilling all the four security requirements of our model.

The main difference is that in the modified scheme u0u
θ
1 is used to replace

u0
∏n

i=1 uci

i in the original scheme. The construction is described in Table A-1
and Table A-2, and all the security theorems and proofs for this scheme will be
provided in the next subsection.

A.2 Security Proofs

We are going to provide security theorems and proofs for the modified signcryp-
tion scheme with NINR in the random oracle model. The difference between
the standard model and the random oracle model is that, in the random oracle
model, the attacker has access to additional hash oracles in the oracles stage. In
this proof, we assume that in each attack game, the attacker can ask for at most
qh time hash oracles on H1.

Theorem A. 1. The modified signcryption scheme is (t, qh, qs, qu, qn, ε) IND-
SCNINR-CCA secure, assuming that the (t, ε) DBDH assumption holds, and
hash function H1 is a random oracle.

Proof of Theorem A. 1: We will prove that if A has advantage ε that wins the
attack game, then the simulator A′ can solve the DBDH problem with the same
advantage ε. Initially A′ is given input a tuple (ga, gb, gc, T ), T is either gabc or
a random element in G.

– In the Setup system stage, A′ sets g1 ← ga, the challenge user B’s public
key gB ← gb. Choose random elements k1, k2, θ

∗, τ ∈ Zp, and compute u0 ←
g−θ∗·k1
1 gk2 , u1 ← gk1

1 , g2 ← gτ .
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Table A-1. SetupPub& KeyGen& Signcryption& Unsigncryption

SetupPub(1η) by Trusted Party:

Pub = {G, GT , e, g, g1, g2, g3, u0, u1, H1} is generated the same way as

in SetupPub in Table 1. But here we take H1 as a random oracle.

KeyGen(Pub, IDP ) by User P :

The same as KeyGen in Table 1.

Signcryption(SKS, PKR, M) by Sender S:

To signcrypt M ∈ GT to be communicated to receiver R, sender S
runs:

1. steps 1-4 of Signcryption in Table 1,

2. compute σ2 ← gαS
2 (u0u

θ
1)

t,

3. the signcryptext is σ ← (σ0, σ1, σ2).

Unsigncryption(SKR, PKS , σ) by Receiver R:

To unsigncrypt σ from sender S, receiver R runs:

1. compute θ ← H1(σ0, σ1, gS),

2. if e(σ2, g) �= e(g2, gS) · e(σ1, u0u
θ
1), return ⊥,

3. otherwise compute M ← σ0/e(σ1, g
αR
1 ).

Table A-2. NR-Evidence-Gen & JG-Verification

NR-Evidence-Gen(σ,SKR, PKS) by Receiver R:

To compute non-repudiation evidence d, receiver R runs:

1. steps 1-2 of Unsigncryption in Table A-1,

2. choose a random r ∈ Zp,

3. compute d1 ← gαR
1 · (u0u

θ
1)

r, d2 ← gr, d3 ← gr
2 ,

4. return d ← (d1, d2, d3).

JG-Verification(σ,M, d,PKS , PKR) by Judge:

To verify whether M = Unsigncryption(SKR, PKS, σ), the judge

runs:

1. steps 1-2 of Unsigncryption in Table A-1,

2. if e(d2, g2) �= e(g, d3), return ⊥,

3. else if e(d1, g) �= e(g1, gR) · e(u0u
θ
1, d2), return ⊥,

4. else if M �= σ0·e(σ2,d2)
e(σ1,d1)e(d3,gS)

, return ⊥,

5. otherwise return 
.
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– In the Oracles before challenge stage,
1. For each hash oracle on (σ0, σ1, gS), the simulator keeps a list for the

input and output for hash oracles (which is initially empty). If the input
has already been asked, check the list to find the output, else it returns
a random element θ that θ 	= θ∗, and add {(σ0, σ1, gS), θ} to the list.

2. For each signcryption oracle on M with (PKS ← PKB, PKR), the sim-
ulator first computes gαB

2 ← gτ
B, then it can compute a signcryptext

according to the Signcryption algorithm.
3. For each non-repudiation oracle on σ with (PKS , PKR = PKB), the

simulator first runs step 1 of the NR-Evidence-Gen algorithm. If it does
not abort, the simulator chooses a random element r′ ∈ Zp, then com-

putes d1 ← g
k1(θ−θ∗)r′
1 g

k2
k1(θ∗−θ)

B gk2r′
, d2 ← g

1
k1(θ∗−θ)

B gr′
, d3 ← dτ

2 . Taking
r ← b

k1(θ∗−θ) + r′, then d1 ← gαB
1 (u0u

θ
1)r, d2 ← gr, d3 ← gr

2.
4. For each unsigncryption oracle on σ with (PKS , PKR = PKB), the sim-

ulator first runs the the non-repudiation oracle to get d, then computes
M ← σ0·e(σ2,d2)

e(σ1,d1)e(d3,gS) .
– In the challenge stage, A outputs (M0, M1) with (PKS∗ , PKR∗ = PKB),

the simulator computes σ∗
0 ← T ·Mγ (γ is a random bit), σ∗

1 ← gc, σ∗
2 ← gτ

S∗ .
Finally, it returns σ∗ = (σ∗

0 , σ∗
1 , σ∗

2) and then add {(σ∗
0 , σ∗

1 , gS), θ∗} to the
hash list.

– In the oracles after challenge stage, the simulator operates similar as in the
oracle before challenge stage.

– In the Guess stage, A outputs a guess bit γ′. If γ = γ′, the simulator outputs
a bit 1, or outputs a bit 0 for the DBDH assumption.

If the input tuple is sampled in experiment 0, where T = e(g, g)abc, then |Pr[γ =
γ′ in experiment 0] − 1/2| = ε. Else if the input tuple is sampled from in
experiment 1 where T = e(g, g)k, then Pr[γ = γ′ in experiment 1] = 1/2. Thus
we have
|Pr[A′ = 1 in experiment 0] − Pr[A′ = 1 in experiment 1]| = |(1/2 ±

ε) − 1/2| = ε. Therefore, if the adversary A has advantage ε in wining the
attack game, then the simulator A′ also has advantage ε in solving the DBDH
assumption.

Theorem A. 2. The signcryption scheme is (t, qh, qs, qu, qn, ε) SEU-SCNINR-
CMA secure, assuming the CDH assumption in G holds for (t, ε/qh), and hash
function H1 is a random oracle.

Proof of Theorem A. 2: We will prove that if A has advantage ε that wins the
attack game, then the simulator A′ can solve the CDH problem with advantage
at least ε/qh. For CDH assumption, A′ is given input (ga, gb), and aims to
compute gab.

– In the Setup system stage, A′ sets g2 ← ga, the challenge user B’s public
key gB ← gb. Choose random elements k1, k2, θ

∗, τ ∈ Zp, and compute u0 ←
g−θ∗k1
2 gk2 , u1 ← gk1

2 , g1 ← gτ .
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– In the Oracles stage,

1. For each hash oracle on (σ0, σ1, gS), the simulator keeps a list for the
input and output for hash oracles (which is initially empty). If the input
has already been asked, check the list to find the output. Else it returns
θ ← θ∗ with probability 1/qh, and returns a random element θ that
θ 	= θ∗ with probability 1− 1/qh, and add {(σ0, σ1, gS), θ} to the list.

2. For each signcryption oracle on M with (PKS = PKB, PKR), the sim-
ulator first chooses random elements t′, θ ∈ Zp, and computes σ0 ←
e(g

τ
k1(θ∗−θ)

B gt′
1 , gR) ·M , σ1 ← g

1
k1(θ∗−θ)

B gt′ , σ2 ← g
k1(θ−θ∗)t′

2 g
k2

k1(θ∗−θ)

B gk2t′ .
Taking t ← b

k1(θ∗−θ) + t′, then σ0 ← e(g1, gR)t · M, σ1 ← gt, σ2 ←
gαS
2 (u0u

θ
1)

t. Finally, the simulator add {(σ0, σ1), θ} the the hash list.
3. For each non-repudiation oracle on σ with (PKS , PKR = PKB), the

simulator first computes the gαB
1 ← gτ

B, then it can compute an answer
according to the NR-Evidence-Gen algorithm.

4. For each unsigncryption oracle on σ with (PKS , PKR = PKB), the sim-
ulator first runs the the non-repudiation oracle to get d, then computes
M ← σ0·e(σ2,d2)

e(σ1,d1)e(d3,gS) .

– In the forge stage, if A outputs a signcryptext σ∗ ← (σ∗
0 , σ∗

1 , σ∗
2) with

(PKS∗ = PKB, PKR∗), the simulator checks the hash list with input
(σ∗

0 , σ∗
1 , gB). If it is not on the input list, then sets the output as θ∗.

If the signcryptext is a valid one, and the output of hash oracle for (σ∗
0 , σ∗

1 , gB)
is θ∗, then the simulator can solve the CDH assumption by computing
gab ← σ∗

2/σ∗
1

k2 . Now we can see the probability that {(σ∗
0 , σ∗

1 , gB), θ∗} is on
the hash list is at least 1/qh. Therefore, if A has advantage ε in winning the
attack game, then the simulator can solves the CDH assumption with advantage
at least ε/qh.

Theorem A. 3. The modified scheme has perfect soundness of non-repudiation.

Proof of Theorem A. 3: In this game, the adversary A is given the system’s
public parameter Pub, and he generates a challenge user B’s public/privete key
pair (PKB, SKB). And A is given access to a signcryption oracle. In this oracle,
A outputs a pair of sender/receiver public key (PKS , PKR = PKB) and a
message M , then gets σ ← Signcryption(SKS, PKB, M). If the check equation
e(σ2, g) = e(g2, gS) · e(σ1, u0u

θ
1) holds, then the signcryptext σ must be formed

as σ = (e(g1, gR)t ·M, gt, gαS
2 (u0u

θ
1)

t) for some t ∈ Zp.
Finally, A outputs a message M ′ and an non-repudiation evidence d′. If the

check equations e(d′2, g2) = e(g, d′3) and e(d′1, g) = e(g1, gR) · e(u0u
θ
1, d

′
2) both

hold, then the non-repudiation evidence d′ must be formed as follows: d′ ←
(gαR

1 · (u0u
θ
1)r′

, gr′
, gr′

2 ) for some r′ ∈ Zp.
Hence we have

M ′ =
σ0 · e(σ2, d

′
2)

e(σ1, d′1)e(d
′
3, gS)

= M.
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It contradicts the hypothesis that M 	= M ′. Therefore, A has probability 0
in wining this game. In other words, this signcryption scheme satisfies perfect
soundness of non-repudiation.

Theorem A. 4. The modified scheme is (t, qh, qs, qu, qn, ε) EUF-NR-evidence-
SCNINR-CMA secure, assuming that CDH assumption in G holds for (t, ε/qh),
and hash function H1 is a random oracle.

Proof of Theorem A. 4: We will prove that if A has advantage ε that wins
the attack game, then the simulator A′ can solve the CDH assumption with
advantage at least ε/qh. Initially A′ is given input (ga, gb).

– In the Setup system stage, A′ sets public parameter as the simulator in the
proof of Theorem A.1.

– In the oracles stage, A′ operates similarly as the the simulator in stage of
oracles before challenge in the proof of Theorem A.1, except that A′ answers
the hash oracles in a different way. For each hash oracle on (σ0, σ1, gS), it
returns θ ← θ∗ with probability 1/qh, and returns a random element θ that
θ 	= θ∗ with probability 1− 1/qh,

– In the forge stage,A outputs (d∗, σ∗, M∗, PKS∗ , PKR∗) with PKR∗ = PKB.
The simulator checks the hash list, if (σ∗

0 , σ∗
1 , gS∗) is not on the hash list as

input, then adds {(σ∗
0 , σ∗

1 , gS), θ∗} to the list.

If d∗ is a valid one, and {(σ∗
0 , σ∗

1 , gS∗), θ∗} is on the hash list, then the simulator
can solve the CDH assumption by computing gab ← σ∗

2/σ∗
1

k2 . Now we can see
the probability that {(σ∗

0 , σ∗
1), θ∗} is on the hash list is at least 1/qh. Therefore,

if A has advantage ε in winning the attack game, then the simulator can solves
the CDH assumption with advantage at least ε/qh.
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Abstract. The bus between the System on Chip (SoC) and the external memory 
is one of the weakest points of computer systems: an adversary can easily probe 
this bus in order to read private data (data confidentiality concern) or to inject 
data (data integrity concern). The conventional way to protect data against such 
attacks and to ensure data confidentiality and integrity is to implement two 
dedicated engines: one performing data encryption and another data authentica-
tion. This approach, while secure, prevents parallelizability of the underlying 
computations. In this paper, we introduce the concept of Block-Level Added 
Redundancy Explicit Authentication (BL-AREA) and we describe a Parallel-
ized Encryption and Integrity Checking Engine (PE-ICE) based on this concept. 
BL-AREA and PE-ICE have been designed to provide an effective solution to 
ensure both security services while allowing for full parallelization on processor 
read and write operations and optimizing the hardware resources. Compared to 
standard encryption which ensures only confidentiality, we show that PE-ICE 
additionally guarantees code and data integrity for less than 4% of run-time per-
formance overhead. 

Keywords: Data Integrity and Confidentiality, Computer Security, Hardware 
Attacks, Encryption, Authentication, Memory. 

1   Introduction 

PDAs, mobile phones, MP3 players, set-top boxes, digital video equipments are  
widespread nowadays. The range of services provided by every single embedded 
system tends to widen rapidly and applications like on-line banking transactions, web 
browsing, email, application / game download are usual on mobile devices. As a  
consequence, the amount of sensitive information such as private data, e.g., bank 
information, passwords, email, photo, or intellectual property, e.g., software, digital 
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multimedia content, contained or transiting in those devices rapidly increases. The 
issue is that today’s embedded systems cannot be considered as trustworthy hosts [1] 
since the owner, or anyone else who succeeds in getting access, is a potential adver-
sary. Thus, one of the challenges for the high-technology industry in the development 
of pervasive computing relies on the development of trusted computing and secured 
storage solutions.  

The attacks conducted on embedded systems [2] challenge several security services 
such as data confidentiality, data integrity and system availability. Data confidential-
ity ensures that data stored in or transiting through embedded systems are only read 
by authorized parties while data integrity guarantees that those data are not tampered 
with, deleted or altered by malicious entities. Availability refers to the requirement of 
ensuring user access to the device without unexpected delay or obstacle. 

Several projects (e.g., Trustzone [3]) and consortiums (e.g., the Trusting Comput-
ing Group [4] TCG) shows the increasing importance of security in the industry. 
However, all these efforts do not consider hardware-based (physical) attacks. More 
specifically, they work under the assumption that the communication channels be-
tween the processor chip and the other components can be trusted despite the fact that 
data exchanges are often done in clear. The well known cracking of the Xbox gaming 
console shows that designing computer systems with such an assumption leads to 
simple physical attacks. In [5], the hacker Andrew Huang explained his approach to 
break the Xbox security features and demonstrated that one of the weakest points of 
computing systems are buses because they offer a low-cost spot for attacks. 

In this work we focus on physical non-invasive attacks (i.e., such attacks do not 
necessitate any modifications of the processor chip) called board level attacks. These 
attacks are conducted on buses between the System on Chip and off-chip volatile 
memory or directly in the memory – typically Random Access Memory (RAM). The 
objectives of the adversary can be the unauthorized use or the illegal distribution of 
intellectual properties, to corrupt private data retrieved on buses or directly in mem-
ory, or to take control of the underlying system. Our goal is to ensure i) the confiden-
tiality of the off-chip memory content during storage or execution to prevent the  
leakage of any sensitive information ii) and the integrity of data stored in these 
memories to preclude the execution or processing of intentionally altered data. 

Smartcards offer a countermeasure against such attacks by putting all processing 
and storage elements in a single chip. Another common solution is secure co-
processors which encapsulate the components handling sensitive computations and 
data in a tamper-resistant and tamper-responsive package, such as the IBM 4578 [6]. 
However, these solutions are not suited for handheld embedded systems because the 
latter requires an expensive and large package to provide a high performance system 
while the former does not allow storing a large amount of code and data and does not 
offer a high computing power.    

A trade-off between the above mentioned countermeasures is to limit the trust 
boundaries to the SoC and to embed memory protection apparatus on-chip. This con-
cept was introduced by Best with bus-encryption microprocessor [43, 44] in 1979: 
data are encrypted before being stored off-chip and are only decrypted once back  
on-chip. However, encryption only ensures data confidentiality and does not provide 
tamper-detection mechanisms to guarantee data integrity. Later on, several research 
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works [9, 10, 11, 12] considered this additional issue to offer a private and authenti-
cated tamper resistant environment to software execution. They achieved this task by 
providing both security services – data confidentiality and integrity – separately (ge-
neric composition schemes). The shortcoming of such an approach is the serialization 
of the underlying cryptographic computations on write or on read operations, intro-
ducing non-parallelizable latencies on off-chip memory accesses. Moreover, the 
hardware resources needed are not optimized since the implementation of a dedicated 
cryptographic engine for each security service is required. 

In the present work, the goal is to prevent board level attacks involving bus prob-
ing and memory tampering. To do so, the proposed hardware mechanisms must  
ensure the confidentiality and the integrity of the off-chip memory content while 
considering the constraints relative to the processor context – particularly random 
access of variable data size – to optimize hardware resources, memory access laten-
cies and the memory bandwidth at runtime. 

In order to reach the above mentioned objectives, we explore the concept of Added 
Redundancy Explicit Authentication (AREA [37]) at the block level during block 
encryption to ensure data integrity1 in addition to confidentiality. We call this tech-
nique Block-Level Added Redundancy Explicit Authentication (BL-AREA). We also 
describe the hardware mechanism PE-ICE – for Parallelized Encryption and Integrity 
Checking Engine – implementing the concept of Block-Level AREA on an ARM-
AHB bus. PE-ICE performs the encryption and the integrity checking of the external 
memory content with the following advantages: 

i) Full parallelization of the encryption and integrity checking process on off-
chip write and read operations allowing latency optimization.  

ii) Hardware optimization: Use/Implementation of a single encryption algorithm 
to provide both security services: data confidentiality and integrity.  

iii) Optimization of Read-Modify-Write operations by optimizing narrow block 
encryption. 

The rest of the paper is organized as follow. Section 2 presents our threat model. 
Section 3 describes the existing techniques providing both data confidentiality and 
integrity (including authenticated encryption modes) and the related hardware mecha-
nisms designed for memory encryption and authentication. Section 4 presents the 
Block-Level AREA technique. Section 5 describes PE-ICE (Parallelized Encryption 
and Integrity Checking Engine), the engine implementing the Block-Level AREA 
technique in the context of a System-on-Chip for memory encryption and authentica-
tion. Section 6 provides a security analysis of the proposed mechanisms. Section 7 
evaluates a SoC implementation of PE-ICE; we first describe the engine architecture 
and provide the experimental results. In this section, PE-ICE is compared to a  
memory encryption only engine and then to a memory encryption and integrity check-
ing engine based on a generic composition scheme. Finally Section 8 concludes this  
work. 

                                                           
1 In this work we consider precise authentication only, i.e., memory blocks are authenticated 

before being sent to the processor pipeline or in cache memory. 
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2   Threat and Trust Model 

The device to protect is supposedly exposed to a hostile environment where physical 
attacks are feasible. The main assumption in our trust model is that the processor chip 
is considered as resistant to physical attacks. As highlighted in [5] by Andrew Huang 
who hacked the Xbox, an ASIC die is too expensive and time-consuming to cut com-
pared to connect a custom device to buses. Therefore, the SoC is considered as a 
trusted area and on-chip registers and memories are trusted. Software attacks are not 
considered and we assume the presence of a trusted OS kernel. Moreover, the crypto-
graphic engines used are considered resistant to attacks, called Side-Channel Attacks 
(SCA), that exploit the information leaked by their physical implementation (e.g., 
power consumption [45]). 

We focus mainly on board-level attacks involving Processor-Memory (PM) bus 
probing or memory tampering. Such attacks allow the observation of the memory 
contents and the injection of arbitrary data on the PM bus or directly into the memory 
chip. We are particularly concerned by “Man in the middle” attacks. The correspond-
ing protocol implementing such attacks is divided into two parts: 

i) First the attacker monitors the PM communications and intercepts the data on the 
bus (passive attacks). Another possibility is to directly read data in memory. This first 
step raises the issue of data confidentiality. 

ii) Then the adversary may insert chosen data on the PM bus (active attack) and 
thus he/she challenges data integrity. The objective of the attacker could be to take 
control of the system by injecting malicious code. There are three classes of active 
attacks defined with respect to the attacker’s choice for the inserted data: 

• Spoofing attacks: the adversary exchanges a memory block with an arbitrary 
fake one. The attacker mainly alters program behavior but cannot foresee the results 
of his attack if data are encrypted. 

• Splicing or relocation attacks: the attacker replaces a memory block at address 
A with a block from address B, where A≠B. Such an attack may be viewed as a spa-
tial permutation of memory blocks. When data are ciphered, the benefit of using an 
existing memory block as a fake block is the knowledge of its behavior if this one had 
been previously observed.  

• Replay attacks: a memory block located at a given address is recorded and in-
serted at the same address at a later point in time; by doing so, the current block’s 
value is replaced by an older one. Such an attack may be viewed as a temporal permu-
tation of memory blocks at a specific address location. 

In [13], a detailed description of those attacks is proposed. Markus Kuhn shows in 
[38] how he successfully broke the encryption scheme implemented in the DS5002FP 
Microcontroller by using such active attacks on encrypted code. 
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3   Memory Encryption and Authentication: Existing Techniques 
and Related Works 

In this section, we present the existing techniques providing both data confidentiality 
and integrity. Then, we highlight the main sources of performance degradation intro-
duced at runtime when encryption and integrity checking are implemented. Finally, 
we describe the related works proposed in our field of study.  

3.1   Encryption and Authentication Techniques 

In the following, the underlying block cipher processes b-bit blocks under k-bit keys. 
EK and DK are respectively the encryption and decryption functions under the key K. 
The plaintext message to encrypt P is divided into m b-bit plaintext blocks pi with (1 ≤ 
i ≤ m). Similarly, C the ciphertext (C = EK(P)) is divided into m n-bit ciphertext 
blocks ci with (1 ≤ i ≤ m).  

MAC

Encryption
C = EKe(P) TC

Ke 

Km

EncryptionP T

MAC

P 

C = EKe(P)

Km 
Ke
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(a) Encrypt-then-MAC
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(c) Encrypt-and-MAC
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Ke : Encryption key Km : MAC key 
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Fig. 1. The Generic Composition Schemes (a) Encrypt-then-MAC (b) MAC-then-Encrypt (c) 
Encrypt-and-MAC 

The Conventional Way: The Generic Composition 
The conventional way to provide both data confidentiality and integrity is to pair a 
data authentication technique and an encryption mode, and therefore to perform two 
passes on data. A first pass is dedicated to encryption and a second one is done to 
compute a tag with a MAC (Message Authentication Code) algorithm. The three 
possible schemes defined in [39] are depicted in Figure 1: 

• Encrypt-then-MAC (Fig.1a) encrypts the plaintext P into a ciphertext C, 
and then appends to C a tag T computed with a MAC algorithm over C.  
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• MAC-then-Encrypt (Fig.1b) calculates a tag over the plaintext P, appends 
the resulting tag to P and then encrypts them together.  

• Encrypt-and-MAC (Fig.1c) encrypts the plaintext P to get a ciphertext C 
and appends to C a tag T computed over P. 

 
The main drawback of such techniques is that both cryptographic processing (encryp-
tion and MAC computation) are non-parallelizable on either read or write operations 
or on both. On write operations, for the Encrypt-then-MAC scheme, the tag computa-
tion starts only at the end of the encryption process while for the MAC-then-Encrypt, 
encryption only terminates after the completion of the tag calculation. On read opera-
tions, for the Encrypt-and-MAC and the MAC-then-Encrypt schemes, the tag refer-
ence computation begins only when the decryption process is completed. 

In [39], Bellare and al. proved that the most secure way to pair an authentication 
and an encryption mode is to use the Encrypt-then-MAC scheme and to enroll a dif-
ferent key for each computation. 

AREA: Added Redundancy Explicit Authentication 
The principle of AREA [37] schemes is to insert redundancy into the plaintext mes-
sage before encryption and to check it after decryption. Such a scheme is constructed 
with cipher modes with infinite error propagation on encryption and on decryption 
(infinite two-way error propagation). A cipher mode has infinite error propagation on 
encryption if a ciphertext block ci can be expressed as a function of all previous plain-
text blocks p0 to pi of the message P. Similarly, a cipher mode has infinite error 
propagation on decryption if a plaintext block pi can be expressed as a function of all 
previous ciphertext blocks c0 to ci in the encrypted message C. For instance, CBC 
(Ciphered Block Chaining [40]) has infinite error propagation on encryption but has 
limited error propagation on decryption since a given plaintext block can be expressed 
as a function of only two ciphertext blocks. 

In order to authenticate a message in addition to encrypt it, a value pm+1 – the re-
dundancy – is appended at the end of the plaintext message before encryption. This 
way, cm+1 – the result of the encryption of pm+1 – will depend on all plaintext blocks pi 
composing the message to authenticate. pm+1 and cm+1 are sent along with the en-
crypted message. On decryption, the corruption of one bit in any ciphertext block ci 
will impact the decryption of cm+1 since it depends on all previous ciphertext blocks. 
The recipient can detect a malicious modification by comparing the result of the de-
cryption of cm+1 with pm+1.  

AREA schemes seem really efficient since it is the only existing technique per-
forming only one pass over the data on encryption and decryption to provide both 
data confidentiality and integrity. However, the infinite error propagation is usually 
achieved by chaining encryption (e.g. CBC, PCBC[41], and PCFB[42]) and decryp-
tion (e.g. PCBC, PCFB) operations. A chaining mode implies that blocks belonging to 
the same message are processed sequentially (i.e., a given block in a message must 
wait for the previous block to be processed before being itself cryptographically proc-
essed) and, therefore, prevents processing all blocks in a message in parallel. 
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Authenticated Encryption Modes 
As shown in [39] and [41], providing both data confidentiality and authentication with 
schemes based on generic composition or on AREA could be a risky task. Hence, an 
important effort led by the cryptographic research community through the NIST's 
modes-of-operation [35] activities was deployed to define Authenticated Encryption 
(AE) modes. It aimed at providing a secure way to ensure data confidentiality and 
integrity. However, those encryption modes are based on AREA (PCFB) or on a ge-
neric composition schemes (GCM, CCM, OCB and IAPM) and thus suffer from the 
same drawbacks. Moreover, some modes (e.g., GCM) require specific hardware, in 
addition to the cipher, to perform signatures. 

3.2   Sources of Performance Degradation at Runtime 

As highlighted in section 3.1, the sequential processing of encryption (or decryption) 
and tag computation can be a source of run-time performance overhead. Other sources 
of run-time performance overhead in embedded systems, when memory encryption 
and authentication is implemented, are: 

• The intrinsic latencies of cryptographic functions (e.g., AES) involved in en-
cryption and tag computation, 

• The memory bandwidth pollution generated by the loading of meta-data such 
as tags and by the size of the atomic block loaded for decryption or for integrity 
checking. Such a block is called chunk in the following. 

However, the processing of data by the security engines implies specific operations 
which represent another source of degradation. Whatever the size of the chunk, a 
performance overhead is to be expected on: 

1) Read operations of data smaller than a chunk: such operations occur mainly for 
non-cacheable data and require:  

i) loading the whole matching chunk from external memory with its tag  
ii)  deciphering it and check its integrity  
iii) forwarding the requested data to the CPU.  

In addition to the latencies introduced by the security mechanisms, such a processing 
pollutes the memory bandwidth by loading not relevant data. 

2) Write operations of data smaller than a chunk require:  

i) loading the matching chunk with its tag from off-chip 
ii)  deciphering it and check its integrity  
iii) modifying the corresponding sequence in the chunk  
iv) re-ciphering it and re-compute its tag  
v)  writing it back into memory with its new tag.  

This chain of operations is referred in the following as Read Modify Writes (RMW). 
The additional performance slowdown implied by such an operation is mainly due to 
the generation of a read/decryption/checking process triggered by narrow block en-
cryption. Therefore, to reduce the run-time performance overhead introduced by 
RMW, the chunk size should be ideally defined as small as possible without affecting 
security.  



238 R. Elbaz et al. 

 

3.3   Related Work 

In this section we focus on works that aim at providing both memory encryption and 
authentication.  

AEGIS [10, 11], XOM [9], SP [12] architectures aim at providing memory authen-
tication and encryption in the context of the design of trusted processor architecture. 
Those three projects, therefore, include countermeasures against board level attacks. 
The proposed architectures implement a generic composition scheme (Encrypt-then-
MAC) and, hence, all suffer from the drawback highlighted above: no parallelization 
and not optimized in term of hardware resources.  

In AEGIS, XOM and SP the computation of tags is done over the data block and 
address (addressed-MAC), this way providing a countermeasure against spoofing and 
splicing attacks. This ensures the authentication of Read Only (RO)2 data, but Read 
Write (RW) data are still sensitive to replay. XOM [19] failed in preventing replay 
attacks since it treats RW data as RO. Storing hash of RW data block on-chip is a 
countermeasure against replay but is expensive in term of on-chip memory overhead. 
Tree techniques (Merkle Tree [16, 19], Parallelizable Authentication Tree (PAT) [17], 
Tamper-Evident Counter Tree (TEC-Tree) [21]) have been proposed as a technique to 
reduce this on-chip memory overhead to only one hash. Gassend and al. [19] imple-
mented the hash tree techniques combined with tree nodes caching to efficiently 
thwart replay attacks and several work have been proposed to improve performance 
of tree-based authentication scheme [14, 15, 18]. However, in this paper we focus on 
the authentication and encryption technique requiring a single access to memory. 
Indeed, tree schemes require recursive calls to the authentication primitive and multi-
ple accesses to metadata stored off-chip. These calls and off-chip memory accesses 
are extremely expensive for some applications like low cost embedded systems that 
do not include prefetching engines, large caches, or out-of-order execution mecha-
nisms that could hide tree overhead. For more details on those techniques, refer to 
[13, 20]. 

Vaslin and al. [7, 8] proposed a solution, dedicated to embedded systems, which 
encrypts data using One Time Pad (OTP) encryption and authenticates data by storing 
a CRC checksum of the plaintext blocks on the trusted on-chip area. The solution is 
effective in term of performance but this improvement comes at the cost of security 
since CRCs are not collision resistant.  

4   The Block-Level AREA Technique 

The proposed technique, called Block-Level AREA (BL-AREA) relies on the diffu-
sion property identified by Shannon [34] for block ciphers. Theoretically a block 
cipher must be indistinguishable from a random permutation with equiprobable out-
puts. In other words, the redundancy in the statistics of the plaintext block p has to be 
dissipated in the statistics of the ciphertext block c. Once a block encryption is  

                                                           
2 RO data are not modified at runtime by the application they belong to. RO data are further 

described later. 
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performed, the resulting position and value of each bit in c are a function of all bits of 
the corresponding p, thus providing the property of infinite error propagation at the 
block level.  

In the proposed technique, we leverage the diffusion property of block ciphers to 
add the integrity checking capability to this type of encryption. To do so, p is com-
posed of two fields: an lp-bit field PL – hereafter called the payload – and a t-bit field 
T – hereafter called the tag – such as b3=t+lp (p = PL||T). Considering the diffusion 
property presented above, after block encryption it is impossible to identify PL and T 
within the ciphertext block c = EK(p). Moreover, if a c’ is derived by flipping a single 
bit in c, there is a large probability that the last t-bit of the plaintext p’ = DK(c’) will 
be different from the value of T in p; this probability depends on the tag size t. The 
number of possible plaintext blocks with the same last t-bit is equal to 2b-t; hence the 
probability these last t-bit match the value of T after decryption of a tampered c is 1/2t 
(= 2b-t/2t).  

We call this authentication technique Block-Level AREA: the redundancy is added 
in each plaintext block before encryption and checked for each ciphertext block after 
decryption. The diffusion property of block ciphers provides the two-way infinite 
error propagation of the original AREA technique at the block level. As opposed to 
regular AREA schemes, BL-AREA does not require any chaining of cryptographic 
operations, and hence, can process the blocks belonging to the same message in paral-
lel. BL-AREA is similar to ECB (Electronic Code Book) mode in the sense that it 
encrypts blocks one at a time without any chaining feedback. However, BL-AREA 
does not suffer from the security flaw of the ECB mode: multiple encryption of the 
same plaintext never produces to the same ciphertext. This property is obtained by 
inserting a nonce in every plaintext blocks, making each plaintext block different 
from each others and ensuring that the encryption of the same payload twice produces 
two different ciphertext blocks. 

5   System-on-Chip Architecture of the Parallelized Encryption and 
Integrity Checking Engine (PE-ICE) 

In this section we describe the architecture of the engine, PE-ICE (Parallelized  
Encryption and Integrity Checking Engine), implementing the Block-Level AREA 
technique.  

5.1   Architecture Overview 

PE-ICE authenticates and encrypts data on off-chip memory operations. It is located 
on-chip between the last level of cache memory and the memory controller. As de-
picted in Figure 2, the main building block for PE-ICE is a block cipher. On write 
operations (Fig. 2a), a payload PL – data to be written off-chip – is concatenated with 
a tag T to produce each plaintext block p to be processed by the block cipher. After 
encryption, the resulting ciphered block c is written in the external memory.  

                                                           
3 As defined earlier, b is the size, in bits, of a block processed by a block cipher. 
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Fig. 2. PE-ICE: Encryption and Integrity checking (a) Write operations (b) Read operations 

On read operations (Fig. 2b) c is loaded and decrypted. The tag T issued from the 
resulting plaintext block is compared to the tag re-generated on-chip, called the tag 
reference, T’. If T does not match T’, it means – as explained in section 4 – that at 
least one bit of c has been modified during transmission on the bus or in the off-chip 
memory (spoofing attack). In such a case, PE-ICE raises an integrity checking flag to 
prevent further processing. Thus the block encryption provides data confidentiality 
and the Block-level AREA technique allows for data authentication using the same 
block cipher engine and by performing a single pass on data. 

The general overview of PE-ICE presented above assumes that we are able to re-
generate a tag reference on read operations upon integrity checking. In the next sub-
section, we describe the tag generation and its composition and how it is re-generated 
to perform the authentication process. 

5.2   The Tag Generation 

PE-ICE being on the SoC, the SoC should hold the tag value T of each ciphered block 
stored off-chip or be able to regenerate it on read operations to achieve the integrity 
checking process described above. The challenge is to reach this objective by storing 
as little tag information as possible on the SoC to optimize the on-chip memory usage. 
The composition of the tag is different for each kind of data, RO (Read Only) and RW 
(Read Write), and depends on the properties of the respective data types. 
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Fig. 3. Plaintext blocks and tag composition before encryption 

Tag for Read Only (RO) Data 
We assume that RO data are only written once in main memory when the application 
is loaded and are not modified at runtime. Hence, such payloads are only sensitive to 
spoofing and splicing attacks. Therefore, a payload PL of RO data can be associated 
with a fixed tag (i.e., the tag is never changed during the lifetime of the payload in 
memory). This tag can be public because an adversary would need the secret encryp-
tion key to create an accepted ciphertext block c=EK(PL||T). The secret key, being 
stored in an on-chip register, where storage is trusted, is out-of reach for adversaries. 
Also, an adversary should not be able to choose the reference tag T’ or to influence its 
generation. Hence, PE-ICE uses the address of the ciphered block as a tag (Fig.2a and 
3a). If an attacker performs a splicing attack, the address used by the processor to 
fetch a block and by PE-ICE to generate the reference tag T’ will not match the last t-
bit (T) of the plaintext issued from decryption of the fake ciphered block (Fig.2b). 

RO data are constants and code sections in an executable (e.g., .rodata and .txt in 
ELF executables). As specified in the threat model we assume a trusted OS kernel. 
Hence, we trust the kernel to correctly store these data in separated memory pages 
with adequate access rights (i.e., pages of code must not be writable in user mode). 
Also, the trusted OS is responsible for securely swapping in and out pages of RO data 
(i.e.; during the lifetime of the secure application in memory, a page of RO data must 
be loaded every time it is brought in at the same address). Finally, the trusted OS is 
responsible for differentiating two instances of the same application (e.g., by generat-
ing a new encryption key every time a secure application is loaded). If the trusted OS 
does not meet such requirements4, the designer should consider all data as RW and 
use the tag generation process described next. 

Tag for Read Write (RW) Data 
RW data are modified at runtime and are consequently sensitive to replay attacks. 
Using only the address of the data block as tag does not prevent such an attack. In-
deed, on read operations the processor would not be able to verify that the data read at 
a given address is the most recent one or a stale data previously stored at this address. 

                                                           
4 These requirements can be difficult to meet for complex embedded systems running several 

applications and, in these cases, data should be all considered as RW. However, they can be 
met in microcontroller applications.   
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For this reason the tag T must be changed on every off-chip store operation; this can 
be achieved in two different ways: 

1) T is a NONCE, a Number used ONCE, for a given encryption key, which can be 
generated with a counter (T = CTR) incremented on each write operation (Fig. 2a). 
The use of a nonce as tag prevent replay and splicing since the processor never pro-
duces two ciphertext blocks using the same tag. However, when the counter reaches 
its limit we must change the encryption key and re-encrypt the corresponding memory 
region for T to remain a true nonce. Otherwise, an adversary can perform what we 
call a periodic replay/splicing attack: he records a ciphered block c in memory and 
predicts when c can be replayed or relocated by counting the number of store opera-
tions performed by the processor. Each time the number of store is a multiple of the 
period5 of the counter, a periodic replay/splicing of c succeeds at the address targeted 
by the processor.  

2) Re-encryption requirement can be inconvenient and frequent particularly when 
the size of the counter is chosen small. To avoid re-encryption, we propose an alterna-
tive solution where T is generated with a random value generator assumed embedded 
on-chip (T = RV; Fig. 2a and Fig. 3b). Using a random value provides unpredictabil-
ity and thus prevents the periodic replay/splicing attack to be successful: the tag value 
is unpredictable, so an adversary is unable to know when two encrypted blocks have 
the same tag and thus when to perform a periodic replay/splicing. However, since the 
same random value can occur several times, this implies that replay and splicing at-
tacks may succeed. With random values, the security lies on the difficulty for an ad-
versary to find two ciphered blocks processed by PE-ICE (at the same address for a 
replay and at different address for a splicing) with the same tag. The probability of 
success is the same for replay and splicing attacks and is defined in section 4. This 
point is further developed in section 6 that presents our security analysis.  

Regardless of the tag composition, the SoC must be able to retrieve the correct ran-
dom or counter values – called in the following the reference random values RV’ or 
reference counter values CTR’ – to generate the reference tag T’ during the integrity 
checking process. The set of RV’ and of CTR’ must be tamper-proof, otherwise the 
attacker could carry out a replay attack by replaying a data with the corresponding 
stale RV’ or CTR’. In order to solve this issue the random values or counter values 
generated on write operations are stored on-chip (Fig. 2a) in a dedicated memory. 
This way, these values are tamper-proof since the SoC is considered as trusted and 
can be easily retrieved on read operations (Fig. 2b).  

The size of RV or CTR fixes a trade-off between the strength of the countermea-
sure against replay and the on-chip memory overhead. An alternative tag configura-
tion of the tag is proposed for RW data in which the least significant bits of the  
address addressing each ciphered block are concatenated with an RV or a CTR 
(T=RV||ADD - Fig. 3c - or T=CTR||ADD). Such a configuration decreases the 
strength against replay (by decreasing the size of the value which changes on each 
off-chip store operation) but maintains a countermeasure against splicing while reduc-
ing the on-chip memory cost.  

                                                           
5 The period of a counter is defined by the number of distinct value it generates (e.g. for a  

ctr-bit counter the period is of 2ctr). 
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For sake of clarity, in the following PE-ICE is described only for tag composed of 
random values (fig.3b and c). For a description of PE-ICE using counter values and 
the security implications of such a choice, refer to [20].  
 
Parallelizability. Tags are either generated from the address, from a counter or from 
a random generator. In any cases, on write operations, the tag generation can be trig-
gered at the same time as the processor request. Therefore the tag generation process 
can be parallelized with loading the payload through the on-chip bus (e.g., loading 
128-bit of data through the 32-bit AHB bus takes four bus cycles). Another solution is 
for PE-ICE to include a small buffer to store counter or random values generated in 
advance.  On read operations, the tag generation latency is always hidden by the off-
chip memory access latency:  

i) when the reference tag is composed of the address of the block: the reference tag 
is already known before the read memory block arrives on-chip and hence, before the 
decryption process starts,  

ii) when the reference tag is a counter value or a random number: it is contained in an 
on-chip memory and it is, therefore, known before the end of the decryption process.   
 

The tag generation (for BL-AREA encryption) and re-generation (for BL-AREA 
decryption and authentication) processes are, therefore, parallelizable with the crypto-
graphic operations required by BL-AREA or have their latency hidden by processor 
operations. 

5.3   Physical Address vs. Virtual Address Space Protection 

The tag composition presented in the previous section makes use of the block address 
without specifying if this address is the physical or the virtual address. In this section 
we discuss the pros and cons of using the physical or the virtual address as part of the 
tag T. 

The main advantage of using the virtual address in tags is that the application can 
be loaded in memory already encrypted. However, the use of the virtual address  
requires some deep processor core modifications. As mentioned above, PE-ICE is 
localized between the cache memory and the memory controller; hence, for physi-
cally-addressed cache memory it would be necessary to also store the virtual address 
to be able to write-back dirty cache blocks in main memory. Such a modification 
would require an additional on-chip memory overhead. Also, for shared libraries or 
data, the fact that several virtual addresses map to the same physical address compli-
cates [23] or prevents [24] their protection. In previous works [24], this point remains 
an open question. Considering this non negligible architectural obstacle, we choose to 
use the physical address to generate tags at the cost of having to encrypt pages of code 
at load-time and to trust the OS in protecting RO pages swapped in and out (if the 
designer ever decides to consider some data as RO).  

5.4   Address Computation 

PE-ICE shifts the physical addressing by inserting tags between payloads. This shift 
must be transparent for the CPU, hence, PE-ICE handles the address translation. In 
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the following tb and lpb denotes respectively the size, in bytes, of the tag and of the 
payload contained in a chunk. Moreover, we consider that PE-ICE protects the whole 
physical memory space. Hence, to retrieve an address AP of a PE-ICE chunk from the 
address ACPU provided by the CPU, PE-ICE first computes the position P of a payload 
in the address space seen by the CPU: 

pb

CPU

l

A
P =  

Then, AP can be computed as follows:  

bCPUP tPAA ×+=  

Hence, lpb and tb must be a power of 2 to allow a simple computation of P and AP in 
hardware. 

6   Security Analysis 

6.1   Active Attacks 

The security of PE-ICE against the three active attacks (spoofing, splicing and replay) 
described in the threat model and carried out on a chunk is quantified in Table 1 de-
pending on four parameters:  

• t, the bit-width of the tag, 
• a, the number of address bits in the tag, 
• r, the bit width of the random value RV, 
• and b, the ciphered block length (in bytes). 

Spoofing attacks 
Our threat model considers that an adversary can only access off-chip data, and hence, 
encrypted data. Therefore, in order to spoof data, the adversary would need to know 
how to create ciphertexts or how to manipulate existing ciphertexts to make them pass 
the authentication process. Since we consider the underlying block encryption algo-
rithm as secure, an adversary cannot deduce the effect of ciphertext bit manipulations 
in the resulting plaintext (e.g., tag bits). As mentioned in Section 4, attacks consisting 
in the insertion of random ciphertext or the tampering with certain ciphertext bits 
succeed with probability 1/2t.  

Replay and Splicing attacks 
The outputs of the random number generator implemented to produce RVs are as-
sumed equiprobable; therefore the probability of success of a replay is equal to 1/2t 
and is the same for a splicing attack when t = r (Fig. 3b). When the address is used in 
the tag (t=a+r – Fig. 3c), the physical address space protected against splicing attacks 
is determined by a and b; this address pace is equal to (2a x b) bytes and is called in 
the following a splicing-free-segment. However, a might have a size which could be 
insufficient to cover the whole address space; hence a different key must be attributed 
to encrypt every splicing-free-segment contained in the physical address space. The 
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key is thus said splicing-free-segment-dependent. This way an adversary which swaps 
two memory blocks with the same address bits in the tag from a splicing-free-segment 
to another will be detected. Such a requirement for the key only applies to RO data 
since the tag for RW data already includes a countermeasure against replay which 
protects against this attack. As a consequence, considering that the keys used to en-
crypt the RO memory section are splicing-free-segment-dependent, an adversary 
cannot perform a splicing attack on such a memory section. Thus, we consider that it 
is impossible to perform a splicing attack on a chunk of RO data while for RW data a 
splicing attack carried out on a chunk from a splicing-free-segment to another has 1/2r 
chance to succeed and 0 inside a splicing-free-segment.  

6.2   Confidentiality and Passive Attacks 

Considering our threat model (SoC trusted), the adversary might only perform two 
passive attacks to challenge data confidentiality: ciphertext-only attacks – the eaves-
dropper tries to deduce the secret key or the plaintext by observing the ciphertext – 
and known plaintext attacks – the adversary additionally knows a part of the plaintext 
(e.g., the address of the block used for the tag generation). Therefore, the choice of 
the block cipher algorithm is essential and must be secure against these two kinds of 
attacks. However, this is the minimum requirement for a block encryption algorithm, 
and in the following the block cipher implemented in PE-ICE fulfills this necessary 
condition.  

Table 1. Security limitations of PE-ICE with regard to the defined active attacks – Probability 
of success 

RW data 
Attack RO data 

t = a + r t = r 

Spoofing attack     1/2t     1/2t   1/2t 

Inside a 
Splicing-free-

segment 
0  0   

Splicing 
attack  Outside a  

Splicing-free-
segment 

0  1/2r 

  1/2t 

Replay attack  N/A 1/2r 1/2t 

7   Experimental Results 

In the following, a PE-ICE configuration is defined as an implementation of PE-ICE 
with a given block cipher. A PE-ICE configuration is denoted PE-ICE-bw where bw 
is the bit width of the block processed by the underlying block cipher. 

In this section, we first define PE-ICE-160, the PE-ICE configuration using the 
Rijndael [26] block cipher processing 160-bit blocks. Then, performance of several 
PE-ICE configurations at runtime are evaluated and compared. Finally, PE-ICE con-
figurations are compared to a generic composition scheme. 
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Fig. 4. Layout of a PE-ICE-160 chunk before encryption 

7.1   PE-ICE-160 – A PE-ICE Configuration 

The Rijndael algorithm is the block cipher who won the NIST contest for a new block 
encryption standard. The related standard is called AES [25] (Advanced Encryption 
Standard). AES processes 128-bit blocks and enrolls 128, 192 or 256-bit key. How-
ever, the original Rijndael [26] block cipher supports any key and block sizes that is a 
multiple of 32, between 128 and 256. This leads to several possible configurations for 
PE-ICE based on this block cipher. We studied three of them PE-ICE-128, PE-ICE-
160 and PE-ICE-192, which use the Rinjdael algorithm processing respectively 128-
bit (AES), 160-bit (Rijn-160) and 192-bit (Rijn-192) blocks. For sake of clarity, we 
only describe PE-ICE-160 configuration in this paper; for a description of the other 
configurations, refer to [20].  

Layout of a chunk 
For PE-ICE-160 we choose lpb = 16 and tb = 4. The composition of the resulting PE-
ICE-160 chunk is depicted in Fig. 4 (where a may be 0). 

Security Analysis for PE-ICE-160 
The security limitations of PE-ICE-160 are directly deduced from Table 1 (i.e. we 
fixed the parameter t as defined for PE-ICE-160, t = 32). For RO data, the 32-bit 
address of each ciphered block is used as tag (Fig. 4a). Hence, a splicing-free-segment 
is of the size of an addressing space of 4GB. Thus only one encryption key dedicated 
to RO data is required per application.  

For RW data, the strength of the proposed countermeasure against replay and splic-
ing attacks depends on the designer’s choice of the values of r and a. For example, if 
a = 24 and   r = 8, a splicing-free-segment is 256 MB long (224 x 16B); thus a replay 
attack has a 1/28 chance to succeed, while an adversary carrying out a splicing attack 
has a 1/28 chance to succeed from a splicing-free-segment to another and 0 within a 
splicing-free-segment. When t = r = 32, for both replay and splicing attacks, the 
chance to succeed is of 1/232.  

When r is chosen small to save on-chip memory, a simple technique enabling to 
improve the strength against splicing and replay is to foresee in PE-ICE a counter 
which memorizes the number of detected intrusions. When this counter reaches a 
threshold value determined by the designer or by the software programmer, the  
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Table 2. Security limitations of PE-ICE-160 

RW data 
Attack RO data 

t = a + r t = r 

Spoofing attack 1/232 1/232 1/232 

Inside a  
Splicing-free-

segment 
0  0   

Splicing 
attack  Outside a  

Splicing-free- 
segment 

N/A  1/2r 

1/232 

Replay attack  N/A 1/2r 1/232 

 
external memory space dedicated to RW data is zeroized and a new key is generated 
This will most probably result in a reset. This implementation countermeasure can 
also be implemented to prevent brute force spoofing attack where the adversary inject 
random chunks until finding one passing the integrity checking process. 

For both kinds of data the tag is at least 32-bit long, hence an adversary has a 1/232 
chance to succeed with a spoofing attack. Table 2 summarizes the security limitations 
of PE-ICE-160 evaluated in likelihood of success. 

Memory Requirement 
The amount of memory required by PE-ICE comes from the tag storage for off-chip 
memory and from the storage of the reference random values for on-chip memory. 
The off-chip memory overhead is defined by the ratio ROF between the tag and the 
payload bit widths (ROF = t/lp). For PE-ICE-160 the off-chip memory overhead is 
25%. The on-chip memory overhead is defined by the ratio RON between the  
bit-length of a random value used to protect a RW chunk against replay and the corre-
sponding protected payload bit-length (ROF = r/lp). For PE-ICE-160 the on-chip mem-
ory overhead for r equals to 8 or 32 is respectively 6.25% or 25%.  

Latencies 
In this section, we present the additional latencies introduced on off-chip memory 
accesses by PE-ICE-160 and AES-ECB encryption/decryption. The underlying CPU 
considered in this study is the ARM9E for which the optimum frequency (0.18µm 
CMOS process) is around 200MHz with a 32-bit AMBA AHB bus running at 
100MHz [27].  

Our implementation of the AES algorithm is non-pipelined and takes 11 cycles to 
encrypt one 128-bit block of plaintext in ECB (1 cycle per round plus 1 cycle to 
buffer the result). The AES implementation (0.18µm CMOS) presented in [28] shows 
that such latency is valid until 330 MHz. Hence, in the following we consider a realis-
tic case for the ratio RE/B between the AES frequency (FAES) and the bus frequency 
(FAHB): RE/B=2, FAHB=FAES/2. When RE/B=2 the intrinsic latency of the AES encryp-
tion seen on the AHB bus is of 6 cycles. The difference between all Rijndael versions 
lies in the number of rounds required to output a ciphertext block (or a plaintext 
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Table 3.  Additional latencies introduced by PE-ICE-160 and by AES-ECB on an AHB bus for 
operations requested by an ARM9E core 

AES-ECB PE-ICE-160 
Payload size - 

Operations Latencies  
(AHB cycles) 

Latencies  
(AHB 
cycles) 

Overhead  
vs. AES-

ECB 
8 to 32-bit Write 28 30 7% 
8 to 32-bit Read 10 11 10% 

4-word Write 10 11 10% 
4-word Read 10 11 10% 
8-word Write 10 12 20% 
8-word Read 10 12 20% 

16-word Write 10 14 40% 
16-word Read 10 14 40% 

block). This number of rounds Nr is defined in [26] and is equal to: Nr = max(Nk; Nb) 
+ 6; where Nk is the number of 32-bit words in the key and Nb the number of 32-bit 
words in the block processed. For Rijn-160 - processing 160-bit block and enrolling a 
128-bit key - Nr is equal to 11. Hence the intrinsic latency of Rijn-160 seen on the 
AHB bus is of 6 cycles. 

PE-ICE has been implemented in VHDL to be compliant with the AHB bus. Table 3 
sums up the additional latencies6 (expressed in bus cycles and obtained by simulation) 
introduced by PE-ICE-160 and by the AES-ECB encryption. The overhead of PE-ICE 
compared to AES-ECB encryption gives the cost of achieving data authentication in 
addition to data encryption. On average this cost is of 22%. This latency overhead is 
mainly due to the increase of the intrinsic latency of the underlying block cipher (i.e., 
Rijn-160 instead of AES). Also, we can observe that the latencies for PE-ICE-160 in-
crease along with the number of read/write words while the latencies for AES-ECB do 
not. This is due to the extra cycles required to process the tag: the AHB interface needs 
to load 32-bit of tag for each 4-word of payload to read or write.  

Silicon Area Overhead 
The hardware resources for PE-ICE-160 and for the AES-ECB engine reported in this 
section are those required to match the processor bandwidth. The hardware resources 
are first evaluated in number N of Rijn-160 or AES cores. All versions of Rijndael, 
including AES, implement the same operations (i.e., AddRoundKey, SubBytes, Mix-
Columns and ShiftRows [26]), therefore a core refers to the implementation of these 
four operations. The main difference in term of silicon area between an AES and a 
Rijn-160 comes from the different data path width (i.e., 128-bit for AES and 160-bit 
for Rijn-160). We consider this difference when we evaluate the hardware resources 
in number of gates. 
                                                           
6 Rijndael algorithm requires a decryption key which is computed from the encryption key. We 

make the realistic assumption that this decryption key is computed once and then stored in a 
dedicated register on-chip. 
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The processor can read or write a 32-bit data per AHB bus cycle. Thus, considering 
that a plaintext (or ciphertext) block is collected in 4 bus cycles and that the AES 
intrinsic latency seen on the AHB bus (6 cycles), the AES-ECB engine must imple-
ment two AES cores to reach the optimum throughput of 32-bit per cycle.  

For PE-ICE-160, on write operations, 4 cycles are required to collect a plaintext 
block on the 32-bit AHB bus and 5 cycles to output a ciphertext block to the memory 
controller whereas on read operations, 5 cycles are required to collect a ciphertext 
block and 4 to output a plaintext block. The maximum throughput is theoretically 
higher on write operations than on read operations. However, the available bandwidth 
between PE-ICE and the memory controller limits the throughput on write operations; 
hence on both read and write operations a ciphered text block is processed only every 
5 cycles. Considering the intrinsic latencies of the Rijn-160 (6 cycles), to reach the 
optimum throughput N has to be of two, as for the AES-ECB engine.  

For an atomic bus transfer the same key is shared by all AES cores, hence only one 
key expander core is needed for PE-ICE-160 and for the AES-ECB engine. By con-
sidering the figures provided by Ocean Logic [29] an AES encryption/decryption core 
with 11 cycles of latency takes 24 Kgates and the corresponding key expander core 32 
Kgates in the 0.18µ technology. This means that considering the chosen ratio RE/B = 
2, the hardware cost of the AES-ECB is of 80 Kgates. The data path width of Rijn-
160 being 25% larger than AES, the hardware cost of PE-ICE-160 is of 100 Kgates.  

At low hardware cost and low latency overhead, we showed that PE-ICE:  
i) strengthens AES-ECB encryption – the tag inserted before encryption prevents  
an adversary from detecting when the same data is transferred twice by monitoring 
bus transactions – ii) provides data authentication in addition to data confidentiality.  

7.2   Performance Evaluation 

Simulation Framework 
In order to evaluate the performance at runtime of the studied PE-ICE configurations 
the SoC designer tool set [33] is used. This toolset provided by ARM consists in two 
separate applications: SoCDesigner - used to integrate custom components modeled 
in SystemC (CABA, Cycle Accurate Bit Accurate) into complex SoC platforms - and 
SoCExplorer - a cycle accurate simulator allowing to run benchmarks and to profile 
the platforms defined with SoCDesigner. 

In the following we refer to the Base platform to denote the SoC platform which 
does not include hardware mechanisms for data security (encryption and integrity 
checking engine). To define the Base latencies we use the figures provided in the 
datasheet of an AHB compliant memory controller, the PL172[30]. We choose the 
lower read (9 cycles) and write (1 cycle) latencies assuming the following parameters 
for the underlying SDRAM memory: Precharge latency = 2, Activate latency = 2 and 
CAS latency = 2. This way, ideal memory accesses are defined and PE-ICE is pushed 
in the worst simulation case. In this section several PE-ICE configurations are  
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evaluated: PE-ICE-128, PE-ICE-160, PE-ICE-1927 and AES-ECB using respectively 
AES, Rijn-160 and Rijn-192, and are compared to an AES-ECB engine. One simula-
tion platform per security engine has been designed in SoCDesigner. These platforms 
are referred in the following as PE-ICE-128, PE-ICE-160, PE-ICE-192 and AES-
ECB. The architectural parameters defining the simulation frameworks are summa-
rized in Table 4. 

Table 4. Architectural parameters used for simulation 

Processor Core ARM9E 
Processor-memory bus width 32-bit 

AHB Clock ratio (FCPU / FAHB) 2 
Cache line size 256-bit 
Cache policy Write-back 

RE/B (FAES / FAHB) 2 
Base off-chip Read latency (AHB bus cycles) 9 
Base off-chip Write latency (AHB bus cycles) 1 

Results 
Eight benchmarks [32] designed for embedded systems were used in this evaluation. 
The simulation results for the Base platform serve as reference and are shown in IPC 
(Instruction Per Cycles) in Fig.5 for two different sizes of data cache and instruction 
cache (4KB and 128KB). Fig.6 gives this cache miss rate for each benchmark and for 
both sizes of the data cache. Note that considering the low Base latencies and the fact 
that all applications are entirely protected, the worst case results are presented in this 
section. Indeed, all data processed during software execution do not require to be 
necessarily encrypted and integrity checked. 

In order to illustrate the impact of the studied hardware mechanisms for data secu-
rity we show in Fig.7 the simulation results of the platforms emulating the AES-ECB 
engine, PE- ICE-128, PE-ICE-160 and PE-ICE-192, in IPC normalized to the Base 
platform performance. The AES-ECB engine performance clearly highlights that the 
overhead is mainly due to encryption; it is 50% in the worst case (CJPEG – 4KB) and, 
31.5% and 14.3% on average respectively for 4KB and 128KB data cache. Increasing 
the data cache size decreases the overhead of the security engines by reducing the 
number of off-chip memory accesses, except for the DES benchmark for which the 
data cache miss rate remains almost the same. 

This quite important performance cost can be drastically reduced by using a wider 
processor-memory bus (e.g. 64-bit) or by running the encryption algorithm at its 
maximum frequency. Moreover, we did not explore how to take advantage of the 
waiting time in the write buffer and of the Base write latency. The latencies intro-
duced by the different security engines could be partially hidden on write operations 
by starting the encryption before storing data in the write buffer or at least at the same 
time as the memory access request. 

                                                           
7 For a complete description of these PE-ICE configuration, refer to [20]. 
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Fig. 5. Simulation Results for the Base Platform for two different data cache sizes (4KB and 
128KB)  
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Fig. 6. Data cache miss rate for two different data cache sizes (4KB and 128KB) 

Nevertheless the interesting point is the low overhead implied by PE-ICE com-
pared to the AES engine. We evaluate the performance slowdown of the integrity 
checking mechanisms proposed by PE-ICE when compared to AES encryption alone 
by normalizing the IPCs of the PE-ICE platforms to the AES-ECB engine perform-
ance (Fig.8). The best results are obtained with PE-ICE-128 since on average the 
degradation is 1.9% and 1.1% respectively for a data cache size of 4KB and of 128KB 
and in the worst case it is 4.1% (DES – 4KB). However PE-ICE-160 results are close 
since on average it implies a performance slowdown of 3.3% for a data cache of 4KB 
and of only 1.7% for a data cache of 128KB. 

We evaluated the implementation of PE-ICE with several block ciphers and we 
showed that it provides data integrity in addition to data confidentiality with a low 
hardware cost and a negligible runtime performance overhead when compared to 
standard encryption. In the next section we further highlight the advantage of PE-ICE 
through comparison with a generic composition scheme. 



252 R. Elbaz et al. 

 

 

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ADPCM
DES

Fing
er

 P
rin

t

M
P2A

ud
io

CJP
EG

DJP
EG

M
P3 

pla
ye

r

Huf
fm

an

(b) 128KB
N

o
rm

al
iz

ed
 (

to
 B

as
e)

 IP
C

AES-ECB
PE-ICE-128
PE-ICE-160
PE-ICE-192

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ADPCM
DES

Fing
er

 P
rin

t

M
P2A

ud
io

CJP
EG

DJP
EG

M
P3 

pla
ye

r

Huf
fm

an

(a) 4KB

N
o

rm
al

iz
ed

 (
to

 B
as

e)
 IP

C

AES-ECB
PE-ICE-128
PE-ICE-160
PE-ICE-192

 

Fig. 7. Run-time overhead of AES-ECB encryption and of PE-ICE configurations for two data 
cache sizes (4KB - 128KB) 
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Fig. 8. Run-time overhead of the integrity checking mechanism of PE-ICE configurations 
compared to AES-ECB encryption alone for two data cache sizes (4KB and 128KB) 

7.3   Comparison with a Generic Composition Scheme 

In this section a comparison of PE-ICE with a generic composition scheme imple-
mented in the Encrypt-then-Mac fashion is proposed. We first describe the generic 
composition scheme, referred to as GC, and then we compare it to PE-ICE-160.  
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Description and Evaluation of the Generic Composition Scheme 
Description of GC. GC is the association of an AES encryption with a CBC-MAC 
[40] algorithm in the Encrypt-then-MAC fashion. Encrypt-then-MAC is chosen 
because it is the most secured conventional method to pair an authenticated mode 
and an encryption mode as proved in [39]. As for PE-ICE the encryption mode is 
ECB in order to perform a fair comparison between GC and PE-ICE concerning the 
integrity checking overhead. We consider ECB encryption secure in GC even though 
the same block encrypted twice always yields to the same ciphertext block, which is 
not the case for PE-ICE. The tag required for the integrity checking process is com-
puted over a chunk with the CBC-MAC algorithm. The underlying block cipher Ek 
for our CBC-MAC implementation is AES. The Encrypt-then-MAC construction is 
implemented, hence the tag is computed over the ciphered chunk composed of m 
AES blocks (C1, C2, …, Cm) by using a different key than the one required for the 
encryption [39]. A 128-bit vector N is additionally enrolled in the CBC-MAC com-
putation to thwart replay and splicing attacks. N is composed of the 32-bit chunk 
address concatenated with an r-bit vector RV and padded with zeroes to be 128-bit. 
The address serves to thwart splicing attacks by making N different for each ci-
phered chunk stored off-chip. For RW data, RV is the countermeasure against replay 
attacks, it is an r-bit random value generated on-chip, with its reference RV’ stored 
also on-chip. Thus it can be retrieved for integrity checking on read operations while 
making it secret and tamper-proof from an adversary point of view. For RO data RV 
is padded with zeroes. In the literature [12, 37] the chunk size is defined by the cache 
line length. However, this choice for the CBC-MAC is inefficient for big cache 
blocks in terms of latency due to the chaining nature of such a MAC algorithm. 
Thus, the tag is computed over a chunk M composed of two ciphered blocks – M = 
(N, C1, C2) – independently of the size of the cache line. This tag is then truncated to 
32-bit to decrease the memory bandwidth pollution generated by its transmission on 
the bus and to optimize the off-chip memory overhead. The resulting CBC-MAC 
implemented is depicted Fig 9. 
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Fig. 9. CBC-MAC implemented in the proposed Generic Composition scheme 
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Table 5. Additional latencies introduced by GC on an AHB bus for the operations requested by 
an ARM9E 

GC (AES + CBC-MAC) 
Payload size - 

Operations Latencies 
(AHB cycles) 

Overhead vs. 
AES-ECB 

8 to 32-bit Write 38 +36% 
8 to 32-bit Read 15 +50% 

128-bit Write 20 +100% 
128-bit Read 15 +50% 
256-bit Write 14 +40% 
256-bit Read 15 +50% 
512-bit Write 14 +40% 
512-bit Read 15 +50% 

Security analysis. In the following, the defined CBC-MAC implementation is evalu-
ated relatively to the three attacks exposed in the threat model (spoofing, splicing and 
replay) and carried out on a chunk. CBC-MAC is based on block cipher encryption; 
therefore its outputs are equiprobable from an adversary’s standpoint. Concerning 
spoofing and splicing attacks, the chance to succeed for an attacker depends on the 
size of the tag and is equal to 1/232. The strength of the countermeasure against replay 
depends on r: the chance for replay to succeed is equal to 1/2r. The latter probability 
is limited by the size of the tag, meaning that there is no sense in choosing r > 32.  

Memory overhead. The off-chip memory overhead of GC is of 12.5% since it requires 
to store 32-bit of tag for 256-bit of payload. The on-chip memory overhead depends 
on the size of RV and is defined by the ratio between r and the protected payload. 

Latencies. In this section we consider an implementation of GC on the AHB bus to 
evaluate the latencies introduced on read and write operations. On read operations the 
encryption of N is parallelized with the memory access latency, hence the CBC-MAC 
latency seen on the AHB bus is only due to two consecutives AES encryptions plus 1 
cycle of buffering, resulting in 11 cycles (for RE/B = 2) with 4 additional cycles to 
collect the first block. The integrity checking process is parallelizable with decryption 
process since they are both performed on the ciphertext, therefore the resulting la-
tency for GC on read operations is of 15 cycles. On write operations, the CBC-MAC 
has the same latency (11 cycles) since the enrollment of N is hidden by the AES en-
cryption. However, the data encryption process and the tag computation latencies are 
only partially parallelized. Moreover, the CBC-MAC generates a RMW write on the 
tag for the 8 to 32-bit and 128-bit write operations; this means that the chunk and the 
corresponding tag are loaded and checked, to be recomputed by enrolling the new 
128-bit value in the CBC-MAC computation.  Table 5 sums up the additional laten-
cies introduced by GC on the AHB bus. On average the overhead of GC compared to 
AES encryption alone is of 52% for RE/B = 2. 
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Hardware cost. On read operations the decryption and integrity checking processes 
are parallelized; thus despite the fact that they are both based on the AES algorithm, 
the AES- ECB engine and the CBC-MAC scheme of GC cannot share hardware. As 
shown in section 7.1, the AES-ECB encryption requires two AES encryp-
tion/decryption cores when RE/B = 2. Considering the intrinsic latency of the CBC-
MAC (11 cycles) algorithm three AES cores are required to reach the maximum 
throughput of 32-bit/cycle. However, only the encryption process is involved in the 
CBC-MAC computation, therefore the hardware cost can be optimized by using an 
AES core implementing the encryption process only. The silicon area consumed by 
such a core is estimated at 16 Kgates by Ocean Logic [29] in the 0.18µ technology. 
Moreover, the AES-ECB encryption and the CBC-MAC computation require sepa-
rated key expansion cores since they enroll two different keys. The resulting hardware 
cost for GC is of 160 Kgates when RE/B = 2. 
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Fig. 10. Runtime overhead of GC, of the AES-ECB engine and of PE-ICE-160 for two data 
cache sizes (4KB and 128KB) 

Runtime performance. A simulation platform has been designed for GC in SoC De-
signer with the latencies given in Table 5 added to the Base ones. The simulation 
framework is the same as the one described in section 7.2. GC has also been evaluated 
for two data cache sizes: 4 KB and 128 KB. Similarly to PE-ICE configurations the 
overhead of GC compared to the Base performance is mainly due to the encryption as 
shown in Fig.10. Nevertheless the additional performance slowdown of the integrity 
checking mechanisms of GC (CBC-MAC) is non negligible (Fig.10) when compared 
to the AES-ECB engine since it is of 18% in the worst case scenario (DJPEG – 4KB), 
and of 13.7% and 7.8% respectively in average for a data cache of 4 KB and of 128 
KB. 
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Fig. 11. Run-time overhead of GC and of several PE-ICE configurations (PE-ICE-128, PE-
ICE-160, PE-ICE-192) for two data cache sizes (4KB and 128KB) 

Comparison between GC and PE-ICE 
To compare GC and PE-ICE-160, we evaluate their respective cost to ensure data 
integrity in addition to data confidentiality. The AES-ECB engine is used as the refer-
ence cost to provide data confidentiality since PE-ICE-160 and GC implement both 
the ECB encryption mode. Table 6 shows the overhead implied by the integrity 
checking mechanisms in PE-ICE-160 and in GC in terms of hardware area, latencies 
and run-time performance hit. PE-ICE-160 requires 25% additional silicon area to 
achieve the integrity checking process while GC implies an overhead of 100%. In 
term of latencies the overhead of GC reaches up to 52% on average while for PE-ICE-
160 it remains always under 22% on average. The additional performance slowdown 
when compared to the AES-ECB encryption is roughly four times lower for PE-ICE-
160 than for GC. In term of security, PE-ICE-160 has the same security limitations as 
GC regarding the defined active attacks when r = 32. Moreover, PE-ICE-160 in-
creases the robustness of the ECB mode by introducing a random value – for RW data 
– or a nonce – for RO data. Hence for RO data a same plaintext block encrypted twice 
never produces the same ciphertext block while for RW data there is a little probabil-
ity that the same plaintext block ciphered twice leads to the same ciphertext block. 
This is not ensured by GC. The main advantage of GC is the memory consumption 
since for the same value of r, GC implies an on-chip and off-chip memory overhead 
twice smaller than PE-ICE-160. Indeed, to maintain a strong security level with a fine 
granularity of integrity checking (to optimize narrow block encryption and RMW) 
PE-ICE requires having a dedicated tag to each processed ciphered block. 
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Table 6. Summary of the Cost of the Integrity Checking Mechanisms of GC and PE-ICE com-
pared to AES-ECB 

 
GC (AES-ECB + CBC-

MAC) 
PE-ICE-160 

Hardware cost  160 Kgates  +100% 100 Kgates 25% 

Latencies +52% +22% 

DC=4KB +13.7% +3.3% Run-time 
slowdown DC=128KB +7.8% +1.7% 

Off-chip memory  +12.5% +25% 

On-chip memory  r/256 r/128 

8   Conclusion 

We introduced in this paper the concept of Added Redundancy Explicit Authentica-
tion at the Block Level (BL-AREA). Existing authenticated encryption schemes either 
require chaining cryptographic operations (i.e., one pass on data but each block is 
sequentially processed – AREA) or process blocks first for encryption/decryption and 
then for authentication (i.e., two passes on data, one for encryption and one for au-
thentication – generic composition). As opposed to these techniques, BL-AREA per-
forms a single pass on data and cryptographically processes blocks independently 
and, thereby, enables parallelization. In this sense, BL-AREA is similar to ECB en-
cryption mode. However, BL-AREA ensures authentication in addition to confidenti-
ality and it does not suffer from the security weakness of ECB (i.e., the same payload 
is never encrypted twice to the same ciphertext). BL-AREA also improves the per-
formance upon RMW operations triggered upon narrow block encryption.  

We described and evaluated an engine, PE-ICE, based on the concept of BL-
AREA to highlight its relevance and efficiency in ensuring data integrity in addition 
to data confidentiality in the context of processor-memory transaction. PE-ICE pro-
vides integrity checking in addition to encryption for a low hardware overhead and for 
a low run-time performance hit (less than 4%). We also showed that PE-ICE is more 
efficient at run-time and in terms of hardware than a generic composition scheme. 
Compared to PE-ICE, a generic composition scheme can require 100% of additional 
hardware and almost 14% of run-time performance overhead to provide integrity 
checking in addition to encryption.  

Therefore, implementing PE-ICE in commercial devices to provide memory en-
cryption and integrity checking is a more realistic solution than generic composition 
schemes using block encryption. Future works include comparing BL-AREA to ge-
neric composition scheme using counter mode encryption. We are also exploring how 
to adapt the concept of BL-AREA to stream ciphers [46]. 
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Abstract. With the increasing complexity of information management computer
systems, security becomes a real concern. E-government, web-based financial
transactions or military and health care information systems are only a few exam-
ples where large amount of information can reside on different hosts distributed
worldwide. It is clear that any disclosure or corruption of confidential informa-
tion in these contexts can result fatal. Information flow controls constitute an
appealing and promising technology to protect both data confidentiality and data
integrity. The certification of the security degree of a program that runs in un-
trusted environments still remains an open problem in the area of language-based
security. Robustness asserts that an active attacker, who can modify program code
in some fixed points (holes), is unable to disclose more private information than a
passive attacker, who merely observes unclassified data. In this paper, we extend
a method recently proposed for checking declassified non-interference in pres-
ence of passive attackers only, in order to check robustness by means of weakest
precondition semantics. In particular, this semantics simulates the kind of analy-
sis that can be performed by an attacker, i.e., from public output towards private
input. The choice of semantics allows us to distinguish between different attacks
models and to characterize the security of applications in different scenarios.

Our results are sound to address confidentiality and integrity of software run-
ning in untrusted environments where different actors can distrust one another.
For instance, a web server can be attacked by a third party in order to steal a ses-
sion cookie or hijack clients to a fake web page.

Keywords: program semantics, non-interference, robustness, declassification,
active attackers, abstract interpretation, security.

1 Introduction

Security is an enabling technology, hence security means power. So to cite some
examples, the correct functionality and coordination of large scale organizations, e-
government, web services in general relies on confidentiality and integrity of data
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exchanged between different agents. Nowadays, distributed and service oriented archi-
tectures are the first business alternative to the old fashioned client-server architectures.
According to OWASP (Open Web Application Security Project) [1], the most critical
security risks are due to application level attacks as injections flaws or XSS (Cross Site
Scripting). Moreover, current and future trends in software engineering prognosticate
mobile code technology (multi application smart cards, software for embedded systems),
extensibility and platform independence. It is worth noting that all these features, almost
unavoidable, become real opportunities for the attackers to exploit system bugs in order to
disclose and/or corrupt valuable information. For instance, in such a context, it is easier
to distribute worms or viruses that run everywhere or to embed malicious code to exploit
vulnerabilities in a web server.

In many scenarios, different agents, each having their own security policy and proba-
bly not trusting each other, have to cooperate for a certain goal, for example electing the
winner in an online auction. It can happen that the host used for computation violates
security by either leaking information itself or causing other hosts to leak information
[27,5]. In a cryptographic context, secure multi-party computation (MPC) [25] consists
of computing a function between different agents, each knowing a secret they don’t
want to reveal to the other participating agents. It is very common that an adversary is
part of such a systems by taking the control of some hosts and trying to reveal private
data of the other participating hosts. As a result, it is both useful and necessary to ad-
dress problems on confidential information disclosed by an adversary that can control
and observe part of the system, to characterize the possible harm in case some condition
is verified or to state conditions when the whole system is robust to some extent. Ap-
plication level enforcement that combines programming languages and static analysis
seems a promising remedy to such a problem [26,5]

Secure information flow concerns the problem of disclosing private information to
an untrusted observer. This problem is indeed actual each time a program, manipulat-
ing both sensitive and public information, is executed in an untrusted environment. In
this case, security is usually enforced by means of non-interference policies [13], stat-
ing that private information must not affect the observable public information. In the
non-interference context, variables have a confidentiality level, usually public/low and
private/high, and variations of the private input has not to affect the public output. In
this case, we are considering attackers that can only observe the I/O behavior of pro-
grams and that, from these observations, can make some kind of reverse engineering in
order to derive private information from the observation of public data.

Our starting idea is that of finding the program vulnerabilities by simulating the
possible reasonings that an attacker can perform on programs. Indeed, we can think that
the attacker can use the output observation in order to derive, backward, some (even
partial) private input information. This is the idea of the backward analysis recently
proposed in [3] for declassified non-interference, where declassification is modeled by
means of abstract domains [8]. The ingredients of this method are: the initial declassifi-
cation policy modeled as an abstraction of private input domain and the weakest liberal
precondition semantics of programs [12,11], characterizing the backward analysis (i.e.,
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from outputs to inputs) and the simulation of the attacker observational activity. The
certification process consists in considering a possible output (public) observation and
computing the weakest liberal precondition semantics of the program starting from this
observation. By definition, the weakest precondition semantics provides the greatest set
of possible input states leading to the given output observation. In other words, it char-
acterizes the greatest collection of input states, and in particular of private inputs, that
an attacker can identify starting from the given observation. In this way, the attacker can
restrict the range of private inputs inside this collection, which corresponds to a partial
release of private information. Moreover, we can note that, the fact that we compute the
weakest precondition for the given observation, provides a characterisation of the max-
imal information released by the observation, in the lattice of abstract interpretations.
Namely, starting from the results provided by the analysis, we construct an abstract
domain, representing the private abstract property released, which is the most concrete
one released by the program [3].

Our aim is to use these ideas also in presence of active attackers, namely attackers
that can both observe and modify program semantics. We consider the model of active
attackers proposed in [20] which can transform program semantics simply by insert-
ing malicious code in some fixed program points (holes), known by the programmer.
We can show that, also in presence of this kind of attackers, the weakest precondition
semantics computation can be exploited for characterising the information disclosed,
and therefore for revealing program vulnerabilities. This characterisation can be inter-
preted from two opposite points of view: the attacker and the program administrator.
The attacker can be any malicious adversary trying to disclose confidential information
about the system; the administrator wants to know whether the system releases private
information due to particular inputs.

An important security property concerning active attackers, and related to the in-
formation disclosed, is robustness [26]. It “measures” the security degree of programs
wrt active attackers by certifying that active attackers cannot disclose more information
than what a passive attacker (a simple observer) can do.

We propose to use the weakest precondition-based analysis in order to certify also
robustness of programs. The first idea we consider is to compute the maximal informa-
tion disclosed both for passive attackers [3] and for active attackers, and then compare
the results in the lattice of abstract interpretations for certifying robustness: if there
exists at least one active attacker disclosing more than the passive one, the program fails
to be robust. The problem of this technique is that it requires a program analysis for
each attack, this means that it becomes unfeasible when dealing with an infinite number
of possible active attacks. In order to overcome this problem, we need an analysis
independent of the code of the particular active attack. For this reason, we exploit the
weakest precondition computation in order to provide a sufficient condition that guaran-
tees robustness independently of the attack. In particular we provide a condition that has
to hold before each hole, for preventing the attacker to be successful. We initially study
this condition for I/O attackers, i.e., attackers that can only observe the I/O program be-
havior, and afterwards we extend it to attackers able to observe also intermediate states,
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i.e., trace semantics of programs. Finally, we note that, in some restricted contexts, for
example where the activity of the attackers is limited by the environment, the standard
notion of robustness may become too strong. For dealing with these situations we in-
troduce a weakening of robustness, i.e., relative robustness, where we restrict the set of
active attackers that we are checking for robustness.

There are various interesting applications where our approach is successful to capture
confidential information flaws. Here we select two cases concerning API (Application
Programming Interface) security and XSS attacks and apply the weakest precondition
analysis to check robustness. The first case enforces the security of an API used to
verify the password inserted in an ATM cash machine. The adversary is able to reveal
the entire password by tampering with low integrity data prior to call API function [4].
The second example concerns a web attacks using Javascript. As we will see, a naive
control of code integrity can reveal the session cookie to the adversary [23,6]. Our
robustness analysis by weakest precondition semantics is sufficient to prevent attacks
in both examples.

Roadmap. The rest of the paper is organized as follows. In Section 2 we give a gen-
eral overview of abstract interpretation, which constitutes the underlying framework
that we use to compare the information disclosed. In Section 3 we present the target
security background that we address in our approach. In particular we recall notions
of non-interference, robustness, declassification, decentralized label model and decen-
tralized robustness. In Section 4 we compute (qualitatively) the maximal private infor-
mation disclosed by active attackers. In particular, Section 4.1 introduces the problem
of computing the maximal release by active attackers for I/O (denotational) seman-
tics. Section 4.2 extends the analysis for attacks observing program traces. In Section 5
we discuss conditions to enforce robustness, which constitutes our main contribution.
Section 5.1 presents a static analysis approach based on weakest preconditions to en-
force robustness for I/O semantics; Section 5.3 extends these results for trace semantics;
In Section 5.4 we compare our method with type-based methods. Section 6 introduces
relative robustness which deals with restricted classes of attacks; in Section 6.1 we inter-
pret decentralized robustness in our approach. In Section 7 we use the current approach
in the context of real applications and explain how it captures the security properties we
are interested in. Sect. 8 we present the most relevant related works. We conclude with
Section 9 by discussing the current state of art and devising new directions for future
work. This is an extended and revised version of [2].

2 Abstract Interpretation: An Informal Introduction

We use the standard framework of abstract interpretation [8,9] for modeling properties.
For example, instead of computing on integers we might compute on more abstract
properties, such as the sign {+,−, 0} or parity {even,odd}. Consider the program
sum(x , y) = x + y , then it is abstractly interpreted as sum∗: sum∗(+, +) = +,
sum∗(−,−) = −, but sum∗(+,−) = “I don’t know” since we are not able to de-
termine the sign of the sum of a negative number with a positive one (modeled by
the fact that the result can be any value). Analogously, sum∗(even,even) = even,
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sum∗(odd,odd) = even and sum∗(even,odd) = odd. More formally, given a
concrete domain C we choose to describe abstractions of C as upper closure operators.
An upper closure operator (uco for short) ρ : C → C on a poset C is monotone,
idempotent, and extensive: ∀x ∈ C . x ≤C ρ(x ). The upper closure operator is the
function that maps the concrete values with their abstract properties, namely with the
best possible approximation of the concrete value in the abstract domain. For example,
the operator Sign : ℘(Z)→ ℘(Z), on the powerset of integers, associates each set of in-
tegers S with its sign: Sign(∅) =“none”, Sign(S ) = + if ∀n ∈ S .x > 0, Sign(0) = 0,
Sign(S ) = − if ∀n ∈ S . n < 0 and Sign(S ) = “I don’t know” otherwise. The used
property names “none”, +,0,− and “I don’t know” are the names of the following
sets in ℘(Z): ∅,

{
n ∈ Z

∣∣n > 0
}

, {0}, { n ∈ Z
∣∣n < 0

}
and Z. Namely the abstract

elements, in general, correspond to the set of values with the property they represent.
Analogously, we can define an operator Par : ℘(Z)→ ℘(Z) associating each set of in-
tegers with its parity. Par(∅) = “none” = ∅, Par(S ) = even =

{
n ∈ Z

∣∣n is even
}

if ∀n ∈ S . n is even, Par(S ) = odd =
{

n ∈ Z
∣∣n is odd

}
if ∀n ∈ S . n is odd and

Par(S ) = “I don’t know” = Z otherwise. Formally, closure operators ρ are uniquely
determined by the set of their fix-points ρ(C ), for instance Sign = {Z, > 0, < 0, 0, ∅}.
Abstract domains on the complete lattice 〈C ,≤,∨,∧,�,⊥〉 form a complete lattice,
formally denoted 〈uco(C ),�,�,�, λx . �, λx . x 〉, where ρ � η means that ρ is more
concrete than η, namely it is more precise, �iρi is the greatest lower bound taking the
most abstract domain containing all the ρi , �iρi is the least upper bound taking the
most concrete domain contained in all the ρi , λx .� is the most abstract domain unable
to distinguish concrete elements, the identity on C , λx . x , is the most concrete abstract
domain, the concrete domain itself.

3 Security Background

Information flow models of confidentiality, also called non-interference [13], are widely
studied in literature [21]. Generally they consider the denotational semantics of a pro-
gram P , denoted �P� and all program variables, in addition to their base type (int, float
etc.), have a security type that varies between private (H) and public (L). In this paper
we consider only terminating computations. Hence, there are basically two ways the
program can release private information by the observation of the public outputs: due
to an explicit flow corresponding to a direct assignment of a private variable to a public
variable and due to an implicit flow corresponding to control structures of the program,
such as the conditional if or the while loop [21].

3.1 Non-interference and Declassification

A program satisfies standard non-interference if for all the variations of private input
data there is no variation of public output data. More formally, given a set of program
states Σ, namely a set of functions mapping variables to values V, we represent a state
as a tuple (�h,�l) where the first component denotes the value of private variables and the
second component denotes the value of public variables. Let P be a program, then P
satisfies non-interference if

∀l ∈ V
L, ∀h1, h2 ∈ V

H.�P�(h1, l)L = �P�(h2, l)L
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where v ∈ V
T, T ∈ {H, L}, denotes the fact that v is a possible value of a variable with

security type T and (h, l)L = l . Declassified non-interference considers a property on
private inputs which can be observed [7,3]. Consider a predicate φ on V

H, a program P
satisfies declassified non-interference if

∀l ∈ V
L, ∀h1, h2 ∈ V

H.
φ(h1) = φ(h2) ⇒ �P�(h1, l)L = �P�(h2, l)L

3.2 Robust Declassification

In language-based settings, active attackers are known for their ability to control, i.e.,
observe and modify, part of the information used by the program.

Security levels form a lattice whose ordering specifies the relation between different
security levels. Each program variable has two security types that model, respectively,
the confidentiality level and the integrity level. In our context, all the variables have
only two security levels; L stands for low, public, modifiable and H stands for high,
private, unmodifiable. Moreover, we assume, for each variable x , the existence of two
functions, C(x ) (confidentiality level) which shows whether the variable x is observable
or not and I(x ) (integrity level) which shows whether the variable x is modifiable or
not. Definitively, each variable can have four possible security types, i.e., LL, LH, HL, HH.
For example, if the variable x has type LL then x can be both observed and modified by
the attacker, if the variable x has type HL then x can be modified by the attacker, but it
cannot be observed, and so on.

The programs are written according to the syntax of a simple while language. In
order to allow semantic transformations during the computation, we consider another
construct, called hole and denoted by [•], which models the program locations where a
potential attacker can insert some code [20].

c ::= skip | x := e | c1; c2 | if e then c1 else c2 |
while e do c | [•]

where e ::= v ∈ V | x | e1 op e2. The low integrity code inserted in holes models
the untrusted code assumed under the control of the attacker. Hence, let P [�•] denote
a program with holes and �a (vector of fixed attacks for each program hole) an attack,
P [�a] denotes the program under control of the given attack. A fair attack is a program
respecting the following syntax [20]:

a ::= skip | x := e | a1; a2 | if e then a1 else a2 |
while e do a

where all variables in e and x have security type LL. It is worth noting that fair attackers
can use in their attacks only the variables that are both observable and modifiable.

An important notion when dealing with active attackers is robustness [26]. Infor-
mally, a program is said to be robust when no active attacker, who actively controls
the code in the holes, can disclose more information about private inputs than what
can be disclosed by a passive attacker, who merely observes the programs I/O. Note
that, by using this attacker definition it becomes possible to translate robustness into a



A Weakest Precondition Approach to Robustness 267

language-based setting. Indeed, robust declassification holds if for all attacks �a when-
ever program P [�a] cannot distinguish program behavior on some memories, any other
attacker code �a′ cannot distinguish program behavior on these memories [20]. Thus,
we can formally recall the notion of robustness, for terminating programs, in presence
of active fair attackers [20].

∀h1, h2 ∈ V
H, ∀l ∈ V

L, ∀�a, �a′ active fair attack :
�P [�a]�(h1, l)L = �P [�a]�(h2, l)L ⇒ �P [�a′]�(h1, l)L = �P [�a′�(h2, l)L

Namely, a program is robust if any active (fair) attacker can disclose at most the same
information (property of private inputs) as a passive attacker can disclose. A passive
attacker is an attacker able only to observe program execution, which in this context
corresponds to the active attacker �a = �skip.

3.3 Weakest Liberal Precondition Semantics

In this section we briefly present the weakest liberal precondition semantics (Wlp for
short), which constitutes our basic instrument for performing static analysis. In partic-
ular, given a program c and a predicate P , Wlp(c,P) corresponds to the greatest set of
input states σ such that if (c, σ) terminates in a final state σ′, then σ′ satisfies the pred-
icate P [15,14]. In our case, these predicates correspond to quantifier-free first order
formulas which are transformed by the Wlp semantics. Below, we present the rules of
the semantics.

• Wlp(skip, Φ) = Φ

• Wlp(x := e, Φ) = Φ[e/x ]
• Wlp(c1; c2, Φ) = Wlp(c1, Wlp(c2, Φ))
• Wlp(if e then c1 else c2, Φ) = (e ∧Wlp(c1, Φ)) ∨ (¬e ∧Wlp(c2, Φ))
• Wlp(while e do c, Φ) =

∨n
i=0 Wlpi(while e do c, Φ)

where given (C def= while B do C1)

{
Wlp0(C , Φ) def= ¬B ∧ Φ

Wlpi+1(C , Φ) def= Wlp(if B then C1 else skip, Wlpi(C , Φ))

Almost all the above rules are easy to read. For instance, the weakest precondition of the
conditional, given a postcondition Φ, corresponds to the disjunction of conjunctions of
Wlp of each branch and the boolean condition of the guard. It is also worth noting that
the Wlp of the loop requires the computation of some invariant formula. There exists
techniques for doing that [16], but in this paper we don’t consider them explicitly. The
automatic generation of such invariants would be an interesting future direction we plan
to explore more in details. Unlike weakest precondition semantics, Wlp defines a partial
verification condition, namely only if the program does terminate the post-condition Φ
should hold. In any case, for the purposes of this paper, we will be interested only in
terminating programs, so we can establish the weakest liberal precondition in a finite
number of iterations.
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3.4 Certifying Declassification

In this section, we introduce a technique recently proposed for certifying declassifica-
tion policies [3,18] in presence of passive attackers only, i.e., attackers that can only
observe program execution. The method performs a backward analysis, computing the
weakest precondition semantics starting from output observation, in order to derive the
maximal information that an attacker can disclose from a given observation. We use
abstract interpretation for modeling the declassified properties.

Certifying declassification. In [3,18] the authors present a method to compute the
maximal private input information disclosed by passive attackers. They consider only
terminating computations, which means that the logical language does not have expres-
siveness limits [24]. Their method has two main characteristics: it is a static analysis,
and it performs a backward analysis from the observed outputs towards the inputs to
protect. The first aspect is important since we would like to certify programs without
executing them, the latter is important because non-interference aims to protect the sys-
tem private input while attackers can observe public outputs. Both these characteristics
are embedded in the weakest liberal precondition semantics of programs. Starting from
a given observed output Wlp semantics computes, by definition, the greatest set of in-
put states leading to the given observation. From this characterisation we can derive in
particular the private input information released by observing output public variables.
This corresponds exactly to the maximal private information disclosed by the program
semantics. In this way, we are statically simulating the kind of analysis an attacker can
perform in order to obtain initial values of (or initial relations among) private informa-
tion. We can model this information by a first order predicate; the set of program states
disclosed by the Wlp semantics are the ones which satisfy this predicate. In order to be
as general as possible, we consider the public observations parametric on some sym-
bolic value represented by some logical variable. We denote by �l = �n the parametric
value of each low confidentiality program variable. For instance, the formula (l = n)
means that the program variable l has the symbolic value n . Generally, the public out-
put observation corresponds to a first order formula that is the conjunction of all low
confidentiality variables, i.e., variables with security types LL or LH.

Φ0
def= {l1 = n1 ∧ l2 = n2 ∧ · · · ∧ lk = nk} =

k∧
i=1

(li = ni)

where ∀li . C(li) = L. Without loss of generality, we can assume this formula to be in a
disjoint normal form, namely a disjunction of conjunctions. We call free variables of a
logical formula Φ and denoteFV(Φ) the set of program variables occurring in Φ, where
Φ is a quantifier-free. Moreover, we assume to eliminate all possible redundancies and
all subformulas that can be subsumed by others in the same formula. For instance, let
(l > 1∧l > 0) be a logical formula. We can simply write (l > 1) because this subsumes
the fact that l > 0. From now on we’ll suppose to have each logical formula in this form
called normal form.
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For instance, consider the program P with h1, h2 : HH and l : LL.

P def= if (h1 = h2) then l := 0; else l := 1;

Wlp(P , l = n) = {(h1 = h2 ∧ n = 0) ∨ (h1 	= h2 ∧ n = 1)}.
If we observe l = 0 in public output, all we can say about private inputs h1, h2 is

h1 = h2. Otherwise, if we observe l = 1, we can conclude that h1 	= h2.
In [3,18] this technique is formally justified by considering an abstract domain

completeness-based [8] model of declassified non-interference. Here we avoid the for-
mal details, and we simply show where and how we use abstract interpretation. Note
that, usually Wlp semantics is applied to specific output states in order to derive the
greatest set of input states leading to the output one. Here, the technique starts from the
state�l = �n , which is indeed an abstract state, namely the state where the private vari-
ables can have any value, while the public variables�l have the specific symbolic value
�n . This corresponds to the abstraction H ∈ uco(℘(V)) [3] modeling the fact that the
attacker cannot observe private data. Formally, it associates with a generic output state
〈h, l〉 the abstract state 〈VH, l〉 =

{ 〈h′, l〉 ∣∣h′ ∈ V
H
}

. As far as the input characterisa-
tion is concerned, we know that an abstract property is described by the set of all the
concrete values satisfying the property. Hence, if the Wlp semantics characterises a set
of inputs, and in particular of private inputs, then this set can be uniquely modeled as an
abstract domain, i.e., the abstract property released. Consider, for instance, the trivial
program fragment P above. According to the output value observed, l = 0 or l = 1, we
have respectively the set of input states {〈h1, h2, l〉 | h1 = h2} or {〈h1, h2, l〉 | h1 	= h2}.
This characterisation can be uniquely modeled by the abstract domain1

φ = {�, {〈h1, h2, l〉 | h1 = h2}, {〈h1, h2, l〉 | h1 	= h2}, ∅}
Hence, if we declassify φ, the program is secure since the information released cor-
responds to what is declassified. While if, as in standard non-interference, nothing is
declassified, modeled by the declassification policy φ′ = λx .�2, then φ � φ′, namely
the policy is violated since the information released is more (concrete) than what is
declassified.

3.5 Decentralized Label Model and Decentralized Robustness

Decentralized label model was proposed as a fine-grained model to enforce end-to-end
security for systems with mutual distrust and decentralized authority that want to share
data with each other [19]. Basically, every agent in the system defines and controls his
own security policy and states which data, under his ownership, could be visible (declas-
sified) to other agents in the system. The system itself must ensure that security policies
are not circumvented and satisfy security concerns of all agents. More precisely, decen-
tralized label model consists of two basic flavors: principals, whose security should be
ensured in the model and labels, which constitute the means to enforce security poli-
cies. Principals can be users, processes, groups, roles possibly related by an acts-for

1 The elements 
 and ∅ are necessary for obtaining an abstract domain.
2 Since ∀x , y we have φ′(x) = φ′(y), declassified non-interference with φ′ corresponds to

standard non-interference.
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relation which allows delegation of authority between them. For instance, if principal
P acts-for principal Q , formally P ! Q , it means that P has all privileges of Q . On the
other hand, labels are data annotations that express the security policy the owner sets
on his data. In particular, if some data are annotated by label owner: reader, the policy
on that data defines the owner and the set of principals that can read such data. Security
labels form a security lattice where the higher an element is in the lattice, the more re-
strictive are the security concerns of the data it labels. Moreover, the decentralized label
model supports a declassification mechanism and allows to express policies regarding
both confidentiality and integrity. The model is used to perform static analysis based on
type systems to enforce information flow policies.

Decentralized robustness is an approach to enforce the security condition of robust-
ness in the decentralized label model [5]. In particular, the fact that each principal does
not trust the others means that each principal may be a potential attacker. Hence, robust-
ness is analyzed relatively to two principals: one fixes the point of view of the analysis,
the other is the potential attacker. In particular, the former fixes which data it believes
the latter can read and/or write. More formally, decentralized robustness is defined wrt
a pair of principals p and q , with power 〈Rp→q ,Wp←q〉, where Rp→q allows to char-
acterise the data p believes that q can read, while Wp←q allows to characterise the
data p believes that q can modify. A system is robust wrt all the attackers if it is robust
with respect to all the pairs p, q of principals. In [5], the authors use type systems to
enforce robustness against all attackers in a simple while language with holes and ex-
plicits declassification. Basically, it allows holes to occur in low confidentiality contexts
and prevents attackers to influence both (explicit) declassification decision and data to
be declassified as explained in [20]. Once we fix the point of view of the attacker, a safe
hole insertion relation defines the admissible holes for the attacker in question together
with variables he can modify and/or observe in the program.

4 Maximal Release by Active Attackers

The notion of robustness defined in Sect. 3 implicitly concerns the confidential infor-
mation released by the program. Indeed, if we are able to measure the maximal release
(the most concrete private property observable) in presence of active attacks, then we
can compare it with the private information disclosed by passive attackers and con-
clude about program robustness. Thus, in this section we compute (when possible) the
maximal private information disclosed by an active attacker.

The active attack model we use here is more powerful than the one defined in
Sect. 3.2, i.e., fair attacks. In addition, our attackers can manipulate (use and modify)
variables of security type HL, i.e., variables that the attacker cannot observe but can
use. Indeed, HL is the type of those variables whose name is visible, i.e., usable by the
attacker in his code, but whose value is not observable. Thus, in the following active
attacks are programs (without holes) such that, for all the variables x occurring in the
attacks code, I(x ) = L. We call them unfair attacks. Unfair attacks are more general
than fair attacks because they can modify variables of security type LL and HL. For in-
stance, suppose that a system user wants to change his password, he accesses a variable
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(the password) he can write but not read (blind writing), i.e., of type HL. Now we want
to compute the maximal information release in presence of unfair attacks.

4.1 Observing Input-Output

It is clear that, in order to certify the security degree of a program, also in presence of
active attackers, it is important to compute which is the maximal private information
released. Such information can help the programmer to understand what happens in
the worst case, namely when an active attacker inserts the most harmful unfair code.
Moreover, if we compute the most concrete property of private input data released by
program semantics for all active attacks, we can compare it with the private information
disclosed by a passive attacker and conclude about program robustness. In this section,
we consider denotational semantics, namely input/output semantics. Hence, the set of
program points where the attacker can observe low confidentiality data corresponds to
program inputs and program outputs. Note that, the active attacker can insert code (fair
or unfair) in fixed points, therefore he can change program semantics and consequently
the property of confidential information released can be different in presence of dif-
ferent active attacks. Moreover, the number of possible unfair attacks may be infinite,
thus, it becomes hard to compute the private information disclosed by all of them. The
real problem is that it is impossible to characterise the maximal information released
to attackers that modify program semantics, because different attacks obtain different
private properties which may be incomparable if there are infinitely many such attacks.

This problem is overcome when we consider a finite number of attackers, for instance
a finite class of attacks for which we want to certify our program. In this case, we can
compute the maximal information disclosed by each attacker and, afterwards, we can
consider the greatest lower bound (in the lattice of abstract domains) characterising
the maximal information released for the fixed class of attackers. Let us introduce an
example to illustrate the problem.

Example 1. Consider the program P ::= l := h; [•]; with variables h : HH, l : LL and
k : HL. We can have the following attacks:

– Wlp
(
l := h; [skip], {l = n})={h = n}

– Wlp
(
l := h; [l := k ], {l = n})={k = n}

– Wlp
(
l := h; [l := l + k ], {l = n})={h + k = n}

For all cases the attacker discloses different information about confidential data. In par-
ticular, in the first case the attacker obtains the exact value of variable h, in the second he
obtains the exact value of variable k and in the third case he obtains a relation (the sum)
between h and k . Note that if all possible active attacks were only those considered
above, we can compute the greatest lower bound (glb for short) of private information
disclosed by all of them. In this case glb corresponds to the identity value of confidential
variables h and k .

However, as shown in the previous example, we can compute the private informa-
tion disclosed by an attacker who fixes his attack and check if that particular attack
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compromises program robustness. To this end, we just have to use the method introduced
in [3] and verify that the method described in Sect. 3.4holds for the transformed program.

In the previous example, we have seen that, even though we have a finite number
of attackers, we have to compute a Wlp analysis for each active attacker. In the fol-
lowing, we suggest a method for computing only one analysis dealing with a (possible
infinite) set of active attackers. We follow the idea proposed in [3], where, in order to
avoid an analysis for each possible output observation, the authors compute the anal-
ysis parametrically on the symbolic output observation l = n . In particular, note that
an attacker, being an imperative program, corresponds to a function manipulating low
integrity variables, i.e., LL and HL variables.

Hence, we propose a Wlp computation parametric on the possible expressions f (�l)
assigned by the active attacker to low integrity variables�l , which we call attack schemas
(in line with program schemas [10]). In other words, the attacker can assign to all low
integrity variables an expression which can possibly depend on all other low integrity
variables. For instance, given a program where the only low integrity variables are l
and k , all possible unfair attacks concern the variables l and k , namely l := f (l , k) and
k = g(l , k), where f , g are expressions that can contain variables l , k free.

The confidential information released by such parametric computations can be ex-
ploited by both the programmer and the attacker. Indeed, looking at the final formula
which can contain f as parameter, the former can detect vulnerabilities about the con-
fidential information released by the program, while the latter can exploit such vulner-
abilities to build the most harmful attack in order to disclose as much as possible about
private input data. Let us introduce an example that shows the above technique.

Example 2. Consider the program in Ex. 1. The only low integrity variables are l : LL
and k : HL. According to the method described above we have to substitute possible
unfair attacks in [•] with attack schema 〈l , k〉 := 〈f (l , k), g(l , k)〉. The initial formula
is Φ0 = {l = n} because l is the only program variable s.t. C(l) = L. Thus, the Wlp
calculation yields the following formula:

{f (h, k) = n}
l := h;

{f (l , k) = n}
[〈l , k〉 := 〈f (l , k), g(l , k)〉;]

{l = n}

Note that the final formula (f (h, k) = n) contains information about high confidential-
ity variables h and k . Thus, fixing the unfair attacks as we did in the previous example,
we obtain information about symbolic value of h, k or any relation between them.

It is worth pointing out that attack schemas capture pretty well the idea of classes of
attacks which have a similar semantic effect (up to stuttering) on confidential informa-
tion disclosed by an active attacker. We conjecture a close relationship between attack
schemas and program schemas [10] and postpone their investigation as part of our future
work.



A Weakest Precondition Approach to Robustness 273

4.2 Observing Program Traces

So far we have tried to compute the maximal private information disclosed by an active
attacker which tampers with low integrity data in predefined program points (holes) and
observes public input and public output of target program. In particular, the attacker
could not observe low confidentiality data in any intermediate program point (random
traces or holes). This condition is unrealistic in a mutual distrust scenario, where the
attacker can control a compromised machine. Indeed, nothing prevents it to analyze
low confidentiality data in points he is tampering code with and reveal secrets even
though the overall computation has not terminated yet. This man-in-the-middle kind
of attack requires to extend the analysis and consider intermediate program points as
possible channels of information leakage. In many practical applications, it is common
to have scenarios where a bunch of threads are running concurrently together with a
malicious thread which reads the content of shared variables and dumps them in output
each time the thread is scheduled to run.

In [18] the authors notice that the semantic model constitutes an important dimen-
sion for program security, the where dimension [22], which influences both the ob-
servation policy and the declassification policy. It seems obvious that an attacker who
observes low confidentiality variables in intermediate program points is able to dis-
close more information than an attacker that observes only input/output. In this section,
we aim to characterise the maximal information released by a program in presence of
unfair attacks. In general, we can fix the set of program points where the attacker can
observe low confidentiality variables (say O) and we can denote by H the set of pro-
gram points where there is a hole, namely where the attacker can insert malicious code.
Moreover, we assume that the attacker can observe the low confidentiality variables for
all program points in H, namely H ⊆ O. In order to compute the maximal release of
confidential information, an attacker can combine, at each observation point, the public
information he can observe at that point together with the information he can derive
by computing Wlp from the output to that observation point [18]. For instance, with
trace semantics, an attacker can observe low confidentiality data for all intermediate
program point. Let us introduce an example that presents this technique for passive
attackers.

Example 3. Consider the program P with variables l1, l2 : LL and h1, h2 : HH.

P ::=
[
h1 := h2; h2 := h2 mod 2;
l1 := h2; h2 := h1; l2 := h2; l2 := l1;

We want to compute the private information disclosed by an attacker that observes pro-
gram traces. As for standard non-interference, here we want to protect private inputs
h1 and h2. In order to make only one iteration on the program even when dealing with
traces, the idea is to combine the Wlp semantics computed at each observable point of
execution, together with the observation of public data made at the particular observa-
tion point. We denote in square brackets the value observed in that program point. The
Wlp calculation yields the following result.
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{h2 mod 2 = m ∧ h2 = n ∧ l2 = p ∧ l1 = q}
h1 := h2;

{h2 mod 2 = m ∧ h1 = n ∧ l2 = p ∧ l1 = q}
h2 := h2 mod 2;

{h2 = m ∧ h1 = n ∧ l2 = p ∧ [l1 = q]}
l1 := h2;

{l1 = m ∧ h1 = n ∧ l2 = p}
h2 := h1;

{l1 = m ∧ h2 = n ∧ [l2 = p]}
l2 := h2;

{l1 = m ∧ [l2 = n]}
l2 := l1;

{l1 = l2 = m}
For instance the information observed by the assignment l2 := l1 is the combination
of Wlp calculation (l1 = m) and attackers observation at that point ([l2 = n]). The
attacker is able to deduce the exact value of h2. It is worth noting that this attacker is
more powerful than the one who merely observes the input-output behavior; in fact, the
latter can only distinguish the parity of variable h2. This is made clear by the fact that
the value of h2’s parity (m) is the value derived by the output, while the value of h2 (n)
is a value observed during the computation.

We would like to compute the maximal private information release in presence of unfair
attacks. Here the problem is similar to the one described in the previous section. Un-
fair attacks, by definition, manipulate (modify and use) both variables of type LL and
HL. Even though the attacker can observe low confidentiality variables in presence of
holes, he cannot observe the variables of type HL. Hence, different unfair attacks cause
different information releases, as it happens for attackers observing only the I/O, and in
general there can be an infinite number of these attacks. However, if we fix the unfair
attack we can use the method described above and compute the maximal release for that
particular attack.

Things change when we consider only fair attacks, i.e., manipulating only LL vari-
ables. The following proposition shows that we can generalise all possible fair attacks
to constant assignments�l := �c to variables of type LL.

Proposition 1. Let P [�•] be a program with holes and H ⊆ O. Then, all fair attacks
can be written as�l := �n , where l : LL.

Proof. In general, all fair attacks have the form �l := f (�l). Moreover, H ⊆ O so the
attacker can observe at least the program points where there is a hole. Thus, all the
formal parameters of expression f (�l ) are known. We conclude that�l := �n .

Now we are able to measure the maximal private information disclosed by an active
attacker. Indeed, we can use the approach of Ex. 3 and whenever we have a program
hole, we substitute it by the assignment�l := �c, parametric on symbolic constant values
�c. The following example shows this method.



A Weakest Precondition Approach to Robustness 275

Example 4. Consider the program P with variables h : HH and l : LL. O is set of all
program points.

P ::= l := 0; [•]; if (h > 0) then skip else l := 0;

In presence of passive attackers P does not release any information about private
variable h. Indeed, the output value of variable l is always 0. An active attacker who
observes each program point and injects fair attacks, discloses the following private
information:

{((h > 0 ∧ c = m) ∨ (h ≤ 0 ∧m = 0)) ∧ c = n ∧ p = 0}
l := 0;

{((h > 0 ∧ c = m) ∨ (h ≤ 0 ∧m = 0)) ∧ c = n ∧ [l = p]}
[l := c;]

{((h > 0 ∧ l = m) ∨ (h ≤ 0 ∧m = 0)) ∧ [l = n]}
if (h > 0) then skip else l := 0;

{l = m}
Thus, an active attacker is able to disclose whether the variable h is positive or not.
Hence, this is the maximal private information disclosed by an attacker who observes
program traces and injects fair code in the holes.

5 Enforcing Robustness

In this section, we want to understand, by static program analysis, when an active at-
tacker that transforms program semantics is not able to disclose more private informa-
tion than a passive attacker, who merely observes public data. The idea is to consider
Wlp semantics in order to find sufficient conditions which guarantee program robust-
ness. Here we introduce a method to enforce programs which are robust in presence of
active attackers.

We know [3] that declassified non-interference is a completeness problem in abstract
interpretation theory and there exists systematic methods to enforce this notion. Let
P [�•] be a program with holes and Φ a first order formula that models the declassification
policy. In order to check robustness for this program, we must check the corresponding
completeness problem for each possible attack a, as introduced in Sect. 3.4 where P [�a]
is program P under the attack �a . We want to characterise those situations where the
semantic transformation induced by the active attack does not generate incompleteness.
If there exists at least one attack a such that the program releases more confidential
information than the one released by the policy, then the program is deemed not robust.

The following example shows the ability of active attackers to disclose more confi-
dential information wrt passive attackers.

Example 5. Consider the program P with h : HH, l : LL.

P ::= l := 0; [•] if (h > 0) then (l := 1) else (l := l + 1);
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Suppose the declassification policy is �, i.e., nothing has to be released. In presence of
a passive attacker (the hole substituted by skip) program P satisfies the security policy,
namely non-interference, because public output is always 1. Wlp semantics formalizes
this fact.

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = 1)} = {n = 1}
l := 0;

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = l + 1)}
if (h > 0) then (l := 1) else (l := l + 1);

{l = n}
Now suppose that an active attacker inserts the code l := 1. In this case Wlp semantics
shows that the attacker is able to distinguish positive values of private variable h from
non positive ones. Using the Wlp calculation parametric on public output {l = n} we
have the following result.

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = 2)}
l := 0;

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = 2)}
[l := 1;]

{(h > 0 ∧ n = 1) ∨ (h ≤ 0 ∧ n = l + 1)}
The final formula shows that the adversary is able to distinguish values of h greater
than 0 from values less or equal than 0 by observing, respectively, the values 1 or 2 of
public output l . We can conclude that program P is not robust and the active attackers
are effectively more powerful than passive ones.

If we had a method to compute the maximal private information release in presence of
unfair attacks, then we could conclude about program robustness by comparing it with
the information disclosed by a passive attacker. Unfortunately, in the previous section,
we have seen that it is not possible to compute the maximal information released for all
possible attacks, which can possibly be infinite. Hence, our aim is to look for methods
enforcing robust programs without computing the maximal information released.

5.1 Robustness by Wlp

In this section we first distinguish between active attacks of different power and, after-
wards, we present the proof of our approach to certify robust programs. The proof is
organised as follows: it starts with a lemma that applies to sequential programs with
one hole only, then we give a a theorem that generalizes the lemma to sequential pro-
grams with more holes and conclude with another theorem that applies the robustness
condition to all terminating while programs.

Let us make some considerations about logical formulas and the set of program states
they manipulate. The free variables of the output observation formula Φ0 correspond to
the set of low confidentiality variables LL and LH, namely

FV(Φ0) = {x ∈ Var(Φ0)|C(x ) = L}.
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If a low confidentiality variable does not occur free at some program point, it means that
such variable was previously, wrt backward analysis of Wlp semantics, substituted by
an expression that does not contain that variable. This means that, it can have any value
in that point. From the viewpoint of information flow, even if the variable contains some
confidential information in that point this is useless for the analysis, because the variable
is going to be subsequently overwritten and therefore this information can never be
disclosed through public outputs.

Our aim is to generalise the most powerful active attacks and study their impact
on program robustness. As a first approach one can try to represent all possible active
attacks by a constant assignment to low integrity variables. Hence, the attacker observes
only the input/output value of low confidentiality variables, i.e., LL and LH variables.
The following example shows that this is not sufficient enough and there exist more
powerful attacks that disclose more private information and break robustness.

Example 6. Consider the program P with variables l : LL, k : LL, h : HH and declassi-
fication policy that releases nothing about private variables.

P ::=

⎡
⎣ k := h; [•];

if (l = 0) then (l := 0; k := 0)
else (l := 1; k := 1);

First notice that P does not release private information in presence of a passive attacker
who merely observes the I/O variation of public data. Indeed, the assignment of h to k is
subsequently overwritten by constants 0 or 1 and depends exclusively on the variation of
public input l . If it was possible to represent all active attacks by constant assignments
we can see that P would be robust. In fact, if the attacker assigns constants c1 and c2,
respectively, to variables l and k , Wlp calculation deems the program robust.

{(c1 = 0 ∧m = 0 ∧ n = 0) ∨ (c1 	= 0 ∧m = 1 ∧ n = 1)}
k := h;

[l := c1; k := c2;]
{(l = 0 ∧m = 0 ∧ n = 0) ∨ (l 	= 0 ∧m = 1 ∧ n = 1)}

if (l = 0) then (l := 0; k := 0) else (l := 1; k := 1);
{l = m ∧ k = n}

The final formula shows that such program satisfies non-interference. But if we assign
to low integrity variables an expression depending on other low integrity variables, then
we obtain more powerful attacks, which make P not robust. For instance, the assignment
a ::= l := k ; makes the attacker distinguish the zeroness of private variable h.

{(h = 0 ∧m = 0 ∧ n = 0) ∨ (h 	= 0 ∧m = 1 ∧ n = 1)}
k := h;

{(k = 0 ∧m = 0 ∧ n = 0) ∨ (k 	= 0 ∧m = 1 ∧ n = 1)}
[l := k ;]

{(l = 0 ∧m = 0 ∧ n = 0) ∨ (l 	= 0 ∧m = 1 ∧ n = 1)}
Definitely, program P is not robust and therefore we cannot reduce active attacks to a
constant assignment to low integrity variables.
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In general, an active attack is a piece of code that concerns low integrity variables, i.e.,
a function manipulating low integrity variables. If we assign to low integrity variables
a constant value then we erase the high confidentiality information that this variables
might have accumulated before reaching that point or we are not considering the possi-
bility of assigning to that variable another one which contains some private information
that possibly may be lost subsequently as shown in Ex. 6.

We can use the ideas discussed so far to present a sufficient condition ensuring pro-
gram robustness. Remember that we represent formally the observable public output as
a first order formula, Φ0, that corresponds to the conjunction of program variables x
such that C(x ) = L, parametric on the observed public outputs ni , namely

Φ0 =
k∧

i=1

(li = ni) and ∀i .C(li ) = L.

In particular, we first describe how to characterise the sufficient condition when the
holes are not nested in control structures. This is obtained in two steps, the lemma shows
the result for programs with only one hole, while the first theorem extends the result to
programs with an arbitrary number of holes. Afterwards, we show how to exploit this
result in order to characterise the sufficient condition to robustness also when holes are
nested in control structures.

In the following, we denote by •i the i-th hole in P and by Pi the portion of code in
P after the hole •i where all the following holes (•j , with j ∈ H, j > i) are substituted
with skip. Then Φi = Wlp(Pi , Φ0) is the formula corresponding to the execution of the
subprogram Pi .

Lemma 1. Let P = P2; [•];P1 be a program (P1 without holes, possibly empty). Let
Φ = Wlp(P1, Φ0). Then P is robust wrt unfair attacks if ∀v ∈ FV(Φ).I(v) = H.

Proof. We prove this theorem by induction on the attack’s structure and on the length of
its derivation. In particular, we prove that for any attack a, Wlp(a, Φ) = Φ, namely the
formula Φ does not change, hence from the semantic point of view, the attack behaves
like skip, namely like a passive attacker. Note that, here we consider unfair attacks,
hence it can use both LL and HL variables.

– a ::= skip: The initial formula Φ does not change, namely Wlp(skip, Φ) = Φ, and
the attacker acts as a passive one.

– a ::= l := e: By definition of active attack we have I(l) = L and by hypothesis
variable l does not occur free in Φ. Applying the Wlp definition for assignment, we
have Wlp(l := e, Φ) = Φ[e/l ] = Φ.

– a ::= c1; c2: By inductive hypothesis we have Wlp(c1, Φ) = Wlp(c2, Φ) = Φ as
attacks of minor length. The Wlp definition for sequential composition states that
Wlp(c1; c2, Φ) = Wlp(c1, Wlp(c2, Φ)) = Φ

– a := if B then c1 else c2: By inductive hypothesis (applied to an attack of minor
length) we have Wlp(c1, Φ) = Wlp(c2, Φ) = Φ. Applying the definition of Wlp
for the conditional construct Wlp(if B then c1 else c2, Φ) = (B ∧Wlp(c1, Φ)) ∨
(¬B ∧Wlp(c2, Φ)) = (B ∧ Φ) ∨ (¬B ∧ Φ) = Φ.
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– a ::= while B do c: By hypothesis we consider terminating computations, so the
while loop halts in a finite number of iterations. Applying the inductive hypothesis
to command c we have Wlp(c, Φ) = Φ, so every iteration the formula does not
change. Moreover, if the guard is false the formula remains unchanged too. Apply-
ing Wlp rule for the while loop and the inductive hypothesis we have:
Wlp(while B do c, Φ) = (¬B ∧ Φ) ∨ (B ∧ Φ) ∨ · · · ∨ (B ∧ Φ) ∨ (B ∧ Φ) = Φ

Theorem 1. Let P [�•] be a program. Then we say that P is robust wrt unfair attacks if
∀i ∈ H.∀v ∈ FV(Φi). I(v) = H.

Proof. Suppose P has n holes:

P ≡ P ′
n+1; [•n ];P ′

n . . .P ′
2; [•1];P ′

1

Let us define the following programs from 1 ≤ i ≤ n + 1

Pi
def=
{

P ′
1 if i = 1

P ′
iPi−1 otherwise

Namely Pi is the portion of code in P after the hole •i where all the following holes
(•j , with j ∈ H, j > i) are substituted with skip. We prove by induction on n that
∀1 ≤ i ≤ n. P ′

i+1; [•i ];P ′
i ; [•i−1]; . . . ; [•1];P ′

1 is robust wrt unfair attacks. By proving
this fact, we prove the thesis since when i = n we obtain exactly P .

BASE: Consider the first hole from the end of the program P , i.e., P ′
2; [•1];P ′

1. Then
by Lemma 1 we have that P ′

2; [•1];P ′
1 is robust, being P ′

1 without holes by con-
struction. This implies that any active attacker can disclose the same information as
the passive (skip) attacker can do, hence •1 can be substituted with skip, namely
P ′

2[•1]P ′
1 can be substituted by P2 in P without changing the robustness property

of P .
INDUCTIVE STEP: Suppose, by inductive hypothesis, that

P ′
i ; [•i−1];P ′

i−1; . . . ;P
′
2; [•1];P ′

1 is robust. This means that, exactly as we noticed
in the base of the induction, the holes are useless for an attacker, therefore we can
substitute all the •j with skip obtaining a program (from the robustness point of
view) equivalent to Pi . Hence, P ′

i+1; [•i ];P ′
i ; [•i−1]; . . . ; [•1];P ′

1 ≡ P ′
i+1; [•i ];Pi ,

and robustness of this last program holds by Lemma 1, being Pi without holes by
construction.

In this way we prove that P ≡ P ′
n+1; [•n ];Pn is robust.

In other words, the fact that a low integrity variable is not free in the formula means that
the information in the corresponding program point cannot be exploited for revealing
confidential properties. In this case we can say that a generic active attacker is not
stronger than a passive one. Before showing what happens for control structures, let us
introduce an example that illustrates Th. 1.

Example 7. Let us check robustness of program P with variables l : LL, h : HH and
k : HL.

P ::=
[
l := h + l ; [•]; l := 1; k := h;
while (h > 0) do (l := l − 1; l := h);
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Analysing P from the hole [•] to the end we have:

{(h ≤ 0 ∧ n = 1) ∨ (h > 0 ∧ n = 0)}
l := 1; k := h;

{(h ≤ 0 ∧ l = n) ∨ (h > 0 ∧ n = 0)}
while (h > 0) do (l := l − 1; l := h);

{l = n}
The formula Φ = (h ≤ 0∧ n = 1)∨ (h > 0∧ n = 0) satisfies the conditions of Th. 1.
We can conclude the program P is robust. Intuitively, even though the value of private
input h flows to public variable l (l := l + h), such relation is immediately canceled
when we assign the constant 1 (l := 1) after the hole.

The following example shows that Th. 1 is just a sufficient condition, namely there ex-
ists a robust program that violates the preconditions. This is because Th. 1 corresponds
to a local condition for robustness, but one must analyze the entire program in order to
have a global vision about the confidential information revealed.

Example 8. Consider the program

P ::=
[
l := h; l := 1; [•];
while (h = 0) do (h := 1; l := 0);

where h : HH and l : LL. The precondition of the while is:

Wlp (while (h = 0) do (h := 1; l := 0), {l = n}) =
{(h = 0 ∧ n = 0) ∨ (h 	= 0 ∧ l = n)}

This formula does not satisfy the conditions of Th. 1, since it contains a free occurrence
of a low integrity variable, namely l = n . However, we can see that program P is
robust. No modification of the public variable l contains information about the private
variable h because the guard of the while loop depends exclusively on private variables.
Every terminating attack modifies the subformula {l = a} and influences the final
value of the observed public output. Moreover, the private information obtained by
the assignment l := h is canceled by the successive assignment l := 1. So the only
confidential information released by P concerns the zeroness of h, the same as a passive
attacker. This means that P is robust and Th. 1 is a sufficient and not necessary condition
for robustness.

Let us show, now, how Theorem 1 applies to programs where the hole occurs in the
branch of a conditional or in a loop. As the following theorem shows, in such cases we
need to apply recursively Theorem 1 to the formula corresponding to each branch. It is
worth noting that the loop can be unfolded a finite number of times until we reach the
invariant formula (see the Wlp rule for while in section 3.3 ), as the computations we
are dealing with are all terminating ones.

Theorem 2. Let Pc [�•] ≡ if B then P1[�•] else P2[�•] and Pw [�•] ≡ while B do P [�•] be
a program with holes and a first order formula Φ. Then,

– Pc [�•] is robust wrt unfair attacks iff P1[�•] and P2[�•] are robust wrt unfair attacks
and post-condition Φ.
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– Pw [�•] is robust wrt unfair attacks iff P [�•] is robust wrt unfair attacks and post-
conditions Wlpi(Pw [�•], Φ)

Proof. We do induction on the structure of P1[�•]; the other case is symmetric. If P1[�•]
straight line program with holes (as in the hypothesis of Theorem 1), we apply the
theorem to check robustness. Otherwise, P1[�•] is a conditional and it trivially holds
from the induction hypothesis.

In the case of a loop we need to apply the recursive computation as described in
section 3.3. If P [�•] is a straight line program we apply theorem 1 as before and check
at each step of Wlp computation whether low integrity variables occur in the formula
when we reach the hole. Note that the occurrence of the loop guard B in the formula
makes sure that the active attacker never influences the variables of B . In this way, we
are sure that if the condition is verified the formula remains unchanged for all active
attacks. Otherwise, if P [�•] is a loop or a conditional we apply the induction hypothesis
and we are done.

The result above shows how to treat situations where the construct [•] may be placed
in an arbitrary depth inside an if conditional or a while loop. The following example
describes this situation.

Example 9. Consider the program P

P ::=

⎡
⎣ k := h mod 3;

if (h mod 2 = 0) then[•]; l := 0; k := l ;
else l := 1;

where h : HH, l : LL and k : LL. Applying the weakest liberal precondition rules to the
initial formula {l = m ∧ k = n} we have:{

(h mod 2 = 0 ∧m = 0 ∧ n = 0)∨
(h mod 2 	= 0 ∧m = 1 ∧ k = n)

}
if (h mod 2 = 0) then [•]; l := 0; k := l ; else l := 1;

{l = m ∧ k = n}
The subformula corresponding to the then branch (which contains the hole [•]) satisfies
the conditions of Th.1, therefore P is robust. Every possible attack in this point manip-
ulates the variables l , k which will immediately be substituted by constant 0 and will
lose all private information they have accumulated so far.

Note that the invariant enforced by the theorems is the fact that the first order formula
determined by the active attack remains inalterate compared to the formula determined
by the passive attack. In particular, Theorem 1 proves our security condition, while
Theorem 2 model the fact that such condition should be applied recursively in case of
conditionals and loops. In the next section we present and algorithmic approach that
puts all the pieces together.

5.2 An Algorithmic Approach to Robustness

In this section we present our approach algorithmically in order to make clear how the
above theorems apply to terminating while programs. In particular, Robust(P [�•], Φ,S)
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is the main procedure that takes in input a program with holes P [�•], a first order for-
mula Φ and a set of low integrity variables S and if it returns a formula, the program
is robust and such formula corresponds to the private information disclosed to both
passive and active attackers, otherwise (if it returns false) we don’t know whether the
program is robust or not. The procedure Check(Φ,S) corresponds to our security con-
dition, namely, it returns true if no low integrity variables in S occur in Φ as well.
Moreover, we assume that we have a procedure that transforms a first order formula in
the normal form in order to reduce the false alarms in our analysis. The algorithm runs
recursively over the syntactical structure of while programs (with holes) and applies,
at each step, the rules of Wlp semantics, as described in section 3.3. The procedure
Compute(while B do c, Φ,S) checks whether the formula remains unchanged for the
while loop. In particular, this corresponds to the unfolding of the loop, with a finite
number of conditionals. In particular, it applies a finite number of times the security
condition of Theorem 2.

Robust(P [�•], Φ,S) :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

case(P [�•]) :

[•] : Check(Φ,S)
skip : Φ
x := e : Φ[e/x ]
P1[�•];P2[�•] : Φ′ := Robust(P2[�•], Φ,S)

Robust(P1[�•], Φ′,S)
if B then P1[�•] else P2[�•] : (B ∧ Robust(P1[�•], Φ,S))∨

(¬B ∧ Robust(P2[�•], Φ,S))
while B do P1[�•] : Compute(while B do P1[�•], Φ,S)

Check(Φ,S) :

⎡
⎣Normalize the formula Φ

if FV(Φ) ∩ S = ∅ return true
otherwise return false

Compute(while B do c, Φ,S) :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φi+1 := ¬B ∧ Φ
result := Φi+1
do

Φi := Φi+1
Φi+1 := Robust(if B then c else skip, Φi ,S)
result∨ := Φi+1

while Φi 	= Φi+1

5.3 Robustness on Program Traces

In this section, we want to find local conditions guaranteeing robustness also in pres-
ence of active attackers which observe trace semantics instead of I/O semantics. In other
words, we want to characterise the analogous of Th. 1 when dealing with trace seman-
tics. Note that, in this case, the problem becomes really different because the attacker is
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still able to modify low integrity variables, but he can also observe low confidentiality
variables in the holes. In this case, the problem is that the attacker can assign variables
of type HL to variables of type LL, observe the corresponding trace and disclose imme-
diately the value of HL variables. Hence, it is necessary to analyse the global program
behavior in order to check robustness for all possible unfair attacks. On the other hand,
if we consider fair attacks, i.e., attacks that manipulate only LL variables, the attackers
capability to observe program points where the hole occurs allows us to reduce all the
possible attacks to constant assignments to variables of type LL.

By using the method introduced in [18], illustrated for active attackers in Sect. 4.2,
we are able to state a sufficient condition of robustness in presence of fair attacks for
trace semantics. The idea is that an attacker can combine the public information he
can observe at a program point together with the information he can derive by com-
puting the Wlp from the output to that observation point. Moreover, he can manipulate
program semantics by inserting fair code in the holes. If the formula corresponding to
Wlp semantics of the subprogram before reaching the hole does not contain free any
variables of type LL then we can conclude that the program is robust. The following
example shows the robustness condition similar to Th. 1.

Example 10. Consider the program P with variables l : LH, k : LL and h1, h2, h3 : HH:

P ::= k := h1 + h2; [•]; k := h3 mod 2; l := h3; l := k ;

A passive attacker who observes each program point discloses the following private
information.

{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ h1 + h2 = q}
k := h1 + h2;

[skip;]
{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ [k = q]}

k := h3 mod 2;
{k = m ∧ h3 = n ∧ [l = p]}

l := h3;
{k = m ∧ [l = n]}

l := k ;
{l = k = m}

Hence, a passive attacker reveals the symbolic value of variable h3 and the sum of vari-
ables h1 and h2. In what follows we notice that no fair attack (in our case manipulating
k ) can do better, because the subformula corresponding to the information disclosed by
the attacker does not contain free the variable k : LL. Thus, no constant assignment
influences the private information released. Indeed, if we compute the information dis-
closed in presence of a fair attack the final formula is the same.

{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ h1 + h2 = r}
k := h1 + h2;

{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ q = d1 ∧ [k = r ]}
[k := d1;]

{h3 mod 2 = m ∧ h3 = n ∧ l = p ∧ [k = q]}



284 M. Balliu and I. Mastroeni

Note that, it is useless to consider the observed value of LL variable before the hole
because the attacker knows exactly what fair attack he is going to inject in.

Now we can introduce a sufficient condition for robustness for trace semantics. Basi-
cally, the idea is to propose an extension of Th. 1 to traces. We have first to note that in
Th. 1 we deal with unfair attackers, which can use also variables of type HL. In the trace
semantics context this may be a problem whenever attackers can observe low confiden-
tiality data in at least one point where they can inject their code, i.e., if H ∩O 	= ∅. In
particular what may happen is that the attacker can use variables of type HL and observe
the result at the same time, possibly disclosing the value of these variables. This clearly
means that the program is trivially not robust as shown in the following example.

Example 11. Consider the program

P := l := k mod 2; [•]; if (h = 0) then l := 0 else l := 1;

where l : LL, k : HL and h : HH. We want to check robustness in presence of unfair
attacks who observe each program point. First, we notice that a passive attacker dis-
closes the zeroness of variable h and the parity of variable k . Now let us compute the
information released in the hole.

{(h = 0 ∧ n = 0) ∨ (h 	= 0 ∧ n = 1)}
if (h = 0) then l := 0 else l := 1;

{l = n}
This formula satisfies the conditions of Prop. 2: no low integrity variables occur free in
it. But, if we attack this program with the unfair attack (e.g., l := k ), we can see that
the program releases the exact symbolic value of the private variable k .{

((h = 0 ∧ n = 0) ∨ (h 	= 0 ∧ n = 1))∧
k = p ∧ k mod 2 = q

}
l := k mod 2;

{((h = 0 ∧ n = 0) ∨ (h 	= 0 ∧ n = 1)) ∧ k = p ∧ [l = q]}
[l := k ;]

{((h = 0 ∧ n = 0) ∨ (h 	= 0 ∧ n = 1)) ∧ [l = p]}
We can conclude that program P is not robust (wrt unfair attacks) even though the
conditions of Th. 1 are satisfied.

At this point we can provide, in the following proposition, the robustness sufficient
condition that has to hold for traces, depending on the relation between hole points
H and observable points O. In particular, if we consider attackers that observe low
confidentiality data in at least one hole point, i.e., H ∩ O 	= ∅, then we can prove
robustness only wrt fair attacks, otherwise we can consider general unfair attackers. In
fact, when H∩O = ∅ the attackers cannot combine their capabilities of observing low
confidentiality variables and of modifying low integrity variables, making possible to
guarantee robustness.

Proposition 2. Consider P [�•] and Φi = Wlp(Pi , Φ0) (where Pi is obtained as in
Th. 1). Then we have that:
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1. If H ∩O 	= ∅ then P is robust wrt fair attacks if ∀i ∈ H.∀v ∈ FV(Φi).I(v) = H.
2. If H∩O = ∅ then P is robust wrt unfair attacks if ∀i ∈ H.∀v ∈ FV(Φi).I(v) = H.

Proof. Consider the program P . First of all note that the difference between observ-
ing I/O semantics and trace semantics consists simply on the fact that the attacker
can enrich the Wlp analysis with the observation that it can perform during the com-
putation. Hence, we can define an enriched weakest precondition semantic function:
Wlp′(c, φ) def= Wlp(c, φ ∧ φ′), where φ′ = true if the corresponding program point is
not in O, φ′ is the observable property otherwise. At this point, by using Wlp′ instead
of Wlp we can apply Th. 1 with the following restrictions:

1. If H ∩O 	= ∅ then the attacker can use variables of type HL and observe the result
at the same time, disclosing the HL variables and violating robustness. In particular,
if the program has l : LL and k : HL, then the attacker can always insert the code
l := k , and by observing the result can directly know the value of k violating
confidentiality and, obviously, robustness. This is not a problem for fair attackers,
since these attackers cannot use variables of type HL.

2. If H ∩O = ∅ then the unfair attacker cannot observe the result of the added code
and therefore robustness can again hold, at least when the sufficient condition of
Th. 1 is satisfied.

5.4 Wlp vs. Security Type System

In [20] the authors define the notion of robustness in presence of active attackers and
enforce it by using a security type system. The active attacker can replace the holes by
fair attacks which manipulate variables of security type LL. The key result of the article
states that typable programs satisfy robust declassification. Thus, it is important, when
dealing with robustness, for the holes not to be placed into high confidentiality contexts.
In particular they introduce a security environment and a program counter pc in order to
trace the security contexts and avoid implicit flows. The following typing rule considers
cases where the construct [•] is admissible.

C(pc) ∈ LC

Γ, pc $ •
Let A be the attacker code, then LC

def= {l |C(l) � C(A)}, namely LC is the set of
variables whose confidentiality level is not greater than attackers confidentiality level.
Hence, an active attacker that manipulates this variables does not obtain further con-
fidential information. The type system is highly imprecise with respect to standard
non-interference since it rules out all programs containing low assignments under high
guards or any sub-command with an explicit assignment from high to low. Basically,
the type system admits programs that associate low with low, high with high and do not
use high expressions on guards of conditionals or loops. This corresponds to a trace-
based characterization of non-interference where the attacker can observe the content
of low variables in each program point. Now if we ignore the explicit declassification
(declassify(e)) and consider only programs with holes, the typing rule for the hole re-
quires them to occur in low confidentiality security context, namely program is robust
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if there is no interaction between high and low, neither explicit nor implicit and this
is quite restrictive. Getting back to explicit declassification, the rule requires it occurs
in low confidentiality and high integrity program context, namely the guard of a condi-
tional or a loop is allowed to evaluate only on variables of security type LH if we want to
embed declassification. Moreover, only high integrity variables can be declassified, i.e.,
declassification from variables of security type HH to variables of security type LH is al-
lowed. Putting all together, the type system approach deems robust programs that never
branch on a secret value (unless each branch assigns only to high) and admit explicit
flow (from high to low) in certain program points because of declassification.

Our approach, in particular Th. 2, captures exactly those situations where the hole
occurs in some confidentiality context (possibly high) and, nevertheless, the fair at-
tack does not succeed, namely where there are no low integrity variables in the cor-
responding first order formula. If our condition holds, we are more precise to capture
the main goal of robustness, i.e., an active attacker does not disclose more private in-
formation than a passive one, as we perform a flow sensitive analysis. Indeed, if the
target program has some intended global interference (the what dimension in [22]), the
type system is unable to model it (as it considers the where dimension in [22]), while
our approach characterizes robustness with respect to a program and a global declas-
sification policy. Moreover, our method deals with more powerful active attacks, the
unfair attacks, which can manipulate code that contains variables with security type LL
and HL. However, both these approaches study program robustness as a local condi-
tion and therefore cannot provide a precise characterisation of robustness: Th. 2 pro-
vides only a sufficient condition and the type system is not complete. Anyway, we
can say that, when it can be applied, namely when the hypotheses of the theorems
hold, then our semantic-based method is more precise, in the sense that it generates
less false alarms, than the type-based one. For instance, let us consider the program
P ::= [•]; if h > 0 then l := 0 else l := 0 where h : HH and l : LL. Our method
certifies this program as robust since, there are no low integrity variables in the formula
corresponding to the Wlp semantics of the control statement if. If we try to type check
this program by using the rules in [20] we notice that the environment before hole is a
high confidentiality one. Thus, this program is deemed not robust.

We have, anyway, to note that our approach, if compared with the type-based one,
loses effectiveness in order to keep precision, i.e., in order to reduce false alarms. In-
deed, in the future, in order to make our certification approach systematic we will surely
have to weaken the semantic precision.

6 Relative Robustness

So far, we have given only sufficient conditions to enforce robust programs. The prob-
lem is that an active attacker transforms program semantics and these transformations
can be infinitely many or of infinitely many kinds. This may be an issue, first of all
because it becomes hard to compute the private information released by all the active
attacks (as underlined in Sect. 4), but also because, in some restricted contexts, standard
robustness can be too strong a requirement.
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Indeed, we can consider a restricted class of active attacks and check robustness wrt
to these attacks. Namely, we aim to check whether the program, in presence of these
attacks, does not release more private information than a passive attacker. Thus, we
define a relaxed notion of robustness, called relative robustness.

Definition 1. Let P [�•] be a program and A a set of attacks. The program is said rela-
tively robust iff for all �a ∈ A, then P [�a] does not release more confidential information

than P [
−−→
skip].

Recall that we model the information disclosed by the attacker by first order formulas,
which we interpret by means of abstract domains in the lattice of abstract interpreta-
tions as explained in section 3.4. In particular, if the attacker a1 discloses more private
information than attacker a2, it means that the abstract domain corresponding to the
private property revealed to a1 is contained in the abstract domain corresponding to the
private property relealed to a2.

In order to check relative robustness we can compute the confidential information re-
leased for all possible attacks, compute the greatest lower bound of all information and
compare it with the confidential information released by a passive attacker. Moreover,
given a program and a set of attacks we can statically certify the security degree of the
program with respect to that particular finite class of active attacks. This corresponds
to the glb of private information released by all these attacks. Hence, a programmer
who wants to certify program robustness in presence of a fixed class of attacks, have to
declassify at least the glb of private information disclosed by all attacks.

Consider Ex. 1. We noticed that different active attackers can disclose different kind
of private information, for this reason the program P is not robust. Now, consider a
restriction of the possible active attacks, for example we restrict to fair attacks only.
This implies that the attacker can use only variable l and derive information exclusively
about private variable h. In particular, P already releases in l the exact value of h
and consequently no attack involving variable l can disclose more private information.
Thus, we can conclude that program P satisfies relative robustness with respect to the
class of fair attacks.

We can extend Th. 1 in order to cope with relative robustness. In particular, we re-
call that this theorem provides a sufficient condition to robustness requiring that the
formulas before each hole do not contain any low integrity variable. We weaken this
sufficient condition by requiring that the formulas before each hole do not contain only
the variables modifiable and usable by the attackers in A. It is worth noting that both
Prop. 3 and Prop. 4 are easily extended to programs with more holes occuring at differ-
ent depths, exactly the same way as we derived Th. 1 from Lemma 1 and Th. 2 from
Th. 1. Next proposition is a rewriting of Lemma 1 for relative robustness.

Proposition 3. Let P = P2; [•];P1 be a program (where P1 is without holes). Let
Φ = Wlp(P1, Φ0). P is relatively robust wrt unfair attacks in A if ∀a ∈ A.Var(a) ∩
FV(Φ) = ∅.

Proof. Note that the variables used by the active attacker do not occur free in Φ as the
intersection is empty (by hypothesis). By Lemma 1 program P is robust.

It is worth noting that we can use this result also for deriving the class of harmless ac-
tive attackers starting from the semantics of the program. Indeed, we can certify that a
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program is relatively robust wrt all the active attackers that involve low integrity vari-
ables not occurring free in the formulas corresponding to the private information dis-
closed before reaching each hole.

6.1 Relative vs. Decentralized Robustness

In this section, we claim that, from certain viewpoints, relative robustness is a more
general notion than decentralized robustness. The reasons are the same as the ones
discussed in 5.4. In a nutshell, we can observe that, once the pair of principals is fixed,
also the data security levels are fixed, namely we know which are the variables readable
and/or modifiable by the attacker q from the point of view of a principal p. We can
denote by Cp→q the confidentiality levels and by Ip←q the integrity levels characterised
so far. For instance, for each variable x , Ip←q (x ) = L if p believes that q can modify x ,
Ip←q (x ) = H otherwise. In particular, given a program and a security policy in DLM
fashion, we compute the set of readers and writers for each pair of principals p, q , as
in [5], and check robustness for each pair by using Proposition 3. Hence, we have the
following generalisation of relative robustness in DLM.

Proposition 4. Let P = P2; [•];P1 be a program (where P1 is without holes). Let
Φ = Wlp(P1, Φ0). P satisfies decentralized robustness wrt principals p, q if we have
that

{
x
∣∣Ip←q(x ) = L

} ∩ FV(Φ) = ∅.

Proof. Given a pair of principals (p, q) we compute the set of readers and writers as
for decentralized robustness. Consequently, we have a static labeling of program data
with respect to confidentiality and integrity. At this point we apply Lemma 1 as the
hypothesis of proposition guarantees that no low integrity variable occurring free in Φ
is used by the active attack. Since this holds for all possible pairs of principals, the claim
is true.

This characterization suits perfectly to client-side web languages such as Javascript as
it allows to prevent injection attacks or dynamically loaded third-party code. In partic-
ular, suppose we have a web page that accepts advertising adds from different sources,
with different security concerns and wonder if it leaks private information to a mali-
cious attacker. Moreover, we can assume that the web page has different trust relations
with domains providing adds and this is specified in the security policy. Given this in-
formation, one can analyze the DOM (Document Object Model) tree and classify each
attribute in sensitive and insensitive with respect to a possible attacker [17]. The session
cookie might be an attribute to protect wrt all attackers, while the history object might be
public to some trusted domains and private to others. At this point we can apply weak-
est precondition analysis to web server from the point it discloses information on any
public channel such as the output web page or the reply information sent as response
to a client request. The holes correspond to program points where the server receives
adds from different clients and embeds them in its code. Analyzing the formula cor-
responding to the sensitive information disclosed before parsing and embedding such
adds, namely using the eval() operation in Javascript, we can identify harmless low in-
tegrity variables and certify security modulo (relative to) programs manipulating this
variables.
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Example 12. Consider the following Javascript-like code (modified version of the ex-
ample in [6]). Lines 3-6 correspond to an add received from a third party to be displayed
on the web page. Moreover, the web site contains a simple function login() which au-
thenticates users by verifying username and password inserted in a form. The function
runs when the user clicks on a button, lines 7-16. Function initSettings corresponds to
the output channel of the web page as it identifies the server used to authenticate the
user, i.e., to send username and password.

1. <script type="javascript">
// 2: initialization of the output server

2. initSettings("mysite.com/login.php", 1.0);
// 3-4-5: definition of the add

3. <div id="AdNode">
4. <script src="adserver.com/display.js">
5. </div>
6. eval(src)

7. var login = function() {
8. var pwd = document.nodes.PasswordTextBox.value;
9. var user = document.nodes.UsernameTextBox.value;
11. var params = "u=" + user + "&p=" + pwd;

//12: sends the parameters (params) to baseUrl
12. post(document.settings.baseUrl, params);}
14. </script>

//15-16:login interface
15. <text id="UsernameTextBox"> <text id="PasswordTextBox">
16. <button id="ButtonLogin" onclick="login()">

Now, suppose the add code corresponds to the hole and the public output is the final
web page together with the result (out : LL) of post in line 12. Since formal parameters
of function initSettings (defining variable baseUrl : LL) have low integrity, a malicious
add could overwrite the parameters and redirect the high confidentiality part of the
output of post (login and password, i.e., user, pwd: HH) to the attacker. Let us see how
our approach allows to identify such security flaws. First, we compute the weakest
precondition of function login and obtain the following formula:

[•]
{baseUrl + user + pwd = a}

var pwd = document .nodes .PasswordTextBox .value;
var user = document .nodes .UsernameTextBox .value;

var params = ”u = ” + user + ”&p = ” + pwd ;
{baseUrl + params = a}

post(document .settings .baseUrl , params)
{out = a}

Observing the final formula we can state that private information concerning username
and password is related to the low integrity variable baseUrl and therefore the program
does not satisfy confidentiality. Moreover, the program is not even robust since low in-
tegrity variable baseUrl is free before the “hole”. In particular, a malicious add could
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hijack such information to a malicious website and obtain username and password.
However, we can deem this program robust relative to fair attacks which do not manip-
ulate the low integrity variable baseUrl. In decentralized robustness, this corresponds
to say that the program is robust wrt all the pairs (p, q) such that p does not believes
that q can write the low integrity variable baseUrl.

7 Applications

In this section we present two applications where our approach captures soundly the
possible security violations. The first example considers a secure API function widely
used to perform PIN checking in a bank and is retrieved from [4]. The attacker is able to
play with low integrity variables and reveal the real PIN by analyzing the implicit flow
released by the API. The second example concerns a web application where third party
code is allowed to be embedded in. Cross Site Scripting attacks (XSS) are name of the
game in such contexts. In particular [23], the attacker tries to steal a session cookie and
hijack the user to an evil website. In both examples our analysis is sufficient to capture
the possible security violations.

7.1 Secure API Attack

This example concerns the use of secure API to authenticate and authorize a user to
access an ATM cash machine. The user inserts the credit card and the PIN code at the
machine. The PIN code gets encrypted and travels along the network until it reaches the
issuing bank. At this point, a verifying API is executed in order to check the equality
of the real user PIN and the trial PIN inserted at the cash machine. The verifying API,
called PIN V, is the one exploited by the attacker to disclose the real PIN.

The real PIN is derived through the PIN derivation key pdk and public data offset,
vdata, dectab, while the trial PIN comes encrypted by key k . Of course, the two keys,
pdk and k are pre-loaded in the Hardware Security Modules (HSM) of the bank server
and never travel the network. Here is the description of the API, PIN V.

PIN_V(EPB, len, offset, vdata,dectab) {
x1 := enc_pdk(vdata);
x2 := left(len, x1);
x3 := decimalize(dectab, x2);
x4 := sum_mod10(x3, offset);
x5 := dec_k(len, EPB);
if(x4 == x5) then return ("PIN correct");

else return ("PIN wrong");
}

where:

– len is the length of real PIN obtained by the encryption of the validation data vdata
(a kind of user profile) with the PIN derivation key pdk (x1), taking the len hex-
adecimal digits (x2), decimalising through dectab (x3), and digit-wise summing
modulo 10 the offset (x4).
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– EPB (Encrypted PIN Block) is the ciphertext containing the trial password en-
crypted with the key k . The trial PIN is recovered by decrypting EPB with
key k .

The above snippet of code is insecure and there is a very nice attack used to disclose
the exact PIN code just by modifying low integrity variables offset and dectab (of type
LL) and observing low confidentiality output, namely by observing the I/O behavior of
API method [4].

Example 13. Let len = 4, offset = 4732, x1 = A47295FDE32A48B1 and dectab =
9753108642543210which is a substitution function encoding the mapping 0→ 9, 1→
7, · · · ,F → 0. Moreover, let EPB = enck (9897), where 9897 is the correct PIN. With
these parameters PIN V returns PIN correct.

Indeed, consider x2 = left(4,A47295FDE32A48B1) = A472, and consider x3 =
decimalize(dectab,A472) = 5165 and x4 = sum mod10(5165, 4732) = 9897 which
is the same as the trial PIN.

Now the attacker first chooses dectab1 = 9753118642543211 where the two 0’s
have been replaced by 1’s. In this way the intruder discovers whether or not 0 appears
in x3. Invoking the API with dectab1 we obtain the same intermediate and final values,
as decimalize(dectab1,A472) = decimalize(dectab,A472) = 5165. This means that
0 does not appear in x3.

The attacker proceeds by replacing the 1 of dectab by 2.
If dectab2 = 9753208642543220 he obtains that decimalize(dectab2,A472) =

5265 	= decimalize(dectab,A472) = 5165, reflecting the presence of in the original
value of x3. Then, x4 = sum mod10(5265, 4732) = 9997 instead of 9897 returning
PIN wrong.

Now, the attacker knows that digit 1, occurs in x3 for sure. In order to discover its
position and its multiplicity, he varies the offset so to compensate for the modification of
dectab. In particular, the attacker decrements each offset digit by 1 until it finds the one
that makes the API return PIN correct. For this particular instance the possible variations
of the offset are: 3732, 4632, 4722, 4731 and the one that succeeds is the offset 4632.
So, the attacker revealed that the second digit of x3 is 1. Given that the offset is public,
he derives the second digit of user PIN as 1 + 7mod10, where 7 is the second digit of
the initial offset. Iterating this procedure the attacker discloses the entire value of PIN.

In the following computation we show weakest precondition approach captures the se-
curity flaws in API.

Let us observe the final formula corresponding to the weakest precondition of the
API. Clearly, we can first note that the program does not satisfy confidentiality since
the public output (the answer to the comparison between the real and the trial password)
depends clearly on the high confidentiality variable containing the real password. From
the viewpoint of robustness we can note that our sufficient condition is not satisfied
since there are low integrity variables, i.e., dectab and offset, which are free before the
hole (supposed to be in the input of the API, namely in the communication phase).
Indeed, exactly those are the variables used by the attacker for disclosing the PIN.
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⎧⎪⎪⎨
⎪⎪⎩

(sum mod10(decimalize(dectab, left(len, encpdk(vdata))), offset) = deck (len,EPB)

∧a = 1)∨
(sum mod10(decimalize(dectab, left(len, encpdk(vdata))), offset) �= deck (len,EPB)

∧a = 0)

⎫⎪⎪⎬
⎪⎪⎭

x1 := encpdk(vdata);{
(summod10(decimalize(dectab, left(len, x1)), offset) = deck (len,EPB) ∧ a = 1)∨
(summod10(decimalize(dectab, left(len, x1)), offset) �= deck (len,EPB) ∧ a = 0)

}
x2 := left(len, x1);{

(sum mod10(decimalize(dectab, x2), offset) = deck (len,EPB) ∧ a = 1)∨
(sum mod10(decimalize(dectab, x2), offset) �= deck (len,EPB) ∧ a = 0)

}
x3 := decimalize(dectab, x2);{

(sum mod10(x3, offset) = deck (len,EPB) ∧ a = 1)∨
(sum mod10(x3, offset) �= deck (len,EPB) ∧ a = 0)

}
x4 := sum mod10(x3, offset);

{(x4 = deck (len,EPB) ∧ a = 1) ∨ (x4 �= deck (len,EPB) ∧ a = 0)}
x5 := deck (len,EPB);

{(x4 = x5 ∧ a = 1) ∨ (x4 �= x5 ∧ a = 0)}
if (x4 == x5) then (return 1) else (return 0)

{l = a}

The authors [4] fix this problem by using a MAC (Message Authentication Code)
security primitive. In particular, MACs are used to guarantee the integrity of information
received from an untrusted source, namely any modification of data before calling the
API is prevented by MAC. Semantically, this means that the variables dectab and offset
can be modified only by authorised agents. In our approach, this can be modelled by
assigning the security level LH to dectab and offset, i.e., by considering them as high
integrity. In this way, we are done, because our weakest precondition approach yields a
formula containing free only high integrity variables. Hence the robustness condition is
satisfied.

7.2 Cross Site Scripting Attack

Javascript is a very flexible dynamic object-based scripting language running in almost
all modern web browsers. The language allows to transfer, parse and run code sent
over the network between different web-based applications. While very useful and user-
friendly, such flexibility comes at a great price as the underlying applications become
vulnerable to code injection attacks. These attacks circumvent the security enforcement
mechanism of Javascript, namely the same-origin policy which prevents a document
or script loaded from one origin from getting or setting properties of a document from
another origin [17]. Indeed, when the browser receives a compromised web page, it is
executed in the context of the website hosting it, therefore, the same-origin policy deems
the operation secure. Afterwards, the malicious code can establish a connection to the
attacker server and transfer sensitive information such as cookie sessions for instance.
The following example shows that language-based security techniques can be used to
prevent this kind of attacks.
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Suppose a user visits a untrusted web site in order to download a picture, where an
attacker has inserted his own malicious Javascript code (Fig. 1), and execute it on the
clients browser [23].

In the following we described a simplified version. The Javascript code snippet in
Fig. 1 can be used by the attacker to send users cookie3 to a web server under the
attackers control.

var cookie = document.cookie;
/*initialisation of the cookie by the server*/

var dut;
if (dut == undefined) {dut = "";}
while(i<cookie.length) {

switch(cookie[i]) {
case ’a’: dut += ’a’; break;
case ’b’: dut += ’b’; break;
...

}
}

/* dut contains now copy of cookie*/
document.images[0].src = "http://badsite/cookie?" + dut;

/* when the user click on the image dut is sent
to the web server under the attackers control*/

Fig. 1. Code creating a XSS vulnerability

One can easily see that the variable dut contains a copy of users cookie. This at-
tack circumvents same-origin policy in client browser as it is correctly received after a
request to some server where the attacker injected the malicious code. Now lets apply
our analysis to the above Javascript snippet. In particular, suppose that variable cookie
has security type HL and variable dut has security type LL. Moreover, imagine we emu-
late the switch-case operator by a chain of if-then-else constructs and cookie.length has
security type LL .

[•]
{cookie + dut = res}

while(i < cookie.length){
switch(cookie[i ]){
case ′a′ : dut+ =′ a′; break ;
case ′b′ : dut+ =′ b′; break ;

...}}
{dut = res}

3 A cookie is a text string stored by a user’s web browser. A cookie consists of one or more
name-value pairs containing bits of information, sent as an HTTP header by a web server to a
web browser (client) and then sent back unchanged by the browser each time it accesses that
server. It can be used, for example, for authentication.
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By observing the final formula we can notice that confidentiality is violated since there
is a (implicit) flow of information from private variable cookie towards the public vari-
able dut. However, this is the sensitive information disclosed by a passive attacker when
dut is initialised in the code to the empty string. Nevertheless, dut is free before the hole,
i.e., where the attacker can insert other malicious code, therefore the (active) attacker
can exploit dut for disclosing other user confidential information. Suppose, for instance,
the attacker to be interested in the history object (with security type HL) together with
its attributes4. In this case, an active attack could loop over the elements of the history
object and pass through variable dut all the web pages the client has had access to.
Consider for example the injection of the code in Fig. 2.

<script language="JavaScript">
var dut = "";
for (i=0; i<history.length; i++){

dut = dut + history.previous;
}
</script>

Fig. 2. Malicious code exploiting XSS vulnerability

Hence, in this case the program violates the robustness condition since the attacker
can exploit the low integrity variable dut, which occurs free in the formula before the
hole, in order to disclose more confidential information. Moreover we have shown that
the attacker can exploit this vulnerability by inserting the code in Fig. 2 just before
the malicious code (Fig. 1) in the untrusted web page, getting both history and cookie
through the variable dut.

It is worth noting that our approach provides a theoretical model for the existing
techniques used in practice for protecting code from XSS attacks [23].

8 Related Work

Prior work on robustness, in the language-based setting, has been addressed in [26,20].
In these papers the authors give a trace-based definition of robustness and enforce it with
a flow-insensitive type system. They consider a simple while language, as we do in the
this paper, but, in addition they consider an additional construct for declassifying the
security of variables in fixed program points (the where dimension in [22]). Therefore,
a program is robust is an active attacker is unable to manipulate program semantics
and declassify more information than a passive attacker does. The security type system
enforces both non-interference and robustness so a program is ruled out if neither of
the two security properties holds. On the other hand, our semantic approach is different
as we model global declassification policies (the what dimension in [22]). Moreover,
we capture a cleaner characterization of robustness, namely the active attacker does

4 The history object allows to navigate through the history of websites that a browser has visited.
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not disclose more private information than a passive one, even though the program
under passive attacker does not satisfy non-interference. Other differences between two
approaches are shown in section 5.4.

The idea of considering the weakest liberal precondition semantics for static cer-
tification of program security is borrowed from [18]. The authors define declassified
non interference as a completeness problem in abstract interpretation and the semantic
function corresponds to the Wlp semantics. However this paper considers only passive
attackers and moreover the idea of computing Wlp wrt first order formulas is novel in
our approach.

Decentralized robustness [5] expresses robustness in the context of the decentralized
label model and enforces it statically by a type system. In this paper we showed that
the approach can be characterized by our notion of relative robustness. Section 6.1
compares the two approaches.

Language-based techniques for security are more and more being applied to client-
side web languages such as Javascript to prevent different attacks [6,23]. Basically,
they combine static and dynamic analysis to enforce information flow properties such
as non interference. However, our idea of interpreting robustness for Javascript, to the
best of our knowledge, is novel and could nicely fit in as a good security model for such
language. In particular, the security type HL can model the code injected by an attacker,
which knows a certain variable exists (password for instance), but doesn’t know its
value.

9 Conclusions

In this paper, we addressed an important notion in language-based security called ro-
bustness [26,20]. In general a program can run in any distributed environment in pres-
ence of untrusted components. This fact is modeled by fixed program points called
holes, namely program points where the attacker can insert untrusted code. At this
point, the program is robust if an active attacker cannot disclose more private infor-
mation than a passive one. We noted that an active attacker can transform program
semantics and control private information released by the program. Moreover, different
active attacks can release different properties of private data. Hence, the total number
of attacks may be infinite so it is impossible to find the most harmful attack for a given
program. Here we characterised a sufficient condition that enforces robustness for un-
fair attacks (using LL and HL variables). Moreover, we have considered robustness in
two different semantic models, I/O and trace semantics. Then we introduced the notion
of relative robustness which is a relaxation of robustness dealing with a restricted class
of attacks. Finally, we conclude with two real application: the analysis of the API for
PIN verification and the analysis of code vulnerable to XSS attacks.

The analysis we performed in this paper results very interesting from both theoreti-
cal and practical point of view. On the one hand the semantic condition of robustness
addresses the issue of systematic transformations of program code that preserve inter-
esting extensional properties, robustness for instance. Indeed abstract interpretation is
a possible framework to play with in order to guarantee such properties. On the other
hand, we saw that our approach is a good remedy to the lack of precise static analysis
approaches in real application domains concerning security.
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However, this is just the beginning and there is much more work to do. First, we need
to implement the algorithm for static certification of robust programs. Hence, given a
program we need to effectively compute when it happens to be robust. It would be im-
portant to characterize classes of attacks that induce the same semantic transformation,
namely disclose the same property of private inputs. In this way, we can hope for finding
a finite number of such attack classes. Second, our work can be generalised to deal with
abstract active attackers. Namely, as it happens for abstract non-interference, one can
consider attackers modifying properties of low integrity data. Third, we plan to extend
our approach to different attacker models such as concurrent attackers or attackers able
to erase parts of program code. Off we go.
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Abstract. In [23] Raddum and Semaev propose a technique to solve sys-

tems of polynomial equations over F2 as occurring in algebraic attacks on

block ciphers. This approach is known as MRHS, and we present a special

purpose architecture to implement MRHS in a dedicated hardware de-

vice. Our preliminary performance analysis of this Parallel Elimination

Technique Supporting Nice Algebraic Key Elimination shows that the

use of ASICs seems to enable significant performance gains over a soft-

ware implementation of MRHS. The main parts of the proposed architec-

ture are scalable, the limiting factor being mainly the available bandwidth

for interchip communication. Our focus is on a design choice that can be

implemented within the limits of available fab technology. The proposed

design can be expected to offer a running time improvement in the order

of several magnitudes over a software implementation.

We do not make any claims about the practical feasibility of an attack

against AES-128 with our design, as we do not see the necessary theoret-

ical tools to be available: deriving reliable running time estimates for an

algebraic attack with MRHS when being applied to a full-round version

of AES-128 is still an open problem.

Keywords: block cipher, algebraic attack, cryptanalytic hardware,

MRHS.

1 Introduction

Algebraic attacks have become an important cryptanalytic tool, and the security
of major cryptographic algorithms relies on the infeasibility of solving certain sys-
tems of polynomial equations. Popular approaches for dealing with such systems
of equations are based on the use of Gröbner basis techniques and SAT-solvers—
prominent examples including Buchmann et al.’s discussion of AES-128 [8] and
Courtois et al.’s discussion of KeeLoq [10]. Adding to the toolbox of algebraic
cryptanalysis, in [23] Raddum and Semaev propose a technique known as MRHS
(Multiple Right Hand Sides) to handle polynomial systems of equations over
F2. This algorithm is particulary well-suited for describing systems of equations
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for an algebraic key recovery attack against common block ciphers such as AES
or DES.

A full running time analysis of MRHS is to the best of our knowledge not
available, but the observed performance in software seems quite favorable, and
in comparison to algebraic attacks involving the computation of a Gröbner basis,
the required amount of memory seems easier to predict. Given arbitrarily large
amounts of memory, MRHS should in principle be able to solve large systems
of equations, but this is obviously not practical. Consequently, the hardware
architecture we propose builds on an adaption of MRHS where the amount of
memory is fixed. The specific design choices made are motivated by the limits
of currently available fab technology, and the scalability of major components
should facilitate the construction of small prototypes with technology that is
available at moderate cost.

Our contribution. We propose an ASIC design for implementing MRHS, which
according to our analysis enables significant performance gains compared to an
MRHS implementation in software. Owing to the modular design and scalability,
we think the proposed architecture to be of considerable interest when trying to
mount algebraic attacks on relevant block ciphers. Building on a 45 nm manu-
facturing process, already a moderately sized network of chips of standard size
seems capable of coping with rather non-trivial systems of equations. Our ar-
chitecture is certainly far from optimal, and we hope that the promising results
obtained so far stimulate further research along this line. Certain components
of the architecture, specifically those for row reduction and multiplication of
matrices over F2, might be of independent interest.

Related work. A first (unpublished) proposal for using dedicated hardware to im-
plement MRHS has been developed by Semaev in 2007, and, after modifications,
recently been published in [25,26]. The architecture described below has been
developed independently and uses a very different approach. The use of special
hardware for attacking a specific symmetric cipher has been proposed in [3]. In
addition, numerous special purpose architectures for cryptanalytic purposes have
been devised and discussed in the research literature—some prominent examples
being TWINKLE [27,18], TWIRL [28] and their successors [12,16] for factoring
integers, or Deep Crack [11] and COPACOBANA [17] for attacking DES. As
linear algebra over F2 plays an essential role in MRHS, it comes to no surprise
that our design benefits from available work related to the Number Field Sieve:
For the row reduction over F2 we modify the linear algebra design SMITH of
Bogdanov et al. [5,6] to enable a more efficient handling of sparse matrices as
occurring in the context of MRHS. (Note that SMITH has enjoyed previous suc-
cess in [3].) The resulting JONES (Justifiable Optimization Neatly Enhancing
SMITH) device might be of independent interest for other applications involving
sparse matrices over F2.

The overall data flow in our architecture is remotely reminiscent of the systolic
linear algebra design in [14], a main difference being the emphasis on a two-
dimensional data flow. Two-dimensional data flows are well-known from special
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purpose designs for the Number Field Sieve, like [2,19,15], but the organization
of the data flow in the new design is quite different and explains the choice of
the acronym PET SNAKE for our architecture.

Structure of the paper. We start with a brief discussion of MRHS where we detail
the variant of the algorithm underlying our proposal. Section 3 gives a description
of the overall architecture we use. The overall architecture uses several identical
copies of a main processing unit whose various components are explained in
Section 4. Further details on the individual components can be found in [13].
Finally,Sections 5–7 analyze the expected performance of the complete device,
comparing it with a software implementation of MRHS.

2 Preliminaries: Multiple Right Hand Sides (MRHS)

For a detailed discussion of MRHS, we refer to Raddum and Semaev’s work [23].
Here we restrict to an informal review of those aspects of the MRHS technique
which are needed to explain the proposed hardware architecture. In particu-
lar, we do not discuss how to set up an MRHS system of linear equations to
mount an algebraic attack on a block cipher like AES-128 [20] and refer to
[23, Section 6] for more details on this (cf. also [21] and [24, Chapter 5]). In
our software experiments we worked with a reduced round version of PRESENT
[4]. The derivation of the pertinent MRHS system is fairly standard—we do not
claim any relevant originality for this, and omit the somewhat tedious details.

2.1 Basic Terminology

For our purposes, all matrices and vectors are assumed to have entries from F2,
and it is helpful to fix some terminology:

Let x := (x1, . . . , xy)t be a column vector consisting of y Boolean variables,
A a k × y matrix of rank k, and b1, b2, . . . , bs column vectors of length k. An
equation

Ax = b1, b2, . . . , bs (1)

is called an MRHS system of linear equations with right hand sides b1, b2, . . . , bs.
A solution to (1) is a vector in F

y
2 satisfying one of the particular linear equation

systems Ax = bi. The set of all solutions to (1) is the union of solutions to the
individual linear systems Ax = bi (i = 1, . . . , s). In an effort to manipulate the
data contained in the above column vectors bi, we write them side-by-side to
form a matrix L and rewrite Equation (1) as Ax = [L]. The brackets around
L emphasize that we are not working with a regular equation of matrices, and
instead of the term MRHS system of linear equations the term symbol is often
used.

Given a system of symbols

S1 : A1x = [L1]
...

Sn : Anx = [Ln]
, (2)
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by a solution to such a system we mean a vector in F
y
2 satisfying all of the

underlying n MRHS systems of linear equations (where x = (x1, . . . , xy)t). The
goal of the algorithm discussed next, and consequently of the PET SNAKE
design below, is to find all solutions of (2).

2.2 Solving a System of Symbols

There are three main steps, to which we refer as agreeing, gluing, and equation
extraction. The proposed PET SNAKE architecture exploits similarities between
these algorithmic building blocks for reusing hardware components—therewith
reducing the area complexity of the design.

Agreeing of Symbols. The basic approach is to remove some of the columns
b in a right hand side Li, if no one solution of Aix = b can be a solution to
the System (2). The mechanism by which this is achieved is pairwise agreeing of
symbols. Namely, let Si : Aix = [Li] and Sj : Ajx = [Lj] be two symbols. Then
Si and Sj agree if for every b ∈ Li, there exists a b′ ∈ Lj such that the linear
system (

Ai

Aj

)
x =

(
b
b′

)
(3)

is consistent, and, vice versa, for each b′ ∈ Lj there exists a b ∈ Li such that (3)
is consistent.

When Si and Sj do not agree, one removes those columns b from Li for which
the linear system Aix = b is inconsistent with Ajx = [Lj ]. Dually, those columns
b′ from Lj are removed, for which Ajx = b′ is inconsistent with Aix = [Li].
Different strategies can be used for this approach, and for the design of PET
SNAKE we follow the technique in Figure 1 (see [23, Section 3]) and realize it
with a specialized hardware architecture.

1. Produce a nonsingular transform matrix U = Uij of size t × t such that the

product UA is a matrix with zeroes in its last r = rij rows and of rank t − r. If

r = 0, the symbols agree.

2. If r > 0, then compute the matrices UTij and UTji. Let Prij denote the set of of

UTij-column projections to the last r coordinates. If Prij = Prji, the symbols

agree.

3. If Prij �= Prji, first remove all columns from Li whose UTij-associated column is

such that its last-r-coordinate projection is not found in Prji. Name the resulting

matrix L′
i. Then similarly remove columns from Lj and name the resulting matrix

L′
j . The symbols Aix = [L′

i] and Ajx = [L′
j ] agree.

Fig. 1. Agreeing two symbols Aix = [Li] and Ajx = [Lj ], where Lη ∈ F
kη×sη

2 . Here

A :=
(

Ai
Aj

)
is the vertical concatenation of Ai and Aj , i. e., A has t := ki + kj rows.

Similarly Tij :=
(

Li
0

)
and Tji :=

(
0

Lj

)
have t rows each.
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It is important to note that if two symbols Sh and Si agree, but Si and Sj

disagree, columns may be deleted in one or both of Li and Lj . After this happens,
it is possible for Sh to disagree with either of the modified symbols, and so Sh

will have to be re-agreed with them. During that agreement, columns from Lh

may have to be deleted, and so on. In this manner, a chain reaction of column
deletions may occur. Hence, in order to ensure that a system of symbols gets to
a pairwise-agreed state, in PET SNAKE we perform the Agreeing1 Algorithm in
Figure 2 (see [23, Section 3.1]).

While the symbols in a System (2) do not pairwise agree,

1. find Si and Sj which do not agree

2. agree Si and Sj with the agreeing procedure in Figure 1.

Fig. 2. Agreeing1 Algorithm

Gluing of Symbols. After a system of symbols is in a pairwise-agreed state,
we may choose to glue some symbols. The gluing of two symbols Si : Aix = [Li]
and Sj : Ajx = [Lj] is a new symbol Bx = [L] whose set of solutions is the
set of common solutions to Aix = [Li] and Ajx = [Lj]. Once this new symbol
is formed, it is inserted into the system and the two symbols Si and Sj which
formed it are no longer necessary and hence removed from the system. Obtaining
the matrix B is easy: with the notation in Figure 1, B is just the submatrix of
UA in its last t− r nonzero rows. The matrix L has t− r rows and the columns
are formed by adding one column from UTij to one column from UTji. More
specifically, we add a column from UTij and one from UTji, if they have the
same projection to the last r coordinates. Reducing the sum to its first t − r
coordinates yields a column of L, and forming all such matching pairs yields the
complete matrix L. Gluing two matrices Li, Lj of width si and sj may result in
an L with as many as si ·sj columns. Consequently, we may not be able to afford
to actually compute certain glues, and instead restrict to gluing only pairs of
symbols where the number of columns in the resulting symbol does not exceed
a certain threshold.

Once several pairs of symbols have been glued, the resulting system will usu-
ally not be in a pairwise-agreed state, so the Agreeing1 Algorithm in Figure 2
can be run again, initiating another round of agreeing and gluing. The even-
tual goal of successive agreements and gluings is to obtain a system of symbols
consisting only of a single symbol.

Equation Extraction. From a given Symbol S : Ax = [L], where L ∈ F
k×s
2 ,

we can try to extract URHS (Unique Right Hand Side) equations : choosing an
appropriate nonsingular transformation matrix V of size k× k, the product V L
is upper triangular with zeroes in its last r rows. Denoting by Pr the matrix
formed by the V A-column projections to the last r coordinates, we obtain the
r linear equations Pr · x = 0. Next to these homogeneous equations, it may be
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possible to extract a nonhomogeneous linear equation: from the upper triangular
matrix V L we can read off if the all-one-vector (1, . . . , 1) is in the span of the
rows of L. If this is the case, we obtain the nonhomogeneous linear equation
(zA)x = 1, where z is a row vector of length k such that zL = (1, . . . , 1). The
resulting r or r+1 URHS equations can be combined into a gather symbol which
then can be added to the system of symbols under consideration.

Guessing Variables. Owing to the chosen threshold, it may happen that a
system is in a pairwise-agreed state, no URHS equation can be computed and no
pair of symbols can be glued anymore. In such a situation, one is forced to guess a
value of a variable. Before a guess is committed, the system of symbols—to which
we will refer as state—is stored. Then the guess is performed by constructing a
new symbol whose A part is one row of all zeroes except for a single 1 in the
position of the guessed variable, and whose L part is a single value, either 0
or 1, depending on the value of the guess. Such a symbol is inserted into the
system, and then pairwise agreeing, computation of URHS equations, and gluing
continue as normal. If after some steps the state, again, does not allow any URHS
equation to be extracted or pair of symbols to be glued, the state is again saved
and another guess is committed.

Of course it is possible that in this process a guess for a variable is incorrect.
This discovery manifests in the following manner: during the agreement of two
symbols, all right hand sides of at least one of the symbols get removed. When
this happens, the state must be rolled back to a previous state, and a different
guess must be made. The practice of guessing variables, then, follows something
akin to a depth-first search.

2.3 Implementation Choices

Fundamental design parameters for the PET SNAKE architecture have been
chosen in such a way that it is possible to host a complete system of symbols
as needed for a key recovery attack on a modern block cipher like AES-128. For
AES-128 specifically, the pertinent system of symbols involves 1,600 variables,
and the initial system requires only 320 symbols. (As comparison, for PRESENT,
which has 31 rounds, the initial system consists of more than 500 symbols, and
also the number of variables is higher than for AES-128). In general, handling
systems with no more than 212 symbols still seems within the reach of PET
SNAKE, and up to 2047 variables can be handled. For gluing symbols, we chose
our threshold to be 220 right hand sides. This seems a nice balance between
the upper limits of software implementations and the upper limits of current
hardware storage abilities. In light of the multiplicative nature of the growth
of right hand sides during gluing, giving one or two more powers of 2 to the
threshold does not seem to readily contribute to a significantly reduced running
time.

In the described form, PET SNAKE has a storage capacity of 4.792 TB (not
including the ‘active’ DRAMs in the traffic control chips), or enough to store
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18,000 full-size symbols. This number was chosen based on the following obser-
vations: the symbol count for AES-128 will drop to 180 before threshold takes
over, and it is possible we may have to guess up to 100 key variables before we
find the key; hence up to 100 states may need to be stored along the way. Very
rarely will a state actually be comprised of nothing but full-size (that is, 257
MB) symbols, so it will almost always be possible to store more than 100 states;
400 or more states are not unlikely.

3 Overall Architecture

A complete PET SNAKE architecture consists of a several interconnected boards
with each board hosting several Main Processing Units (MPUs). Each MPU is
comprised of a small group of chips wired in a particular way, and there are
p×p such MPUs placed in a grid across the individual boards, where p = 2λ is a
power of 2. Subsequently we use λ = 5, yielding a total of 25 · 25 = 1024 MPUs,
but the proposed architecture scales within reasonable limits; depending on the
resources available, other parameter values, like p2 = 28 might be an interesting
option.

Each MPU can communicate with its north, south, east, and west neighbor
MPUs (with no wraparound). For directing the action of the p2 MPUs, a single
Master Control Processor (MCP) is used. The MCP will make most of the
decisions regarding which symbols to send where, which symbols to glue, and
when to guess a variable.1 The MCP, which sits in a north corner, has agents
which sit at the north end of the board, one per column. Each agent has a
southbound bus that connects to each MPU in that column via ‘hops’ between
MPUs, so each off-chip part of the bus is short. Each agent communicates to the
MCP horizontally via ‘hops’ between agents. Figure 3 gives a schematic view of
the overall architecture.

3.1 Initialization

The initial system of n symbols is derived from a particular known (plaintext,
ciphertext)-pair, and a solution to the system of symbols yields a secret key for
the attacked symmetric cipher that is consistent with the particular (plaintext,
ciphertext)-pair. The symbols are loaded onto the p2 MPUs as evenly as possible.
Let g be the number of symbols stored in each MPU—should the symbol count
not be evenly divisible by the number of MPUs, we imagine empty symbols to
fill in the gaps. Now imagine labelling each symbol in each MPU with a number
in {1, . . . , g}. We call all symbols labelled with the same number a snake. Hence
we have g snakes. If at this point g = 1, we halve the number of MPUs to use,
redistribute the symbols to this half, and try again; we continue this process
until g = 2. The collection of MPUs now occupied with symbols is called the
active area for this computation. Any inactive MPUs will be taken advantage
1 By replacing the MCP, the overall algorithm can be changed, e. g., to accomodate a

different MRHS variant.
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Fig. 3. Overall architecture of PET SNAKE

of with parallelism, discussed later. The MCP determines a Hamiltonian cycle
through all MPUs, i. e., a path through all the MPUs such that one can move
from one MPU to one of its neighbors in a closed circuit, without visiting the
same MPU twice. The MCP will do the same for smaller groups of MPUs: p× p

2 ,
p
2 × p

2 , p
2 × p

4 , etc.—all the way down to 2× 1. This data can be hardwired into
the MCP, and we may assume that the MCP knows a path for each possible size
active area.

3.2 Processing of Symbols

During a computation, it may happen that the symbol count n drops below the
number of MPUs used to process them. If this happens, we move the symbols so
that only half of the MPUs will be occupied with symbols. (This guarantees g =
2.) The active area is then halved. Any inactive MPUs will be taken advantage
of with parallelism. Hence, at all points in the process, if g is not a power of
2, it will proceed as if g were the next highest power of 2 for board divisibility
purposes. The overall algorithm run by PET SNAKE is summarized in Figure 4.

Before going into details of the overall algorithm, we want to reiterate that,
to the best of our knowledge, the existing theoretical analysis of MRHS does not
allow a precise prediction of how often the individual steps in Figure 4 are to be
performed. This problem is not specific to PET SNAKE and arises for software
implementations as well. For the subsequent analysis this means that we focus
on judging PET SNAKE’s performance relative to a software implementation.

Absolute running times obviously depend on the particular block cipher/system
of symbols, but even for a specific block cipher like AES-128 we do not see how to
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1. Enter the agreement phase:

– Each symb. is agreed to each other symb. until all symbs. are pairwise-agreed.

– If, in the agreement phase, we get a symbol whose L-matrix got all its

columns deleted, then the system is inconsistent, so go to (6).

2. Enter the equation propagation phase:

– Equations are generated from each symbol, and then are row reduced, and

then are row reduced against the current eq. set, forming the new eq. set.

– If an inconsistency is found, go to (6).

– If the new eq. set is of max rank, we terminate as a key has been found.

– If there is no new information in the new equation set, go to (5).

3. Make the new gather symbol from the new eq. set and agree it to all symbols.

– If we get a symbol whose L-matrix got all its columns deleted, then the

system is inconsistent, so go to (6).

4. Glue the gather symbol to all symbols in the system, and go back to (1).

5. Enter the glue phase:

– If no two symbols can be glued such that the result’s L matrix has no more

than 220 columns, save the state (that is, all the symbols and the equation

set) in the MPUs and then go to (7).

– If necessary, move symbols so that any given pair of symbols to be glued

appear in the same MPU. Different MPUs can be used for different pairs.

– Pairwise glue the symbols whose resultant’s L matrix has no more than 220

columns. Delete the symbols which contributed to each glue.

– If necessary, move symbols among the MPUs so that they have the same

number of symbols. If there are less symbols than MPUs, move the symbols

so that they only occupy half the MPUs. This halves the active area.

– If one symb. remains, terminate as keys have been found. Else go to (1).

6. If a guess of a variable has not yet been made, terminate with failure as the

original system has no solutions. Else, roll back the symbols to a good state.

7. Make a new guess of the variables:

– The head MPU loads the equation set into its row reducer and introduces a

row corresponding to the guess.

– If the new guess is inconsistent with the current equation set, roll back the

equation set and go to (7). Otherwise, go to (3).

Fig. 4. Overall algorithm run by PET SNAKE

extrapolate reliable running time estimates for the full-round version from exper-
imental results with reduced round versions.

3.3 PET SNAKE’s Agreement Phase

The majority of activity on the board will be during the agreement phase. This
is broken down into k stages, where k = �logg n�.

First Stage. In the first stage, the entire active area is used. All but one
snake (i. e., snakes 1 through g − 1) stay put on the MPUs. On each MPU, the
symbol in the motile snake (i. e., snake g) is agreed to every other symbol on
that MPU. When the last such agreement is taking place, the MPU sends the
motile snake’s updated symbol (that is, with deletions incorporated) to the next
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MPU in the active area’s path. Since this is happening simultaneously for all
MPUs in the active area, each MPU gets the next symbol in the motile snake.
This continues q times, where q is the number of MPUs in the active area. If a
deletion has occurred somewhere in this process, the MCP records the affected
symbol’s number, but otherwise continues normally.

Now, snake g will be fixed, and snake g − 1 will move. The only difference
here is that symbols from snake g−1 will not need to be agreed with those from
snake g since that agreement has already been performed. After q times, snakes
g and g − 1 will be fixed, but snake g − 2 will move. And so on. If a deletion
has occurred for any of the g snakes, the MCP moves the affected symbols
into larger-numbered snakes (e. g., g, g − 1) and moves unaffected symbols into
smaller-numbered snakes. Often this is just a renumbering inside an MPU, so
no movement happens in these cases. Then the first stage is repeated again,
noting that if all the symbols in a lower-numbered snake have no deletions in
the previous run, it is not required to become motile. If a deletion occurs, the
MCP repeats the process of moving affected symbols and starting the stage
again.

Second Stage. At this point, all snakes are agreed to all other snakes, but the
symbols within each snake still need to be addressed. The active area is split up
into g stage areas, each with q/g MPUs. For each 1 ≤ j ≤ g, symbols from snake
j move to stage area j. After this move is complete, we relabel each symbol in
each MPU so that different snakes are formed, but the snakes only move in their
given stage area. Hence, each snake is 1/g the size it used to be. Now, the same
process is performed as in the first stage, but with smaller snakes and smaller
paths.

If a deletion has been recorded in this stage, the stage is allowed to complete,
but not recur nor go into the next stage. Then the affected symbols (from all
stage areas) are grouped together into one (or possibly more) q-sized snakes with
large snake numbers, they are moved into appropriate positions, and the first
stage is entered again.

Subsequent Stages. If the second stage records no deletions, we continue this
process of dividing the snakes and the stage areas by g until the stage area is
one MPU. (Deletions found in any subsequent stage are handled the same way
as described in the second stage.) At the last stage, the g symbols comprise g
snakes of size 1 each, and so they are simply agreed to each other inside that
MPU.

Time Estimate. The initial load’s symbols will most likely have A parts whose
1s are in different positions, so any particular pair of symbols will likely be al-
ready agreed, so no deletions will occur. After the first glue, it is still likely no
deletions will occur. After the second glue, however, things get less predictable,
but by this point the symbol count will drop by a factor of 4. (In the case of
AES-128, the threshold will take hold before the second glue, so we can only ex-
pect the symbol count to halve before guesses must be performed.) After these
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initial turns, deletion prediction becomes much less obvious, and it is certainly
possible to go through many agreement phases before considering a glue. Han-
dling deletions is needed in both software and hardware implementations, and it
seems fair to consider PET SNAKE’s efficiency in handling deletions as being at
least comparable to that of a software implementation (see Section 6.2 and [13,
Appendix A]). To get a handle on a time estimate for PET SNAKE’s agreement
phase we consider only the case that no deletions will occur.

We note that per stage there are g(g − 1)/2 agreements per MPU, and this
happens q times in the first stage, q/g in the second, and so forth, up to 1 in the
last. Since g = n/q, adding up the costs we have

k−1∑
i=0

g(g − 1)
2

· q

gi
=

g(g − 1)
2

· n
g
·
(

1− 1
gk

1− 1
g

)
=

(g − 1)n
2

·
(

n−1
n

g−1
g

)
=

g(n− 1)
2

total agreements. Since we try to arrange things so that g is 2 as often as possible,
this translates into n− 1 agreements in these cases.

What is not included so far is the time of moving symbols between stages.
Let the active area have dimensions q1 × q2 = q where q1 ≤ q2, and suppose g is
2. After the first stage, a symbol moves along the longer dimension, but halfway
so that it can find its new position. Another symbol from that position must
get to where the first started, so they both must use those directions. This will
introduce a factor two slowdown in all movement calculations. Hence, after the
first stage it takes 2 · ( q2

2

)
moves to get the symbols into their new positions,

and the stage area then has dimensions q1 × q2
2 . We alternate which dimension

we travel on in each stage, so the next stage cost is 2
(

q1
2

)
. Then 2 · ( q2

4

)
, then

2 · ( q1
4

)
, and so on. Presuming k is even, this gives a time estimate of

(q1 + q2) ·
k
2−1∑
i=0

1
2i

= (q1 + q2) ·
(

1− ( 1
2

)k/2

1− 1
2

)
= 2 · (q1 + q2) · 2

k/2 − 1
2k/2

< 2 · (q1 + q2)

total moves for the whole agreement phase.

The situation for g = 4 is not as easy, since symbols have to move to different
quadrants of the active area q1 × q2. We observe that it must be the case that
q1 = q2, since the only time we might have g > 2 is in the beginning, when we
have the full board at our disposal.

Hence, we perform a sort of rotation, where each quadrant of symbols (one
symbol per MPU per move) moves to the next clockwise (or counterclockwise)
quadrant simultaneously. This is possible since all four directional buses of each
MPU can be used simultaneously, and no directional bus needs to be used more
than once at a time. After the first stage, in the first rotation the symbols whose
target locations are in the diagonal quadrant move q1

2 in one direction. In the
second rotation, these same symbols move q1

2 in the appropriate perpendicular
direction to get to their target location. In the third rotation, symbols whose



PET SNAKE: A Special Purpose Architecture 309

target quadrant are clockwise of them will move q1
2 in that direction. The fourth

rotation is similar to the third, but for counterclockwise-bound symbols. Thus,
we have 4 · ( q1

2

)
= 2 · q1 moves for this stage. Subsequent stages are similar but

the distance is half of the previous distance. Thus we have
k−1∑
i=0

2 ·
(q1

2i

)
= 2 · q1 · 2 ·

(
2k − 1

2k

)
< 4q1

total moves for the whole agreement phase.

3.4 PET SNAKE’s Equation Propagation Phase

During agreement, it is recorded whether a symbol had columns deleted. PET
SNAKE will extract equations from such symbols using each MPU simultane-
ously and gather them all (together with the current equation set) into a gather
symbol, which is then agreed and glued to every symbol. The propagation phase
consists of either one or two extraction stages (depending on if g is 2 or 4, re-
spectively) followed by the resolution stage, followed by the propagation stage.

Extraction Stages. In the first extraction stage, equations from all symbols in
snake 1 are extracted simultaneously and stored in each MPU. Then equations
from all symbols in snake 2 are extracted simultaneously. All equations that have
been extracted are then mass row reduced down to at most 2047 equations. To
illustrate this process, first, imagine a label number from 0 through q − 1 for
each MPU in the path. (Label 0 is given to the head MPU, which sits in the
upper left corner of its active area. Label 1 is given to the next MPU in the
Hamiltonian cycle. And so on. For ease of discussion, we also define the notation
x ≡m y to mean that m divides x− y, or alternately, x is congruent to y modulo
m.)

Mass row reduction is then accomplished by the following process: each MPU
row reduces the equations from its symbols in snakes 1 and 2. Then the MPUs
with labels ≡2 1 send their results to the MPU with label 1 less. Now those
MPUs with labels ≡2 0 have up to 4094 equations, and each row reduces its
set. This results in no more than 2047 equations. Then the MPUs with labels
≡4 2 send their resulting equations to the MPU with label 2 less. Another row
reduction takes place. Then the MPUs with labels ≡8 4 send their resulting
equations to the MPU with label 4 less. And so on, until equations get to the
head MPU and are row reduced. These results are then stored.

If there is a second extraction stage, equations from symbols in snakes 3 and
4 are extracted and mass row reduced to at most 2047 more equations (which
will also lie in the head MPU); these are then row reduced with the previous
group of equations. The result is a group of at most 2047 equations called the
gather equations.

Resolution Stage. The head MPU will then retrieve from storage the current
equation set—which corresponds to the symbol S0 in [24, Section 3]. (In the be-
ginning, the equation set consists of no equations.) Then this is row reduced with
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the gather equations and the result is checked for consistency. If an inconsistency
is found, this is signaled to the MCP; the MCP will then deem the current guess
incorrect and move on to a new guess. If no inconsistency is found, the result is
checked for maximal rank (i. e. number of nontrivial rows equal to n). If it has
maximal rank, the MCP is alerted that a solution has been found. Otherwise,
the result is stored as the new equation set. This is checked to see if there is a
new equation that was not in the old equation set via a row count. If there is no
new information, the glue phase begins; else, the propagation stage begins.

Propagation Stage. The head MPU creates the gather symbol and sends it
to its east neighbor, and after that is done, it sends it to its south neighbor. The
east neighbor will store it and then send it to its east neighbor, and then its
south neighbor. And so on for all MPUs in the top row of the active area. An
MPU that received the symbol from its north neighbor merely stores it and sends
it to its south neighbor. Once all MPUs receive the gather symbol, it is agreed
to every symbol in the MPU, with the results of the agreements propagated to
the next MPU in the Hamiltonian cycle. As with normal agreement, if every
column of a symbol’s L part gets deleted, the MPU signals the MCP that an
inconsistency is found. Otherwise, after all agreements are complete, each MPU
glues the gather symbol to each symbol it has.

Time Estimate. Since there are g symbols in an MPU and each MPU extracts
simultaneously, we pay the time cost of an extraction g times. There are g

2 mass
row reductions, each comprising log2 q+1 row reductions and 1+2+4+· · ·+ q

2 =
q − 1 moves of at most 2047 equations. (Moving one such equation set is much
faster than moving a symbol, since an equation is expressed in 2048 bits.) In the
case of two extraction stages, we row reduce an additional time. Propagating
the gather symbol takes q1 + q2 moves, and finally since each MPU agrees, and
then glues, simultaneously, we pay the agreement time of two symbols g times
and the glue time g times.

3.5 PET SNAKE’s Glue Phase

Since the MCP knows which pairs of symbols will glue to produce a symbol
with 220 or less columns, it merely directs moves to get these pairs into MPUs,
and then the MPUs glue them in parallel. The number of moves needed is not
completely predictable, but we observe the following: in the early stages of the
algorithm, a given symbol can be glued to almost every other symbol, so in
particular each MPU won’t have to move any symbols at all before gluing. In
the later stages of the algorithm, very few glues are called for (often only one
or two), so symbols can be moved directly to where they need to go. Since the
active area is q1 × q2 MPUs, this constitutes at most q1 + q2 − 2 moves.

Whatever the case, we can always elect to move symbols in the following man-
ner: for each pair of symbols to be glued, label one member as a first component
and the other as a second component. Symbols that are not to be glued remain
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unlabelled. If g = 2 and there are two first components in an MPU, relabel one
as a second component and relabel its mate as a first. Do this again if the new
labelling causes another double. And so on. Note this process cannot result in an
infinite loop. Perform a similar process for MPUs with two second components.
If g = 4 and there are three or more first components (or three or more second
components) in an MPU, perform a similar relabelling process.

Now, we move symbols along the snake in a two-stroke process. In the first
stroke, we move an out-of-place second component (or failing that, an unlabelled
symbol) from MPU 0 to MPU 1, from MPU 2 to MPU 3, and so forth. In the
second stroke, we move an out-of-place second component (or failing that, an
unlabelled symbol) from MPU 1 to MPU 2, from MPU 3 to MPU 4, and so forth.
Observe that an MPU keeps a second component if it also has the associated
first component. This results in q− 1 moves if g = 2, or 2(q− 1) moves if g = 4.
The glue time, is in general higher than an agreement time. With g = 2, we
only pay the glue time once, since each MPU will be gluing all gluable pairs in
parallel with none waiting to be glued. With g = 4, we pay the glue time at
most twice; in general, the glue time is paid at most g/2 times.

3.6 Parallelism

Once the active area becomes half the original board (or less), and a guess is
required, the MCP considers performing a parallel computation on the inactive
area. The MCP will make a guess for a key variable in one area, and make the
opposite guess for the same key variable in the other. Then both areas will be
considered active areas, but their computations will be completely separated.

4 Main Processing Unit

The MPU is a collection of seven chips comprising five functional units, each
with its own responsibilities and behavior. We discuss each functional unit in
turn: the traffic controller, the row reducer, the multiplier, the hash table, and
the adder. Each functional unit is connected to a 2048-bit-wide bus called the
MPU bus.

4.1 MPU Data Flow

We describe the sequence of events that will occur inside each MPU when it
is agreeing, when it is extracting equations and when it is gluing. The particu-
lar details of each component are discussed in that component’s section below.
Figure 5 gives an overview of how most of the components are interconnected.
(The traffic controller sits on the north end of the MPU bus, directing traffic
between it and other traffic controllers of other MPUs.)

The high level order of operations during an agreement between two symbols
Si and Sj is as given in Figure 6, and the—somewhat similar—procedure for
gluing two symbols Si and Sj is described in Figure 7.
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Fig. 5. MPU Busing Diagram (High Level)

Finally, Figures 9 and 8 list the high level order of operations for extracting
equations from a symbol and for a mass row reduction respectively. Subsequently
we discuss the individual components of an MPU, but for the sake of readability
postpone low-level details and area estimates to the appendix of [13].

4.2 Traffic Controller

The traffic controller is a collection of four chips responsible for receiving symbol
data from neighbor MPUs, storing it, and pushing it across the MPU bus if need
be. After the results of various computations from other functional units are
complete, the traffic controller will store or forward to a neighbor MPU those
results, depending on what is currently being done. This is the only functional
unit that is connected to other MPUs and the MCP, as well as the MPU bus.
Details on the architecture of the traffic controller and how it operates are given
in [13, Appendix A].
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1. Ai is sent across the MPU bus and the row reducer picks it up.

2. Aj is sent across the MPU bus and the row reducer picks it up.

3. The row reducer calculates both B and U .

4. The row reducer determines if r is 0. If r = 0, terminate with agreement signal.

Otherwise,

5. The row reducer sends the left cols(Li) part of U across the MPU bus to the

multiplier.

6. For each column c of Li:

– c is sent across the MPU bus and the multiplier picks it up.

– The multiplier sends its r-part to the hash table.

– The hash table stores an indicator that that r-part has been created.

7. The row reducer sends the right cols(Lj) part of U across the MPU bus to the

multiplier.

8. For each column d of Lj :

– d is sent across the MPU bus and the multiplier picks it up.

– The multiplier sends its r-part to the hash table.

– If the r-part had been formed by Li, the hash table stores an indicator for

this.

– If not, the hash table reports the column index of d across the MPU bus to

be deleted.

9. For each entry in the hash table’s buffer DRAM, if the entry is not found in the

table itself, the column index is reported across the MPU bus to be deleted.

10. If no deletions have been recorded, the hash table sends the value of its glue

counter across the MPU bus to the traffic controller.

Fig. 6. High level order of operations during an agreement

4.3 Row Reducer

The row reducer is comprised of a chip named A/U, which is connected to the
MPU bus. Each part of its name will refer to a separate processing area inside this
chip. The row reducer has four responsibilities: compute a row-reduced version of
A (i. e., the vertical concatenation of Ai and Aj when they are received), compute
the matrix U such that UA yields the row-reduced matrix that will appear in
the A part, compute the matrix V such that V L is row reduced, and determine
which rows of V A correspond to URHS equations. During a glue, the data stored
in the A part will be sent back across the MPU bus. (This corresponds to B in
the MRHS gluing algorithm.) During agreeing and gluing, the data stored in
the U part will be sent across the MPU bus to the multiplier. During equation
extraction, the data stored in both parts will be sent to the multiplier. Details
on the architecture of A and U and how it operates are given in [13, Appendix B].
The JONES element used in A and U builds on ideas from SMITH [5,6] and may
be of independent interest.

4.4 Multiplier

The multiplier occupies one part of a chip named M/HT. If the MPU is agreeing
two symbols, the multiplier receives data from A/U and stores it in a processing
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1. Ai is sent across the MPU bus and the row reducer picks it up.

2. Aj is sent across the MPU bus and the row reducer picks it up.

3. The row reducer calculates both B and U , determines if r is 0, and sends B
across the MPU bus to be stored.

4. The row reducer sends the left cols(Li) part of U across the MPU bus to the

multiplier.

5. For each column c of Li:

– c is sent across the MPU bus and the multiplier picks it up.

– The multiplier sends its s-part to the adder for storage.

– If r �= 0, the multiplier sends its r-part to the hash table, and the hash table

stores the Li column index that gave rise to the r-part.

6. The hash table re-examines its DRAM buffer, possibly sending pairs of data

across the MPU bus to the adder.

7. The row reducer sends the right cols(Lj) part of U across the MPU bus to the

multiplier.

8. For each column d of Lj :

– d is sent across the MPU bus and the multiplier picks it up.

– The multiplier sends its s-part s to the adder for adding.

– If r �= 0, the multiplier sends its r-part to the hash table.

– If r �= 0, the hash table sends all indices from Li that match the r-part across

the MPU bus to the adder. For each such index i,
• The s-part at index i is looked up in the adder.

• The s-part is retrieved, added to s, and sent across the MPU bus.

– If r = 0, the adder runs through all its contents. For each such index i,
• The s-part at index i is looked up in the adder.

• The s-part is retrieved, added to s, and sent across the MPU bus.

Fig. 7. High level order of operations during gluing

area called Ur. If the MPU is gluing two symbols, the multiplier will also receive
additional data from A/U and store it in a separate processing area called Us. It
then receives the L-part of a symbol one column at a time, and multiplies it with
the contents in Ur and (if gluing) Us. Once this multiplication is complete for the
received L-column, the multiplier will send the result from Ur (called an r-part)
to the hashtable. If gluing, it will also send the result from Us (called an s-part)
to the adder across the MPU bus. If extracting equations, it will receive data
from traffic control or A/U, store it in Us, receive more data from A/U, and send
results back to A/U. Details on the architecture and working of the multiplier are
discussed in [13, Appendix C]. Similarly like the row reducer, this architecture
might be of independent interest.

4.5 Hash Table

The hash table is used in both the agreeing and gluing phase, and it is designed
to process one write query per clock cycle—similarly, for look-ups, one look-up
query per clock cycle can be coped with. Elements to be stored or looked up in
the hash table are r-parts with a (zero padded) size of rmax = 135 bit, and the
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For each MPU in the Hamiltonian cycle:

1. Equations are extracted from symbol 1 and reside in the row reducer’s A part.

2. The row reducer sends each row of its A part across the MPU bus. The adder

picks them up and stores them in its SRAM.

3. Equations are extracted from symbol 2 and reside in the row reducer’s A part.

4. The adder sends the previous equations in its SRAM across the MPU bus and

the row reducer’s A part picks them up (rotating its currently-stored equations).

5. The row reducer reduces its contents.

6. If there is a second extraction stage:

– The resulting equations (call them E) are sent from the row reducer’s A part

across the MPU bus. The adder picks them up and stores them in its SRAM.

– Extraction is performed on the symbols in snakes 3 and 4 and row reduced,

similarly as was done in steps 1–5.

– The adder retrieves E from its SRAM and sends these rows across the MPU

bus. The row reducer’s A part picks them up (rotating its currently-stored

equations).

– The row reducer reduces its contents.

End For.

Define W = {0, 1, 2, 3, . . .}. Set i ← 2. While i ≤ q :

1. Each MPU with label in {i/2+ki | k ∈ W} sends its equations to the MPU with

label i/2 less.

2. Each receiving MPU sends this data across its MPU bus to its row reducer,

rotating the current contents downward.

3. The combined contents are row reduced.

4. i ← i × 2.

End While.

Fig. 8. High level order of operations during a mass row reduction

hash table is designed to store up to 220 such r-parts. Details on the architecture
and the inner working of the hash table are discussed in [13, Appendix D].

Remark 1. Having no more than 220 columns, identifying each column with a
135 bit hash value seems a safe choice: taking the hash values for being uniformly
distributed, the probability that no collision occurs is ≥ ∏220−1

i=0 (1 − i
2135 ) ≥

1− 2−90.

4.6 Adder

The adder is comprised of its own chip, which is largely a memory storage device.
The adder is only used during gluing and equation extraction. During a glue,
while the columns of Li are being processed, M/HT will send out s-parts across
the MPU bus. These will be picked up by the adder and stored in a collection of
256 DRAMs. Later, for each column in Lj that is being processed, the adder first
acquires an s-part and stores it in a separate row of flip-flops called the adding
register. Then the hash table will send across the MPU bus either a series of
indices in Li that match to that particular Lj column (i. e., whose Prij columns
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1. The row reducer is reset. (Note that this produces the identity matrix in U.)

2. Starting with the first group of 211 columns of L, for each such group of L:

– The A part of the row reducer is reset but the U part is preserved.

– The group of 211 columns of L is sent across the MPU bus and Us of the

multiplier picks it up.

– For each row of the row reducer’s current U:

• The row reducer sends the left 211 bits of the next row of its current U

across the MPU bus and the multiplier’s L bus picks it up.

• The multiplier sends the resulting row across the MPU bus and the row

reducer picks it up.

– The row reducer reduces its contents, modifying the current U.

> Now U contains the matrix we are interested in. We multiply it to all of L:

3. The A part of the row reducer is reset but the U part is preserved.

4. Starting with the first group of 211 columns of L, for each such group of L:

– The group of 211 columns of L is sent across the MPU bus and Us of the

multiplier picks it up.

– For each row of the row reducer’s U:

• The row reducer sends the left 211 bits of the next row of U across the

MPU bus and the multiplier’s L bus picks it up.

• The multiplier sends the resulting row across the MPU bus to A.

– The row reducer performs zero and one detection on its current A part.

> At this point, the row reducer’s A part knows which rows will correspond to

equations. We just need to multiply U to the symbol’s A part:

5. The row reducer’s A part is reset, preserving its detection flip-flops, and the U

part is preserved.

6. The rows of the symbol’s A part are sent across the MPU bus to Us.

7. The multiplier sends the columns of A across the MPU bus to the row reducer.

> At this point, the A part of the row reducer holds AT .

8. The row reducer sends the columns of A across the MPU bus and Us of the

multiplier picks them up.

9. The A part of the row reducer is reset but the U part is preserved.

10. For each row of the row reducer’s U:

– The row reducer sends the left 211 bits of the next row of U across the MPU

bus and the multiplier’s L bus picks it up.

– The multiplier sends the resulting row across the MPU bus to A.

11. The row reducer rotates through its A part, setting the 2048th bit of each row

according to its detection flip-flops.

Fig. 9. High level order of operations of extracting equations from a symbol

are the same), or a popularity number of the resulting r-part. In the first case, the
adder will look up the indices in its DRAM collection. In the second case, it will
use the popularity number to find indices in its own table, and look those up in
its DRAM collection. The resulting s-parts are then added to the adding register,
and the sum is sent back across the MPU bus. During equation extraction, the
adder will store groups of equations temporarily to be row reduced later. More
details on the architecture and the internal working of the adder are given in
[13, Appendix E].
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5 Performance Analysis I: Total Chip Area and Cost

With the area estimates in [13, Appendix A–E], the size of the five functional
units per MPU can be summarized as shown in Table 1.

Table 1. Size of individual MPU components

Component Traffic Controller Row Reducer Multiplier Hash Table Adder

Area in cm2 4× 3.9 3.8 0.43 0.41 1.1

Thus, the total chip area of the (seven) chips comprising one MPU computes
to 4 · 3.9︸ ︷︷ ︸

4 chips

+ 3.8︸︷︷︸
1 chip

+ 0.43 + 0.41︸ ︷︷ ︸
1 chip

+ 1.1︸︷︷︸
1 chip

= 21.34 < 22 cm2.

For a PET SNAKE architecture with p2 = 25 × 25 MPUs, this results into
a total chip area of about 2.25 m2. To enable the necessary wiring, cooling etc.
for actually placing the chips (along with the MCP and its agents) some more
space will be required. Obviously this is a non-trivial size requirement, but it is
important to note that none of the involved chips is larger than 3.9 cm2, and
the resulting device is designed to host a system of symbols as needed to attack
a modern block cipher like AES-128. As far as cooling goes, the most critical
part of our design appears to be the row reducer, specifically the A/U chip. We
estimate this chip to have about 2/3 of the number of transistors of an Intel R©
Xeon R© X7460, the latter being clocked at more than 2.5 times the rate of what
we anticipate for PET SNAKE [9]. Further, high switching activity of A/U is
expected to occur only over short time periods, followed by a longer time where
most of the chip is inactive. Overall, we do not expect cooling to pose a major
obstacle.

One MPU uses some 22 cm2 of silicon. If we assume a 30 cm wafer to cost
$5000, the pure silicon for one MPU calculates to about $160. If we apply a
factor 4 for the full design, including the board and some safety margin, one
MPU is about the price of one PC. Therefore we compare the performance of
one MPU with one PC. The next section gives a simplified model to analyze
the running time in a software implementation on a PC, and in Section 6.5 we
present measurements when working with 4 rounds of PRESENT.

6 Performance Analysis II: PET SNAKE versus Software

To measure the time cost of an MPU versus software, the MPU’s time is mea-
sured in clock cycles. For PET SNAKE we assume a 1 GHz clocking rate: with
each component of our architecture having a gate depth of four or less, we believe
such a clocking rate not to be implausible. Software’s time is given in number
of processor steps. Factors which relate to the software moving data in and out
of memory, cache, and so forth can be captured via a constant α (i. e., each step
takes α clocks on average), so a step count serves as a sort of best case scenario
for software.
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Suppose we are agreeing two symbols Si and Sj. Let Ai have dimensions wi×y,
Aj have dimensions wj × y, Li have dimensions wi× ci, and Lj have dimensions
wj × cj . Note that y then is the number of variables in the cryptosystem. Let β
be the number of bits of a value that the processor can perform arithmetic on
at once; in modern machines, β ∈ {32, 64}.
6.1 Linear Algebra

Let A be the vertical join of Ai and Aj . Then A has size (wi + wj) × y. We
suppose that each row will rarely have more than one 1 in A; this is usually true
in the middle and later stages of a run. Let γ be the chance a second 1 exists
in a column of A provided a 1 exists already in that column. Note that γ will
change from symbol to symbol, but 0 ≤ γ ≤ 1.

Hardware. JONES has two advantages over software: if a zero column exists,
we dispense with it in one step, and if an add is to be performed, this also takes
one step. Further, the modifications to U are done in parallel to A.

Let h be the number of columns of A that have more than one 1. Then we
have that γ = h

wi+wj−h , and so h = γ
1+γ (wi +wj). Thus, the number of columns

of A that have exactly one 1 are wi − h + wj − h, which yields 1−γ
1+γ (wi + wj).

Label this value t. Adding h and t gives the total number of populated columns
of A. So, if we let z be the number of columns of A which are all zero, then
y − z = h + t = 1

1+γ (wi + wj).
Now, since the matrices Ai and Aj are already row-reduced prior to this

process, we have some reasonable expectations on where to find a 1 if it exists
in a column at all; that is, if it is not near the main diagonal of Ai, it is near the
main diagonal of Aj . It could happen that h = 0 and we are extremely unlucky
with 1 placement, in which case JONES will take y + 1

2 (wi + wj)2 clocks.
This will almost never happen, however. If there are two ones in the leftmost

column of A, one of them will be near or at the top. If there is only one 1, it
will either be at or near the top, or it will be roughly halfway down. If there
are none, we just shiftover without further examining the column. So, for the h
columns, we won’t have to shift the rows of A up, and for about 1

2 t columns, we
still won’t. For the other 1

2 t columns, we can expect to perform shiftups equal
to about half of the unlocked rows.

After an add, another locked row is created, so the number of unlocked rows
is lessened. Further, we can expect at least two such adds to be performed
between times we have to shiftup half of the unlocked rows. Hence, the first
time we encounter such a column we shiftup 1

2 (wi +wj) rows, but the next time
we encounter such a column we will shiftup 1

2 (wi + wj − 2) = 1
2 (wi + wj) − 1

rows. Hence, we have a truncated triangular sum of shiftups to count. Since the
number of unlocked rows starts at wi + wj , we expect a total shiftup count of
1
2 (1

2 (wi + wj))2 − 1
2

[1
2 (wi + wj)− 1

2 t
]2, which yields 1

8

(
1− 4γ2

(γ+1)2

)
(wi + wj)

shiftups. Hence, our total clock count is y + 1
8

(
1− 4γ2

(γ+1)2

)
(wi + wj) = y +

1
8

(1−γ)(1+3γ)
(1+γ)2 (wi + wj).
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Software. Different choices for the algorithm can be made, and here we consider
a situation where Gauß elimination is used to perform the row reduction. For the
matrix sizes at hand, this seems a plausible option. Then software must examine
wi + wj elements in the first column. It first must find a 1, and if successful, it
scans the rest of the column looking to add a row. If it finds such a row (i. e.,
with a 1 in this column), it performs an add of the two rows which takes y/β
steps.

It then proceeds to the next column, examining the bottommost wi + wj − 1
elements, and addition of rows costs (y − 1)/β steps. And so on. We note that
any additions that are performed in A are also performed in the U that is being
built, and U has dimensions (wi + wj)× (wi + wj), though we do not explicitly
count them.

If y ≥ wi+wj , then in total there are 1
2 (wi+wj)2 locations to visit, with a trun-

cated triangular sum of addition steps in A equal to γ
β

[1
2y2 − 1

2 (y − (wi + wj))2
]
=

γ
β (wi + wj)(y − 1

2 (wi + wj)). In these cases we expect γ to be closer to 0 than to
1, and so hardware offers at least a factor 4 improvement in clocks over steps.

If y ≤ wi + wj , then we have a truncated triangular sum of locations to visit
equal to 1

2 (wi + wj)2 − 1
2 (wi + wj − y)2 = y(wi + wj − 1

2y). The addition steps
total γ

β
1
2y2. In these cases we expect γ to be closer to 1 than to 0, and we expect

few, if any, zero columns. Hence we use y = 1
1+γ (wi + wj), and putting just the

locations expression over the clocks expression, we have a factor improvement
equal to

1
1+γ (wi + wj)

(
(wi + wj)− 1

2
1

1+γ (wi + wj)
)

1
1+γ (wi + wj) + 1

8
(1−γ)(1+3γ)

(1+γ)2 (wi + wj)2
=

1+2γ
2+2γ (wi + wj)

1
8

(1−γ)(1+3γ)
1+γ (wi + wj) + 1

As γ increases towards 1, this expression will tend towards a factor 3
4 (wi + wj)

improvement (i. e. JONES takes linear time). This does not come as a surprise, for
when γ gets closer to 1, there is less and less need to perform shiftups to find 1s.

6.2 Matrix Multiplication and Recording Deletions

Hardware. Once Ur and Us are loaded, their multiplications to Li occur in
parallel; similarly for Lj. Because of the pipeline structure of the multiplier, all
the columns of UTij (similarly, UTji) are computed at a rate of one clock per
column, plus a few clocks of latency in the beginning. The hash table then picks
up the resulting r-parts and processes them at a rate of one clock per r-part,
and it is also structured in a pipeline fashion.

Hence, processing Li takes ci clocks, plus a few clocks of latency. Then, pro-
cessing Lj also takes cj clocks, plus a few clocks of latency. Since the MPU bus
must be used to report a deletion, it will take one clock per deletion, up to a
maximum of cj clocks to report all of Lj ’s deletions. Finally, Li is processed
again from the hash table’s DRAM buffer, and those entries are looked up (for
deletions) at the same rate. Since the hash table can report a deletion at the
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same time as looking up the next value, we count ci clocks to report any deletions
for Li.

Since the traffic controller can record a deletion in a pipeline fashion and send
a column at the same time, no additional overhead is counted for this. Finally,
because of the ‘just in time’ nature of symbol transmission, it takes no additional
time for a deletion to actually take hold in a symbol.

Thus, two symbols will have their deletions processed in 2ci + 2cj clocks, plus
some small latency. (At the very end of an agreement phase, an additional ci

clocks will also be spent for one symbol. This is a one-time latency cost.)

Software. Using a Method of Four Russians (cf. [1]) approach in software is
certainly helpful in constructing Prij . The T-storage matrix is set up on each
pass. Arranging the data the same way the hardware handles it, this T matrix
has 2k rows of r entries each, where k is the storage constant (typically k = 8,
but can be increased), and r = rows(A)−rank(A). It is built in 2k r

β steps. Then,
for (the given k bits of) each Li column, the appropriate entry in the T matrix
is read off and stored (taking r

β steps), waiting to be added later. This continues
for the entire pass. Hence, a pass takes 2k r

β + ci
r
β steps. Afterwards, a new T

matrix will need to be built. Since there are wi

k passes, all passes total comprise
wi

k (2k + ci) r
β steps.

After all passes are complete, the subresults are added together to produce
the final result of the multiplication. We can use log wi

k additions of matrices,
each addition taking ci

r
β steps. This gives a total step count of

wi

k
(2k + ci)

r

β
+ ci

r

β
log

wi

k
=

r

β

(wi

k
2k + ci(

wi

k
+ log

wi

k
)
)

to construct Prij . A similar expression will result when constructing Prji.
One could try to optimize by increasing k to 16 or so, but k = 32 is trouble-

some as the 2k term starts to dominate.
The situation gets worse for software; it still has to search through the data to

find matching r-parts. Sorting Prij will take at least ci log ci steps and as many
as r

β ci log ci, should many r-parts become popular. Similar expressions result
when sorting Prji. Finally, a bilinear search taking r

β (ci + cj) more steps must
be performed to find matching r-parts. Once the mismatches are found, columns
have to be deleted from Li and Lj ; this takes r

β (ci + cj) steps. Hence, total
sorting and searching for both matrices takes r

β (ci(2 + log ci) + cj(2 + log cj))
steps.

In total, we have

r

β

(
wi + wj

k
2k + ci(

wi

k
+ 2 + log ci

wi

k
) + cj(

wj

k
+ 2 + log cj

wj

k
)
)

steps to agree the symbols Si and Sj .
The MPU has a very clear and obvious advantage. Aside from the additional

terms the software induces in its step count, it is important to stress that the
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hardware does not rely on the values of r, wi, or wj at all. Hence, large r
(whose maximum value is 211) will dramatically slow down the software, but the
hardware will be unaffected. Since r will steadily increase over the entire run,
hardware’s advantage will grow over time.

6.3 Gluing

Both hardware and software must pay the linear algebra times and the multipli-
cation times as described earlier. From there the situation changes slightly. At
this point we know that we may only construct a symbol whose L-part has no
more than 220 columns, so we label the number of such columns d.

Hardware. During the matrix multiplication of Li, r-parts are being stored in
the hash table at the same time, so we do not count this cost again. However,
s-parts are being sent to the adder at the same time, so the adder’s DRAM
collection is filled for free.

Afterwards, the hash table will go through a preprocessing of its ci entries. It
may happen that these values hit the SRAM of the adder entirely too quickly,
at which point we must pay upwards of an 8-clock penalty per such index. In
the worst case this takes 8ci clocks in total, but is expected to average to more
like 2ci over the course of an entire run.

Then, Lj is processed. We get an s-part in one clock (after some latency),
and at the same time, its r-part is examined for matches in the hash table. If
the hash table has the matching indices, it simply sends them, one per clock. If
the adder has them, the adder uses its SRAM to produce them to the s-lookup
chain. Since the SRAM produces values 128 bits at a time (that is, 6 indices per
8 clocks), the penalty of multiple fast read requests is mitigated.

Hence, we have worst case behavior of 8ci + 8
6d and best case behavior of

ci + d clocks to finish all additions.

Software. It is plain that the software will suffer tremendously if it has to
re-match r-parts to find corresponding s-parts to add, so we give it a fighting
chance by allowing it to store the matching indices during agreement. (This
gets expensive in memory with a state of several hundred symbols, but can
nonetheless be theorized.)

Then it merely performs lookups of its storage data. Since there are d pairs
of s-parts to be added, software takes r

β d steps to finish all additions. Again,
as r steadily increases over a run, software becomes vastly inferior to hardware,
which does not rely on the value of r.

6.4 Equation Extraction

We begin by analyzing the time taken by extracting equations from a particular
symbol with A of dimensions w × y and L of dimensions w × c. We suppose A
has the same bias of data as described in Section 6.1, but L is not guaranteed to
have any bias of data. We calculate supposing that L’s 0s and 1s are uniformly
distributed.
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Hardware. We follow Figure 9. In step 1, the row reducer is reset, taking 4096
clocks to bring U back to the identity matrix. Then we have �c/211� groups of
columns of L to process to find U such that UL is row reduced. For each of
these groups, we first send the 211 columns to Us, taking 211 clocks, followed by
sending the top 211 rows of the row reducer’s U part, each producing a row that
the A part must store. Each row takes two clocks (one to read, one to write, as
data must go back and forth across the MPU bus). So, to get a temporary result
of a multiplication in A, we require 212 clocks. To rotate U back into position, we
require another 211 clocks.

Then A gets row reduced, modifying the current U. Because L’s bits are uni-
formly distributed, UL’s bits will be also, and JONES will behave at least as
well as SMITH under these conditions. Since it has been reported that SMITH
will take 2k time for such a k×k matrix [6], JONES will take at most 213 cycles
to row reduce A. In total, step 2 takes �c/211�(211 +212+211 +213) clocks, which
is at most c/211 × 8(211) = 8c clocks.

Step 3 takes at most 212 clocks, since we just need to reset A. In step 4, we
again have �c/211� groups of columns of L to process. For each group, we first
send it to Us taking 211 clocks. Then the multiplication happens once more,
taking 212 clocks, with the temporary result in A. Then zero and one detection
commence, requiring A to cyclically shift upwards completely, taking 212 clocks.
In the first 211 of these, the ZD column is populated, and the OD row gets set
to the sum of all rows in A. Then in the second 211 clocks, the OD row cyclically
shifts left, setting the OD flag. Hence, step 4 takes �c/211�(211+212+212), which
is at most 5c clocks.

Step 5 is similar to step 3, taking 212 clocks. Step 6 takes w clocks to populate
Us. Step 7 takes at most 212 clocks (one to multiply, one to send) to send the
columns of A back to A. Step 8 takes 211 clocks to repopulate Us. Step 9 is similar
to step 5, taking 212 clocks. Step 10 will require 212 clocks (one to send, one to
receive the multiplication, for each row in U). Step 11 will require 212 clocks to
set the 2048th element according to its detection flip-flops, followed by another
212 clocks to put the (potentially) nonhomogeneous equation at the top.

Hence, to extract the equations from a symbol, PET SNAKE uses at most
212 + 211 + 8c + 212 + 5c + 212 + w + 212 + 211 + 212 + 212 + 212 + 212 =
18(211) + 13c + w ≤ 13, 670, 400 clocks.

Software. We once again consider Gauß elimination for the row reduction. In
almost all cases w� c, and since each entry of L is equally likely to have a 0 or
a 1, we note it will take one or two steps to find a pivot row for row i. However,
once a pivot row is found, it will have to be added to about half the remaining
rows, and each such addition will take c−i

β steps. Hence, the step count is

w∑
i=1

w − i

2
c− i

β
=

w

4β

[
cw − 1

3
w2 − c +

1
3

]
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which is easily dominated by the cw2

4β term. As the run continues, w approaches
y, and c almost always remains at 220. Taking an average value of w to be 210

and β = 32, this term becomes 233.
Once L is row reduced, we must take the corresponding U (of size w × w)

and multiply it to A. The cost for this is negligible, though, using the Method of
Four Russians again. Each T matrix costs 2k y

β to set up, reading off the correct
row costs y

β steps, so each pass takes y
β (2k +w) steps. There are w

k passes, giving
a step count of wy

kβ (2k + w) to construct all w
k matrices to be added. We can

structure things to take log w
k additions, each addition costing wy

β steps, for a
total of

wy

β

(
1
k

(2k + w) + log
w

k

)

steps for the entire multiplication. However, using the same values as above (with
y = 211 and k = 8), this reduces to approximately 223 steps.

We see that the cost in software is about a factor of 1000 in steps over clocks
for the equation extraction in the common case.

Assigning the final 0/1 column to construct the equations is trivial in both
settings. Software provides no benefit over hardware when bringing all the equa-
tions together to be row reduced, so we do not perform an analysis of this.
Finally, reducing with the current equation set to determine consistency is also
trivial in both settings.

6.5 Software Measurement

It should be noted that, in the above derivations, the linear algebra is almost al-
ways dominated by matrix multiplication and recording deletions, both in hard-
ware and in software.

In order to get a handle on performance metrics, four rounds of PRESENT
were cryptanalyzed in software (k = 8, y = 308) using MRHS with the above
options, and this entire session’s timing values were recorded. The platform was
an Intel E2180 processor, β = 32, on a single core of 2 GHz, with 2 GByte of
RAM. Out of the nearly 10,000 agreements that took place, the vast majority
took less than two seconds. We removed these from consideration since fractions
of seconds were not measured. Many calculations were made on the remaining
350 or so agreements using the above step count formulas, some results of which
are illustrated in Table 2. We see no problem using just these ∼350 values since
in a full cryptosystem operated on by PET SNAKE, there will commonly be
high wi, wj , r, ci, and cj values, and these data points are more reflective of this
scenario. It should be noted that we calculated steps using γ = 0.5; varying γ in
either direction does not adversely affect our overall results.

An average of the ∼350 time improvement factors gives an average improve-
ment of 2,281 for four rounds of PRESENT. As noted above, as r gets larger,
we suspect PET SNAKE will only improve from there.
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Table 2. Some measured values of software performance (k = 8, β = 32, γ = 0.5,
y = 308)

w1 c1 w2 c2 r time total pent α PET SNAKE PET SNAKE improv.
(s) steps clocks clocks time (s)

208 32768 236 524144 192 4 185372686.4 8 ·109 43.16 1127822 0.001127822 3547
211 98304 236 196796 192 2 94214489.28 4 ·109 42.46 604383.625 0.000604384 3309
211 98304 236 524144 192 4 205688510.1 8 ·109 38.90 1259079.625 0.00125908 3177
229 121856 236 196796 192 2 103100923.9 4 ·109 38.80 652627.625 0.000652628 3065
213 14336 237 196796 190 2 68614875.44 4 ·109 58.30 436634.5 0.000436635 4580
207 32768 229 248832 190 3 89847645.61 6 ·109 66.78 576709.1111 0.000576709 5202
207 32768 229 248832 190 2 89847645.61 4 ·109 44.52 576709.1111 0.000576709 3468
212 16384 229 248832 189 2 85166930.02 4 ·109 46.97 544245.625 0.000544246 3675
217 16384 229 248832 189 2 85273467.77 4 ·109 46.91 544553.6111 0.000544554 3673
212 16384 229 497664 189 3 168450194.4 6 ·109 35.62 1041909.625 0.00104191 2879
212 16384 229 786432 189 5 266482279.2 10 ·109 37.53 1619445.625 0.001619446 3087
213 28672 236 524144 189 3 184351734.1 6 ·109 32.55 1119940.069 0.00111994 2679
213 57344 229 497664 189 6 180808589.4 12 ·109 66.37 1123890.944 0.001123891 5339
213 57344 229 497664 189 3 180808589.4 6 ·109 33.18 1123890.944 0.001123891 2669
210 98304 229 248832 189 2 110163469.2 4 ·109 36.31 707963.4028 0.000707963 2825
210 98304 229 497664 189 3 193446733.7 6 ·109 31.02 1205627.403 0.001205627 2488
212 12288 229 248832 187 2 83962706.02 4 ·109 47.64 536053.625 0.000536054 3731
212 12288 229 497664 187 3 167245970.4 6 ·109 35.88 1033717.625 0.001033718 2902
212 12288 229 786432 187 5 265278055.2 10 ·109 37.67 1611253.625 0.001611254 3103
213 57344 229 497664 185 3 180808589.4 6 ·109 33.18 1123890.944 0.001123891 2669
213 57344 229 786432 185 5 278840674.1 10 ·109 35.86 1701426.944 0.001701427 2939
213 16384 236 524144 184 3 180691970.9 6 ·109 33.20 1095364.069 0.001095364 2739
134 1048576 147 131072 102 5 202949079.1 10 ·109 49.27 2365087.403 0.002365087 2114
125 4096 141 450816 101 2 78081960.56 4 ·109 51.23 915045.6111 0.000915046 2186
125 4096 137 1048576 101 4 185889011.7 8 ·109 43.04 2110418.944 0.002110419 1895
122 8192 137 1048576 101 4 186478052 8 ·109 42.90 2118502.403 0.002118502 1888
129 16384 137 524288 101 2 93036403.87 4 ·109 42.99 1086565.611 0.001086566 1841
129 65536 140 450816 101 3 87773276.82 6 ·109 68.36 1038037.069 0.001038037 2890
129 65536 137 1048576 101 6 195580582.3 12 ·109 61.36 2233445.611 0.002233446 2686
135 1048576 152 131072 101 5 202950785.3 10 ·109 49.27 2365324.069 0.002365324 2114
134 1048576 139 1048576 101 7 366057846.9 14 ·109 38.25 4199787.625 0.004199788 1667

To get a better feeling for just how much more favorable PET SNAKE will be,
we see that an average of the ∼350 α data points gives α = 66.068, where α is
the metric of steps per processor clock. Some things are not included in the step
count, such as loop counter variables incrementing, allocation space instructions,
and low-level memory management.

Once we have a good handle on the α that a given processor exhibits, we
can predict software behavior for larger systems. For example, if PET SNAKE
runs an MRHS attack on AES-128 or more rounds of PRESENT, it won’t be
uncommon for y > 1500, wi > 1024, and r > 1024. Modeling such systems in
software directly is problematic owing to the lack of sufficient on-board memory
at the time of this writing, but we can predict step counts for software under
these conditions. Table 3 gives the relevant predictions fixing α = 66.068. In the
later stages of a given attack of a full cipher of something like AES-128,we’ll see
symbol sizes listed in this table. The relative improvement of PET SNAKE is
now even clearer, touching a six-digit improvement.

Finally, it is worth noting that other software methods may be used to mul-
tiply large matrices; it is certainly possible that some of them may be more
efficient than the Method of Four Russians, and so the improvement factor may
be reduced. However, PET SNAKE’s time is still unaffected by these large sym-
bols, processing each pair in less than half of a hundredth of a second. We feel
that such absolute speed is too compelling to be dismissed.
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Table 3. Some projected values of software performance (k = 8, β = 32, γ = 0.5,
y = 308, α = 66.068)

w1 c1 w2 c2 r time (s) total steps pentium clks PS clocks PS time (s) improv.

1000 1048576 1000 1048576 500 170.7644 5169289689 3.41529·1011 4474081 0.004474082 38167

750 1048576 750 1048576 300 84.95722 2571779869 1.69914·1011 4352054 0.004352054 19521

500 1048576 1000 1048576 200 59.44129 1799375263 1.18883·1011 4352304 0.004194304 14171

500 1048576 1000 1048576 400 110.3584 3340712542 2.20717·1011 4352304 0.004194304 26311

500 1048576 1000 1048576 600 161.2756 4882049821 3.22551·1011 4352304 0.004194304 38451

500 1048576 1000 1048576 800 212.1927 6423387100 4.24386·1011 4352304 0.004194304 50590

1500 1048576 1500 1048576 1000 482.5320 14606952758 9.65064·1011 4821304 0.004194304 115044

7 Performance Analysis III: Parallelization

Guessing Variables. PET SNAKE will, in its depth-first search of keys, even-
tually guess enough keys so that either the system is found to be inconsistent
or the key is correct. This number of keys we refer to as δ. So that it may make
appropriate use of parallelism, PET SNAKE will eventually guess enough keys
discovering δ, and then make note of its available storage. Then the MCP will
be able to determine how high in the guess tree it can fork a new guess into
another area of the board, while having the ability to store the states required
for a sub-branch of this new guess as well as for the original branch. The idea
here is that PET SNAKE will use all of its MPUs to finish off a branch of a
guess tree as quickly as possible. If more MPUs become available, more guesses
can potentially be forked.

Should the MCP determine that storage will run out, it will delete some states
higher in the guess tree. Any such state which needs to be recovered later can
always be recalculated based on the next-highest state in the guess tree, and
the remaining key guess symbols to affect the deleted state’s guess. It is true
that these (possibly several) guesses will need to be re-performed in one series
of agrees and glues, increasing the overall running time, but PET SNAKE at
least has recovery options should storage requirements vary wildly across parallel
branches of the guess tree. For this reason, PET SNAKE will never delete the
highest state in the guess tree, that is, the state which was arrived at before any
guesses were committed.

Using Multiple PCs. To cope with a cipher like AES-128, the only plausible
option seems to use a cluster of PCs, but here the communication cost between
these PCs will add another significant factor to the overall running time of the
algorithm. Connecting networked PCs in the same way as PET SNAKE connects
its MPUs will introduce additional time spent: suppose that a grid of PCs is con-
nected so each can talk to its neighbor in each cardinal direction using gigabit
Ethernet, and suppose that this network actually communicates perfectly (i. e.,
1 gigabit/sec). PET SNAKE’s connections are 1024 wires clocked at 1 GHz, so
it can transmit 1000 gigabit/sec between MPUs. This makes the PC network
1000 times as slow. With the observation that a PC agrees �1000 times slower
than an MPU, the PCs could also implement a ‘just in time’ delivery method
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to reduce agreement communication times. However, when symbols need to be
moved between agreement stages or to prepare for a glue, we see that the move-
ment time for a PC is a little over 2.15 sec per symbol per hop (over 4.5 minutes
per agreement phase, assuming no deletions), whereas for PET SNAKE it is
0.00215 sec per symbol per hop. Hence, a faster network between PCs will need
to be established, which in turn adds to the cost of such a solution.

Finally, for multiple PCs to provide the same storage as PET SNAKE, a single
PC has to store 4680 MB, not including active memory of at least 325 MB. This
is slightly larger than 4 GB per PC, and so more expensive motherboards that
can provide larger memory will need to be acquired. (Slower storage solutions like
hard drives can be used instead, but given their notorious relative slowness, the
times for loading and storing would start to dominate an overall time estimate,
and this would make finding a key infeasible.)

8 Conclusion

In this paper we propose a dedicated hardware design to implement an algebraic
attack, based on MRHS, against block ciphers. We think that our analysis gives
ample evidence that PET SNAKE is an architecture of significant cryptanalytic
interest. The overall running time of MRHS is dominated by the time spent to
agree symbols, and basing on our experiments with four rounds of PRESENT,
a speed-up by a factor of � 2000 of PET SNAKE over our (reasonably op-
timized) software implementation is plausible. Actually, when looking at full
round versions of AES-128, we expect symbols to be involved in the computa-
tion, where the performance advantage of PET SNAKE becomes more drastic.
As documented in Section 6.5, here expected improvement factors in agreeing
timings might well be in the range of 5 digit factors. Thus, even more conser-
vative PET SNAKE clocking rates than 1 GHz still can be expected to realize
several magnitudes of improvement over software.

Lacking the theory for a reliable running time estimate of an MRHS-based
algebraic attack, we cannot give a reliable estimate on the absolute running
time of our design when being applied to a modern block cipher like AES-128.
Notwithstanding this, the above discussion gives ample evidence that the prac-
tical feasibility of (MRHS-based) algebraic attacks can be improved significantly
through the use of a dedicated hardware design: substantial performance im-
provements over software implementations can be achieved, and owing to the
scalability of PET SNAKE, exploring small prototypes seems a plausible next
step in research along this line. Some of the building blocks of PET SNAKE, like
the JONES design for the linear algebra part, might be of independent interest.
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Abstract. With the increasing wealth of digital information stored on

computer systems today, security issues have become increasingly im-

portant. In addition to attacks targeting the software stack of a system,

hardware attacks have become equally likely. Researchers have proposed

Secure Processor Architectures which utilize hardware mechanisms for

memory encryption and integrity verification to protect the confiden-

tiality and integrity of data and computation, even from sophisticated

hardware attacks. While there have been many works addressing perfor-

mance and other system level issues in secure processor design, power is-

sues have largely been ignored. In this paper, we first analyze the sources

of power (energy) increase in different secure processor architectures. We

then present a power analysis of various secure processor architectures

in terms of their increase in power consumption over a base system with

no protection and then provide recommendations for designs that offer

the best balance between performance and power without compromis-

ing security. We extend our study to the embedded domain as well. We

also outline the design of a novel hybrid cryptographic engine that can

be used to minimize the power consumption for a secure processor. We

believe that if secure processors are to be adopted in future systems (gen-

eral purpose or embedded), it is critically important that power issues

are considered in addition to performance and other system level issues.

To the best of our knowledge, this is the first work to examine the power

implications of providing hardware mechanisms for security.

Keywords: Power Analysis, Secure Processor Architectures, Memory

Encryption, Memory Authentication, Embedded Systems Security.

1 Introduction

Many applications handle security sensitive data like consumer credit card num-
bers, bank account numbers, personal information etc. With the increasing
wealth of digital information stored on computer systems today, attackers have
increased motivation to attack systems for financial gains. Traditionally, attack-
ers have exploited vulnerabilities in application code and Operating System (OS)
to mount software attacks resulting in the application leaking sensitive data.
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However, with the computation becoming increasingly mobile and mobile de-
vices being prone to theft or loss, attackers can get physical access to the system
to launch physical or hardware attacks. Hardware attacks are made possible as
most computer systems communicate data in its plaintext form between the
processor chip and off-chip devices such as the main memory. This presents the
attackers with a situation where they can place a bus analyzer that snoops data
communicated between the processor chip and other chips [1]. In addition, data
is also stored in its plaintext form in the main memory which allows an attacker
having physical access to the system to dump the memory contents and scan it,
possibly gaining a lot of valuable information such as passwords [2]. Although
physical attacks may be more difficult to perform than software-based attacks,
they are very powerful as they can bypass all software security solutions that
might be deployed on the system. The recent proliferation of modchips in gam-
ing systems has shown that given sufficient financial payoffs, hardware attacks
are realistic threats.

Recognizing these threats, researchers have proposed secure processor archi-
tectures [3–17]. Secure processors assume that all off chip devices are vulnerable
and the processor chip itself provides a natural security boundary. Secure pro-
cessor architectures deploy hardware mechanisms to protect the privacy and
integrity of application code and data. Memory encryption protects the pri-
vacy of data by encrypting data and code as it moves off the processor chip and
decrypting it back once it is reloaded. Memory encryption provides protection
against passive attacks, where an adversary tries to silently observe application
data. Memory authentication protects the integrity of code and data by as-
sociating and verifying a Message Authentication Code (MAC) with each data
block as it moves on and off the processor chip. Memory authentication provides
protection against active attacks where the attacker tries to modify data in off-
chip structures to change application behavior, potentially resulting in leaking
sensitive information.

Secure processor research thus far has primarily focussed on reducing the per-
formance and storage overheads of providing hardware mechanisms for security
or on resolving system-level issues like lack of support for inter-process communi-
cation, virtual memory etc. Unfortunately power issues have largely been ignored
for secure processor architectures. Figure 1 shows the power density increase for
contemporary processors over the last 40 years.

The trend clearly indicates the need to consider power as one of the key
design considerations. The hardware security mechanisms not only result in per-
formance and storage overheads, but also increase the overall power consumption
and based on the actual mechanisms used, this increase in power can be very
significant(Section 2). There has been prior work in designing low power security
cryptographic algorithms [18, 19], however, power issues have not been consid-
ered at the architecture level. If secure processors are to be adopted in future
systems, it is critically important that power issues are considered in addition
to performance and system-level issues. To the best of our knowledge, this is the
first work to explore power implications of secure processor architectures.
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Fig. 1. Power Density Increase in Processors

Contributions: In this paper we analyze the power implications of using secure
processor architectures. Overall, we make the following contributions:

– We analyze the sources of power consumption in various secure processor
designs.

– We present a power analysis of various secure processor architectures in terms
of their increase in power consumption over a base system with no protection
and provide recommendations for designs that offer the best balance between
performance and power without compromising security.

– We extend our study to the embedded domain and show that some design
decisions offering the best power-performance balance in the general purpose
domain do not necessarily apply to the embedded domain.

– We explore a novel hybrid cryptographic engine that combines multiple en-
cryption mechanisms designed with the primary goal to minimize power
overheads without compromising performance or security.

The rest of the paper is organized as follows. Section 2 presents the sources of
power overhead in secure processor designs. Section 3 describes our experimental
setup. Section 4 presents a power evaluation of currently proposed secure pro-
cessor architectures. Section 5 presents a parallel evaluation for the embedded
domain. Section 6 presents a discussion on our novel cryptographic engine and
we conclude in Section 7.

2 Power Overheads in Secure Processors

Secure processors employ hardware mechanisms for memory encryption and au-
thentication for protecting the privacy and integrity of data. Each mechanism
contributes to increasing the overall power consumption of the processor. In
this section, we first present the currently proposed mechanisms for memory en-
cryption and authentication and then discuss the factors associated with each
mechanism that contribute to power overheads in a secure processor architecture.
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2.1 Memory Encryption

Memory encryption mechanisms are used to protect the privacy of data by en-
crypting and decrypting the data block as it moves on and off the processor
chip. Direct encryption and counter-mode encryption form the most widely used
forms of encryption for current proposals on secure processor architectures.

Direct Encryption: In direct encryption, as a cache block is evicted off the
processor chip, an on-chip cryptographic engine encrypts it before storing it
in the main memory [5]. When the block is reloaded from main memory, the
cryptographic engine decrypts it before supplying it to the processor. Based on
its operation, direct encryption results in the following power overheads:

Static power: Direct encryption in effect increases the latency of fetching a
block from the main memory. The decryption of the block lies directly in the
processor’s critical path and this results in increased static power consumption
for other processor structures that might be idle due to the decryption latency.

Counter Mode Encryption: Recently proposed memory encryption mecha-
nisms have utilized counter-mode encryption [7, 9–15] due to its ability to hide
cryptographic delays on the critical path of memory accesses. This is done by
decoupling the cryptographic work from the actual data. In counter-mode en-
cryption, a per-block seed is encrypted to generate a cryptographic pad, which
is then XORed with the memory block to encrypt or decrypt it (Figure 2).
However, the choice of seed is critical for both performance and security. The
security of counter-mode encryption is contingent on the uniqueness of the pads
which are XORed with blocks to encrypt/decrypt them. This essentially means
that the seeds used to generate the pads must be unique. Prior works use the
block address (virtual or physical) as a component of the seed to ensure spa-
tial uniqueness when the blocks are stored in memory. In addition, a per-block
counter incremented on every writeback of the block to main memory is also
included as a component of the seed to ensure temporal uniqueness. From a per-
formance point of view, the seed components must be known at cache miss time
to overlap the pad generation (cryptographic) latency with the memory fetch
latency. The block address is known at cache miss time and in order to have
the block counter available too, an on-chip counter cache is used to cache the
per-block counters. If the counter is found in the cache, the pad generation la-
tency can be overlapped with the memory fetch latency. Based on its operation,
counter-mode encryption results in the following power overheads:

Static power: While a counter cache hit will hide the cryptographic latency
of generating the pad, a miss will result in a separate memory request issued
to fetch the counter. Only when the counter is fetched can the cryptographic
operation start. Thus a counter cache miss can increase the idle time of processor
structures, thereby increasing their static power consumption.

Counter Cache: On each cache miss, the counter cache needs to be consulted
to find the per-block counter. The addition of the cache contributes to both
dynamic and static power consumption of the processor.
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Fig. 2. Counter-mode Encryption

2.2 Memory Authentication

Memory authentication is used to protect the integrity of data. One of the early
mechanisms for memory authentication [5] used a Message Authentication Code
(MAC) associated with each block which is computed and verified as a block
moves on and off the processor chip. However, per-block MAC based authenti-
cation is vulnerable to replay attacks, where an attacker can record an old data
block with its MAC and replay it as the current value to the processor. Due to
its security limitations, Merkle tree authentication was proposed and represents
the family of memory authentication mechanisms used by current proposals.

Merkle tree Authentication: In Merkle tree memory integrity verification,
a tree of MACs is computed over the memory. The root of this tree is stored
securely in an on-chip register and never goes off the processor chip. On loading
a block, its integrity is verified by checking its chain of MAC values up to the
root MAC (Figure 3). Since the root of the authentication tree stores information
about all the blocks in memory and never goes off the processor chip, an attacker
cannot modify or replay any value without detection.

In the standard Merkle tree mechanism, a tree of MACs is built over the
entire main memory. However, a recent work showed that if counter-mode en-
cryption is used, it is not necessary to build the Merkle tree over the entire
main memory. A tree of MACs built only over the per-block counters in main
memory along with a per-block MAC can provide the same level of security
as a standard Merkle tree, and at the same time result in a much smaller and
shallower tree(Figure 4). This tree formation was called Bonsai Merkle Trees
(BMTs) and it was shown that they can significantly reduce the overheads of
memory authentication mechanism [20].
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Based on its operation, Merkle tree authentication has the following power
overheads:

Static Power: Authentication can be imprecise, where the processor is allowed
to continue execution and retire the instruction loading the data. However, if
precise authentication is used, the instruction cannot retire until the authenti-
cation is completed. Once again, this can result in a significant increase in the
static power consumption depending on the number of MACs that need to be
fetched and verified to establish the integrity of the block.

Dynamic Power: As an optimization, the MAC values can be cached and on
verification of the first block found in the cache, the block can be considered to
be verified for integrity as the MAC block found in the cache can be assumed
to form the root of a small Merkle tree which is guaranteed to be secure as it
is on-chip. These additional cache accesses result in an increase in the power
consumption of caches and the processor as a whole.

2.3 Other Power Sources

There are other sources that contribute to the power consumption of a system
equipped with hardware mechanisms for security. We describe the sources here,
however, the results presented in the following sections do not account for these
power sources and hence present a lower bound on the power overheads of secure
processors.

Cryptographic engine power consumption: The on-chip cryptographic en-
gine is responsible for all the cryptographic work required for memory encryp-
tion and authentication and forms another major source of additional power
consumption in secure processor architectures.

Increased power consumption of other structures: Cryptographic meta-
data (counters and MACS) needs to be fetched on the processor chip for decrypt-
ing or verifying the block. This results in increased work for off-chip structures
like the memory bus, memory controller, memory etc., thereby, contributing to
a further increase in the power consumption of the system as a whole.

3 Experimental Setup

3.1 Machine Models

We use SESC [21], an open source execution driven simulator, to model the se-
cure processor architectures evaluated in this paper. We use Wattch [22] power
models for our power evaluations. For uniprocessor evaluations, we model a 3-
issue, out-of-order processor with split L1 data and instruction caches. Both
caches have 16KB size, 2-way set associativity, and 2-cycle hit latency. The L2 is
a unified 1MB, 8-way set associative, cache with 10-cycle hit latency. All caches
have 64-byte block size and use LRU replacement. We assume 2GB main memory
with 490-cycle round-trip latency. The cryptographic engine used is a 16-stage
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pipelines, 128-bit AES [23] engine with 80-cycle latency [24]. The counter cache
used for counter-mode encryption is a 32KB, 16-way set associative cache. The
default MAC size is 128-bits. The process parameters for the simulated archi-
tecture are 5GHz clock and 70nm feature size. Note that we assume a very
optimistic latency of 80-cycles for the cryptographic engine to account for tech-
nological advances. Hence, the figures presented in this paper represent a lower
bound and the energy overheads on a real system are likely to be even higher.

For the CMP evaluation, we model a two-core CMP where each core has
private L1 data and instruction caches. The l2 cache and all lower levels of
the memory hierarchy are shared by both cores. To better match current CMP
configurations, we have increased the L2 cache size to 2MB. All other system
parameters are the same as the uniprocessor case.

The simulated embedded processor is modeled after ARM’s cortex A-8 pro-
cessor [25] with the cryptographic parameters kept the same as the modeled
general purpose processor.

3.2 Benchmarks

We use all C/C++ SPEC2K benchmarks [26] for our general purpose system
evaluations. We use the reference input set for each benchmark and simulate it
for 1 billion instructions after skipping 5 billion instructions. The figures show
the individual results for benchmarks having an L2 miss rate of more than 20%,
however, the average is calculated across all 21 benchmarks.

For our CMP evaluations, we have created 21 pairs of benchmarks using
SPEC2K benchmarks. Each pair consists of two SPEC2K benchmarks which are
spawned as two separate threads on each of the two cores of the modeled CMP
system. To capture different memory behaviors, we classify the benchmarks into
two categories: those that have an L2 miss rate of of more than 20%, when run
alone, and those that have an L2 miss rate of less than 20%, when run alone. We
select benchmarks from each group and combine them so all memory behaviors
are represented. In the first group of benchmark pairs, the benchmarks in a pair
are both taken from low miss rate category: perlbmk twolf and twolf vpr. In the
second group of benchmark pairs, one benchmark is taken from the low miss rate
category while the other is taken from the hiss miss rate category: apsi bzip2,
gzip applu, gzip apsi, perlbmk art, swim gzip, swim twolf, vpr applu, vpr art, ap-
plu gzip, and swim perlbmk. The last group of benchmark pairs is the one where
both benchmarks are taken from the high mate rate category: apsi art, art mcf,
art swim, mcf art, mcf swim, swim art, swim mcf, equake apsi, and mcf apsi.
For each simulation, we use the reference input set and simulate for 1 billion in-
structions after skipping 5 billion instructions. The instructions are skipped only
on the first benchmark in the benchmark pair and the simulation ends when the
combined number of instructions simulated reaches 1 billion.

For our embedded domain evaluations, we use nine benchmarks from the
MiBench [27] embedded benchmark suite (We excluded the benchmarks that had
a compilation error in our simulation framework). The benchmarks have been
picked from the four categories: Automotive and industrial control(basicmath,
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bitcount, qsort, susan), Network (dijkstra, patricia), Security (rijndael, sha), and
telecommunications (fft). Each benchmark is simulated to completion.

4 Recommendations for Energy Efficient Secure
Processor Design

In this section, we present a power evaluation of the currently proposed secure
processor architectures and provide recommendations towards energy- efficient
secure processor design. All figures plot the overall energy consumption of the
discussed architecture, unless otherwise stated. We first present our study for
general purpose processor architectures and then present a parallel discussion
for embedded systems domain.

4.1 General Purpose Secure Processors

We first present the energy overheads for the most commonly used memory en-
cryption and authentication mechanisms: Counter-mode encryption and standard
Merkle trees. Figure 5 shows the energy overheads for SPEC2K benchmarks.
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Fig. 5. Energy Overhead of Counter-mode Encryption with Standard Merkle Trees

It can be seen from the figure that secure processor mechanisms result in an
average overhead of 13.42% across SPEC2K benchmarks. For memory intensive
applications like art, mcf, and swim, the overheads are in excess of 50% with mcf
resulting in as much as 67% overhead over a system with no protection. These
overheads are extremely high considering the fact that the power increase from
one processor generation to another, accompanied by a significant performance
improvement due to increased clock speeds, is roughly around 10%. For example,
Pentium III, running at 500MHz, consumes 7.8% additional power compared to
a Pentium II, running at 233MHz.
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Observation: Secure processor mechanisms add non-trivial power overheads,
making power even more important in the context of secure processor design.

In order to better understand the overheads and possible avenues for power
(energy) reduction techniques, we provide a breakdown of the overheads.
Figure 6(a) shows the breakdown of power overheads into encryption and in-
tegrity verification components and Figure 6(b) shows the breakdown of the
increase in energy consumption into the increase in pipeline energy vs increase
in energy dissipated by caches (including the counter cache used for encryption).
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Fig. 6. Energy Overhead breakdown for Counter-mode Encryption with Standard

Merkle Trees

As can be seen from Figure 6(a), the memory authentication mechanism is
the primary contributor to the overall energy overheads (nearly 78% overhead
comes from the authentication mechanism). Figure 6(b) shows that the overall
increase in the energy consumption comes in a near equal proportion from both
the pipeline ( 58%) and on-chip caches ( 42%). The increase in pipeline energy
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is mainly the static component, as the processor pipeline does not carry out
any of the cryptographic operations to decrypt or verify the integrity of a block,
however, the pipeline structures can be idle for a longer duration due to the
security mechanisms, thereby dissipating energy (leakage) and contributing to
the overall energy increase. The increase in cache energy is mainly the dynamic
component coming from increased switching due to data cache accesses to fetch
MACs associated with a block to verify its integrity and the additional energy
required for the counter cache operation.

Observation: It is important to design power-efficient memory encryption and
authentication mechanisms, but a power-efficient authentication mechanism will
result in greater savings than a power-efficient encryption mechanism. Mech-
anisms that reduce the overall delay associated with decryption and integrity
verification will help reduce the increase in pipeline energy and mechanisms that
reduce cache accesses for security will reduce the cache energy consumption.

As we discussed earlier, Bonsai Merkle trees were proposed to reduce the per-
formance overheads associated with memory authentication mechanisms. BMT
integrity verification affords the same security as a standard Merkle tree but
requires the tree of MACs to be built only over the per-block counters used
for encrypting/decrypting blocks along with a MAC associated with each data
block. This results in a much shallower and smaller tree of MACs. The smaller
and shallower the tree, the smaller will be the number of accesses to the cache
to fetch MACs to verify the integrity of a block. Hence, intuitively, BMTs used
with counter mode encryption should reduce the overall energy consumption of
the processor. Figure 7 shows the energy overheads of using BMTs with counter-
mode encryption.

Using BMTs as the integrity verification mechanism reduces the overall energy
overheads from 13.42% on an average to 2.42%. In addition, the maximum over-
heads suffered by memory intensive benchmarks are reduced from 67% to 14%.
Another interesting observation that we make is, of the 2.42% overheads, only
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0.67% comes from the memory integrity verification mechanism. Hence, using
BMTs significantly reduces the overall energy overheads of the secure processor.
In addition to reducing the energy overheads, BMTs significantly also reduce the
performance overheads of the memory integrity verification mechanism. Figure 8
compares the Energy-Delay product (EDP) for a secure processor using stan-
dard Merkle tree vs one using BMTs normalized to the EDP of a system with no
protection. As can be seen from the figure BMT integrity verification mechanism
has a normalized EDP of 1.04, while standard Merkle Tree integrity verification
has a normalized EDP of 1.32. In essence, BMTs are very effective in reducing
the overall performance as well as energy overheads of a secure processor with
an EDP within 4% of a system with no protection.
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Fig. 8. Normalized Energy-Delay Product (EDP) for Standard vs Bonsai Merkle tree

We further strengthen this observation by showing the energy overheads of
secure processor mechanisms on the simulated CMP system. Existing CMP de-
signs [28–30] are typically organized with private L1 caches per core and some
combination of shared and private lower-level caches, such as L2 and possibly
L3 caches. All cores on the chip typically share a single, common memory bus
and off-chip main memory. The memory integrity and verification mechanisms
discussed above, can be applied to such CMP architectures in the same manner
as a uniprocessor system. For our CMP evaluations, the number of instructions
executed for each application in a benchmark pair can change based on the
security mechanisms used. For example, using hardware mechanisms for secu-
rity will make a memory intensive application stall more than a non-memory
intensive application. This can be due to two primary reasons. One, for every
block fetched from main memory, a cryptographic pad needs to be generated
to decrypt it. This can also result in extra misses (to fetch counters), thereby
contenting with the demand fetches for memory bandwidth, further slowing the
application down. Secondly, the authentication mechanisms fetch MACs for each
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block fetched from memory to verify the integrity of the block. These MACs are
placed in the last level cache and contend for space with application data, which
can further increase the miss rate of the application. As in our simulation in-
frastructure, the total number of instructions is kept constant, these increased
stalls for memory intensive application results in the other application making
more progress compared to the base case. Hence, instead of plotting energy num-
bers directly, we calculate the (Energy Per Instruction (EPI) for each individual
benchmark and calculate the average EPI for the system as the average of the
EPIs of the individual benchmarks. Figure 9 shows the average EPI overhead
for using standard Merkle tree with counter-mode encryption.
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Fig. 9. Average EPI Overhead of Counter-mode Encryption with Standard Merkle

Trees

As can be seen from the figure, majority of the pairs suffer from a high av-
erage EPI overhead, with the simulated benchmark pairs suffering an average
EPI overhead of 29.8% on an average. For memory intensive benchmark pairs,
the overheads can be as high as 152% (mcf art). Hence, the energy overheads
of using standard Merkle tree with counter-mode encryption are significantly
higher for CMPs that for the uniprocessor case. CMPs are likely to be used in
server platforms where Energy (Power) consumption is even more important. A
recent article [31] pointed out that power could cost more than the servers them-
selves. Hence, if hardware mechanisms for security are to be adopted for server
platforms, it is even more important that their overheads in terms of power are
brought down significantly.

Figure 10 shows the average EPI overhead for using BMTs with counter-mode
encryption.

As can be seen from the figure, BMTs are even more effective, compared
to the uniprocessor case, in reducing energy overheads of CMP systems with
the simulated benchmark pair suffering an average EPI overhead of 2.9% on
an average with the worst case average EPI overhead declining steeply to 11.8%
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Fig. 10. Average EPI Overhead of Counter-mode Encryption with Bonsai Merkle Trees

(compared to 152% with Standard Merkle trees). Hence, if hardware mechanisms
for security are to be adopted for server systems utilizing CMPs, it is imperative
that they use BMTs as their integrity verification mechanism.

Recommendation: In order to minimize the energy consumption of a secure
processor, Bonsai Merkle trees must be used as the memory integrity verification
mechanism. BMTs are not only important to reduce the performance overheads,
they achieve the best power-performance balance without compromising security.

Now that we have established BMTs as the preferred memory integrity verifi-
cation mechanism for general purpose processors, we next look at the two most
prominently used memory encryption mechanisms, direct and counter mode en-
cryption, and analyze them in greater detail to see if we can achieve further power
savings. Figure 11 shows the power overheads of using counter-mode and direct
encryption alone, without using a memory authentication mechanism. We observe
that counter-mode encryption, even with better latency hiding capabilities suffers
2× higher energy overheads than direct mode encryption. In particular, for mem-
ory intensive benchmarks counter-mode encryption results in even higher over-
heads (mcf: 12% vs 4%, art: 8% vs 2% and swim: 5.5% vs 2.2%).

In addition to counter-mode encryption having 2× higher energy overheads
compared to direct encryption, counter-mode encryption requires the mem-
ory authentication mechanism for its security. More specifically, the security of
counter mode encryption is contingent on the counters being fresh (unmodified
and not replayed). This necessitates an authentication mechanism to be in place
for the security of the encryption mechanism. Direct encryption, on the other
hand, has no such limitation, it can be used independently of the authentica-
tion mechanism. There can be environments which do not have authentication
requirements (i.e. active attacks are not possible) but only privacy needs to be
guaranteed. For such environments using counter-mode encryption will result in
unnecessary overheads, both from the encryption mechanism and the authenti-
cation mechanism needed to ensure its security.
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Fig. 11. Energy overhead for Direct vs Counter-mode Encryption

The above discussion would suggest using direct encryption in energy con-
strained environments instead of counter-mode encryption. However, direct en-
cryption as discussed previously lies directly in the critical path of memory
fetches and results in non-trivial performance overheads. Figure 12 shows the
EDP for counter-mode encryption vs direct encryption. As shown in the figure,
despite having lower energy overheads, direct encryption has a higher normal-
ize EDP of 1.12 vs 1.02 compared to counter-mode encryption. Hence, neither
counter-mode nor direct encryption offers the best balance in power and per-
formance. This observation is the basis of our design for hybrid cryptographic
engine discussed in Section 6.
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Recommendation: Use direct encryption for power-constrained environments,
where power forms the first design constraint ahead of performance. Direct en-
cryption not only has lower power overheads compared to counter-mode en-
cryption, but also does not need the authentication mechanism for its security,
thereby, further reducing the overall power overheads. For environments, where
performance and power both are of equal importance, a hybrid cryptographic
engine (described in Section 6) should be used.

5 Embedded Secure Processors

Embedded devices like mobile phones, PDAs etc. represent a category of devices
increasingly used for computation and storage, but they also represent the cat-
egory of devices that can easily be stolen or lost. This gives the attackers an
increased opportunity to get physical access to the system and conduct hard-
ware attacks to extract sensitive information off the system. Hence, hardware
mechanisms for security assume even more importance for embedded devices.
However, a majority of embedded systems are battery powered and naturally
power constrained. In addition, the recent years have seen a significant growth
in the computation requirements of embedded devices but the battery capacity
has not scaled with the computation needs. Figure 13 shows this trend.

Fig. 13. Power Requirement vs Battery Capacity (Source: Quicklogic [32])

Hence, the energy overheads of providing hardware mechanisms for security
assume a greater importance for such systems. In this section, we present our
parallel evaluation for embedded environments, however, due to space limita-
tions, we do not present figures for all the results but discuss our main findings.

Memory Authentication: As with general purpose systems, if counter-mode
encryption is used with standard merkle tree, it results in much higher overheads
(4.57×) compared to counter-mode encryption with BMTs. Figure 14 presents
these results. Since, applications running on embedded systems are typically
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much smaller and much less memory intensive, the absolute energy overheads for
provide hardware security mechanisms are much lower than for a general purpose
processor. However, at the same time, embedded systems present environments
where any energy overheads can pose showstopper issues causing, for example,
degradation of battery life etc. Hence, even with small absolute values, it is
critically important to minimize these overheads for embedded environments.

Recommendation: Even for embedded systems, BMTs must be used for mem-
ory integrity verification, similar to general purpose systems.

Memory Encryption: In terms of encryption mechanism, direct mode encryp-
tion in addition to saving energy (similar to general purpose processors), also
does not result in any significant performance overheads for applications running
on embedded processors. Figure 15 show the EDP for all the benchmarks simu-
lated, normalized to a base system with no protection. As can be seen from the
figure, direct encryption closely follows counter-mode encryption, with a worst
case degradation of 2% in normalized EDP.

This is primarily due to the fact that embedded benchmarks are not memory
intensive and hence suffer very few cache misses. Since encryption overheads are
exposed only when blocks are loaded from memory, the low cache miss rate of
embedded benchmarks ensures that direct encryption does not result in any sig-
nificant performance overheads. We observe EDP for direct mode encryption and
counter-mode encryption to be within 0.05% for all the embedded benchmarks
we simulated.

Recommendation: For embedded systems, the application characteristics
make direct encryption as the chosen mode for encryption, offering the best
power-performance balance.

6 Power-Efficient Hybrid Cryptographic Engine

In this section, we describe the outline for a power-efficient cryptographic engine
design. The design outlined here is based on the observation that direct encryp-
tion consumes less power when compared to counter-mode encryption. Also, in
addition, direct encryption can avoid the overheads of a memory authentication
mechanism for environments which do not need authentication. Counter-mode
encryption on the other hand necessitates a memory authentication mechanism
for its own security. Without an authentication mechanism that defends against
replay attacks, the block counters used by counter-mode encryption to generate
seeds (pads) can be replayed, resulting in pad reuse, thereby, breaking the se-
curity of counter-mode encryption. However, despite its power benefits, direct
encryption can result in significant performance overheads, particularly for mem-
ory intensive applications. However, for applications that are compute intensive
and do not miss much in the cache, direct encryption can result in potential
power savings. Achieving the best power-performance balance necessitates alter-
nating between the two modes of encryption. For memory-intensive applications
(or phases), counter-mode encryption along with the authentication mechanism
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Fig. 14. Energy Overhead breakdown for Counter-mode Encryption with Standard

Merkle Trees(a), and Bonsai Merkle Trees (b)

should be used. For compute-intensive applications (or phases), direct encryption
can be used in isolation, if the environment does not need authentication.

Challenges: Designing such a hybrid cryptographic engine poses interesting
challenges. One, in order to switch between the two encryption modes, on-chip
circuitry is needed to establish whether an application (or phase) is memory
intensive or not. To this end, one could envisage designing a miss rate monitoring
system which keeps track of the number of cache accesses and cache misses, to
calculate a running miss rate for the system. However, we observed that the miss
rate does not directly correlate to energy overheads, for example, the correlation
coefficient for miss rate and the energy overheads of counter-mode encryption
is rather low at 0.43, which implies that miss rate cannot directly be used as
an indicator to switch the encryption mode for the hybrid cryptographic engine.
We observe that Misses-per-Instruction (MPI) correlates extremely well with
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Fig. 15. Normalized Energy-Delay Product (EDP) for Counter-mode vs Direct

Encryption

the energy overheads, with the correlation coefficient between MPI and counter-
mode encryption energy overheads being 0.984. Hence, MPI can serve as a good
input to the hybrid cryptographic engine. To this end, we introduce a low cost
and reliable MPI Monitoring System (MMS). Our MMS requires two counters to
keep track of the number of retired instructions, and cache misses1. Each counter
is 4 bytes in size. Therefore, our MMS requires a total storage overhead of 8 bytes.
The hybrid cryptographic engine uses direct encryption by default due to its
lower energy overheads. However, to keep the performance overheads low as well,
MMS keeps track of the MPI and when the MPI exceeds a certain threshold, X,
it switches the cryptographic engine to use counter-mode encryption. The value
of X, can be decided based on the characterization of the workloads that are
expected to run on the system. The value of X also depends on the primary goal
(minimum power overheads or minimum performance overheads) of the system.
Figure 16 plots the MPI and the energy overheads of counter-mode encryption
and direct encryption for the SPEC2000 benchmark suit. If for example, the
security energy budget for the system is fixed at 4%, then fixing the MPI at 0.07
would ensure that the energy overheads are always lower than 4% as the engine
would always use direct encryption which suffers less than 4% overheads for all
the benchmarks. A similar (but more involved) analysis can be done to fix the
value of X, if performance is to be factored in as well in the overall goals of the
system.

As another challenge, the main memory will now store blocks that have been
encrypted using either counter-mode or direct encryption. When a block is loaded
from the main memory, it is necessary to identify the mechanism used for its
encryption, so it can be decrypted correctly. To this end, we propose tagging

1 Note that these counters might already be available as hardware performance coun-

ters, thereby eliminating the need for maintaining additional counters.
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Fig. 16. Determining the value of X

the main memory blocks with a single bit, the counter-mode encrypted bit. This
bit is set when a block is evicted off the processor chip and the cryptographic
engine used counter-mode encryption to encrypt it. Our hybrid cryptographic
design is show in Figure 17.

Qualitative Analysis of Hybrid Cryptographic Engine: The hybrid cryp-
tographic engine outlined will add complexity in terms of extra on-chip circuitry
to switch between the two cryptographic modes of encryption. However, the ad-
ditional circuitry needed to switch between the two modes can be as simple as
division circuitry to calculate the current MPI of the system (MMS), using the
two 4-byte counters that we introduced, which is then fed to a comparator to de-
termine the mode of encryption to be used. The core of the cryptographic engine,
however, needs no modifications. Lets assume that AES is used as the encryption
algorithm. For a secure processor substrate using direct encryption, the on-chip
cryptographic hardware will consist of an AES engine to which the data blocks
are fed for encryption/decryption as they move off and on the processor chip. On
the other hand, for a secure processor substrate using counter-mode encryption,
the on-chip cryptographic hardware will still consist of an AES engine. However,
in this case, instead of feeding the data block directly, the seed associated with
the data block is fed to the AES engine to generate a cryptographic pad which
is then XORed with the data block to encrypt/decrypt it. Hence, the proposed
hybrid cryptographic engine, using both direct and counter-mode encryption,
does not add any additional cryptographic hardware. The simple MMS circuit
introduced will determine whether to feed the seed associated with the block to
generate a cryptographic pad (for counter-mode encryption) or to feed the data
block directly (for direct encryption).
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Fig. 17. Power-Efficient Hybrid Cryptographic Engine

We believe that our hybrid cryptographic engine will reap the power benefits
of using direct encryption and at the same time ensure that applications do not
suffer any major performance penalties by switching to counter-mode encryption,
when need be. A quantitative evaluation of the proposed cryptographic engine
is left as future work.

7 Conclusion

Secure processor architectures have been proposed to defend against hardware
attacks. While previous works have concentrated on resolving the performance,
storage and system-level issues of secure processor architectures, power issues
have largely been ignored. In this paper, we evaluated the sources of power in
currently proposed secure processor mechanisms. We analyzed the power over-
heads of various hardware security mechanisms for general purpose as well as
embedded systems. Finally, we outlined the design of a hybrid cryptographic
engine that has been designed with the primary goal of minimizing power over-
heads, but at the same time ensuring an insignificant loss in performance.
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Abstract. A peer-to-peer (P2P) micropayment can support practical ap-

plications that typical micropayment protocols being difficult to achieve,

and has received attention recently. However, existing P2P micropayment

schemes, e.g., PPay and OFPPay, may suffer from either computational

overhead of frequent digital signature signing and verification, or mainte-

nance overhead of the holder path of P2P micropayment coins. In order to

overcome the aforementioned disadvantages, we propose a new P2P mi-

cropayment scheme based on the idea of transferable debt token.

Keywords: Electronic payment, Micropayment, Peer-to-peer micropay-

ment, Transferable coin.

1 Introduction

In recent years, peer-to-peer (P2P) network has become a popular medium to
share the peers’ resource for information spread and collection [16]. A major
problem of P2P network is free-riding [1] which makes a peer enjoy much more
than contribute information and resource to the network. One possible solution
[3] against the free-riding problem is to employ P2P micropayment to encourage
peers to balance what they take from with what they contribute to the system.

In a typical micropayment scheme, such as Millicent [2,7] and PayWord [8,9],
some users serve just as a vendor and the others only play the role of a buyer.
A buyer pays coins of small denominations (e.g., ten cents or one dollar) to
a vendor for purchasing, and finally the vendor will deposit the coins to the
broker, instead of spending them directly. The overhead of frequent withdrawal
and deposit of a large amount of coins, each of an extremely small denomination,
makes the application of typical micropayment schemes for P2P environment be
impractical. P2P micropayment schemes [4,12,14] were therefore proposed to
reflect the new requirement. A typical P2P micropayment scheme assumes that
transactions occur frequently and the peers are often online. Most importantly,
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each peer can play both the roles of a vendor as well as a buyer, and a token
(or coin) can be used repeatedly in many transactions. The aforementioned P2P
micropayment schemes tried to reduce the overhead of the broker, while any
transaction fraud such as double-spending should be detected and misbehaving
peers should be identified.

The PPay scheme [14] is a pioneering work of P2P micropayment in which the
concept of floating and self-managed currency is proposed to reduce the broker’s
involvement. The coin owner has to record and maintain all the transaction
information of each coin instead. However, if the coin owner is offline, the broker
needs to take over the payment procedure.

Motivated by the work of [14], various P2P micropayment schemes have been
proposed. Zou et al. presented a P2P micropayment scheme, namely CPay [15],
in which the coins can only be withdrawn by specified peers who equip with
enough bandwidth and computational capability. In other words, these peers
with good resource will be selected by the broker to distribute and manage the
coins.

The WhoPay scheme [13] is constructed based on the PPay scheme and group
signatures to achieve anonymity property such that the identity of each peer
(except the coin owner) can be concealed even if the coin is deposited. However,
the coin owner in the WhoPay suffers from high computational cost and storage
space requirement due to group signatures.

Unlike the PPay scheme, Liu et al. [5,6] proposed different approaches to
manage the transaction records. In [6], the coin withdrawer needs to prepare
all the transaction records in advance and to distribute them to a specified
peer group. Due to this design, the withdrawers need not to participate in each
transaction but they suffer from high computational cost because of the heavy
load of preparing the transaction records. In contrast to [6], the transaction
records (called the holderpath) of the scheme in [5] (namely the OFPPay scheme
in this paper) are managed by each peer. When a transaction is issued, the
holderpath along with the coin will be transferred from the current coin holder
to the next peer and it will be updated with a new signature on new transaction
information signed by the new coin holder. The broker eventually receives the
holderpath when the coin is deposited. In case of coin fraud, the broker can
identify the malicious peers by verifying the holderpath.

The WAT scheme [10] and the i-WAT scheme [11] present a different idea to
construct a P2P micropayment which allows each peer to create his own token
and to become the token owner. When an owner purchases service from another
peer, the token will be transferred to that peer (called the token holder). Clearly,
the major problem of these two schemes is security risk due to the lack of central
authority, such as a broker or a judge, to manage the currency.

The contributions of this paper. PPay and OFPPay are two representa-
tive P2P micropayment schemes. In the PPay scheme, some peers might have
limited storage space and this will discourage those peers to be a coin owner
due to the storage overhead. A peer in the OFPPay scheme who involved in a
later transaction suffers from a heavy computational overhead to verify a longer
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holderpath. Cryptanalysis on the above two schemes will be provided in this
paper. The PPay scheme is vulnerable to a replay attack by which a malicious
peer can cheat other peers by replaying the assigned coin. Two or more mali-
cious peers of the OFPPay scheme can conspire and disable the broker to identify
the dishonest peers. Possible countermeasure and improvement have also been
proposed in this paper.

A new P2P micropayment scheme is proposed in this paper by exploiting an
idea of debt token. This debt token based P2P micropayment scheme is secure
against double spending and can overcome the aforementioned disadvantages. A
token owner only needs to involve in the first transaction and, unlike OFPPay,
the computational cost of signature verification is constant.

The rest of this paper is organized as follows. Section 2 reviews the PPay
scheme and then points out a replay attack as well as an improved PPay scheme.
Section 3 reviews the OFPPay scheme and shows a collusion attack followed by a
possible countermeasure. Subsequently, Section 4 proposes a new P2P micropay-
ment scheme and provides the security analysis and performance comparison.
Finally, Section 5 concludes the paper.

2 Attack on the PPay Scheme

2.1 Review of the PPay Scheme

The PPay scheme [14] allows a coin to be transferred from one peer to another
one without the involvement of the centralized broker B. In PPay, the peer U
withdraws coins from the broker, and at the same time becomes the owner and
the holder of the coins. The peer U can pay a coin to another peer, say P1, and
P1 now becomes the current holder of the coin while U is still the owner. If P1
wants to trade with another peer P2, he can transfer the coin via U . After the
transaction, the current holder of the coin will be P2 and U remains to be the
owner. The peer P2 can further transfer the coin to others until certain holder
deposits the coin. The following provides the details of PPay.

To proceed a transaction, the peer U purchases a coin C from the broker in
advance and the coin C is formed as follows

C = SigB(U, sn)

where sn is a unique sequence number. SigB(U, sn) is a signature on message U
and sn signed by the broker with the private key SKB. Note that the signature
indicates that the owner of this coin is U . If U wants to pay another peer P1,
the coin C will be sent to P1 via the following format:

AU,P1 = SigU (P1, C, seq1)

where seq1 is a sequence number maintained by U . The sequence number is
increased each time when the coin is transferred. This signature serves as a
proof that P1 is the current holder of the coin.
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If P1 wants to pay this coin to the peer P2, and then P1 has to issue the
following reassignment request to the coin owner U

RU,P1,P2 = SigP1(P2, AU,P1).

The coin owner U will store this request in case of any potential dispute and
sends P1 as well as P2 a new format of the coin as

AU,P2 = SigU(P2, C, seq2).

This new format of the coin reveals that the current holder is P2. Each sub-
sequent coin holder Pi follows the above procedure for transactions. Finally, a
certain coin holder Pn can deposit the coin to the broker by providing AU,Pn =
SigU(Pn, C, seqn).

If U is offline, the current holder of the coin can issue another coin that he
holds from another owner, or the broker must involve the transaction on behalf
of U to perform a similar process. Once U is online, the broker sends him the
record of the transaction for some further processing. After all, the owner of the
coin is required to be online and has to record each transaction which consists
of two signatures, the coin itself and the request signature. Therefore, in PPay
a double spending by a misbehaving peer can be easily detected and traced.

2.2 A Replay Attack on PPay

Without loss of generality, suppose that U is the owner of the coin C and P1
is a malicious peer. We assume that the malicious peer is able to wiretap or to
intercept communication of a specific peer to whom transactions have ever been
made. After P1 has completed a transaction with another peer P2, both of them
will receive a newly assigned coin AU,P2 = SigU (P2, C, seq2) from the owner U .
The attacker P1 starts wiretapping P2 until P2 spends AU,P2 somewhere, and
then P1 can make another transaction with P2 by intercepting the communica-
tion between P2 and U , impersonating U , and replaying the old assigned coin
AU,P2 . According to the design of PPay, P2 does not store any coin information
after spending a coin, he will accept the validity of AU,P2 .

Therefore, P1 can spend the coin twice successfully while U will refuse P2
to spend it because seq2 is invalid. The double spending committed by P1 will
not be detected since P1 only sends the reassignment request to U once and P2
cannot prove that P1 had traded with him twice.

2.3 A Countermeasure against the Attack on PPay

The primary reason to enable the above replay attack is that the victim P2
cannot check the freshness of the coin. A simple solution against the attack is to
include a time stamp to the new formated coin, but this requires a well developed
time synchronization service. An alternative solution is designed in the following
based on the technique of challenge-response and a redirected information flow
of the PPay.
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When P1 pays a coin to P2, P1 sends the reassignment request RU,P1,P2 =
SigP1(P2, AU,P1) to P2 instead of U . After verifying the validity of RU,P1,P2 , P2
forwards the request as well as a random number r (called a nonce) to U . If the
reassignment request is correct, U records {RU,P1,P2 , r} and responds P2 a new
formated coin as

AU,P2 = SigU (P2, C, seq2, r).

The freshness of AU,P2 can be verified by P2 due to the usage of a nonce r. The
improved PPay is therefore secure against the proposed replay attack while the
signature size is slightly enlarged because of involvement of the nonce r.

3 Weakness of the OFPPay Scheme

3.1 Review of the OFPPay Protocol

Y. Liu [5] proposed two peer-to-peer micropayment schemes. The first one is the
basic construction (OFPPay) which imports a concept of holderpath to manage
the transferable token. In consideration of the fair exchange, the extension of
the basic construction is proposed. In order to introduce the proposed attacks
and our attack does not concern the issue of fair exchange, this section only
introduces the basic construction as follows.

To purchases a token Token from the broker, the peer P0 sends the following
digital note, DigitalNote, to the broker

DigitalNote = {SN, GID, BID, value, IssueDate, Expiration},

where SN is an unique serial number, GID is the peer-to-peer group identifier,
BID is the broker’s identity, value indicates the amount of money, IssueDate
denotes the issuing date, and Expiration is the expiration date. The broker
deducts value from P0’s account and returns his signature BrokerStamp =
SigB(DigitalNote) to P0. Then, P0 generates the token Token and a initial
holderpath holderpath0 which are formed as

Token = {DigitalNote, BrokerStamp},

holderpath0 = SigP0(DigitalNote).

Without loss of generality, support that the current holder of the token is Pi

who wants to pay it to another peer, Pi+1, the following payment protocol will
be performed.

1. Pi → Pi+1 : Pi, DigitalNote, holderpathi,
2. Pi+1 → Pi : SigPi+1(Pi, DigitalNote),
3. Pi → Pi+1 : BrokerStamp, SigPi(DigitalNote, Pi, Pi+1),
4. Pi+1 : holderpathi+1 = SigPi+1(holderpathi, Pi)
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After the payment, Pi+1 becomes the current holder of the token Token.
Any holder can deposit the token Token to the broker by sending it and the

corresponding holderpath. If the verification on the holderpath and the token is
valid, the broker credits money to the holder’s account.

In case of double spending, the broker will receive two different holderpaths
with the same Token. By verifying these two holderpaths, the broker can identify
the malicious peer.

3.2 The Collusion Attack on OFPPay

This section points out the OFPPay scheme is vulneratle to the proposed col-
lusion attack. If two malicious peers are conspired, they can re-generate a new
holderpath and spend tokens illegitimately.

Assume that the two malicious peers are P1 and P2. U is the token owner and
his initial holderpath is

holderpathU = SigU (DigitalNote).

When P1 is the current holder of the token, he sends BrokerStamp and
holderpathP1} to P2, and then P2 can create a new initial holderpath formed as

holderpathP2 = SigP2(DigitalNote).

Note that the DigitalNote in holderpathU is the same as that in holderpathP2 .
Therefore, P1 can pay the token to other peers with holderpathP1 while P2 can
spend the same token with holderpathP2 to other peers. This result leads to that
the broker can not identify who the correct withdrawer is.

3.3 A Countermeasure against the Attack on OFPPay

Because the forged initial holderpath is generated after the real initial holder-
path, one of trivial solutions is to attach time stamp to the initial holderpath
so that the broker can identify the real withdrawer by checking time stamp.
However, this solution must ask the time in the scheme to be synchronized.

Another solution is to bind the identity of the coin withdrawer to DigitalNote
so that the broker can easily identify who is the owner of the coin by verifying
BrokerStamp.

4 The Proposed Peer-to-Peer Micropayment Based on
Transferable Debt Token

In the real life, Alice might want to buy a drink but she does not have money.
So, Alice borrows money from her friend Bob and promises she will redeem her
debt later. But before Alice redeems her debt, a similar story occurs again and
this time Charles borrows money from Alice. To simplify matters, Alice may ask
Charles to return the money back to Bob on behalf of her.
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Motivated by the above scenario, we present a new concept of transferable
debt token and use it to construct a new peer-to-peer micropayment scheme. A
debt token indicates that the holder of the token is responsible for redeeming
the debt. Initially, the debt token is ceated by a peer, called debt token owner.
When another peer purchase from him, he issues the token to the peer, and then
the token will be transferred across peers for payment. Finally, the peer who is
the last token holder has to pay back the money to the owner.

The proposed idea is different from the typical transferable token. A transfer-
able token used in the P2P micropayment schemes usually presents an e-coin or
a commitment, the last token holder therefore can deposit it for money. However,
the proposed transferable debt token in which debt token is emphasized that the
token itself is a debt. The peer who is the last debt token holder has to redeem
this debt. The result is that both kinds of token are of different purposes.

4.1 Protocol Description

The proposed scheme contains peers denoted by Pi and a broker denoted by
B, and three procedures including Registration, Payment, and Redeeming. Each
peer P has his own public key pair (pkP , skP ) and the broker, who is trustworthy
in our scheme, has the public key pair (pkB , skB) as well. A function SigE(m)
indicates a signature on message m under the party E’s private key skE .

Registration: Registration procedure requires that each peer has to register
his personal information (e.g., his name, address, and phone number) and an
account at the broker and deposit fixed amount of money in his account in
advance. Once the broker finds that the peer has any misconduct, he can deduct
the money from the peer’s account. Because of this strategy, the loss of the bank
can be reduced.

Payment: Suppose that a peer P0 serves as a vendor, he creates a debt token
DTokenP0 formed as

DTokenP0 = SigP0{IDP0 , sn, Expiration},
where IDP0 is the identity of P0, Expiration is the expiration date of the token,
and sn is a sequence number selected by P0. This token indicates that P0 is
the owner and the token should be redeemed before Expiration. For different
transactions, P0 selects different sn to issue debt tokens and at the same time
he is the owner as well as the holder of the debt token.

To generally describe the proposed payment protocol, we assume that the
peer Pi is the current holder of the debt token, and another peer Pi+1 purchases
services from Pi. They do the following payment procedure.

1. Pi → Pi+1 : IDPi , DTokenP0,
2. Pi+1 → Pi : ComPi+1 = SigPi+1(DTokenP0, IDPi , T imeStamp),



P2P Micropayment with Transferable Debt Token 359

where T imeStamp denotes the time stamp of the commitment. After verifying
the commitment ComPi+1 , Pi provides his services to Pi+1 and Pi+1 becomes
the current holder of the debt token.

Redeeming: Let Pn be the last holder of the debt token DTokenP0 and Pn has
to redeem DTokenP0 to the broker. He sends a redeeming request RedPn which
is constructed as follows:

RedPn = SigPn{DTokenP0, Info},
where Info is the necessary information of the redeeming request (e.g., redeem-
ing time). The broker verifies RedPn and DTokenP0 by using Pn’s public key
pkPn and P0’s public key pkP0 , respectively. If the verification is valid, the broker
credits money from Pn’s account to P0’s, and then returns a redeeming proof
RPrfPn = SigB(“Pn has redeemed”, DTokenP0) to Pn. Finally, the broker sends
a notice to P0.

If the debt token is overdue and no peer redeems it, the debt token owner asks
the broker to identify the last holder of the debt token by providing DTokenP0

and ComP1 . The broker will ask each peer Pi, who was the debt token holder, to
prove that he is not the last token holder by providing ComPi+1 . Once a certain
peer cannot give any commitment, he will be identified as a dishonest peer and
punished by the broker.

Note that the broker should store the redeeming request until it is expired.
If the broker receives two redeeming requests with the same debt token (their
sn are the same), the broker should refuses the second request because one debt
token should be only issued for one transaction by the token owner.

4.2 Security Analysis

In the typical P2P micropayment schemes, double-spending is one of the most
concerned security issues [5,14]. This section therefore shows that the proposed
scheme is secure against double spending. Moreover, this section also states that
the proposed scheme can identify the malicious peers who do not redeem their
debt even if there is a conspirator.

Claim 1. The peer who spends the same debt token twice in two different
payments will not gain any additional advantage. Therefore, double-spending is
unprofitable in our scheme.

In the proposed scheme, the debt token floats from the vendor peer to the buyer
peer, the double-spending therefore denotes that a vendor peer transfers the
same debt token to other buyer peers in two different payments.

Recall that, in the proposed scheme, the last debt token holder has to redeem
it to the token owner. If a certain token holder transfers the same debt token
twice, he has to provide two services to buyer peers but the money will be
credited to the token owner. On the other hand, if the token owner issues the
same token twice, the broker will refuse the second redeeming request.
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If the redeeming procedure is changed to that the broker will process all of re-
ceived redeeming requests, the double spender still obtains nothing. If the owner
transfers the token twice, he also has to provide his services twice. Moreover, no
vender peers (except the owner of the token) will cause double-spending because
he has to provide more services without getting additional advantages.

Therefore, the double-spending is unprofitable in the proposed scheme.

Claim 2. If the peer who is the last holder of the debt token does not redeem
the token, the broker can identify him, even if there exists a conspirator to help
the peer to avoid redeeming.

In the proposed scheme, when the debt token is expired but no one redeems it,
the token owner will ask the broker to trace the malicious peer. Each peer who
was the token holder ever has to provide the commitment to prove that he is
not the last token holder. Otherwise, he will be punished by the broker.

Assume that the transferred path of a debt token is {P1, P2, P3}, and P3 is
the current token holder. When a new payment is made between P1 and P3, P1
becomes the current holder again. If no one redeems the token, P1 may try to
cheat the broker that he is not the last token holder by sending the commitment
ComP2 again after P3 shows ComP1 to the broker. Since each commitment con-
tains T imeStamp, the broker can know ComP2 is generated before ComP1 and
identifies P1 as a cheater.

4.3 Performance Analysis

PPay and OFPPay are two representative peer-to-peer micropayment schemes.
Because the other literatures mentioned in this paper concern other additional
issues, their schemes are more complicated than PPay and OFPPay. Moreover,
the performance of the proposed improvement in Section 2 and Section 3 are al-
most the same as their original schemes, respectively. Therefore, this section will
only present the efficiency comparison of PPay, OFPPay, and our scheme (called
Ours in the following). The following comparison is made under the assumption
that only one coin (or token) is issued by its owner, and it is transferred through
n peers (called holders).

Computational cost analysis: Table 1 is the performance comparison of PPay,
OFPPay, and Ours under the assumption that no fraud occurs. The symbols
s and v indicate the computational cost of signature generation and signa-
ture verification, respectively. The discussion of the computational cost of the
broker, the token owner, and the token holder in the three schemes is given as
follows. First and foremost, the second column in Table 1 presents the compu-
tational cost of the broker. In the PPay scheme, the computational cost of the
broker is s + 2v because of one signature generation operation of withdrawal
and two signature verification operations of deposit. Similarly, the cost of the
broker in the OFPPay scheme and Ours are s + (n + 2)v and 2v, respectively.
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For evaluating the computational cost of the token owner, we treat the with-
drawer of OFPPay as the token owner and show the result in the third column.
The last column states the computational cost of each holder. The length of
holderpath in the OFPPay scheme is increased each time the token is trans-
ferred, therefore, the cost of each holder is ((n + 1)(n + 2)v)/2n for verifying
the holderpath on average. To sum up, the above comparison result shows that
the proposed scheme is more efficient than PPay and OFPPay.

Table 1. Computational cost comparison of the three P2P micropayment schemes

Comput. cost Broker Owner Holder

PPay s + 2v n(s + v) s + 3v
OFPPay s + (n + 2)v 2s+2v 3(s + v) + ((n + 1)(n + 2)v)/2n

Ours 2v s + v s + v

Storage requirement: To have a fair comparison of storage requirement among
the three schemes, we assume that a standard digital signature will be used in
all the schemes and |S| denotes the size of a signature. In the PPay scheme,
a coin owner has to store the coin as well as all related transaction informa-
tion each of which consists of two signatures, a reassignment request signature
and an assignment signature. The information maintained by the coin owner
will eventually be provided to the broker, and therefore both the owner and
the broker in PPay require a storage space of size (2n + 1)|S|. On the other
hand, all other peers have nothing to store. In the OFPPay scheme, the last
coin holder has to store BrokerStamp and also a holderpath, and totally a
storage space of size (n+ 2)|S| is necessary. All other peers including the coin
owner need not to store anything. In the proposed scheme, it is obvious that
the storage requirement for the broker, the coin owner, and each holder is only
|S|. In both the PPay and the OFPPay schemes, storage overhead of the bro-
ker is increased linearly in the number of transactions. The proposed scheme
however can decrease the heavy burden of the broker.

Cost of tracing malicious peers: In case of coin fraud, the broker is in charge
of tracing the malicious peers. In the PPay scheme, the broker has to verify
all the transaction information to determine who the cheater is. In the OF-
PPay scheme, the broker identifies the cheater by verifying the holderpath
which is composed of a list of signatures. In the proposed scheme, each peer
once holding the fraud debt token will be requested by the broker to provide
a commitment to prove that he is not the last holder. Communication over-
head of performing tracing malicious peers would be slightly larger than in
the other two schemes. However, tracing coin fraud is of a rare case in all the
schemes and will not be a real burden of the proposed scheme. In case a cer-
tain peer has left the system and just acting as the last token holder, the loss
of the system is small since we consider a micropayment scenario.
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5 Conclusions

This paper points out that both the PPay and the OFPPay peer-to-peer mi-
cropayment schemes are vulnerable to double spending by presenting a replay
attack and a collusion attack against them, respectively. Possible countermeasure
and improvement have also been proposed in this paper.

Moreover, a new peer-to-peer micropayment scheme is proposed by exploit-
ing an idea of transferable debt token. Security analysis shows that the proposed
scheme is secure against double spending. In addition, performance analysis ex-
plains that the proposed scheme is superior to the PPay scheme and the OFPPay
scheme.

Acknowledgment

We would like to thank all the anonymous referees for their useful comments
and suggestions.

References

1. Adar, E., Huberman, B.A.: Free riding on Gnutella. First Monday 5(10) (2000)

2. Glassmann, S., Manasse, M., Abadi, M., Gauthier, P., Sobalvarro, P.: The Millicent

protocol for inexpensive electronic commerce. In: Proc. of 4th International World

Wide Web Conference, pp. 603–618 (1995)

3. Golle, P., Leyton-Brown, K., Ilya, M.: Incentives for sharing in peer-to-peer net-

works. In: Proc. of the 3rd ACM Conference on Electronic Commerce, pp. 264–267

(2001)

4. Horne, B., Pinkas, B., Sander, T.: Escrow services and incentives in peer-to-peer

networks. In: Proc. of the 3rd ACM Conference on Electronic Commerce, pp. 85–94

(2001)

5. Liu, Y.: An optimistic fair peer-to-peer payment system. In: Proc. of IEEE Inter-

national Conference on Management Science and Engineering 2007, ICMSE 2007,

pp. 228–233 (2007)

6. Liu, Y., Fu, J., Zhang, H.: An optimistic fair protocol for p2p chained transaction.

In: Grumbach, S., Sui, L., Vianu, V. (eds.) ASIAN 2005. LNCS, vol. 3818, pp.

136–145. Springer, Heidelberg (2005)

7. Manasse, M.: The Millicent protocols for electronic commerce. In: Proc. of 1st

USENIX Workshop on Electronic Commerce, New York, pp. 11–12 (1995)

8. Micali, S., Rivest, R.L.: Micropayments revisited. In: Preneel, B. (ed.) CT-RSA

2002. LNCS, vol. 2271, pp. 149–163. Springer, Heidelberg (2002)

9. Rivest, R.L., Shamir, A.: PayWord and MicroMint: Two simple micropayment

schemes. In: Lomas, M. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 69–87.

Springer, Heidelberg (1997); (Also in CryptoBytes. Pressed by RSA Laboratories,

vol.2(1), pp. 7–11 (1996))

10. Saito, K.: Peer-to-peer money: Free currency over the Internet. In: Chung, C.-W.,

Kim, C.-k., Kim, W., Ling, T.-W., Song, K.-H. (eds.) HSI 2003. LNCS, vol. 2713,

pp. 404–414. Springer, Heidelberg (2003)



P2P Micropayment with Transferable Debt Token 363

11. Saito, K., Morino, E., Murai, J.: Fair trading of information: A proposal for the

economics of peer-to-peer systems. In: Proc. of the First International Conference

on Availability, Reliability and Security, ARES 2006, pp. 764–771 (2006)

12. Steinmetz, R., Wehrle, K. (eds.): Peer-to-Peer Systems and Applications. LNCS,

vol. 3485. Springer, Heidelberg (2005)

13. Wei, K., Chen, Y.-F., Smith, A.J., Vo, B.: WhoPay: A scalable and anonymous

payment system for peer-to-peer environments. In: Proc. of the 26th IEEE Inter-

national Conference on Distributed Computing Systems, ICDCS 2006, pp. 13–22

(2006)

14. Yang, B., Garcia-Molina, H.: PPay: Micropayments for peer-to-peer systems. In:

Proc. of 10th ACM Conference on Computer and Communications Security, pp.

300–310 (2003)

15. Zou, J., Si, T., Huang, L., Dai, Y.: A new micro-payment protocol based on p2p

networks. In: Proc. of the 2005 IEEE International Conference on E-Business En-

gineering, ICEBE 2005, pp. 449–455 (2005)

16. KaZaA website, http://www.kazaa.com

http://www.kazaa.com


Author Index

Ahmad, Afandi II-223

Alexandre, Leandro A. II-179

Amira, Abbes II-223

Armknecht, Frederik II-39

Balliu, Musard I-261

Bardouillet, Michel I-231

Barreto, Paulo Sérgio Licciardi Messeder

II-64

Batista, Maira L. II-179

Bedi, S.S. II-270

Bhuvaneswari, P.T.V. II-207

Cansian, Adriano M. II-179

Chakraborty, Sudip I-154

Chau, Wang Jiang I-187

Chhabra, Siddhartha I-329

Chiou, Kuo-Zhe I-352

Clemente, Patrice II-131

Compagna, Luca I-1

de Oliveira, Bruno Trevizan II-64
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Ray, Indrajit I-154

Ray, Indrakshi I-154

Rouzaud-Cornabas, Jonathan II-131

Ryan, Peter II-192

Sadeghi, Ahmad-Reza II-39

Saidane, Ayda I-1

Saranya, M. Agnes II-207

Sassatelli, Gilles I-231

Scafuro, Alessandra II-39
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