
Approximation Algorithm for the Minimum

Directed Tree Cover

Viet Hung Nguyen

LIP6, Université Pierre et Marie Curie Paris 6, 4 place Jussieu, Paris, France

Abstract. Given a directed graph G with non negative cost on the arcs,
a directed tree cover of G is a rooted directed tree such that either head
or tail (or both of them) of every arc in G is touched by T . The minimum
directed tree cover problem (DTCP) is to find a directed tree cover of
minimum cost. The problem is known to be NP -hard. In this paper, we
show that the weighted Set Cover Problem (SCP) is a special case of
DTCP. Hence, one can expect at best to approximate DTCP with the
same ratio as for SCP. We show that this expectation can be satisfied in
some way by designing a purely combinatorial approximation algorithm
for the DTCP and proving that the approximation ratio of the algorithm
is max{2, ln(D+)} with D+ is the maximum outgoing degree of the nodes
in G.

1 Introduction

Let G = (V, A) be a directed graph with a (non negative) cost function c : A⇒
Q+ defined on the arcs. Let c(u, v) denote the cost of the arc (u, v) ∈ A. A
directed tree cover is a weakly connected subgraph T = (U, F) such that

1. for every e ∈ A, F contains an arc f intersecting e, i.e. f and e have an
end-node in common.

2. T is a rooted branching.

The minimum directed tree cover problem (DTCP) is to find a directed tree cover
of minimum cost. Several related problems to DTCP have been investigated, in
particular:

– its undirected counterpart, the minimum tree cover problem (TCP) and
– the tour cover problem in which T is a tour (not necessarily simple) instead of

a tree. This problem has also two versions: undirected (ToCP) and directed
(DToCP).

We discuss first about TCP which has been intensively studied in recent years.
The TCP is introduced in a paper by Arkin et al. [1] where they were motivated
by a problem of locating tree-shaped facilities on a graph such that all the
nodes are dominated by chosen facilities. They proved the NP -hardness of TCP
by observing that the unweighted case of TCP is equivalent to the connected
vertex cover problem, which in fact is known to be as hard (to approximate)

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 144–159, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Approximation Algorithm for the Minimum Directed Tree Cover 145

as the vertex cover problem [10]. Consequently, DTCP is also NP -hard since
the TCP can be easily transformed to an instance of DTCP by replacing every
edge by the two arcs of opposite direction between the two end-nodes of the
edge. In their paper, Arkin et al. presented a 2-approximation algorithm for
the unweighted case of TCP, as well as 3.5-approximation algorithm for general
costs. Later, Konemann et al. [11] and Fujito [8] independently designed a 3-
approximation algorithm for TCP using a bidirected formulation. They solved a
linear program (of exponential size) to find a vertex cover U and then they found
a Steiner tree with U as the set of terminals. Recently, Fujito [9] and Nguyen
[13] propose separately two different approximation algorithms achieving 2 the
currently best approximation ratio. Actually, the algorithm in [13] is expressed
for the TCP when costs satisfy the triangle inequality but one can suppose
this for the general case without loss generality. The algorithm in [9] is very
interesting in term of complexity since it is a primal-dual based algorithm and
thus purely combinatorial. In the prospective section of [11] and [9], the authors
presented DTCP as a wide open problem for further research on the topic. In
particular, Fujito [9] pointed out that his approach for TCP can be extended
to give a 2-approximation algorithm for the unweighted case of DTCP but falls
short once arbitrary costs are allowed.

For ToCP, a 3-approximation algorithm has been developed in [11]. The prin-
ciple of this algorithm is similar as for TCP, i.e. it solved a linear program (of
exponential size) to find a vertex cover U and then found a traveling sales-
man tour over the subgraph induced by U . Recently, Nguyen [14] considered
DToCP and extended the approach in [11] to obtain a 2 log2(n)-approximation
algorithm for DToCP. We can similarly adapt the method in [11] for TCP to
DTCP but we will have to find a directed Steiner tree with U a vertex cover
as the terminal set. Using the best known approximation algorithm by Charikar
et al. [4] for the minimum Steiner directed tree problem, we obtain a ratio of

(1 +
√
|U |2/3

log1/3(|U |)) for DTCP which is worse than a logarithmic ratio.
In this paper, we improve this ratio by giving a logarithmic ratio approxima-

tion algorithm for DTCP. In particular, we show that the weighted Set Cover
Problem (SCP) is a special case of DTCP and the transformation is approxima-
tion preserving. Based on the known complexity results for SCP, we can only
expect a logarithmic ratio for the approximation of DTCP. Let D+ be the maxi-
mum outgoing degree of the nodes in G, we design a primal-dual max{2, ln(D+)}-
approximation algorithm for DTCP which is thus somewhat best possible.

The paper is organized as follows. In the remaining of this section, we will
define the notations that will be used in the papers. In Section 2, we present
an integer formulation and state a primal-dual algorithm for DTCP. Finally, we
prove the validity of the algorithm and its approximation ratio.

Let us introduce the notations that will be used in the paper. Let G = (V, A)
be a digraph with vertex set V and arc set A. Let n = |V | and m = |A|. If
x ∈ Q|A| is a vector indexed by the arc set A and F ⊆ E is a subset of arcs, we
use x(F) to denote the sum of values of x on the arcs in F , x(F) =

∑
e∈F xe.

Similarly, for a vector y ∈ Q|V | indexed by the nodes and S ⊆ V is a subset of

146 V.H. Nguyen

nodes, let y(S) denote the sum of values of y on the nodes in the set S. For a
subset of nodes S ⊆ V , let A(S) denote the set of the arcs having both end-nodes
in S. Let δ+(S)(respectively δ−(S)) denote the set of the arcs having only the
tail (respectively head) in S. We will call δ+(S) the outgoing cut associated to
S, δ−(S) the ingoing cut associated to S. For two subset U, W ⊂ V such that
U ∩ W = ∅, let (U : W) be the set of the arcs having the tail in U and the
head in W . For u ∈ V , we say v an outneighbor (respectively inneighbor) of u if
(u, v) ∈ A (respectively (v, u) ∈ A). For the sake of simplicity, in clear contexts,
the singleton {u} will be denoted simply by u.

For an arc subset F of A, let V (F) denote the set of end-nodes of all the arcs
in F . We say F covers a vertex subset S if F ∩ δ−(S) �= ∅. We say F is a cover
for the graph G if for all arc (u, v) ∈ A, we have F ∩ δ−({u, v}) �= ∅.

When we work on more than one graph, we specify the graph in the index
of the notation, e.g. δ+

G(S) will denote δ+(S) in the graph G. By default, the
notations without indication of the the graph in the index are applied on G.

2 Minimum r-Branching Cover Problem

Suppose that T is a directed tree cover of G rooted in r ∈ V , i.e. T is a branching,
V (T) is a vertex cover in G and there is a directed path in T from r to any other
node in V (T). In this case, we call T , a r-branching cover. Thus, DTCP can be
divided into n subproblems in which we find a minimum r-branching cover for
all r ∈ V . By this observation, in this paper, we will focus on approximating
the minimum r-branching cover for a specific vertex r ∈ V . An approximation
algorithm for DTCP is then simply resulted from applying n times the algorithm
for the minimum r-branching cover for each r ∈ V .

2.1 Weighted Set Cover Problem as a Special Case

Let us consider any instance A of the weighted Set Cover Problem (SCP) with
a set E = {e1, e2, . . . , ep} of ground elements, and a collection of subsets S1, S2,
. . . , Sq ⊆ E with corresponding non-negative weights w1, w2, . . . , wq. The objec-
tive is to find a set I ⊆ {1, 2, . . . , q} that minimizes

∑

i∈I

wi, such that
⋃

i∈I

Si = E.

We transform this instance to an instance of the minimum r-branching cover
problem in some graph G1 as follows. We create a node r, q nodes S1, S2, . . . ,
Sq and q arcs (r, Si) with weight wi. We then add 2p new nodes e1, . . . , ep and
e′1, . . . , e′p. If ek ∈ Si for some 1 ≤ k ≤ p and 1 ≤ i ≤ q, we create an arc (Si, ek)
with weight 0 (or a very insignificant positive weight). At last, we add an arc
(ek, e′k) of weight 0 (or a very insignificant positive weight) for each 1 ≤ k ≤ p.

Lemma 1. Any r-branching cover in G1 correspond to a set cover in A of the
same weight and vice versa.

Proof. Let us consider any r-branching cover T in G1. Since T should cover all
the arcs (ek, e′k) for 1 ≤ k ≤ n, T contains the nodes ek. By the construction of

Approximation Algorithm for the Minimum Directed Tree Cover 147

G1, these nodes are connected to r uniquely through the nodes S1, . . .Sq with
the corresponding cost w1, . . . , wq . Clearly, the nodes Si in T constitute a set
cover in A of the same weight as T . It is then easy to see that any set cover in
A correspond to r-branching cover in G1 of the same weight.

Let D+
r be the maximum outgoing degree of the nodes (except r) in G1. We can

see that D+
r = p, the number of ground elements in A. Hence, we have

Corollary 1. Any f(D+
r)-approximation algorithm for theminimum r-branching

cover problem is also an f(p)-approximation algorithm for SCP where f is a
function from N to R.

Note that the converse is not true. As a corollary of this corollary, we have the
same complexity results for the minimum r-branching cover problem as known
results for SCP [12,7,15,2]. Precisely,

Corollary 2

– If there exists a c ln(D+
r)-approximation algorithm for the minimum r-

branching cover problem where c < 1 then NP ⊆ DTIME(n{O(lnk(D+
r))}).

– There exists some 0 < c < 1 such that if there exists a c log(D+
r)-approximation

algorithm for the minimum r-branching cover problem, then P = NP .

Note that this result does not contradict the Fujito’s result about an approxi-
mation ratio 2 for the unweighted DTCP because in our transformation we use
arcs of weight 0 (or a very insignificant fractional positive weight) which are not
involved in an instance of unweighted DTCP.

Hence in some sense, the max{2, ln(D+
r)} approximation algorithm that we

are going to describe in the next sections seems to be best possible for the general
weighted DTCP.

3 Integer Programming Formulation for Minimum
r-Branching Cover

We use a formulation inspired from the one in [11] designed originally for the
TCP. The formulation is as follows: for a fixed root r, define F to be the set of
all subsets S of V \ {r} such that S induces at least one arc of A,

F = {S ⊆ V \ {r} | A(S) �= ∅}.

Let T be the arc set of a directed tree cover of G containing r, T is thus a
branching rooted at r. Now for every S ∈ F , at least one node, saying v, in S
should belong to V (T). By definition of directed tree cover there is a path from
r to v in T and as r /∈ S, this path should contain at least one arc in δ−(S). This
allows us to derive the following cut constraint which is valid for the DTCP:

∑

e∈δ−(S)

xe ≥ 1 for all S ∈ F

148 V.H. Nguyen

This leads to the following IP formulation for the minimum r-branching cover.

min
∑

e∈A

c(e)xe

∑

e∈δ−(S)

xe ≥ 1 for all S ∈ F

x ∈ {0, 1}A.

A trivial case for which this formulation has no constraint is when G is a r-rooted
star but in this case the optimal solution is trivially the central node r with cost 0.

Replacing the integrity constraints by

x ≥ 0,

we obtain the linear programming relaxation. We use the DTC(G) to denote
the convex hull of all vectors x satisfying the constraints above (with integrity
constraints replaced by x ≥ 0). We express below the dual of DTC(G):

max
∑

S∈F
yS

∑

S∈F s.t. e∈δ−(S)

yS ≤ c(e) for all e ∈ A

yS ≥ 0 for all S ∈ F

4 Approximating the Minimum r-Branching Cover

4.1 Preliminary Observations and Algorithm Overview

Preliminary observations. As we can see, the minimum r-branching cover
is closely related to the well-known minimum r-arborescence problem which
finds a minimum r-branching spanning all the nodes in G. Edmonds [6] gave
a linear programming formulation for this problem which consists of the cut
constraints for all the subsets S ⊆ V \ {r} (not limited to S ∈ F). He designed
then a primal-dual algorithm (also described in [5]) which repeatedly keeps and
updates a set A0 of zero reduced cost and the subgraph G0 induced by A0 and
at each iteration, tries to cover a chosen strongly connected component in G0

by augmenting (as much as possible with respect to the current reduced cost)
the corresponding dual variable. The algorithm ends when all the nodes are
reachable from r in G0. The crucial point in the Edmonds’ algorithm is that
when there still exist nodes not reachable from r in G0, there always exists in
G0 a strongly connected component to be covered because we can choose trivial
strongly connected components which are singletons. We can not do such a thing
for minimum r-branching cover because a node can be or not belonging to a r-
branching cover. But we shall see that if G0 satisfies a certain conditions, we can

Approximation Algorithm for the Minimum Directed Tree Cover 149

use an Edmonds-style primal-dual algorithm to find a r-branching cover and to
obtain a G0 satisfying such conditions, we should pay a ratio of max{2, ln(n)}.
Let us see what could be these conditions. A node j is said connected to to
another node i (resp. a connected subgraph B) if there is a path from i (resp.
a node in B) to j. Suppose that we have found a vertex cover U and a graph
G0, we define an Edmonds connected subgraph as a non-trivial connected (not
necessarily strongly) subgraph B not containing r of G0 such that given any node
i ∈ B and for all v ∈ B ∩ U , v is connected to i in G0. Note that any strongly
connected subgraph not containing r in G0 which contains at least a node in
U is an Edmonds connected subgraph. As in the definition, for an Edmonds
connected subgraph B, we will also use abusively B to denote its vertex set.

Theorem 1. If for any node v ∈ U not reachable from r in G0, we have

– either v belongs to an Edmonds connected subgraph of G0,
– or v is connected to an Edmonds connected subgraph of G0.

then we can apply an Edmonds-style primal-dual algorithm completing G0 to get
a r-branching cover spanning U without paying any additional ratio.

Proof. We will prove that if there still exist nodes in U not reachable from r in
G0, then there always exists an Edmonds connected subgraph, say B, uncovered,
i.e. δ−G0

(B) = ∅. Choosing any node v1 ∈ U not reachable from r in G0, we can see
that in both cases, the Edmonds connected subgraph, say B1, of G0 containing v1

or to which v1 is connected, is not reachable from r. In this sense we suppose that
B1 is maximal. If B1 is uncovered, we have done. If B1 is covered then it should
be covered by an arc from a node v2 ∈ U not reachable from r because if v2 /∈ U
then B1 ∪ {v2} induces an Edmonds connected subgraph which contradicts the
fact that B1 is maximal. Similarly, we should have v2 �= v1 because otherwise
B1 ∪{v1} induces an Edmonds connected subgraph. We continue this reasoning
with v2, if this process does not stop, we will meet another node v3 ∈ U \{v1, v2}
not reachable from r and so on As |U | ≤ n−1, this process should end with
an Edmonds connected subgraph Bk uncovered.

We can then apply a primal-dual Edmonds-style algorithm (with respect to
the reduced cost modified by the determination of U and G0 before) which
repeatedly cover in each iteration an uncovered Edmonds connected subgraph
in G0 until every node in U is reachable from r. By definition of Edmonds
connected subgraphs, in the output r-branching cover, we can choose only one
arc entering the chosen Edmonds connected subgraph and it is enough to cover
the nodes belonging to U in this subgraph.

Algorithm overview. Based on the above observations on DTC(G) and its
dual, we design an algorithm which is a composition of 3 phases. Phases I and II
determine G0 and a vertex cover U satisfying the conditions stated in Theorem
1. The details of each phase is as follows:

– Phase I is of a primal-dual style which tries to cover the sets S ∈ F such
that |S| = 2. We keep a set A0 of zero reduced cost and the subgraph G0

induced by A0. A0 is a cover but does not necessarily contain a r-branching

150 V.H. Nguyen

cover. We determine after this phase a vertex cover (i.e. a node cover) set U
of G. Phase I outputs a partial solution T 1

0 which is a directed tree rooted
in r spanning the nodes in U reachable from r in G0. It outputs also a dual
feasible solution y.

– Phase II is executed only if A0 does not contain a r-branching cover, i.e. there
are nodes in U determined in Phase I which are not reachable from r in G0.
Phase II works with the reduced costs issued from Phase I and tries to make
the nodes in U not reachable from r in G0, either reachable from r in G0,
or belong or be connected to an Edmonds connected subgraph in G0. Phase
II transforms this problem to a kind of Set Cover Problem and solve it by a
greedy algorithm. Phase II outputs a set of arcs T 2

0 and grows the dual solution
y issued from Phase I (by growing only the zero value components of y).

– Phase III is executed only if T 1
0 ∪ T 2

0 is not a r-branching cover. Phase III
applies a primal-dual Edmonds-style algorithm (with respect to the reduced
cost issued from Phases I and II) which repeatedly cover in each iteration
an uncovered Edmonds connected subgraph in G0 until every node in U is
reachable from r.

4.2 Initialization

Set B to be the collection of the vertex set of all the arcs in A which do not
have r as an end vertex. In other words, B contains all the sets of cardinality 2
in F , i.e. B = {S |S ∈ F and |S| = 2}. Set the dual variable to zero, i.e. y ← 0
and set the reduced cost c̄ to c, i.e. c̄ ← c. Set A0 ← {e ∈ A | c̄(e) = 0}. Let
G0 = (V0, A0) be the subgraph of G induced by A0.

During the algorithm, we will keep and update constantly a subset of T0 ⊆ A0.
At this stage of initialization, we set T0 ← ∅.

During Phase I, we also keep updating a dual feasible solution y that is ini-
tialized at 0 (i.e. all the components of y are equal to 0). The dual solution y is
not necessary in the construction of a r-branching cover but we will need it in
the proof for the performance guarantee of the algorithm.

4.3 Phase I

In this phase, we will progressively expand A0 so that it covers all the sets in B.
In the mean time, during the expansion of A0, we add the vertex set of newly
created strongly connected components of G0 to B.

Phase I repeatedly do the followings until B becomes empty.

1. select a set S ∈ B which is not covered by A0.
2. select the cheapest (reduced cost) arc(s) in δ−(S) and add it (them) to A0.

A0 covers then S. Let α denote the reduced cost of the cheapest arc(s) chosen
above, then we modify the reduced cost of the arcs in δ−(S) by subtracting
α from them. Set yS ← α.

3. Remove S from B and if we detect a strongly connected component K in G0

due to the addition of new arcs in A0, in the original graph G, we add the
set V (K) to B.

Approximation Algorithm for the Minimum Directed Tree Cover 151

Proposition 1. After Phase I, A0 is a cover.

Proof. As we can see, Phase I terminates when B becomes empty. That means
the node sets of the arcs, which do not have r as an end-node, are all covered
by A0. Also all the strongly connected components in G0 are covered. �

At this stage, if for any node v there is a path from r to v in G0, we say that
v is reachable from r. Set T0 to be a directed tree (rooted in r) in G0 spanning
the nodes reachable from r. T0 is chosen such that for each strongly connected
component K added to B in Phase I, there is exactly one arc in T0 entering K,
i.e. |δ−(K) ∩ T0| = 1. If the nodes reachable from r in G0 form a vertex cover,
then T0 is a r-branching cover and the algorithm stops. Otherwise, it goes to
Phase II.

4.4 Phase II

Let us consider the nodes which are not reachable from r in G0. We divide them
into three following categories:

– The nodes i such that |δ−G0
(i)| = 0, i.e. there is no arc in A0 entering i. Let

us call these nodes source nodes.
– The nodes i such that |δ−G0

(i)| = 1, i.e. there is exactly one arc in A0 entering
i. Let us call these nodes sink nodes.

– The nodes i such that |δ−G0
(i)| ≥ 2, i.e. there is at least two arcs in A0

entering i. Let us call these nodes critical nodes.

Proposition 2. The set of the source nodes is a stable set.

Proof. Suppose that the converse is true, then there is an arc (i, j) with i, j are
both source nodes. As δ−G0

(i) = δ−G0
(j) = ∅, we have δ−G0

({i, j}) = ∅. Hence, (i, j)
is not covered by A0. Contradiction.

Corollary 3. The set U containing the nodes reachable from r in G0 after Phase
I, the sink nodes and the critical nodes is a vertex cover (i.e. a node cover) of G.

Proposition 3. For any sink node j, there is at least one critical node i such
that j is connected to i in G0.

Proof. Let the unique arc in δ−G0
(j) be (i1, j). Since this arc should be covered

by A0, δ−G0
(i1) �= ∅. If |δ−G0

(i1)| ≥ 2 then i1 is a critical node and we have done.
Otherwise, i.e. |δ−G0

(i1)| = 1 and i1 is a sink node. Let (i2, i1) be the unique
arc in δ−G0

(i1), we repeat then the same reasoning for (i2, i1) and for i2. If this
process does not end with a critical node, it should meet each time a new sink
node not visited before (It is not possible that a directed cycle is created since
then this directed cycle (strongly connected component) should be covered in
Phase I and hence at least one of the nodes on the cycle has two arcs entering
it, and is therefore critical). As the number of sink nodes is at most n − 1, the
process can not continue infinitely and should end at a stage k (k < n) with ik is
a critical node. By construction, the path ik, ik−1, . . . , i1, j is a path in G0 from
ik to j.

152 V.H. Nguyen

A critical node v is said to be covered if there is at least one arc (w, v) ∈ A0

such that w is not a source node, i.e. w can be a sink node or a critical node or
a node reachable from r. Otherwise, we say v is uncovered.

Proposition 4. If all critical nodes are covered then for any critical node v,
one of the followings is verified:

– either v belongs to an Edmonds connected subgraph of G0 or v is connected
to an Edmonds connected subgraph of G0,

– there is a path from r to v in G0, i.e. v is reachable from r in G0.

Proof. If v is covered by a node reachable from r, we have done. Otherwise, v is
covered by sink node or by another critical node. From Proposition 3 we derive
that in the both cases, v will be connected to a critical node w, i.e. there is a
path from w to v in G0. Continue this reasoning with w and so on, we should
end with a node reachable from r or a critical node visited before. In the first
case v is reachable from r. In the second case, v belongs to a directed cycle in
G0 if we have revisited v, otherwise v is connected to a directed cycle in G0. The
directed cycle in the both cases is an Edmonds connected subgraph (because it
is strongly connected) and it can be included in a greater Edmonds connected
subgraph.

Lemma 2. If all critical nodes are covered then for any node v ∈ U not reach-
able from r in G0,

– either v belongs to an Edmonds connected subgraph of G0,
– or v is connected to an Edmonds connected subgraph of G0.

Proof. The lemma is a direct consequence of Propositions 3 and 4.

The aim of Phase II is to cover all the uncovered critical nodes. Let us see how
to convert this problem into a weighted SCP and to solve the latter by adapting
the well-known greedy algorithm for weighted SCP.

A source node s is zero connecting a critical node v (reciprocally v is zero
connected from s) if (s, v) ∈ A0. If (s, v) /∈ A0 but (s, v) ∈ A then s is positively
connecting v (reciprocally v is positively connected from s).

Suppose that at the end of Phase I, there are k uncovered critical nodes v1,
v2, . . . vk and p source nodes s1, s2 , . . . sp. Let S = {s1, s2, . . . , sp} denote the
set of the source nodes.

Remark 1. An uncovered critical node v can be only covered:

– by directly an arc from a sink node or another crtitical node to v,
– or via a source node s connecting (zero or positively) v, i.e. by two arcs: an

arc in δ−(s) and the arc (s, v).

Remark 1 suggests us that we can consider every critical node v as a ground
element to be covered in a Set Cover instance and the subsets containing v
could be the singleton {v} and any subset containing v of the set of the critical

Approximation Algorithm for the Minimum Directed Tree Cover 153

nodes connecting (positive or zero) from s. The cost of the the singleton {v}
is the minimum reduced cost of the arcs from a sink node or another crtitical
node to v. The cost of a subset T containing v of the set of the critical nodes
connecting from s is the minimum reduced cost of the arcs in δ−(s) plus the
sum of the reduced cost of the arcs (s, w) for all w ∈ T .

Precisely, in Phase II, we proceed to cover all the uncovered critical nodes by
solving by the greedy algorithm the following instance of the Set Cover Problem:

– The ground set contains k elements which are the critical nodes v1, v2, . . . ,
vk.

– The subsets are

Type I For each source node si for i = 1, . . . , p, let C(si) be the set of all
the critical nodes connected (positively or zero) from si. The subsets
of Type I associated to si are the subsets of C(si) (C(si) included). To
define their cost, we define

c̄(si) =
{

min{c̄(e) | e ∈ δ−(si)} if δ−(si) �= ∅,
+∞ otherwise

Let us choose an arc esi = argmin{c̄(e) | e ∈ δ−(si)} which denotes an
arc entering si of minimum reduced cost. Let T be any subset of type I
associated to si, we define c̄(T) the cost of T as c̄(T) = c̄(si)+

∑

v∈T

c̄(si, v).

Let us call the arc subset containing the arc esi and the arcs (si, v) for
all v ∈ T uncovered, the covering arc subset of T .

Type II the singletons {v1}, {v2}, . . . , {vk}. We define the cost of the
singleton {vi},

c̄(vi) =

{
min{c̄(w, vi) | where w is not a source node, i.e. w ∈ V \ S} if (V \ S : {vi}) �= ∅,
+∞ otherwise

Let us choose an arc evi = argmin{c̄(w, vi) | where w is not a source node,
i.e.w ∈ V \ S}, denotes an arc entering vi from a non source node of min-
imum reduced cost. Let the singleton {evi} be the covering arc subset of
{vi}.

We will show that we can adapt the greedy algorithm solving this set cover
problem to our primal-dual scheme. In particular, we will specify how to update
dual variables et the sets A0 and T0 in each iteration of the greedy algorithm.
The sketch of the algorithm is explained in Algorithm 1.

Note that in Phase II, contrary to Phase I, the reduced costs c̄ are not to be
modified and all the computations are based on the reduced costs c̄ issued from
Phase I. In the sequel, we will specify how to compute the most efficient subset
Δ and update the dual variables.

For 1 ≤ i ≤ p let us call Si the collection of all the subsets of type I associated
to si. Let S be the collection of all the subsets of type I and II.

154 V.H. Nguyen

Algorithm 1. Greedy algorithm for Phase II
while there exist uncovered critical nodes do1

Compute the most efficient subset Δ ;2

Update the dual variables and the sets A0 and T0;3

Change the status of the uncovered critical nodes in Δ to covered ;4

end5

Computing the most efficient subset. Given a source node si, while the
number of subsets in Si can be exponential, we will show in the following that
computing the most efficient subset in Si is can be done in polynomial time. Let
us suppose that there are iq critical nodes denoted by vi1

si
, vi2

si
, . . . , v

iq
si which are

connected (positively or zero) from si. In addition, we suppose without loss of
generality that c̄(si, v

i1
si

) ≤ c̄(si, v
i2
si

) ≤ . . . ≤ c̄(si, v
iq
si). We compute fi and Si

which denote respectively the best efficiency and the most effecicient set in Si

by the following algorithm.

Step 1. Suppose that vih
si

is the first uncovered critical node met when we scan
the critical nodes vi1

si
, vi2

si
, . . . , v

iq
si in this order.

Set Si ← {vih
si
}. Set c̄(Si)← c̄(si) + c̄(si, v

ih
si

).
Set di ← 1. Set fi ← c̄(Si)

di
and Δi ← Si.

Step 2. We add progressively uncovered critical nodes v
ij
si for j = h + 1, . . . , iq

to Si while this allows to increase the efficiency of Si:
For j = h + 1 to iq, if v

ij
si is uncovered and fi > c̄(Si)+c̄(si,v

ij)
di+1 then fi ←

c̄(Si)+c̄(si,v
ij
si

di+1 , di ← di + 1 and Si ← Si ∪ {vij
si}.

Set imin ← argmin{fi |si is a source node}.
Choose the most efficient subset among Simin and the singletons of type II for

which the computation of efficiency is straightforward. Set Δ to be most efficient
subset and set d← |Δ| the number of the uncovered critical nodes in Δ.

Updating the dual variables and the sets A0 and T0

Let g = max{|T | | T ∈ S} and let Hg = 1 + 1
2 + 1

3 + . . . + 1
g .

Remark 2. g ≤ D+
r .

Given a critical node v, let pv denote the number of source nodes connecting
v. Let sv

1, sv
2, . . . , sv

pv
be these source nodes such that c̄(sv

1, v) ≤ c̄(sv
2 , v) ≤

. . . ≤ c̄(sv
pv

, v). We define Sj
v = {v, s1

v, . . . , s
j
v} for j = 1, . . . , pv. We can see that

for j = 1, . . . , pv, Sj
v ∈ F . Let ySj

v
be the dual variable associated to the cut

constraints x(δ−(Sj
v)) ≥ 1. The dual variables will be updated as follows. For

each critical node v uncovered in Δ, we update the value of ySj
v

for j = 1, . . . , pv

for that
∑pv

j=1 ySj
v

= c̄(Δ)
Hg×d . This updating process saturates progressively the

arcs (sj
v, v) for j = 1, . . . , pv. Details are given in Algorithm 2. We add to A0

and to T0 the arcs in the covering arc subset of Δ.

Approximation Algorithm for the Minimum Directed Tree Cover 155

Algorithm 2. Updating the dual variables
j ← 1 ;1

while (j < pv) and (c̄(sj+1
v , v) < c̄(Δ)

Hg×d
) do2

y
S

j
v
← c̄(sj+1

v , v)− c̄(sj
v, v);3

j ← j + 1 ;4

end5

if c̄(spv
v , v) < c̄(Δ)

Hg×d
then6

yS
pv
v
← c̄(Δ)

Hg×d
− c̄(spv

v , v);7

end8

Let us define T as the set of the subsets T such that yT is made positive in
Phase II.

Lemma 3. The dual variables which were made positive in Phase II respect the
reduced cost issued from Phase I.

Proof. For every T ∈ T , the arcs in δ−(T) can only be either an arc in δ−(si)
with si is a source node or an arc in δ−(v) with v is a critical node. Hence, we
should show that for every arc (u′, u) with u is either a critical node or a source
node, we have ∑

T∈T s.t. u∈T

yT ≤ c̄(u′, u)

– u is a critical node v and u′ is the source node sv
j . The possible subsets T ∈ T

such that (sv
j , v) ∈ δ−(T) are the sets S1

v , . . . , Sj−1
v . By Algorithm 2, we can

see that
j−1∑

k=1

ySk
v
≤ c̄(sv

j , v).

– u is a critical node v and u′ ∈ V \ S. By definition of c̄(v), we have
c̄(u′, u) ≥ c̄(v). By analogy with the Set Cover problem, the dual variables
made positive in Phase II respect the cost of the singleton {v}. Hence

∑

T∈T s.t. v∈T

yT ≤ c̄(v) ≤ c̄(u′, u)

– u is source node and u′ ∈ V \S. For each critical node w such that (u, w) ∈ A,
we suppose that u = s

i(u,w)
w where 1 ≤ i(u, w) ≤ pw. Let

Tu = {w | w is a critical node, (u, w) ∈ A and y
S

i(u,w)
w

> 0}

We can see that Tu ∈ S and c̄(Tu) = c̄(u) +
∑

w∈Tu
c̄(u, w). Suppose that l

is the total number of iterations in Phase II. We should show that

l∑

k=1

∑

w∈Tu∩Δk

(
c̄(Δk)

Hg × dk
− c̄(u, w)) ≤ c̄(u) (1)

156 V.H. Nguyen

where Δk is the subset which has been chosen in kth iteration. Let ak be
the number of uncovered critical nodes in Tu at the beginning of the kth

iteration. We have then a1 = |Tu| and al+1 = 0. Let Ak be the set of
previously uncovered critical nodes of Tu covered in the kth iteration. We
immediately find that |Ak| = ak − ak+1. By Algorithm 1, we can see that at
the kth iteration c̄(Δk)

Hg×dk
≤ c̄(Tu)

Hg×ak
. Since |Ak| = ak − ak+1 then

∑

w∈Tu∩Δk

(
c̄(Δk)

Hg × dk
)−

∑

w∈Tu∩Δk

c̄(u, w)) ≤ c̄(Tu)
Hg
×ak − ak+1

ak
−

∑

w∈Tu∩Δk

c̄(u, w))

Hence,

l∑

k=1

∑

w∈Tu∩Δk

(
c̄(Δk)

Hg × dk
− c̄(u, w)) ≤ c̄(Tu)

Hg

l∑

k=1

ak − ak+1

ak
−

l∑

k=1

∑

w∈Tu∩Δk

c̄(u, w))

≤ c̄(Tu)
Hg

l∑

k=1

(
1
ak

+
1

ak − 1
+ . . . +

1
ak+1 − 1

)

−
l∑

k=1

∑

w∈Tu∩Δk

c̄(u, w))

≤ c̄(Tu)
Hg

a1∑

i=1

1
i
−

l∑

k=1

∑

w∈Tu∩Δk

c̄(u, w))

≤ c̄(Tu)−
l∑

k=1

∑

w∈Tu∩Δk

c̄(u, w)) = c̄(u).

Let T 2
0 ⊂ T0 the set of the arcs added to T0 in Phase II. For each e ∈ T 2

0 , let
c2(e) be the part of the cost c(e) used in Phase II.

Theorem 2

c2(T0) =
∑

e∈T 2
0

c2(e) ≤ Hg

∑

T∈T
yT ≤ ln(D+

r)
∑

T∈T
yT

Proof. By Algorithm 2, at the kth iteration, a subset Δk is chosen and we add
the arcs in the covering arc subset of Δk to T 2

0 for all v ∈ Δk. Let T 2k
0 be

covering arc subset of Δk. We can see that c2(T 2k
0) =

∑
e∈T

2k
0

c̄e = c̄(Δk). In
this iteration, we update the dual variables in such a way that for each critical
node v ∈ Δk,

∑pv

j=1 ySj
v

= c̄(Δk)
Hg×dk

with dk = |Δk|. Together with the fact that

c̄(Δk) = c̄(wk) +
∑

v∈Δk

c̄(wk, v) we have
∑

v∈Δk

∑pv

j=1 ySj
v

= c̄(Δk)
Hg

= c2(T
2k
0)

Hg
. By

summing over l be the number of iterations in Phase II, we obtain

∑

T∈T
yT =

l∑

k=1

∑

v∈Δk

pv∑

j=1

ySj
v

=
l∑

k=1

c̄(Δk)
Hg

=
l∑

k=1

c2(T 2k
0)

Hg
=

c2(T0)
Hg

Approximation Algorithm for the Minimum Directed Tree Cover 157

which proves that c2(T0) = Hg

∑
T∈T yT . By Remark 2, we have g ≤ D+

r and
Hg ≈ ln g, hence c2(T0) ≤ ln(D+

r)
∑

T∈T yT . �

4.5 Phase III

We perform Phase III if after Phase II, there exist nodes in U not reachable from
r in G0. By Lemma 2, they belong or are connected to some Edmonds connected
subgraphs of G0. By Theorem 1, we can apply an Edmonds-style primal-dual
algorithm which tries to cover uncovered Edmonds connected subgraphs of G0

until all nodes in U reachable from r. The algorithm repeatedly choosing un-
covered Edmonds connected subgraph and adding to A0 the cheapest (reduced
cost) arc(s) entering it . As the reduced costs have not been modified during
Phase II, we update first the reduced cost c̄ with respect to the dual variables
made positive in Phase II.

Algorithm 3. Algorithm for Phase III
Update the reduced cost c̄ with respect to the dual variables made positive in1

Phase II;
repeat2

Choose B an uncovered Edmonds connected subgraph ;3

Let yB be the associated dual variable to B;4

Set c̄(B)← min{c̄e | e ∈ δ−(B)} ; Set yB ← c̄(B);5

foreach e ∈ δ−(B) do6

c̄e ← c̄e − c̄(B);7

end8

Update A0, G0 and T0 (see below);9

until every nodes in U reachable from r ;10

For updating A0, at each iteration, we add all the saturated arcs belonging
to δ−(B) to A0. Among these arcs, we choose only one arc (u, v) with v ∈ B to
add to T0 with a preference for a u connected from r in G0. In the other hand,
we delete the arc (x, v) with x ∈ B from T0. We then add to T0 an directed tree
rooted in v in G0 spanning B. If there are sink nodes directly connected to B,
i.e. the path from a critical node w ∈ B to these nodes contains only sink nodes
except w. We also add all such paths to T0.

Lemma 4. After Phase III, T0 is a r-branching cover.

Proof. We can see that after Phase III, for any critical node or a sink node v,
there is a path containing only the arcs in T0 from r to v and there is exactly
one arc in δ−(v) ∩ T0.

4.6 Performance Guarantee

We state now a theorem about the performance guarantee of the algorithm.

158 V.H. Nguyen

Theorem 3. The cost of T0 is at most max{2, ln(D+
r)} times the cost of an

optimal r-branching cover.

Proof. Suppose that T ∗ is an optimal r-branching cover of G with respect to
the cost c. First, we can see that the solution y built in the algorithm is feasible
dual solution. Hence cT y ≤ c(T ∗). Let B be the set of all the subsets B in Phase
I and Phase III (B is either a subset of cardinality 2 in F or a subset such
that the induced subgraph is a strongly connected component or an Edmonds
connected subgraph in G0 at some stage of the algorithm). Recall that we have
defined T as the set of the subsets T such that yT is made positive in Phase
II. We have then cT y =

∑

B∈B
yB +

∑

T∈T
yT . For any arc e in T0, let us divide the

cost c(e) into two parts: c1(e) the part saturated by the dual variables yB with
B ∈ B and c2(e) the part saturated by the dual variables yT with B ∈ T . Hence
c(T0) = c1(T0)+c2(T0). By Theorem 2, we have c2(T0) ≤ ln(D+

r)
∑

T∈T yT (note
that the replacing in Phase III of an arc (x, v) by another arc (u, v) with v ∈ Bi

do not change the cost c2(T0)). Let us consider any set B ∈ B by the algorithm,
B is the one of the followings:

– |B| = 2. As T0 is a branching so that for all vertex v ∈ V , we have |δ−(v) ∩
T0| ≤ 1. Hence, |δ−(B) ∩ T0| ≤ 2.

– B is a vertex set of a strongly connected component or an Edmonds con-
nected subgraph in G0. We can see obviously that by the algorithm |δ−(B)∩
T0| = 1.

These observations lead to the conclusion that c1(T0) ≤ 2
∑

B∈B yB. Hence

c(T0) = c1(T0) + c2(T0) ≤ 2
∑

B∈B
yB + ln(D+

r)
∑

T∈T
yT

≤ max{2, ln(D+
r)}cT y ≤ max{2, ln(D+

r)}c(T ∗).

Corollary 4. We can approximate the DTCP within a max{2, ln(D+)} ratio.

5 Final Remarks

The paper has shown that the weighted Set Cover Problem is a special case of the
Directed Tree Cover Problem and the latter can be approximated with a ratio
of max{2, ln(D+)} (where D+ is the maximum outgoing degree of the nodes in
G) by a primal-dual algorithm. Based on known complexity results for weighted
Set Cover, in one direction, this approximation seems to be best possible.

In our opinion, an interesting question is whether the same techniques can
be applied to design a combinatorial approximation algorithm for Directed Tour
Cover. As we have seen in Introduction section, a 2 log2(n)-approximation algo-
rithm for Directed Tour Cover has been given in [14], but this algorithm is not
combinatorial.

Approximation Algorithm for the Minimum Directed Tree Cover 159

References

1. Arkin, E.M., Halldórsson, M.M., Hassin, R.: Approximating the tree and tour
covers of a graph. Information Processing Letters 47, 275–282 (1993)

2. Arora, S., Sudan, M.: Improved Low-Degree Testing and Its Applications. In: Pro-
ceedings of STOC 1997, pp. 485–495 (1997)

3. Bock, F.: An algorithm to construct a minimum spanning tree in a directed net-
work. In: Developments in Operations Research, pp. 29–44. Gordon and Breach,
NY (1971)

4. Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Ap-
proximation Algorithms for Directed Steiner Problems. Journal of Algorithms 33,
73–91 (1999)

5. Chu, Y.J., Liu, T.H.: On the shortest arborescence of a directed graph. Science
Sinica 14, 1396–1400 (1965)

6. Edmonds, J.: Optimum branchings. J. Research of the National Bureau of Stan-
dards 71B, 233–240 (1967)

7. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45,
634–652 (1998)

8. Fujito, T.: On approximability of the independent/connected edge dominating set
problems. Information Processing Letters 79, 261–266 (2001)

9. Fujito, T.: How to Trim an MST: A 2-Approximation Algorithm for Minimum Cost
Tree Cover. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4051, pp. 431–442. Springer, Heidelberg (2006)

10. Garey, M.R., Johnson, D.S.: The rectilinear Steiner-tree problem is NP complete.
SIAM J. Appl. Math. 32, 826–834 (1977)

11. Könemann, J., Konjevod, G., Parekh, O., Sinha, A.: Improved Approximations for
Tour and Tree Covers. Algorithmica 38, 441–449 (2003)

12. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. Journal of the ACM 41, 960–981 (1994)

13. Nguyen, V.H.: Approximation algorithms for metric tree cover and generalized tour
and tree covers. RAIRO Operations Research 41(3), 305–315 (2007)

14. Nguyen, V.H.: A 2 log2(n)-Approximation Algorithm for Directed Tour Cover. In:
Proceedings of COCOA 2009. LNCS, vol. 5573, pp. 208–218. Springer, Heidelberg
(2009)

15. Raz, R., Safra, R.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: Proceedings of STOC
1997, pp. 475–484 (1997)

	Approximation Algorithm for the Minimum Directed Tree Cover
	Introduction
	Minimum τ-Branching Cover Problem
	Weighted Set Cover Problem as a Special Case

	Integer Programming Formulation for Minimum r-Branching Cover
	Approximating the Minimum τ-Branching Cover
	Preliminary Observations and Algorithm Overview
	Initialization
	Phase I
	Phase II
	Phase III
	Performance Guarantee

	Final Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

