

Lecture Notes in Computer Science 6509
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Weili Wu
Ovidiu Daescu (Eds.)

Combinatorial
Optimization
and Applications

4th International Conference, COCOA 2010
Kailua-Kona, HI, USA, December 18-20, 2010
Proceedings, Part II

13

Volume Editors

Weili Wu
University of Texas at Dallas
Department of Computer Science
Richardson, TX 75083, USA
E-mail: weiliwu@utdallas.edu

Ovidiu Daescu
University of Texas at Dallas
Department of Computer Science
Richardson, TX 75080, USA
E-mail: daescu@utdallas.edu

Library of Congress Control Number: 2010939794

CR Subject Classification (1998): F.2, G.2.1, G.2, C.2, E.1, I.3.5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-17460-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-17460-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The 4th Annual International Conference on Combinatorial Optimization and
Applications (COCOA 2010) took place in Big Island, Hawaii, USA, December
18–20, 2010. Past COCOA conferences were held in Xi’an, China (2007),
Newfoundland, Canada (2008) and Huangshan, China (2009).

COCOA 2010 provided a forum for researchers working in the areas of combi-
natorial optimization and its applications. In addition to theoretical results, the
conference also included recent works on experimental and applied research of
general algorithmic interest. The Program Committee received 108 submissions
from more than 23 countries and regions, including Australia, Austria, Canada,
China, Denmark, France, Germany, Hong Kong, India, Italy, Japan, Korea,
Mexico, New Zealand, Poland, Slovak Republic, Spain, Sweden, Switzerland,
Taiwan, UK, USA, Vietnam, etc.

Among the 108 submissions, 49 regular papers were selected for presentation
at the conference and are included in this volume. Some of these papers will
be selected for publication in a special issue of the Journal of Combinatorial
Optimization, a special issue of Theoretical Computer Science, a special issue of
Optimization Letters, and a special issue of Discrete Mathematics, Algorithms
and Applications under the standard refereeing procedure.

We thank all authors for submitting their papers to the conference. We are
grateful to all members of the Program Committee and all external referees
for their work within demanding time constraints. We thank the Organizing
Committee for their contribution to making the conference a success. We also
thank Jiaofei Zhong and Donghyun Kim for helping us create and update the
conference website and maintain the Springer Online Conference Service system
and Shawon Rahman for helping in local arrangements.

Finally, we thank the conference sponsors and supporting organizations for
their support and assistance. They are the University of Texas at Dallas, the
University of Hawaii at Hilo, and the National Science Foundation of USA.

December 2010 Weili Wu
Ovidiu Daescu

Organization

COCOA 2010 was organized by the department of Computer Science, the Uni-
versity of Texas at Dallas, in cooperation with the University of Hawaii at Hilo.

Executive Committee

General Co-chairs Ding-Zhu Du (University of Texas at Dallas, USA)
Panos M. Pardalos (University of Florida, USA)
Bhavani Thuraisingham (University of Texas at Dallas,

USA)
PC Co-chairs Ovidiu Daescu (University of Texas at Dallas, USA)

Weili Wu (University of Texas at Dallas, USA)
Local Chair Shawon Rahman (University of Hawaii at Hilo, Hawaii)

Program Committee

Farid Alizadeh Rutgers University, USA
Mikhail (Mike) J. Atallah Purdue University, USA
Giorgio Ausiello Università di Roma, Italy
Piotr Berman Penn State University, USA
Vladimir Boginski University of Florida, USA
Annalisa De Bonis Università di Salerno, Italy
Sergiy Butenko Texas A&M University, USA
Gruia Calinescu Illinois Institute of Technology, USA
Gerard Jennhwa Chang National Taiwan University, Taiwan
Zhi-Zhong Chen Tokyo Denki University, Japan
Chuangyin Dang City University of Hong Kong, Hong Kong
Vladimir Deineko The University of Warwick, UK
Zhenhua Duan Xidian University, China
Omer Egecioglu University of California, Santa Barbara, USA
Dan Hirschberg University of California, USA
Tsan-sheng Hsu Academia Sinica, Taiwan
Hejiao Huang Harbin Institute of Technology, China
Wonjun Lee Korea University, South Korea
Asaf Levin The Technion, Israel
Yingshu Li Georgia State University, USA
Guohui Lin University of Alberta, Canada
Liying Kang Shanghai University, China
Naoki Katoh Kyoto University, Japan
Ilias S. Kotsireas Wilfrid Laurier University, Canada

VIII Organization

Anastasia Kurdia Smith College, USA
Mitsunori Ogihara University of Miami, USA
Jack Snoeyink The University of North Carolina at

Chapel Hill, USA
Ileana Streinu Smith College, USA
Vitaly Strusevich University of Greenwich, UK
Zhiyi Tan Zhejiang University, China
Doreen Anne Thomas University of Melbourne, Australia
Alexey A. Tuzhilin Moscow State University, Russia
Amy Wang Tsinghua University, China
Caoan Wang Memorial University of Newfoundland, Canada
Feng Wang Arizona State University, USA
Lusheng Wang City University of Hong Kong, Hong Kong
Wei Wang Xi’an Jiaotong University, China
Weifan Wang Zhejiang Normal University, China
Chih-Wei Yi National Chiao Tong University, Taiwan
Alex Zelikovsky George State University, USA
Cun-Quan Zhang West Virginia University, USA
Huaming Zhang University of Alabama in Huntsville, USA
Louxin Zhang National University of Singapore, Singapore
Xiao Zhou Tohoku University, Japan

Referees

Ferdinando Cicalese
Paolo D’Arco
Gianluca De Marco
Natallia Katenka
Donghyun Kim
Stefan Langerman

Salvatore La Torre
Yuan-Shin Lee
Chung-Shou Liao
Hongliang Lu
Hsueh-I Lu
Martin Milanič

Gaolin Milledge
Seth Pettie
J.K.V. Willson
Wei Zhang
Zhao Zhang
Jiaofei Zhong

Table of Contents – Part II

Coverage with k-Transmitters in the Presence of Obstacles 1
Brad Ballinger, Nadia Benbernou, Prosenjit Bose, Mirela
Damian, Erik D. Demaine, Vida Dujmović, Robin Flatland,
Ferran Hurtado, John Iacono, Anna Lubiw, Pat Morin,
Vera Sacristán, Diane Souvaine, and Ryuhei Uehara

On Symbolic OBDD-Based Algorithms for the Minimum Spanning
Tree Problem . 16

Beate Bollig

Reducing the Maximum Latency of Selfish Ring Routing via Pairwise
Cooperations . 31

Xujin Chen, Xiaodong Hu, and Weidong Ma

Constrained Surface-Level Gateway Placement for Underwater Acoustic
Wireless Sensor Networks . 46

Deying Li, Zheng Li, Wenkai Ma, and Hong Chen

Time Optimal Algorithms for Black Hole Search in Rings 58
Balasingham Balamohan, Paola Flocchini, Ali Miri, and
Nicola Santoro

Strong Connectivity in Sensor Networks with Given Number of
Directional Antennae of Bounded Angle . 72

Stefan Dobrev, Evangelos Kranakis, Danny Krizanc,
Jaroslav Opatrny, Oscar Morales Ponce, and
Ladislav Stacho

A Constant-Factor Approximation Algorithm for the Link Building
Problem . 87

Martin Olsen, Anastasios Viglas, and Ilia Zvedeniouk

XML Reconstruction View Selection in XML Databases: Complexity
Analysis and Approximation Scheme . 97

Artem Chebotko and Bin Fu

Computational Study for Planar Connected Dominating Set Problem . . . 107
Marjan Marzban, Qian-Ping Gu, and Xiaohua Jia

Bounds for Nonadaptive Group Tests to Estimate the Amount of
Defectives . 117

Peter Damaschke and Azam Sheikh Muhammad

X Table of Contents – Part II

A Search-Based Approach to the Railway Rolling Stock Allocation
Problem . 131

Tomoshi Otsuki, Hideyuki Aisu, and Toshiaki Tanaka

Approximation Algorithm for the Minimum Directed Tree Cover 144
Viet Hung Nguyen

An Improved Approximation Algorithm for Spanning Star Forest in
Dense Graphs . 160

Jing He and Hongyu Liang

A New Result on [k, k+1]-Factors Containing Given Hamiltonian
Cycles . 170

Guizhen Liu, Xuejun Pan, and Jonathan Z. Sun

Yao Graphs Span Theta Graphs . 181
Mirela Damian and Kristin Raudonis

A Simpler Algorithm for the All Pairs Shortest Path Problem with
O(n2 log n) Expected Time . 195

Tadao Takaoka and Mashitoh Hashim

New Min-Max Theorems for Weakly Chordal and Dually Chordal
Graphs . 207

Arthur H. Busch, Feodor F. Dragan, and R. Sritharan

A Simpler and More Efficient Algorithm for the Next-to-Shortest Path
Problem . 219

Bang Ye Wu

Fast Edge-Searching and Related Problems . 228
Boting Yang

Diameter-Constrained Steiner Tree . 243
Wei Ding, Guohui Lin, and Guoliang Xue

Minimizing the Maximum Duty for Connectivity in Multi-Interface
Networks . 254

Gianlorenzo D’Angelo, Gabriele Di Stefano, and Alfredo Navarra

A Divide-and-Conquer Algorithm for Computing a Most Reliable
Source on an Unreliable Ring-Embedded Tree . 268

Wei Ding and Guoliang Xue

Constrained Low-Interference Relay Node Deployment for Underwater
Acoustic Wireless Sensor Networks . 281

Deying Li, Zheng Li, Wenkai Ma, and Wenping Chen

Structured Overlay Network for File Distribution . 292
Hongbing Fan and Yu-Liang Wu

Table of Contents – Part II XI

Optimal Balancing of Satellite Queues in Packet Transmission to
Ground Stations . 303

Evangelos Kranakis, Danny Krizanc, Ioannis Lambadaris,
Lata Narayanan, and Jaroslav Opatrny

The Networked Common Goods Game . 317
Jinsong Tan

A Novel Branching Strategy for Parameterized Graph Modification
Problems . 332

James Nastos and Yong Gao

Listing Triconnected Rooted Plane Graphs . 347
Bingbing Zhuang and Hiroshi Nagamochi

Bipartite Permutation Graphs Are Reconstructible 362
Masashi Kiyomi, Toshiki Saitoh, and Ryuhei Uehara

A Transformation from PPTL to S1S . 374
Cong Tian and Zhenhua Duan

Exact and Parameterized Algorithms for Edge Dominating Set in
3-Degree Graphs . 387

Mingyu Xiao

Approximate Ellipsoid in the Streaming Model . 401
Asish Mukhopadhyay, Animesh Sarker, and Tom Switzer

Author Index . 415

Table of Contents – Part I

Termination of Multipartite Graph Series Arising from Complex
Network Modelling . 1

Matthieu Latapy, Thi Ha Duong Phan, Christophe Crespelle, and
Thanh Qui Nguyen

Simple Cuts Are Fast and Good: Optimum Right-Angled Cuts in Solid
Grids . 11

Andreas Emil Feldmann, Shantanu Das, and Peter Widmayer

Evacuation of Rectilinear Polygons . 21
Sándor Fekete, Chris Gray, and Alexander Kröller

A Fast Algorithm for Powerful Alliances in Trees . 31
Ararat Harutyunyan

NP-Completeness of Spreading Colored Points . 41
Ovidiu Daescu, Wenqi Ju, and Jun Luo

Construction of Mixed Covering Arrays of Variable Strength Using a
Tabu Search Approach . 51

Loreto Gonzalez-Hernandez, Nelson Rangel-Valdez, and
Jose Torres-Jimenez

Feasibility-Based Bounds Tightening via Fixed Points 65
Pietro Belotti, Sonia Cafieri, Jon Lee, and Leo Liberti

A Characterisation of Stable Sets in Games with Transitive
Preference . 77

Takashi Matsuhisa

Linear Coherent Bi-cluster Discovery via Beam Detection and Sample
Set Clustering . 85

Yi Shi, Maryam Hasan, Zhipeng Cai, Guohui Lin, and
Dale Schuurmans

An Iterative Algorithm of Computing the Transitive Closure of a Union
of Parameterized Affine Integer Tuple Relations . 104

Bielecki Wlodzimierz, Klimek Tomasz, Palkowski Marek, and
Anna Beletska

Bases of Primitive Nonpowerful Sign Patterns . 114
Guanglong Yu, Zhengke Miao, and Jinlong Shu

XIV Table of Contents – Part I

Extended Dynamic Subgraph Statistics Using h-Index Parameterized
Data Structures . 128

David Eppstein, Michael T. Goodrich, Darren Strash, and
Lowell Trott

Discrete Optimization with Polynomially Detectable Boundaries and
Restricted Level Sets . 142

Yakov Zinder, Julia Memar, and Gaurav Singh

Finding Strong Bridges and Strong Articulation Points in Linear
Time . 157

Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni

Robust Optimization of Graph Partitioning and Critical Node
Detection in Analyzing Networks . 170

Neng Fan and Panos M. Pardalos

An Efficient Algorithm for Chinese Postman Walk on Bi-directed
de Bruijn Graphs . 184

Vamsi Kundeti, Sanguthevar Rajasekaran, and Heiu Dinh

On the Hardness and Inapproximability of Optimization Problems on
Power Law Graphs . 197

Yilin Shen, Dung T. Nguyen, and My T. Thai

Cyclic Vertex Connectivity of Star Graphs . 212
Zhihua Yu, Qinghai Liu, and Zhao Zhang

The Number of Shortest Paths in the (n, k)-Star Graphs 222
Eddie Cheng, Ke Qiu, and Zhi Zhang Shen

Complexity of Determining the Most Vital Elements for the 1-median
and 1-center Location Problems . 237

Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten

PTAS for Minimum Connected Dominating Set with Routing Cost
Constraint in Wireless Sensor Networks . 252

Hongwei Du, Qiang Ye, Jioafei Zhong, Yuexuan Wang,
Wonjun Lee, and Haesun Park

A Primal-Dual Approximation Algorithm for the Asymmetric
Prize-Collecting TSP . 260

Viet Hung Nguyen

Computing Toolpaths for 5-Axis NC Machines . 270
Danny Z. Chen and Ewa Misio�lek

A Trichotomy Theorem for the Approximate Counting of
Complex-Weighted Bounded-Degree Boolean CSPs 285

Tomoyuki Yamakami

Table of Contents – Part I XV

A Randomized Algorithm for Weighted Approximation of Points by a
Step Function . 300

Jin-Yi Liu

Approximating Multilinear Monomial Coefficients and Maximum
Multilinear Monomials in Multivariate Polynomials 309

Zhixiang Chen and Bin Fu

The Union of Colorful Simplices Spanned by a Colored Point Set 324
André Schulz and Csaba D. Tóth

Compact Visibility Representation of 4-Connected Plane Graphs 339
Xin He, Jiun-Jie Wang, and Huaming Zhang

Some Variations on Constrained Minimum Enclosing Circle Problem . . . 354
Arindam Karmakar, Sandip Das, Subhas C. Nandy, and
Binay K. Bhattacharya

Searching for an Axis-Parallel Shoreline . 369
Elmar Langetepe

Bounded Length, 2-Edge Augmentation of Geometric Planar Graphs . . . 385
Evangelos Kranakis, Danny Krizanc, Oscar Morales Ponce, and
Ladislav Stacho

Scheduling Packets with Values and Deadlines in Size-Bounded
Buffers . 398

Fei Li

Transporting Jobs through a Processing Center with Two Parallel
Machines . 408

Hans Kellerer, Alan J. Soper, and Vitaly A. Strusevich

Author Index . 423

Coverage with k-Transmitters
in the Presence of Obstacles

Brad Ballinger1, Nadia Benbernou2, Prosenjit Bose3, Mirela Damian4,�,
Erik D. Demaine5, Vida Dujmović6, Robin Flatland7, Ferran Hurtado8,��,

John Iacono9, Anna Lubiw10, Pat Morin11, Vera Sacristán12,��,
Diane Souvaine13, and Ryuhei Uehara14

1 Humboldt State University, Arcata, USA

brad.ballinger@humboldt.edu
2 Massachusetts Institute of Technology, Cambridge, USA

nbenbern@mit.edu
3 Carleton University, Ottawa, Canada

jit@scs.carleton.ca
4 Villanova University, Villanova, USA

mirela.damian@villanova.edu
5 Massachusetts Institute of Technology, Cambridge, USA

edemaine@mit.edu
6 Carleton University, Ottawa, Canada

vida@cs.mcgill.ca
7 Siena College, Loudonville, USA

flatland@siena.edu
8 Universitat Politècnica de Catalunya, Barcelona, Spain

Ferran.Hurtado@upc.edu
9 Polytechnic Institute of New York University, New York, USA

jiacono@poly.edu
10 University of Waterloo, Waterloo, Canada

alubiw@uwaterloo.ca
11 Carleton University, Ottawa, Canada

morin@scs.carleton.ca
12 Universitat Politècnica de Catalunya, Barcelona, Spain

vera.sacristan@upc.edu
13 Tufts University, Medford, USA

dls@cs.tufts.edu
14 Japan Advanced Institute of Science and Technology, Ishikawa, Japan

uehara@jaist.ac.jp

Abstract. For a fixed integer k ≥ 0, a k-transmitter is an omnidirec-

tional wireless transmitter with an infinite broadcast range that is able to

penetrate up to k “walls”, represented as line segments in the plane. We

develop lower and upper bounds for the number of k-transmitters that

are necessary and sufficient to cover a given collection of line segments,

polygonal chains and polygons.

� Supported by NSF grant CCF-0728909.
�� Partially supported by projects MTM2009-07242 and Gen. Cat. DGR 2009SGR1040.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 B. Ballinger et al.

1 Introduction

Illumination and guarding problems generalize the well-known art gallery prob-
lem in computational geometry [15,16]. The task is to determine a minimum
number of guards that are sufficient to guard, or “illuminate” a given region
under specific constraints. The region under surveillance may be a polygon, or
may be the entire plane with polygonal or line segment obstacles. The placement
of guards may be restricted to vertices (vertex guards) or edges (edge guards)
of the input polygon(s), or may be unrestricted (point guards). The guards may
be omnidirectional, illuminating all directions equally, or may be represented as
floodlights, illuminating a certain angle in a certain direction.

Inspired by advancements in wireless technologies and the need to offer wire-
less services to clients, Fabila-Monroy et al. [10] and Aichholzer et al. [2] intro-
duce a new variant of the illumination problem, called modem illumination. In
this problem, a guard is modeled as an omnidirectional wireless modem with an
infinite broadcast range and the power to penetrate up to k “walls” to reach a
client, for some fixed integer k > 0. Geometrically, walls are most often repre-
sented as line segments in the plane. In this paper, we refer to such a guard as a
k-transmitter, and we speak of covering (rather than illuminating or guarding).
We address the general problem introduced in [10,2], reformulated as follows:

k-Transmitter Problem: Given a set of obstacles in the plane, a target
region, and a fixed integer k > 0, how many k-transmitters are necessary
and sufficient to cover that region?

We consider instances of the k-transmitter problem in which the obstacles are
line segments or simple polygons, and the target region is a collection of line seg-
ments, or a polygonal region, or the entire plane. In the case of plane coverage,
we assume that transmitters may be embedded in the wall, and therefore can
reach both sides of the wall at no cost. In the case of polygonal region coverage,
we favor the placements of transmitters inside the region itself; therefore, when
we talk about a vertex transmitter, the implicit assumption is that the trans-
mitter is placed just inside the polygonal region, and so must penetrate one wall
to reach the exterior.

1.1 Previous Results

For a comprehensive survey on the art gallery problem and its variants, we
refer the reader to [15,16]. Also see [9,7,4] for results on the wireless localization
problem, which asks for a set of 0-transmitters that need not only cover a given
region, but also enable mobile communication devices to prove that they are
inside or outside the given region. In this section, we focus on summarizing
existing results on the k-transmitter problem and a few related issues.

For k = 0, the k-transmitter problem for simple polygons is settled by the Art
Gallery Theorem [5], which states that �n

3 � guards are sufficient and sometimes
necessary to guard a polygonal region with n vertices. Finding the minimum

Coverage with k-Transmitters in the Presence of Obstacles 3

number of 0-transmitters that can guard a given polygon is NP-hard [14,15].
For k > 0, Aichholzer et al. [10,2] study the k-transmitter problem in which the
target region is represented as a monotone polygon or a monotone orthogonal
polygon with n vertices. They show that n

2k k-transmitters are sufficient, and
� n

2k+4� k-transmitters are sometimes necessary1 to cover a monotone polygon.
They also show that � n

2k+4� k-transmitters are sufficient and necessary to cover
any monotone orthogonal polygon. The authors also study simple polygons, or-
thogonal polygons and arrangements of lines in the context of very powerful
transmitters, i.e, k-transmitters where k may grow as a function of n. For exam-
ple, they show that any simple polygon with n vertices can always be covered
with one transmitter of power � 2n+1

3 �, and this bound is tight up to an additive
constant. In the case of orthogonal polygons, one �n

3 �-transmitter is sufficient
to cover the entire polygon. The problem of covering the plane with a single
k-transmitter has been also considered in [12], where it is proved that there
exist collections of n pairwise disjoint equal-length segments in the Euclidean
plane such that, from any point, there is a ray that meets at least 2n/3 of them
(roughly). While the focus in [10,2,12] is on finding a small number of high power
transmitters, our focus in this paper is primarily on lower power transmitters.

The concept of visibility through k segments has also appeared in other works.
Dean et al. [8,13,11] study vertical bar k-visibility, where k-visibility goes through
k segments. Aichholzer et al. [1] introduce and study the notion of k-convexity,
where a diagonal may cross the boundary at most 2(k − 1) times.

1.2 Our Results

We consider several instances of the k-transmitter problem. If obstacles are dis-
joint orthogonal segments and the target region is the entire plane, we show that
� 5n+6

12 � 1-transmitters are always sufficient and �n+1
4 � are sometimes necessary

to cover the target region. If the target region is the plane and the obstacles
are lines and line segments that form a guillotine subdivision (defined in §2.2),
then n+1

2 1-transmitters suffice to cover the target region. We next consider the
case where the obstacles consist of a set of nested convex polygons. If the tar-
get region is the boundaries of these polygons, then �n

7 �+ 3 2-transmitters are
always sufficient to cover it. On the other hand, if the target region is the entire
plane, then �n

6 �+3 2-transmitters suffice to cover it, and �n
8 �+1 2-transmitters

are sometimes necessary. All these results (detailed in §2) use point transmit-
ters, with the implicit assumption that transmitters on a boundary segment are
embedded in the segment and can reach either side of the segment at no cost.

In Section 3 we move on to the case where the target region is the interior
of a simple polygon. In this case, we restrict the placement of vertex and edge
transmitters to the interior of the polygon. We show that n

6 2-transmitters are
sometimes necessary to cover the interior of a simple polygon. In Section 3.2 we
introduce a class of spiral polygons, which we refer to spirangles, and show that
�n

8 � 2-transmitters are sufficient, and sometimes necessary, to cover the interior

1 The bound �n/(2k + 2)� stated in Theorem 7 from [2] is a typo.

4 B. Ballinger et al.

of a spirangle polygon. In the case of arbitrary spiral polygons, we derive an
upper bound of �n

4 � 2-transmitters, matching the upper bound for monotone
polygons from [2].

2 Coverage of Plane with Obstacles

We begin with the problem of covering the entire plane with transmitters, in the
presence of obstacles that are orthogonal segments (§2.1), a guillotine subdivision
(§2.2), or a set of nested convex polygons (§2.3). There is no restriction on the
placement of transmitters (on or off a segment). In the case of a transmitter
located on a segment itself, the assumption is that the segment does not act as
on obstacle for that transmitter, in other words, that the transmitter has the
power of a k-transmitter on both sides of the segment.

2.1 Orthogonal Line Segments

In this section the set of obstacles is a set of n disjoint orthogonal line seg-
ments and the target region is the whole plane. Czyzowicz et al. [6] proved that
�(n + 1)/2� 0-transmitters always suffice and are sometimes necessary to cover
the plane in the presence of n disjoint orthogonal line segments. We generalize
this to k-transmitters. Our main ideas are captured by the case of 1-transmitters,
so we begin there:

Theorem 1. In order to cover the plane in the presence of n disjoint orthogonal
line segments, �(5n + 6)/12� 1-transmitters are always sufficient and �(n + 1)/4�
are sometimes necessary.

Proof. The lower bound is established by n parallel lines—a single 1-transmitter
can cover only 4 of the n + 1 regions.

For the upper bound, the main idea is to remove from the set of segments,
S, a set of segments that are independent in the sense that no covering ray
goes through two of them consecutively. We then take a set of conventional
transmitters for the remaining segments. By upgrading these transmitters to
1-transmitters we cover the whole plane with respect to the original segments S.

We now fill in this idea. We will assume without loss of generality that the
segments have been extended (remaining interior-disjoint) so that each end of
each segment either extends to infinity, or lies on another segment: if a set of
k-transmitters covers the plane with respect to the extended segments then it
covers the plane with respect to the original segments. With this assumption the
segments partition the plane into n + 1 rectangular faces.

The visibility graph G(S) has a vertex for each segment of S and an edge st
if segments s and t are weakly visible, i.e. there is a point p interior to s and a
point q interior to t such that the line segment pq does not cross any segment in
S. Equivalently, for the case of extended segments, s and t are weakly visible if
some face is incident to both of them.

Coverage with k-Transmitters in the Presence of Obstacles 5

Lemma 1. If I is an independent set in G(S) and T is a set of 0-transmitters
that covers the whole plane with respect to S−I, then T is a set of 1-transmitters
that covers the whole plane with respect to S.

Proof. Suppose that a 0-transmitter at point p covers point q with respect to
S− I. Then the line segment from p to q does not cross any segment of S− I. It
cannot cross two or more segments of I otherwise two such consecutive segments
would be visible (and not independent). Thus a 1-transmitter at p covers q with
respect to S. ��
To obtain a large independent set in G(S) we will color G(S) and take the
largest color class. If the faces formed by S were all triangles then G(S) would
be planar and thus 4-colorable. Instead, we have rectangular faces, so G(S) is
1-planar and can be colored with 6 colors. A graph is 1-planar if it can be drawn
in the plane, with points for vertices and curves for edges, in such a way that
each edge crosses at most one other edge. Ringel conjectured in 1965 that 1-
planar graphs are 6-colorable. This was proved in 1984 by Borodin, who gave a
shorter proof in 1995 [3].

Fig. 1. (left) A set S of disjoint orthogonal segments and their extensions (dashed) with

an independent set shown in bold; (middle) G(S) with vertices drawn as segments and

edges as dashed curves so 1-planarity is clear; (right) contracting a segment to a point

to get a conventional drawing of the graph

Lemma 2. If S is a set of extended orthogonal segments then G(S) is 1-planar.

Proof. The idea is the same as that used to show that the visibility graph of
horizontal line segments is planar. If G(S) is drawn in the natural way, with
every vertex represented by its original segment, and every edge drawn as a
straight line segment crossing a face, then it is clear that each edge crosses at
most one other edge. See Figure 1. We can contract each segment to a point
while maintaining this. Note that we end up with a multi-graph in case two
segments are incident to more than one face. ��
We now wrap up the proof of Theorem 1. Since G(S) is 1-planar it has a 6-
coloring by Borodin’s result. The largest color class has at least n/6 vertices and
forms an independent set I. The set S− I has at most 5n/6 segments, so by the
result of Czyzowicz et al. [6], it has a set of 0-transmitters of cardinality at most
�(5n

6 + 1)/2� = �(5n+6)/12� that covers the entire plane. By Lemma 1, placing
1-transmitters at those points covers the entire plane with respect to S. ��

6 B. Ballinger et al.

. . .

(a) (b)

Fig. 2. (a) An arrangement of five segments whose visibility graph is complete and

thus requires 5 colors. (b) A guillotine subdivision with n = 6k + 2 segments that

requires 4k 0-transmitters. Each of the 4k triangular faces must have a 0-transmitter

on its boundary and no two triangular faces share a boundary.

We note that the above proof relies on a 6-coloring of G(S). An example that
requires 5 colors is shown in Figure 2(a).

Theorem 2. In order to cover the plane in the presence of n disjoint orthogonal
line segments, � 1

2 ((5/6)log(k+1)n + 1)� k-transmitters are always sufficient and
�(n + 1)/2(k + 1)� are sometimes necessary.

Proof. As for k = 1, the lower bound is realized by parallel segments. One k-
transmitter can only cover 2(k + 1) of the n + 1 regions.

For the upper bound, we build on the proof technique for k = 1. We repeatedly
remove independent sets, extending the remaining segments after each removal.

For a set of segments S, let X(S) be a set of segments formed by extending
those of S until they touch. It will not matter that X(S) is not unique. Let R0
be S and for i = 1, 2, . . . let Si be a maximal independent set in the visibility
graph of X(Ri−1) and let Ri = S − (∪i

j=1Sj). Then Ri has cardinality at most
(5/6)in.

Lemma 3. If T is a set of 0-transmitters that covers the whole plane with respect
to Ri, then T is a set of (2i − 1)-transmitters that covers the whole plane with
respect to S = R0.

Proof. We prove by induction on j = 0, . . . , i that T is a set of (2j − 1)-
transmitters that covers the whole plane with respect to Ri−j . Suppose this
holds for j − 1. Suppose a (2j−1 − 1)-transmitter at point p sees point q in
Ri−j+1. Then the line segment pq crosses at most 2j−1 − 1 segments of Ri−j+1,
and thus 2j−1 faces. Consider putting back the segments of Si−j+1 to obtain
Ri−j . The segments of Si−j+1 are independent in Ri−j . Therefore the line seg-
ment pq can cross at most one segment of Si−j+1 in each face. The total number
of segments of Ri−j crossed by pq is thus 2j−1 − 1 + 2j−1 = 2j − 1. In other
words, a (2j − 1)-transmitter at p in Ri−j covers the same area as the original
(2j−1 − 1)-transmitter at p in Ri−j+1. ��

We use this lemma to complete the proof of the theorem. Since we have the
power of k-transmitters, we can continue removing independent sets until Ri,
where k = 2i − 1, i.e. i = log(k + 1). Then Ri has size (5/6)log(k+1)n, and

Coverage with k-Transmitters in the Presence of Obstacles 7

the number of 0-transmitters needed to cover the plane with respect to Ri is
� 1

2 ((5/6)log(k+1)n+1)�. Applying the lemma, this is the number of k-transmitters
we need to cover the plane with respect to S. ��

2.2 Guillotine Subdivisions

A guillotine subdivision S is obtained by inserting a sequence s1, . . . , sn of line
segments (possibly rays or lines), such that each inserted segment si splits a face
of the current subdivision Si−1 into two new faces yielding a new subdivision Si.
We start with one unbounded face S0, which is the entire plane.

As the example in Figure 2(b) shows, a guillotine subdivision with n segments
can require 2(n−2)/3 0-transmitters. In this section, we show that no guillotine
subdivision requires more than (n+1)/2 1-transmitters. We begin with a lemma:

Lemma 4. Let F be a face in a guillotine subdivision S. If there are 1-transmitters
on every face that shares an edge with F then these 1-transmitters see all of F .

Proof. Consider the segment si whose insertion created the face F . Before the
insertion of si, the subdivision Si−1 contained a convex face that was split by
si into two faces F and F ′ (Figure 3(a)). No further segments were inserted
into F , but F ′ may have been further subdivided, so that there are now several
faces F ′

1, . . . , F
′
k, with F ′

j ⊆ F ′ and F ′
j incident on si for all j ∈ {1, . . . , k}

(Figure 3(b)).

F ′

F

si

F

F ′
1

F ′
2 F ′

3
F ′

4

F̃ ′
1

F̃ ′
2

F̃ ′
3

F̃ ′
4

(a) (b) (c) (d)

Fig. 3. The proof of Lemma 4

We claim that the 1-transmitters in F ′
1, . . . , F

′
k guard the interior of F . To see

this, imagine removing si from the subdivision and instead, constructing a guil-
lotine subdivision S̃ from the sequence s1, . . . , si−1, si+1, . . . , sn (Figure 3(c)).
In this case, each face F ′

j in S becomes a larger face F̃ ′
j in S̃ and together⋃k

j=1 F̃ ′
j ⊇ F . Finally, we observe that each 1-transmitter in S in face F ′

j guards
at least F̃ ′

j , so together, the 1-transmitters in F ′
1, . . . , F

′
k guard all of F (Fig-

ure 3(d)). ��

Theorem 3. Any guillotine subdivision can be guarded with at most (n + 1)/2
1-transmitters.

Proof. Consider the dual graph T of the subdivision. T is a triangulation with
n + 1 vertices. Let M be any maximal matching in T . Consider the unmatched

8 B. Ballinger et al.

vertices of T . Each such vertex is adjacent only to matched vertices (otherwise M
would not be maximal). Let G be the set of 1-transmitters obtained by placing a
single 1-transmitter on the primal edge associated with each edge e ∈M . Then
|G| = |M | ≤ (n + 1)/2. For every face F of S, F either contains a 1-transmitter
in G, or all faces that share an edge with F contain a 1-transmitter in G. In the
former case, F is obviously guarded. In the latter case, Lemma 4 ensures that
F is guarded. Therefore, G is a set of 1-transmitters that guards all faces of F
and has size at most (n + 1)/2. ��

2.3 Nested Convex Polygons

The problems analyzed in this section are essentially two:

1. How many 2-transmitters are always sufficient (and sometimes necessary) to
cover the edges of a set of nested convex polygons?

2. How many 2-transmitters are always sufficient (and sometimes necessary) to
cover the plane in the presence of a set of nested convex polygons?

Henceforth, we use the bounding box of a polygon to refer to the smallest axis-
parallel rectangle containing the polygon.

Some notation. We call a set of k convex polygons {P1, P2, . . . , Pk} nested
if P1 ⊇ P2 ⊇ · · · ⊇ Pk. The total number of vertices of the set of polygons
{P1, P2, . . . , Pk} is n.

Given such a set, we use the term layers for the boundaries of the polygons
and rings for the portions of the plane between layers, i.e., the the i-th ring is
Ri = Pi − Pi+1, for i = 1, . . . , k − 1. In addition, R0 = R− P1 and Rk = Pk.

We assume that vertices on each layer have labels with indices increasing
counterclockwise. Given a vertex vj ∈ Pi, we call the positive angle ∠vj−1vjvj+1
its external visibility angle. (Positive angles are measured counterclockwise, and
negative angles are measured clockwise.) Its internal visibility angle is the neg-
ative angle ∠vj−1vjvj+1.

Lemma 5. Placing a 2-transmitter at every other vertex in a given layer i guar-
antees to completely cover layers i− 3, i− 2, i− 1 and i, as well as rings i− 3,
i− 2 and i− 1.

Proof. The fact that layer i is covered is obvious. As for the previous layers,
notice that the convexity of Pi guarantees that the external visibility angles of
any vertex pair vj and vj+2 overlap, as illustrated in Figure 4(a). Since vj ∈
Pi ⊆ Pi−1 ⊆ Pi−2 ⊆ Pi−3 and the polygons are convex, all rays from vj within
its external visibility angle traverse exactly two segments before reaching layer
i− 3. ��

Lemma 6. Placing a 2-transmitter at each vertex of a given layer i guarantees
to completely cover layers i− 3, i− 2, i− 1, i, i + 1, i + 2 and i + 3, as well as
rings i− 3, i− 2, i− 1, i, i + 1 and i + 2.

Coverage with k-Transmitters in the Presence of Obstacles 9

j+2vjv

j+2vjv
j+2vjv

(a) (b) (c)

Fig. 4. (a) External visibility angles of two vertices vj , vj+2 of layer i. Only layers i−3,

i − 2, i − 1 and i are shown. (b) External and internal visibility from a 2-transmitter

located in a vertex of layer i. Only layers i− 3, i − 2, i − 1, i, i + 1, i + 2 and i + 3 are

shown. (c) The shaded region is not covered by the 2-transmitters located at the red

vertices. Only the three involved layers are shown.

Proof. The fact that layers i− 3, i− 2, i− 1, i and rings i− 3, i− 2 and i− 1
are covered is a consequence of Lemma 5. As for the remaining layers and rings,
notice that, in the internal visibility angle of a 2-transmitter vj ∈ Pi, visibility
is determined by the supporting lines from vj to layers i + 1, i + 2 and i + 3, as
illustrated in Figure 4(b). Having a 2-transmitter on each of the vertices of layer
i, combined with the fact that all polygons are convex, guarantees total covering
of layers i + 1, i + 2 and i + 3 and rings i, i + 1 and i + 2. ��

Theorem 4. �n
7 �+ 5 2-transmitters are always sufficient to cover the edges of

any nested set of convex polygons with a total of n vertices.

Proof. If the number of layers is k ∈ {1, 2, 3, 4, 5, 6}, five 2-transmitters trivially
suffice: one in the interior of Pk and the other four at the corners of the bounding
box of P1. If k ≥ 7, from the pigeonhole principle one of i ∈ {1, 2, 3, 4, 5, 6, 7}
is such that the set G = {Pj | j ∈ {1, . . . , k}, j ≡ i(mod 7)} has no more
than �n

7 � vertices. Place one 2-transmitter at each vertex of each Pj ∈ G. From
Lemma 6, for a certain value of m ∈ Z all edges in the following layers are
covered: i− 3, i− 2, i− 1 (if they exist), i, . . . , i + 7m, i + 7m + 1, i + 7m + 2 and
i + 7m + 3 (if they exist). In the worst case, the only layers that may remain
uncovered are 1, 2 and 3, as well as k− 2, k− 1 and k. Because of the convexity
of the polygons, four 2-transmitters conveniently located at the corners of the
bounding box of P1, and one 2-transmitter located in the interior of Pk, can take
care of covering these remaining layers. The total number of 2-transmitters used
is at most �n

7 �+ 5. ��

The transmitter placement from Theorem 4 guarantees that all edges are covered,
while some rings remain uncovered.

Theorem 5. �n
6 �+ 3 2-transmitters are always sufficient to cover the plane in

the presence of any nested set of convex polygons with a total of n vertices.

Proof. The proof is similar to Theorem 4, but locating the 2-transmitters at all
vertices of every 6th layer (as opposed to every 7th layer in Theorem 4). ��

10 B. Ballinger et al.

u1

u2

u3

u4u5

u1

u2

u3

u4u5

(a) (b)

Fig. 5. (a) �n
8
� 2-transmitters are necessary to cover the edges of these four nested

convex layers. (b) �n
8
� 2-transmitters are necessary to cover the edges of this spirangle

polygon.

Lemma 7. �n
8 � 2-transmitters are sometimes necessary to cover the plane in

the presence of any nested set of convex polygons with a total of n vertices.

Proof. This lower bound is established by the example from Figure 5, which
shows four nested regular t-gons, with t even (so n = 4t). Consider the set
S of midpoints of alternating edges of the outermost convex layer (marked ui

in Figure 5). The gap between adjacent layers controls the size of the visibility
regions of the points in S (by symmetry, all visibility regions have identical size).
A small enough gap guarantees that the visibility regions of the points in S are
all disjoint, as illustrated in Figure 5. This means that at least t/2 2-transmitters
are necessary to cover all points in S (one transmitter in the visibility region
of each point). So the number of 2-transmitters necessary to cover all edges is
t/2 = n/8. ��

Lemmas 8 and 9 establish improved upper bounds for the case when all layers
(convex polygons) have an even number of vertices. Due to space constraints,
we omit the proofs of these lemmas.

Lemma 8. �n/8�+ 1 2-transmitters are always sufficient to cover the edges of
any nested set of convex polygons with a total of n vertices, if each of the polygons
has an even number of vertices.

Lemma 9. �n
6 �+1 2-transmitters are always sufficient to cover the plane in the

presence of any nested set of convex polygons with a total of n vertices, if each
of the polygons has an even number of vertices.

Coverage with k-Transmitters in the Presence of Obstacles 11

3 Coverage of Simple Polygons

This section addresses the problem of covering a polygonal region P with 2-
transmitters placed interior to P . Therefore, when we talk about a vertex or an
edge transmitter, the implicit assumption is that the transmitter is placed just
inside the polygonal region, and so must penetrate one wall to reach the exterior.
Our construction places a small (constant) number of transmitters outside P ,
but still within the bounding box for P .

3.1 Lower Bounds for Covering Polygons

Theorem 6. There are simple polygons that require at least n
6 2-transmitters to

cover when transmitters are restricted to the interior of the polygon.

Proof. Figure 6 shows the construction for a n = 36 vertex polygon, which gener-
alizes to n = 6m, for any m ≥ 2. It is a pinwheel whose n/3 arms alternate between
spikes and barbs. Consider an interior point p at the tip of a barb. The locus of all
interior points from which a 2-transmitter can cover p includes the spike counter-
clockwise from the barb, the barb containing p, and a small section of the pinwheel
center. This region is shown shaded for the point p labeled in Figure 6. Observe
that this shaded region is disjoint from the analogous regions associated with the
other barb tips. Hence no two barb tips can be covered by the same 2-transmitter.
Since there are n/6 barbs, the lower bound is obtained. ��

3.2 Spirangles

Two edges are homothetic if one edge is a scaled and translated image of the
other. A t-spirangle is a polygonal chain A = a1, a2, ..., am that spirals inward
about a center point such that every t edges it completes a 2π turn, and each
edge pair aiai+1, ai+tai+1+t is homethetic, for 1 ≤ i ≤ m − t. We assume that

p p

Fig. 6. A family of polygons requiring at least n/6 interior 2-transmitters to cover. For

labeled point p located in the tip of a barb (shown magnified on the right with the

arms shortened), the locus of all interior points from which a 2-transmitter can cover

p is shown shaded.

12 B. Ballinger et al.

the spiral direction is clockwise. A t-sided convex polygon may be thought of as
generating a family of t-spirangles where the ith edge of each spirangle is parallel
to the (i mod t)th edge of the polygon, for i = 0, 1, 2, See Figure 7(a) for a
4-spirangle example and a polygon generating it.

A homothetic t-spirangle polygon P is a simple polygon whose boundary con-
sists of two nested t-spirangles A = a1, a2, ..., am and B = b1, b2, ..., bm generated
by the same t-sided convex polygon, plus two additional edges a1b1 and ambm

joining their endpoints. We assume that chain B is nested inside of chain A, as
shown in Figure 7(b). We refer to A as the convex chain and B as the reflex
chain in reference to the type of vertices found on each.

a1

a2

a3

a4

a5

a6

(a)

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a = b0 1

b2

b3

b4

b5

b6

b7
b8

b9

b10

12b = a11

(b)

a7

a8

a9

a10

a11

a6

Fig. 7. Definitions (a) A 4-spirangle and corresponding convex polygon (b) Edge-

homothetic spiral polygon (left) and quadrilaterals entirely visible to a6 (right)

Property 1. Let P be a homothetic spirangle polygon, composed of a convex
spirangle A = a1, a2, . . ., and a reflex spirangle B = b1, b2, Then ai and bi

see each other, and the set of diagonals {aibi | i = 1, 2, . . .}, induces a partition
of P into quadrilaterals. Furthermore, the visibility region of ai includes six
quadrilaterals: two quadrilaterals adjacent to ai−tbi−t, two adjacent to aibi, and
two adjacent to ai+tbi+t. See right of Figure 7(b).

Theorem 7. �n
8 � 2-transmitters are sufficient, and sometimes necessary, to

cover a homothetic t-spirangle polygon P with n vertices.

Proof. The algorithm that places transmitters at vertices of P to cover the in-
terior of P is fairly simple, and is outlined in Table 1.

The proof that this algorithm covers the interior of P is fairly intuitive. Due to
space constraints, we omit this proof. The fact that the �n

8 � bound is tight is
established by the spirangle polygon example from Figure 5(b), and the argu-
ments are similar to the one used in the proof of Lemma 7. The example from
Figure 5(b) depicts a worst-case scenario, in which transmitters do not get the
chance to use their full coverage potential, since the total turn angle of the spi-
rangle is between 2π and 6π. ��

Coverage with k-Transmitters in the Presence of Obstacles 13

Table 1. Covering the interior of a homothetic spirangle polygon with 2-transmitters

Homothetic t-Spirangle Polygon Cover(P)

Let A = a1, a2, . . . am be the convex spirangle of P , with a1 outermost.

Let B = b1, b2, . . . bm be the reflex spirangle of P .

1. If m ≤ t + 2 (or equivalently, the total turn angle of A is ≤ 2π):

Place one transmitter at am, and return (see Figure 8a).

2. Place the first transmitter at vertex at+2 (see a7 in Figure 8b).

3. Starting at at+2, place transmitters at every other vertex of A, up to a2t+1

(i.e., for a 2π turn angle of A, but excluding a2t+2).

4. Let aj be the vertex hosting the last transmitter placed in step 3.

(j = 2t + 1 for t odd, j = 2t for t even.)

Let P1 be the subpolygon of P induced by vertices a1, . . . , aj+t+1 and

b1, . . . , bj+t+1 (shaded left of Figure 8b.)

Recurse on P \ P1: Homothetic t-Spirangle Polygon Cover(P \ P1).

3.3 Arbitrary Spirals

A spiral polygon P consists of a clockwise convex chain and a clockwise reflex
chain that meet at their endpoints. A trivial �n

4 � upper bound for the number
of 2-transmitters that are sufficient to cover P can be obtained as follows. Pick
the chain Γ of P with fewer vertices (i.e., Γ is the reflex chain of P , if the
number of reflex vertices exceeds the number of convex vertices, and the convex
chain of P otherwise). Then simply place one vertex 2-transmitter at every other
vertex of Γ . By definition, the visibility ray from one 2-transmitter can cross the
boundary of P at most twice. Note however that, even under the restriction
that transmitters be placed interior of P , the visibility ray of one transmitter
can leave and re-enter P , as depicted in Fig. 9(a) for transmitter labeled a.
Then arguments similar to the ones used in Lemma 5 show that the union of
the external visibility angles of all these 2-transmitters cover the entire plane.
So we have the following result:

Lemma 10. �n
4 � 2-transmitters placed interior to an arbitrary polygonal spiral

P are sufficient to cover P (in fact, the entire plane).

We remark on two special situations. In the case of transmitters placed at every
other reflex vertex of P , 0-transmitters are sufficient to cover the interior of P ,
and 1-transmitters are sufficient to cover the entire plane. In the case of trans-
mitters placed at every other convex vertex of P , 1-transmitters are sufficient to
cover P , if they are placed outside of P .

An improved upper bound can be established for non-degenerate spirals, which
we define as spirals in which each 2π-turn of each of the convex and reflex chain
of P is homothetic to a convex polygon (i.e., it contains at least 3 vertices). The
result (whose proof we omit due to space restrictions) is as follows.

14 B. Ballinger et al.

(c)

a7

a1

a2

a7

a16
a9

a11

a17

(a)

a7

a1

a2

a1

a6

a8

(d)

a2

a1

a11

a4

a6

a7

(b)

a9

a2

a7

Fig. 8. Covering spirangles with 2-transmitters. (a) A t-spirangle (t = 5) with 2t + 4

edges covered with one transmitter. (b) A t-spirangle (t = 5) with 8t edges. (c) A t-
spirangle (t = 5) with 6t + 4 edges covered with t/2 + 1 transmitters. (d) A t-spirangle

(t = 4) with 6t edges covered with t/2 transmitters.

R0

R1

R2

(b) (c)

a

b

c

a

b

c

d
split ray

(a)

a

split ray

Fig. 9. Transmitters marked with small circles (a) Visibility angle of a (b) The dark

area is not covered by a or b (c) P is covered

Lemma 11. Let P be a polygonal spiral whose every 2π turn chain has at least
3 vertices. Then � 2n

9 � + 1 2-transmitters placed interior to P are sufficient to
cover the interior of P (in fact, the entire plane).

4 Conclusion

In this paper we study the problem of covering (“guarding”) a target region in
the plane with k-transmitters, in the presence of obstacles. We develop lower
and upper bounds for the problem instance in which the target region is the
plane, and the obstacles are lines and line segments, a guillotine subdivision, or
nested convex polygons. We also develop lower and upper bounds for the problem
instance in which the target region is the set of rings created by nested convex
polygons, or the interior of a spiral polygon. Our work leaves open two main
problems: (i) closing the gap between the �n

8 � lower bound and the �n
6 � upper

bound in the case of nested convex layers, and (ii) closing the gap between the

Coverage with k-Transmitters in the Presence of Obstacles 15

�n
8 � lower bound and the �n

4 � upper bound for spiral polygons. Investigating the
k-transmitter problem for other classes of polygons (such as orthogonal polygons)
also remains open.

Acknowledgement. We thank Joseph O’Rourke for the pinwheel example from
Fig. 6 and for initiating this line of work.

References

1. Aichholzer, O., Aurenhammer, F., Hurtado, F., Ramos, P., Urrutia, J.: k-convex

polygons. In: EuroCG, pp. 117–120 (2009)

2. Aichholzer, O., Fabila-Monroy, R., Flores-Pealoza, D., Hackl, T., Huemer, C., Ur-

rutia, J., Vogtenhuber, B.: Modem illumination of monotone polygons. In: EuroCG

(2009)

3. Borodin, O.: A new proof of the 6 color theorem. Journal of Graph Theory 19(4),

507–521 (1995)

4. Christ, T., Hoffmann, M., Okamoto, Y., Uno, T.: Improved bounds for wireless

localization. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 77–89.

Springer, Heidelberg (2008)

5. Chvátal, V.: A combinatorial theorem in plane geometry. Journal of Combinatorial

Theory Series B 18, 39–41 (1975)

6. Czyzowicz, J., Rivera-Campo, E., Santoro, N., Urrutia, J., Zaks, J.: Guarding rect-

angular art galleries. Discrete Applied Math. 50, 149–157 (1994)

7. Damian, M., Flatland, R., O’Rourke, J., Ramaswami, S.: A new lower bound on

guard placement for wireless localization. In: Proc. of the 17th Fall Workshop on

Computational Geometry, FWCG 2007, pp. 21–24 (November 2007)

8. Dean, A.M., Evans, W., Gethner, E., Laison, J., Safari, M.A., Trotter, W.T.: Bar k-

visibility graphs: Bounds on the number of edges, chromatic number, and thickness.

In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 73–82. Springer,

Heidelberg (2005)

9. Eppstein, D., Goodrich, M.T., Sitchinava, N.: Guard placement for efficient point-

in-polygon proofs. In: SoCG, pp. 27–36 (2007)

10. Fabila-Monroy, R., Vargas, A.R., Urrutia, J.: On modem illumination problems.

In: XIII Encuentros de Geometria Computacional, Zaragoza, Spain (June 2009)

11. Felsner, S., Massow, M.: Parameters of bar k-visibility graphs. Journal of Graph

Algorithms and Applications 12(1), 5–27 (2008)

12. Fulek, R., Holmsen, A.F., Pach, J.: Intersecting convex sets by rays. Discrete Com-

put. Geom. 42(3), 343–358 (2009)

13. Hartke, S.G., Vandenbussche, J., Wenger, P.: Further results on bar k-visibility

graphs. SIAM Journal of Discrete Mathematics 21(2), 523–531 (2007)

14. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE

Trans. Inf. Theor. 32(2), 276–282 (1986)

15. O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press, Inc.,

New York (1987)

16. Urrutia, J.: Art gallery and illumination problems. In: Sack, J.-R., Urrutia, J. (eds.)

Handbook of Computational Geometry, pp. 973–1027. North-Holland, Amsterdam

(2000)

On Symbolic OBDD-Based Algorithms for
the Minimum Spanning Tree Problem

Beate Bollig

LS2 Informatik, TU Dortmund,

44221 Dortmund, Germany

Abstract. The minimum spanning tree problem is one of the most fun-

damental algorithmic graph problems and OBDDs are a very common

dynamic data structure for Boolean functions. Since in some applications

graphs become larger and larger, a research branch has emerged which is

concerned with the design and analysis of so-called symbolic algorithms

for classical graph problems on OBDD-represented graph instances. Here,

a symbolic minimum spanning tree algorithm using O(log3 |V |) func-

tional operations is presented, where V is the set of vertices of the in-

put graph. Furthermore, answering an open problem posed by Sawitzki

(2006) it is shown that every symbolic OBDD-based algorithm for the

minimum spanning tree problem needs exponential space (with respect

to the OBDD size of the input graph). This result even holds for planar

input graphs.

Keywords: minimum spanning tree algorithms, ordered binary decision

diagrams, symbolic algorithms.

1 Introduction

A spanning tree of a connected undirected graph G with real edge weights is a
minimum spanning tree if its weights, i.e., the total weight of its edges, is min-
imal among all total weights of spanning trees of G. Constructing a minimum
spanning tree is a well-known fundamental problem in network analysis with
numerous applications. Besides the importance of the problem in its own right,
the problem arises in solutions of other problems (see, e.g., [19] for a nice survey
on results from the earliest known algorithm of Bor̊uvka [8] to the invention
of Fibonacci heaps and [2] for a survey and empirical study on various mini-
mum spanning tree algorithms). Since modern applications require huge graphs,
explicit representations by adjacency matrices or adjacency lists may cause con-
flicts with memory limitations and even polynomial time algorithms seem not
to be applicable any more. As time and space resources do not suffice to con-
sider individual vertices, one way out seems to be to deal with sets of vertices
and edges represented by their characteristic functions. Ordered binary decision
diagrams, denoted OBDDs, introduced by Bryant in 1986 [10], are well suited
for the representation and manipulation of Boolean functions, therefore, a re-
search branch has emerged which is concerned with the design and analysis of

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 16–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Symbolic OBDD-Based Algorithms 17

so-called symbolic algorithms for classical graph problems on OBDD-represented
graph instances (see, e.g., [17, 18], [20], [27], [28, 29], and [33]). Symbolic algo-
rithms have to solve problems on a given graph instance by efficient functional
operations offered by the OBDD data structure.

Representing graphs with regularities by means of data structures smaller than
adjacency matrices or adjacency lists seems to be a natural idea. In [1, 16, 25] it
has been shown that problems typically get harder when their input is implicitly
represented by circuits. Since there are Boolean functions like some output bits
of integer multiplication whose OBDD complexity is exponentially larger than
its circuit size [3, 11], these results do not directly carry over to problems on
OBDD-represented inputs. However, in [14] it has been shown that even the
very basic problem of deciding whether two vertices s and t are connected in a
directed graph G, the so-called graph accessibility problem GAP, is PSPACE-
complete on OBDD-represented graphs. Nevertheless, OBDD-based algorithms
are successful in many applications and already in [14] it has been pointed out
that worst-case hardness results do not adequately capture the complexity of
the problems on real-world instances. Therefore, one aim is to find precise char-
acterizations of the special cases that can be solved efficiently and on the other
hand to find simple instances that are hard to process. In [28] exponential lower
bounds on the space complexity of OBDD-based algorithms for the single-source
shortest paths problem, the maximum flow problem, and a restricted class of al-
gorithms for the reachability problem have been presented. Recently, a general
exponential lower bound on the space complexity of OBDD-based algorithms for
the reachability problem and exponential lower bounds on the space complexity
of symbolic algorithms for the maximum matching and the maxflow problem in
0-1-networks have been shown [4–6]. The results are not very astonishing but
the proofs present worst-case examples which could be helpful to realize which
cases are difficult to process. Due to the problem’s rich area of applications the
minimum spanning tree problem has received a considerable amount of attention
for explicit graph representations. The best currently known upper bound on the
complexity of the minimum spanning tree problem in the explicit setting was
established in [12], where an algorithm that runs on input G = (V, E) in time
O(|E|α(|E| · |V |)) has been presented. Here, α is the inverse of the Ackermann
function. In [26] an optimal algorithm has been given but nothing better than
O(|E|α(|E| · |V |)) is known about the running time. An expected linear time
algorithm has been shown in [22]. For restricted graph classes problems could
be easier and for the explicit setting already in [13] a linear time algorithm for
minimum spanning trees on planar graphs has been shown.

Here, answering an open question posed by Sawitzki (see Table 1, page 785
in [28]), we prove that OBDD-based representations of (unique) minimum span-
ning trees can be exponentially larger than the OBDD representation of the
input graph even if the input graph is planar. Despite the exponential blow-up
from input to output size in the implicit setting, it is still possible that there
exists an OBDD-based algorithm that solve the minimum spanning tree problem
polynomially with respect to the number of vertices of the input graph and often

18 B. Bollig

with sublinear space. In the paper we present a symbolic algorithm that uses a
polylogarithmic number of functional operations with respect to the number of
vertices of the input graph.

The paper is organized as follows. In Section 2 we define some notation and
review some basics concerning OBDDs, symbolic graph representations, graphs,
and the minimum spanning tree problem. Section 3 contains a symbolic minimum
spanning tree algorithm that uses O(log3 |V |) OBDD-operations, where V is
the set of vertices of the input graph. Afterwards, in Section 4 we show that
symbolic OBDD-based algorithms for the minimum spanning tree problem need
exponential space with respect to the size of the implicit representation of the
input graph even if the graph is planar. Here, we do not introduce a new lower
bound method in order to prove the exponential lower bound on the implicit
representation of the minimum spanning tree but the merit of the result is the
presentation of a very simple input graph for which an exponential blow-up
from input to output size can be shown. Finally, we finish the paper with some
concluding remarks.

2 Preliminaries

In order to make the paper self-contained we briefly recall the main notions we
are dealing with in this paper.

2.1 Ordered Binary Decision Diagrams

When working with Boolean functions as in circuit verification, synthesis, and
model checking, ordered binary decision diagrams are one of the most often used
data structures supporting all fundamental operations on Boolean functions, like
binary operators, quantifications or satisfiability tests, efficiently. (For a history
of results on binary decision diagrams see, e.g., the monograph of Wegener [32]).

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable
ordering π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.

In the following a variable ordering π is sometimes identified with the corre-
sponding ordering xπ(1), . . . , xπ(n) of the variables if the meaning is clear from
the context.

Definition 2. A π-OBDD on Xn is a directed acyclic graph G = (V, E) whose
sinks are labeled by the Boolean constants 0 and 1 and whose non-sink (or de-
cision) nodes are labeled by Boolean variables from Xn. Each decision node has
two outgoing edges one labeled by 0 and the other by 1. The edges between deci-
sion nodes have to respect the variable ordering π, i.e., if an edge leads from an
xi-node to an xj-node, then π−1(i) ≤ π−1(j) (xi precedes xj in xπ(1), . . . , xπ(n)).
Each node v represents a Boolean function fv ∈ Bn, i.e., fv : {0, 1}n → {0, 1},
defined in the following way. In order to evaluate fv(b), b ∈ {0, 1}n, start at v.

On Symbolic OBDD-Based Algorithms 19

After reaching an xi-node choose the outgoing edge with label bi until a sink
is reached. The label of this sink defines fv(b). The width of a π-OBDD is the
maximum number of nodes labeled by the same variable. The size of a π-OBDD
G is equal to the number of its nodes and the π-OBDD size of a function f is the
size of the minimal π-OBDD representing f . The π-OBDD of minimal size for
a given function f is unique up to isomorphism. A π-OBDD is called reduced,
if it is the minimal π-OBDD.

Let g be a Boolean function on the variables x1, . . . , xn. The subfunction g|xi=c,
1 ≤ i ≤ n and c ∈ {0, 1}, is defined as g(x1, . . . , xi−1, c, xi+1, . . . , xn). It is
well known that the size of an OBDD representing a function f that depends
essentially on n Boolean variables (a function g depends essentially on a Boolean
variable z if g|z=0 �= g|z=1) may be different for different variable orderings and
may vary between linear and exponential size with respect to n.

Definition 3. The OBDD size or OBDD complexity of f is the minimum of
all π-OBDD(f).

The size of the reduced π-OBDD representing f is described by the following
structure theorem [30].

Theorem 1. The number of xπ(i)-nodes of the minimal π-OBDD for f is the
number si of different subfunctions f|xπ(1)=a1,...,xπ(i−1)=ai−1 , a1, . . . , ai−1 ∈ {0, 1},
that essentially depend on xπ(i).

Theorem 1 implies the following simple observation which is helpful in order to
prove lower bounds. Given an arbitrary variable ordering π the number of nodes
labeled by a variable x in the reduced π-OBDD representing a given function f
is not smaller than the number of x-nodes in a reduced π-OBDD representing
any subfunction of f .

Now, we briefly describe a list of important operations on data structures for
Boolean functions and the corresponding time and additional space requirements
for OBDDs (for a detailed discussion see, e.g., [32]). In the following let f and g
be Boolean functions in Bn on the variable set Xn = {x1, . . . , xn} and Gf and
Gg be π-OBDDs for the representations of f and g, respectively.

– Evaluation: Given Gf and an input b ∈ {0, 1}n, compute f(b). This can be
done in time O(n).

– Replacements by constants: Given Gf , an index i ∈ {1, . . . , n}, and a Boolean
constant ci ∈ {0, 1}, compute a π-OBDD for the subfunction f|xi=ci

. This
can be done in time O(|Gf |) and the π-OBDD for f|xi=ci

is not larger than
Gf .

– Equality test: Given Gf and Gg, decide, whether f and g are equal. This
can be done in time O(|Gf |+ |Gg|).

– Satisfiability count: Given Gf , compute |f−1(1)|. This can be done in time
O(|Gf |).

20 B. Bollig

– Synthesis: Given Gf and Gg and a binary Boolean operation ⊗ ∈ B2, com-
pute a π-OBDD Gh for the function h ∈ Bn defined as h := f ⊗ g. This can
be done in time and space O(|Gf | · |Gg|) and the size of Gh is bounded above
by O(|Gf | · |Gg|).

– Quantification: Given Gf , an index i ∈ {1, . . . , n}, and a quantifier Q ∈
{∃, ∀}, compute a π-OBDD Gh for the function h ∈ Bn defined as h :=
(Qxi)f , where (∃xi)f := f|xi=0 ∨ f|xi=1 and (∀xi)f := f|xi=0 ∧ f|xi=1. The
computation of Gh can be realized by two replacements of constants and a
synthesis operation. This can be done in time and space O(|Gf |2).

In the rest of the paper quantifications over k Boolean variables (Qx1, . . . , xk)f
are denoted by (Qx)f , where x = (x1, . . . , xk).

2.2 Symbolic OBDD-Based Graph Representations and the
Minimum Spanning Tree Problem

In the following for z = (zn−1, . . . , z0) ∈ {0, 1}n let |z| :=
∑n−1

i=0 zi2i. Let G =
(V, E) be a graph with N vertices v0, . . . vN−1. The edge set E can be represented
by an OBDD for its characteristic function, where

XE(x, y) = 1⇔ (|x|, |y| < N) ∧ (v|x|, v|y|) ∈ E, x, y ∈ {0, 1}n and n = �log N�.

If G is a weighted graph, i.e., there exists a function c : E → {1, . . . , B}, where
B is the maximum weight, the definition of the characteristic function of G’s
edge set is extended by XE(x, y, d) = 1⇔ (v|x|, v|y|) ∈ E ∧ c(v|x|, v|y|) = |d|+ 1,
d = (d0, . . . , d�log B�−1). Undirected edges are represented by symmetric directed
ones. In the rest of the paper we assume that B and N are powers of 2 since
it has no bearing on the essence of our results. It is well known that for every
variable ordering π the size of the reduced π-OBDD for a given function f ∈ Bn

is upper bounded by (2 + o(1))2n/n (see, e.g., [9]). Moreover, it is not difficult
to prove that the size is also upper bounded by O(n · |f−1(1)|). Therefore, the
characteristic function XE of an edge set E ⊆ V × V can be represented by
OBDDs of size O(min(|V |2/ log |V |, |E| log |V |)).

By simple counting arguments it is easy to see that almost all graphs on N
vertices cannot be represented by OBDDs of polylogarithmic size with respect
to N . On the other hand, it is quite obvious that very simply structured graphs,
e.g., grid graphs, have a small OBDD representation. Therefore, in [23, 24] the
question has been investigated whether succinct OBDD representations can be
found for significant graph classes. OBDD-represented graphs on N vertices are
typically only defined on log N Boolean variables in comparison to other implicit
graph representations where at least c log N bits for some constant c > 1 are al-
lowed [21, 31]. One of the reasons is that the number of variables of intermediate
OBDDs during the computation of a symbolic algorithm can be seen as a per-
formance parameter. Multiplying the number of variables on which a function
essentially depends by a constant c enlarges the worst-case OBDD size asymp-
totically from S to Sc. (See, e.g., [15] for the importance to keep the number of
variables as low as possible.)

On Symbolic OBDD-Based Algorithms 21

A graph is called planar if it can be drawn in the plane so that its edges
intersect only at their ends. A sequence of vertices vi1 , . . . , vik

is said to be a
path from u to w of length k − 1 in an unweighted graph G = (V, E), u, w ∈ V ,
if vi1 = u, vik

= w, and (vij , vij+1) ∈ E, j ∈ {0, . . . , k− 1}. Given two vertices u
and w in V , we say that u reaches w, if there exists a path from u to w in G. The
distance between two vertices u and w in G is the number of vertices minus 1 on
a shortest paths from u to w in G. The diameter of G is the maximum distance
on all vertex pairs in G. For an edge weighted graph we define the diameter
in a similar way (using the assumption that each edge in G has weight 1). A
connected component CC in G is a subgraph in G in which for any two vertices
there exists a path from one vertex to the other one and no more vertices or
edges (from G) can be added while preserving its connectivity. In other words
CC is a maximal connected subgraph. A spanning tree in G is a subgraph in G
that contains all vertices in V and is a tree. A minimum spanning tree (MST) of
an undirected weighted graph G = (V, E) is a minimum total weight subset of E
that forms a spanning tree of G. In the symbolic setting the MST problem is the
following one. Given an OBDD for the characteristic function of the edge set of
an undirected weighted input graph G, the output is an OBDD that represents
the characteristic function of a minimum spanning tree in G. In order to obtain
small size representations, we may distinguish the problem to represent only the
edges or the weighted edges of a minimum spanning tree symbolically. The proof
of Theorem 2 in Section 4 works for both.

3 A Symbolic Minimum Spanning Tree Algorithm

Here, we present a symbolic OBDD-based algorithm for the minimum spanning
tree problem. Given an implicitly represented edge weighted graph G = (V, E, d)
the task is to compute an implicit representation for a minimum spanning tree
in G. The idea is to use Bor̊uvka’s well-known algorithm for the computation of
minimum spanning trees on explicitly defined input graphs and to adapt it to
the implicit setting. Since symbolic algorithms have to deal with sets of vertices
and edges in order to save time and space, we deal with a parallel variant of
Bor̊uvka’s algorithm. Although we assume that the reader is quite familiar with
Bor̊uvka’s algorithm, we briefly recall the method in the following.

The edges of a minimum spanning tree in G are iteratively computed. We
start with an empty set of edges. Each vertex v ∈ G can be seen as a connected
component of size 1 with respect to the edges already computed for the mini-
mum spanning tree. In each iteration for each connected component Ci the edge
with the smallest weight with respect to the remaining edges incident to an-
other different connected component C′

i is parallel computed. If such an edge is
not unique, we choose for every connected component an edge in an appropriate
way. The chosen edges are added to the already computed edges of the minimum
spanning tree. Afterwards, the computation of the connected components with

22 B. Bollig

respect to the edges already computed for the minimum spanning tree is updated.
The computation terminates if there is only one connected component. The
correctness of this method follows directly from the correctness of Bor̊uvka’s
algorithm.

Since sometimes we have to choose an edge out of a given set of edges, we
define an ordering < on the Boolean encoding of edges of a given graph. For
(x, y, d), (x′, y′, d′) ∈ X−1

E (1) we define (d, x, y) < (d′, x′, y′) iff one of the follow-
ing requirements is fulfilled:

– |d| < |d′|,
– |d| = |d′| and min(|x|, |y|) < min(|x′|, |y′|), or
– |d| = |d′|, min(|x|, |y|) = min(|x′|, |y′|), and max(|x|, |y|) < max(|x′|, |y′|).

The ordering of the edges can easily be described by a Boolean function Pn in the
following way: Pn((x, y, d), (x′, y′, d′)) = 1 ⇔ (x, y, d) < (x′, y′, d′). Note, that
the function Pn is defined on all Boolean inputs not only on ((x, y, d), (x′, y′, d′)),
where (x, y, d), (x′, y′, d′) ∈ X−1

E (1). It is not difficult to show that Pn can be
represented by OBDDs of constant width 9 and therefore linear size with respect
to the variable ordering

dlog B−1, d
′
log B−1, . . . , d0, d

′
0, xn−1, x

′
n−1, yn−1, y

′
n−1 . . . , x0, x

′
0, y0, y

′
0.

Next, we present a well-known algorithm for the problem transitive closure, the
problem to compute an OBDD representing all connected vertex pairs for a
graph symbolically represented by an OBDD. The algorithm uses the method of
iterative squaring.

Algorithm findTransitiveClosure(XE(x, y, d))

(1) R(x, y)← (x = y) ∨ (∃d)XE(x, y, d)
(2) repeat
(3) R′(x, y)← R(x, y)
(4) R(x, y)← (∃z)(R′(x, z) ∧R′(z, y))
(5) until R(x, y) = R′(x, y)
(6) return R(x, y)

It is easy to see that the algorithm uses O(log2 |V |) = O(n2) functional oper-
ations. There are at most log |V | = n iterations since the diameter of each graph
on |V | vertices is at most |V |−1 and for each iteration O(log |V |) quantifications
are necessary.

Finally, we present our symbolic algorithm for the computation of a minimum
spanning tree in a given input graph.

On Symbolic OBDD-Based Algorithms 23

Algorithm findMinimumSpanningTree(XE(x, y, d))

(1) MST (x, y, d)← 0
(2) repeat
(3) R(x, y)← findTransitiveClosure(MST (x, y, d))
(4) C(x, y, d)← XE(x, y, d) ∧R(x, y)∧

(∃y′, z, d′(R(x, z) ∧ XE(z, y′, d′) ∧R(z, y′) ∧ Pn((d′, z, y′), (d, x, y))))
(5) C(x, y, d)← C(x, y, d) ∨ C(y, x, d)
(6) MST ′(x, y, d)←MST (x, y, d)
(7) MST (x, y, d)←MST ′(x, y, d) ∨ C(x, y, d)
(8) until MST (x, y, d) = MST ′(x, y, d)
(9) return MST (x, y, d)

In the explicit setting it is often a good idea to work with contracted graphs
during the computation of a graph algorithm, because the running time mostly
depends on the number of vertices and edges of the considered graph. In the
implicit setting the situation is different. The representation size for a subgraph
can be larger than the representation size for the graph as in Section 4 our worst-
case instance for the maximum spanning tree problem will show. Therefore, our
algorithm works in each iteration with XE(x, y, d).

Lemma 1. Given the characteristic function of the edge set of an undirected
weighted graph G = (V, E, c) the algorithm findMinimumSpanningTree computes
the characteristic function of a minimum spanning tree in G using O(log3 |V |)
functional operations.

Proof. At the beginning the set of already computed edges for the minimum
spanning tree is empty (1). In each iteration the transitive closure on the graph
of the already determined edges for the minimum spanning tree is computed, in
other words the connected components are determined and R(x, y) = 1, iff the
two vertices encoded by x and y belong to the same connected component. A
new edge (u, v) is added in (3), if the two vertices u and v do not already belong
to the same connected component and there exists no smaller edge according to
the ordering given by Pn that connect a vertex in the connected component C
of u to a vertex of another connected component C′, C �= C′. Since undirected
edges are represented by two directed ones, the set of the new computed edges
of the minimum spanning tree is updated in (4) and afterwards added to the set
of the already computed edges of the minimum spanning tree. The computation
stops if no new edge can be added because the minimum spanning tree is com-
plete. Altogether the correctness of the algorithm follows from the correctness
of Bor̊uvka’s algorithm.

Since in each iteration the number of connected components is at least halved,
the number of iterations is at most log |V |. Furthermore, in each iteration
there is a constant number of synthesis, negation, and equality operations and

24 B. Bollig

O(log |V |) quantifications. Moreover, there is an algorithm for the computa-
tion of the transitive closure on the graph of the already computed edges for
the minimum spanning tree. Summarizing the running time for the algorithm
findMinimumSpanningTree is O(log3 |V |). �

In [6] it has been shown that the problem transitive closure is not com-
putable in polynomial space with respect to the size of an implicitly defined
input graph. Nevertheless, the situation during the computation of the algo-
rithm findMinimumSpanningTree is a special one, since the input graphs for
findTransitiveClosure are trees and it could be that in this case the problem
is easier to solve. However, we will see in the next section that there can be an
exponential blow-up from input to output size for the minimum spanning tree
problem in the implicit setting.

4 On the Complexity of the Minimum Spanning Tree
Problem on OBDD-Represented Graphs

In this section we demonstrate that there can be an exponential blow-up from
input to output size for the minimum spanning tree problem even for planar
graphs in the symbolic setting.

Theorem 2. Symbolic OBDD-based algorithms for the minimum spanning tree
problem need exponential space with respect to the size of the implicit represen-
tation of the input graph even if the input graph is planar.

Proof. Our proof structure is the following one. First, we define a planar input
graph G = (V, E, c) for the minimum spanning tree problem. The size of the cor-
responding OBDD representation for the characteristic function of the weighted
edge set is polynomial with respect to the number of Boolean variables. After-
wards we prove that the symbolic OBDD representation of the unique minimum
spanning tree in G needs exponential space. Therefore, every OBDD-based algo-
rithm solving the minimum spanning tree problem needs exponential space with
respect to its input length. We start with the definition of a function which is
well known in the BDD literature.

Definition 4. The hidden weighted bit function HWBn : {0, 1}n → {0, 1} com-
putes the bit bsum on the input b = (b1, . . . , bn), where sum :=

∑n
i=1 bi and

b0 := 0.

Bryant [11] has introduced this function as a very simple version of a storage
access function, where each variable is control and data variable. He has also
already shown that the OBDD complexity of HWBn is Ω(2(1/5−ε)n) which has
been slightly improved up to Ω(2n/5) in [7].

1) The definition of the input graph G:

On Symbolic OBDD-Based Algorithms 25

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

n + 1

n + 1

n + 1

n + 1

n + 1

n + 1

n + 1

n + 1

n + 1

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
...

...

...

...

...

...

...

...

...

1

1

1

1

i

Fig. 1. The weighted input graph G. In the first two columns (on the left side) are the

v3,·-vertices and the vertex v3,2n−1, the right vertex is v3,0, on the left side of v3,0 are

the v1,·-vertices, next on the left side are the v2,·-vertices. The other vertices are the

v0,·-vertices.

The graph G = (V, E) consists of 2n+2 vertices vi,j , i ∈ {0, . . . , 3}, j ∈
{0, . . . , 2n − 1}. In the following let b� = (b�

n−1, . . . , b
�
0) be the binary repre-

sentation of an integer � ∈ {0, . . . , 2n − 1}. There exists an edge between a
vertex vi1,j1 and a vertex vi2,j2

– with weight 1 if one of the following requirements is fulfilled:
- i1 = 3, j1 = 0, and i2 = 1, j2 ∈ {0, . . . , 2n − 1} (or vice versa),
- i1 = 3, j1 �= 2n − 1, i2 = 3 and j2 = 2n − 1 (or vice versa),
- i1 = 3, j1 = 2n − 1, i2 = 0 and j2 ∈ {0, . . . , 2n − 1} (or vice versa),

– with weight n + 1 if i1 = 1, i2 = 2 and j1 = j2 (or vice versa),
– with weight i, 1 ≤ i ≤ n, if i1 = 0, i2 = 2,

∑n−1
k=0 bj1

k = i, bj1
i−1 = 1, and

j1 = j2 (or vice versa). (Note, that if
∑n−1

k=0 bj1
k = i, and bj1

i−1 = 0 or j1 �= j2,
there is no edge between v0,j1 and v2,j2 .)

Figure 1 shows the structure of the input graph G. Obviously, G is planar and
the minimum spanning tree in G is unique. The important property of G is that
an edge between a vertex v1,j1 and a vertex v2,j2 is in the minimum spanning
tree if j1 = j2, and the binary representation of j1 respectively j2 corresponds
to an input that belongs to HWB−1

n (0). Therefore, the characteristic function of
this edge set is a difficult function but in our input graph this edge set is in some
sense hidden such that the characteristic function of the edge set of the input
graph can be represented by OBDDs of small size. Figure 2 shows the minimum
spanning tree in G. The vertices v3,j , j �= 2n − 1, are only auxiliary vertices in
order to obtain a number of vertices which is a power of 2.

26 B. Bollig

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

n + 1

n + 1

n + 1

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

1

1

1

1

i

Fig. 2. The minimum spanning tree in G

2) The polynomial upper bound on the size of the OBDD representation for
XE :

Let x1
1, x

1
0, x

2
n−1, . . . , x

2
0 be the variables of the Boolean encoding of a vertex

vi,j , where x1
0 and x2

0 denote the least significant bits, the x1-variables represent
i and the x2-variables j. In the rest of the proof we assume that n + 1 is a
power of 2 because it has no bearing on the essence of our result. Let d =
(dlog(n+1)−1, . . . , d0) be the binary representation of the edge weight |d|. The
characteristic function XE of the edge set depends on 2n+4+log(n+1) Boolean
variables ((x1

1, x
1
0, x

2
n−1, . . . , x

2
0), (y

1
1 , y

1
0 , y

2
n−1 . . . , y2

0), (dlog(n+1)−1, . . . , d0)). Our
aim is to prove that XE can be represented by OBDDs of size O(n3) according
to the variable ordering

dlog(n+1)−1, . . . , d0, x
1
1, y

1
1 , x

1
0, y

1
0 , x

2
n−1, y

2
n−1, . . . , x

2
0, y

2
0.

Since there are n+1 different weights, the first part of the OBDD is a complete
binary tree of size O(n). In the second part of the OBDD we distinguish three
different disjoint edge sets, between v1,·- and v2,·-vertices, between v0,·- and v2,·-
vertices, and the remaining edges. We prove that each of them can be represented
by OBDDs of small size. Since the different edge sets can be identified by the
assignments to the x1- and y1-variables which are tested at the beginning of the
OBDD, it suffices to add the OBDD sizes in order to obtain an upper bound on
the OBDD complexity of XE . (Note, that we can also use the well-known result
on the worst-case complexity of the synthesis operation, here the ∨-operation,
that the width of the OBDD for XE can be asymptotically bounded above by
the product of the widths of the OBDDs for the three different edge sets. Since
for two of them the width is a constant we are done.)

On Symbolic OBDD-Based Algorithms 27

– If x1
0 = 0, x1

1 = 1, y1
0 = 1, and y1

1 = 0 (or vice versa), it is checked whether
x2

i = y2
i . This is a simple equality check which can be done in linear size.

– If x1
1 = x1

1 = 1, y1
0 = 1, and y1

1 = 0, it is checked whether |x2| = 0.
(If x1

0 = 1, x1
1 = 0, y1

0 = y1
1 = 1, the roles of the x- and y-variables are

exchanged.) If x1
0 = x1

1 = 0, y1
0 = y1

1 = 1, it is checked whether |y2| = 2n−1.
(If x1

0 = x1
1 = 1, y1

0 = y1
1 = 0, the roles of the x- and y-variables are

exchanged.) If x1
0 = x1

1 = y1
0 = y1

1 = 1, it is checked whether |x2| = 2n−1 and
|y2| �= 2n − 1 (or vice versa). Altogether the set of edges can be represented
in linear size.

– If x1
0 = x1

1 = 0, y1
0 = 0, and y1

1 = 1 (or vice versa) and the edge weight is i,
i.e. |d| = i− 1, the number of x2-variables is counted. The function value is
1 if

∑n−1
k=0 x2

k = i, x2
i−1 = 1, and y2

k = x2
k, 0 ≤ k ≤ n− 1. Since we only have

to distinguish i+1 different values for |x2|, this can be done by an OBDD of
width O(n) if the edge weight is fixed. As there are n possible edge weights,
the considered edge set can be represented by OBDDs of width O(n2) and
size O(n3).

Summarizing, we have seen that XE can be represented by an OBDD of size
O(n3).

3) The exponential lower bound on the size of OBDDs for the characteristic
function of the minimum spanning tree XMST in G:

Here, we use some ideas presented in [5] for maximum matchings with exponen-
tial OBDD complexity (but in G there exist maximum matchings with 2n + 2
edges that can be represented by OBDDs of linear size).

Due to our definition of G the minimum spanning tree contains an edge be-
tween a vertex v1,j1 and a vertex v2,j2 , j1, j2 ∈ {0, . . . , 2n− 1} iff and the binary
representation of j1 respectively j2 corresponds to an input that belongs to
HWB−1

n (0) and j1 = j2. Our aim is to adapt the ideas for the exponential lower
bound on the OBDD size of HWBn presented in [11]. Therefore, we consider the
subfunction of XMST , where all d-variables are replaced by 1, with other words
the edge weight is set to n+1, and x1

0 = 1, x1
1 = 0, y1

0 = 0, and y1
1 = 1. Let π be

an arbitrary but fixed variable ordering. In the following our aim is to prove that
the considered subfunction of XMST has exponential π-OBDD size. As a result
we can conclude that the size of any OBDD for the representation of XMST needs
exponential size. A pair (x2

� , y
2
�), � ∈ {0, . . . , n− 1}, is called (x, y)-pair and x2

� a
partner of y2

� and vice versa. Now, we define a cut in the variable ordering after
for the first time for exactly (3/5)n (x, y)-pairs there exist at least one variable.
T contains the variables before the cut according to π and B the remaining
variables. Let PH be the set of all pairs (x2

i , y
2
i), i ∈ {n/2, . . . , (9/10)n − 1},

and PL be the set of all pairs (x2
j , y

2
j), j ∈ {n/10, . . . , n/2 − 1}. Obviously, T

contains at least for n/5 pairs in PH or at least for n/5 pairs in PL at least
one variable. W.l.o.g. we assume that T contains at least for n/5 pairs in PL

at least one variable. In the following we only consider assignments where vari-
ables that belong to the same (x, y)-pair are replaced by the same constant.
We consider all assignments to the variables in T , where exactly n/10 pairs in

28 B. Bollig

PL are replaced by 1, all other variables in T are set to 0. There are at least(n/5
n/10

)
= Ω(n−1/22n/5) different assignments. Using Theorem 1 it is sufficient to

prove that these assignments lead to different subfunctions. For this reason we
consider two different assignments b and b′ to the variables in T . Let (x2

� , y
2
�)

be an (x, y)-pair for which at least one variable is replaced differently in b and
b′. W.l.o.g. x2

�−1 is set to 0 in b and to 1 in b′. Now, we consider the following
assignment br to the variables in B. The variables for which there is a partner in
T are replaced by the assignment to the partner according to b. The remaining
variables are replaced in such a way that there are exactly � − n/10 pairs that
are set to 1. This can be done because there are (2/5)n pairs for which both
variables are in B and � ≤ n/2. Obviously, the function value of the subfunction
induced by b on br is 1. The function value for the subfunction induced by b′ on
br is 0 because either |x2| �= |y2| or x2 ∈ HWB−1

n (1).
Altogether, we have shown that the OBDD complexity of XMST is at least

Ω(n−1/22n/5). Since our input graph is planar we have shown that already the
minimum spanning tree problem for planar graphs needs exponential space in
the OBDD setting. �

Furthermore, we obtain the following result.

Corollary 1. Symbolic OBDD-based algorithms for the single source shortest
paths problem need exponential space with respect to the size of the implicit rep-
resentation of the input graph.

In [28] it has been shown that the single source shortest paths problem needs
exponential space in the symbolic setting. Here, we sketch another proof for this
result that leads to a slightly larger lower bound using our planar input graph G.
The input is an OBDD for XE defined above and an OBDD for the characteristic
function of the vertex v3,2n−1. Let D be the set of all solution pairs (v, ω) ∈ V ×N
such that a shortest path from v3,2n−1 to v has weight ω. Here, the weight of a
path from a vertex to another one is the total weight of the edges that belong
to the considered path. The output OBDD has to represent the characteristic
function XD. A shortest path from v3,2n−1 to a vertex vi,j in G, 0 ≤ i ≤ 3 and
j ∈ {0, . . . , 2n− 1}, has distance n + 3 iff i = 2 and the binary representation of
j is an element in HWB−1

n (0). Therefore, if we replace the distance variables by
the binary representation of n + 3, x1

1 = 1, and x1
0 = 0 we obtain an OBDD for

HWBn. Since the π-OBDD size of a subfunction of a given function cannot be
larger than the π-OBDD size of the function, we are done.

Concluding Remarks

One aim in the symbolic setting is to find advantageous properties of real-world
instances that cause an essentially better behavior than in the worst-case. In [27]
and [33] symbolic algorithms for maximum flow in 0-1 networks and topological
sorting have been presented which have polylogarithmic running time with re-
spect to the number of vertices of a given grid graph. These results rely on the

On Symbolic OBDD-Based Algorithms 29

very structured input graph and on restrictions on the width of occuring OBDDs
during the computation. It is open whether constant input OBDD width is suffi-
cient to guarantee polynomial space complexity for the minimum spanning tree
problem.

References

1. Balcázar, J.L., Lozano, A.: The complexity of graph problems for succinctly repre-

sented graphs. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 277–285. Springer,

Heidelberg (1989)

2. Bazlamaçci, C.F., Hindi, K.S.: Minimum-weight spanning tree algorithms. A survey

and empirical study. Computers & Operations Research 28, 767–785 (2001)

3. Bollig, B.: On the OBDD complexity of the most significant bit of integer multi-

plication. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS,

vol. 4978, pp. 306–317. Springer, Heidelberg (2008)

4. Bollig, B.: Exponential space complexity for symbolic maximum flow algorithms

in 0-1 networks. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,

pp. 186–197. Springer, Heidelberg (2010)

5. Bollig, B.: On symbolic representations of maximum matchings and (un)directed

graphs. In: Proc. of TCS IFIP AICT, vol. 323, pp. 263–300 (2010)

6. Bollig, B.: Symbolic OBDD-based reachability analysis needs exponential space. In:

van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM

2010. LNCS, vol. 5901, pp. 224–234. Springer, Heidelberg (2010)

7. Bollig, B., Löbbing, M., Sauerhoff, M., Wegener, I.: On the complexity of the

hidden weighted bit function for various BDD models. Theoretical Informatics and

Applications 33, 103–115 (1999)

8. Bor̊uvka, O.: O jistém problému minimálńım. Práce Mor. Pĭŕırodovĕd. Spol. v Brnĕ

(Acta Societ. Scient. Natur. Moravicae) 3, 37–58 (1926)

9. Breitbart, Y., Hunt III, H.B., Rosenkrantz, D.J.: On the size of binary decision

diagrams representing Boolean functions. Theoretical Computer Science 145, 45–69

(1995)

10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE

Trans. on Computers 35, 677–691 (1986)

11. Bryant, R.E.: On the complexity of VLSI implementations and graph representa-

tions of Boolean functions with application to integer multiplication. IEEE Trans.

on Computers 40, 205–213 (1991)

12. Chazelle, B.: A minimum spanning tree algorithm with inverse-Ackermann type

complexity. Journal of ACM 47(6), 1028–1047 (2000)

13. Cheriton, D., Tarjan, R.E.: Finding minimum spanning trees. SIAM Journal on

Computing 5, 724–742 (1976)

14. Feigenbaum, J., Kannan, S., Vardi, M.V., Viswanathan, M.: Complexity of prob-

lems on graphs represented as OBDDs. In: Meinel, C., Morvan, M. (eds.) STACS

1998. LNCS, vol. 1373, pp. 216–226. Springer, Heidelberg (1998)

15. Fisler, K., Vardi, M.Y.: Bisimulation, minimization, and symbolic model checking.

Formal Methods in System Design 21(1), 39–78 (2002)

16. Galperin, H., Wigderson, A.: Succinct representations of graphs. Information and

Control 56, 183–198 (1983)

17. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components

in a linear number of symbolic steps. In: Proc. of SODA, pp. 573–582. ACM Press,

New York (2003)

30 B. Bollig

18. Gentilini, R., Piazza, C., Policriti, A.: Symbolic graphs: linear solutions to connec-

tivity related problems. Algorithmica 50, 120–158 (2008)

19. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem.

Ann. Hist. Comput. 7, 43–57 (1985)

20. Hachtel, G.D., Somenzi, F.: A symbolic algorithm for maximum flow in 0–1 net-

works. Formal Methods in System Design 10, 207–219 (1997)

21. Kannan, S., Naor, M., Rudich, S.: Implicit representations of graphs. SIAM Journal

on Discrete Mathematic 5, 596–603 (1992)

22. Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm to

find minimum spanning trees. Journal of ACM 42, 321–328 (1995)

23. Meer, K., Rautenbach, D.: On the OBDD size for graphs of bounded tree- and

clique-width. Discrete Mathematics 309(4), 843–851 (2009)

24. Nunkesser, R., Woelfel, P.: Representation of graphs by OBDDs. Discrete Applied

Mathematics 157(2), 247–261 (2009)

25. Papadimitriou, C.H., Yannakakis, M.: A note on succinct representations of graphs.

Information and Control 71, 181–185 (1986)

26. Pettie, S., Ramachandran, V.: An optimal minimum spanning tree algorithm. Jour-

nal of ACM 49, 16–34 (2002)

27. Sawitzki, D.: Implicit flow maximization by iterative squaring. In: Van Emde Boas,

P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932,

pp. 301–313. Springer, Heidelberg (2004)

28. Sawitzki, D.: Exponential lower bounds on the space complexity of OBDD-based

graph algorithms. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS,

vol. 3887, pp. 781–792. Springer, Heidelberg (2006)

29. Sawitzki, D.: The complexity of problems on implicitly represented inputs. In:

Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM

2006. LNCS, vol. 3831, pp. 471–482. Springer, Heidelberg (2006)

30. Sieling, D., Wegener, I.: NC-algorithms for operations on binary decision diagrams.

Parallel Processing Letters 48, 139–144 (1993)

31. Talamo, M., Vocca, P.: Representing graphs implicitly using almost optimal space.

Discrete Applied Mathematics 108, 193–210 (2001)

32. Wegener, I.: Branching Programs and Binary Decision Diagrams - Theory and

Applications. SIAM Monographs on Discrete Mathematics and Applications (2000)

33. Woelfel, P.: Symbolic topological sorting with OBDDs. Journal of Discrete Algo-

rithms 4(1), 51–71 (2006)

Reducing the Maximum Latency of
Selfish Ring Routing via Pairwise Cooperations�

Xujin Chen, Xiaodong Hu, and Weidong Ma

Institute of Applied Mathematics

Chinese Academy of Sciences, Beijing 100190, China

{xchen,xdhu}@amss.ac.cn, mawd335@163.com

Abstract. This paper studies the selfish routing game in ring networks

with a load-dependent linear latency on each link. We adopt the asym-

metric atomic routing model. Each player selfishly chooses a route to

connect his source-destination pair, aiming at a lowest latency of his

route, while the system objective is to minimize the maximum latency

among all routes of players. Such a routing game always has a Nash equi-

librium (NE) that is a “stable state” among all players, from which no

player has the incentive to deviate unilaterally. Furthermore, 16 is the

current best upper bound on its price of anarchy (PoA), the worst-case

ratio between the maximum latencies in a NE and in a system optimum.

In this paper we show that the PoA is at most 10.16 provided cooper-

ations within pairs of players are allowed, where any two players could

change their routes simultaneously if neither would experience a longer

latency and at least one would experience a shorter latency.

Keywords: Selfish Routing, Price of Anarchy.

1 Introduction

In contrast to traditional routing in small-scale networks, routing in modern
large networks often has no central control, and involves a large number of dis-
parate participants who are not interested in any global optimization and simply
seek to minimize their own cost by acting selfishly. Selfish routing [12] models
network routing from a game-theoretic perspective, in which network users are
viewed as self-interested strategic players participating in a competitive game.
Each player, with his own pair of source and destination nodes in the network,
aims to establish a communication path (between his source and destination)
along which he would experience latency as low as possible, given the link con-
gestion caused by all other players. Despite the system objective to minimize the
maximum latency among all source-destination pairs, in the absence of a central
authority who can impose and maintain globally efficient routing strategies on
the network traffic [9], network designers are often interested in a Nash equilib-
rium (NE) that is as close to the system optimum as possible, where the NE is
a “stable state” among the players, from which no player has the incentive to
� Supported in part by the NSF of China under Grant No. 10771209, 10721101,

10928102 and Chinese Academy of Sciences under Grant No. kjcx-yw-s7.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 31–45, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

32 X. Chen, X. Hu, and W. Ma

deviate unilaterally. The (in)efficiency of NE is predominantly quantified by the
so called price of anarchy (PoA) [8], which is the worst-case ratio between the
maximum latencies in a NE and in a system optimum. This paper focuses on
selfish routing in ring networks whose links are associated with load-dependent
linear latencies. In an effort to improve the efficiency of the selfish ring routing
whose PoA has been upper bounded by 16 [5], we show that the upper bound
reduces to 10.16 provided cooperations within pairs of players are allowed, where
two players cooperate with each other only if neither would experience a longer
latency and at least one would experience a shorter latency when simultaneous
changing their routes in the current routing.

Related work. Among vast literature on selfish routing [9], the study on egalitar-
ian system objective falls behind its utilitarian counterpart [3,7,11]. In particu-
lar, when the system performance is measured by the maximum latency (whose
minimization is thus desirable), the PoA of atomic congestion games [10] with
linear latency is 2.5 in single-commodity network, but it explodes to Θ(

√
m) in

m-commodity networks [7]. Analogously, selfish routing in general network can
have unbounded PoA [6]. When network topology is further restricted to rings,
the selfish ring routing with linear latency possesses the nice property that for
any instance either every optimal routing is a NE or the PoA of the instance is
at most 4 + 2

√
2 < 6.83 [6]. Recently, the PoA of this selfish ring routing has

been shown to be bounded above by 16 [5].
The stable solutions investigated in this paper are similar to and stronger

than the extensively studied strong equilibria and k-strong equilibria [1]. Our
study on the ring topology is inspired by the fact that rings have been a funda-
mental topology frequently encountered in communication networks, and attract
considerable attention and efforts from the research community [2,4,6,13,14].

Our contributions. In this paper, by method of allowing cooperations within
pairs of self-interested players, we establish a lower PoA upper bound for selfish
ring routing with linear latency with respect to the system objective of minimiz-
ing maximum latency. In addition to the theoretical improvement, our concrete
example shows that this kind of cooperation does lead to shorter maximum la-
tency of the network system. The improvement on global efficiency brought by
coordination within small-sized coalitions is highly realizable in decentralized
environments since players themselves are able to determine easily (say by enu-
meration) coalitions of size at most k (say k ≤ 2) whose deviations can make
every member “better off”. This approach is particularly useful for competi-
tive games involving a large number of players in large networks, where only
small-scale communication and computation are achievable.

Organization of the paper. In Section 2, we provide the mathematical model
SRLC for the selfish ring routing with cooperation/collusion. In Section 3, we
prove some basic properties for the NE in SRLC. In Section 4, we establish the
main result that the PoA of SRLC is at most 10.16 when cooperations within
pairs of players are allowed. In Section 5, we conclude this paper with remarks
on future research.

Reducing the Maximum Latency of Selfish Ring Routing 33

2 Model

Our model, selfish ring latency with collusion (SRLC), is specified by a quadruple
I = (R, l, (si, ti)m

i=1, k), usually called a SRLCk instance or a SRLC instance.
As illustrated in Fig. 1(a), the underlying network of I is a ring R = (V, E),
an undirected cycle, with node set V = {v1, v2, . . . , vn} and link set E = {ei =
vivi+1 : i = 1, 2, . . . , n}, where vn+1 = v1. By writing P ⊆ R, we mean that P
is a subgraph of R (possibly R itself) with node set V (P) and link set E(P).
Each link e ∈ E is associated with a load-dependent linear latency (function)
le(x) = aex + be, where ae, be are nonnegative constants, and x is an integer
variable indicating the load on e. There are m (≥ 2) source-destination node
pairs (si, ti), i = 1, 2, . . . , m, corresponding to m players 1, 2, . . . , m. Each player
i (1 ≤ i ≤ m) has a communication request for routing one unit of flow from his
source si ∈ V to his destination ti ∈ V − {si}, and his strategy set consists of
two internally disjoint paths Pi and P̄i in ring R with ends si and ti satisfying

V (Pi) ∩ V (P̄i) = {si, ti} and Pi ∪ P̄i = R, i = 1, 2, . . . , m .

We set ¯̄Pi := Pi for i = 1, 2, . . . , m. Different players may have the same source-
destination pair, and vertices si, ti, i = 1, 2, . . . , m, are not necessarily distinct.

v1
v2

vn

vn-1

v3

v4

e1

e2

e3
en-1

en

si

ti

PiPi
-

s1 t1

l xe1()

=

x

l xe3()

=

x

l xe2()

=

l xe4()

=

x
4-

e1

e2

e3

e4

s1 s2

l xe1()

=

t2 t1

x

l xe2()=
3 1(-)�

l xe3()

=

e1

e2

e3

e4 l xe4()

=

2 1(-)� x

(+)1 2� x

()b 0 1 2< < /�=(,)R V E()a

t2 s2

()c

Fig. 1. The SRLC instances

A (feasible) routing π for the SRLC instance I is a 0-1 function π on multiset
P := ∪m

i=1{Pi, P̄i} such that π(Pi) + π(P̄i) = 1 for every i = 1, 2, . . . , m. In view
of the correspondence between π and player strategies adopted for the SRLC
instance, we abuse the notation slightly by writing π = {Q1, Q2, . . . , Qm} with
the understanding that, for each i = 1, 2, . . . , m, the one unit of flow requested
by player i is routed along path Qi ∈ {Pi, P̄i}, and correspondingly π(Qi) = 1 >
0 = π(Q̄i). Also we write Qi ∈ π for i = 1, 2, . . . , m. Each link e ∈ E bears a
load πe with respect to π defined as

πe :=
�

P∈P:e∈E(P)

π(P) = |{Qi : e ∈ E(Qi), i = 1, 2, . . . , m}|

34 X. Chen, X. Hu, and W. Ma

equal the number of paths in {Q1, Q2, . . . , Qm} each of which goes through e.
Every P ⊆ R is associated with a nonnegative integer

lP (π) :=
�

e∈E(P)

le(πe) =
�

e∈E(P)

(aeπe + be),

which indicates roughly the total latencies of links on P experienced in π. (The
wording “indicates roughly” changes to “equals” when every link of P is used
by some player in the routing π.) Naturally, the latency experienced by player i
and the maximum latency experienced by the system are

Li(π) := lQi(π) for i = 1, 2, . . . , m, and L(π) :=
m

max
i=1

Li(π), (2.1)

respectively. We call Li(π) the latency of player i with respect to π, and L(π)
the maximum latency of the routing π. A routing for I is optimal if its maximum
latency is minimum among all routings for I.

Given a routing π, a coalition of players gets a gain by changing simultane-
ously its members’ strategies/choices in π if the change makes no latency of any
member increase and makes the latency of at least one member decrease. In
I = (R, l, (si, ti)m

i=1, k), integer k lies in [1, m], and a coalition of at most k play-
ers is allowed to form in order to get a gain by changing whenever possible. In
response to this kind of collusion, a “stable” solution in the SRLCk is a k-robust
Nash equilibrium (NE) at which no coalition of at most k players could get a gain
by changing their strategies simultaneously. So, a routing π = {Q1, Q2, . . . , Qm}
is a k-robust NE or a k-robust Nash routing (NR) if for all S ⊆ {1, 2, . . . , m}
with |S| ≤ k,

either lQi(π) < lQ̄i
(π′) for some i ∈ S or lQi(π) = lQ̄i

(π′) for all i ∈ S, (2.2)

where routing π′ is obtained from π by changing Qi to Q̄i for all i ∈ S. Clearly,
a k-robust NE is an h-robust NE for all 1 ≤ h ≤ k. Note that 1-robust NE is
exactly the classical Nash equilibrium, concerning with special cases S = {i},
i = 1, 2, . . . , m, for which (2.2) gives

lQi(π) ≤
�

e∈E(Q̄i)

le(πe + 1) for all i = 1, 2, . . . , m . (2.3)

The term “1-robust” will often be omitted for short. We point out that the notion
of k-robust NE studied in is closely related to the so called k-strong equilibrium
[1] referring to a strategy profile in which no coalition of size at most k has any
joint deviation beneficial to (strictly reducing the latencies of) all members. Note
that every k-robust NE is a k-strong equilibrium while the converse is necessarily
true.

In the SRLCk instance I, let π∗ be an optimal routing, and π a k-robust
NR with maximum L(π). The ratio L(π)/L(π∗) is called the k-robust price of
anarchy (k-RPoA) of I. For fixed k, the notion of the k-RPoA extends to the
SRLCk problem of all SRLCk instances, whose k-RPoA is set to be the supremum

Reducing the Maximum Latency of Selfish Ring Routing 35

of k-RPoA over all SRLCk instances. Take 2-player case as an example, where
k = 1 or 2. For the SRLCk instances depicted in Fig. 1(b), the k-RPoA is 2
when k = 1 and 1 when k = 2 (Collusion of two players does help!). In contrast,
the k-RPoA of the SRLCk instances in Fig. 1(c) is 5−3ε

4−ε for k = 1 and 2.

3 Basic Properties

In this section, we investigate Nash routings for an arbitrary SRLCk instance
I = (R, l, (si, ti)m

i=1, k). For any P ⊆ R and any routing π for I, we often consider
lP (π) :=

�
e∈E(P) le(πe) =

�
e∈E(P)(aeπe + be) as the sum of

laP (π) :=
�

e∈E(P)

aeπe and lbP (π) :=
�

e∈E(P)

be .

Define notations:

||P ||a :=
�

e∈E(P)

ae, ||P ||b :=
�

e∈E(P)

be, and ||P || := ||P ||a + ||P ||b .

It is worth noting that the equation lbP (π) = ||P ||b always holds, though in
contrast the integer laP (π) may be smaller or bigger than or equal to ||P ||a. So
for any routing π we particularly have

lP (π) = laP (π) + lbP (π) = laP (π) + ||P ||b . (3.4)

When P (⊆ R) is a path, complementary to it is the other path P̄ ⊆ R whose
edge-disjoint union with P forms R. We will make explicit or implicit use of the
following equations in our discussion:

||P ||a + ||P̄ ||a = ||R||a, ||P ||b + ||P̄ ||b = ||R||b, and ||P ||+ ||P̄ || = ||R|| . (3.5)

In the rest of the paper, we denote by π� = {Q1, Q2, . . . , Qk} a given routing
for the SRLCk instance I = (R, l, (si, ti)m

i=1, k) in which players 1, 2, . . . , m are
named such that for a minimum j with 1 ≤ j ≤ m, we have

πN = {Q̄1, . . . , Q̄j, Qj+1, . . . , Qm} is a NR for I, and

γ := maxj
i=1

||Q̄i||a
||Qi||a = ||Q̄1||a

||Q1||a ; so laR(πN) ≤ max{γ, 1} laR(π�) .
(3.6)

If Q̄p = Qq for some p, q with 1 ≤ p �= q ≤ j, then without loss of generality
{p, q} = {j − 1, j}; it follows that Qj−1 = Q̄j ∈ πN , Qj = Q̄j−1 ∈ πN , and
we can express πN as πN = {Q̄1, . . . , Q̄j−2, Qj−1, . . . , Qm}, contradicting the
minimality of j. Thus

{Q̄1, . . . , Q̄j} ∩ {Q1, . . . , Qj} = ∅ . (3.7)

By (3.5), we see from ||Q̄1||a = γ||Q1||a in (3.6) that

||Q1||a = ||R||a/(γ + 1) . (3.8)

36 X. Chen, X. Hu, and W. Ma

Since R is the edge-disjoint union of Qi and Q̄i for every i = 1, 2, . . . , m, from
(3.4), with R in place of P , we derive for i = 1, 2, . . . , m,

lQ̄i
(πN) + lQi(π

N) = lR(πN) = laR(πN) + lbR(πN) = laR(πN) + ||R||b . (3.9)

Applying (2.3) to the NR πN = {Q̄1, . . . , Q̄j , Qj+1, . . . , Qm}, we obtain

lQ̄i
(πN)≤ lQi(πN)+||Qi||a for i=1, 2, . . . , j ;

lQi(πN)≤ lQ̄i
(πN)+||Q̄i||a for i=j+1, j+2, . . . , m .

(3.10)

With the definition of L(πN) given by (2.1), an easy case analysis on (3.10) shows
that L(πN) is bounded above by (lQ(πN) + lQ̄(πN) + max{||Q||a, ||Q̄||a})/2 for
Q ∈ πN with lQ(πN) = L(πN). This in combination with (3.9) gives

L(πN) ≤ lR(πN)+||R||a
2

=
laR(πN)+||R||a+||R||b

2
=

laR(πN)+||R||
2

. (3.11)

Note from (3.9) and (3.10) that lR(πN) = lQ̄i
(πN)+lQi(πN) ≤ 2lQi(πN)+||Qi||a

for i = 1, 2, . . . , j. Thus the leftmost inequality in (3.11) implies

L(πN) ≤ lQi(π
N) +

||Qi||a
2

+
||R||a

2
, for i = 1, 2, . . . , j . (3.12)

Lemma 1. If positive numbers β and ρ satisfy β = L(πN)/L(π�), lR(π�) ≤
2ρL(π�), and β > ρ, then the following hold:

(i) β ≤ ρ max{γ, 1}+ ||R||a/(2L(π�)).
(ii) (βγ − β − 2ρ) lQ1(πN) ≤ 2ρ(βγ − ρ)L(π�) + (β + ρ)||Q1||a + ρ||R||a − (β −

ρ)||R||b.

Proof. From (3.11) we have L(πN) ≤ 1
2 (lR(π) + ||R||a), which in combination of

(3.6) implies (i):

β =
L(πN)
L(π�)

≤ max{γ, 1}lR(π�) + ||R||a
2L(π�)

≤ max{γ, 1}ρ +
||R||a

2L(π�)
.

To prove (ii), we deduce from (3.11) that laR(πN) ≥ 2L(πN)−||R|| = 2βL(π�)−
||R||. Thus laR(πN) ≥ β

ρ lR(π�)− ||R|| which can be expressed using (3.4) as

j�
i=1

||Q̄i||a+
k�

i=j+1

||Qi||a ≥
β

ρ

j�
i=1

||Qi||a+
β

ρ

k�
i=j+1

||Qi||a+
β

ρ
||R||b−||R||a−||R||b .

By applying (3.5) and substituting ||R||a − ||Q̄i||a for ||Qi||a, i = 1, 2, . . . , j, in
the above inequality, we obtain

j�
i=1

||Q̄i||a ≥
β

ρ

�
j·||R||a−

j�
i=1

||Q̄i||a
�

+
�

β

ρ
−1
� k�

i=j+1

||Qi||a+
�
β

ρ
−1
�
||R||b−||R||a .

Reducing the Maximum Latency of Selfish Ring Routing 37

Rearranging terms in the above inequality yields
�

β

ρ
+ 1

� j�
i=1

||Q̄i||a ≥
�

β

ρ
j−1

�
||R||a +

�
β

ρ
−1
� k�

i=j+1

||Qi||a +
�

β

ρ
−1
�
||R||b .

Since β/ρ > 1, ignoring the nonnegative middle term on the right-hand side
and dividing both sides by positive number β/ρ + 1, we derive from the above
inequality that

j�
i=1

||Q̄i||a ≥
βj − ρ

β + ρ
||R||a +

β − ρ

β + ρ
||R||b . (3.13)

Let us now consider sum
�j

i=1 ||Q̄i∩Q1||a, which equals the total contributions
of paths Q̄1, Q̄2, . . . , Q̄j in the NR πN to the value of laQ1

(πN). Clearly, the sum
of the contributions is at least

laQ1
(πN)−

k�
i=j+1

||Qi||a ≥ laQ1
(πN)− laR(π�),

and thus at least laQ1
(πN) − lR(π�) + ||R||b by (3.4). It follows from lR(π�) ≤

2ρL(π�) that

j�
i=1

||Q̄i ∩Q1||a ≥ laQ1
(πN)− 2ρL(π�) + ||R||b . (3.14)

On the other hand, since R is the link-disjoint union of Q1 and Q̄1, we have

laQ̄1
(πN) ≥

j�
i=1

||Q̄i ∩ Q̄1||a ≥
j�

i=1

�
||Q̄i||a − ||Q1||a

�
.

In turn, using (3.13) and ||R||a = (γ + 1)||Q1||a in (3.8), we can lower bound
la
Q̄1

(πN) as follows:

laQ̄1
(πN) ≥

j�
i=1

�
||Q̄i||a − ||Q1||a

�

≥ βj − ρ

β + ρ
||R||a − j · ||Q1||a +

β − ρ

β + ρ
||R||b

= j

�
β(γ + 1)

β + ρ
− 1

�
||Q1||a −

ρ

β + ρ
||R||a +

β − ρ

β + ρ
||R||b

≥ βγ − ρ

β + ρ

j�
i=1

||Q̄i ∩Q1||a +
(β − ρ)||R||b − ρ||R||a

β + ρ
.

Furthermore, it follows from (3.14) that

laQ̄1
(πN)≥ βγ−ρ

β + ρ

�
laQ1

(πN)−2ρL(π�)+||R||b
�
+

(β−ρ)||R||b−ρ||R||a
β + ρ

. (3.15)

38 X. Chen, X. Hu, and W. Ma

Applying (3.10) and (3.4), we have

lQ1(π
N) + ||Q1||a ≥ lQ̄1

(πN) = laQ̄1
(πN) + ||Q̄1||b .

Combining the above inequality with (3.15) and using ||R||b = ||Q1||b + ||Q̄1||b ≥
||Q1||b, we deduce that

lQ1(π
N) + ||Q1||a

≥ βγ − ρ

β + ρ

�
laQ1

(π)− 2ρL(π�) + ||R||b
�

+
(β − ρ)||R||b − ρ||R||a

β + ρ
+ ||Q̄1||b

≥ βγ−ρ

β + ρ

�
laQ1

(πN)−2ρL(π�)+||Q1||b
�
+

β (||Q1||b+||Q̄1||b)−ρ||R||a−ρ||R||b
β + ρ

≥ βγ − ρ

β + ρ

�
lQ1(π

N)− 2ρL(π�)
�

+
β ||R||b − ρ||R||a − ρ||R||b

β + ρ

=
βγ − ρ

β + ρ

�
lQ1(π

N)− 2ρL(π�)
�

+
(β − ρ)||R||b − ρ||R||a

β + ρ
.

Thus we obtain

(β+ρ)
	
lQ1(π

N)+ ||Q1||a

≥(βγ− ρ)

�
lQ1(π

N)− 2ρL(π�)
�
+(β− ρ)||R||b− ρ||R||a,

which is equivalent to the inequality in (ii). The lemma is then proved. ��

Lemma 2. Let β = L(πN)/L(π�). Then the following hold:

(i) β ≤ 10.16 if lR(π�) ≤ 5L(π�) and ||R||a ≤ 2.5L(π�).
(ii) β ≤ 7.05 if lR(π�) ≤ 3L(π�) and ||R||a ≤ 3L(π�).

Proof. To see (i), assume to the contrary β > 10.16. With ρ = 2.5, we deduce
from Lemma 1 that

γ = max{γ, 1} ≥ β

ρ
− ||R||a

2ρL(π�)
>

10.16
2.5

− 2.5
5

= 3.564, (3.16)

(βγ−β−5)lQ1(π
N)≤5(βγ−2.5)L(π�)+(β+2.5)||Q1||a+2.5||R||a−(β−2.5)||R||b.

Note from (3.16) that βγ − β − 5 > 0, and from (3.8) that ||Q1||a = ||R||a
γ+1 ≤

2.5L(π�)
γ+1 . With (3.12) we get

L(πN) ≤ lQ1(π
N) +

||Q1||a
2

+
||R||a

2

≤ 5(βγ−2.5)
βγ−β−5

L(π�) +
�

β+2.5
βγ−β−5

+
1
2

�
||Q1||a+

�
2.5

βγ−β−5
+

1
2

�
||R||a

≤ 5(βγ−2.5)
βγ−β−5

L(π�)+
β(γ+1)

2(βγ−β−5)
· 2.5L(π�)

γ+1
+

β(γ−1)
2(βγ−β−5)

· 2.5L(π�)

=
12.5βγ − 25

2(βγ − β − 5)
L(π�) .

Reducing the Maximum Latency of Selfish Ring Routing 39

As γ > 0 by (3.16), the derivative of 12.5βγ−25
2(βγ−β−5) with respect to β is negative for

all β > 0. So, using β > 10.16, we obtain

10.16<β =
L(πN)
L(π�)

≤ 12.5βγ−25
2(βγ − β−5)

≤ 12.5(10.16γ)−25
2(10.16γ − 10.16− 5)

=
127γ − 25

20.32γ − 30.32
.

Now 127γ−25
20.32γ−30.32 >10.16 implies γ <3.563, a contradiction to (3.16), proving (i).

We verify (ii) similarly. By contradiction assume β > 7.05. With ρ = 1.5,
Lemma 1 gives

γ = max{γ, 1} ≥ β

ρ
− ||R||a

2ρL(π�)
>

7.05
1.5

− 3
3

= 3.7, (3.17)

(βγ−β−3)lQ1(π
N)≤3(βγ−1.5)L(π�)+(β+1.5)||Q1||a+1.5||R||a−(β−1.5)||R||b.

Note from (3.17) that βγ − β − 3 > 0, and from (3.8) that ||Q1||a = ||R||a
γ+1 ≤

3L(π�)
γ+1 . With (3.12) we get

L(πN) ≤ lQ1(π
N) +

||Q1||a
2

+
||R||a

2

≤ 3(βγ−1.5)
βγ−β−3

L(π�)+
�

β+1.5
βγ−β−3

+
1
2

�
· 3L(π�)

γ+1
+
�

1.5
βγ−β−3

+
1
2

�
·3L(π�)

=
9βγ − 9

2(βγ − β − 3)
L(π�) .

As γ > 0 by (3.17), the derivative of 9βγ−9
2(βγ−β−3) with respect to β is negative for

all β > 0. So, using β > 7.05, we obtain

7.05 < β =
L(πN)
L(π�)

≤ 9βγ − 9
2(βγ − β − 3)

≤ 9(7.05γ)− 9
2(7.05γ − 7.05− 3)

=
63.45γ − 9

14.1γ − 20.1
,

implying γ < 3.6909. The contradiction to (3.17) establishes (ii). ��

4 2-Robust Nash Routings

The result established in this section provides the evidence that small-sized col-
lusions might help decrease PoA in selfish ring routing games, which is desirable
for network design. In case of k = 1, no collusion is allowed, and the PoA of
the SRLC1 problem has been shown to be bounded above by 16 [5]. In case of
k = 2, two players may act simultaneously to gain benefit for at least one with-
out increasing latency of the other (See Fig. 1(b)). The following theorem shows
a smaller upper bound for the PoA of the SRLC2 problem in case of 2-robust
NE existing.

Theorem 1. The 2-robust price of anarchy of the SRLC2 problem is at most
10.16.

40 X. Chen, X. Hu, and W. Ma

Proof. Consider an arbitrary 2-robust Nash routing πN for a SRLC2 instance
I = (R, l, (si, ti)m

i=1, 2). If some link e of R = (V, E) has ae + be = 0, then
shrinking e gives a SRLC2 instance with the same PoA. So for ease of description,
we assume without loss of generality that

ae + be > 0 for all e ∈ E . (4.18)

For any subgraphs P and Q of the ring R, by P ∪ Q (resp. P ∩ Q) we mean
the subgraph of R with node set V (P)∪ V (Q) (resp. V (P)∩V (Q)) and link set
E(P) ∪ E(Q) (resp. E(P) ∩ E(Q)), which consists of at most two paths.

Clearly I admits an optimal routing π∗ that is irredundant in the sense that
any two paths P, Q ∈ π∗ with P∪Q = R are link-disjoint. Set β := L(πN)/L(π∗).
It suffices to show β ≤ 10.16. To this end, we may assume π∗ = π� �= πN as
described in Section 3, as otherwise β = 1 and we are done.

If some Q̄g and Q̄h with 1 ≤ g < h ≤ j are link-disjoint, then Qg ∪Qh = R,
and since π� is irredundant, it must be the case that Q̄g = Qh and Q̄h = Qg, a
contradiction to (3.7). Hence

E(Q̄g) ∩ E(Q̄h) �= ∅ for all 1 ≤ g < h ≤ j . (4.19)

With (3.9), we may assume

lQi(π
N) + lQ̄i

(πN) = lR(πN) > 10.16L(π�) for all i = 1, 2, . . . , m, (4.20)

as otherwise (2.1) implies L(πN) ≤ lR(πN) ≤ 10.16L(π�) giving β ≤ 10.16. By
definition,

||Qi||a ≤ ||Qi|| ≤ lQi(π
�) ≤ L(π�) for all i = 1, 2, . . . , m . (4.21)

For the Nash routing πN , we deduce from (3.10) that

lQi(π
N) ≥ lQ̄i

(πN)− ||Qi||a ≥ lQ̄i
(πN)− L(π�) for 1 ≤ i ≤ j, (4.22)

and then from (4.20) that

lQi(π
N) ≥

lQ̄i
(πN) + lQi(πN)− L(π�)

2
> 4.58 · L(π�) for 1 ≤ i ≤ j . (4.23)

If some Qg with 1 ≤ g ≤ j is link-disjoint from ∪j
i=1Q̄i, then lQg (πN) ≤

lQg (π�) ≤ L(π�) indicates a contradiction to (4.23). So we have

E(Qg) ∩
	
∪j

i=1E(Q̄i)

�= ∅ for all 1 ≤ g ≤ j; in particular j ≥ 2 . (4.24)

It is not difficult to see from (4.19) and (4.24) that one of the following three
cases (illustrated in Fig. 2) must be true:
Case 1: There exist p, q, and r with 1 ≤ p < q < r ≤ j such that Q̄p ∪ Q̄q � R,

Q̄q ∪ Q̄r � R, Q̄r ∪ Q̄p � R, and Q̄p ∪ Q̄q ∪ Q̄r = R.
Case 2: There exist p and q with 1 ≤ p < q ≤ j such that Q̄p ∪ Q̄q = R.
Case 3: There exist p and q with 1 ≤ p < q ≤ j such that ∪j

i=1Q̄i ⊆ Q̄p∪Q̄q � R.

Reducing the Maximum Latency of Selfish Ring Routing 41

Case 1

-Qp

Qq-

-Qp

Qq-

Case 3

-Qp

-

Qq-

Qr-

-Qp

Case 2

Qq

Fig. 2. Possible configurations of πN when lR(πN) > 10.16L(π�)

Here, no other cases are possible, since (4.19) says that each pair of paths in
Q̄1, Q̄2, . . . , Q̄j must have a least one common link. Let the indices p, q and r
satisfying one of the above three cases be fixed. Our case analysis goes as follows:

Case 1. It is easy to see that Qp ∪Qq ∪Qr = R, which implies

||R||a ≤ ||R|| ≤ lR(π�) ≤ lQp(π�) + lQq (π�) + lQr (π�) ≤ 3L(π�) .

Hence Lemma 2(ii) guarantees β ≤ 7.05 as desired.

Case 2. Consider any g and h with 1 ≤ g < h ≤ j and Q̄g ∪ Q̄h = R. Let routing
π be obtained from πN by changing Q̄g and Q̄h to Qg and Qh, respectively.
Suppose by symmetry lQ̄g

(πN) ≤ lQ̄h
(πN). Since E(Q̄g)∩E(Q̄h) �= ∅ by (4.19),

we deduce from (4.18) that lQ̄g∩Q̄g
(πN) > 0 and further that

lQh
(π) = lQ̄g

(πN)− lQ̄g∩Q̄h
(πN) ≤ lQ̄h

(πN)− lQ̄g∩Q̄h
(πN) < lQ̄h

(πN) .

As πN is a 2-robust NE, it can be seen from (2.2) that lQ̄g
(πN) < lQg (π) =

lQg (πN). Hence lQg (πN) > lQ̄g
(πN) ≥ lQh

(πN) follows from Q̄g ⊇ Qh and in
turn lQg (πN) > lQ̄h

(πN)− L(π�) follows from (4.22). Using the fact that Q̄h is
the link-disjoint union of Q̄g ∩ Q̄h and Qg, we obtain

lQ̄g∩Q̄h
(πN)= lQ̄h

(πN)−lQg(πN)<L(π�)
for all 1 ≤ g < h ≤ j with Q̄g ∪ Q̄h = R .

(4.25)

Recall from (4.23) that lQi(πN) > 4.5L(π�) for all 1 ≤ i ≤ j, which in combina-
tion with (4.25) implies

E(Qi) ∩ E(Qg ∪Qh) �= ∅ for all 1 ≤ i ≤ j
and all 1 ≤ g < h ≤ j with Q̄g ∪ Q̄h = R .

(4.26)

Now we turn to the indices p, q that have been fixed in the hypothesis of Case
2. By (4.26) one can easily find (not necessarily distinct) paths P 1

p , P 2
p , P 1

q , P 2
q

in {Q1, Q2, . . . , Qj} − {Qp, Qq} such that

E(P h
g) ∩ E(Qg) �=∅ for h = 1, 2, g = p, q;

j�
i=1

Qj⊆
�

g=p,q

(Qg ∪ P 1
g ∪ P 2

g); (4.27)

and subject to (4.27), Q := {P 1
p , P 2

p , P 1
q , P 2

q } is as small as possible. (4.28)

42 X. Chen, X. Hu, and W. Ma

Note 0 ≤ |Q| ≤ 4. It follows from (4.27) and (4.21) that

lQ̄p∩Q̄q
(π�)− lQ̄p∩Q̄q

(πN) ≤ l∪P∈QP (π�) ≤
�
P∈Q

lP (π�) ≤ |Q| · L(π�) . (4.29)

Observe that R is the link-disjoint union of Qp, Qq and Q̄p ∩ Q̄q. It follows from
(4.21) and (4.25) that

||R||a ≤ ||Qp||a + ||Qq||a +
1
2
lQ̄p∩Q̄q

(πN) ≤ 2.5L(π�) .

When lR(π�) ≤ 5L(π�), Lemma 2(i) gives β ≤ 10.16 as desired. When lR(π�) >
5L(π�), we derive from (4.21) and (4.25) that

lQ̄p∩Q̄q
(π�)− lQ̄p∩Q̄q

(πN) = lR(π�)− lQp(π�)− lQq(π
�)− lQ̄p∩Q̄q

(πN)

> 5L(π�)− 3L(π�) = 2L(π�),

which together with (4.29) implies that Q = {P 1
p , P 2

p , P 1
q , P 2

q } has size 3 or 4. In
particular we see Q̄p ∩ Q̄q consists of two paths X, Y each of which has at least
one edge.

In case of |Q| = 3, the minimality in (4.28) together with symmetry allows us
to assume thatQ = {P 1

p , P 2
p , P 1

q } such that E(P 1
p)∩E(Qq) = ∅, E(P 1

q)∩E(Qp) =
∅, E(P 2

p) ∩ E(X) � E(P 1
p) ∩ E(X) �= ∅ �= E(P 1

q) ∩ E(X) and E(P 1
p) ∩ E(Y) �

E(P 2
p) ∩ E(Y) �= ∅. If P 1

q has an end in P 2
p , then P 1

p ∪ P 2
p ∪ P 1

q ∪ Qp ∪ (Q̄p ∩
Q̄q) = R and (4.27) guarantees lR(π�) ≤

�
P∈Q lP (π�)+ lQp(π�)+ lQ̄p∩Q̄q

(πN);
consequently a contradiction lR(π�) < 5L(π�) would implied by (4.21) and
(4.25). Thus

V (P 1
q) ∩ V (P 2

p) = ∅ . (4.30)

Similarly if V (P 1
p) ∩ V (P 2

p) is nonempty, then (4.30) ensures the existence of
common node of P 1

p and P 2
p in Qp, and lR(π�) ≤

�
P∈Q lP (π�) + lQq(π�) +

lQ̄p∩Q̄q
(πN) < 5L(π�) turns out a contradiction. Hence we have

V (P 1
p) ∩ V (P 2

p) = ∅ . (4.31)

By (4.30), we see that (4.25) applies with Qg = P 1
q and Qg = P 2

p , and provides
lP̄ 1

p∩P̄ 2
p
(πN) < L(π�). By (4.31) we deduce that P 1

q ⊆ (P̄ 1
p ∩ P̄ 2

p)∪ (Q̄p ∩ Q̄q) and
therefore lP 1

q
(πN) ≤ lP̄ 1

p∩P̄ 2
p
(πN) + lQ̄p∩Q̄q

(πN) ≤ 2L(π�), which is a contradic-
tion to (4.23).

In case of |Q| = 4, the minimality in (4.28) enforces

E(Qp) ∩E(P 1
q ∪ P 2

q) = ∅ and E(Qq) ∩ E(P 1
p ∪ P 2

p) = ∅ . (4.32)

As Q ⊆ {Q1, Q2, . . . , Qj}, by (4.26) we must have P̄ 1
q ∪P̄ 2

q �= R and P̄ 1
p ∪P̄ 2

p �= R,
which in combination with (4.32) yields E(P 1

g) ∩ E(P 2
g) �= ∅ for g = p, q and

(∪P∈QP)∪(Q̄p∩Q̄q) = R. Moreover it can be deduced from (4.27) that ∪j
i=1Qi ⊆

Reducing the Maximum Latency of Selfish Ring Routing 43

∪P∈QP . Therefore lR(π�) ≤
�

P∈Q lP (π�)+lQ̄p∩Q̄q
(π�) ≤ 4L(π�)+lQ̄p∩Q̄q

(πN)
by (4.21), and consequently lR(π�) ≤ 5L(π�) by (4.25). The contradiction com-
pletes the proof of Case 2.

Case 3. By symmetry suppose lQ̄p
(πN) ≤ lQ̄q

(πN). Let routing π be obtained
from πN by changing Q̄p and Q̄q to Qp and Qq, respectively. The hypothesis
∪j

i=1Q̄i ⊆ Q̄p ∪ Q̄q of Case 3 implies that

Qp ∩Qq ⊆ Qi for all 1 ≤ i ≤ j, and therefore
lQp∩Qq(πN) = lQp∩Qq (π�)− j||Qp ∩Qq||a

(4.33)

by the relation between π� and πN specified in (3.6). It follows that

∪j
i=1Qj ⊆ Qg ∪Qh for some 1 ≤ g, h ≤ j, and (4.34)

lQp∩Qa(π) = lQp∩Qa(πN) + 2||Qp ∩Qq||a ≤ lQp∩Qa(π�) . (4.35)

Moreover, recalling (4.21), it is obvious from ∪j
i=1Q̄i ⊆ Q̄p ∪ Q̄q that

lQp∩Qq (πN) + ||Qd||a ≤ lQd
(π�) ≤ L(π�) for d = p and q, (4.36)

and from (4.34) that

lR(π�) ≤ lQg (π�) + lQh
(π�) + lQ̄p∩Q̄q

(πN) ≤ 2L(π�) + lQ̄p∩Q̄q
(πN) . (4.37)

Since Qq is the link-disjoint union of Qp ∩ Qq and a subpath of Q̄p, yielding
lQ̄p

(πN) ≥ lQq (πN)− lQp∩Qq(πN), we derive from (4.22) that

lQp(πN) ≥ lQ̄p
(πN)− ||Qp||a ≥ lQq(π

N)− lQp∩Qq(π
N)− ||Qp||a

≥ lQ̄q
(πN)− ||Qq||a − lQp∩Qq(π

N)− ||Qp||a,

and further that

lQ̄p∩Q̄q
(πN) = lQ̄q

(πN)−
�
lQp(πN)− lQp∩Qq(π

N)
�

≤ 2 lQp∩Qq(π
N) + ||Qp||a + ||Qq||a .

It follows from (4.36) that lQ̄p∩Q̄q
(πN) ≤ 2L(π�), which in combination with

(4.37) gives

lR(π�) ≤ 4L(π�) . (4.38)

Consider the case where lQp∩Qa(π�) < lQ̄p∩Q̄a
(πN). From lQ̄p

(πN) ≤ lQ̄q
(πN)

and (4.35) we deduce that

lQq (π) = lQ̄p
(πN)− lQ̄p∩Q̄q

(πN) + lQp∩Qa(π)

≤ lQ̄q
(πN)− lQ̄p∩Q̄q

(πN) + lQp∩Qq (π�) < lQ̄q
(πN) .

44 X. Chen, X. Hu, and W. Ma

Since πN is a 2-robust NE, by (2.2) it must be the case that lQp(π) > lQ̄p
(πN)

saying lQ̄q
(πN) − lQ̄p∩Q̄q

(πN) + lQp∩Qq(π) > lQ̄p
(πN). On the one hand (4.35)

shows

lQ̄q
(πN)− lQ̄p∩Q̄q

(πN) + lQp∩Qq (π�) > lQ̄p
(πN) . (4.39)

On the other hand, since πN is a Nash routing, (2.3) says

lQ̄q
(πN)

≤
�

e∈E(Qq)

le(πN
e + 1)

=
�
lQ̄p

(πN)−lQ̄p∩Q̄q
(πN)

+[||Qq||a−||Qp ∩Qq||a] + lQp∩Qq (πN) + ||Qp ∩Qq||a .

Using (4.33), we get

lQ̄q
(πN) ≤ lQ̄p

(πN)− lQ̄p∩Q̄q
(πN) + ||Qq||a − ||Qp ∩Qq||a + lQp∩Qq(π

�) .

Substituting the right hand side of the above inequality for lQ̄q
(πN) in (4.39)

gives lQ̄p
(πN)− lQ̄p∩Q̄q

(πN) + ||Qq||a− ||Qp ∩Qq||a + lQp∩Qq(π�)− lQ̄p∩Q̄q
(πN) +

lQp∩Qq(π�) > lQ̄p
(πN). Rearranging and collecting terms provides lQ̄p∩Q̄q

(πN) <

lQp∩Qq(π�) + 1
2 (||Qq||a − ||Qp ∩Qq||a). Hence we have shown that in any case

lQ̄p∩Q̄a
(πN) ≤ lQp∩Qq(π

�) +
1
2
(||Qq||a − ||Qp ∩Qq||a) .

It follows that

||R||a = ||Qp ∪Qq||a + ||Q̄p ∩ Q̄q||a ≤ lQp∪Qq(π
�) + lQ̄p∩Q̄q

(πN)

= lQp(π�) + lQq(π
�)− lQp∩Qq(π

�) + lQ̄p∩Q̄q
(πN)

≤ lQp(π�) + lQq(π
�) +

1
2
||Qq||a .

Thus ||R||a ≤ 2.5L(π�) by (4.21). Since lR(π�) ≤ 4L(π�) by (4.38), Lemma 2(i)
ensures β ≤ 10.16.

We are now able to conclude that β ≤ 10.16 in all cases, which establishes
Theorem 1. ��

5 Concluding Remark

In this paper we have studied the selfish ring routing with linear latency for
minimizing maximum latency that allows coalitions among self-interested players
(SRLC). We have proved that the 2-RPoA of SRLC is bounded above by 10.16.
It deserves further efforts to obtain smaller upper bound on k-RPoA for greater
k. Since improvement on global efficiency due to cooperation within small-sized
coalitions is highly realizable in decentralized environments, it is interesting to
see if the method could be extended to selfish routing games in general networks
for minimizing maximum latency, shortening the system maximum latency via
small coalitions and some other techniques. Obviously, it is a big challenge to
shift study from ring networks to other networks of more complicated topologies.

Reducing the Maximum Latency of Selfish Ring Routing 45

References

1. Andelman, N., Feldman, M., Mansour, Y.: Srong Price of Anarchy. Games and

Economic Behavior 65, 289–317 (2009)

2. Anshelevich, E., Zhang, L.: Path Decomposition under a New Cost Measure with

Applications to Optical Network Design. ACM Transactions on Algorithms 4, Ar-

tical No. 15 (2008)

3. Awerbuch, B., Azar, Y., Epstein, L.: The Price of Routing Unsplittable Flow. In:

37th Annual ACM Symposium on Theory of Computing, pp. 57–66 (2005)

4. Bentza, C., Costab, M.-C., Létocartc, L., Roupin, F.: Multicuts and Integral Mul-

tiflows in Rings. European Journal of Operational Research 196, 1251–1254 (2009)

5. Chen, B., Chen, X., Hu, J., Hu, X.: Stability vs. Optimality in Selfish Ring Routing.

Submitted to SIAM Journal on Discrete Mathematics

6. Chen, B., Chen, X., Hu, X.: The Price of Atomic Selfish Ring Routing. Journal of

Combinatorial Optimization 19, 258–278 (2010)

7. Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Finite Congestion

Games. In: 37th Annual ACM Symposium on Theory of Computing, pp. 67–73

(2005)

8. Koutsoupias, E., Papadimitriou, C.H.: Worst-case Equilibria. In: Meinel, C., Tison,

S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

9. Nisan, N., Roughtgarden, T., Tardos, É., Vazirani, V.V. (eds.): Algorithmic Game

Theory. Cambridge University Press, Cambridge (2007)

10. Rosenthal, R.W.: A Class of Games Possessing Pure-strategy Nash Equilibira.

International Jouranl of Game Theory 2, 65–67 (1973)

11. Roughgarden, T.: The Price of Anarchy Is Independent of the Network Topology.

Jouranl of Computer and System Sciences 67, 342–364 (2003)

12. Roughgarden, T., Tardos, É.: How Bad Is Selfish Routing? Journal of the ACM 49,

236–259 (2002)

13. Schrijver, A., Seymour, P., Winkler, P.: The Ring Loading Problem. SIAM Journal

on Discrete Mathematics 11, 1–14 (1998)

14. Wang, B.F.: Linear Time Algorithms for the Ring Loading Problem with Demand

Splitting. Journal of Algorithms 54, 45–57 (2005)

Constrained Surface-Level Gateway Placement
for Underwater Acoustic Wireless Sensor

Networks

Deying Li, Zheng Li, Wenkai Ma, and Hong Chen

Key Laboratory of Data Engineering and Knowledge Engineering, MOE,

School of Information, Renmin University of China, China

Abstract. One approach to guarantee the performance of underwater

acoustic sensor networks is to deploy multiple Surface-level Gateways

(SGs) at the surface. This paper addresses the connected (or survivable)

Constrained Surface-level Gateway Placement (C-SGP) problem for 3-D

underwater acoustic sensor networks. Given a set of candidate locations

where SGs can be placed, our objective is to place minimum number

of SGs at a subset of candidate locations such that it is connected (or

2-connected) from any USN to the base station. We propose a polyno-

mial time approximation algorithm for the connected C-SGP problem

and survivable C-SGP problem, respectively. Simulations are conducted

to verify our algorithms’ efficiency.

Keywords: Underwater sensor networks, Surface-level gateway place-

ment, Connectivity, Survivability, Approximation algorithm.

1 Introduction and Motivations

Underwater Acoustic Wireless Sensor Networks (UA-WSNs) consist of under-
water sensors that are deployed to perform collaborative monitoring tasks over
a given region [1]. Underwater sensors are prone to failures because of fouling
and corrosion. It is important that the deployed network is highly reliable, so
as to avoid failure of monitoring missions due to failure of single or multiple
sensors. Additionally, the network topology is in general a crucial factor in de-
termining the energy consumption, the capacity and the communication delay of
a network [2]. Hence, the network topology should be carefully engineered, and
post-deployment topology optimization should be performed, when possible.

There is an architecture for 3-D UA-WSNs, consisting of resource-constrained
Underwater Sensor Nodes (USNs) floating at different depths in order to observe
a given phenomenon, some resource-rich SGs which are placed at the surface,
and BSs (onshore sink or satellite etc.). The SG is equipped with an acous-
tic transceiver that is able to handle multiple parallel communications with the
USNs. It is also endowed with a long range Radio Frequency (RF) transmitter to
communicate with other SGs and the Base Stations (BSs). This network archi-
tecture provides better QoS and is used to quickly forward sensing data packets

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 46–57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

C-SGP for Underwater Acoustic Wireless Sensor Networks 47

to the user [1,3,4]. In practice, however, there are some physical constraints on
the placement of the SGs (or relay nodes). For example, there should be a mini-
mum distance between two SGs in the network to avoid interference. Also, there
may be some regions where SGs cannot be placed. In practice, there may be a
forbidden regions where SGs cannot be placed [8].

In this paper, we study the Constrained Surface-level Gateway Placement
(C-SGP) problem for 3-D underwater acoustic sensor networks, in which the
optimization objective is to place the minimum number of SGs at a subset of
candidate locations to meet 1-connectivity and Survivability (2-connectivity) re-
quirements. We propose an approximate algorithm for the two problems respec-
tively, and corroborate the algorithms’ performance through theoretical analysis
and simulations.

The rest of this paper is organized as follows. In Section II we present re-
lated works. Section III describes the network model and basic notations. The
1-connected and survivable C-SGP problems are studied in section IV. Section
V presents the simulation results, and Section VI concludes this paper.

2 Related Works

The benefits of using SGs have been presented in previous research[1,3,4]. The
work in [1] introduces a type of 3-D UA-WSNs architecture, consisting of USNs,
SGs, and BSs (onshore sink or satellite etc.). The role of SGs is to commu-
nicate USNs with BSs. The work in [3] mainly focuses on the surface gateway
placement. And the tradeoff between the number of surface gateways and the ex-
pected delay and energy consumption was analyzed. In [4], the authors propose
a novel virtual sink architecture for UA-WSNs that aims to achieve robustness
and energy efficiency in harsh under water channel conditions.

The majority of the existing work in relay node deployment problem is based
on the 2-D network model derived from the terrestrial wireless sensor networks
[5–8]. In addition, almost all of the above works study unconstrained version
problem, in the sense that the relay nodes can be placed anywhere. However, in
reality there are some physical constraints on the placement of the SGs (or relay
nodes). Only works in [3,8] address the constrained surface-level gateway (relay
node) placement problem. In this paper, we focus on the constrained surface-
level gateway placement problem in 3-D networks to meet 1-connectivity and
2-connectivity, which is different from the problems in [3,8]. The authors in [3]
only formulated the problem as Integer Linear Programming, but did not give
any algorithm. In [8], the authors studied the constrained relay node placement
problem in 2-D WSNs to meet 1-connectivity and survivability requirements.
However, approaches proposed for 2-D networks can not be directly applied in
3-D networks. Therefore, some new research challenges are posed.

3 Notations and Basic Concepts

Let us consider a 3-D heterogeneous UA-WSN consisting of USNs, SGs and
a BS. The USNs are pre-deployed in the sensing area and floated at different

48 D. Li et al.

depths, each of them is equipped with an acoustic communicator which has
communication range RA. On the other hand, SGs only can be deployed on
the surface, and are equipped with acoustic communicators and RF transceivers
which have communication ranges RA and RRF , respectively. Compared with
wireless RF links among ground-based or surface-level gateways, underwater
acoustic wireless links have higher attenuation and path loss [1]. We assume
that the wireless RF transceiver has longer effective distance than the acoustic
modem. RA and RRF are given positive constants and RRF > RA > 0. We also
assume that the BS is powerful enough so that its communication range is much
greater than RRF and RA.

In this paper, dEuc(u, v) represents the Euclidean distance between u and v.
Let b be the base station, S be a set of USNs, and L be a set of candidate
locations where SGs can be placed. We use an undirected graph G(V, E) to
model the network architecture of a 3-D UA-WSN, where V (G)={b} ∪ S ∪ L.
The edge set E(G) can be defined as follows:

• For any SG u ∈ L, and any node v ∈ {b} ∪ L which could be either a SG or
the BS, (u, v) ∈ E if and only if dEuc(u, v) ≤ RRF .

• For any USN w ∈ S and any node z ∈ S ∪ L ∪ {b} which could be either a
USN, a SG or the BS, (w, z) ∈ E if and only if dEuc(w, z)≤RA.

Definition 1. Suppose G(V, E) is a 3-D graph to model a 3-D UA-WSN. Let
H be a subgraph of G and u be a SG in H . The USN degree of u in H , denoted
by δs(u, H), is the number of USNs that are neighbors of u in H . The maximum
USN degree of H is defined as Δs(H)=max{δs(u, H)|u ∈ V (H) ∩ L}.
Definition 2. Suppose G(V, E) is a graph. For V ′ ⊆ V , we denote G[V ′] =
G(V ′, E′) as an induced subgraph of G(V, E) by V ′, in which, for any two nodes
u and v in V ′, (u, v) ∈ E′ if and only if (u, v) ∈ E. For E′ ⊆ E, we denote
G[E′] = G(V ′, E′) as an induced subgraph of G(V, E) by E′, where V ′ is a set
of endpoints of all edges in E′.

In this paper, we focus on the connected (or survivable) C-SGP Problem,
which are formally represented as follows:

The connected (or survivable) C-SGP Problem: Given an UA-WSN (RRF ,
RA, {b}, S, L), the connected (or survivable) C-SGP problem is to place SGs
at a subset L′ of candidate locations in L such that there exists 1 routing path
(or 2 node disjoint routing paths) connecting any USN in S to the BS and |L′|
is minimized.

The connected and survivable C-SGP problems are NP-hard since they have
been proved to be NP-hard even for the scenario of 2-D network model[8]. In ad-
dition, the authors [9] proved that the 1-connected node cover placement problem
(which is the special case of the connected C-SGP problem) is NP-hard where
all the nodes are on regular triangular grid points.

C-SGP for Underwater Acoustic Wireless Sensor Networks 49

4 Algorithms for the Constrained Surface-Level Gateway
Placement Problems

In order to design approximation algorithms for the C-SGP problems, we con-
struct a weighted graph G(V, E, w). We give a weight for each edge in G(V, E)
as follows:

• For any edge (u, v) ∈ E(G), we define its weight as w(u, v) = |{u, v}∩L|. Let
H be a subgraph of G, the weight of H is define as: w(H) =

∑
e∈E(H) w(e).

From above definition, we know that the weight of any edge in E connecting two
nodes u and v in L is assigned to 2. Similarly, any edge in E connecting a node
in {b} ∪ S with a node in L is assigned weight of 1. Any edge connecting two
USNs is assigned weight of 0. We have the following lemma.

Lemma 1. Let H be a subgraph of G(V, E, w) such that each node’s degree in
V (H) ∩ L is at least 2 (within H). Then w(H) ≥ 2 · |V (H) ∩ L|.

Proof. Initially, each node’s weight in H is initialized to 0. Let (u, v) be an edge
of H which is incident with two SGs. According to our definition, the weight of
this edge is 2. In this case, we divide the edge weight into two equal pieces, add
weight 1 to node u, add another 1 weight to node v. Let (u, v) be an edge of
G where u is a SG and v is not. According to our definition, the weight of this
edge is 1. In this case, we add weight 1 to node u, add weight 0 to node v. Let
(u, v) be an edge of H where neither u nor v is a SG. According our definition,
the weight of this edge is 0. In this case, we do not add any weight to node u
and v. When all edges are executed over, we have shifted the edge weights of H
to the SGs in H . Note that any SG u is getting a weight of 1 from every edge
of H which is incident with u, resulting in that the weight of u is equal to the
degree of u. Since each SG in H is incident to at least two edges in H , it receives
at least weight 2. Therefore, w(H) ≥ 2 · |V (H) ∩ L|. �

4.1 An Algorithm for the Connected C-SGP Problem

In this subsection, we propose a polynomial time approximation algorithm for
the connected C-SGP problem.

The algorithm includes two steps: (1) construct an edge-weighted undirected
graph G(V, E, w); (2) using the existing algorithm for the minimum Steiner tree
problem on weight graph G(V, E, w) to get a feasible solution for the connected
C-SGP problem.

The algorithm is presented as Algorithm 1.

Lemma 2. Suppose Yopt is an optimal solution to the connected C-SGP problem.
Let Topt be a Minimum Spanning Tree (MST) of G[{b} ∪ Yopt ∪ S] which is a
induced subgraph of G(V, E, w) by {b} ∪ Yopt ∪ S. Then Δs(Topt) ≤ 12.

Proof. We prove this lemma by contradiction. Assume that there is a SG u which
can be connected to more than 12 USNs in Topt. Without of the generality, we

50 D. Li et al.

Algorithm 1. An approximation algorithm for the connected C-SGP Problem
Input: An UA-WSN (RRF , RA, {b}, S, L).

Output: A feasible solution YA for the connected C-SGP problem.

Begin:

1: Construct an edge-weighted undirected graph G(V, E, w) based on this UA-WSN,

where V ={b} ∪ S ∪ L.

2: if The nodes in {b} ∪ S are not in a single connected component H of G(V, E)

then

3: The connected C-SGP problem does not have a feasible solution. Stop.

4: end if

5: Apply the existing algorithm A for the Steiner Minimum Tree problem to compute

a low weight Steiner Tree TA of G(V, E, w) for {b} ∪ S.

6: Output YA = V (TA) ∩ L.

End.

assume that u is connected to 13 USNs v1, v2, ..., v13. We will prove that these
13 USNs can not communicate with each other. Otherwise, we assume v1 and v2
can communicate with each other, i. e., (v1, v2) is an edge in G(V, E, w). Since
Topt is a tree, it does not contain edge (v1, v2), otherwise there would be a cycle
(u, v1, v2, u) in Topt. Replacing edge (u, v1) in Topt by edge (v1, v2), we obtain
another tree T1 spanning all nodes in {b} ∪ Yopt ∪ S. Since w(u, v1) = 1 and
w(v1, v2) = 0, we have w(T1) < w(Topt), contracting to the assumption that Topt

is a MST.
Since the acoustic communication range of any SG u is at most RA, this

assumption that SG u is connected to at least 13 USNs (which can not com-
municate with each other) implies that the maximum cardinality of the MIS
(Maximal Independent Set) in u’s neighbors in 3-D space is at least 13. Note
that SG u and its USN neighbors all have the communication range RA, i.e.,
when the Euclidean distance between u and one of its USN neighbors is less
than RA, there is a edge in G. Thus SG u and its neighbors can construct a
local UBG (Unit Ball Graph). However, the authors in [11,12] had proved that
the maximum cardinality of the MIS in a node’s neighbors in 3-D space is at
most 12. Therefore, this contradiction proves that SG u can not be connected
to more than 12 USNs in Topt, i.e., Δs(Topt) ≤ 12. This lemma holds. �
Theorem 1. Algorithm 1 can guarantee getting a feasible solution which uses
no more than (7.5 ·α · |Yopt|) SGs, where α is an approximation ratio of algorithm
A for the Steiner minimum tree problem.

Proof. Let Tmin be the minimum weight tree of G(V, E, w) which connects all
nodes in {b}∪S, and Topt be a minimum weight spanning tree of G[{b}∪ Yopt ∪
S] which is an induced subgraph of G(V, E, w) by {b} ∪ Yopt ∪ S. YA and TA

be a feasible solution and a subgraph corresponding YA got by Algorithm 1,
respectively.

C-SGP for Underwater Acoustic Wireless Sensor Networks 51

We denote T 1
opt as an induced subgraph of Topt by all 1-weight edges, and T 2

opt

as an induced subgraph of Topt by all 2-weight edges. Then w(Topt) = w(T 1
opt)

+ w(T 2
opt).

From the definition of Δs(Topt) and the structure of T 1
opt, since each edge in

T 1
opt has weight 1 and can only contain a SG and a USN (or BS), and there is

only one BS, we know each SG in (T 1
opt) is incident with at most Δs(Topt) + 1

edges. Therefore we have

w(T 1
opt) ≤ (Δs(Topt) + 1) · |Yopt|. (1)

Since Topt is a tree of G(V, E), it has at most (|Yopt| − 1) 2-weight edges. Then,

w(T 2
opt) ≤ 2 · (|Yopt| − 1). (2)

Therefore

w(Topt) ≤ (2 + Δs(Topt) + 1) · |Yopt| − 2. (3)

Since Tmin is a minimum weight tree for {b} ∪ S, we have

w(Tmin) ≤ w(Topt). (4)

Since algorithm A’s approximation ratio is α, we have

w(TA) ≤ α · w(Tmin) ≤ α · w(Topt) (5)

Note that TA must satisfy the condition of Lemma 1, this is because, if there
exists a node u in V (TA) ∩ L such that dTA(u) = 1, where dTA(u) represents
u’s degree in TA, then we delete u from TA and still get a feasible solution.
Therefore, |YA| ≤ 1

2w(TA).
Combining above inequations, we have

|YA| ≤
α

2
· (2 + Δs(Topt) + 1) · |Yopt|. (6)

From Lemma 2, we have Δs(Topt) ≤ 12, therefore,

|YA| ≤ 7.5 · α · |Yopt|. (7)

This theorem holds. �

We can use (1+ ln 3
2)-approximation algorithm in [16] as algorithm A in Algorithm

1. From theorem 1, we have the following corollary:

Corollary 1. The connected C-SGP problem has a polynomial time 11.625-
approximation algorithm.

4.2 An Algorithm for Survivable C-SGP Problem

In the UA-WSNs, USNs are prone to failures because of fouling and corrosion.
Thus, survivability is an important requirement for topology construction or data

52 D. Li et al.

routing. The network connectivity should be preserved even when some USNs
fail or deplete their power. One way to preserve survivability is to construct
2-connected paths from any USN to base station. In this section, we present a
polynomial time approximation algorithm for the survivable C-SGP problem.
Our algorithm is based on polynomial time approximation algorithms for min-
imum weight 2-connected many-to-one routing problem. The algorithm for the
survivable C-SGP problem is presented as Algorithm 2.

Algorithm 2. A approximation algorithm for the Survivable C-SGP problem.
Input: An UA-WSN (RRF , RA, {b}, S, L).

Output: A feasible solution YA ⊆ L.

Begin:

1: Construct an edge-weighted undirected graph G(V, E, w) based on this UA-WSN,

where V ={b} ∪ S ∪ L.

2: if The nodes in {b}∪S are not in a single 2-connected component H of G(V, E, w)

then

3: The survivable C-SGP problem does not have a feasible solution. Stop.

4: end if

5: Apply the existing algorithm A for the 2-connected many-to-one routing problem

to compute a low weight subgraph HA of G(V, E, w) from S to b.

6: Output YA = V (HA) ∩ L.

End.

Lemma 3[10]. Let G(V, E) be an undirected k-connected graph where |V | ≥
3k− 2 and H(V, E′) be a k-connected subgraph of H with minimum number of
edges. Then |E′| ≤ k · (|V | − k).

Lemma 4. Let G(V, E) be an undirected graph and H(V, E′) be a many-to-one
2-connected subgraph from D to b with minimum number of edges, where D and
b are a source set and a destination node, respectively. Then |E′| ≤ 2 · (|V | − 1).

Proof. Since each node in D has two node disjoint paths to b which can construct
a cycle containing b, a many-to-one 2-connected subgraph with minimum number
of edges consists of some 2-node-connected components of H . Let H1, H2, ..., Hm

be these 2-connected components, where Hi has |Vi| ≥ 3 vertices, i = 1, 2, ..., m.
Note that these 2-connected components must contain source node b and any
two 2-connected components can not share a common node in V \{b}, otherwise,
the two components can merge into one 2-connected component. Furthermore,
each 2-connected component Hi(Vi, Ei) in H(V, E′) is a 2-connected spanning
subgraph for Vi in H(V, E′) with minimum number of edges. If not, we can
construct another many-to-one 2-connected subgraph from D to b in G with less
number of edges than H , which contradicts with the assumption that H is a
many-to-one 2-connected subgraph with minimum number of edges. We apply
Lemma 3 for each 2-connected component Hi with |Vi| ≥ 4 (i = 1, 2, ..., m), and
since those 2-connected components with 3 nodes must be a cycle with 3 edges,
therefore,

C-SGP for Underwater Acoustic Wireless Sensor Networks 53

|E′| =
m∑

i=1

|E(Hi)| ≤
m∑

i=1

2(|Vi| − 2) = 2(
m∑

i=1

|Vi| − 2m)

= 2(|V |+ m− 1− 2m) = 2(|V | − 1−m) ≤ 2(|V | − 1) (8)

Note that |V |=
∑m

i=1 |Vi| −m + 1. �
Lemma 5. Yopt is an optimal solution for the Survivable C-SGP problem. Let
Hopt be a minimum weight spanning subgraph of G[{b} ∪ Yopt ∪ S] which meets
the 2-connected requirement from all USNs to b. Then Δs(Hopt) ≤ 12.

Proof. We first prove that for any SG u, if it connects to more than 3 USNs
in Hopt, then these USNs can not communicate with each other in G(V, E).
We prove it by contradiction. Without loss of generality, we assume that a SG
u is to connect to m USNs v1, v2, ..., vm in Hopt(m ≥ 3), and v1 and v2 can
communicate with each other, i.e., (v1, v2) is an edge in G(V, E, w). Since Hopt

is 2-connected from all USNs to b, and m ≥ 3, there are two node disjoint paths
from v1 to b and v3 to b, respectively. Therefore, there must be a path P from
v1 to v3 which does not go through u. If P does not go through the USN v2,
Hopt contains a cycle C1 = {(u, v2), (v2, v1), P , (v3, u)}. Then we have following
obversion: For a USN node x, there are two node disjoint paths from x to b in
Hopt which can construct a cycle C2 containing b and x. If C2 does not contain
the edge (u, v1), replacing (u, v1) by (v1, v2) in Hopt does not destroy the 2-
connectivity from x to b. If C2 contains edge (u, v1), then there are at least two
intersect points (u and v1) for C1 and C2. Then we can find at least three node
disjoint paths between u and v1. If delete the edge (u, v1), there also exists a
cycle containing b and x, i.e., there exist two node disjoint paths from x to b.
For the arbitrary choice of x, we know that replacing edge (u, v1) by (v1, v2) in
Hopt does not destroy the many-to-one 2-connectivity from S to b.

From above discussion, we know that the subgraph H1 got by replacing
edge (u, v1) in Hopt by edge (v1, v2) also can span all nodes in {b} ∪ Yopt ∪ S
while meeting the many-to-one 2-connected requirement. Since w(u, v1) = 1 and
w(v1, v2) = 0, we have w(H1) < w(Hopt), contradicting to the assumption that
Hopt is a minimum weight subgraph. If path P goes through the USN v2, Hopt

has to contain a cycle {(u, v1), P , (v3, u)}. Similarly, deleting the edge (u, v2)
from Hopt will reduce its weight and Hopt is also a subgraph which can meet the
many-to-one 2-connected requirement. This again contradicts to the minimum
weight property of Hopt. So, we proved that for any SG u, if it connects to more
than 3 USNs in Hopt, then these USNs can not communicate with each other in
Hopt.

We prove this lemma by contradiction. Assume that in Hopt, a SG u can
connect to more than 12 USNs. From above result, these USNs with at least
13 can not communicate with each other. Therefore, this also contradicts with
the conclusions in [11,12]. Similar with the proof of Lemma 2, we also can prove
that a SG u cannot be connected to more than 12 USNs in Hopt, i.e., Δs(Hopt)
≤ 12. This proves this lemma. �

54 D. Li et al.

Theorem 2. Algorithm 2 can guarantee getting a feasible solution which uses
no more than (8.5 ·α · |Yopt|) SGs, where α is an approximation ratio of algorithm
A for the 2-connected Steiner Minimum Subgraph problem.

Proof. Let Hmin be the minimum weight many-to-one 2-node connected sub-
graph of G(V, E, w) from S to b and Hopt be a minimum weight many-to-one
2-node connected subgraph of G[Yopt∪S∪{b}]. Suppose YA is a feasible solution
got by Algorithm 2, and HA is a subgraph corresponding to YA.

We denote H1
opt as an induced subgraph of Hopt by all 1-weight edges, and

H2
opt as an induced subgraph of Hopt by all 2-weight edges. Then w(Hopt) =

w(H1
opt) + w(H2

opt).
From the definition of Δs(Hopt) and the structure of H1

opt, since each edge in
H1

opt has weight 1 and can only contain a SG and a USN (or BS), and there is
only one BS, we know each SG in (H1

opt) is incident with at most Δs(Hopt) + 1
edges. Therefore we have

w(H1
opt) ≤ (Δs(Hopt) + 1) · |Yopt|. (9)

w(H2
opt) ≤ 2|E(Hopt)| ≤ 2 · (2|Yopt| − 2). (10)

Note that we use Lemma 4 to get the second inequation in (10) since Hopt

satisfies the condition of Lemma 4. Therefore,

w(Hopt) ≤ (4 + Δs(Hopt) + 1) · |Yopt| − 4. (11)

Since Hmin is the minimum weight many-to-one 2-node connected subgraph of
G(V, E, w) from S to b, we have w(Hmin) ≤ w(Hopt). Because the approximation
ratio of algorithm A is α, therefore

w(HA) ≤ α · w(Hmin) ≤ α · w(Hopt) (12)

Note that HA must satisfy the condition of Lemma 1, this is because, if there
exists a node u ∈ V (HA) ∩ L such that dHA(u) = 1, then we delete u from
HA and still get a feasible subgraph. So, |YA| ≤ 1

2w(HA). Combining above
inequations, we have

|YA| ≤
α

2
· (5 + Δs(Hopt)) · |Hopt|. (13)

From Lemma 5, we have Δs(Hopt) ≤ 12, therefore

|YA| ≤ 8.5 · α · |Yopt|. (14)

This proves this theorem. �
Corollary 2. The survivable C-SGP problem has a polynomial time 17-
approximation algorithm.

C-SGP for Underwater Acoustic Wireless Sensor Networks 55

Proof. According to the algorithm in [15], there is a polynomial time 2-
approximation algorithm for the many-to-one 2-connected problem. The con-
clusion of this corollary can be achieved by choosing the algorithm in [15] as A
in Algorithm 2. �

5 Performance Evaluations

In this section, we evaluate the performance of our algorithms by simulations.
We implemented approximation Algorithm 1 with A being the MST based 2-
approximation SMT algorithm in [13] (denoted by A1-A and simpler than the
algorithm in [16]) and another algorithms in [14] (denoted by A1-B and A1-C)
for Steiner Minimum Tree problem. In the simulations, we focus on comparing
the approximation algorithms A1-A and heuristic algorithms A1-B and A1-C.
We study how the required number of SGs is affected by two parameters varying
over a wide range: the number of USNs in the space and the number of the
candidate locations in the upper plane.

The simulation is conducted in a 100 × 100 × 30 3-D space. We used both
regular grid points and randomly generated points as the candidate locations
for the SGs, and obtained similar results. For convenience of presentation, we
used regular grid points as the surface-level candidate locations for the SGs in
upper plane. In this setting, the playing field consists of K × K small squares
contained by the upper plane of the space, with the (K + 1)2 grid points as L.
We present averages of 50 separate runs for each result.

In Fig. 1 (a) and (b), we compare the number of SGs required with number of
USNs varying. In both cases, the number of candidate locations was 100 (10×10).
The number of USNs was varied from 10 to 100. The RA is set to 25 for both
cases and RRF is set to 25 and 50 for case (a) and (b), respectively. In both
cases, we can see that the required number of SGs decreases with the increment
of USNs. With the increment of USNs, the USNs trend to self-connected and
only few SGs are required to connectethe USNs and BSs. The algorithm A1-A
always performs better than the algorithms A1-B and A1-C.

In Fig. 1 (c) and (d), we also study the relationship between the number of
SGs required and number of the candidate locations. We addressed two cases
for 20 and 40 USNs respectively. We set RRF = 40 and RA = 25. There is no
obvious variety of the number of SGs used for A1-A in Fig. 1 (c) and (d). Since,
the SGs’ main function is to connect USNs and BSs, some isolated USNs have
to send data to BS by the SGs nearby them. Thus the variety of number of
candidate locations may change the number of required SGs a little when the
total number of used SGs trend to the optimal solution. This indicates that our
approximation algorithm performs well. However, for the results delivered by
A1-B and A1-C, these results are worse than A1-A’s, and the more choice of
candidate locations, the less redundant SGs will be used. Therefore, with the
increment of candidate locations, the numbers of used SGs produced by A1-B
and A1-C decrease gradually.

56 D. Li et al.

0
1
2
3
4
5
6
7
8
9

10
11
12
13

10 20 40 60 80 100
Number of USNs

N
um

be
r

of
 S

G
s

us
ed

A1-A A1-B A1-C

(a) Number of SGs used vs.

Number of USNs.

0
1
2
3
4
5
6
7
8
9

10
11
12
13

10 20 40 60 80 100
Number of USNs

N
um

be
r

of
 S

G
s

us
ed

A1-A A1-B A1-C

(b) Number of SGs used vs.

Number of USNs.

0
1
2
3
4
5
6
7
8
9

10
11
12
13

3×3 5×5 7×7 9×9 11×11
Number of Candidate Locations

N
um

be
r

of
 S

G
s

us
ed

A1-A A1-B A1-C

(c) Number of SGs used vs. Num-

ber of candidate locations.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

3×3 5×5 7×7 9×9 11×11
Number of Candidate Locations

N
um

be
r

of
 S

G
s

us
ed

A1-A A1-B A1-C

(d) Number of SGs used vs.

Number of candidate locations.

Fig. 1. The simulation results for the 1-connected C-SGP problem

6 Conclusions

In this paper, we studied the C-SGP problems in UA-WSNs. We mainly ad-
dressed the connected and survivable C-SGP problems, which can ensure to meet
the connectivity and survivability requirements for some application environ-
ments of UA-WSNs. We discussed the computational complexity and presented
an approximate algorithm for the two problems respectively, and corroborate
the algorithms’ performance through theoretical analysis and simulations.

Acknowledgment

This paper was supported in part by the National Natural Science Founda-
tion of China under grant 61070191, Renmim University of China under Grants
10XNJ032 and 863 high-tech project under Grant 2008AA01Z120.

References

1. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater Acoustic Sensor Networks:

Research Challenges. Elesviers Journal of Ad Hoc Networks 3(3), 257–279 (2005)

2. Pompili, D., Melodia, T., Akyildiz, I.F.: Deployment Analysis in Underwater

Acoustic Wireless Sensor Networks. In: Proc. of the ACM WUWNet (2006)

C-SGP for Underwater Acoustic Wireless Sensor Networks 57

3. Ibrahim, S., Cui, J.H., Ammar, R.: Surface-Level Gateway Deployment for Under-

water Sensor Networks. In: Proc. of the IEEE MILCOM (2007)

4. Seah, W.K.G., Tan, H.X.: Multipath Virtual Sink Architecture for Underwater

Sensor Networks. In: Proc. of the OCEANS (2006)

5. Zhang, W., Xue, G., Misra, S.: Fault-tolerant Relay Node Placement in Wire-

less Sensor Networks: Problem and Algorithms. In: Proc. of the IEEE INFOCOM

(2007)

6. Han, X., Cao, X., Lloyd, E.L., Shen, C.C.: Fault-Tolerant Relay Node Placement in

Heterogeneous Wireless Sensor Networks. In: Proc. of the IEEE INFOCOM (2007)

7. Lloyd, E., Xue, G.: Relay Node Placement in Wireless Sensor Networks. IEEE

Trans. on Computers 56, 134–138 (2007)

8. Misra, S., Hong, S.D., Xue, G., Tang, J.: Constrained Relay Node Placement in

Wireless Sensor Networks to Meet Connectivity and Survivability Requirements.

In: Proc. of the IEEE INFCOM (2008)

9. Ke, W., Liu, B., Tsai, M.: Constructing a Wireless Sensor Network to Fully Cover

Critical Grids by Deploying Minimum Sensors on Grid Points is NP-Complete.

IEEE Trans. on Computers 56, 710–715 (2007)

10. Mader, W.: Uber Minimal n-fach Zusammenhangende, Unendliche Graphen Un-

dein Extremal Problem. Arch. Math. 23, 553–560 (1972)

11. Conway, J.H., Sloane, N.J.A.: Sphere Packing, Lattices and Groups, 3rd edn.

Springer, New York (1999)

12. Butenko, S., Ursulenko, O.: On Minimum Connected Dominating Set Problem in

Unit-Ball Graphs. Preprint Submitted to Elervier Science (2007)

13. Kou, L.T., Markowsky, G., Berman, L.: A Fast Algorithm for Steiner Tree. Acta

Informatica 15, 141–145 (1981)

14. Du, D., Hu, X.: Steiner Tree Problems in Computer Communication Networks.

World Scientific Publishing Co. Pte. Ltd., Singapore (2008)

15. Fleischer, L.: A 2-approximation for Minimum Cost {0, 1, 2}-Vertex Connectivity.

In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, p. 115. Springer,

Heidelberg (2001)

16. Robins, G., Zelikovsky, A.: Tighter Bound for Graph Steiner Tree Approximation.

SIAM J. on Discrete Mathmatics 19, 122–134 (2005)

Time Optimal Algorithms for Black Hole Search
in Rings�

Balasingham Balamohan1, Paola Flocchini1, Ali Miri2, and Nicola Santoro3

1 University of Ottawa, Ottawa, Canada

{bbala078,flocchin}@site.uottawa.ca
2 Ryerson University, Toronto, Canada

samiri@scs.ryerson.ca
3 Carleton University, Ottawa, Canada

santoro@scs.carleton.ca

Abstract. In a network environments supporting mobile entities (called

robots or agents), a black hole is harmful site that destroys any incoming

entity without leaving any visible trace. The black-hole search problem

is the task of a team of k > 1 mobile entities, starting from the same safe

location and executing the same algorithm, to determine within finite

time the location of the black hole. In this paper we consider the black

hole search problem in asynchronous ring networks of n nodes, and focus

on the time complexity.
It is known that any algorithm for black-hole search in a ring requires

at least 2(n−2) time in the worst case. The best algorithm achieves this

bound with a team of n − 1 agents with an average time cost 2(n − 2),

equal to the worst case. In this paper we first show how the same number

of agents using 2 extra time units from optimal in the worst case, can

solve the problem in only 7
4
n−O(1) time on the average. We then prove

that the optimal average case complexity 3
2
n − O(1) can be achieved

without increasing the worst case using 2(n−1) agents Finally we design

an algorithm that achieves asymptotically optimal both worst case and

average case time complexity employing an optimal team of k = 2 agents,

thus improving on the earlier results that required O(n) agents.

1 Introduction

1.1 The Problem

Black Hole Search (Bhs) is a multi-agents problem set in graph G: a team of
(identical) cooperating mobile entities called agents (or robots) must determine
the location in G of a black hole (Bh): a node where any incoming agent is
destroyed without leaving any detectable trace. The problem is solved if at least
one agent survives and knows the location of the black hole.

A black hole can model several types of faults, both hardware and software,
arising in networked systems with code mobility. For example, the crash failure of

� Research partially supported by NSERC.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 58–71, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Time Optimal Algorithms for Black Hole Search in Rings 59

a site in an asynchronous network turns such a site into a black hole; similarly,
the presence at a site of a malicious process (e.g., a virus) that thrashes any
incoming message (e.g., by classifying it as spam) also renders that site a black
hole. Clearly, in presence of such a harmful host, the first step must be to identify
it, if possible; i.e., to determine and report its location; following this phase, a
“rescue” or “repair” activity would conceivably be initiated [15]. The black hole
search problem is also theoretically interesting because it is a generalization of
the classical problem of graph exploration (e.g., see [1, 6, 16]). In fact, it is easy
to see that to locate a black hole the agents have to necessarily “explore” all
safe nodes; in this exploration process some agents may disappear in the black
hole. In other words, while the existing wide body of literature on exploration
assumes that the graph is safe, Bhs opens the problem of the exploration of
dangerous graphs.

In this paper we consider the Black Hole Search problem in a ring network.

1.2 Related Work

This black hole search problem has been originally studied in ring networks [11]
and has been extensively investigated in various settings since then (e.g., see
[3, 5, 9, 7, 12, 13, 18, 24]).

In order to locate the black hole, some of the agents of the team will necessarily
have to enter the dangerous site. The goal of all location algorithms studied in
the literature is to minimize the size of the exploring team, the number of moves
performed by the agents and the time spent in the search.

The main distinctions made in the literature are whether the system is syn-
chronous or asynchronous, and whether the agents communicate through white-
boards or by using tokens.

The majority of the work focuses on the asynchronous whiteboard model, which
is the one considered in this paper. In this model, there are no assumptions on the
time required for each operation or movement other than it is finite. Each net-
work node provides a shared memory area, the whiteboard, which visiting agents
can access (in fair mutual exclusion) to write on and/or read from. The commu-
nication and coordination between agents takes place solely via the whiteboards.
Within this model, a complete characterization has been done for the localiza-
tion of a black hole in ring networks [11], providing protocols that are optimal in
size, time, and asymptotically move-optimal number of moves. In [9], arbitrary
topologies have been considered and asymptotically optimal location algorithms
have been proposed under a variety of assumptions on the agents’ knowledge
(knowledge of the topology, presence of sense of direction). An improved algo-
rithm when the topology is known has been described in [10], while optimal algo-
rithms for common interconnection networks have been studied in [7]. In [18] the
effects of knowledge of incoming link on the optimal team size has been stud-
ied and lower bounds provided. The case of black links in arbitrary networks
has been studied in [19, 14], respectively for anonymous and non-anonymous
nodes. Black hole search in directed graphs has been investigated for the first
time in [3], where it is shown that the requirements in number of agents change

60 B. Balamohan et al.

considerably. A variant of dangerous node behavior has been studied in [22],
where the authors introduce black holes with Byzantine behavior (they do
not always destroy a passing agent) and consider the periodic ring exploration
problem.

In the asynchronous token model, there are no whiteboards, but each agent
is provided with pebbles that it can place on (and pick up from) a node; the
communication and coordination among agents is achieved solely by placing on
the nodes. This model has been investigated in [8, 12, 13, 24].

In synchronous networks, where movements are synchronized and it is as-
sumed that it takes one unit of time to traverse a link, the techniques and the
results are quite different. Tight bounds on the number of moves have been es-
tablished for some classes of trees [5]. In the case of general networks finding the
optimal strategy is shown to be NP-hard [4, 20] and approximation algorithms
are given in [20,21]. The case of multiple black holes have been investigated in [2]
where a lower bound on the cost and close upper bounds are given.

1.3 Main Contributions

In this paper we turn our attention to the time complexity of locating a black
hole in a ring of n nodes using a team of k > 1 asynchronous agents communi-
cating by means of whiteboards (shared memory available at each node). The
asynchrony of the computational entities means that the algorithm must work
regardless of the time required for each computation or movement, which is fi-
nite but a priori unknown (i.e., determined by an adversary); however, the time
complexity of the algorithm is measured only over those executions where time
delays are unitary (i.e., determined by a synchronous scheduler), as traditional
in distributed computing (e.g., [11, 17, 23]).

It has been shown in [11] that any asynchronous black hole search algorithm
for rings requires Tworst(n, k) = 2(n− 2) time in the worst case regardless of the
number k > 1 of agents. The best algorithm achieves this bound with a team of
k = n−1 agents with an average time cost 2(n−2), equal to the worst case [11].

In this paper we first show how the same number of agents can solve the
problem using on the average only 7

4n time, and in the worst case 2 extra time
units from optimal. We also show that any asynchronous black hole search algo-
rithm for rings requires Taverage(n, k) = 3

2n time regardless of the number k > 1
of agents, and then prove that, with 2(n − 1) agents, the optimal average case
complexity 3

2n−O(1) can be achieved without increasing the worst case. Finally,
observing that all considered protocols achieve (worst and average) Θ(n) time
using O(n) agents, we prove that it is possible to locate a black hole in asymptot-
ically optimal (worst and average) Θ(n) time with just k = 2 agents. In fact, we
design an algorithm that uses 8n+O(1) time in the worst case and 15

2 n+O(1) on
the average, employing an optimal team of 2 agents thus improving the earlier
result that employed n−1 agents. These results are summarized in Table 1. The
costs in terms of moves of all these algorithms is O(n2), the same as that of the
algorithm in [11] they improve upon.

Time Optimal Algorithms for Black Hole Search in Rings 61

Table 1. Summary of results; (�) indicates an optimal exact bound

Algorithm Agents Time Complexity
Average Worst

[11] n− 1 2(n− 2) 2(n− 2) ()

Group n− 1 7
4 n−O(1) 2(n− 1)

OptAvgTime 2(n− 1) 3
2 n−O(1) () 2(n− 2) ()

OptTeamSize 2 () 15
2 n + O(1) 8n + O(1)

2 Preliminaries

2.1 Definitions and Notations

The network environment is a ring R of n anonymous nodes (for simplicity
indicated as 0, 1, · · · , n − 1 in clockwise direction). Each node has two ports,
labelled left and right. Without loss of generality we assume that this labeling is
globally consistent and the ring is oriented (if it is not the case, orientation can
be easily obtained) . Each node is equipped with a limited amount of storage,
called whiteboard. For all our algorithms O(log n) bits of storage are sufficient.

In this network there is a set A of anonymous (i.e., identical) mobile agents,
which are all initially located on the same node, called the homebase (w.l.g. node
0). The topology is known to the agents, as well as the number of nodes (as shown
in [11] not knowing the number of nodes make the location process impossible).
The agents can move from node to neighboring node in R and have computing
capabilities and bounded storage. The agents obey the same set of behavioral
rules, the protocol, and all their actions are performed asynchronously, i.e., they
take a finite but unpredictable amount of time. The agents communicate by writ-
ing on and reading from the whiteboards. Access to the whiteboards is governed
by fair mutual exclusion.

A black hole (BH) is a stationary process located at a node, which destroys
any agent arriving at the node; no observable trace of such a destruction will
be evident external to the node in which black hole is located. The Black Hole
Search problem is the one of finding the location of the black hole. More precisely,
the black hole search problem is solved if at least one agent survives, and all
surviving agents know the location of the black hole within a finite amount of
time.

62 B. Balamohan et al.

We evaluate the efficiency of our solutions based on the following measures:

1. Number of agents used/needed in the protocol.
2. Total number of moves performed by all agents.
3. The amount of time between the earliest start time of the protocol by any

agent and the time all the agents that started the protocol have terminated
the execution of protocol. Since the system is asynchronous, when evaluating
the time complexity we will employ ideal time; i.e., we will assume that it
time delays are unitary (e.g., see [11, 17, 23]).

2.2 Cautious Walk

We first recall the cautious walk technique, which is central to the algorithms
presented in this paper, and the existing asymptotically optimal algorithm of
[11].

At any time during the search for the black hole, the ports (corresponding to
the incident links) of a node can be classified as follows:

1. unexplored: if no agent has moved across this port.
2. safe: if an agent arrived via this port.
3. active: if an agent departed via this port, but no agent has arrived via it.

Clearly, both unexplored and active links are dangerous in that they might lead
to the black hole; however, active links are being explored, so there is no need
for another agent to go there unless it is declared safe. Cautious walk is defined
by the following two rules:

1. when an agent moves from node u to v via an unexplored port (turning it
into active), if it does not disappears (i.e., v is not the black hole) the agent
immediately returns to u (making the port safe), and only then resumes its
execution;

2. no agent leaves via an active port.

3 Improved Algorithm

In this section we improve on the average time complexity of [11]. We describe
an algorithm that uses only n− 1 agents, as in [11], but only 7

4n + O(1) time on
the average (instead of 2(n−2)). The worst case is 2(n−1) (instead of 2(n−2)).

The idea is to determine the location of the black hole on some node by
having a particular pair of agents (witnessing pair) returning successfully to the
homebase after exploring a subset of nodes that does not include the black hole.
The way subsets of nodes are associated to agents is complicated by the objective
of reducing the number of agents entering the black hole.

We recall that node 0 indicates the homebase and the other nodes are indi-
cated as 1, 2, . . . , n − 1 in clockwise direction. For simplicity of description let
n = 4q + 1. The 4q agents are divided into four groups: Left, Right, Middle and

Time Optimal Algorithms for Black Hole Search in Rings 63

TieBreakers. The groups Left and Right contain q agents each. The Middle group
consists of q + 1 agents and the TieBreakers group consists of q − 1 agents.

The witnessing pairs are chosen in a different way depending on the potential
location of the black hole. If the black hole is far from the homebase, it will
be witnessed by a pair from Left and Middle or from Right and Middle. If in-
stead, the black hole is closer to the homebase the witnessing pair will belong
to TieBreakers and Right or to TieBreakers and Left.

More precisely, the idea is that the agents of the Left, Right and Middle groups
explore each a region of size 3q appropriately chosen in such a way that the 2q
nodes farthest from the homebase are endpoints of complements of explored
areas of some agents. In other words, the presence of the black hole in one of
those 2q nodes would be witnessed by a pair of agents being able to successfully
return after their exploration.

The agents of the Tiebreakers group are instead used to pair themselves either
with an agent from Right or with one from Left to locate the black hole when
it is within q nodes from the homebase. The details are given in Algorithm 1.

Algorithm 1. Algorithm Group

1. The Left group consists of lefti for 1 ≤ i ≤ q. An agent lefti in this group
explores all node except the nodes {i, i+1, i+2, · · · , i+ q−1}. It moves left
first, then right and then returns to homebase. (See Figure 1).

2. The Right group consists of righti for 1 ≤ i ≤ q. An agent righti in this
group explores all node except the nodes {n− i− q, n− i− q+ 1, · · · , n− i}.
It moves right first, then left and then returns to homebase.

3. The Middle group consists of middlei for 1 ≤ i ≤ q +1. An agent middlei in
this group explores all node except the nodes {q + i−1, q + i, · · · , 2q + i−1}.
It moves left first, then right and then returns to homebase. (See Figure 2).

4. The Tiebreaker group consists of tiebreakeri for 1 ≤ i ≤ q − 1. An agent
tiebreakeri in this group explores all nodes except nodes {i, i−1, i−2, · · · , 1}
at the right of the homebase starting as soon as either righti+1 or lefti+1
passes through the homebase. (See Figure 3).

5. The black hole is located on node i iff one of the following witnessing
pairs return safely: (lefti,middlei), (righti, middleq−i), (tiebreakeri,lefti),
(tiebreakeri,righti).

We have that:

Theorem 1. Algorithm Group solves the black hole search problem with aver-
age time 7n

4 + O(1) and worst case time 2(n− 1).

Proof. Let us first consider the correctness of the algorithm. If the black hole is
one of nodes {q, q+1, q+2, · · · , 2q} then it is the unique node in the intersection
of the excluded segments of a pair of agents lefti and middlei from the Left and
the Middle groups. (for example, q + 1 is the only node not explored by the

64 B. Balamohan et al.

i
i− 1

i + q − 1i + q

� �

� �

�

Fig. 1. Algorithm Group: Protocol For Left Group

i + 2q − 1
i + 2q

i + q − 1
i + q − 2

�
�

�
�

�

Fig. 2. Algorithm Group: Protocol For Middle Group

i
i + 1

righti+1 passes

� �
�

Fig. 3. Algorithm Group: Protocol For Tie-Breaker Group

Time Optimal Algorithms for Black Hole Search in Rings 65

pair left2, middle2). In such a case the black hole is located by the return of
such a witnessing pair and the location takes 3

2 (n− 2) time units as both agents
lefti and middlei explore all but q = 1

4 (n − 1) agents. If the black hole is in
node i with i < q then agent righti+1, after exploring the i nodes on the right
of the homebase, passes back through the homebase. At this moment, by the
rules of the algorithm, agent tiebreakeri starts exploring all the nodes (except
node i and the i− 1 nodes between node i and homebase) moving to the right
of the homebase. If also agent lefti returns, it means that node i contains the
black hole because it is the only unexplored node. Hence, the return of the pair
tiebreakeri,lefti (or tiebreakeri,righti) signals the presence of the black hole in
node i.

Consider now the time complexity of the algorithm. Agent tiebreakeri begins
the execution after 2i time units, and it explores all but i nodes. Hence it returns
back to the homebase 2(n− 1) time units after the start of the execution of the
first agent. So, when the black hole is one of the q − 1 nodes closest to the
homebase, it will be located within 2(n − 1) units. A similar argument apply
when the blackhole is symmetrically placed on the other (right) half of the ring,
and the worst case result follows.

As for the average time complexity, we have two situations: when the black
hole is within q nodes of the homebase, the time for locating it is 2(n − 1);
otherwise, it is 3

2 (n− 2) time units. Hence the average ideal time complexity is:

2(q − 1)(2(n− 1)) + 2(q + 1)(3(n−2)
2)

4q
=

7(n− 1)
4

−O(1).

4 Optimal Average Time

In this section we show that, by using 2(n− 1) agents, it is possible to achieve
simultaneously optimal time both in the average and in the worst case, estab-
lishing a lower bound on the average time complexity of black hole search.

The idea of the algorithm is to identify pairs of agents (lefti, righti, i ≤ 1 ≤
n−1) among the 2(n−1) available, and to assign each pair to “check” a node of
the ring. To check node i, an agent of the pair would move to node i−1 clockwise
(thus exploring nodes 1, 2, . . . , i − 1) and the other would move to node i + 1
counterclockwise (thus exploring nodes i+1, i+2, . . .n−1). The presence of the
black hole in the ring insures that only one pair will come back to the homebase
intact while one agents of each of the other pairs will disappear in the black hole.
Once the successful pair returns, the black hole is located.

Theorem 2. Algorithm OptAvgTime solves the black hole location problem.
in average ideal time complexity 3

2n+O(1) and worst case ideal time complexity
2(n− 2). Both complexities are optimal.

Proof. Correctness follows from the fact that for each node i there are two agents,
namely lefti and righti such that the singleton set {i} is the intersection of the
areas that they do not explore.

66 B. Balamohan et al.

Algorithm 2. Algorithm OptAvgTime

2(n− 1) co-located agent lefti, righti, i ≤ 1 ≤ n− 1 at homebase node 0.

1. Agent lefti explores nodes (0, 1, 2, · · · , i− 1) and returns.
2. Agent righti explores nodes (n− 1, n− 2 · · · , i + 2, i + 1) and returns.
3. Let (leftj, rightj) be the only full pair safely returning. The black hole is

node j.

Let us now consider worst case time complexity: The time spent by lefti and
righti to reach it and come back is 2Max{i − 1, n − i}; the worst case clearly
occurs when the black hole is located on node 1 (or n−2) and the corresponding
time complexity is 2(n− 2), which is optimal [11].

As for the average time. The presence of the black hole at a node i is witnessed
by agents reaching nodes i− 1 and n− i− 1. Hence, the ideal time delay for the
algorithm when the black hole is located at node i is 2Max{i − 1, n − 1 − i}.
2(i− 1) is greater than or equal to 2(n− 1− i) whenever i ≥ n

2 . Since all nodes
other than the homebase are equally likely to contain the black hole, the average
time complexity is:∑n

2 −1
i=1 2(n− 1− i) +

∑n−1
i= n

2
2(i− 1)

n− 1

=
(n− 1)(n− 2) +

∑n
2 −1
i=1 −2i +

∑n−1
n
2

2i

n− 1

=
(n− 1)(n− 2)− (n

2 − 1)n + (n− 1)n
n− 1

=
3
2
n + O(1)

Notice that nodes on either side of the black hole have necessarily to be
reached by some agents and their visit reported back. Hence the time when the
black hole is located at node i must be greater than or equal to both 2(i−1) and
2(n−1− i), which precisely corresponds to the time complexity of our algorithm
for node i. We can then conclude that our bound is optimal.

5 Optimal Team Size

The algorithm of Dobrev et al [11] as well as the improvements presented here
have optimal time complexities both in the worst and in the average case; how-
ever they all use O(n) agents, which is order of magnitude larger that than the
optimal team size k = 2. One might think that this large number of agents used
by time-optimal solutions is necessary. This is however not true, as we show in
this section.

In the following, we present an algorithm that allows k = 2 agents to locate the
black hole with asymptotically optimal time in both the worst and the average
case. The cost in terms of messages of this algorithm is O(n2), the same as all
the others considered here.

Time Optimal Algorithms for Black Hole Search in Rings 67

The algorithm, called OptTeamSize, is as follows. At each point in time the
nodes of the ring are partitioned into an Explored area and an Unexplored one.
The explored area has been already visited by some agent and it is known to
be safe, the unexplored area is still to be visited and contains the black hole.
Moreover, during the algorithm, the unexplored area is partitioned between the
two agents. More precisely, it is always divided into two disjoint areas of dif-
ferent sizes to which agents are assigned: one part containing a single node
and the other containing all other unexplored nodes. In each step of the al-
gorithm one of the agents (called small) is given the task to explore the area
containing a single node, while the other (called big) has to explore the other
area. The exploration proceeds with cautious walk. Since the two areas are dis-
joint, one of the agents will certainly succeed in its exploration. If the big agent
succeeds, the blackhole is obviously located and the algorithm terminates. On
the other hand, if the small agent returns successfully, it further divides the
remaining unexplored area and notifies the big agent of the update by leav-
ing a message on the whiteboard of the last node successfully visited by the
other agent. The way the update of the unexplored area is performed is such
that an agent stays small for two consecutive steps before switching role. A
stage of the algorithm consists of these two consecutive steps and the algorithm
is a sequence of stages which terminates when n − 1 nodes are known to be
safe.

This division process is preceded by a preprocessing phase where the two
agents divide the ring in two disjoint parts of almost equal size: only when one
of the two returns to the homebase the asymmetric workload division starts to
take place.

In the following when we say that an agent acts as big we mean that it
cautiously explores all but the last nodes of the unexplored area. When an agent
acts as small it cautiously explores the first node of the unexplored area. The
location of the homebase in the various steps of the algorithms is variable and
it is always the central node of the current explored area. An update message
contains the update information about the current unexplored area and the
current location of the homebase.

We now prove that the algorithm terminates correctly and we study its com-
plexity.

Theorem 3. Algorithm OptTeamSize solves the black hole search in optimal
time Θ(n) using 2 agents and performing O(n2) moves.

Proof. After the end of the preprocessing phase at least one agent, say right,
survives and returns. Since the segments of the ring explored by each agent are
always disjoint, at least one agent survives every stage. If the big agent survives,
the algorithm terminates correctly, if the small agent survives the size of the
unexplored area decreases by one and the algorithm correctly moves to the next
stage (or it terminates if the new size is equal to one). Hence, one of the agents
eventually discovers the location of the black hole.

68 B. Balamohan et al.

Algorithm 3. Algorithm OptTeamSize

Two co-located agents l and r . E = {vh}. U = V − E.

1. Preprocessing Phase: Agent l (resp. r) explores cautiously the leftmost (resp.
rightmost) �|U |/2� nodes of the unexplored area and when finished returns
to the homebase vh.

2. Exploration Phase: One of the agents (say l) arrives at the homebase and
becomes small. Agent l moves to the last explored node on agent r’s side, it
leaves an update message to r indicating to act as big. Agent l then moves
to its side and act as small. Stage 1 of Phase 2 begins.

3. Stage i of Phase 2:
(a) If the big agent (say r) returns to the homebase (or the small agent

returns and the size of the unexplored area is one) then the blackhole is
located and the algorithm terminates.

(b) Otherwise, the small agent l returns, it moves to the last explored node
on agent r’s side, it leaves an update message for r indicating to maintain
the same role big.

(c) Agent l moves back to its side and it acts as small.
(d) If r returns, then the blackhole is located and the algorithm terminates.
(e) Otherwise agent l returns, it moves to the last explored node on agent

r’s side, it leaves an update message for r instructing to reverse role.
Agent l then moves to the other side and it changes role acting as big.

(f) If l returns the blackhole is located and the algorithm terminates.
(g) Otherwise Agent r returns and becomes small; it moves to agent l’s side,

it leaves an update message for agent l instructing it to act as big. Agent
r then moves back to its side and acts as small.

(h) If l returns then the blackhole is located and the algorithm terminates.
(i) Otherwise agent r returns, it changes role becoming big, it moves to

agent l’s side and it leaves a message to agent l at the last explored node
updating the unexplored area and instructing to reverse roles. Agent l
moves to its side and acts as big.

(j) Stage i + 1 starts.

To prove that the algorithm has Θ(n) time complexity, we first observe that
when the exploration phase of the algorithm begins the explored area is at least
of size n−1

2 . While the big agent, say r, is exploring all but one nodes on its side,
the other agent (if it did not disappear in the blackhole before) performs two
steps as small making at least 3

2 (n− 1) moves (and spending the same amount
of time). By that time, under the ideal time assumption, agent r would have
either i) returned safely determining the location of the black hole, or ii) died
in the black hole. In the first case we obviously have a time complexity of O(n).
In the other case, when agent l switches role becoming big and moves to explore
all but one nodes, it necessarily completes its task locating the black hole, again
with an overall time complexity of O(n).

Time Optimal Algorithms for Black Hole Search in Rings 69

To show that the worst case move complexity is O(n2), it suffices to notice
that in the worst possible asynchronous execution it is always the small agent
that completes a step, while the big agent is slow on a link. Since the small agent
manages to explore a single node in each step, and the size of the unexplored
area when this procedure starts is n

2 , O(n) steps are necessary to locate the
black hole. In each step however O(n) moves are performed by the small agent
to explore and report the update on the other side of the explored area, for a
total of O(n2) moves.

We now show the exact average and worst case time complexities of the
algorithm.

Theorem 4. Algorithm OptTeamSize solves the black hole search in average
ideal time 15

2 n + O(1) and worst case 8n + O(1).

Proof. By symmetry of the algorithm we may assume that the black hole is
located on the right half of the ring (w.l.g let n be even). We then calculate the
ideal time delay when the black hole is located at node i ≤ n

2 (i.e., n
2 nodes to

the right of the homebase). We consider different cases.

– Case 1: Node i is the border node of the partition between the right and
the left agents. In this case the left agent returns after 3

2n + n
2 time units to

the homebase. In the sum, the first addend is for the cautious exploration
and the second is for the time taken to return to the homebase. Now the left
agents follows the path of the right agent. The right agent must have died
at the last node of its partition. So in another n time units the left agent
will reach the last safe node explored by the right agent and return. So, in
this case the black hole is located in 3n total time units.

– Case 2: Node i is the neighbor of the border node of the partition between
the right and the left agents. Similarly to the previous case, the left agent
will take 3n−O(1) time units to return to the homebase after exploring all
nodes, except the black hole and its neighbor. Now the left agent in the role
of small explores the last safe node and return in further n+O(1) time units.
In this case the black hole is then located in 4n + O(1) time units.

– Case 3: Node i is the third node from the border of the partition between
the right and the left agents. In this case the left agent discovers the black
hole after the end of the second round as small. The total ideal time delay
in this case is 5n + O(1).

– Case 4: Node i is the fourth node or the node further from the border of the
partition between the right and the left agents. In this case the left agent (l)
performs two rounds as small and a round as big. Observe that under ideal
conditions the right agent would die in the black hole and would not return,
so it suffices to count the time taken by the left agent. Agent l explores
(n − i) + O(1) nodes in total and this cautious exploration costs in total
3(n− i) + O(1) time units. Let us now compute the time necessary for the
other movements of the left agent. Agent l takes n

2 + i + O(1) time units for
reaching the last safe node explored by the right agent. Moreover, agent l

70 B. Balamohan et al.

takes 4(n
2 + i) + O(1) time unit for the two rounds as small; after becoming

big, agent l reaches the last explored node on its side in n
2 + i time units.

At this point it cautiously explores (the cost of the exploration has been
already accounted for earlier). Finally, the agent returns to the homebase in
n − i + O(1) time units. Thus the total ideal time delay is 7n + 2i + O(1)
time units.

Hence the average ideal time delay is :

12n +
∑i= n

2
i=1 (7n + 2i)

n
2

= 7n +
(n

2)(n
2 + 1)
n
2

=
15
2

n + O(1)

The worst case occurs in correspondence of Case 4, when i = n/2−O(1), which
yields 8n + O(1).

References

1. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of a peb-

ble: Exploring and mapping directed graphs. Information and Computation 176(1),

1–21 (2002)

2. Cooper, C., Klasing, R., Radzik, T.: Searching for black-hole faults in a network

using multiple agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,

vol. 4305, pp. 320–332. Springer, Heidelberg (2006)

3. Czyzowicz, J., Dobrev, S., Královic, R., Mikĺık, S., Pardubská, D.: Black hole search

in directed graphs. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS,

vol. 5869, pp. 182–194. Springer, Heidelberg (2009)

4. Czyzowicz, J., Kowalski, D.R., Markou, E., Pelc, A.: Complexity of searching for

a black hole. Fundamenta Informaticae 71(2-3), 229–242 (2006)

5. Czyzowicz, J., Kowalski, D.R., Markou, E., Pelc, A.: Searching for a black hole in

synchronous tree networks. Combinatorics, Probability & Computing 16(4), 595–

619 (2007)

6. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph The-

ory 32(3), 265–297 (1999)

7. Dobrev, S., Flocchini, P., Kralovic, R., Ruzicka, P., Prencipe, G., Santoro, N.: Black

hole search in common interconnection networks. Networks 47(2), 61–71 (2006)

8. Dobrev, S., Flocchini, P., Kralovic, R., Santoro, N.: Exploring an unknown graph

to locate a black hole using tokens. In: 5th IFIP Int. Conference on Theoretical

Computer Science (TCS), pp. 131–150 (2006)

9. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in ar-

bitrary networks: Optimal mobile agents protocols. Distributed Computing 19(1),

1–19 (2006)

10. Dobrev, S., Flocchini, P., Santoro, N.: Improved bounds for optimal black hole

search with a network map. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004.

LNCS, vol. 3104, pp. 111–122. Springer, Heidelberg (2004)

11. Dobrev, S., Flocchini, P., Santoro, N.: Mobile search for a black hole in an anony-

mous ring. Algorithmica 48, 67–90 (2007)

12. Dobrev, S., Santoro, N., Shi, W.: Using scattered mobile agents to locate a black

hole in an un-oriented ring with tokens. International Journal of Foundations of

Computer Science 19(6), 1355–1372 (2008)

Time Optimal Algorithms for Black Hole Search in Rings 71

13. Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: Optimal

black hole search with pure tokens. In: Taubenfeld, G. (ed.) DISC 2008. LNCS,

vol. 5218, pp. 227–241. Springer, Heidelberg (2008)

14. Flocchini, P., Kellett, M., Mason, P., Santoro, N.: Map construction and explo-

ration by mobile agents scattered in a dangerous network. In: 24th IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS), pp. 1–10 (2009)

15. Flocchini, P., Santoro, N.: Distributed security algorithms for mobile agents. In:

CaO, J., Das, S.K. (eds.) Mobile Agents in Networking and Distributed Computing,

ch. 3. Wiley, Chichester (2009)

16. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a

finite automaton. Theoretical Computer Science 345(2-3), 331–344 (2005)

17. Garay, J.A., Kutten, S., Peleg, D.: A sublinear time distributed algorithm for

minimum-weight spanning trees. SIAM J. Comput. 27(1), 302–316 (1998)

18. Glaus, P.: Locating a black hole without the knowledge of incoming link. In: Dolev,

S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 128–138. Springer, Heidelberg

(2009)

19. Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs

with faulty links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122.

Springer, Heidelberg (2007)

20. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation

results for black hole search in arbitrary networks. Theoretical Computer Sci-

ence 384(2-3), 201–221 (2007)

21. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Approximation bounds for black

hole search problems. Networks 52(4), 216–226 (2008)

22. Královic, R., Mikĺık, S.: Periodic data retrieval problem in rings containing a mali-

cious host. In: Patt-Shamir, B., Ekim, T. (eds.) Structural Information and Com-

munication Complexity. LNCS, vol. 6058, pp. 157–167. Springer, Heidelberg (2010)

23. Kutten, S., Peleg, D.: Fast distributed construction of small k-dominating sets and

applications. J. Algorithms 28(1), 40–66 (1998)

24. Shi, W.: Black hole search with tokens in interconnected networks. In: Guerraoui,

R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 670–682. Springer, Heidelberg

(2009)

Strong Connectivity in Sensor Networks with
Given Number of Directional Antennae of

Bounded Angle

Stefan Dobrev1, Evangelos Kranakis2, Danny Krizanc3, Jaroslav Opatrny4,
Oscar Morales Ponce5, and Ladislav Stacho6

1 Institute of Mathematics, Slovak Academy of Sciences, Bratislava, Slovak Republic.

Supported in part by VEGA and APVV grants
2 School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada.

Supported in part by NSERC and MITACS grants
3 Department of Mathematics and Computer Science, Wesleyan University,

Middletown CT 06459, USA
4 Department of Computer Science, Concordia University, Montréal, QC, H3G 1M8,

Canada. Supported in part by NSERC grant
5 School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada.

Supported in part by CONACYT and NSERC grants
6 Department of Mathematics, Simon Fraser University, 8888 University Drive,

Burnaby, British Columbia, Canada, V5A 1S6. Supported in part by NSERC grant

Abstract. Given a set S of n sensors in the plane we consider the prob-

lem of establishing an ad hoc network from these sensors using direc-

tional antennae. We prove that for each given integer 1 ≤ k ≤ 5 there

is a strongly connected spanner on the set of points so that each sensor

uses at most k such directional antennae whose range differs from the

optimal range by a multiplicative factor of at most 2 · sin(π
k+1

). More-

over, given a minimum spanning tree on the set of points the spanner

can be constructed in additional O(n) time. In addition, we prove NP

completeness results for k = 2 antennae.

Keywords: Antenna, Directional Antenna, Minimum Spanning Tree,

Sensors, Spanner, Strongly Connected.

1 Introduction

The nodes of a wireless network can be connected using either omnidirectional
antennae that transmit in all directions around the source or directional anten-
nae that transmit only along a limited predefined angle. The energy usage of
an antenna is proportional to its coverage area (for directional antennae, this
is usually taken as the area of the sector delimited by the angle of the an-
tenna). Therefore directional antennae can often perform more efficiently than
omnidirectional ones in order to attain overall network connectivity. Given that
the sensor range for a set S of sensors cannot be less than the length of the
maximum edge of a minimum spanning tree on the set S, a reasonable way to
lower energy consumption is by reducing the breadth (or angle or spread) of the

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 72–86, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Strong Connectivity in Sensor Networks 73

antenna being used. However, by reducing antenna angles connectivity may be
lost since communication between sensors can no longer be assumed to be bidi-
rectional. Therefore an interesting question arising is how to maintain network
connectivity when antenna angles are being reduced while at the same time the
transmission range of the sensors is being kept as low as possible.

Formally, consider a set S of n sensors in the plane with identical range. Let
0 ≤ ϕ ≤ 2π be a given angle. Each sensor is allowed to use at most k directional
antennae each of angle at most ϕ, for some integer value k. By directing an
antenna at a sensor u towards another sensor v a directed edge (u, v) from u to
v is formed provided that v is within u’s range and lies inside the sector of angle
ϕ formed by the antenna at u. By appropriately orienting such antennae at all
the sensors we would like to form a strongly connected graph which spans all
the sensors.

1.1 Preliminaries and Notation

Given spread ϕ and number of antennae k per sensor let rk(S, ϕ) denote the
minimum range of directed antennae of angular spread at most ϕ so that if
every sensor in S uses at most k such antennae then it is possible to direct
them so that a strongly connected network (or spanner) on S is formed. A
special case of this is to have angle ϕ = 0 i.e. a direct line connection, in which
case we use the simpler notation rk(S) := rk(S, 0). Let Dk(S) be the set of all
strongly connected graphs on S which have out degree at most k. For any graph
G ∈ Dk(S) let rk(G) be the length of the maximum length edge of G. It is easy
to see that rk(S) := minG∈Dk(S) rk(G), i.e., rk(S) is the minimum length of a
directed edge among all edges of a strongly connected graph with out degree k,
for all such graphs in Dk(S).

It is useful to relate rk(S) to another quantity which arises from the Minimum
Spanning Tree (MST) on S. Let MST (S) denote the set of all MSTs on S.
For T ∈ MST (S) let r(T) denote the length of longest edge of T , and let
rMST (S) := min{r(T) : T ∈ MST (S)}. Further, for any angle ϕ ≥ 0, it is clear
that rMST (S) ≤ rk(S, ϕ) since every strongly connected, directed graph on S
has an underlying spanning tree.

1.2 Related Work

The first paper to address the problem of converting a connected unidirectional
graph consisting of omnidirectional sensors to a strongly connected graph of
directional sensors having only one directional antenna each is [4]. In that paper
the authors present polynomial time algorithms for the case when the sector
angle of the antennae is at least 8π/5. For smaller sector angles, they present
algorithms that approximate the minimum radius. When the sector angle is
smaller than 2π/3, they show that the problem of determining the minimum
radius in order to achieve strong connectivity is NP-hard. A different problem is
considered in a subsequent paper [2]. Each sensor has multiple (fixed number of)
directional antennae and the strong connectivity problem is considered under
the assumption that the maximum (taken over all sensors) sum of angles is

74 S. Dobrev et al.

minimized. The authors present trade-offs between antennae range and specified
sums of antennae per sensor.

When each sensor has one antenna and the angle ϕ = 0 then our problem is
equivalent to finding a Hamiltonian cycle that minimizes the maximum length
of an edge. For a set of n points 1, 2, . . . , n with associated weights c(i, j) satisfy-
ing the triangle inequality, the Bottleneck Traveling Salesman Problem (BTSP)
is the min-max Hamiltonian cycle problem concerned with finding a Hamilto-
nian cycle for the complete graph which minimizes the maximum weight of an
edge, i.e., min{max(i,j)∈H c(i, j) : H is a Hamiltonian cycle}. [10] shows that no
polynomial time (2 − ε)-approximation algorithm is possible for BTSP unless
P = NP , and also gives a 2-approximation algorithm for this problem.

No literature is known on the connection between the MST of a set of points
and strongly connected geometric spanners with given out-degree. Two papers
relating somewhat these two concepts are the following. First, [5] shows that it is
an NP-hard problem to decide for a given set S of n points in the Euclidean plane
and a given real parameter k, whether S admits a spanning tree of maximum
vertex degree four whose sum of edge lengths does not exceed k. Second, [7] gives
a simple algorithm to find a spanning tree that simultaneously approximates a
shortest-path tree and a minimum spanning tree.

Directional antennae are known to enhance ad hoc network capacity and per-
formance and when replacing omnidirectional antennae can reduce the total en-
ergy consumption on the network. A theoretical model to this effect is presented
in [6] showing that when n omnidirectional antennae are optimally placed and
assigned optimally chosen traffic patterns the transport capacity is Θ(

√
W/n),

where each antenna can transmit W bits per second over the common channel(s).
When both transmission and reception is directional [14] proves an

√
2π/αβ ca-

pacity gain as well as corresponding throughput improvement factors, where α is
the transmission angle and β is a parameter indicating that β/2π is the average
proportion of the number of receivers inside the transmission zone that will get
interfered with. Additional experimental studies confirm the importance of using
directional antennae in ad hoc networking (see, for example, [1,9,8,11,12,13]).

1.3 Results of the Paper

We are interested in the problem of providing an algorithm for orienting the
antennae and ultimately for estimating the value of rk(S, ϕ). Without loss of
generality antennae ranges will be normalized, i.e., rMST (S) = 1. The two main
results are the following.

Theorem 1. Consider a set S of n sensors in the plane and suppose each sensor
has k, 1 ≤ k ≤ 5, directional antennae with any angle ϕ ≥ 0. Then the antennae
can be oriented at each sensor so that the resulting spanning graph is strongly
connected and the range of each antenna is at most 2·sin(π

k+1) times the optimal.
Moreover, given a MST on the set of points the spanner can be constructed with
additional O(n) overhead.

Note that the case k = 1 was derived in [10].

Strong Connectivity in Sensor Networks 75

Theorem 2. For k = 2 antennae and angular sum of the antennae at most α,
it is NP-hard to approximate the optimal radius to within a factor of x. where x
and α are the solutions of equations x = 2 sin(α) = 1 + 2 cos(2α).

Using the identity cos(2α) = 1 − 2 sin2 α and solving the resulting quadratic
equation with unknown sin α we obtain numerical solutions x ≈ 1.30, α ≈ 0.45π.
Figure 9 depicts the geometric relation between α and x.

2 Upper Bound Result on Strongly Connected Spanners

The proof given in the sequel is in three parts. Due to space constraints only the
proof for k = 2 is presented in detail in Subsection 2.1 and part of the pseudocode
in Subsection 2.2, while in the full paper we prove the cases for k = 3 and k = 4
and present the remaining algorithm.

Preliminary Definitions. D(u; r) is the open disk with radius r, centered at u
and C(u, r) is the circle with radius r and centered at u. d(·, ·) denotes the usual
Euclidean distance between two points. In addition, we define the concept of
Antenna-Tree (A-Tree, for short) which isolates the particular properties of a
MST that we need in the course of the proof.

Definition 1. An A-Tree is a tree T embedded in the plane satisfying the fol-
lowing three rules:

1. Its maximum degree is five.
2. The minimum angle among nodes with a common parent is at least π/3.
3. For any point u and any edge {u, v} of T , the open disk D(v; d(u, v)) does

not have a point w �= v which is also a neighbor of u in T .

It is well known and easy to prove that for any set of points there is an MST
on the set of points which satisfies Definition 1. We also recall that we consider
normalized ranges (i.e. we assume r(T) = 1).

Definition 2. For each real r > 0, we define the geometric r-th power of a
A-Tree T , denoted by T r, as the graph obtained from T by adding all edges
between vertices of (Euclidean) distance at most r.

For simplicity, in the sequel we slightly abuse terminology and refer to geometric
r-th power as r-th power.

Definition 3. Let G be a graph. An orientation
−→
G of G is a digraph obtained

from G by orienting every edge of G in at least one direction.

As usual, we denote with (u, v) a directed edge from u to v, whereas {u, v}
denotes an undirected edge between u and v. Let d+−→

G
(u) be the out-degree of u

in
−→
G and Δ+(

−→
G) the maximum out-degree of a vertex in

−→
G .

76 S. Dobrev et al.

2.1 Maximum Out-Degree 2

Theorem 3. Given an A-Tree T , there exists a spanning subgraph G ⊆ T
√

3

such that
−→
G is strongly connected and Δ+(

−→
G) ≤ 2. Moreover, d+−→

G
(u) ≤ 1 for

each leaf u of T and either every edge of T which is incident to a leaf is contained
in G or a leaf is connected to its two consecutive siblings in G.

Before proving Theorem 3, we need to introduce a definition and a lemma which
provides information on the proximity among the neighbors of two adjacent
vertices in the tree depending on their degree. The proof of the lemma is technical
and given in the full paper.

Definition 4. We say that two consecutive neighbors of a vertex are close if the
distance between them is at most

√
3. Otherwise we say that they are far.

Lemma 1. Let u, v and w be three consecutive siblings with parent p of an
A-Tree T such that ûpv + v̂pw ≤ π. If d(v) = 3 and the only two children of v
are far, then at least one of them is close to either u or w.

If d(v) = 4 and each pair of consecutive children of v are close, then at least
one of them is close to either u or w.

If d(v) = 4, two consecutive children of v are far and all children of v are at
distance at least

√
3− 1 of v, then one child of v is close to u and another child

of v is close to w.
If d(v) = 4, two consecutive children of v are far and one child x of v is at

distance at most
√

3 − 1 of v, then at most one child of v different from x are
far from u and w.

If d(v) = 5, then at least one child of v is close to either u or w.

Proof (Theorem 3). The proof is by induction on the diameter of the tree.
Firstly, we do the base case. Let l be the diameter of T . If l ≤ 1, let G = T and
the result follows trivially.

If l = 2, then T is an A-Tree which is a star with 2 ≤ d ≤ 5 leaves, respectively.
Four cases can occur:

d = 2. Let G = T and orient every edge in both directions. This results
in a strongly connected digraph which trivially satisfies the hypothesis of the
theorem.

d = 3. Let u be the center of T . Since T is a star, two consecutive neighbors,
say u1 and u2 are close. Let G = T ∪{{u1, u2}} and orient edges of G as depicted
in Figure 1a1. It is easy to check that G satisfies the hypothesis of the Theorem.

d = 4. Let u be the center of T and u1, u2, u3, u4 be the four neighbors of u in
clockwise order around u starting at any arbitrary neighbor of u. Observe that
at most two consecutive neighbors of u are far since T is a star and the angle
between two nodes with a common parent is at least π/3. Assume without loss
of generality that u4 and u1 are far. Let G = T ∪ {{u1, u2}, {u3, u4}} and orient
edges of G as depicted in Figure 1b. Thus, G satisfies trivially the hypothesis of
the Theorem.
1 In all figures boldface arrows represent the newly added adges.

Strong Connectivity in Sensor Networks 77

u

u1
u2

(a) T has

three leaves

u

u1 u2

u3
u4

(b) T has four

leaves

u

u1 u2

u3u5

u4

(c) T has five

leaves

Fig. 1. T is a tree with diameter l = 2 (The angular sign with a dot depicts an angle

of size at most 2π/3 at vertex u and the dashed edge indicates that it exists in T but

not in G.)

d = 5. Let u be the center of T and u1, u2, u3, u4, u5 be the five neigh-
bors of u in clockwise order around u starting at any arbitrary neighbor of
u. Observe that all consecutive neighbors are close since T is a star and the
angle between two nodes with a common parent is at least π/3. Let G =
T \ {u, u4} ∪ {{u1, u2}, {u3, u4}}, {u4, u5} and orient edges of G as depicted
in Figure 1c. Observe that û3uu5 ≤ π. Thus,

−→
G is strongly connected and

Δ+(
−→
G) ≤ 2. Moreover, d+−→

G
(u) ≤ 1, all edges of T except {u, u4} are contained

in G and {u3, u4} and {u4, u5} are contained in G.
Next we continue with the inductive step. Let T ′ be the tree obtained from T

by removing all leaves. Since removal of leaves does not violate the property of
being an A-Tree, T ′ is also an A-Tree and has diameter less than the diameter of
T . Thus, by inductive hypothesis there exists G′ ⊆ T ′√3 such that

−→
G′ is strongly

connected, Δ+(
−→
G′) ≤ 2. Moreover, d+−→

G
(u) ≤ 1 for each leaf u of T and either

every edge of T which is incident to a leaf is contained in G or a leaf is connected
to its two consecutive siblings in G.

Let u be a leaf of T ′, u0 be the neighbor of u in T ′ and u1, . . . , uc be the c
neighbors of u in T \T ′ in clockwise order around u starting from u0. Four cases
can occur:

u has one neighbor in T \ T ′. Let G = G′ ∪ {{u, u1}} and orient it in both
directions. It is easy to see that

−→
G satisfies the inductive hypothesis.

u has two neighbors in T \T ′. We consider two cases. In the first case suppose
that u1 and u2 are close. Let G = G′ ∪ {{u, u1}, {u, u2}, {u1, u2}} and orient
edges of G as depicted in Figure 2a. In the second case, u1 and u2 are far. Again
we need to consider two subcases:

Subcase 1 ({u0, u} is in G′.) Either u0 and u1 are close or u2 and u0 are
close. Without loss of generality, lets assume that u1 and u0 are close. Let G =
{G′ \ {u0, u}}∪ {{u, u1}, {u, u2}, {u0, u1}}. The orientation of G will depend on
the orientation of {u, u0} in G′. If (u0, u) is in

−→
G′, then orient edges of G as

depicted in Figure 2b. Otherwise if (u, u0) is in
−→
G′, then orient edges of G as

depicted in Figure 2c. Thus,
−→
G is strongly connected and Δ+(

−→
G) ≤ 2. Moreover,

the leaves u1 and u2 of T have degree one and the edges of T incident to them
are contained in G.

78 S. Dobrev et al.

uu0

u1

u2

T
′

T

(a) u1 and u2 are

close {u0, u}

u

u0

u1

u2

T
′

T

(b) u0 and u1 are

far and (u, u0) is

in the orientation

of G′

u

u0

u1

u2

T
′

T

(c) u0 and u1 are

far and (u, u0) is

in the orientation

of G′

Fig. 2. Depicting the inductive step when u has two neighbors in T \ T ′ (The dashed

edge {u0, u} indicates that it does not exist in G but exists in G′ and the dotted curve

is used to separate T ′ from T .)

Subcase ({u0, u} is not in G′.) By inductive hypothesis, u is connected to its
two siblings v and w in G′. Thus, by Lemma 1, either u1 or u2 are close to
v or w. Without loss of generality, assume that u1 and v are close. Let G =
(G′ \{v, u})∪{{u1, u}, {u2, u}, {v, u1}}. The orientation of G will depend on the
orientation of {v, u} in G′. If (v, u) is in

−→
G′, then orient edges of G as depicted

in Figure 3a. Otherwise if (u, v) is in
−→
G′, then orient edges of G as depicted

in Figure 3b. Thus,
−→
G is strongly connected and Δ+(

−→
G) ≤ 2. Moreover, the

leaves u1 and u2 of T have degree one and the edges of T incident to them are
contained in G.

uu0

u1

u2

T
′

T
v

(a) (u0, u) is

in the orienta-

tion of G′

uu0

u1

u2

T
′

T
v

(b) (u, u0) is

in the orienta-

tion of G′

Fig. 3. Depicting the inductive step when u has two neighbors in T \T ′, u0 and u1 are

far and {u0, u} is not in G′ (The dashed edge {v, u} indicates that it does not exist in

G but exists in G′, the dash dotted edge {u0, u} indicates that it exists in T ′ but not

in G′ and the dotted curve is used to separate T ′ from T .)

u has three neighbors in T \ T ′. Two subcases can occur:

Subcase 1 ({u0, u} is in G′). At most two neighbors of u are far. Firstly,
suppose that u0 and u3 are far (This case is equivalent to the case when u1 and
u2 are far.) Let G = {G′ \{u0, u}}∪{{u1, u}, {u2, u}, {u3, u}, {u1, u0}, {u2, u3}}.
If (u0, u) is in

−→
G′, then orient edges of G as depicted in Figure 4a. Otherwise

if (u, u0) is in
−→
G′, then orient edges of G as depicted in Figure 4b. Thus,

−→
G is

strongly connected and Δ+(
−→
G) ≤ 2. Moreover, the leaves u1, u2 and u3 of T

Strong Connectivity in Sensor Networks 79

u

u0

u1

u2

T
′

T

u3

(a) (u0, u) is in

the orientation

of G′

u

u0

u1

u2

T
′

T

u3

(b) (u, u0) is in

the orientation

of G′

Fig. 4. Depicting the inductive step when u has three neighbors in T \ T ′, u1 and u2

are far and {u0, u} is in G′ (The dashed edge {u0, u} indicates that it does not exist

in G but exists in G′, the dotted curve is used to separate T ′ from T and the angular

sign depicts an angle of size greater than 2π/3 at vertex u.)

have degree one and the edges of T incident to them are contained in G. The
case when u1 and u0 are far or u2 and u3 are far can be solved analogously by
symmetry.

Subcase 2 ({u0, u} is not in G′). By inductive hypothesis u is connected to its
two siblings v and w in G′. Three cases can occur.

Subcase 2.1 (u1 is close to u2 and u2 is close to u3.) By Lemma 1, either u1 or
u3 are close to v or w. Without loss of generality, we assume that v and u1 are
close. Let G = {G′ \ {v, u}} ∪ {{u1, u}, {u2, u}, {u3, u}, {v, u1}, {u2, u3}}. The
orientation of G will depend on the orientation of {v, u} in G′. If (v, u) is in

−→
G′,

then orient edges of G as depicted in Figure 5a. Otherwise if (u, v) is in
−→
G′, then

orient edges of G as depicted in Figure 5b. Thus,
−→
G is strongly connected and

Δ+(
−→
G) ≤ 2. Moreover, the leaves u1, u2 and u3 of T have degree one and the

edges of T incident to them are contained in G.

u
u0

u1

u2

T
′

T

u3

v

w

(a) (v, u) is in

the orientation

of G′

u
u0

u1

u2

T
′

T

u3

v

w

(b) (u, v) is in

the orientation

of G′

Fig. 5. Depicting the inductive step when u has three neighbors in T \ T ′, u1 and u2

are far and {u0, u} is not in G′ (The dashed edge {v, u} indicates that it does not exist

in G but exists in G′, the dash dotted edge {u0, u} indicates that it exists in T ′ but

not in G′ and the dotted curve is used to separate T ′ from T .)

Subcase 2.2 (Either u1 is far from u2 or u2 is far from u3 and u1, u2 and u3
are at distance greater than

√
3 − 1 from u.) By Lemma 1 u1 is close to one

sibling of u, say v and u3 is close to another sibling of u, say w. Notice that if
u1 is far from u2, it is exactly the Case one. However, if u2 are far from u3, let
u′

i = u3−i+1, and Case 1 applies.

80 S. Dobrev et al.

Subcase 2.3 (Either u1 is far from u2 or u2 is far from u3 and at least one child
of u is at distance less than

√
3− 1.) Without loss of generality, assume that u1

is far from u2. Therefore, d(u, u1) >
√

3−1 and d(u, u3) ≤
√

3−1. Observe that
u3 is close to u1 and u2. By Lemma 1 either u1 or u2 are close to v or w. Thus,
if v is close to u1, then apply the Case one. If w is close to u2, then let u′

1 = u2,
u′

2 = u1 and u′
3 = u3 and apply Case 1.

u has four neighbors in T \ T ′. Two subcases can occur:
Subcase 1 ({u0, u} is in G′). Let

G = {G′ \ {u0, u}} ∪ {{u1, u}, {u2, u}, {u4, u}, {u1, u0}, {u2, u3}, {u3, u4}}.

The orientation of G will depend on the orientation of {u0, u} in G′. If (u0, u)
is in

−→
G′, then orient edges of G as depicted in Figure 6a. Otherwise if (u, u0)

is in
−→
G′, then orient edges of G as depicted in Figure 6b. Thus,

−→
G is strongly

connected and Δ+(
−→
G) ≤ 2. Moreover, the leaves u1, u2, u3 and u4 of T have

degree one, the edges of T incident to u1, u2 and u4 are contained in G and u3
is connected to u2 and u4 in G. Observe that û2uu4 ≤ π/2.

u

u0

u1

u3

T
′

T

u4

u2

(a) (u0, u) is in the

orientation of G′

u

u0

u1

u3

T
′

T

u4

u2

(b) (u, u0) is in the

orientation of G′

Fig. 6. Depicting the inductive step when u has four neighbors in T \ T ′, {u0, u} is in

G′ (The dashed edge {u0, u} indicates that it does not exist in G but exists in G′, the

dotted curve is used to separate T ′ from T and the dash dotted edge {u, u3} indicates

that it exists in T but not in G.)

Subcase 2 ({u0, u} is not in G′). By inductive hypothesis u is connected to
its two siblings v and w in G′. By Lemma 1 either u1 or u4 is close to v or
w. Without loss of generality, assume that u1 and v are close. Let G = {G′ \
{v, u}}∪{{u1, u}, {u2, u}, {u4, u}, {v, u1}, {u2, u3}, {u3, u4}}. The orientation of
G will depend on the orientation of {v, u} in G′. If (v, u) is in

−→
G′, then orient

edges of G as depicted in Figure 7a. Otherwise if (u, v) is in
−→
G′, then orient edges

of G as depicted in Figure 7b. Thus,
−→
G is strongly connected and Δ+(

−→
G) ≤ 2.

Moreover, u1, u2, u3 and u4 have degree one, the edges of T incident to u1, u2
and u4 are contained in G and u3 is connected to u2 and u4 in G. Observe that
û2uu4 ≤ π/2. This completes the proof of Theorem 3.

2.2 Algorithm

In this section we present the pseudocode for Algorithm 1 that constructs a
strongly connected spanner with max out-degree 2 ≤ k ≤ 5 and range bounded

Strong Connectivity in Sensor Networks 81

u
u0

u1

u3

T
′

T

u4

v

w

u2

(a) (v, u) is in

the orientation

of G′

u
u0

u1

u3

T
′

T

u4

v

w

u2

(b) (u, v) is in

the orientation

of G′

Fig. 7. Depicting the inductive step when u has four neighbors in T \ T ′ and {u0, u}
is not in G′ (The dashed edge {v, u} indicates that it does not exist in G but exists

in T ′, the dotted curve is used to separate T ′ from T , the dash dotted edge {u0, u}
idicates that it exists in T ′ but not in G′ and the dash dotted edge {u, u3} indicates

that it exist in T but not in G.)

by 2 · sin
(

π
k+1

)
times the optimal. It uses the recursive Procedure kAntennae

when 3 ≤ k ≤ 5 and the recursive Procedure TwoAntennae when k = 2 which
is presented in the full paper. The correctness of TwoAntennae procedure is
derived from Theorem 3 and the correctness of kAntennae procedure is derived
in the full paper. It is not difficult to see that Algorithm 1 runs in linear time.

Algorithm 1. Strongly connected spanner with max out-degree 2 ≥ k ≥ 5
and edge length bounded by 2 · sin

(
π

k+1

)
input : T , k; where T is a MST with max length 1 and k an integer in [2, 5].
output: Strongly connected spanner G with max out-degree k and range

bounded by 2 · sin
(

π
k+1

)
1 Let u be any leaf of T and v its neighbor in T ;

2 Let G ← {(v, u), (u, v)};
3 if k = 2 then TwoAntennae(G, T, v, u);

4 if 3 ≤ k < 5 then kAntennae(G,T, v, u, k);

3 NP Completeness

Proof (Theorem 2). By reduction from the well-known NP-hard problem for
finding Hamiltonian cycles in degree three planar graphs. Take a degree three
planar graph G = (V, E) and replace each vertex vi by a vertex-graph (meta-
vertex) Gvi shown in Figure 8a. Furthermore, replace each edge e = 〈vi, vj〉 of
G by an edge-graph (meta-edge) Ge shown in Figure 8b.

Each meta-vertex has three parts connected in a cycle, with each part con-
sisting of a pair of vertices (called connecting vertices) connected by two paths.
Each meta-edge Ge has a pair of connecting vertices at each endpoint – these
vertices coincide with the connecting vertices in the corresponding parts of the
meta-vertices Gvi and Gvj . This means that after each vertex and each edge is
replaced, each connecting vertex is of degree 4.

82 S. Dobrev et al.

Procedure kAntennae(G, T, u, w, k)
1 Let u0 = w, u1, · · · , ud(u)−1 be the neighbors of u ∈ T in clockwise order around

u;

2 if d(u) ≤ k then Add to G a bidirectional arc for each ui such that i > 0;

3 else if d(u) = k + 1 then
4 Let ui, ui+1 be the consecutive neighbor of u with smallest angle;

5 if i = 0 or i + 1 = 0 then
6 if i = 0 then Let i ← 1 ;

7 if (u, u0) ∈ G then Let G ← {G \ {(u, u0)}} ∪ {(u, ui), (ui, u0)};
8 else Let G ← {G \ {(u0, u)}} ∪ {(u0, ui), (ui, u)};
9 end

10 else Let G ← G ∪ {(u, ui), (ui, ui+1), (ui+1, u)};
11 Add to G a bidirectional arc for each uj such that j /∈ {0, i, i + 1};
12 end
13 else if d(u) = k + 2 then
14 Let ui, ui+1 be the consecutive neighbors of u with longest angle;

15 if i = 0 or i = 2 or i = 4 then Let

G ← G ∪ {(u, u1), (u1, u2), (u2, u), (u, u3), (u3, u4), (u4, u)};
16 else
17 if (u, u0) ∈ G then Let G ← {G \ {(u, u0)}} ∪ {(u, u1), (u1, u0)} ;

18 else Let G ← {G \ {(u0, u)}} ∪ {(u0, u1), (u1, u)} ;

19 Let G ← G ∪ {(u, u2), (u2, u3), (u3, u), (u, u4), (u4, u)};
20 end

21 end
22 for i ← 1 to d(u) − 1 do if d(ui) > 1 then G ←kAntennae(G,T, ui, u, k) ;

vi1

vi2

ui1

ui2

wi2wi1

(a) Vertex graph (The dotted

ovals delimit the three parts.)

v′i

v′j

v′′j

v′′i

vj1

vj2

vi1

vi2

π′
vi

π′′
vi

π′
vj

π′′
vj

(b) Edge graph (The connecting

vertices are black.)

Fig. 8. Meta-vertex and meta-edge for the NP completeness proof

Take the resulting graph G′ and embed it in the plane in such a way that:

– the distance (in the embedding) between neighbours in G′ is at most 1,
– the distance between non-neighbours in G′ is at least x, and
– the smallest angle between incident edges in G′ is at least α.

Let us call the resulting embedded graph G′′. Note that such an embedding
always exists [3]: We have a freedom to choose the length of the paths in the
meta-graphs the way we need as we can stretch the configurations apart to fit ev-
erything in without violating the embedding requirements. The only constraining

Strong Connectivity in Sensor Networks 83

v′i
v′′i

vi1vi2

π′
vi

π′′
vi

πvi1

πvi2

x

x

xx

x = 1 + 2 cosα

x = 2sin(α/2)

α

α

α

α

α/2

α/2

1

1
1

1

Fig. 9. Connecting meta-edges with meta-vertices (The dashed ovals show the places

where embedding is constrained.)

places are the midpoints of the meta-edges and the three places in each meta-
vertex where the parts are connected to each other. These can be embedded as
shown in the right part of Figure 9. Note that the need to embed these parts
without violating embedding requirements gives rise to the equations defining x
and α (see Figure 9). This completes details of the main construction.

The proof of the Theorem is based on the following claim:

Claim. There is a Hamiltonian cycle in G if and only if there exists an assignment
of two antennae with sum of angles less than α and radius less than x to the
vertices of G′′ such that the resulting connectivity graph is strongly connected.

Proof (Claim). First we show that if G has a Hamiltonian cycle then there
exists the assignment of such antennae that makes the resulting connectivity
graph of G′′ strongly connected. Figure 10 shows antenna assignments in the
meta-edges corresponding to edges used and not used by the Hamiltonian cycle,
respectively. Figure 11 shows the antenna assignments in a meta-vertex. Since
each vertex of G has one incoming, one outgoing and one unused incident edge,
and each edge is either used in one direction, or not used at all, this provides
the full description of antenna assignments in G′′.

Observe that the connecting pair of vertices at the meta-vertex uses two an-
tennae towards the meta-edge it is connected to if and only if this meta-edge is
outgoing; otherwise only one antenna is used towards the meta-edge and another
is used towards the next part of the meta-vertex. It is easy to verify that the
resulting connectivity graph is strongly connected:

– if the edge e = 〈vi, vj〉 is not used in the Hamiltonian path in the direction
from vi to vj , then the near half of the meta-edge Ge (i.e. v′j , v′′j , π′

vj
and π′′

vj
)

together with the connecting part of the meta-vertex Gvj form a strongly
connected subgraph,

84 S. Dobrev et al.

– in each meta-vertex the part corresponding to the outgoing edge is reachable
from the part corresponding to the unused edge, which is in turn reachable
from the part corresponding to the incoming edge, and

– all vertices of a meta-edge corresponding to an outgoing edge 〈vi, vj〉 are
reachable from either vi1 or vi2; furthermore the destination vertices vj1 and
vj2 are reachable from all these vertices.

Combining these observations with the fact that the Hamiltonian cycle spans all
vertices yields that the resulting graph is strongly connected.

Next we show that if it is possible to assign the antennae in G′′ such that the
resulting graph is strongly connected then there exists a Hamiltonian cycle in
G. Recall that G′′ is constructed in such a manner that no antenna of radius
less than x and angle less than α can reach two neighbouring vertices, and that
no antenna can reach a vertex that is not a neighbor in G′′.

Assume an assignment of antennae such that the resulting graph is strongly
connected. First, consider a pair of connecting vertices vi1 and vi2. Since both
path πvi1 and πvi2 are connected only to them, vi1 and vi2 must together use at
least two antennae towards these two paths.

Let us call a meta-edge corresponding to edge 〈vi, vj〉 directed if in the con-
nectivity graph there is an edge

〈
v′i, v

′
j

〉
. Without loss of generality assume the

direction is from v′i to v′j , i.e. v′i used an antenna to reach v′j . Since v′′i is reach-
able only from v′i (and hence v′i used its second antenna on v′′i), this means that
there is no antenna pointing from v′i towards the paths π′

vi
and π′′

vi
. Therefore,

the only way for the vertices of these two paths to be reachable is to have both
connecting vertices (which for simplicity we call vi1 and vi2, respectively) use an
antenna towards these paths. Since they already used two antennae to ensure
reachability of πvi1 and πvi2 are reachable, they have no antenna left to connect
to another part of the meta-vertex.

v′i

v′j

v′′j

v′′i

vj1

vj2

vi1

vi2

π′
vi

π′′
vi

π′
vj

π′′
vj

(a) Edge used in the Hamil-

tonian cycle.

v′i

v′j

v′′j

v′′i

vj1

vj2

vi1

vi2

π′
vi

π′′
vi

π′
vj

π′′
vj

(b) Edge not used in the

Hamiltonian cycle.

Fig. 10. Antenna assignments in a meta-edges corresponding to an edge vi to vj

Consider now the other half of the meta-edge. Observe that since v′j must use
one antenna on v′′j , it can use at most one antenna towards the paths π′

vj
and

π′′
vj

. Hence, either vj1 or vj2 must use an antenna towards one of these paths.
Since these vertices must use two more antennae to ensure that the paths πvj1
and πvj2 are reachable, only one antenna is left for connecting to other parts
of the meta vertex. Note that this argument holds both for receiving ends of
directed meta-edges, as well as for non-directed meta-edges.

Strong Connectivity in Sensor Networks 85

outgoing edge

unused edge

incoming edge

Fig. 11. Antenna assignments at the meta-vertex and incident meta-vertices

However, this means that in a meta-vertex there can be at most one out-
going directed meta-edge – otherwise there is no way to make the meta-vertex
connected. Since each meta-vertex must have at least one outgoing directed
meta-edge (otherwise the rest of the graph would be unreachable) and at least
one incoming directed meta-edge (otherwise it would not be reachable from the
rest), from the fact that the whole graph is strongly connected it follows that each
meta-vertex must have exactly one undirected meta-edge, one directed incoming
meta-edge and one directed outgoing meta-edge. Obviously, these correspond
to unused/incoming/outgoing edges in the original graph G, with the directed
edges forming the Hamiltonian cycle.

4 Conclusion

We have provided an algorithm which when given as input a set of n points
(modeling sensors) in the plane and an integer 1 ≤ k ≤ 5 produces a strongly
connected spanner so that each sensor uses at most k directional antennae of
angle 0 and range at most 2 · sin

(
π

k+1

)
times the optimal. Interesting open

problems include looking at tradeoffs when the angle of the antennae is ϕ > 0
as well as deriving better lower bounds.

References

1. Bao, L., Garcia-Luna-Aceves, J.J.: Transmission scheduling in ad hoc networks

with directional antennas. In: Proceedings of the 8th Annual International Confer-

ence on Mobile Computing and Networking, pp. 48–58 (2002)

2. Bhattacharya, B., Hu, Y., Kranakis, E., Krizanc, D., Shi, Q.: Sensor Network

Connectivity with Multiple Directional Antennae of a Given Angular Sum. In:

23rd IEEE IPDPS 2009, May 25-29 (2009)

3. Calamoneri, T., Petreschi, R.: An Efficient Orthogonal Grid Drawing Algorithm

For Cubic Graphs. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959,

pp. 31–40. Springer, Heidelberg (1995)

86 S. Dobrev et al.

4. Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communi-

cation in Wireless Networks with Directional Antennae. In: Proceedings of 20th

ACM SPAA, Munich, Germany, June 14-16 (2008)

5. Francke, A., Hoffmann, M.: The Euclidean degree-4 minimum spanning tree prob-

lem is NP-hard. In: Proceedings of the 25th Annual Symposium on Computational

Geometry, pp. 179–188. ACM, New York (2009)

6. Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Transactions

on Information Theory 46(2), 388–404 (2000)

7. Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and

shortest-path trees. Algorithmica 14(4), 305–321 (1995)

8. Kranakis, E., Krizanc, D., Urrutia, J.: Coverage and Connectivity in Networks

with Directional Sensors. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.)

Euro-Par 2004. LNCS, vol. 3149, pp. 917–924. Springer, Heidelberg (2004)

9. Kranakis, E., Krizanc, D., Williams, E.: Directional versus omnidirectional

antennas for energy consumption and k-connectivity of networks of sensors. In:

Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 357–368. Springer,

Heidelberg (2004)

10. Parker, R.G., Rardin, R.L.: Guaranteed performance heuristics for the bottleneck

traveling salesman problem. Oper. Res. Lett. 2(6), 269–272 (1984)

11. Ramanathan, R.: On the Performance of Ad Hoc Networks with Beamforming

Antennas. In: Proceedings of the 2nd ACM International Symposium on Mobile

Ad Hoc Networking & Computing, pp. 95–105 (2001)

12. Spyropoulos, A., Raghavendra, C.S.: Energy efficient communications in

ad hoc networks using directional antennas. In: Proceedings of the Twenty-First

Annual Joint Conference of the IEEE Computer and Communications Societies,

INFOCOM 2002, vol. 1. IEEE, Los Alamitos (2002)

13. Spyropoulos, A., Raghavendra, C.S.: Capacity Bounds for Ad-Hoc Networks Using

Directional Antennas. In: IEEE International Conference on Communications, ICC

2003, vol. 1 (2003)

14. Yi, S., Pei, Y., Kalyanaraman, S.: On the capacity improvement of ad hoc wireless

networks using directional antennas. In: Proceedings of the 4th ACM International

Symposium on Mobile Ad hoc Networking & Computing, pp. 108–116 (2003)

A Constant-Factor Approximation Algorithm for
the Link Building Problem

Martin Olsen1, Anastasios Viglas2, and Ilia Zvedeniouk2

1 Center for Innovation and Business Development,

Institute of Business and Technology, Aarhus University,

Birk Centerpark 15, DK-7400 Herning, Denmark

martino@hih.au.dk
2 School of Information Technologies,

University of Sydney, 1 Cleveland St, NSW 2006, Australia

taso.viglas@sydney.edu.au, izve6419@uni.sydney.edu.au

Abstract. In this work we consider the problem of maximizing the

PageRank of a given target node in a graph by adding k new links.

We consider the case that the new links must point to the given target

node (backlinks). Previous work [7] shows that this problem has no fully

polynomial time approximation schemes unless P = NP . We present a

polynomial time algorithm yielding a PageRank value within a constant

factor from the optimal. We also consider the naive algorithm where we

choose backlinks from nodes with high PageRank values compared to the

outdegree and show that the naive algorithm performs much worse on

certain graphs compared to the constant factor approximation scheme.

1 Introduction

Search engine optimization (SEO) is a fast growing industry that deals with opti-
mizing the ranking of web pages in search engine results. SEO is a complex task,
especially since the specific details of search and ranking algorithms are often
not publicly released, and also can change frequently. One of the key elements of
optimizing for search engine visibility is the “external link popularity” [9], which
is based on the structure of the web graph. The problem of obtaining optimal
new backlinks in order to achieve good search engine rankings is known as Link
Building and leading experts from the SEO industry consider Link Building to
be an important aspect of SEO [9].

The PageRank algorithm is one of the popular methods of defining a ranking
according to the link structure of the graph. The definition of PageRank [3] uses
random walks based on the random surfer model. The random surfer walk is
defined as follows: the walk can start from any node in the graph and at each step
the surfer chooses a new node to visit. The surfer “usually” chooses (uniformly
at random) an outgoing link from the current node, and follows it. But with
a small probability at each step the surfer might choose to ignore the current
node’s outgoing links, and just zap to any node in the graph (chosen uniformly
at random). The random surfer walk is a random walk on the graph with random

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 87–96, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

88 M. Olsen, A. Viglas, and I. Zvedeniouk

restarts every few steps. This random walk has a unique stationary probability
distribution that assigns the probability value πi to node i. This value is the
PageRank of node i, and can be interpreted as the probability for the random
surfer of being at node i at any given point during the walk. We refer to the
random restart as zapping. The parameter that controls the zapping frequency
is the probability of continuing the random walk at each step, α > 0. The high
level idea is that the PageRank algorithm will assign high PageRank values to
nodes that would appear more often in a random surfer type of walk. In other
words the nodes with high PageRank are hot-spots that will see more random
surfer traffic, resulting directly from the link structure of the graph. If we add a
small number of new links to the graph, the PageRank values of certain nodes
can be affected very significantly. The Link Building problem arises as a natural
question: given a specific target node in the graph, what is the best set of k links
that will achieve the maximum increase for the PageRank of the target node?

We consider the problem of choosing the optimal set of backlinks for maxi-
mizing πx, the PageRank value of some target node x. A backlink (with respect
to a target node x) is a link from any node towards x. Given a graph G(V,E)
and an integer k, we want to identify the k ≥ 1 links to add to node x in G in
order to maximize the resulting PageRank of x, πx. Intuitively, the new links
added should redirect the random surfer walk towards the target node, as much
as possible. For example adding a new link from a node of very high PageRank
would usually be a good choice.

1.1 Related Work and Contribution

The PageRank algorithm [3] is based on properties of Markov chains. There
are many results related to the computation of PageRank values [5,2] and re-
calculating PageRank values after adding a set of new links in a graph [1].

The Link Building problem that we consider in this work is known to be
NP-hard [7] where it is even showed that there is no fully polynomial time ap-
proximation scheme (FPTAS) for Link Building unless NP = P and the problem
is also shown to be W[1]-hard with parameter k. A related problem considers the
case where a target node aims at maximizing its PageRank by adding new out-
links. Note that in this case, new outlinks can actually decrease the PageRank of
the target node. This is different to the case of the Link Building problem with
backlinks where the PageRank of the target can only increase [1]. For the prob-
lem of maximizing PageRank with outlinks we refer to [1,4] containing, among
other things, guidelines for optimal linking structure.

In Sect. 2 we give background to the PageRank algorithm. In Sect. 3 we
formally introduce the Link Building problem. In Sect. 3.1 we consider the naive
and intuitively clear algorithm for Link Building where we choose backlinks
from the nodes with the highest PageRank values compared to their outdegree
(plus one). We show how to construct graphs where we obtain a surprisingly
high approximation ratio. The approximation ratio is the value of the optimal
solution divided by the value of the solution obtained by the algorithm. In

A Constant-Factor Approximation Algorithm for the Link Building Problem 89

Sect. 3.2, we present a polynomial time algorithm yielding a PageRank value
within a constant factor from the optimal and therefore show that the Link
Building problem is in the class APX.

2 Background: The PageRank Algorithm

The PageRank algorithm was proposed by Brin, Page [3] and Brin, Page, Motwani
and Winograd [8] as a webpage ranking method that captures the importance
of webpages. Loosely speaking, a link pointing to a webpage is considered a vote
of importance for that webpage. A link from an important webpage is better for
the receiver than a link from an unimportant webpage.

We consider directed graphs G = (V,E) that are unweighted and therefore we
count multiple links from a node u to a node v as a single link. The graph may
represent a set of webpages V with hyperlinks between them, E, or any other
linked structure.

We define the following random surfer walk on G: at every step the random
surfer will choose a new node to visit. If the random surfer is currently visiting
node u then the next node is chosen as follows: (1) with probability α the surfer
chooses an outlink from u, (u, v), uniformly at random and visits v. If the current
node u happens to be a sink (and therefore has no outlinks) then the surfer picks
any node v ∈ V uniformly at random, (2) with probability 1−α the surfer visits
any node v ∈ V chosen uniformly at random– this is referred to as zapping. A
typical value for the probability α is 0.85. The random surfer walk is therefore
a random walk that usually follows a random outlink, but every few steps it
essentially restarts the random walk from a random node in the graph.

Since the new node depends only on the current position in the graph, the
sequence of visited pages is a Markov chain with state space V and transition
probabilities that can be defined as follows. Let P = {pij} denote a matrix
derived from the adjacency matrix of the graph G, such that pij = 1

outdeg(i)
if

(i, j) ∈ E and 0 otherwise (outdeg(i) denotes the outdegree of i, the number of
out-going edges from node i ∈ V). If outdeg(i) = 0 then pij = 1

n . The transition
probability matrix of the Markov chain that describes the random surfer walk
can therefore be written as Q = 1−α

n 1ln,n + αP , where 1ln,n is an n × n matrix
with every entry equal to 1.

This Markov chain is aperiodic and irreducible and therefore has a unique
stationary probability distribution π - the eigenvector associated with the domi-
nant eigenvalue of Q. For any positive initial probability distribution x0 over V ,
the iteration xT

0 Q
l will converge to the stationary probability distribution πT

for large enough l. This is referred to as the power method [5].
The distribution π = (π1, . . . , πn)T is defined as the PageRank vector of G.

The PageRank value of a node u ∈ V is the expected fraction of visits to u
after i steps for large i regardless of the starting point. A node that is reachable
from many other nodes in the graph via short directed paths will have a larger
PageRank, for example.

90 M. Olsen, A. Viglas, and I. Zvedeniouk

3 The Link Building Problem

The k backlink (or Link Building) problem is defined as follows:

Definition 1. The LINK BUILDING problem:

– Instance: A triple (G, x, k) where G(V,E) is a directed graph, x ∈ V and
k ∈ ZZ+.

– Solution: A set S ⊆ V \ {x} with |S| = k maximizing πx in G(V,E ∪ (S ×
{x})).

For fixed k = 1 this problem can be solved in polynomial time by simply calcu-
lating the new potential PageRanks of the target node after adding a link from
each node. This requires O(n) PageRank calculations. The argument is similar
for any fixed k. As mentioned in Sect. 1.1, if k is part of the input then the
problem becomes NP-hard.

3.1 Naive Selection of Backlinks

When choosing new incoming links in a graph, based on the definition of the
PageRank algorithm, higher PageRank nodes appear to be more desirable. If we
naively assume that the PageRank values will not change after inserting new
links to the target node then the optimal new sources for links to the target
would be the nodes with the highest PageRank values compared to outdegree
plus one. This leads us to the following naive but intuitively clear algorithm:

Naive(G, x, k)
Compute all PageRanks πi, for all (i ∈ V : (i, x) �∈ E)
Return the k webpages with highest values of πi

di+1
, where di is the outdegree of page i

Fig. 1. The naive algorithm

The algorithm simply computes all initial PageRanks and chooses the k nodes
with the highest value of πi

di+1 . It is well understood [7] that the naive algorithm
is not always optimal. We will now show how to construct graphs with a sur-
prisingly high approximation ratio – roughly 13.8 for α = 0.85 – for the naive
algorithm.

Lower Bound for the Approximation Ratio of the Naive Algorithm.
We define a family of input graphs (“cycle versus sink” graphs) that have the
following structure: There is a cycle with k nodes, where each node has a number
of incoming links from tc other nodes (referred to as tail nodes). Tail nodes are
used to boost the PageRanks of certain pages in the input graph and have an
outdegree of 1. There are also k sink nodes (no outlinks) each one with a tail of
ts nodes pointing to them. The target node is x and it has outlinks towards all
of the sinks. Figure 2 illustrates this family of graphs. Assume also that there is
an isolated large clique with size ti.

A Constant-Factor Approximation Algorithm for the Link Building Problem 91

Fig. 2. A “cycle versus sink” graph for the naive algorithm

Due to symmetry all pages in the cycle will have the same PageRank πc and
the k sink pages will have the PageRank πs. All tail nodes have no incoming
links and will also have the same PageRank denoted by πt. The PageRank of
the target node is πx and the PageRank of each node in the isolated clique is πi.

The initial PageRanks for this kind of symmetric graph can be computed by
writing a linear system of equations based on the identity πT = πTQ. The total
number of nodes is n = k (ts + tc + 2) + ti + 1.

πt =
1− α
n

+
α k πs

n

πx = πt =
1− α
n

+
αk πs

n

πs = πt + α
(πx

k
+ tsπt

)
πc = πt + α (πc + tcπt)
πi = πt + απi .

We need to add k new links towards the target node. We will pick the sizes
of the tails tc, ts and therefore the PageRanks in the initial network so that
the PageRank (divided by outdegree plus one) of the cycle nodes is slightly
higher than the PageRank over degree for the sink nodes. Therefore the naive
algorithm 1 will choose to add k links from the k cycle nodes. Once one link has
been added, the rest of the cycle nodes are not desirable anymore, a fact that
the naive algorithm fails to observe. The optimal solution is to add k links from
the sink nodes.

In order to make sure cycle nodes are chosen by the naive algorithm, we need
to ensure that πc

outdeg(c)+1 >
πs

outdeg(s)+1 ⇔
πc

2 > πs ⇔ πc/πs = 2 + δ for some
δ > 0. We then parameterize our tails:

tc = u (1)
ti = u2 (2)

ts =
u

2(1− λα)
. (3)

92 M. Olsen, A. Viglas, and I. Zvedeniouk

where u determines the size of the graph and λ is the solution of πc/πs = 2 + δ,
giving

λ =

((
α2 − α

)
δ + 2α2

)
ku+ 2 ((α− 1) δ + 2α− 1) k + 2

(
α2 − α

)
δ + 4(α2 − α)

2α2ku+ ((2α2 − 2α) δ + 4α2 − 2α) k + (2α3 − 2α2) δ + 4α3 − 4α2

We can solve for λ for any desired value of δ. Note also that we choose the
tails of the clique nodes to be u2 in order to make them asymptotically dominate
all the other tails. The naive algorithm therefore will add k links from the cycle
nodes which will result in the following linear system for the PageRanks:

πg
t =

1− α
n

+
αk πg

s

n

πg
x = πg

t + αk
πg

c

2

πg
s = πg

t + α

(
πg

x

k
+ tsπ

g
t

)
πg

c = πg
t + α (πg

c/2 + tcπ
g
t)

πg
i = πg

t + απg
i .

The optimal is to choose k links from the sink nodes with a resulting PageRank
vector described by the following system:

πo
t =

1− α
n

πo
x = πo

t + αkπo
s

πo
s = πo

t + α

(
πo

x

k
+ tsπ

o
t

)
πo

c = πo
t + α (πo

c + tcπ
o
t)

πo
i = πo

t + απo
i .

We solve these systems and calculate the approximation ratio of the naive algo-
rithm:

πo
x

πg
x

=

(
α3 − 2α2

)
k ts +

(
α2 − 2α

)
k + α− 2

(α4 − α2) k tc + (α3 − α) k − α3 + 2α2 + α− 2
. (4)

We now set our tails as described above in Equations 1-3 and let u, k → ∞. So
for large values of the tail sizes we get the following limit:

lim
u,k→∞

πo
x

πg
x

=
2− α

(α3 − α2 − α+ 1) δ + 2α3 − 2α2 − 2α+ 2
. (5)

Now letting δ → 0 (as any positive value serves our purpose) we get the following
theorem.

Theorem 1. Consider the Link Building problem with target node x. Let G =
(V,E) be some directed graph. Let πo

x denote the highest possible PageRank that
the target node can achieve after adding k links, and πg

x denote the PageRank

A Constant-Factor Approximation Algorithm for the Link Building Problem 93

after adding the links returned by the naive algorithm from Fig. 1. Then for any
ε > 0 there exist infinitely many different graphs G where

πo
x

πg
x
>

2− α
2 (1− α) (1− α2)

− ε . (6)

Note that ε can be written as function of u, δ, k and α. As u, k → ∞, ε → 0
giving the asymptotic lower bound. For α = 0.85 the lower bound is about 13.8.

3.2 Link Building Is in APX

In this section we present a greedy polynomial time algorithm for Link Building;
computing a set of k new backlinks to target node x with a corresponding value
of πG

x within a constant factor from the optimal value. In other words we prove
that Link Building is a member of the complexity class APX. We also introduce
zij as the expected number of visits of node j starting at node i without zapping
within the random surfer model. These values can be computed in polynomial
time [1].

Proof of APX Membership. Now consider the algorithm consisting of k steps
where we at each step add a backlink to node x producing the maximum increase
in πx

zxx
– the pseudo code of the algorithm is shown in Fig. 3. This algorithm runs

in polynomial time, producing a solution to the Link Building problem within a
constant factor from the optimal value as stated by the following theorem. So,
Link Building is a member of the complexity class APX.

r-Greedy(G, x, k)

S := ∅
repeat k times

Let u be a node which maximizes the value of πx
zxx

in G(V, E ∪ {(u, x)})
S := S ∪ {u}
E := E ∪ {(u, x)}

Report S as the solution

Fig. 3. Pseudo code for the greedy approach

Theorem 2. We let πG
x and zG

xx denote the values obtained by the r-Greedy
algorithm in Fig. 3. Denoting the optimal value bye πo

x, we have the following

πG
x ≥ πo

x

zG
xx

zo
xx

(1− 1
e
) ≥ πo

x(1− α2)(1− 1
e
) .

where e = 2.71828 . . . and zo
xx is the value of zxx corresponding to πo

x.

Proof. Proposition 2.1 in [1] by Avrachenkov and Litvak states the following

πx =
1− α
n

zxx(1 +
∑
i�=x

rix) . (7)

94 M. Olsen, A. Viglas, and I. Zvedeniouk

where rix is the probability that a random surfer starting at i reaches x before
zapping. This means that the algorithm in Fig. 3 greedily adds backlinks to x in
an attempt to maximize the probability of reaching node x before zapping, for
a surfer dropped at a node chosen uniformly at random. We show in Lemma 1
below that rix in the graph obtained by adding links from X ⊆ V to x is a
submodular function of X – informally this means that adding the link (u, x)
early in the process produces a higher increase of rix compared to adding the
link later. We also show in Lemma 2 below that rix is not decreasing after
adding (u, x), which is intuitively clear. We now conclude from (7) that πx

zxx
is a

submodular and nondecreasing function since πx

zxx
is a sum of submodular and

nondecreasing terms.
When we greedily maximize a nonnegative nondecreasing submodular func-

tion we will always obtain a solution within a fraction 1 − 1
e from the optimal

according to [6] by Nemhauser et al. We now have that:

πG
x

zG
xx

≥ πo
x

zo
xx

(1 − 1
e
) .

Finally, we use the fact that zG
xx and zo

xx are numbers between 1 and 1
1−α2 . ��

For α = 0.85 this gives an upper bound of πo
x

πG
x

of approximately 5.7 It must
be stressed that this upper bound is considerably smaller if zxx is close to the
optimal value prior to the modification – if zxx cannot be improved then the
upper bound is e

e−1 = 1.58. It may be the case that we obtain a bigger value of
πx by greedily maximizing πx instead of πx

zxx
, but πx (the PageRank of the target

node throughout the Link Building process) is not a submodular function of X
so we cannot use the approach above to analyze this situation. To see that πx

is not submodular we just have to observe that adding a backlink from a sink
node creating a short cycle late in the process will produce a higher increase in
πx compared to adding the link early in the process.

Proof of Submodularity and Monotonicity of rix. Let fi(X) denote the
value of rix in G(V,E ∪ (X ×{x})) – the graph obtained after adding links from
all nodes in X to x.

Lemma 1. fi is submodular for every i ∈ V .

Proof. Let f r
i (X) denote the probability of reaching x from i without zapping,

in r steps or less, in G(V,E ∪ (X × {x})). We will show by induction in r that
f r

i is submodular. We will show the following for arbitrary A ⊂ B and y /∈ B:

f r
i (B ∪ {y})− f r

i (B) ≤ f r
i (A ∪ {y})− f r

i (A) . (8)

We start with the induction basis r = 1. It is not hard to show that the two
sides of (8) are equal for r = 1. For the induction step; if you want to reach x
in r + 1 steps or less you have to follow one of the links to your neighbors and
reach x in r steps or less from the neighbor:

A Constant-Factor Approximation Algorithm for the Link Building Problem 95

f r+1
i (X) =

α

outdeg(i)

∑
j:i→j

f r
j (X) . (9)

where j : i → j denotes the nodes that i links to – this set includes x if i ∈ X .
The outdegree of i is also dependent on X . If i is a sink in G(V,E ∪ (X × {x}))
then we can use (9) with outdeg(i) = n and j : i → j = V – as explained in
Sect. 2, the sinks can be thought of as linking to all nodes in the graph. Please
also note that f r

x(X) = 1.
We will now show that the following holds for every i ∈ V assuming that (8)

holds for every i ∈ V :

f r+1
i (B ∪ {y})− f r+1

i (B) ≤ f r+1
i (A ∪ {y})− f r+1

i (A) . (10)

1. i ∈ A: The set j : i→ j and outdeg(i) are the same for all four terms in (10).
We use (9) and the induction hypothesis to see that (10) holds.

2. i ∈ B \A :
(a) i is a sink in G(V,E): The left hand side of (10) is 0 while the right hand

side is positive or 0 according to Lemma 2 below.
(b) i is not a sink in G(V,E): In this case j : i → j includes x on the left

hand side of (10) but not on the right hand side – the only difference
between the two sets – and outdeg(i) is one bigger on the left hand side.
We now use (9), the induction hypothesis and ∀X : f r

x(X) = 1.
3. i = y: We rearrange (10) such that the two terms including y are the only

terms on the left hand side. We now use the same approach as for the case
i ∈ B \A.

4. i ∈ V \ (B ∪ {y}): As the case i ∈ A.

Finally, we use limr→∞ f r
i (X) = fi(X) to prove that (8) holds for fi. ��

Lemma 2. fi is nondecreasing for every i ∈ V .

Proof. We shall prove the following by induction in r for y �∈ B:

f r
i (B ∪ {y}) ≥ f r

i (B) . (11)

We start with the induction basis r = 1.

1. i = y: The left hand side is α
outdeg(y) where outdeg(y) is the new outdegree

of y and the right hand side is at most α
n (if y is a sink in G(V,E)).

2. i �= y: The two sides are the same.

For the induction step; assume that (11) holds for r and all i ∈ V . We will show
that the following holds:

f r+1
i (B ∪ {y}) ≥ f r+1

i (B) . (12)

1. i = y:
(a) i is a sink in G(V,E): The left hand side of (12) is α and the right hand

side is smaller than α.

96 M. Olsen, A. Viglas, and I. Zvedeniouk

(b) i is not a sink in G(V,E): We use (9) in (12) and obtain simple averages
on both sides with bigger numbers on the left hand side due to the
induction hypothesis.

2. i �= y: Again we can obtain averages where the numbers are bigger on the
left hand side due to the induction hypothesis.

Again we use limr→∞ f r
i (X) = fi(X) to conclude that (11) holds for fi. ��

4 Discussion and Open Problems

We have presented a constant-factor approximation polynomial time algorithm
for Link Building. We also presented a lower bound for the approximation ratio
achieved by a perhaps more intuitive and simpler greedy algorithm.

The problem of developing a polynomial time approximation scheme (PTAS)
for Link Building remains open.

References

1. Avrachenkov, K., Litvak, N.: The effect of new links on Google PageRank. Stochastic

Models 22(2), 319–331 (2006)

2. Bianchini, M., Gori, M., Scarselli, F.: Inside pagerank. ACM Transactions on Inter-

net Technology 5(1), 92–128 (2005)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.

Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

4. Dekerchove, C., Ninove, L., Vandooren, P.: Maximizing PageRank via outlinks. Lin-

ear Algebra and its Applications 429(5-6), 1254–1276 (2008)

5. Langville, A., Meyer, C.: Deeper inside pagerank. Internet Mathematics 1(3), 335–

380 (2004)

6. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for maximiz-

ing submodular set functionsI. Mathematical Programming 14(1), 265–294 (1978)

7. Olsen, M.: Maximizing PageRank with New Backlinks. In: Calamoneri, T., Diaz, J.

(eds.) Algorithms and Complexity. LNCS, vol. 6078, pp. 37–48. Springer, Heidelberg

(2010)

8. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:

Bringing order to the web. Technical Report 1999-66, Stanford InfoLab (November

1999), http://ilpubs.stanford.edu:8090/422/

9. SEOmoz: Search engine 2009 ranking factors (2009), http://www.seomoz.org/

http://ilpubs.stanford.edu:8090/422/
http://www.seomoz.org/

XML Reconstruction View Selection in XML Databases:
Complexity Analysis and Approximation Scheme�

Artem Chebotko and Bin Fu

Department of Computer Science, University of Texas-Pan American,
Edinburg, TX 78539, USA

{artem,binfu}@cs.panam.edu

Abstract. Query evaluation in an XML database requires reconstructing XML
subtrees rooted at nodes found by an XML query. Since XML subtree reconstruc-
tion can be expensive, one approach to improve query response time is to use
reconstruction views - materialized XML subtrees of an XML document, whose
nodes are frequently accessed by XML queries. For this approach to be efficient,
the principal requirement is a framework for view selection. In this work, we are
the first to formalize and study the problem of XML reconstruction view selec-
tion. The input is a tree T , in which every node i has a size ci and profit pi,
and the size limitation C. The target is to find a subset of subtrees rooted at nodes
i1, · · · , ik respectively such that ci1 + · · ·+cik ≤ C, and pi1 + · · ·+pik is max-
imal. Furthermore, there is no overlap between any two subtrees selected in the
solution. We prove that this problem is NP-hard and present a fully polynomial-
time approximation scheme (FPTAS) as a solution.

1 Introduction

With XML1 [1] being the de facto standard for business and Web data representation
and exchange, storage and querying of large XML data collections is recognized as
an important and challenging research problem. A number of XML databases [13, 27,
6, 21, 8, 4, 7, 2, 26, 18, 17] have been developed to serve as a solution to this problem.
While XML databases can employ various storage models, such as relational model or
native XML tree model, they support standard XML query languages, called XPath2

and XQuery3. In general, an XML query specifies which nodes in an XML tree need to
be retrieved. Once an XML tree is stored into an XML database, a query over this tree
usually requires two steps: (1) finding the specified nodes, if any, in the XML tree and
(2) reconstructing and returning XML subtrees rooted at found nodes as a query result.
The second step is called XML subtree reconstruction [9,10] and may have a significant
impact on query response time. One approach to minimize XML subtree reconstruction
time is to cache XML subtrees rooted at frequently accessed nodes as illustrated in the
following example.

� This research is supported in part by the National Science Foundation Early Career Award
0845376.

1 http://www.w3.org/XML
2 http://www.w3.org/TR/xpath
3 http://www.w3.org/XML/Query

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 97–106, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.w3.org/XML
http://www.w3.org/TR/xpath
http://www.w3.org/XML/Query

98 A. Chebotko and B. Fu

<bookstore> (1)

<book> (2)

<title> (3) <author> (4)

<first> (5) <last> (6)
"Database
 Systems"

"Michael" "Kifer "

<author> (7)

<first> (8) <last> (9)

"Arthur" "Bernstein "

<author> (10)

<first> (11) <last> (12)

"Philip" "Lewis "

<book> (13)

<title> (14) <author> (15)

<first> (16) <last> (17)
"Querying the
Semantic Web"

"Artem " "Chebotko "

<author> (18)

<first> (19) <last> (20)

"Shiyong " "Lu "

Fig. 1. XML tree

redge

ID parentID name content
1 NULL bookstore NULL
2 1 book NULL
3 2 title Database Systems
4 2 author NULL
5 4 first Michael
6 4 last Kifer
7 2 author NULL
8 7 first Arthur
9 7 last Bernstein
10 2 author NULL
11 10 first Philip
12 10 last Lewis
13 1 book NULL
14 13 title Querying

the Semantic Web
...

Fig. 2. Edge table

Consider an XML tree in Figure 1 that describes a sample bookstore inventory. The
tree nodes correspond to XML elements, e.g., bookstore and book, and data values, e.g.,
“Arthur” and “Bernstein”, and the edges represent parent-child relationships among
nodes, e.g., all the book elements are children of bookstore. In addition, each element
node is assigned a unique identifier that is shown next to the node in the figure. As an
example, in Figure 2, we show how this XML tree can be stored into a single table in an
RDBMS using the edge approach [13]. The edge table redge stores each XML element
as a separate tuple that includes the element ID, ID of its parent, element name, and
element data content. A sample query over this XML tree that retrieves books with title
“Database Systems” can be expressed in XPath as:

/bookstore/book[title="Database Systems"]

This query can be translated into relational algebra or SQL over the edge table to re-
trieve IDs of the book elements that satisfy the condition:

XML Reconstruction View Selection in XML Databases 99

πr2.ID (
r1 ��r1.ID=r2.parentID∧r1.name=‘bookstore′∧

r1.parentID is NULL∧r2.name=‘book′

r2 ��r2.ID=r3.parentID∧r3.name=‘title′∧
r3.content=‘DatabaseSystems′

r3)

where r1, r2, and r3 are aliases of table redge. For the edge table in Figure 2, the rela-
tional algebra query returns ID “2”, that uniquely identifies the first book element in the
tree. However, to retrieve useful information about the book, the query evaluator must
further retrieve all the descendants of the book node and reconstruct their parent-child
relationships into an XML subtree rooted at this node; this requires additional self-
joins of the edge table and a reconstruction algorithm, such as the one proposed in [9].
Instead, to avoid expensive XML subtree reconstruction, the subtree can be explicitly
stored in the database as an XML reconstruction view (see Figure 3). This materialized
view can be used for the above XPath query or any other query that needs to reconstruct
and return the book node (with ID “2”) or its descendant.

<book>
<title> Database Systems
</title>
<author>

<first> Michael </first>
<last> Kifer </last>

</author>
<author>

<first> Arthur </first>
<last> Bernstein </last>

</author>
<author>

<first> Philip </first>
<last> Lewis </last>

</author>
</book>

Fig. 3. XML reconstruction view

In this work, we study the problem of selecting XML reconstruction views to mate-
rialize: given a set of XML elements D from an XML database, their access frequen-
cies ai (aka workload), a set of ancestor-descendant relationships AD among these
elements, and a storage capacity δ, find a set of elementsM from D, whose XML sub-
trees should be materialized as reconstruction views, such that their combined size is
no larger than δ. To our best knowledge, our solution to this problem is the first one
proposed in the literature. Our main contributions and the paper organization are as
follows. In Section 3, we formally define the XML reconstruction view selection prob-
lem. In Sections 4 and 5, we prove that the problem is NP-hard and describe a fully
polynomial-time approximation scheme (FPTAS) for the problem.

100 A. Chebotko and B. Fu

2 Related Work

We studied the XML subtree reconstruction problem in the context of a relational stor-
age of XML documents in [9,10], where several algorithms have been proposed. Given
an XML element returned by an XML query, our algorithms retrieve all its descen-
dants from a database and reconstruct their relationships into an XML subtree that is
returned as the query result. To our best knowledge, there have been no previous work
on materializing reconstruction views or XML reconstruction view selection.

Materialized views [3, 23, 30, 22, 12, 28] have been successfully used for query opti-
mization in XML databases. These research works rewrite an XML query, such that it
can be answered either using only available materialized views, if possible, or access-
ing both the database and materialized views. View maintenance in XML databases has
been studied in [25, 24]. There have been only one recent work [29] on materialized
view selection in the context of XML databases. In [29], the problem is defined as:
find views over XML data, given XML databases, storage space, and a set of queries,
such that the combined view size does not exceed the storage space. The proposed
solution produces minimal XML views as candidates for the given query workload, or-
ganizes them into a graph, and uses two view selection strategies to choose views to
materialize. This approach makes an assumption that views are used to answer XML
queries completely (not partially) without accessing an underlying XML database. The
XML reconstruction view problem studied in our work focuses on a different aspect
of XML query processing: it finds views to materialize based on how frequently an
XML element needs to be reconstructed. However, XML reconstruction views can be
complimentarily used for query answering, if desired.

Finally, the materialized view selection problem have been extensively studied in
data warehouses [5, 31, 15, 16, 19, 11] and distributed databases [20]. These research
results are hardly applicable to XML tree structures and in particular to subtree recon-
struction, which is not required for data warehouses or relational databases.

3 XML Reconstruction View Selection Problem

In this section, we formally define the XML reconstruction view selection problem
addressed in our work.

Problem formulation. Given n XML elements, D = {D1, D2, · · · , Dn}, and an
ancestor-descendant relationship AD over D such that if (Dj , Di) ∈ AD, then Dj

is an ancestor of Di, let COSTR(Di) be the access cost of accessing unmaterial-
ized Di, and let COSTA(Di) be the access cost of accessing materialized Di. We
have COSTA(Di) < COSTR(Di) since reconstruction of Di takes time. We use
size(Di) to denote the memory capacity required to store a materialized XML el-
ement, size(Di) > 0 and size(Di) < size(Dj) for any (Dj , Di) ∈ AD. Given
a workload that is characterized by ai(i = 1, 2, . . . , n) representing the access fre-
quency of Di. The XML reconstruction view selection problem is to select a set of
elements M from D to be materialized to minimize the total access cost τ(D,M) =∑n

i=1 ai × COST (Di), under the disk capacity constraint
∑

Di∈M size(Di) ≤ δ,

XML Reconstruction View Selection in XML Databases 101

where COST (Di) = COSTA(Di) if Di ∈ M or for some ancestor Dj of Di, Dj ∈
M , otherwise COST (Di) = COSTR(Di). δ denotes the available memory capacity,
δ ≥ 0.

Next, let COST (Di) = COSTR(Di) − COSTA(Di) means the cost saving
by materialization, then one can show that function τ is minimized if and only if
the following function λ is maximized λ(D,M) =

∑
Di∈M+ ai × COST (Di)

under the disk capacity constraint
∑

Di∈M size(Di) ≤ δ, where M+ represents all
the materialized XML elements and their descendant elements in D, it is defined as
M+ = {Di | Di ∈M or ∃Dj .(Dj , Di) ∈ AD ∧Dj ∈ M}.

4 NP-Completeness

In this section, we prove that the XML reconstruction view selection problem is NP-
hard. First, the maximization problem is changed into the equivalent decision problem.

Equivalent decision problem. Given D, AD, size(Di), ai, COST (Di) and δ as
defined in Section 3, let K denotes the cost saving goal, K ≥ 0. Is there a subset
M ⊆ D such that ∑

Di∈M+

ai × COST (Di) ≥ K

and ∑
Di∈M

size(Di) ≤ δ

M+ represents all the materialized XML elements and their descendant elements in
D, it is defined as M+ = {Di | Di ∈M or ∃Dj .(Dj , Di) ∈ AD ∧Dj ∈ M}.

In order to study this problem in a convenient model, we have the following simpli-
fied version.

The input is a tree T , in which every node i has a size ci and profit pi, and the size
limitation C. The target is to find a subset of subtrees rooted at nodes i1, · · · , ik such
that ci1 + · · ·+cik

≤ C, and pi1 + · · ·+pik
is maximal. Furthermore, there is no overlap

between any two subtrees selected in the solution.
We prove that the decision problem of the XML reconstruction view selection is an

NP-hard. A polynomial time reduction from KNAPSACK [14] to it is constructed.

Theorem 1. The decision problem of the XML reconstruction view selection is NP-
complete.

Proof. It is straightforward to verify that the problem is in NP. Restrict the problem
to the well-known NP-complete problem KNAPSACK [14] by allowing only problem
instances in which:

Assume that a Knapsack problem has input (p1, c1), ·, (pn, cn), and parameters K
and C. We need to determine a subset S ⊆ {1, · · · , n} such that

∑
i∈S ci ≤ C and∑

i∈S pi ≥ K .
Build a binary tree T with exactly leaves. Let leaf i have profit pi and size ci. Fur-

thermore, each internal node, which is not leaf, has size∞ and profit∞.

102 A. Chebotko and B. Fu

Clearly, any solution cannot contain any internal due to the size limitation. We can
only select a subset of leaves. This is equivalent to the Knapsack problem. �

5 Fully Polynomial-Time Approximation Scheme

We assume that each parameter is an integer. The input is n XML elements, D =
{D1, D2, · · · , Dn} which will be represented by an AD tree J , where each edge in J
shows a relationship between a pair of parent and child nodes.

We have a divide and conquer approach to develop a fully approximation scheme.
Given an AD tree J with root r, it has subtrees J1, · · · , Jk derived from the children
r1, · · · , rk of r. We find a set of approximate solutions among J1, · · · , Jk/2 and another
set of approximate solutions among Jk/2+1, · · · , Jk.

We merge the two sets of approximate solutions to obtain the solution for the union
of subtrees J1, · · · , Jk. Add one more solution that is derived by selecting the root r
of J . Group those solutions into parts such that each part contains all solutions P with
similar λ(D,P). Prune those solution by selecting the one from each part with the least
size. This can reduce the number of solution to be bounded by a polynomial.

We will use a list P to represent the selection of elements from D.
For a list of elements P , define λ(P) =

∑
Di∈P ai × ∇COST (Di), and μ(P) =∑

Di∈P size(Di). Define χ(J) be the largest product of the node degrees along a path
from root to a leaf in the AD tree J .

Assume that ε is a small constant with 1 > ε > 0. We need an (1+ε) approximation.
We maintain a list of solutions P1, P2, · · · , where Pi is a list of elements in D.

Let f = (1 + ε
z) with z = 2 logχ(J). Let w =

∑n
i=1 aiCOSTR(Di) and s =∑n

i=1 size(Di).
Partition the interval [0, w] into I1, I2, · · · , It1 such that I1 = [0, 1] and Ik =

(bk−1, bk] with bk = f ·bk−1 for k < t, and It1 = (bt−1, w], where bt−1 < w ≤ fbt−1.
Two lists Pi and Pj , are in the same region if there exist Ik such that both λ(Pi) and

λ(Pj) are Ik.
For two lists of partial solutions Pi = Di1 · · ·Dim1

and Pj = Dj1 · · ·Djm2
, their

link Pi ◦ Pj = Di1 · · ·Dim1
Dj1 · · ·Djm2

.

Prune (L)
Input: L is a list of partial solutions P1, P2, · · · , Pm;
Partition L into parts U1, · · · , Uv such that two lists Pi and Pj are in the same

part if Pi and Pj are in the same region.
For each Ui, select Pj such that μ(Pj) is the least among all Pj in Ui;

End of Prune

Merge (L1, L2)
Input: L1 and L2 are two lists of solutions.
Let L = ∅;
For each Pi ∈ L1 and each Pj ∈ L2

append their link Pi ◦ Pj to L;
Return L;

End of Merge

XML Reconstruction View Selection in XML Databases 103

Union (L1, L2, · · · , Lk)
Input: L1, · · · , Lk are lists of solutions.
If k = 1 then return L1;
Return Prune(Merge(Union(L1, · · · , Lk/2),

Union(Lk/2+1, · · · , Lk)));
End of Union

Sketch (J)
Input: J is a set of n elements according to their AD.

If J only contains one elementDi, return the list L = Di, ∅ with two solutions.
Partition the list J into subtrees J1, · · · , Jk according to its k children.
Let L0 be the list that only contains solution J .
for i = 1 to k let Li=Sketch(Ji);
Return Union(L0, L1, · · · , Lk);

End of Sketch

For a list of elements P and an AD tree J , P [J] is the list of elements in both P and J .
If J1, · · · , Jk are disjoint subtrees of an AD tree, P [J1, · · · , Jk] is P [J1] ◦ · · · ◦P [Jk].

A tree J is normalized if each node has degree 2k for some integer k ≥ 0. In order
to make it convenient, we make the tree J normalized by adding some useless nodes
Di with COSTR(D) = COSTA(D) = 0. The size of tree is at most doubled after
normalization. In the rest of the section, we always assume J is normalized.

Lemma 1. Assume thatLi is a list of solutions for the problem with AD tree Ji for i =
1, · · · , k. Let Pi ∈ Li for i = 1, · · · , k. Then there exists P ∈ L =Union(L1, · · · , Lk)
such that λ(P) ≤ f log k · λ(P1 ◦ · · · ◦ Pk) and μ(P) ≤ μ(P1 ◦ · · · ◦ Pk)).

Proof. We prove by induction. It is trivial when k = 1. Assume that the lemma is true
for cases less than k.

Let M1 = Union(L1, · · · , Lk/2) and M2 = Union(Lk/2+1, · · · , Lk).
Assume that M1 contains Q1 such that λ(Q1) ≤ f log(k/2)λ(P1 ◦ · · · ◦ Pk/2) and

μ(Q1) ≤ μ(P1 ◦ · · · ◦ Pk/2).
Assume that M2 containsQ2 such that λ(Q2) ≤ f log(k/2)λ(Pk/2+1 ◦ · · · ◦Pk]) and

μ(Q2) ≤ μ(Pk/2+1 ◦ · · · ◦ Pk).
Let Q = Q1 ◦Q2. Let Q∗ be the solution in the same region withQ and has the least

μ(Q∗). Therefore, λ(Q∗) ≤ fλ(Q) ≤ f log(k/2)fλ(P1 ◦ · · · ◦ Pk) ≤ f log kλ(P1 ◦ · · · ◦
Pk).

Since μ(Q1) ≤ μ(P1 ◦ · · · ◦Pk/2) and μ(Q2) ≤ μ(Pk/2+1 ◦ · · · ◦Pk), we also have
μ(Q∗) ≤ μ(Q) ≤ μ(Q1) + μ(Q2) ≤ μ(P1 ◦ · · · ◦ Pk/2) + μ(Pk/2+1 ◦ · · · ◦ Pk) =
μ(P1 ◦ · · · ◦ Pk) = μ(P). �

Lemma 2. Assume that P is an arbitrary solution for the problem with AD tree J . For
L=Sketch(J), there exists a solution P ′ in the list L such that λ(P ′) ≤ f log χ(J) · λ(P)
and μ(P ′) ≤ μ(P).

Proof. We prove by induction. The basis at |J | ≤ 1 is trivial. We assume that the claim
is true for all |J | < m. Now assume that |J | = m and J has k children which induce k
subtrees J1, · · · , Jk.

104 A. Chebotko and B. Fu

Let Li = P [Ji] for i = 1, · · · , k. By our hypothesis, for each i with 1 ≤ i ≤ k, there
exists Qi ∈ Li such that λ(Qi) ≤ f log χ(Ji) · λ(P [Ji]) and μ(Qi) ≤ μ(P [Ji])).

Let M=Union(L1, · · · , Lk). By Lemma 1, there exists P ′ ∈ M such that λ(P ′) ≤
f log(k)λ(Q1 ◦ · · · ◦Qk) ≤ fmax{log χ(J1),··· ,log χ(Jk)}f log(k)λ(P [J1, · · · , Jk]) ≤
f log χ(J)λ(P [J1, · · · , Jk]) = f log χ(J)λ(P), and μ(P ′) ≤ μ(Q1 ◦ · · · ◦Qk) ≤
μ(P [J1, · · · , Jk]) = μ(P). �

Lemma 3. Assume that μ(D, J) ≤ a(n). Then the computational time for Sketch(J) is
O(|J |((log χ(J))(log a(n))

ε)2), where |J | is the number of nodes in J .

Proof. The number of intervals is O((log χ(J))(log a(n))
ε). Therefore the list of each

Li=Prune(Ji) is of length O((log χ(J))(log a(n))
ε).

Let F (k) be the time for Union(L1, · · · , Lk). It satisfies the recursion F (k) =
2F (k/2) +O(((log χ(J))(log a(n))

ε)2). This brings solution

F (k) = O(k((log χ(J))(log a(n))
ε)2).

Let T (J) be the computational time for Prune(J). Denote E(J) to be the number
of edges in J . We prove by induction that T (J) ≤ cE(J)((log χ(J))(log a(n))

ε)2 for
some constant c > 0. We select constant c enough so that merging two lists takes
c(n log a(n))2) steps. We have that T (J) ≤ T (J1) + · · ·+ T (Jk) + F (k) ≤
cE(J1)(

(log χ(J))(log a(n))
ε)2 + · · ·+ cE(Jk)((log χ(J))(log a(n))

ε)2+
ck((log χ(J))(log a(n))

ε)2 ≤ cE(J)((log χ(J))(log a(n))
ε)2 ≤ c|J |((log χ(J))(log a(n))

ε)2. �

Algorithm
Approximate(J , ε)
Input: J is an AD tree with elements D1, · · · , Dn and ε is a small constant with

1 > ε > 0;
Let L =Sketch(J);
Select Pi from the list L that Pi has the optimal cost;

End of the Algorithm

Theorem 2. For any instance of J of an AD tree with n elements, there exists an
O(n((log χ(J))(log a(n))

ε)2) time approximation scheme, where
∑n

i=1 aiCOSTR(Di) ≤
a(n).

Proof. Assume thatP is the optimal solution for inputJ . LetL=Prune(J). By Lemma 2,
we have P ∗ ∈ L that satisfies the condition of Lemma 2. We have
λ(P ∗) ≤ f log χ(J)λ(P) = (1+ ε

2z)log χ(J)λ(P) ≤ e
ε
2 ·λ(P) = (1+ ε

2 +(ε
2)2)·λ(P) <

(1 + ε) · λ(P). Furthermore, μ(P ∗) ≤ μ(P). The computational time follows from
Lemma 3. �

It is easy to see that χ(J) ≤ 2|J|. We have the following corollary.

Corollary 1. For any instance of J of an AD tree with n elements, there exists an
O(n3(log a(n)

ε)2) time approximation scheme, where
∑n

i=1 aiCOSTR(Di) ≤ a(n).

XML Reconstruction View Selection in XML Databases 105

We show an approximation scheme for the problem with an input of multiple trees. The
input is a series of trees J1, · · · , Jk.

Theorem 3. For any instance of J of an AD tree with n elements, there exists an
O(n((log χ(J0))(log a0(n))

ε)2) time approximation scheme, where
∑

j(pj + cj) ≤ a0(n)
and J0 is a tree via connecting all J1, · · · , Jk into a single tree under a common root
r0.

Proof. Build a new tree with a new node r0 such that J1, · · · , Jk are the subtrees under
r0. Apply the algorithm in in Theorem 2. �

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kaufmann, San Francisco (1999)

2. Atay, M., Chebotko, A., Liu, D., Lu, S., Fotouhi, F.: Efficient schema-based XML-to-
relational data mapping. Inf. Syst. 32(3), 458–476 (2007)

3. Balmin, A., Özcan, F., Beyer, K.S., Cochrane, R., Pirahesh, H.: A framework for using ma-
terialized XPath views in XML query processing. In: VLDB, pp. 60–71 (2004)

4. Balmin, A., Papakonstantinou, Y.: Storing and querying XML data using denormalized rela-
tional databases. VLDB J. 14(1), 30–49 (2005)

5. Baralis, E., Paraboschi, S., Teniente, E.: Materialized views selection in a multidimensional
database. In: VLDB, pp. 156–165 (1997)

6. Bohannon, P., Freire, J., Roy, P., Siméon, J.: From XML schema to relations: A cost-based
approach to XML storage. In: ICDE, pp. 64–75 (2002)

7. Boncz, P.A., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.: Mon-
etDB/XQuery: a fast XQuery processor powered by a relational engine. In: SIGMOD Con-
ference, pp. 479–490 (2006)

8. Chaudhuri, S., Chen, Z., Shim, K., Wu, Y.: Storing XML (with XSD) in SQL databases:
Interplay of logical and physical designs. IEEE Trans. Knowl. Data Eng. 17(12), 1595–1609
(2005)

9. Chebotko, A., Atay, M., Lu, S., Fotouhi, F.: XML subtree reconstruction from relational
storage of XML documents. Data Knowl. Eng. 62(2), 199–218 (2007)

10. Chebotko, A., Liu, D., Atay, M., Lu, S., Fotouhi, F.: Reconstructing XML subtrees from
relational storage of XML documents. In: ICDE Workshops, p. 1282 (2005)

11. Chirkova, R., Halevy, A.Y., Suciu, D.: A formal perspective on the view selection problem.
VLDB J. 11(3), 216–237 (2002)

12. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Rewriting regular XPath queries on XML
views. In: ICDE, pp. 666–675 (2007)

13. Florescu, D., Kossmann, D.: Storing and querying XML data using an RDMBS. IEEE Data
Eng. Bull. 22(3), 27–34 (1999)

14. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York (1979)

15. Gupta, H.: Selection of views to materialize in a data warehouse. In: Afrati, F.N., Kolaitis,
P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 98–112. Springer, Heidelberg (1997)

16. Gupta, H., Mumick, I.S.: Selection of views to materialize under a maintenance cost con-
straint. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 453–470.
Springer, Heidelberg (1999)

106 A. Chebotko and B. Fu

17. Hündling, J., Sievers, J., Weske, M.: NaXDB - realizing pipelined XQuery processing in a
native XML database system. In: XIME-P (2005)

18. Jagadish, H.V., Al-Khalifa, S., Chapman, A., Lakshmanan, L.V.S., Nierman, A., Paparizos,
S., Patel, J.M., Srivastava, D., Wiwatwattana, N., Wu, Y., Yu, C.: TIMBER: A native XML
database. VLDB J. 11(4), 274–291 (2002)

19. Karloff, H.J., Mihail, M.: On the complexity of the view-selection problem. In: PODS, pp.
167–173 (1999)

20. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.
Surv. 32(4), 422–469 (2000)

21. Krishnamurthy, R., Chakaravarthy, V.T., Kaushik, R., Naughton, J.F.: Recursive XML
schemas, recursive XML queries, and relational storage: XML-to-SQL query translation.
In: ICDE, pp. 42–53 (2004)

22. Lakshmanan, L.V.S., Wang, H., Zhao, Z.J.: Answering tree pattern queries using views. In:
VLDB, pp. 571–582 (2006)

23. Mandhani, B., Suciu, D.: Query caching and view selection for XML databases. In: VLDB,
pp. 469–480 (2005)

24. Sawires, A., Tatemura, J., Po, O., Agrawal, D., Abbadi, A.E., Candan, K.S.: Maintaining
XPath views in loosely coupled systems. In: VLDB, pp. 583–594 (2006)

25. Sawires, A., Tatemura, J., Po, O., Agrawal, D., Candan, K.S.: Incremental maintenance of
path expression views. In: SIGMOD Conference, pp. 443–454 (2005)

26. Schöning, H.: Tamino - a DBMS designed for XML. In: ICDE, pp. 149–154 (2001)
27. Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D.J., Naughton, J.F.: Relational

databases for querying XML documents: Limitations and opportunities. In: VLDB, pp. 302–
314 (1999)

28. Tang, N., Yu, J.X., Özsu, M.T., Choi, B., Wong, K.-F.: Multiple materialized view selection
for XPath query rewriting. In: ICDE, pp. 873–882 (2008)

29. Tang, N., Yu, J.X., Tang, H., Özsu, M.T., Boncz, P.A.: Materialized view selection in XML
databases. In: DASFAA, pp. 616–630 (2009)

30. Xu, W., Özsoyoglu, Z.M.: Rewriting XPath queries using materialized views. In: VLDB, pp.
121–132 (2005)

31. Yang, J., Karlapalem, K., Li, Q.: Algorithms for materialized view design in data warehous-
ing environment. In: VLDB, pp. 136–145 (1997)

Computational Study for Planar Connected
Dominating Set Problem

Marjan Marzban1, Qian-Ping Gu1, and Xiaohua Jia2

1 School of Computing Science, Simon Fraser University, Burnaby BC Canada

{mmarzba,qgu}@cs.sfu.ca
2 Department of Computer Science, City University of Hong Kong

csjia@cityu.edu.hk

Abstract. The connected dominating set (CDS) problem is a well stud-

ied NP-hard problem with many important applications. Dorn et al.

[ESA2005, LNCS3669,pp95-106] introduce a new technique to generate

2O(
√

n) time and fixed-parameter algorithms for a number of non-local

hard problems, including the CDS problem in planar graphs. The prac-

tical performance of this algorithm is yet to be evaluated. We perform a

computational study for such an evaluation. The results show that the

size of instances can be solved by the algorithm mainly depends on the

branchwidth of the instances, coinciding with the theoretical result. For

graphs with small or moderate branchwidth, the CDS problem instances

with size up to a few thousands edges can be solved in a practical time

and memory space. This suggests that the branch-decomposition based

algorithms can be practical for the planar CDS problem.

Keywords: Branch-decomposition based algorithms, CDS problem, pla-

nar graphs, fixed-parameter algorithms, computational study.

1 Introduction

In this paper, graphs are undirected, simple and finite unless otherwise stated.
Let G be a graph with vertex set V (G) and edge set E(G). A dominating set
D of G is a subset of V (G) such that for every vertex u ∈ V (G), u ∈ D or u is
incident to a vertex v ∈ D. The dominating number of G, denoted by γ(G), is the
minimum size of a dominating set of G. The dominating set problem is to decide
if γ(G) ≤ k for a given G and integer k. The dominating set problem is a core
NP-complete problem in combinatorial optimization [15]. The rich literature of
algorithms and complexity of dominating set problem can be found in [20,19].

A subset D of V (G) is a connected dominating set (CDS) of G if D is a
dominating set of G and the subgraph G[D] induced by D is connected. The
connected dominating number of G, denoted by γc(G), is the minimum size of a
CDS of G. The CDS problem is to decide if γc(G) ≤ k for a given G and integer
k. The optimization version of the CDS problem is to find a minimum CDS of
an input graph. The CDS problem is an important variant of the dominating
set problem and has wide practical applications in wireless ad hoc or sensor

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 107–116, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

108 M. Marzban, Q.-P. Gu, and X. Jia

networks such as virtual backbone construction [6], energy efficient routing and
broadcasting [5]. Notice that γ(G) ≤ γc(G) ≤ 3γ(G)− 2.

The CDS problem is NP-complete [15]. Approximation algorithms and exact
fixed parameter algorithms have been main topics in the algorithmic research
for the CDS problem. For arbitrary graphs, there are 2(1+lnΔ)- and (lnΔ+3)-
approximation algorithms for the CDS problem, where Δ is the maximum vertex
degree of the input graph [18]; the CDS problem is not approximable within
a factor of (1 − ε) lnΔ for any ε > 0 unless NP ⊆ DTIME(nlog log n) [18];
and the CDS problem is fixed-parameter intractable unless the parameterized
complexity classes collapse [11,12]. The CDS problem remains NP-complete if
the input graphs are restricted to planar [15]. However, the planar CDS problem
admits a PTAS [7], and is fixed parameter tractable [9,10].

Recently, significant progresses have been made on the fixed-parameter al-
gorithms for the planar dominating set problem [13,8] and practical perfor-
mance of those algorithms have been reported [21]. The notions of tree/branch-
decompositions introduced by Robertson and Seymour [23,24,25] play a central
role in those algorithms. Although the dominating set problem and the CDS
problem are closely related, they have different properties from the tree/branch-
decomposition based algorithm point of view. In particular, the techniques used
to solve the dominating set problem do not seem to work for the CDS problem.
One of the main reasons of such discrepancy is that connectivity is a non-local
property (see Section 3 for more details).

Along the lines to clear the hurdles caused by the non-local property, Dorn
et al. [9,10] propose a new technique to design sub-exponential time exact al-
gorithms for the non-local problems in planar graphs. This new technique is
based on the geometric properties of branch-decomposition of graphs with a
planar embedding in a sphere and the properties of non-crossing partitions in
the embedding. Based on this new technique, they show that many non-local
problems in planar graphs can be solved in 2O(

√
n) time [9,10]. Especially, they

give an algorithm (called DPBF Algorithm in what follows) which solves the
planar CDS problem in O(2O(bw(G))n + n3) and O(29.822

√
nn + n3) time [10].

The constant in O(bw(G)) is not explicitly given in [9,10]. By a more careful
analysis, it can be shown that DPBF Algorithm solves the planar CDS problem
in O(24.618bw(G)n+n3) and O(29.8

√
nn+n3) time. The running time can be fur-

ther improved to O(23.812bw(G)n+n3) and O(28.088
√

nn+n3) if the fast distance
matrix multiplication is applied [8]. It is known that bw(G) ≤ 3

√
4.5γ(G) for

planar graph G [14,13]. Since γ(G) ≤ γc(G), the planar CDS problem admits an
O(224.257

√
γc(G)n+ n3) time fixed-parameter algorithm.

Because of the applications of the planar CDS problem in wireless networks,
practically efficient exact algorithms for the planar CDS problem are of great
interests for those applications. DPBF Algorithm suggests theoretically an effi-
cient exact approach for the CDS problem in planar graphs of small branchwidth.
However, the practical performance of the algorithm is yet to be evaluated. In
this paper, we perform a computational study to evaluate DPBF Algorithm.

Computational Study for Planar CDS Problem 109

We also apply the recent result on the kernelization for the planar CDS prob-
lem in our study. A linear size kernel of a graph G for the CDS problem is a
subgraph H of G with O(γc(G)) vertices and γc(H) ≤ γc(G) such that a min-
imum CDS of G can be produced efficiently from a minimum CDS of H . It is
known that the planar CDS problem admits a linear size kernel and such a kernel
can be computed in O(n3) time [16]. Applying the algorithm of [16] to shrink the
input graph G into a linear size kernel H , we get an O(224.257

√
γc(G)γc(G) +n3)

time algorithm for the planar CDS problem.
The computational study is performed on several classes of planar graphs that

cover a wide range of planar graphs. The results show that the conventional ver-
sion of DPBF Algorithm is more efficient than the version of using fast distance
matrix multiplication even though the latter has a better theoretical running
time because the fast distance matrix multiplication itself is not practical. The
size of instances that can be solved in a practical time and memory space mainly
depends on the branchwidth of the kernels of the instances. This coincides with
the theoretical running time of DPBF Algorithm.

The computational study gives a concrete example on using the branch-
decomposition based algorithms for solving important non-local problems in
planar graphs and shows that the planar CDS problem can be solved in prac-
tice for a wide range of graphs. This work provides a tool for computing the
optimal CDS of planar graphs and may bring the sphere-cut decomposition and
noncrossing partitions based approach closer to practice.

In the rest of the paper, Section 2 provides necessary definitions. We describe
DPBF Algorithm and our implementation of it in Section 3. Computational
results are reported in Section 4 and the final section concludes the paper.

2 Preliminaries

A graph G(V,E) consists of a set V (G) of vertices and a set E(G) of edges. A
graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a subset
A ⊆ E(G) (U ⊆ V (G)), we denote by G[A] (G[U]) the subgraph of G induced
by A (U).

For a graph G and a subset A ⊆ E(G) of edges, we denote E(G)\A by A when
G is clear from the context. A separation of graph G is a pair (A,A) of subsets
of E(G). For each A ⊆ E(G), we denote by ∂(A) the vertex set V (A) ∩ V (A).
The order of separation (A,A) is |∂(A)| = |∂(A)|.

A branch-decomposition of graph G [25] is a pair (φ, T) where T is a tree
each internal node of which has degree 3 and φ is a bijection from the set of
leaves of T to E(G). Consider a link e of T and let L1 and L2 denote the sets
of leaves of T in the two respective subtrees of T obtained by removing e. We
say that the separation (φ(L1), φ(L2)) is induced by this link e of T . We de-
fine the width of the branch-decomposition (φ, T) to be the largest order of the
separations induced by links of T . The branchwidth of G, denoted by bw(G), is
the minimum width of all branch-decompositions of G. In the rest of this paper,

110 M. Marzban, Q.-P. Gu, and X. Jia

we identify a branch-decomposition (φ, T) with the tree T , leaving the bijection
implicit and regarding each leaf of T as an edge of G.

Let Σ be a fixed sphere. A set P of points in Σ is a topological segment of Σ
if it is homeomorphic to an open segment {(x, 0)|0 < x < 1} in the plane. For
a topological segment P , we denote by P the closure of P and bd(P) = P \ P
the two end points of P . A planar embedding of a graph G is a mapping ρ :
V (G) ∪ E(G)→ Σ ∪ 2Σ satisfying the following properties.

– For u ∈ V (G), ρ(u) is a point of Σ, and for distinct u, v ∈ V (G), ρ(u) �= ρ(v).
– For each edge e = {u, v} of E(G), ρ(e) is a topological segment with two

end points ρ(u) and ρ(v).
– For distinct e1, e2 ∈ E(G), ρ(e1) ∩ ρ(e2) = {ρ(u)|u ∈ e1 ∩ e2}.

A graph is planar if it has a planar embedding. A plane graph is a pair (G, ρ),
where ρ is a planar embedding of G. We may simply use G to denote the plane
graph (G, ρ), leaving the embedding ρ implicit. We do not distinguish a vertex v
(resp. an edge e) from its embedding ρ(v) (resp. ρ(e)) when there is no confusion.

Let G be a plane graph. We say that a curve μ on the sphere Σ is normal if μ
does not intersect with itself or any edge of G. A noose of G is a closed normal
curve on Σ. Let ν be a noose of G and let R1 and R2 be the two open regions
of the sphere separated by ν. Then, ν induces a separation (A,A) of G, with
A = {e ∈ E(G) | ρ(e) ⊆ R1} and A = {e ∈ E(G) | ρ(e) ⊆ R2}. We also say that
noose ν induces edge-subset A of G if ν induces a separation (A,A) having A on
one side. We call a separation or an edge-subset noose-induced if it is induced
by some noose. A branch-decomposition T of G is a sphere-cut decomposition if
every separation induced by a link of T is noose-induced [9,10]. It is known that
every plane graph G has an optimal branch-decomposition (of width bw(G))
that is a sphere-cut decomposition and such a decomposition can be found in
O(n3) time [26,17].

3 Algorithm for Planar CDS Problem

DPBF Algorithm uses the branch-decomposition based approach which has two
major steps: (1) compute a branch-decomposition T of the input graph, and
(2) apply dynamic programming method based on T to solve the problem. A
link e of T is called a leaf link if e contains a leaf node of T , otherwise called
an internal link. To solve an optimization problem P in Step (2), T is first
converted to a rooted binary tree by replacing a link {x, y} of T with three links
{x, z}, {y, z}, {z, r}, where z and r are new nodes to T , r is the root, and {z, r}
is an internal link. A link e′ (resp. a node x) is called a descendant link (resp.
descendant node) of link e if e is in the path from e′ (resp. x) to the root r of T .
For a link e of T , let (Ae, Ae) be the separation induced by e with Ae the set of
leaf nodes of T (set of edges of G) that are descendant nodes of e. For a leaf link
e, all possible partial solutions of P in the subgraph G[Ae] can be computed by
enumeration. For an internal link e of T , e has two child links e1 and e2. Notice
that Ae = Ae1 ∪ Ae2 . All possible partial solutions in the subgraph G[Ae] are
computed by merging the partial solutions in G[Ae1] and those in G[Ae2].

Computational Study for Planar CDS Problem 111

A problem P is known having a local structure, if a partial solution of P in
G[Ae] can be identified by a fixed number of states of each vertex in ∂(Ae), and
all partial solutions in G[Ae] can be computed from the states of the vertices in
∂(Ae1) and those of the vertices in ∂(Ae2). The local structure is a key condition
for the branch-decomposition based algorithm to solve P in O(2O(bw(G))nO(1))
time. However for the CDS problem, the connectivity information in a partial
solution in G[Ae] may not be expressed by a fixed number of states of each vertex
of ∂(Ae). In the merge step, the structures of the partial solutions in the entire
subgraphs G[Ae1] and G[Ae2] may have to be checked. Because of this, the CDS
problem is known having a non-local structure.

Dorn et al. give a new technique which makes the branch-decomposition based
approach applicable to many problems with the non-local structure in planar
graphs [9,10]. This new technique is based on two observations. One is the ge-
ometric property of the sphere-cut decomposition T of plane graph G: For any
link e of T and the separation (Ae, Ae) induced by e, there is a noose νe such that
νe induces (Ae, Ae), νe partitions the sphere Σ into two regions, all edges of Ae

are in one region, and all edges of Ae are in the other region. Notice that νe in-
tersects all vertices of ∂(Ae). The other observation is known as the non-crossing
partitions: Let P1, ..., Pr be the subsets of Ae such that G[Pi] is connected for
each 1 ≤ i ≤ r and G[Pi ∪ Pj] is not connected for every pair of 1 ≤ i �= j ≤ r.
We call P1, ..., Pr disjoint components. Two components Pi and Pj are called
crossing if there are u, u′ ∈ V (Pi) ∩ ∂(Ae) and v, v′ ∈ V (Pj) ∩ ∂(Ae) such that
the four vertices appear on νe in the orders u, v, u′, v′, otherwise non-crossing.
Notice that if Pi and Pj are crossing then G[Pi∪Pj] is connected becauseG[Ae] is
a plane graph. So, any pair of disjoint components are non-crossing. The sphere-
cut decomposition and the non-crossing partitions make it possible to compute
the partial solutions in G[Ae] by only looking at the local structures of partial
solutions in G[Ae1] at ∂(Ae1) and those in G[Ae2] at ∂(Ae2).

For a minimum CDS D of G, the subgraph G[D ∩ V (Ae)] of G[Ae] induced
by D consists of disjoint components P1, ..., Pr with |V (Pi) ∩ ∂(Ae)| ≥ 1 for
every 1 ≤ i ≤ r. We assume the vertices of ∂(Ae) are indexed as u1, u2, ..., uk

in the clockwise order as they appear in the noose νe. If |V (Pi) ∩ ∂(Ae)| ≥ 2,
we call the vertex of V (Pi) ∩ ∂(Ae) with the smallest index the small end, the
vertex of V (Pi) ∩ ∂(Ae) with the largest index the large end and other vertices
of V (Pi) ∩ ∂(Ae) the middle vertices of Pi. In DPBF Algorithm, each vertex
u ∈ ∂(Ae) is given one of the following six colors.

– Color 0, u does not appear in any Pi and is dominated by some vertex of
D ∩ V (Ae).

– Color 0̂, u does not appear in any Pi and is not dominated by any vertex of
D ∩ V (Ae).

– Color 1[, u is the small end of some Pi.
– Color 1], u is the large end of some Pi.
– Color 1∗, u is a middle vertex of some Pi.
– Color 1̂, u is the only vertex of some V (Pi) ∩ ∂(Ae).

112 M. Marzban, Q.-P. Gu, and X. Jia

From the geometric property of sphere-cut decomposition and the non-crossing
partitions, each partial solution P1, ..., Pr can be identified by a coloring of
{0, 0̂, 1[, 1], 1∗, 1̂}

|∂(Ae)|.
We implemented DPBF Algorithm together with a pre-processing step which

reduces the input graph to a linear size kernel. There are three major steps in
our implementation. Let G be a plane graph of n vertices.

Step I: Compute a kernel H of G with |V (H)| = O(γc(G)). This can be done
in O(n3) time [16].

Step II: Compute a sphere-cut decomposition T of H with width bw(H). This
can be done in O((γc(H))3) time [26,17].

Step III: Compute a minimum CDS D of H using the dynamic programming
method based on T and compute a minimum CDS of G from D.

We use 1 to express the numerical value of 1], 1[, 1∗, 1̂. Let b = |∂(Ae)|. We call
0, 0̂, 1 basic colors and a λ ∈ {0, 0̂, 1}b a basic-coloring of ∂(Ae).

For a coloring η ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b, we denote by De(η) the partial solution
identified by η with the minimum number of black vertices. In the merge step
for the link e = {z, r} incident to the root node r, we check the connectivity of
H [De(η)]. A De(η) with the minimum cardinality and H [De(η)] connected is a
minimum CDS of H . For η ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b, we define ae(η) = |De(η)| if η
identifies a partial solution, otherwise ae(η) = +∞. For a leaf link e of T , De(η)
is computed for every η ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b by enumeration. For an internal
link e of T , e has two child links e1 and e2. Let b1 = |∂(Ae1)| and b2 = |∂(Ae2)|.
The sets De(η) are computed by combining the sets of De1(η1) and the sets
of De2(η2), where η1 is a coloring of {0, 0̂, 1[, 1], 1∗, 1̂}b1 and η2 is a coloring of
{0, 0̂, 1[, 1], 1∗, 1̂}b2 .

Let X1 = ∂(Ae)\∂(Ae2), X2 = ∂(Ae)\∂(Ae1), X3 = ∂(Ae)∩∂(Ae1)∩∂(Ae3),
and X4 = (∂(Ae1) ∪ ∂(Ae2)) \ ∂(Ae). Then ∂(Ae) = X1 ∪ X2 ∪ X3, ∂(Ae1) =
X1∪X3∪X4, and ∂(Ae2) = X2∪X3∪X4. A basic-coloring λ of ∂(Ae) is formed
from basic-colorings λ1 of ∂(Ae1) and basic colorings λ2 of ∂(Ae1) if:

1. For u ∈ X1, λ(u) = λ1(u).
2. For u ∈ X2, λ(u) = λ2(u).
3. For u ∈ X3, if λ1(u) = λ2(u) = 1 then λ(u) = 1; if λ1(u) = λ2(u) = 0̂ then
λ(u) = 0̂; and if λ1(u) = 0 and λ2(u) = 0̂, or λ1(u) = 0̂ and λ2(u) = 0 then
λ(u) = 0.

4. For u ∈ X4, λ1(u) = λ2(u) = 1, or λ1(u) = 0 and λ2(u) = 0̂, or λ1(u) = 0̂
and λ2(u) = 0.

For a basic-coloring λ which is formed by two basic-colorings λ1 and λ2, we
compute the disjoint components P1, ..., Pr of H [De1(η1) ∪De2(η2)], where for
i = 1, 2 ηi(u) = λi(u) if λi(u) ∈ {0, 0̂} and ηi(u) ∈ {1[, 1], 1∗, 1̂} if λi(u) = 1.
De1(η1) ∪ De2(η2) is called a candidate for De(η) if each Pi has at least one
vertex in ∂(Ae). If De1(η1) ∪ De2(η2) is a candidate, we convert the color of u
with λ(u) = 1 into one color of {1[, 1], 1∗, 1̂} according to if u is the small end, the

Computational Study for Planar CDS Problem 113

large end, a middle vertex, or the only vertex of V (Pi)∩∂(Ae), respectively, to get
a coloring η ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b. Finally, De(η) is a candidate De1(η1)∪De2 (η2)
with the minimum cardinality.

The colorings {0, 0̂, 1[, 1], 1∗, 1̂}b and the corresponding partial solutions can be
kept in a table of size O(6b). A bijection from {0, 0̂, 1[, 1], 1∗, 1̂}b to {1, 2, ..., 6b}
gives an index method to access the table. The colorings {0, 0̂, 1[, 1], 1∗, 1̂}b1
and {0, 0̂, 1[, 1], 1∗, 1̂}b2 are handled similarly. The index method of DPBF Al-
gorithm described above solves the CDS problem for a plane G of n vertices in
O(24.67bw(G)γc(G) + n3) time and O(6bw(G)γc(G)) memory space. The running
time of the index method can be improved to O(24.618bw(G)γc(G) + n3) by a
more complex analysis for Step III. In Step III, merging colorings can be done
by the distance matrix multiplication. If the conventional O(n3) time distance
matrix multiplication is used, this gives the same running time as that of the
index method. If the fast distance matrix multiplication is used, the running
time of DPBF Algorithm can be further improved to O(29.8

√
nγc(G) + n3) and

O(224.257
√

γc(G)γc(G) + n3). We omit the analysis of the above running times
due to the limit of space.

4 Computational Results

We tested the performance of DPBF Algorithm on the following classes of planar
graphs. Class (1) is a set of random maximal planar graphs and their subgraphs
generated by LEDA [1,3]. Class(2) includes the Delaunay triangulations of point
sets taken from TSPLIB [22]. The instances of Classes (3) and (4) are the triangu-
lations and intersection graphs generated by LEDA, respectively. The instances
of Class (5) are Gabriel graphs generated using the points uniformly distributed
in a two-dimensional plane. The instances of Class (6) are random planar graphs
generated by the PIGALE library [2].

We use the reduction rules of [16] to compute the kernels of input instances
in Step I and the O(n3) time algorithm of [4] to compute optimal sphere-cut
decompositions of kernels in Step II. For Step III, we use an index method
to access the tables. To save memory, we compute the colorings of links of T
in the postorder manner. Once the colorings of a link e are computed for a
link e, the solutions for the children links of e are discarded. Because the fast
distance matrix multiplication is not practical [21], applying this technique does
not improve the practical performance of the algorithm.

The computer used for testing has an AMD Athlon(tm) 64 X2 Dual Core Pro-
cessor 4600+ (2.4GHz) and 3GByte of internal memory. The operating system
is SUSE Linux 10.2 and the programming language used is C++.

Table 1 shows the computational results of the simple version of DPBF Algo-
rithm. H is the kernel of an instance computed in Step I. In Step II, an optimal
sphere cut decomposition of H is computed and we report |E(H)|, the size of H ,
the branchwidth bw(H) of H , and the running time of this step. For Step III,
we give γc(G) obtained, the running time of the step and the required memory
in Gigabytes (GB). All times in the table are in seconds.

114 M. Marzban, Q.-P. Gu, and X. Jia

Table 1. Computational results (time in seconds) of DPBF Algorithm. For the in-

stances marked with “*”, the 3GByte memory is not enough for computing a minimum

connected dominating set.

Class Graph |E(G)| bw(G) Step I Step II Step III total maximum
G time |E(H)| bw(H) time γc(G) time time memory

(1) max1000 2912 4 19.4 704 4 2.3 131 4 25.7
max2000 5978 4 63 1133 4 6.0 252 9.9 78.9
max3000 8510 4 359 2531 4 37.6 417 94 491
max4000 10759 4 836 3965 4 145 614 458 1439
max5000 14311 4 848 3873 4 160 650 383 1392
max5000 16206 4 1702 5989 4 325 907 1769 3796

(2) eil51 140 8 0.1 140 8 0.2 14 253 254 0.03
lin105 292 8 0.3 275 8 3 27 810 813 0.03
pr144 393 9 1 347 7 0.5 25 18.1 19.7 0.06

kroB150 436 10 1 436 10 0.8 36 133856 133858 1.05
pr226 586 7 1.3 399 6 1.7 24 5.1 8.1 0.04
ch130 377 10 0.3 377 10 0.6 34 38562 38563 0.74

(3) tri100 288 7 0.7 258 6 0.6 20 7.1 8.4 0.05
tri500 1470 7 10.1 1438 6 37.2 91 62.6 110 0.07
tri800 2374 8 18 2279 7 86.4 149 289 393 0.13
tri2000 5977 8 109 5751 8 603 369 5643 6355 0.48
tri4000 11969 9 547 11236 9 3690 753 42323 46560 0.57

(4) rand100 121 5 0.1 73 3 0.1 40 0.1 0.3 0.03
rand500 709 7 1.7 545 6 0.4 216 10.8 12.9 0.05
rand700 1037 7 2.9 836 6 1 301 17.8 21.8 0.07
rand1000 1512 8 4.5 1242 7 2.5 421 422.8 429.8 0.25
rand2000 3247 8 17.5 2852 8 17.8 839 10179 10214 0.38
rand3000* 4943 10 - - 10 - - - -

(5) Gab50 88 4 0.1 88 4 0.1 22 0.2 0.4 0.03
Gab100 182 7 0.1 179 7 0.3 41 66.7 67.1 0.11
Gab200 366 8 0.7 362 8 1.5 81 2290 2293 0.13
Gab300 552 10 1.4 545 10 1.6 121 12 days 12 days 2.53

(6) P206 269 4 0.6 163 4 0.3 78 0.3 1.2 0.02
P495 852 5 3.2 765 5 8.4 167 11.9 23.5 0.02
P855 1434 6 7.9 1280 6 15.1 289 77.9 101 0.06
P1000 1325 5 4.4 777 5 2.5 378 7.3 14.2 0.07
P2000 2619 6 24.5 1527 6 12.3 738 58.0 94.8 0.11
P4206 7101 6 256 6377 6 1816 1423 2411 4482 0.43

Now we go over the details of our results. It is shown in [21] that the branch-
width of the instances of class (1) is at most four. Our results show that reduction
rules are very effective on these graphs and that the size of the kernels is much
smaller than the size of the original graphs. Thus, Step III is fast and the min-
imum CDS of some instances with 16000 edges can be computed in about one
hour on our platform.

However, the branchwidth increases very fast in the size of the graph for
the instances of Classes (2) and (5). In addition, the reduction rules do not
reduce the size of the original graphs very much, and the size and branchwidth
of generated kernels are the same as those of the original graphs. The running
time of Step III increases significantly with the branchwidth of instances (e.g.,
see the running time of instances pr144 and kroB150). For instances with the
same branchwidth the running time of this step depends on the size of the
kernel. (see instances eil51 and lin105). For these classes of planar graphs DPBF
Algorithm is time consuming and can solve the CDS problem on instances of size
up to a few hundreds edges in a practical time. The branchwidth of instances

Computational Study for Planar CDS Problem 115

of Classes (3) and (4) grows relatively slow in the instance sizes. Furthermore,
data reduction rules are effective on the instances of Class (4). The branchwidth
of graph instances in Class (6) does not grow in the instance size thus, DPBF
Algorithm is efficient for this class.

The memory space required by DPBF Algorithm in Step III is a bottleneck for
solving instances with large branchwidth. Experimental results show that DPBF
Algorithm can compute a minimum CDS for instances with the branchwidth of
kernels at most 10 (bw(H) ≤ 10) using 3GBytes of memory space.

5 Concluding Remarks

We evaluated the performance of DPBF Algorithm for the CDS problem on a
wide range of planar graphs. The computational results coincide with the theo-
retical analysis of the algorithm, it is efficient for graphs with small branchwidth
but may not be practical for graphs with large branchwidth. Using a computer
with a CPU of 2.4GHz and 3GMBytes memory space, it is possible to find a min-
imum CDS for graphs with the branchwidth of their kernels at most 10 in a few
hours. Since the branchwidth of a planar graph can be computed in O(n2 logn)
time by the O(n2) time rat-catching algorithm [26] and a binary search, one may
first get the branchwidth of the input graph and then decide if DPBF Algorithm
is applicable using the results of this paper as a guideline.

Because DPBF Algorithm runs and requires memory space exponentially in
the branchwidth bw(H) of a kernel H for a given graph, it is worth to develop
more powerful data reduction rules to reduce bw(H). It is known that the planar
CDS problem admits PTAS [7]. The approach for the PTAS is to partition an
input graph into subgraphs of fixed branchwidth, find a minimum CDS for each
subgraph and combining the solutions of subgraphs into a solution of the input
graph. It is interesting to apply DPBF Algorithm to develop PTAS which is effi-
cient in practice for the planar CDS problem in graphs with large branchwidth.

References

1. Library of Efficient Data Types and Algorithms, Version 5.2 (2008),

http://www.algorithmic-solutions.com/enleda.htm

2. Public Implementation of a Graph Algorithm Library and Editor (2008),

http://pigale.sourceforge.net/

3. The LEDA User Manual, Algorithmic Solutions, Version 4.2.1 (2008),

http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html

4. Bian, Z., Gu, Q.: Computing branch decompositions of large planar graphs. In:

McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 87–100. Springer, Heidelberg

(2008)

5. Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected dominating set in sensor

networks and MANETs. In: Du, D.-Z., Pardalos, P. (eds.) Handbooks of Combi-

natorial Optimization, Suppl., vol. B, pp. 329–369. Springer, Heidelberg (2004)

6. Cheng, X., Ding, M., Du, H., Jia, X.: Virtual backbone construction in multihop

Ad Hoc wireless networks. Wireless Communications and Mobile Computing 6(2),

183–190 (2006)

http://www.algorithmic-solutions.com/enleda.htm
http://pigale.sourceforge.net/
http://www.mpi-inf.mpg.de/LEDA/MANUAL/MANUAL.html

116 M. Marzban, Q.-P. Gu, and X. Jia

7. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between FPT

algorithms and PTAS. In: Proc. of the 2005 ACM/SIAM Symposium on Discrete

Algorithms (SODA 2005), pp. 590–601 (2005)

8. Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y.,

Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg

(2006)

9. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms

on planar graphs: exploiting sphere cut branch decompositions. In: Brodal, G.S.,

Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg

(2005)

10. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms

on planar graphs: exploiting sphere cut decompositions. Technical report, UU-CS-

2006-006, Department of Information and Computing Sciences (2006)

11. Downey, R.G., Fellow, M.R.: Parameterized complexity. In: Monographs in Com-

puter Science. Springer, Heidelberg (1999)

12. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness.

Cong. Num. 87, 161–187 (1992)

13. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and

exponential speed-up. SIAM Journal on Computing 36(2), 281–309 (2006)

14. Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar

graphs. Journal of Graph Theory 51(1), 53–81 (2006)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability, a Guide to the Theory

of NP-Completeness. Freeman, New York (1979)

16. Gu, Q., Imani, N.: Connectivity is not a limit for kernelization: planar connected

dominating set. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 26–37.

Springer, Heidelberg (2010)

17. Gu, Q., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n3) time.

ACM Transactions on Algorithms 4(3), 30:1–30:13 (2008)

18. Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets.

Algorithmca 20, 374–387 (1998)

19. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in graphs. In: Mono-

graphs and Textbooks in Pure and Applied Mathematics, vol. 209. Marcel Dekker,

New York (1998)

20. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in

graphs. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 208.

Marcel Dekker, New York (1998)

21. Marzban, M., Gu, Q., Jia, X.: Computational study on planar dominating set

problem. Theoretical Computer Science 410(52), 5455–5466 (2009)

22. Reinelt, G.: TSPLIB-A traveling salesman library. ORSA J. on Computing 3, 376–

384 (1991)

23. Robertson, N., Seymour, P.D.: Graph minors I. Excluding a forest. Journal of

Combinatorial Theory, Series B 35, 39–61 (1983)

24. Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree-width.

Journal of Algorithms 7, 309–322 (1986)

25. Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree decomposi-

tion. J. of Combinatorial Theory, Series B 52, 153–190 (1991)

26. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),

217–241 (1994)

Bounds for Nonadaptive Group Tests to
Estimate the Amount of Defectives

Peter Damaschke and Azam Sheikh Muhammad

Department of Computer Science and Engineering

Chalmers University, 41296 Göteborg, Sweden

{ptr,azams}@chalmers.se

Abstract. The classical and well-studied group testing problem is to

find d defectives in a set of n elements by group tests, which tell us for

any chosen subset whether it contains defectives or not. Strategies are

preferred that use both a small number of tests close to the information-

theoretic lower bound d log n, and a small constant number of stages,

where tests in every stage are done in parallel, in order to save time.

They should even work if d is completely unknown in advance. An essen-

tial ingredient of such competitive and minimal-adaptive group testing

strategies is an estimate of d within a constant factor. More precisely,

d shall be underestimated only with some given error probability, and

overestimated only by a constant factor, called the competitive ratio.

The latter problem is also interesting in its own right. It can be solved

with O(log n) randomized group tests of a certain type. In this paper

we prove that Ω(log n) tests are really needed. The proof is based on an

analysis of the influence of tests on the searcher’s ability to distinguish

between any two candidate numbers with a constant ratio. Once we know

this lower bound, the next challenge is to get optimal constant factors

in the O(log n) test number, depending on the desired error probability

and competitive ratio. We give a method to derive upper bounds and

conjecture that our particular strategy is already optimal.

Keywords: algorithm, learning by queries, competitive group testing,

nonadaptive strategy, randomized strategy, lower bound.

1 Introduction

Suppose that, in a set of n elements, d unknown elements are defective, and a
searcher can do group tests which work as follows. She can take any subset of
elements, called a pool, and ask whether the pool contains some defective. That
is, the result of a group test is binary: 0 means that no defective is in the pool,
and 1 means the presence of at least one defective. The combinatorial group test-
ing problem asks to determine at most d defectives using a minimum number of
tests; we also refer to them as queries. Group testing with its variants is a classi-
cal problem in combinatorial search, with a history dating back to year 1943 [8],
and it has various applications in chemical testing, bioinformatics, communica-
tion networks, information gathering, compression, streaming algorithms, etc.,
see for instance [3, 4, 7, 9, 11–13].

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 117–130, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

118 P. Damaschke and A. Sheikh Muhammad

By the trivial information-theoretic lower bound, essentially d log2 n queries
are necessary for combinatorial group testing. A group testing strategy using
O(d log n) queries despite ignorance of d before the testing process is called
competitive, and the “hidden” constant factor is the competitive ratio. The
currently best competitive ratio is 1.5 when queries are asked sequentially [14].
However, group testing strategies with minimal adaptivity are preferable for
applications where the tests are time-consuming. Such strategies work in a few
stages, where queries in a stage are prepared prior to the stage and then asked
in parallel. For 1-stage group testing, at least Ω((d2/ log d) log n) queries are
needed even in the case of a known d; see [1]. Clearly, 1-stage competitive group
testing is impossible. As opposed to this, already 2 stages are enough to enable
an O(d log n) test strategy, also the competitive ratio has been improved in
several steps [2, 6, 10]. Still d must be known in advance or, to say it more
accurately, d is some assumed upper bound on the true number of defectives.
Apparently we were the first to study group testing strategies that are both
minimal adaptive and competitive, i.e., they are suitable even when nothing
about the magnitude of d is known beforehand [5]. Unfortunately, any efficient
deterministic competitive group testing strategy needs Ω(log d/ log log d) stages
(and O(log d) stages are sufficient). The picture changes when randomization is
applied. If we can estimate an upper bound on the unknown d within a constant
factor, using a logarithmic number of nonadaptive randomized queries, then
we can subsequently apply any 2-stage O(d log n) strategy for known d, and
thus obtain a randomized 3-stage competitive strategy. If we, instead, append a
randomized 1-stage strategy with O(d log n) queries [2], we obtain a competitive
group testing strategy that needs only 2 stages. Determining d exactly is as hard
as combinatorial group testing itself [5], thus it would require Ω((d2/ log d) log n)
nonadaptive queries. But an estimate of d within a constant factor is sufficient
(and also necessary) for minimal adaptive competitive group testing. We call the
expected ratio of our estimate and the true d a competitive ratio as well; it is
always clear from context which competitive ratio is meant.

It is not hard to come up with such a nonadaptive estimator of d [5]. More
precisely, using O(log n) queries we can output a number which is smaller than
d only with some prescribed error probability ε but has an expectation O(d). (If
the alleged d was too small, the subsequent stages will notice the failure, and
we try again from scratch, thus solving the combinatorial group testing problem
in O(1) expected stages.) To this end we prepare pools as follows. We fix some
probability q and put every element in the pool independently with probability
1 − q. Clearly, the group test gives the result 0 and 1 with probability qd and
1 − qd, respectively. We prepare O(log n) of these pools such that the values
1/ log2(1/q) form an exponential sequence of numbers between 1 to n. Note that
these values are the defective numbers d for which qd = 1/2. Then, the position
in the sequence of pools where test results 0 switch to 1 hint to the value of d,
subject to some constant factor and with some constant error probability. (Of
course, the details have to be specified and proved [5].) Note that the expected
competitive ratio of 2-stage or 3-stage group testing is determined by three

Bounds for Nonadaptive Group Tests to Estimate the Amount of Defectives 119

quantities: the competitive ratio of the group testing strategy used, and both
the query number and competitive ratio of the randomized d estimator. The
currently best 2-stage group testing strategy [2] uses (1.44 + o(1))d log n queries
(asymptotically for n → ∞). in this paper we focus on the estimator which
requires methods completely different from the combinatorial group testing part
that actually finds the defectives. Estimating d is also an interesting problem in
its own right, as in some group testing applications we may only be interested
in the amount of defectives rather than their identities.

An open question so far was whether O(log n) tests are really needed to es-
timate d, in the above sense. Intuitively this should be expected, based on the
following heuristic argument. “Remote” queries with 1/ log2(1/q) far from d will
almost surely have a fixed result (0 or 1) and contribute little information about
the precise location of d. Therefore we must have queries with values 1/ log2(1/q)
within some constant ratio of every possible d, which would imply an Ω(log n)
bound. However, the searcher may use the accumulated information from all
queries, and even though “unexpected” results of the remote queries have low
probabilities, a few such events might reveal enough useful information about d.
Apparently, in order to turn the intuition into a proof we must somehow quantify
the influence of remote queries and show that they actually provide too little
information. To see the challenge, we first remark that the simple information-
theoretic argument falls short. Imagine that we divide the interval from 1 to n
into exponentially growing segments. Then the problem of estimating d up to
a constant factor is in principle (don’t care about technicalities) equivalent to
guessing the segment where d is located, or a neighbored segment. The number
of possible outcomes is some logn, thus we need Ω(log logn) queries, which is
a very weak lower bound. The next idea that comes into mind is to take the
very different probabilities of binary answers into account. The entropy of the
distribution of result strings is low, however it is not easy to see how to translate
entropy into a measure suited to our problem.

A main result of the present paper is a proof of the Ω(log n) query bound,
for any fixed competitive ratio and any fixed error probability. A key ingredient
is a suitable influence measure for queries. The proof is based on a simpler
auxiliary problem that may deserve independent interest: deciding on one of two
hypotheses about which we got only probabilistic information, thereby respecting
a pair of error bounds. It has to be noticed that our result does not yet prove the
non-existence of a randomized o(log n) query strategy in general. The result only
refers to randomized pools constructed in the aforementioned simple way: adding
every element to a pool independently with some fixed probability 1−q. However,
the result gives strong support to the conjecture that Ω(logn) is also a lower
bound for any other randomized pooling design. Intuitively, randomized pools
that treat all elements symmetrically and make independent decisions destroy
all possibilities for a malicious adversary to mislead the searcher by some clever
placement of defectives. Therefore it is hard to imagine that other constructions
could have benefits.

120 P. Damaschke and A. Sheikh Muhammad

The rest of the paper is organized as follows. In Section 2 we give a formal
problem statement and some useful notation. In Section 3 we study a proba-
bilistic inference problem on two hypotheses, and we define the influence of the
random bit contributed by any query. This is used in Section 4 to prove the
logarithmic lower bound for estimating the defective number by group tests.
In Section 5 we derive a particular O(log n) query strategy for estimating the
defectives, and we have reason to conjecture that its hidden constant factor is
already optimal, for every input parameter. Section 6 concludes the paper.

2 Preliminaries

Motivated by competitive group testing we study the following abstract problem.

Problem 1: Given are positive integers n and L, some positive error probability
ε < 1, and some c > 1 that we call the competitive ratio. Furthermore, an
“invisible” number x ∈ [1, n] is given. A searcher can prepare L nonadaptive
queries to an oracle as follows. A query specifies a number q ∈ (0, 1), and the
oracle answers 0 with probability qx, and 1 with probability 1 − qx. Based on
the string s of these L binary answers the searcher is supposed to output some
number x′ such that Pr[x′ < x] ≤ ε and E[x′/x] ≤ c holds for every x.

The actual problem is to place the L queries, and to compute an x′ from s,
in such a way that the demands are fulfilled. The optimization version asks to
minimize c given the other input parameters. We will prove that L = Ω(log n)
queries are needed, for any fixed ε and c. Note that randomness is not only in
the oracle answers but possibly also in the rule that decides on x′ based on s,
and even in the choice of queries.

Symbols Pr and E in the definition refer to the resulting probability dis-
tribution of x′ given x. Note that no distribution of x is assumed, rather, the
conditions shall be fulfilled for any fixed x. We might, of course, define similar
problem versions, e.g., with two-sided errors or with worst-case (rather than ex-
pected) competitive ratio and tail probabilities. However we stick to the above
problem formulation, as it came up in this form in competitive 2-stage and 3-
stage group testing, and other conceivable variations would behave similarly. In
the group testing context, an oracle query obviously represents a randomized
pool where every element is selected independently with probability 1− q, and
x is the unknown number of defectives. However we will treat x as a real-valued
variable. Asymptotically this does not change anything, but it simplifies several
technical issues.

It turns out that some coordinate transformations reflect the geometry of the
problem better than the variables originating from the group testing applica-
tion. We will look at x on the logarithmic axis and reserve symbol y for y = lnx.
Note that y ∈ [0, lnn]. Furthermore, we relate every q to that value y which
would make qx = qey

some constant “medium” probability, such as 1/e, the
inverse of Euler’s constant. (The choice of this constant is arbitrary, but it will

Bounds for Nonadaptive Group Tests to Estimate the Amount of Defectives 121

simplify some expressions.) We denote this y value by t, in other words, we want
qet

= 1/e, which means q = e−e−t

and ln(1/q) = e−t. Symbol t is reserved for
this transformed q. We refer to t as a query point.

3 Probabilistic Inference of One-Out-of-Two Hypotheses

Buridan’s ass could not decide on either a stack of hay or a pail of water and
thus suffered from both hunger and thirst. The following problem demands a
decision between two alternatives either of which could be wrong, but it also
offers a clear rationale for the decision. As usual in inference problems, the term
“target” refers to the true hypothesis.

Problem 2: The following items are given: two hypotheses g and h; two nonneg-
ative real numbers ε, δ < 1; furthermore N possible observations that we simply
denote by indices s = 1, . . . , N ; probabilities ps to observe s if g is the target,
and similarly, probabilities qs to observe s if h is the target. Clearly,

∑N
s=1 ps = 1

and
∑N

s=1 qs = 1. Based on the observed s, the searcher can infer g with some
probability xs, and h with probability 1 − xs. The searcher’s goal is to choose
her xs for all s, so as to limit to ε the probability of wrongly inferring h when g
is the target, and to limit to δ the probability of wrongly inferring g when h is
the target.

We rename the observations so that p1/q1 ≤ . . . ≤ pN/qN .
In the optimization version of Problem 2, only one error probability, say ε, is

fixed, and the searcher wants to determine x1, . . . , xN so as to minimize δ. We
denote the optimum by δ(ε). Problem 2 is easily solved in a greedy fashion:

Lemma 1. A complete scheme of optimal strategies (one for every ε) for Prob-
lem 2 is described as follows. Determine u such that p1 + . . . + pu−1 ≤ ε <
p1 + . . . + pu, and let f := (ε − pu−1)/(pu − pu−1). Infer h if s < u, in-
fer h with probability f in case s = u, and otherwise infer g. Consequently,
δ(ε) = (1− f)qu + qu+1 + . . .+ qN .

Proof. We only have to prove optimality. In any given strategy, let us change
two consecutive “strategy values” simultaneously by xs := xs − Δ · ps+1 and
xs+1 := xs+1 + Δ · ps, for some Δ > 0. If the target is g, this manipulation
changes the probability to wrongly infer h by psΔ · ps+1 − ps+1Δ · ps = 0. If
the target is h, this manipulation changes the probability to wrongly infer g by
−qsΔ · ps+1 + qs+1Δ · ps = −(qsps+1 − qs+1ps)Δ ≤ 0, since qsps+1 ≥ qs+1ps.
Thus it can only improve the strategy. The manipulation is impossible only if
some index u exists with xs = 0 for all s < u, and xs = 1 for all s > u. Now the
lemma follows easily. ��

Lemma 1 also implies:

Corollary 1. δ(ε) is a monotone decreasing and convex (i.e., sub-additive),
piecewise linear function with δ(0) = 1 and δ(1) = 0. ��

122 P. Damaschke and A. Sheikh Muhammad

The following technical lemma shows that certain small additive changes in
the probability sequences do not change the error function much (which is quite
intuitive). In order to avoid heavy notation we give the proof in a geometric
language, referring to a coordinate system with abscissa ε and ordinate δ.

Lemma 2. Consider the following type of rearrangement of a given instance of
Problem 2. Replace every ps with ps − ρs, where

∑
s ρs = ρ. Similarly, replace

every qs with qs − τs, where τs = ρsqs/ps and
∑

s τs = τ . Then add the removed
probability masses, in total ρ and τ , arbitrarily to existing pairs (ps, qs) or create
new pairs (ps, qs), but in such a way that

∑
s ps = 1 and

∑
s qs = 1 are recovered.

If such a rearrangement reduces δ(ε), then the decrease is at most τ .

Proof. By Corollary 1, the curve of function δ(ε) is a chain of straight line
segments whose slopes −δ′(ε) get smaller from left to right, and these slopes are
the ratios qs/ps. The rearrangement has the following effect on the curve: Pieces
of the segments are cut out, whose horizontal and vertical projections have total
length ρ and τ , respectively. Then their horizontal and vertical lengths may
increase again by re-insertions (and all these actions may change the slopes of
existing segments), and possibly new segments are created. Finally all segments
are assembled to a new chain connecting the points δ(0) = 1 and δ(1) = 0, and
having a monotone sequence of slopes again.

Consider a fixed ε. Let ρ0 and τ0 be the total horizontal and vertical length,
respectively, of the pieces cut out to the left of ε. Let ρ1 and τ1 be defined
similarly for the pieces to the right of ε. The largest possible reduction of δ(ε)
appears if: (a) some new vertical piece of length τ1 forms the left end, and (b)
some new horizontal piece of length ρ0 and forms the right end of the modified
curve. Note that pieces in (a) were originally located below δ(ε), and pieces in
(b) were originally located to the left of ε. This moves the remainder of the
original curve (a) down by τ1 length units, and (b) to the left by ρ0 length units.
The vertical move (a) reduces δ(ε) by τ1. The horizontal move (b) causes that
the new function value at ε is the old function value at ε+ ρ0. Since the slopes
decrease from left to right, the slope at our fixed ε (and to the right of it) can
be at most τ0/ρ0. Thus, move (b) reduces δ(ε) by at most ρ0τ0/ρ0 = τ0. Finally
note that τ1 + τ0 = τ . ��

One should not be confused that ρ does not appear in the decrease bound: As
we have chosen to consider δ as a function of ε, the setting is not symmetric.

We are particularly interested in the special case of Problem 2 where the
N = 2L observations s are strings of L independent bits.

Problem 3: The following items are given: two hypotheses g and h; two non-
negative real numbers ε, δ ≤ 1; and 2L possible observations described by binary
strings s = s1 . . . sL. Furthermore, for k = 1, . . . , L, we are given the probability
ak to observe sk = 0 if the target is g, and the probability bk to observe sk = 0
if the target is h. The sk are independent. The rest of the problem specification
is as in Problem 2.

Bounds for Nonadaptive Group Tests to Estimate the Amount of Defectives 123

Clearly, our ps and qs evaluate to ps =
∏L

k=1((1 − sk)ak + sk(1 − ak)) and
qs =

∏L
k=1((1 − sk)bk + sk(1 − bk)). Since the greedy algorithm in Lemma 1

applies also to Problem 3, a complete set of optimal strategies is described as
follows: Infer h for ps/qs below some threshold, infer g for ps/qs above that
threshold, and infer g or h randomized (with some prescribed probability) for
ps/qs equal to that threshold.

Remark: Since the ps and qs are just products of certain probabilities ak or
1 − ak, and bk or 1 − bk, respectively, taking the logarithm reveals a nice and
simple geometric structure of the optimal strategies from Lemma 1: Note that
log(ps/qs) =

∑L
k=1((1 − sk)(log ak − log bk) + sk(log(1 − ak) − log(1 − bk))).

Since log is a monotone function, comparing the ps/qs with some threshold is
equivalent to comparing the log(ps/qs) with some threshold. In other words, the
decision for g or h is merely a linear threshold predicate. We will not need this
remark in our lower-bound proof, still it might be interesting to notice.

In the following we consider any fixed ε > 0, and all notations are understood
with respect to this fixed error bound. Now think of our L independent bits as
L − 1 bits plus a distinguished one, say the kth bit. We define the influence
of this kth bit as the decrease of δ(ε), that is, the difference to the δ(ε) value
accomplished by an optimal strategy when the kth bit is ignored. Trivially, δ(ε)
can only decrease when more information is available.

Lemma 3. With the above notations for Problem 3, the influence of the kth bit
is at most min(max(ak, bk),max(1− ak, 1− bk)).

Proof. The kth bit splits every old observation s, consisting of the L − 1 other
bits and generated with probabilities ps, qs depending on the target, in two new
observations. Their new probability pairs are obviously (psak, qsbk) for sk = 0,
and (ps(1− ak), qs(1− bk)) for sk = 1. In order to apply Lemma 2 we can view
this splitting of observations as cutting out pieces from the segment of slope
qs/ps of the δ(ε) curve in the following way. If qs/ps ≤ bk/ak, a piece of vertical
length qsbk is cut out. If qs/ps > bk/ak, a piece of horizontal length psak is cut
out, corresponding to a piece of vertical length psakqs/ps = qsak. (Note that
we must first “cut out enough length” in both directions, therefore this case
distinction is needed.) This is done for all old s. Since, of course, the old qs sum
up to 1, we have τ ≤ max(ak, bk). The same reasoning applies to 1− ak, 1− bk,
thus we have τ ≤ max(1− ak, 1− bk) as well. ��
Note that the influence bound in Lemma 3 is expressed only in terms of the
probabilities of the respective bit being 0/1, conditional on the hypothesis. Hence
we can independently apply Lemma 3 to each of the bits, no matter in which
order they are considered, and simply add the influence bounds of several bits
(similarly to a union bound of probabilities).

4 The Logarithmic Lower Bound

We further narrow down our one-out-of-two inference problem to a special case
of Problem 3. (Below we reuse symbol q, without risk of confusion.)

124 P. Damaschke and A. Sheikh Muhammad

Problem 4: The following items are given: two hypotheses r and 1. where r > 1
is a fixed real number; two nonnegative real numbers ε, δ ≤ 1, furthermore 2L

possible observations described by binary strings s = s1 . . . sL. For k = 1, . . . , L,
let qx

k be the probability to observe sk = 0 if the target is x. We also speak of a
“query at qk”. The sk are independent. The rest of the problem specification is
as before. In particular, let ε be the probability of wrongly inferring 1 although
r is the target, and let δ be the probability of wrongly inferring r although 1 is
the target.

Note that the hypothesis x = r generates the string s with probability∏L
k=1((1 − sk)qr

k + sk(1 − qr
k)), and the hypothesis x = 1 generates s with

probability
∏L

k=1((1− sk)qk + sk(1− qk)), in other words, ak = qr
k and bk = qk.

As earlier we fix some error bound ε. From Lemma 3 we get immediately:

Lemma 4. With the above notations for Problem 4, the influence of a query at
q is at most min(q, 1 − qr). ��

Problem 4 was stated, without loss of generality, for hypotheses r and 1. Similarly
we may formulate it for hypotheses rx and x (for any positive x), which merely
involves a coordinate transformation. We speak of the “influence of q on x” when
we mean the influence of a query at q, with respect to Problem 4 for hypotheses
rx and x. Clearly, the influence of q on x equals the influence of qx on 1. Therefore
Lemma 4 generalizes immediately to:

The influence of q on x is at most min(qx, 1− qrx).

Remember y := lnx from Section 2. By a slight abuse of notation, the phrase
“influence of q on y” refers to the logarithmic coordinates, and Lemma 4 gets
this form:

The influence of q on y is at most min(qey

, 1− qrey

).

While qey

obviously decreases doubly exponentially with growing y > 0, it
is also useful to have a simple upper bound for 1 − qrey

when y < 0. Since
1 − e−z ≤ z for any variable z, we take z with e−z = qrey

to obtain 1− qrey ≤
z = − ln qrey

= ln(1/q)rey. Now we have:

The influence of q on y is at most min(qey

, ln(1/q)rey).

Finally we also transform q into t as introduced in Section 2, and we speak of
the “influence of t on y”, denoted It(y). With q = e−e−t

and ln(1/q) = e−t, our
influence lemma is in its final shape:

Lemma 5. It(y) ≤ min(e−ey−t

, rey−t). ��

From this bound we get:

Lemma 6. For every fixed t we have
∫ ln n

0 It(y) dy = Θ(ln r).

Bounds for Nonadaptive Group Tests to Estimate the Amount of Defectives 125

Proof. For simplicity we bound the integral over the entire real axis. (Since It(y)
decreases rapidly on both sides of t, this is not even too generous.) The advantage
is that we can assume t = 0 without loss of generality. We split the integral in two
parts, at y = − ln r. As It(y) is a minimum of two functions, we can take either
of them as an upper bound. Specifically we get

∫∞
−∞ It(y) dy <

∫ − ln r

−∞ rey dy +∫∞
− ln r e

−ey

dy =
∫∞
ln r re

−y d(−y)+
∫∞
− ln r e

−ey

dy = re− ln r+Θ(ln r) = 1+Θ(ln r).

The second integral is Θ(ln r) since both e−e− ln r

= e−1/r and (for instance)
e−e0

= e−1 are between some positive constants, the function is monotone de-
creasing, and

∫∞
0 e−ey

dy = Θ(1). ��

The next lemma connects our “bipolar” number guessing problem to the problem
we started from.

Lemma 7. For every r > 1 and 0 < δ < 1 we have: Any strategy solving
Problem 1 with error probability ε and competitive ratio c := 1 + (r − 1)δ yields
a strategy solving Problem 4 with hypotheses rx and x, for every x ≤ n/r, with
error probabilities ε and δ.

Proof. Imagine a searcher wants to solve an instance of Problem 1, and an ad-
versary tells her that the target is either rx or x. Despite this strong help, in case
that rx is the target, the searcher must still guess rx subject to an error proba-
bility ε, due to the definition of Problem 1. In the other case when the target is
x, error probability δ means a competitive ratio of (1−δ)+rδ = 1+(r−1)δ. ��

We are ready to state the main result of this section:

Theorem 1. Any strategy for Problem 1, with fixed error probability ε and com-
petitive ratio c, needs Ω(lnn/ ln r) queries, where the constant factor may depend
on ε.

Proof. Fix some r > c and δ = (c−1)/(r−1), hence c = 1+(r−1)δ. We choose
r = Θ(c) large enough so that D := 1−ε−δ is positive. Due to Lemma 7, the set
of queries must be powerful enough to solve Problem 4 with hypotheses rx and
x, for every x ≤ n/r, with error probabilities ε and δ. In the case of no queries,
the error tradeoff at every x would be simply δ(ε) = 1 − ε. Since we need to
reduce δ(ε) down to our fixed δ, all queries together must have an influence at
least 1− ε− δ on x. In transformed coordinates this means

∑
t It(y) ≥ D for all

0 ≤ y ≤ lnn− ln r, where the sum is taken over all t in our query set (multiple
occurrences counted). Hence

∫ ln n−ln r

0

∑
t It(y) dy ≥ D(lnn−ln r). Since Lemma

6 states
∫ ln n−ln r

0 It(y) dy = Θ(ln r) regardless of t, the number of queries is at
least (lnn− ln r)D/Θ(ln r) = Ω(lnn/ ln r). ��

Note that this integration argument also applies if the queries themselves are
located according to some probability distribution, that is, Theorem 1 also holds
for “fully randomized” strategies.

Theorem 1 only shows that the query number is logarithmic, for any fixed
parameter values. But the proof method is not suited for deriving also good lower

126 P. Damaschke and A. Sheikh Muhammad

bounds on the hidden constant factor. For instance, this factor should increase
to infinity when ε tends to 0. To reflect this behaviour in the lower bound,
apparently the previous proof must be combined with some reduction between
problem instances with different ε. We leave this topic here. Anyways, in practice
one would apply some reasonable standard value like ε = 0.05 rather than trading
much more queries for smaller failure probabilities. A more relevant question,
addressed in the next section, is which upper bounds we can accomplish.

5 Translation-Invariant Strategies and Upper Bounds

Theorem 1 states that L/ lnn in Problem 1 must be at least some constant,
depending on ε and c. In order to get upper bounds on L/ lnn we consider the
following “infinite extension” of Problem 1. This has merely formal reasons that
will be explained below.

Problem 5: Given are some positive error probability ε < 1, some c > 1 that
we call the competitive ratio, and an “invisible” number x which can be any real
number. A searcher can prepare countably infinitely many nonadaptive queries
to an oracle as follows. A query specifies a number q ∈ (0, 1), and the oracle
gives answer 0 with probability qx and answer 1 with probability 1− qx. Based
on the infinite string s of the binary answers, the searcher is supposed to output
some number x′ such that Pr[x′ < x] ≤ ε and E[x′/x] ≤ c holds for every x.

For Problem 5 we naturally consider the density of queries, i.e., the number
of queries per length unit on the logarithmic axis, corresponding to L/ lnn in
Problem 1. We withhold a precise formal definition of density, because for our
upper bound we will only study a particular strategy for which the notion of
density is straightforward:

Remember that y = lnx, and every query, with probability q of responding
with 0, is matched to a query point t on the logarithmic axis through q = e−e−t

.
If y is the unknown target value (in logarithmic coordinates), the probability of
answer 0 to a query at point t is qx = e−ey−t

. The logarithmic lower bound in
Theorem 1 and the influence argument in its proof suggests that query points t
should be spread evenly over the logarithmic axis. More specifically, we consider
strategies where the query points t are placed equidistantly, with space u between
neighbored points. We place our queries at points t = ju + v, where u is fixed,
j loops over all integers, and v is a random shift being uniformly distributed,
with 0 ≤ v < u. For every two-sided infinite binary sequence s of answers we
also specify an ys such that the output y′ = lnx′ is located ys length units
to the right of the point of the leftmost answer 0 in s (see details below). We
call such strategies translation-invariant with density u−1 because, obviously, all
translations of the y-axis are automorphisms. One should not worry about the
uncountably infinitely many s; in practice we “cut out a finite segment” of this
infinite strategy according to:

Bounds for Nonadaptive Group Tests to Estimate the Amount of Defectives 127

Lemma 8. Any translation-invariant strategy for Problem 5 with bounds ε and
c and density u−1 yields a strategy for the original Problem 1 that has asymp-
totically, i.e., for n → ∞, the same characteristics as the given strategy: error
probability ε, competitive ratio c, and u−1 lnn queries.

Proof. (sketch) We simply take the query points in the interval from 0 to lnn,
plus some margins on both sides, whose lengths grow with n but slower than
lnn. Since even the total influence of the (infinitely many!) ignored queries on
any point y, 0 ≤ y ≤ lnn, decreases exponentially with the margin length, the
resulting finite strategy performs as the original strategy for Problem 5, subject
to vanishing terms. ��

The reason for replacing Problem 1 with Problem 5 is its greater formal beauty.
This way we skip some artificial treatment of the interval ends and obtain “clean”
translation-invariance. In particular, in the calculations we can assume without
loss of generality that y = 0, and the searcher does not know the shift of the
coordinates (while in reality the searcher knows the coordinate system but not y).
This will simplify the expressions a lot. Furthermore, the random shift v that we
used to make our strategy translation-invariant does not sacrifice optimality: If,
in any optimal strategy for Problem 5, the query points are first shifted randomly,
the strategy remains optimal. To see this, simply note that the resulting strategy
still respects the bounds ε and c at every y, if the original strategy did.

Next we show how to obtain the optimal values ys for our specific strategy. For
a given error probability and query density we want to minimize the competitive
ratio. We need to consider only those two-sided infinite strings s that have a
leftmost 0 and a rightmost 1. We call the segment bounded by these positions
the significant segment. Clearly, all other response strings appear with total
probability 0. We (arbitrarily) index the bits in each s so that s0 = 0 is the
leftmost 0, that is, sk = 1 for all k < 0. The point on the y-axis where the
leftmost query t with answer 0 is located is called the reference point.

The probability density of the event that string s appears, and its reference
point is ju+ v (j integer, 0 ≤ v < u), is given by

fs(ju+ v) := u−1
∏
k

(
(1− sk)e−e−(k+j)u−v

+ sk(1 − e−e−(k+j)u−v

)
)

where k loops over all integers, and the sk are the bits of s as specified above.
Since, for each s, our strategy returns the point located ys units to the right

of the reference point t, the contribution of string s to the error probability (of
having output y′ < 0) amounts to

∫ −ys

−∞ fs(t) dt. Hence our goal is to minimize∑
s

∫ +∞
−∞ et+ysfs(t) dt under the constraint

∑
s

∫ −ys

−∞ fs(t) dt ≤ ε. To summarize:

Proposition 1. For any fixed u, the solution to the problem of minimizing∑
s

∫ +∞
−∞ et+ysfs(t) dt under the constraint

∑
s

∫ −ys

−∞ fs(t) dt ≤ ε yields an up-
per bound on the competitive ratio c for Problem 1 when u−1 ln 2 · log2 n queries
are used. ��

128 P. Damaschke and A. Sheikh Muhammad

Now these bounds can be calculated by standard nonlinear constraint op-
timization problem solvers. It suffices to consider some finite set of the most
likely strings s whose sum of probabilities is close enough to 1. We implemented
the method using the Matlab features fmincon for optimization and quadgk for
numerical integration. As a little illustration, Table 1 displays the competitive
ratios for ε = 0.01, . . .0.05 and g log2 n pools, for g = 0.5 and g = 1.

Table 1. Some competitive ratios c

g e 0.01 e 0.02 e 0.03 e 0.04 e 0.05

0.5 11.87 9.83 8.67 7.89 7.28

1.0 5.31 4.56 4.13 3.86 3.61

Of course, the optimizer also outputs the strategy variables ys, here we do
not show them due to limited space. For larger g it becomes harder to run the
method in this form on a usual laptop computer. The denser the query points
are, the more strings s have non-negligible probabilities, and the resulting large
number of variables leads to slow convergence. However, these technical issues
can be resolved by more computational power. One should also bear in mind
that a strategy needs to be computed only once, for any given pair of input
parameters g and ε, thus long waiting times might be acceptable. The only thing
needed to apply the computed strategy is a look-up table of the ys. Anyways,
some optimality criterion for the problem could enable us to find the optimal
strategies more efficiently than by this “naive” direct use of an optimizer.

For the original problem (of estimating the number d of defectives in an n-
element set by group tests) we have also found and implemented an LP formula-
tion. Clearly, the competitive ratios grow with n and should tend to the results
for Problem 5 when n → ∞. This behaviour is confirmed by our empirical
results. Since our methods guarantee optimal competitive ratios for translation-
invariant pooling designs, they improve upon the ad-hoc strategies in [5] where
the problem was studied for the first time.

6 Open Questions

We studied the problem of estimating the number d of defective elements in a
population of size n by randomized nonadaptive group tests, to within a con-
stant factor c, and with a prescribed probability ε of underestimating d. A main
result is that Ω(log n) queries are needed, if the single pools are formed in a
natural way by independent random choices. While this bound is intuitive, it
has not been proved before, and quite some technical efforts were needed. It
remains open how to show this lower bound also for arbitrary pools. A combi-
nation of our influence argument with Yao’s lower bound technique may lead to
an answer. The logarithmic lower bound also suggests that query points should
be placed translation-invariant on the logarithmic axis; see details above. We

Bounds for Nonadaptive Group Tests to Estimate the Amount of Defectives 129

gave such a strategy which allows numerical calculation of the output and com-
petitive ratios, for any given query density and ε. One could also think of other
translation-invariant strategies, for instance, query points may be chosen by a
Poisson process, however this seems worse because then the density of actual
query points can accidentally be low around the target value. In summary we
conjecture that our strategy in Section 5 is already optimal, with respect to the
constant factors and parameters, among all possible randomized strategies. But
a proof (if it is true) would apparently require a different mathematical machin-
ery. Disproving the conjecture would give interesting insights as well. Finally,
the method proposed in Section 5 is a numerical one. A challenging question
is whether the dependency of optimal competitive ratio, error probability and
query number can be characterized in a closed analytical form.

Acknowledgments

This workhas been supported by the Swedish ResearchCouncil (Vetenskapsr̊adet),
grant no. 2007-6437, “Combinatorial inference algorithms – parameterization
and clustering”. We thank the referees for some helpful editorial remarks.

References

1. Chen, H.B., Hwang, F.K.: Exploring the Missing Link Among d-Separable, d̄-

Separable and d-Disjunct Matrices. Discr. Appl. Math. 155, 662–664 (2007)

2. Cheng, Y., Du, D.Z.: New Constructions of One- and Two-Stage Pooling Designs.

J. Comp. Biol. 15, 195–205 (2008)

3. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective Families, Superimposed Codes,

and Broadcasting on Unknown Radio Networks. In: SODA 2001, pp. 709–718.

ACM/SIAM (2001)

4. Cormode, G., Muthukrishnan, S.: What’s Hot and What’s Not: Tracking Most

Frequent Items Dynamically. ACM Trans. Database Systems 30, 249–278 (2005)

5. Damaschke, P., Sheikh Muhammad, A.: Competitive Group Testing and Learning

Hidden Vertex Covers with Minimum Adaptivity. In: Kutylowski, M., Gebala, M.,

Charatonik, W. (eds.) FCT 2009. LNCS, vol. 5699, pp. 84–95. Springer, Heidelberg

(2009); Extended version to appear in Discr. Math. Algor. Appl.

6. De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal Two-Stage Algorithms for Group

Testing Problems. SIAM J. Comp. 34, 1253–1270 (2005)

7. De Bonis, A., Vaccaro, U.: Constructions of Generalized Superimposed Codes with

Applications to Group Testing and Conflict Resolution in Multiple Access Chan-

nels. Theor. Comp. Sc. 306, 223–243 (2003)

8. Dorfman, R.: The Detection of Defective Members of Large Populations. The An-

nals of Math. Stat. 14, 436–440 (1943)

9. Du, D.Z., Hwang, F.K.: Pooling Designs and Nonadaptive Group Testing. World

Scientific, Singapore (2006)

10. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved Combinatorial Group

Testing Algorithms for Real-World Problem Sizes. SIAM J. Comp. 36, 1360–1375

(2007)

130 P. Damaschke and A. Sheikh Muhammad

11. Gilbert, A.C., Iwen, M.A., Strauss, M.J.: Group Testing and Sparse Signal Recov-

ery. In: Asilomar Conf. on Signals, Systems, and Computers 2008, pp. 1059–1063

(2008)

12. Goodrich, M.T., Hirschberg, D.S.: Improved Adaptive Group Testing Algorithms

with Applications to Multiple Access Channels and Dead Sensor Diagnosis. J.

Comb. Optim. 15, 95–121 (2008)

13. Kahng, A.B., Reda, S.: New and Improved BIST Diagnosis Methods from Com-

binatorial Group Testing Theory. IEEE Trans. CAD of Integr. Circuits and Sys-

tems 25, 533–543 (2006)

14. Schlaghoff, J., Triesch, E.: Improved Results for Competitive Group Testing. Comb.

Prob. and Comp. 14, 191–202 (2005)

A Search-Based Approach to the Railway
Rolling Stock Allocation Problem

Tomoshi Otsuki, Hideyuki Aisu, and Toshiaki Tanaka

Toshiba Corporation, 1, Komukai-Toshiba-cho,

Saiwai-ku, Kawasaki, 212-8582, Japan

tomoshi1.otsuki@toshiba.co.jp

Abstract. Experts working for railway operators still have to devote

much time and effort to creating plans for rolling stock allocation. In this

paper, we formulate the railway rolling stock allocation problem as a set

partitioning multi-commodity flow (SPMCF) problem and we propose a

search-based heuristic approach for SPMCF. We show that our approach

can obtain an approximate solution near the optimum in shorter time

than CPLEX for real-life problems. Since our approach deals with a wide

variety of constraint expressions, it would be applicable for developing

practical plans automatically for many railway operators.

1 Introduction

Railway rolling stock allocation for a given diagram is a problem that has been
studied for a long time. Some simplified classes of the problem such as those
with only periodic constraints can be solved easily. But realistic objectives and
constraints are complex, with a variety of constraints derived from circumstances
of trains or railway depots and from non-periodic maintenance schedules. There-
fore, at many railway operators, experts still have to devote much time and effort
to creating plans for rolling stock allocation manually in practice. Additionally,
in the case that diagrams must be changed owing to traffic accidents or other
eventualities, experts must modify original plans rapidly, which is frequently
necessary at peak hours in urban areas in Japan.

In this paper, we formulate the rolling stock allocation problem as a set parti-
tioning multi-commodity flow(SPMCF) problem, and we propose a search-based
approach for SPMCF. We show that the approach can obtain an approximate
solution near the optimum in a much shorter time than CPLEX for real-life
problems.

The remainder of this paper is organized as follows. Section 2 provides a
detailed description of the rolling stock allocation problem and its formula-
tion as an SPMCF problem, and refers to related works. Section 3 proposes
a search-based approach for SPMCF. In Sect. 4, computational results are re-
ported and compared with those of CPLEX. Finally, Sect. 5 is devoted to the
conclusion.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 131–143, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

132 T. Otsuki, H. Aisu, and T. Tanaka

2 Railway Rolling Stock Allocation Problem

We begin with some basic definitions. Let ds be an initial day of the scheduling,
and df be a final day of the scheduling. That is, a planning period is from the ds

th day to the df th day. Since we ignore coupling/decoupling of rolling stock in
this paper, a train is considered to be the minimum unit of scheduling. And let
H = {h1, h2, . . .} be a set of trains available in the planning period. A place is
where a train can be left for a while such as a train depot, and letR = {r1, r2, . . .}
be a set of places available in the planning period. A route is an in-service/out-
of-service trip to be covered with a train between two given places with given
departure and arrival times. Let U = {u1, u2, . . .} be a set of routes available
in the planning period. And for every u ∈ U , a departure place DEP(u) ∈ R,
an arrival place ARV(u) ∈ R, a departure time dept(u), and an arrival time
arvt(u) are given. For our purpose, we do not need to consider more details
about a route such as intermediate stations or duration time.

Figure 1 illustrates an instance of routes with solid lines on a railway diagram
whose vertical axis is a series of places and horizontal axis is a time scale. Route
1 departs from the train depot α at 0615 and after some tracks it arrives at the
train depot β at 0810. And route 2 departs from the depot γ at 0620 and arrives
at the train depot α at 0755.

Fig. 1. An instance of routes on a diagram

The goal of the rolling stock allocation problem is to determine an assignment
of given routes to given trains. A route sequence Ph = (ph,1, ph,2, . . . , ph,Nh

) is a
sequence of routes assigned to a train h in increasing order with respect to the
arrival time arvt(·), where Nh is the number of routes assigned to h. Supposing
each train must depart from first departure place sh ∈ R on the initial day
ds, we add an origin route ph,0 at the beginning of Ph for convenience, where
ARV(ph,0) = sh and arvt(ph,0) = −∞. We also add a final route N− as ph+1
at the end of Ph, if necessary.

A Search-Based Approach to the Railway Rolling Stock Allocation Problem 133

We suppose trains cannot transfer by means other than routes; thus, they
have to meet time and place connection constraints represented as ARV(ph,k) =
DEP(ph,k+1) and arvt(ph,k) < dept(ph,k+1) for 0 ≤ k ≤ Nh − 1. If these
conditions permit, we may assign multiple routes to a single train on a single
day, or may assign no routes to a single train over several days.

Each train must have several types of maintenance, such as interior/exterior
cleaning, some repairs, and some checkups, regularly but not periodically. Main-
tenance is done in a specific train depot and takes a specific amount of time;
thus, the maintenance is done between routes or on a day for which no routes
are assigned. Consequently, the routes assignable to the train on the day when
maintenance is done are limited.

Supposing the maintenance schedule is fixed, we can represent maintenance
constraints through hard constraints, the conditions trains have to satisfy, and
soft constraints, the conditions trains should satisfy as long as they can. Here,
assuming that these violations can be divided into those of respective trains,
and that we can sum up each train’s violations to get the total number of vi-
olations, we formulate the rolling stock allocation problem as that of minimiz-
ing

∑
h Soft(Ph) on the condition that Hard(Ph) = 0, where Hard(Ph) and

Soft(Ph) are the total number of hard and soft constraint violations of train h,
respectively.

Most of our discussion below in this paper will be independent of the particular
choice of Soft(Ph) and Hard(Ph). Indeed, our approach is tractable for a wide
range of other constraints such as circumstances of train depots or the train
itself.

2.1 SPMCF Problem Formulation

If we regard each route as a node, each route sequence as a flow, and each train
as a commodity, we can formulate the rolling stock allocation problem as the set
partitioning multi-commodity flow formulation, denoted SPMCF, as follows.

SPMCF is defined over the network G(V,E) comprising node set V and arc
set E. SPMCF contains binary decision variable f , where fh

uv equals 1 if the
quantity of commodity h is assigned to arc (u, v). Supposing node u has supply
of commodity h, denoted bhu, equal to 1 if u is the destination node for h, equal
to -1 if u is the origin node for h, and equal to 0 otherwise.

The node-arc SPMCF formulation is:

min
∑

h∈H Soft(Ph) (1)

s.t.
∑

v:(v,u)∈E f
h
vu −

∑
v:(u,v)∈E f

h
uv = bhu ∀u ∈ V, ∀h ∈ H, (2)∑

h∈H(
∑

v:(u,v)∈E f
h
uv) = 1 ∀u ∈ V, (3)

Hard(Ph) = 0, (4)
fh

uv ∈ {0, 1} ∀u, v ∈ V, ∀h ∈ H. (5)

Equation (1) is an objective function that minimizes the total number of vi-
olations of soft constraints. Then, (2) is the flow conservation equation. Since

134 T. Otsuki, H. Aisu, and T. Tanaka∑
v:(u,v)∈E f

h
uv represents the flow of commodity h out of a node u, the left-hand

side of (3) denotes the total flow through the node u. Thus, (3) represents the
constraints of set partitioning that means every node is covered just once by the
flow of any commodity h. Finally, (4) represents that all of the hard constraints
must be satisfied.

2.2 Related Works

Studies of rolling stock allocation are summarized in [3], most of them focus not
on routing but on efficient freight scheduling or combination of locomotives and
different classes of cars. Problems of this kind depend on the circumstances of
railway network topology or typical formation of trains.

There are two main models of rolling stock allocation problems: one uses
multi-commodity flow formulation and the other uses circulation formulation.

For multi-commodity flow formulation, Benders’ decomposition [4] and the
path enumeration approach [6] have been applied. Column generation [7], which
is a similar path generation-based approach, and its extended method branch-
and-price are well known. But since these path generation-based methods depend
on particular properties of the problems, it would be difficult to apply these
methods directly for set partitioning problems such as SPMCF.

On the other hand, [1], [2], and [5] discusses cyclic solutions of rolling stock
allocation problems, supposing that all the trains are identical and most of
the constraints are periodic. However, since in practical situations there are
many non-periodic constraints such as emergent events or human-caused cir-
cumstances, it is difficult to apply them widely.

3 Solution Approach

In this section, we provide the solution approach of the SPMCF problem that
has two principal processes: a greedy construction process for obtaining an initial
solution and a backtrack search process for improving the solution.

3.1 Some Definitions

We begin with some additional definitions.
First, an assignment denotes the whole set of route sequence Ph for all trains

h ∈ H in which each Ph satisfies time and place connection constraints and every
route u ∈ U is assigned to any Ph just once. Thus, an assignment corresponds
to a feasible solution of SPMCF without hard constraints represented by (4).
Figure 2 illustrates an instance of assignment for G(V,E).

Next, we define originA, nextA, next−1
A on an assignment A as follows:

originA(h) = ph,0,
nextA(ph,k) = ph,k+1 for(k = 0, 1, . . .Nh),
next−1

A (ph,k+1) = ph,k for(k = 0, 1, . . .Nh).
(6)

where Ph = (ph,0, ph,1, . . . , ph,Nh
, N−) is a route sequence of train h on A.

A Search-Based Approach to the Railway Rolling Stock Allocation Problem 135

Fig. 2. An instance of an assignment for G(V,E)

And on an assignment A, BadA(h) is the total number of constraint vio-
lations of Ph, and a train that is BadA(h) > 0 is called a bad train. Addi-
tionally, penalty(A) is the total number of constraint violations in A. Thus,
penalty(A) =

∑
h∈H BadA(h) holds.

In addition, a swap σ(u, v) on an assignment A is a transform operation into
another assignment A′ that satisfies next(u) = v′ and next(v) = u′ when
u, v ∈ V , u′ = nextA(u), v′ = nextA(v), (u, v′) ∈ E, and (v, u′) ∈ E are all
satisfied. (If all these constraints are satisfied, we call the transform well-defined)
And the relation between A and A′ is represented as A′ = σ(u, v) · A.

Figure 3 illustrates an instance of a swap operation. Though P1 = (1, 3, 5)
and P2 = (2, 4, 6) hold on an assignment A on the left, on an assignment A′ =
σ(1, 2) · A on the right, route sequences are changed into P1 = (1, 4, 6) and
P2 = (2, 3, 5) by the swap σ(1, 2).

Fig. 3. An instance of a swap operation

Our solution approach is based on iteratively applying this swap operation on
an initial assignment. Effectiveness of this approach is supported by the following
lemma.

Lemma 1. For any assignment pairs A0 and Ag, Ag can be obtained by applying
swaps on A0 several times.

Proof. By induction on the size of #{u|nextA(u) �= nextAg (u)}, the case of
size 0 is obvious. Now let #{u|nextA(u) �= nextAg (u)} = K and let u have
maximum arvt(u) of all routes that satisfy nextA(u) �= nextAg(u). Here, let
v ≡ next−1

A (nextAg (u)). Then arvt(v) ≤ arvt(u) holds because of the maxi-
mality of arvt(u). Thus, arvt(v) ≤ arvt(u) < dept(nextAg(u)) holds, so that

136 T. Otsuki, H. Aisu, and T. Tanaka

(v,nextAg(u)) ∈ E holds. Consequently, σ(u, v) is well defined. And between
A′ = σ(u, v) · A and Ag, #{u|nextA′(u) �= nextAg (u)} ≤ K − 1 holds by
induction, and consequently we can derive lemma 1.

Now that the swap operation has given us the metric from a basis assignment
to every assignment, we define Reach(A, k) as follows:

Definition 1. Let Reach(A, k) be the set of assignments that are reached by k
times swaps from an assignment A.

And we derive the following lemma for the discussion below.

Lemma 2. Let i, j, k, l ∈ V be distinct, and if σ(k, l) · σ(i, j) ·A is well-defined,
then σ(k, l) · σ(i, j) · A = σ(i, j) · σ(k, l) ·A holds.

Proof. Since i, j, k, l are distinct, σ(i, j) and σ(k, l) doesn’t change the connec-
tion k → nextA(k), l→ nextA(l), and i→ nextσ(i,j)·A(i), j → nextσ(i,j)·A(j),
respectively. Thus, σ(k, l) and σ(i, j) are well-defined for A and σ(k, l) · A, re-
spectively.

And each of σ(k, l)·σ(i, j)·A and σ(i, j)·σ(k, l)·A is the assignment that differs
from A in that i→ nextA(j), j → nextA(i), k→ nextA(l), and l → nextA(k)
hold, so that we can derive lemma 2.

3.2 Framework of Solution Approach

The framework of solution approach is as follows:

Algorithm 1. schedule(ds, df)
Require: ds:initial day, df : final day, N :upper limit of #paths

1: for d = ds to df do
2: #paths ← 0

3: A ← the result of the greedy construction process by d th day

4: repeat
5: A ← backtrack(A, N) (supposing penalty(A) ≡ Soft(A)+c·Hard(A))

6: until (Soft(A) + Hard(A) == 0 ‖ #paths > N)

7: repeat
8: A ← backtrack(A,∞) (supposing penalty(A) ≡ Hard(A))

9: until (Hard(A) == 0))

10: end for

Each day’s process consists of a greedy construction process for obtaining an
initial solution and a two-step backtrack search process for improving the so-
lution. The greedy construction process (details are discussed below) is a pro-
cess for obtaining an initial assignment for given routes, and the backtrack
search process backtrack(A,N) (details are discussed below) is a process for
reducing the total number of constraint violations, where N is the limit of the
number of paths searched, denoted #paths. In the first backtrack search pro-
cess, we consider both hard and soft constraints and reduce the weighted sum,

A Search-Based Approach to the Railway Rolling Stock Allocation Problem 137

penalty(A) ≡ Soft(A) + c ·Hard(A), until #path exceeds N , where Soft(A)
and Hard(A) are the total number of soft and hard constraint violations, re-
spectively, and where c > 1.0. And at the second backtrack search process, we
consider only hard constraints and reduce penalty(A) ≡ Hard(A) until we
obtain the assignment A that satisfies Hard(A) = 0.

Since c > 1.0, the first backtrack search process put more weight on hard
constraints than on soft constraints. In total, we obtain the solution that min-
imizes Soft(A) on the condition that Hard(A) = 0. (We fixed c = 10.0 in
computational experiments in this paper)

3.3 Greedy Construction Process for Obtaining Initial Solution

In the greedy construction process, we repeat the following steps. First, we select
the unassigned route u that has minimum dept(u), and next we assign u to a
train in order to satisfy time and place connection constraints.

As a result of this process, if we succeed in assigning all routes, we obtain an
assignment. And inversely the following fact holds.

Lemma 3. If an assignment exists, the greedy construction process finds one of
the assignments.

Proof. Let v be a first route that is failed for any train by the greedy construc-
tion process. Since routes are assigned in the ascending order of their departure
time, v has the maximum dept(v). And let PreSET(v) = {u|(u, v) ∈ E}, and
u1, u2, . . . uk are distinct nodes of PreSET(v), where k is the size of PreSET(v).
Since we failed to assign v, next(uk) is predefined. Let vk = next(uk). Here,
PreSET(vk) ⊆ PreSET(v) holds, because of the maximality of dept(v). So
in the greedy construction process, we have to determine the one-to-one corre-
spondence from K routes u1, u2, . . . uk to K + 1 routes v, v1, v2, . . . vk. But it’s
impossible and Lemma 3 follows.

3.4 Backtracking Search Process for Improve Solution

Now that we have obtained an assignment A0 by the greedy construction pro-
cess, we need to improve the assignment for a better solution because generally
penalty(A0) > 0. Thus, we propose the backtracking-based hill climbing algo-
rithm for finding the assignment A that satisfies penalty(A) < penalty(A0),
denoted an SMB(Swap-path Multiple Backtracking) algorithm.

In the backtrack search process, we adopt the iterative deepening technique
[8] as follows, using the property that the SMB algorithm with K swaps searches
assignments in Reach(A0,K).

In the codes below, we add a swap threshold k0 by 1, and for each thresh-
old k0, we search assignments in Reach(A0, k0) by SMB(k0, h, A0) described
below, where h is one of the bad trains on A0. And if we succeed in finding im-
proved solution A that satisfies penalty(A) < penalty(A0), we get back k0 = 1
and search for the improved solution again. This parameter k0 plays the im-
portant role of widening search space gradually, and, as a result, reducing total
calculation cost.

138 T. Otsuki, H. Aisu, and T. Tanaka

Algorithm 2. backtrack(A0, N)
Require: A0:initial assignment, N :upper limit of #paths, kmax:upper limit of swaps

1: for k0 = 1 to kmax do
2: for all h ∈ {h′|BadA0(h

′) > 0} do
3: if (SMB(k0, h, A0) == TRUE ‖ #paths > N) then
4: return Ag

5: end if
6: end for
7: end for

Details of SMB Algorithm Here, we explain the detail of SMB algorithm.
First, let a swap path be a path Q = {q1, q2, . . .} on G(V,E), each of whose

arcs (qk, qk+1) (k = 1, 2, . . .) satisfies next(qk) = qk+1 or satisfies (next−1
A (qk+1),

nextA(qk)) ∈ E.
Under this assumption, we obtain swaps σ(qk,next−1

A (qk+1)) from corre-
sponding arcs (qk, qk+1)s that satisfy next(qk) �= qk+1, on a swap path Q =
{q1, q2, . . .} on an assignment A, as in the top chart of Fig.4. And we obtain a
new assignment A′ from these swaps.

In the bottom chart of Fig.4, Q = (1, 5, 7, 10) is an instance of a swap
path, since σ(1, 2) and σ(5, 6) are well-defined, respectively, since (2, 4) ∈ E
and (6, 9) ∈ E hold, respectively. Consequently, we obtain a new assignment
A′ = σ(5, 6) · σ(1, 2) · A from this swap path Q.

Fig. 4. An instance of a swap path and obtaining a new assignment

Using this correspondence between swap paths on A and new assignments A′,
we construct the SMB algorithm.

We explain the pseudo codes of SMB algorithm as follows. The pseudo codes
below consist of a path generation part and a leaf evaluation part.

A Search-Based Approach to the Railway Rolling Stock Allocation Problem 139

First, in the path generation part, we generate swap paths of a base train
h that originates from the node originA(h) within K swaps, for example in
the depth-first order. And executing swap operations corresponding to the swap
path Q on an assignment A, we obtain a new assignment A′.

Next, in the leaf evaluation part, first we judge if BadA′(h) = 0 holds
or not. And if A′ satisfies BadA′(h) = 0 and penalty(A′) < penalty(A0),
SMB(K,h,A) returns TRUE, where A0 is an initial assignment. And if
penalty(A′) ≥ penalty(A0) holds and the number of residual swaps K − K ′

satisfies K−K ′ > 0, we call SMB recursively with setting h ≡ hnew, where hnew

is a new bad train that satisfies Phnew(A) �= Phnew(A0), where Ph(A) represents
a route consequence of train h on A.

Algorithm 3. SMB(K,h,A)
Require: K:swap threshold, h:base train, A:current assignment, A0:initial assignment

Ensure: if return value is TRUE, Ag satisfies penalty(Ag) < penalty(A0)

1: for all Q: swap paths originating from originA(h) on A within K swaps do
2: #paths ← #paths +1

3: A′ ← the assignment obtained by applying swaps corresponding to Q on A
4: k′ ← the number of swaps corresponding to Q on A
5: if (BadA′(h) == 0) then
6: if (penalty(A′) < penalty(A0)) then
7: Ag ← A′

8: return TRUE
9: end if

10: hnew ← one of the h ∈ {h′| ∈ BadA(h′) > 0 && Ph(A) �= Ph(A′)}
11: return SMB(K − k′, hnew , A′)
12: end if
13: end for
14: return FALSE

Regarding the search space of SMB algorithm, the theorem holds as follows:

Theorem 1. Let Ag be an assignment that satisfies penalty(Ag) = 0, and Ag

is obtained by K times swaps from A0 and the relation

Ag = σK(uK , vK) · · ·σ2(u2, v2) · σ1(u1, v1) · A0 (7)

holds. Here if all of u1, u2, . . . , uK and v1, v2, . . . , vK are distinct, then SMB(K,
h0, A0) returns TRUE, where h0 is one of the bad trains on an assignment A0.

Proof. By induction on the number of swaps, the case of the number of swaps 0 is
obvious. Here, since all of u1, u2, . . . , uK and v1, v2, . . . , vK are distinct, the swaps
σ1(u1, v1), σ2(u2, v2), . . ., σK(uK , vK) are all commutable from lemma 2. Thus,
without a loss of generality, k′ > 0 exists such that all u1 . . . uk′ are on Ph0(A)
and any other uks and vks are not on Ph0(A). In this case, SMB(K,h0, A0)
enumerates a swap path Q that corresponds to swaps σ1 . . . σk, otherwise re-
turning TRUE. And if A′ = σK(u′k, v

′
k) · · ·σ2(u2, v2) · σ1(u1, v1) · A satisfies

penalty(A′) < penalty(A0), it returns TRUE.

140 T. Otsuki, H. Aisu, and T. Tanaka

Thus, the residual case is that penalty(A′) ≥ penalty(A0). In this case, for
any bad train h′ that satisfies Ph′(A′) �= Ph′(A0), Ph(A′) includes at least one
of uk′+1 . . . uK or vk′+1 . . . vK . Consequently, whether SMB(K,h0, A0) returns
TRUE or not, is equivalent to whether SMB(K − k′, h′, A′) returns TRUE or
not. By induction, the latter is TRUE, so that theorem 1 holds.

This theorem suggests that SMB(K,h0, A0) searches the space within
Reach(A0,K) and assures that we can find one of the solutions in Reach(A0,K),
under the condition described in the theorem. From the numerical experiments,
we observe few cases in which we can’t find the solution in the Reach(A0,K)
by SMB(K,h0, A0). Moreover, we can use a multiple-start search technique
just in case, for example, using pseudo-random number sequence in the greedy
construction process in order to generate different initial assignments.

Improvement Heuristic. Lastly, we describe the improvement heuristic of the
SMB algorithm.

Let A′ be an assignment obtained after executing K0 −K times swaps from
the assignment A. Here, if the probability of obtaining the assignment Ag that
satisfies penalty(Ag) < penalty(A0) with residual K swaps is very small, the
following pruning technique is expected to be effective.

If A′ satisfies the following pruning condition:

penalty(A′)− penalty(A0) > K ·E(δBad), (8)

we revise so as not to generate additional swap paths from then on, where
E(δBad) is an expected value of change of penalty(A) per swap.

Moreover, if the prune condition holds for A′ = σk, . . . , σ2 · σ1 · A, we revise
so as not to generate all the swap paths whose initial corresponding swaps are
the same as σ1, σ2, . . . , σk. Thus, if we generate paths in the depth-first order,
this pruning technique is more effective.

4 Computational Experiments

To measure the performance of the proposed approach described in Sect. 3,
computational experiments were performed on practical data from a railway
company. We first describe the test instance used. Secondly, we compare the
solution time and quality of the proposed approach by comparison with CPLEX.
The experiments were performed on a computer with Intel Xeon E5345 2.33GHz
Processor and 16GB RAM.

4.1 Description of Datasets

Datasets used here are based on a monthly rolling stock allocation schedule that
is a practical schedule in use, filled with routes and maintenance for all the trains,
which keeps all the hard constraints.

In this schedule, the number of trains |H| is 47, the numbers of daily routes
on weekdays and holidays are 54 and 25, respectively, and the number of places

A Search-Based Approach to the Railway Rolling Stock Allocation Problem 141

|R| is 13. And the number of types of maintenance is 14, and the total number
of times maintenance is done is 276 for all the trains and the entire planning
period.

From these datasets, changing the pair of ds and df as follows, we generate
168(= 7× 24) test cases. First we change ds from 1 to 7, and then we change df

in order for the planning period length to be from 1 to 24. For example, in the
case that the planning period length is D, we set df = ds +D − 1.

For each test case, we use R, H, U defined in the planning period from ds to
df and we create the schedule from ds to df . And we set sh as ds − 1 th day’s
arrival place of train h in the practical schedule. Under these conditions, the
original practical schedule is certainly a solution, and the problem for each test
case is feasible.

Additionally, 3 hard constraint types and 3 soft constraint types exist in the
test set as follows, where w, t or t2, h, and r are specific practical values of
maintenance, times, trains and places, respectively.

– Hard Constraints
• Routes assignable to the train h on the day when maintenance w is done

are limited.
• Routes assignable to the train h are limited.
• Every train whose earliest route is from train depot r, must depart by t

on the day.
– Soft Constraints
• Every train that arrives at a depot by t on a day should depart after t2

on the next day.
• Every train on which maintenance w is done on a day should be assigned

more than one route on the next day.
• Every train on which maintenance w is done on a day should depart

after t on the next day.

4.2 Comparison with SMB and CPLEX

For these test cases, we compare the solution time and quality of the proposed
approach with CPLEX. Here, high quality means that the value of soft constraint
violates Soft(A) is small.

In the proposed approach, increasing the value of N , which denotes the search
paths per day, resulted in a high-quality solution, but more solution time is
required. So we try multiple Ns. Thus, the experiments were performed using
the following 4 approaches.

– SMB algorithm-based approach when N = 4, 000(abbreviated as SMB4K)
– SMB algorithm-based approach when N = 16, 000(abbreviated as SMB16K)
– SMB algorithm-based approach whenN=160, 000(abbreviated as SMB160K)
– Solution of (1)-(5) solved by ILOG CPLEX 11.2.1 (abbreviated as CPLEX)

142 T. Otsuki, H. Aisu, and T. Tanaka

Note that in CPLEX, we have used the SPMCF formulation itself basically
but we have revised to eliminate intermediate flow variables, considering that
routes are defined daily in our test cases. As a result, the number of 0-1 variables
is about 100,000 even when the planning period length equals 24.

4.3 Computational Results

Figure 5 illustrates the results of the approaches of SMB and CPLEX. The left-
hand chart indicates the relation between solution time and the planning period
length, and the right-hand chart indicates the relation between the penalty value
and the planning period length. And the plotted value for each planning period
length is the average of the 7 test case results by changing the initial day ds

from 1 to 7.
CPLEX certainly obtains the optimal solution, whereas the SMB-based solu-

tion is a heuristic that does not always find the optimal solution. Thus, in SMB,
we average the 5 trials, using pseudo-random number sequence in the greedy
construction process.

Fig. 5. Results of CPLEX solution and the proposed approaches

We first observe from the left-hand chart that the solution time of CPLEX
drastically increases as planning period length increases and is more than 1000
seconds when planning period length is over 20 days. On the other hand, we
observe that the solution time of SMB is less than 10 seconds in the case of
SMB160K, and especially in the case of SMB4K, it is less than 1 second. That
is, the solution time of proposed approach is about 1/10 to 1/100 of CPLEX’s,
and only for obtaining feasible solutions, it is less than 1 second.

We next observe from the right-hand chart that the solution quality of SMB
tends to approach the curve of CPLEX as N increases, and the approximation
ratio comes to about 104 (%) in the case of SMB160K.

Consequently, SMB160K attains a solution near the optimum in the solution
time that is much shorter than CPLEX’s. And our rolling stock allocation sched-
ule is of actual use with a little expert adjustment. Consequently, we succeed in
creating practical plans.

A Search-Based Approach to the Railway Rolling Stock Allocation Problem 143

5 Conclusion

In this paper, we formulate the railway rolling stock allocation problem as the
SPMCF formulation that minimizes the violation of soft constraints on the con-
dition that all the hard constraints hold. And we propose a search-based heuristic
approach for SPMCF. Our approach can obtain an approximate solution near
the optimum in much shorter time than CPLEX for real-life problems. This
high-speed capability of proposed approach would be effective for wide appli-
cations, for example, for creating the simultaneous scheduling of routes and
maintenance. Since our approach is independent of the particular choice of soft
constraints and hard constraints, it would be applicable for developing practical
plans automatically for many railway operators.

References

1. Abbink, E., Berg, V.D., Kroon, L., Salomon, M.: Allocation of Railway Rolling

Stock for Passenger Trains. Transportation Science 38(1), 33–41 (2004)

2. Alfieri, A., Groot, R., Kroon, L., Schrijver, A.: Efficient circulation of railway rolling

stock. Transportation Science 40(3), 378–391 (2006)

3. Cordeau, J., Toth, P., Vigo, D.: A Survey of Optimization Models for Train Routing

and Scheduling. Transportation Science 32(4), 380–404 (1998)

4. Cordeau, J., Soumis, F., Desrosiers, J.: A Benders Decomposition Appoach for the

Locomotive and Car Assignment Problem. Transportation Science 34(2), 133–149

(2000)

5. Erlebach, T., et al.: On the Complexity of Train Assignment Problems. In: Eades, P.,

Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 390–402. Springer, Heidelberg

(2001)

6. Krishna, C., et al.: New Approaches for Solving the Block-to-train Assignment Prob-

lem. Networks 51(1), 48–62 (2007)

7. Lettovsky, L., Johnson, E.L., Nemhauser, G.L.: Airline crew recovery. Transporta-

tion Science 34(4), 337–348 (2000)

8. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice

Hall, Englewood Cliffs (2003)

Approximation Algorithm for the Minimum
Directed Tree Cover

Viet Hung Nguyen

LIP6, Université Pierre et Marie Curie Paris 6, 4 place Jussieu, Paris, France

Abstract. Given a directed graph G with non negative cost on the arcs,

a directed tree cover of G is a rooted directed tree such that either head

or tail (or both of them) of every arc in G is touched by T . The minimum

directed tree cover problem (DTCP) is to find a directed tree cover of

minimum cost. The problem is known to be NP -hard. In this paper, we

show that the weighted Set Cover Problem (SCP) is a special case of

DTCP. Hence, one can expect at best to approximate DTCP with the

same ratio as for SCP. We show that this expectation can be satisfied in

some way by designing a purely combinatorial approximation algorithm

for the DTCP and proving that the approximation ratio of the algorithm

is max{2, ln(D+)} with D+ is the maximum outgoing degree of the nodes

in G.

1 Introduction

Let G = (V,A) be a directed graph with a (non negative) cost function c : A⇒
Q+ defined on the arcs. Let c(u, v) denote the cost of the arc (u, v) ∈ A. A
directed tree cover is a weakly connected subgraph T = (U,F) such that

1. for every e ∈ A, F contains an arc f intersecting e, i.e. f and e have an
end-node in common.

2. T is a rooted branching.

The minimum directed tree cover problem (DTCP) is to find a directed tree cover
of minimum cost. Several related problems to DTCP have been investigated, in
particular:

– its undirected counterpart, the minimum tree cover problem (TCP) and
– the tour cover problem in which T is a tour (not necessarily simple) instead of

a tree. This problem has also two versions: undirected (ToCP) and directed
(DToCP).

We discuss first about TCP which has been intensively studied in recent years.
The TCP is introduced in a paper by Arkin et al. [1] where they were motivated
by a problem of locating tree-shaped facilities on a graph such that all the
nodes are dominated by chosen facilities. They proved the NP -hardness of TCP
by observing that the unweighted case of TCP is equivalent to the connected
vertex cover problem, which in fact is known to be as hard (to approximate)

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 144–159, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Approximation Algorithm for the Minimum Directed Tree Cover 145

as the vertex cover problem [10]. Consequently, DTCP is also NP -hard since
the TCP can be easily transformed to an instance of DTCP by replacing every
edge by the two arcs of opposite direction between the two end-nodes of the
edge. In their paper, Arkin et al. presented a 2-approximation algorithm for
the unweighted case of TCP, as well as 3.5-approximation algorithm for general
costs. Later, Konemann et al. [11] and Fujito [8] independently designed a 3-
approximation algorithm for TCP using a bidirected formulation. They solved a
linear program (of exponential size) to find a vertex cover U and then they found
a Steiner tree with U as the set of terminals. Recently, Fujito [9] and Nguyen
[13] propose separately two different approximation algorithms achieving 2 the
currently best approximation ratio. Actually, the algorithm in [13] is expressed
for the TCP when costs satisfy the triangle inequality but one can suppose
this for the general case without loss generality. The algorithm in [9] is very
interesting in term of complexity since it is a primal-dual based algorithm and
thus purely combinatorial. In the prospective section of [11] and [9], the authors
presented DTCP as a wide open problem for further research on the topic. In
particular, Fujito [9] pointed out that his approach for TCP can be extended
to give a 2-approximation algorithm for the unweighted case of DTCP but falls
short once arbitrary costs are allowed.

For ToCP, a 3-approximation algorithm has been developed in [11]. The prin-
ciple of this algorithm is similar as for TCP, i.e. it solved a linear program (of
exponential size) to find a vertex cover U and then found a traveling sales-
man tour over the subgraph induced by U . Recently, Nguyen [14] considered
DToCP and extended the approach in [11] to obtain a 2 log2(n)-approximation
algorithm for DToCP. We can similarly adapt the method in [11] for TCP to
DTCP but we will have to find a directed Steiner tree with U a vertex cover
as the terminal set. Using the best known approximation algorithm by Charikar
et al. [4] for the minimum Steiner directed tree problem, we obtain a ratio of

(1 +
√
|U |2/3

log1/3(|U |)) for DTCP which is worse than a logarithmic ratio.
In this paper, we improve this ratio by giving a logarithmic ratio approxima-

tion algorithm for DTCP. In particular, we show that the weighted Set Cover
Problem (SCP) is a special case of DTCP and the transformation is approxima-
tion preserving. Based on the known complexity results for SCP, we can only
expect a logarithmic ratio for the approximation of DTCP. Let D+ be the maxi-
mum outgoing degree of the nodes inG, we design a primal-dual max{2, ln(D+)}-
approximation algorithm for DTCP which is thus somewhat best possible.

The paper is organized as follows. In the remaining of this section, we will
define the notations that will be used in the papers. In Section 2, we present
an integer formulation and state a primal-dual algorithm for DTCP. Finally, we
prove the validity of the algorithm and its approximation ratio.

Let us introduce the notations that will be used in the paper. Let G = (V,A)
be a digraph with vertex set V and arc set A. Let n = |V | and m = |A|. If
x ∈ Q|A| is a vector indexed by the arc set A and F ⊆ E is a subset of arcs, we
use x(F) to denote the sum of values of x on the arcs in F , x(F) =

∑
e∈F xe.

Similarly, for a vector y ∈ Q|V | indexed by the nodes and S ⊆ V is a subset of

146 V.H. Nguyen

nodes, let y(S) denote the sum of values of y on the nodes in the set S. For a
subset of nodes S ⊆ V , let A(S) denote the set of the arcs having both end-nodes
in S. Let δ+(S)(respectively δ−(S)) denote the set of the arcs having only the
tail (respectively head) in S. We will call δ+(S) the outgoing cut associated to
S, δ−(S) the ingoing cut associated to S. For two subset U,W ⊂ V such that
U ∩ W = ∅, let (U : W) be the set of the arcs having the tail in U and the
head in W . For u ∈ V , we say v an outneighbor (respectively inneighbor) of u if
(u, v) ∈ A (respectively (v, u) ∈ A). For the sake of simplicity, in clear contexts,
the singleton {u} will be denoted simply by u.

For an arc subset F of A, let V (F) denote the set of end-nodes of all the arcs
in F . We say F covers a vertex subset S if F ∩ δ−(S) �= ∅. We say F is a cover
for the graph G if for all arc (u, v) ∈ A, we have F ∩ δ−({u, v}) �= ∅.

When we work on more than one graph, we specify the graph in the index
of the notation, e.g. δ+G(S) will denote δ+(S) in the graph G. By default, the
notations without indication of the the graph in the index are applied on G.

2 Minimum r-Branching Cover Problem

Suppose that T is a directed tree cover of G rooted in r ∈ V , i.e. T is a branching,
V (T) is a vertex cover in G and there is a directed path in T from r to any other
node in V (T). In this case, we call T , a r-branching cover. Thus, DTCP can be
divided into n subproblems in which we find a minimum r-branching cover for
all r ∈ V . By this observation, in this paper, we will focus on approximating
the minimum r-branching cover for a specific vertex r ∈ V . An approximation
algorithm for DTCP is then simply resulted from applying n times the algorithm
for the minimum r-branching cover for each r ∈ V .

2.1 Weighted Set Cover Problem as a Special Case

Let us consider any instance A of the weighted Set Cover Problem (SCP) with
a set E = {e1, e2, . . . , ep} of ground elements, and a collection of subsets S1, S2,
. . . , Sq ⊆ E with corresponding non-negative weights w1, w2, . . . , wq. The objec-
tive is to find a set I ⊆ {1, 2, . . . , q} that minimizes

∑
i∈I

wi, such that
⋃
i∈I

Si = E.

We transform this instance to an instance of the minimum r-branching cover
problem in some graph G1 as follows. We create a node r, q nodes S1, S2, . . . ,
Sq and q arcs (r, Si) with weight wi. We then add 2p new nodes e1, . . . , ep and
e′1, . . . , e′p. If ek ∈ Si for some 1 ≤ k ≤ p and 1 ≤ i ≤ q, we create an arc (Si, ek)
with weight 0 (or a very insignificant positive weight). At last, we add an arc
(ek, e

′
k) of weight 0 (or a very insignificant positive weight) for each 1 ≤ k ≤ p.

Lemma 1. Any r-branching cover in G1 correspond to a set cover in A of the
same weight and vice versa.

Proof. Let us consider any r-branching cover T in G1. Since T should cover all
the arcs (ek, e

′
k) for 1 ≤ k ≤ n, T contains the nodes ek. By the construction of

Approximation Algorithm for the Minimum Directed Tree Cover 147

G1, these nodes are connected to r uniquely through the nodes S1, . . .Sq with
the corresponding cost w1, . . . , wq . Clearly, the nodes Si in T constitute a set
cover in A of the same weight as T . It is then easy to see that any set cover in
A correspond to r-branching cover in G1 of the same weight.

Let D+
r be the maximum outgoing degree of the nodes (except r) in G1. We can

see that D+
r = p, the number of ground elements in A. Hence, we have

Corollary 1. Any f(D+
r)-approximation algorithm for theminimum r-branching

cover problem is also an f(p)-approximation algorithm for SCP where f is a
function from N to R.

Note that the converse is not true. As a corollary of this corollary, we have the
same complexity results for the minimum r-branching cover problem as known
results for SCP [12,7,15,2]. Precisely,

Corollary 2

– If there exists a c ln(D+
r)-approximation algorithm for the minimum r-

branching cover problem where c < 1 then NP ⊆ DTIME(n{O(lnk(D+
r))}).

– There exists some 0 < c < 1 such that if there exists a c log(D+
r)-approximation

algorithm for the minimum r-branching cover problem, then P = NP .

Note that this result does not contradict the Fujito’s result about an approxi-
mation ratio 2 for the unweighted DTCP because in our transformation we use
arcs of weight 0 (or a very insignificant fractional positive weight) which are not
involved in an instance of unweighted DTCP.

Hence in some sense, the max{2, ln(D+
r)} approximation algorithm that we

are going to describe in the next sections seems to be best possible for the general
weighted DTCP.

3 Integer Programming Formulation for Minimum
r-Branching Cover

We use a formulation inspired from the one in [11] designed originally for the
TCP. The formulation is as follows: for a fixed root r, define F to be the set of
all subsets S of V \ {r} such that S induces at least one arc of A,

F = {S ⊆ V \ {r} | A(S) �= ∅}.

Let T be the arc set of a directed tree cover of G containing r, T is thus a
branching rooted at r. Now for every S ∈ F , at least one node, saying v, in S
should belong to V (T). By definition of directed tree cover there is a path from
r to v in T and as r /∈ S, this path should contain at least one arc in δ−(S). This
allows us to derive the following cut constraint which is valid for the DTCP:∑

e∈δ−(S)

xe ≥ 1 for all S ∈ F

148 V.H. Nguyen

This leads to the following IP formulation for the minimum r-branching cover.

min
∑
e∈A

c(e)xe

∑
e∈δ−(S)

xe ≥ 1 for all S ∈ F

x ∈ {0, 1}A.
A trivial case for which this formulation has no constraint is when G is a r-rooted
star but in this case the optimal solution is trivially the central node r with cost 0.

Replacing the integrity constraints by

x ≥ 0,

we obtain the linear programming relaxation. We use the DTC(G) to denote
the convex hull of all vectors x satisfying the constraints above (with integrity
constraints replaced by x ≥ 0). We express below the dual of DTC(G):

max
∑
S∈F

yS

∑
S∈F s.t. e∈δ−(S)

yS ≤ c(e) for all e ∈ A

yS ≥ 0 for all S ∈ F

4 Approximating the Minimum r-Branching Cover

4.1 Preliminary Observations and Algorithm Overview

Preliminary observations. As we can see, the minimum r-branching cover
is closely related to the well-known minimum r-arborescence problem which
finds a minimum r-branching spanning all the nodes in G. Edmonds [6] gave
a linear programming formulation for this problem which consists of the cut
constraints for all the subsets S ⊆ V \ {r} (not limited to S ∈ F). He designed
then a primal-dual algorithm (also described in [5]) which repeatedly keeps and
updates a set A0 of zero reduced cost and the subgraph G0 induced by A0 and
at each iteration, tries to cover a chosen strongly connected component in G0
by augmenting (as much as possible with respect to the current reduced cost)
the corresponding dual variable. The algorithm ends when all the nodes are
reachable from r in G0. The crucial point in the Edmonds’ algorithm is that
when there still exist nodes not reachable from r in G0, there always exists in
G0 a strongly connected component to be covered because we can choose trivial
strongly connected components which are singletons. We can not do such a thing
for minimum r-branching cover because a node can be or not belonging to a r-
branching cover. But we shall see that if G0 satisfies a certain conditions, we can

Approximation Algorithm for the Minimum Directed Tree Cover 149

use an Edmonds-style primal-dual algorithm to find a r-branching cover and to
obtain a G0 satisfying such conditions, we should pay a ratio of max{2, ln(n)}.
Let us see what could be these conditions. A node j is said connected to to
another node i (resp. a connected subgraph B) if there is a path from i (resp.
a node in B) to j. Suppose that we have found a vertex cover U and a graph
G0, we define an Edmonds connected subgraph as a non-trivial connected (not
necessarily strongly) subgraphB not containing r of G0 such that given any node
i ∈ B and for all v ∈ B ∩ U , v is connected to i in G0. Note that any strongly
connected subgraph not containing r in G0 which contains at least a node in
U is an Edmonds connected subgraph. As in the definition, for an Edmonds
connected subgraph B, we will also use abusively B to denote its vertex set.

Theorem 1. If for any node v ∈ U not reachable from r in G0, we have

– either v belongs to an Edmonds connected subgraph of G0,
– or v is connected to an Edmonds connected subgraph of G0.

then we can apply an Edmonds-style primal-dual algorithm completing G0 to get
a r-branching cover spanning U without paying any additional ratio.

Proof. We will prove that if there still exist nodes in U not reachable from r in
G0, then there always exists an Edmonds connected subgraph, say B, uncovered,
i.e. δ−G0

(B) = ∅. Choosing any node v1 ∈ U not reachable from r in G0, we can see
that in both cases, the Edmonds connected subgraph, sayB1, ofG0 containing v1
or to which v1 is connected, is not reachable from r. In this sense we suppose that
B1 is maximal. If B1 is uncovered, we have done. If B1 is covered then it should
be covered by an arc from a node v2 ∈ U not reachable from r because if v2 /∈ U
then B1 ∪ {v2} induces an Edmonds connected subgraph which contradicts the
fact that B1 is maximal. Similarly, we should have v2 �= v1 because otherwise
B1 ∪{v1} induces an Edmonds connected subgraph. We continue this reasoning
with v2, if this process does not stop, we will meet another node v3 ∈ U \{v1, v2}
not reachable from r and so on As |U | ≤ n−1, this process should end with
an Edmonds connected subgraph Bk uncovered.

We can then apply a primal-dual Edmonds-style algorithm (with respect to
the reduced cost modified by the determination of U and G0 before) which
repeatedly cover in each iteration an uncovered Edmonds connected subgraph
in G0 until every node in U is reachable from r. By definition of Edmonds
connected subgraphs, in the output r-branching cover, we can choose only one
arc entering the chosen Edmonds connected subgraph and it is enough to cover
the nodes belonging to U in this subgraph.

Algorithm overview. Based on the above observations on DTC(G) and its
dual, we design an algorithm which is a composition of 3 phases. Phases I and II
determine G0 and a vertex cover U satisfying the conditions stated in Theorem
1. The details of each phase is as follows:

– Phase I is of a primal-dual style which tries to cover the sets S ∈ F such
that |S| = 2. We keep a set A0 of zero reduced cost and the subgraph G0
induced by A0. A0 is a cover but does not necessarily contain a r-branching

150 V.H. Nguyen

cover. We determine after this phase a vertex cover (i.e. a node cover) set U
of G. Phase I outputs a partial solution T 1

0 which is a directed tree rooted
in r spanning the nodes in U reachable from r in G0. It outputs also a dual
feasible solution y.

– Phase II is executed only if A0 does not contain a r-branching cover, i.e. there
are nodes in U determined in Phase I which are not reachable from r in G0.
Phase II works with the reduced costs issued from Phase I and tries to make
the nodes in U not reachable from r in G0, either reachable from r in G0,
or belong or be connected to an Edmonds connected subgraph in G0. Phase
II transforms this problem to a kind of Set Cover Problem and solve it by a
greedy algorithm. Phase II outputs a set of arcsT 2

0 and grows the dual solution
y issued from Phase I (by growing only the zero value components of y).

– Phase III is executed only if T 1
0 ∪ T 2

0 is not a r-branching cover. Phase III
applies a primal-dual Edmonds-style algorithm (with respect to the reduced
cost issued from Phases I and II) which repeatedly cover in each iteration
an uncovered Edmonds connected subgraph in G0 until every node in U is
reachable from r.

4.2 Initialization

Set B to be the collection of the vertex set of all the arcs in A which do not
have r as an end vertex. In other words, B contains all the sets of cardinality 2
in F , i.e. B = {S |S ∈ F and |S| = 2}. Set the dual variable to zero, i.e. y ← 0
and set the reduced cost c̄ to c, i.e. c̄ ← c. Set A0 ← {e ∈ A | c̄(e) = 0}. Let
G0 = (V0, A0) be the subgraph of G induced by A0.

During the algorithm, we will keep and update constantly a subset of T0 ⊆ A0.
At this stage of initialization, we set T0 ← ∅.

During Phase I, we also keep updating a dual feasible solution y that is ini-
tialized at 0 (i.e. all the components of y are equal to 0). The dual solution y is
not necessary in the construction of a r-branching cover but we will need it in
the proof for the performance guarantee of the algorithm.

4.3 Phase I

In this phase, we will progressively expand A0 so that it covers all the sets in B.
In the mean time, during the expansion of A0, we add the vertex set of newly
created strongly connected components of G0 to B.

Phase I repeatedly do the followings until B becomes empty.

1. select a set S ∈ B which is not covered by A0.
2. select the cheapest (reduced cost) arc(s) in δ−(S) and add it (them) to A0.
A0 covers then S. Let α denote the reduced cost of the cheapest arc(s) chosen
above, then we modify the reduced cost of the arcs in δ−(S) by subtracting
α from them. Set yS ← α.

3. Remove S from B and if we detect a strongly connected component K in G0
due to the addition of new arcs in A0, in the original graph G, we add the
set V (K) to B.

Approximation Algorithm for the Minimum Directed Tree Cover 151

Proposition 1. After Phase I, A0 is a cover.

Proof. As we can see, Phase I terminates when B becomes empty. That means
the node sets of the arcs, which do not have r as an end-node, are all covered
by A0. Also all the strongly connected components in G0 are covered. �

At this stage, if for any node v there is a path from r to v in G0, we say that
v is reachable from r. Set T0 to be a directed tree (rooted in r) in G0 spanning
the nodes reachable from r. T0 is chosen such that for each strongly connected
component K added to B in Phase I, there is exactly one arc in T0 entering K,
i.e. |δ−(K) ∩ T0| = 1. If the nodes reachable from r in G0 form a vertex cover,
then T0 is a r-branching cover and the algorithm stops. Otherwise, it goes to
Phase II.

4.4 Phase II

Let us consider the nodes which are not reachable from r in G0. We divide them
into three following categories:

– The nodes i such that |δ−G0
(i)| = 0, i.e. there is no arc in A0 entering i. Let

us call these nodes source nodes.
– The nodes i such that |δ−G0

(i)| = 1, i.e. there is exactly one arc in A0 entering
i. Let us call these nodes sink nodes.

– The nodes i such that |δ−G0
(i)| ≥ 2, i.e. there is at least two arcs in A0

entering i. Let us call these nodes critical nodes.

Proposition 2. The set of the source nodes is a stable set.

Proof. Suppose that the converse is true, then there is an arc (i, j) with i, j are
both source nodes. As δ−G0

(i) = δ−G0
(j) = ∅, we have δ−G0

({i, j}) = ∅. Hence, (i, j)
is not covered by A0. Contradiction.

Corollary 3. The set U containing the nodes reachable from r in G0 after Phase
I, the sink nodes and the critical nodes is a vertex cover (i.e. a node cover) of G.

Proposition 3. For any sink node j, there is at least one critical node i such
that j is connected to i in G0.

Proof. Let the unique arc in δ−G0
(j) be (i1, j). Since this arc should be covered

by A0, δ−G0
(i1) �= ∅. If |δ−G0

(i1)| ≥ 2 then i1 is a critical node and we have done.
Otherwise, i.e. |δ−G0

(i1)| = 1 and i1 is a sink node. Let (i2, i1) be the unique
arc in δ−G0

(i1), we repeat then the same reasoning for (i2, i1) and for i2. If this
process does not end with a critical node, it should meet each time a new sink
node not visited before (It is not possible that a directed cycle is created since
then this directed cycle (strongly connected component) should be covered in
Phase I and hence at least one of the nodes on the cycle has two arcs entering
it, and is therefore critical). As the number of sink nodes is at most n − 1, the
process can not continue infinitely and should end at a stage k (k < n) with ik is
a critical node. By construction, the path ik, ik−1, . . . , i1, j is a path in G0 from
ik to j.

152 V.H. Nguyen

A critical node v is said to be covered if there is at least one arc (w, v) ∈ A0
such that w is not a source node, i.e. w can be a sink node or a critical node or
a node reachable from r. Otherwise, we say v is uncovered.

Proposition 4. If all critical nodes are covered then for any critical node v,
one of the followings is verified:

– either v belongs to an Edmonds connected subgraph of G0 or v is connected
to an Edmonds connected subgraph of G0,

– there is a path from r to v in G0, i.e. v is reachable from r in G0.

Proof. If v is covered by a node reachable from r, we have done. Otherwise, v is
covered by sink node or by another critical node. From Proposition 3 we derive
that in the both cases, v will be connected to a critical node w, i.e. there is a
path from w to v in G0. Continue this reasoning with w and so on, we should
end with a node reachable from r or a critical node visited before. In the first
case v is reachable from r. In the second case, v belongs to a directed cycle in
G0 if we have revisited v, otherwise v is connected to a directed cycle in G0. The
directed cycle in the both cases is an Edmonds connected subgraph (because it
is strongly connected) and it can be included in a greater Edmonds connected
subgraph.

Lemma 2. If all critical nodes are covered then for any node v ∈ U not reach-
able from r in G0,

– either v belongs to an Edmonds connected subgraph of G0,
– or v is connected to an Edmonds connected subgraph of G0.

Proof. The lemma is a direct consequence of Propositions 3 and 4.

The aim of Phase II is to cover all the uncovered critical nodes. Let us see how
to convert this problem into a weighted SCP and to solve the latter by adapting
the well-known greedy algorithm for weighted SCP.

A source node s is zero connecting a critical node v (reciprocally v is zero
connected from s) if (s, v) ∈ A0. If (s, v) /∈ A0 but (s, v) ∈ A then s is positively
connecting v (reciprocally v is positively connected from s).

Suppose that at the end of Phase I, there are k uncovered critical nodes v1,
v2, . . . vk and p source nodes s1, s2 , . . . sp. Let S = {s1, s2, . . . , sp} denote the
set of the source nodes.

Remark 1. An uncovered critical node v can be only covered:

– by directly an arc from a sink node or another crtitical node to v,
– or via a source node s connecting (zero or positively) v, i.e. by two arcs: an

arc in δ−(s) and the arc (s, v).

Remark 1 suggests us that we can consider every critical node v as a ground
element to be covered in a Set Cover instance and the subsets containing v
could be the singleton {v} and any subset containing v of the set of the critical

Approximation Algorithm for the Minimum Directed Tree Cover 153

nodes connecting (positive or zero) from s. The cost of the the singleton {v}
is the minimum reduced cost of the arcs from a sink node or another crtitical
node to v. The cost of a subset T containing v of the set of the critical nodes
connecting from s is the minimum reduced cost of the arcs in δ−(s) plus the
sum of the reduced cost of the arcs (s, w) for all w ∈ T .

Precisely, in Phase II, we proceed to cover all the uncovered critical nodes by
solving by the greedy algorithm the following instance of the Set Cover Problem:

– The ground set contains k elements which are the critical nodes v1, v2, . . . ,
vk.

– The subsets are

Type I For each source node si for i = 1, . . . , p, let C(si) be the set of all
the critical nodes connected (positively or zero) from si. The subsets
of Type I associated to si are the subsets of C(si) (C(si) included). To
define their cost, we define

c̄(si) =
{

min{c̄(e) | e ∈ δ−(si)} if δ−(si) �= ∅,
+∞ otherwise

Let us choose an arc esi = argmin{c̄(e) | e ∈ δ−(si)} which denotes an
arc entering si of minimum reduced cost. Let T be any subset of type I
associated to si, we define c̄(T) the cost of T as c̄(T) = c̄(si)+

∑
v∈T

c̄(si, v).

Let us call the arc subset containing the arc esi and the arcs (si, v) for
all v ∈ T uncovered, the covering arc subset of T .

Type II the singletons {v1}, {v2}, . . . , {vk}. We define the cost of the
singleton {vi},

c̄(vi) =

{
min{c̄(w, vi) | where w is not a source node, i.e. w ∈ V \ S} if (V \ S : {vi}) �= ∅,
+∞ otherwise

Let us choose an arc evi = argmin{c̄(w, vi) | where w is not a source node,
i.e.w ∈ V \ S}, denotes an arc entering vi from a non source node of min-
imum reduced cost. Let the singleton {evi} be the covering arc subset of
{vi}.

We will show that we can adapt the greedy algorithm solving this set cover
problem to our primal-dual scheme. In particular, we will specify how to update
dual variables et the sets A0 and T0 in each iteration of the greedy algorithm.
The sketch of the algorithm is explained in Algorithm 1.

Note that in Phase II, contrary to Phase I, the reduced costs c̄ are not to be
modified and all the computations are based on the reduced costs c̄ issued from
Phase I. In the sequel, we will specify how to compute the most efficient subset
Δ and update the dual variables.

For 1 ≤ i ≤ p let us call Si the collection of all the subsets of type I associated
to si. Let S be the collection of all the subsets of type I and II.

154 V.H. Nguyen

Algorithm 1. Greedy algorithm for Phase II
while there exist uncovered critical nodes do1

Compute the most efficient subset Δ ;2

Update the dual variables and the sets A0 and T0;3

Change the status of the uncovered critical nodes in Δ to covered ;4

end5

Computing the most efficient subset. Given a source node si, while the
number of subsets in Si can be exponential, we will show in the following that
computing the most efficient subset in Si is can be done in polynomial time. Let
us suppose that there are iq critical nodes denoted by vi1

si
, vi2

si
, . . . , v

iq
si which are

connected (positively or zero) from si. In addition, we suppose without loss of
generality that c̄(si, v

i1
si

) ≤ c̄(si, v
i2
si

) ≤ . . . ≤ c̄(si, v
iq
si). We compute fi and Si

which denote respectively the best efficiency and the most effecicient set in Si

by the following algorithm.

Step 1. Suppose that vih
si

is the first uncovered critical node met when we scan
the critical nodes vi1

si
, vi2

si
, . . . , v

iq
si in this order.

Set Si ← {vih
si
}. Set c̄(Si)← c̄(si) + c̄(si, v

ih
si

).
Set di ← 1. Set fi ← c̄(Si)

di
and Δi ← Si.

Step 2. We add progressively uncovered critical nodes vij
si for j = h+ 1, . . . , iq

to Si while this allows to increase the efficiency of Si:
For j = h + 1 to iq, if vij

si is uncovered and fi >
c̄(Si)+c̄(si,v

ij)
di+1 then fi ←

c̄(Si)+c̄(si,v
ij
si

di+1 , di ← di + 1 and Si ← Si ∪ {vij
si}.

Set imin ← argmin{fi |si is a source node}.
Choose the most efficient subset among Simin and the singletons of type II for

which the computation of efficiency is straightforward. Set Δ to be most efficient
subset and set d← |Δ| the number of the uncovered critical nodes in Δ.

Updating the dual variables and the sets A0 and T0
Let g = max{|T | | T ∈ S} and let Hg = 1 + 1

2 + 1
3 + . . .+ 1

g .

Remark 2. g ≤ D+
r .

Given a critical node v, let pv denote the number of source nodes connecting
v. Let sv

1, s
v
2, . . . , sv

pv
be these source nodes such that c̄(sv

1, v) ≤ c̄(sv
2 , v) ≤

. . . ≤ c̄(sv
pv
, v). We define Sj

v = {v, s1v, . . . , sj
v} for j = 1, . . . , pv. We can see that

for j = 1, . . . , pv, Sj
v ∈ F . Let ySj

v
be the dual variable associated to the cut

constraints x(δ−(Sj
v)) ≥ 1. The dual variables will be updated as follows. For

each critical node v uncovered in Δ, we update the value of ySj
v

for j = 1, . . . , pv

for that
∑pv

j=1 ySj
v

= c̄(Δ)
Hg×d . This updating process saturates progressively the

arcs (sj
v, v) for j = 1, . . . , pv. Details are given in Algorithm 2. We add to A0

and to T0 the arcs in the covering arc subset of Δ.

Approximation Algorithm for the Minimum Directed Tree Cover 155

Algorithm 2. Updating the dual variables
j ← 1 ;1

while (j < pv) and (c̄(sj+1
v , v) < c̄(Δ)

Hg×d
) do2

y
S

j
v
← c̄(sj+1

v , v) − c̄(sj
v, v);3

j ← j + 1 ;4

end5

if c̄(spv
v , v) < c̄(Δ)

Hg×d
then6

yS
pv
v

← c̄(Δ)
Hg×d

− c̄(spv
v , v);7

end8

Let us define T as the set of the subsets T such that yT is made positive in
Phase II.

Lemma 3. The dual variables which were made positive in Phase II respect the
reduced cost issued from Phase I.

Proof. For every T ∈ T , the arcs in δ−(T) can only be either an arc in δ−(si)
with si is a source node or an arc in δ−(v) with v is a critical node. Hence, we
should show that for every arc (u′, u) with u is either a critical node or a source
node, we have ∑

T∈T s.t. u∈T

yT ≤ c̄(u′, u)

– u is a critical node v and u′ is the source node sv
j . The possible subsets T ∈ T

such that (sv
j , v) ∈ δ−(T) are the sets S1

v , . . . , Sj−1
v . By Algorithm 2, we can

see that
j−1∑
k=1

ySk
v
≤ c̄(sv

j , v).

– u is a critical node v and u′ ∈ V \ S. By definition of c̄(v), we have
c̄(u′, u) ≥ c̄(v). By analogy with the Set Cover problem, the dual variables
made positive in Phase II respect the cost of the singleton {v}. Hence∑

T∈T s.t. v∈T

yT ≤ c̄(v) ≤ c̄(u′, u)

– u is source node and u′ ∈ V \S. For each critical node w such that (u,w) ∈ A,
we suppose that u = s

i(u,w)
w where 1 ≤ i(u,w) ≤ pw. Let

Tu = {w | w is a critical node, (u,w) ∈ A and y
S

i(u,w)
w

> 0}

We can see that Tu ∈ S and c̄(Tu) = c̄(u) +
∑

w∈Tu
c̄(u,w). Suppose that l

is the total number of iterations in Phase II. We should show that

l∑
k=1

∑
w∈Tu∩Δk

(
c̄(Δk)
Hg × dk

− c̄(u,w)) ≤ c̄(u) (1)

156 V.H. Nguyen

where Δk is the subset which has been chosen in kth iteration. Let ak be
the number of uncovered critical nodes in Tu at the beginning of the kth

iteration. We have then a1 = |Tu| and al+1 = 0. Let Ak be the set of
previously uncovered critical nodes of Tu covered in the kth iteration. We
immediately find that |Ak| = ak − ak+1. By Algorithm 1, we can see that at
the kth iteration c̄(Δk)

Hg×dk
≤ c̄(Tu)

Hg×ak
. Since |Ak| = ak − ak+1 then

∑
w∈Tu∩Δk

(
c̄(Δk)
Hg × dk

)−
∑

w∈Tu∩Δk

c̄(u,w)) ≤ c̄(Tu)
Hg

×ak − ak+1

ak
−

∑
w∈Tu∩Δk

c̄(u,w))

Hence,

l∑
k=1

∑
w∈Tu∩Δk

(
c̄(Δk)
Hg × dk

− c̄(u,w)) ≤ c̄(Tu)
Hg

l∑
k=1

ak − ak+1

ak
−

l∑
k=1

∑
w∈Tu∩Δk

c̄(u,w))

≤ c̄(Tu)
Hg

l∑
k=1

(
1
ak

+
1

ak − 1
+ . . .+

1
ak+1 − 1

)

−
l∑

k=1

∑
w∈Tu∩Δk

c̄(u,w))

≤ c̄(Tu)
Hg

a1∑
i=1

1
i
−

l∑
k=1

∑
w∈Tu∩Δk

c̄(u,w))

≤ c̄(Tu)−
l∑

k=1

∑
w∈Tu∩Δk

c̄(u,w)) = c̄(u).

Let T 2
0 ⊂ T0 the set of the arcs added to T0 in Phase II. For each e ∈ T 2

0 , let
c2(e) be the part of the cost c(e) used in Phase II.

Theorem 2

c2(T0) =
∑
e∈T 2

0

c2(e) ≤ Hg

∑
T∈T

yT ≤ ln(D+
r)

∑
T∈T

yT

Proof. By Algorithm 2, at the kth iteration, a subset Δk is chosen and we add
the arcs in the covering arc subset of Δk to T 2

0 for all v ∈ Δk. Let T 2k
0 be

covering arc subset of Δk. We can see that c2(T 2k
0) =

∑
e∈T

2k
0
c̄e = c̄(Δk). In

this iteration, we update the dual variables in such a way that for each critical
node v ∈ Δk,

∑pv

j=1 ySj
v

= c̄(Δk)
Hg×dk

with dk = |Δk|. Together with the fact that

c̄(Δk) = c̄(wk) +
∑

v∈Δk

c̄(wk, v) we have
∑

v∈Δk

∑pv

j=1 ySj
v

= c̄(Δk)
Hg

= c2(T
2k
0)

Hg
. By

summing over l be the number of iterations in Phase II, we obtain

∑
T∈T

yT =
l∑

k=1

∑
v∈Δk

pv∑
j=1

ySj
v

=
l∑

k=1

c̄(Δk)
Hg

=
l∑

k=1

c2(T 2k
0)

Hg
=
c2(T0)
Hg

Approximation Algorithm for the Minimum Directed Tree Cover 157

which proves that c2(T0) = Hg

∑
T∈T yT . By Remark 2, we have g ≤ D+

r and
Hg ≈ ln g, hence c2(T0) ≤ ln(D+

r)
∑

T∈T yT . �

4.5 Phase III

We perform Phase III if after Phase II, there exist nodes in U not reachable from
r in G0. By Lemma 2, they belong or are connected to some Edmonds connected
subgraphs of G0. By Theorem 1, we can apply an Edmonds-style primal-dual
algorithm which tries to cover uncovered Edmonds connected subgraphs of G0
until all nodes in U reachable from r. The algorithm repeatedly choosing un-
covered Edmonds connected subgraph and adding to A0 the cheapest (reduced
cost) arc(s) entering it . As the reduced costs have not been modified during
Phase II, we update first the reduced cost c̄ with respect to the dual variables
made positive in Phase II.

Algorithm 3. Algorithm for Phase III
Update the reduced cost c̄ with respect to the dual variables made positive in1

Phase II;

repeat2

Choose B an uncovered Edmonds connected subgraph ;3

Let yB be the associated dual variable to B;4

Set c̄(B) ← min{c̄e | e ∈ δ−(B)} ; Set yB ← c̄(B);5

foreach e ∈ δ−(B) do6

c̄e ← c̄e − c̄(B);7

end8

Update A0, G0 and T0 (see below);9

until every nodes in U reachable from r ;10

For updating A0, at each iteration, we add all the saturated arcs belonging
to δ−(B) to A0. Among these arcs, we choose only one arc (u, v) with v ∈ B to
add to T0 with a preference for a u connected from r in G0. In the other hand,
we delete the arc (x, v) with x ∈ B from T0. We then add to T0 an directed tree
rooted in v in G0 spanning B. If there are sink nodes directly connected to B,
i.e. the path from a critical node w ∈ B to these nodes contains only sink nodes
except w. We also add all such paths to T0.

Lemma 4. After Phase III, T0 is a r-branching cover.

Proof. We can see that after Phase III, for any critical node or a sink node v,
there is a path containing only the arcs in T0 from r to v and there is exactly
one arc in δ−(v) ∩ T0.

4.6 Performance Guarantee

We state now a theorem about the performance guarantee of the algorithm.

158 V.H. Nguyen

Theorem 3. The cost of T0 is at most max{2, ln(D+
r)} times the cost of an

optimal r-branching cover.

Proof. Suppose that T ∗ is an optimal r-branching cover of G with respect to
the cost c. First, we can see that the solution y built in the algorithm is feasible
dual solution. Hence cT y ≤ c(T ∗). Let B be the set of all the subsets B in Phase
I and Phase III (B is either a subset of cardinality 2 in F or a subset such
that the induced subgraph is a strongly connected component or an Edmonds
connected subgraph in G0 at some stage of the algorithm). Recall that we have
defined T as the set of the subsets T such that yT is made positive in Phase
II. We have then cT y =

∑
B∈B

yB +
∑
T∈T

yT . For any arc e in T0, let us divide the

cost c(e) into two parts: c1(e) the part saturated by the dual variables yB with
B ∈ B and c2(e) the part saturated by the dual variables yT with B ∈ T . Hence
c(T0) = c1(T0)+c2(T0). By Theorem 2, we have c2(T0) ≤ ln(D+

r)
∑

T∈T yT (note
that the replacing in Phase III of an arc (x, v) by another arc (u, v) with v ∈ Bi

do not change the cost c2(T0)). Let us consider any set B ∈ B by the algorithm,
B is the one of the followings:

– |B| = 2. As T0 is a branching so that for all vertex v ∈ V , we have |δ−(v) ∩
T0| ≤ 1. Hence, |δ−(B) ∩ T0| ≤ 2.

– B is a vertex set of a strongly connected component or an Edmonds con-
nected subgraph in G0. We can see obviously that by the algorithm |δ−(B)∩
T0| = 1.

These observations lead to the conclusion that c1(T0) ≤ 2
∑

B∈B yB. Hence

c(T0) = c1(T0) + c2(T0) ≤ 2
∑
B∈B

yB + ln(D+
r)

∑
T∈T

yT

≤ max{2, ln(D+
r)}cT y ≤ max{2, ln(D+

r)}c(T ∗).

Corollary 4. We can approximate the DTCP within a max{2, ln(D+)} ratio.

5 Final Remarks

The paper has shown that the weighted Set Cover Problem is a special case of the
Directed Tree Cover Problem and the latter can be approximated with a ratio
of max{2, ln(D+)} (where D+ is the maximum outgoing degree of the nodes in
G) by a primal-dual algorithm. Based on known complexity results for weighted
Set Cover, in one direction, this approximation seems to be best possible.

In our opinion, an interesting question is whether the same techniques can
be applied to design a combinatorial approximation algorithm for Directed Tour
Cover. As we have seen in Introduction section, a 2 log2(n)-approximation algo-
rithm for Directed Tour Cover has been given in [14], but this algorithm is not
combinatorial.

Approximation Algorithm for the Minimum Directed Tree Cover 159

References

1. Arkin, E.M., Halldórsson, M.M., Hassin, R.: Approximating the tree and tour

covers of a graph. Information Processing Letters 47, 275–282 (1993)

2. Arora, S., Sudan, M.: Improved Low-Degree Testing and Its Applications. In: Pro-

ceedings of STOC 1997, pp. 485–495 (1997)

3. Bock, F.: An algorithm to construct a minimum spanning tree in a directed net-

work. In: Developments in Operations Research, pp. 29–44. Gordon and Breach,

NY (1971)

4. Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Ap-

proximation Algorithms for Directed Steiner Problems. Journal of Algorithms 33,

73–91 (1999)

5. Chu, Y.J., Liu, T.H.: On the shortest arborescence of a directed graph. Science

Sinica 14, 1396–1400 (1965)

6. Edmonds, J.: Optimum branchings. J. Research of the National Bureau of Stan-

dards 71B, 233–240 (1967)

7. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45,

634–652 (1998)

8. Fujito, T.: On approximability of the independent/connected edge dominating set

problems. Information Processing Letters 79, 261–266 (2001)

9. Fujito, T.: How to Trim an MST: A 2-Approximation Algorithm for Minimum Cost

Tree Cover. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP

2006. LNCS, vol. 4051, pp. 431–442. Springer, Heidelberg (2006)

10. Garey, M.R., Johnson, D.S.: The rectilinear Steiner-tree problem is NP complete.

SIAM J. Appl. Math. 32, 826–834 (1977)

11. Könemann, J., Konjevod, G., Parekh, O., Sinha, A.: Improved Approximations for

Tour and Tree Covers. Algorithmica 38, 441–449 (2003)

12. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-

lems. Journal of the ACM 41, 960–981 (1994)

13. Nguyen, V.H.: Approximation algorithms for metric tree cover and generalized tour

and tree covers. RAIRO Operations Research 41(3), 305–315 (2007)

14. Nguyen, V.H.: A 2 log2(n)-Approximation Algorithm for Directed Tour Cover. In:

Proceedings of COCOA 2009. LNCS, vol. 5573, pp. 208–218. Springer, Heidelberg

(2009)

15. Raz, R., Safra, R.: A sub-constant error-probability low-degree test, and a sub-

constant error-probability PCP characterization of NP. In: Proceedings of STOC

1997, pp. 475–484 (1997)

An Improved Approximation Algorithm for
Spanning Star Forest in Dense Graphs

Jing He and Hongyu Liang

Institute for Theoretical Computer Science,

Tsinghua University, Beijing, China

{hejing2929,hongyuliang86}@gmail.com

Abstract. A spanning subgraph of a given graph G is called a spanning
star forest of G if it is a collection of node-disjoint trees of depth at most

1 (such trees are called stars). The size of a spanning star forest is the

number of leaves in all its components. The goal of the spanning star
forest problem [12] is to find the maximum-size spanning star forest of a

given graph.

In this paper, we study this problem in c-dense graphs, where for

c ∈ (0, 1), a graph of n vertices is called c-dense if it contains at least

cn2/2 edges [2]. We design a (α+(1−α)
√

c−ε)-approximation algorithm

for spanning star forest in c-dense graphs for any ε > 0, where α = 193
240

is

the best known approximation ratio of the spanning star forest problem

in general graphs [3]. Thus, our approximation ratio outperforms the best

known bound for this problem when dealing with c-dense graphs. We also

prove that for any c ∈ (0, 1), there is a constant ε = ε(c) > 0 such that

approximating spanning star forest in c-dense graphs within a factor

of 1 − ε is NP -hard. We then demonstrate that for weighted versions

(both node- and edge- weighted) of this problem, we cannot get any
approximation algorithm with strictly better performance guarantee in

c-dense graphs than that of the best possible approximation algorithm for

general graphs. Finally, we give strong hardness-of-approximation results

for a closely related problem, the minimum dominating set problem, in

c-dense graphs.

Keywords: spanning star forest, approximation algorithm, dense graphs.

1 Introduction

We consider the spanning star forest problem. A graph is called a star if it can
be regarded as a tree of depth at most 1, or equivalently, there is one vertex
(called the center) adjacent to all other vertices (called leaves) in the graph. A
single node is by definition also a star. A star forest is a forest whose connected
components are all stars. The size of a star forest is the number of its leaves. A
spanning star forest of a graph G is a spanning subgraph of G that is also a star
forest. The spanning star forest problem (SSF for short), introduced in [12], is
the problem of finding a spanning star forest of maximum size in a given graph.
This problem has found applications in various areas. Nguyen et al. [12] use it

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 160–169, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Improved Approximation Algorithm for SSF in Dense Graphs 161

as a subroutine to design an algorithm for aligning multiple genomic sequences,
which is an important bioinformatics problem in comparative genomics. This
model has also been applied to the comparison of phylogenetic trees [4] and the
diversity problem in the automobile industry [1].

It is not hard to see that there is a one-one correspondence between spanning
star forests and dominating sets of a given graph. A dominating set of a graph
G is a subset of vertices D such that every vertex not in D is adjacent to at
least one vertex in D. The minimum dominating set problem is to find a smallest
dominating set of a given graph. Given a spanning star forest of G, it is easy to
argue that the collection of all centers of it is a dominating set of G, and the
size of the spanning star forest is equal to the number of vertices in G minus the
size of the corresponding dominating set. On the other hand, given a dominating
set of G, we can construct a spanning star forest of G whose centers are exactly
those vertices in the dominating set. Thus, the two problems are equivalent
in finding the optimum solution. We also call one problem the complement of
another, following the notion used before [3,7].

However, the two problems appear totally different when the approximability
is considered. By Feige’s famous result [9], the dominating set problem cannot be
approximatedwithin (1−ε) lnn for any ε > 0 unlessNP ⊆ DTIME(nO(log log n)).
In contrast, a fairly simple algorithm with the idea of dividing a spanning tree
into alternating levels gives a 0.5-approximation to the spanning star forest prob-
lem. Nguyen et al. [12] proposed a 0.6-approximation algorithm using the fact
that every graph of n vertices of minimum degree 2 has a dominating set of
size at most 2

5n except for very few special cases which can be enumerated.
In addition, they prove that it is NP -hard to approximate the problem to
any factor larger than 259

260 . They also introduce the edge-weighted version of
this problem, whose objective is to find a spanning star forest in which the
total weight of edges is maximized, and show a 0.5-approximation algorithm
for this variant. Later on, the approximation ratio for unweighted SSF is im-
proved to 0.71 by Chen et al. [7] based on solving a natural linear programming
relaxation combined with a randomized rounding stage. They also consider an-
other generalization of SSF where each node has a non-negative weight and
the objective is to find a spanning star forest in which the total weight of all
leaves is maximized. Note that node-weighted SSF is just the complement of
the weighted dominating set problem where each vertex has a weight and the
goal is to find a minimum-weight dominating set of the given graph. For this
version, they show that a similar algorithm achieves an approximation factor of
0.64. Athanassopoulos et al. [3] realize that the unweighted spanning star forest
problem is actually a special case of the complementary set cover problem, and
design a 0.804-approximation for it (also for complementary set cover) using
the idea of semi-local search for k-set cover [8]. Regarding the hardness results,
it is proved by Chakrabarty and Goelin [6] that edge-weighted SSF and node-
weighted SSF cannot be approximated to 10

11 + ε and 13
14 + ε respectively, unless

P = NP .

162 J. He and H. Liang

1.1 Our Contributions

We study variants of the spanning star forest problem in c-dense graphs. A graph
on n vertices is called c-dense, for some c ∈ (0, 1), if it contains at least cn2/2
edges [2]. One can show by a simple probabilistic argument that almost all graphs
are dense. Thus, it captures many real-world models. In fact, this setting has
received extensive studies for various combinatorial problems like vertex cover,
max-cut, Steiner tree, minimum maximal matching, etc. (see [2,5,10,11,14]). To
our knowledge, ours is the first study of the spanning star forest problem in the
class of c-dense graphs.

We first design an approximation algorithm for (unweighted) spanning star
forest in c-dense graphs with an approximation ratio better than the previously
best known ratio of this problem in general graphs, for any c ∈ (0, 1). More
precisely, denoting by α = 193/240(≈ 0.804) the best known approximation
ratio for spanning star forest [3], our algorithm achieves an approximation factor
of α + (1 − α)

√
c − ε, for any ε > 0. Note that this factor is larger than 0.9

whenever c ≥ 0.25, and is larger than 0.96 when c ≥ 0.64. Thus, it is a quite
strong performance guarantee. Our algorithm consists of two stages. The first
stage is actually a greedy procedure that chooses the vertex covering the largest
number of uncovered vertices, and adds it to a maintained dominating set of
the input graph. It stops when the number of uncovered vertices is smaller than
some prespecified threshold, and goes to the second stage. In this stage, we find
a set of vertices dominating the uncovered ones by reducing it to a problem
called complementary partial dominating set, which will be formally defined in
Section 2.2. We will show in Section 2.2 that this problem can be approximated
as well as the complementary set cover problem considered in [3]. Combining the
two stages, we find a dominating set of the graph of relatively small size, and
then construct a spanning star forest in the standard way, which can be proved
to be a good approximation to the problem.

We then prove that the spanning star forest problem in c-dense graphs does
not admit a polynomial-time approximation scheme (PTAS) assuming P �= NP .
Specifically, we prove that for any c ∈ (0, 1), there exists ε = ε(c) > 0 such that
approximating SSF in c-dense graphs to within a factor of 1−ε isNP -hard. Thus,
the technique developed by Arora et al. [2] for designing PTAS for combinatorial
problems in dense instances cannot be applied to our problem.

Next we consider the weighted versions (both node- and edge-weighted) of
this problem. A little surprisingly, we show that any approximation algorithm
for weighted spanning star forest in c-dense graphs cannot guarantee an approx-
imation ratio strictly larger than that of the best possible appproximation for
weighted SSF in general graphs. This is proved by an (almost) approximation-
preserving reduction from general instances of this problem to c-dense instances.

Finally, we show that the dominating set problem in c-dense graphs shares
the same inapproximability result with dominating set in general graphs. Thus,
the (1 + lnn)-approximation achieved by a greedy approach is nearly the best
we can hope for. This again shows that the spanning star forest problem and

An Improved Approximation Algorithm for SSF in Dense Graphs 163

the dominating set problem are very different regarding the approximability,
although they are equivalent in exact optimization.

1.2 Notation Used for Approximation Algorithms

For β ∈ (0, 1) (resp. β > 1) and a maximization (resp. minimization) problem
Π , an algorithm is called a β-approximation algorithm for Π if given an instance
I of Π , it runs in polynomial time and produces a solution with objective value
at least (resp. at most) β ·OPT (Π, I), where OPT (Π, I) denotes the objective
value of the optimum solution to the instance I of the problem Π . The value
β is also called the approximation ratio, approximation factor, or performance
guarantee of the algorithm for the problem Π . Moreover, β can be a function
of the input size or some parameters in the input. For standard definitions and
notations not given here, we refer the readers to [15].

2 Complementary Partial Dominating Set

In this section, we introduce the complementary partial dominating set problem,
which is useful for designing our algorithm for spanning star forest in dense
graphs. Before presenting its formal definition, we need to mention another re-
lated problem called the complementary set cover problem.

2.1 Complementary Set Cover

We briefly review the complementary set cover problem (CSC for short) [3], since
some results of it will be used later. The input of CSC is a pair (S, U), which
consists of a ground set U of elements and a set S containing some subsets of
U . The set S is guaranteed to be close under subsets, that is, for any S ∈ S
and S′ ⊆ S, we have S′ ∈ S. The goal is to find a collection of pairwise-disjoint
subsets S1, S2, . . . , Sk ∈ S whose union is U , such that |U | − k is maximized. It
is shown in [3] that CSC has a 193

240 -approximation algorithm, which only selects
subsets of size at most 6.

2.2 Complementary Partial Dominating Set

Let G = (V,E) be a simple undirected graph. For any vertex v ∈ V , let N [v] =
{u ∈ V : (u, v) ∈ E} ∪ {v} be the neighborhood of v when regarding v as a
neighbor of itself. LetN [U] =

⋃
v∈U N [v] for U ⊆ V . For two subsets U1, U2 ⊆ V ,

we say U1 dominates U2, or U1 is a dominating set of U2, if U2 ⊆ N [U1]. The
complementary partial dominating set problem (CPDS for short) is defined as
follows.

Input: A graph G = (V,E) and a subset of vertices V ′ ⊆ V .
Output: A set U ⊆ V that dominates V ′ such that |V ′| − |U | is maximized.
Although the objective we use seems to be equivalent to finding the minimum-

size dominating set of V ′, they are totally different when considering the approx-
imability. It is easy to see that the minimization version of CPDS generalizes

164 J. He and H. Liang

the dominating set problem and thus cannot be approximated to within O(log n)
unless P = NP [9,13], while as is shown below, CPDS allows a constant factor
approximation algorithm.

Theorem 1. There is a 193
240 -approximation algorithm for CPDS.

Proof. Given an instance I = (G, V ′) of CPDS, we regard it as an instance
I ′ = (S, U) of CSC in the following way. The ground set U is just V ′, and S
contains all subsets of V ′ that is dominated by some vertex in V , i.e. S = {W ⊆
V ′ : ∃v ∈ V s.t. W ⊆ N [v]}. It is easy to see that S is close under subsets. (Note
that S may have exponential size; we will come back to this point later.) Now,
given a solution to the instance I of CPDS with objective value s, we can easily
construct a solution to the instance I ′ of CSC with no smaller objective value,
and vice versa. Therefore, the two instances have the same optimal objective
value, and we can apply the 193

240 -approximation algorithm for CSC on I ′ to
obtain a solution to I with the same approximation ratio. However, the instance
I ′ may have exponential size since it may contain all subsets of V ′. To overcome
this, we just note that the 193

240 -approximation algorithm for CSC only deals with
sets in S of size at most 6, and all subsets of V ′ of size at most 6 can surely be
enumerated in polynomial time. ��

3 Algorithm Description and Analysis

In this section, we give an approximation algorithm for the spanning star forest
problem in dense graphs. Fix c ∈ (0, 1). Let α = 193

240 be the best known ap-
proximation ratio for CPDS. Let ε be any constant such that 0 < ε <

√
c. Let

δ = 1−
√
c+ ε,M = 2/(c− (

√
c− ε)2), and N0 = M/(ε(1− δ)). Note that δ,M

and N0 are all positive constants only depending on c and ε.
We present our algorithm for SSF in c-dense graphs as Algorithm 1. Note

that at the beginning (and the end) of every execution of the WHILE loop, A,
B and C form a partition of V . To show that the obtained star forest is large,
we bound the cardinality of A and S respectively.

Lemma 1. At the end of Stage 1, it holds that |A| ≤M .

Proof. Consider the moment right before some vertex v is added to A. Due to
the loop condition, we have |C| ≥ δn, and |A ∪B| = n− |C| ≤ (1 − δ)n. Thus,
the number of edges in E with both endpoints in A∪B is at most ((1− δ)n)2/2.
Since |E| ≥ cn2/2, the number of edges in E with at least one endpoint in C
is at least cn2/2 − ((1 − δ)n)2/2 = n2/M . Let E1 be the set of edges with one
endpoint in B and another in C, and E2 be the set of edges with both endpoints
in C. Note that the previous statement is equivalent to |E1| + |E2| ≥ n2/M ,
since by definition there are no edges between A and C.

For any vertex v ∈ B ∪ C, let D(v) = N [v] ∩ C be the set of vertices in C
dominated by v. Consider D =

∑
v∈B∪C |D(v)|. It is easy to see that every edge

in E1 contributes 1 to this sum, while each edge in E2 contributes 2. Hence,
D = |E1| + 2|E2| ≥ n2/M , from which we know that there exists a vertex

An Improved Approximation Algorithm for SSF in Dense Graphs 165

Algorithm 1. Approximate SSF in c-dense graphs
Input: A c-dense graph G = (V, E).

Output: A spanning star forest of G.

If n ≤ N0 we perform the exhaustive search to get the optimal solution. In the

following we assume n > N0.

A ← ∅, B ← ∅, C ← V .

Stage 1:
while |C| ≥ δn do

Find the vertex v ∈ B ∪ C that dominates the largest number of vertices in C.

Set A ← A ∪ {v}, B ← N [A] \ A, and C ← V \ N [A].

end while
Stage 2:
Construct an instance I = (G′, V ′) of CPDS, where G′ is the subgraph of G induced

on the vertex set B∪C, and V ′ = C. Run the α-approximation algorithm for CPDS

on I to get a dominating set of C, denoted by S.

return a spanning star forest rooted on A ∪ S.

v∗ ∈ B∪C such that |D(v∗)| ≥ n/M . Note that the greedy step in the algorithm
is just to pick the vertex v with the largest |D(v)|. Therefore, after adding v to
A and updating B and C correspondingly, the size of A ∪ B increases by at
least n/M . Since there are only n vertices, we can add at most M of them to A,
completing the proof of Lemma 1. ��

Lemma 2. |S| ≤ δ(1 − α)n + αk, where k is the size of the smallest subset
U ⊆ B ∪ C that dominates C.

Proof. By the definition of CPDS, we know that the value of the optimum so-
lution to its instance I defined in Algorithm 1 is precisely |C| − k. As the so-
lution S is obtained by applying the α-approximation algorithm for CPDS, we
have |C| − |S| ≥ α(|C| − k). Rearranging terms gives |S| ≤ (1 − α)|C| + αk ≤
δ(1− α)n+ αk, where the second inequality follows from the fact that |C| ≤ δn
at the end of Stage 1. ��

We are ready to prove our main theorem.

Theorem 2. Algorithm 1 is a (α+(1−α)
√
c−2ε)-approximation algorithm for

the spanning star forest problem in c-dense graphs.

Proof. Clearly Algorithm 1 runs in polynomial time. Furthermore, it finds the
optimal spanning star forest of G when n ≤ N0, and produces a solution of size
n − |A| − |S| ≥ (1 − δ(1 − α))n − αk −M when n > N0, by Lemmas 1 and 2.
The size of the optimal solution is n − k∗, where k∗ is the size of the smallest
dominating set of G. It is easy to see that k∗ is not smaller than the size of the
smallest subset of V that dominates C. Since no edges exist between A and C,
the latter quantity is equal to k, the size of the smallest subset of B ∪ C that

166 J. He and H. Liang

dominates C. Therefore, we have n−k∗ ≤ n−k. We also note that k ≤ |C| ≤ δn
since C dominates itself. The approximation ratio of Algorithm 1 can thus be
bounded from below by

(1 − δ(1− α))n− αk −M
n− k∗

≥ (1 − δ(1− α))n− αk −M
n− k

= α+
(1 − α)(1 − δ)n

n− k − M

n− k

≥ α+ (1 − α)(1 − δ)− M

n− δn

≥ α+ (1 − α)(
√
c− ε)− M

(1− δ)N0

≥ α+ (1 − α)
√
c− 2ε,

which concludes the proof of Theorem 2. ��

4 Hardness Results

We now show that for every 0 < c < 1, SSF in c-dense graphs does not admit
a polynomial-time approximation scheme, unless P = NP . Thus, the technique
developed by Arora et al. [2] for designing PTAS for combinatorial problems in
dense instances cannot be applied to this problem.

Theorem 3. For any c ∈ (0, 1), there exists a constant ε = ε(c) > 0, such that
it is NP -hard to approximate the spanning star forest problem in c-dense graphs
to a factor of 1− ε.

Proof. We reduce the general SSF problem to SSF in c-dense graphs. Let G =
(V,E) be an input to general SSF. Let n = |V |, k = �2

√
c/(1 −

√
c)�, and let

OPT denote the size of the largest spanning star forest of G. It is easy to verify
that k >

√
c(k + 1). We assume w.l.o.g. that n ≥ k/(k2 − c(k + 1)2) > 0, since

otherwise we can just do a brute-force search for the constant-size (note that k
and c are both constants) input graph. We also assume that G is connected, since
connected and disconnected versions of general SSF share the same hardness-of-
approximation result. We thus have OPT ≥ n/2, since any connected graph on
n vertices has a dominating set of size at most n/2. Let H be a complete graph
on a vertex set of size kn which is disjoint from V , and let G′ = G ∪H .

We verify that G′ is c-dense. As G′ has n′ = (k + 1)n vertices and at least
kn(kn − 1)/2 edges, it suffices to show that kn(kn − 1)/2 ≥ c(k + 1)2n2/2, or
n ≥ k/(k2−c(k+1)2), which is exactly our assumption on n. Since G′ consists of
two disjoint components, it is clear that OPT ′ = OPT +kn−1, OPT ′ denoting
the size of the largest spanning star forest of G′. Moreover, given a spanning
star forest of G′ of size s′, we can easily construct a spanning star forest of

An Improved Approximation Algorithm for SSF in Dense Graphs 167

G of size at least s′ − (kn − 1). Thus, given any β-approximation algorithm
for SSF in c-dense graphs, we can obtain a spanning star forest of G of size
β(OPT + kn − 1) − (kn − 1). On the other hand, we know that there is a
constant γ > 0 such that approximating general SSF within 1− γ is NP -hard
[12]. Therefore, there existsG such that β(OPT+kn−1)−(kn−1) ≤ (1−γ)OPT ,
from which we derive that

β ≤ (1− γ)OPT + kn− 1
OPT + kn− 1

= 1− γ +
γ(kn− 1)

OPT + kn− 1

≤ 1− γ +
γ(kn− 1)

n/2 + kn− 1

< 1− γ +
γk

k + 1/2
.

The proof is completed by choosing ε = γ/(2k + 1). ��

We have designed an algorithm for SSF in c-dense graphs whose approximation
ratio outperforms the best known bound for general SSF, for every 0 < c < 1. A
natural question is whether we can generalize our technique to weighted versions
of SSF. A little surprisingly, we show in the following that this is not the case:
We cannot design any approximation algorithm for node- (resp. edge-)weighted
SSF in c-dense graphs with a strictly larger performance guarantee than that of
the best approximation algorithm for general node- (resp. edge-)weighted SSF.

Theorem 4. For any 0 < c < 1 and any β, ε > 0, the existence of a β-
approximation algorithm for node- (resp. edge-)weighted SSF in c-dense graphs
implies that of a (β − ε)- (resp. β-)approximation algorithm for node- (resp.
edge-)weighted SSF in general graphs.

Proof. The edge-weighted case is easy since we can regard every edge-weighted
graph as a complete graph (which is c-dense for any c < 1 and large enough n)
with some edges having weight 0. Thus, in the following we consider the node-
weighted version of SSF. Fix c, ε and β. Let G = (V,E) be an input graph to
node-weighted SSF, and w : V → Q+ ∪ {0} be the weight function on its nodes.
Let n = |V | and OPT denote the maximum weight of a spanning star forest
of G. We assume that OPT > 0 since the case OPT = 0 is easily detectable.
Let w∗ = min{w(v) : v ∈ V and w(v) > 0}. Clearly OPT ≥ w∗. We apply
a reduction similar to that used in the proof of Theorem 3 to get a c-dense
graph G′ = G ∪ H , with the only difference that we set the weights of all
vertices in H to 1, and multiply the weights of all vertices in G by a factor of
Δ = (1− β)(kn− 1)/(εw∗) (recall that k is the constant defined in the proof of
Theorem 3). Now we have OPT ′ = Δ ·OPT + kn− 1 where OPT ′ denotes the
maximum weight of a spanning star forest of G′, and a spanning star forest of
G′ of weight s′ can be easily transformed to a spanning star forest of G of weight
at least (s′− (kn− 1))/Δ. Thus, given a β-approximation to node-weighted SSF

168 J. He and H. Liang

in c-dense graphs, we can design an approximation algorithm for node-weighted
SSF in general graphs with an approximation ratio of

β′ ≥ (β(Δ ·OPT + kn− 1)− (kn− 1))/Δ
OPT

= β − (1− β)(kn− 1)
Δ ·OPT

≥ β − (1− β)(kn− 1)
Δ · w∗ = β − ε,

concluding the proof of Theorem 4. ��
Finally, we show that the dominating set problem, as the complement of SSF,
remains hard to approximate even in dense graphs.

Theorem 5. For any c ∈ (0, 1) and any ε > 0, there is no (1 − ε) lnn-
approximation algorithm for dominating set in c-dense graphs, where n is the
number of vertices in the input graph, unless NP ⊆ DTIME(nO(log log n)).

Proof. We show how to use a (1 − ε) lnn-approximation for dominating set
in c-dense graphs to design a (1 − ε′) lnn-approximation for dominating set
in general graphs, thus proving the theorem since by [9] this implies NP ⊆
DTIME(nO(log log n)). Given a graph G = (V,E), we first exhaustively check
if the optimal dominating set has size at most �1/ε�. If so, we can find it in
polynomial time. Otherwise, we apply a reduction similar to that used in the
proof of Theorem 3 to obtain a c-dense graph G′. Denoting by OPT and OPT ′

the size of the minimum dominating set of G and G′ respectively, it is clear
that OPT ′ = OPT + 1, and a dominating set of G′ of size s can be easily
converted to one of G of size at most s − 1. Therefore, given a (1 − ε) lnn-
approximation for dominating set on c-dense graphs, we can obtain an approx-
imation algorithm for it on general graphs with approximation ratio at most
((1− ε) lnn(OPT +1)−1)/OPT < (1− ε) lnn(1+1/OPT) ≤ (1− ε2) lnn, since
OPT ≥ �1/ε�. This finishes the proof of Theorem 5.

5 Conclusion

In this paper, we explored the spanning star forest problem in c-dense graphs,
and devised an algorithm whose approximation ratio is better than the previously
best known bound for this problem in general graphs. We also showed that
this problem does not admit a PTAS unless P = NP , thus ruling out the
possibility of applying the general technique developed by Arora et al. to this
problem. We then showed hardness results for its weighted versions as well as
its complementary problem, the dominating set problem in dense graphs.

An interesting question is to bridge the gap between algorithmic and hard-
ness results for this problem, since the inapproximability factor derived by our
reduction is very close to 1. It is also interesting to see whether we can design
approximation algorithms for spanning star forest in dense graphs based on any
approximation algorithm for spanning star forest in general graphs, instead of
using that for the CPDS problem.

An Improved Approximation Algorithm for SSF in Dense Graphs 169

Acknowledgements

This work was supported in part by the National Natural Science Foundation
of China Grant 60553001, 61073174, 61033001 and the National Basic Research
Program of China Grant 2007CB807900, 2007CB807901. Part of this work was
done while the authors were visiting Cornell University. The authors would like
to thank the anonymous referees for their helpful comments on improving the
presentation of this paper.

References

1. Agra, A., Cardoso, D., Cerfeira, O., Rocha, E.: A spanning star forest model for

the diversity problem in automobile industry. In: Proc. of ECCO XVII (2005)

2. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes

for dense instances of NP-hard problems. Journal of Computer and System Sci-

ences 58(1), 193–210 (1999)

3. Athanassopoulos, S., Caragiannis, I., Kaklamanis, C., Kuropoulou, M.: An im-

proved approximation bound for spanning star forest and color saving. In: Královič,

R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 90–101. Springer,

Heidelberg (2009)

4. Berry, V., Guillemot, S., Nicholas, F., Paul, C.: On the approximation of computing

evolutionary trees. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 115–

125. Springer, Heidelberg (2005)

5. Cardinal, J., Langerman, S., Levy, E.: Improved approximation bounds for edge

dominating set in dense graphs. Theoretical Computer Science 410, 949–957 (2009)

6. Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and

improved lower bounds for submodular welfare maximization and GAP. In: Proc.

of FOCS 2008, pp. 687–696 (2008)

7. Chen, N., Engelberg, R., Nguyen, C.T., Raghavendra, P., Rudra, A., Singh, G.:

Improved approximation algorithms for the spanning star forest problem. In:

Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) APPROX 2007. LNCS,

vol. 4627, pp. 44–58. Springer, Heidelberg (2007)

8. Duh, R., Furer, M.: Approximation of k-set cover by semi local optimization. In:

Proc. of STOC 1997, pp. 256–264 (1997)

9. Feige, U.: A threshold of lnn for aproximating set cover. Journal of the ACM 45(4),

634–652 (1998)

10. Gaspers, S., Kratsch, D., Liedloff, M., Todinca, I.: Exponential time algorithms for

the minimum dominating set problem on some graph classes. ACM Transactions

on Algorithms 6(1), No. 9 (2009)

11. Imamura, T., Iwama, K.: Approximating vertex cover on dense graphs. In: Proc.

of SODA 2005, pp. 582–589 (2005)

12. Nguyen, C.T., Shen, J., Hou, M., Sheng, L., Miller, W., Zhang, L.: Approximating

the spanning star forest problem and its applications to genomic sequence align-

ment. SIAM Journal on Computing 38(3), 946–962 (2008)

13. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and sub-

constant error-probability PCP characterization of NP. In: Proc. of STOC 1997,

pp. 475–484 (1997)

14. Schiermeyer, I.: Problems remaining NP-complete for sparse or dense graphs. Dis-

cuss. Math. Graph. Theory 15, 33–41 (1995)

15. Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)

A New Result on [k, k + 1]-Factors Containing
Given Hamiltonian Cycles�

Guizhen Liu1, Xuejun Pan1, and Jonathan Z. Sun2,3

1 School of Mathematical and System Sciences, Shandong University

Jinan 250100, Shandong, China
2 School of Computer Science and Technology, Shandong University of Technology

Zibo 255049, Shandong, China
3 School of Computing, University of Southern Mississippi

Hattiesburg, MS 39406, USA

jonathan.sun@usm.edu

Abstract. We give a sufficient condition, which guarantees that for ar-

bitrary Hamiltonian cycle C, there exists a [k, k + 1]-factor containing

C. This improves a previous result of Cai, Li, and Kano [7].

1 Introduction

A graph is defined by its vertex set and edge set. The number of edges incident to
a vertex is called the degree of this vertex, and a graph is k-regular if all vertices
have the same degree k. A spanning subgraph H of G is called a k-factor if the
degree of every vertex of H is k, and the process of partitioning a graph into
(edge-disjoint) factors is called graph factorization. For example, in particular,
a 1-factor is a perfect matching, a 2-factor is a cycle cover, and a connected
2-factor is a Hamiltonian cycle. Originated from the efforts of finding matchings
in graphs, the study of factors and factorizations has yielded abundant results in
graph theory and combinatorics as well as broad impact in computer science. For
example, the latest elegant work on using graph expanders to construct erasure-
resilient code [2,3] in trusted distributed computing infrastructures [10] is based
on Hamiltonian factorization.

Generalizations of the concept of regular factors include: 1) [a, b]-factors,
where the degrees of vertices are bounded in range [a, b] between two constants a
and b; 2) f -factors, where the degrees of vertices are determined by a function f
defined on vertex set; and 3) (g, f)-factors, where the above two generalizations
are combined so that two functions f and g bound the degrees of vertices in the
factors. Specifically, a [k, k + 1]-factor (following the concept of [a, b]-factor) is
a natural relaxation of a k-factor and its’ existence conditions were extensively
studied in graph theory community.

Connected factors such as Hamiltonian cycles or Hamiltonian factors (factors
containing a Hamiltonian cycle) are especially useful, such as in building erasure-
resilient code. Unfortunately, such factors are hard to find (see [9]). Only a few
� This work is partially supported by Shandong Provincial Tai-Shan Scholar Award

(2010-2015) and NASA Mississippi Space Grant Consortium No. NNG05GJ72H.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 170–180, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A New Result on [k, k + 1]-Factors Containing Given Hamiltonian Cycles 171

non-trivial sufficient conditions have been discovered. Since the relaxation from k
to [k, k+1] resulted in the existence of such factors in significantly larger classes of
graphs, we expect to see applications of such factors in building erasure-resilient
code with more flexibility in network topology or with enhanced robustness that
tolerate more failures with less redundancy. This paper provides a new sufficient
condition for the existence of Hamiltonian [k, k+1]-factors containing any given
Hamiltonian cycle, which covers a previous result of Cai, Li, and Kano [7].

1.1 Related Work

Here are some necessary terminologies before we can present related work and
our result. We only consider simple graphs with no multiple edges. In a graph
G = (V (G), E(G)) of vertex set V (G) and edge set E(G), we denote by dG(v)
the degree of a vertex v, and by δ(G) the minimum degree of all vertices. For
any S ⊆ V (G), the resulting subgraph of G obtained by deleting all the vertices
in S and all the edges incident with the vertices in S is denoted by G − S. If
S = {v}, v ∈ V (G), we usually denote G − v = G − {v}. For any X ⊆ E(G),
the resulting subgraph of G obtained by deleting all the edges of X is denoted
by G−X . If X = {e}, e ∈ E(G), we usually denote G− e = G− {e}.

A graph is Hamiltonian if it contains a Hamiltonian cycle. The following two
milestones by Ore [15] and Fan [8] (although only sufficient but not necessary)
in recognizing Hamiltonian graphs are most related to our work.

Theorem 1. (Ore’s condition) Let G be a simple graph with n(≥ 3) vertices. If
for any pair of non-adjacent vertices u, v in G,

dG(u) + dG(v) ≥ n,

then G is a Hamiltonian graph.

Theorem 2. (Fan’s condition) Let G be a 2-connected graph of n vertices. If
for any pair of vertices u, v of distance dG(u, v) = 2,

max{dG(u), dG(v)} ≥ n

2
,

then G is a Hamiltonian graph. Here dG(u, v) is the length of the shortest path
from u to v.

Cai, Li, and Kano [7] established the following existence condition of Hamiltonian
[k, k + 1]-factors containing any Hamiltonian cycles.

Theorem 3. Let k ≥ 2 be an integer and G be a graph of n(≥ 3) vertices with
δ(G) ≥ k. Assume n ≥ 8k− 16 for even n and n ≥ 6k− 13 for odd n. If for any
pair of non-adjacent vertices u, v in G,

dG(u) + dG(v) ≥ n,

then for any Hamiltonian cycle C, G has a [k, k + 1]-factor containing C.

This is the best previously known non-trivial condition for the existence of such
factors. The degree condition, n ≥ 8k − 16 for even n and n ≥ 6k − 13 for odd
n, is tight.

172 G. Liu, X. Pan, and J.Z. Sun

1.2 Our Result

We improve the above result of Cai, Li and Kano [7] by weakening the Ore’s
condition in Theorem 3 into the following form, which is close to Fan’s condition.

Theorem 4. Let k ≥ 2 be an integer and G be a graph of n(≥ 3) vertices. G
has no cut edge and δ(G) ≥ k. Assume n ≥ 8k− 16 for even n and n ≥ 6k− 13
for odd n. If for any pair of non-adjacent vertices u, v in G,

max{dG(u), dG(v)} ≥ n

2
,

then for any Hamiltonian cycle C, G has a [k, k + 1]-factor containing C.

1.3 Lovász’s (g, f)-Factor Theorem

L. Lovász [14] gave the following necessary and sufficient condition for a graph
to have (g, f)-factors in 1970.

Theorem 5. Let G be a graph and g, f : V (G) → Z such that g(x) ≤ f(x) for
all x ∈ V (G). Then G has a (g, f)-factor if and only if for all disjoint subsets S
and T of V (G),∑

x∈S

f(x) +
∑
x∈T

(dG(x) − g(x))− eG(S, T)− q(S, T) ≥ 0.

Here eG(S, T) is the number of edges between S and T , and q(S, T) denotes the
number of odd components, namely, the components C of G− (S ∪T) such that

g(x) = f(x)

for all x ∈ V (C) and

f(x) + eG(C, T) ≡ 1 (mod 2).

This theorem is the foundation of many known sufficient conditions for the ex-
istence of factors. Particularly, we will use a special case of this theorem in the
proof of our main result.

2 Proof of the Main Theorem

Proof. G is Hamiltonian by Theorem 2. When k = 2, any Hamiltonian cycle by
itself is a Hamiltonian [k, k+1]-factor. So we assume k ≥ 3, Write the condition
in main theorem as (1): For any pair of non-adjacent vertices u, v,

max{dG(u), dG(v)} ≥ n

2
. (1)

A New Result on [k, k + 1]-Factors Containing Given Hamiltonian Cycles 173

Given a Hamiltonian cycle C, denote H = G − C and ρ = k − 2. Clearly,
V (H) = V (G) and ρ ≥ 1. Let

U = {v : v ∈ V (G), dG(v) ≥ n

2
},

and denote
L = V (G) − U.

For any vertex v ∈ V (G), it is obvious that dH(v) = dG(v)− 2 ≥ ρ, and

n ≥

⎧⎨⎩ 8ρ when n is even;

6ρ− 1 when n is odd
(2)

G has the desired [k, k + 1]-factor if and only if H has a [ρ, ρ + 1]-factor. We
will prove the latter by contradictions. Suppose H has no [ρ, ρ+ 1]-factor, then
by Lovász[14] (g, f)-factor Theorem, there are two disjoint subsets S,T of V (G)
such that

σ(S, T) := −(ρ+ 1)s+ ρ t−
∑
v∈T

dH−S(v) ≥ 1. (3)

Here s = |S| and t = |T | are the cardinalities of S and T . (Note that, since
ρ �= ρ+ 1, there is no odd component in this case so that q(S, T) ≡ 0 for any S
and T .)

Furthermore, we can choose such S and T so that for any v ∈ T ,

dH−S(v) ≤ ρ− 1. (4)

Otherwise there exists a vertex u in T such that dH−S(u) ≥ ρ so that

σ(S, T \{u}) = −(ρ+ 1)s+ ρ(t− 1)−
∑

v∈T\{u}
dH−S(v)

= −(ρ+ 1)s+ ρ t−
∑
v∈T

dH−S(v) + (dH−S(u)− ρ)

= σ(S, T) + (dH−S(u)− ρ)
≥ σ(S, T).

Therefore, if we remove u from T , σ(S, T \{u}) still fulfills (3).
Next, we will study the structures of the graph under such selection of S and

T to get Claims 1 - 6, by introducing a contradiction in each case. Therefore we
would have proved that S and T fulfilling 3 don’t exist, i.e., H has a [ρ, ρ+ 1]-
factor.

Claim 1. G(L) is a complete graph.
This is obvious. Given any two vertices u, v in L, by definition of L, dG(u)

and dG(v) are both less than n
2 . Then by (1), u and v must be adjacent in G.

174 G. Liu, X. Pan, and J.Z. Sun

Claim 2. s ≥ 1.
Otherwise s = 0 so that

σ(S, T) = ρ t−
∑
v∈T

dH(v) ≤ 0,

contradicting (3).

Claim 3. t ≥ ρ+ 2.
Otherwise, t ≤ ρ+ 1. Then

σ(S, T) ≤ −(ρ+ 1)s+ ρ t−
∑
v∈ T

(dH(v) − s)

≤ −(ρ+ 1)s+ ρ t− t(ρ− s)
= s(t− ρ− 1) ≤ 0,

another contradiction to (3).

Claim 4. T ∩ U �= ∅.
Otherwise T ⊆ L. By Claim 1, G(T) is also a complete graph, so

EG[T] =
t(t− 1)

2
.

We also have
|EG[T] ∩ C| ≤ t− 1,

since C is a Hamiltonian cycle of G. Therefore∑
v∈T

dH−S(v) ≥ 2|EG[T]\C| ≥ t(t− 1)− 2(t− 1)

= (t− 1)(t− 2),
so that σ(S, T) ≤ −(ρ+ 1)s+ ρ t− (t− 1)(t− 2)

≤ −(ρ+ 1)s+ ρ t− (t− 1)ρ (by Claim 3)
= −(ρ+ 1)s+ ρ < 0, (by Claim 2)

another contradiction to (3).

Claim 5. s ≤ � n
2 � − 3.

Denote by S̄ the vertices of G not in S. Let

X = S̄ ∩ U

and
Y = S̄ ∩ L(= S̄\X).

A New Result on [k, k + 1]-Factors Containing Given Hamiltonian Cycles 175

Obviously, ⎧⎨⎩dG(v) ≥ n
2 , if v ∈ X ;

dG(v) < n
2 , if v ∈ Y .

(5)

We then consider two cases according to the parity of n.
For even n, assume

s ≥ n

2
− 2.

Then let
q = s− n

2
+ 2(≥ 0)

and
r = n− s− t(≥ 0).

Then

σ(S, T) = −(ρ+ 1)s+ ρ(n− s− r)−
∑
v∈T

dH−S(v)

= −(2ρ+ 1)s+ ρ(n− r) −
∑
v∈T

dH−S(v)

= −(2ρ+ 1)(
n

2
− 2 + q) + ρ(n− r)−

∑
v∈ T

dH−S(v)

= 4ρ+ 2− n

2
− (ρ+ 1)q − ρ(r + q)−

∑
v∈T

dH−S(v)

≤ 0,

unless

q = 0, and

⎧⎨⎩ r = 0,
∑

v∈T dH−S(v) ≤ 1; or

r = 1,
∑

v∈T dH−S(v) = 0.

Furthermore, when r = 0,∑
v∈ T

dH−S(v) = 2|EH [T]| ≡ 0 (mod2)

so that ∑
v∈T

dH−S(v) = 0.

Therefore, in order to make (3) true, we must have q =
∑

v∈T dH−S(v) = 0 and
r ≤ 1.

Next, by q = 0, there must be

s =
n

2
− 2;

176 G. Liu, X. Pan, and J.Z. Sun

and by
∑

v∈ T dH−S(v) = 0 and r ≤ 1, we have

EG[S̄] ⊆ C. (6)

Since
dG(v) ≤ dH−S(v) + s+ 2 =

n

2
for any v ∈ S̄, we have, for any v ∈ X ,

dG(v) =
n

2
. (7)

From s = n
2 − 2 we know that all edges in C with one end in X must be

contained in EG(S̄). Therefore

|X |+ |Y | − 1 = |S̄| − 1 ≥ |EG[S̄] ∩ C| (by (6))
= (|EG[X]|+ |EG(X,Y)|) + |EG[Y]|
≥ (|X |+ 1) + |EG[Y]|

= |X |+ 1 +
|Y |(|Y | − 1)

2
, (by Claim 1)

so that

|Y | ≥ 2 +
|Y |(|Y | − 1)

2
.

This gives another contradiction. That is, σ(S, T) ≤ 0 while n is even and
s ≥ n

2 − 2, contradicting (3) again.
For odd n, assume

s ≥ n− 3
2

.

Similar to the case of even n, let

q = s− n− 3
2

(≥ 0),

r = n− s− t(≥ 0).

Then

σ(S, T) = −(ρ+ 1)s+ ρ(n− s− r)−
∑
v∈T

dH−S(v)

= 3ρ+
3
2
− n

2
− (ρ+ 1)q − ρ(r + q)−

∑
v∈ T

dH−S(v)

≤ 0,

unless q =
∑

v∈T dH−S(v) = 0 and r ≤ 1. Again similar to the case of even n,
we can get

EG[S̄] ⊆ C

and
dG(v) =

n+ 1
2

A New Result on [k, k + 1]-Factors Containing Given Hamiltonian Cycles 177

for any vertex v in X , so that all edges in C with one end in X are contained in
EG(S̄). Then by the same argument, we get

|Y | ≥ 2 +
|Y |(|Y | − 1)

2
,

still a contradiction.

Claim 6. T ∩ L �= ∅.
Otherwise T ⊆ U . Then by definition of U and (4), for any v ∈ T ,

� n
2
� ≤ dG(v) ≤ dH−S(v) + s+ 2 ≤ ρ+ s+ 1.

That is,
dH−S(v) ≥ � n

2
� − s− 2

and
ρ+ s+ 2− � n

2
� ≥ 1.

Consequently,

σ(S, T) ≤ −(ρ+ 1)s+ ρ t− t(� n
2
� − s− 2)

= t(ρ+ s+ 2− � n
2
�)− (ρ+ 1)s

≤ (n− s)(ρ+ s+ 2− � n
2
�)− (ρ+ 1)s.

Let
f(s) = (n− s)(ρ+ s+ 2− � n

2
�)− (ρ+ 1)s.

Then take differential of f(s):

df(s)
ds

= −2ρ− 3 + n+ � n
2
� − 2s

≥ −2ρ− 3 + n+ � n
2
� − 2� n

2
�+ 6 (by Claim 5)

= −2ρ+ 3 + � n
2
� ≥ 0. (by (2))

Therefore,

σ(S, T) ≤ f(s) ≤ f(� n
2
� − 3)

= (� n
2
�+ 3)(ρ− 1)− (ρ+ 1)(� n

2
� − 3)

= ρ(� n
2
� − � n

2
�+ 6)− n ≤ 0, (by (2))

another contradiction to (3).
Now we have finished the proofs of Claims 1 - 6.

178 G. Liu, X. Pan, and J.Z. Sun

Let
T1 = T ∩ U ;

T2 = T ∩ L ;

t1 = |T1| ;

t2 = |T2|.
Obviously, t1 ≥ 1; t2 ≥ 1; and for any v ∈ T ,

dH−S(v) ≥ dG(v) − s− 2.

Consequently, for any v ∈ T1,

dH−S(v) ≥

⎧⎨⎩
n
2 − s− 2 when n is even

n
2 − s−

3
2 when n is odd

(8)

Together with (4), we get⎧⎨⎩ ρ+ s+ 2− n
2 ≥ 1 when n is even

ρ+ s+ 3
2 −

n
2 ≥ 1 when n is odd

(9)

Together with Claim 5, we further get

ρ ≥ 2. (10)

Then by claim 1,
dH−S(v) ≥ t2 − 3

for any v ∈ T2. Together with (4), we have

t2 ≤ ρ+ 2. (11)

We then consider two cases according to the parity of n.
For even n, by (8) and (11),

σ(S, T) ≤ −(ρ+ 1)s+ ρ t− t1(
n

2
− s− 2)

= t1(ρ+ s+ 2− n

2
)− (ρ+ 1)s+ ρ t2

≤ (n− s− t2)(ρ+ s+ 2− n

2
)− (ρ+ 1)s+ ρ t2

= −(s− n

2
+ 3)2 + (s− n

2
+ 3)(

n

2
+ 3− 2ρ− t2) + 6ρ+ t2 − n

≤ −2ρ+ t2 ≤ 0,

contradicting (3).
For odd n, let

r = n− s− t(≥ 0).

A New Result on [k, k + 1]-Factors Containing Given Hamiltonian Cycles 179

Then obviously,∑
v∈T2

dH−S(v) ≥ 2|EG[T2]\C| ≥ (t2 − 1)(t2 − 2). (12)

By (8), (10) and (11), we have

σ(S, T) ≤ −(ρ+ 1)s+ ρ t− t1(
n

2
− s− 3

2
)− (t2 − 1)(t2 − 2)

= t1(ρ+ s+
3
2
− n

2
)− (ρ+ 1)s+ ρ t2 − (t2 − 1)(t2 − 2)

= (n− s− t2 − r)(ρ + s+
3
2
− n

2
)− (ρ+ 1)s+ ρ t2

−(t2 − 1)(t2 − 2)

= −(s− n

2
+

5
2

)2 + (s− n

2
+

5
2

)(
n

2
+

5
2
− 2ρ− t2)

+5ρ+ t2 − n− (t2 − 1)(t2 − 2)− r(ρ + s+
3
2
− n

2
)

≤ 0,

unless s = n
2 −

5
2 , t2 = 2, r = 0, ρ = 2, and all equalities hold in (12). However,

when all equalities hold in (12), we have

|EG[T2]\C| = t2 − 1 = 1.

Consider s = n
2 −

5
2 and ρ = 2, together with (4) and (8), we will have

dH−S(v) = 1 and dG(v) = n+1
2

for any v ∈ T1. This implies that all edges in C with one end in T1 are contained
in EG[T]\E[T2], and there are at least t1 + 1 such edges. That is,

|EG[T] ∩ C| ≥ (t1 + 1) + 1 = t,

contradicting the fact that C is a Hamiltonian cycle. Therefore, for odd n, we
again must have σ(S, T) ≤ 0, the last contradiction to (3).

Following the above argument, H must have a [ρ, ρ+ 1]-factor. ��

3 Future Work

The condition in our result is weaker than Ore’s condition but stronger than
Fan’s condition. It remains open whether the “non-adjacent vertices” in The-
orem 4 can be further weakened into “vertices of distance two”, so that the
condition follows exactly the form of Fan’s condition.

Acknowledgements. Authors would like to thank an anonymous reviewer for
thoroughly reading the paper and providing detailed comments to help improve
the presentation.

180 G. Liu, X. Pan, and J.Z. Sun

References

1. Akiyama, J., Kano, M.: Factors and Factorizations of Graphs (2007) (online

manuscript)

2. Alon, N., Bruck, J., Naor, J., Naor, M., Roth, R.: Construction of asymptotically

good, low-rate error-correcting codes through pseudo-random graphs. IEEE Trans-

actions on Information Theory 38, 509–516 (1992)

3. Alon, N., Luby, M.: A linear time erasure-resilient code with nearly optimal recov-

ery. IEEE Transactions on Information Theory 42 (1996)

4. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. MacMillan, London

(1976)

5. Cai, M., Fang, Q., Li, Y.: Hamiltonian [k, k+1]-factor. Advances in Mathematics 32,

722–726 (2003)

6. Cai, M., Fang, Q., Li, Y.: Existence of Hamiltonial k-factors. J. Sys. Sci. Complex-

ity 17(4), 464–471 (2004)

7. Cai, M., Li, Y., Kano, M.: A [k, k + 1]-factor containing given Hamiltonian cycle.

Science in China Ser. A 41, 933–938 (1998)

8. Fan, G.: New sufficient conditions for cycles in graphs. J. Comb. Theory Ser. B 37,

221–227 (1984)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Books in Mathematical Sciences. W.H. Freeman, New York

(1979)

10. Goodrich, M., Nelson, M., Sun, J.: The rainbow skip graph: A fault-tolerant

constant-degree distributed data structure. In: Proceedings of The 17th Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2006 (2006)

11. Kano, M.: Some current results and problems on factors of graphs. In: Proc. 3rd

China-USA Internet Coof. on Combinatorics, Graph Theory, Algorithm and Ap-

plications, Beijing, China (1993)

12. Liu, G.: On covered (g, f)-covered graphs. Acta Math. Scientia 8, 181–184 (1988)

13. Liu, G.: (g, f)-factors and factorizations in graphs. Acta Math. Sinica 37, 230–237

(1994)

14. Lovász, L.: Subgraphs with prescribed valencies. J. Comb. Theory Ser. B 9, 391–416

(1970)

15. Ore, O.: Note on Hamilton circuits. Amer. Math. Monthly 67, 55 (1960)

16. Tutte, W.T.: The factorization of linear graphs. J. London Math. Soc. 22, 107–111

(1947)

17. Tutte, W.T.: The factors of graphs. Can. J. Math. 4, 314–328 (1952)

18. Wei, B., Zhu, Y.: Hamiltonian k-factors in graphs. J. Graph Theory 25, 217–227

(1997)

19. Yu, J., Liu, G., Cao, B.: Connected factors of graphs. OR Transactions 9(1) (2005)

Yao Graphs Span Theta Graphs∗

Mirela Damian and Kristin Raudonis

Department of Computer Science

Villanova University, Villanova, USA

{mirela.damian,kristin.raudonis}@villanova.edu

Abstract. The Yao and Theta graphs are defined for a given point set

and a fixed integer k > 0. The space around each point is divided into k
cones of equal angle, and each point is connected to a nearest neighbor

in each cone. The difference between Yao and Theta graphs is in the

way the nearest neighbor is defined: Yao graphs minimize the Euclidean

distance between a point and its neighbor, and Theta graphs minimize

the Euclidean distance between a point and the orthogonal projection of

its neighbor on the bisector of the hosting cone. We prove that, corre-

sponding to each edge of the Theta graph Θ6, there is a path in the Yao

graph Y6 whose length is at most 8.82 times the edge length. Combined

with the result of Bonichon, Gavoille, Hanusse and Ilcinkas, who prove

an upper bound of 2 on the stretch factor of Θ6, we obtain an upper

bound of 17.7 on the stretch factor of Y6.

Keywords: Yao graph; Theta graph; spanner.

1 Introduction

Let P be a set of points in the plane. The Yao and Theta graphs for P are both
geometric graphs with vertex set P and edges defined by an integer parameter
k > 0 as follows. Divide the space around each point a ∈ P into cones of (equal)
angle 2π/k, using k rays rooted at a. Then the Yao and Theta graphs connect
a to a nearest neighbor in each of its cones, using directed edges rooted at a.
This yields an out-degree of at most k. The difference between the Yao and
Theta graphs lies in the way the nearest neighbor is defined. In the case of Yao
graphs, the nearest neighbor of a in a cone C is a point b �= a that lies in C
and minimizes the Euclidean distance |ab| between a and b. In the case of Theta
graphs, the nearest neighbor of a is a point b �= a that lies in C and minimizes
the Euclidean distance between a and the orthogonal projection of b onto the
bisector of C. Henceforth, we will refer to the Yao graph as Yk and the Theta
graph as Θk.

A t-spanner of a graph G is a spanning subgraph H such that, for each edge
ab ∈ G, the length of the path in H between a and b is at most t|ab|. If G is the
complete Euclidean graph of a plane point set P , then H is also referred to as a
t-spanner of P . The value t is called stretch factor of the spanner.
∗ Supported by NSF grant CCF-0728909.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 181–194, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

182 M. Damian and K. Raudonis

It is a long standing open problem to determine whether the Yao graph Y6
is a spanner or not. In this paper we settle this problem by showing that Y6 is
a 17.7-spanner. Our result relies on a recent result by Bonichon et al. [1], who
prove an upper bound of 2 on the stretch factor of the Theta graph Θ6. We show
that, corresponding to each edge ab ∈ Θ6, there is a path between a and b in Y6
no longer than t|ab|, for t = 8.82. Combined with the 2-spanner result for the
Θ6 graph [1], this yields an upper bound of 17.7 for the stretch factor of the Yao
graph. As far as we know, this is the first result showing that Y6 is a spanner.

1.1 Existing Results

In this section we summarize existing results on spanning properties of Yk only.
For a comprehensive discussion of spanners in general, we refer the reader to the
books by Peleg [7] and Narasimhan and Smid [6].

For a concise presentation, set θ = 2π/k. Bose et al. [3] show that, for k ≥ 9,
Yk is a spanner with stretch factor 1

cos θ−sin θ . In [2], Bose et al. improve the
stretch factor to

1 +
√

2− 2 cos θ
2 cos θ − 1

and show that, in fact, Yk is a spanner for any k ≥ 7. In the same paper they
show that Y4 is a spanner with stretch factor 8(29 + 23

√
2). Molla [5] shows

that Y2 and Y3 are not spanners, and that Y4 is a spanner with stretch factor
4(2 +

√
2), for the special case when the input nodes are in convex position (see

also [4]). In this paper, we settle that Y6 is a spanner. The question whether Y5
is a spanner or not remains open.

1.2 Notation and Definitions

Fix k = 6. Let r1, r2, . . . , r6 be the rays separating the cones at each point. We
assume without loss of generality that r1 is horizontal and points to the right.
For each node a ∈ P , we use Ci(a) to denote the half-open cone delimited by
ri and ri+1, including ri but excluding ri+1 (note that rj refers to r(j mod 7)+1,
for any j). See Fig. 1(a). For a fixed point x, let Ti(a, x) denote the equilateral
triangle delimited by the two bounding rays for Ci(a), and the line through x
that cuts Ci(a) at a 60◦ angle (and is, therefore, parallel to ri+2). This definition
is illustrated in Fig. 1(b).

For any real ξ ≥ 0, let D(a, ξ) denote the closed disk with center a and radius
ξ. Sometimes, we need to refer to a disk piece that lies inside a Yao cone, case in
which we attach the cone index to the disk notation: Di(a, ξ) refers to the piece
of D(a, ξ) that lies inside Ci(a) (see Fig. 1c).

Let Pi(a, x) denote the parallelogram with diagonal ax and edges parallel to
ri and ri+1 (see Fig. 2a). We will use the notation yaoi(a, x) to refer to the
directed path in the Y6 graph that starts at a and follows the Y6 edges that lie
in cones Ci, until the path hits x or exits the parallelogram Pi(a, x) (refer to
Fig. 2b). Similarly, we use thetai(a, x) to refer to the directed path in the Θ6
graph that starts at a and follows the Θ6 edges that lie in cones Ci, until the
path hits x or exits the parallelogram Pi(a, x).

Yao Graphs Span Theta Graphs 183

60
ο

a

C (a)1

a

x

60
ο

60
ο

T (a,x)1
60

ο

a

D (a,ξ)1

ξ
(a) (b) (c)

C (a)2

C (a)3

C (a)4

C (a)5

C (a)6

Fig. 1. Definitions (a) Cones (b) Equilateral triangle T1(a, x) (c) Disk sector D1(a, ξ)

(b)
a

x

60
ο

a

x

P (a,x)1

(a)

60
ο

u

v

(c)
a

x

60
ο

y

Fig. 2. (a) Parallelogram P1(a, x) (b) Path yao1(a, x) (c) Lem. 2: an upper bound on

|yao1(a, x)|

Most often we ignore the direction of edges (the spanning paths we identify
in Y6 are undirected). For an edge ab ∈ Y6, we refer to the directed version (

−→
ab

or
−→
ba) of ab only if important in the context.
We say that two edges intersect each other if they share a common point. If

the common point is not an endpoint, the edges cross each other. For any pair
of points a and b, we use the notation π(a, b) to refer to a path in Y6 between
a and b, and |π(a, b)| to denote the length of this path. To refer to a path in
Θ6, we use the subscript Θ: πΘ(a, b) refers to a path in Θ6 between a and b.
Throughout the paper, we use ⊕ to denote the concatenation operator.

2 Basic Lemmas

In this section we provide a few isolated lemmas that will be used in the main
proof. Readers can skip ahead to section 3 describing the main result if they
wish to, and refer back to these lemmas when called upon from the main proof.
We begin with a statement of a result established in [1].

Theorem 1. For any pair of points a, b ∈ P, there is a path in Θ6 whose total
length is bounded above by 2|ab|. [1]

184 M. Damian and K. Raudonis

Proposition 1. The sum of the lengths of crossing diagonals of a convex quadri-
lateral abcd is strictly greater than the sum of the lengths of either pair of opposite
sides:

|ac|+ |bd| > |ab|+ |cd|
|ac|+ |bd| > |bc|+ |da|

This can be derived by applying the triangle inequality on pairs of opposite
triangles formed by diagonals ac and bd.

Lemma 1. Two edges
−→
ab,−→xy ∈ Y6, with b ∈ Ci(a) and y ∈ Ci(x), for some

1 ≤ i ≤ 6, cannot cross each other.

This follows immediately from Prop. 1, and the fact that b is closest to a and y
is closest to x.

Lemma 2. The length of yaoi(a, x) does not exceed half the perimeter of Pi(a, x).
Furthermore, if v �= a is the other endpoint of yaoi(a, x), then xv is strictly shorter
than the side of Pi(a, x) that crosses yaoi(a, x). Both arguments hold for
thetai(a, x) as well.

Proof. Refer to Fig. 2(c). Let uv be the last edge of yaoi(a, x) that exits Pi(a, x).
Then |uv| ≤ |ux|, since −→uv ∈ Y6. This implies that the length of the path
π = yaoi(a, u) ⊕ ux is an upper bound on the length of yaoi(a, x). For each
edge e ∈ π, we derive an upper bound on the length of e by using the trian-
gle inequality on the triangle delimited by e, and edges parallel to the rays of
Ci (these are the triangles shaded in Fig. 2c). Summing up these inequalities
yields the first claim of the lemma. Let xy be the side of Pi(a, x) crossed by
yaoi(a, x). The fact that |uv| ≤ |ux|, along with Prop. 1 applied on quadrilat-
eral uxvy, yields |vy| < |xy|. This means that v ∈ Di(y, |xy|), and since vx is a
chord in this 60◦ sector, we get |xv| < |xy|. This settles the second claim of the
lemma.

Lemma 3. Let &abc ⊂ &ab1c1 ⊂ Ci(a) be equilateral triangles with side lengths
|ab| and |ab|+ δab, and b1c1 tangent to Di(a, |ab|) (see Fig. 3a). Then

δab = |ab|(2√
3
− 1) (1)

This follows from the trigonometric formula cos(30◦) = |ab|/(|ab|+ δab) applied
on the triangle &aa1b1 from Fig. 3(a).

Lemma 4. Let c ∈ P, &abc = T5(c, a) empty of points in P, and u ∈ P inside
D1(a, |ab|). Then there is a path πΘ(u, c) in Θ6 of length

πΘ(u, c) ≤ |ab|+ 2δab.

Furthermore, each edge of πΘ(u, c) is shorter than ab.

Yao Graphs Span Theta Graphs 185

30
ο

(a) (b)a
b b

c

a

c

uv|ab|
a1

c1

1

b

x

δab

Fig. 3. Basic lemmas (a) Computation of δab (b) Lem. 4

Proof. Refer to Fig. 3(b). Let v be the right corner of T5(c, u). By definition,
theta3(u, c) cannot exit &abc (otherwise, the projection of c on the bisector of
C3(u) would be closer to u than the projection of x). Also, since &abc is empty
of points in P , theta3(u, c) cannot enter &abc. This enables us to use Lem. 2 to
show that |theta3(u, c)| ≤ |uv| + |vc|. Note that |uv| < |vb|. (This follows from
|au| ≤ |ab|, since u ∈ D1(a, |ab|), and Prop. 1 applied on quadrilateral avub.)
Then |theta3(u, c)| ≤ |vb| + |vc| = |ab|, and each edge on this path is smaller
than |ab|.

Let x �= u be the other endpoint of theta3(u, c). Recall that theta3(u, c)
does not intersect &abc. This implies that theta3(u, c) exits P3(u, c) through
its top edge, meaning that x lies inside T1(c, u) (tiny top triangle in Fig. 3b).
Then |cx| ≤ |uv| ≤ δab. By Thm. 1, there is a path πΘ(x, c) in Θ6 no longer than
2δab < |ab|, so each edge on this path is also smaller than ab. We concatenate
the two paths together to obtain πΘ(u, c) = theta3(u, c) ⊕ πΘ(x, c), no longer
than |ab|+ 2δab.

Lemma 5. Let −→ae ∈ Θ6 be an edge in the upper half of C1(a) (see Fig. 4).
Let &abc = T1(a, e), with ab horizontal. Fix x ∈ D1(a, |ae|) and assume that
−→xy ∈ C3(x) is an edge in Y6 that crosses ae. Then y lies inside D3(b, |ab|) and
below e, and the following inequalities hold:

(i) |ce| < |ab|(1−
√

3
2

)

(ii) |ae| > |ab|
√

7− 2
√

3
2

In other words, ae cannot lie too close to the bisector of C1(a).

Proof. Since −→ae ∈ Θ6, &abc is empty, therefore x lies right of bc. This implies
that e ∈ C3(x), and since −→xy ∈ Y6 is also in C3(x), by definition |xy| ≤ |xe|. This
along with Prop. 1 applied on quadrilateral byex implies

|by| < |be| (2)

186 M. Damian and K. Raudonis

a b

c

x

e

y

h

Fig. 4. Lem. 5: Upper and lower bounds on ce and ae

It follows that y lies inside D3(b, |be|) ⊂ D3(b, |ab|). If y were to lie above e, then
� xey would be obtuse, meaning that |xy| > |xe|, a contradiction. This settles
the first claim of the lemma.

To derive the bounds on ce and ae, observe that by must be at least as long
as the height h = |ab|

√
3/2 of &abc, since y lies outside this triangle. This along

with inequality (2) above implies |be| > h, which is equivalent to |ce| < |ab|−h =
|ab|(1−

√
3/2). This establishes inequality (i). We use this inequality, along with

the Law of Cosines applied on &ace (|ae|2 = |ac|2 + |ce|2−|ac||ce|), and the fact
that ae gets shorter as ce gets longer, in deriving inequality (ii).

3 Y6 Paths Span Θ6 Edges

We now turn to proving the main result of the paper.

Theorem 2. For any edge ae ∈ Θ6, there is a path in Y6 between a and e no
longer than t · |ae|, for t = 8.82.

Proof. Fix ae ∈ Θ6. Throughout this proof, we assume without loss of generality
the setting from Fig. 5: −→ae ∈ C1(a), above the bisector of C1(a);&abc = T1(a, e),
with ab horizontal; b1c1 is parallel to bc and tangent to D1(a, |ab|); and b2c2 is the
vertical reflection of b1c1, tangent to D3(b, |ab|). The quantity δab = |bb1| = |ab2|,
introduced in Lem. 3, will be useful in computing the value of t.

δa
b

e

c

b1

c1c2

b2

ab

D (a, |ae|)1

Fig. 5. (a) General setting for Thm. 2

Yao Graphs Span Theta Graphs 187

x

C (x)3

T (x,e)3

a b

ze
c

Fig. 6. Base case for Thm. 2: |xz| < |ae|

The proof is by induction on the length of edges in Θ6. Consider first the
case where ae is a shortest edge in Θ6 (base case). We show that −→ae ∈ Y6 as
well. Assume the contrary, and let −→ax ∈ C1(a) be in Y6, with x �= e (see Fig. 6).
By definition, |ax| ≤ |ae|. The following three arguments imply that there is
an edge in Θ6 shorter than ae: (i) |ae| > |be|, which follows from the fact that
� abe = 60◦ > � bae, and the Law of Sines applied on &abe (ii) be is longer than
one side of T3(x, e), since x ∈ D1(a, |ae|) ⊂ D1(a, |ab|) lies to the right of be,
and (iii) C3(x) contains an edge −→xz ∈ Θ6 no longer than one side of T3(x, e) (by
definition). It follows that |xz| < |ae|, contradicting the fact that ae is a shortest
edge in Θ6.

Assume now that ae ∈ Θ6 is not a shortest edge, and that the theorem holds
for all edges in Θ6 shorter than ae. We determine a path in Y6 with endpoints a
and e that is no longer than t|ae|. As in the base case, let −→ax ∈ C1(a) be in Y6.
The case when x and e coincide is trivial, so assume x �= e.

The simplest situation occurs when the path yao3(x, e) does not cross ae.
We will encounter this scenario in various disguises throughout the proof, so we
pause to prove two small results related to this case (refer to Fig. 7).

Lemma 6. Let p, x ∈ P be such that p ∈ C3(x) and T5(p, x) is empty of points
in P. Let q be the right corner of T5(p, x). Assume that Thm. 2 holds for all
edges shorter than 2|qx|. If yao3(x, p) does not cross pq, then Y6 contains a path
π(x, p) of length

|π(x, p)| ≤ |pq|+ |qx|+ 2t|qx| (3)

Proof. This situation is illustrated in Fig. 7(a). By Lem. 2, yao3(x, p) is no
longer than half the perimeter of P3(x, p), which equals |pq| + |qx|. The lemma
states that yao3(x, p) does not cross pq, which means that yao3(x, p) must exit
P3(x, p) through its top edge. Let z �= x be the other endpoint of yao3(x, p). By
Lem. 2, |pz| < |qx|. By Thm. 1, Θ6 contains a path pΘ from z to p no longer
than 2|pz| < 2|qx|. This means that each edge on pΘ is no longer than 2|qx|,
therefore we can use the inductive hypothesis to claim the existence of a path

188 M. Damian and K. Raudonis

(c)

x

z

δ

u

pq(b)
x

zp

q

T (p,x)5

p

qs

Fig. 7. Assisting lemmas. (a) Lem. 6 (c) Lem. 7.

π(z, p) in Y6 no longer than 2t|qx|. We concatenate these two paths together to
determine a path

π(x, p) = yao3(x, p)⊕ π(z, p),

whose length is bounded above by the quantity in (3).

Lemma 7. Let p ∈ P and let q be an arbitrary point (not necessarily in P) on
the right ray of C5(p). Let −→ux ∈ C1(u) cross the slanted edges of T5(p, q). Assume
that Thm. 2 holds for all edges shorter than pq. If yao3(x, p) does not cross pq,
then Y6 contains a path π(u, p) of length

|π(u, p)| ≤ |ux|+ |pq|+ δpq + 2tδpq (4)

Proof. This situation is illustrated in Fig. 7(b). Let s �= p, q be the left corner of
T5(p, q). Note that both points p and x lie in C1(u). Since −→ux ∈ Y6, by definition
|ux| ≤ |up|. This along with Prop. 1 applied on quadrilateral supx implies |sx| <
|sp|. This means that x lies inside D1(s, |pq|), therefore the horizontal side of
P3(x, p) is no longer than δpq. This along with Lem. 6 implies that Y6 contains a
path π(x, p) no longer than |pq|+ δpq +2tδpq, which concatenated with ux yields
the upper bound claimed by the lemma.

Back to the main theorem: the situation in which −→ax ∈ Y6 and yao3(x, e) does
not cross &abc is handled immediately by Lem. 7, which proves the existence of
path π(a, e) in Y6 of length

|π(a, e)| ≤ 2|ab|+ δab + 2tδab

(This inequality uses the fact that |ax| ≤ |ab|.) Using inequality (1) and the
fact that ae is at least as long as the height of &abc, it can be verified that
|π(a, e)| < t|ae| for any t ≥ 3.42.

The situation in which yao3(x, e) crosses ae is more involved and requires a
careful case analysis. We proceed with a discussion of the worst case scenario
that yields the stretch factor value t = 8.82. For the other cases, a fairly loose
analysis yields a bound still below t = 8.82.

Yao Graphs Span Theta Graphs 189

a (a)

c

b

y

z
m

eu v

(b)
a

c

b

y

z
e

m

c2

Θ-path

i

x x

j

Fig. 8. (a) Worst case scenario. (b) Case 1: yao1(z, e) does not cross ae.

Worst Case Scenario. This occurs under the following conditions (see Fig. 8a).

(a) D5(c, |ab|) contains some points from P .
(b) The edge −→yz ∈ yao3(x, e) that crosses &abc first, does not cross the bisector

of � abc.
(c) yao1(z, e) crosses ae (contingent upon (b)).

Under these conditions, we determine a path from a to e no longer than t|ae|.
By Lem. 5, z ∈ D3(b, |ab|), and ce and ae have length restrictions given by (i)
and (ii) from Lem. 5. Let uv ∈ yao1(z, e) be the first edge that crosses &abc.
Let m be the midpoint of ac. Since z (and therefore u) is above m, uv crosses
T1(m, c). By Lem. 5, v ∈ D1(m, |mc|). Also note that v lies below e (otherwise,
� uev would be obtuse, meaning that |uv| > |ue|, contradicting −→uv ∈ Y6.) These
two observations, together with Lem. 4, imply that there is a path πΘ(v, e) no
longer than |mc| + 2δmc, and each edge on this path is smaller than mc. This
enables us to apply the inductive hypothesis to prove the existence of a path
π(v, e) of length

|π(v, e)| ≤ t(|mc|+ 2δmc) = t(|ab|/2 + δab) (5)

This latter inequality follows from the fact that 2|mc| = |ab|. Consider now the
Yao path

π(a, v) = ax⊕ yao3(x, z)⊕ yao1(z, v)

By Lem. 2, the length of yao3(x, z) ⊂ yao3(x, e) is bounded above by half
the perimeter of P3(x, e), which is no greater than |ab| (as shown in the proof
of Lem. 4). Similarly, since yao1(z, v) ⊆ yao1(z, e), by Lem. 2 we have that
|yao1(z, v)| does not exceed half the perimeter of P1(z, e), which we claim to be
bounded above by (|ab|+ δab)/2. (To see this, let i and j be the lower and upper
right corners of P1(z, a). Then |im| ≥ |iz| sin 30◦ = |iz|/2, since z is in the upper
half of C3(b), by assumption (b). Also |jc| = |je|. Half the perimeter of P1(z, e)
is smaller than |iz|+ |ij|+ |je| = |iz|+ |ic| = |iz|+ |mc|− |im| ≤ |mc|+ |iz|/2 ≤
|ab|/2 + δab/2.) Then

|π(a, v)| ≤ |ae|+ 3|ab|/2 + δab/2 (6)

190 M. Damian and K. Raudonis

Summing up (5) and (6), we get that the path π(a, e) = π(a, v) ⊕ π(v, e) has
length

|π(a, e)| ≤ |ae|+ 3|ab|/2 + δab/2 + t(|ab|/2 + δab) (7)

Using the lower bound for ae from Lem. 5 and the upper bound for δab from (1)
in the inequality above, we obtain |π(a, e)| ≤ t|ae| for any t ≥ 8.82. This is the
only case that yields the stretch factor 8.82. For the remaining cases we adopt a
relaxed analysis that only seeks to stay within this bound.

Case 1. This case eliminates condition (c) of the worst case scenario (i.e.,
yao1(z, e) does not cross ae). Conditions (a) and (b) of the worst case scenario
are assumed to hold (see Fig. 8b). Note that z must lie below e. Otherwise,
� yez would be obtuse, meaning |yz| > |ye|, contradicting the assumption that
−→yz ∈ Y6. Since yao1(z, e) does not cross T5(e,m) (since it does not cross ae), we
can use Lemma 6 to claim the existence of a path π(z, e) in Y6 no longer than
|mc|+ |c2e|+ 2t|c2e|. Then p(a, e) = ax⊕ yao3(x, z)⊕ π(z, e) is no longer than

|p(a, e)| ≤ |ae|+ 3|ab|/2 + |ce|+ δab + 2t(|ce|+ δab)

Using the bounds for ce, ae and δab from Lem. 5 and (1) in the inequality above
yields |π(a, e)| ≤ t|ae| for any t ≥ 7.6.

Case 2. This case eliminates condition (b) of the worst case scenario (i.e., z
lies in the lower half of C3(b)). See Fig. 9. Under condition (a) of the worst
case scenario, there is −→eu ∈ Y5(e), with |eu| ≤ |ae|. We claim that yao3(u, a) is
restricted to the lower half of C3(b). This is because (i) by Prop. 1 yao3(u, a)
cannot cross −→yz, and (ii) if there were an edge −→vw ∈ yao3(u, a) that did not cross
yz, with v ∈ P3(u, a) and w in the upper half of C3(b), then � vzw would be
obtuse, meaning that |vw| > |vz|, contradicting −→vw ∈ Y6.

If yao3(u, a) does not cross &abc, the analysis is similar to the one used
in Case 1 (imagine left of Fig. 9 rotated clockwise by 90◦, and compare with
Fig. 8b); the extra path yao3(x, z) (with |yao3(x, z)| < |ab|, as shown before)
used in computing the upper bound in Case 1 offsets the longer side of P3(u, a),
which is also upper bounded by |ab|.

ba

c

y
z

x

e

c

e

a b
u

z
y

m m

u

Fig. 9. Case 2: yz lies in the lower half of C3(b)

Yao Graphs Span Theta Graphs 191

The case when yao3(u, a) crosses &abc is very similar to the worst case sce-
nario, with eu here playing the role of ax in the worst case; an upper bound of
|ae| applies to each. So this case is settled.

Case 3. This case eliminates condition (a) of the worst case scenario. So the
assumption here is that the disk sector D5(c, |ab|) contains no points from P .
The importance of this assumption will become clear shortly. We adopt a slightly
different approach for this case, and reassign x ∈ P to be a highest point in the
parallelogram P5(c2, a) (see Fig. 10a). Ties are broken in favor of a rightmost
point. We claim that yao5(x, a) does not cross &abc. Indeed, if there were an
edge−→zu ∈ yao5(x, a) crossing&abc, then by Lem. 5 u would end up inD5(c, |ab|),
contradicting the fact that D5(c, |ab|) is empty. This enables us to use Lem. 6
to claim the existence of a path π(x, a) ∈ Y6 between x and a of length

|π(x, a)| ≤ |ia|+ δab + 2tδab (8)

Here i is used to denote the upper right corner of P5(x, a), as marked in Fig. 10(b).
Next we seek a path in Y6 between x and e. We discuss two cases, depending on
the relative position of x and e.

a b

e

c

x

u

y

(b)
a b

e

c

x

b2

c2P (c ,a)5 2

(a)

i

j
z

Fig. 10. (a) x ∈ P5(c2, a) (b,c) Case 3a, xy crosses abc

Case 3a. x lies below e. Then there is an edge −→xy ∈ Y6 that lies in C1(x), since
e ∈ C1(x). Since x is a highest point in P5(c2, a), xy must exit P5(c2, a). We
first discuss the situation where xy exits P5(c2, a) through its side along ac, as
depicted in Fig. 10(b). In this case, xy also crosses &abc, which is empty of
points in P . Now note that yao3(y, e) cannot cross &abc again, since by Lem. 5
it would end up in a point in C3(b, |ab|) higher than x, a contradiction. This
enables us to use Lem. 6 to claim the existence of a path π(y, e) ∈ Y6 of length

|π(y, e)| ≤ |jy|+ δab + 2tδab (9)

Here j is used to denote the upper right corner of P3(y, e). We concatenate these
paths together to determine a path π(a, e) = π(x, a) ⊕ xy ⊕ π(y, e) of length

|π(a, e)| ≤ 2|ab|+ 2δab + 4tδab (10)

192 M. Damian and K. Raudonis

The bound above combines the bounds from (8) and (9). The term 2|ab| above
accounts for the inequalities |ia|+ |jy| < |ab| and |xy| < |ab|. It can be verified
that 2|ab|+ 2δab + 4tδab < t|ae| for any t ≥ 7.2.

We now turn to the case where xy exits P5(c2, a) through its side c2c, as
illustrated in Fig. 11(a). In this case, xy crosses T5(c2, e). To apply the induction
hypothesis, we need to move closer to e (within a distance of δab), so we consider
yao5(y, e).

a b

x

c2 y

e
c

c2

u

e
v

a b

c

z

c2

e

(a) (b)
Fig. 11. Case 3a, xy does not cross abc

Assume first that yao5(y, e) does not cross c2e (i.e., it exits P5(y, e) through its
lower horizontal side). This situation is similar to the one described in Lem. 7,
with T3(e, c2) playing the role of T5(p, q). We apply Lem. 7 to show that Y6
contains a path π(x, e) of length |π(x, e)| ≤ |xy|+ |c2e|+ δc2e + 2tδc2e, which is
bounded above by

|π(x, e)| ≤ |ab|+ |c2e|+ δab + 2tδab

This along with (8) shows that π(a, e) = π(x, a) ⊕ π(x, e) is bounded above by

|π(a, e)| ≤ 2|ab|+ 2δab + 4tδab

(Here we used the fact that |ia| + |c2e| < |ab|.) This bound is identical to the
one in (10).

Assume now that there is uv ∈ yao5(y, e) that crosses c2e (see Fig. 11b). By
Lem. 5, v ∈ D3(c2, |c2e|) and therefore |ev| < |c2e|. This in turn implies that
Y6 contains an edge −→ez ∈ C4(e), with |ez| ≤ |ev| < |c2e|. Using the inequalities
from Lem. 3 and 5, it can be verified that 2|c2e| ≤ 2(|ce| + δab) < |ab|. This
enables us to use Lemma 6 to determine a path π(e, a) = ez ⊕ π(z, a) of length
|π(e, a) < 2|ab|+ δab + 2tδab, with an upper bound lower than the one in (10).
(Here we used the fact that |ez| < |c2e| < |ab|.)

Yao Graphs Span Theta Graphs 193

(a) (b)a

c

e

z
c2

x c

e
z

c2

δz

a

c

e

z
c2

Fig. 12. Case 3b: x above e

Case 3b. x lies above e. This situation is depicted in Fig. 12a. Since x ∈ C3(e),
there is an edge edge −→ez ∈ Y6 in C3(e), with |ez| ≤ |ex| < |ec2|, so z ∈ D3(e, |ec2|)
It follows that the shorter side of P5(z, a) is no longer than δz = δab + δec2 .
Substituting |ec2| = |ec| + δab, the upper bound for ec from Lem. 5, and the
inequality δec2 = |ec2|(2/

√
3− 1) corresponding to (1), we obtain

δz < 4δab/3

Recall that we are in the situation where D3(c, |ab|) is empty and yao3(z, a)
cannot cross ac. By Lem. 6, there is a path π(z, a) in Y6 with a loose upper
bound of |π(z, a)| ≤ |ab|+ δz + 2tδz. Then the path π(a, e) = ez ⊕ π(z, a) is no
longer than 2|ab|+ δz + 2tδz, which is smaller than t|ae| for any t > 3.8.

Having exhausted all cases, we conclude that the claim of the theorem holds.

The results of theorems 1 and 2 combined yield our main result:

Theorem 3. Y6 is a 17.64-spanner.

4 Conclusions

In this paper we establish that the Yao graph Y6 is a spanner. It is known that
Y2 and Y3 are not spanners, Y4 is a spanner, and Yk is a spanner for k ≥ 7.
We conjecture that Y5 is also a spanner. Settling the truth value of this conjec-
ture remains an interesting open problem, whose resolution would complete our
understanding of Yao spanners.

Acknowledgement. We thank Michiel Smid for pointing us to the result of Boni-
chon et al. [1].

References

1. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between Theta-

graphs, Delaunay triangulations, and orthogonal surfaces. In: 36th International

Workshop on Graph-Theoretic Concepts in Computer Science (2010) (to appear);

Also as Technical Report hal-00454565 v1, HAL (February 2010)

194 M. Damian and K. Raudonis

2. Bose, P., Damian, M., Doüıeb, K., O’Rourke, J., Seamone, B., Smid, M.H.M.,

Wuhrer, S.: Pi/2-angle yao graphs are spanners. CoRR, abs/1001.2913 (2010)

3. Bose, P., Maheshwari, A., Narasimhan, G., Smid, M., Zeh, N.: Approximating ge-

ometric bottleneck shortest paths. Computational Geometry: Theory and Applica-

tions 29, 233–249 (2004)

4. Damian, M., Molla, N., Pinciu, V.: Spanner properties of π/2-angle yao graphs.

In: Proc. of the 25th European Workshop on Computational Geometry, pp. 21–24

(March 2009)

5. Molla, N.: Yao spanners for wireless ad hoc networks. Technical report, M.S. Thesis,

Department of Computer Science, Villanova University (December 2009)

6. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University

Press, New York (2007)

7. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Indus-

trial and Applied Mathematics, Philadelphia (2000)

A Simpler Algorithm for the All Pairs Shortest
Path Problem with O(n2 log n) Expected Time

Tadao Takaoka and Mashitoh Hashim

Department of Computer Science

University of Canterbury

Christchurch, New Zealand

Abstract. The best known expected time for the all pairs shortest path

problem on a directed graph with non-negative edge costs is O(n2 log n)

by Moffat and Takaoka. Let the solution set be the set of vertices to

which the given algorithm has established shortest paths. The Moffat-

Takaoka algorithm maintains complexities before and after the critical

point in balance, which is the moment when the size of the solution set

is n−n/ log n. In this paper, we remove the concept of critical point and

the data structure, called a batch list, whereby we make the algorithm

simpler and seamless, resulting in a simpler analysis and speed-up.

1 Introduction

The research in the all pairs shortest path (APSP) algorithms has several cat-
egories, depending on the type of graphs. Let m and n be the number of edges
and vertices of the given directed graph. One is for sparse graphs, where we
use two parameters m and n. The best known result in this area, based on
the traditional comparison-based model, is O(mn + n2 log logn) by Seth Pettie
[10]. If we go to the area of a dense graph, we use only n for the complexity
parameter. Within this category, we have two problems. One is for the worst
case analysis. The best known result are slightly sub-cubic by Chan [3], which
is O(n3(log logn)3/ log2 n), and O(n3/ log2 n) by Blelloch, et. al. [2]. The other
area is for the average case analysis, which is the main theme of this paper.

Spira [11] in 1973 was the pioneer who brought us a surprising result of
O(n2 log2 n) expected time, a significant improvement from the classical O(n3).
Basically he expands the solution set one by one, similar to Dijkstra’s algorithm.
He maintains the sorted list of edges from each vertex, or equivalently the end
points of those edges, and a priority queue for the solution set. Each vertex in
the solution set has its own candidate, a member of the sorted list, for possible
inclusion in the solution set. The key for vertex v is the established distance
from source to v plus the edge cost from v to its candidate. To check the edge
list one by one he maintains a pointer on the list. When a vertex is taken from
the queue as minimum, and if the candidate is outside the solution set, it is suc-
cessfully included into the solution set. Otherwise the target vertex of the next
edge in the list is chosen as the next candidate, and the vertex is put back to

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 195–206, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

196 T. Takaoka and M. Hashim

the queue with the new key value, regardless whether it is in the solution set or
not. Choice of the next edge for the new candidate is not the best choice. Some
effort to find a better candidate may be preferred. We call this effort to find a
better candidate that is more likely outside the solution set than just the next
candidate the scanning effort. The scanning effort is small at an early stage of
the expansion process, whereas towards the end it becomes a great effort as it
is hard to find a candidate outside the solution set. Thus there is a stage when
we need to give up the candidate outside the solution set with probability one.
We call this stage the critical point.

Since Spira published it, there have been many results with the idea of
limited scan of edge lists. Early results achieved O(n2 logn log logn) [12] and
O(n2 logn log∗ n) [2], where log∗ n is the minimum number of logarithms on n
that brings the value below 1. These algorithms are one-phase algorithms, so to
speak, as there is no critical point to separate the computation.

The best known result is the complexity of O(n2 log n) by Moffat and Takaoka
(MT) [9]. This algorithm changes the scanning strategy at the critical point,
meaning it can be regarded as a two-phase algorithm. Under some reasonable
assumption, it is proven in [8] that this is a lower bound for a comparison-
based computational model. An over-sight in the analysis in the original paper
by Moffat and Takaoka was fixed by Mehlhorn and Priebe [8]. The analysis for
the limited scan of edge lists was tricky after the critical point. Specifically the
over-run of scanning that does not contribute to find the vertices to be included
into the solution set is hard to analyze.

We remove the concept of critical point in this paper, so that the analysis
of edge list scanning becomes simpler. As there is no critical point, we do not
switch at the critical point, enabling us to use the same strategy for the priority
queue operations throughout the computation. Our algorithm is seamless, so to
speak. We also remove the data structure L, called the batch list, which was
needed in the MT algorithm for maintaining completely clean candidates before
the critical point. For the priority queue, we use the classical binary heap. As
Goldberg and Tarjan [7] point out, the binary heap is the best choice from a
practical point of view for Dijkstra’s algorithm, since decrease-key in a Fibonacci
heap, which takes O(1) amortized time, is not performed frequently on average.
In our framework of algorithms, too, we show that the binary heap works well.

The amount of scanning is determined by the bound on pointer movements
in [12] and [2], which we call bound-oriented scanning, whereas in [9] and [8]
scanning is done until a specified destination is found, which we call destination-
oriented scanning. Our new algorithm in this paper goes back to the category
of the former two, that is, a one-phase algorithm with bound-oriented scanning.
Spira is a special case in this category with the bound equal to one. The con-
tribution of this paper is to show that a small modification of Spira’s algorithm
can achieve the optimal complexity of O(n2 logn) with a simpler analysis.

In Section 2, we describe the basic definition of the APSP problem, and the
probabilistic assumption used in this paper. Also Spira’s algorithm is described
as the starting point of this area of research.

A Simpler Algorithm for the APSP Problem with O(n2 log n) Expected Time 197

In Section 3, we describe the Moffat-Takaoka algorithm as the target algorithm
to be improved upon in this paper. How the concept of critical point works is
explained. Also why we need the data structure called the batch list is explained.

In Section 4, the new algorithm is described. It is explained how we can get
rid of the critical point, and instead use the concept of clean-up booster to get
a cleaner candidate for expanding the solution set. Also it is explained why we
can go without the batch list.

Section 5 and Section 6 are devoted to the correctness and analysis of the new
algorithm, and Section 7 is for concluding remarks and future research.

2 Spira’s Algorithm

Let G = (V,E) be a directed graph with non-negative edge costs with no self-
loop. Here V and E are the sets of vertices and edges such that |V | = n and
|E| = m. The cost of edge (u, v) is given by c(u, v). The cost of a path is the sum
of the costs of edges that form the path. The shortest path from u to v is the
path with the minimum cost. The single source shortest path (SSSP) problem is
to compute shortest paths from a specified vertex, called the source, to all other
vertices. The all pairs shortest path (APSP) problem is to compute shortest
paths for all pairs of vertices. In the area of average case for the APSP problem,
we normally run an SSSP algorithm n times by changing the source, meaning
that we try to speed up the SSSP computation after preprocessing is done.

The edges from vertex v are sorted in non-decreasing order of edge costs. We
call this pre-sort or pre-processing. A pointer is maintained for the sorted list.
We actually maintain the sorted edge list from each vertex v by putting the end
points of the sorted edges from v. The edge pointed to by the pointer is called
the current edge. The endpoint of the current edge is denoted by ce(v). Thus we
can say (v, ce(v)) is the current edge. We move pointer by one in update to get
the next edge.

Spira’s algorithm maintains the solution set, denoted by S, which is the set
of vertices to which shortest paths have been established by the algorithm, in
a priority queue Q. The key for u in the queue, key(u), is given by key(u) =
d[u]+c(u, ce(u)), where d[u] is the known shortest distance from the source to u.

The queue is initialized with one element of s, the source. Let key(s) = c(s, t),
where (s, t) is the minimum cost edge from s. Obviously t is included in the
solution set as the second member. In general, suppose u is the minimum of the
queue. If v = ce(u) is not in S, it can be included in S with d[v] = key(u), and
then included in Q with key(v) = d[v]+c(v, w), where (v, w) is the shortest edge
from v.

Regardless of whether v is in S or not, the pointer on the edge list from u
is advanced by one because edge (u, v) is no longer useful, meaning this edge is
not going to be examined for other shortest paths.

The priority queue Q needs to support find-min, increase-key and insert op-
erations efficiently, which we express by the repertory (find-min, increase-key,
insert). For Spira’s algorithm, we use an ordinary binary heap, which supports

198 T. Takaoka and M. Hashim

all of those operations in O(log n) time. All pointers for edge lists are initialized
to 0. The function “next of ce(v)” is to advance the pointer, point[v], by one
and take the point[v]-th member in the list. As described below, we can assume
an artificial edge with cost of infinity at the end of each edge list for a stopper.
The algorithm follows.

Algorithm 1

1. S = {s}; j = 1; ce(s) = next of ce(s);
2. t = ce(s);
3. Q = {s} with key(s) = c(s, t); /* heap initialization */
4. while |S| < n do begin
5. u=find-min(Q);
6. v = ce(u);
7. if v /∈ S then begin
8. S = S ∪ {v}; j = j + 1;
9. update(v);
10 end if;
11 update(u);
12 end while
13 procedure update(v) begin
14 ce(v) =next of ce(v); w = ce(v);
15 d[w] = min{d[w], d[v] + c(v, w)};
16 key(v) = d[v] + c(v, w);
17 if v ∈ Q then increase-key(v);
18 else insert(v);
19 procedure end

The probabilistic assumption used in this paper is the end-point independence
model [2]. In this model, when we scan the edge list, any vertex appears inde-
pendently with the probability of 1/n. When there are less than n edges, we
assume edges with costs of infinity attached at the end of the list randomly and
independently.

Let T1, ..., Tn−1 be the times for expanding the solution set by one at each
stage of the size. Then, ignoring some overhead time between expansion pro-
cesses, we have for the expected value E[T] of the total time T

E[T] = E[T1 + ...+ Tn−1] = E[T1] + ...+ E[Tn−1].

From the theorem of total expectation, we have E[E[X |Y]] = E[X] where X |Y
is the conditional random variable of X conditioned by Y . The first E in the
left hand side goes over the sample space of Y and the second over that of X . In
our analysis, X can represent a particular Ti and Y the rest. We use the same
idea in later sections for analysis.

Now we analyze Tj where the solution set is expanded from size j to j+1. The
probability that v is outside S at line 7 is (n−j)/n. The number of executions of
find-min at line 5 is given by the reciprocal of this probability, that is, n/(n−j),

A Simpler Algorithm for the APSP Problem with O(n2 log n) Expected Time 199

which corresponds to the above E[E[X |Y]]. Each time find-min is executed, we
spend O(log n) time in find-min and O(log n) time in update in line 11. Thus
from the above total expectation, the expected time for lines 5 and 11 is

n lognΣn−1
j=1

1
(n−j) = O(n2 log2 n)

The update at line 9 is executed exactly n−1 times. Thus a separate analysis
can give us O(n log n) time, which is absorbed into the above main complexities.

3 Moffat-Takaoka Algorithm

Let us say the candidate ce(u) of u is clean if it is outside S, and non-clean,
otherwise. When we take the next edge from the edge list in update in Spira’s
algorithm, the new candidate may be non-clean. It may be expensive to scan
the edge list until we find a clean candidate as in [4]. However a careful design
of scanning strategy may bring down the complexity. We simplify the Moffat-
Takaoka (MT) algorithm a little in this section, and show more simplification in
the next section.

We define the critical point to be the moment when the size of the solution set
is equal to n− n/ logn. We round up any fraction in this paper. This algorithm
does unlimited search for clean candidates before the critical point, and limited
search after the critical point. To identify the critical point, we maintain array
T [v], which gives the order in which v is included in S, and is called the time
stamp of v. Like Spira’s algorithm, members of S are organized in a binary heap.
The times for heap operations are measured by the number of (key) comparisons.
As in Algorithm 1, all pointers for edge lists are initialized to 0.

We maintain the list L[v], called the batch list, for each vertex v whose mem-
bers are vertices u such that ce(u) = v. The key for vertex u in the priority
queue, key(u), is given by key(u) = d[u] + c(u, v). Whether v is found to be a
member of S at line 7 or not, those members in L[v] need to be updated at line
13 to have more promising candidates. Also v itself needs to be treated to have
a reasonable candidate at line 9 when v is included in S. How much scanning
needs to be done for a good candidate is the major problem hereafter.

Algorithm 2

1. for v ∈ V do T [v] =∞;
2. S = {s}; j = 1;T [s] = 1; ce(s) = next of ce(s);
3. t = ce(s);
4. Q = {s} with key(s) = c(s, t); /* heap initialization */
5. while |S| < n do
6. u=find-min(Q); v = ce(u);
7. if v /∈ S then begin
8. S = S ∪ {v}; j = j + 1;T [v] = j;
9. update(v);
10 end;

200 T. Takaoka and M. Hashim

11 for u ∈ L[v] do
12 delete u from L[v];
13 update(u);
14 end for
15 end while;
16 procedure update(v) begin
17 w = ce(v);
18 if j ≤ n− n/ logn then limit =∞ else limit = n− n/ logn;
19 while w ∈ S and T [w] ≤ limit do begin
20 ce(v)= next of ce(v); w = ce(v);
21 end while;
22 append v to L[w];
23 d[w] = min{d[w], d[v] + c(v, w)};
24 key(v) = d[v] + c(v, w);
25 if v ∈ Q then increase-key(v)
26 else insert(v);
27 end procedure

We sometimes omit “expected” from “expected time”. The MT algorithm has
two phases; Phase 1 before the critical point (CP) and Phase 2 after CP 1. The
computing time consists of two major components. One is the number of key
comparisons in the heap operations and the other is the time for the scanning
effort on the edge lists. The times before CP and after CP are both O(n log n)
and balanced in both comparisons and scanning. If limit is set to infinity for
all the computation, that is we do unlimited search for clean candidates, the
resulting algorithm is called Dantzig’s algorithm [4].

Let U = V − S when |S| = n − n/ logn, that is, |U | = n/ logn. Before
CP all candidates are clean, meaning the if statement at line 7 is entered with
probability 1 and O(n log n) heap operations are done in total. Scanning effort
to go outside S is O(log n) before CP, resulting in O(n log n) time. We can say
the phase before CP is similar to Dantzig.

Labeling vertices as members in S is modeled as the coupon collector’s prob-
lem [5]. To collect n different coupons, we need O(n log n) coupons. After CP,
all candidates are limited to U , meaning the process is modeled as collecting
n/ logn coupons. Thus we need O((n/ logn) log(n/ logn)) = O(n) trials, mean-
ing we need O(n log n) comparisons.

The analysis of increase-key in update before CP involves some probabilistic
analysis on members in the batch list. In [9], vertices u in the batch list L[v] are
processed for increase-key in a bottom-up fashion, and the time for this is shown
to be O(pn+ log n) where p is the probability that a vertex in S falls on any u
in the list at line 11. This complexity remains O(log n) until the critical point
is reached, but exceeds our target complexity after it. To avoid this analysis, [8]

1 We notice that the condition for while in line 19 can be simplified to T [w] ≤ n −
n/ log n, and line 18 can be removed. The above version clarifies the meaning of CP

better.

A Simpler Algorithm for the APSP Problem with O(n2 log n) Expected Time 201

uses a Fibonacci heap with (delete-min, decrease-key, insert) for maintaining
candidates of vertices in a queue. This simplifies the analysis for the update for
L[v], but after CP, the heap must be re-initialized to include S and operations
must be switched to (delete-min, increase-key, insert).

The scanning effort is not easy to analyze after CP, as the last movement of
the pointer at each vertex, which we call an over-run, does not always lead to
successful inclusion of the candidate vertex. In [9] the probabilistic dependence
before and after CP regarding the amount of over-run was overlooked, and in
[8] an analysis on this part is given, where the over-run associated with each
vertex is regarded as a random variable conditioned by the behavior of Spira’s
algorithm.

It is this analysis of “over-run” that motivates the new algorithm in the next
section for a simpler analysis.

4 New Algorithm

This algorithm does limited search for clean candidates in the edge list. The
bound is dynamically changing and given by n/(n− j+N), where N = n/ logn
and j is the size of the solution set. The fact that n/(n− j +N) ≤ logn for all
j is important, as the over-run can be bounded by O(log n) deterministically,
and need not be analyzed as a random variable. Another simplification is that
we get rid of the batch list L, as there is no CP and thus we scrap the policy
of complete clean-ness of candidates before CP. Candidates are organized in a
binary heap as in Algorithm 2. We call the while loop starting from line 4 the
main iteration. Note that Algorithm 1 and Algorithm 3 are almost identical.
Only difference is the clean-up booster at lines 15-17 in the latter.

Algorithm 3

1 S = {s}; j = 1;
2. t = ce(s);
3. Q = {s} with key(t) = c(s, t); /* heap initialization */
4. while |S| < n do
5. u=find-min(Q);
6. v = ce(u);
7. if v /∈ S then begin
8. S = S ∪ {v}; j = j + 1;
9. update(v);
10 end;
11 update(u);
12 end while;
13 procedure update(v) begin
14 i = 0;w = ce(v); /* i is a counter */
15 while w ∈ S and i ≤ n/(n− j +N) do begin
16 ce(v)= next of ce(v); w = ce(v); i = i+ 1;

202 T. Takaoka and M. Hashim

17 end while;
18 d[w] = min{d[w], d[v] + c(v, w)};
19 key(v) = d[v] + c(v, w);
20 if v ∈ Q then increase-key(v)
21 else insert(v);
22 end procedure

5 Correctness

The correctness of a generic algorithm with limited scan including our Algo-
rithms 1-3 comes from the following two lemmas borrowed from [2]. Spira is
a special case of limited search. Proof can be given by induction following the
execution of the algorithm.

Lemma 1. Suppose vertex v ∈ S is such that ce(v) is not in S and

d[v] + c(v, ce(v)) = min{d[u] + c(u, ce(u))|u ∈ S}.
Then the final distance from the source to ce(v) is given by d[v] + c(v, ce(v)).

Also d[u] for u in S are all correct shortest distances from the source.

Proof. If there is a shorter distance to ce(v), it must come from some u in S with
d[u]+c(path(u, v)), where c(path(u, v)) is the cost of some path, path(u, v), from
u to v and the first edge on the path goes out of S. From Lemma 2, the end
points of edges from u shorter than (u, ce(u)) are all in S, and thus this first
edge must be longer than or equal to (u, ce(u)). Then this distance must be
greater than or equal to d[v] + c(v, ce(v)) defined above, a contradiction. Thus
the shortest distance to ce(v) is correctly computed and S is a correct solution
set after inclusion of ce(v).

Lemma 2. For any v ∈ S, vertices in the edge list of v from position 1 to
point[v]− 1 are all in S.

Proof. From the nature of the algorithm, the pointer movement stops when-
ever the algorithm finds a candidate outside S. It may stop without finding a
candidate outside S.

Theorem 1. Any algorithm that is a variation of Spira’s algorithm with limited
scan is correct.

6 Analysis

Lemma 3. If (m− 1)p ≤ 1 and m ≥ 1, then (1/2)mp ≤ 1− (1− p)m. That is,
if an event occurs with probability p, the probability that the event occurs within
m trials is at least (1/2)mp if the above condition is satisfied.

Proof is by induction on m. Basis m = 1 is clear. Assume the lemma is true for
m− 1.

(1/2)(m− 1)p ≤ 1− (1 − p)m−1

(1/2)(m− 1)p− 1 ≤ −(1− p)m−1

((1/2)(m− 1)p− 1)(1− p) ≤ −(1− p)m

A Simpler Algorithm for the APSP Problem with O(n2 log n) Expected Time 203

((1/2)(m− 1)p− 1)(1− p) + 1 ≤ 1− (1− p)m

(1/2)mp+ (1/2)p(1− (m− 1)p) ≤ 1− (1− p)m

(1/2)mp ≤ 1− (1− p)m

Lemma 4. Let clean(ce(v)) be the probability that ce(v) is clean. Probability
pj = clean(ce(v)) for any v ∈ S at the end of the main iteration when |S| = j
is at least (1/2) n−j

n−j+1+N

Proof. We prove by induction based on the execution of the main iteration with
j = |S|. At the beginning when j = 1, Lemma holds. When we execute the main
iteration, S goes from |S| = j − 1 to |S| = j, or remains the same. For u and
v ∈ S, we have two cases:

(1) update is performed on v and/or u at line 9 and/or 11.
(2) v is not touched by update.

(1) We consider the first case. Let us consider executing line 9. Let us call lines
15-17 in update(v) the clean-up booster, as this part of while-loop increases the
probability that ce(v) is outside S. Once the pointer for the edge list of v is
increased by one, the probability that ce(v) is clean becomes (n − j)/n. We
boost this probability by limited scanning of m tests. We have clean(ce(v)) =
1− (1− (n− j)/n)n/(n−j+N). Letting p = (n− j)/n and m = n/(n− j +N) in
the above lemma we have clean(ce(v)) ≥ (1/2) n−j

n−j+N . The condition is satisfied
since pm ≤ 1. Note that (1/2) n−j

n−j+N ≥ (1/2) n−j
n−j+1+N .

Now consider executing line 11. The booster is performed with j that is one
less than that for line 9 or the same value depending on whether S is expanded.
In either case, we can show clean(ce(u)) satisfies the lemma for u.

(2) Suppose S expands and the lemma holds for any v ∈ S when |S| =
i = j − 1, that is, the probability that ce(v) is clean is at least (1/2) n−i

n−i+N .
As v is not touched by update, this probability of ce(v) being clean is at least
(1/2) n−i

n−i+N
n−i−1

n−i , since (n − i − 1)/(n − i) is the conditional probability that
ce(v) is clean at |S| = j = i+ 1 on condition that it is clean at |S| = i. Thus

clean(ce(v)) ≥ (1/2) n−i−1
n−i+N ≥ (1/2) n−j

n−j+1+N

We can show when S does not expand, the probability clean(ce(u)) satisfies the
lemma.

Lemma 5. Find-min at line 5 is executed O(n) times on average.

Proof. Let pj be the probability that v = ce(u) is clean at line 7 when |S| = j.
From the previous lemma, we have pj ≥ (1/2) n−j

n−j+1+N . Since the expected
number of trials for ce(u) being clean is 1/pj, we have the expected number of
find-min executions as

Σn−1
j=1 1/pj ≤ Σn−1

j=1 2n−j+N+1
n−j = Σn−1

j=1 2(1 + N+1
n−j) = O(n)

204 T. Takaoka and M. Hashim

As each find-min requires O(1) time, the expected time for total find-min is
O(n).

Now let us analyze update in two components. One is the time for heap
operations, the other being the scanning efforts.

Lemma 6. The expected time for comparisons in update is O(n logn) in total.

Proof. Increase-key or insert is performed at the end of each update, spending
O(log n) time. The update at line 9 is done n−1 times, meaning O(n logn) time
for this part. The number of the second update executions is O(n) on average.
Thus the expected total time for comparisons in update is O(n log n).

Next we analyze the time for scanning effort.

Lemma 7. The scanning effort is O(n logn) on average.

From the above analysis, the number of updates executed at line 11 when |S| = j
is bounded by 1/pj = 2(n− j + 1 +N)/(n− j) on average. Each update moves
its pointer at most by n/(n− j+N). Thus the total expected number of pointer
movements is bounded by

Σn−1
j=1 2n−j+1+N

n−j
n

n−j+N = Σn−1
j=1

2n
n−j (1 + 1

n−j+N) = O(n log n)

Line 9 is executed n− 1 times, each moving the pointer by at most logn.
Since the cost for comparisons and scanning are both O(n log n), we have the

following theorem.

Theorem 2. The expected running time of Algorithm 3 is O(n log n) after the
presort is done. The time for the APSP problem based on Algorithm 3 isO(n2 logn)
including the time for presort.

The main analysis of expected time ends here. The following is an alternative
analysis on the scanning for a generic algorithm with limited scan, including
Algorithm 3. This is similar to the analysis in [8], which analyzes the amount of
over-runs as random variables conditioned by the scanning of Spira’s algorithm.
In our case, the over-runs are deterministic quantities bounded by O(log n) each.

Lemma 8. Let the pointer, point[u], for ce(u) in update(u) in the new algorithm
come to p. If this movement of pointer is not the last, that is, point[v] moves at
least once more, the pointer for ce(u) in Spira’s algorithm comes to p also.

Proof. Suppose v1, v2, ..., vn are the vertices chosen by Spira’s algorithm for
shortest paths from the source v1 in this order. Let DIS(vi) be the distances
{d[vi] + c(vi, wij)|j = 1, ..., point[vi]}, where wij are the end points of scanned
edges from vi. That is, DIS(vi) is the set of all distances from vi checked by
Spira’s algorithm. Let DIS be defined by DIS = DIS(v1)∪ ...∪DIS(vn). DIS
includes at least all shortest distances from the source. Let SORTED DIS be
the sorted set of DIS. We observe that the whole set of SORTED DIS is
checked by Spira’s algorithm, that is, they are returned by find-min from the

A Simpler Algorithm for the APSP Problem with O(n2 log n) Expected Time 205

priority queue in the sorted order, or as d[vi] + c(vi, wij) for some vi and wij

by the last scanned edge from vi in update. We observe that as the shortest
distance from the source to some vertex there is a longer or equal distance, say,
x, in DIS than the distance d[u]+c(u, ce(u)) by the new algorithm since p is not
the last position, that is, distance x to v at line 6 will be found after the pointer
comes to p. This distance x is obtained by Spira’s algorithm as well. Then the
pointer for ce(u) is reached by Spira since the end points of edge list from first
to the current are all in the solution set and Spira pushes the pointer over those
endpoints at least until it gets to x.

Theorem 3. The scanning effort in Algorithm 3 is O(n log n)

Proof. The scanning of each edge list has the same tracking record as that in
Spira’s algorithm apart from the last scanning. The total scanning effort in Spira
is O(n log n). The last scanning from each vertex is bounded by O(log n). The
vertex obtained by the last scanning may not be used for shortest distances.
The total time for the last scanning efforts for all edge lists is thus bounded by
O(n log n). Therefore the total scanning efforts cost us O(n logn).

7 Concluding Remarks

We showed the expected times for find-min, increase-key, insert and scanning
effort are all O(n log n), when an SSSP problem is solved. The presort takes
O(m log n) time. Thus the expected time of our algorithm for the APSP problem
is O(n2 logn). Computer experiment is easy since Algorithm 3 is obtained from
Algorithm 2 by deleting a few lines and changing the scanning condition, giving
us a good test bed for fair comparison. We did experiment with a run of 100
times on a random complete graph with n = 100 under Linux gcc on the machine
INTEL QUAD 2.66 GHz with 2048 MB cache. Our experiments show that cpu
times are 0.73 sec and 0.47 sec for Algorithms 2 and 3, about 36% reduction in
computing time for the latter algorithm. We conjecture this reduction is mainly
achieved by removing the batch list L at a slight increase of the times of the main
iterations. This number is around 1.8n, suggesting the factor 1/2 in Lemma 3
may be an underestimation.

We note that we make a balance between (find-min, increase-key, insert),
which are measured by the number of comparisons, and scanning effort, which
is measured by pointer movements. In the approach by the critical point, we
maintained balance on the numbers of comparisons before and after CP, and
scanning efforts before and after CP, and also between comparisons and scanning
for the total computation. In our new algorithm, we balance between the number
of key comparisons and the scanning effort through the whole computation. In
other words, we balance two different complexities of different nature, whereas in
the CP approach we keep balance on more complexities. In fact, logn in n logn
in comparison analysis comes from data structure, whereas n logn in scanning
comes from the coupon collector’s problem.

206 T. Takaoka and M. Hashim

This leads to the observation that the scanning bound of n/(n − j + N) in
update can be parameterized as kn/(n−j+N), and we can do some best tuning
by changing the parameter k, depending on the characteristic of the computer
used with specific speeds for comparisons and pointer movements. We see that
the greater k, the more scanning and the less comparisons. Our experiments show
that the cpu time becomes lowest when k is between 1 and 2, and a sharp rise
occurs for small k (closer to Spira) and large k (closer to Dantzig). This suggests
that on our machine there is not much difference in time between comparisons
and scanning.

References

1. Blelloch, G.E., Vassilevska, V., Williams, R.: A New Combinatorial Approach for

Sparse Graph Problems. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,

M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS,

vol. 5125, pp. 108–120. Springer, Heidelberg (2008)

2. Bloniarz, P.: A shortest path algorithm with expected time O(n2 log n log∗ n).

SIAM Journal on Computing 12, 588–600 (1983)

3. Chan, T.: More algorithms for all pairs shortest paths. In: STOC 2007, pp. 590–598

(2007)

4. Dantzig, G.: On the shortest route in a network. Management Science 6, 269–271

(1960)

5. Feller, W.H.: An Introduction to Probability and its Applications, 3rd edn., vol. 1.

John-Wiley, New York (1968)

6. Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved network

optimization problems. JACM 34, 596–615 (1987)

7. Goldberg, A.V., Tarjan, R.E.: Expected Performance of Dijkstra’s Shortest Path

Algorithm, Technical Report 96-062, NEC Research Institute, Inc. (June 1996)

8. Mehlhorn, K., Priebe, V.: On the All-Pairs Shortest Path Algorithm of Moffat and

Takaoka. Random Structures and Algorithms 10, 205–220 (1997)

9. Moffat, A., Takaoka, T.: An all pairs shortest path algorithm with expected running

time O(n2 log n). SIAM Journal on Computing 16, 1023–1031 (1987)

10. Pettie, S.: A new approach to all pairs shortest paths on real weighted graphs.

Theoretical Computer Science 312, 47–74 (2004)

11. Spira, P.: A new algorithm for finding all shortest paths in a graph of positive arcs

in average time O(n2 log2 n). SIAM Journal on Computing 2, 28–32 (1973)

12. Takaoka, T., Moffat, A.: An O(n2 log n log log n) expected time algorithm for the

all pairs shortest path problem. In: Dembinski, P. (ed.) MFCS 1980. LNCS, vol. 88,

pp. 643–655. Springer, Heidelberg (1980)

New Min-Max Theorems for Weakly Chordal
and Dually Chordal Graphs

Arthur H. Busch1,�, Feodor F. Dragan2, and R. Sritharan3,��

1 Department of Mathematics, The University of Dayton, Dayton, OH 45469

art.busch@notes.udayton.edu
2 Department of Computer Science, Kent State University, Kent, OH 44242

dragan@cs.kent.edu
3 Department of Computer Science, The University of Dayton, Dayton, OH 45469

srithara@notes.udayton.edu

Abstract. A distance-k matching in a graph G is matching M in which

the distance between any two edges of M is at least k. A distance-2

matching is more commonly referred to as an induced matching. In this

paper, we show that when G is weakly chordal, the size of the largest

induced matching in G is equal to the minimum number of co-chordal

subgraphs of G needed to cover the edges of G, and that the co-chordal

subgraphs of a minimum cover can be found in polynomial time. Us-

ing similar techniques, we show that the distance-k matching problem

for k > 1 is tractable for weakly chordal graphs when k is even, and is

NP-hard when k is odd. For dually chordal graphs, we use properties of

hypergraphs to show that the distance-k matching problem is solvable in

polynomial time whenever k is odd, and NP-hard when k is even. Moti-

vated by our use of hypergraphs, we define a class of hypergraphs which

lies strictly in between the well studied classes of acyclic hypergraphs

and normal hypergraphs.

1 Background and Motivation

In this paper, all graphs are undirected, simple, and finite. That is, a graph
G = (V,E) where V is a finite set whose elements are called vertices together
with a set E of unordered pairs of vertices. We say H = (V ′, E′) is a subgraph of
G = (V,E) if V ′ ⊆ V and E′ ⊆ E, and we say that H is an induced subgraph if
E′ = {uv ∈ E | {u, v} ⊆ V ′}. We use Pk to denote an induced path on k vertices
and Ck is an induced cycle on k vertices. A graph is chordal if it does not contain
any Ck, k ≥ 4. A graph is co-chordal if its complement is chordal. A graph G is
weakly chordal if neither G nor G contains any Ck, k ≥ 5. For background on
these and other graph classes referenced below, we refer the interested reader to
[6].

An induced matching in a graph is a matching that is also an induced sub-
graph, i.e., no two edges of the matching are joined by an edge in the graph.
� Acknowledges support from the University of Dayton Research Institute.

�� Acknowledges support from The National Security Agency, USA.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 207–218, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

208 A.H. Busch, F.F. Dragan, and R. Sritharan

The size of an induced matching is the number of edges in it. Let im(G) denote
the size of a largest induced matching in G. Given G and positive integer k,
the problem of deciding whether im(G) ≥ k is NP-complete [8] even when G is
bipartite.

For vertices x and y of G, let distG(x, y) be the number of edges on a short-
est path between x and y in G. For edges ei and ej of G let distG(ei, ej) =
min{distG(x, y) | x ∈ ei and y ∈ ej}. For M ⊆ E(G), M is a distance-k matching
for a positive integer k ≥ 1 if for every ei, ej ∈ M with i �= j, distG(ei, ej) ≥ k.
For k = 1, this gives the usual notion of matching in graphs. For k = 2, this
gives the notion of induced matching. The distance-k matching problem is to
find, for a given graph G and an integer k ≥ 1, a distance-k matching with the
largest possible number of edges.

A bipartite graph G = (X,Y,E) is a chain graph if it does not have a 2K2
as an induced subgraph. Bipartite graph G′ = (X ′, Y ′, E′) is a chain subgraph
of bipartite graph G = (X,Y,E), if G′ is a subgraph of G and G′ contains no
2K2. For a bipartite graph G = (X,Y,E), let ch(G) denote the fewest number
of chain subgraphs of G the union of whose edge-sets is E. A set of ch(G) chain
subgraphs of bipartite graph G = (V,E) whose edge-sets cover E is a minimum
chain subgraph cover for G. Yannakakis showed [23] that when k ≥ 3, deciding
whether ch(G) ≤ k for a given bipartite graph G is NP-complete. An efficient
algorithm to determine whether ch(G) ≤ 2 for a given bipartite graph G is
known [16].

It is clear that for any bipartite graph G, im(G) ≤ ch(G). Families of bipartite
graphs where equality holds have been considered in literature. For example, it
was shown in [24] that when G is a convex bipartite graph, im(G) = ch(G). A
bipartite graph is chordal bipartite if it does not contain any induced cycles on
6 or more vertices. It is known that every convex bipartite graph is also chordal
bipartite.

The following more general result was recently shown:

Proposition 1. [1] For a chordal bipartite graph G, im(G) = ch(G).

Let us move away from the setting of bipartite graphs and consider graphs in
general. We say H is a co-chordal subgraph of G if H is a subgraph of G and also
H is co-chordal. Let coc(G) be the minimum number of co-chordal subgraphs of
G needed to cover all the edges of G. As a chain subgraph of a bipartite graph
G is a co-chordal subgraph of G and vice versa, the parameter coc(G) when
restricted to a bipartite graph G is essentially the same as ch(G).

Again, it is clear from the definitions that for any graph G, im(G) ≤ coc(G).
In Section 2, we show that when G is weakly chordal, im(G) = coc(G) and that
the co-chordal subgraphs of a minimum cover can be found in polynomial time.
As every chordal bipartite graph is weakly chordal and as a chain subgraph of
a bipartite graph is a co-chordal subgraph and vice versa, our result generalizes
Proposition 1. In Section 3, we use similar techniques to show that the distance-
k matching problem for k > 1 is tractable for weakly chordal graphs when k is
even, and NP-hard when k is odd. Next, in Section 4 we use techniques from
the study of hypergraphs to show that the opposite holds for the class of dually

New Min-Max Theorems for Weakly Chordal and Dually Chordal Graphs 209

chordal graphs; the distance-k matching problem can be solved in polynomial
time for dually chordal graphs if a k is odd, and is NP-hard for all even k.
Motivated by our results and by the use of hypergraphs in Section 4, we define a
class of hypergraphs in Section 5 which lies strictly in between the well studied
classes of acyclic hypergraphs and normal hypergraphs.

2 A Min-Max Theorem for Weakly Chordal Graphs

For a graph G, let G∗ denote the square of the line graph of G. More explicitly,
vertices of G∗ are edges of G. Edges ei, ej of G are nonadjacent in G∗ if and
only if they form a 2K2 in G.

It is clear from the construction of G∗ that the set of edges of a co-chordal
subgraph of G maps to a clique of G∗. Further, im(G) = α(G∗), where α(G∗) is
the size of a largest independent set in G∗.

The following is known:

Proposition 2. [9] If G is weakly chordal, then G∗ is weakly chordal.

Also, it is well known that every weakly chordal graph is perfect [13]. Therefore,
when G is weakly chordal, im(G) = α(G∗) = θ(G∗), where θ(G∗) is the minimum
clique cover number of G∗. Thus, when G is weakly chordal θ(G∗) ≤ coc(G).

We will show that when G is weakly chordal, coc(G) ≤ θ(G∗) also holds and
therefore we have the following:

Proposition 3. If G is weakly chordal, then coc(G) = im(G).

The proof of Proposition 3 utilizes the following edge elimination scheme for
weakly chordal graphs. Edge xy is a co-pair of graph G, if vertices x and y are
not the endpoints of any Pk, k ≥ 4, in G.

Proposition 4. [19] Suppose e is a co-pair of graph G. Then, G is weakly
chordal if and only if G− e is weakly chordal.

The following is implied by Corollary 2 in [12]:

Proposition 5. [12] Suppose G is a weakly chordal graph that contains a 2K2.
Then, G contains co-pairs e and f such that e and f form a 2K2 in G.

Lemma 6. If e is a co-pair of a weakly chordal graph G, then G∗−e = (G−e)∗.

Proof. Deleting an edge xy from G will never destroy a 2K2, unless it is one
of the edges of the 2K2. If deleting xy creates a new 2K2 then xy must be the
middle edge of a P4 in G, or equivalently, x and y are the end vertices of a P4
in G. Thus, when e is a co-pair, two edges form a 2K2 in G − e if and only if
they form a 2K2 in G that does not include the edge e. Since the vertices of
(G∗ − e) and (G − e)∗ both consist of the edges of G − e, this guarantees that
the edge sets of (G∗ − e) and (G − e)∗, are identical as well. Hence the graphs
are identical. ��

210 A.H. Busch, F.F. Dragan, and R. Sritharan

In order to establish that when G is weakly chordal, coc(G) ≤ θ(G∗), first
observe that every member of a clique cover of G∗ can be assumed to be a
maximal clique of G∗. We have the following:

Theorem 7. Let G be weakly chordal. Then, every maximal clique of G∗ is the
edge-set of a maximal co-chordal subgraph of G.

Proof. Proof is by induction on the number of edges in the graph. Clearly, the
statement is true when G has no edges.

Assume the statement is true for all weakly chordal graphs with up to k − 1
edges, and let G be a weakly chordal graph with k edges. If G contains no 2K2,
then G is co-chordal and G∗ is a clique and the theorem holds.

Now, suppose G contains a 2K2. Then, from Proposition 5, G contains a 2K2
e1, e2 each of which is a co-pair of G.

Let M be a maximal clique of G∗. As no maximal clique of G∗ contains both
e1 and e2, we can choose i ∈ {1, 2} such that ei /∈M . As a result,M is a maximal
clique of G∗ − ei which equals (G − ei)∗ by Lemma 6. Also, by Proposition 4,
G− ei is weakly chordal. It then follows by the induction hypothesis that M is
the edge set of a maximal co-chordal subgraph of G− ei.

Clearly, this subgraph remains co-chordal in G, so it remains to show that
this subgraph is, in fact, maximal. If this is not the case, then there exists a
co-chordal subgraph M ′ of G such that M ⊂M ′. As every co-chordal subgraph
of G maps to a clique of G∗, it follows that M and M ′ are cliques of G∗ such
that M ⊂M ′; this contradicts M being a maximal clique of G∗. ��
Thus, θ(G∗) = coc(G), establishing Proposition 3. As an efficient algorithm
exists [14] to compute a minimum clique cover of a weakly chordal graph, we
have the following:

Corollary 8. When G is weakly chordal, coc(G) and a minimum cover of G by
co-chordal subgraphs of G can be found in polynomial time.

We recently learned of a surprising application of this result: the parameters
coc(G) and im(G) yield upper and lower bounds, respectively, on the Castelnuovo-
Mumford regularity of the edge ideal of G [22]. Thus, when G is weakly chordal,
this parameter can be computed efficiently.

Another application of Corollary 8 utilizes the complement of G. As the com-
plement of a weakly chordal graph remains weakly chordal, after taking the
complement of each graph in a cover by co-chordal subgraphs, we have a set
of chordal graphs whose edge-intersection is the edge-set of a weakly chordal
graph. The study of a variety of similar parameters, known as the intersection
dimension of a graph G with respect to a graph class A, was introduced in [15].
The problem when A is the set of chordal graphs was termed the chordality of
G in [17]. We use dimCH(G) to denote the chordality or chordal dimension of a
graph G. In this context, we have another corollary of Theorem 7.

Corollary 9. When G is weakly chordal, dimCH(G) = im(G) and a minimum
set of chordal graphs whose edge-intersection give the edge-set of G can be found
in polynomial time.

New Min-Max Theorems for Weakly Chordal and Dually Chordal Graphs 211

A chordal graph that does not contain a 2K2 is a split graph, and it has been
shown in [8] that a split graph cover of a chordal graph can be computed in
polynomial time.

Proposition 10. [8] Let G be a chordal graph. Then, a minimum cover of edges
of G by split subgraphs of G can be found in polynomial time.

The proof of Proposition 10 in [8] utilizes the clique tree of a chordal graph G
and the Helly property. An alternate proof can be given by showing that the
edges referred to in Proposition 5 can be chosen so that each edge is incident
with a simplicial vertex of G. Since no such edge is the only chord of a cycle,
this guarantees that G − e will be chordal whenever G is chordal. As every
chordal graph is also weakly chordal, Lemma 6 and a slightly modified version
of Theorem 7 then imply Proposition 10.

3 Distance-k Matchings in Weakly Chordal Graphs

In this section, we observe that the correspondence between maximal cliques of
G∗ and maximal co-chordal subgraphs of G can be adapted to find maximum a
distance-k matching in a weakly chordal graph G for any positive even integer
k. We then show that finding a largest distance-k matching when k is odd and
k ≥ 3 is NP-hard.

We begin by noting the fundamental connection between distance-k matchings
in a graph G and independent sets in the kth power of the line graph of G, which
we denote Lk(G).

Proposition 11. [7] For k ≥ 1 and graph G, the edge set M is a distance-k
matching in G if and only if M is an independent vertex set in Lk(G).

As a result, identifying a largest distance-k matching in a graph G is no more
difficult than constructing the kth power of the line graph of G and finding a
maximum independent set in Lk(G). Clearly, for any edge e, the set of edges
within distance k of e can be computed in linear time, and as a result a poly-
nomial time algorithm exists for the distance-k matching problem whenever an
efficient algorithm exists for finding a largest independent set in Lk(G). Propo-
sition 2 guarantees that such an efficient algorithm exists for induced matchings,
as efficient algorithms to compute the largest independent sets of weakly chordal
graphs are well known. For k > 1, the existence of a polynomial algorithm for
computing distance-2k matchings in weakly chordal graphs is guaranteed by
combining Proposition 2 with the following result.

Proposition 12. [5] Let G be a graph and k ≥ 1 be a fixed integer. If G2 is
weakly chordal, then so is G2k.

For distance-k matchings when k is odd, we note that the case k = 3 was recently
shown to be NP-complete for the class of chordal graphs, which is properly
contained in the class of weakly chordal graphs.

212 A.H. Busch, F.F. Dragan, and R. Sritharan

Proposition 13. [7] The largest distance-3 matching problem is NP-hard for
chordal graphs.

We will extend this result to distance-(2k+1) matchings for every positive integer
k. This extension is done by showing that the distance-(2k+1) matching problem
can be transformed into the distance-(2k + 3) matching problem in polynomial
time, for any positive integer k.

Theorem 14. For any positive integer k, there exists a polynomial time trans-
formation from the distance-(2k + 1) matching problem to the distance-(2k + 3)
matching problem.

Proof. Let G = (V,E) be a graph, and let k be a positive integer. We will
define the graph G+ = (V +, E+) from G as follows. For each edge e = uv of G,
we introduce two new vertices xe and ye and add edges to make the subgraph
induced by {u, v, xe, ye} a clique. Formally, V + = V ∪ {xe, ye | e ∈ E}, and

E+ = E ∪
(⋃

e=uv∈E

{xeye, xeu, xev, yeu, yev}
)
.

We will show that a distance-(2k+ 1) matching of size p exists in G if and only
if a distance-(2k + 3) matching of size p exists in G+. Since G+ can clearly be
constructed from G in linear time, this will establish the theorem.

First, we note that every matching M in G corresponds to a matching M+ =
{xeye | e ∈M} in G+, and that the distance between two edges xeye and xfyf

from M+ is clearly distG(e, f)+2. Thus, if M is a distance-(2k+1) matching of
size p in G, M+ is a distance-(2k+3) matching of size p in G+. Next, note that
if M is a distance-(2k + 3) matching of G+, then for each e = uv, at most one
edge of M is incident with any vertex of {u, v, xe, ye} as these vertices induce a
clique in G+. We construct a set M− by removing from M any edge incident
with a vertex xe or ye of V + \ V and replacing it with the associated edge e.
Since no other edge of M is incident with either vertex of e, we conclude that
|M−| = |M | and that M− is a matching in G. The pairwise distance between
any two edges in M− is at least (2k+3)−2 = 2k+1. Thus, if a distance-(2k+3)
matching of size p exists in G+, then a distance-(2k+1) matching of size p exists
in G. ��

Combining Proposition 13 and Theorem 14 we conclude the following:

Corollary 15. For k > 0, the distance-(2k + 1) matching problem is NP-hard
for chordal graphs.

Proof. We use the well known result of Dirac [10] that a graph is chordal if and
only if it has a simplicial elimination ordering. Since each vertex of V + \ V is
simplicial in G+, we can easily extend any simplicial elimination ordering of G
to a simplicial elimination ordering of G+. Therefore G+ is chordal whenever
G is chordal. The corollary now follows immediately from Proposition 13 and
repeated application of Theorem 14. ��

New Min-Max Theorems for Weakly Chordal and Dually Chordal Graphs 213

We summarize the consequences of Propositions 2, 11, 12 and Corollary 15
below.

Proposition 16. Suppose G is a weakly chordal graph and k is a positive inte-
ger. Then, when k is even, a largest distance-k matching in G can be found in
polynomial time. When k is odd, finding a largest distance-k matching in G is
NP-hard for any k > 1.

4 A Min-Max Theorem for Distance-(2k+1) Matching in
Dually Chordal Graphs

As we saw in the previous section, for a weakly chordal graph G and any integer
k ≥ 1, a largest distance-(2k) matching in G can be found in polynomial time,
whereas computing a largest distance-(2k + 1) matching in G is an NP-hard
problem. In this section, we show that for the class of dually chordal graphs the
opposite holds.

Dually chordal graphs were introduced in [11] as a generalization of strongly
chordal graphs (which are the hereditary dually chordal graphs) where the
Steiner tree problem and many domination-like problems still (as in strongly
chordal graphs) have efficient solutions. It also was shown recently in [7] that the
distance-k matching problem is solvable in polynomial time for strongly chordal
graphs for any integer k. Here, we extend this result to all doubly chordal graphs
by showing that the distance-k matching problem is solvable in polynomial time
for any odd k for all dually chordal graphs.

To define dually chordal graphs and doubly chordal graphs, we need some
notions from the theory of hypergraphs [2]. Let E be a hypergraph with under-
lying vertex set V, i.e. E is a collection of subsets of V (called hyperedges) The
dual hypergraph E∗ has E as its vertex set and for every v ∈ V a hyperedge
{e ∈ E : v ∈ e}. The line graph L(E) = (E , E) of E is the intersection graph of
E , i.e. ee′ ∈ E if and only if e ∩ e′ �= ∅. A Helly hypergraph is one whose edges
satisfy the Helly property, that is, any subfamily E ′ ⊆ E of pairwise intersecting
edges has a nonempty intersection. A hypergraph E is a hypertree if there is a
tree T with vertex set V such that every edge e ∈ E induces a subtree in T .
Equivalently, E is a hypertree if and only if the line graph L(E) is chordal and
E is a Helly hypergraph. A hypergraph E is a dual hypertree (also known as
α–acyclic hypergraph) if there is a tree T with vertex set E such that, for every
vertex v ∈ V , Tv = {e ∈ E : v ∈ e} induces a subtree of T . Observe that E is a
hypertree if and only if E∗ is a dual hypertree.

For a graph G = (V,E) by C(G) = {C : C is a maximal clique in G} we denote
the clique hypergraph. Let also D(G) = {Dr(v) : v ∈ V, r a non-negative integer}
be the disk hypergraph of G. Recall that Dr(v) = {u ∈ V : distG(u, v) ≤ r} is
a disk of radius r centered at vertex v. A graph G is called dually chordal if
the clique hypergraph C(G) is a hypertree [4, 11, 20]. In [4, 11] it is shown that
dually chordal graphs are exactly the graphsG whose disk hypergraphsD(G) are
hypertrees (see [4, 11] for other characterizations, in particular in terms of certain

214 A.H. Busch, F.F. Dragan, and R. Sritharan

elimination schemes, and [3] for their algorithmic use). From the definition of
hypertrees we deduce that for dually chordal graphs the line graphs of the clique
and disk hypergraphs are chordal. Conversely, if G is a chordal graph then C(G)
is a dual hypertree, and, therefore, the line graph L(C(G)) is a dually chordal
graph, justifying the term “dually chordal graphs”. Hence, the dually chordal
graphs are exactly the intersection graphs of maximal cliques of chordal graphs
(see [20, 4]). Finally note that graphs being both chordal and dually chordal
were dubbed doubly chordal and investigated in [4, 11, 18]. The class of dually
chordal graphs contains such known graph families as interval graphs, ptolemaic
graphs, directed path graphs, strongly chordal graphs, doubly chordal graphs,
and others.

Let G = (V,E) be an arbitrary graph and r be a non-negative integer. For
an edge uv ∈ E, let Dr(uv) := {w ∈ V : distG(u,w) ≤ r or distG(v, w) ≤ r} =
Dr(v) ∪Dr(u) be a disk of radius r centered at edge uv. For the edge-set E of
graph G = (V,E), we define a hypergraph DE,r(G) as follows:

DE,r(G) = {Dr(uv) : uv ∈ E}.

Along with the distance-k matching problem we will consider also a problem
which generalizes the (minimum) vertex cover problem. A distance-k vertex cover
for a non-negative integer k ≥ 0 in an undirected graph G = (V,E) is a set of
vertices S ⊆ V such that for every edge uv ∈ E there exists a vertex x ∈ S with
Dk(x) ∩ {u, v} �= ∅. For k = 0, this gives the usual notion of vertex cover in
graphs. The distance-k vertex cover problem is to find, for a given graph G and
an integer k ≥ 0, a distance-k vertex cover with the fewest number of vertices.

Using the hypergraph DE,k(G) of G (where k ≥ 0 is an integer), the distance-
(2k + 1) matching problem and the distance-k vertex cover problem on G can
be formulated as the transversal and matching problems, respectively, on the
hypergraph DE,k(G). Recall that a transversal of a hypergraph E is a subset of
vertices which meets all edges of E . A matching of E is a subset of pairwise disjoint
edges of E . For a hypergraph E , the transversal problem is to find a transversal
with minimum size τ(E) and the matching problem is to find a matching with
maximum size ν(E).

Denote by dmk(G) the size of a largest distance-k matching in G, and by
dvck(G) the size of a smallest distance-k vertex cover in G. From the definitions
we obtain

Lemma 17. Let G = (V,E) be an arbitrary graph and k ≥ 0 be a non-negative
integer. S is a distance-k vertex cover of G if and only if S is a transversal of
DE,k(G). M is a distance-(2k + 1) matching of G if and only if {Dk(uv) : uv ∈
M} is a matching of DE,k(G). Thus, τ(DE,k(G)) = dvck(G) and ν(DE,k(G)) =
dm2k+1(G) hold for every graph G and every non-negative integer k.

The parameters dm2k+1(G) and dvck(G) are always related by a min–max du-
ality inequality dvck(G) ≥ dm2k+1(G). The next result shows that for dually
chordal graphs and k ≥ 1 equality holds.

New Min-Max Theorems for Weakly Chordal and Dually Chordal Graphs 215

Theorem 18. Let G = (V,E) be a dually chordal graph and k ≥ 1 be an
integer. Then, the hypergraph DE,k(G) is a hypertree and, as a consequence,
dvck(G) = dm2k+1(G) holds.

Proof. Since G is a dually chordal graph, the disk hypergraph D(G) of G is
a hypertree. That is, there is a tree T with vertex set V such that every disk
Dk(v), v ∈ V , induces a subtree in T . Consider an arbitrary edge uv of G. Since
both disks Dk(v) and Dk(u) induce subtrees in T and k ≥ 1 (i.e., v ∈ Dk(u) as
well as u ∈ Dk(v)), vertices of Dk(v) ∪Dk(u) induce a subtree in T (the union
of subtrees induced by Dk(v) and Dk(u)). Hence, disk Dk(uv) of G centered at
any edge uv ∈ E induces a subtree in T , implying that the hypergraph DE,k(G)
of G is a hypertree.

It is well known [2] that the equality τ(E) = ν(E) holds for every hypertree.
Hence, by Lemma 17, we obtain the required equality. ��

For any hypertree E with underlying set V , a transversal with minimum size τ(E)
and a matching with maximum size ν(E) can be found in time O(|V |+

∑
e∈E |e|)

[21]. Thus, we conclude.

Corollary 19. Let G be a dually chordal graph and k ≥ 1 be an integer. Then,
a smallest distance-k vertex cover of G and a largest distance-(2k+1) matching
of G can be found in O(|V ||E|) time.

We notice now that any graph G can be transformed into a dually chordal
graph G′ by adding to G two new, adjacent to each other, vertices x and y and
making one of them, say vertex x, adjacent to all vertices of G (and leaving
y as a pendant vertex in G′). Using this transformation, it is easy to show
that the classical vertex cover problem (i.e., the distance-k vertex cover problem
with k = 0) is NP-hard for dually chordal graphs. It is enough to notice that
dvc0(G) = dvc0(G′) − 1. Adding a new vertex z to G′ and making it adjacent
to only y transforms dually chordal graph G′ into a dually chordal graph G′′.
It is easy to see also that dm2(G) = dm2(G′′) − 1, implying that the induced
matching problem (i.e., the distance-2 matching problem) is NP-hard on dually
chordal graphs.

Proposition 20. The vertex cover problem (i.e., the distance-k vertex cover
problem with k = 0) and the induced matching problem (i.e., the distance-2
matching problem) both are NP-hard on dually chordal graphs.

We can prove also a more general result.

Theorem 21. For every integer k ≥ 1, the distance-(2k) matching problem is
NP-hard on dually chordal graphs.

Proof. By Proposition 20, we can assume that k ≥ 2. Let G = (V,E) be a dually
chordal graph. We construct a new graph G+ by attaching to each vertex v ∈ V
an induced path Pv = (v = v0, v1, . . . , vk) of length k. Note that each path Pv

shares only vertex v with G and Pv ∩ Pu = ∅ if v �= u. Denote by ev the last

216 A.H. Busch, F.F. Dragan, and R. Sritharan

edge vk−1vk of Pv. Since adding a pendant vertex to a dually chordal graph
results in a dually chordal graph (see [4, 3]), the graph G+ is dually chordal.
It is enough to show now that α(G) = dm2k(G+), where α(G) is the size of a
largest independent set of G. It is known that the maximum independent set
problem is NP-hard on dually chordal graphs [3].

Let S ⊆ V be a largest independent set of G, i.e., |S| = α(G). Consider
two arbitrary vertices x and y from S. We have distG(x, y) ≥ 2. But then, by
construction of G+, distG+(ex, ey) ≥ k − 1 + 2 + k − 1 = 2k. Hence, α(G) ≤
dm2k(G+). Let now M be a set of edges of G+ forming a largest distance-(2k)
matching of G+. We can assume that M ⊆ {ev : v ∈ V } since for any edge e ∈M
there must exist a vertex v ∈ V such that Pv ∩ e �= ∅ and therefore e can be
replaced inM by ev. Now, if ex and ey (x �= y) are inM , then distG+(ex, ey) ≥ 2k
implies distG(x, y) ≥ 2. That is α(G) ≥ dm2k(G+). ��

Figure 1 shows the containment relationships between the classes of Weakly
Chordal, Chordal, Dually Chordal, Strongly Chordal and Interval Graphs. Since
doubly chordal graphs are both chordal and dually chordal, and all chordal
graphs are weakly chordal, we conclude this section with the following corollary
of Proposition 16 and Corollary 19.

Corollary 22. A maximum distance-k matching of a doubly chordal graph G
can be found in polynomial time for every integer k ≥ 1.

WC Ch DuC
Int

DbC

SC

Fig. 1. The containment relationships between the classes of Weakly Chordal (WC),

Chordal (Ch), Dually Chordal (DuC), Doubly Chordal (DbC), Strongly Chordal (SC)

and Interval (Int) Graphs

5 A Class of Hypergraphs

As we have seen in the previous section, the hypertrees were very useful in
obtaining the duality result between distance-k vertex cover and distance-(2k+1)
matching on dually chordal graphs. Recall that the dual hypertrees (called also
α–acyclic hypergraphs) are exactly the clique hypergraphs of the chordal graphs
(and the hypertrees are exactly the clique hypergraphs of dually chordal graphs).
The duality result obtained for weakly chordal graphs in Section 2 can also be
interpreted in terms of transversal and matching of a special class of hypergraphs.

We will need few more definitions from hypergraph theory. Let E be a hy-
pergraph with underlying vertex set X . The 2–section graph 2SEC(E) of the

New Min-Max Theorems for Weakly Chordal and Dually Chordal Graphs 217

hypergraph E has vertex set X and two distinct vertices are adjacent if and only
if they are contained in a common edge of E . A hypergraph E is conformal if
every clique C in 2SEC(E) is contained in an edge e ∈ E .

Three well–known properties of hypergraphs will be helpful (for these and
other properties cf. [2]).

(i) For a hypergraph E , the graphs L(E) and 2SEC(E∗) are isomorphic;
(ii) A hypergraph E is conformal if and only if its dual hypergraph E∗ has the

Helly property;
(iii) Taking the dual of a hypergraph twice is isomorphic to the hypergraph

itself.

Using these properties, α–acyclic hypergraphs can be equivalently defined as
conformal hypergraphs with chordal 2–section graphs.

We now define a hypergraph E (with underlying vertex set X) to be weakly
acyclic if 2SEC(E) is weakly chordal and E is conformal. In other words, weakly
acyclic hypergraphs are exactly the clique hypergraphs of weakly chordal graphs.
Note that since weakly chordal graphs are perfect, α(2SEC(E)) = θ(2SEC(E))
and, as a consequence, α(L(E∗)) = θ(L(E∗)). The latter implies that equality
ν(E∗) = τ(E∗) holds for every weakly acyclic hypergraph E . Indeed, α(L(E∗)) =
ν(E∗) holds for every hypergraph E∗, and θ(L(E∗)) = τ(E∗) holds for every
Helly hypergraph E∗ (equivalently, for every conformal hypergraph E) [2]. For
hypergraph E , τ(E∗) is equal to the minimum number of hyperedges needed to
cover entire underlying vertex setX of E , ν(E∗) is equal to the maximum number
of vertices S ⊆ X such that no two of them can be covered by an hyperedge
e ∈ E .

Let now G = (V,E) be a weakly chordal graph. Define a hypergraph E with
underlying vertex set E as follows (note that the vertices of E are exactly the
edges of G). Let E be the set of all maximal co-chordal subgraphs of G. Firstly,
2SEC(E) = G∗. Therefore, by Proposition 2, 2SEC(E) is weakly chordal. Fur-
ther, from Theorem 7, E is conformal. Therefore, E is a weakly acyclic hyper-
graph. Consequently, since coc(G) = τ(E∗), im(G) = ν(E∗) and ν(E∗) = τ(E∗),
we obtain coc(G) = im(G).

References

[1] Abuieda, A., Busch, A., Sritharan, R.: A min-max property of chordal bipartite

graphs with applications. Graphs Combin. 26(3), 301–313 (2010)

[2] Berge, C.: Hypergraphs. North-Holland Mathematical Library, vol. 45. North-

Holland Publishing Co., Amsterdam (1989); Combinatorics of finite sets, Trans-

lated from the French

[3] Brandstädt, A., Chepoi, V.D., Dragan, F.F.: The algorithmic use of hypertree

structure and maximum neighbourhood orderings. Discrete Appl. Math. 82(1-3),

43–77 (1998)

[4] Brandstädt, A., Dragan, F., Chepoi, V., Voloshin, V.: Dually chordal graphs.

SIAM J. Discrete Math. 11(3), 437–455 (1998) (electronic)

218 A.H. Busch, F.F. Dragan, and R. Sritharan

[5] Brandstädt, A., Dragan, F.F., Xiang, Y., Yan, C.: Generalized powers of graphs

and their algorithmic use. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS,

vol. 4059, pp. 423–434. Springer, Heidelberg (2006)

[6] Brandstädt, A., Van Bang, L., Spinrad, J.P.: Graph classes: a survey. SIAM Mono-

graphs on Discrete Mathematics and Applications. Society for Industrial and Ap-

plied Mathematics (SIAM), Philadelphia (1999)

[7] Brandstädt, A., Mosca, R.: On distance-3 matchings and induced matchings.

In: Lipshteyn, M., Levit, V.E., McConnell, R.M. (eds.) Graph Theory. LNCS,

vol. 5420, pp. 116–126. Springer, Heidelberg (2009)

[8] Cameron, K.: Induced matchings. Discrete Appl. Math. 24(1-3), 97–102 (1989);

First Montreal Conference on Combinatorics and Computer Science (1987)

[9] Cameron, K., Sritharan, R., Tang, Y.: Finding a maximum induced matching in

weakly chordal graphs. Discrete Math. 266(1-3), 133–142 (2003); The 18th British

Combinatorial Conference, Brighton (2001)

[10] Dirac, G.A.: On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25, 71–76

(1961)

[11] Dragan, F.F., Prisakar’, K.F., Chepŏi, V.D.: The location problem on graphs and

the Helly problem. Diskret. Mat. 4(4), 67–73 (1992)

[12] Eschen, E., Sritharan, R.: A characterization of some graph classes with no long

holes. J. Combin. Theory Ser. B 65(1), 156–162 (1995)

[13] Hayward, R., Hoàng, C., Maffray, F.: Optimizing weakly triangulated graphs.

Graphs Combin. 5(4), 339–349 (1989)

[14] Hayward, R.B., Spinrad, J., Sritharan, R.: Weakly chordal graph algorithms via

handles. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Dis-

crete Algorithms, San Francisco, CA, pp. 42–49. ACM, New York (2000)

[15] Kratochv́ıl, J., Tuza, Z.: Intersection dimensions of graph classes. Graphs Com-

bin. 10(2), 159–168 (1994)

[16] Ma, T.H., Spinrad, J.P.: On the 2-chain subgraph cover and related problems. J.

Algorithms 17(2), 251–268 (1994)

[17] McKee, T.A., Scheinerman, E.R.: On the chordality of a graph. J. Graph The-

ory 17(2), 221–232 (1993)

[18] Moscarini, M.: Doubly chordal graphs, Steiner trees, and connected domination.

Networks 23(1), 59–69 (1993)

[19] Spinrad, J., Sritharan, R.: Algorithms for weakly triangulated graphs. Discrete

Appl. Math. 59(2), 181–191 (1995)

[20] Szwarcfiter, J.L., Bornstein, C.F.: Clique graphs of chordal and path graphs. SIAM

J. Discrete Math. 7(2), 331–336 (1994)

[21] Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of

graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.

SIAM J. Comput. 13(3), 566–579 (1984)

[22] Woodroofe, R.: Personal Communication

[23] Yannakakis, M.: The complexity of the partial order dimension problem. SIAM

J. Algebraic Discrete Methods 3(3), 351–358 (1982)

[24] Yu, C.-W., Chen, G.-H., Ma, T.-H.: On the complexity of the k-chain subgraph

cover problem. Theoret. Comput. Sci. 205(1-2), 85–98 (1998)

A Simpler and More Efficient Algorithm for the
Next-to-Shortest Path Problem

Bang Ye Wu

National Chung Cheng University, ChiaYi, Taiwan 621, R.O.C.

bangye@cs.ccu.edu.tw

Abstract. Given an undirected graph G = (V, E) with positive edge

weights and two vertices s and t, the next-to-shortest path problem is to

find an st-path which length is minimum among all st-paths of lengths

strictly larger than the shortest path length. In this paper we give an

O(|V | log |V |+ |E|) time algorithm for this problem, which improves the

previous result of O(|V |2) time for sparse graphs.

Keywords: algorithm, shortest path, time complexity, next-to-shortest

path.

1 Introduction

Let G = (V,E,w) be an undirected graph, in which w is a positive edge weight.
For s, t ∈ V , an st-path is a simple path from s to t, in which “simple” means
there is no repeated vertex in the path. In this paper, a path always means a
simple path. The length of a path is the total weight of all edges in the path.
An st-path is a shortest st-path if its length is minimum among all possible st-
paths. In a positive weight graph, a shortest path is always simple. The shortest
path length from s to t is denoted by d(s, t) which is the length of their shortest
path. A next-to-shortest st-path is an st-path which length is minimum among
those the path lengths strictly larger than d(s, t). And the next-to-shortest path
problem is to find a next-to-shortest st-path for given G, s and t.

While the shortest path problem has been widely studied and efficient al-
gorithms have been proposed, the next-to-shortest path problem attracts re-
searchers just in the last decade. The problem was first studied by Lalgudi and
Papaefthymiou in the directed version with no restriction to positive edge weight
[6]. They showed that the problem is intractable for path and can be efficiently
solved for walk (allowing repeated vertices). Algorithms for the problem on spe-
cial graphs were also studied [2,8]. The first polynomial algorithm for undirected
positive version, i.e., the next-to-shortest path defined in this paper, was de-
veloped by Krasikov and Noble, and their algorithm takes O(n3m) time [5], in
which n and m are the number of vertices and edges, respectively. The time com-
plexity was then reduced to O(n3) by Li et al. [7]. Recently, Kao et al. further
improved the time complexity to O(n2) [9]. In this paper, we give an algorithm
with time complexity O(n log n + m), which is the same as the currently best

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 219–227, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

220 B.Y. Wu

algorithm for shortest path problem (when there is no other assumption to the
input graph). Since by a simple reduction we can show that the next-to-shortest
path problem is at least as hard as the shortest path problem, the time com-
plexity of our algorithm is near optimal. Furthermore, our algorithm is simpler
than the one in [9].

Let D be the union of all shortest st-paths. For convenience let D+ be the
digraph obtained from D by orientating all edge toward t. Apparently s and t
are in V (D+) and, for any x, y ∈ V (D+), any (directed) xy-path in D+ is a
shortest xy-path (undirected) in G. Since the optimal path either contains an
edge in E −E(D) or not, we divide the problem into two subproblems, and the
better of the solutions of the two subproblems is the optimal path. The first
subproblem looks for a shortest path using at least one edge not in E(D), which
is named as the case of outward path in [9]; and the second subproblem looks
for a shortest path consisting of only edges in E(D) and with length larger than
d(s, t), which is named as the case of backward path in the previous paper. Since
any st-path in D+ has length d(s, t), the optimal path of the second subproblem
uses at least one edge with reverse direction. By the optimality the following two
observations can be easily shown.

Claim. The optimal path of the first subproblem contains exactly one subpath
in G−, in which G− = (V,E − E(D), w).

Claim. The optimal path of the second subproblem contains exactly one subpath
in reverse direction.

In the second subproblem we treat an undirected path as a directed one for the
convenience of explanation. The reason for the two observations is the same: If
there are two non-consecutive such subpaths, we can replace one of them with a
subpath in D+ to obtain a better one. The two observations were also shown in
the previous paper and they are the basis of the algorithms in the previous and
this papers. Following the previous names, we name the optimal paths of the first
and the second subproblems as “optimal outward path” (optimal path with a
outward subpath) and “optimal backward path” (optimal path with a backward
subpath), respectively. Due to [9], the first subproblem can be solved in O(m+
n logn) time. But, for the second subproblem, they only gave an O(n2) time
algorithm. The contribution of this paper is an O(m + n logn) time algorithm
for the second subproblem, which also reduces the total time complexity of the
whole algorithm.

In the remaining paragraphs, we consider the shortest path containing a back-
ward subpath. In this case, only vertices and edges in D+ need considering, and
any vertex is assumed in D+. Since the numbers of vertices and edges of D+

are bounded by n and m respectively, we shall represent the time complexities
as functions of n and m. We shall first derive some properties and the objective
function in Section 2, and then show the algorithm in Section 3. The correctness
and time complexity are given in Sections 4, and concluding remarks are given
in Section 5.

Next-to-Shortest Path 221

2 The Objective Function and the Constraints

Let dH(x, y) denote the shortest path length from x to y in a graph H . For
convenience, d(x, y) = dG(x, y). Let P ∗

2 denote an optimal backward path. By
the claim in the introduction, P ∗

2 has the form Q1 ◦ Q−1
2 ◦ Q3, in which “◦”

means concatenation, Qi are paths in D+ and Q−1
2 means the reverse path of

Q2. Since the optimal path is required to be simple, the three subpaths must be
simple and internally disjoint, in which two paths are internally disjoint if they
have no common vertex except for their endpoints. Therefore our goal is to find
x, y ∈ V (D) minimizing

d(s, x) + d(x, y) + d(y, t) (1)

subject to that there are an sx-path, a yx-path and a yt-path in D+ which are
mutually internally disjoint. If x and y satisfy the constraint, we say (x, y) is
valid. Since D+ is a directed acyclic graph (DAG), we can use the terms such as
parent, child, ancestor and descendant as in a rooted tree. Also, for convenience,
we abuse notation of the distances in D and in D+, as long as an endpoint is
an ancestor of the other endpoint, i.e., dD+(x, y) = d(x, y) if x is an ancestor
of y. Since all paths in D+ are shortest, we have d(y, t) = d(y, x) + d(x, t)
and d(s, x) + d(x, t) = d(s, t), and the objective function can be simplified to
d(s, t) + 2d(x, y) and also equivalent to d(x, y) since d(s, t) is independent on x
and y.

To efficiently determine the constraint, a good idea of immediate dominator
is used in [9]. We follow their idea. A vertex p ∈ V (D+) is an s-dominator of
another vertex x iff all paths from s to x contain p. An s-dominator p is an s-
immediate-dominator of x, denoted by Is(x), if it is the one closest to x, i.e., any
other s-dominator of x is an s-dominator of p. We remind that, in D+, s is the
unique vertex of in-degree 0 and t is the unique vertex of out-degree 0. Also, for
any vertex x ∈ V (D+), s is an ancestor of x and t is a descendant of x. Apparently
any vertex has a unique s-immediate-dominator and all s-dominators, as well as
the s-immediate-dominator, are ancestors of the vertex. Similarly we define the
t-dominator, i.e., c is a t-dominator of x iff any shortest xt-path contains c, and
It(x) is the closest t-dominator of x. Finding the immediate dominator is one of
the most fundamental problems in the area of global flow analysis and program
optimization. The first algorithm for the problem was proposed in 1969, and
then had been improved several times. A linear time algorithm for finding the
immediate dominator for each vertex was given in [1]. For details of the problem,
see [1].

We define a binary relation on V (D+): x ≺ y iff x is an ancestor of y. In
our definition, a vertex is not an ancestor of itself. Also define x (y iff x is an
ancestor of y or x = y. We derive some properties used in this paper.

Lemma 1. For any vertices x and y in D+ and y ≺ x, either Is(x) (y or
y ≺ Is(x). Similarly either It(y) (x or x ≺ It(y).

222 B.Y. Wu

Proof. We show the first statement and the second statement is similar. If neither
of the two conditions holds, there is an sx-path passing through y and avoiding
Is(x), which contradicts the definition of dominator. ��

Let ds(v) = d(s, v) for any v ∈ V (D+). The following corollary comes from
Lemma 1.

Corollary 1. If y ≺ x and ds(Is(x)) < ds(y), then Is(x) ≺ y. Similarly, if
y ≺ x and ds(It(y)) > ds(x), then x ≺ It(y).

For any vertex x, let C(x) = {v|Is(x) ≺ v ≺ x}. The vertices in C(x) form a
closed region in the sense that no path can enter this region without passing
through Is(x), and it is easy to see that, for any vertex x �= s, C(x) = ∅ iff x has
only one parent. The most important thing is that, as shown later, the vertices
which are valid for x must be in C(x).

Lemma 2. For any y ∈ C(x), Is(x) (Is(y).

Proof. Since Is(x) ≺ y, we have Is(x) (Is(y) or Is(y) (Is(x) by Lemma 1. By
the definition of Is(x), the in-neighbors of C(x) are contained in C(x)∪{Is(x)}.
Therefore it is impossible that Is(y) ≺ Is(x). ��

Lemma 3. If y ∈ C(x), there are two internally disjoint paths from Is(x), and
y respectively, to x.

Proof. Let p = Is(x). By the definition of immediate dominator, no vertex in
C(x) is a px-cut and therefore there are two internally disjoint px-paths, said P1
and P2. If y is on one of them, we have done. Otherwise, let P3 be any yx-path
and q be the first vertex on P3 and also in V (P1)∪V (P2). W.l.o.g. let q ∈ V (P1).
Then, the subpath from y to q of P3 concatenating the subpath from q to x of
P1 is a yx-path disjoint to P2. ��

Next we derive the objective function and its constraints.

Lemma 4. If the pair (x, y) is valid, y ∈ C(x) and x ≺ It(y).

Proof. By definition, y ≺ x. By Lemma 1, either Is(x) ≺ y or y (Is(x).
Apparently y cannot be an s-dominator of x. If y (Is(x), by the definition
of immediate dominator, any sx-path and yx-path cannot be disjoint. Therefore
we have Is(x) ≺ y. The statement x ≺ It(y) can be shown similarly. ��

Define

g(x, y) =
{
d(y, x) if y ∈ C(x) and x ≺ It(y)
∞ otherwise (2)

and let g∗(x) = miny g(x, y).

Lemma 5. If g∗(x) �=∞ and y∗ = arg miny g(x, y), then (x, y∗) is valid.

Next-to-Shortest Path 223

Proof. By Lemma 3, since y∗ ∈ C(x), there are two disjoint paths from Is(x),
and y∗ respectively, to x. Therefore we have a simple path, said Q1, from s,
passing through Is(x) to x, and then from x to y∗ by backward edges. Since
x ≺ It(y∗), there must be a path, said Q2, from y∗ to t and avoiding x. We
shall show that Q1 and Q2 are disjoint, which completes the proof. Suppose to
the contrary that p �= y∗ is the last common vertex of Q1 and Q2, i.e., any
other common vertex precedes p in Q2. Since p ∈ V (Q2), we have y∗ ≺ p, and
p ≺ x because p ∈ V (Q1). So, we have p ∈ C(x). By the definition of Q2 and
p ≺ x ≺ It(y∗), there are two disjoint paths from p to It(y∗), and thus x ≺ It(p).
Therefore g(x, p) �= ∞ and d(p, x) < d(y∗, x), a contradiction to the optimality
of y∗. That is, Q1 and Q2 must be disjoint. ��

By Lemmas 4 and 5, we can rewrite our objective function and constraints.

OPT2 = min
x

min
y∈C(x)

{ds(x)− ds(y)|x ≺ It(y)} (3)

Or, by Corollary 1, it can be also written as

OPT2 = min
x

min
y∈C(x)

{ds(x) − ds(y)|ds(x) < ds(It(y))} (4)

The convenience of the latter form is that we can easily determine the ancestor
relation by simply comparing their ds values. The above formula provides us a
way to find the optimal backward path: for each vertex x, checking each vertex
y ∈ C(x). But the naive method takes at least Θ(n2) time in worst case since
|C(x)| may be up to Ω(n).

3 The Efficient Algorithm

We say “the pair (x, y) is feasible” or “y is feasible for x” if g(x, y) �= ∞.
We also say “x is feasible” if there exists y which is feasible for x. Note that a
feasible (x, y) may be not valid. However, our algorithm find the (x, y) minimizing
function g, and by Lemma 5 it must be valid.

Let A(x) be the set of parents of x. Our algorithm basically finds g∗(x) for
each x according to the following formula:

g∗(x) = min
p∈A(x)

min
y�p

g(x, y), (5)

and OPT2 = minx{g∗(x)}. We denote by F the set of all the feasible vertices,
i.e.,

F = {x|g∗(x) �=∞}

To make the algorithm efficient, we derive some properties to avoid some
non-necessary search.

Lemma 6. If y ≺ x and y ∈ F , then minu≺y{g(x, u)} > g∗(y).

224 B.Y. Wu

Proof. If y (Is(x), minu≺y{g(x, u)} = ∞ and the result holds since y ∈ F .
We only need to consider the remaining case that Is(x) ≺ y. Let u ≺ y and
g(x, u) �=∞. By definition, u ∈ C(x) and x ≺ It(u). Since y ∈ C(x), by Lemma 2,
Is(x) (Is(y). If Is(y) ≺ u, u is also feasible for y and d(u, y) < d(u, x) =
d(u, y) + d(y, x). Otherwise d(u, x) > d(Is(y), y). Since y ∈ F , by definition
g∗(y) < d(Is(y), y). ��

Lemma 7. If y ≺ x and y /∈ F , minu≺y{g(x, u)} = minu�Is(y){g(x, u)}.

Proof. Since y /∈ F , for any vertex v ∈ C(y), i.e., Is(y) ≺ v ≺ y, we have
It(v) (y. Since y ≺ x, It(v) ≺ x and v cannot be feasible for x. Therefore if
u ≺ y and g(x, u) �=∞, we have u (Is(y). ��

Lemma 8. Let vj and vi be two descendants of y and ds(vj) ≤ ds(vi). If
g∗(vj) �=∞, minu≺y{g(vi, u)} ≥ g∗(vj).

Proof. If Is(vj) ≺ u ≺ y and g(vi, u) �= ∞, then ds(It(u)) > ds(vi) ≥ ds(vj).
Since u is also an ancestor of vj , vj ≺ It(u) by Corollary 1. Therefore g(vi, u) =
ds(vi)−ds(u) ≥ ds(vj)−ds(u) ≥ g∗(vj). For otherwise there is no such u, and we
have minx≺y{g(vi, x)} ≥ ds(vi)− ds(Is(vj)) ≥ ds(vj)− ds(Is(vj)) > g∗(vj). ��

Corollary 2. Let vj and vi be two vertices and ds(vj) ≤ ds(vi). If y ∈ C(vj) ∩
C(vi) and vj is not an ancestor of vi, then g∗(vj) �=∞ and minu≺y{g(vi, u)} ≥
g∗(vj).

Proof. Since y ∈ C(vj) ∩ C(vi), y is a common ancestor of vj and vi. Let y′ be
a lowest common ancestor of them. Since vj is not an ancestor of vi, we have
y′ �= vj and there is a path from y′ to vi avoiding vj . By definition vj ≺ It(y′)
and g∗(vj) �=∞. The inequality follows directly from Lemma 8. ��

Our algorithm for the optimal backward path is as follows.

Algorithm Bk N2SP
Input: The digraph D+.
Output: The length of the optimal backward path.
1: find ds(v) for each v and label the vertices such that

ds(vi) ≤ ds(vi+1) ∀i;
2: find Is(v) and It(v) for each v;
3: Best←∞;

color(v)←white, ∀v ∈ V (D+);
color(s)← black;

4: for i← 2 to n− 1 do
5: for each parent p of vi do
6: y ← p;
7: while Is(vi) ≺ y and g(vi, y) =∞ and color(y) = white do
8: color(y)← black; y ← Is(y);
9: if g(vi, y) �=∞ then

Next-to-Shortest Path 225

10: Best← min{Best, ds(vi)− ds(y)};
color(vi)← black; color(y)← black;

11: end for next parent;
12: end for next i;
13: output d(s, t) + 2×Best

In the algorithm, each vertex v is associated with a color, which is white
initially and may be set to black as the algorithm runs. The algorithm begins
with a preprocessing stage at Steps 1–3. We first find and sort the distances from
s to all the other vertices. Let V (D+) = {v1, v2 . . .}, in which ds(vi) ≤ ds(vi+1)
for any i. Note that it is a topological order since D+ is the union of all shortest
st-paths and all edges have positive weights. Then we find the s- and t-immediate
dominators for each vertex. All vertices are assigned white color except that s is
colored black. The variable Best is used to keep the objective value of the best
solution found so far. In the main loop from Steps 4 to 12, we deal with all the
vertices one by one. In the i-th iteration, we try to find any feasible y for vi from
each parent of vi (Steps 5–11).

4 Correctness and Time Complexity

We shall show the correctness of the algorithm by examining the feasibility and
the optimality.

Feasibility. The algorithm finds solutions only at Step 10. By Lemma 5, the
final solution is feasible as long as its minimality can be ensured.

Optimality. Apparently neither s nor t can be a feasible vertex. By (5) what
we need to show is that the solutions we skipped are really not better. By (3), we
should check all y ∈ C(vi) for each vi. There are two kinds of solutions skipped
by the algorithm.

– Type 1: The first kind of possible solutions ignored by the algorithm is at
Step 8, where we look for feasible solution g(vi, y) for any y (p but do not
try all such y. Instead, we jump to Is(y) after checking y and skip the vertices
in C(y). If y is feasible, by Lemma 6, we do not need to check g(vi, u) for
any ancestor u of y; and if y is not feasible, by Lemma 7, ignoring (vi, u) for
any u ∈ C(y) does not affect the optimality.

– Type 2: The second kind of skipped solutions is due to the conditions of the
while-loop at Step 7. The while-loop stops when y (Is(vi) or g(vi, y) �=∞ or
color(y) = black. Except for the first condition, the loop may terminate be-
fore reaching Is(vi). For the second condition, if g(vi, y) �=∞, the optimality
is ensured by Lemma 6; and we divide the third condition color(y) = black
into two sub-cases according to when it turns black.

• If y is colored black in this iteration, y must have been checked at this
iteration from another parent of vi. For the same reason of Type 1, it is
also not necessary to check any u ≺ y.

226 B.Y. Wu

• Otherwise y is colored black before the i-th iteration, and this implies
that y ∈ C(vj) for some j < i. If vj is not an ancestor of vi, we have that
vj must be feasible and minu≺y{g(vi, u)} ≥ g∗(vj) by Corollary 2. The
remaining case is that vj ≺ vi and y ∈ C(vj). Let (y1 = p, y2, . . . , yk =
y) be the sequence of vertices checked at the while-loop. Since yq+1 =
Is(yq) for 1 ≤ q ≤ k − 1 and Is(vj) ≺ yk ≺ vj , we have that vj does
not appear in the sequence. Hence, there exists yq which is in C(vj)
and has a path to vi avoiding vj . Therefore vj is feasible, and then
similar to Corollary 2, it is not necessary to check any ancestor of y for
vi.

By the above explanation, we conclude the correctness of the algorithm.

Lemma 9. Algorithm Bk N2SP computes the optimal backward path correctly.

Time complexity. We shall show that the time complexity of our algorithm
is O(n logn + m). The algorithm assumes that D+ is the input. It does not
matter since D+ can be constructed in O(n logn + m) time by the Dijkstra’s
algorithm using a Fibonacci Heap [4]. Step 1 takes O(n log n) time for sorting
and Step 2 takes O(m) time [1]. Step 3 takes O(n) time. The inner loop (Steps
6–10) is entered O(m) times since the total number of parents of all vertices is
bounded by the number of edges. Since y is always an ancestor of vi, the condi-
tions “Is(vi) ≺ y” and “g(vi, y) =∞”, as well as to compute g(vi, y), can all be
done in constant time by checking the ds values as in (4). The remaining ques-
tion is how many times Step 8 is executed. By the condition of the while loop,
only white vertices will be colored black at Step 8, and therefore it is executed
at most n times in total.

Lemma 10. The time complexity of the algorithm Bk N2SP is O(m+ n logn).

Summarizing this section and together with the result of the outward path in
[9], we obtain the following theorem.

Theorem 1. The next-to-shortest path problem on undirected graphs with pos-
itive edge weights can be solved in O(n log n+m) time.

5 Concluding Remarks

It is easy to show that the next-to-shortest path problem is at least as hard as
the shortest path problem. Given an instance of the shortest path problem, we
add a dummy edge between s and t with sufficient small weight. Then if there
is an algorithm for the next-to-shortest path problem, we can solve the shortest
path problem with the same time complexity since the above reduction is linear
time. Interesting future works include the directed version and the undirected
case with zero or negative edge weights.

Next-to-Shortest Path 227

Acknowledgment

The author would like to thank Y.-L. Wang and the anonymous referees for
their helpful comments. This work was supported in part by NSC 97-2221-E-194-
064-MY3 and NSC 98-2221-E-194-027-MY3 from the National Science Council,
Taiwan.

References

1. Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time.

SIAM J. Comput. 28(6), 2117–2132 (1999)

2. Barman, S.C., Mondal, S., Pal, M.: An efficient algorithm to find next-to-shortest

path on trapezoid graphs. Adv. Appl. Math. Anal. 2, 97–107 (2007)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.

MIT Press and McGraw-Hill (2001)

4. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network

optimization algorithms. J. ACM 34, 209–221 (1987)

5. Krasiko, I., Noble, S.D.: Finding next-to-shortest paths in a graph. Inf. Process.

Lett. 92, 117–119 (2004)

6. Lalgudi, K.N., Papaefthymiou, M.C.: Computing strictly-second shortest paths. Inf.

Process. Lett. 63, 177–181 (1997)

7. Li, S., Sun, G., Chen, G.: Improved algorithm for finding next-to-shortest paths.

Inf. Process. Lett. 99, 192–194 (2006)

8. Mondal, S., Pal, M.: A sequential algorithm to solve next-to-shortest path problem

on circular-arc graphs. J. Phys. Sci. 10, 201–217 (2006)

9. Kao, K.-H., Chang, J.-M., Wang, Y.-L., Juan, J.S.-T.: A quadratic algorithm

for finding next-to-shortest paths in graphs. Algorithmica (2010) (in press),

doi:10.1007/s00453-010-9402-4

Fast Edge-Searching and Related Problems

Boting Yang

Department of Computer Science,

University of Regina

boting@cs.uregina.ca

Abstract. Given a graph G = (V, E) in which a fugitive hides on ver-

tices or along edges, graph searching problems are usually to find the

minimum number of searchers required to capture the fugitive. In this

paper, we consider the problem of finding the minimum number of steps

to capture the fugitive. We introduce the fast edge-searching problem

in the edge search model, which is the problem of finding the minimum

number of steps (called the fast edge-search time) to capture the fugi-

tive. We establish relations between the fast edge-search time and the

fast search number. While the family of graphs whose fast search num-

ber is at most k is not minor-closed for any positive integer k ≥ 2, we

show that the family of graphs whose fast edge-search time is at most k
is minor-closed. We establish relations between the fast (edge-)searching

and the node searching. These relations allow us to transform the prob-

lem of computing node search numbers to the problem of computing

fast edge-search time or fast search numbers. Using these relations, we

prove that the problem of deciding, given a graph G and an integer k,

whether the fast (edge-)search number of G is less than or equal to k is

NP-complete; and it remains NP-complete for Eulerian graphs. We also

prove that the problem of determining whether the fast (edge-)search

number of G is a half of the number of odd vertices in G is NP-complete;

and it remains NP-complete for planar graphs with maximum degree

4. We present a linear time approximation algorithm for the fast edge-

search time that always delivers solutions of at most (1 +
|V |−1
|E|+1

) times

the optimal value. This algorithm also gives us a tight upper bound on

the fast search number of the graph. We also show a lower bound on the

fast search number using the minimum degree and the number of odd

vertices.

1 Introduction

Given a graph in which a fugitive hides on vertices or along edges, graph search-
ing problems are usually to find the minimum number of searchers required
to capture the fugitive. The edge searching problem and the node searching
problem are two major graph searching problems. The edge searching problem
was introduced by Megiddo et al. [10]. They showed that determining the edge
search number of a graph is NP-complete. They also gave a linear time algorithm
to compute the edge search number of a tree. The node searching problem was

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 228–242, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Fast Edge-Searching and Related Problems 229

introduced by Kirousis and Papadimitriou [8]. They showed that the node search
number is equal to the pathwidth plus one and that the edge search number and
node search number differ by at most one.

Let G = (V,E) be a graph with vertex set V and edge set E. In the edge
search model, initially, G contains no searchers but G contains one fugitive who
hides on vertices or along edges. The fugitive is invisible to searchers, and he
can move at a great speed at any time from one vertex to another vertex along a
searcher-free path between the two vertices. There are three types of actions for
searchers in each step, i.e., placing a searcher on a vertex, removing a searcher
from a vertex, and sliding a searcher along an edge from one endpoint to the
other. An edge is cleared only by a sliding action. An edge the fugitive could
be on is said to be contaminated, and an edge the fugitive cannot be on is said
to be cleared. A contaminated edge uv can be cleared in one of two ways by
one sliding action: (1) sliding a searcher from u to v along uv while at least one
searcher is located on u, and (2) sliding a searcher from u to v along uv while
all edges incident on u except uv are already cleared. An edge search strategy
in a k-step search is a sequence of k actions such that the final action leaves all
edges of G cleared. The graph G is cleared if all of its edges are cleared. The
minimum number of searchers needed to clear G in the edge search model is the
edge search number of G, denoted by es(G). In this paper, we introduce a new
searching problem in the edge search model, called fast edge-searching, which is
the problem of finding the minimum number of steps (or equivalently, actions) to
capture the fugitive in the edge search model. In the fast edge-searching problem,
the minimum number of steps required to clear G is the fast edge-search time of
G, denoted by fet(G), and the minimum number of searchers required so that
G can be cleared in fet(G) steps is the fast edge-search number of G, denoted
by fen(G). A fast edge-search strategy that uses fsn(G) searchers to clear G is
called an optimal fast edge-search strategy.

The motivation to consider the fast edge-searching problem is that, in some
real-life scenarios, the cost of a searcher may be relatively low in comparison to
the cost of allowing a fugitive to be free for a long period of time. For example,
if a dangerous fugitive hiding along streets in an area, policemen always want to
capture the fugitive as soon as possible.

The fast edge-searching problem has a strong connection with the fast search-
ing problem, which was first introduced by Dyer et al. [6]. The fast search model
has the same setting as the edge search model except that every edge is traversed
exactly once by a searcher and searchers cannot be removed. The minimum num-
ber of searchers required to clear G in the fast search model is the fast search
number of G, denoted by fsn(G). A fast search strategy in a k-step fast search is
a sequence of k actions such that the final action leaves all edges of G cleared.
Notice that this definition is slightly different from the one used in [6] 1. A fast
search strategy that uses fsn(G) searchers to clear G is called an optimal fast
search strategy.

1 In [6], a fast search strategy for graph G is a sequence of |E(G)| sliding actions that

clear G.

230 B. Yang

Note that the goal of the fast edge-searching problem is to find the minimum
number of steps to capture the fugitive in the edge search model, while the goal
of the fast searching problem is to find the minimum number of searchers to
capture the fugitive in the fast search model.

The fast searching problem has a close relation with the graph brushing prob-
lem [9] and the balanced vertex-ordering problem [3]. For any graph, the brush
number is equal to the total imbalance of an optimal vertex-ordering. For some
graphs, such as trees, the fast search number is equal to the brush number. But
for some other graphs, the gap between the fast search number and the brush
number can be arbitrarily large. For example, for a complete graph Kn with n
(n ≥ 4) vertices, the fast search number is n, and the brush number is n2/4 if n
is even, and (n2 − 1)/4 otherwise.

Bonato et al. [4] introduced the capture time on cop-win graphs in the Cops
and Robber game. While the capture time of a cop-win graph on n vertices is
bounded above by n−3, half the number of vertices is sufficient for a large class
of graphs including chordal graphs.

Throughout this paper, all graphs and multigraphs have no loops. We use
G = (V,E) to denote a graph with vertex set V and edge set E, and we also use
V (G) and E(G) to denote the vertex set and edge set of G respectively. We use
uv to denote an edge with endpoints u and v.

For a graph G = (V,E), the degree of a vertex v ∈ V , denoted by degG(v),
is the number of edges incident on v. A vertex is odd when its degree is odd.
Similarly, a vertex is even when its degree is even. Let Vodd(G) be the set of
all odd vertices in G, and Veven(G) = V \ Vodd(G). For a vertex v ∈ V , the set
{u : uv ∈ E} is the neighborhood of v, denoted as NG(v). In the case with no
ambiguity, we use deg(v) and N(v) without subscripts. Let δ(G) = min{|N(v)| :
v ∈ V (G)}. For a subset V ′ ⊆ V , G[V ′] denotes the subgraph induced by V ′.

A component of a graph G is a maximal connected subgraph of G. A cut-edge
or cut-vertex of a graph is an edge or vertex whose deletion increases the number
of components. A block of a graph G is a maximal connected subgraph of G that
has no cut-vertex. If G itself is connected and has no cut-vertex, then G is a
block. It is easy to see that an edge of G is a block if and only if it is a cut-edge. If
a block has at least 3 vertices, then it is 2-connected. Thus, the blocks of a graph
are its isolated vertices, its cut-edges, and its maximal 2-connected subgraphs.
The block graph of G is a graph T in which each vertex represents a block of
G and two vertices are connected by an edge of T if the two corresponding
blocks share a vertex of G. The block graph must be a forest. A block of G that
corresponds to a vertex of degree one in T is called a leaf block. Note that every
leaf block has exactly one cut-vertex.

2 Fast Edge-Searching vs. Fast Searching

In this section, we consider the relationship between the fast edge-searching in
the edge search model and the fast searching in the fast search model.

Fast Edge-Searching and Related Problems 231

Theorem 1. For any graph G = (V,E), fet(G) = fsn(G) + |E|.

Proof. Note that a fast search strategy can be considered as an edge search
strategy. Since a fast search strategy consists of fsn(G) placing actions and |E|
sliding actions, we have fet(G) ≤ fsn(G) + |E|. Recall that the fast edge-search
time is the minimum number of actions needed to clear G in the edge search
model. If an edge search strategy of G containing removing actions, we can delete
all removing actions and the remaining actions still form a valid edge search
strategy with fewer actions. If an edge search strategy of G containing sliding
actions that slide a searcher from u to v along a cleared path between them, we
can replace these actions by placing a searcher on vertex v. The resulted strategy
is an edge search strategy that may contain fewer actions. So, in an optimal fast
edge-search strategy, removing actions are not contained, and traversing along a
cleared path is also not necessary. Thus, we can always convert a fast edge-search
strategy to a fast search strategy. Hence, fsn(G) ≤ fet(G)− |E|.

Fig. 1. A graph H with 3n + 6 vertices and 4n + 5 edges, where n = 4

Corollary 1. For any graph G, fen(G) ≤ fsn(G).

The difference between fen(G) and fsn(G) can be large. As illustrated in Figure 1,
let H be a graph with 3n+ 6 (n > 1) vertices and 4n+ 5 edges. Note that the
fast search number of a graph is at least half of the number of odd vertices in the
graph [6]. Since H has 2n+6 odd vertices, we know that fsn(H) ≥ n+3. In fact,
we can clear H using n+3 searchers by a fast search strategy. But we can clear H
using 2 searchers by a fast edge-search strategy. Thus the ratio fsn(H)/fen(H) =
(n + 3)/2 can be arbitrarily large. We have the following relation between the
fast edge-search number and the fast search number.

Theorem 2. For any graph G, let Ĝ be a graph obtained from G by replacing
each edge of G by a path of length 2. Then, fsn(G) = fen(Ĝ).

Proof. Because every optimal fast search strategy of G can be converted to a
fast edge-search strategy of Ĝ, we have fen(Ĝ) ≤ fsn(G). We now show that
fsn(G) ≤ fen(Ĝ). Let S be an optimal fast edge-search strategy of Ĝ. For any
edge uv ∈ E(G) and its corresponding path uu′v in Ĝ, the following two cases
cannot happen in S: (1) if a searcher slides from u to v along uu′v and then
back from v to u along vu′u, then these 4 sliding actions can be replaced by
3 actions, that is, placing a searcher on v and sliding the searcher from v to u
along vu′u; and (2) if a searcher slides from u to u′ and another searcher slides
from v to u′ and then one searcher slides from u′ to v and the other slides from

232 B. Yang

u′ to v, then these 4 sliding actions can be replaced by 3 actions as in case (1).
Because the above two cases cannot happen in S, we can easily convert S to a
fast edge-search strategy of G. Thus fsn(G) ≤ fen(Ĝ).

Corollary 2. Let G be a graph such that for every vertex v with deg(v) �= 2, all
neighbors of v have degree 2. Then, fsn(G) = fen(G).

From [6], we know that the family of graphs {G : fsn(G) ≤ k} is not minor-closed
for any positive integer k ≥ 2. But for the fast edge-searching, we can show that
the family of graphs {G : fet(G) ≤ k} is minor-closed.

Theorem 3. Given a graph G, if H is a minor of G, then fet(H) ≤ fet(G).

3 Node Searching vs. Fast (Edge-)Searching

In this section, we establish relations between the node search number and the
fast (edge-)search number. Using these relations, we can prove that both fast
edge-search problem and fast search problem are NP-hard. In the node search
model [8], there are only two types of actions for searchers: placing and removing.
An edge is cleared if both endpoints are occupied by searchers. We use placeX(u)
to denote the action of placing a searcher on vertex u in the strategy X , and use
removeX(u) to denote the action of removing a searcher from vertex u in the
strategy X . For a graph G, the minimum number of searchers needed to clear
G in the node search model is the node search number of G, denoted by ns(G).
In the fast search model, we use placeY (u) to denote the action of placing a
searcher on vertex u in the strategy Y , and use slideY (u, v) to denote the action
of sliding a searcher from u to v along edge uv in the strategy Y . In the case with
no ambiguity, we use place(u), remove(u) and slide(u, v) without subscripts.

For a path P of length at least 1, we know that ns(P) = 2 and fsn(P) =
fen(P) = 1. For any graph G, it is easy to see that ns(G) ≤ fsn(G) + 1 and
ns(G) ≤ fen(G) + 1. The gap between the node search number and the fast
(edge-)search number can be arbitrarily large for some graphs. For example, for
a complete bipartite graph K1,n, we have fsn(K1,n) = fen(K1,n) =

⌈
n
2

⌉
whereas

ns(K1,n) = 2.
From [8], we know that node search strategies can be standardized as follows.

Lemma 1. [8] For any graph G, there always exists a monotonic node search
strategy satisfying the following conditions:

(i) it clears G using ns(G) searchers;
(ii) every vertex is visited exactly once by one searcher;
(iii) every searcher is removed immediately after all the edges incident on it

have been cleared (ties are broken arbitrarily); and
(iv) a searcher is removed from a vertex only when all the edges incident on

it are cleared.

An optimal node search strategy satisfying the properties in Lemma 1 is called
a standard node search strategy. For a graph with n vertices, any standard node

Fast Edge-Searching and Related Problems 233

search strategy is monotonic and has 2n actions. It is easy to see the first action
is placing and the last action is removing.

For a graph G, let G′ be a graph obtained from G by adding a vertex a and
connecting it to each vertex of G. Let A′

G be a multigraph obtained from G′ by
replacing each edge with 4 parallel edges. Let AG be a graph obtained from A′

G

by replacing each edge of A′
G with a path of length 2. In graphs G′, A′

G and AG,
the vertex a is called apex. It is easy to see that fsn(A′

G) = fsn(AG).

Lemma 2. For a complete graph Kn with n ≥ 2, fsn(AKn) = fen(AKn) = n+2.

We have the following relation between the node search number of G and the
fast search number of AG.

Lemma 3. For a graph G and its corresponding graph AG described above,
fsn(AG) ≤ ns(G) + 2.

Proof. Since fsn(A′
G) = fsn(AG), we will show that fsn(A′

G) ≤ ns(G) + 2. Let
ns(G) = k and X = (X1, . . . , X2n) be a standard node search strategy, where
n is the number of vertices in G. Each Xi is one of the two actions: placing
and removing. There is no searcher on G before X1 and X1 is a placing-action.
Let Ei(X), 1 ≤ i ≤ 2n, be the set of cleared edges just after Xi and E0(X) be
the set of cleared edges just before X1. We will show that fsn(A′

G) ≤ k + 2 by
constructing a fast search strategy Y that uses k + 2 searchers to clear A′

G. For
each action Xi, 1 ≤ i ≤ 2n, we use a sequence of actions, denoted as y(Xi),
to simulate the action Xi. So Y is the concatenation of all y(Xi) and can be
expressed as (y0, y(X1), . . . , y(X2n)), where y0 is a sequence of k+2 actions that
place k+ 2 searchers on the apex a and each y(Xi), 1 ≤ i ≤ 2n, is a sequence of
sliding actions. Let Ei(Y) be the set of all cleared edges by strategy Y just after
y(Xi) and E0(Y) be the set of cleared edges just after y0. Note that Ei(Y) is not
a multiset, that is, a multiple edge pq appears in Ei(Y) only when all parallel
edges between p and q are cleared. Let Ea be a set of all edges incident on a.

We now construct Y from X inductively such that Ei(X) = Ei(Y) \ Ea for
each i satisfying 1 ≤ i ≤ 2n. It is easy to see that E0(X) = E0(Y) = ∅.
Initially, if the action X1 is placeX(u), then let y(X1) = (slideY (a, u)). Thus,
E1(X) = E1(Y) \ Ea = ∅.

Suppose that Ej−1(X) = Ej−1(Y) \ Ea and the set of vertices in G occupied
by searchers just after Xj−1 is equal to the set of vertices in A′

G − a occupied
by searchers just after the last action of y(Xj−1). We now consider Ej(X) and
Ej(Y) \ Ea. There are two cases regarding the action of Xj .

Case 1. Xj = placeX(v). If Ej(X) \ Ej−1(X) = ∅, then no edge is cleared
by Xj, and no recontamination happens. Thus we set y(Xj) = (slideY (a, v)).
It is easy to see that Ej(X) = Ej−1(X) = Ej−1(Y) \ Ea = Ej(Y) \ Ea. If
Ej(X) \ Ej−1(X) �= ∅, the graph Gj formed by the edges of Ej(X) \ Ej−1(X)
is a star with the center v. It is easy to see that each vertex of Gj − v is
occupied by a searcher just before Xj. Let V (Gj − v) = {u1, u2, . . . , um}.
We can construct y(Xj) = ((slideY (a, v))2, (slideY (v, u1), slideY (u1, v))2, . . . ,
(slideY (v, um), slideY (um, v))2, (slideY (v, a))2), where (slideY (a, v))2 means that

234 B. Yang

the action slideY (a, v) contiguously appears two times to clear two parallel edges
between a and v, and (slideY (v, u1), slideY (u1, v))2 means that a pair of ac-
tions (slideY (v, u1), slideY (u1, v)) contiguously appears two times to clear four
parallel edges between v and u1. Since X is a standard node search strategy,
the apex a is occupied by at least three searchers just before two of them
moves from a to v in the first two actions of y(Xi). Thus Ej(X) \ Ej−1(X) =
(Ej(Y) \ Ea) \ (Ej−1(Y) \ Ea). It follows from the inductive hypothesis that
Ej(X) = Ej(Y)\Ea and the set of vertices in G occupied by searchers just after
Xj is equal to the set of vertices in A′

G − a occupied by searchers just after the
last action of y(Xj).

Case 2. Xj = removeX(v). We set y(Xj) = (slideY (a, v), (slideY (v, a))2).
Since no edge can be cleared by a removing-action in X , we have Ej(X) \
Ej−1(X) = (Ej(Y) \ Ea) \ (Ej−1(Y) \ Ea) = ∅. Since X is a standard node
search strategy, each edge incident on v is cleared just before Xj−1. Thus, just
before the first action of y(Xi), each edge in A′

G− a incident on v is cleared and
the apex a is occupied by at least two searchers and one of them moves from a
to v in the first action of y(Xi). From the inductive hypothesis, we know that
Ej(X) = Ej(Y)\Ea and the set of vertices in G occupied by searchers just after
Xj is equal to the set of vertices in A′

G − a occupied by searchers just after the
last action of y(Xj).

Lemma 4. For a graph G, let G′ be a graph obtained from G by adding a vertex
a and connecting it to each vertex of G. Then ns(G′) = ns(G) + 1.

Proof. For G′, we first place one searcher on a, and then use an optimal node
search strategy of G to clear G′. Thus, ns(G′) ≤ ns(G) + 1.

We now show that ns(G) ≤ ns(G′) − 1. Let S be a standard node search
strategy of G′. Since a is adjacent to all other vertices in G′, it follows from
Lemma 1(iv) that no searcher is removed from any vertex before a searcher is
placed on a and no searcher is placed on any vertex after the searcher on a is
removed. Suppose that there is a moment t at which G′ − a contains ns(G′)
searchers. Note that the last action before t must be placing a searcher on a
vertex in G′ − a. Since no searcher is placed on any vertex after the searcher on
a is removed, it follows from Lemma 1(ii) that a has not been occupied before t.
Thus, all edges incident on a are dirty. Note that the first action after t must be
removing a searcher from a vertex in G′ − a. From Lemma 1(iv), all the edges
incident on this vertex are cleared. This is a contradiction. Thus, at any moment
when G′ contains ns(G′) searchers, there is a searcher on a. Let S′ be a strategy
obtained from S by deleting the actions place(a) and remove(a). Then S′ is a
monotonic node search strategy that can clear the graph G′ − a (i.e., G) using
ns(G′)− 1 searchers. Hence, ns(G) ≤ ns(G′)− 1. Therefore, ns(G′) = ns(G) + 1.

Lemma 5. For a graph G and its corresponding graph AG, ns(G) ≤ fsn(AG)−2.

Proof. It follows from Lemma 4 that ns(G) = ns(G′)−1. Since ns(G′) = ns(A′
G)

and fsn(A′
G) = fsn(AG), we only need to show that ns(A′

G) ≤ fsn(A′
G)− 1.

Let S = (S0, s1, . . . , sm) be an optimal fast search strategy of A′
G that clears

A′
G using k searchers, where S0 is a sequence of k placing actions. We can

Fast Edge-Searching and Related Problems 235

construct a monotonic node search strategy T by modifying S in the following
way. For each action si (i ≥ 1) that slides a searcher from u to v, if u is occupied
by only one searcher just before sliding, then we delete this action; otherwise,
we replace si by the actions remove(u) and place(v).

For any multiple edge between two vertices u and v, when a searcher slides
the second time from one endpoint to the other by S, both u and v must be
occupied by searchers. Thus, all four parallel edges are cleared by T . Hence, T
is a monotonic node search strategy that clears A′

G using k searchers.
We now show that we can modify T to obtain a monotonic node search strat-

egy that clears A′
G using k − 1 searchers. Note that some actions in T may be

redundant, that is, placing a searcher on an occupied vertex. For any multiple
edge uv, when a searcher slides the first time from one endpoint to the other
by S, all four parallel edges are cleared by the actions remove(u) and place(v)
in T . Thus, any moment when S requires a searcher to slide along the second
parallel edge between u and v, T does not need such a searcher. Therefore, we
can delete redundant actions from T to obtain a monotonic node search strategy
that clears A′

G using k − 1 searchers.

From Lemmas 3, 5 and Corollary 2, we have the main result of this section.

Theorem 4. For a graph G and its corresponding graph AG, ns(G) = fsn(AG)−
2 = fen(AG)− 2.

For a graph G, we use pw(G) to denote the pathwidth of G. Since pw(G) =
ns(G)− 1, we have pw(G) = fsn(AG)− 3.

Given a graph G and an integer k, the fast search (edge-search) problem is
to determine whether G can be cleared by k searchers in the fast (edge) search
model. Then we have the following result2.

Corollary 3. The fast search problem and the fast edge-search problem are NP-
complete. They remain NP-complete for Eulerian graphs.

From Theorem 1, we can also show that, given a graph G and an integer k, it
is NP-complete to determine whether fet(G) ≤ k. It remains NP-complete for
Eulerian graphs.

4 An Approximation Algorithm

Since the family of graphs {G : fsn(G) ≤ k} is not minor-closed for any positive
integer k ≥ 2 [6], we cannot obtain an upper bound on the fast search number
using the fast search number of complete graphs. In this section, we present a
linear time algorithm that can compute a fast search strategy for any connected
graph G = (V,E), which is also a fast edge-search strategy because any fast
search strategy is also a fast edge-search strategy. We can use this algorithm
2 Dereniowski et al. [5] independently proved the fast search problem is NP-complete

by a “weak search” approach that is different from our method.

236 B. Yang

to show that the number of vertices in a graph is an upper bound on the fast
search number of the graph. Since the fast search number of a complete graph
Kn (n ≥ 4) is n, we know this upper bound is tight. Using this algorithm, we
can also compute a fast edge-search strategy of G whose length (i.e., the number
of actions) is at most (1 + |V |−1

|E|+1) times the fast edge-search time of G.
If G is not connected, the fast search number of G is the sum of fast search

numbers of all components. So we only consider connected graphs. The input
of the algorithm is a connected graph G with at least 4 vertices. The output of
the algorithm is a fast (edge-)search strategy 〈Vp, As〉, where Vp is a multiset of
vertices on which we place searchers and As is a sequence of arcs corresponding
to sliding actions, that is, an arc (u, v) corresponds to sliding along the arc from
tail u to head v. Given two vertices u and v in G, the distance between them,
denoted distG(u, v), is the number of edges on the shortest path between them.

Algorithm FastSearch(G)
Input: A connected graph G = (V,E) with at least 4 vertices.
Output: A fast (edge-)search strategy 〈Vp, As〉 of G.

1. Compute a block graph T of G.
2. Arbitrarily pick a leaf t of T . Let B be a block of G corresponding to t and
a be a vertex of B which is not a cut-vertex of G. Call FastSearchBlock

(B, a).
3. Update T by deleting the leaf t, and update G by deleting all vertices of B

except the vertex that is a cut-vertex of G and is incident with a dirty edge
of G. If G contains no edges, then stop and output the multiset of vertices
Vp on which searchers are placed and output the sequence of arcs As in the
order when searchers slide along them from tail to head; otherwise, go to
step 2.

Algorithm FastSearchBlock(B, a)

1. B′ ← B − a, H ← B′, and P ← ∅.
2. If Vodd(B′) = ∅, then place searchers on a if necessary so that a is occupied

by at least degB(a) searchers. Slide searchers from a to every vertex in NB(a)
to clear a. If V (B′) contains only one vertex, then return to FastSearch;
otherwise, place a searcher on each unoccupied vertex in V (B′). If there is
a vertex occupied by at least two searchers, then slide one of them along
all edges of B′; otherwise, place a searcher on an arbitrary vertex of B′ and
slide it along all edges of B′. Return to FastSearch.

3. Arbitrarily pick a vertex u ∈ Vodd(H) and find a vertex v ∈ Vodd(H) such
that distH(u, v) = min{distH(u,w) : w ∈ Vodd(H) and w �= u}. Let Puv

be the shortest path between u and v. Update P ← P ∪ {Puv} and H ←
H − E(Puv). If Vodd(H) �= ∅, repeat Step 3.

4. If H has only one component, then place searchers on a if necessary so that
a is occupied by at least |V (H) ∩ NB(a)| searchers. Slide |V (H) ∩ NB(a)|
searchers from a to every vertex in V (H)∩NB(a). Place a searcher on each

Fast Edge-Searching and Related Problems 237

unoccupied vertex ofH . If a vertex ofH is occupied by at least two searchers,
then slide one of them along all edges of H ; otherwise, place a searcher on
a vertex of H and slide it along all edges of H to clear H . For each path in
P , we slide the searcher from one end of the path to the other. Return to
FastSearch.

5. Let h be the number of components in H . Construct a graph H ′ such that
each vertex v of V (H ′) represents a component Hv of H and two vertices u
and v are connected by an edge of H ′ if there is a path in P which contains
a vertex of the component Hu corresponding to u and contains a vertex of
the component Hv corresponding to v, and the subpath between u and v
does not contain any vertex of other components (different from Hu and
Hv). Assign a direction to each path in P such that each path in P becomes
a directed path and H ′ becomes an acyclic graph. Let H1, H2, . . . , Hh be a
sequence of all components in H such that the corresponding sequence of all
vertices of H ′ forms an acyclic ordering. Set i← 1.

6. If V (Hi) ∩NB(a) �= ∅, then go to Step 9.
7. If Hi contains a single vertex, then slide all searchers on this vertex along

untraversed edges to the other endpoints complying with the direction of
edges. i← i+ 1 and go to Step 6.

8. Place a searcher on each unoccupied vertex ofHi. If a vertex ofHi is occupied
by at least two searchers, then slide one of them along all edges of Hi;
otherwise, place a searcher on a vertex of Hi and slide it along all edges of
Hi to clear Hi. Go to Step 11.

9. If Hi contains more than one vertex, then go to Step 10. Let x be the unique
vertex in Hi. Place searchers on a if it is occupied by less than two searchers
so that a is occupied by two searchers. Slide a searcher from a to x. Slide
all searchers on x along untraversed edges to the other endpoints complying
with the direction of edges. If i = h, then return to FastSearch; otherwise,
i← i+ 1 and go to Step 6.

10. If i < h and a is occupied by less than |V (Hi) ∩NB(a)| + 1 searchers, then
place searchers on a so that a is occupied by |V (Hi)∩NB(a)|+ 1 searchers.
If i = h and a is occupied by less than |V (Hi)∩NB(a)| searchers, then place
searchers on a so that a is occupied by |V (Hi) ∩ NB(a)| searchers. Slide
|V (Hi)∩NB(a)| searchers from a to every vertex in V (Hi)∩NB(a). Place a
searcher on each unoccupied vertex of Hi. If a vertex of Hi is occupied by at
least two searchers, then slide one of them along all edges of Hi; otherwise,
place a searcher on a vertex of Hi and slide it along all edges of Hi.

11. For each pair of vertices u, v ∈ V (Hi) satisfying that the shortest path Puv

between them is a subpath of a path in P , we slide the searcher from one
end of Puv to the other complying with the direction of edges. If i = h, then
return to FastSearch; otherwise, i← i+ 1 and go to Step 6.

Theorem 5. For any connected graph G = (V,E), Algorithm FastSearch(G)
outputs a fast search strategy that clears G using at most |V | searchers in the
fast search model.

238 B. Yang

Proof. In FastSearch(G), we first decompose G into blocks. Then we choose
a leaf block B, clear B and leave one searcher on the vertex of B which is a cut-
vertex of G. Since the block graph of G is a tree, we can repeat this process until
G is cleared. If each leaf block B can be cleared using at most |V (B)| searchers,
then G can be cleared using |V | searchers.

We now consider how to clear a leaf block B using at most |V (B)| searchers
such that the cut-vertex of G in B is occupied by at least one searcher when B
is cleared. Note that B has only one cut-vertex of the current G since B is a leaf
block in G. If B is an edge uv, where u is a leaf of the current G then uv can be
cleared by sliding a searcher from u to v. Thus, B (i.e., uv) can be cleared using
one searcher such that the cut-vertex v of G in B is occupied by one searcher
when B is cleared.

Suppose that B contains at least three vertices. Pick a vertex a of B which is
not a cut-vertex of the current G. Let B′ = B − a. Then B′ is connected since
B is a block. We have two cases on Vodd(B′).

Case 1. Vodd(B′) = ∅. Then B′ is an Eulerian graph. Clear a by sliding
searchers from a to every vertex in NB(a). Place a searcher on each unoccupied
vertex in V (B′). If there is a vertex occupied by at least two searchers, then slide
one of them along all edges of B′, and thus the total number of searchers used
to clear B is at most |V (B)| − 1; otherwise place an additional searcher on an
arbitrary vertex of B′ and slide it along all edges of B′. Thus, the total number
of searchers used to clear B is at most |V (B)|.

Case 2. Vodd(B′) �= ∅. Note that every graph has even number of odd vertices.
Let u and v be two vertices in Vodd(B′) and Puv be the shortest path between
them. Since v is the closest vertex to u in Vodd(B′), we know that V (Puv) ∩
Vodd(B′) = {u, v}. Let B′′ be the graph obtained from B′ by deleting all edge
of Puv. Note that both u and v have even degree in B′′. Thus, |Vodd(B′′)| =
|Vodd(B′)| − 2. We can repeat the above process until we obtain an even graph
H and the set of all deleted shortest paths P . If H has only one component,
similar to Case 1, we can clear H using at most |V (H)| searchers. Since all end
vertices of paths in P are different, we can clear each path of P by sliding a
searcher from one endpoint to the other.

Suppose that H contains at least two components, i.e., h ≥ 2. Since B′ is
connected, each component Hi, 1 ≤ i ≤ h, in H must contain at least one vertex
of a path in P . We clear each H1, H2, . . . , Hh in the acyclic ordering of H ′. If
Hi contains a single vertex v, then v cannot be a leaf of B because B is a block
containing at least 3 vertices. Note that v becomes a single vertex in Hi because
we delete all edges of P from H . Thus at least one path in P contains v as
an interior vertex, and furthermore, v cannot be the end vertex of a path in
P because no path in P contains an odd vertex of H as an interior vertex. If
v ∈ NB(a), then place searchers on a if necessary so that a is occupied by two
searchers, and slide one searcher from a to v. Because the number of in-edges
of v is equal to the number of out-edges of v and we clear H1, . . . , Hh in the
acyclic ordering of H ′, we can slide searchers from v along all untraversed edges
to the other endpoints complying with the edge directions. Suppose that Hi

Fast Edge-Searching and Related Problems 239

contains at least two vertices. If V (Hi)∩NB(a) �= ∅, then place searchers on a if
necessary so that we can slide |V (Hi)∩NB(a)| searchers from a to every vertex
in V (Hi) ∩NB(a). We have two subcases.

Case 2.1. i < h. In this case, we place a searcher on each unoccupied vertex
of Hi, and place another searcher on a vertex of Hi and slide it along all edges
of Hi to clear Hi. Since i < h, we have enough searchers to clear Hi and leave
at most |V (Hi)| searchers on vertices V (Hi) when B is cleared.

Case 2.2. i = h. Since h > 1, there is a vertex u of Hh that is an end vertex of
a path in P and is occupied before we place searchers on Hh. We place a searcher
on each unoccupied vertex of Hh, and place another searcher on the vertex u
and slide it along all edges of Hh to clear Hh. Thus, we can use |V (Hh)| + 1
searchers to clear Hh and at least one searcher comes from another component.

For each pair of vertices u, v ∈ V (Hi) satisfying that the shortest path Puv

between them is a subpath of a path in P , we slide the searcher from one end of
Puv to the other complying with the edge directions. We clear B′[V (Hi)] that is
a subgraph of B′ induced from V (Hi) using at most |V (Hi)| searchers.

From cases 2.1 and 2.2, B can be cleared using at most |V (B)| searchers.
Therefore, it follows from cases 1 and 2 that fsn(G) ≤ |V |.

Theorem 6. Algorithm FastSearch(G) can be implemented with linear time.

For any connected graphG, since each placing-action places a new searcher in the
fast search model, |Vp| is the number of searchers required by FastSearch(G).
Then G can be cleared in |Vp| + |As| steps by FastSearch(G). Since any fast
search strategy is also an edge search strategy, G can be cleared in at most
|Vp| + |As| steps in the edge search model. Thus, FastSearch(G) is also an
approximation algorithm for the fast edge-search time with the following ap-
proximation ratio.

Theorem 7. For any connected graph G with n vertices and m edges,

|Vp|+ |As|
fet(G)

≤ (1 +
n− 1
m+ 1

).

For odd graphs, the approximation ratio for the fast search number is 2, and for
fast edge-search time is 1 + n

n+2m .

Corollary 4. For any connected odd graph G with n vertices and m edges,

|Vp|
fsn(G)

≤ 2 and
|Vp|+ |As|

fet(G)
≤ (1 +

n

n+ 2m
).

5 A Lower Bound

In this section, we give a new lower bound that is related to both the number of
odd vertices and the minimum degree.

240 B. Yang

Theorem 8. For a connected graph G with δ(G) ≥ 3,

fsn(G) ≥ max{δ(G) + 1, �δ(G) + |Vodd(G)| − 1
2

�}.

Proof. Note that fsn(G) ≥ es(G) for any graph G. From Theorem 2.4 in [2],
we know that es(G) ≥ δ(G) + 1 for any connected graph G with δ(G) ≥ 3.
If |Vodd(G)| ≤ δ(G) + 3, then fsn(G) ≥ δ(G) + 1 ≥ � δ(G)+|Vodd(G)|−1

2 �, which
completes the proof.

Suppose that |Vodd(G)| > δ(G) + 3. Let S be an optimal fast search strategy
of G such that searchers are placed on vertices only when it is necessary. Let v
be the first vertex cleared by S. When v is cleared, each vertex in N(v) must
contain at least one searcher. Let V ′ ⊆ V (G) be the set of occupied vertices just
after v is cleared and k be the total number of searchers on V ′. If v is occupied
by searchers after it is cleared, then these searchers will stay on v until the end
of the search. For each vertex u ∈ V ′ \ {v}, if deg(u) is even, then each searcher
on u maybe move to an odd vertex in the rest of the searching process; if deg(u)
is odd, either a searcher was placed on u, or a searcher slid to u and this searcher
will stay on u until the end of the search. Thus, just after v is cleared, we need at
least 1

2 max{(|Vodd(G)\{v}|−k), 0} additional searchers to clear G. Notices that
N(v) ⊆ V ′ and |V ′| ≤ k. Therefore, fsn(G) ≥ k+ 1

2 max{(|Vodd(G)\{v}|−k), 0}
≥ 1

2 max{(|Vodd(G) \ {v}|+ k), 0} ≥ � δ(G)+|Vodd(G)|−1
2 �

From Theorem 8, we can improve the approximation ratio of FastSearch(G).

Theorem 9. If G is connected graph with n vertices and m edges, and δ(G) ≥ 3,
then

|Vp|+ |As|
fet(G)

≤ (1 +
n− δ(G) − 1
m+ δ(G) + 1

).

6 Planar Graphs

Let F = {f1, f2, . . . , fk} be a family of plane curves satisfying the following
conditions: (1) each fi is the graph of a continues function of time with domain
[si, ti], −∞ < si < ti < +∞, (2) any pair of curves do not share an endpoint,
and (3) each pair of curves have a finite number of intersection points. From
condition (2) we know that at each intersection point, at most one curve starts
from or ends on this intersection point. From condition (3) we know that no pair
of curves overlap over any period of time.

A graph of F , denoted by GF = (VF , EF), is the graph formed from F such
that VF is the set of all endpoints and intersection points of curves in F and
EF = {f : f is a subcurve of a curve in F whose endpoints belong to VF and
no interior point of f belongs to VF }. Note that the definition of the edge set
EF can be easily converted to the traditional definition, that is, a set of pairs of
vertices.

Fast Edge-Searching and Related Problems 241

Theorem 10. Let F = {f1, f2, . . . , fk} be a set of plane curves satisfying the
above three conditions, and let GF = (VF , EF) be the graph of F . Then fsn(GF) =
k and fet(GF) = k + |EF |.

From [11], we know that the fast search number of cubic graphs can be found
in O(n2) time. Similar to [7], we now show that the fast search problem is NP-
complete for planar graphs with maximum degree 4. We first show a property
of variable gadgets as follows.

1x x x

x’x

x

x’x"x’x"x’
x’

x"

4

4 3 3

3

2 2

2

1
1

Fig. 2. A variable gadget Gk
x with k = 4

Lemma 6. Let Gk
x be a multigraph as illustrated in Figure 2. For any optimal

fast search strategy of Gk
x, if a searcher slides from x to its neighbor x′, then for

each leaf xi (1 ≤ i ≤ k) there is a searcher sliding to xi from its neighbor x′i; and
if a searcher slides to x from its neighbor x′, then for each leaf xi (1 ≤ i ≤ k)
there is a searcher sliding from xi to its neighbor x′i.

We can use the graph Gk
x in Lemma 6 as a variable gadget to show the NP-

completeness for planar graphs with maximum degree 4. The reduction is the
same as the one used in Theorem 1 of [7].

Theorem 11. Given a planar graph G with maximum degree 4, the problem of
determining whether fsn(G) = |Vodd(G)|/2 is NP-complete.

From corollary 2, we can show that, given a planar graph G with maximum
degree 4, it is NP-complete to determine whether fen(G) = |Vodd(G)|/2.

Corollary 5. Given a planar graph G with maximum degree 4, the problem of
determining whether fet(G) = 1

2 |Vodd(G)|+ |E(G)| is NP-complete.

7 Conclusions

Many graph searching problems have been introduced. Almost all of these prob-
lems only consider the minimum number of searchers required to capture the
fugitive. In this paper, we consider the minimum number of steps to capture
the fugitive. We introduce the fast edge-searching problem in the edge search
model. We establish relations between the fast edge-search time and the fast
search number. We also establish relations between the fast (edge-)searching
and the node searching. By these relations, the problem of computing the fast
search number, edge search number, node search number, or pathwidth of a
graph is equivalent to that of computing the fast edge-search time of a related

242 B. Yang

graph. This makes the fast edge-searching is more versatile than others. We can
use the fast edge-searching to investigate either how to draw a graph “evenly”
(an extended version of the balanced vertex-ordering), or how to decompose a
graph into a “path” (i.e., pathwidth, which is related to many graph parameters).
We show that the family of graphs whose fast edge-search time is at most k is
minor-closed. This makes arguments for upper bounds and lower bounds of the
fast edge-search time less complicated, comparing with the fast search number.
We prove NP-completeness results for computing the fast (edge-)search num-
ber, and the fast edge-search time, respectively. We also prove that the problem
of determining whether fsn(G) = |Vodd(G)|/2 or fet(G) = 1

2 |Vodd(G)| + |E(G)|
is NP-complete; and it remains NP-complete for planar graphs with maximum
degree 4. For connected graphs with δ(G) ≥ 3, we present a linear time approxi-
mation algorithm for the fast edge-search time that can give solutions of at most
(1 + |V |−δ(G)−1

|E|+δ(G)+1) times the optimal value. This algorithm also gives us a tight
upper bound on the fast search number of graphs.

References

1. Alon, N., Pralat, P., Wormald, R.: Cleaning regular graphs with brushes. SIAM

Journal on Discrete Mathematics 23, 233–250 (2008)

2. Alspach, B., Dyer, D., Hanson, D., Yang, B.: Lower bounds on edge searching. In:

Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp.

516–527. Springer, Heidelberg (2007)

3. Biedl, T., Chan, T., Ganjali, Y., Hajiaghayi, M.T., Wood, D.: Balanced vertex-

ordering of graphs. Discrete Applied Mathematics 148, 27–48 (2005)

4. Bonato, A., Golovach, P., Hahn, G., Kratochv́ıl, J.: The capture time of a graph.

Discrete Mathematics 309, 5588–5595 (2009)

5. Dereniowski, D., Diner, Ö., Dyer, D.: Three-fast-searchable graphs (manuscript)

6. Dyer, D., Yang, B., Yaşar, Ö.: On the fast searching problem. In: Fleischer, R., Xu,

J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 143–154. Springer, Heidelberg (2008)

7. Kára, J., Kratochv́ıl, J., Wood, D.: On the complexity of the balanced vertex

ordering problem. Discrete Mathematics and Theoretical Computer Science 9, 193–

202 (2007)

8. Kirousis, L., Papadimitriou, C.: Searching and pebbling. Theoretical Computer

Science 47, 205–218 (1986)

9. Messinger, M.E., Nowakowski, R.J., Pralat, P.: Cleaning a network with brushes.

Theoretical Computer Science 399, 191–205 (2008)

10. Megiddo, N., Hakimi, S., Garey, M., Johnson, D., Papadimitriou, C.: The com-

plexity of searching a graph. Journal of ACM 35, 18–44 (1988)

11. Stanley, D., Yang, B.: Lower bounds on fast searching and their applications. In:

Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 964–973.

Springer, Heidelberg (2009)

Diameter-Constrained Steiner Tree

Wei Ding1, Guohui Lin2, and Guoliang Xue3

1 Zhejiang Water Conservancy and Hydropower College

Hangzhou, Zhejiang 310000, China

dingweicumt@163.com
2 Department of Computing Science, University of Alberta

Edmonton, Alberta T6G 2E8, Canada

ghlin@cs.ualberta.ca
3 Department of Computer Science and Engineering, Arizona State University

Tempe, AZ 85287-8809, USA

xue@asu.edu

Abstract. Given an edge-weighted undirected graph G = (V, E, c, w),

where each edge e ∈ E has a cost c(e) and a weight w(e), a set S ⊆ V of

terminals and a positive constant D0, we seek a minimum cost Steiner

tree where all terminals appear as leaves and its diameter is bounded by

D0. Note that the diameter of a tree represents the maximum weight of

path connecting two different leaves in the tree. Such problem is called

the minimum cost diameter-constrained Steiner tree problem. This prob-

lem is NP-hard even when the topology of Steiner tree is fixed. In present

paper we focus on this restricted version and present a fully polynomial

time approximation scheme (FPTAS) for computing a minimum cost

diameter-constrained Steiner tree under a fixed topology.

Keywords: Diameter-constrained Steiner tree, fully polynomial time

approximation scheme, fixed topology.

1 Introduction

The Steiner minimum tree (SMT) problem in graphs asks for a minimum length
connected subgraph of the given graph that spans all given terminals. This prob-
lem has been widely applied in many fields [4,9], such as communication net-
works, computational biology. It is NP-hard in the strong sense [6]. However
many approximation algorithms with a constant performance ratio have been
proposed, see [4,12,19].

With the development of applications of SMT, its many variants have arisen
rapidly and been studied extensively. In this paper, we are interested in a variant
of SMT which requires all terminal to be its leaves, called terminal Steiner tree
(TeST), which is proposed by Lin and Xue in [11], also see [3,5].

Let G = (V,E, c, w) be an undirected edge-weighted graph, where each edge
e ∈ E is associated with a cost c(e) and another weight w(e). Let T = (U,F, c, w)
be a TeST, where U ⊆ V and F ⊆ E. The cost of T is the sum of all costs over
its all edges, denoted by c(T), i.e. c(T) =

∑
e∈F c(e). For any two vertices u, v ∈

U, u �= v, let π[u, v] denote the unique u−v path of T . Obviously π[u, v] = π[v, u].

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 243–253, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

244 W. Ding, G. Lin, and G. Xue

We use w(π[u, v]) to denote the weight of π[u, v] and similarly have w(π[u, v]) =∑
e∈π[u,v]w(e). Specially we call π[u, v] a leaf-path of T if u, v ∈ S, u �= v. The

maximum weight of leaf-path of T is called the diameter of T , denoted by w(T),
that is,

w(T) = max

⎧⎨⎩ ∑
e∈π[u,v]

w(e) : u, v ∈ S, u �= v

⎫⎬⎭ . (1)

An extension of TeST, called diameter-constrained Steiner tree (DCST), is a
TeST subject to the constraint that w(T) ≤ D0. The problem of computing a
minimum cost diameter-constrained Steiner tree is NP-hard (since the terminal
Steiner tree problem, which is NP-hard [11], can be viewed as its a special case
of D0 = ∞). Diameter-constrained minimum spanning tree and Steiner tree
have been studied [1,7,13]. Note that the diameter of tree in their studies is
the maximum hop count between two different vertices instead of the maximum
weight connecting them.

Now we concern with a variant of TeST, called the realization of objective tree
(ROT), which is a tree in G with a same topology as a sample TeST, spanning
all terminals, see Fig. 1 and Sect. 3 for more details. Let T = (V , E) be a sample
TeST. Its a realization is called T –ROT. This variant has many applications
in telecommunication, distributed computing, etc. There have been few related
studies. Wang and Jia [16] studied the minimum cost delay-constrained Steiner
tree with a fixed topology and proposed a pseudo-polynomial-time algorithm.
Xue and Xiao [17] studied the minimum cost delay-constrained multicast tree
under a Steiner topology and presented a fully polynomial time approximation
scheme (FPTAS).

In present paper we study the following problem: Given an undirected edge-
weighted complete graph G = (V,E, c, w), a subset S ⊆ V of terminals, a non-
negative constant D0, a sample TeST T = (V , E), we seek for a minimum cost
T –ROT as T = (U,F, c, w) in G subject to the constraint of w(T) ≤ D0. This
problem is called the minimum cost diameter-constrained realization of objective
tree problem (MCDCRP) (formally defined in Sect. 2), which can be applied in
the design of quality of service (QoS) telecommunication and distributed com-
puting. It is fortunate that MCDCRP is easier than the optimization problem
of DCST. We will present an FPTAS for MCDCRP in the following.

The rest of this paper is organized as follows. In Sect. 2, we formally define
MCDCRP as well as its decision version and demonstrate its intractability. In
Sect. 3, we complete some fundamental preliminaries. Next, we present a pseudo-
polynomial-time algorithm for MDCCRP in Sect. 4, then present an FPTAS for
MCDCRP in Sect. 5. Finally, we conclude this paper with some future research
topics in Sect. 6.

2 The Problems and Intractability

In this section, we formally define the minimum cost diameter-constrained real-
ization of objective tree problem as well as its decision version, and prove it to be

Diameter-Constrained Steiner Tree 245

NP-hard. Besides, we define the minimum diameter cost-constrained realization
of objective tree problem.

For ease of presentation, we employ an INPUT as follows: an undirected edge-
weighted complete graph G = (V,E, c, w) where each edge e ∈ E is associated
with an integer cost c(e) ≥ 0 and a real-number weight w(e) ≥ 0, a subset S ⊆ V
of terminals, a sample TeST T = (V , E).
Problem 1. Given an INPUT and a real number D0 ≥ 0, the minimum cost
diameter-constrained realization of objective tree problem (MCDCRP) asks for
a minimum cost T –ROT as T = (U,F, c, w) in G subject to the constraint that
w(T) ≤ D0.

The decision version of MCDCRP is formally defined in the following.

Problem 2. Given an INPUT, a real number D0 ≥ 0, and a constant B ≥ 0, is
there a T –ROT as T = (U,F, c, w) inG subject to the constraint that w(T) ≤ D0
such that c(T) ≤ B?

Theorem 1. Problem 2 is NP-hard.

Proof. Let us consider a special case of Problem 2 in which there are only two
terminals and T has |V | − 2 nonleaves and D0 =

∑
e∈E w(e). There is a trivial

polynomial-time reduction from the Hamilton Path problem, which is known to
be NP-hard [6], to such a special case. ��

Problem 3. Given an INPUT and an integer ζ ≥ 0, the minimum diameter cost-
constrained realization of objective tree problem (MDCCRP) asks for a minimum
diameter T –ROT as T = (U,F, c, w) inG subject to the constraint that c(T) ≤ ζ.

3 Preliminaries

Given an INPUT, then V \ S is a set of nonterminals in G and V \ S is a set of
nonleaves of T . Note that the objctive tree discussed in the rest of this paper
is a rooted version since an unrooted tree can be transformed into a rooted tree
by assigning any nonleaf as its root (let ν be the root vertex of T). This rooted
tree is either a binary tree or a general tree. In this section, we will discuss these
two cases respectively. Besides, we use T (α) to denote the subtree of T rooted
at α for any vertex α ∈ V . Accordingly, the realization of subtree T (α) is called
T (α)–ROT.

3.1 Realizing an Objective Tree

The essence of realizing T in G is to construct a tree in G with a topology of T ,
spanning all terminals. The critical task is to allocate all vertices of T at some
locations of G. After two adjacent vertices α, β ∈ V are respectively allocated
at two different vertices u, v ∈ U , the edge {α, β} ∈ E accordingly corresponds
to {u, v} ∈ E since G is a complete graph. This is essentially the edge between
u and v in T –ROT. As a consequence, all allocations of vertex of T result in a
realization of T .

246 W. Ding, G. Lin, and G. Xue

A B C D

A

B

C

D

:T G

A given binary objective tree T=(V,E)

A complete graph G=(V,E,c,w)

nonleaf
leaf

nonterminal
terminal

R

artificial edge
dummy vertex for x

x y

x y

dummy vertex for y

Fig. 1. Illustration of realizing a binary objective tree

Since all leaves (terminals) of T are fixed at known locations in G, we only
need to allocate all nonleaves of T at some locations in G. We observe that every
nonleaf of T is required to be allocated at a location of nonterminal in G. These
form an allocating function, denoted by λ : V \ S → V \ S (see the left-hand
graph on Fig. 1), where λ(α) = v means that α ∈ V \S is allocated at v ∈ V \S.

We call T –ROT degenerate if different nonleaves of T are allocated at a same
location of G and undegenerate otherwise. Furthermore, we call a degenerate
T –ROT strongly degenerate if two adjacent vertices of T are allocated at a same
location of G and weakly degenerate otherwise. The strongly degenerate T –ROT
is easy to be avoided by setting w(v, v) = ∞ additionally for every vertex v of
G. Essence of Theorem 1 states that the undegenerate MCDCRP is NP-hard
(its hardness may be no less than that of Hamilton Path Problem). Considering
that the weakly degenerate T –ROT is not only more representative in practical
settings but also much easier to be solved than the undegenerate one, we will
concentrate on the weakly degenerate MCDCRP in the rest of this paper.

3.2 Binary Tree

When T is a binary tree (see Fig. 1), α has its left child denoted by αl and right
child denoted by αr for each α ∈ V \ S. Thus, T (α) consists of its left branch
denoted by Tl(α) and right branch denoted by Tr(α) (i.e. T (α) = Tl(α)∪Tr(α)),
Tl(α) consists of T (αl) and the edge {αl, α} (i.e. Tl(α) = T (αl)∪{αl, α}). Simi-
larly, Tr(α) = T (αr)∪{αr, α}. Consequently, T (α) can be partitioned recursively
by Lemma 1.

Lemma 1. For every α ∈ V \ S, T (α) can be partitioned into

T (α) =
(
T (αl) ∪ {αl, α}

)⋃(
T (αr) ∪ {αr, α}

)
. (2)

Diameter-Constrained Steiner Tree 247

3.3 General Tree

When T is a general tree, we assume that α has κ(α) children for any α ∈ V \S.
We can employ the method in [15] to transform T into a binary tree T B, where,
for processing α, we add κ(α)− 2 dummy vertices and κ(α) − 2 artificial edges
if κ(α) ≥ 3 and add one dummy vertex and one artificial edge if κ(α) = 1 (see
the right-hand graph on Fig. 1).

We must allocate α as well as all dummy vertices for α at a same location
of nonterminal in G, and set both cost and weight on every artificial edge of
T B to zero in constructing a realization of T B. As a consequence, to compute a
T –ROT is equivalent to compute a T B–ROT. Without specified otherwise, T is
always a binary tree in the rest of this paper.

4 A Pseudo-Polynomial-Time Algorithm for MDCCRP

In this section, we present an efficient algorithm for MDCCRP, which can com-
pute the minimum diameter of T –ROT with a cost of no more than ζ in a pseudo
polynomial time, for given ζ ≥ 0. On basis of this algorithm, we describe another
algorithm as Algorithm 1, which can decide whether c(T) > ζ or c(T) ≤ ζ in
a pseudo polynomial time for MCDCRP. Note that c(T) denote the minimum
cost of T –ROT with a diameter of no more than D0.

Given an objective tree T , we realize it by using the bottom-up dynamic
programming. For any α ∈ V , when λ(α) = v, we use D[α, v, C] to denote
the minimum diameter of all T (α)–ROT’s with a cost of no more than C and
R[α, v, C] to denote the minimum radius of all T (α)–ROT’s with a cost of no
more than C. Note that the radius of T = (U,F, c, w) is the maximum weight of
π[t, r], t ∈ S in T provided that λ(ν) = r.

When α ∈ V is a leaf of T , considering that T (α) has single vertex, for all
C ∈ {0, 1, . . . , ζ}, we initialize D[t, t, C] = R[t, t, C] = 0 if α = t ∈ S and set
D[α, v, C] = R[α, v, C] = 0 for all v ∈ V \ S if α is a dummy vertex.

When α ∈ V is a nonleaf of T , it is required that λ(α) = v ∈ V \ S. Recall
that λ(β) = λ(α) if α is a dummy vertex for β. In the following, we present two
recurrence equations for computing D[α, v, C] as in Eq. (3) and R[α, v, C] as in
Eq. (4) for all C ∈ {0, 1, . . . , ζ}. In addition, we set D[α, v, C] = R[α, v, C] = ∞
when C < 0. Given an edge {u, v} ∈ E, we use c(u, v) and w(u, v) to denote the
cost and weight on {u, v} respectively.

D[α, v, C] = min
Cl+Cr≤C,

Cl≥,Cr≥0

min
vl∈V \S,

vr∈V \S

max
{

D[αl, vl, Cl − c(vl, v)],

D[αr, vr, Cr − c(vr, v)],

R[αl, vl, Cl − c(vl, v)] +R[αr, vr, Cr − c(vr, v)] + w(vl, v) + w(vr , v)
}
,

(3)

248 W. Ding, G. Lin, and G. Xue

and
R[α, v, C] = min

Cl+Cr≤C,

Cl≥,Cr≥0

max
{

min
vl∈V \S

{R[αl, vl, Cl − c(vl, v)] + w(vl, v)},

min
vr∈V \S

{R[αr, vr, Cr − c(vr, v)] + w(vr , v)}
}
.

(4)

Let DE[α, v, C] denote the minimum diameter of all T (α)–ROT’s with cost C,
and RE[α, v, C] denote the minimum radius of all T (α)–ROT’s with cost C.
We conclude that D[α, v, C] = min{D[α, v, C − 1], DE[α, v, C]} from Eq. (3) and
R[α, v, C] = min{R[α, v, C − 1], RE[α, v, C]} from Eq. (4). This leads to a faster
computation of D[α, v, C] and R[α, v, C].

When α ∈ V is the root ν of T , we compute minv∈V \S D[ν, v, C] for all C ∈
{0, 1, . . . , ζ}. The value of minv∈V \S D[ν, v, ζ] is the minimum diameter of T –ROT
with cost bounded by ζ. Above discussions form an efficient algorithm for comput-
ing a minimum diameter T –ROT with cost bounded by ζ for MDCCRP, whose
time complexity is pseudopolynomial according to the analysis of Step 2 in the
proof of Theorem 2. In all values of minv∈V \S D[ν, v, C], C ∈ {0, 1, . . . , ζ}, either
none of them is no more than D0 or some of them are no more than D0. Let
c(T , ζ) = min{C ∈ {0, 1, . . . , ζ} : minv∈V \S D[ν, v, C] ≤ D0}. We set c(T , ζ) =∞
and output NO if the former occurs, and record c(T , ζ) and output YES if the latter
occurs. This leads us to Algorithm 1, the step 2 of which uses the dynamic pro-
gramming method in [2], for deciding whether c(T) > ζ or c(T) ≤ ζ for MCDCRP.
The time complexity of Algorithm 1 is also pseudopolynomial, see Theorem 2.

Let H(T) denote the height of T (the bottom of T is labeled as 1-st level), h
denote the variable of current height, and Vh denote the subset of vertices of T
on the h-th level. Let |S| = k, |V | = n, and then |V \S| = k− 1, |V \ S| = n− k.

Algorithm 1. Pseudo-polynomial-time algorithm for deciding whether c(T) > ζ
or c(T) ≤ ζ for MCDCRP.

Input: An INPUT, a positive real number D0, and a positive integer ζ.
Output: Either YES (meaning c(T) ≤ ζ) or NO (meaning c(T) > ζ) and c(T , ζ).

Step 1 for {all α ∈ V , v ∈ V, C ∈ {0, 1, . . . , ζ}} do
Initialize D[α, v, C] := 0, R[α, v, C] := 0 as discussed above.

endfor
Step 2 for h from 1 up to H(T) do

for every α ∈ Vh do
if α ∈ S then break;
else for {every v ∈ V \ S; C from 0 up to ζ} do

Compute D[α, v, C], R[α, v, C] by Eq. (3) and Eq. (4);
endfor

Step 3 c(T , ζ) := min{C ∈ {0, 1, . . . , ζ} : minv∈V \S D[ν, v, C] ≤ D0};
if c(T , ζ) =∞ then output NO; else output YES;
When the answer is YES, a minimum cost T –ROT with diameter
bounded by D0 can be traced out top-down from ν of T .

Diameter-Constrained Steiner Tree 249

Theorem 2. Given an MCDCRP where G has n vertices and k terminals, the
time complexity of Algorithm 1 is O(kn3ζ2). Furthermore, we infer that c(T) ≤ ζ
if the output is YES and c(T) > ζ if the output is NO.

Proof. Step 1 of Algorithm 1 spends O(nkζ) time to make all initializations.
Step 2 of Algorithm 1 computes all D[α, v, C] bottom-up in T , whose time com-
plexity is

∑
α∈S O(1) +

∑
α∈V\S

∑
v∈V \S

∑ζ
C=0(O(Cn2) + O(Cn)) ≤ O(k) +

O(kn) · (O(n2)
∑ζ

C=0O(C)) = O(kn3ζ2). Step 3 of Algorithm 1 only requires
O(k) time if we save some book-keepings information during the computation
in Step 2. Therefore the time complexity of Algorithm 1 is O(kn3ζ2).

Recall the definition of c(T , ζ), we infer that c(T) = c(T , ζ) ≤ ζ when
c(T , ζ) < ∞ and c(T) > ζ when c(T , ζ) = ∞. Consequently, the output YES
implies that c(T) ≤ ζ and the output NO implies that c(T) > ζ. ��

5 An FPTAS for MCDCRP

In this section we present an FPTAS for computing a (1 + ε)-approximation
of MCDCRP, on basis of Algorithm 1, using standard technique of scaling and
rounding [8,10,14,17,18]. To prepare for the FPTAS, we need several auxiliary
algorithms which are used as subroutines in the FPTAS. We will present these
in the following subsections.

5.1 Polynomial Time Approximate Testing

Given a real number C > 0, deciding whether c(T) > C or c(T) < C is NP-
hard. Using the standard technique of scaling and rounding [8,10,14,17,18], we
can decide, in a fully polynomial time, whether c(T) > C or c(T) < (1+ ε)×C,
for any given constant ε > 0. This technique plays an important role in our
FPTAS. We describe this approximate testing in Algorithm 2 as TEST.

Let cθ be the scaled edge cost function such that cθ(e) = �c(e)× θ� for every
e ∈ E. Then we construct an auxiliary graphGθ = (V,E, cθ, w) which is the same
as G = (V,E, c, w) except that the cost c(e) is changed to cθ(e) for every e ∈ E.
Correspondingly, we have cθ(T , ζ) and cθ(T). Similarly, let c′(e) = c(e)× θ and
construct G′ = (V,E, c′, w). Let T be the minimum cost T –ROT with diameter
bounded by D0 in G, and T ′ and Tθ be that in G′ and Gθ respectively. Note
that c′(T ′) = c′(T), c′(T ′) ≤ c′(Tθ) and cθ(Tθ) ≤ cθ(T).

Algorithm 2. TEST(C, ε).

Input: An INPUT, two positive constants D0 and C, and a positive real number
ε ∈ (0, 4k − 4].
Output: Either YES (meaning c(T) < (1+ ε)×C) or NO (meaning c(T) > C).

Step 1 Set θ := 4k−4
C×ε ; cθ(e) := �c(e)× θ� for each e ∈ E; Set ζ := �C× θ�;

Step 2 Replace G by Gθ into INPUT; Apply Algorithm 1;
if cθ(T , ζ) ≤ ζ then output YES; else output NO;

250 W. Ding, G. Lin, and G. Xue

Theorem 3. Given an INPUT, two positive constants C and ε, if TEST(C, ε) =
YES then c(T) < (1+ε)×C and if TEST(C, ε) = NO then c(T) > C. In addition,
the worst-case time complexity of TEST(C, ε) is O(k3n3

ε2).

Proof. Firstly, we assume TEST(C, ε) = NO, which means cθ(T) > ζ. Since
ζ = �C×θ� and cθ(T) is an integer, we have cθ(Tθ) = cθ(T) ≥ �C×θ�+1 > C×θ.
For every e ∈ E, since cθ(e) = �c(e)× θ� ≤ c(e)× θ, we have c(e) ≥ cθ(e)

θ . Since
cθ(T) ≥ cθ(Tθ), we have c(T) = c(T) ≥

∑
e∈T

cθ(e)
θ = cθ(T)

θ ≥ cθ(Tθ)
θ > C×θ

θ =
C. Therefore TEST(C, ε) = NO implies that c(T) > C.

Next, we assume TEST(C, ε) = YES, which means cθ(T) ≤ ζ. Since ζ =
�C × θ�, we have cθ(Tθ) = cθ(T) ≤ C × θ. For every e ∈ E, since cθ(e) =
�c(e)×θ� > c(e)×θ−1, we have c(e) < cθ(e)

θ + 1
θ . Since cθ(e) ≤ c′(e) < cθ(e)+1

for every e ∈ E and T has exactly 2k − 2 edges, we have cθ(T) ≤ c′(T) and
c′(Tθ) < cθ(Tθ)+(2k−2). Recall that c′(T) = c′(T ′) and c′(T ′) ≤ c′(Tθ), then it
follows that cθ(T) ≤ c′(T) = c′(T ′) ≤ c′(Tθ) < cθ(Tθ) + (2k − 2). Consequently,
we have c(T) = c(T) <

∑
e∈T (cθ(e)

θ + 1
θ) = cθ(T)

θ + 2k−2
θ < cθ(Tθ)

θ + 2× 2k−2
θ ≤

C×θ
θ + 4k−4

θ . Recall that θ = 4k−4
C×ε , therefore TEST(C, ε) = YES implies that

c(T) < (1 + ε)×C.
The time complexity of Algorithm 2 can be obtained by substituting ζ =

� 4k−4
ε � into the time complexity of Algorithm 1. ��

5.2 Fully Polynomial Time Approximation Scheme

We conclude Theorem 4 from Theorem 3 using the techniques in [8,17].

Theorem 4. Given an INPUT, a positive constant ε, a known lower bound LB
and an upper bound UB on c(T) such that LB ≤ c(T) ≤ UB, TEST(C, ε) can
compute a T –ROT as TA such that c(TA) < (1+ε)×c(T) in O(k3n3×UB2

ε2×LB2) time,
provided that we get a scaled cost function cθ(e) = �c(e)×θ� using θ = 2k−2

LB×ε and
set ζ = �UB× θ�.

Proof. Recall that cθ(e) = �c(e)× θ� ≤ c(e)× θ for every e ∈ E. Then it follows
that cθ(T) ≤ c(T) × θ. Since c(T) = c(T) ≤ UB and cθ(T) is an integer, we
have cθ(T) ≤ �UB × θ�. Therefore, we can apply Algorithm 1 (in Gθ and with
ζ = �θ×UB�) to compute a minimum cost T –ROT as TA, i.e. cθ(TA) = cθ(Tθ).
Recall that c(e) < cθ(e)

θ + 1
θ for every e ∈ E. Since T has exactly 2k−2 edges and

cθ(Tθ) ≤ cθ(T), we have c(TA) = c(Tθ) <
∑

e∈Tθ
(cθ(e)

θ + 1
θ) = cθ(Tθ)

θ + 2k−2
θ ≤

cθ(T)
θ + 2k−2

θ ≤ c(T)×θ
θ + 2k−2

θ . Since θ = 2k−2
LB×ε and c(T) = c(T) ≥ LB, we have

c(TA) < (1 + ε)× c(T).
The time complexity can be obtained by substituting ζ = � (2k−2)×UB

ε×LB � into
the time complexity of Algorithm 1. ��

It is easy to see from Theorem 4 that the time complexity is related to the ratio
UB
LB . We can reduce this time complexity by reducing the ratio. This idea can
be implemented by first initializing LB and UB as easily computable values and
then using bisection to reduce the ratio.

Diameter-Constrained Steiner Tree 251

An initial value of LB can be computed as follows. Compute the minimum
cost of T –ROT ignoring the bound on diameter, which requires O(kn2) time.
We can take this minimum as the initial value of LB. If C < LB (sufficient but
unnecessary condition), there is no T –ROT with diameter bounded by D0. An
initial value of UB can be computed as follows. Find the maximum edge cost over
all edges of G, which requires O(logn) time. We can take (2k− 2)×maxe∈E c(e)
as the initial value of UB.

Let B be a chosen real number of greater than 1 + ε. We apply the bisection
method to drive UB

LB down to some number below B. Suppose that our lower

bound LB and upper bound UB satisfy that UB
LB > B > 1 + ε. Let C =

√
LB×UB

1+ε .
If TEST(C, ε) = NO then C is a new lower bound and UB is also an upper
bound for c(T). If TEST(C, ε) = YES then (1+ ε)×C is a new upper bound and
LB is also a lower bound for c(T). Therefore, the ratio of the new upper bound

over the new lower bound will be no more than
√

UB
LB × (1 + ε). Above process is

called an iteration. Such an iteration can be accomplished in a fully polynomial
time (according to Theorem 3). Moreover, UB

LB will be reduced to a number below
B in logS iterations (S is the input size of the given instance), see [17]. Above
analysis leads to our FPTAS, described as Algorithm 3. The time complexity of
Algorithm 3, shown in Theoerm 5, follows from Theorem 3 and 4.

Algorithm 3. FPTAS for computing a (1 + ε)-approximation of MCDCRP.

Input: An INPUT, two positive constants D0 and ε.
Output: A T –ROT as TA with diameter bounded by D0 such that c(TA) <
(1 + ε)× c(T).

Step 1 Set B := 2× (1 + ε); Set both LB and UB to their initial values;
Step 2 if UB ≤ B× LB then

goto Step 3;
else

Let C :=
√

LB×UB
1+ε ;

if TEST(C, ε) = NO, set LB = C;
if TEST(C, ε) = YES, set UB = C× (1 + ε);
goto Step 2;

endif
Step 3 Set θ := 2k−2

LB×ε ; cθ(e) := �c(e)× θ� for each e ∈ E; Set ζ := �UB× θ�;
Replace G by Gθ into INPUT; Apply Algorithm 1;

Theorem 5. Given an INPUT and two positive constants D0 and ε, if there is a
diameter-constrained T –ROT, Algorithm 3 will find a diameter-constrained T –
ROT as TA such that c(TA) < (1 + ε)× c(T). Furthermore, the time complexity
of Algorithm 3 is O(k3n3

ε2 × logS), where S is the input size of the given instance.

252 W. Ding, G. Lin, and G. Xue

6 Conclusions

In this paper, we have presented an FPTAS for MCDCRP in a complete graph. In
practice, there are lots of topologies available of objective tree. How to determine
a nearly best topology of objective tree remains as a future research topic. It is
also interesting to study MCDCRP under a more general topology of objective
tree in uncomplete connected graphs.

References

1. Deo, N., Abdalla, A.: Computing a Diameter-Constrained Minimum Spanning Tree

in Parallel. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000.

LNCS, vol. 1767, pp. 17–31. Springer, Heidelberg (2000)

2. Ding, W., Xue, G.: A Linear Time Algorithm for Computing a Most Reli-

able Source on a Tree Network with Faulty Nodes. Theor. Comput. Sci. (2009),

doi:10.1016/j.tcs.2009.08.003

3. Drake, D.E., Hougrady, S.: On Approximation Algorithms for the Terminal Steiner

Tree Problem. Information Processing Letters 89, 15–18 (2004)

4. Du, D.Z., Smith, J.M., Rubinstein, J.H.: Advances in Steiner Trees. Kluwer Aca-

demic Publishers, Dordrecht (2000)

5. Fuchs, B.: A Note on the Terminal Steiner tree Problem. Information Processing

Letters 87, 219–220 (2003)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco (1979)

7. Gouveia, L., Magnanti, T.L.: Network Flow Models for Designing Diameter-

Constrained Minimum Spanning and Steiner Trees. In: Operations Research Center

Working Papers. Operations Research Center, Massachusetts Institute of Technol-

ogy (2001)

8. Hassin, R.: Approximation Schemes for the Restricted Shortest Path Problem.

Mathematics of Operations Research 17, 36–42 (1992)

9. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of

Discrete Mathematics 53 (1992)

10. Ibarra, O., Kim, C.: Fast Approximation Algorithms for the Knapsack and Sum

of Subset Problems. Journal of the ACM 22(4), 463–468 (1975)

11. Lin, G.H., Xue, G.: On the Terminal Steiner Problem. Information Processing

Letters 84, 103–107 (2002)

12. Robins, G., Zelikovsky, A.: Improved Steiner Tree Approximation in Graphs. In:

Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithm

(SODA 2000), pp. 770–779 (2000)

13. Dos Santos, A.C., Lucena, A., Ribeiro, C.C.: Solving Diameter Constrained Min-

imum Spanning Tree Problems in Dense Graphs. In: Ribeiro, C.C., Martins, S.L.

(eds.) WEA 2004. LNCS, vol. 3059, pp. 458–467. Springer, Heidelberg (2004)

14. Sahni, S.: General Techniques for Combinatorial Approximations. Operations Re-

search 35, 70–79 (1977)

15. Tamir, A.: An O(pn2) Algorithm for the p-Median and Related Problems on Tree

Graphs. Operations Research Letters 19, 59–64 (1996)

Diameter-Constrained Steiner Tree 253

16. Wang, L.S., Jia, X.H.: Note Fixed Topology Steiner Trees and Spanning Forests.

Theoretical Computer Science 215(1-2), 359–370 (1999)

17. Xue, G., Xiao, W.: A Polynomial Time Approximation Scheme for Minimum Cost

Delay-Constrained Multicast Tree under a Steiner Topology. Algorithmica 41(1),

53–72 (2004)

18. Xue, G., Zhang, W., Tang, J., Thulasiraman, K.: Polynomial Time Approxima-

tion Algorithms for Multi-Constrained QoS Routing. IEEE/ACM Transactions on

Networking 16, 656–669 (2008)

19. Zelikovsky, A.: An 11
6

-Approximation Algorithm for the Network Steiner Problem.

Algorithmica 9(5), 463–470 (1993)

Minimizing the Maximum Duty for Connectivity
in Multi-Interface Networks

Gianlorenzo D’Angelo1, Gabriele Di Stefano1, and Alfredo Navarra2

1 Dipartimento di Ingegneria Elettrica e dell’Informazione,

Università degli Studi dell’Aquila, Italy

gianlorenzo.dangelo@univaq.it, gabriele.distefano@univaq.it
2 Dipartimento di Matematica e Informatica,

Università degli Studi di Perugia, Italy

navarra@dmi.unipg.it

Abstract. In modern networks, devices are equipped with multiple

wired or wireless interfaces. By switching among interfaces or by com-

bining the available interfaces, each device might establish several con-

nections. A connection is established when the devices at its endpoints

share at least one active interface. Each interface is assumed to require

an activation cost. In this paper, we consider the problem of guarantee

the connectivity of a network G = (V, E) while keeping as low as possi-

ble the maximum cost set of active interfaces at the single nodes. Nodes

V represent the devices, edges E represent the connections that can be

established. We study the problem of minimizing the maximum cost set

of active interfaces among the nodes of the network in order to ensure

connectivity. We prove that the problem is NP-hard for any fixed Δ ≥ 3

and k ≥ 10, with Δ being the maximum degree, and k being the number

of different interfaces among the network. We also show that the problem

cannot be approximated within O(log |V |). We then provide approxima-

tion and exact algorithms for the general problem and for special cases,

respectively.

1 Introduction

Wireless networks certainly provide intriguing problems for the scientific com-
munity due to the wide range of real-world applications. A very important issue
recently addressed is constituted by the heterogeneity of the devices. Different
computational power, energy consumption, radio interfaces, supported commu-
nication protocols, and other peculiarities can characterize the involved devices.
In this paper, we are mainly interested in devices equipped with multiple in-
terfaces. An example of a network instance is shown in Figure 1, where mobile
phones, smart-phones and laptops can communicate by means of different in-
terfaces and protocols such as IRdA, Bluetooth, WiFi, GSM, Edge, UMTS and
Satellite. All the possible connections can be covered by means of at least one
interface. Note that, some devices are not directly connected even though they
share some interfaces. This can be due to many factors like for instance obstacles
or distances.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 254–267, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Minimizing the Maximum Duty for Connectivity in Multi-Interface Networks 255

Fig. 1. The composed network according to available interfaces and proximities

A connection between two or more devices might be accomplished by means
of different communication networks according to provided requirements. The
selection of the most suitable interface for a specific connection might depend on
various factors. Such factors include: its availability in specific devices, the cost
(in terms of energy consumption) of maintaining an active interface, the available
neighbors, and so forth. While managing such connections, a lot of effort must
be devoted to energy consumption issues. Devices are, in fact, usually battery
powered and the network survivability might depend on their persistence in the
network.

We study communication problems in wireless networks supporting multiple
interfaces. In the considered model, the input network is described by a graph
G = (V,E), where V represents the set of wireless devices and E is the set
of possible connections according to proximity of devices and the available
interfaces that they may share. Each v ∈ V is associated with a set of available
interfaces W (v). The set of all the possible interfaces available in the network
is then determined by

⋃
v∈V W (v); we denote the cardinality of this set by

k. We say that a connection is satisfied (or covered) when the endpoints of
the corresponding edge share at least one active interface. If an interface x is
activated at some node u, then u consumes some energy c(x) for maintaining
x as active. In this setting, we study the problem of establishing a connected
spanning subgraph of G by minimizing the maximum cost required at the single
nodes. In other words, we look for the set of active interfaces among V , in such
a way that for each pair of nodes (u, v) ∈ V there exists a path of covered
edges leading from u to v such that the maximum cost required for a single
node is minimized. This implies that the cost provided by all the interfaces
activated in the whole network to accomplish the connectivity requirement
might not be the global minimum. Indeed, the chosen requirement is in fa-
vor of a uniform energy consumption among the devices, as it tries to maintain as

256 G. D’Angelo, G. Di Stefano, and A. Navarra

low as possible the maximum cost spent by the single devices. This plays a central
role in the context of wireless networks where the whole network survivability
might depend on few devices.

1.1 Related Work

Multi-interface wireless networks have been recently studied in a variety of
contexts, usually focusing on the benefits of multiple radio devices of each
node [7,9,10]. Many basic problems of standard wireless network optimization
can be reconsidered in such a setting [4]. However, previous works have been
always focused on the minimization of the costs among the whole network.
In [6,12,13], for instance, the so called Coverage problem has been investigated,
where the goal is the activation of the minimum cost set of interfaces in such a
way that all the edges of G are covered. Connectivity issues have been addressed
in [3,14,15]. The goal becomes to activate the minimum cost set of interfaces in
G in order to guarantee a path of communication between every pair of nodes.
In [5,15], the attention has been devoted to the so called Cheapest path problem.
This corresponds to the well-known shortest path problem but in the context of
multi-interface networks. To the best of our knowledge, problems requiring to
minimize the maximum cost at single nodes have not been treated before.

1.2 Our Results

In this paper, we study the problem of establishing a connected spanning sub-
graph of G by minimizing the maximum cost required at the single nodes. We
call this problem the Minimum Maximum Cost Connectivity problem in Multi-
Interface Networks (MMCC for short). The chosen requirement is a first step
toward distributed environments where the objective function refers to local
properties rather than global costs.

We consider two variants of the above problem: the parameter k is either
considered as part of the input (this is called the unbounded case), or k is a fixed
constant (the bounded case). The case where the cost function is constant for
each interface is called the unit cost case.

First, we prove that the problem is NP -hard, even for the unit cost case and
even when the number of interfaces k and the maximum node degree Δ are
fixed. In particular, we prove that the problem remains NP -hard for any fixed
Δ ≥ 3 and k ≥ 10. Then, we present efficient algorithms that optimally solve the
problem in some relevant special cases. In detail, we focus on instances where
the input graph is a tree, by giving a linear time algorithm for fixed k or fixed
Δ. By using this algorithm we can derive polynomial time algorithms for Δ ≤ 2
and for polynomially recognizable Hamiltonian graphs. Furthermore, we give a
polynomial time algorithm for k ≤ 2.

Concerning approximation results for MMCC, we show that the problem is
not approximable within an η ln(Δ) factor for a certain constant η, unless P =
NP . This result holds even in the unit cost case and when the input graph
is a tree but only when k or Δ are unbounded. Hence, we give some simple

Minimizing the Maximum Duty for Connectivity in Multi-Interface Networks 257

approximation algorithms which guarantee a factor of approximation of cmax

cmin
k or

cmax

cmin
Δ, where cmin and cmax are the minimum and the maximum cost associated

with an interface, respectively. In the unit cost case, we improve this result
providing k

2 - and Δ
2 -approximation algorithms. When k = O(1) or Δ = O(1)

these algorithms achieve a O(1)-approximation factor. As the inapproximability
result holds when the input graphs are restricted to trees, we provide a (ln(Δ)+
1+ min{ln(Δ) + 1, cmax})-approximation algorithm for this special case which
guarantees a (ln(Δ) + 2)-approximation factor for the unit cost case. Note that,
the obtained approximation factor for non-unit cost trees is optimal within a
factor of 2, while in the unit cost case we only have an additive factor of 2.

In summary, MMCC is NP -hard for any fixed Δ ≥ 3, while it is polynomially
solvable for Δ ≤ 2. Moreover, it is NP -hard for any fixed k ≥ 10 while it is
polynomially solvable for k ≤ 2. For fixed k, 3 ≤ k ≤ 9, the complexity of
MMCC remains open.

Concerning approximability results, MMCC is not approximable within
η ln(Δ) when k and Δ are both unbounded and even in the unit cost case.
When one among k or Δ is bounded, the problem can be approximated with a
O(1)-approximation factor. When the input graph is a tree, the problem is still
not approximable within η ln(Δ), even in the unit cost case. However, for trees,
we provide a (ln(Δ)+1+ min{ln(Δ)+1, cmax})-approximation algorithm which
guarantees a (ln(Δ) + 2)-approximation factor for the unit cost case.

1.3 Structure of the Paper

In the next section, we formally define the problem of establishing a connected
spanning subgraph by minimizing the maximum cost required at the single nodes
problem. In Section 3, we study the complexity of MMCC by analyzing the cases
where the problem is NP -hard and the cases where it is polynomially solvable. In
Section 4, we study the approximability of MMCC by giving a lower bound to the
best approximation factor achievable and by giving polynomial time algorithms
which match this bound in some cases. In Section 5 we outline some conclusion
and possible future research.

2 Definitions and Notation

For a graph G, we denote by V its node set, by E its edge set. We denote the sizes
of V and E by n and m, respectively. For any v ∈ V , let N(v) be the set of its
neighbors, and deg(v) = |N(v)| be its degree in G. The maximum degree of G is
denoted by Δ = maxv∈V deg(v). Unless otherwise stated, the graph G = (V,E)
representing the network is always assumed to be simple (i.e., without multiple
edges and loops), undirected and connected.

A global assignment of the interfaces to the nodes in V is given in terms
of an appropriate interface assignment function W , according to the following
definition.

258 G. D’Angelo, G. Di Stefano, and A. Navarra

Definition 1. A function W : V → 2{1,2,...,k} is said to cover graph G if for
each {u, v} ∈ E we have W (u) ∩W (v) �= ∅.

The cost of activating an interface i is given by the cost function
c : {1, 2, . . . , k} → R+ and it is denoted as c(i). It follows that each node holding
an interface i pays the same cost c(i) by activating i. The considered MMCC
optimization problem is formulated as follows.

MMCC: Minimum Maximum Cost Connectivity in Multi-Interface Networks

Input : A graph G = (V,E), an allocation of available interfaces
W : V → 2{1,2,...,k} covering graph G, an interface cost function
c : {1, 2, . . . , k} → R+.

Solution: An allocation of active interfaces WA : V → 2{1,2,...,k} covering a
connected subgraph G′ = (V,E′) of G such that WA(v) ⊆W (v) for
all v ∈ V , and E′ ⊆ E.

Goal : Minimize the maximum cost of the active interfaces among all the
nodes, i.e. minWA maxv∈V

∑
i∈WA(v) c(i).

We recall that two variants of the above problem are considered: when the
parameter k is part of the input (i.e., the unbounded case), and when k is a fixed
constant (i.e., the bounded case). In both cases we assume k ≥ 2, since the case
k = 1 admits the obvious solution provided by activate the only interface at all
the nodes.

3 Complexity

In this section we study the complexity of MMCC. First, we prove that the
problem is NP -hard, even for the unit cost case and even when the number of
interfaces k and the maximum node degree Δ are fixed. In particular, we prove
that the problem remains NP -hard for any fixed Δ ≥ 3 and k ≥ 10. Then, we
present efficient algorithms that optimally solve the problem in some relevant
special cases. In detail, we focus on instances where the input graph is a tree,
by giving a polynomial time algorithm for fixed k or fixed Δ. By using this
algorithm we can derive polynomial time algorithms for Δ ≤ 2 and for poly-
nomially recognizable Hamiltonian graphs. Furthermore, we give a polynomial
time algorithm for k ≤ 2.

In summary, the problem is NP -hard for any fixed Δ ≥ 3, while it is polyno-
mially solvable for Δ ≤ 2. Moreover, MMCC is NP -hard for any fixed k ≥ 10
and it is polynomially solvable for k ≤ 2. For fixed k, 3 ≤ k ≤ 9, the complexity
of MMCC remains open.

Theorem 1. MMCC is NP-hard even when restricted to the bounded unit cost
case, for any fixed Δ ≥ 3 and k ≥ 10.

Proof. We prove that the underlying decisional problem, denoted by MMCCD,
is in general NP -complete. We need to add one bound B ∈ R such that the

Minimizing the Maximum Duty for Connectivity in Multi-Interface Networks 259

problem will be to ask whether there exists an activation function which induces
a maximum cost of the active interfaces per node of at most B.

The problem is in NP as, given an allocation function of active interfaces
for an instance of MMCCD, to check whether it covers a connected spanning
subgraph of G with a maximum cost of active interfaces per node of at most B
is linear in the size of the instance.

The proof then proceeds by a polynomial reduction from the well-known
Hamiltonian Path problem. The problem is known to be NP -complete [11] and
it can be stated as follows:

HP : Hamiltonian Path

Input : Graph H = (VH , EH)
Question : Does H contain a Hamiltonian path?

Given an instance of HP , we can build an instance of MMCCD in polynomial
time as follows. Let B = 2. The graph G of MMCCD is the input graph H of
HP . Regarding the interfaces, we associate a distinct interface to each edge in G.
That is, the set of interfaces W (v) of each node v in G is given by the interfaces
associated to the edges incident on v. Then, if e = {u, v} is an edge of G, we
define W (e) = W (u) ∩W (v). By construction, for each edge e in G we have:

1. |W (e)| = 1;
2. W (e) �= W (e′), for each pair of edges e, e′ such that e �= e′.

Let us assume that H admits an Hamiltonian path P . Then the connected
subgraph of G to be covered is G′ ≡ P and, for each node v ∈ G′, the set of
active interface WA(v) is given by the interfaces associated to the edges in G′

incident on v. As G′ is a path, there are at most two active interfaces for each
node, and then, being B = 2, MMCCD has a positive answer.

On the contrary, let us assume that MMCCD has a positive answer. Let G′ be
the covered spanning subgraph and let WA(v), v ∈ V , be such that |WA(v)| ≤
B = 2. As a consequence of the above properties 1) and 2), the degree of v in G′

is less than or equal to 2. Since G′ is connected, then G′ must be either a path
or a cycle. This implies that H admits a Hamiltonian path.

Now, let us show that the problem is NP -complete even if k and Δ are
bounded. We assume here that each vertex ofH has degree 3, in fact HP remains
NP -complete even with this restriction [11].

Clearly, the above proof remains valid if we assign the interfaces in such a way
that for each node v, each interface in W (v) covers only one edge incident on v.
Formally, we have to find an assignment of the interfaces to the nodes such that

1. |W (e)| = 1, for each e in G;
2. W (u)∩W (v)∩W (w) = ∅, for each pair of distinct edges {u, v}, {v, w} in G.

To this end, we consider the strong edge-coloring of graph G, that is, an edge-
coloring in which every color class is an induced matching. In other words, any
two vertices belonging to distinct edges with the same color are not adjacent. It is
known [2] that cubic graphs admit a strong edge-coloring by means of 10 colors.

260 G. D’Angelo, G. Di Stefano, and A. Navarra

Now, let us associate to each edge e in G the interface corresponding to the
color assigned to e in the above coloring. Then W (v), for each v ∈ G, is given by
the interfaces associated to the edges incident on v, as above. It remains to show
that this interface assignment fulfills property number 2), as by construction
|W (e)| = 1, for each e in G.

We write ex
1 , ex

2 , and ex
3 to denote the three edges of each node x ∈ V . Then

W (x) = W (ex
1)∪W (ex

2)∪W (ex
3). By contradiction, let us assume that there are

two edges {u, v}, {v, w} in G such that W (u)∩W (v)∩W (w) is not empty. This
means that there are three edges eu

j , ev
k and ew

l , for suitable values j, k, and l,
such that W (eu

j) = W (ev
k) = W (ew

l). As at least two edges among eu
j , ev

k and ew
l

are distinct, then the associated interfaces are different, a contradiction. ��

In the case of bounded number of interfaces or bounded degree, we are able to
show a dynamic programming algorithm which optimally solves MMCC when
the input graph is a tree.

Let us consider a node v ∈ V , we introduce the following notation: T v is the
rooted undirected tree obtained from G by using v as a root; for each u ∈ V ,
T v(u) is the subtree of T v rooted in u. Given a set of interfaces S, the cost of
activating all the interfaces in S is denoted by c(S) =

∑
i∈S c(i).

Note that, for any optimal solution WA : V → 2{1,2,...,k}, then |WA(u)| ≤
deg(u), for each u ∈ V . Therefore, we define for each node u ∈ V , the set W(u)
of subsets of W (u) covering N(u) whose size is at most deg(u), formally:

W(u) = {S ⊆W (u) | ∀z ∈ N(u),W (z) ∩ S �= ∅ and |S| ≤ deg(u)} .

Given a rooted tree T v and a node u ∈ T v, for each set of interfaces S ∈ W(u),
we introduce a data structure Cv[u, S] which stores the minimal cost that has
to be paid to cover the subtree T v(u) if we choose S to cover N(u). Intuitively,
Cv[u, S] is given by the maximum among c(S) and, for each z ∈ N(u), the
minimal cost that has to be paid to cover T v(z) by activating in z a set of
interfaces Sz ∈ W(z) which shares at least one interface with S (i.e. Sz ∩S �= ∅).
Formally, Cv[u, S] is defined as,

Cv[u, S] = max
z∈N(u)∩T v(u)

{
c(S), min

Sz∈W(z),Sz∩S �=∅
{Cv[z, Sz]}

}
. (1)

Note that, in the above expression, if u is a leaf of Tv, then N(u) ∩ T v(u) = ∅.
It follows that, in this case, Cv[u, S] = c(S).

The following lemma allows us to compute an optimal solution by recursively
compute Cv[u, S], starting from the leaves of T v and going upwards until we
reach v.

Lemma 1. If the input graph is a tree, then the optimal value of MMCC is
given by opt = minS∈W(v)C

v[v, S].

Proof. Given a node u, and a set of interfaces S ∈ W(u), let us define as
opt

v(u, S) the optimal value of the subproblem consisting of tree T v(u) assum-
ing that u activates the set of interfaces in S. The optimal value of the original

Minimizing the Maximum Duty for Connectivity in Multi-Interface Networks 261

instance is then given by opt = minS∈W(v) opt
v(v, S). Hence, it is sufficient to

show that opt
v(u, S) = Cv[u, S], for each u ∈ V and S ∈ W(u). The proof is

by induction on the height h of the tree T v(u).
If h = 1, then the subproblem considered is made only of node u and

its neighbors N(u). Hence opt
v(u, S) = c(S). By Equation 1, Cv[u, S] =

maxz∈N(u)∩T v(u)
{
c(S),minSz∈W(z),Sz∩S �=∅ {Cv[z, Sz]}}. Since nodes z are

leaves of T v, then Sz ⊆ S, for each Sz ∈ W(z). Hence, Cv[z, Sz] ≤ c(S) and
then Cv[u, S] = c(S).

If h > 1, by inductive hypothesis, let us assume that opt
v(z, Sz) = Cv[z, Sz],

for each z ∈ N(u) ∩ T v(u) and Sz ∈ W(z). By cut-and-paste arguments we can
show that:

opt
v(u, S) = max

z∈N(u)∩T v(u)

{
c(S), min

Sz∈W(z),Sz∩S �=∅
{opt

v[z, Sz]}
}
. (2)

In fact, if we consider an assignment of interfaces Ŵ : V → 2{1,...,k} such that
Ŵ (u) = S and

∑
x∈T v(u) c(Ŵ (x)) = opt

v(u, S) and we suppose that, in Ŵ , z is

the node ofN(u)∩T v(u) that maximizes Equation 2 and that Ŵ does not induce
a cost opt

v(z, Sz) over T v(z), where Sz = Ŵ (z), that is
∑

x∈T v(z) c(Ŵ (x)) >

opt
v(z, S). Then, we can cut out from Ŵ the part defined for T v(z) and paste

in an optimal assignment for T v(z) of cost opt
v(z, Sz), hence obtaining a value

that is smaller than opt
v[u, S], a contradiction.

By inductive hypothesis and equation 1,

opt
v(u, S) = max

z∈N(u)∩T v(u)

{
c(S), min

Sz∈W(z),Sz∩S �=∅
{Cv[z, Sz]}

}
= Cv[u, S].

��

Theorem 2. If the input graph is a tree and k = O(1) or Δ = O(1), MMCC
can be optimally solved in O(n) or O(k2Δn) time, respectively.

Proof. By Lemma 1, it is sufficient to compute Cv[u, S], for each u ∈ V and S ∈
W(u). Hence a straightforward algorithm is given by the definition of Cv[u, S],
that is Cv[u, S] is computed recursively, starting from the leaves of T v and going
upwards to v. Moreover, while computing Cv[u, S], we need to store, for each
z ∈ N(u), the sets Sz ∈ W(z) which give the minimum value in Equation 1.

Note that, for each u ∈ V , |W (u)| ≤ k, and hence |W(u)| ≤ 2|W (u)| ≤ 2k.
Therefore, if k = O(1), then |W(u)| = O(1). It follows that, for each node
u ∈ V and S ∈ W(u), computing Cv[u, S] by using Equation 1 requires
O(|W(z)| deg(u)) = O(deg(u)). Since |W(u)| = O(1), computing Cv[u, ·] re-
quires O(deg(u)) for each node u ∈ V . Therefore, the overall computational
time is

∑
u∈V O(deg(u)) = O(

∑
u∈V deg(u)) = O(n).

Moreover, for each u ∈ V , deg(u) ≤ Δ. Hence |W(u)| ≤ |W (u)|deg(u) ≤ kΔ,
implying that, if Δ = O(1), then |W(u)| = O(kΔ). It follows that, for each
node u ∈ V and S ∈ W(u), computing Cv[u, S] by using Equation 1 requires
O(|W(z)| deg(u)) = O(kΔ deg(u)). Since |W(u)| = O(kΔ), computing Cv[u, ·]

262 G. D’Angelo, G. Di Stefano, and A. Navarra

requires O(k2Δ deg(u)) for each node u ∈ V . Therefore, the overall computa-
tional time is

∑
u∈V O(k2Δdeg(u)) = O(

∑
u∈V k

2Δdeg(u)) = O(k2Δn). ��

By using the algorithm given in Theorem 2, we can derive two simple polynomial
time algorithms for fixed Δ ≤ 2 that is, for paths and cycles.

Corollary 1. If the input graph is a path, MMCC can be optimally solved in
O(k4n) time.

Proof. It is enough to note that a path is a tree with Δ = 2. ��

Corollary 2. If the input graph is a cycle, MMCC can be optimally solved in
O(k4n2) time.

Proof. It suffices to choose the cheapest solutions among the ones obtained by
solving the n possible paths obtained from the input cycle by excluding one
different edge at time. ��

The next theorems allow us to optimally solve the problem in two special cases:
when the input graph is a polynomially recognizable Hamiltonian graph in the
unit cost case; and when k ≤ 2.

Theorem 3. In the unit cost case, if the input graph is a polynomially recog-
nizable Hamiltonian graph, MMCC can be optimally solved in O(k4n) time.

Proof. If all the nodes hold one common interface, then an optimal solution is
given by activating such interface and the minimum cost is 1. Otherwise, an
optimal solution costs at least 2. Hence, by solving the problem restricted to
an Hamiltonian path of the input graph we obtain solution of cost 2 which is
optimal. ��

Theorem 4. MMCC is polynomially solvable when k ≤ 2.

Proof. If an optimal solution uses only one interface, then it can be easily found
by checking whether all the nodes hold the same interface. Otherwise any optimal
solution needs to activate both the available interfaces at some node, regardless
the cost of the interfaces. ��

4 Approximation

In this section, we study the approximation bounds for MMCC. In particular,
we show that the problem is not approximable within an η ln(Δ) factor for a
certain constant η, unless P = NP . This result holds even for the unit cost
case and when the input graph is a tree but only when k or Δ are unbounded.
Hence, we give some simple approximation algorithms which guarantee a factor
of approximation of cmax

cmin
k or cmax

cmin
Δ, where cmin and cmax are the minimum and

the maximum cost associated with an interface, respectively. For the unit cost
case we improve this result providing k

2 - and Δ
2 -approximation algorithms. When

Minimizing the Maximum Duty for Connectivity in Multi-Interface Networks 263

k = O(1) or Δ = O(1) these algorithms achieve an O(1)-approximation factor.
As the inapproximability result holds when the input graphs is restricted to
trees, we provide a (ln(Δ)+1+ min{ln(Δ)+1, cmax})-approximation algorithm
for this special case. Note that, this bound is ln(Δ) + 2 for the unit cost case.

Summarizing, when k and Δ are both unbounded MMCC is not approximable
within η ln(Δ), even in the unit cost case. However, when k or Δ are bounded,
the problem can be approximated with an O(1)-approximation factor. Even if
we restrict the input graph to a tree with unitary costs, the problem is not
approximable within η ln(Δ). For trees, we provide a (ln(Δ)+1+ min{ln(Δ)+1,
cmax})-approximation algorithm which is optimal within a factor of 2. For the
unit cost case the approximation factor decreases to (ln(Δ)+2) which is optimal
within an additive factor of 2.

Theorem 5. MMCC in the unit cost unbounded case cannot be approximated
within an η ln(Δ) factor for a certain constant η, unless P = NP .

Proof. The proof provides a polynomial time algorithm that transforms any
instance I1 of Set Cover (SC) into an instance I2 of MMCC with unit costs
such that the optimum value SOL∗

SC on I1 for the problem SC is equal to the
optimum value SOL∗

MMCC on I2 for the problem MMCC.

SC : Set Cover

Input : A set U with n elements and a collection S = {S1, S2, . . . , Sq} of
subsets of U .

Solution: A cover for U , i.e. a subset S′ ⊆ S such that every element of U
belongs to at least one member of S′.

Goal : Minimize |S′|.

The graph G is a star of n+ 1 nodes, that is, one for each element of U and
a node connected to all the other ones constituting the center. There are k = q
interfaces of unitary cost, one for each subset in S. Each node corresponding to
an element belonging to a subset Si holds interface i.

Let SOLSC(I1, σ1) be the cost of a solution σ1 for the instance I1 of SC , and let
SOL∗

SC(I1) be the optimal cost for instance I1. Moreover, let SOLMMCC(I2, σ2)
be the cost of a solution σ2 for the instance I2 of MMCC, and let SOL∗

MMCC(I2)
be the optimal cost for MMCC on instance I2.

Let us assume that we have an optimal solution {Si1 , Si2 , . . . , Sim} for SC.
Then, by activating all the available interfaces i1, i2, . . ., im in G, and in par-
ticular at the central node, we obtain a feasible solution σ for I2 such that
SOL(I2, σ) = SOL∗

SC(I1), hence: SOL∗
MMCC(I2) ≤ SOL∗

SC(I1).
Now we show that it is possible to transform in polynomial time any solution

σ2 for the instance I2 of MMCC into a solution σ1 for the instance I1 of SC
such that SOLSC(I1, σ1) = SOLMMCC(I2, σ2). As the connectivity requirement
imposes the covering of all the edges of G, a solution σ2 consists in activat-
ing the minimal set of interfaces {i1 . . . im} at the central node in such a way
that each leaf shares at least one active interface with the center. We obtain

264 G. D’Angelo, G. Di Stefano, and A. Navarra

Algorithm 1

1. if ∃ i ∈ ⋂
v∈V W (v) then

2. WA(v) = i for each v ∈ V
3. else
4. WA(v) ≡ W (v), for each v ∈ V

Fig. 2.

a covering of all the elements of U by means of subsets Si1 , Si2 , . . . , Sim corre-
sponding to the subsets of nodes holding interfaces {i1 . . . im}. As a consequence,
SOLSC(I1, σ1) = SOLMMCC(I2, σ2).

If there exists an α factor approximation algorithm A for MMCC, we would
obtain an α factor approximation algorithm for SC . In fact, given an instance
I1 of SC we could find a solution σ1 by using the above transformation in an
instance I2 of MMCC and applying A to find an α-approximate solution σ2.
Hence SOLSC(I1, σ1) = SOLMMCC(I2, σ2) ≤ αSOL∗

MMCC(I2) ≤ αSOL∗
SC(I1).

In [1], the authors show that no approximation algorithm for SC exists with
an approximation factor less than η ln |U |, for a certain constant η. Then there
is no algorithm for MMCC with an approximation factor less than η ln |U | =
η ln(n− 1) = η ln(Δ). ��

As simple approximation algorithms, we can easily guarantee a factor of approx-
imation of cmax

cmin
k or cmax

cmin
Δ by simply activating all the interfaces available at all

nodes or by activating the cheapest interface for each edge, respectively. For the
unit cost case, something a bit better can be ensured by the next two theorems.

Theorem 6. In the unit cost case, MMCC is k
2 -approximable in O(n) time.

Proof. Algorithm 1 provides a k
2 -approximation for MMCC in the unit cost case.

In fact, if the optimum is given by activating just one interface among all the
nodes of the network, then the algorithm provides the optimal solution by code
lines 1–2. If the optimum must activate at least two interfaces at some node, then
Algorithm 1 activates all the interfaces at all the nodes. Hence, the maximum
number of interfaces that a single node can activate is k. It follows that the cost
of Algorithm 1 is at most k while the cost of an optimal solution is at least 2. ��

Corollary 3. In the unit cost case, in O(nk) time it is possible to check whether
there exists an optimal solution of unitary cost.

Theorem 7. In the unit cost case MMCC is Δ
2 -approximable in O(n+m) time.

Proof. As for Theorem 6, if an optimal solution costs 1, then Algorithm 2 finds
it at lines 1–2. If the optimum costs at least two, then Algorithm 2 activates
for each node, at most one interface for each neighbor. Hence, the maximum
number of interfaces that a single node can activate is Δ. ��

Minimizing the Maximum Duty for Connectivity in Multi-Interface Networks 265

Algorithm 2

1. if ∃ i ∈ ⋂
v∈V W (v) then

2. WA(v) = i for each v ∈ V
3. else
4. for each e = {u, v} ∈ E
5. choose an interface i ∈ W (v) ∩ W (u)

6. WA(v) := WA(v) ∪ {i}
7. WA(u) := WA(u) ∪ {i}
8. E := E \ {e}

Fig. 3.

Algorithm 3

1. for each v ∈ V starting from the leaves up to the root

2. Apply the best approximation algorithm available for solving

the weighted SC problem arising from the star composed of v and its children,

and activate at v the corresponding set S′ of interfaces

3. Activate at the children of v the minimal cost interface available among S′

Fig. 4.

For trees, Algorithm 3 provides a (ln(Δ) + 1+ min{ln(Δ) + 1, cmax})-
approximation, with cmax being the maximum cost among the available inter-
faces. The algorithm makes use of a similar transformation to the one applied
in Theorem 5 from MMCC in star networks to the weighted version of SC . The
difference just resides in the fact that each subset, corresponding to one inter-
face, is associated with a weight, that is the activation cost of the corresponding
interface. The goal is then to minimize the sum of the weights of the subsets
chosen to accomplish the set cover.

Theorem 8. When the input graph is a tree, there exists a polynomial algorithm
for MMCC which provides a (ln(Δ)+1+ min{ln(Δ)+1, cmax})-approximation,
with cmax = maxi∈{1,...k} c(i).

Proof. As shown in Theorem 5, when the input graph is a star of n′ nodes and
maximum degree Δ′ = n′ − 1, MMCC corresponds to an instance of SC having
a universe U of Δ elements. As now we are considering the non-unit cost case,
we associate as weight to each subset the cost of the corresponding interface.
From [8], there exists a (ln |U | + 1)-approximation algorithm for the weighted
SC that can be applied by Algorithm 3 at code line 2. Hence, each node of the
tree will activate a set of interfaces of cost at most ln(Δ)+1 times the optimum
plus one interface for the connection to its parent node at code line 3. The cost
of the interface induced to connect a node to its parent might be cmax but it
cannot be bigger than the whole cost of the solution evaluated by Algorithm 3
at code line 2 for the parent node, hence obtaining min{ln(Δ) + 1, cmax}. ��

266 G. D’Angelo, G. Di Stefano, and A. Navarra

For the unit cost case, the following corollary holds.

Corollary 4. In the unit cost case, when the input graph is a tree, Algorithm 3
provides a (ln(Δ) + 2)-approximation.

5 Conclusion

We have considered the Connectivity problem in Multi-Interface Networks. The
new objective function with respect to previous works in this area considers the
minimization of the maximum cost required by the single nodes of the network
in order to accomplish the connectivity task. We focused on problem hardness
and approximation factors in general and more specific settings. The obtained
results have shown that the problem is NP -hard to be optimally or approximately
solved. Polynomial algorithms for special cases have been provided. However, the
lack of a general approximation algorithm, apart from trivial ones, encourages
further investigations.

References

1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-

restrictions. ACM Transactions on Algorithms 2(2), 153–177 (2006)

2. Andersen, L.: The strong chromatic index of a cubic graph is at most 10. Discrete

Mathematics 108(1-3), 231–252 (1992)

3. Athanassopoulos, S., Caragiannis, I., Kaklamanis, C., Papaioannou, E.: Energy-

efficient communication in multi-interface wireless networks. In: Královič, R.,

Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 102–111. Springer, Heidelberg

(2009)

4. Bahl, P., Adya, A., Padhye, J., Walman, A.: Reconsidering wireless systems with

multiple radios. SIGCOMM Comput. Commun. Rev. 34(5), 39–46 (2004)

5. Barsi, F., Navarra, A., Pinotti, M.: Cheapest paths in multi-interface networks. In:

Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009. LNCS, vol. 5408,

pp. 37–42. Springer, Heidelberg (2008)

6. Caporuscio, M., Charlet, D., Issarny, V., Navarra, A.: Energetic Performance of

Service-oriented Multi-radio Networks: Issues and Perspectives. In: 6th Int. Work-

shop on Software and Performance (WOSP), pp. 42–45. ACM Press, New York

(2007)

7. Cavalcanti, D., Gossain, H., Agrawal, D.: Connectivity in multi-radio, multi-

channel heterogeneous ad hoc networks. In: IEEE 16th Int. Symp. on Personal,

Indoor and Mobile Radio Communications (PIMRC), pp. 1322–1326. IEEE, Los

Alamitos (2005)

8. Chvatal, V.: A greedy heuristic for the set covering problem. Mathematics of Op-

erations Research 4, 233–235 (1979)

9. Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh

networks. In: 10th Annual International Conference on Mobile Computing and

Networking (MobiCom), pp. 114–128. ACM, New York (2004)

10. Faragó, A., Basagni, S.: The effect of multi-radio nodes on network connectivity—a

graph theoretic analysis. In: IEEE Int. Workshop on Wireless Distributed Networks

(WDM). IEEE, Los Alamitos (2008)

Minimizing the Maximum Duty for Connectivity in Multi-Interface Networks 267

11. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory

of NP-Completeness. W.H. Freeman and Company, New York (1979)

12. Klasing, R., Kosowski, A., Navarra, A.: Cost minimisation in multi-interface net-

works. In: Chahed, T., Tuffin, B. (eds.) NET-COOP 2007. LNCS, vol. 4465, pp.

276–285. Springer, Heidelberg (2007)

13. Klasing, R., Kosowski, A., Navarra, A.: Cost Minimization in Wireless Networks

with a Bounded and Unbounded Number of Interfaces. Networks 53(3), 266–275

(2009)

14. Kosowski, A., Navarra, A.: Cost minimisation in unbounded multi-interface net-

works. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.)

PPAM 2007. LNCS, vol. 4967, pp. 1039–1047. Springer, Heidelberg (2007)

15. Kosowski, A., Navarra, A., Pinotti, M.: Exploiting Multi-Interface Networks: Con-

nectivity and Cheapest Paths. Wireless Networks 16(4), 1063–1073 (2010)

A Divide-and-Conquer Algorithm for
Computing a Most Reliable Source on an

Unreliable Ring-Embedded Tree

Wei Ding1 and Guoliang Xue2

1 Zhejiang Water Conservancy and Hydropower College,

Hangzhou, Zhejiang, China

dingweicumt@163.com
2 Department of Computer Science and Engineering, Arizona State University

Tempe, AZ 85287-8809, USA

xue@asu.edu

Abstract. Given an unreliable communication network, we seek a most

reliable source (MRS) of the network, which maximizes the expected

number of nodes that are reachable from it. The problem of computing

an MRS in general graphs is #P-hard. However, this problem in tree net-

works has been solved in a linear time. A tree network has a weakness

of low capability of failure tolerance. Embedding rings into it by adding

some additional certain edges to it can enhance its failure tolerance, re-

sulting in another class of sparse networks, called the ring-tree networks.

This class of network also has an underlying tree-like topology, leading to

its advantage of being easily administrated. This paper concerns with an

important case whose underlying topology is a strip graph, called λ–rings

network, and focuses on an unreliable λ–rings network where each link

has an independent operational probability while all nodes are immune

to failures. We apply the Divide-and-Conquer approach to design a fast

algorithm for computing its an MRS, and employ a binary division tree

(BDT) to analyze its time complexity to be O(‖λ‖2
2 + �log|λ|� · ‖λ‖1).

Keywords: Most reliable source, ring-tree, underlying topology, Divide-

and-Conquer algorithm.

1 Introduction

A computer network or communication network is often represented as an undi-
rected graph G = (V,E), where n nodes in V represent processing or switching
elements and m edges in E represent communication links [3]. For any given
pair of nodes u and v, the communication between u and v is achieved by a u–v
path. Failures may occur to links or nodes [4–7, 11, 17]. As networks grow in
size, they become increasingly vulnerable to failures of some links and/or nodes.
In the past decade, a large number of network reliability problems have been ex-
tensively studied, see [1, 2, 8, 12, 13]. Many of them focused on the computation
of a most reliable source, defined in the following.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 268–280, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Divide-and-Conquer Algorithm 269

Let u and v be two nodes in an unreliable communication network. We use
Pr(u, v) to denote the probability that a message can be transmitted correctly
from u to v. The expected number of nodes reachable from u is called the reach-
ability of u, which is denoted by Z(u). So we have

Z[u] =
∑
v∈V

Pr(u, v) . (1)

A node with the maximum reachability is called a most reliable source (MRS) of
the network. Consequently, to compute an MRS of a given network is essentially
to determine a node u∗ in the network such that

Z[u∗] = max
u∈V

∑
v∈V

Pr(u, v) . (2)

In an unreliable network, an MRS is a good candidate as the source for data
broadcast, as the expected number of nodes reachable from an MRS is maxi-
mum. The problem of computing an MRS of an unreliable network is one of the
network reliability problems, which has attracted attention of many researchers.
Several papers studied the case in which each link has an independent opera-
tional probability while all nodes are immune to failures. It is #P-hard in general
graphs [4, 14]. However, for tree networks, Melachrinoudis and Helander [11] pre-
sented a quadratic time algorithm. Xue [17] developed an improved linear time
algorithm. Colbourn and Xue [5] presented a linear time algorithm for computing
an MRS on series-parallel graphs. Recently, Ding and Xue [7] studied another
case where each node has an independent probability of being faulty while all
links are immune to failures, and proposed a linear time algorithm.

As tree network is one of the most important sparse networks, a large num-
ber of problems on them have been studied. Its characteristic of being easily
administrated benefits from its sparse and recursive structure. However, it has a
weakness of low connectivity (there is a single path between its each node pair),
which leads to its low capability of failure tolerance in an unreliable network
setting. A general (dense) network has a higher this capability, but it is hard
to administrate it, e.g. it is #P-hard [4, 14] to find an MRS of a general net-
work. Therefore, we seek for a compromise between the reliability of a network
and the ease of network administration. Embedding rings into a tree by adding
some additional edges can help to achieve this aim, e.g. adding five dashed edges
{a, e}, {f, g}, {h, i}, {k, l}, {m,n} in Fig. 1–(b) results in five embedded rings
abcdea, bfgb, chijc, jklj, dmnd. The resulting network is called a ring-tree net-
work, formally defined in Sect. 2. It is clear that a ring-tree not only has a higher
capability of failure tolerance than the original tree, e.g. there is a single f–v path
fbc in the original tree while there are four f–v paths fbc, fgbc, fbaedc, fgbaedc
in the ring-tree, but also holds an underlying tree topology, which leads to its
advantage of being easily administrated. Note that we can derive different ring-
trees from any given tree by adding different edges to it.

In this paper, we study a special class of ring-trees, called λ–rings network, see
Fig. 1–(a), whose underlying topology is a strip graph. Given an unreliable λ–
rings network where each link has an independent operational probability while

270 W. Ding and G. Xue

a

b

c

d e

f

g h

i

j

k

l

m

a b c

de

f g h i

j k

l

n

m

(a) underlying topology: a strip graph

(b) underlying topology: a tree graph

underlying topology

underlying topology

Fig. 1. Bold solid edges of two left-hand graphs form two sample tree networks. Adding

several dashed edges to them yields two ring-tree networks, whose underlying topologies

are obtained by shrinking every ring into a vertex and using an edge to represent

the adjacency relationship of two rings, shown as right-hand graphs: (a) underlying

topology is a strip graph; (b) underlying topology is a tree graph. It is evident that (a)

is a special case of (b).

all nodes are immune to failures, we present a Divide-and-Conquer algorithm for
computing its an MRS, with a time complexity of O(‖λ‖22 + �log|λ|� · ‖λ‖1).

The rest of this paper is organized as follows. In Sect. 2, we formally define
the unreliable λ–rings network. In Sect. 3, we accomplish preliminaries, including
some definitions and basic computations of probability. In Sect. 4, we present
a Divide-and-Conquer algorithm for determining an MRS of a given unreliable
λ–rings network, including a procedure for computing all reachabilities of node
on a ring, Divide subroutine, and Merge subroutine. We conclude the paper with
some research directions in Sect. 5.

2 The Unreliable λ-Rings Network

Definition 1. Let T = (VT , ET) be an undirected tree graph. A ring-tree graph
N = (V,E) with an underlying topology T is constructed in the following way:
(i) each node vj ∈ VT is expanded into an undirected ring Nj = (Vj , Ej); (ii)
each edge e ∈ ET is removed. (see Fig. 1–(b))

We concern with a special case of ring-tree graph, whose underlying topology is
a strip graph S = (VS , ES) with m nodes, called m–rings graph, see Fig. 1–(a).
An m–rings graph is called a λ-rings graph where λ = (λ1, . . . , λm) if its every
Nj , j ∈ {1, . . . ,m} contains λj nodes. Also, let N (j1, j2) = (V(j1, j2), E(j1, j2))
where j1 ≤ j2 denote a subgraph of N containing a cluster of rings with the

A Divide-and-Conquer Algorithm 271

consecutive indices j1, . . . , j2. Obviously N (j1, j1) = Nj1 when j2 = j1 and
N (1,m) = N when j1 = 1, j2 = m. Hence both Nj and N can be regarded as
a special case of N (j1, j2). Definition 1 states that every node of the underlying
topology S of an m–rings graph represents a ring of the m–rings, every edge
of S represents an adjacency relationship of two rings of the m–rings. We refer
readers to [3, 15] for other graph theoretic notations not defined here. Also we
will use vertex and node interchangeably, as well as edge and link.

The definition of an m–rings shows that it contains m rings and any two
consecutive rings have a single common node, called a joint of m–rings. It is
evident that an m–rings has m− 1 joints. Let H denote the set, composed of all
joints, i.e. H = {h1, . . . , hm−1}. Every internal ring Nj where j ∈ {2, . . . ,m−1}
has two joints, the left joint denoted by hl

j and right joint denoted by hr
j . The

left end ring N1 has only right joint hr
1 and the right end ring Nm has only left

joint hl
m. Clearly, hj = hr

j = hl
j+1, j ∈ {1, . . . ,m− 1} (see Fig. 1–(a)).

Now, we consider a weighted version of λ–rings. Given j ∈ {1, . . . ,m}, every
e = {x, y} ∈ Ej is associated with a weight p(e) representing the edge operational
probability of e and associated with two arcs of (x, y) from x to y and (y, x) from
y to x. All arcs form Aj = {(x, y), (y, x) : {x, y} ∈ Ej}. Let p(x, y) denote the
arc operational probability of (x, y). The relationship of p(x, y) = p(y, x) = p(e)
holds. All arc operational probabilities form Pj = {p(x, y) : (x, y) ∈ Aj}. As a
consequence, we construct a bi-directed weighted ring Cj = (Vj , Aj , Pj), which
is symmetric in terms of arc operational probability. Accordingly, we obtain a bi-
directed symmetric-weighted λ–rings C = (V,A, P) and a cluster of bi-directed
symmetric-weighted rings C(j1, j2) = (V(j1, j2),A(j1, j2),P(j1, j2)).

Definition 2. Given j ∈ {1, . . . ,m} and any pair of nodes u, v ∈ Vj , u �= v, let
Q+

j (u, v),Q−
j (u, v) denote the probability that a message is correctly transmitted

from u to v along Cj in the clockwise direction and in the anticlockwise direc-
tion respectively, and Qj(u, v) denote the probability that a message is correctly
transmitted from u to v along Cj.

Definition 3. Given a node u ∈ V , let Rj [u] denote the expected number of
nodes in Cj other than u which are reached from u, E[u] denote the expected
number of nodes in C other than u which are reached from u, and E[u; C(j1, j2)]
denote the expected number of nodes in C(j1, j2) other than u which are reached
from u.

3 Preliminaries

We formulate E[u] by its definition as follows

E[u] =
∑

v∈V \{u}
Pr(u, v), ∀u ∈ V . (3)

According to Eq. (1) and (3), we conclude the relationship of Z[u] = 1 + E[u].
Then an MRS of C is just a node which maximizes E(u). So our critical task is
to compute all E[u] for all u ∈ V and determine the maximum.

272 W. Ding and G. Xue

We formulate Rj [u] by its definition as follows

Rj [u] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
v∈Vj

Pr(u, v) if u /∈ Vj

∑
v∈Vj\{u}

Qj(u, v) if u ∈ Vj

, ∀j ∈ {1, . . . ,m} . (4)

Clearly, the expected number of nodes in Cj which are reached from u is 1+Rj [u]
if u ∈ Vj and just Rj [u] if u /∈ Vj .

We formulate E[u; C(j1, j2)] by its definition as follows

E[u; C(j1, j2)] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

v∈V(j1,j2)

Pr(u, v) if u /∈ V(j1, j2)

∑
v∈V(j1,j2)\{u}

Pr(u, v) if u ∈ V(j1, j2)
, 1 ≤ j1 ≤ j2 ≤ m .

(5)
Clearly, the expected number of nodes in C(j1, j2) which are reached from u
is 1 + E[u; C(j1, j2)] if u ∈ Vj and just E[u; C(j1, j2)] if u /∈ Vj . In particular,
E[u; C(j1, j2)] = Rj1 [u] when j1 = j2, and E[u; C(1,m)] = E[u] when j1 = 1, j2 =
m. Hence, Eq. (4) and (3) can be both taken as a special case of Eq. (5).

The following Lemma 1 shows the formulas to compute basic probabilities,
which form the basis of our algorithm.

Lemma 1. Given any j1, j2 ∈ {1, . . . ,m}, j1 < j2 and j1 ≤ k ≤ j2,

(i) given u, v ∈ Vk, k ∈ {j1, . . . , j2}, we have

Qk(u, v) = Q+
k (u, v) + Q−

k (u, v)−Q+
k (u, v) ·Q−

k (u, v) . (6)

(ii) given u ∈ Vj , j ∈ {j1, . . . , k} and v ∈ Vd, d ∈ {k + 1, . . . , j2}, we have

Pr(u, v) = Qj(u, hr
j) · Pr(hl

j+1, h
r
k) · Pr(hl

k+1, v) . (7)

(iii) given u ∈ Vj , j ∈ {k + 1, . . . , j2} and v ∈ Vd, d ∈ {j1, . . . , k}, we have

Pr(u, v) = Qj(u, hl
j) · Pr(hr

j−1, h
l
k+1) · Pr(hr

k, v) . (8)

Proof. Given anm–rings graph where every edge has an independent operational
probability and all nodes are immune to failures, for any pair of nodes u and v of
Vj , j ∈ {1, . . . ,m}, we use πC

j [u, v] to denote the u–v path on Cj in the clockwise
direction and πA

j [u, v] denote that in the anticlockwise direction. Then we have:
(i) For any pair of nodes u and v of Vk, k ∈ {j1, . . . , j2}, πC

j [u, v] and πA
j [u, v]

have no edge in common. So the event that a message is correctly transmitted
from u to v along πC

j [u, v] is independent with that along πA
j [u, v]. Based on the

related property of probability, we immediately obtain Eq. (6).
(ii) For any pair of nodes u1 and v1 of Cj1 , j1 ∈ {1, . . . ,m} and any pair of

nodes u2 and v2 of Cj2 , j2 ∈ {1, . . . ,m}, j2 > j1, all of πC
j1 [u1, v1], πA

j1 [u1, v1],

A Divide-and-Conquer Algorithm 273

πC
j2

[u2, v2], πA
j2

[u2, v2] have no edge in common. So the event that a message is
correctly transmitted from u1 to v1 along Cj1 is independent with that from u2
to v2 along Cj2 . Furthermore, given any j1 ≤ k ≤ j2 and u ∈ Vj , j ∈ {j1, . . . , k}
and v ∈ Vd, d ∈ {k + 1, . . . , j2}, the following three events are independent, i.e.
the event that a message is correctly transmitted from u to hr

j , from hl
j+1 to hr

k,
from hl

k+1 to v. This completes the proof of Eq. (7).
(iii) Similar to above (ii), Eq. (8) follows. ��

The following Lemma 2 shows an approach to compute all E[u; C(j1, j2)] for all
u ∈ V(j1, j2) where j1, j2 ∈ {1, . . . ,m}, j1 < j2.

Lemma 2. Given any j1, j2 ∈ {1, . . . ,m}, j1 < j2 and j1 ≤ k ≤ j2,
(i) for all u ∈ Vj , j ∈ {j1, . . . , k}, we have

E[u; C(j1, j2)] = E[u; C(j1, k)]

+Qj(u, hr
j) · Pr(hl

j+1, h
r
k) · E[hl

k+1; C(k + 1, j2)] .
(9)

(ii) for all u ∈ Vj , j ∈ {k + 1, . . . , j2}, we have

E[u; C(j1, j2)] = E[u; C(k + 1, j2)]

+Qj(u, hl
j) · Pr(hr

j−1, h
l
k+1) · E[hr

k; C(j1, k)] .
(10)

Proof. (i) Based on Eq. (5) and (7), we conclude that

E[u; C(j1, j2)]
Eq.(5)

=
∑

v∈V(j1,j2)\{u}
Pr(u, v)

=
∑

v∈V(j1,k)\{u}
Pr(u, v) +

∑
v∈V(k+1,j2)\{hl

k+1}
Pr(u, v)

Eq.(7)
= E[u; C(j1, k)] +

∑
v∈V(k+1,j2)\{hl

k+1}
Qj(u, hr

j) · Pr(hl
j+1, h

r
k) · Pr(hl

k+1, v)

= E[u; C(j1, k)] + Qj(u, hr
j) · Pr(hl

j+1, h
r
k) · E[hl

k+1; C(k + 1, j2)] .

(ii) Similarly, Eq. (10) follows from Eq. (5) and (8). ��

4 A Divide-and-Conquer Algorithm

The Divide-and-Conquer method is one of the most important techniques of
algorithm design [9, 10, 16]. In this section, we set a bi-directed symmetric-
weighted λ–rings C = (V,A, P), λ = {λ1, . . . , λm} and its index sequence I =
{1, . . . ,m} as an example. We will present a Divide-and-Conquer algorithm for
computing an MRS of C, comprising two main steps—Divide subroutine and
Merge subroutine. To determine all E[u; C(j1, j2)] for all u ∈ V(j1, j2) is called to

274 W. Ding and G. Xue

achieve the solution of C(j1, j2) or to solve C(j1, j2). Divide subroutine bisects
a large-size cluster of rings into two small-size clusters of rings recursively until
every cluster contains one ring. Then we compute the solution of every Cj , j ∈ I
respectively. Merge subroutine combines the solutions of two small-size clusters
of rings into the solution of the merged large-size cluster of rings recursively until
the solution of C is achieved. The implementations of both Divide subroutine
and Merge subroutine are based on I in our algorithm.

For ease of presentation, we use J = {j1, . . . , j2} to denote a subsequence of I
(J ⊆ I, corresponding to C(j1, j2)), Size(J) to denote the size of J (the number
of rings in C(j1, j2)), and Sol(J) to denote the solution of C(j1, j2).

4.1 An MRS on a Ring

For every Cj = (Vj , Aj , Pj), j ∈ I, Eq. (4) shows that we are required to compute
all Qj(u, v) for all v ∈ Vj \{u} so as to compute each Rj [u], u ∈ Vj . This directly
leads to the following Procedure MRSR (see [6] for more details). Note that the
input J of MRSR is a single-element subsequence {j}, j ∈ I which corresponds
to a ring Cj .

MRSR(J):
BEGIN

for each u ∈ Vj do
Compute all Q+

j (u, v) consecutively in the clockwise direction;
Compute all Q−

j (u, v) consecutively in an anticlockwise direction;
Compute all Qj(u, v) using Eq. (6), record Qj(u, hl

j) and Qj(u, hr
j);

Compute Rj [u] using Eq. (4);
end for
Return Sol(J) and Qj(u, hl

j),Qj(u, hr
j) for all u ∈ Vj ;

END

Theorem 1. Procedure MRSR requires O(λ2
j) time.

Proof. For each u ∈ Vj , Procedure MRSR spends O(λj) time to compute all
Q+

j (u, v) and O(λj) time to compute all Q−
j (u, v) for all v ∈ Vj \ {u}, O(1) time

to compute Qj(u, v), and O(λj) time to compute Rj [u]. So the total time of
Procedure MRSR is O(λ2

j). ��

4.2 Divide Subroutine

A longer sequence can be divided into a group of shorter subsequences by
many division schemes. In the following, we present a bisection scheme as Eq.
(11) for bisecting a longer sequence into two shorter subsequences recursively,
which finally produces a group of single-element subsequences. Such bisection
scheme forms a resultant rooted tree, called the binary division tree (BDT), see
Fig. 2.

A Divide-and-Conquer Algorithm 275

R

R R

w

w w

l

l

r

r

h

0

1

logm

k

k+1

logm -1

I(R)={1,2,...,m}

I(R)={1,2,..., (m+1)/2 } I(R)={ (m+1)/2 +1,...,m-1,m}

I(w)={ j ,..., j }1 2

l r

I(w)={ j , ..., (j + j)/2 }l I(w)={ (j + j)/2 +1,..., j }r1 1 2 1 2 2

Leaf node in V Internal node in VB B
L N

{ i }1 { i }2

{ i }3{ i ,i }1 2

2
{ i ,i ,i }1 2 3

Fig. 2. BDT = (VB, EB), where each node w ∈ VB is associated with a subsequence

I(w) ⊆ I , illustrates the whole process of Procedure DIVD

Without loss of generality, we bisect J = {j1, . . . , j2} as an example

{j1, . . . , j2} = {j1, . . . , �
j1 + j2

2
�} ⊕ {�j1 + j2

2
�+ 1, , . . . , j2} , (11)

where let Jl = {j1, . . . , � j1+j2
2 �} and Jr = {� j1+j2

2 �+ 1, , . . . , j2}.

DIVD(J):
BEGIN

if Size(J) = 1 then
break;

else
Divide J into J := Jl ⊕ Jr using Eq. (11);
DIVD(Jl) and DIVD(Jr) respectively;

end if
END

Procedure DIVD presents a recursive bisection scheme for dividing I into
m single-element subsequences, resulting in a BDT = (VB , EB) rooted at R
(see Fig. 2). Initially, we set J to I. It is easy to see that Procedure DIVD
performs m − 1 divide operations in total to achieve m single-element subse-
quences each of which corresponds to a leaf of BDT, and the height of BDT
is �logm� provided that the bottom of BDT is labeled as its 0–level. Each
internal node of BDT corresponds to a non-single-element subsequence of I.
All leaves of BDT form a set denoted by V L

B and all internal nodes of BDT
form a set denoted by V N

B . Obviously, VB = V L
B ∪ V N

B and |V L
B | = m, |V N

B | =
m− 1.

276 W. Ding and G. Xue

Let h be the variable of height and H(h) be the set of all nodes on the h–level
of BDT. Considering VB =

⋃�logm�
h=0 H(h) and all internal nodes of BDT lie on

its h–level, h ≥ 1, we obtain

V N
B =

�logm�⋃
h=1

{
V N

B ∩H(h)
}
. (12)

Let I(w) be the subsequence of I, associated with a node w ∈ VB . It is clear
that every I(w), w ∈ V L

B is a single-element subsequence, every I(w), w ∈ V N
B is

a non-single-element subsequence, and I(w) = I(wl)⊕ I(wr) for every w ∈ V N
B .

Particularly, I(R) = I. Combing the fact that all leaves of BDT lie on its 0–level
or 1–level, we conclude from I =

⊕
w∈V L

B
I(w) that

⊕
w∈{V N

B ∩H(h)}
I(w) :

⎧⎨⎩
⊆ I if h = 1

= I if h ∈ {2, . . . , �logm�}
. (13)

4.3 Merge Subroutine

In this subsection, we present an efficient algorithm for combining two shorter
subsequences Jl and Jr into a longer sequence J . Fig. 3 helps to illustrate the
Merge subroutine. We see that it is required to achieve Sol(J) and some related
probabilities. Theorem 2 shows formulas for computing all E[u; C(j1, j2)] for all
u ∈ V(j1, j2) when combining Sol(Jl) with Sol(Jr) into Sol(J).

Theorem 2. Given a sequence J = {j1, . . . , j2} and the bisection scheme as
Eq. (11), for all u ∈ Vj , j ∈ J ,
(i) if j ∈ Jl, we have

E[u; C(j1, j2)] = E
[
u; C

(
j1,
⌊

j1+j2
2

⌋)]
+Qj(u, hr

j) · Pr(hl
j+1, h

r
� j1+j2

2 �) · E
[
hl
� j1+j2

2 �+1
; C
(⌊

j1+j2
2

⌋
+ 1, j2

)]
.

(14)

C(g+1,j)MergeC(j ,g)1 2

h

u v

j1
l hr

j1 hg
r hg+1

l hl
j2 hr

j2

h =hg
r

g+1l

Pr(h ,h)j1
r

j2
r Pr(h ,h)r

j2
r

g

E[u;C(j ,g)] E[u;C(g+1,j)]1 2
E[u;C(j ,j)]1 2

Fig. 3. Set a combination of two 2–rings as an example to illustrate the whole process

of Procedure MERG for all nodes u ∈ V(j1, g), where let g = � j1+j2
2

�

A Divide-and-Conquer Algorithm 277

(ii) if j ∈ Jr, we have

E[u; C(j1, j2)] = E
[
u; C

(⌊
j1+j2

2

⌋
+ 1, j2

)]
+Qj(u, hl

j) · Pr(hr
j−1, h

l
� j1+j2

2 �+1
) · E

[
hr
� j1+j2

2 �; C
(
j1,
⌊

j1+j2
2

⌋)]
.

(15)

Proof. This theorem follows from Lemma 2 where let k = � j1+j2
2 �. ��

Both Eq. (14) and (15) show that we are also required to achieve some related
probabilities for computing E[u; C(j1, j2)]. Actually, Qj(u, hl

j),Qj(u, hr
j) can be

achieved by Procedure MRSR, and Pr(hl
j+1, h

r
� j1+j2

2 �),Pr(hr
j−1, h

l
� j1+j2

2 �+1
) have

been achieved previously by the following Eq. (16) and (17). It follows directly
from Eq. (7) where let u = hl

j+1, v = hr
j2
, k = � j1+j2

2 � that, for all j ∈ Jl,

Pr(hl
j+1, h

r
j2) = Pr

(
hl

j+1, h
r
� j1+j2

2 �

)
· Pr

(
hl
� j1+j2

2 �+1
, hr

j2

)
. (16)

Also, it follows directly from Eq. (8) where let u = hr
j−1, v = hl

j1 , k = � j1+j2
2 �

that, for all j ∈ Jr,

Pr(hr
j−1, h

l
j1) = Pr

(
hr

j−1, h
l
� j1+j2

2 �+1

)
· Pr

(
hr
� j1+j2

2 �, h
l
j1

)
. (17)

Above discussion leads to Procedure MERG in the following, whose time com-
plexity is presented in Theorem 3.

MERG(Jl, Jr):
BEGIN

for each j ∈ Jl do
for each u ∈ Vj do

Use Eq. (14) to compute E[u; C(j1, j2)];
end for
Compute Pr(hr

j , h
r
j2

) by Eq. (16);
end for
for each j ∈ Jr do

for each u ∈ Vj do
Use Eq. (15) to compute E[u; C(j1, j2)];

end for
Compute Pr(hl

j , h
l
j1) by Eq. (17);

end for
Return Sol(J), all Pr(hr

j , h
r
j2

), j ∈ Jl and Pr(hl
j , h

l
j1

), j ∈ Jr;
END

Theorem 3. Procedure MERG requires O(
∑j2

j=j1
λj) time.

Proof. Procedure MERG needs to compute all E[u; C(j1, j2)] for all u ∈ V(j1, j2)
and spend O(1) time for each E[u; C(j1, j2)], as well as no more than O(m) time
to compute all related probabilities. Therefore, it requires O(

∑j2
j=j1

λj) time for
combining Jl with Jr into J . ��

278 W. Ding and G. Xue

4.4 A Divide-and-Conquer Algorithm

Based on discussion and procedures in above subsections, we propose a Divide-
and-Conquer algorithm for computing all reachabilities of a node of C, described
as Algorithm MRS Rings. Then we can easily achieve an MRS of C.

MRS Rings(J):
BEGIN

if Size(J) = 1 then
MRSR(J) to achieve Sol(J);

else
Divide J into J := Jl ⊕ Jr using Eq. (11);
MRS Rings(Jl) and MRS Rings(Jr) respectively;
MERG(Jl, Jr) to achieve Sol(J);

end if
END

The implementation of Algorithm MRS Rings can be taken as based on BDT
in the following way: each I(w), w ∈ V N

B performs a divide operation and each
I(w), w ∈ V L

B performs Procedure MRSR once during a top-down process among
BDT, as well as each I(w), w ∈ VB \ {R} performs a merge operation during a
bottom-up process among BDT. Initially, we input J := I.

Given a vector α = (α1, α2, . . . , αm), we introduce 1–norm ‖ ·‖1, 2–norm ‖ ·‖2
and length | · | of α, formulated by Eq. (18) as follows

‖α‖1 =
m∑

j=1

αj , ‖α‖2 =

√√√√ m∑
j=1

α2
j , |α| = m . (18)

Theorem 4. Given a λ–rings graph C = (V,A, P), λ = (λ1, . . . , λm), Algorithm
MRS Rings can compute an MRS of C correctly in O(‖λ‖22+�log|λ|�·‖λ‖1) time.

Proof. The correctness of Algorithm MRS Rings follows from the discussion be-
fore this theorem in this section. Below is shown the discussion of time complexity
of Algorithm MRS Rings.

Let T[J] be the time occupied for achieving Sol(J), D[J] be the time occupied
for dividing J into Jl and Jr, and M[J] be the time occupied for combining Jl

with Jr into J . Also, let T[Cj] be the time occupied by Procedure MRSR for
achieving Sol({j}). So we have

T[J] =

{
D[J] + T[Jl] + T[Jr] + M[J] if J ∈

{
I(w) : w ∈ V N

B

}
T[Cj], j ∈ J if J ∈

{
I(w) : w ∈ V L

B

} . (19)

Eq. (19) is a recursive equation. Initially, we input J := I. Fig. 2 shows that it
is required to perform m− 1 divide operations until we obtain m single-element
subsequences, and correspondinglym−1 merge operations until we obtain Sol(I).

A Divide-and-Conquer Algorithm 279

For each single-element subsequence J ′ ∈
{
I(w) : w ∈ V L

B

}
(corresponding to

Cj when J ′ = {j}), Procedure MRSR spends O(λ2
j) time to achieve Sol(J ′)

according to Theorem 1, i.e. T[J ′] = T[Cj] = O(λ2
j). For each non-single-element

subsequence J ′′ ∈
{
I(w) : w ∈ V N

B

}
, it spends O(1) time to perform a divide

operation, i.e. D[J ′′] = O(1). For merge operations, we conclude from Eq. (13)
that

∑
w∈{V N

B ∩H(h)}
M[I(w)] :

⎧⎨⎩
≤M[I(R)] if h = 1

= M[I(R)] if h ∈ {2, . . . , �logm�}
. (20)

and from Theorem 3 that the time required for combining I(Rl) with I(Rr)
into I(R) is M[I] = M[I(R)] = O(

∑m
j=1 λj). Therefore, it follows after m − 1

iterations of Eq. (19) that

T[I(R)] =
∑

w∈V L
B

T[I(w)] +
∑

w∈V N
B

D[I(w)] +
∑

w∈V N
B

M[I(w)]

Eq.(12)
=

∑
j∈I

O(λ2
j) +

∑
w∈V N

B

O(1) +
�logm�∑

h=1

∑
w∈{V N

B ∩H(h)}
M[I(w)]

Eq.(20)
≤ O

⎛⎝ m∑
j=1

λ2
j

⎞⎠+O(m) +
�logm�∑

h=1

M[I(R)]

Eq.(18)
= O(‖λ‖22 + �log|λ|� · ‖λ‖1) .

��
5 Conclusions

In this paper, we concentrate on a class of networks containing embedded rings
with an underlying topology of a strip graph, and present a Divide-and-Conquer
algorithm for determining an MRS on such unreliable networks. Furthermore we
can develop a parallel or distributed algorithm based on the basic results pre-
sented in this paper. It is also of interest to study networks containing embedded
rings with other classes of underlying topologies, and compute an MRS on these
unreliable networks.

References

1. Ball, M.O., Lin, F.L.: A Reliability Model Applied to Emergency Service Vehicle

Location. Oper. Res. 41(1), 18–36 (1993)

2. Ball, M.O., Provan, J.S., Shier, D.R.: Reliability Covering Problems. Networks

21(3), 345–357 (1991)

3. Bondy, J.A., Murty, U.S.R.: Graph Theory with Application. Macmillan, London

(1976)

4. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University

Press, New York (1987)

280 W. Ding and G. Xue

5. Colbourn, C.J., Xue, G.: A Linear Time Algorithms for Computing the Most Re-

liable Source on a Series-Parallel Graph with Unreliable Edges. Theor. Comput.

Sci. 209, 331–345 (1998)

6. Ding, W.: Computing the Most Reliable Source on Stochastic Ring Networks. In:

WRI World Congress on Software Engineering 2009, Xiamen, China, May 19-21,

vol. 1, pp. 345–347 (2009)

7. Ding, W., Xue, G.: A Linear Time Algorithm for Computing a Most Reli-

able Source on a Tree Network with Faulty Nodes. Theor. Comput. Sci. (2009),

doi:10.1016/j.tcs.2009.08.003

8. Eiselt, H.A., Gendreau, M., Laporte, G.: Location of Facilities on a Network Sub-

ject to a Single-Edge Failure. Networks 22(3), 231–246 (1992)

9. Even, G., Naor, J.S., Rao, S., Schieber, B.: Divide-and-conquer approximation

algorithms via spreading metrics. Journal of the ACM 47(4), 585–616 (2000)

10. Hoare, C.A.R.: Quicksort. The Computer Journal 5(1), 10–16 (1962)

11. Melachrinoudis, E., Helander, M.E.: A Single Facility Location Problem on a Tree

with Unreliable Edges. Networks 27(3), 219–237 (1996)

12. Mirchandani, P.B., Odoni, A.R.: Locations of Medians on Stochastic Networks.

Transport. Sci. 13, 85–97 (1979)

13. Nel, L.D., Colbourn, C.J.: Locating a Broadcast Facility in an Unreliable Network.

INFOR. 28, 363–379 (1990)

14. Shier, D.R.: Network Reliability and Algebraic Structure. Oxford University Press,

New York (1991)

15. West, D.B.: Introduction to Graph Theorey. Prentice Hall, Englewood Cliffs (2001)

16. Wu, I.-C., Kung, H.T.: Communication Complexity for Parallel Divide-and-

Conquer. In: Proceedings of the 32nd Annual Symposium on Foundations of Com-

puter Science (FOCS 1991), San Juan, Puerto Rico, pp. 151–162 (October 1991)

17. Xue, G.: Linear Time Algorithms for Computing the Most Reliable Source on an

Unreliable Tree Network. Networks 30(1), 37–45 (1997)

Constrained Low-Interference Relay Node
Deployment for Underwater Acoustic Wireless

Sensor Networks

Deying Li, Zheng Li, Wenkai Ma, and Wenping Chen

Key Laboratory of Data Engineering and Knowledge Engineering, MOE,

School of Information, Renmin University of China, China

Abstract. An Underwater Acoustic Wireless Sensor Network (UA-WSN)

consists of many resource-constrained Underwater Sensor Nodes (USNs),

which are deployed to perform collaborative monitoring tasks over a

given region. One way to preserve network connectivity while guaranteing

other network QoS is to deploy some Relay Nodes (RNs) in the networks,

in which RNs’ function is more powerful than USNs and their cost is

more expensive. This paper addresses Constrained Low-interference Re-

lay Node Deployment (C-LRND) problem for 3-D UA-WSNs in which

the RNs are placed at a subset of candidate locations to ensure connectiv-

ity between the USNs, under both the number of RNs deployed and the

value of total incremental interference constraints. We first prove that it

is NP-hard, then present a general approximation algorithm framework

and get two polynomial time O(1)-approximation algorithms.

Keywords: Underwater acoustic wireless sensor network, Relay node

deployment, Connectivity, Low-interference, Approximation Algorithm.

1 Introduction and Motivations

Underwater Acoustic Wireless Sensor Networks (UA-WSNs) have attracted a
great deal of research attentions due to their wide-range applications including
oceanographic data collection, pollution monitoring, offshore exploration, disas-
ter prevention, assisted navigation and tactical surveillance. UA-WSNs consist
of Underwater Sensor Nodes (USNs) that are deployed to perform collaborative
monitoring tasks over a given region [1–3].

The network topology is in general a crucial factor in determining the energy
consumption, the capacity and the communication delay of a network. Hence, the
network topology should be carefully engineered, and post-deployment topology
optimization should be performed, when possible [4, 5]. One approach to ensure
connectivity and improve network performance for UA-WSNs is to deploy a
small number of costly, but more powerful Relay Nodes (RNs) whose main task
is to communicate with other USNs or RNs [6].

However, deploying extra RNs to assist the communication between partitioned
USNs will result in the increment of inherent interference in the UA-WSNs.
The impacts of interference in multihop wireless networks (e.g. UA-WSNs) have

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 281–291, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

282 D. Li et al.

been observed and studied both theoretically and empirically in the literature
[7]. The interference in underwater acoustic communication may lead to some
negative influences such as energy waste, impaired underwater channel, limited
available bandwidth, high bit error rates and so on. These negative factors have
to reduce the system performance.

Most of the existed works on the RNs deployment problems are the uncon-
strained version, i.e., the RNs can be placed anywhere. In practice, however,
there are some physical constraints on the placement of the RNs [8]. For exam-
ple, there may be some forbidden regions where relay nodes cannot be placed.
For solving this challenging problem, we study the constrained RNs deployment
problem where the RNs can only be placed at a subset of candidate locations.

This paper mainly addresses the Constrained Low-interference Relay Nodes
Deployment (C-LRND) problem for the UA-WSNs, which meets connectivity
requirement under both the number of RNs deployed and the value of total
incremental interference constraints. The deployment strategie studied in this
paper is trying to guarantee both less number of deployed RNs and lower total
incremental interference simultaneously. We first discuss its computational com-
plexity, then present a general approximation algorithm framework and get two
polynomial time O(1)-approximation algorithms.

The rest of this paper is organized as follows. In Section 2 we present related
works. Section 3 describes the network model and basic notations. In section 4,
we investigate the connected C-LRND problem. Section 5 concludes our paper.

2 Related Works

RNs placement problems have been well studied in the 2-D Wireless Sensor
Networks (WSNs) [9–11]. Lin et al. [10] proved the problem to be NP-hard,
and proposed a MST-based 5-approximation algorithm. Chen et al. [9] proved
that the algorithm in [10] is an 4-approximation algorithm. Cheng et al. [11]
proposed a faster 3-approximation algorithm and a randomized algorithm with
a performance ratio of 2.5. In addition, there are many works on fault-tolerance
RNs placement problem[12, 13]. Bredin et al. [13] studied the fault-tolerance
(k-connected) RNs placement problem, which aims to deploy minimum number
of RNs to ensure the resulting network contains k node-disjoint paths between
every pair of sensors and RNs. The authors [13] presented polynomial time O(1)-
approximation algorithms for any fixed k. Kashyap et al. [14] presented an 10-
approximation algorithm to ensure 2-connectivity. In [6, 15], the authors studied
the RNs placement problems to ensure 1-connectivity and 2-connectivity for the
case that the RNs have longer transmission range than sensors, and presented
approximation algorithms with constant performance ratio.

All of the above works studied the unconstrained version RNs placement prob-
lem, in the sense that the RNs can be placed in anywhere. However, in reality
there are some physical constraints on the placement of the RNs. In ref. [8], the au-
thors formulated the constrained RNs placement problems, i.e., placing the mini-
mum number of RNs at a subset of candidate locations to ensure the 1-connectivity
and 2-connectivity between the sensor nodes and the base station, respectively.

C-LRND for Underwater Acoustic Wireless Sensor Networks 283

The majority of the existing works in relay node deployment problem are
based on the 2-D network model derived from the terrestrial wireless sensor
networks. The work in [1] introduced a type of 3-D UA-WSNs architecture, con-
sisting of USNs and RNs. The role of RNs is to communicate with USNs and
other RNs. The works in [16] mainly focused on the surface gateway placement
and pointed out the tradeoff between the number of surface gateways and the
expected delay and energy consumption. Seah et al.[17] proposed a novel vir-
tual sink architecture for UA-WSNs that aims to achieve robustness and energy
efficiency in harsh under water channel conditions.

In this paper, we focus on the Constrained Low-interference Relay Node de-
ployment (C-LRND) strategy for 3-D US-WSNs to meet 1-connectivity between
all USNs, under both the number of RNs deployed and total incremental inter-
ference constraints. This problem is different from the problems in [8, 16]. The
authors in [16] only formulated the problems by Integer Linear Programming
model. In [8], the authors studied the constrained relay node placement prob-
lem in 2-D wireless sensor networks to meet 1-connectivity and 2-connectivity
requirements. However, the 2-D assumption may no longer be valid if RNs are
deployed in 3-D underwater environment. Furthermore, the deployment strategy
studied in this paper is concerned with not only the number of RNs deployed,
but also the total incremental interference, i.e., trying to guarantee both less
number of deployed RNs and lower interference simultaneously.

3 Notations and Network Model

In this section, we will formally define the problem and notations that will be
used throughout the paper. Let us consider a 3-D UA-WSN consisting of Under-
water Sensor Nodes (USNs) and Relay Nodes (RNs). The USNs are pre-deployed
in the sensing area and floated at different depths, each of them is equipped
with an acoustic communicator which has communication range RA. On the
other hand, RNs only can be deployed at the candidate locations. RNs are also
equipped with acoustic communicators with communication ranges RA. Denote
S to the USNs set, and L a set of candidate locations where RNs can be placed.
We will use u to denote node u’s location, if no confusion arises. The notations
can be summarized as follows:

dEuc(u, v) Euclidean distance between
two nodes u and v.

dT (u) degree of node u in T .

Δ(T) the maximum degree among all nodes in T .

N(u) a set of node u’s neighbors.

RA acoustic communication range.

KN3 3-dimension kissing number.

284 D. Li et al.

Any two nodes u, v (which could be a RN or an USN) can communicate
directly with each other if and only if dEuc(u, v) ≤ RA. We use an unweighted
undirected graph G(V,E) in 3-D space to model the network architecture of a
3-D UA-WSN, where V (G)=S ∪ Y and Y ⊆ L. The edge set E(G) defined as
follows:

• For any two nodes u, v ∈ S ∪L, E contains the undirected edge (u, v) if and
only if dEuc(u, v) ≤ RA.

Note that G(S∪L,E) is a 3-D graph corresponding to the 3-D UA-WSNs archi-
tecture when every candidate location in L is placed a RN. This topology graph
is an Unit Ball Graph (UBG) and can model the 3-D UA-WSN and simplify the
problem specifications without losing generality. The graph G(S∪L,E) defines
all possible pair-wise communications between pairs of nodes. For the design
and analysis of our algorithms, we will need to define the relay value of a node
u ∈ S∪L. Let G(V,E) be a 3-D graph corresponding to the 3-D UA-WSNs ar-
chitecture when every candidate location in L is placed a RN, where V = S∪L.
The relay value of a node u ∈ V (G) can be defined as:

R(u) =
{

0 u ∈ S
1 u ∈ L

The relay value of a subgraph H of G, denoted by R(H), is the number of RNs
in H , i.e., R(H) =

∑
u∈V (H) R(u) = |V (H) ∩ L|.

As mentioned earlier, the goal of our RNs deployment strategy is to guarantee
both less number of deployed RNs and lower incremental interference simulta-
neously. When a RN u is placed at a candidate location, we use the number of
sensors which can communicate with u in G to define the incremental inherent
interference. The interference value of a node u, denoted by I(u), i.e.,

I(u) =
{

0 u ∈ S
|N(u) ∩ S| u ∈ L

The interference value of a subgraphH of G can be denoted as I(H) =
∑

u∈V (H)
I(u).

A 3-D UBG G(S ∪ L,E) corresponding to the 3-D UA-WSN, together with
the definitions of node-weight functions R(u) and I(u) collectively induces a
node-weight UBG G(S ∪ L,E,R, I). For each node u ∈ S ∪ L, we assign two
node weights R(u) and I(u) to u. Note that the network topology must be a tree
which is a subgraph of G(S∪L,E,R, I) spanning S if we use a minimum number
of RNs to connect the partitioned network. Then a RNs deployment strategy for
UA-WSNs will correspond to a tree T in G(S∪L,E,R, I). The deployed number
of RNs and total incremental incremental interference value can be denoted as
R(T) and I(T) respectively.

The optimization objective of our RNs deployment strategy is to guaran-
tee both less number of deployed RNs and lower incremental interference si-
multaneously. For a subgraph T of G(S ∪ L,E,R, I), we define the cost of T

C-LRND for Underwater Acoustic Wireless Sensor Networks 285

as C(T) = max{R(T)/W1, I(T)/W2}, W1 and W2 are given positive constant
constraints. The problem studied in this paper can be formally represented as
follows:

Definition 1: The Constrained Low-interference Relay Node Deploy-
ment (C-LRND) problem: Given an UA-WSN (RA, S, L), the C-LRND prob-
lem is to find a subset Y of L in which each candidate location in Y is placed
at a RN such that the network G(S∪Y,E) is 1-connected and the cost C(G) of
G is minimized, where Y = V (G) ∩ L.

Note that the tolerance values W1 and W2 are the user-defined system pa-
rameters. By carefully setting the values of W1 and W2, deployment strategy
obtained will not only have lower RNs relay value, but also have lower interfer-
ence value. For example, if we set W1 and W2 to the solutions of minimizeR(T)
and minimize I(T), respectively. With the decrement of the value of C(T), the
relay value and interference value of T will not exceed W1 and W2 too much.

4 Algorithms for the Constrained Low-Interference Relay
Node Deployment Problem

In this section, we discuss the computational complexity of the C-LRND problem
and present a general approximation algorithm framework, based on approxima-
tion algorithms for the Steiner Minimum Tree (SMT) problem, for it. Finally,
we analyze the quality of the result produced by the algorithm with respect to
the optimal solution.

4.1 Computational Complexity and Discussions

Theorem 1: The C-LRND problem is NP-hard.

Proof: It is easy to know the Node-Weighted Steiner Minimum Tree (NW-SMT)
problem is a special case of C-LRND problem since the C-LRND problem is for
given a node-weight graph G(S∪L,E,R, I), to find a tree T of G(S∪L,E,R, I)
which spans all nodes in S such that the total cost C(T) is minimized. The
NW-SMT problem is proved to be NP-hard [18], then the C-LRND problem is
NP-hard. �
To our best knowledge, this paper is the first effort to address constrained RNs
deployment to ensure small number of deployed RNs and low interference si-
multaneously. There have been previous studies on RNs deployment for wireless
networks [6, 10], most of which focused on maintaining network connectivity with
minimum number of RNs. However, if the negative influence of communication
interference between nodes can not be neglected, directly applying the existing
deployment strategy will only give suboptimal results for prolonging network
lifetime and improving QoS. In [3, 4], the authors stated that major challenges
in the design of underwater acoustic networks including: the underwater channel
is severely impaired; the available bandwidth is severely limited; high bit error
rates and so on. Communication interference is responsible for much of these

286 D. Li et al.

negative influence [3, 4]. Hence, we will try to design the deployment strategy,
which has to not only ensure network connectivity, but also achieve low inter-
ference between network nodes.

4.2 A General Approximation Algorithm Scheme

In this component, we present a framework of polynomial time approximation
algorithm for the C-LRND problem. We prove that the cost C(T) computed
by our algorithm is no more 12α times the cost of optimal solution, where α
is the ratio of the approximation algorithm A for the undirected graph Steiner
Minimum Tree (SMT) problem. Our approximation algorithm for C-LRND is
presented as Algorithm 1.

Algorithm 1. Approximation algorithm for the connected C-LRND Problem
Input: An UA-WSNs (RA, S, L). An approximation algorithm for the Steiner

Minimum Tree problem.

Output: An feasible solution YA for the C-LRND.

Begin:

1: Construct the initial UA-WSN model graph G = (V, E, R, I), where V =S ∪ L,

and convert it to the single node weighted undirected graph G1 = (V, E, w), where

w(u)=max{R(u)/W1, I(u)/W2} for ∀u ∈ V .

2: Construct an edge weighted undirected graph G2 = (V, E, f), while setting the

edge-weight f(e) to 1
2
(w(u) + w(v)) for ∀e ∈ E.

3: Apply an approximation algorithm A for the Steiner Minimum Tree problem to

compute a low weight Steiner Tree subgraph T of G2 = (V, E, f), which spans all

nodes in S.

4: Output YA = V (T) ∩ L.

End.

The major steps of the algorithm are as follows. First, we construct G =
(V,E,R, I), as if we were placing a RN at every candidate location in L. And
then we convert G = (V,E,R, I) to the single node weighted undirected graph
G1 = (V,E,w) in which nodes set and edges set are same as G = (V,E,R, I),
and w(u)=max{R(u)/W1, I(u)/W2} for ∀u ∈ V . This is accomplished in Line 1
of Algorithm 1. Next, we transform node weight to edge weight, for each edge
e = (u, v) ∈ E we set f(e) = 1

2 (w(u) + w(v)). Then the single node weighted
undirected graph G1 = (V,E,w) can be convert to edge weighted undirected
graph G2 = (V,E, f). This is accomplished in Line 2 of Algorithm 1. Then we
apply algorithm A to compute a low weight tree subgraph TA of G2 = (V,E, f),
spanning all nodes in S. This is accomplished in Line 3 of Algorithm 1. Finally,
in Line 4, we identify the locations to deploy the RNs.

4.3 Theoretical Analysis

In this subsection, we will analyze the performance of Algorithm 1. We assume
Topt is an optimal solution for the C-LRNP problem in G = (V,E,R, I); T 1

opt is

C-LRND for Underwater Acoustic Wireless Sensor Networks 287

a minimum node-weighted Steiner tree for node set S in G1 = (V,E,w); T 2
opt is

the minimum edge-weighted Steiner tree for node set S in G2 = (V,E, f); And
T is the solution computed by Algorithm 1. We have the following lemmas and
theorem.

Lemma 1: w(T) ≤ f(T) ≤ Q · f(T 2
opt) ≤

Δ(T 1
opt)
2 ·Q · w(T 1

opt).

Proof: Firstly, let us prove the first inequality: w(T) ≤ f(T). Note that tree
T which is a Steiner tree in G2 = (V,E, f) spanning all nodes in set S got by
Algorithm 1, also is the Steiner tree for set S in G = (V,E,R, I) and G1 =
(V,E,w). The node weight of each node in S in G1 = (V,E,w) is equal to 0,
and the degree of every node in T −S is at least 2. The definition of edge weight
of (u, v) in G2 = (V,E, f) is: f((u, v)) = 1

2 (w(u) + w(v)). We divide the edge
weight of (u, v) into two pieces, add the weight w(u)

2 to u, add the weight w(v)
2

to v. After all edges are looped over, we have shifted the edge weights of T to
the nodes in T . It is clear that the shifted node weight of the node u in T always
be greater than w(u) in G1 = (V,E,w). Hence we have:

w(T) ≤ f(T) (1)

Since T 2
opt is the minimum edge-weighted Steiner tree for node set S in G2 =

(V,E, f), and T is a edge-weighted Steiner tree for S in G2 = (V,E, f), which
is computed by a Q-approximation algorithm for SMT problem. So we can have
the second inequality.

f(T) ≤ Q · f(T 2
opt) (2)

Note that T 1
opt is the minimum node-weighted Steiner tree for node set S in

G1 = (V,E,w) and T 2
opt is the minimum edge-weighted Steiner tree for node set

S in G2 = (V,E, f), but f is about edge weight, therefore

f(T 2
opt) ≤ f(T 1

opt) =
∑

(u,v)∈E(T 1
opt)

1
2
(w(u) + w(v))

=
∑

u∈V (T 1
opt)

1
2
dT 1

opt
(u) · w(u) (3)

Let Δ(T 1
opt) denote the maximum degree of T 1

opt, from inequality (3), we have

f(T 2
opt) ≤

Δ(T 1
opt)

2
· w(T 1

opt) (4)

From inequalities (1) (4), this lemma thus follows. �
Lemma 2: w(T 1

opt) ≤ w(Topt) ≤ 2 · C(Topt).

Proof: Since T 1
opt is the minimum node-weighted Steiner tree for node set S in

G1(V,E,w) and Topt also is a Steiner tree for S, the first inequality follows.

288 D. Li et al.

Note that Topt is the optimal solution of the C-LRNP problem in G =
(V,E,R, I), we have the following formulas∑

u∈Topt

R(u)
W1

=
R(Topt)
W1

≤ max{R(Topt)
W1

,
I(Topt)
W2

} = C(Topt) (5)

∑
u∈Topt

I(u)
W2

=
I(Topt)
W2

≤ max{R(Topt)
W1

,
I(Topt)
W2

} = C(Topt) (6)

Furthermore, we have ∑
u∈Topt

(
R(u)
W1

+
I(u)
W2

) =

= {R(Topt)
W1

+
I(Topt)
W2

} ≤ 2 · C(Topt) (7)

Note that w(u) = max{R(u)/W1, I(u)/W2}, then we have:

w(u) ≤ (
R(u)
W1

+
I(u)
W2

) (8)

Combining formula (5)-(8), we have

w(Topt) =
∑

u∈Topt

w(u) ≤ 2 · C(Topt) (9)

This lemma follows. �
Lemma 3: C(T) ≤ w(T).

Proof: Since

C(T) = max{R(T)
W1

,
I(T)
W2

}

= max{
∑
u∈T

R(u)
W1

,
∑
u∈T

I(u)
W2
}

≤
∑
u∈T

max{R(u)
W1

,
I(u)
W2
}

=
∑
u∈T

w(u) = w(T). (10)

This lemma thus follows. �
Lemma 4: Let T 1

opt be the optimal solution with the shortest total Euclidean
edge length among the minimum node-weighted Steiner trees for node set S in
G1(V,E,w), then Δ(T 1

opt) ≤ 12.

C-LRND for Underwater Acoustic Wireless Sensor Networks 289

Proof: We first claim that in T 1
opt any two edges incident to a node form an

angle of at least π
3 . Suppose (u, v) and (u,w) are any two edges meeting at u

in T , and ∠vuw < π
3 , there must be an angle larger than π

3 in &uvw. Without
loss of generality, we assume that ∠uvw > π

3 . Then from the Sine Theorem,
we have

dEuc(v, w)
sin ∠vuw =

dEuc(u,w)
sin ∠uvw

Since 0 < ∠vuw < π
3 < ∠uvw < π − ∠vuw < π, we have sin ∠vuw <

sin ∠uvw and dEuc(v, w) < dEuc(u,w). Replacing the edge (u,w) with (v, w) in
T 1

opt results in T 2, which is also the minimum node-weighted Steiner tree for
node set S in G1(V,E,w), but dEuc(T 2) < dEuc(T 1

opt). This contradicts with
that T 1

opt is the optimal solution with the shortest total Euclidean edge length
among the minimum node-weighted Steiner trees for node set S in G1(V,E,w).
This contradiction proves that in T 1

opt any two edges meeting at a node form an
angle of at least π

3 .
Next we claim that for any node u of T 1

opt, dT 1
opt

(u) ≤ KN3, where KN3 = 12
[19]. If not, there is a node u with dT 1

opt
(u) > KN3. For ∀x ∈ N(u), we can pull

x to x′ along −→ux such that dEuc(u, x′) = RA. ∀x1, x2 ∈ N(u), it is clear that
∠x1ux2 = ∠x′1ux′2. If we can prove ∠x′1ux′2 < π

3 , we can get a contradiction
from above claim. For every x ∈ N(u), we draw a ball centered in x′ with radius
RA

2 . Since dT 1
opt

(u) > KN3, there exist two balls centered in x′1, x′2 intersect [19].
Therefore dEuc(x′1, x

′
2) < RA. Then ∠x′1ux′2 < ∠ux′1x′2 = ∠ux′2x′1. It implies

that ∠x′1ux′2 < π
3 . Therefore, for any node u of T 1

opt, we have dT 1
opt

(u) ≤ KN3,
that is Δ(T 1

opt) ≤ 12. This lemma thus follows. �
Theorem 2: C(T) ≤ 12 ·Q · C(Topt).

Proof: Combining Lemma 1, 2, 3, we have

C(T) ≤ w(T) ≤ Δ(T 1
opt) ·Q · C(Topt) (11)

From Lemma 4 : Δ(T 1
opt) ≤ 12 and (11), we get the theorem follows. �

Corollary 1: The C-LRNP problem has a polynomial time 18.6-approximation
algorithm.

Proof: According to the conclusion in [20], there is a polynomial time approxi-
mation algorithm for the Steiner Minimum Tree problem whose approximation
ratio is at most 1.55. This corollary follows from Theorem 2 with Q=1.55. �
Corollary 2: The C-LRNP problem has a polynomial time 24-approximation
algorithm with time complexity of O(|S ∪ L|2) log |S ∪ L|.
Proof: If we take A in Algorithm 1 as the MST based 2-approximation algorithm
for the Steiner Minimum Tree problem [21], the time complexity of Algorithm 1
is O(|S ∪ L|2) log |S ∪ L|. The corresponding approximation ratio of Algorithm
1 follows from Theorem 2. �

290 D. Li et al.

5 Conclusions

In this paper, we studied the C-LRND problem in Underwater Acoustic Wireless
Sensor Networks (UA-WSNs). We mainly addressed the connected RNs deploy-
ment problem under both the number of RNs and the value of total incremental
interference constraints. And presented an approximation algorithm framework
for this problem.

Acknowledge

This paper was supported in part by the National Natural Science Foundation
of China under Grant 61070191 and Renmim University of China under Grant
10XNJ032.

References

1. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater Acoustic Sensor Networks:

Research Challenges. Elesviers Journal of Ad Hoc Networks 3(3), 257–279 (2005)

2. Akyildiz, I.F., Pompili, D., Melodia, T.: State of the Art in Protocol Research for

Underwater Acoustic Sensor Networks. In: Proc. of the ACM WUWNet (2006)

3. Akyildiz, I.F., Pompili, D., Melodia, T.: Challenges for Efficient Communication

in Underwater Acoustic Sensor Networks. SIGBED Rev. 2(1), 1–6 (2004)

4. Partan, J., Kurose, J., Levine, B.N.: A Survey of Practical Issues in Underwater

Networks. In: Proc. of the ACM WUWNet (2006)

5. Pompili, D., Melodia, T., Akyildiz, I.F.: Deployment Analysis in Underwater

Acoustic Wireless Sensor Networks. In: Proc. of the ACM WUWNet (2006)

6. Lloyd, E., Xue, G.: Relay Node Placement in Wireless Sensor Networks. IEEE

Trans. on Computers 56, 134–138 (2007)

7. Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of Interference on Multi-

hop Wireless Networks. In: Proc. of the ACM MOBICOM (2003)

8. Misra, S., Hong, S.D., Xue, G., Tang, J.: Constrained Relay Node Placement in

Wireless Sensor Networks to Meet Connectivity and Survivability Requirements.

In: Proc. of the IEEE INFCOM (2008)

9. Chen, D., Du, D., Hu, X., Lin, G., Wang, L., Xue, G.: Approximations for Steiner

Trees with Minimum Number of Steiner Points. Journal of Global Optimization 18,

17–33 (2000)

10. Lin, G., Xue, G.: Steiner Tree Problem with Minimum Number of Steiner Points

and Bounded Edge-Length. Information Processing Letters 69, 53–57 (1999)

11. Cheng, X., Du, D., Wang, L., Xu, B.: Relay Sensor Placement in Wireless Sensor

Networks. In: ACM/Springer WINET (2008)

12. Han, X., Cao, X., Lloyd, E.L., Shen, C.C.: Fault-tolerant Relay Node Placement in

Heterogeneous Wireless Sensor Networks. In: Proc. of the IEEE INFOCOM (2007)

13. Bredin, J.L., Demaine, E.D., Hajiaghayi, M., Rus, D.: Deploying Sensor Networks

with Guaranteed Capacity and Fault Tolerance. In: Proc. of the ACM MOBIHOC

(2005)

14. Kashyap, A., Khuller, S., Shayman, M.: Relay Node Placement for Higher Order

Connectivity in Wireless Sensor Networks. In: Proc. of the IEEE INFOCOM (2006)

C-LRND for Underwater Acoustic Wireless Sensor Networks 291

15. Zhang, W., Xue, G., Misra, S.: Fault-tolerant Relay Node Placement in Wire-

less Sensor Networks: Problem and Algorithms. In: Proc. of the IEEE INFOCOM

(2007)

16. Ibrahim, S., Cui, J.H., Ammar, R.: Surface-level Gateway Deployment for Under-

water Sensor Networks. In: Proc. of the IEEE MILCOM (2007)

17. Seah, W.K.G., Tan, H.X.: Multipath Virtual Sink Architecture for Underwater

Sensor Networks. In: Proc. of the OCEANS (2006)

18. Du, D., Hu, X.: Steiner Tree Problems in Computer Communication Networks.

World Scientific Publishing Co. Pte. Ltd., Singapore (2008)

19. Conway, J.H., Sloane, N.J.A.: Sphere Packing, Lattices and Groups, 3rd edn.

Springer, New York (1999)

20. Robins, G., Zelikovsky, A.: Tighter Bound for Graph Steiner Tree Approximation.

SIAM J. on Discrete Mathmatics 19, 122–134 (2005)

21. Kou, L.T., Markowsky, G., Berman, L.: A Fast Algorithm for Steiner Tree. Acta

Informatica 15, 141–145 (1981)

Structured Overlay Network for File Distribution

Hongbing Fan1,� and Yu-Liang Wu2,��

1 Wilfrid Laurier University, Waterloo, ON Canada N2L 3C5

hfan@wlu.ca
2 The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

ylw@cse.cuhk.edu.hk

Abstract. The file distribution from a source node to n sink nodes

along a structured overlay network can be done in time Θ(log n). In this

paper, we model the problem of finding an optimal overlay network for

file distribution as a combinatorial optimization problem, i.e., finding a

weighted spanning tree which connects the source node and sink nodes

and has the minimum file distribution time. We use an edge-based file

distribution protocol, in which after a node receives a file it then transfers

the file to its neighbor nodes one after another in a sequential order. We

give the formulation of file distribution time, and use it as the objective

function. The corresponding combinatorial optimization problem is NP-

hard in general. We present a heuristic algorithm which derives an overlay

network with file distribution time Θ(log n) and show that the derived

overlay network is optimal if the file transfer delays between all pairs of

nodes are the same.

Keywords: File distribution, Peer-to-Peer, overlay network, parallel

computing.

1 Introduction

Peer-to-peer (P2P) technology has been widely used in content distribution on
the Internet. The fundamental problem is to distribute a file from a source
peer to a large number of sink peers. Popular applications include BitTorrent
[2] for file distribution, Skype for VoIP, PPLive for IPTV. The core feature of
P2P systems is the capability to build overlay network to carry out computing
tasks over multiple peers. The well-known file distribution applications, such as
BitTorrent, use non-structured overlay networks where a peer connects to some
seed peers to download different parts of a file and disconnects after the download
is complete. A lot of work has been done in recent years on the BitTorrent-
type protocols to improve performance in file distribution [3,7,4]. On the other
hand, the structured overlay network approach distributes files along a pre-
given overlay network. The structured overlay network approach is not as flexible
and scalable as the BitTorrent approach, but it can be more efficient than the
� Research partially supported by the NSERC, Canada.

�� Research partially supported by RGC Earmarked Grant 2150500 Hong Kong.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 292–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Structured Overlay Network for File Distribution 293

non-structured overlay network approach for file distribution when the set of
sink peers is known at the beginning. The superior performance is achieved by
better overlay network topology, a simple protocol, a parallel processing scheme
and a lower overhead on interconnection reconfiguration. The structured overlay
network approach has been used in P2P-based stream video data broadcast [8].

One problem of the structured overlay network approach for file distribution
is to find an optimal overlay network topology which minimizes file distribution
time according to the given file distribution protocol. Similar problems have been
studied in the field of graph theory and network optimization. For an example,
the broadcast graph problem studied in [1,6] is to find an minimum broadcast
graph on n nodes that allows any node to broadcast to the other n − 1 nodes
in time lceil log2 n�. The problem was studied under the assumption that a
message is transferred along an edge in a unit time and a node can send at most
one message at a unit time. In [5], a k-broadcasting graph problem was studied,
in which a node can send up to k of its neighbors in each time unit. These work
assures that with proper choice of structured overlay network, file distribution
can be done in time O(log n) using a simple file distribution protocol similar to
the message distribution.

In this paper, we investigate the optimal overlay network topology problem ac-
cording to an edge-based file distribution protocol (EFDP). For the convenience
of description, we use the terms node and edge instead of peer and connection.
The EFDP has the following two properties: First, the file distribution process
comprises a plurality of single file transfers, each transfer sends the file from one
node to another along an edge of the overlay network. Second, after a node re-
ceives a file (i.e., the whole file data arrives and is saved completely at the node),
it starts to transfer the file to its first neighbor node (if the node does not receive
the file yet nor it is in the process of receiving the file) and when the transfer is
done, it transfers the file to the second neighbor node, and continues this process
till the last neighbor node receives the file. The file distribution time along an
overlay network is the total time span from the first file transfer at the source
node to the end of last file transfer at all sink nodes. We are to find an overlay
network, along which a minimum file distribution time can be achieved-such an
overlay network is said to be optimal.

It is noticed that with the EFDP, after two or more nodes receive a file, the
file distribution begins to progress in parallel, i.e. multiple file transfers happen
simultaneously at multiple nodes and edges. This parallel feature is the key factor
that accelerates file distribution along a structured overlay network with EFDP.
Therefore, an optimal overlay network must maximize parallel progressing. It
is also noticed that an optimal overlay network can be a rooted spanning tree.
This is because the best distribution strategy along an overlay network must use
a set of edges to transfer the file. The set of edges must form a connected graph
covering all nodes. There is no loop in the graph as otherwise a node would
receive the file twice. The root is the node which has the file at the beginning.
The direction of an edge can be determined by the direction of file transfer,
which must be away from the root. The real file distribution time along a tree

294 H. Fan and Y.-L. Wu

is affected by many factors: the file size, the topology of the tree, the ordering
of children at each node, the file transfer time along each edge, as well as the
file i/o time at each node. The file transfer time along an edge and the i/o
time are also dynamic. To simplify the problem, we assume that the file to be
distributed has a unit size, and we combine the file i/o times on both sides of
an edge and file transfer time along the edge into a non-dynamic time measure,
called file transfer delay. Specifically, the file transfer delay along edge (pi, pj),
denoted by t(pi, pj), is the expectation (or estimation) of the amount of time to
transfer a unit file from pi to pj . We also use the maximum outgoing degree b as
a parameter to control the number of file transfers from a node so as to balance
the amount of data flowing out a node. b can be infinite when there is no such
a balance constraint.

With the above observations and assumptions, the optimal overlay network
topology problem associated with EFDP is to find a rooted spanning tree such
that each node has at most b children and that it minimizes the file distribu-
tion time. In Section 2, we will give a formula to compute the file distribution
time, followed by the formal description of the optimal overlay network topology
problem for EFDP. The proposed problem is NP-hard in general, so we present a
heuristic algorithm together with a theorem. The theorem claims that using the
tree derived by the heuristic algorithm, the file distribution can be done in time
Θ(log n), and that the algorithm derives an optimal tree when the file transfer
delays along all edges are the same. The detailed proof of the theorem is given
Section 3.

2 Problem Formulation

Let {p0, p1, . . . , pn−1} denote the set of all nodes. Assume that node p0 is the
source node with a unit file to be distributed, and nodes p1, . . . , pn−1 are the
sink nodes to receive the file. Let t(pi, pj) denote the time to transfer a unit file
from node pi to pj along edge (pi, pj), i, j = 0, 1, . . . , n− 1. Let T = (V,E) be a
directed tree on V = {p0, p1, . . . , pn−1} rooted at p0. Denote by D+

T (p) the set
of children of p in T , i.e., D+

T (p) = {p′ : (p, p′) ∈ E}.

2.1 File Distribution Time

By EFDP, after a node p of T receives a file, it then starts to send the file to
its first child. After the transmission is done, it transfers the file to the second
child, and it continues until all of its children receive the file. Let tT (p) denote
the minimum amount of time required to distribute the file from p to all of its
descendants. Next, we present a formula to compute tT (p).

Suppose that D+
T (p) = {pj : j = i1, . . . , ik} and that p sends the file to its

children in order pπ(i1), pπ(i2), . . . , pπ(ik), where π : {i1, . . . , ik} → {i1, . . . , ik} is
a permutation of {i1, . . . , ik}. Then child pπ(ij), 1 ≤ j ≤ k, receives the file at
time

∑j
h=1 t(p, pπ(ih)) and further more pπ(ij) and all of its descendants receive

the file at time
∑j

h=1 t(p, pπ(ih))+tT (pπ(ij)). Hence with the ordering of children

Structured Overlay Network for File Distribution 295

pπ(i1), pπ(i2), . . . , pπ(ik), the time it takes for all descendants of p to receive the
file can be expressed as

tT (p, π) = max{
j∑

h=1

t(p, pπ(ih)) + tT (pπ(ij)) : j = 1, . . . , k}.

Therefore, the minimum time tT (p) required for all descendants of p to receive
the file can be expressed as

tT (p) = min
π
tT (p, π) = min

π
max{

j∑
h=1

t(p, pπ(ih)) + tT (pπ(ij)) : j = 1, . . . , k}, (1)

where π is over all permutations of {i1, . . . , ik}. Hence, the total time to dis-
tribute a file from p0 to p1, . . . , pn−1 is tT (p0), and it can be computed in a
bottom-up approach by formula (1). Since at each node p the value tT (p) is
calculated over all permutations of its children, the question is if tT (p0) can be
computed efficiently (i.e., in polynomial time). The answer to this question is
yes.

Theorem 2.1. The following formula for tT (p) holds.

tT (p) = max{
j∑

h=1

t(p, pπ0(ih)) + tT (pπ0(ij)) : j = 1, . . . , k}, (2)

where π0 is a permutation of {i1, . . . , ik} with sorted values tT (pπ0(i1)) ≥ · · · ≥
tT (pπ0(ik)). tT (p0) can be computed by formula (2) in time O(n log n).

Proof. First, if the ordering of children is not in decreasing order then distribu-
tion time can be reduced. Suppose tT (pπ(ij0)) < tT (pπ(ij0+1)), then swap elements
π(ij0) and π(ij0+1), we have a new permutation permutation π′. Since∑j0−1

h=1 t(p, pπ(ih))+t(p, pπ(ij0+1))+tT (pπ(ij0+1)) ≤
∑j0+1

h=1 t(p, pπ(ih))+tT (pπ(ij0+1))
and∑j0+1

h=1 t(p, pπ(ih)) + tT (pπ(ij0)) <
∑j0+1

h=1 t(p, pπ(ih)) + tT (pπ(ij0+1)), we have
tT (p, π′) = max{

∑j
h=1 t(p, pπ(ih)) + tT (pπ(ij)) : j = 1, . . . , j0 − 1} ∪

{
∑j0−1

h=1 t(p, pπ(ih))+t(p, pπ(ij0+1))+tT (pπ(ij0+1)),
∑j0+1

h=1 t(p, pπ(ih))+tT (pπ(ij0))}
∪ {

∑j
h=1 t(p, pπ(ih)) + tT (pπ(ij)) : j = j0 + 2, . . . , k}

≤
max{

∑j
h=1 t(p, pπ(ih)) + tT (pπ(ij)) : j = 1, . . . , j0 − 1} ∪

{
∑j0

h=1 t(p, pπ(ih)) + tT (pπ(ij0)),
∑j0+1

h=1 t(p, pπ(ih)) + tT (pπ(ij0+1))} ∪
{
∑j

h=1 t(p, pπ(ih)) + tT (pπ(ij)) : j = j0 + 2, . . . , k} = tT (p, π).

Second, if the ordering of children is in decreasing order then distribution time
can not be reduced. We only need to show that if tT (pπ(ij0)) = tT (pπ(ij0+1))
then swapping children pπ(ij0) and pπ(ij0+1) will not change the distribution time

296 H. Fan and Y.-L. Wu

at p. Let π′ be the permutation after the swapping. Since
∑j0−1

h=1 t(p, pπ(ih)) +
t(p, pπ(ij0+1)) + tT (pπ(ij0+1)) ≤

∑j0+1
h=1 t(p, pπ(ih)) + tT (pπ(ij0))

=
∑j0+1

h=1 t(p, pπ(ih)) + tT (pπ(ij0+1)), we have tT (p, π′) = tT (p, π).
Therefore, tT (p, π0) = minπ tT (p, π) = tT (p). when tT (pπ0(i1)) ≥ · · · ≥

tT (pπ0(ik)).
Since sorting and finding the maximum element can be done in polynomial

time, tT (p0) can be calculated efficiently bottom-up by formula (2). Further
more, each node p takes

∑
p |D

+
T (p)| = O(n) time to find the maximum value

by formula (2), and it takes
∑

p |D
+
T (p)| log |D+

T (p)| = O(log n) time to insert
p into the existing ordered list of its siblings. There are n nodes, therefore the
bottom-up evaluation of tT (p0) can be done in time O(n log n).

(b) file distribution time evaularion(a) file distribution time evaluation

12

23

2

2

10 / 0

2 / 2

0 / 4

7 / 3

0/6 2 / 8

0 / 10

 by a given children ordering by the best children ordering

2 3 2

21

0/5

2 /3

0/5
2

2/3

5 /1

0/6

6 / 0

p0

p3

p6

p1

p5 p2

p4
p4

p2 p5

p1

p6

p3

p0

Fig. 1. File distribution time evaluation along a tree

Fig.1 shows an example of file distribution time evaluation along a tree, in
which the number near to an edge (pi, pj) is the time delay t(pi, pj). At each node,
we transfer the file to children in the order of left to right of the tree layout. The
number pair x/y at node p means that x = tT (p, π) and y is the time at which p
receives the file along the tree. The value of y is obtained by top-down following
the child ordering, and the y value of all nodes can be calculated in linear time
O(n). Given a tree and children ordering π of each node, we evaluate the tT (p, π)
bottom-up for all nodes p of T . Fig.1(a) shows distribution time evaluations by
the child ordering from left to right of tree layout. The file distribution time of
this ordering is 10. The best ordering can be obtained by the bottom-up method.
Starting from leaves, after all children of a node p have been evaluated, we order
its children pij ’s by the decreasing ordering of tT (pij) values, then evaluate tT (p)
using this ordering. Fig.1(b) shows the best ordering of children of each node
obtained by this method. The file distribution time along the tree is tT (p0) = 6.

Structured Overlay Network for File Distribution 297

2.2 EFDP Overlay Network Topology Problem

The combinatorial optimization problem of finding an optimal overlay network
for file distribution can be described as follows.

Problem 2.2. EFDP Overlay Network Topology Problem
Input: a node set {p0, p1, . . . , pn−1} and delays t(pi, pj) > 0, i, j = 0, . . . , n− 1
and an integer b ≥ 1 or b = +∞.
Output: a directed tree T on {p0, p1, . . . , pn−1} rooted at p0 such that each
node has at most b children and tT (p0) is minimum.

We see that problem 2.2 is NP-hard. This is because when b = 1, an optimal
solution is a shortest Hamiltonian path, while finding a shortest Hamiltonian
path in a weighted complete graph is NP-hard. However, for a fixed b ≥ 2 or
b = +∞, it is not known if the problem is NP-hard. We leave it as an open
question.

2.3 Heuristic Algorithm

Next we present a heuristic algorithm for the EFDP overlay network topology
problem. The idea is to distribute the file to neighbor nodes as early as possi-
ble. We will show that the algorithm returns an optimal overlay network when
t(pi, pj) is a constant for all i, j = 0, . . . , n− 1.

EFDP topology algorithm

1. Let V = {p0}, E = ∅, T = (V,E), t(p0) = 0, s(p0) = 0 and A = {p0}, B =
{p0, p1, . . . , pn−1} \A.

2. If |B| = 0, output T and stop.
3. If |A| > 0, find a p ∈ A and a p′ ∈ B such that t(p)+s(p)+t(p, p′) is minimum

among all edges from A to B. Set V = V ∪ {p}, E = E ∪ {(p, p′)}, A =
A \ {p}, B = B \ {p′}, s(p) = s(p)+ t(p, p′) and t(p′) = t(p) + s(p), s(p′) = 0.
Go step 2.

4. If |A| = 0, reset A to be the set of all nodes of T = (V,E) with outgoing
degree less than b. Go to step 2.

The above EFDP topology algorithm progresses by adding new nodes (and
edges) one after another. In each adding, it takes at most O(n2) time to find a
pair p ∈ A, p′ ∈ B such that t(p)+ s(p)+ t(p, p′) is minimum, and constant time
to update in step 3. Therefore, the running time of the algorithm is O(n3). We
can modify step 3 of the EFDP topology algorithm to reduce the running time
as follows.

Step 3’: If |A| > 0, randomly choose a p ∈ A and find a p′ ∈ B such that t(p, p′)
is minimum among all edges from p to B. Set V = V ∪{p}, E = E∪{(p, p′)}, A =
A \ {p}, B = B \ {p′}. Go step 2.
Step 3”: If |A| > 0, randomly choose a p ∈ A and a p′ ∈ B. Set V = V ∪{p}, E =
E ∪ {(p, p′)}, A = A \ {p}, B = B \ {p′}. Go step 2.

298 H. Fan and Y.-L. Wu

Clearly, the running time of the modified EFDP topology algorithm is O(n2)
with step 3’, and O(n) with step 3”. In case when t(pi, pj) is equal to the same
value for all i, j = 0, . . . , n− 1, the modified algorithm with step 3” will be used
since it produces a tree with the same distribution time as that produced by the
EFDP topology algorithm with step 3.

Theorem 2.3. When b ≥ 2, the EFDP topology algorithm returns a tree T with
tT (p0) = Θ(M logn) in time O(n3) where M = max{t(pi, pj) : i, j = 0, . . . , n−
1}. Particularly, when t(pi, pj) equals the same value C for all i, j = 0, . . . , n−1,
an optimal tree T with tT (p0) = Θ(C logn) can be derived in time O(n).

3 Proof of the Theorem

We first show that when the file transfer delays are all of the same value, the
EFDP topology algorithm returns an optimal tree. Without loss of generality,
assume that t(pi, pj) = 1 for all i, j = 0, . . . , n− 1. We also assume that b ≥ 2 as
when b = 1, the algorithm returns a path which is obviously an optimal solution
of the case. Let Tb(n) denote the tree of n nodes obtained by the algorithm.

Fig.2 shows the optimal tree topology for b = 2 and n = 1, 2, 4, 7. From the
construction point of view, in the first time period, the file is transferred from p0
to p1. In the second time period, both p0 and p1 can send the file to new nodes.
Intuitively, we can construct an optimal tree iteratively by adding as many new
nodes as possible at each iteration and the outgoing degree of a node is at most
b. The EFDP topology algorithm follows this idea. Next we show that the tree
Tb(n) obtained by the EFDP topology algorithm is an optimal overlay network
for EFDP.

2,2
 n = 4 2,3n = 7

2,1
n = 2

2,0
n = 1

1/1

0/2

0/2
2/1

1/2

1/2

0/3

0/3 0/3

2/0 3/0

0/0
0/1

1/0

p0

p1

p0

p2

p1 p3

p0

p4

p2 p5 p6

p3p1

p0

Fig. 2. Optimal overlay network for parallel file distribution

Lemma 3.1. Tb(n) is an optimal overlay network for EFDP.

Proof. Assume otherwise, that there is a tree T with outgoing degree at most
b and tT (p0) < tTb(n)(p0) and |T | = |Tb(n)| = n. Let mT (i) and mTb(n)(i)
denote the number of new nodes that have received the file at end of time pe-
riod i along T and Tb(n) respectively. Let T i and T i

b (n) denote the subtree

Structured Overlay Network for File Distribution 299

induced by nodes that have received the file at the end of time period i along T
and Tb(n) respectively. Then

∑tT (p0)
i=0 mT (i) =

∑tTb(n)(p0)
i=0 mTb(n)(i) = n. Since

tT (p0) < tTb(n)(p0), there must exist an i′ such that 0 < i′ ≤ tT (p0) andmT (i′) >
mTb(n)(i′). Let i′ be the first i′ satisfying this condition. That is 0 < i′ ≤ tT (p0)
and mT (i) = mTb(n)(i), i = 0, . . . , i′ − 1 and mT (i′) > mTb(n)(i′). By the con-
struction of Tb(n), T i

b(n) is obtained from T i−1
b (n) by adding new nodes to all

nodes of outgoing degree less than b, i = 1, . . . , i′ − 1. This T i
b (n) is unique in

terms isomorphism i = 0, . . . , i′ − 1. Since mT (i) = mTb(n)(i), i = 0, . . . , i′ − 1,
then T i is isomorphic to T i

b (n) for i = 0, . . . , i′−1. By the construction of Tb(n),
mTb(n)(i′) is the maximum number of nodes with outgoing degree less than b

in T i−1
b (n). Since mT (i′) > mTb(n)(i′) and that T i′−1 is isomorphic to T i′−1

b (n),
T i′ must have a node with outgoing degree bigger than b, contradicting that T
is a tree with outgoing degree of at most b.

Next we show that the optimal tree Tb(n) has file distribution time tTb(n)(p0) =
Θ(log n). By the EFDP topology algorithm, the tree Tb(n) is constructed itera-
tively in term of A. Each iteration starts from |A| > 0 and ends with |A| = 0.
In such an iteration (i.e., step 3), some edges are added to the existing tree. Let
Tb,j denote the tree obtained after the jth iteration.

Lemma 3.2. If Tb(n) is obtained from Tb,i at iteration i, then tTb(n)(p0) = i+1.

Proof. From the way that Tb(n) is constructed, we see that at each node p, the
tTb(n)(p) is equal to the time value of its left child plus 1, so it equals the height
of the subtree at p. For each iteration, the height of tTb(n)(p0) increases by 1,
therefore at the end of the ith iteration, the height of the tree is i+ 1.

Let nb,j = |Tb,j| and di,j denote the number of nodes with outgoing degree equal
to i in Tb,j for i = 0, . . . , b. Then the following relations hold.

(d0,0, d1,0, . . . , db,0) = (1, 0, . . . , 0),
nb,0 =

∑b
i=0 di,0 = 1,

d0,j+1 =
∑b−1

i=0 di,j ,
di,j+1 = di−1,j , i = 1, . . . , b− 1,
db,j+1 = db−1,j + db,j ,

nb,j+1 =
∑b

i=0 di,j+1.

If 0 ≤ j ≤ b, then nb,j = 2j , else j > b, we have,

db,j = db−1,j−1 + db,j−1
= db−2,j−2 + db−1,j−2 + db,j−2
= db−3,j−3 + db−2,j−3 + db−1,j−3 + db,j−3
= ...
= d0,j−b + d1,j−b + . . .+ db−1,j−b + db,j−b

= nb,j−b,

300 H. Fan and Y.-L. Wu

nb,j+1 =
∑b

i=0 di,j+1 = d0,j+1 +
∑b−1

i=1 di,j+1 + db,j+1

= (
∑b−1

i=0 di,j) +
∑b−1

i=1 di−1,j + (db−1,j + db,j)
= (

∑b−1
i=0 di,j + db,j) + (

∑b−2
i=0 di,j + db−1,j + db,j)− db,j

= 2
∑b

i=0 di,j − db,j

= 2nb,j − db,j

= 2nb,j − nb,j−b

Therefore, nb,j can be computed efficiently by the following recursive formula.

nb,0 = 1, nb,1 = 2, nb,2 = 22, . . . , nb,b = 2b,
nb,j = 2nb,j−1 − nb,j−1−b, j = b+ 1, . . .

Lemma 3.3. nb,j+1 ≥ nb,j ≥ 1 for b ≥ 2 and j > 0.

Proof. For any fixed integer b ≥ 2, prove by induction on j. The lemma is
true when j = 0, 1, . . . , b, as in these cases nb,j = 2j. Assume that it is true
for all integers less than j and j ≥ b. It implies that nb,s ≥ nb,t ≥ nb,0 = 1
for all s, t such that j > s ≥ t ≥ 0. Then we have nb,j+1 = 2nb,j − nb,j−b =
nb,j + (nb,j − nb,j−b) ≥ nb,j ≥ 1. Therefore, the lemma is true for all integers
j ≥ 0 by induction.

Lemma 3.4. nb,j ≤ 2j for all integers b ≥ 2 and j ≥ 0.

Proof. For any fixed integer b ≥ 2, prove by induction on j. Since nb,j = 2j when
j = 0, 1, . . . , b, the lemma is true for j = 0, 1, . . . , b. Assume that it is true for
all positive integers less than j and j ≥ b + 1, then nb,j = 2nb,j−1 − nb,j−1−b ≤
2nb,j−1 ≤ 2 × 2j−1 = 2j . Therefore, the lemma is true for all integers j ≥ 0 by
induction.

Lemma 3.5. Let δb,j = nb,j−nb−1,j for all b ≥ 3, j ≥ 0. Then δb,j ≥ δb,j−1 ≥ 0
for b ≥ 3 and j ≥ 1.

Proof. For any fixed b ≥ 3 we prove by induction on j. For j = 1, . . . , b − 1,
δb,j = nb,j − nb−1,j = 2j − 2j = 0, so we have δb,j ≥ δb,j−1 ≥ 0. When j = b,
δb,b = nb,b− nb−1,b = 2b− (2nb−1,b−1− nb−1,0 = 2b− (2× 2b−1 − 1) = 1, so that
δb,b ≥ δb,b−1 = 0. Hence the lemma is true when j = b.

When j = b+ 1,

δb,b+1 = nb,b+1 − nb−1,b+1
= (2nb,b − nb,0)− (2nb−1,b − nb−1,1)
= (2× 2b − 1)− (2(2nb−1,b−1 − nb−1,0)− nb−1,1)
= (2b+1 − 1)− (2(2× 2b−1 − 1)− 2)
= (2b+1 − 1)− (2b+1 − 2− 2)
= 3
≥ 1 = δb,b ≥ 0.

Hence, the lemma is true when j = b+ 1. Assume that the lemma is true for all
positive integers less than j and j ≥ b+ 2, we prove it is true for j.

Structured Overlay Network for File Distribution 301

δb,j = nb,j − nb−1,j

= (2nb,j−1 − nb,j−b−1)− (2nb−1,j−1 − nb−1,j−b)
= 2(nb,j−1 − nb−1,j−1)− nb,j−b−1 + nb−1,j−b

= 2δb,j−1 − nb,j−b−1 + 2nb−1,j−b−1 − nb−1,j−2b

= 2δb,j−1 − (nb,j−b−1 − nb−1,j−b−1) + (nb−1,j−b−1 − nb−1,j−2b)
= 2δb,j−1 − δb,j−b−1 + (nb−1,j−b−1 − nb−1,j−2b)
= δb,j−1 + (δb,j−1 − δb,j−b−1) + (nb−1,j−b−1 − nb−1,j−2b)

Then by the induction hypothesis and Lemma 3.3, we have

δb,j − δb,j−1 = (δb,j−1 − δb,j−b−1) + (nb−1,j−b−1 − nb−1,j−2b) ≥ 0,

and hence δb,j ≥ δb,j−1 ≥ 0. Therefore the lemma is true for all j ≥ 1 by
induction.

Lemma 3.6. 1.618j − 2 ≤ nb,j ≤ nb+1,j ≤ 2j for b ≥ 2 and j ≥ 0.

Proof. By Lemmas 3.4 and 3.5, we have n2,j ≤ nb,j ≤ nb+1,j ≤ 2j . We next
show that n2,j ≥ 1.618j.

Clearly, n2,0 = 1, n2,1 = 2, n2,2 = 4, n2,j = 2n2,j−1−n2,j−3. Solve the recursive
equation, we have

n2,j = −1 +
(
2/5
√

5 + 1
) (

1/2 + 1/2
√

5
)j

+
(
−2/5

√
5 + 1

) (
1/2− 1/2

√
5
)j

≥ −1 + 1×
(
1/2 + 1/2

√
5
)j

+ 0.1× (−0.6180339880)j

≥ −1 + 1×
(
1/2 + 1/2

√
5
)j

+ (−1)
≥ 1.618j − 2.

This completes the proof of the lemma.

Lemma 3.7. Along Tb(n) the file distribution can be done in time Θ(log n) with
EFDP.

Proof. Suppose nb,j = n, then by Lemma 3.6 we have 1.618j ≤ n2,j +2 ≤ nb,j =
en+ 2 ≤ 2j + 2. Then, j log2(1.618) ≤ log2(n+ 2) ≤ log2(2j + 2) ≤ j + 1. This
implies that j = Θ(log(n)).

Finally, if the file transfer delays between all pairs of nodes are not the same,
the EFDP topology algorithm returns a tree T . We extend the delay time on
edges of T to M = max{t(pi, pj) : i, j = 0, . . . , n − 1}. Using constant delay,
we obtain the best ordering of children at each node. Then with this ordering,
the file distribution time is at most Θ(M logn) or Θ(log n) if we take M as a
constant. This completes the proof of Theorem 2.3.

4 Conclusions

In this paper, we proposed and studied a new optimal spanning tree problem.
The problem came from the application of file distribution along a structured

302 H. Fan and Y.-L. Wu

overlay network with the edge-based file distribution protocol. The file distribu-
tion time was formulated and used as the objective function. We showed that
the problem is NP-hard in general and then presented a heuristic algorithm.
The tree derived by the algorithm is of file distribution time Θ(log n) and it
is optimal when the file transfer delays between all pairs of nodes are same.
Similar optimal overlay network design problems exist for other structured file
distribution protocols.

References

1. Bermond, J.-C., Hell, P., Liestman, A.L., Peters, J.G.: Broadcasting in bounded

degree graphs. SIAM J. Discret. Math. 5(1), 10–24 (1992)

2. Cohen, B.: Incentives build robustness in bittorrent. Technical report (2003)

3. Fan, B., Lui, J.C.S., Chiu, D.-M.: The design trade-offs of bittorrent-like file sharing

protocols. IEEE/ACM Trans. Netw. 17(2), 365–376 (2009)

4. Ge, Z., Figueiredo, D.R., Jaiswal, S., Kurose, J.F., Towsley, D.F.: Modeling peer-

peer file sharing systems. In: INFOCOM (2003)

5. Harutyunyan, H.A., Liestman, A.L.: More broadcast graphs. Discrete Applied Math-

ematics 98(1-2), 81–102 (1999)

6. Harutyunyan, H.A., Liestman, A.L.: k-broadcasting in trees. Networks 38(3), 163–

168 (2001)

7. Li, Q., Lui, J.C.-S.: On modeling clustering indexes of bt-like systems. In: ICC, pp.

1–6 (2009)

8. Liu, J., Rao, S.G., Li, B., Zhang, H.: Opportunities and challenges of peer-to-peer

internet video broadcast. In: Proceedings of the IEEE, Special Issue on Recent

Advances in Distributed Multimedia Communications (2007)

Optimal Balancing of Satellite Queues in Packet
Transmission to Ground Stations

Evangelos Kranakis1, Danny Krizanc2, Ioannis Lambadaris3,
Lata Narayanan4, and Jaroslav Opatrny4

1 School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada.

Supported in part by NSERC and MITACS grants
2 Department of Mathematics and Computer Science, Wesleyan University,

Middletown CT 06459, USA
3 Department of Systems and Computer Engineering, Carleton University, Ottawa,

ON, K1S 5B6, Canada. Supported in part by NSERC and MITACS grants
4 Department of Computer Science, Concordia University, Montréal, QC, H3G 1M8,

Canada. Supported in part by NSERC grant

Abstract. Satellites collecting data store packets in queues and trans-

mit these packets to ground stations within their view. In a given time

step, a ground station may see several satellites, but can receive a packet

from only one of them. A satellite can send each packet from its queue

to a ground station in its view. We consider the problem of finding an

assignment of satellites to ground stations that results in all ground sta-

tions receiving a packet while optimally balancing the sizes of remaining

queues at satellites. We give a polynomial time algorithm for solving this

problem which requires O((m +n)3n) arithmetic operations, where m is

the number of satellite queues and n is the number of ground stations.

Keywords and Phrases: Bipartite Graph, Matching, Optimal Balanc-

ing, Servers, Queues.

1 Introduction

The transmission of data gathered in outer space (e.g., weather and surveillance
images) to earth involves relaying information from satellites to ground stations
placed at different geographical locations and within view of the satellite. Choos-
ing a ground station to transmit the information depends on available resources
along the route, the utilization of the route, as well as weather conditions that
may affect the quality of the link. In this setting important problems arising
include 1) transmission scheduling (to which beam should the data be transmit-
ted; and allocating the satellite’s transmitters to the different downlink beams),
2) optimal throughput (select the requests to be served that maximize overall
throughput), and 3) efficient protocol design (see [10,11] for additional details
on this model concerning communication efficiency in satellite data networks).

In this paper we consider the problem of choosing ground stations to transmit
data while balancing the sizes of remaining queues at satellites. More specifically,
consider a group of orbiting satellites communicating with ground stations. Each

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 303–316, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

304 E. Kranakis et al.

Q1

S1

S2

S3

Q2

x2=1

x1=1

Q1

S1

S2

S3

Q2

x1=2

x2=3

Q1

S1

S2

S3

Q2

x2=2

x1=1

(a) (c)(b)

Fig. 1. (a) A satellite-ground station system. A saturated assignment is shown with

bold edges. (b) A saturated assignment is impossible. (b) The minimum value of balance

factor possible is 2.

satellite holds a queue of packets. In any given time step, a ground station can see
several satellites, but can receive or download a packet from only a single satellite
within its view. On the other hand, a satellite can send one packet from its queue
each to any ground station within its view, provided it has enough packets in
its queue. An assignment pairs a ground station with a satellite with available
packets in its view. To optimize throughput, we need to find an assignment
that contains as many ground stations as possible. Clearly, the assignment is
constrained both by the connectivity of satellites to ground stations and the
number of packets available at satellites. Naturally, once the transmission of
packets from satellites to ground stations as specified by the assignment takes
place, the number of packets remaining at the satellite queues changes. In this
paper, we are interested in optimizing throughput while balancing the sizes of
the satellite queues. The problem we consider is to find an assignment that serves
all or a maximum possible number of ground stations in such a way that the
number of packets remaining in the satellite queues are as balanced as possible.

Observe that the satellite-ground station communication system can be mod-
elled as a bipartite graph (V1, V2, E) where V1 represents the satellite queues, V2
represents the ground stations and {u, v} ∈ E if the satellite with queue u and
the ground station v can see each other. Each node ui ∈ V1 is associated with an
integer xi, the number of packets in the queue. Given a subset E′ of E, define
the degE′(v) of a node v ∈ V1 ∪ V2 to be the number of edges in E′ with v as an
endpoint. An assignment then is a set A ⊆ E such that

1. ∀ui ∈ V1, degA(ui) ≤ xi and
2. ∀v ∈ V2, degA(v) ≤ 1.

The size of an assignment is the number of edges in it, and is clearly related to
the throughput of the system. We call an assignment saturated if every ground
station is paired with a queue. Observe that the size of a saturated assignment
is n. Figure 1(a) shows the bipartite graph model of a satellite-ground station

Optimal Balancing of Satellite Queues in Packet Transmission 305

system with the bold edges showing a saturated assignment. In the example
shown in Figure 1(b), a saturated assignment does not exist. The balance factor
of an assignment is the difference between the size of the longest and shortest
queues after performing the assignment. This is motivated from the fact that
over time, optimally balanced assignments not only lead to equally distributed
(satellite) queue utilization but may also avert undesirable buffer overflows when
queues are close to capacity

Given a satellite-ground station system, we are interested in several questions.
Does a saturated assignment exist? If so, what is the smallest balance factor pos-
sible for a saturated assignment? If not, what is the largest possible assignment?
What is the smallest balance factor that can be achieved for a given system?
For the example shown in Figure 1(c), the minimum achievable balance factor
is 2. Given an achievable value of balance factor, what is the largest possible
assignment?

1.1 Outline and Results of the Paper

We give polynomial time algorithms to answer all the questions mentioned above.
We show a relationship between the existence of assignments and network flow.
The latter can be used to obtain a valid but not necessarily maximum-sized as-
signment. Next, given a particular value of balance factor, we use the technique
of augmenting paths (see [4,13]), whereby starting from an assignment, we pro-
duce a sequence of assignments that provide successive improvements in terms
of size, and result in an optimal final solution for the given balance factor. The
main result of the paper is a polynomial time algorithm for computing a satu-
rated assignment (when one exists) with optimal balance factor which requires
O((m+ n)3n) arithmetic operations, where m is the number of queues and n is
the number of stations.

In Section 2, we provide some preliminary definitions and notation that will
be used throughout the paper. Related work is described in Section 3. Details
of the main algorithm and its analysis can be found in Section 4.

2 Preliminaries and Notation

Given a satellite queue and ground station system with m queues and n stations,
we model it as a bipartite graph (V1, V2, E) where V1 = {Q1, Q2, . . . , Qm} rep-
resents the satellite queues, V2 = {s1, s2, . . . sn} represents the ground stations
and {Qi, sj} ∈ E if the satellite with queue Qi and the ground station sj can
see each other. Each node Qi ∈ V1 is associated with an integer xi, the number
of packets in the queue. Given a subset E′ of E, define the degE′(v) of a node in
v ∈ V1∪V2 to be the number of edges in E′ with v as an endpoint. An assignment
then is a set A ⊆ E such that

1. ∀Qi ∈ V1, degA(Qi) ≤ xi and
2. ∀sj ∈ V2, degA(sj) ≤ 1.

306 E. Kranakis et al.

In a saturated assignment, we have degA(sj) = 1 for all stations sj .
For a given assignment A, the queue sizes are updated as follows

xi(A)← xi − degA(Qi),

where i = 1, 2, . . . ,m. We are interested in the following problem: Given a bipar-
tite graph of queues and stations as above provide an algorithm for computing
an assignment A satisfying the following min-max optimization condition

min
A

max
1≤i,i′≤m

|xi(A) − xi′(A)|, (1)

where A ranges over all possible assignments.
We denote min(A) = min1≤i≤m xi(A) and max(A) = max1≤i≤m xi(A) to be

the minimum and maximum sizes respectively of any queue after the assignment
A is applied. The min-max optimization problem can be restated as finding the
assignment A that minimizes max(A) − min(A). In order to study the min-
max optimization problem it will be necessary to introduce the concept of a
k-balanced assignment.

Definition 1. For a given non-negative integer k, an assignment A is called k-
balanced if maxi,i′ |xi(A) − xi′ (A)| ≤ k, where i, i′ = 1, 2, . . . ,m or equivalently
max(A) −min(A) ≤ k.

Finally, we define the notion of a station that is not assigned a queue under a
given (partial) assignment that is used throughout the proofs in this paper.

Definition 2. A station sj is called A-free with respect to assignment A if
degA(sj) = 0.

Auxiliary flow network. The solution to the proposed problem will be related to
flows in networks [7]. We use the bipartite graph in Figure 1 to construct a new
“flow network” from a source S to a sink T by joining S to each of the queues
and each of the stations to the sink T . Each of the edges of the original bipartite
graph is assigned capacities equal to 1. The i-th edge of the flow network from
S to the queue Qi is assigned an integer capacity yi, for i = 1, 2, . . . ,m. In
the sequel, y1, y2, . . . , ym will be called the input capacities. Note that the input
capacities will vary depending upon the situation being considered. All other
edges have capacity 1.

Given the original bipartite graph, a key technique used in this paper is
to construct an auxiliary flow network with suitably chosen input capacities
y1, y2, . . . , ym and then determining whether a given net flow f can be attained,
where

f ≤
m∑

i=1

yi. (2)

The integral flow theorem states that if each edge in a flow network has integral
capacity, then there exists an integral maximal flow [7].

Optimal Balancing of Satellite Queues in Packet Transmission 307

m Queues n Stations

s1

s2

s3

sn

x1

x2

xm

S
T

y

y
1

2

m

y

1

1

1

1

1

1

Q

Q
2

Q
1

m

1

1

1

1

Fig. 2. Auxiliary flow network from source S to a sink T

Observe that if yi ≤ xi for all i = 1, . . . ,m, then the unit capacities on the
edges from the stations to node T imply that an integral flow in the auxiliary
flow network corresponds directly to an assignment in the corresponding original
bipartite graph; all edges with flow 1 between the queues and stations belong to
the assignment. Furthermore, the net flow into node T is equal to the size of the
assignment.

3 Related Work

Despite the existence of extensive literature on network flows and bipartite
matchings, to the best of our knowledge, the problem of constructing saturated
assignments between stations and queues satisfying the balance condition above
has not been considered before. Existing work includes dynamic station alloca-
tion, as well as fair scheduling and transmission scheduling policies.

The papers [1], [2], [3], and [14] consider dynamic server allocation with ran-
domly varying connectivity. In the first paper the authors look at stationary
dynamics, in the second additional routing constraints are considered (including
random connectivities, random accessibilities and multiple classes of flows), the
processing system considered in the third paper is comprised of several paral-
lel queues and a processor, which operates in a time-varying environment that
fluctuates between various states or modes, and in the fourth paper the authors
propose queue allocation policies suitable for networks with changing topology
(such as wireless networks).

Several papers consider fair scheduling policies. For example, [6] considers the
problem of allocating resources (time slots, frequency, power, etc.) at a base
station to many the channel capacity region is assumed to be known. The com-
peting flows, where each flow is intended for a different re-scheduler is allowed
to know the current queue-lengths and ceiver. In addition, [9] proposes a new
model for wireless fair scheduling based on an adaptation of fluid fair queueing
(FFQ) to handle location-dependent error bursts.

308 E. Kranakis et al.

Transmission scheduling policies are crucial for multi-channel satellite as well
as wireless networks. Several papers, including [12], [11], and [8], investigate such
policies.

4 Algorithm for Constructing Optimal Assignments

In this section, we detail the main construction of an optimal balanced satu-
rated assignment. The main steps of the construction are as follows. First, we
give an algorithm testing the existence of a saturated assignment (Theorem 1).
Second, we provide an algorithm for testing whether a k-balanced assignment
exists (Theorem 2) which easily gives rise to an algorithm for computing the
minimum achievable balance factor (Theorem 3). Third, we give an algorithm
which produces the largest (i.e., max number of stations) possible k-balanced as-
signment for the minimum achievable k (Theorem 4). This leads to an algorithm
which given k produces a largest possible k-balanced assignment (Theorem 5).
The final result is given in Theorem 6 and provides an algorithm for construct-
ing a saturated assignment with minimum balance factor, if one exists. All the
algorithms given require a polynomial number of arithmetic operations and the
detailed complexity analysis is provided in Subsection 4.6.

4.1 Saturated Assignments

We can test for the existence of a saturated assignment in polynomial time using
an algorith for integral maximum flow.

Theorem 1. There is an O((m + n)3) algorithm for testing whether there is a
saturated assignment in an m-satellite and n-ground station system.

Proof. Consider the auxiliary flow network depicted in Figure 2 obtained by
adding a source S which is connected to all the queues and a sink T which is
connected to all the stations. Let the input capacities be defined so that yi = xi,
for all i = 1, 2, . . . ,m. As observed in Section 2, an integer net flow in the
auxiliary network corresponds to an assignment. Therefore, an integer net flow
f = n can be realized if and only if the corresponding assignment of stations to
queues is saturated. This completes the proof of Theorem 1. ��

Observe that the proof generalizes to testing for an assignment of any size, and
also to finding the largest possible assignment.

Clearly, the assignment resulting from the proof of Theorem 1 cannot be
guaranteed to be balanced, in the sense that maxi,i′ |xi(A)−xi′ (A)|, where i, i′ =
1, 2, . . . ,m, is minimized over all possible assignments. A different technique will
be necessary to find balanced assignments.

4.2 Balanced Assignments

Recall that in a k-balanced assignment, we have |xi(A) − xi′(A)| ≤ k, for all
i, i′ = 1, 2, . . . ,m.

Optimal Balancing of Satellite Queues in Packet Transmission 309

Theorem 2. There is an O((m + n)3) algorithm for testing whether there is a
k-balanced assignment in an m-satellite and n-ground station system.

Proof. Without loss of generality we may assume that the original queue sizes are
sorted so as to satisfy x1 ≥ x2 ≥ · · · ≥ xm. Consider the auxiliary flow network
depicted in Figure 2. Given a non-negative integer k, let the input capacities be
yi = max{0, xi − xm − k}, for i = 1, 2, . . . ,m. Observe that yi = 0 if and only
if xm + k ≥ xi (so clearly, ym = 0). In this case we test whether there is a net
flow f , where f is defined by

f :=
m∑

i=1

yi. (3)

If there is a solution to the flow problem above then there is a k-balanced assign-
ment. Indeed, assume that the flow above is achievable. Observe that in view
of Equation 3, the link from the source S to the i-th queue must be used to
capacity, that is, its flow must be equal to max{0, xi − xm − k}. Therefore the
number xi(A) of packets remaining in the i-th queue after the assignment must
satisfy

xi(A) = xi − yi = xi −max{0, xi − xm − k} ≤ xm + k.

Also, since max{0, xm − xm − k} = 0 the flow at the m-th queue remains at 0.
Therefore the balance factor of this assignment will be at most k.

Conversely, suppose there is a k-balanced assignment A such that xi(A) =
xi − zi, for i = 1, 2, . . . ,m. We claim that zi ≥ yi. If yi = 0 then the claim is
trivial. Otherwise, assume on the contrary that zi < yi = xi− xm− k. It follows
that

xi(A) = xi − zi > xm + k ≥ xm − zm + k = xm(A) + k.

Therefore the assignment A is not k-balanced, which is a contradiction. This
proves the claim.

There exists a solution to the auxiliary flow problem with input capacities zi

and net flow
∑m

i=1 zi. It follows from the claim above that there is also a solution
to the auxiliary net flow problem with input capacities yi and corresponding net
flow

∑m
i=1 yi. This completes the proof of Theorem 2. ��

Using binary search between the smallest and largest value of k guaranteed by
Theorem 1, it is now possible to compute the minimum achievable balance factor.
As a corollary we obtain the following result.

Theorem 3. There is an O((m + n)3 log n) algorithm for computing the mini-
mum achievable balance factor for an m-satellite and n-ground station system.

Proof. This is an immediate consequence of Theorem 2 using binary search. This
completes the proof of Theorem 3. ��

4.3 Largest Assignment with Minimum Achievable Balance Factor

We start with the following interesting property of an assignment with minimum
achievable balance factor that will be useful in the proof of optimality of our
constructions for any achievable balance factor.

310 E. Kranakis et al.

Lemma 1. Let A be an assignment that achieves the minimum possible balance
factor. Then max(A′) ≥ max(A) for any other assignment A′.

Proof. Let A′ be an assignment with max(A′) < max(A). Then by taking edges
away from the assignment A′, it is possible to ensure that min(A′) ≥ min(A).
But this means the balance factor achieved by A′ is less than that achieved by
A, a contradiction.

A basic ingredient in the proofs for constructing assignments is the concept of
an augmenting path [4]. Let x1(A), x2(A), . . . , xm(A) be the queue sizes result-
ing from an assignment A. There will be two instantiations of the concept of
augmenting path that will be used in the sequel both of which result in a new
assignment A′ as follows.

1. An A-augmenting path of Type 1 for assignment A, starts at an A-free
station and uses edges alternating between edges in A and not in A and
ending at a queue Qi such that xi(A) > min(A). By swapping the edges
in A and out of A in the path from the assignment A, we obtain a new
assignment A′ that does not increase the balance factor of A.

2. An A-augmenting path of Type 2 starts at an A-free station and uses edges
alternating between edges in A and not in A and ends at a queue with
xi(A) = min(A). The effect of the new assignment A′ differs from that
of assignment of Type 1 in that it increases the previous balance factor
max1≤i,i′≤m |xi(A)− xi′(A)| by 1.

If the assignment A is easily understood from the context then we simply use
the term augmenting path without mentioning A explicitly. Both types of aug-
menting paths will be used in the proofs of Theorems 4 and 5 below.

To illustrate the concept of path of Type 1, consider the augmenting path
depicted in Figure 3 concerning a set

Qi1 , Qi2 , . . . , Qik

of queues and a set
sj1 , sj2 , . . . , sjk

of stations numbered from top to bottom. For the given assignment A, assume
that station sjr is assigned the queue Qir+1 , for all r < k (see dashed edges).
Moreover, for all r ≤ k, station sjr is not assigned the queue Qir (see solid
edges). We now define a new assignment A′ which differs from A only in that all
edges {Qir+1 , sjr}, for all r < k, are removed from A and edges {Qir , sjr}, for all
r ≤ k, are added to A′. Observe that A′ has one edge more than A. Moreover, A′

is a legal assignment since the sizes of queues Qir remain the same in A′ for all
r > k, while the first queue which is reduced by 1 packet can participate in the
new assignment without increasing the balance factor because it contains more
packets than min(A).

A similar illustration is easy to give for augmenting paths of Type 2. Here,
we increase by 1 the balance factor max(A) − min(A) corresponding to the
assignment A.

Optimal Balancing of Satellite Queues in Packet Transmission 311

StationsQueues

Fig. 3. An augmenting path. Dashed edges are in the assignment A while solid edges

are not.

Now that we have explained the concept of augmenting path we are in a
position to state and prove the following theorem.

Theorem 4. Given an m-satellite and n-ground station system, there is an
O((m+n)3) algorithm which when given the minimum achievable balance factor,
say k, produces a k-balanced assignment satisfying the largest number of stations.

Proof. Consider the auxiliary flow network depicted in Figure 2. Given a non-
negative integer k, let the input capacities be yi = max{0, xi − xm − k}, for
i = 1, 2, . . . ,m. Solve the max flow problem for these capacities to obtain an
initial assignment A.

Use the method of augmenting paths (of Type 1) to augment the assignment
A. Each time an augmenting path is found there results a new assignment which
increases the number of assigned stations. Continue until you can no longer find
an augmenting path and let the resulting final assignment be denoted by R
(Red). Clearly there is no R-augmenting path of type 1. It follows from the fact
that ym = 0 in the auxiliary flow problem and the definition of augmenting paths
that min(R) = xm and from Lemma 1 that max(R) = max(A).

The main argument is now contained in the following claim.

Claim 1. Assignment R is an optimal k-balanced assignment.

Proof. Suppose on the contrary there is a k-balanced assignment satisfying a
larger number of stations, denoted by B (Blue). Without loss of generality let
B be the optimal assignment that has the maximum-sized intersection with
the assignment R in terms of the stations that are being served by the two
assignments, respectively.

To this end label the edges R,B or R/B depending on whether they are
part of the Red, Blue or both assignments, respectively. Similarly, color stations
R,B or R/B depending on the corresponding color of the edges incident on the
station. (Notice that some edges and stations may have no color.)

312 E. Kranakis et al.

Start with a Blue station and build a path of alternating Blue and Red edges.
Such a path can terminate either at a station or at a queue. If it terminates at a
station it is because there is no Blue edge incident on the station, in which case
the station is colored Red. On the other hand, if it terminates at a queue it is
because there are no more Red edges incident on the queue. Therefore there are
only three cases to consider.

Case 1. Path stops at a Red station.
In this case from the Blue assignment take out all the Blue edges from the above
mentioned path and add in all the Red edges. This gives rise to a new assignment
of the same size and balance factor as the Blue assignment but which differs from
the Red by one station less. This contradicts the maximality of the intersection
between the Red and Blue assignments.

Case 2. Path stops at a queue Qj such that xj(R) > xm.
In this case there is an R-augmenting path and R would not be the final assign-
ment computed by the algorithm, which is a contradiction.

Case 3. Path stops at a queue Qj such that xj(R) = xm.
We know from Lemma 1 that max(B) ≥ max(A) = max(R). Since there are no
more red edges incident on Qj, it follows that degB(Qj) > degR(Qj) which im-
plies that xj(B) < xj(R) = xm. Consequently, min(B) < min(R) contradicting
the fact that Blue is a k-balanced assignment. This completes the proof of the
claim.

Clearly, Claim 1 implies that the assignment R previously constructed is optimal
in the number of stations being assigned to queues which also completes the proof
of Theorem 4. ��

4.4 Largest Assignment with Given Balance Factor

Theorem 4 gives the construction of an optimal assignment for the minimum
possible achievable balance factor. It remains to provide the construction for
any possible balance factor. We give an inductive construction which starts with
an assignment for the minimum achievable balance factor.

Theorem 5. Given an m-satellite and n-ground station system, there is an
O(n(m+n)3) algorithm which when given a non-negative integer k ≥ k0 (where
k0 is the minimum achievable balance factor), produces a k-balanced assignment
satisfying the largest possible number of stations.

Proof. The proof is by induction on k. For the initial step, Theorem 4 gives an
assignment A satisfying the largest number of stations for the minimum possible
balance factor. Further assume inductively that we have an assignment satis-
fying the largest number of stations for balance factor k − 1 ≥ k0. Call this
assignment R (Red) and denote M := min(R). Clearly max(R) ≥ max(A) from

Optimal Balancing of Satellite Queues in Packet Transmission 313

Lemma 1, and assume inductively that max(R) = max(A). We will show how to
augment this assignment to obtain the assignment satisfying the largest number
of stations with balance factor equal to k.

Build an augmenting path of type 2: Start with an R-free station and alternate
edges in and out of the assignment R and ending at a queue Qj such that
xj(R) = M . If an augmenting path exists then a swap of the edges results
in an assignment R′ which is one edge larger and which has balance factor k.
Now continue by finding augmenting paths of type 1 (thereby not increasing the
balance factor) and stop when it is no longer possible to find an augmenting
path. Call the final assignment B (Blue). Observe that min(B) = M − 1 and
by Lemma 1 and by the construction, max(B) = max(A), that is, the Blue
assignment has balance factor k.

The main claim is the following.

Claim 2. B is an optimal k-balanced assignment.

Proof. Assume to the contrary that there is a k-balanced assignment, say G
(Green), which satisfies a larger number of stations than B. Without loss of
generality we can take such an assignment having the maximum number of
stations in common with the Blue assignment. As before color edges and stations
with B,G,B/G depending on the corresponding assignments. Construct a path
starting at a Green station alternating Green and Blue edges. Using a similar
argument as before it is easy to see that there are three possible cases to consider.

Case 1. Path stops at a Blue station.
In this case from the Green assignment take out all the Green edges from the
above mentioned path and add in all the Blue edges. This gives rise to a new
assignment of the same size and balance factor as the Green assignment but
which differs from the Blue by one station less. This contradicts the maximality
of the intersection between the Blue and Green assignments.

Case 2. Path stops at a queue Qj with xj(B) ≥M .
In this case we obtain a B-augmenting path, which is a contradiction.

Case 4. Path stops at a queue Qj with xj(B) = M − 1.

In this case, we first observe that min(G) < min(B) since there are more green
edges incident on Qj than blue edges which implies xj(G) < xj(B) = min(B).
It follows from Lemma 1 that max(G) ≥ max(A) = max(B), which contradicts
the assertion that Green is a k-balanced assignment.

This completes the proof of Claim 2. ��

Claim 2 gives the main ingredient required for the inductive construction and is
thus sufficient to complete the proof of Theorem 5. ��

4.5 Optimal Saturated Assignments

It is now easy to construct a saturated assignment with optimal balance factor
using the previous theorems.

314 E. Kranakis et al.

Theorem 6. Given an m-satellite and n-ground station system, there is an
algorithm for constructing a saturated assignment (if such an assignment exists)
and attains the optimal value

min
A

max
1≤i,i′≤m

|xi(A)− xi′ (A)|,

where A ranges over all possible assignments between queues and stations. The
algorithm requires O((m+ n)3n) arithmetic operations.

Proof. First use Theorem 1 in order to test if there is a saturated assignment.
If the answer is yes, then next start with the minimum possible balance factor,
say k0, which ensures the existence of a feasible assignment (see Theorem 3) and
use the following algorithm.

1. Set k ← k0; with input capacities zi and netflow
∑m

i=1 zi

2. Construct the k-balanced assignment satisfying the largest number of sta-
tions;

3. if the resulting assignment is saturated then stop;
4. Else set k ← k + 1 and goto Step 2

Observe that Step 2 is justified using Theorem 5. The algorithm halts in Step 3
the first time a saturated assignment is found. Details of the running time of the
algorithm is given in Subsection 4.6. This completes the proof of Theorem 6. ��

4.6 Complexity Analysis of the Algorithms

There are two main tools used in the proofs: maximum net flow algorithms in
order to determine feasible solutions to the assignment problem and augment-
ing paths that improve the assignments, if possible. The auxiliary flow network
depicted in Figure 2 and which was used in the proof of the main theorem has
m + n vertices and at most mn + m + n edges. Running the Edmonds-Karp
algorithm [5] (see also [13]) therefore takes O((m + n)3) arithmetic operations.
An augmenting path operation involves n stations and producing the path in-
volves the construction of a BFS tree of size O(nm) (the number of edges of the
bipartite graph, i.e. O(n2m) time and there are O(n) such operations. It follows
that all the algorithms in Theorems 1, 2, and 4, take O((m + n)3) arithmetic
operations. As described, the recursive algorithm in Theorem 5 has an additional
multiplicative factor of k − k0. Similarly, the algorithm in Theorem 4 finds the
first k that has a saturated k-balanced assignment. If the queue sizes in sorted
order are x1 ≥ x2 ≥ · · · ≥ xm. the maximum possible balance factor of a sat-
urated assignment, or indeed any assignment is x1 − xm + n, which implies an
extra multiplicative factor equal to x1 − xm +n for the number of required iter-
ations of both algorithms. In addition, the algorithm of Theorem 3 is based on
binary search and therefore requires an additional multiplicative factor of only
log(x1 − xm + n).

As presented above, the additional multiplicative factors x1 − xm + n and
log(x1−xm+n) depend on the sizes of the queues. However, this is not necessary
as explained in the following argument.

Optimal Balancing of Satellite Queues in Packet Transmission 315

Let x1, x2, . . . , xm be the given queue sizes and assume that x1− xm > 2n+ 2.
Let i be the largest integer such that x1 − xi ≤ n and j be the smallest integer
such that xj − xm ≤ n. Notice that in any optimal assignment only the queues
Q1, Q2, . . . , Qi can be the queues whose size would become the largest and simi-
larly only the queuesQj , Qj+1, . . . , Qm can be the queues whose sizes can become
the smallest, since the size of any queue can change at most by n.

Consider a modified instance with queue sizes x′ as follows:

1. 1 ≤ k ≤ i⇒ x′i = xi − x1 + xm + 2n+ 2
2. i+ 1 ≤ k ≤ j − 1⇒ x′i = xm + n+ 1
3. j ≤ k ≤ m⇒ x′i = xi

The following two claims establish the relationship between assignments for the
original and modified instances.

Claim 3. A is an assignment for the original instance if and only if it is an
assignment for the modified instance.

Proof. Assume A is an assignment for the original instance. Since in the modified
instance all queue sizes are either the same as in the original instance or are
greater than n, the number of stations, it is clear that A is also an assignmet
for the modified instance. The other direction follows from the fact that queue
sizes in the original instance are at least the corresponding queue sizes in the
modified instance.

Claim 4. Let A be an assignment for the original and modified instances. Then
A achieves a balance factor of k for the original instance if and only if it achieves
a balance factor of k − x1 + xm + 2n+ 2 for the modified instance.

Proof. Let k1 and k2 be the indices of the largest and smallest queues respectively
after applying the assignment A to the original instance. Clearly, 1 ≤ k1 ≤ i
and j ≤ k2 ≤ m. Applying the assignment A to the modified instance reduces
the values of x′1, x

′
2, . . . x

′
i by the same amounts as the corresponding values of

x1, x2, . . . xi and thus k1 remains the index of the largest queue size, and for
the same reason k2 remains the index of the smallest queue size in the modified
instance. Since by definition, x′k1

= xk1 − x1 + xm + 2n+ 2 and x′k2
= xk2 , the

lemma follows. The proof of the other direction is similar.

Suppose A is an optimal solution for the modified instance achieving a balance
factor of k. We claim that A is also an optimal solution for the original instance.
Suppose instead that A′ achieves a better balance factor than A on the original
instance. Then it follows from Claim 4 that A′ achieves a better balance factor
than A for the modified instance, contradicting the optimality of A for the
modified instance.

It follows from the previous argument that we can assume that in the original
queues the number of packets is such that the difference in the numbers of
packets between the largest and smallest queues is ≤ 2n+ 2. As a consequence,
the algorithm of Theorem 3 requires O((m + n)3 log n) and the algorithm of
Theorem 6, O((m+ n)3n) arithmetic operations.

316 E. Kranakis et al.

5 Conclusion

In this paper we have provided an algorithm for constructing saturated assign-
ments between stations and queues with optimal balance factor. In addition to
the possibility of improved trade-offs for various types of flows and bipartite
graphs, several interesting problems remain open and worth investigating. One
such problem concerns the study of weighted versions of the balanced, saturated
assignment problem for bipartite graphs, and another the problem of balanced
integer flows in arbitrary flow networks.

References

1. Bambos, N., Michailidis, G.: On the stationary dynamics of parallel queues with

random serverconnectivities. In: Proceedings of the 34th IEEE Conference on De-

cision and Control 1995, vol. 4 (1995)

2. Bambos, N., Michailidis, G.: On parallel queuing with random server connectivity

and routing constraints. Probability in the Engineering and Informational Sci-

ences 16(02), 185–203 (2002)

3. Bambos, N., Michailidis, G.: Queueing and scheduling in random environments.

Advances in Applied Probability 36(1), 293–317 (2004)

4. Bondy, J.A., Murty, U.S.R.: Graph theory with applications. Macmillan, London

(1976)

5. Edmonds, J., Karp, R.M.: Theoretical Improvements in Algorithmic Efficiency for

Network Flow Problems. Journal of the ACM (JACM) 19(2), 248–264 (1972)

6. Eryilmaz, A., Srikant, R.: Fair resource allocation in wireless networks using queue-

length-based scheduling and congestion control. In: Proceedings IEEE INFOCOM

2005. 24th Annual Joint Conference of the IEEE Computer and Communications

Societies, vol. 3 (2005)

7. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal

of Mathematics 8(3), 399–404 (1956)

8. Ganti, A., Modiano, E., Tsitsiklis, J.N.: Transmission Scheduling for Multi-Channel

Satellite and Wireless Networks. In: Proceedings of the Annual Allerton Conference

on Communication Control and Computing, vol. 40, pp. 1319–1328 (2002)

9. Lu, S., Bharghavan, V., Srikant, R.: Fair scheduling in wireless packet networks.

IEEE/ACM Transactions on Networking (TON) 7(4), 473–489 (1999)

10. Modiano, E.: Satellite data networks. AIAA Journal on Aerospace Computing,

Information and Communication 1, 395–398 (2004)

11. Neely, M.J.: Dynamic Power Allocation and Routing for Satellite and Wireless

Networks with Time Varying Channels. PhD thesis, Massachusetts Institute of

Technology (2003)

12. Neely, M.J., Modiano, E., Rohrs, C.E.: Power allocation and routing in multi-

beam satellites with time-varying channels. IEEE/ACM Transactions on Network-

ing (TON) 11(1), 152 (2003)

13. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and

complexity. Dover Publications, New York (1998)

14. Tassiulas, L., Ephremides, A.: Dynamic server allocation to parallel queues with

randomly varying connectivity. IEEE Transactions on Information Theory 39(2),

466–478 (1993)

The Networked Common Goods Game

Jinsong Tan

Department of Computer and Information Science

University of Pennsylvania, Philadelphia, PA 19104

jinsong@seas.upenn.edu

Abstract. We introduce a new class of games called the networked com-
mon goods game (NCGG), which generalizes the well-known common
goods game [12]. We focus on a fairly general subclass of the game where

each agent’s utility functions are the same across all goods the agent is

entitled to and satisfy certain natural properties (diminishing return and

smoothness). We give a comprehensive set of technical results listed as

follows.

– We show the optimization problem faced by a single agent can be

solved efficiently in this subclass. The discrete version of the problem

is however NP-hard but admits a fully polynomial time approxima-
tion scheme (FPTAS).

– We show uniqueness results of pure strategy Nash equilibrium of

NCGG, and that the equilibrium is fully characterized by the struc-

ture of the network and independent of the choices and combinations

of agent utility functions.

– We show NCGG is a potential game, and give an implementation of

best/better response Nash dynamics that lead to fast convergence

to an ε-approximate pure strategy Nash equilibrium.

– Lastly, we show the price of anarchy of NCGG can be as large as

Ω(n1−ε) (for any ε > 0), which means selfish behavior in NCGG can

lead to extremely inefficient social outcomes.

1 Introduction

A collection of members belong to various communities. Each member belongs
to one or more communities to which she can make contributions, either mon-
etary or in terms of service but subject to a budget, and in turn benefits from
contributions made by other members of the communities. The extent to which
a member benefits from a community is a function of the collective contributions
made by the members of this community.

A collection of collaborators are collaborating on various projects. Each collab-
orator is collaborating on one or more projects and each project has one or more
collaborators. Each collaborator comes with certain endowment of resources, in
terms of skills, time and energy, that she can allocate across the projects on which
she is collaborating. The extent to which a project is successful is a function of the
resources collectively allocated to it by its collaborators, and each of its collabo-
rator in turn derives a utility from the successfulness of the project.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 317–331, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

318 J. Tan

A collection of friends interact with each other, and friendships are reinforced
through mutual interactions or weakened due to the lack of them. The more
time and effort mutually devoted by two friends in their friendship, the stronger
the friendship is; the stronger the friendship is, the more each benefit from it.
However, each friend is constrained by her time and energy and has to decide
how much to devote to each of her friends.

Suppose the community members, the collaborators and the friends (which
we collectively call agents) are all self-interested and interested in allocating
their limited resources in a way that maximizes their own total utility derived
from the communities, projects, and mutual friendships (which we collectively
call goods) that they have access to. Interesting computational and economics
questions abound: Can the agents efficiently find optimal ways to allocate their
resources? Viewed as a game played by the agents over a bipartite network, how
does the network structure affect the game? In particular, does there exist a pure
strategy Nash equilibrium? Is it unique and will myopic and selfish behaviors of
the agents lead to a pure strategy Nash equilibrium? And how costly are these
myopic and selfish behaviors?

In this paper we address these questions by first proposing a model that nat-
urally captures these strategic interactions, and then giving a comprehensive set
of results to the scenario where there is only one resource to be allocated by the
agents, and the utility an agent derives from a good to which she is entitled is a
concave and smooth function of the total resource allocated to that good. We start
by giving our model that we call the networked common goods game (NCGG).

The Model. The networked common goods game is played on a bipartite graph
G = (P,A,E), where P = {p1, p2, ..., pn} is a set of goods andA = {a1, a2, ..., am}
is a set of agents. If there is an edge (pi, aj) ∈ E, then agent aj is entitled to good
pi. There is a single kind of divisible resource of which each agent is endowed
with one unit (we note this is not a loss of generality as our results generalize
easily to the case where different agents start with different amounts of resource).
Moreover, we can assume Nature has endowed each common good pi with αi

amount of resource that we call the ground level ; this can be viewed as modelling
pi as having access to some external sources of contributions.

Let N (v) denote the set of neighbors of a node v ∈ P ∪ A, xij ∈ [0, 1] the
amount of resource agent aj contribute to good pi and ωi = αi +

∑
ak∈N (pi) xik

the total amount of resource allocated to good pi. Each agent aj derives cer-
tain utility Uj(ωi) from each pi of which she is a member. We always assume
Uj(0) = 0 and for the most part of the paper, we consider the case where Uj(·)
is increasing, concave and differentiable. Being self-interested, agent aj is inter-
ested in allocating her resources across the goods to which she is entitled in a
way that maximizes her total utility

∑
pi∈N (aj) Uj(ωi).

Our Results. We first consider the optimization problem faced by a single
agent: Given the resources already allocated to the goods to which agent aj is

The Networked Common Goods Game 319

entitled, find a way to allocate resource so that aj ’s total utility is maximized.
We call this the common goods problem (CGP) and consider both continuous
and discrete versions, where the agent’s resource is either infinitely divisible or
atomic.

– We show that for the continuous version, if Uj(·) is assumed to be increasing,
concave and differentiable, then CGP has an analytical solution. On the other
hand, the discrete version of CGP is NP-hard but admits an FPTAS.

We then turn to investigate the existence and uniqueness of pure strategy Nash
equilibrium of NCGG1. We consider two concepts of uniqueness of equilibrium,
among which strong uniqueness is the standard concept of equilibrium unique-
ness whereas weak uniqueness is defined as follows: For any two equilibria E and
E ′ of the game and for any good pi ∈ P , the total amount of resource allocated
to pi is the same under both E and E ′. We have the following results.

– We show for any NCGG instance, a Nash equilibrium always exists. And we
show that this Nash equilibrium is weakly unique not only in a particular
NCGG instance, but across all NCGG instances played on the same network
as long as the utility function of each agent is increasing, concave and differ-
entiable. And if in addition the underlying graph is a tree, the equilibrium
is strongly unique. Our results do not assume that different agents have the
same utility function; this demonstrates that Nash equilibrium in NCGG is
completely characterized by network structure.

We also consider the convergence of Nash dynamics of the game, and its price of
anarchy: The worst-case ratio between the social welfare of an optimal allocation
of resources and that of a Nash equilibrium [17].

– We show that NCGG is a potential game, a concept introduced in [16],
therefore any (better/best response) Nash dynamics always converge to the
(unique) pure strategy Nash equilibrium. We then propose a particular im-
plementation of Nash dynamics that leads to fast convergence to a state
that is an additive ε-approximation of the pure strategy Nash equilibrium of
NCGG. The convergence takes O(Kmn) time, where K = maxj U−1

j (ε/n),
which for most reasonable choices of Uj is a polynomial of n and m. (For
example, for Uj(x) = xp where p ∈ (0, 1) is a constant, it is sufficient to set
K = (n/ε)1/p, which is a polynomial in n.)

– We show the price of anarchy of the game is Ω(n1−ε) (for any ε > 0),
which means selfish behavior in this game can lead to extremely inefficient
social outcomes, for a reason that echoes the phenomenon of tragedy of the
commons [11].

We note that NCGG introduced in this paper has the particularly nice property
that very little is assumed about agents’ utility functions. Unlike most economic
1 Since we concern ourself with only pure strategy Nash equilibrium in this paper, we

use it interchangeably with Nash equilibrium.

320 J. Tan

models considered in the literature where not only a particular form of utility
function is assumed about a particular agent, but very often the same utility
function is imposed across all agents, so that the model remains mathematically
tractable, our model do not assume more than the following: 1) Uj(0) = 0; 2)
Uj(·) has diminishing return (increasing and convex); 3) Uj(·) is smooth (dif-
ferentiable). In particular, we do not need to assume different agents share a
common utility function for our results to go through.

Related Work. The networked common goods game we consider is a natural
generalization of the well-known common goods game [12]. Bramoullé and Kran-
ton considered a different generalization of the common goods game to networks
[3]. In their formulation a (general, non-bipartite) network is given where each
node represents an agent ai, who can exert certain amount of effort ei ∈ [0,+∞)
towards certain common good and such effort incurs a cost of cei on the part
of the agent, for some constant c. ai’s effort directly benefits another agent aj

iff they are directed connected in the network, and the utility of ai is defined
as Ui(ei +

∑
aj∈N (i) ej) − cei. Bramoullé and Kranton then analyze this model

to yield the following interesting insights: First, in every network there is an
equilibrium where some individuals contribute whereas others free ride. Second,
specialization can be socially beneficial. And lastly, a new link in the network can
reduce social welfare as it can provide opportunities to free ride and thus reduce
individual incentives to contribute. We note both the model and the research
perspectives are very different from those considered in this paper.

A more closely related model is that studied by Fol’gardt [8,9]. The author
considered a resource allocation game played on a bipartite graph that is similar
to our setting. In Fol’gardt’s model, each agent has certain amount of discrete
resources, each of unit volume, that she can allocate across the ‘sites’ that she
has access to. Each site generates certain utility for the agent, depending on
the resources jointly allocated to it by all its adjacent agents. In Fol’gardt’s
formulation, each agent is interested in maximizing the minimum utility obtained
from a single site she has access to. The analysis of Fol’gardt’s resource allocation
game is limited to very specific and small graphs [8,9].

A variety of other models proposed and studied in the literature bear sim-
ilarities to the networked common goods game considered here. These include
Fisher’s model of economy [7], the bipartite exchange economy [13,4], the fixed
budget resource allocation game [6,18], the Pari-Mutuel betting as a method of
aggregating subjective probabilities [5], and the market share game [10]. However
these model all differ significantly in the ways allocations yield utility.

2 The Common Goods Problem

Recall that CGP is the optimization problem faced by a single agent: An agent
has access to n goods, each good pi has already been allocated αi ≥ 0 resources.
The agent has certain amount of resource to allocate across the n goods. De-
note by xi (i = 1, ..., n) the amount of resource the agent allocates to goods i, she

The Networked Common Goods Game 321

receives a total utility of
∑n

i=1 U(αi+xi). In this section, we consider two versions
of this optimization problem, where the resource is either infinitely divisible or
discrete.

2.1 Infinitely Divisible Resource

Without loss of generality, assume the agent has access to one unit of resource.
In the infinitely divisible case, CGP is a convex optimization problem captured
by the following convex program.

maximize
∑n

i=1 U(αi + xi)
subject to

∑n
i=1 xi = 1

xi ≥ 0 (i = 1, 2, ..., n)
(1)

where the constraint
∑n

i=1 xi = 1 comes from the observation that U(·) is an
increasing function so an optimal solution must have allocated the entire unit of
resource.

As it turns out, as long as U(·) is increasing, concave and differentiable, the
above convex program admits exactly the same unique solution regardless of
the particular choice of U(·). And we note this solution coincides with what is
known in the literature as the water-filling algorithm [2]. This is summarized
in the following theorem. The proof relies on the above program being convex
to apply the well-known Karush-Kuhn-Tucker (KKT) optimality condition [2],
and is relegated to the appendix.

Theorem 1. For any utility function U that is concave and differentiable, the
convex program admits a unique analytical solution. Moreover, the solution is
unique across all choices of U(·) as long as it is increasing, concave and differ-
entiable.

Therefore the unique optimal way to allocate resources across the goods is in-
dependent of the agent’s utility function as long as it is differentiable and has
diminishing return, which is a very reasonable assumption. We note this is a
particularly nice property of the model as it frees us from imposing any par-
ticular form of utility function, which can often be arbitrary, and the risk of
observing artifacts thus introduced. In NCGG considered later, this property
frees us from making the assumption that each agent has the same utility func-
tion, which is standard of most economic models whose absence would often
render the underlying model intractable.

2.2 Discrete Resource

In the discrete case, the agent has access to a set of atomic resources, each of
integral volume. We show in the next two theorems that although the discrete
CGP is NP-hard even in a rather special case, the general problem always admits
an FPTAS.

Theorem 2. The discrete common goods problem is NP-hard even when each
atomic resource is of unit volume and U(·) is increasing.

322 J. Tan

Proof. We prove the hardness result by giving a reduction from the NP-hard
unbounded knapsack problem [15].
Unbounded Knapsack Problem (UKP)

Instance: A finite set U = {1, 2, ..., n} of items, each item i has value vi ∈ Z+,
weight wi ∈ Z+ and unbounded supply, a positive integer B ∈ Z+.
Question: Find a multi-subset U ′ of U such that

∑
i∈U ′ vi is maximized and∑

i∈U ′ wi ≤ B.
Since supply is unlimited we can assume without loss of generality that no

two items are of the same weight and no item is strictly dominated by any
other item, i.e. wi > wj implies vi > vj . Now create n goods, p1, ..., pn, where
pi corresponds to item i and has a ground level (i − 1)B. Let the agent have
access to a total of B atomic resource, each of unit volume. Define the utility
function U(·) as follows: U(ω) =

∑μ(ω)−1
i=1 � B

wi
�vi + � ν(ω)

wμ(ω)
�vμ(ω) + ω

(n2−n+2)B2

where μ(ω) = �ω/B� and ν(ω) = ω mod B.
Clearly, U(·) is a strictly increasing function, and thus we only concern our-

selves with those CGP solutions that allocate all B atomic units of resources.
One can then verify that there is a solution of total value K to the UKP in-
stance iff there is a solution of total utility

∑n
j=1

∑j−1
i=1

⌊
B
wi

⌋
vi + 1

2B +K to the
corresponding CGP instance. Therefore the discrete common goods problem is
NP-hard.

Theorem 3. The discrete common goods problem always admits an FPTAS.

Proof. The discrete common goods problem can be reduced to the multiple-
choice knapsack problem
Multiple-Choice Knapsack Problem (MCKP)

Instance: A finite set U = {1, 2, ..., k} of items, each item i has value vi, weight
wi and belongs to one of n classes, a capacity B > 0.
Question: Find a subset U ′ of U such that

∑
i∈U ′ vi is maximized,

∑
i∈U ′ wi ≤

B, and at most one item is chosen from each of the n classes.
The reduction goes as follows. For a general CGP instance, where there are

B atomic unit-volume resources, and goods {p1, ..., pn} such that good pi has
ground level αi, create a MCKP instance such that there are n classes c1, ..., cn.
Class ci corresponds to good pi and has B items of weight j and value U(αi + j),
for j = 1, ..., B. The knapsack is of total capacity B.

It is not hard to see that there is a solution of total utility K to the CGP
instance if and only if there is a solution of total value K to the MCKP instance.
Therefore, any approximation algorithm for the latter translates into one for the
former with the same approximation guarantee. Since an FPTAS is known for
MCKP [1,14], CGP also admits an FPTAS.

3 Pure Strategy Nash Equilibrium

We consider in this section the existence and uniqueness of Nash equilibrium in
NCGG.

The Networked Common Goods Game 323

3.1 The Existence of Nash Equilibrium

First we show a Nash equilibrium always exists in NCGG when the utility func-
tions satisfy certain niceness properties.

Theorem 4. For any NCGG instance, a pure strategy Nash equilibrium always
exists as long as Uj is increasing, concave and differentiable for any agent aj.

Proof. Let deg(ai) be the degree of agent ai and D =
∑

ai∈A deg(ai). Let
s ∈ [0, 1]D be the state vector that corresponds to how the m agents have
allocated their resources, where the (

∑i−1
k=1 deg(ak))th to the (

∑i
k=1 deg(ak))th

dimension of s correspond to ai’s allocation of her resource on the deg(ai) goods
she is connected to (assume an arbitrary but fixed order of the goods ai is con-
nected to). Define function f : [0, 1]D → [0, 1]D such that f(s) maps to the best
response state s′, where

(
s′∑ i−1

k=1 deg(ak)
, ..., s′∑ i

k=1 deg(ak)

)
corresponds to ai’s best

response. Note s′ is unique because each agent ai’s best response is unique by
Theorem 1, therefore f(s) is well-defined.

It is clear that [0, 1]D is compact (i.e. closed and bounded) and convex, and
f is continuous. Therefore, applying Brouwer’s fixed point theorem shows that
f has a fixed point, which implies NCGG has a Nash equilibrium.

We note on the other hand, it is easy to see that if Uj is allowed to be convex,
then a pure strategy Nash equilibrium may not exist in NCGG.

3.2 The Uniqueness of Nash Equilibrium

We next establish uniqueness results of Nash equilibrium of NCGG in the next
two theorems. Apparently, NCGG played on a general graph does not have a
unique Nash equilibrium in the standard sense: Consider for example the 2× 2
complete bipartite graph where P = {p1, p2} and A = {a1, a2}, for any 0 ≤
δ ≤ 1, a1 (resp. a2) allocating δ (resp. 1 − δ) resource on p1 and 1 − δ (resp.
δ) resource on p2 constitutes a pure strategy Nash equilibrium and therefore
there are uncountably infinite many of them. However, all these equilibria can
still be considered as equivalent to each other in the sense that they all allocate
exactly the same amount of resource to each good. And the reader is encouraged
to verify as an exercise that any Nash equilibrium in the above NCGG instance
belongs to this equivalence class. Therefore, the Nash equilibrium is still unique,
albeit in a weaker sense.

To capture this, we thus consider two concepts of uniqueness of equilibrium:
We say an NCGG instance has a weakly unique equilibrium if all its equilibria
allocate exactly the same amount of resource on each good pi. And if an NCGG
instance has an equilibrium that is unique in the standard sense, we call it
strongly unique. We note the concept of weak uniqueness is a useful one as it
implies the uniqueness of each agent’s utility in equilibrium, which is really what
we ultimately care about.

We show two uniqueness results in this section. The first one establishes that
NCGG has a strongly unique Nash equilibrium if the underlying graph is a tree.

324 J. Tan

The second one indicates that it is not a coincidence that the example shown
above has a weakly unique equilibrium — in fact, we show any NCGG instance
has a weakly unique Nash equilibrium. Furthermore, our results indicate that
the equilibrium is a function of the structure of the underlying graph only, and
independent of the particular forms and combinations of agents’ utility functions,
as long as these functions are increasing, concave and differentiable.

Theorem 5. The Nash equilibrium of NCGG is weakly unique across all net-
worked common goods games played on a given bipartite graph G = (P,A,E),
as long as Uj is increasing, convex and differentiable for any agent aj.

Proof. Suppose otherwise that there are two equilibria E and E ′ that have differ-
ent amount of resource ωi and ω′

i allocated to some good pi (throughout the rest
of the paper whenever it is clear from the context, for any good px we denote
by ωx and ω′

x the amount of resource allocated to px in E and E ′, respectively).
Without loss of generality assume ω′

i < ωi. Then there must exists some agent
aj ∈ N (pi) who is allocating less resource on pi in E ′ than in E , and as a result,
aj must be allocating more resource on some good pk ∈ N (aj)\{pi} in E ′ be-
cause in equilibrium each agent allocates all of its resources. The fact that aj is
allocating nonzero resource on pi in E implies ωi ≤ ωk, and for the same reason
ω′

k ≤ ω′
i. Therefore we have ωk − ω′

k ≥ ωi − ω′
i > 0.

Now consider the following process: Starting from set S0 = {pi}, add goods
to S0 that share an agent with pi and whose total resource have decreased by at
least ωi − ω′

i in E ′; let the new set be S1. Then grow the set further by adding
goods that share an agent with some good in S1 and whose total resource are
reduced by at least ωi−ω′

i in E ′. Continue this process until no more goods can
be added and let the resulting set be S. By construction every good in S has its
total resource decreased by at least ωi − ω′

i in E ′ than in E ; in fact, it can be
shown that the decrease is exactly ωi − ω′

i for each good in S.
If S = P , then we have a contradiction immediately because if each good

in P has its total resource decreased by a positive amount in E ′ then it im-
plies the agents collectively have a positive amount of resources not allocated,
contradicting the fact that E ′ is a Nash equilibrium.

We now claim that indeed S = P . Suppose otherwise P = S ∪ T and T �= ∅.
Then, N (S), the neighboring agents of S are collectively spending less resources
on S in E ′ than in E , which implies there exists an agent a ∈ N (S) who is
allocating more resources to a good pt ∈ T in E ′ than in E and less resources to
a good ps ∈ S in E ′ than in E . By an argument similar to one given above, we
have ωs ≤ ωt and ω′

t ≤ ω′
s, and thus ωt − ω′

t ≥ ωs − ω′
s ≥ ωi − ω′

i. This implies
that pt should be in S rather than T ; so we must have T = ∅ or S = P .

Therefore E and E ′ must be equivalent in the sense that for any good pi ∈ P ,
ωi = ω′

i; this allows us to conclude that the Nash equilibrium of NCGG on any
graph is weakly unique.

Next, we move to establish the strong uniqueness result on trees. We need the
following lemma before we proceed to the main theorem of the section.

The Networked Common Goods Game 325

Lemma 1. For any instance of NCGG on a tree G = (P,A,E), let E be a Nash
equilibrium of this game, αi the ground level of pi ∈ P and ωi the total resource
allocated on pi in E. For any other instance of NCGG where everything is the
same except that αi is increased, if E ′ is an equilibrium of this new instance and
ω′

i is total resource allocated to pi in E ′, then ω′
i ≥ ωi.

Proof. Without loss of generality assume all leafs of the tree are goods (because a
leaf agent has no choice but to allocate all her resources to the unique good she is
connected to) and root the tree at pi. Suppose ω′

i < ωi. Since α′
i > αi, it must be

the case that there exists some agent aj ∈ N (pi) who is allocating less resource
on pi in E ′ than in E , this in turn implies that aj is allocating more resource to
some good pk ∈ N\{pi} in E ′ than in E . Therefore we have ωi ≤ ωk and ω′

k ≤ ω′
i

and thus ωk−ω′
k ≥ ωi−ω′

i > 0. If k is a leaf then this is obviously a contradiction.
Otherwise, we can continue the above reasoning recursively and eventually we
will reach a contradiction by having a leaf good whose total resource decreases
in E ′ whereas at the same time its unique neighboring agent is allocating more
resources to it.

Theorem 6. The Nash equilibrium is strongly unique across all NCGG played
on a given tree G = (P,A,E), as long as Uj is increasing, convex and differen-
tiable for any agent aj.

Proof. Again without loss of generality assume leafs are all goods. We have the
following claim.

Claim. For any NCGG instance on a tree G = (A,P,E), if there is an equilibrium
E where total resource allocated is the same across all goods, then E is the strongly
unique Nash equilibrium.

Proof. Suppose E is not strongly unique. Let E ′ be a different Nash equilibrium.
By Theorem 5 E ′ can only be weakly different from E . Since E and E ′ are weakly
different there must exist edge (pi, aj) such that aj is allocating different amount
of resource in E and E ′; without loss of generality, assume aj is allocating less re-
source in E ′ than in E . Root the tree at pi, then aj must be allocating more resource
in E ′ to one of its child pk ∈ N (aj)\{pi}. Note given the amount of resource allo-
cated by aj on pk, the game played at the subtree rooted at pk can be viewed as
independent of the game played in the rest of the tree, by viewing the resource al-
located by aj on pk as part of the ground level of pk. Now that the ground level has
increased, by Lemma 1 any equilibrium on the subtree rooted at pk must not have
the total resource allocated on pk decreased, so we have ω′

k ≥ ωk. If ω′
k > ωk, then

this is a contradiction to weak uniqueness. If ω′
k = ωk, then one of pk’s child must

be allocating less resource to pk in E ′ than in E and we can repeat the above rea-
soning recursively. Continue this process until we either reach the conclusion that
E and E ′ are strongly different, which is a contradiction, or reach a leaf good whose
allocated resource in E ′ is the same as that in E even when his unique neighboring
agent is allocating more resource to it in E ′, which is again a contradiction.

326 J. Tan

Resume Proof of Theorem. We prove this theorem by giving an induction on the
size of the tree N = |A|+ |P |. First note the equilibrium is unique when N ≤ 2
(in the trivial case where either E = ∅, the claim is vacuously true). Assume the
theorem is true for any tree of size N ≤ K, consider the case N = K + 1.

For any instance GK+1 with N = K + 1, let E be a Nash equilibrium (whose
existence is implied by Theorem 4). We want to show that E is strongly unique.
Let

E(E) = {(pi, aj) | ωi > ωk and xjk > 0 in E}
If E(E) = ∅ then it must be the case that the total resource allocated is the same
across all goods, and by the above claim E is thus strongly unique and we are
through. Otherwise, partition G into subtrees by removing E(E) from E. Note
the size of each subtree thus resulted is at most N , so by induction they each has
a strongly unique equilibrium; this implies that if we can prove E(E ′) = E(E)
for any equilibrium E ′, then E ′ = E and we are again through. To this end,
suppose GK+1 has a weakly different equilibrium E ′ such that (pi, aj) ∈ E(E)
and (pi, aj) /∈ E(E ′) and consider the following two cases.
Case I: aj is allocating resource to pi in E ′. Consider the game played on
the subtree of GK+1 rooted at pi and not containing aj. Since aj allocates more
resource on pi in E ′ than in E , by Lemma 1 ω′

i ≥ ωi. On the other hand, aj must
be allocating less resource to some other good pk in E ′ than in E , so again by
Lemma 1 ωk ≥ ω′

k. Note we also have ωi > ωk and thus conclude that ω′
i > ω′

k;
since aj allocates non-zero resource to pi in E ′, she is not acting optimally and
this gives a contradiction to the fact that E ′ is an equilibrium.
Case II: aj is not allocating resource to pi in E ′. Since the subtree
rooted at pi and not containing aj is of size at most N−1, by induction we have
ωi = ω′

i. Since aj is allocating the same total amount of resource to N (aj)\pi,
there exists pk on which aj is allocating nonzero resource in E and not allocating
strictly more resource in E ′ than in E ; by Lemma 1 this implies ω′

k ≤ ωk. Note we
also have ωi > ωk because (pi, aj) ∈ E(E), and thus we have ω′

i > ω′
k. Consider

the following two cases: Case 1) If aj allocates nonzero resource to pk in E ′
then ω′

i = ω′
k because (pi, aj) /∈ E(E ′); but this is a contradiction. Case 2)

If aj allocates zero resource to pk then there exists good pl ∈ N (aj)\{pi, pk}
on which aj is allocating strictly more resource in E ′ than in E . The fact that
(pi, aj) /∈ E(E ′) implies ω′

i = ω′
l, so we have ω′

l > ω′
k; but this is a contradiction

to the fact that E ′ is an equilibrium.

Now we conclude that E(E) = E(E ′) and this completes the proof.

4 Nash Dynamics

Pick any utility function that is increasing, concave and differentiable, say U(x) =√
x, and define potential function Ψ(ω1, ..., ωn) =

∑n
i=1
√
ωi. It is clear that for

any agent aj, whenever aj updates her allocation such that increases her total
utility, the potential increases as well. This proves the following theorem.

Theorem 7. NCGG is a potential game.

The Networked Common Goods Game 327

Therefore, better/best response Nash dynamics always converge. However it is
not clear how fast the convergence is as the increment in aj ’s total utility can be
either larger or smaller than the increment of the potential, depending both on
Uj(·) and the amount of resources already allocated to aj ’s neighboring goods. In
the rest of the section, we present a particular Nash dynamics where we can show
fast convergence to an ε-approximate Nash equilibrium. We only give details for
the best response Nash dynamics (Algorithm 1), and it is easy to see the same
convergence result holds for the corresponding better response Nash dynamics
as well. To this end we consider K-discretized version of the game, where each
agent has access to a total of K identical atomic resources, each of volume 1/K.
We start by giving the following two lemmas.

Lemma 2. A solution to the K-discretized CGP is optimal iff the following two
conditions are satisfied: 1) the agent has allocated all of its K atomic units of
resource; 2) for any two goods pi, pj ∈ P , ωi − ωj > 1/K (where ωi = αi + xi

and ωj = αj + xj) implies xi = 0.

Proof. First we prove the ‘only if’ direction. It is obvious that an optimal solution
must have allocated all of its K atomic units of resource because the utility
function is increasing, so we focus on the proof of the second condition. Suppose
otherwise we have pi, pj ∈ P with ωi−ωj > 1/k, where ωi = αi+xi, ωj = αj +xj

and xi > 0. Construct another solution by moving one atomic unit of resource
from good pi to pj gives a new solution of total utility strictly higher because the
utility function is increasing and concave. Therefore we have a contradiction.

Next we prove the ‘if’ direction of the lemma. Suppose the solution x is not
optimal. Let ωk and ω′

k (where pk ∈ P) denote the total resource induced by
this ‘suboptimal’ solution and a true optimal solution x′, respectively. Since an
optimal solution must have allocated all of its K units of atomic resource among
the goods, it must be true that there exist pi, pj ∈ P such that ωi − ω′

i ≥ 1/K
and ω′

j − ωj ≥ 1/K, and if both inequality holds in equality, then ω′
i �= ωj

(because otherwise x and x′ are essentially the same, which means x is already
optimal). Note ω′

j − ωj ≥ 1/K implies that good j′ has resource allocated to it
in the optimal solution (i.e. x′j ≥ 1/K), so by the ‘only if’ part of proof above,
we must have ω′

i ≥ ω′
j − 1/K. Now we show that ωi − ωj > 1/K by considering

the following two cases:
Case I: (ωi − ω′

i) + (ω′
j − ωj) > 2/K. In this case, it is easily checked that

ωi − ωj > 1/K.
Case II: ωi − ω′

i = 1/K and ω′
j − ωj = 1/K. As discussed above, we must

not have ω′
i = ωj . In fact, we must have ω′

i > ωj because otherwise we will
have ω′

j = ωj + 1/K > ω′
i + 1/K, which is a contradiction to optimality because

x′j ≥ 1/K. Therefore, again we have reached the conclusion that ωi−ωj > 1/K.
Now note ωi − ω′

i ≥ 1/K implies xi ≥ 1/K, but this is a contradiction to
ωi−ωj > 1/K, which by assumption implies xi = 0. Therefore, x must itself be
an optimal solution.

328 J. Tan

Lemma 3. For any ε > 0, an optimal solution to the K-discretized common
goods problem, where K = 1/U−1(ε/n), is an ε-approximation to the optimal
solution in the continuous common goods problem.

Proof. Denote by OPT and OPTK the optimal utility attained by an optimal
solution in the continuous version and the K-discretized version, respectively;
denote byW∗ andW∗

K the set of goods to which non-zero resource is allocated in
the two optimal solutions, respectively. By Lemma 2, any two goods inW∗

K must
have their total resources allocated differ by at most 1/K, i.e. ωmax − ωmin ≤
1/K, where ωmin = min{ωi | pi ∈ W∗

K} and ωmax = max{ωi | pi ∈ W∗
K}. Since

the agent has access to n goods, it must be the case that ωmin ≥ 1/n − 1/K
because otherwise ωmax < 1/n. Now consider the setW =W∗

K∪{pi /∈ W∗
K | αi ≤

ωmax} of goods whose total resource is at most ωmax, it is clear that: 1) W∗,
the optimal solution to the continuous version of the problem, forms a subset of
W ; 2) max{ωi | i ∈ W∗} ≤ ωmax.

Now suppose we have access to an additional of |W| atomic units of resource,
each of volume 1/K, construct a new allocation by doing the following: Start with
an allocation same asW∗

K , then assign one atomic unit of resource to each good in
W ⊇W∗

K . It is clear from the above discussion that for any good pi ∈ W , its total
resource under the new allocation is at least that of the total resource allocated
under W∗, which means the utility that we obtain under the new allocation,
OPT ′′, is at least OPT . Therefore OPT−OPTK ≤ OPT ′′−OPTK ≤ nU(1/K);
so to upper bound OPT −OPTK by ε, it is sufficient to set K = 1/U−1(ε/n).

Note for most reasonable choices of U (e.g. U(x) = xp where p ∈ (0, 1)), K is
polynomial in n. We have the following theorem.

Theorem 8. For any ε > 0, Algorithm 1 converges to an ε-approximate Nash
equilibrium in O(Kmn) time, where K = maxj∈[m] U−1

j (ε/n)), for any updating
schedule σ.2

Proof. First note according to the characterization of Lemma 2, the response of
each agent aσ(t) in Algorithm 1 is a K-discretized best response. The rest of this
proof is to define a potential function3 whose range are positive integers that
span an interval no greater than Kmn, and to show each time an agent updates
his allocation with a best response, the value of this potential function strictly
decreases.

For simplicity of exposition, we write pi in place of pπ(i) in the rest of the
proof. Let p1, p2, ..., pn be the n goods arranged in non-increasing order of to-
tal resource allocated, that is, ω1 ≥ ω2 ≥ ... ≥ ωn. Define potential function
Φ(ω1, ω2, ..., ωn) =

∑n
i=1(n− i) ·ωi. Apparently, Φ(·) is a positive integer valued

function and the difference between the greatest and smallest function value is

2 σ is assumed to at any time only pick an agent whose state is not already a best-

response.
3 This potential function is different from the one given in the proof of Theorem 7;

this new potential function is convenient in upper bounding the convergence time.

The Networked Common Goods Game 329

Algorithm 1. K-discretized Best Response Nash Dynamics
1: // INPUT: G, α � 0, ε > 0, and schedule σ
2: // OUTPUT: An ε-approximate Nash Equilibrium

3: Start by setting K = maxj∈[m] U−1
j (ε/n))

4: // Set an arbitrary initial state s = (s1, s2, ..., sm)

5: for j = 1 to m do
6: aj discretizes his one unit of resource into 2K atomic units, each of volume 1/2K;

arbitrarily assigns them to her adjacent goods, resulting in sj

7: end for
8: // Sort in non-increasing order of total resource allocated

9: Arrange goods in the order pπ(1), pπ(2), ..., pπ(n) s.t. ωπ(i) ≥ ωπ(j) if 1 ≤ i < j ≤ n
10: // Best response Nash Dynamics

11: for t = 1 to T do
12: Let aσ(t) be the agent active in round t;
13: while ∃ 1 ≤ i < j ≤ n s.t. ωπ(i) − ωπ(j) ≥ 1/K and xσ(t)π(i) > 0 do
14: xσ(t)π(i) = xσ(t)π(i) − 1/2K; xσ(t)π(j) = xσ(t)π(j) + 1/2K
15: If necessary, re-define π to maintain total resource allocated in non-increasing

order.

16: end while
17: end for

upper bounded by Kmn. We are done if we can show that for any node aσ(t),
the computation that aσ(t) does on line 13-17 of Algorithm 1 results in a strict
decrease in the potential.

On line 14-15 of Algorithm 1, an atomic unit of resource of volume 1/2K is
moved from good pi to pj . In doing so, the goods may no longer be sorted in
non-increasing order of total resource, and in this case we restore it on line 16
of Algorithm 1, which without loss of generality can be thought of as moving pi

to the right for some μ ≥ 0 positions (with μ being the minimum necessary),
and moving pj to the left in the ordering for some ν ≥ 0 positions (again with ν
being the minimum necessary). This results in the new ordering of the goods:

p1, ..., pi−1, pi+1, ..., pi+μ, pi, ..., pj , pj−ν , ..., pj−1, pj+1, ..., pn

Note pi still precedes pj (i.e. i + μ < j − ν) in this ordering because prior to
line 14-15 of Algorithm 1, ωi − ωj ≥ 1/K, therefore, the total resource of pi is
still at least that of pj after a 1/2K amount of resource has been moved from pi

to pj . With this observation, we can analyze the change in potential by looking
at the changes of potential on {pi, ..., pi+μ} and {pj−ν , ..., pj} separately, and
ignore the rest of the goods, whose contribution to potential remain unchanged.
Clearly, the contribution to potential from {pi, ..., pi+μ} decreases, and by an
amount of ΔΦ↓ = (ωi − ωi+1) · (n − i) + (ωi+1 − ωi+2) · (n − i − 1) + ... +
(ωi+μ−ωi + 1/2K) · (n− i−μ) ≥ (n− i−μ)/2K. Similarly, the contribution to
potential from {pj−ν , ..., pj} increases by ΔΦ↑ = (ωj−1 −ωj) · (n− j) + (ωj−2 −
ωj−1) · (n− j + 1) + ...+ (ωj + 1/2K − ωj−ν) · (n− j + ν) ≤ (n− j + ν)/2K.
Since i + μ < j − ν, we have ΔΦ↓ > ΔΦ↑, which means the potential decrease
by at least 1. Therefore, in at most Kmn steps Algorithm 1 converges to a

330 J. Tan

Nash equilibrium in the K-discretized game. By Lemma 3, this constitutes an
ε-approximate Nash equilibrium to the original game.

5 Price of Anarchy of the Game

We show in this section the price of anarchy of NCGG is unbounded, and it
is for a reason that echoes the well-known phenomenon called tragedy of the
commons [11].

Theorem 9. The price of anarchy of NCGG is Ω(n1−ε), for any ε > 0.

Proof. Consider the bipartite graph G = (P,A,E) where P = {pc, p1, ..., pn},
A = {a1, ..., an} and E = {(pj, aj), (pc, aj) | j ∈ [n]} so that all agents share the
‘common’ good pc and each agent aj has a ‘private’ good pj to himself. Assume
each agent aj has the same utility function U , αi = 0 ∀ ai ∈ {p1, ..., pn} and
αc = 1.

It is clear that it is a Nash equilibrium for every agent aj to allocate her
entire unit of resource to her private good pj . And in this case the social welfare
is 2n · U(1). On the other hand, if every agent devotes her entire unit of resource
to the common good, then the social welfare is n · U(n+ 1). Therefore the price
of anarchy of this particular example is at least U(n+1)

2U(1) = O(U(n + 1)). Since
U(·) is concave, we can set U(x) = x1−ε; therefore the theorem follows.

References

1. Bansal, M.S., Venkaiah, V.C.: Improved fully polynomial time approximation

scheme for the 0-1 multiple-choice knapsack problem. In: Proc. of SIAM Conference

on Discrete Mathematics (2004)

2. Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge University Press,

Cambridge (2004)

3. Bramoullé, Y., Kranton, R.E.: Public goods in networks. Journal of Economic

Theory 135(1), 478–494 (2007)

4. Even-Dar, E., Kearns, M., Suri, S.: A network formation game for bipartite ex-

change economies. In: Proc. of ACM SODA 2007, pp. 697–706 (2007)

5. Eisenberg, E., Gale, D.: Consensus of subjective probabilities: The Pari-Mutuel

method. Annals of Mathematical Statistics 30, 165–168 (1959)

6. Feldman, M., Lai, K., Zhang, L.: A price-anticipating resource allocation mech-

anism for distributed shared clusters. In: Proc. of ACM EC 2005, pp. 127–136

(2005)

7. Fisher, I.: PhD thesis. Yale University, New Haven (1891)

8. Fol’gardt, A.V.: Solution of a resource allocation game. Computational Mathemat-

ics and Modeling 4(3), 273–274 (1993)

9. Fol’gardt, A.V.: Games with allocation of discrete resources to several sites. Com-

putational Mathematics and Modeling 6(3), 172–176 (1995)

10. Goemans, M.X., Li, E.L., Mirrokni, V.S., Thottan, M.: Market sharing games ap-

plied to content distribution in ad-hoc networks. In: Proc. of MobiHoc 2004, pp.

55–66 (2004)

The Networked Common Goods Game 331

11. Hardin, G.: Tragedy of the commons. Science 162, 1243–1248 (1968)

12. Kagel, J.H., Roth, A.E. (eds.): The handbook of experimental economics. Princeton

University Press, Princeton (1995)

13. Kakade, S.M., Kearns, M.J., Ortiz, L.E., Pemantle, R., Suri, S.: Economic proper-

ties of social networks. In: Proc. of NIPS 2004 (2004)

14. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer, Heidelberg

(2004)

15. Martello, S., Toth, P.: Knapsack problems: Algorithms and computer implementa-

tion. John Wiley and Sons, Chichester (1990)

16. Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14,

124–143 (1996)

17. Papadimitriou, C.: Algorithms, games, and the Internet. In: Proc. of STOC 2001,

pp. 749–753 (2001)

18. Zhang, L.: The efficiency and fairness of a fixed budget resource allocation game.

In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP

2005. LNCS, vol. 3580, pp. 485–496. Springer, Heidelberg (2005)

A Proof of Theorem 1

Proof. Let λi (i = 1, 2, ..., n) be the Lagrange multiplier associated with the
inequality constraint xi ≥ 0 and ν the Lagrange multiplier associated with the
equality constraint

∑n
i=1 xi = 1. Since the above program is convex, the following

KKT optimality conditions,

λ∗i ≥ 0, x∗i ≥ 0 (i ∈ [n]) (2a)
n∑

i=1

x∗i = 1 (2b)

λ∗i x
∗
i = 0 (i ∈ [n]) (2c)

− d

dxi
U(αi + x∗i)− λ∗i + ν∗ = 0 (i ∈ [n]) (2d)

are sufficient and necessary for x∗ to be the optimal solution to the (primal)
convex program (1) and (λ∗, ν∗) the optimal solution to the associated dual
program.

Let V be the inverse function of d
dtU . Note equation (2c) and (2d) implies

(− d
dxi
U(αi + x∗i) + ν∗)x∗i = 0; equation (2a) and (2d) implies − d

dxi
U(αi + x∗i) +

ν∗ ≥ 0, which combing with the fact that U(·) is convex implies V(ν∗) ≤ αi +x∗i .
If αi < V(ν∗), then x∗i > 0 and thus − d

dxi
U(αi+x∗i)+ν

∗ = 0, i.e. x∗i = V(ν∗)−αi.
On the other hand, if αi ≥ V(ν∗), then we must have x∗i = 0. To see why this
is true, suppose otherwise x∗i > 0; this leads to x∗i = V(ν∗)− αi ≤ 0, which is a
contradiction. Therefore x∗i = V(ν∗) − αi if αi < V(ν∗), and x∗i = 0 otherwise,
where ν∗ is a solution to

∑n
i=1 max {0,V(ν∗)− αi} = 1.

It is easy to see that
∑n

i=1 max {0,V(ν∗)− αi} = 1 admits a unique solution if
we treat V(ν∗) as the variable, i.e. different utility functions only leads to different
solutions of the Lagrange multiplier ν∗ but V(ν∗) remains invariant. Therefore
the optimal solution x∗ is unique not only of a particular choice of U(·), but
across all utility functions that are increasing, concave and differentiable.

A Novel Branching Strategy for Parameterized
Graph Modification Problems�

James Nastos and Yong Gao��

Department of Computer Science, Irving K. Barber School of Arts and Sciences,

University of British Columbia Okanagan, Kelowna, Canada V1V 1V7

jnastos@interchange.ubc.ca, yong.gao@ubc.ca

Abstract. Many fixed-parameter tractable algorithms using a bounded

search tree have been repeatedly improved, often by describing a larger

number of branching rules involving an increasingly complex case anal-

ysis. We introduce a novel and general branching strategy that branches

on the forbidden subgraphs of a relaxed class of graphs. By using the

class of P4-sparse graphs as the relaxed graph class, we obtain efficient

bounded-search tree algorithms for several parameterized deletion prob-

lems. For the cograph edge-deletion problem and the trivially perfect

edge-deletion problem, the branching strategy yields the first non-trivial

bounded-search tree algorithms. For the cograph vertex deletion prob-

lem, the running time of our simple bounded search algorithm matches

those previously designed with the help of complicated case distinctions

and non-trivial running time analysis [16] and computer-aided branching

rules [7].

Keywords: Fixed-parameter tractability; edge-deletion; graph modifica-

tion; cographs; trivially perfect graphs; quasi-threshold graphs; bounded

search tree.

1 Introduction

A graph is a cograph [18] if it has no induced subgraph isomorphic to a P4, an
induced path on four vertices. The name originates from complement reducible
graphs as cographs are also characterized as being those graphs G which are
either disconnected or else its complement G is disconnected [18]. They are a
well-studied class of graph and many NP-complete problems on graphs have
been shown to have polynomial time solutions when the input is a cograph [4].

A graph modification problem is a general term for a problem that takes a
graph as input and asks how the graph can be modified to arrive at a new
graph with a desired property. Usually, graph modifications are edge additions
or deletions, vertex additions or deletions, or combinations of these. Our work
on the following problems originally stems from studying social networks from
which edge removals are made to reveal underlying structures in the network.
� Supported in part by NSERC Discovery Grant RGPIN 327587-09.

�� We thank Dr. Donovan Hare for our discussions on these results.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 332–346, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Novel Branching Strategy for Parameterized Graph Modification Problems 333

This paper concerns the problem of determining when a graph G = (V,E) has
a set S of at most k edges which can be removed in order to make G2 = (V,E\S)
a cograph. This problem is known to be NP-complete [14] and also known to be
fixed parameter tractable [2]. We show how our method for cograph edge-deletion
can also solve the vertex-deletion problem for cographs and to the edge-deletion
problem to trivially perfect graphs.

We note that since the class of cographs is self-complementary, an algorithm
solving k-edge-deletion problem also serves as a solution to the problem of k-
edge-addition to cographs and the k-edge-addition problem to co-trivially perfect
graphs.

This paper is structured as follows: Section 2 summarizes previous results
related to cograph modification problems and gives some background on the
class of P4-sparse graphs; Section 3 gives the cograph edge-deletion algorithms
and its runtime analysis; Section 4 modifies the algorithm to solve the vertex
deletion problem for cographs in O(3.30k(m+ n)) time and the trivially perfect
edge deletion problem in O(2.45k(m+n)) time, where m is the number of edges
and n is the number of vertices in the input graph; Section 5 summarizes and
discusses these results and mentions how cograph edge deletion can be solved in
O(2.415k(m+ n)) time through the use of semi-P4-sparse graphs.

2 Previous Results and Background

2.1 Previous Fixed-Parameter Tractability Results

While cographs can be recognized in linear time [4], it is also known that it is NP-
complete to decide whether a graph is a cograph with k extra edges [14]. Graph
modification problems have been studied extensively: Yannakakis shows that
vertex-deletion problems to many types of structures is NP-hard [21]. Elmallah
and and Colbourn give hardness results for many edge-deletion problems [14].

Recently, a lot of researchhas been devoted to finding fixed-parameter tractable
algorithms for graph modification problems: Guo [8] studied edge deletion to split
graphs, chain graphs, threshold graphs and co-trivially perfect graphs; Kaplan et
al. [11] studied edge-addition problems to chordal graphs, strongly chordal graphs
and proper interval graphs; Cai [2] showed fixed-parameter tractability for the
edge deletion, edge addition, and edge editing problem to any class of graphs de-
fined by a finite set of forbidden induced subgraphs. The constructive proof implies
that k-edge-deletion problems to a class of graphs defined by a finite number of
forbidden subgraphs is O(Mkp(m+n)) where p is some polynomial andM is the
maximum over the number of edges in each of the forbidden induced subgraphs
defining that graph class in question. For k-edge-deletions to P4-free graphs in
particular, Cai’s result implies an algorithm running in O(3k(m+ n)) time. This
algorithm would work by finding a P4: a−b−c−d in a graph and branching on the
3 possible ways of removing an edge in order to destroy the P4 (that is, removing
either the edge {a, b} or {b, c} or {c, d}).

Nikolopoulos and Palios study the edge-deletion to cograph problem for a graph
G − xy where G is a cograph and xy is some edge of G [17]. Lokshtanov et al.

334 J. Nastos and Y. Gao

study cograph edge-deletion sets to determine whether they are minimal, but not
a minimum edge-deletion set [13]. To the best of our knowledge, ours is the first
study that specifically addresses the edge-deletion problem to cographs. We
present a bounded search tree algorithm that solves k-edge-deletion to cographs in
O(2.562k(m+n)) time by performing a search until we arrive at a P4-sparse graph
and then optimally solving the remainder of the search space using the structure
of P4-sparse graphs.

Graph modification problems can also be regarded as a type of graph recogni-
tion problem. Following the notation of Cai [2], for any class of graphs C, we call
C+ke the set of all graphs which are formed from a graph of class C with k extra
edges. Similarly, C−ke is the set of graphs which are formed from a graph of class
C with k edge removals. Replacing ‘edges’ by ‘vertices’ in these definitions gives
analogous classes for C+ kv and C − kv. A k-edge-deletion problem to a class of
graphs C can thusly be restated as a recognition problem for the class of C + ke
graphs. Our results on cographs here can be restated as recognition algorithms
for the classes: Cograph+ke, Cograph-ke, Cograph+kv, Trivially Perfect+ke.

2.2 Background Information: P4-sparse Graphs

One generalization to the class of cographs is formed by allowing P4s to exist in
a graph but in restricted amounts. Hoáng [9] introduced P4-sparse graphs to be
those for which every induced subgraph on five vertices induces at most one P4.
This immediately implies a forbidden induced subgraph characterization which
restricts any subgraph of five vertices inducing two or more P4s. We include
these graphs in Figure 1.

Fig. 1. The forbidden induced subgraphs for P4-sparse graphs

A Novel Branching Strategy for Parameterized Graph Modification Problems 335

A special graph structure called a spider [10] commonly occurs in graph classes
of bounded cliquewidth. We define two types of spiders here:

Definition 1. A graph G = (V,E) is a thin spider if V can be partitioned into
K, S and R such that:

i) K is a clique, S is a stable set, and |K| = |S| ≥ 2.
ii) every vertex in R is adjacent to every vertex of K and to no vertex in S
iii) each vertex in S has a unique neighbour in K, that is: there exists a bijection

f : S → K such that every vertex k ∈ K is adjacent to f(k) ∈ S and to no
other vertex in S.

Fig. 2. A thin (a) spider and a thick (b) spider with |K| = |S| = 5 and |R| = 2

A graph G is called a thick spider if G is a thin spider. Note that the vertex
sets K and S swap roles under graph complementation, that condition (i) and
(ii) hold for thick spiders, and that statement (iii) changes to saying that every
vertex in S has a unique non-neighbour in K. The sets K, S and R are called the
body, feet and head of the spider, respectively. The edges with one endpoint in
S are called thin legs or thick legs for thin spiders or thick spiders, respectively.
Examples of spiders are given in Figure 2.

Hoàng [9] defined a graph G to be P4-sparse if every induced subgraph with
exactly five vertices contains at most one P4. The following decomposition the-
orem for P4-sparse graphs was proven in [10]:

Lemma 1. [10] Let G be a P4-sparse graph. Then at least one of the following
is true:

i) G is disconnected
ii) G is disconnected
iii) G is a thin spider
iv) G is a thick spider

We note here that for the purposes of an edge-deletion problem, if G is discon-
nected then the edge-deletion problem on G decomposes into separate

336 J. Nastos and Y. Gao

edge-deletion problems on the connected components of G, and their individual
solutions combine to solve the edge-deletion problem on G. We show that for
an edge-deletion or vertex-deletion problem in which the goal is to break P4s,
we can decompose the deletion problem into separate smaller problems. Solving
these deletion problems on spiders requires separate algorithms for the thin and
thick cases, and these algorithms are presented in the next section and used as
subroutines for the main cograph deletion algorithm.

Decomposing the deletion problems into subproblems requires the observation
that no edge joining a vertex in R with a vertex in K is in any P4, even after
some edge-deletions of a certain type. Call a leg edge any edge joining a vertex
s ∈ S with a vertex k ∈ K, and call a head edge any edge joining some r1 ∈ R
with some r2 ∈ R.

Lemma 2. Let G be a (thin or thick) spider and let R be the head of G and K
be the body of G. Then any edge e = {r, k} with r ∈ R and k ∈ K is not in any
P4 in G. Furthermore, for any subset of leg edges and head edges E′ the edge
e = {r, k} is not in any P4 in G− E′.

Proof. This readily follows from the fact that every vertex in K is adjacent to r
and that every vertex in K ∪ R is adjacent to k, even after the removal of any
leg edges and head edges.

This property allows us to decompose a spider G into R and K ∪S where every
P4 in G must be in exactly one of R or K ∪S, and as long as any edge deletions
are leg edges or head edges, we can solve the deletion problem for K ∪ S and R
separately.

3 Edge-Deletion Algorithm

In this section, we discuss the algorithm for the cograph edge-deletion problem
defined as follows:

Problem 1. Cograph Deletion (G, k):
Given graph G = (V,E), does there exist a set S of k edges such that (V,E \ S)
is a cograph?

The idea of the algorithm is to focus on the forbidden subgraphs of P4-sparse
graphs so that efficient branching rules can be designed systematically. This
depends critically on whether the cograph deletion problem can be solved poly-
nomially on P4-sparse graphs. Therefore, we first show how to solve the problem
on P4-sparse graphs in linear time.

3.1 Finding Cograph Edge-Deletion Sets in P4-Sparse Graphs

Our algorithm to find cograph edge-deletion sets in P4-sparse graphs is presented
in Algorithm 1. Its correctness depends on the structural decomposition of a P4-
sparse graph discussed in Section 2 and the following two lemmas.

A Novel Branching Strategy for Parameterized Graph Modification Problems 337

Lemma 3. Let G be a thin spider with body K = {k1, . . . , k|K|} and legs S =
{s1, . . . , s|K|}, and {si, kj} is an edge if and only if i = j. Then a minimum
cograph edge-deletion set for K ∪ S is {{si, ki}, i = 1..|K| − 1}.

Proof. Since K is a clique and S is stable, every P4 in K∪S has its endpoints in
S. Furthermore, every pair of vertices in S are in a unique P4. Deleting any |S|−1
thin legs will clearly destroy all of the P4s, so this edge-deletion set is indeed a
cograph edge-deletion set. To see that it is of minimum size, assume there is a
deletion set of size |K| − 2 or less in which two legs are not part of the deletion
set. Let these two legs be {s1, k1} and {s2, k2} and call them “permanent” in
this case. Since {s1, k1, k2, s2} is a P4 and the edges {s1, k1} and {s2, k2} are
not in the deletion-set, it must be that {k1, k2} is in the deletion set. There at
most |K| − 3 other edges in the deletion set. Now {s1, k1, kj , k2} induces a P4
for every j = 3 . . . |K|. This means that the permanent edge {s1, k1} is still in
|K| − 2 P4s and every pair of these P4s have distinct edges aside from {s1, k1}.
Thus it is impossible to destroy all of these remaining P4s with only |K| − 3
additional deletions or less.

Lemma 4. Let G be a thick spider with body K = {k1, . . . , k|K|} and feet S =
{s1, . . . , s|K|}, and {si, kj} is an edge if and only if i �= j. Then a minimum
cograph edge-deletion set for K ∪ S is {{ki, sj}, i < j}.

Proof. Every edge in K ∪ S is in exactly one P4: an edge {ki, kj} is only in the
P4 {sj, ki, kj , si} and any edge {si, kj} is only in the P4 {si, kj , ki, sj} so the
number of P4s in K ∪ S is

(|S|
2

)
, and since no two of these P4s share an edge,

at least
(|S|

2

)
deletions are required. Consider the edge set T = {{ki, sj}, i < j}.

When deleting T from K ∪ S, K is still a clique and S is still a stable set, and
so if there is any P4 in (K ∪ S) \ T , its endpoints must still be in S. But after
deletion of T , we have that the neighbourhood of si is N(si) = {ki+1, . . . , k|K|}
which means that N(si) ⊂ N(sj) for all i > j, and so no two vertices in S can
be the endpoints of a P4. So T indeed destroys all the P4s in K ∪ S and since
|T | =

(|S|
2

)
, this is a minimum set.

Theorem 1. Algorithm 1 correctly solves the cograph edge-deletion problem for
P4-sparse graphs and can be implemented in O(m+ n) time.

Proof. Lemma 3 and Lemma 4 show that there are optimal edge-deletion sets
from K ∪ S that remove only leg edges. We can then use Lemma 2 to combine
the edge deletions from K ∪ S with any edge deletions from R for a complete
solution to the cograph edge-deletion problem on P4-sparse graphs.

Algorithm 1 can be implemented in linear time, as the spider structure
of P4-sparse graphs can be identified in linear time [10]. Identifying the con-
nected or co-connected components can also be done in linear time, as these
types of vertex partitions are special cases of the more general notion of a

338 J. Nastos and Y. Gao

homogeneous set or module, and there are a number of modular decomposition
algorithms running in linear time [15], [5].

Algorithm Spider(G):
Input: A P4-Sparse Graph G = (V,E)
Output: A set S ⊂ E
if G (or G) is disconnected then

Let C1, . . . , Cp be the connected components of G (or G);
Recurse on each Ci and add Spider(Ci) to the solution set S;

end
G is a spider with K = {k1, . . . , k|K|} and S = {s1, . . . , s|K|};
if G is a thin spider then

Notation: ki adjacent to sj if and only if i = j;
Add edge {ki, si} to solution set S for every i = 1, . . . , |K| − 1;

end
if G is a thick spider then

Notation: ki adjacent to sj if and only if i �= j;
Add edge {ki, sj} to solution set S for every pair i < j;

end
Recurse on the head R of the spider. Return S ∪ Spider(R);

Algorithm 1. Cograph edge-deletion algorithm for P4-sparse graphs

3.2 Cograph Edge-Deletion in General Graphs

The algorithm that follows takes any general graph as input and uses Algorithm 1
from the previous section as a subroutine.

Jamison and Olariu [10] give a linear time recognition algorithm for P4-sparse
graphs. In the case that the graph being tested is not P4-sparse, the algorithm
terminates upon finding a 5-set of vertices isomorphic to one of the forbidden
subgraphs shown in Figure 1. In O(m+ n) time on a general graph, we can find
one of the subgraphs in Figure 1 or else assert that our graph is P4-sparse.

Algorithm 2 finds 5-vertex subsets that induce at least 2 P4s, branches on
the possible ways of destroying the P4s, and then finally arrives at a P4-sparse
graph and calls Algorithm 1. This algorithm either terminates with a call to
the subroutine (in the case that a spider structure is encountered) or detects a
cograph structure early, or else its integer parameter k has been reduced to 0
or less in which case the number of allowed edge-deletions has been exhausted
without reaching a cograph.

Refer to Figure 1 for the possible subgraphs the general search algorithm
may encounter. We refer to specific edges as they are labeled in Figure 1 for
each subgraph. The pseudocode description of the general search algorithm uses
these branching rules.

Let H be one of the forbidden subgraphs. The possible edge-deletion sets for
that subgraph are:

A Novel Branching Strategy for Parameterized Graph Modification Problems 339

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Subgraph Minimal Edge Deletion Sets
C5 {a,c}, {a,d}, {b,d}, {b,e}, {c,e}
P5 {a,d}, {b}, {c}
P 5 {a,b}, {e,c}, {d,e}, {c,d}, {a,d,f}, {a,c,f}, {b,d,f}, {b,e,f}

4-pan {a,d}, {a,c}, {b,c}, {b,d}, {e}
co-4-pan {b,c}, {d}, {e}

fork {a,b}, {c}, {d}
kite {a,d}, {a,c,f}, {b,d,f}, {b,c}, {e}

Algorithm CographDeletion(G, k)
Input: A Graph G = (V,E) and a positive integer k
Output: A set S of edges of G with |S| ≤ k where (V,E \ S) is a cograph

if it exists, otherwise No

Initialize S = ∅;
if G is a cograph then

Return S;
end
if k ≤ 0 then

Return No;
end
Apply a P4-sparse recognition algorithm;
if G is P4-sparse then

S ← S∪ Spider(G);
If |S| ≤ k, return S; Otherwise, return No.

end
else

A forbidden graph H from Figure 1 exists;
foreach minimal edge-deletion set E′ for H do

Create a branch with edges from E′ deleted;
Add the edges E′ to the solution set S;
Apply CographDeletion to G− E′, with parameter k reduced
according to the number of edges removed in the branch;

end
end

Algorithm 2. Bounded search tree algorithm finding a cograph edge-deletion set

It is routine to verify that any edge-deletion set from each of the 7 induced
subgraph cases must contain one of the deletion set cases given in the table.
Since every P4 in the graph must be destroyed with an edge deletion, these rules
will eventually enumerate all possible cograph edge-deletion sets.

The runtime of the algorithm is dominated by the branching steps. The spi-
der structure can be identified in linear time, while finding the co-connected

340 J. Nastos and Y. Gao

components takes the same time as computing graph complementation. We find
the runtime T (k) of the algorithm with parameter k from each branch rule
separately:

1. C5: five branches, each reducing the parameter by 2 gives T (k) = 5T (k− 2)
and so T (k) ≤ 2.237k

2. P5: T (k) = 2T (k − 1) + T (k − 2) giving T (k) ≤ 2.415k

3. P 5: T (k) = 4T (k − 2) + 4T (k − 3) giving T (k) ≤ 2.383k

4. 4-pan: T (k) = T (k − 1) + 4T (k − 2) giving T (k) ≤ 2.562k

5. co-4-pan: T (k) = 2T (k − 1) + T (k − 2) giving T (k) ≤ 2.415k

6. fork: T (k) = 2T (k − 1) + T (k − 2) giving T (k) ≤ 2.415k

7. kite: T (k) = T (k − 1) + 2T (k − 2) + 2T (k − 3) giving T (k) ≤ 2.270k

The branching process is thus upper-bounded by the worst case of deleting P4s
in a 4-pan: T (k) ≤ 2.562k.

Theorem 2. Algorithm 2 correctly solves the cograph k-edge-deletion problem
in O(2.562k(n+m)) time.

4 Cograph Vertex-Deletion and Trivially Perfect
Edge-Deletion Problems

4.1 Vertex-Deletion to Cographs

Since removing a vertex set S from a graph G = (V,E) is equivalent to taking
the induced subgraph on the vertex set V \ S, these problems are also often
named maximum induced subgraph problems. In our case of asking if there is a
vertex set of size at most k that can be removed to leave behind a cograph, this
is equivalent to asking if there is an induced cograph subgraph of size at least
|V |−k. Removing a vertex fromG can never create a new induced subgraph in G,
and so deleting vertices to destroy induced subgraphs is commonly modeled as a
Hitting Set problem. In this case in which each P4 maps to a 4-set in a Hitting

Set instance, we have the restricted problem of a 4-Hitting Set. Algorithms
for such vertex-deletion problems should always be compared against the state-
of-the-art algorithms of d−Hitting Set if not anything else. d-Hitting Set

is a well-studied NP-complete problem which admits fixed-parameter tractable
algorithms, the fastest of which (for d = 4) runs in O(3.30k) time [16].

The simple spider structure of P4 sparse graphs allows us to describe a sim-
ple algorithm for the vertex-deletion problem to cographs. The runtime of this
simple algorithm matches that of [7] and of [16]. The algorithm in [7] was de-
veloped by an automated search, where branching rules were made to delete
vertices breaking the P4s in every subgraph of size t. Testing various values of t
deduced that rules based on subgraphs of size 7 yielded the optimal runtime of an

A Novel Branching Strategy for Parameterized Graph Modification Problems 341

algorithm of this sort, with runtime O(3.30k). The automated algorithm builds
branching rules from 447 graphs of size 7, while our algorithm only involves
seven graphs on 5 vertices (Figure 1.)

We omit a pseudocode description of the subroutine Spider Vertex-

Deletion to save space. The algorithm works in the same way as algorithm 1,
taking as input a P4-sparse graph and returning the optimal number of vertices
to remove in order to break all P4s in the graph. For thin spiders, every pair of
feet is the end-pair of a P4, and removing any |S|−1 vertices from S will destroy
all the P4s in the body and legs.

Algorithm CographVertexDeletion(G, k)
Input: A Graph G = (V,E) and a positive integer k
Output: A set S of vertices of G with |S| ≤ k where (V \ S,E) is a

cograph if it exists, otherwise No

Initialize S = ∅;
if G is a cograph then

Return S;
end
if k ≤ 0 then

Return No;
end
Apply a P4-sparse recognition algorithm;
if G is P4-sparse then

S ← S∪ Spider Vertex-Deletion(G);
If |S| ≤ k, return S; Otherwise, return No.

end
else

A forbidden graph H from Figure 1 exists;
foreach minimal vertex-deletion set S′ for H do

Create a branch with vertices from S′ deleted;
Add the vertices S′ to the solution set S;
Apply CographVertexDeletion to G− S′, with parameter k
reduced according to the number of vertices removed in the branch;

end
end

Algorithm 3. Bounded search tree algorithm finding a cograph vertex-deletion set

Since a set of 4 vertices induces a P4 in a graph G if and only if they induce
a P4 in G, deleting any |K| − 1 vertices from K in a thick spider will destroy all
the P4s in K ∪ S. In either the thin or thick spider case, the subroutine is then
applied to head R. The branching rules for the vertex deletions are given in a
table as before:

342 J. Nastos and Y. Gao

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Subgraph Minimal Vertex Deletion Sets

C5 {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5}
P5 {1,5}, {2}, {3}, {4}
P 5 {1}, {3}, {4}, {2,5}

4-pan {2}, {4}, {5}, {1,3}
co-4-pan {3}, {4}, {5}, {1,2}

fork {3}, {4}, {5}, {1,2}
kite {2}, {4}, {5}, {1,3}

The runtime of the algorithm is dominated by the branching steps. The run-
time T (k) for the C5 case depends on 10 branches, while each of the other cases
have equivalent runtime analysis.

1. C5: ten branches, each reducing the parameter by 2 gives T (k) = 10T (k−2)
and so T (k) ≤ 3.163k

2. All others: T (k) = 3T (k − 1) + T (k − 2) giving T (k) ≤ 3.303k

The runtime of this vertex-deletion algorithm is bounded by O(3.303k(m+ n)),
matching the best known FTP algorithm for 4-Hitting Set [16] and matching
the algorithm developed with the automated search [7].

Theorem 3. Algorithm 3 solves the vertex-deletion problem for cographs in
O(3.303k(m+ n)) time.

4.2 Edge-Deletion to Trivially Perfect Graphs

A graph is trivially perfect if it has no induced subgraphs isomorphic to a P4
or a C4 [20]. In [8], Guo studied the edge-deletion problem for complements of
trivially perfect graphs. We know of no prior study of this specific problem. A
näıve solution would find a subgraph isomorphic to either a P4 or a C4 and then
branch on the possible ways of deleting an edge from that subgraph, resulting
in a worst-case search tree of size O(4k). A minor observation that deleting any
one edge from a C4 always results in the other forbidden subgraph, P4, allows us
to branch on the 6 possible ways of deleting any 2 edges from a C4. This results
in a worst-case search tree of size O(3k) due to the 3 edges in a P4.

We show that our edge-deletion algorithm for cographs can be adapted to
solve the edge-deletion problem for trivially perfect graphs, again by finding
any P4-sparse forbidden subgraph and branching on it, or else by solving the
problem optimally on a smaller portion of the graph (a connected component or
the head of a spider). The branching rules become simpler in that only 5 of the
7 graphs in Figure 1 need consideration. In particular, the 4-pan that caused the
bottleneck of Algorithm 2, is no longer considered and this changes the runtime
of the process from O(2.562k) to O(2.450k).

A Novel Branching Strategy for Parameterized Graph Modification Problems 343

Algorithm TriviallyPerfectEdgeDeletion(G, k)
Input: A Graph G = (V,E) and a positive integer k
Output: A set S of edges of G with |S| ≤ k where (V,E \ S) is trivially

perfect if it exists, otherwise No

Initialize S = ∅;
if G is a trivially perfect then

Return S;
end
if k ≤ 0 then

Return No;
end
while There exists H isomorphic to C4 do

Create 6 branches corresponding to the possible ways of removing any
2 edges in H

end
Apply a P4-sparse recognition algorithm;
if G is P4-sparse then

S ← S∪ Spider Vertex-Deletion(G);
If |S| ≤ k, return S; Otherwise, return No.

end
else

A forbidden graph H from Figure 1 exists;
foreach minimal vertex-deletion set S′ for H do

Create a branch with vertices from S′ deleted;
Add the vertices S′ to the solution set S;
Apply TriviallyPerfectEdgeDeletion to G− S′, with
parameter k reduced according to the number of vertices removed
in the branch;

end
end

Algorithm 4. Bounded search tree algorithm finding a trivially perfect edge-deletion

set

One main difference in this algorithm from Algorithm 2 is that C4s are found
and destroyed first, and after any of the P4-sparse deletions are made, the process
restarts with looking for C4s to destroy again. Once the C4s are destroyed and the
resulting graph is P4-sparse, we proceed with removing edges with edge-deletion
algorithm for thin or thick spiders (Algorithm 1).

The correctness of decomposing the edge-deletion problem into separate prob-
lems on K ∪ S and R depends a lemma similar to Lemma 2.

Lemma 5. Let G be a (thin or thick) spider and let R be the head of G and K
be the body of G. Then any edge e = {r, k} with r ∈ R and k ∈ K is not in any
C4 in G. Furthermore, for any subset of leg edges and head edges E′ the edge
e = {r, k} is not in any P4 in G− E′.

344 J. Nastos and Y. Gao

Proof. Notice that no C4 can include a vertex s from S in a spider even after
removals of leg edges and head edges since the neighbourhood of s induces a
clique. Since K is a clique, and every k ∈ K is adjacent to every r ∈ R, it is
clear that there can not exist a C4 in K∪R unless the C4 is completely contained
in R. So no C4 contains an edge from R to K.

This lemma shows us that since all the C4s are destroyed in the branching stage,
once we arrive at a C4-free spider, we are free to delete leg edges without worry
that a new C4 will be created. When recursing on the head R and its spider
structure is found, moving those edges will also not create C4s since they are leg
edges in the sub-spider and head edges in the original graph.

One source of worry may be that if R contains two co-connected components
C1 and C2 (co-connected here means that every c ∈ C1 is adjacent with every
d ∈ C2) an edge removal from each of these co-components will create a C4. One
does not need to worry about this:

Lemma 6. If a graph G is C4-free and its complement is disconnected, then G
has exactly two co-components C1, C2, one of which is a clique and one that is
not.

Proof. If C1 is not a clique, it has two non-adjacent vertices u and v. Now, u
and v are each adjacent to everything in G \ C1, so if there was a non-edge
{w, x} ∈ G \ C1 then {u, v, w, x} would induce a C4. Hence G \ C1 is a clique.

Corollary 1. If a C4-free P4-sparse graph has more than one co-connected com-
ponent, then it is a spider with a head R that is a clique.

This puts an end to the worry that removing edges from separate co-connected
components of R during the Spider(G) subroutine may create any C4s.

The runtime of Algorithm 4 is dominated by the branching rules once again.
Encountering a C4 results in 6 branches which delete 2 edges each. The result-
ing recurrence is T (k) = 6T (k − 2) and so T (k) ≤ 2.450k. Having deleted all
the C4s, we no longer include the P 5 or the 4-pan cases in our analysis. The
runtime analysis for the rest remain unchanged: C5 : 2.237k, P5 : 2.415k, co-4-
pan: 2.415k, fork: 2.415k, kite: 2.270k. The search tree is thus bounded by the
C4 case of size O(2.450k). Finding a C4 directly is a problem that is currently
best-achieved using matrix multiplication [12], so this entire process as described
runs in O(2.450knα) where O(nα) is the time required for matrix multiplication
(α ≤ 2.376 [3]).

We can, in fact, modify the algorithm to run linearly in n and m by observing
that a graph is P4-free and C4-free if and only if it is a chordal cograph. By first
running a certifying chordal recognition algorithm [19], we can either deduce
that there is no C4 or else find a C4 or a C5 or a larger induced cycle (and thus
a P5) and branch on these subgraphs according to the rules we gave, and if the
graph is chordal then we apply a P4-sparse recognition algorithm to find one
of the other forbidden induced subgraph, branch on it, and then re-apply the
chordal recognition process.

A Novel Branching Strategy for Parameterized Graph Modification Problems 345

Theorem 4. Finding a trivially perfect k-edge-deletion set can be solved in
O(2.450k(n+m)) time.

5 Conclusions and Future Work

We presented a framework for solving a variety of graph modification prob-
lems by branching on the forbidden subgraphs of a superclass of graphs. The
algorithms presented here depend on the fact that deleting to a cograph or a
trivially-perfect graph can be solved in linear time from a P4-sparse graph. We
gave the first non-trivial algorithm for the cograph edge-deletion problem and
trivially-perfect edge-deletion problem, and matched existing algorithms for the
cograph vertex-deletion problem while only using a small number of branching
rules. Furthermore, by applying our edge-deletion algorithms to the complement
of the input graph, the edge-deletion problem for cographs also serves as an
edge-completion problem to cographs and the edge-deletion problem to trivially
perfect also serves as an edge-completion problem to co-trivially perfect graphs.

In a future edition of this work, we also show how to further improve the
runtime of the cograph edge-deletion problem (from O(2.562k) to O(2.415k)) by
considering a class of graphs more general than P4-sparse called the semi-P4-
sparse graphs [6]. These are (P5, P 5,kite)-free graphs, and they also decompose
into manageable structures. In fact, a restricted form of this graph class suffices.
By using the same process as we have here for P4-sparse graphs, and not includ-
ing the 4-pan cases in the branching process, it reduces the bottleneck of the
algorithm. More work is involved in handling the special structures that result
because they are more general than spider.

We are currently working on applying the same idea to the edge-deletion
problem for P3-free graphs (the well-studied Cluster Deletion problem,) us-
ing trivially perfect graphs as a superclass to P3-free graphs. Initial results are
promising.

The literature on graph classes is extensive [1], and many of these classes admit
polynomial time solutions to many NP-complete problems. We suspect that new
and fast fixed-parameter tractable algorithms will soon develop through the use
of superclasses as we have used in this paper.

References

1. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. Society for Indus-

trial and Applied Mathematics, Philadelphia (1999)

2. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary

properties. Inf. Process. Lett. 58(4), 171–176 (1996)

3. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.

J. Symb. Comput. 9(3), 251–280 (1990)

4. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.

SIAM J. Comput. 14, 926–934 (1985)

5. Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In:

Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)

346 J. Nastos and Y. Gao

6. Fouquet, J.-L., Giakoumakis, V.: On semi-P4-sparse graphs. Discrete Mathemat-

ics 165-166, 277–300 (1997)

7. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search

tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347

(2004)

8. Guo, J.: Problem kernels for NP-complete edge deletion problems. In: Tokuyama,

T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926. Springer, Heidelberg (2007)

9. Hoàng, C.T.: Perfect graphs (Ph.D. thesis). School of Computer Science, McGill

University Montreal (1985)

10. Jamison, B., Olariu, S.: Recognizing P4-sparse graphs in linear time. SIAM J.

Comput. 21(2), 381–406 (1992)

11. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion

problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Com-

put. 28(5), 1906–1922 (1999)

12. Kratsch, D., Spinrad, J.: Between O(nm) and O(nα). SIAM J. Comput. 36(2),

310–325 (2006)

13. Lokshtanov, D., Mancini, F., Papadopoulos, C.: Characterizing and computing

minimal cograph completions. Discrete Appl. Math. 158(7), 755–764 (2010)

14. El Mallah, E.S., Colbourn, C.J.: Edge deletion problems: properties defined by

weakly connected forbidden subgraphs. In: Proc. Eighteenth Southeastern Confer-

ence on Combinatorics, Graph Theory, and Computing, Congressus Numerantium,

vol. 61, pp. 275–285 (1988)

15. McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation.

Discrete Mathematics 201(1-3), 189–241 (1999)

16. Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-

hitting set. J. Discrete Algorithms 1(1), 89–102 (2003)

17. Nikolopoulos, S.D., Palios, L.: Adding an edge in a cograph. In: Kratsch, D. (ed.)

WG 2005. LNCS, vol. 3787, pp. 214–226. Springer, Heidelberg (2005)

18. Seinsche, D.: On a property of the class of n-colorable graphs. J. Combin. Theory

(B) 16(2), 191–193 (1974)

19. Tarjan, R.E., Yannakakis, M.: Addendum: Simple linear-time algorithms to test

chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic

hypergraphs. SIAM J. Comput. 14(1), 254–255 (1985)

20. Yan, J.-H., Chen, J.-J., Chang, G.J.: Quasi-threshold graphs. Discrete Applied

Mathematics 69(3), 247–255 (1996)

21. Yannakakis, M.: The effect of a connectivity requirement on the complexity of

maximum subgraph problems. J. ACM 26(4), 618–630 (1979)

Listing Triconnected Rooted Plane Graphs

Bingbing Zhuang and Hiroshi Nagamochi

Graduate School of Informatics, Kyoto University

{zbb,nag}@amp.i.kyoto-u.ac.jp

Abstract. A plane graph is a drawing of a planar graph in the plane

such that no two edges cross each other. A rooted plane graph has a

designated outer vertex. For given positive integers n ≥ 1 and g ≥ 3,

let G3(n, g) denote the set of all triconnected rooted plane graphs with

exactly n vertices such that the size of each inner face is at most g. In

this paper, we give an algorithm that enumerates all plane graphs in

G3(n, g). The algorithm runs in constant time per each by outputting

the difference from the previous output.

1 Introduction

The problem of enumerating (i.e., listing) all graphs in particular classes of
graphs is one of the most fundamental and important issues in graph theory
[10]. Cataloguing graphs, i.e., making the complete of graphs in a particular
class can be used in a various way: search for a possible counterexample to a
mathematical conjecture; choosing the best graph among all candidate graphs;
and experiment for measuring the average performance of a graph algorithm
over all possible input graphs.

The common idea behind most of the recent efficient enumeration algorithms
is to define a parent-child relationship among all graphs in a given class in
order to induce a rooted tree that connects all graphs in the class, called the
family tree F , where each node in F corresponds to a graph in the class. Then
all graphs in the class will be generated one by one according to the depth-
first traversal of the family tree F . Time delay of an enumeration algorithm
is a time bound between two consecutive outputs. Enumerating graphs with
a polynomial time delay would be rather easy since we can examine the whole
structure of the current graph anytime. However, algorithms with a constant time
delay in the worst case is a hard target to achieve without a full understanding
of the structure of graphs to be enumerated, because not only the difference
between two consecutive outputs is required to be O(1), but also any operation
for examining symmetry and identifying the edges/vertices to be modified to get
the next output needs to be executable in O(1) time.

Enumeration for a particular class of graphs also has practical applications
in various fields such as the inference of structures of chemical compounds [5],
virtual exploration of chemical universe, and reconstruction of molecular struc-
tures from their signatures. It is known that 94.3% of chemical compounds in
NCI chemical database have planar structures [3]. Hence planar graphs is an

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 347–361, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

348 B. Zhuang and H. Nagamochi

important class to be investigated. Our research group has been developing al-
gorithms for enumerating chemical graphs that satisfy given various constraints
[1,4,5]. We have designed efficient branch-and-bound algorithms for enumerating
tree-like chemical graphs [1,5], which are based on the tree enumeration algo-
rithm [9], and implementations of these algorithms are available on our web
server1. Currently we aim to provide efficient algorithms for enumerating chem-
ical graphs for a wider class of graphs than trees such as cacti and outerplanar
graphs in our web server. To facilitate such development of algorithms, the au-
thors recently proposed a general enumeration scheme for classes H of “rooted
graphs with a reflective block structure” [18]. A reflective block means a rooted
biconnected component which may admit reflective symmetry around its root.

In particular, triconnected planar graphs is a mathematically important class
of graphs in the sense that every triconnected planar graph has a unique em-
bedding on a sphere only up to its reversal. Furthermore, Tutte [11] proved that
triconnected plane graphs is the class of plane graphs that admit convex drawings
in the plane for any prescribed polygonal boundary, where a convex drawing is
an embedding in a plane graph such that all the edges of the graph are drawn
as straight-line segments and every facial cycle is drawn as a convex polygon.
Steinitz [12] proved that triconnected planar graphs is the class of vertex-edge
graphs of three-dimensional convex polyhedra.

Yamanaka and Nakano [13] gave an algorithm for generating all connected
rooted plane graphs with at most m edges, where an outer edge with an orien-
tation is designated as the root of each plane graph. The algorithm uses O(m)
space and generates such graphs in O(1) time per graph on average without du-
plications. Li and Nakano [6] presented an efficient algorithm that enumerates all
biconnected rooted triangulated plane graphs in constant time per each. Nakano
[8] presented an algorithm with the same time complexity to generate all tri-
connected rooted triangulated plane graphs. Recently, in our companion papers
[14,15], we gave efficient enumeration algorithms under reflective symmetry for
classes of biconnected rooted triangulations and biconnected rooted outerplanar
graphs, respectively, where a planar graph designates an outer vertex v and two
outer edges incident to v, and the algorithm does not generate plane graphs
which are reflectively symmetric along the root v. In our companion paper, we
also gave an efficient enumeration algorithm for the class G2(n, g) of biconnected
rooted plane graphs [16,17]. The algorithms generate biconnected rooted plane
graphs with exactly n vertices such that the size of each inner face is at most
g, where n ≥ 1 and g ≥ 3 are prescribed integers. The algorithm runs in O(n)
space and in O(1) time per graph in the worst case.

In this paper, we consider the class G3(n, g) of all triconnected rooted plane
graphs with exactly n vertices such that the size of each inner face is at most
g. The structure of triconnected plane graphs is more complicated than those
of biconnected plane graphs. We present an algorithm that enumerates all plane
graphs in G3(n, g) in O(n) space and in O(1) time per graph in the worst
case. However, our algorithm does not exploit any dynamic data structure that

1 http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol/

http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol/

Listing Triconnected Plane Graphs 349

represents 4-connected components to test triconnectivity of possible candidates
for graphs to be generated, because an O(1) time maintenance of such a data
structure required to achieve an O(1)-time delay seems extremely difficult. Our
algorithm also yields an O(n3)-time delay algorithm for generating all tricon-
nected unrooted plane graphs with exactly n vertices such that the size of each
inner face is at most g.

Recently we used the results obtained in this paper to design an O(1)-time
delay enumeration algorithm for internally triconnected rooted plane graphs [19].

The rest of the paper is organized as follows. After introducing basic notations
in Section 2, Sections 3 and 4 examine the structure of triconnected graphs and
triconnected plane graphs, respectively. Section 5 introduces the parent of each
triconnected rooted plane graph, and Section 6 characterizes the children of a tri-
connected rooted plane graph. Section 7 describes an algorithm for enumerating
all triconnected rooted plane graphs, and analyzes the time and space complexi-
ties of the algorithm. Section 8 makes some concluding remarks. The proofs omit-
ted due to the space limitation can be found in a full version of the paper [20].

2 Preliminaries

Throughout the paper, a graph stands for a simple undirected graph unless
stated otherwise. A graph is denoted by a pair G = (V,E) of a vertex set V and
an edge set E. The set of vertices and the set of edges of a given graph G are
denoted by V (G) and E(G), respectively.

For a subset E′ ⊆ E(G), G − E′ denotes the graph obtained from a graph
G by removing the edges in E′. Let X be a subset of V (G). We denote by
G−X the graph obtained from G by removing the vertices in X together with
the edges incident with a vertex in X . Let deg(v;G) denote the degree of a
vertex v in a graph G. For a vertex v ∈ V in a graph G, let Γ (v;G) denote
the set of neighbours of v (i.e., vertices adjacent to v). For a subset X ⊆ V , let
Γ (X ;G) = ∪v∈XΓ (v;G)−X . The vertex-connectivity of G is denoted by κ(G).
A fan is the graph obtained from a path P with at least one vertex by adding a
new vertex v together with an edge incident to each vertex in the path, where
the vertex v is called the center of a fan. A fan with n vertices is denoted by Fn.
The graph Wn (n ≥ 4) obtained from Fn by joining the two vertices of degree
2 by a new edge is called a wheel. Note that Fn (n ≥ 2) and Wn (n ≥ 4) are
biconnected and triconnected, respectively.

A graph is called planar if its vertices and edges can be drawn as points and
curves on the plane so that no two curves intersect except for their endpoints.
A planar graph with such a fixed embedding is called a plane graph, where a
face is designated as the outer face and all other faces are called inner faces. Let
F (G) denote the set of faces in a plane graph G. For a face f in a plane graph
G, let V (f) and E(f) denote the sets of vertices and edges on the facial cycle of
f , and define the size |f | of face f to be |V (f)|. For a vertex v and an edge e,
let F (v) (or F (v;G)) denote the set of inner faces f with v ∈ V (f) and F (e) (or
F (e;G)) denote the set of inner faces f with e ∈ E(f). An inner face f ∈ F (v)
is called a v-face.

350 B. Zhuang and H. Nagamochi

A rooted plane graph is a plane graph which has a designated outer edge (u, r)
with orientation from u to r, where r is called the root. Two rooted plane graphs
G1 and G2 are equivalent if their vertex sets admit a bijection by which the desig-
nated directed edge and the incidence-relation between edges and vertices/faces
in G1 correspond to those in G2.

3 Triconnected Graphs

In this section, we introduce a transformation that preserves the triconnectivity
of a graph, which is not necessarily planar. The next lemma is the key property
that enables us to design several graph transformations such that triconnectivity
of the resulting new graph can be tested by checking the degree of a constant
number of vertices.

Lemma 1. Let G be a triconnected graph, and let e = (u1, u2) be an edge such
that a vertex v of degree 3 is incident to both end vertices u1 and u2 in G.
If G − e is not triconnected, then any vertex cut X with |X | ≤ 2 is given by
X = Γ (u1;G− e) or Γ (u2;G− e).

Let G be a triconnected graph. For a vertex u of degree 3 in a graph G, let
G/u denote the graph obtained from G by removing the vertex u and adding a
new edge between any two nonadjacent neighbours of u. See Fig. 1(b)-(c). For
a cycle C = (v1, v2, v3) of length 3 in a graph G, let G/C denote the graph
obtained from G by adding a new vertex u together with three new edges (u, vi),
i = 1, 2, 3.

Lemma 2. Let G be a triconnected graph.
(i) For a vertex u of degree 3 in G, the graph G/u remains simple and tricon-
nected.
(ii) For a cycle C = (v1, v2, v3) of length 3 in G, the graph G/C remains simple
and triconnected. For a subset F of edges in C, the graph G/C − F remains
triconnected if and only if the degree of each vi is at least three.

For a cycle C of length 3 in a graph G, let G3(G/C) denote the set of all graphs
obtained from G/C by removing edges in C so that the degree of each vertex vi

is at least three, where |G3(G/C)| ≤ 23.

4 Triconnected Rooted Plane Graphs

In this section, let G be a triconnected rooted plane graph, where the root r is
an outer vertex. Denote the vertices along the boundary of G in the clockwise
order by u1 = r, u2, . . . , uB, and let ei denote the outer edge (ui, ui+1), where
we let eB = (uB, u1). For each outer edge e, let f(e) denote the unique inner
face which contains e on its facial cycle. For two outer vertices u and v in G, let
β[u, v] denote the path obtained by traversing the boundary of G from u to v in
the clockwise order.

Listing Triconnected Plane Graphs 351

v 1

v 2

v 3

u

v 1

v 2

v 3

degree =3

x

v degree =3

(b) G (c) G/u(a)

u 1 u 2

Fig. 1. (a) A vertex cut X containing a vertex v of degree 3; (b) a triconnected graph

G; (c) graph G/u

(a) (b)

w i

e i

f’ i
β(e)

 1

 2

τ (e) last

τ (e) first

u i
u i+1

critical vertexi

u pp-1

k i

u 2

k 2 u

 1 k u

u k u
p-1

(c)

 i

 i

u i u i+1
f(e) i

 i

f(e) f(e)

f(e)

f(e)

v i

=ru 1 =ru 1

u 2

u 4
u 3

u 6

u

u 7
s 1 f L

 5

z

Fig. 2. (a) τfirst(ei) and τlast(ei) for an outer edge ei; (b) active path β[r, up] (c) a

triconnected graph G with ψ(G) = {s1}

In a triconnected plane graph G, an edge e is called removable if G−e remains
triconnected, and is called irremovable otherwise. We characterize removability
of edges. Two inner faces are internally adjacent in G if they share at least one
inner vertex. For each inner face f in a plane graph G, let Γ (f ;G) denote the
set of all inner faces internally adjacent to f , and let W o(f) denote the set of
all outer vertices in ∪f ′∈Γ (f ;G)V (f ′)− V (f).

Lemma 3. Let ei = (ui, ui+1) be an outer edge in a triconnected plane graph
G. If W o(f(ei)) �= ∅, then for each vertex v ∈ W o(f(ei)), G − ei has a vertex-
cut X with |X | = 2 and v ∈ X. Furthermore ei is irremovable if and only if
W o(f(ei)) �= ∅.

For each outer edge ei = (ui, ui+1), let τfirst(ei) (resp., τlast(ei)) be the vertex
in W o(f(ei)) that appears first (resp., last) when we traverse the boundary of
G from ui in the clockwise order (recall that {ui, ui+1} ∩W o(f(ei)) = ∅). See
Fig. 2(a). For each irremovable outer edge ei = (ui, ui+1), define β(e1) to be the
path β[ui+1, τfirst(ei)].

Lemma 4. Let ei = (ui, ui+1) be an irremovable outer edge in a triconnected
plane graph G with n ≥ 4 vertices. Then β(ei) contains a removable outer edge
or an outer vertex of degree 3.

352 B. Zhuang and H. Nagamochi

By Lemma 4, the boundary of a triconnected plane graph G always contains a
removable outer edge or an outer vertex of degree 3. The first removable element
is defined to be the first such edge or vertex that appears when we traverse the
boundary of G from the root in the clockwise order. Consider the first removable
element of G, which is an edge e or a vertex u, denote by ep = (up, up+1) and
up, respectively. We call vertex up the critical vertex, and call the path β[r, up]
active. See Fig. 2(b). We now consider the structure of active paths. For the root
r, let z denote the second leftmost neighbour of r. The r-face containing the
root edge (uB, r) is called the leftmost r-face, and is denoted by fL. Note that
|fL| = 3 if and only if (uB, z) ∈ E(G).

The fan factor of G is defined to be the maximal sequence uB+1−t, uB+2−t,
. . . , uB of outer vertices such that each si = uB−t+i, 1 ≤ i ≤ t is of degree 3 and
z is adjacent to each uB−t+i, 0 ≤ i ≤ t (hence si is shared by two inner faces
of length 3). See Fig. 2(c), where t = 1. Let ψ(G) denote the fan factor of G.
Note that G is Wn if and only if |ψ(G)| = n− 2. Let s0 = uB and k0 = B for a
notational convenience.

Lemma 5. Let G be a triconnected plane graph with n ≥ 4 vertices such that
|fL| = 3. Let t = |ψ(G)|, and up be the critical vertex. Then the index ki with
uki = τlast(ei) for each edge ei = (ui, ui+1) in the active path β[u1, up] satisfies
ki ∈ [i+ 2, B], and it holds

p+ 1 ≤ kp−1 ≤ · · · ≤ k2 ≤ k1 ≤ k0 = B. (1)

Moreover if the vertex up is the first removable element, then it holds 2 ≤ p ≤
B − t− 1.

Let G⊕ st+1 denote the graph obtained from G with t = |ψ(G)| by introducing
a new vertex st+1 together with a new edge (st+1, z), replacing (st, r) with
two edges (st, st+1) and (st+1, r). We say that ψ(G) is augmented by 1 when we
construct G⊕st+1 from G. Note that G⊕st+1 remains triconnected. Conversely,
for the last vertex st ∈ ψ(G) in G with t = |ψ(G)| ≥ 1, let G * st denote the
graph obtained by removing the vertex st and rejoining the two outer vertices
st−1 and r incident to st with an outer edge; i.e., G is obtained from G *
st by inserting vertex st on edge (st−1, r) and joining st and z with a new
edge. We say that ψ(G) is reduced by 1 when we construct G * st from G.
We see that G * st remains triconnected by applying Lemma 2(i) to G * st =
G/st.

Let f ′ be the uB-face adjacent to the leftmost r-face fL, and z be the second
leftmost neighbour of r. An r-face f ∈ F (r;G) − {fL} is called separating if f
and f ′ share shares an inner vertex other than z, as shown in Fig. 3(b).

Lemma 6. Let G be a triconnected plane graph rooted at edge (uB, r = u1) such
that |fL| = 3, i.e., e = (uB, z) ∈ E(G). Then G− e is triconnected if and only if
deg(uB;G) ≥ 4 and G has no separating r-face.

Listing Triconnected Plane Graphs 353

=ru 1

x

f

f ’

u B
f L

z

=ru 1

x

u B
f L

z

inserting
an edge

operation
e-del(a) G (b) P (G)

v

u=

(c) G (d) P (G)

deleting
an edge

operation
e-add(u,v)

= u j

= u i

v

u
e i-1

η (e) last i-1

e i

u i

=ru 1 =ru 1

Fig. 3. (a) A plane graph G with (uB , z) �∈ E(G); (b) the parent P(G) of G in (a);

(c) a plane graph G such that the first removable element is an edge ei; (d) the parent

P(G) of G in (c)

5 Parents of Triconnected Rooted Plane Graphs

A triconnected plane graph with n ≤ 4 vertices is unique. In what follows, we
assume that n ≥ 5 and g ≥ 3, and treat wheel Wn as a rooted plane graph such
that the center is drawn as an inner vertex and a non-center is chosen as the root
r. Let G be a triconnected rooted plane graph with n ≥ 5 such that G �= Wn.
We define the parent P(G) of G to be the following graph with n vertices.

P1. The length |fL| of the leftmost r-face fL is at least 4 (see Fig. 3(a)): Define
P(G) to be the graph obtained fromG by inserting a new inner edge between
the leftmost and second leftmost neighbours of r (see Fig. 3(b)).

P2. |fL| = 3, B = 3 and the first removable element is vertex u2 (where (u3, u1) ∈
E(G)): Construct G/u2 from G, where no new edge joining vertices u1, u3 ∈
V (G) is introduced, and edges (u1, w) and (u3, w) for the neighbour w ∈
Γ (u2;G)−{u1, u3} are outer edges e1 and e2 in P(G). Then P(G) is defined
to be the graph obtained by augmenting ψ(G/u2) by 1. See Fig. 4(c) and
(d).

P3. G[vh, vk] �= Wn, |fL| = 3, B ≥ 4 and the first removable element is a vertex
ui+1, 1 ≤ i ≤ B− 1: Construct G/ui+1 from G, where the new edge joining
vertices ui, ui+2 ∈ V (G) becomes the ith outer edge ei in P(G), and edges
(ui, w) and (ui+2, w) for the neighbour w ∈ Γ (ui+1;G) − {ui, ui+2} are
inner edges in P(G). Then P(G) is defined to be the graph obtained by
augmenting ψ(G/ui+1) by 1. See Fig. 4(a) and (b).

P4. |fL| = 3 and the first removable element is an edge e: P(G) is defined to be
G− e. See Fig. 3(c) and (d).

For a given integer n ≥ 1, let G3(n) denote the set of all triconnected rooted plane
graphs with exactly n vertices. Define function Φ(G) = |ψ(G)|+ |B|−min{|fL|−
3, 1}, where fL is the leftmost r-face and B is the length of the boundary of G.

Lemma 7. For any graph G ∈ G3(n)−{Wn} with n ≥ 5, the leftmost r-face of
its parent P(G) is of length 3, the maximum size of inner faces in P(G) never
exceeds that of G, and it holds 3 ≤ Φ(G) < Φ(P(G)) ≤ 2n− 2.

354 B. Zhuang and H. Nagamochi

(a) G (b) P (G)

=ru 1

u B
e i

u i+1

u i

u i+2

e i+1

f(e) i

f(e) i+1 w

=ru 1

e i f(e) i

u i+1

u i

operation
v-insert(e ,h)i

v=

a=

b=

s t

w

(a) G

u 1

i+2

z

eliminating
vertex ui+1

z

(c) G (d) P (G)

u
2

operation
v-add(h)

eliminating
vertex u2

w

=ru 1

u 2

e 1
f(e) 1

u 3
f(e)

2
e 2

v=

=ru 1

e 1
f(e) 1

u 3

f(e) 2
e 2

s t

zz

Fig. 4. (a) A plane graph G such that the first removable element is a vertex ui+1; (b)

the parent P(G) of G in (a); (c) a plane graph G such that B = deg(u2; G) = 3; (d)

the parent P(G) of G in (c).

Let P0(G) = G and P i(G) = P(P i−1(G)) for integers i ≥ 1. Lemma 7 implies
that, for any graph G ∈ G3(n) with n ≥ 5, there is an integer i ∈ [0, 2n− 5] such
that P i(G) = Wn.

6 Children of Triconnected Rooted Plane Graphs

Let G be a triconnected rooted plane graph with n ≥ 5 vertices. A rooted plane
graphG′ is called a child ofG ifG = P(G′). Let C(G) denote the set of all children
of G, and let Ci(G), i = 1, 2, 3, 4 denote the set of all children G′ of G such that
P(G′) is given by definition Pi of parents. In order to generate all children of G,
we introduce the following four operations, e-del, v-add, v-insert and e-add.

O1. Assume |fL| = 3. Operation e-del removes the edge between the the left-
most and second leftmost neighbours of r. See Fig. 3(a) and (b).

O2. Assume B = 4 and ψ(G) �= ∅. Define four subsets of {e1, e2} by E0 = ∅,
E1 = {e1}, E2 = {e2}, and E3 = {e1, e2}. Then operation v-add(h), h ∈
{0, 1, 2, 3} reduces ψ(G) by 1 by removing st ∈ ψ(G), and adds a new outer
vertex v together with three edges (v, u1), (v, u2) and (v, u3), deleting an
edge set Eh. In the resulting graph, v serves as the second outer vertex u2.
See Fig. 4(c) and (d).

O3. Assume B ≥ 4 and ψ(G) �= ∅, and let ei = (a = ui, b = ui+1) be an outer
edge such that |f(ei)| = 3 and V (f(ei)) = {a, b, w}. Define four subsets of
E(f(ei)) by E0 = ∅, E1 = {(a,w)}, E2 = {(b, w)}, and E3 = {(a,w), (b, w)}.
Then operation v-insert(ei, h), h ∈ {0, 1, 2, 3} reduces ψ(G) by 1 by re-
moving st ∈ ψ(G), replaces ei with three edges (a, v), (v, b) and (v, w),
introducing a new vertex v, and delete edge set Eh. In the resulting graph,
v serves as the (i+ 1)st outer vertex ui+1. See Fig. 4(a) and (b).

O4. Assume B ≥ 4 and |fL| = 3. For two outer vertices ui and uj (1 ≤ i+2 ≤ j ≤
min{B,B−2+ i}) which are not adjacent (i.e., they does not consecutively
appear along the outer boundary) in G, operation e-add(ui, uj) adds a new
edge (ui, uj) as the ith outer edge ei. See Fig. 3(c) and (d). Clearly operation
e-add(ui, uj) preserves the triconnectivity of G.

Listing Triconnected Plane Graphs 355

Since the above operations are the reverse of the operations that define the
parents, the sets of all graphs G′ that can be constructed from G by e-del,
v-add, v-insert and e-add contains C1(G), C2(G), C3(G) and C4(G), respec-
tively. Note that such a graph G′ is a child of G if and only if κ(G′) ≥ 3 and the
edge/vertex introduced by the operation is the first removable element of G′ (if
any). Based on this, C(G) is characterized as follows. Let fL denote the leftmost
r-face in G. Let up be the critical vertex of G, and ki denote the index k of such
vertex uk = τlast(ei) in G.

Lemma 8. Let G1 be the plane graph obtained from G by operation e-del. Then
G1 ∈ C1(G) if and only if |fL| = 3, deg(uB;G) ≥ 4 and G has no separating
r-face.

Lemma 9. Let G2
h, 0 ≤ h ≤ 3, be the plane graph obtained from G by operation

v-add(h) for the second outer vertex u2, and let v denote the new second outer
vertex in G2

h. Then G2
h ∈ C2(G) if and only if B = 4, |fL| = 3, |ψ(G)| ≥ 1 and

deg(x;G2
h) ≥ 3 ∀x ∈ Γ (v;G2

h).

Lemma 10. Let G3
i,h be the plane graph obtained from G by operation v-insert

(ei, h) for an outer edge ei = (ui, ui+1), i ∈ [1, B] and let v denote the new (i+
1)st outer vertex in G3

i,h. If the first removable element is an edge ep = (up, up+1)
(resp., a vertex up), then G3

i,h ∈ C3(G) ⇔ G �= Wn, B ≥ 4, |fL| = |f(ei)| = 3,
|ψ(G)| ≥ 1, i ≤ p (resp., i ≤ p − 1), deg(x;G3

i,h) ≥ 3 ∀x ∈ Γ (v;G3
i,h) and

deg(ui;G3
i,h) ≥ 4 (where deg(u1;G3

i,h) = 3 is allowed).

Lemma 11. LetG4
i,j be the plane graph obtained fromG by operation e-add(u, v)

for two outer vertices u = ui and v = uj, where i ∈ [1, B − 2] and j ∈ [i+ 2, B].
Then G4

i,j ∈ C4(G) if and only if B ≥ 4, |fL| = 3, i ≤ p and j ≤ ki−1.

7 Algorithm

This section describes an algorithm for generating children of a given graph
G ∈ G3(n) based on the characterization of children in Lemmas 8- 11.

To generate all plane graphs G′ ∈ C(G) ∩ G3(n, g), we generate only those
G′ ∈ C(G) such that the new face introduced by e-add and the face f(ei) and/or
f(ei+1) enlarged by v-insert or v-add are of length at most g. To generate all
triconnected rooted plane graphs in G3(n, g), we set G := Wn, and execute the
following procedure Gen(G, ε = u2), where the second argument ε stands for
the first removable element in the first argument G.

In Gen(G, ε), we first generate G1 from G, and children G2
h ∈ C(G) if B = 4,

and then generate children G3
i,h, G

4
i,i+Δ ∈ C(G) for all vertices ui, i = 1, 2, . . . , p

in the active path of G by increasing step size Δ ≥ 2 by 1. We also generate G1

from the children G′ = G2
h obtained from G, without using a recursive call.

Procedure Gen(G, ε)
Input: A triconnected rooted plane graph G ∈ G3(n, g) with |fL| = 3 and the

356 B. Zhuang and H. Nagamochi

first removable element ε of G, where ε is either an edge ep = (up, up+1)
or a vertex up.
Output: All descendants G′ ∈ G3(n, g) of G.
begin
if the depth of the current recursive call is odd then Output G endif;

/* Let (u1 = r, u2, . . . , uB) denote the boundary of G in the clockwise
order, and ei = (ui, ui+1) denote the edge between ui and ui+1 */
if e = (uB′ , z′) ∈ E(G), κ(G− e) ≥ 3 and |f | < g for the uB′-face f
adjacent to fL then Output G′ := G− e /* G′ has no child */
endif;
if B = 4 and |ψ(G)| ≥ 1 then
for h = 0, 1, 2, 3 do
Let G′ be the graph G2

h obtained from G by v-add(h), and
let v be the newly introduced vertex;
if deg(x;G′) ≥ 3 for all x ∈ Γ (v;G′) and |f | ≤ g
for all faces f ∈ F (v;G′) then
Output G′;
if κ(G′ − e) ≥ 3 and |f | < g for the edge e = (uB, z) and
the uB-face f adjacent to the leftmost r-face in G′ then
Output G′′ := G′ − e /* G′′ has no child */
endif endif endfor

endif;
if G �= Wn, B ≥ 4 and |ψ(G)| ≥ 1 then
for i = 1, 2, . . . , q do
if |f(ei)| = 3, and “i < p” or “i = p and ε is an edge” then
for h = 0, 1, 2, 3 do
Let G′ be the graph G3

i,h obtained from G by v-insert(ei, h);
Let v be the newly introduced vertex;
if deg(ui;G′) ≥ 4 when i > 1, deg(x;G′) ≥ 3 for all x ∈ Γ (v;G′)
and |f | ≤ g for all faces f ∈ F (v;G′) then Gen(G′, v) endif
endfor endif endfor

endif;
for Δ = 2, 3, . . . ,min{B − 1, g − 1} do
i := 1;
while i+Δ ≤ ki−1 and i ≤ p do
/* ki−1 be the index k ∈ [i+ 1, B] of uk = τlast(ei−1) and k0 := B */
j := i+Δ;
Let G′ be the graph G4

i,j obtained from G by e-add(ui, uj);
Gen(G′, ei = (ui, uj));
i := i+ 1
endwhile
endfor;
if the depth of the current recursive call is even then Output G endif;
Return

end.

Listing Triconnected Plane Graphs 357

Note that the while-loop terminates once it holds i + Δ > ki−1 for some
i without executing an iteration for i′ > i. If i + Δ > ki−1 holds for some
i, then it also holds i′ + Δ > ki′−1 for any i′ ∈ [i, p] since ki−1 ≥ ki′−1 by
(1). Therefore, Gen(G, ε) inspects all possible cases that can generate a child
G′ ∈ C(G) ∩ G3(n, g).

We first show that each line of Gen(G, ε) can be executed in O(1) time and
O(n) space. Since it is easy to maintain data for the size |f | of each inner face
f in O(1) per change on an inner face, it suffices to show that τlast(e) for each
edge in the active path can be found in O(1) time and that whether κ(G−e) ≥ 3
in e-del or not, (i.e., G has no separating r-face or not) can be tested in O(1)
time.

Lemma 12. Let G be a triconnected plane graph rooted at r = u1 such that
B ≥ 4.
(i) For each edge e in the active path of G, τlast(e) can be found in O(1) time
and O(n) space.
(ii) For the first edge e = (r = u1, u2), whether G has no separating r-face or
not can be tested in O(1) time and O(n) space.

Proof. (i) To facilitate computation of τlast(e), we introduce several notions.
Denote the vertices along the boundary of G in the clockwise order by u1 =
r, u2, . . . , uB, where uB+1 = r. Recall that, for each outer edge ei = (ui, ui+1),
τlast(ei) denotes the vertex in W o(f(ei)) that appears first last when we traverse
the boundary ofG from ui in the clockwise order, where {ui, ui+1}∩W o(f(ei)) =
∅.

For an inner face f which contains at least one outer vertex, let τ(f) denote
the outer vertex uj ∈ V (f ′) with the largest index j ≤ B + 1 for an inner face
f ′ which shares a vertex w with f (where f ′ is not necessarily an inner face
internally adjacent to f ; i.e., w may be an outer vertex).

For an outer vertex in the current graph G, let f1(ui) and f2(ui) (resp., f4(ui)
and f3(ui)) denote the rightmost and second rightmost (resp., the leftmost and
second leftmost) v-faces when we regard (ui−1, ui) and (ui, ui+1) as the leftmost
and rightmost edges incident to ui. Define

τj(ui) = τ(fj(ui)), j = 1, 2, 3, 4 (see Fig. 5(a)-(b)).

We first show that each outer edge ei = (ui, ui+1) in the active path satisfies

τ1(ui) = τlast(ei).

Let ei = (ui, ui+1) be an outer edge in the active path. Since all edges in the
active path are irremovable, τlast(ei) is a vertex uj with i < j ≤ B by the
property (1). Thus, the vertex uj = τlast(ei) is one of the candidates to define
τ1(ui), and no other outer vertex uj′ with j′ > j can be chosen as τ1(ui) because
otherwise such a vertex uj′ would be τlast(ei) (note that in this case the face f ′

adjacent to f that attains uj′ must also be internally adjacent to f).

We next show how to update the values of τj , j = 1, 2, 3, 4. For this, we define
data η as follows. Let w be a vertex in the current graph G such that a w-face fw

358 B. Zhuang and H. Nagamochi

contains an outer vertex. Then η(w) is defined to be the outer vertex uj ∈ V (fw)
with the largest index j ≤ B + 1 among all such w-faces fw (see Fig. 5(d)).

In what follows, we show how to update η, τ1, τ2, τ3 and τ4 when one of
operations e-add and v-insert is applied to generate a child G′ from the current
graph G so that η(u), τ1(u) and τ2(u), τ3(u) and τ4(u) for outer vertices u in the
active path take the correct value. Note that, after operation v-add is applied,
only e-del is applicable and there is no need to update τi to obtain τlast.
(1) Initialization: For G = Wn, where B = n− 1, we set

η(ui) := ui+1 and τ1(ui) := τ2(ui) := τ3(ui) := τ4(ui) := r for all i = 1, 2, . . . ,
n− 1, and η(z) := r for the center z of Wn (see Fig. 5(c)).

(2) Operation e-add(u, v) is applied (see Fig. 5(a) and (b)): We update as follows.

η(u) := v; τ2(u) := τ1(u); τ1(u) := η(v); τ3(v) := τ4(v); τ4(v) := η(v).

(3) Operation v-insert(ei, h), h ∈ {0, 1, 2, 3} is applied: We update η by η(v) :=
b; η(a) := v and τi, i = 1, 2, 3, 4 as follows.

1. v-insert(ei, 0): See Fig 5(a).
τ1(v) := τ3(v) := τ4(b); τ2(v) := τ4(v) := τ1(a); τ1(a) := τ4(b) := η(w).

2. v-insert(ei, 1): See Fig 5(b).
τ1(v) := τ3(v) := τ4(b); τ2(v) := τ4(v) := τ2(a); τ1(a) := τ2(a).

3. v-insert(ei, 2): See Fig. 5(c).
τ1(v) := τ3(v) := τ3(b); τ2(v) := τ4(v) := η(w); τ4(b) := τ3(b).

4. v-insert(ei, 3): See Fig. 5(d).
τ1(v) := τ3(v) := τ3(b); τ2(v) := τ4(v) := τ2(a); τ4(b) := τ3(b); τ1(a) :=
τ2(a).

It is easy to see that η and τi can be updated in O(1) time per operation
using O(n) space.

We here show that η(w) is correctly updated. For w = z in G = Wn, η(w) = r
remains unchanged in any descendant of G. For other w, we see that the value
η(w) is correctly updated by the above procedure for e-add when w is still an
outer vertex. When an outer vertex w becomes an inner vertex by e-add, the
latest value uh for η(w) will never be changed by any of the above procedures.
We show that η(w) = uh remains valid as long as a w-face contains an outer
vertex. When an outer vertex w becomes an inner vertex in a graph Ĝ, e-add
is applied and the newly introduced edge (u, v) is the first removable element
ε in the resulting graph G′, where ε is situated in β[r, uh]. See Fig. 5(d). If uh

becomes an inner vertex and a w-face f ′
w still has an outer vertex ui in a graph

G′′, then the newly introduced element ε′ to G′′ would not be the first removable
element in G′′, since β[r, uh] contains a removable element. This proves that η(w)
stores the correct value.

Supposing that η(w) for all vertices w store the correct values, it is a simple
matter to see that the values τi for outer vertices in the active path are correctly
updated by the above procedures.

Listing Triconnected Plane Graphs 359

(a) (c)

=ru 1

u B u i

=ru 1

τ (u) i
u i+1

u i w

(b)

=ru 1

u
u n-1 u 1

 1

τ (u) i 2

Ĝ

η(w)

f w

=ru 1

u B u

(d)

u i

τ (u) i

i

 3

τ (u) i 4

=ru 1

u B u
z z z

z

u i=u h

f ‘ w

 2 f (u) i 4 f (u) i

 1 f (u) i 3 f (u) i

Fig. 5. (a) Inner faces f1 and f2 and τ1(ui) and τ2(ui); (b) inner faces f3 and f4 and

τ3(ui) and τ4(ui); (c) initial graph G = Wn; (d) η(w) = uh and w-faces fw and f ′
w

(ii) Let fs0 denote the s0-face such that (s0, z) ∈ E(fs0) and ψ(G)∩E(fs0) = ∅.
We call an r-face f ∈ F (r;G) − {fL} s0-separating if f and fs0 share an inner
vertex other than the second leftmost neighbour z of r. Let δ be the existent
function of s0-separating r-face, i.e., δ = 1 if there is a s0-separating r-face, and
δ = 0 otherwise. Note that an s0-separating r-face is a separating r-face when
ψ(G) = ∅ and s0 = uB. Hence it suffices to show how to compute δ in O(n)
space and O(1) time per operation.

Since there is no s0-separating r-face in wheel G = Wn, we initialize δ := 0.
Since both v-add and v-insert do not change the set of inner faces internally
adjacent to r-faces, they never create or eliminate any s0-separating r-face. Hence
δ shall only be updated when e-add is performed. Note that applying e-add may
change the positions of s0 and fs0 . When e-add(u, v) is performed to generate
a child G′ of G, we update δ as follows:

(1) u �= r and v = si, i > 0: Let δ := 0, since s0 in G becomes an inner vertex
in the child G′, the previous s0-separating r-face is no longer s0-separating in
G′, and no new r-face becomes s0-separating for the new s0.

(2) u = r and v = si, i > 0: Let δ := 1, since si becomes a new s0 in G′ and
the newly created rightmost r-face f is internally adjacent with the new fs0 .

(3) u = r, v = s0, deg(s0;G) = 3: Let δ := 1 analogously with (2).
(4) otherwise: δ remains unchanged, since no s0-separating r-face is created

or eliminated in this case.

Therefore, before e-del is applied, it holds ψ(G) = ∅ and δ tells whether the
current G has a separating r-face or not. ��

Finally we show that Gen(Wn, ε = u2) can be implemented to run in O(|G3(n,
g)|) time. For this, it suffices to show that the time complexity T (G) of Gen(G, ε)
without including the computation time for recursive calls of Gen(G′, ε) is
O(|C(G) ∩ G3(n, g)|). Constructing each of graphs G1, G2

h, G3
i,h and G4

i,j can
be done in O(1) time during an execution of Gen(G, ε). We next show that the
delay spent to generate the next child G′ during an execution of Gen(G, ε) is
O(1) time, which implies T (G) = O(|C(G) ∩ G3(n, g)|). The time for computing
all G2

h, h = 0, 1, 2, 3 is O(1). The time delay to generate the next child G′ = G4
i,j

is O(1) time during the last for-loop, since any constructed graph G′ = G4
i,j

360 B. Zhuang and H. Nagamochi

belongs to C(G)∩G3(n, g). The delay spent to generate the next child G′ = G3
i,h

may not be O(1) time. This, however, can be easily amortized by generating
G3

i,h and G4
i,i+2 alternately; i.e., the iteration for Δ = 2 in the last for-loop is

merged with the for-loop for generating G3
i,h. The current description of Gen

avoids such a complicated for-loop.
Hence the delay between two children G′ in Gen(G, ε) can be bounded by

O(1) time. This proves that the time complexity T (G) of Gen(G, ε) without
recursive calls Gen(G′, ε) is O(|C(G) ∩ G3(n, g)|), and that Gen(Wn, ε = u2)
runs in O(|G3(n, g)|) time. Furthermore, by outputting a child G′ before call-
ing Gen(G′, ε) if the current depth of recursive call is odd and after calling
Gen(G′, ε) if the current depth of recursive call is even, the delay between two
outputs in the entire execution is O(1) in the worst case. It is easy to see that
the entire algorithm Gen(Wn, ε = u2) can be implemented in O(n) space.

Theorem 1. For integers n ≥ 1 and g ≥ 3, all triconnected rooted plane graphs
with exactly n vertices such that each inner face is of length at most g can be
enumerated without duplication in O(n) space by an algorithm that outputs the
difference between two consecutive outputs in O(1) time in a series of all outputs
after an O(n) time preprocessing.

We can use our algorithm for generating unrooted plane graphs. During an exe-
cution of Gen(Wn, ε = u2), we check in O(n2) time whether a newly generated
rooted graph G is the representative among rooted graphs with the same plane
graphs or not by computing its signature [2].

Corollary 1. For a given integer n ≥ 1, all triconnected planar graphs with
exactly n vertices can be enumerated without duplication in O(n) space by an
algorithm that outputs the difference between two consecutive outputs in O(n3)
time in average in a series of all outputs.

8 Concluding Remarks

In this paper, we gave an O(1)-time delay enumeration algorithm for the class
of triconnected rooted plane graphs with exactly n vertices and an inner face
size bounded by g. The O(1)-time delay in O(n) space is attained mainly by
introducing graph transformations to define parents based on the property in
Lemma 1, which allows us to test triconnectivity of a whole graph by degree by
checking the degree of a constant number of vertices.

It is our future work to design enumeration algorithms for rooted plane graphs
with a higher vertex-connectivity and to take into account the reflective symme-
try around the root, as studied in our companion paper [14].

References

1. Fujiwara, H., Wang, J., Zhao, L., Nagamochi, H., Akutsu, T.: Enumerating tree-

like chemical graphs with given path frequency. Journal of Chemical Information

and Modeling 48, 1345–1357 (2008)

Listing Triconnected Plane Graphs 361

2. Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar

graphs. In: STOC 1974, pp. 172–184 (1974)

3. Horváth, T., Ramon, J., Wrobel, S.: Frequent subgraph mining in outerplanar

graphs. In: Proc. 16th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 197–206 (2006)

4. Imada, T., Ota, S., Nagamochi, H., Akutsu, T.: Enumerating stereoisomers of tree

structured molecules using dynamic programming. In: Dong, Y., Du, D.-Z., Ibarra,

O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 14–23. Springer, Heidelberg (2009)

5. Ishida, Y., Zhao, L., Nagamochi, H., Akutsu, T.: Improved algorithm for enumer-

ating tree-like chemical graphs. In: Genome Informatics, GIW 2008, vol. 21, pp.

53–64 (2008)

6. Li, Z., Nakano, S.: Efficient generation of plane triangulations without repetitions.

In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076,

pp. 433–443. Springer, Heidelberg (2001)

7. Nakano, S.: Efficient generation of plane trees. IPL 84, 167–172 (2002)

8. Nakano, S.: Efficient generation of triconnected plane triangulations. In: Compu-

tational Geometry Theory and Applications, vol. 27(2), pp. 109–122 (2004)

9. Nakano, S., Uno, T.: Efficient generation of rooted trees, NII Technical Report,

NII-2003-005 (2003)

10. Read, R.C.: How to avoid isomorphism search when cataloguing combinatorial

configurations. Annals of Discrete Mathematics 2, 107–120 (1978)

11. Tutte, W.T.: Convex representations of graphs. Proc. of London Math. Soc. 10(3),

304–320 (1960)

12. Steinitz, E.: Polyeder und Raumeinteilungen. Encyclopädie der mathematischen

Wissenschaften, Band 3 (Geometrie), Teil 3AB12, 1–139 (1922)

13. Yamanaka, K., Nakano, S.: Listing all plane graphs. In: Nakano, S.-i., Rahman,

M. S. (eds.) WALCOM 2008. LNCS, vol. 4921, pp. 210–221. Springer, Heidelberg

(2008)

14. Zhuang, B., Nagamochi, H.: Enumerating rooted biconnected planar graphs with

internally triangulated faces, Kyoto University, Technical Report 2009-018 (2009),

http://www-or.amp.i.kyoto-u.ac.jp/members/nag/Technical_report/

TR2009-018.pdf
15. Zhuang, B., Nagamochi, H.: Efficient generation of symmetric and asymmetric

biconnected rooted outerplanar graphs. In: AAAC 2010, p. 21 (2010)

16. Zhuang, B., Nagamochi, H.: Enumerating biconnected rooted plane graphs, Kyoto

University, Technical Report 2010-001 (2010),

http://www-or.amp.i.kyoto-u.ac.jp/members/nag/Technical_report/

TR2010-001.pdf
17. Zhuang, B., Nagamochi, H.: Constant time generation of biconnected rooted plane

graphs. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213,

pp. 113–123. Springer, Heidelberg (2010)

18. Zhuang, B., Nagamochi, H.: Enumerating rooted graphs with reflectional block

structures. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp.

49–60. Springer, Heidelberg (2010)

19. Zhuang, B., Nagamochi, H.: Generating internally triconnected rooted plane

graphs. In: Kratochv́ıl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS,

vol. 6108, pp. 467–478. Springer, Heidelberg (2010)

20. Zhuang, B., Nagamochi, H.: Listing triconnected rooted plane graphs, Kyoto

University, Technical Report 2010-002 (2010),

http://www-or.amp.i.kyoto-u.ac.jp/members/nag/Technical_report/

TR2010-002.pdf

http://www-or.amp.i.kyoto-u.ac.jp/members/nag/Technical_report/TR2009-018.pdf
http://www-or.amp.i.kyoto-u.ac.jp/members/nag/Technical_report/TR2009-018.pdf
http://www-or.amp.i.kyoto-u.ac.jp/members/nag/Technical_report/TR2010-001.pdf
http://www-or.amp.i.kyoto-u.ac.jp/members/nag/Technical_report/TR2010-001.pdf
http://www-or.amp.i.kyoto-u.ac.jp/members/nag/Technical_report/TR2010-002.pdf
http://www-or.amp.i.kyoto-u.ac.jp/members/nag/Technical_report/TR2010-002.pdf

Bipartite Permutation Graphs Are
Reconstructible

Masashi Kiyomi1, Toshiki Saitoh2, and Ryuhei Uehara1

1 School of Information Science, JAIST, 1-1, Asahidai,

Nomi, Ishikawa 923-1292, Japan

{mkiyomi,uehara}@jaist.ac.jp
2 ERATO MINATO Discrete Structure Manipulation System Project,

JST, North 14, West 9, Sapporo, Hokkaido 060-0814, Japan

t-saitoh@erato.ist.hokudai.ac.jp

Abstract. The graph reconstruction conjecture is a long-standing open

problem in graph theory. The conjecture has been verified for all graphs

with at most 11 vertices. Further, the conjecture has been verified for

regular graphs, trees, disconnected graphs, unit interval graphs, separa-

ble graphs with no pendant vertex, outer-planar graphs, and unicyclic

graphs. We extend the list of graph classes for which the conjecture holds.

We give a proof that bipartite permutation graphs are reconstructible.

Keywords: the graph reconstruction conjecture, bipartite permutation

graphs.

1 Introduction

The graph reconstruction conjecture proposed by Ulam and Kelly1 has been
studied by many researchers intensively. In order to state the conjecture, we
first introduce some terms. A graph G′ is called a card of a graph G = (V,E),
if G′ is isomorphic to G − v for some v ∈ V , where G − v is a graph obtained
from G by removing v and incident edges. A multi-set of n graphs with n − 1
vertices for some positive integer n is called a deck. Especially, the multi-set of
the |V | cards of G, each of which is isomorphic to G − v for each v ∈ V , is a
deck of G. A graph G is a preimage of a deck D, if D is a deck of G. We also say
that a graph G is a preimage of the n graphs if each card of G is isomorphic to
each of them. The graph reconstruction conjecture is that there is at most one
preimage of given n graphs (n ≥ 3). No one has given a positive nor a negative
proof of this conjecture, while there is a positive proof for small graphs [11].

The graph reconstruction conjecture has been verified for some graph classes.
Kelly showed that the conjecture is true on regular graphs, trees, and discon-
nected graphs. Other classes proven to be reconstructible2 are unit interval

1 Determining the first person who proposed the graph reconstruction conjecture is

difficult, actually. See [7] for the detail.
2 A graph is reconstructible, if its deck has only one preimage.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 362–373, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Bipartite Permutation Graphs Are Reconstructible 363

graphs [12], separable graphs with no pendant vertex [2], outer-planar graphs [5],
unicyclic graphs [10], etc. We extend the list of graph classes for which the conjec-
ture holds. We give a proof that bipartite permutation graphs are reconstructible.

Rimscha showed that unit interval graphs are reconstructible [12]. Unit inter-
val graphs have somewhat path-like structures, and so do bipartite permutation
graphs. Further, the representation of a unit interval graph is unique, similar to
that of a bipartite permutation graph. Thus, we first thought that we can eas-
ily prove that bipartite permutation graphs are reconstructible. There are two
differences between the two classes, that make it difficult to prove that bipar-
tite permutation graphs are reconstructible. One is that, bipartite permutation
graphs are bipartite. Therefore, we have to determine from which vertex set a
vertex was removed for cards in a deck. The second difference is that, in the case
of unit interval graphs, there is no disconnected card obtained by removing a
vertex laying at the end of the path structure. In a deck of a bipartite permu-
tation graph, there can be a disconnected card that is obtained by removing a
polar vertex which lays at the end of the path structure. we will define a polar
vertex later. Therefore, we had to consider many exceptional cases.

Kelly showed the following lemma.

Lemma 1 (Kelley’s Lemma [9]). Let G be any preimage of the given deck,
and let H be a graph whose number of vertices is smaller than that of G. Then
we can uniquely determine the number of subgraphs in G isomorphic to H from
the deck.

Greenwell and Hemminger extended this lemma to a more general form [6].
We can determine the degree sequence of a preimage of the given deck from
these lemmas. Moreover, given a deck of a graph, we can determine the degree
of removed vertex for each card in the deck. Note that

∑
v: vertex deg(v) =

2 × (# of edges). Thus, we can easily show for example that cycles are recon-
structible, since a graph is a cycle if and only if it is connected, and all its vertices
have degree exactly two.

Tutte proved that the dichromatic rank and Tutte polynomials are recon-
structible (i.e. looking at the deck, they are uniquely determined) [14]. Bollobás
showed that almost all graphs are reconstructible from three well-chosen graphs
in its deck [1]. About permutation graphs, Rimscha showed that permutation
graphs are recognizable in the sense that looking at the deck of G one can
determine whether or not G belongs to permutation graphs [12]. To be precise
Rimscha showed in the paper that comparability graphs are recognizable. Even’s
result [4] directly gives a proof in the case of permutation graphs. Rimscha also
showed in the same paper that many subclasses of perfect graphs including per-
fect graphs themselves are recognizable, and moreover, some of subclasses, such
as unit interval graphs, are reconstructible. There are a lot of papers about the
conjecture, and many good surveys about this conjecture. See for example [3,7].

We explain about bipartite permutation graphs in the next section. Then,
we prove the statement in Section 3. The proof has two subsections. In the
first subsection, we give the main idea of the proof. In the second subsection,
we consider some exceptional cases. The proof uses some lemmas on bipartite

364 M. Kiyomi, T. Saitoh, and R. Uehara

(a)

(c) (d)

(b)

Fig. 1. (a) is an example of a permutation diagram. (b), (c), and (d) are permuta-

tion diagrams obtained from (a) by reversing horizontally, reversing vertically, and

rotating 180◦, respectively. They represent permutations (2,7,3,5,1,6,4), (4,2,7,3,5,1,6),

(5,1,3,7,4,6,2), and (6,2,4,1,5,7,3), respectively.

permutation graphs. Since we think that checking these lemmas one by one may
make readers lose the way, we write the proofs of some of them in Section 4.

2 Bipartite Permutation Graphs

All the graphs in this paper are simple unless stated otherwise.

2.1 Permutation Diagram

Let π=(π1, π2, . . . , πn) be a permutation of 1, . . . , n. We denote (πn, πn−1, . . . , π1)
by π.

We call a set L of line segments connecting two horizontal parallel lines on
Euclidean plane a permutation diagram. A permutation diagram represents a
permutation. Let l1, l2, . . . , l|L| be the line segments in L. We assume that the
end-points of them appear in this order from left to right on the upper hori-
zontal line. Then, the permutation represented by L is (π1, π2, . . . , π|L|), such
that the end-points of l1, l2, . . . , l|L| appear in the order of π1, . . . , πn on the
lower horizontal line. Equivalently, the ith left-most end-point among those
of the segments in L is that of lπi

−1 , on the lower horizontal line, for each
i ∈ {1, 2, . . . , |L|}. See Fig. 1(a) for example. The permutation diagram repre-
sents (2, 7, 3, 5, 1, 6, 4) = (5, 1, 3, 7, 4, 6, 2)−1.

Let P be a permutation diagram. We denote by PH a permutation diagram
obtained by reversing P horizontally. See Fig. 1(b) for example. The permutation
diagram is obtained by reversing (a) horizontally. Similarly, we denote by PV and
PR permutation diagrams obtained by reversing P vertically, and by rotating P
180◦, respectively.3

3 Let P be a permutation diagram representing a permutation π. For those who want

concrete expressions, it is not difficult to check that PV represents πV = π−1, PH

represents πH = π−1
−1

, and PR represents πR = π−1.

Bipartite Permutation Graphs Are Reconstructible 365

Fig. 2. Forbidden graphs of bipartite permutation graphs are these graphs, K3, and

cycles of length more than four

2.2 Bipartite Permutation Graphs

Let π be a permutation of the numbers 1, 2, . . . , n. Gπ = (Vπ , Eπ) is a graph
satisfying that

– Vπ = {1, . . . , n}, and
– {i, j} ∈ Eπ ⇔ (i− j)(π−1

i − π−1
j) < 0.

A graph G is called a permutation graph if there exists a permutation π such
that G is isomorphic to Gπ. Equivalently, a graph G is a permutation graph if
there exists a permutation π such that G is an intersection model of the per-
mutation diagram of π. We say that π (or, sometimes, the permutation diagram
of π) represents G. If a permutation graph G is bipartite, we call G a bipartite
permutation graph.

There is a good characterization for bipartite permutation graphs.

Theorem 1 (P. Hell and J. Huang [8]). A graph G is a bipartite permutation
graph if and only if G has neither the graphs in Fig. 2, nor K3, nor cycles of
length more than four as an induced subgraph.

It is known that a connected bipartite permutation graph has at most four rep-
resenting permutation diagrams. If a permutation diagram P is representing a
connected bipartite permutation graph G, the other representing permutation
diagram of G must be one of PH, PV, and PR [13]. Thus a permutation diagram
representing a connected bipartite graph is essentially unique. Note that a dis-
connected bipartite permutation graph may have more than four representing
permutation diagrams. Together with the fact that cards in a deck of a connected
graph can be disconnected, this is the reason why our proof is not very simple.

Let P be a permutation diagram representing a connected bipartite permu-
tation graph G. There are two left-most segments in P , and there are two right-
most segments in P . Here, we say that a segment is the left-most(right-most)
if it is the left-most (right-most) among the segments not intersecting with it.
We call the vertices that can correspond to the left-most or right-most segments
polar vertices. Note that there are at least four polar vertices in a bipartite per-
mutation graph. The number of polar vertices may be more than four, since
there may exist some isomorphic polar vertices.4 See Fig. 3 for an example.

By repeatedly removing degree one polar vertices from a connected bipartite
permutation graph G, we obtain a connected bipartite permutation graph G′.
We call the graph G′ trunk of G, and we denote the trunk by Tr(G). The vertex
4 Vertices v and u are isomorphic, if the neighbors of them are identical.

366 M. Kiyomi, T. Saitoh, and R. Uehara

s

s

1

2
a

b

Fig. 3. An bipartite permutation graph and its representation. The polar vertices are

circled. Vertices a and b are isomorphic, and can correspond to both the segments s1

and s2. Thus, both a and b are polar vertices.

in Tr(G) nearest from a degree one polar vertex v of G is called the root of v.
The path in G whose ends are v and v’s root is called a limb.

It is clear that every card G′ of a bipartite permutation graph G is a bipartite
permutation graph, since we can obtain a representing permutation diagram of
G′ by removing a line segment from a representing permutation diagram of G.

3 Main Proof

The main idea of our proof is simple. However, if there is a degree one polar
vertex, there are many exceptional cases, and the proof gets complex. Therefore,
we first show the simple case, and then prove the exceptional cases.

3.1 No Degree One Polar Vertex Case

We show an algorithm which reconstructsG from its deck. The algorithm directly
shows the uniqueness of the preimage. However, the proof of the uniqueness uses
a bunch of bipartite permutation graph specific properties. We are afraid that
checking the properties one by one makes the readers lose the way in the main-
line of the proof. Therefore, we leave some of the proofs in Section 4.

We need the two lemmas below to keep the main proof simple.

Lemma 2. All the preimages of the deck of a bipartite graph G are bipartite.

Proof. Immediate from the fact that the chromatic number ofG is reconstructible
[15]. ��

Lemma 3. All the preimages of a deck of a bipartite permutation graph are
bipartite permutation graphs.

Proof. Immediate from Lemma 2 and the fact that permutation graphs are rec-
ognizable [12]. ��

We can easily check the following lemma.

Lemma 4. A card obtained from a connected bipartite graph G by removing its
polar vertex is connected, if every polar vertex of G has degree more than one.

Our main proof assumes that a bipartite permutation graph G = (X,Y,E) does
not have a vertex in X whose degree is |Y |. Therefore, we need the following
lemma.

Bipartite Permutation Graphs Are Reconstructible 367

Lemma 5. Let G = (X,Y,E) be a connected bipartite permutation graph with
a vertex x ∈ X whose degree is |Y |. Then G is reconstructible.

We leave the proof in Section 4. Now, we make assumption below.

Assumption 1. In a connected bipartite permutation graph G = (X,Y,E),
there is no vertex x ∈ X such that deg(x) = |Y |, and there is no vertex y ∈ Y
such that deg(y) = |X |.
Note that this is equivalent that a polar vertex on the left-end cannot be adjacent
to any polar vertex on the right-end. Moreover, we can assume that |X |, |Y | ≥ 2,
since if |X | = 1, then x ∈ X must be adjacent to every vertex in Y .

Now, we explain the main idea. Let G = (X,Y,E) be a bipartite permutation
graph satisfying Assumption 1, and every polar vertex of G has degree more
than one.

We state that |X̃| and |Ỹ | are reconstructible for any connected bipartite
permutation graph G̃ = (X̃, Ỹ , Ẽ). Since the proof of this fact becomes a bit
long, we leave it in Section 4.

We first consider the case that |X | �= |Y |. We assume without loss of generality
that |X | > |Y |. There are two polar vertices xl and xr in X , such that xl
corresponds to the left-most line segment, and xr corresponds to the right-most
line segment in a permutation diagram representing G. We denote the degrees
of xl and xr by p and q. In a similar fashion, we denote by r and s the degrees
of polar vertices yl and yr in Y . We assume without loss of generality that p ≤ q
holds.

Let Gl = (Xl, Yl, Rl) andGr = (Xr, Yr, Rr) be cards ofG obtained by removing
yl and yr from G, respectively. By Lemma 4, Gl and Gr are connected.

We denote byDY the set ofG’s connected cards that are obtained by removing
a vertex belonging to Y . Clearly, Gl and Gr are in DY . Consider a connected
bipartite permutation graph G′ = (X ′, Y ′, E′) in DY . We assume without loss
of generality that |X ′| ≥ |Y ′| holds. Then, since |X | > |Y | holds, |X | = |X ′| >
|Y ′| = |Y | − 1 holds. Therefore, we can choose all the cards that belong to
DY from the deck of G, and we can determine which vertex set of each card
corresponds to X . Now, consider the degrees of the polar vertices in X ′. If G′ is
Gl, the degrees of the polar vertices in X ′ are {p− 1, q}. If G′ is Gr, the degrees
of the polar vertices in X ′ are {p, q − 1}. Otherwise, the degrees of the polar
vertices in X ′ are either {p− 1, q}, {p, q − 1}, or {p, q}. We call G′ good, if the
degrees of the polar vertices in X ′ are {p− 1, q}.

Let {G′
1, . . . , G

′
k} be the set of good graphs in DY . Let di be the degree of

the vertex vi such that G′
i is obtained by removing vi from G. Note that we

can determine di for each card, since the degree sequence is reconstructible. It
is clear that r = mini=1,...,k di by Lemma 12 which we state in Section 4. Thus,
we can uniquely reconstruct the preimage from the deck. (We only have to add
a degree r polar vertex adjacent to the polar vertex of degree p − 1. This can
be done deterministically on the permutation diagram by Lemma 13 which we
prove in Section 4.)

Now we consider the case that |X | = |Y |. In this case, every connected card is
in the form Gi = (Xi, Yi, E) such that |Xi| = |Yi|−1. Thus we cannot determine

368 M. Kiyomi, T. Saitoh, and R. Uehara

which vertex set corresponds to which vertex set of G. However, we know that
Gi is obtained by removing a vertex in Yi’s side. That is, polar vertices of Gi in
Xi are also polar vertices of a preimage. Therefore, the minimum degree p′ of
polar vertices in Xi among all the connected cards is equal to p′− 1, where p′ is
the minimum degree of polar vertices of a preimage. Moreover, a card that has
a polar vertex of degree p′ in Xi is obtained by removing a vertex adjacent to a
polar vertex of degree p′ from a preimage. Thus, we can uniquely reconstruct a
preimage in the same fashion above (using Lemmas 12,13).

Therefore, we have the theorem below.

Theorem 2. A connected bipartite permutation graph G = (X,Y,E) satisfying
Assumption 1 is reconstructible, if every polar vertex of G has degree more than
one.

3.2 Polar Vertices with Degree One

We can determine if a preimage G has a polar vertex of degree one, by Lemma 14
in Section 4. In this subsection, we consider the case that G has a polar vertex
of degree one.

First, we show the fundamental lemmas.

Lemma 6. Let P be a permutation diagram of a connected bipartite permutation
graph G having at least one cycle. Any two limbs of the same side (the left-side
or the right-side) of P have the same root.

Proof. If not, G cannot be connected. ��

Lemma 7. If a connected bipartite permutation graph G has a polar vertex of
degree one, Tr(G) is reconstructible.

Proof. Let G′ be a card obtained by removing a polar vertex of degree one from
G. Then, Tr(G′) and Tr(G) are clearly isomorphic. Let G′′ be a connected card
obtained by removing a vertex that is not a polar vertex of degree one. Then,
|V (Tr(G′′))| < |V (Tr(G))| holds. Thus, we can reconstruct Tr(G) by choosing
the Tr(G′) whose number of vertices is the maximum. ��

Now we prove the reconstructivity, one by one.

Lemma 8. A connected bipartite permutation graph G = (X,Y,E) with a limb
whose length is more than one is reconstructible.

Proof. Let L be a permutation diagram of G. Let {G′
1, . . . , G

′
k} be the multi-set

of connected cards of G that satisfy Tr(G′
i) = Tr(G). If there are more than one

limbs having the same root, and both of them have the lengths more than one,
G contains the left forbidden graph in Fig 2. Thus, only one limb can have the
length more than one among limbs of the same root. We concentrate the limbs
of the maximum length, on the both sides.

First we consider the case that there are two limbs, one is on the left-side of
L having the maximum length among limbs on the left-side, and the other is
on the right-side having the maximum length among limbs on the right-side. If

Bipartite Permutation Graphs Are Reconstructible 369

both the two limbs have the lengths more than one, we can easily reconstruct G,
since we can determine the lengths p, q of the two limbs from {G′

1, . . . , G
′
k}. Note

that each G′
i has limbs of lengths p− 1, q, or p, q, or p, q− 1. Hence, we consider

the case that the left-side limb has the length exactly one. The right-side limb
has the length q more than one. Even in this case, we can determine that the
maximum lengths of limbs on the both sides of any preimage are one and q. The
remaining problem is how to reconstruct G from {G′

1, . . . , G
′
k}. If q is more than

two, the reconstruction is easy. Only find the limb of length q − 1, and add a
degree one vertex to it. Thus, we consider the case that q is equal to two. In this
case, there is a card in {G′

1, . . . , G
′
k} that has length one limbs on the both side.

Thus, we can determine if the roots of the two limbs of a preimage belongs to
the same vertex set. And, there is a card G′ in {G′

1, . . . , G
′
k} that has a limb l of

the length of two. Thus, we can reconstruct G uniquely by adding a degree one
vertex to the opposite side to l.

Next, we consider the case that G has limbs only on the left-side. It is easy to
reconstruct G in this case, since finding the connected card that has limbs most,
and adding a degree one vertex to the longest limb (the other limbs have length
one), we have G. ��
Lemma 9. A bipartite permutation graph G = (X,Y,E) with two limbs of dif-
ferent roots is reconstructible.

Proof. From Lemma 8, we only have to prove the case that every limb has
length exactly one. In this case, we can determine if the two roots belong to the
same vertex set, since we can reconstruct {|X |, |Y |}. Thus we can reconstruct G
uniquely. ��
Lemma 10. A bipartite permutation graph G = (X,Y,E) whose limbs have the
same root is reconstructible.

Proof. If there are more than one limbs, it is easy to reconstruct G. Let G′

be a connected card satisfying Tr(G′) = Tr(G). Find a limb in G′ and add a
degree one vertex to its root. Therefore, we consider the case that G has only
one limb, and the length is one. Assume that the limb is on the left-side of L,
where L is a permutation diagram of G. Then two polar vertices on the right-
side have degrees p, q larger than one. If both of p and q are larger than two, we
can reconstruct G, since connected cards of G with degree one polar vertex on
the one side of their permutation diagram have polar vertices of degree p, q, or
p− 1, q, or p, q − 1, on the opposite side.

Now we consider the case that p is exactly two, and q is also equal to two.
There is a connected card ofG whose polar vertices on the same side have degrees
one and two. Since the limb of G has length exactly one, the polar vertices of
the same side having degree one and two cannot be the degree one vertex of G.
Therefore we can reconstruct G uniquely.

Lastly, we consider the case that p is exactly two, and q is larger than two.
Let {G′

1, . . . , G
′
k} be connected cards of G obtained by removing a vertex whose

degree is larger than one. Looking {G′
1, . . . , G

′
k}, we can determine the value p

and q. Hence we can reconstruct G uniquely. ��

370 M. Kiyomi, T. Saitoh, and R. Uehara

From above lemmas, we have the theorem below.

Theorem 3. A connected bipartite permutation graph with a polar vertex of
degree one is reconstructible.

4 Miscellaneous Proofs

We prove Lemmas not proved yet, in this section.

Lemma 11. The numbers of vertices in X and Y are reconstructible for a con-
nected bipartite permutation graph G = (X,Y,E).

Proof. Let D be the deck of G. There are at least two connected cards in a deck
of a connected graph with more than two vertices. Let G1 = (X1, Y1, E1), G2 =
(X2, Y2, E2), . . . , Gk = (Xk, Yk, Ek) be connected bipartite graphs in D. The
following cases can occur.

1. {|Xi|, |Yi|} = {p1, q1} for some i ∈ {1, . . . , k}, and {|Xi|, |Yi|} = {p2, q2} for
other i ∈ {1, . . . , k}, where {p1, q1} �= {p2, q2} holds.

2. {|Xi|, |Yi|} is the identical set {p, q} for every i ∈ {1, . . . , k}.

First we consider the case 1. It is clear that max{p1, p2, q1, q2} is equal to
max{|X |, |Y |}, and min{p1, q1, p2, q2} is equal to min{|X |, |Y |} − 1. Therefore,
we can easily reconstruct {|X |, |Y |}, in this case.

Now, we consider the case 2. There are two more detailed cases. One case
is that |X | = |Y | (case 2a), and the other case is that every connected card is
obtained by removing a vertex from one vertex set (case 2b).

In the case 2a, max{p, q} = min{p, q} + 1 = |X | = |Y | holds. Thus, we can
determine {|X |, |Y |}, if we can realize that the case is 2a, not 2b. We explain
how to distinguish the case 2a from the case 2b later.

In the case 2b, let T be a spanning tree of G. Since a graph obtained from G
by removing a leaf of T is connected, all the leaves of T belong to the same vertex
set X or Y . We can assume without loss of generality that the vertex set is X .
Then apparently |X | > |Y | holds. Thus {|X |, |Y |} is {max{p, q}+ 1,min{p, q}}.

The remaining problem is how to distinguish the case 2a from the case 2b.
In the case 2a, |p − q| = 1 always holds. Therefore, we consider the case that
|p− q| = 1 holds in the case 2b. In this case, |X | = |Y |+ 2 must hold.

Let L be a permutation diagram of G. Let xl and xr be polar vertices in
X that correspond to the left-most segment, and the right-most segment of L,
respectively. Let P be the shortest path in G from xl to xr. Let yl be the vertex
adjacent to xl in P , and let yr be the vertex adjacent to xr in P . Consider the
number of vertices in P . Since every vertex y ∈ Y is a cut-vertex of G, every
path from xl to xr passes y. Therefore, all the vertices in Y are in P . Hence,
there exist |Y |+1 X-vertices in P . Note that the graph induced from G by these
X-vertices and vertices in Y is exactly P , since otherwise some vertex in Y is
not a cut-vertex of G. Since we here consider the case that |X | = |Y |+ 2 holds,
there is only one vertex remaining not in P . Thus, the degree in G of at least
one of yl and yr is exactly two. Assume that the degree of yl is two. Removing

Bipartite Permutation Graphs Are Reconstructible 371

Fig. 4. An example of permutation diagram of a connected bipartite graph G =

(X, Y, E) with a vertex x ∈ X whose degree is |Y |

yl from G results in two connected graphs. One is a graph with only one vertex
xl, and the other is the graph induced from G by X ∪Y \ {xl, yl}. The latter is a
bipartite graph, and the difference of the numbers of vertices in the two vertex
sets is exactly two. On the other hand, if there is a card consists of an isolated
vertex and a connected component in the case 2a, the size of each vertex set of
the connected component must be the same. Therefore, we can distinguish the
two cases. ��

Proof (Proof of Lemma 5). If min{|X |, |Y |} = 1, G is a tree, and is thus recon-
structible. Therefore we assume that min{|X |, |Y |} ≥ 2. Since x is adjacent to
every vertex in Y , x is a polar vertex of G. Let L be a permutation diagram
representing G. Assume without loss of generality that x corresponds to a line
segment s in L whose lower-end is the left-most among all the lower-ends of the
segments in L. Then each vertex in X \ {x} corresponds to each segment that
lays on the right-side of s in L. On the other hand, a segment s′ corresponding
to a vertex in Y must intersect with s. Therefore, the upper-end of s′ must be
on the left-side of that of s. Consider the segment s′′ whose upper-end is the
right-most among segments corresponding to vertices in Y . Then lower-end of
s′′ must be the right-most, since otherwise G cannot be connected. Hence, the
vertex corresponding to s′′ is adjacent to all the vertices in X . This means that
if a bipartite permutation graph G = (X,Y,E) has a vertex x ∈ X satisfying
deg(x) = |Y |, then G also has a vertex y ∈ Y satisfying deg(y) = |X |. See Fig. 4
for an illustration.

Now, we know that there are two special polar vertices x and y in G. There
must be two other polar vertices. One corresponds to the segment in L whose
upper-end is the left-most, and the other corresponds to the segment whose
upper-end is the right-most. We denote the vertices by v and w, respectively.
We assume without loss of generality |X | ≥ |Y |. Removing v(∈ Y) results in a
connected bipartite graph G′. The size of the vertex sets of G is |X | and |Y |−1.
Thus, there is at least one connected card whose vertex sets have sizes |X | and
|Y | − 1. Moreover, since |X | > |Y | − 1, we can find such a card from the deck
of G. Let G′′ be a card of G whose vertex sets have sizes |X | and |Y | − 1. Since
the degree sequence of G is reconstructible, we can determine the degree of the
vertex z, where G′′ is obtained by removing z from G. Hence, we can determine
the preimage uniquely. ��

372 M. Kiyomi, T. Saitoh, and R. Uehara

Lemma 12. Given a connected bipartite permutation graph G = (X,Y,E) sat-
isfying Assumption 1, let x be a polar vertex in X, and let Y ′ be the set of
vertices adjacent to x. A vertex y ∈ Y ′ is a polar vertex of G if and only if y’s
degree is the minimum in Y ′.

Proof. Let L be a permutation diagram representing G. Since x is a polar vertex
of G, we can assume without loss of generality that the line segment s in L
whose upper-end is the left-most corresponds to x. Then, all the line segments
corresponding to the vertices in X \ {x} are at the right-side of s.

Let y∗ be a polar vertex in Y ′. Since G satisfies Assumption 1, a line segment
s′ in L corresponding to y∗ is the left-most in those corresponding to vertices in
Y ′. Therefore, the degree of y∗ is the minimum among the vertices in Y ′. ��

Lemma 13. Let G′ = (X ′, Y ′, E′) be a connected bipartite permutation graph.
Let x be a polar vertex in X ′. Then, graph G = (X,Y,E) that is obtained by
adding a degree k ∈ {1, . . . , |X ′|} vertex y to Y ′ is uniquely determined, under
the conditions that G is a bipartite permutation graph, y is a polar vertex of G,
and y is adjacent to x in G.

Proof. Let L′ be a permutation diagram representing G′, and let L be a permu-
tation diagram representing G. It is clear that L can be obtained by adding to
L′ a line segment sy corresponding to y.

Since x is a polar vertex of G′, we can assume without loss of generality that
the line segment sx in L′ and L corresponding to x is the left-most among those
corresponding to vertices in X . We can assume without loss of generality that
the upper-end of sx is the left-most among the upper-ends of all the segments
in L. Since y is a polar vertex in G, sy in L corresponding to y is the left-most
among those corresponding to vertices in Y . That is, the lower-end of the sy

is the left-most among the lower-ends of all the segments in L. Then, we can
determine the position of the upper-end of sy uniquely, since sy must intersect
to exactly k segments in X . ��

Lemma 14. The number of polar vertices whose degree is one is reconstructible
for a connected bipartite permutation graph G = (X,Y,E) satisfying Assump-
tion 1.

Proof. If a polar vertex v of G has degree one, the polar vertex adjacent to v
has degree more than one, since otherwise G is disconnected.

When we remove a polar vertex that is adjacent to another polar vertex of de-
gree one from G, we obtain a graph consisting some isolated vertices and a con-
nected component. Conversely, if there is a graph consisting some isolated vertices
and a connected component in the deck of G, this graph must be obtained from
some preimage by removing a polar vertex adjacent to an other polar vertex of
degree one. Otherwise, there must be at least two connected components. Thus,
the number of polar vertices whose degree is one equal to the number of cards
consisting some isolated vertices and a connected component. ��

Bipartite Permutation Graphs Are Reconstructible 373

5 Concluding Remarks

Combining Theorems 2 and 3, we have the main theorem. Note that since dis-
connected graphs are reconstructible, disconnected bipartite permutation graphs
are of course reconstructible.

Theorem 4. Bipartite permutation graphs are reconstructible.

References

1. Bollobás, B.: Almost every graph has reconstruction number three. Journal of

Graph Theory 14, 1–4 (1990)

2. Bondy, J.A.: On Ulam’s conjecture for separable graphs. Pacific Journal of Math-

ematics 31, 281–288 (1969)

3. Bondy, J.A.: A graph reconstructor’s manual. In: Surveys in Combinatorics. Lon-

don Mathematical Society Lecture Note Series, vol. 166, pp. 221–252 (1991)

4. Even, S.: Algorithmic Combinatorics. Macmillan, New York (1973)

5. Giles, W.B.: The reconstruction of outerplanar graphs. Journal of Combinatorial

Theory, Series B 16, 215–226 (1974)

6. Greenwell, D.L., Hemminger, R.L.: Reconstructing the n-connected components of

a graph. Aequationes Mathematicae 9, 19–22 (1973)

7. Harary, F.: A survey of the reconstruction conjecture. In: Graphs and Combina-

torics. Lecture Notes in Mathematics, vol. 406, pp. 18–28 (1974)

8. Hell, P., Huang, J.: Certifying LexBFS recognition algorithms for proper interval

graphs and proper interval bigraphs. SIAM Journal on Discrete Mathematics 18,

554–570 (2005)

9. Kelly, P.J.: A congruence theorem for trees. Pacific Journal of Mathematics 7,

961–968 (1957)

10. Manvel, B.: Reconstruction of unicyclic graphs. In: Proof Techniques in Graph

Theory. Academic Press, New York (1969)

11. McKay, B.D.: Small graphs are reconstructible. Australasian Journal of Combina-

torics 15, 123–126 (1997)

12. von Rimscha, M.: Reconstructibility and perfect graphs. Discrete Mathematics 47,

283–291 (1983)

13. Saitoh, T., Otachi, Y., Yamanaka, K., Uehara, R.: Random generation and enu-

meration of bipartite permutation graphs. In: Zaroliagis, C. (ed.) ISAAC 2009.

LNCS, vol. 5868, pp. 1104–1113. Springer, Heidelberg (2009)

14. Tutte, W.T.: On dichromatic polynomials. Journal of Combinatorial Theory 2,

310–320 (1967)

15. Tutte, W.T.: All king’s horses. A guide to reconstruction. In: Graph Theory and

Related Topics, pp. 15–33. Academic Press, New York (1979)

A Transformation from PPTL to S1S�

Cong Tian and Zhenhua Duan��

Institute of Computing Theory and Technology, and ISN Laboratory,
Xidian University, Xi’an, 710071, P.R. China

Abstract. A transformation from Propositional Projection Temporal Logic
(PPTL) as well as Propositional Interval Temporal Logic (PITL) with infinite
models to monadic second order logic with one successor (S1S) is presented in
this paper. To this end, intervals where PPTL and PITL formulas are interpreted
over are represented as T-structures. Further, the semantics of PPTL and PITL
formulas are redefined over T-structures. Moreover, according to T-structure se-
mantics, a PPTL or PITL formula is translated to a formula in S1S. As a result,
many mature theoretical and technical results, such as decidability etc. for S1S
can be easily inherited by PPTL and PITL.

Keywords: Propositional Projection Temporal Logic, S1S, Propositional Interval
Temporal Logic, Decidability, Verification.

1 Introduction

Linear-time temporal logic has been developed into two categories, state based and in-
terval based logics. The most famous state based linear-time temporal logic is Linear
Temporal Logic (LTL) [1] and its variations while the most extensively investigated
interval based temporal logic is Interval Temporal Logic (ITL) [4] and Projection Tem-
poral Logic (PTL) [6]. Currently, LTL has been widely used in the specification and
verification of concurrent systems. Particularly, it has been an important property spec-
ification language with model checking [10]. This is benefited from the early research-
ing work on the theoretical aspects of Propositional LTL (PLTL) [13,9,14], especially
the decidability result. Nevertheless, for interval-based temporal logics, even though it
is more expressive and convenient for the specification, it has not been broadly used
in the specification and verification of concurrent systems because of the decidability
problem.

Within the community of interval-based temporal logics, several researchers have
investigated the decidability of the logic with various kinds of extensions. Rosner and
Pnueli proved the decidability of Choppy Logic [3] which is an extension of PLTL
with chop operator. Halpern and Moszkowski [4] proved that satisfiability of Propo-
sitional Interval Temporal Logic (PITL) is undecidable, while Quantifier Propositional
ITL (QPITL), a subset of PITL, over finite time is decidable. Kono presented a tableaux-
based decision procedure for QPITL with projection [15]. Bowman and Thompson [12]

� This research is supported by the NSFC Grant No. 61003078, 60873018, 60910004, 60433010
and 61003079, 973 Program Grant No. 2010CB328102 and SRFDP Grant No. 200807010012.

�� Corresponding author.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 374–386, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Transformation from PPTL to S1S 375

presented the first tableaux-based decision procedure for quantifier-free propositional
ITL (PITL) over finite intervals with projection. Later, Gomez and Bowman [16] gave
another executable MONA-based decision procedure for PITL with finite models. De-
cidability of interval based temporal logics confined in finite models is not enough for
verification since many reactive systems are designed not to terminate. Accordingly, to
verify those systems with interval based temporal logics, especially using model check-
ing, decidability of these logics with infinite models are required. Motivated by this,
Duan, Tian and Zhang proved the decidability of Propositional Projection Temporal
Logic (PPTL) with infinite models [7]. It is well known that complementing infinite
objects are difficult [18]. So the decision procedure is significant since complementing
infinite words is explicitly involved in.

It has been proved that PLTL is equivalent to first order logic (FOL) [19,20]. Thus,
some theoretical results of FOL can automatically be inherited by PLTL. Naturally, we
can ask a question whether or not there is a well extensively investigated logic which
could be equivalent PPTL? The answer is yes. Monadic second order logic with one
successor (S1S, for short) is a well known second order logic with expressiveness of
full regular expressions. The decidability result of S1S was given by Büchi by trans-
forming S1S formulas to the notation of Büchi automata [17]. Theory of S1S have well
been established. Therefore, if any PPTL formula can be equally transformed to an S1S
formula, some matured theory and technique results, such as decision procedure etc.
for S1S can be inherited by PPTL and PITL. To do so, intervals are first represented
as T-structures. Further, the semantics of PITL or PPTL formulas are redefined over
T-structures. Moreover, according to T-structure semantics, a PITL or PPTL formula is
equivalently translated to a formula in S1S.

The rest parts of this paper are organized as follows. In the next section, the syntax
and semantics of PPTL with infinite models are presented. S1S logic is briefly intro-
duced in Section 3. In Section 4, we show how a PPTL formula can be translated to a
formula in S1S. Finally, the conclusions are drawn in Section 5.

2 Propositional Projection Temporal Logic

Formula P of PPTL over a countable set of atomic propositions Prop is inductively
defined by the following grammar,

P ::= p | ¬P | P ∨ Q | ©P | P∗ | (P1, ..., Pm)pr jQ

where p ∈ Prop;©, ∗ and pr j are basic temporal operators.
Following the definition of Kripke’s structure [2], we define a state s over Prop to

be a mapping from Prop to B = {true, f alse}, s : Prop −→ B. We will use s[p] to
denote the valuation of p at state s. An interval σ is a non-empty sequence of states,
which can be finite or infinite. The length, |σ|, of σ is ω if σ is infinite, and the number
of states minus 1 if σ is finite. To have a uniform notation for both finite and infinite
intervals, we will use extended integers as indices. That is, we consider the set N0 of
non-negative integers and ω, Nω = N0 ∪ {ω}, and extend the comparison operators,
=, <,≤, to Nω by considering ω = ω, and for all i ∈ N0, i < ω. Moreover, we define
	 as ≤ −{(ω,ω)}. To simplify definitions, we will denote σ by < s0, ..., s|σ| >, where

376 C. Tian and Z. Duan

s|σ| is undefined if σ is infinite. With such a notation, σ(i.. j) (0 ≤ i 	 j ≤ |σ|) denotes
the sub-interval < si, ..., s j > and σ(k) (0 ≤ k 	 |σ|) denotes < sk, ..., s|σ| >. Further,
the concatenation of a finite σ with another interval (or empty string) σ′ is denoted by
σ · σ′. Let σ =< s0, s1, . . . , s|σ| > be an interval and r1, . . . , rh be integers (h ≥ 1) such
that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh 	 |σ|. The projection of σ onto r1, . . . , rh is the interval
(namely projected interval)

σ ↓ (r1, . . . , rh) =< st1 , st2 , . . . , stl >

where t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates. That is, t1, . . . , tl is
the longest strictly increasing subsequence of r1, . . . , rh. For instance,

< s0, s1, s2, s3, s4 >↓ (0, 0, 2, 2, 2, 3) =< s0, s2, s3 >

This is convenient to define an interval obtained by taking the endpoints (rendezvous
points) of the intervals over which P1, . . . , Pm are interpreted in the projection construct.

An interpretation is a tuple I = (σ, k, j), where σ is an interval, k is an integer, and
j an integer or ω such that k 	 j ≤ |σ|. We use the notation (σ, k, j) |= P to denote that
formula P is interpreted and satisfied over the subinterval < sk, ..., s j > of σ with the
current state being sk. The satisfaction relation (|=) is inductively defined as follows:

(σ, k, |σ|) |= p iff sk[p] = true, for any proposition p
(σ, k, |σ|) |= ¬P iff I |= P
(σ, k, |σ|) |= P ∨ Q iff I |= P or I |= Q
(σ, k, |σ|) |= ©P iff k < j and (σ, k + 1, |σ|) |= P
(σ, k, |σ|) |= P∗ iff |σ| = 0 or there exists k0 = 0 ≤ k1 ≤ ... 	 km = |σ| such that

(σ, ki, ki+1) |= P for all i, 0 ≤ i < m
(σ, k, |σ|) |= (P1, ..., Pm) pr j Q if there exist integers k = r0 ≤ r1 ≤ ... ≤ rm ≤ j such

that (σ, r0, r1) |= P1, (σ, rl−1, rl) |= Pl, 1 < l ≤ m, and (σ′, 0, |σ′|) |= Q
for one of the following σ′ :
(a) rm < j, σ′ = σ ↓ (r0, ..., rm) · σ(rm+1.. j)

(b) rm = j, σ′ = σ ↓ (r0, ..., rh) for some 0 ≤ h ≤ m

The abbreviations true, f alse, ∧,→ and↔ are defined as usual. In particular, true
def
=P∨

¬P and f alse
def
=P∧¬P for any formula P. Also we have the following derived formulas:

empty
def
= ¬ © true more

def
= ¬empty

©0 P
def
= P ©nP

def
= ©(©n−1P)

len(n)
def
= ©n empty skip

def
= len(1)

⊙
P

def
= empty ∨©P P; Q

def
= (P,Q) pr j empty

�P
def
= true; P �P

def
= ¬�¬P

where � (always), � (sometimes) and ; (chop) are derived temporal operators; empty
denotes an interval with zero length; and more means the current state is not the final
one over an interval.

A Transformation from PPTL to S1S 377

A formula P is satisfied by an interval σ, denoted by σ |= P, if (σ, 0, |σ|) |= P. A
formula P is satisfiable if σ |= P for some σ. A formula P is valid, denoted by |= P, if
σ |= P for all σ.

Note that the subset of PPTL without projection (but chop is included as a basic
operator) is propositional interval temporal logic (PITL) given in 1995 [5] by extending
the original PITL confined in finite models to infinite models after the appearance of
PPTL in 1994 [11].

3 Monadic Second Order Logic with One Successor

S1S is a monadic second order logic with one successor. Let V1 = {x, y, ...} be a count-
able set of first-order variables, and V2 = {X, Y, ...} be a countable set of second-order
variables. Term t and formula ϕ can inductively be defined as follows,

t ::= 0 | x | Suc(t)
ϕ ::= t ∈ X | t1 = t2 | ¬ϕ | ϕ0 ∨ ϕ1 | ∃x.ϕ | ∃X.ϕ

where Suc(t) = t + 1. A first-order variable x is interpreted over Nω, I1 : V1 → Nω,
while a second-order variable is interpreted as a subset of Nω, I2 : V2 → 2Nω .

An interpretation for a term or a formula is a II1 ,I2 =< m1, ...,mk,M1, ...,Ml >, where
mi ∈ Nω, 1 ≤ i ≤ k, and M j ∈ 2Nω , 1 ≤ j ≤ l. We use II1 ,I2 to mean that a term or
a formula is interpreted under the interpretation I1(xi) = mi and I2(X j) = M j for the
first and second-order variables appearing in the term or formula. For every term t,
the evaluation of t relative to interpretation II1 ,I2 is defined as II1 [t] by induction on
the structure of term,

II1 [0] = 0
II1 [x] = I1(x)

II1 [S uc(t)] = II1 [t] + 1

The satisfaction relation for formulas |= is inductively defined as follows,

II1,I2 |= t ∈ X iff II1 [t] ∈ I2(X)
II1,I2 |= t1 = t2 iff II1 [t1] = II1 [t2]
II1,I2 |= ¬ϕ iff II1,I2 |= ϕ
II1,I2 |= ϕ1 ∨ ϕ2 iff II1,I2 |= ϕ1 or II1,I2 |= ϕ2

II1 ,I2 |= ∃x.ϕ iff there is an a ∈ Nω such that I′1(y) =

{
I1(y), if y � x
a, otherwise

and II′1 ,I2 |= ϕ.

II1,I2 |= ∃X.ϕ iff there is an A ∈ 2Nω such that I′2(Y)=

{
I2(Y), if Y � X
A, otherwise

and II1,I′2 |= ϕ.

The abbreviations true, f alse, ∧, → and ↔ can be derived as usual. In addition,
many other useful abbreviations can be derived. The following abbreviations are used
in this paper.

∀X.ϕ
def
= ¬∃X.¬ϕ

x � Y
def
= ¬(x ∈ Y)

x � y
def
= ¬(x = y)

X ⊆ Y
def
= ∀z.(z ∈ X → z ∈ Y)

378 C. Tian and Z. Duan

X = Y
def
= X ⊆ Y ∧ Y ⊆ X

Suff (X)
def
= ∀y.(y ∈ X → Suc(y) ∈ X)

x ≤ y
def
= ∀Z.(x ∈ Z ∧ Suff (Z)→ y ∈ Z)

Min(X) = x
def
= x ∈ X ∧ ¬∃y.(y ∈ X ∧ y < x))

Max(X) = x
def
= x ∈ X ∧ ¬∃y.(y ∈ X ∧ y > x))

x 	 y
def
= (y � ω→ x ≤ y) ∧ (y = ω→ x < y)

Con(K, km, kn)
def
= K ⊆ Nω ∧ (km, kn ∈ K) ∧ km ≤ kn ∧ ¬∃kl ∈ K ∧ (km < kl < kn)

The meaning of most of the derived constructs is intuitive, e.g. ∀X.ϕ, x � Y, x � y,
X ⊆ Y, X = Y, x ≤ y, Suff (X), Min(X) and Max(X). For x 	 y, it has the same meaning
as the one given in section 2. Con(K, km, kn) means that kn is the smallest successor of
km in set K ⊆ Nω or kn equals to km.

An S1S formula ϕ(x1, ..., xk, X1, ..., Xl) is satisfiable by II1,I2 , denoted by II1 ,I2 |=
ϕ(x1, ..., xk, X1, ..., Xl), if ϕ(m1, ...,mk,M1, ...,Ml) is true. A formula ϕ is satisfiable if
II1 ,I2 |= ϕ(x1, ..., xk, X1, ..., Xl) for some II1,I2 . A formula P is valid, denoted by |= ϕ, if
II1 ,I2 |= ϕ(x1, ..., xk, X1, ..., Xl) for all II1 ,I2 .

4 Transformation from PPTL to S1S

4.1 From Intervals to T-Structures

As mentioned before, an interval is defined as a sequence of states where each state is
a set of propositions which hold at the state. From another point of view, a sequence
of states can be denoted by a set N consisting all the subscripts of the states in the
sequence. And a proposition can be viewed as a set consisting of subscripts of the states
at which it holds over an interval. Formally, for a given interval σ =< s0, s1, ... > and a
proposition p we define,

N =

{ {0, 1, ..., i}, if |σ| � ω and the last state in σ is si.
Nω, otherwise

and

S et(p, σ) =

{ {i | si[p] = true, i ∈ N0}, if |σ| � ω
{i | si[p] = true, i ∈ N0} ∪ {ω}, otherwise

Note that for σ = σ1 · σ2, N = N1 ∪ N2.

Example 1. σ1 =< {p}, {p, q}, {p, q}, {q}, {q}, {p}, {p}, {p}, {p}, ... >, where for i = 0, 1, 2
and i ≥ 5, i ∈ N0, si[p] = true, and for i = 1, 2, 3 and 4, si[q] = true and |σ1| = ω.
Therefore, S et(p, σ1) = {ω, 0, 1, 2, 5, 6, 7, 8, ...} and S et(q, σ1) = {1, 2, 3, 4}. Equiva-
lently, we can denote the valuation of p at state si by 1 if si[p] = true otherwise 0, thus
interval σ1 can be shown as follows,

p 1, 1, 1, 0, 0, 1, 1, 1, 1, ...
q 0, 1, 1, 1, 1, 0, 0, 0, 0, ...

s0, s1, s2, s3, s4, s5, s6, s7, s8, ...

A Transformation from PPTL to S1S 379

In this way, we add i to S et(p, σ) if the value of p is 1 at the ith state si. Accord-
ingly, since proposition p holds on states s0, s1, s2, s5, s6, s7, s8, ..., and q only holds on
states s1, s2, s3 and s4. So, we can also obtain S et(p, σ) = {ω, 0, 1, 2, 5, 6, 7, 8, ...} and
S et(q, σ) = {1, 2, 3, 4}. �

Now, we represent an interval as a so called T-structure, T =< i, j,N,P >, where
i, j ∈ Nω, N ⊆ Nω, and P ⊆ 2N . Note that T =< i, j,N,P > is a special case of
II1 ,I2 =< m1, ...,mk,M1, ...,Ml > with i and j being first order variables while N ∪ P
being the set of second order variables. Let Σ be the set of all intervals, and T be the set
of all T-structures. FunctionΘ : Σ → T is defined to map an interval σ to a T-structure.
For an interval σ(i.. j),

Θ(σ(i.. j)) =< i, j,N,P >
whereP is a set of second-order variables which are renamed by propositions appearing
in the interval σ(i.. j). Function θ : Prop → P is employed for renaming a proposition
p ∈ Prop as a second-order variable in S1S,

θ(p) = Xp

Therefore,
P = {Xp | p ∈ Prop, and appears in σ}

and for each Xp, I2(Xp) = S et(σ, p).

Example 2. For σ =< {p}, {p, q}, {p, q}, {q}, {q}, {p}, {p}, {p}, {p}, ... >, where for i =
0, 1, 2 and i ≥ 5, i ∈ N0, si[p] = true, and for i = 1, 2, 3 and 4, si[q] = true.

Θ(σ(0..ω))
= < 0, ω,N = Nω, {Xp = {ω, 0, 1, 2, 5, 6, 7, 8, ...},

Xq = {1, 2, 3, 4}} >
�

Further, for projected interval σ ↓ (k0, ..., km), Θ(σ ↓ (k0, ..., km)) =< k0, km,N =
{k0, ..., km},P >.

Example 3. For σ(0..ω) |= (P1, P2, P3) pr j Q as depicted in Fig.1, Θ(σ(0..ω)) =< 0, ω,
Nω,P1 >, P1 = {Xp | p ∈ Prop, and appears in σ0..ω}. Θ((σ(0..ω) ↓ {0, 5, 7, 13}) ·
σ(14..ω)) =< 0, ω,N,P2 > where N = {0, 5, 7, 13, 14, 15, ...}∪ {ω}, P2 = {Xp | p ∈ Prop,
and appears in < s0, s5, s7, s13, s14, s15, ... >}. �

· · ·

P1 P2 P3

Q

s1

s0

s3 s4

s5

s6

s7

s8 s9 s10 s11 s12

s13

s0 s5 s7 s13

s14 s15

σ:

Fig. 1. σ |= (P1, P2, P3) pr j Q

380 C. Tian and Z. Duan

4.2 From PPTL to S1S

Accordingly, PPTL formulas can be interpreted over T-structures as follows,

< i, j,N,P >|=T p iff θ(p) ∈ P and i ∈ S et(p, σ(i.. j)).
< i, j,N,P >|=T ¬P iff < i, j,N,P > |=T P.
< i, j,N,P >|=T P ∨ Q iff < i, j,N,P >|=T P or < i, j,N,P >|=T Q.
< i, j,N,P >|=T ©P iff i < j and < i + 1, j,N \ {i},P >|=T P.
< i, j,N,P >|=T P; Q iff there exists k ∈ N, i ≤ k 	 j such that

< i, k, {i, ..., k},P >|=T P and < k, j, {k, ..., j},
P >|=T Q.

< i, j,N,P >|=T P∗ iff i = j or there exist k0, k1, ..., km∈ N, such that
i = k0 ≤ k1 ≤ ...	 km = j and< kl, kl+1,N,P >|=TP
for all 0 ≤ l < m.

< i, j,N,P >|=T (P1, ..., Pm) pr j Q iff there exists M = {k0, ..., km} ⊆ N, such that
i = k0 ≤ k1 ≤ ... ≤ km ≤ j, < kl−1, kl, {kl−1, ..., kl},
P >|=T Plfor all 0 < l ≤ m, and
(a) < k0, j,N′,P >|=T Q and N′ = M ∪ {km + 1,

km + 2, ..., j}, if km < j.
(b) < k0, km,N′,P >|=T Q and N′=M, if km = j.

Satisfaction of PPTL formulas over T-structures can be shown to be necessary and
sufficient w.r.t satisfaction over intervals, for both describe exactly the same models.

Theorem 1. For anyσ(i.. j) ∈Σ, and for any PPTL formula P,Θ(σ(i.. j)) =< i, j,N,P >|=T
P iff σ(i.. j) |= P.

Proof. The proof proceeds by induction on structures of PPTL formulas.
Base case: < i, j,N,P >|=T p iff σ(i.. j) |= p

< i, j,N,P >|=T p
iff θ(p) ∈ P and i ∈ θ(p) Definition of |=T
iff si[p] = true Definition of P
iff σ(i.. j) |= p Definition of |=

Inductive step: Suppose, for any formula P and Q in PPTL, < i, j,N,P >|=T P iff
σ(i.. j) |= P, and < i, j,N,P >|=T Q iff σ(i.. j) |= Q.

1. Negation: < i, j,N,P >|=T ¬P iff σ(i.. j) |= ¬P

< i, j,N,P >|=T ¬P
iff < i, j,N,P > |=T P Definition of |=T
iff σ(i.. j) |= P Hypothesis
iff σ(i.. j) |= ¬P Definition of |=

2. Disjunction: < i, j,N,P >|=T P ∨ Q iff σ(i.. j) |= P ∨ Q

< i, j,N,P >|=T P ∨ Q
iff < i, j,N,P >|=T P or < i, j,N,P >|=T Definition of |=T
iff σ(i.. j) |= P or σ(i.. j) |= Q Hypothesis
iff σ(i.. j) |= P ∨ Q Definition of |=

A Transformation from PPTL to S1S 381

3. Next: < i, j,N,P >|=T ©P iff σ(i.. j) |= ©P

< i, j,N,P >|=T ©P
iff i < j and < i + 1, j,N \ {i},P >|=T P Definition of |=T
iff σ(i+1.. j) |= P Hypothesis
iff σ(i.. j) |= ©P Definition of |=

4. Chop: < i, j,N,P >|=T P; Q iff σ(i.. j) |= P; Q

< i, j,N,P >|=T P; Q
iff there exists k ∈ N0, k 	 j such that
< i, k, {i, ..., k},P >|=T P and < k, j, {k, ..., j},P >|=T Q Definition of |=T

iff there exists k ∈ N0, k 	 j such that
σ(i..k) |= P and σ(k.. j) |= Q Hypothesis

iff σ(i.. j) |= P; Q Definition of |=
5. Chop star: < i, j,N,P >|=T P∗ iff σ(i.. j) |= P∗

< i, j,N,P >|=T P∗
iff i = j or there exists k0, k1, ..., km ∈ Nω, such

that i = k0 ≤ k1 ≤ ... 	 km = j and < kl, kl+1,
{kl, ..., kl+1},P >|=T P for all 0 ≤ l < m. Definition of |=T

iff i = j or there exists k0, k1, ..., km ∈ Nω, such
that i = k0 ≤ k1 ≤ ... 	 km = j and
σ(kl ..kl+1) |= P for all 0 ≤ l < m. Hypothesis

iff < i, j,N,P >|= P∗ Definition of |=
6. Projection: < i, j,N,P >|=T(P1, ..., Pm) pr j Q iff σ(i.. j) |= (P1, ..., Pm) pr j Q

< i, j,N,P >|=T (P1, ..., Pm) pr j Q
iff there exist M = {k0, ..., km} ⊆ N, such that i = k0

≤ k1 ≤ ... ≤ km = j, < kl−1, kl, {kl−1, ..., kl},Pl >|=T Pl

for all 0 < l ≤ m, and
(a) < k0, km,N′,P′ >|=T Q and N′ = M,

if km = j or
(b) < k0, j,N′,P′ >|=T Q and N′ = M ∪ {km + 1,

km + 2,..., j}, if Km < j. Definition of |=T
iff there exist M = {k0, ..., km} ⊆ N, such that

i = k0 ≤ k1 ≤ ... ≤ km = j, σ(kl−1 ..kl) |= Pl

for all 0 < l ≤ m, and
(a) σ(i.. j) ↓ (k0, ..., km) |= Q, if k + m = j or
(b) σ(i.. j) ↓ (k0, ..., km) · σ(km+1.. j) |= Q,

if km < j. Hypothesis
iff σ(i.. j) |= (P1, ..., Pm) pr j Q Definition of |=

So the theorem holds. �

382 C. Tian and Z. Duan

Now, the function for transforming a PPTL formula P interpreted over an interval
σi.. j, i ∈ N0, j ∈ Nω, i 	 j, to an S1S formula is presented as follows.

toS 1S (i, j,N, p)
= N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N) ∧ ∃Xp.(Xp ⊆ N ∧ i ∈ Xp))

toS 1S (i, j,N,¬P)
= ¬toS 1S (i, j,N, P)

toS 1S (i, j,N, P ∨ Q)
= toS 1S (i, j,N, P) ∨ toS 1S (i, j,N,Q)

toS 1S (i, j,N,©P)
= N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N) ∧ i < j ∧ toS 1S (i + 1, j,N \ {i}, P)

toS 1S (i, j,N, P; Q)
= N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N) ∧ ∃k.(k ∈ N ∧ k ≥ i ∧ k 	 j∧

toS 1S (i, k,N \ {k + 1, ..., j}, P) ∧ toS 1S (k, j,N \ {i, ..., k − 1},Q))
toS 1S (i, j,N, P∗)
= N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N)∧
∃K.(K ⊆ N ∧ j = Max(K) ∧ i = Min(K) ∧ ((i = j)∨
∀km, kn ∈ K.(Con(K, km, kn)→ toS 1S (km, kn, {km, ..., kn}, P)))
toS 1S (i, j,N, (P1, ..., Pm) pr j Q)
= N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N)∧
∃K.(K ⊆ N ∧ Max(K) ≤ j ∧ i = Min(K)∧
∀kl−1, kl ∈ K.(Con(K, kl−1, kl)→ (toS 1S (kl−1, kl, {kl−1...kl}, Pl))∧
((Max(K) < j)→ (toS 1S (i, j,K ∪ {Max(K) + 1... j},Q)))
((Max(K) = j)→ (toS 1S (i,Max(K),K,Q)))))

Theorem 2. For any formula P,σ(i.. j) |=P iff < i, j, {i, ..., j},P>|= toS 1S (i, j, {i, ..., j}, P).

Proof. By Theorem 1, it has σ(i.. j) |=T P iff < i, j, {i, ..., j},P >|=T P. So, we need to fur-
ther prove that < i, j, {i, ..., j},P >|=T P iff < i, j, {i, ..., j},P >|= toS 1S (i, j, {i, ..., j}, P).
The proof bases on the semantics of PPTL formulas interpreted over T-structures and
proceeds on the induction of PPTL formulas.
Base case: < i, j,N,P >|=T p iff < i, j,N,P >|= toS 1S (i, j,N, p)

< i, j,N,P >|=T p
iff Xp ∈ P and i ∈ Xp Definition of |=T
iff N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N)∧
∃Xp.(Xp ∈ 2N ∧ i ∈ Xp) Definition of Θ(σ(i.. j))

iff N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N)∧
∃Xp.(Xp ⊆ N ∧ i ∈ Xp)

iff < i, j,N,P >|= toS 1S (i, j,N, p) Definition of toS 1S (i, j,N, P)

Inductive step: Suppose, for any formula P and Q in PPTL, < i, j,N,P >|=T P iff < i, j,
N,P >|= toS 1S (i, j,N, P), and < i, j,N,P >|=T Q iff < i, j,N,P >|= toS 1S (i, j,N,Q).

1. Negation: < i, j,N,P >|=T ¬P iff < i, j,N,P >|= toS 1S (i, j,N, P)

< i, j,N,P >|=T ¬P
iff < i, j,N,P > |=T P Definition of |=T
iff < i, j,N,P > |= toS 1S (i, j,N, P) Hypothesis
iff < i, j,N,P >|= toS 1S (i, j,N,¬P) Definition of toS 1S (i, j,N, P)

A Transformation from PPTL to S1S 383

2. Disjunction: < i, j,N,P >|=T P ∨ Q iff < i, j,N,P >|= toS 1S (i, j,N, P ∨ Q)

< i, j,N,P >|=T P ∨ Q
iff < i, j,N,P >|=T P or < i, j,N,P >|=T Q Definition of |=T
iff < i, j,N,P >|= toS 1S (i, j,N, P) or
< i, j,N,P >|= toS 1S (i, j,N,Q) Hypothesis

iff < i, j,N,P >|= toS 1S (i, j,N, P ∨ Q) Definition of toS 1S (i, j,N, P)

3. Next: < i, j,N,P >|=T ©P iff < i, j,N,P >|= toS 1S (i, j,N,©P)

< i, j,N,P >|=T ©P
iff i < j and < i + 1, j,N \ {i},P >|=T P. Definition of |=T
iff N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N) ∧ i < j∧
< i + 1, j,N,P >|=T P Definition of Θ(σ(i.. j))

iff N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N) ∧ i < j∧
toS 1S (i + 1, j,N \ {i}, P) Hypothesis

iff < i, j,N,P >|= toS 1S (i, j,N,©P) Definition of toS 1S (i, j,N, P)

4. Chop: < i, j,N,P >|=T P; Q iff < i, j,N,P >|= toS 1S (i, j,N, P; Q)

< i, j,N,P >|=T P; Q
iff there exists k ∈ N, i ≤ k 	 j such that
< i, k, {i, ..., k},P >|=T P
and < k, j, {k, ..., j},P >|=T Q. Definition of |=T

iff N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N) ∧ ∃k.
(k ≥ i ∧ k 	 j∧ < i, k, {i, ..., k},P >|=T P∧
< k, j, {k, ..., j},P >|=T Q) Definition of Θ(σ(i.. j))

iff N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N) ∧ ∃k.(k ≥ i∧
k 	 j∧ < i, k, {i, ..., k},P >|= toS 1S (i, k, {i, ..., k}, P)
∧ < k, j, {k, ..., j},P >|= toS 1S (k, j, {k, ..., j},Q) Hypothesis

iff < i, j,N,P >|= toS 1S (i, j,N, P; Q) Definition of toS 1S (i, j,N,P)

5. Chop star: < i, j,N,P >|=T P∗ iff < i, j,N,P >|= toS 1S (i, j,N, P∗)

< i, j,N,P >|=T P∗
iff i = j or there exist k0, k1, ..., km∈ N, such that

i = k0 ≤ k1 ≤ ...	 km = j and
< kl, kl+1, {kl, ..., kl+1},P >|=TP for all 0 ≤ l < m. Definition of |=T

iff N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N)∧
∃K.(K ⊆ N ∧ j = Max(K) ∧ i = Min(K)∧
((i = j) ∨ ∀km, kn ∈ K.(Con(K, km, kn)→
< km, kn, {km, ..., kn},P >|= P))) Definition of Θ(σ(i.. j))

iff N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N)∧
∃K.(K ⊆ N ∧ j = Max(K) ∧ i = Min(K)∧
((i = j) ∨ ∀km, kn ∈ K.(Con(K, km, kn)→
toS 1S (km, kn, {km, ..., kn}, P))) Hypothesis

iff < i, j,N,P >|= toS 1S (i, j,N, P∗) Definition of toS 1S (i, j,N, P)

384 C. Tian and Z. Duan

6. Projection: < i, j,N,P >|=T (P1, ..., Pm)pr jQ iff < i, j,N,P >|= toS 1S (i, j,N,
(P1, ..., Pm)pr jQ)

< i, j,N,P >|=T (P1, ..., Pm)pr jQ
iff there exists M = {k0, ..., km} ⊆ N, such that i = k0 ≤

k1 ≤ ... ≤ km ≤ j, < kl−1, kl, {kl−1, ..., kl},P >|=T Pl

for all 0 < l ≤ m, and
(a) < k0, j,N′,P >|=T Q and N′ = M ∪ {km + 1,

km + 2, ..., j}, if km < j.
(b) < k0, km,N′,P >|=T Q and N′ = M, if km = j. Definition of |=T

iff N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N)∧
∃K.(K ⊆ N ∧ Max(K) ≤ j ∧ i = Min(K)∧
∀kl−1, kl ∈ K.(Con(K, kl−1, kl)→
(toS 1S (kl−1, kl, {kl−1, ..., kl}, Pl))∧
((Max(K) < j)→ (toS 1S (i, j,K ∪ {Max(K) + 1, ..., j},Q)))
((Max(K) = j)→ (toS 1S (i,Max(K),K,Q))))) Definition of Θ(i.. j)

iff N ⊆ Nω ∧ i = Min(N) ∧ j = Max(N)∧
∃K.(K ⊆ N ∧ Max(K) ≤ j ∧ i = Min(K)∧
∀kl−1, kl ∈ K.(Con(K, kl−1, kl)→
(toS 1S (kl−1, kl, {kl−1, ..., kl}, Pl))∧
((Max(K) < j)→ (toS 1S (i, j,K ∪ {Max(K) + 1, ..., j},Q)))
((Max(K) = j)→ (toS 1S (i,Max(K),K,Q))))) Hypothesis

iff < i, j,N,P >|= toS 1S (i, j,N, (P1, ..., Pm)pr jQ) Definition of toS 1S (i, j,N, P)

So the theorem holds. �

Accordingly, an arbitrary PPTL formula P can be transformed to a S1S formula by,

Tr(P) = ∃i, j,N. ((i ∈ N0 ∧ j ∈ Nω ∧ N ⊆ Nω) ∧ toS 1S (i, j,N, P))

Example 4. Transform©p; q to an S1S formula.

Tr(©p; q) = ∃i, j,N. ((i ∈ N0 ∧ j ∈ Nω ∧ N ⊆ Nω) ∧ toS 1S (i, j,N,©p; q))
= ∃i, j,N. ((i ∈ N0 ∧ j ∈ Nω ∧ N ⊆ Nω)∧

(i = Min(N) ∧ j = Max(N) ∧ ∃k.(k ∈ N ∧ k ≥ i ∧ k 	 j∧
toS 1S (i, k, {i, ..., k},©p)∧ toS 1S (k, j, {k, ..., j}, q))))
= ∃i, j,N. ((i ∈ N0 ∧ j ∈ Nω ∧ N ⊆ Nω)∧

(i = Min(N) ∧ j = Max(N) ∧ ∃k.(k ∈ N ∧ k ≥ i ∧ k 	 j∧
({i, ..., k} ⊆ Nω ∧ i = Min({i, ..., k}) ∧ k = Max({i, ..., k}) ∧ i < k∧
toS 1S (i + 1, k, {i, ..., k} \ {i}, p))∧
({k, ..., j} ⊆ Nω ∧ k = Min({k, ..., j}) ∧ j = Max({k, ..., j})∧
∃Xp.(Xp ⊆ {k, ..., j} ∧ k ∈ Xp)))))
= ∃i, j,N. ((i ∈ N0 ∧ j ∈ Nω ∧ N ⊆ Nω)∧

(i = Min(N) ∧ j = Max(N) ∧ ∃k.(k ∈ N ∧ k ≥ i ∧ k 	 j∧
({i, ..., k} ⊆ Nω ∧ i = Min({i, ..., k}) ∧ k = Max({i, ..., k}) ∧ i < k∧
({i + 1, ..., k} ⊆ Nω ∧ i + 1 = Min({i + 1, ..., k}) ∧ k = Max({i + 1, ..., k})∧
∃Xp.(Xp ⊆ {i + 1, ..., k} ∧ i + 1 ∈ Xp))))∧
({k, ..., j} ⊆ Nω ∧ k = Min({k, ..., j}) ∧ j = Max({k, ..., j})∧

∃Xp.(Xp ⊆ {k, ..., j} ∧ k ∈ Xp)))) �

A Transformation from PPTL to S1S 385

5 Other Transformations

To directly obtain a PPTL formula from an S1S formula seems to be difficult. How-
ever, an indirect transformation exists with Büchi automata and omega regular expres-
sions being the bridges. Büchi provided a transformation from S1S formulas to Büchi
automata [17]. In [21], further transformations from Büchi automata to omega regu-
lar expressions, and omega regular expressions to PPTL formulas were presented. So,
given an S1S formula, an equivalent PPTL formula can also be obtained. Currently, the
related transformations available are illustrated in Fig.2.

PPTLS1S

Buchi automata ω regular expressions

Buchi

[21]

[21]

Section 4

Fig. 2. Existing transformations

6 Conclusions

As presented in this paper, for any formula in PITL and PPTL, it can be equivalently
translated to an S1S formula. Thus, PITL and PPTL are decidable since S1S is de-
cidable. The decision procedure of S1S formulas mainly is based on a transforming
procedure from S1S formulas to Büchi automata. So, for PITL and PPTL, a decision
procedure given by translating formulas in PITL and PPTL to S1S formulas, then trans-
form the S1S formulas to Büchi automata.

Decidability of PPTL and PITL is significant in practice since it makes it possible to
model check interval based temporal logics. This is useful in practice since PPTL and
PITL with infinite models have the expressiveness of full omega regular expressions,
and can express the typical properties such as “even(p)”, which cannot be specified by
both PLTL and CTL.

In [21], a transformation from omega regular expressions to PPTL formulas was give.
So PPTL has the same expressiveness with S1S. However, it can be easily observed that
the resulting S1S formula of Tr(P) is much longer than the original PPTL formula P.
Thus, PPTL is more succinct than S1S.

References

1. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science, pp. 46–67.2. IEEE, New York (1977)

2. Kripke, S.A.: Semantical analysis of modal logic I: normal propositional calculi. Z. Math.
Logik Grund. Math. 9, 67–96 (1963)

3. Rosner, R., Pnueli, A.: A choppy logic. In: First Annual IEEE Symposium on Logic In Com-
puter Science, LICS, pp. 306–314 (1986)

386 C. Tian and Z. Duan

4. Moszkowski, B.: Reasoning about digital circuits. Ph.D Thesis, Department of Computer
Science, Stanford University. TRSTAN-CS-83-970 (1983)

5. Moszkowski, B.C.: Compositional reasoning about projected and infinite time. In: Proceed-
ing of the First IEEE Int’l Conf. on Enginneering of Complex Computer Systems (ICECCS
1995), pp. 238–245. IEEE Computer Society Press, Los Alamitos (1995)

6. Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for Temporal
Logic Programming. PhD thesis, University of Newcastle Upon Tyne (May 1996)

7. Duan, Z., Tian, C., Zhang, L.: A Decision Procedure for Propositional Projection Temporal
Logic with Infinite Models. Acta Informatica 45(1), 43–78 (2008)

8. Tian, C., Duan, Z.: Model Checking Propositional Projection Temporal Logic Based on
SPIN. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS,
vol. 4789, pp. 246–265. Springer, Heidelberg (2007)

9. Wolper, P.L.: Temporal logic can be more expressive. Information and Control 56, 72–99
(1983)

10. Holzmann, G.J.: The Model Checker Spin. IEEE Trans. on Software Engineering 23(5),
279–295 (1997)

11. Duan, Z., Koutny, M., Holt, C.: Projection in temporal logic programming. In: Pfenning, F.
(ed.) LPAR 1994. LNCS, vol. 822, pp. 333–344. Springer, Heidelberg (1994)

12. Bowman, H., Thompson, S.: A decision procedure and complete axiomatization of interval
temporal logic with projection. Journal of logic and Computation 13(2), 195–239 (2003)

13. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115(1), 1–37 (1994)

14. Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: A decision algorithm for full propositional
temporal logic. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, Springer, Heidelberg
(1993)

15. Kono, S.: A combination of clausal and non-clausal temporal logic programs. In: Fisher, M.,
Owens, R. (eds.) IJCAI-WS 1993. LNCS (LNAI), vol. 897, pp. 40–57. Springer, Heidelberg
(1995)

16. Gomez, R., Bowman, H.: A MONA-based Decision Procedure for Propositional Interval
Temporal Logic. In: Workshop of Interval Temporal Logics and Duration Calculi (part of the
15th European Summer School in Logic, Language and Information (August 2003)

17. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Nagel, E. (ed.)
Proceedings of the 1960 International Congress on Logic, Methodology and Philosophy of
Science, pp. 1–12. Stanford University Press, Stanford (1960)

18. Vardi, M.Y.: The Büchi Complementation Saga. In: Thomas, W., Weil, P. (eds.) STACS 2007.
LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)

19. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: Pro-
ceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1980, pp. 163–173. ACM Press, New York (1980)

20. McNaughton, R., Papert, S.A.: Counter-Free Automata. M.I.T research monograph, vol. 65.
The MIT Press, Cambridge (1971)

21. Tian, C., Duan, Z.: Propositional Projection Temporal Logic, Büchi Automata and ω-
Expressions. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS,
vol. 4978, pp. 47–58. Springer, Heidelberg (2008)

Exact and Parameterized Algorithms for Edge
Dominating Set in 3-Degree Graphs

Mingyu Xiao�

School of Computer Science and Engineering

University of Electronic Science and Technology of China

Chengdu 610054, P.R. China

myxiao@gmail.com

Abstract. Given a graph G = (V, E), the edge dominating set problem

is to find a minimum set M ⊆ E such that each edge in E − M has at

least one common endpoint with an edge in M . The edge dominating set

problem is an important graph problem and has been extensively studied.

It is well known that the problem is NP-hard, even when the graph is

restricted to a planar or bipartite graph with maximum degree 3. In this

paper, we show that the edge dominating set problem in graphs with

maximum degree 3 can be solved in O∗(1.2721n) time and polynomial

space, where n is the number of vertices in the graph. We also show

that there is an O∗(2.2306k)-time polynomial-space algorithm to decide

whether a graph with maximum degree 3 has an edge dominating set

of size k or not. Above two results improve previously known results on

exact and parameterized algorithms for this problem.

Keywords: Edge Dominating Set, Exact Algorithm, Parameterized Al-

gorithm, Cubic Graph.

1 Introduction

Since we donot know whether P = NP or not, currently the best we can
exactly solve NP-complete problems is super-polynomial time algorithms. Al-
though most NP-complete problems have exhaustive search algorithms, the for-
biddingly large running time of the search algorithms makes them impractical
even on instances of fairly small size. People wonder whether we can design al-
gorithms that are significantly faster than trivial exhaustive search, though they
are still not polynomial-time. Research on exponential-time algorithms for some
natural and basic problems, such as independent set [1,2], coloring [3], exact
satisfiability [4] and so on, has a long history. Recently, some other basic graph
problems, such as dominating set [5], edge dominating set [6] and feedback set [7],
also draw much attention in this line of research. Furthermore, to get more under-
standing of the structural properties of NP-complete problems, people also have

� This work was supported in part by National Natural Science Foundation of China

Grant No. 60903007.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 387–400, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

388 M. Xiao

interests in exactly solving problems in sparse and low-degree graphs. The inde-
pendent set problem in 3-degree graphs can be solved in O∗(1.0854n) time [8],
the k-vertex cover problem in 3-degree graphs can be solved in O∗(1.1616k)
time [9], and TSP in cubic graphs can be solved in O∗(1.251n) time [10]. More
fresh results on problems in sparse and low-degree graphs can be found in the
literature [11,12,13,14]. To a certain extent, some graph problems in low-degree
graphs are the bottleneck of improving the algorithms for the problems in general
graphs. Motivated by those, in this paper, we study the classic edge dominating
set problem in 3-degree graphs and present some improved algorithms for it. Ex-
cept exact algorithms, we also study parameterized algorithms for this problem.
In parameterized algorithms, we first pick up a parameter of the problem (the
parameter can be the size of the solution, number of the vertices of the input
graph, treewidth of the input graph, and so on), and try to design algorithms
such that the exponential part of the running time is only related to the param-
eter (but not the whole input size). We can regard parameterized algorithms as
a kind of exact algorithms. Parameterized algorithms for some basic graph prob-
lems, including the edge dominating set problem, have been extensively studied
recently. For more details about parameterized algorithms, readers can refer to
recent monographs [15]. In this paper, we will take k, the size of the solution to
the edge dominating set problem, as the parameter to study the parameterized
algorithms.

The edge dominating set problem is a basic problem introduced in Garey and
Johnson’s work [16] on NP-completeness. Yannakakis and Gavril [17] proved
that the edge dominating set problem is NP-hard even in planar or bipartite
graphs of maximum degree 3. Randerath and Schiermeyer [18] designed the first
nontrivial exact algorithm for the minimum edge dominating set problem, which
runs in O∗(1.4423m) time, where m is the number of edges in the graph. Later
Raman et al. [19] improved the result to O∗(1.4423n) and Fomin et al. [20]
further improved to O∗(1.4082n). Currently, the best result is Rooij and Bod-
laender’s O∗(1.3226n)-time algorithm [6], which is analyzed by using ‘measure
and conquer’. In terms of parameterized algorithms with parameter k being the
size of the solution, Fernau [21] gave an O∗(2.6181k)-time algorithm and Fomin
et al. [20] improved the result to O∗(2.4181k).

Almost all above algorithms are based on the idea of enumerating minimal
vertex covers. We first find out a set C of vertices, which is the vertex set of
a minimum edge dominating set, and then find a maximum matching in the
induced graph G[C]. To get vertex cover C, usually we search in the following
way: picking up a vertex of highest degree and branching into two branches by
including it into the vertex cover or excluding it from the vertex cover. This
method is also an effective way to solve the independent set and vertex cover
problems. Although we have many useful techniques for the independent set
and vertex cover problems in low-degree graphs and can solve these two prob-
lems in 3-degree graphs very fast, few of the techniques can be used in the edge
dominating set problem. All previous algorithms for the edge dominating set
problem in general graphs can not be improved directly when we restrict the

Edge Dominating Set in 3-Degree Graphs 389

graphs to 3-degree graphs. In this paper, we design faster exact and parame-
terized algorithms for the edge dominating set problem in 3-degree graphs. Our
exact algorithm is the first effective algorithm that are not based on enumerating
minimal vertex covers and the algorithm is analyzed by measuring the number
of degree-3 vertices instead of the number of vertices or edges. We also show that
the exact algorithm can be used to derive an improved parameterized algorithm
for our parameterized problem.

The rest of the paper is organized as follows: Section 2 gives the basic defini-
tions and our notation system. Section 3 gives some reduction rules which will
be used as preprocesses to simplified the input graphs. Section 4 gives our exact
algorithm for the edge dominating set problem in 3-degree graphs. Section 5
designs the algorithm for the parameterized version of this problem. Finally
Section 6 makes the conclusion.

2 Preliminaries

Let G = (V,E) be a graph with n = |V | vertices and m = |E| edges. A graph is
called a 3-degree graph if any vertex in the graph is of degree ≤ 3. We may use p
to denote the number of degree-3 vertices in a 3-degree graph. Let G[V ′] be the
subgraph induced by a subset V ′ ⊆ V , and V (G) be the vertex set of graph G.
A subset S ⊆ E is called an edge dominating set of the graph if every edge in
E − S has at least a common endpoint with an edge in S. The edge dominating
set problem is to find an edge dominating set of minimum size. We also define
the annotated edge dominating set problem, in which, given a graph G with a
subset V0 ⊆ V , we are asked to find a minimum edge dominating set M such
that V0 ⊆ V (M). We will also call the vertices in the given subset V0 annotated
vertices. For a vertex v, we will use N(v) to denote the neighbor set of v, i.e., the
set of vertices adjacent to v. Let N [v] = N(v)∪{v} denote the closed neighbor set
of v. An ordered list of distinct vertices v1v2 · · · vi is called a path of length i, if for
all 2 ≤ j ≤ i there is an edge between vj−1 and vj . We may use (i)-path to denote
a path of length i. A path v1v2 · · · vi is called an inner path, if v2, v3, · · · , vi−1 are
degree-2 vertices and v1 and vi are not degree-1 vertices. Specially, if v1 and vi

are vertices of degree ≥ 3, we also call such inner path a pure path. We also say
that pure path v1v2 · · · vi is incident on v1 (or vi). In this paper, we will use a
modified O notation that suppresses all polynomially bounded factors. For two
functions f and g, we write f(n) = O∗(g(n)) if f(n) = g(n)nO(1).

The algorithms presented in this paper are based on the branch-and-reduce
paradigm. We first apply some reduction rules to reduce the size of the input.
Then we apply some branching rules to branch on the graph by including some
vertices (or edges) into the solution set or excluding some vertices (or edges) from
the solution set. In each branch, we will delete some vertices and get an annotated
edge dominating set problem in a graph with a smaller measure (the measure
can be the number of vertices or edges or others). When a vertex is removed, we
also think that all the edges incident on it are removed. Assume that we branch
on graph G with measure p into several graphs G1, G2, · · · , Gr and the measure
of graph Gi is pi (i = 1, 2, · · · , r). Let C(p) be the worst size of the search tree in

390 M. Xiao

the algorithm when the graph has measure p, then we get the recurrence relation
C(p) ≤

∑r
i=1 C(pi). Solving the recurrence, we get C(p) = [α(p1, p2, · · · , pr)]p,

where α(p1, p2, · · · , pr) is the largest root of the function f(x) = 1−
∑r

i=1 x
−pi .

In the next section, we first introduce our reduction rules.

3 Reduction Rules

Reduction rules are frequently used as preprocesses to reduce the input size. We
can apply the rules to transform an instance to an equivalent smaller instance
(an instance with smaller measure) in polynomial time. There are several nice
reduction rules for the vertex cover problem to deal with degree-1 and degree-
2 vertices, by using which we can design fast algorithms for the vertex cover
problem in 3-degree graphs and general graphs. However, few of the rules can be
extended to the edge dominating set problem in spite of the similarity between
the two problems. In this section, we will present some reduction rules to deal
with some special cases of the degree-1 and degree-2 vertices for the annotated
edge dominating set problem. Recall that annotated vertices are required to be
endpoints of edges in the edge dominating set. Our reduction rules are given as
follows.

Rule 1: Folding degree-1 vertices
Let v be a degree-1 vertex in the graph and u the unique neighbor of it.

Case 1: If v is an annotated vertex, we put edge vu into the edge dominating set
and remove v and u (also all the edges incident on them and degree-0 vertices)
from the graph;
Case 2: If v is not an annotated vertex, we remove vertex v from the graph and
annotate vertex u.

It is easy to see the correctness of Rule 1. To deal with degree-2 vertices, we
have the following two reduction rules.

Rule 2: Folding some special triangles
Let v be a degree-2 vertex in the graph, and u and w the two neighbors of it. If
v is not annotated and u and w are adjacent, then we remove v from the graph
and annotate u and w.
Proof. If vu or vw is in the minimum edge dominating set S, we can simply
replace it with uw in S to get another minimum edge dominating set. Then we
can assume that vu, vw �∈ S and u,w ∈ V (S). Therefore, we can delete v and
annotate u and w in the graph.

Rule 3: Folding inner paths of length 4
Let abcde be an inner path in the graph. We can get the following reduction rules
that depend on b, c, d annotated or not (please see Fig. 1 for the illustration):

Case 1: If none of b, c, d is an annotated vertex, we delete b, c, d, and introduce
a new edge ae if there is not an edge between a and e;
Case 2: If only b (resp. d) is an annotated vertex, we delete b, c, d, and introduce
a new edge ae if there is not an edge between a and e, and annotate e (resp. a);

Edge Dominating Set in 3-Degree Graphs 391

Case 3: If only b and d are annotated vertices, we put ab and de into the edge
dominating set and remove a, b, c, d, e from the graph;
Case 4: If all of b, c, d are annotated vertices, we remove b, c, d and introduce a
new vertex v that is adjacent to a and e and annotate v.

a

d

c

b

e
a e

Case 1

a

d

c

b

e
a e

Case 2

a

d

c

b

e
a e

Case 4

v

: annotated vertex : unannotated vertex : annotated or unannotated vertex

Fig. 1. Illustration of Reduction Rule 3

Proof. First, we prove Case 1. Let G be the original graph and G′ the graph after
replacing path abcde with edge ae in G. We prove that G has an edge dominating
set of size k if and only if G′ has an edge dominating set of size k − 1.

For the first direction, we assume that G has an edge dominating set S of size
k and show that G′ will have an edge dominating set of size k − 1. We consider
three cases for S: ab ∈ S, ab �∈ S but bc ∈ S, and ab, bc �∈ S but {a, c} ⊂ V (S).
If ab ∈ S, we can assume that de ∈ S, otherwise bc or cd will be in S and we can
simply replace bc or cd with de in S. It is easy to see that (S−{ab, de})∪{ae} is
an edge dominating set of size k− 1 for G′. If bc ∈ S and ab �∈ S, we can assume
that cd, de �∈ S, otherwise we can simply replace cd or de with ef in S, where f
is a neighbor of e other than d. Therefore, S − {bc} will be an edge dominating
set of size k − 1 for G′. If ab, bc �∈ S and {a, c} ⊂ V (S), then cd ∈ S and we can
assume that de �∈ S. For this case, S − {cd} is still an edge dominating set of
size k − 1 for G′.

For the other direction, we assume that S′ is an edge dominating set of size
k − 1 for G′ and consider three cases for S′: a, e ∈ V (S), a ∈ V (S) but e �∈
V (S), and e ∈ V (S) but a �∈ V (S). For the case a, e ∈ V (S), if ae ∈ S, then
(S′ − {ae}) ∪ {ab, de} is an edge dominating set of size k for G; if ae �∈ S, then
S′∪{bc} is an edge dominating set of size k for G. If a ∈ V (S) but e �∈ V (S), then
S′ ∪ {cd} is an edge dominating set of size k for G. If e ∈ V (S) but a �∈ V (S),
then S′ ∪ {bc} is an edge dominating set of size k for G.

392 M. Xiao

We have finished the proof of Case 1. In the same way, we can prove Case 2-4.

Note that Rule 3 can not be used to reduce all inner paths of length 4, because
the four cases do not cover all cases. But we can use Rule 3 to reduce all inner
paths of length ≥ 6 (please see the proof of Lemma 3).

For convenience, we will call a graph a reduced graph, if none of Rule 1, Rule 2
and Rule 3 can be applied.

4 The Exact Algorithm

We present the main steps of our exact algorithm in Fig. 2. The description of
each branching operation (Step 3-7) and the analysis are delayed to the sub-
sections following the algorithm. We will use S∗ to denote a minimum edge
dominating set that contains all the edges in the current solution set in our
algorithm if such kind of minimum edge dominating sets exist.

1. If the graph is not a reduced graph, apply Reduction Rule 1-3 to reduce

the graph.

2. If there is a component of less than 20 vertices, find the optimal solution

to this component directly.

3. If the graph is a 3-regular graph, branch on the 3-regular graph.

4. If there is a pure path abc of length 2 such that b is annotated, branch on

it.

5. If there is a pure path of length 3, branch on it.

6. If there is a pure path abcde of length 4 such that b and c are annotated,

branch on it.

7. Else pick up a degree-3 vertex adjacent to at least a degree-2 vertex and

branch on it.

8. Return a solution.

Fig. 2. The exact algorithm

To analyze the running time of our algorithm, we need to analyze the size
of the searching tree of the algorithm. Traditionally, we may use the number of
vertices or edges in the graph to measure the size. Some recent references [22,14]
used the number of degree-3 vertices as the measure to analyze the running
time for the independent set and vertex cover problems in 3-degree graphs and
got significant improvements. We will also use this technique to analyze our
algorithm and get the improved running time bound. Recall that we use p to
denote the number of degree-3 vertices in the graph. First of all, we give the
following two lemmas.

Lemma 1. Let G be a connected graph with maximum degree 3. If G has x
degree-1 vertices and at least x degree-3 vertices, then after iteratively applying
Reduction Rule 1 until the graph has no degree-1 vertex, we can reduce at least
x degree-3 vertices from the graph.

Edge Dominating Set in 3-Degree Graphs 393

This lemma for the independent set and vertex cover problems has been proved
in [14] (Lemma 8). We can simply modify the proof in [14] to get a similar proof
for this lemma.

Lemma 2. After applying Rule 2-3, the number of degree-3 vertices in the graph
will not increase.

Now we are ready to describe and analyze the branching operations in Fig. 2.

4.1 Branching on 3-Regular Graphs (Step 3)

Assume the graph is a 3-regular graph, we consider two cases: whether there is an
annotated vertex in the graph or not. If all the vertices are not annotated vertices,
we arbitrarily select a vertex a (assume that b, c, d are the three neighbors of a),
and branch into four branches by either including ab or ac or ad into the edge
dominating set or excluding all the three edges from the graph. When ab (or ac or
ad) is included into the edge dominating set, we delete ab (or ac or ad) from the
graph. After deleting ab (or ac or ad), we will iteratively apply Reduction Rule 1
to reduce degree-1 vertices in Step 1 if some degree-1 vertices are created. By
Lemma 1, we know that together at least 6 degree-3 vertices will be reduced in
this branch. When none of the three edges is included into the edge dominating
set, we can delete a from the graph and annotate b, c, d. Then we will reduce
4 degree-3 vertices. Let C(p) be the worst size of the searching tree when the
graph has at most p degree-3 vertices, we get the following recurrence

C(p) ≤ 3C(p− 6) + C(p− 4), (1)

which solves to C(p) = O(1.2930p).
If the graph has an annotated vertex a (with three neighbors b, c, d), we only

need to branch into three branches by either including ab or ac or ad into the
edge dominating set, then we get the following recurrence

C(p) ≤ 3C(p− 6), (2)

which is covered by (1).

4.2 Branching Operation in Step 4

Assume the graph has a pure 2-path abc such that b is an annotated vertex. We
branch on abc by including ab into the edge dominating set or including bc into
the edge dominating set. After deleting ab (or bc) from the graph and iteratively
applying Reduction Rule 1, we can reduce at least 4 degree-3 vertices in each
branch (note that abc is a pure path and then a and c are degree-3 vertices).
Then we get the following recurrence

C(p) ≤ 2C(p− 4), (3)

which solves to C(p) = O(1.1893p).

394 M. Xiao

4.3 Branching Operation in Step 5

Assume the graph has a pure path abcd of length 3. We will consider whether b
and c are annotated or not.

If neither b or c is annotated, we branch into three branches by including
either ab or bc or cd into the edge dominating set. Recall that S∗ stands for a
minimum edge dominating set that contains the current solution set. Note that
in the branch where bc is included into the edge dominating set, we can assume
that a, d �∈ V (S∗), because if a ∈ V (S∗) (or d ∈ V (S∗)) we can replace bc with
cd (or replace bc with ab) in S∗ to get another solution that does not contain
bc. Then in this branch, we annotate all neighbors of a and d and delete a, b, c, d
from the graph and include bc into the edge dominating set. Totally we can
reduce p by at least 6. In the other two branches, we delete ab or cd from the
graph, and can reduce p by at least 4. We get

C(p) ≤ C(p− 6) + 2C(p− 4), (4)

which solves to C(p) = O(1.2721p).
If only b is an annotated vertex, we branch by including ab or bc into the

edge dominating set. Note that in the branch where bc is included into the edge
dominating set, we can assume that d �∈ V (S∗), because if d ∈ V (S∗) we can
replace bc with ab in S∗ to get another solution that does not contain bc. Then
in this branch, we annotate all neighbors of d and delete b, c, d from the graph
and include bc into the edge dominating set. Totally we can reduce p by at least
4. In the branch where ab is included into the edge dominating set, we will delete
a and b from the graph and reduce p by at least 4. We will get a recurrence as
(3).

Similarly, we can branch with (3) by the same analysis, if only c is annotated.
If both b and c are annotated, we branch by including bc into the edge domi-

nating set or excluding it from the edge dominating set. In the first branch, we
will delete bc from the graph, and reduce p by 2. In the second branch, then
ab and cd will be included into the edge dominating set. We will delete a, b, c, d
from the graph and reduce p by at least 6. We get

C(p) ≤ C(p− 6) + C(p− 2), (5)

which solves to C(p) = O(1.2107p).

4.4 Branching Operation in Step 6

Assume abcde is a pure path of length 4 such that b and c are annotated vertices
and d is not an annotated vertex (If d is also an annotated vertex, the path will
be reduced in Step 1). We look at vertex e. If e is not an endpoint of any edge
in the minimum edge dominating set, we can simply assume that ab and cd are
in the edge dominating set. Then we can annotate all neighbors of e and delete
a, b, c, d, e from the graph and reduce p by 6. Else e is an endpoint of an edge in
the minimum edge dominating set, we can simply assume that bc is in the edge
dominating set. Then we can delete b, c, d from the graph and annotate e and
reduce p by 2. Therefore, we can branch as above and get a recurrence as (5).

Edge Dominating Set in 3-Degree Graphs 395

4.5 Branching Operation in Step 7

This case is the most complicated case, but it is not the bottleneck of the algo-
rithm. First of all, we prove some properties of the graph in Step 7.

Lemma 3. The graph in Step 7 has only three kinds of pure paths besides pure
path of length 1 (please see Fig. 3 for the illustration):
(a) pure path abc of length 2 such that b is not an annotated vertex;
(b) pure path abcde of length 4 such that c is an annotated vertex and b and d
are not annotated vertices;
(c) pure path abcdef of length 5 such that c and d are annotated vertices and b
and e are not annotated vertices.

a
c

b f

e

: annotated vertex : unannotated vertex

a
c

b d

a

b

c

d

e

: annotated or unannotated vertex

Case (a) Case (b) Case (c)

Fig. 3. The three kinds of pure paths in Lemma 3

Proof. Clearly, if the graph has a pure path of length 2 or 3 or 4 other than
Case (a) or (b) in the lemma, the path will be reduced in Step 1-6. Next, we
assume that there is an inner path abcdef of length 5 (which will appear in
all pure paths of length ≥ 5). We prove that this path must be a pure path of
Case (c). Since abcde and bcdef can not apply Reduction Rule 3, the only case
of abcdef is that c and d are annotated vertices and b and e are not annotated
vertices. Furthermore, path abcdef can not be a subpath of a pure path of length
> 5, otherwise Reduction Rule 3 still can be applied. Therefore, we know that
abcdef can only be a pure path of Case (c).

Lemma 4. Let abcde be a pure path of length 4 such that c is an annotated
vertex and b and d are not annotated vertices (Case (b) in Lemma 3). Then
there is a minimum edge dominating set that does not contain edge ab.

Proof. If there is a minimum edge dominating set that contains ab, we can
simply replace ab with ab′ to get another minimum edge dominating set, where
b′ is another neighbor of a.

In the same way, we can prove

Lemma 5. Let abcdef be a pure path of length 5 such that c and d are annotated
vertices and b and e are not annotated vertices (Case (c) in Lemma 3). Then
there is a minimum edge dominating set that does not contain edge ab.

396 M. Xiao

We are ready to introduce the branching operation in this step now. We pick
up a degree-3 vertex a (assume that b, c, d are the three neighbors of a) that is
adjacent to at least a degree-2 vertex in the graph. We distinguish the following
three cases according to the number of pure 2-paths incident on v.

Case 1: No pure 2-path is incident on v. If there is only one degree-2 neighbor
of a, say b, we will branch by either including ac or ad into the edge dominating
set or excluding all the three edges from the graph. The correctness of this
operation follows from this observation: b is a degree-2 vertex and ab must be
on a pure path of Case (b) or Case (c) in Lemma 3. By Lemma 4 and Lemma 5,
we know that we do not need to consider the case of including ab. In the branch
where ac or ad is included into the edge dominating set, we can reduce p by 6, and
in the branch where all the three edges are excluded from the edge dominating
set, we can reduce p by 4 (just as we analyzed in Section 4.1). Therefore, we can
get the following recurrence

C(p) ≤ 2C(p− 6) + C(p− 4). (6)

If there are at least two degree-2 neighbors of a, say c and d, we will branch by
either including ab into the edge dominating set or excluding all the three edges
from the graph. Lemma 3, Lemma 4 and Lemma 5 also show the correctness of
this operation. We only need to pay attention to the case where all the three
neighbors of a are degree-2 vertices. For this case, we can not simply exclude all
the three edge from the graph without branching, because we may miss the case
a ∈ V (S∗) if we do that. Therefore, we can get

C(p) ≤ C(p− 6) + C(p− 4). (7)

Case 2: Only one pure 2-path is incident on v, say abb′. We look at the other
two neighbors c and d of a (except b). If both c and d are degree-3 vertices, we
will branch on abb′ into three branches. We consider a and b′. If a �∈ V (S∗),
then bb′ ∈ S∗. For this case, we can annotate all neighbors of a and delete a, b, b′

from the graph and include bb′ into the edge dominating set. We can reduce
6 degree-3 vertices (a, c, d, b′ and two from the other two neighbors of b′). If
b′ �∈ V (S∗), we can annotate all neighbors of b′ and delete a, b, b′ from the graph
and include ab into the edge dominating set. In this branch we still can reduce
p by 6. If a, b′ ∈ V (S∗), we can simply assume that ab, bb′ �∈ V (S∗) (if ab ∈ S,
we can replace ab with ac in S to get another solution), and annotate a and b′,
and delete ab and bb′ from the graph. In the third branch, we can reduce two
degree-3 vertices a and b′. Then we can branch into three branches as above and
get the recurrence

C(p) ≤ 2C(p− 6) + C(p− 2). (8)

Note that in the third branch, cad is a pure 2-path (b′ �= c and b′ �= d, otherwise
Reduction Rule 2 can be applied, and then c and d are still degree-3 vertices
after removing ab and bb′) and a is annotated, which implies that the condition
of Step 4 of the algorithm holds. Then we can further branch with (3) at least

Edge Dominating Set in 3-Degree Graphs 397

in this branch. By putting these together, we get

C(p) ≤ 2C(p− 6) + 2C(p− 2− 4) = 4C(p− 6), (9)

which solves to C(p) = O(1.2600p).
If at least one of c and d, say c, is a degree-2 vertex, then ac is on a pure path

of Case (b) or Case (c) in Lemma 3. We will branch on v into three branches:
including ab into the edge dominating set, including ad into the edge dominating
set, and excluding ab, ac, ad from the edge dominating set. By Lemma 4 and
Lemma 5, we know that we can ignore the case of including ac into the edge
dominating set. In the branch where ab or ad is included into the edge dominating
set, we can reduce p by 4 at least. In the last branch, we will delete a and
annotate b, c, d, and then we can directly put edge bb′ into the edge dominating
set according to Reduction Rule 1. Note that b′ is a degree-3 vertex, and then
we can reduce at least 6 degree-3 vertices (a, b′, c, d and two from the other two
neighbors of b′) in this branch. Therefore, we can get a recurrence as (4).

Case 3: At least two pure 2-paths are incident on v, say abb′ and acc′. For
this case, we will pick up a pure 2-path, say abb′, and branch on it into three
branches. We consider a and b′. If a �∈ V (S∗), we can annotate all neighbors
of a and delete a from the graph. Note that in the branch b and c become
annotated degree-1 vertices and we can further include bb′ and cc′ into the edge
dominating set. Totally, we can reduce 8 degree-3 vertices (a, b′, c, d and two
from the other two neighbors of b′ and two from the other two neighbors of c′).
If b′ �∈ V (S∗), we can annotate all neighbors of b′ and delete a, b, b′ from the
graph and include ab into the edge dominating set. In this branch we can reduce
p by 6. If a, b′ ∈ V (S∗), we can simply assume that ab, bb′ �∈ V (S∗) (if ab ∈ S∗,
we can replace ab with aa′ in S∗ to get another solution, where a′ is another
neighbor of a), and annotate a and b′ and remove edges ab and bb′ from the
graph. In the third branch, we can reduce two degree-3 vertices a and b′. Then
we get

C(p) ≤ C(p− 8) + C(p− 6) + C(p− 2), (10)

which solves to C(p) = O(1.2721p).

4.6 Putting All Together

Among all above cases, the worst case is that we branch with (1) in Section 4.1.
In fact, the worst case will not always happen. It is easy to see that in each
subbranch after branching on a 3-regular graph, we will not get a 3-regular graph
again (after applying the reduction rules). In the branch where all the three edges
are excluded from the edge dominating set, the graph will have three annotated
degree-2 vertices. No matter whether the three degree-2 vertices are adjacent or
not, we will branch with (3) at least. Combining with that, we get the following
recurrence

C(p) ≤ 2C(p− 4− 4) + 3C(p− 6) = 2C(p− 8) + 3C(p− 6), (11)

398 M. Xiao

which solves to C(p) = O(1.2721p).
Since (11) is still one of the worst cases among all the cases, we get

Theorem 1. The edge dominating set problem in graphs with maximum degree
3 can be solved in O∗(1.2721p) time and polynomial space, where p ≤ n is the
number of degree-3 vertices in the graph.

Our result improves the best previous result of O∗(1.3226n) by Rooij and Bod-
laender [6] (their result also holds in general graphs).

5 The Parameterized Algorithm

We show that our exact algorithm presented in Section 4 can be used to get
an improved algorithm for the parameterized edge dominating set problem, in
which we are asked to decide whether a 3-degree graph has an edge dominating
set of size k or not. The following property is crucial for our algorithm.

Lemma 6. Let G be a graph with maximum degree 3. If G has p degree-3 vertices
and an edge dominating set of size k, then

k ≥ 3
10
p. (12)

Proof. Let C = V (S) be the vertex size of the edge dominating set S, where
|S| = k. We consider the set E0 of edges with one endpoint in C and the other
in V − C.

Assume that there are p′ degree-3 vertices in C (it is easy to see that p′ ≤ 2k).
All other vertices in C are of degree ≤ 2 and the total number is not greater
than 2k − p′. Then we have

|E0| ≤ 3p′ + 2(2k − p′)− 2k. (13)

On the other hand, there are at least p − p′ degree-3 vertices in V − C. Note
that V − C is an independent set. We have

|E0| ≥ 3(p− p′). (14)

By combining (13) with (14), we get

3p′ + 2(2k − p′)− 2k ≥ 3(p− p′)

and then
3p− 2k ≤ 4p′ ≤ 8k.

Therefore, we get (12).

Based on Lemma 6, we can solve the parameterized edge dominating set problem
in 3-degree graphs in the following way: We first count the number p of degree-3
vertices in the input graph. If k < 3

10p, we report that the graph has no edge
dominating set of size k. Else we use our exact algorithm in Section 4 to find a
minimum edge dominating set in O∗(1.2721p) = O∗(1.2721

10
3 k) = O∗(2.2306k)

time. Then we get

Edge Dominating Set in 3-Degree Graphs 399

Theorem 2. We can use O∗(2.2306k) time and polynomial space to decide
whether a graph with maximum degree 3 has an edge dominating set of size
k or not.

Our algorithm improves the O∗(2.6181k)-time polynomial-space algorithm by
Fernau [21] and O∗(2.4181k)-time exponential-space algorithm by Fomin et al.
[20]. Note that the algorithms in [21] and [20] also work for the problem in
general graphs.

6 Concluding Remarks

In this paper, we have presented an O∗(1.2721n)-time exact algorithm and an
O∗(2.2306k)-time parameterized algorithm for the edge dominating set problem
in degree-3 graphs. Currently, these two algorithms are the fastest algorithms
for the two corresponding problems. Together with our algorithms, we have
presented some data reduction rules for the (annotated) edge dominating set
problem, which can be used to reduce the input size of the graph.

Many branch-and-search algorithms for graph problems have good perfor-
mance when the graph has some high-degree vertices. So fast algorithms for the
problems in low-degree graphs may directly lead to the improvements on the
algorithms for the problems in general graphs. This situation holds for indepen-
dent set, vertex cover, edge dominating set and some other basic problems. It
would be interesting to know whether there are faster algorithms for some basic
graph problems when the graph is restricted to a low-degree graph.

References

1. Tarjan, R., Trojanowski, A.: Finding a maximum independent set. SIAM Journal

on Computing 6(3), 537–546 (1977)

2. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: a simple O(20.288n)

independent set algorithm. In: SODA, pp. 18–25. ACM Press, New York (2006)

3. Beigel, R., Eppstein, D.: 3-coloring in time O(1. 3289n). J. Algorithms 54(2), 168–

204 (2005)

4. Bjorklund, A., Husfeldt, T.: Exact algorithms for exact satisfiability and number

of perfect matchings. Algorithmica 52(2), 226–249 (2008)

5. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: Domination - a case

study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)

ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

6. Rooij, J.M., Bodlaender, H.L.: Exact algorithms for edge domination. In: Grohe,

M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 214–225. Springer,

Heidelberg (2008)

7. Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds,

R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)

8. Bourgeois, N., Escoffier, B., Paschos, V.T., Rooij, J.M.M.: Maximum independent

set in graphs of average degree at most three in O(1.08537n). In: Kratochv́ıl, J., Li,

A., Fiala, J., Kolman, P. (eds.) Theory and Applications of Models of Computation.

LNCS, vol. 6108, pp. 373–384. Springer, Heidelberg (2010)

400 M. Xiao

9. Xiao, M.: A note on vertex cover in graphs with maximum degree 3. In: Thai,

M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 150–159. Springer,

Heidelberg (2010)

10. Iwama, K., Nakashima, T.: An improved exact algorithm for cubic graph tsp. In:

Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 108–117. Springer, Heidelberg

(2007)

11. Chen, J., Kanj, I.A., Xia, G.: Labeled search trees and amortized analysis: Im-

proved upper bounds for NP-hard problems. Algorithmica 43(4), 245–273 (2005);

A preliminary version appeared in ISAAC 2003

12. Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inf. Pro-

cess. Lett. 97(5), 191–196 (2006)

13. Razgon, I.: Faster computation of maximum independent set and parameterized

vertex cover for graphs with maximum degree 3. J. of Discrete Algorithms 7(2),

191–212 (2009)

14. Xiao, M.: A simple and fast algorithm for maximum independent set in 3-degree

graphs. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp.

281–292. Springer, Heidelberg (2010)

15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University

Press, Oxford (2006)

16. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory

of NP-completeness. Freeman, San Francisco (1979)

17. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl.

Math. 38(3), 364–372 (1980)

18. Randerath, B., Schiermeyer, I.: Exact algorithms for minimum dominating set.

Technical Report zaik 2005-501, Universitat zu Koln, Cologne, Germany (2005)

19. Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerat-

ing maximal independent sets and other techniques. Theory of Computing Sys-

tems 42(3), 563–587 (2007)

20. Fomin, F., Gaspers, S., Saurabh, S., Stepanov, A.: On two techniques of combining

branching and treewidth. Algorithmica 54(2), 181–207 (2009)

21. Fernau, H.: Edge dominating set: Efficient enumeration-based exact algorithms. In:

Bodlaender, H., Langston, M. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 142–153.

Springer, Heidelberg (2006)

22. Razgon, I.: A faster solving of the maximum independent set problem for graphs

with maximal degree 3. In: Broersma, H., Dantchev, S.S., Johnson, M., Szeider, S.

(eds.) ACiD. Texts in Algorithmics, vol. 7, pp. 131–142. King’s College, London

(2006)

Approximate Ellipsoid in the Streaming Model

Asish Mukhopadhyay, Animesh Sarker, and Tom Switzer

School of Computer Science, University of Windsor, ON N9B 3P4, Canada

{asishm,sarke1a,switzec}@uwindsor.ca

Abstract. In this paper we consider the problem of computing an ap-

proximate ellipsoid in the streaming model of computation, motivated

by a 3/2-factor approximation algorithm for computing approximate

balls. Our contribution is twofold: first, we show how to compute an

approximate ellipsoid as done in the approximate ball algorithm, and

second, construct an input to show that the approximation factor can

be unbounded, unlike the algorithm for computing approxinmate balls.

Though the ratio of volumes can become unbounded, we show that there

exists a direction in which the ratio of widths is bounded by a factor of 2.

1 Introduction

Of late there has been a burgeoning interest in geometric optimzation problems
over data streams [5,1,6], inspired by Feigenbaum, Kannan and Zhang’s result
on computing the diameter of a point set approximately in the streaming and
sliding-window models [3].

In [9], Zarrabi-Zadeh and Chan proposed a very simple algorithm for comput-
ing an approximate spanning ball of a set of n points P = {p1, p2, p3, ..., pn} in
the streaming model and showed by an elegant analysis showing that the radius
of the approximate ball is to within 3/2 of the exact one. Mukhopadhyay et al [7]
studied this problem for computing an approximate ellipse, extending the ball
algorithm in a non-trivial way and also constructing an example input to show
that the approximation ratio can be unbounded. In this paper, we show that the
results extend to d dimensional space.

The rest of the paper has four sections. In the next, we define our streaming
model. The following section contains our algorithm for computing an approx-
imate ellipsoid with appropriate recipes and analysis. In the fourth section we
construct an example to show that the approximation ratio is unbounded. We
conclude in the last section.

2 Streaming Model

The streaming model was first proposed in [4], providing computational geome-
ters with an impetus to examine problems involving geometric data streams. In
this model, we are allowed to make only one pass over the data, the amount of
storage we are allowed is much smaller than the input data size and updates

W. Wu and O. Daescu (Eds.): COCOA 2010, Part II, LNCS 6509, pp. 401–413, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

402 A. Mukhopadhyay, A. Sarker, and T. Switzer

must be done fast. These are real-time constraints when we attempt to do com-
putation involving an infinite data stream.

For our problem, at iteration i + 1 of the algorithm, we are given a point
pi+1, and also some previous ellipsoid Ei, whose description we store, requiring
O(d) space. We know that Ei is an approximate minimum enclosing ellipsoid for
some unknown set Si. We then want a new ellipsoid Ei+1 that is an approximate
minimum enclosing ellipsoid for Si+1 = Si

⋃
{si+1}. Though it can be set up as

a convex programming optimization problem [2], here we adopt a more direct
approach that we have invented for this rather special case.

3 Approximation Algorithm for Ellipsoid

Our algorithm is based on a solution to the following problem:

Problem: Given an ellipsoid EA be of full volume in k-dimensional space (k ≤ d)
and a and an input point p that lies outside EA, find an ellipsoid of minimum
volume that spans EA and p.

We solve this problem by finding an elliptic transformation (nomenclature
due to Post [8]), T , that transforms EA to a unit ball; the same transformation
is applied to p. Then, in the transformed space, we solve the easier problem
of finding a minimum spanning ellipsoid of the unit ball and T (p). Finally, we
apply an inverse transformation T−1(.) to the minimum spanning ellipsoid in
the transformed space to find the desired minimum spanning ellipsoid in the
original space.

That the transformed ellipsoid in the original space is of minimum volume is
due to the fact that the elliptic transformation T preserves relative volumes. We
will prove this. The details are in the next two subsections.

3.1 Finding T(.)

T (.) is required to have the following properties:

P1 For any ellipsoid E, T (E), as well as its inverse image T−1(E), is an ellipsoid;
P2 T (.) preserves relative volumes, that is, volume(E1) ≤ volume(E2) ⇔

volume(T (E1)) ≤ volume(T (E2)).

If T (.) is a rotation or translation then it obviously has both properties. The
following lemma shows this is also true when T (.) is a scaling.

Lemma 1. Let α > 0. Then the scaling T (.) =

⎡⎢⎢⎢⎢⎢⎣
α 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

...
0 0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦
along the x1-axis satisfies P1 and P2.

Approximate Ellipsoid in the Streaming Model 403

Proof. Let

1 = [p− p0]
T
A [p− p0]

be the matrix equation of an ellipsoid E with center at p0, where

A =

⎡⎢⎢⎢⎢⎢⎣
a11 a12 a13 · · · a1d

a21 a22 a23 · · · a2d

a31 a32 a33 · · · a3d

...
ad1 ad2 ad3 · · · add

⎤⎥⎥⎥⎥⎥⎦
is a positive definite matrix (det(A) > 0).

Let p′ = T (p) for some p on E and p′0 = T (p0). Since T−1 is well-defined, the
matrix equation of the transformed ellipsoid is

[
T−1p′ − T−1p′0

]T
A
[
T−1p′ − T−1p′0

]
= 1

or, on a little simplification

[p′ − p′0]
T
T−1AT−1 [p′ − p′0] = 1,

where

T−1AT−1 =

⎡⎢⎢⎢⎢⎢⎣
1
α 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

...
0 0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a11
α a12 a13 · · · a1d

a21
α a22 a23 · · · a2d

a31
α a32 a33 · · · a3d

...
ad1
α ad2 ad3 · · · add

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
a11
α2

a12
α

a13
α · · · a1d

α
a21
α a22 a23 · · · a2d

a31
α a32 a33 · · · a3d

...
ad1
α ad2 ad3 · · · add

⎤⎥⎥⎥⎥⎥⎦
Hence T (E) is an ellipsoid.

Since the volume of E is given by K√
det(A)

, where K is a constant that depends

on the dimension d, the volume of T (E) = Kα2√
det(A)

. From this and the fact that

T−1(E) is an ellipsoid because T−1 is also an x1-scaling, it follows that T satisfies
P1 and P2.

404 A. Mukhopadhyay, A. Sarker, and T. Switzer

3.2 Finding E′
A

Let xi = (x1i, x2i, . . . , xdi) represent a point in d-dimensional space.

Lemma 2. Suppose
(x1 − x0)2

a2
1

+
x2

2

a2
2

= 1 is an ellipse that encloses the unit

circle x2
1 + x2

2 = 1. Then the ellipsoid
(x1 − x0)2

a2
1

+
x2

2

a2
2

+ · · ·+ x2
d

a2
2

= 1 encloses

the unit ball x2
1 + x2

2 + · · ·+ x2
d = 1

Proof. Let (x11, x21) be a point in x2
1 + x2

2 ≤ 1. Then x2
11 + x2

21 = r2 for some

r ≤ 1. Since
(x1 − x0)2

a2
1

+
x2

2

a2
2

= 1 encloses x2
1+x2

2 = 1, we can write
(x11 − x0)2

a2
1

+

x2
21

a2
2
≤ 1 i.e.

(x11 − x0)2

a2
1

+
r2 − x2

11

a2
2

≤ 1

Let (x11, x21, · · · , xd1) be a point in x2
1 + x2

2 + · · · + x2
d ≤ 1. Then x2

11 + x2
21 +

· · ·+ x2
d1 = s2 for some s ≤ 1. Now,

(x11 − x0)2

a2
1

+
x2

21

a2
2

+ · · ·+ x2
d1

a2
2

=
(x11 − x0)2

a2
1

+
x2

21 + · · ·+ x2
d1

a2
2

=
(x11 − x0)2

a2
1

+
s2 − x2

11

a2
2

≤ 1

This proves the lemma.

Lemma 3. If
(x1 − x0)2

a2
1

+
x2

2

a2
2

+ · · ·+ x2
d

a2
d

= 1 is the equation of an ellipsoid E

with minimum volume in an d-dimensional space that encloses the unit ball B
centered at the origin and a point (s, 0, 0, · · · , 0) then a2 = a3 = · · · = ad.

Proof. Suppose am = min{a2, a3, · · · ad} where 2 ≤ m ≤ d. Consider the pro-
jection of the ellipsoid and the unit ball on the two dimensional plane x1xm.

These are respectively the ellipse
(x1 − x0)2

a2
1

+
x2

m

a2
m

= 1 and the unit circle; the

ellipse encloses the unit circle and passes through the point (s, 0). By Lemma 2,

the ellipsoid of revolution E′:
(x1 − x0)2

a2
1

+
x2

2

a2
m

+ · · ·+ x2
d

a2
m

= 1, obtained from

this ellipse encloses the unit ball B and passes through the point (s, 0, 0, · · · , 0).
Since the volume of E′ is less than or equal to the volume of E, we conclude
that if E is the ellipsoid with minimum volume then a2 = a3 = · · · = ad.

Lemma 4. If E :
(x1 − p1)2

a2
1

+
(x2 − p2)2

a2
2

+ · · ·+ (xd − pd)2

a2
d

= 1 is an ellipsoid

of minimum volume that encloses the unit ball B and is incident on the point
(s, 0, 0, · · · , 0) then p2 = · · · = pd = 0.

Approximate Ellipsoid in the Streaming Model 405

Proof. Since
(x1 − p1)2

a2
1

+
(x2 − p2)2

a2
2

+ · · ·+ (xn − pd)2

a2
d

= 1 is incident on the

point (s, 0, 0, · · · , 0) and encloses the unit ball, we can verify that
(x1 − p1)2

a2
1

+

(x2 + p2)2

a2
2

+ · · ·+ (xd + pd)2

a2
d

= 1 also encloses the unit ball and is incident on

the point (s, 0, 0, · · · , 0). Adding the equations of the two ellipsoids we get the
following equation:

(x1 − p1)2

a2
1

+
x2

2

a2
2

+ · · ·+ x2
d

a2
d

= 1− p2
2

a2
2
− p2

2

a2
2
− · · · p

2
d

a2
d

This represents an ellipsoid whose volume is smaller than that of the original

ellipsoid. Thus if E :
(x1 − p1)2

a2
1

+
(x2 − p2)2

a2
2

+· · ·+ (xd − pd)2

a2
d

= 1 is an ellipsoid

minimum volume then p2 = · · · = pd = 0.

Lemma 3 and Lemma 4 completely chracterize an ellipsoid of minimum volume
that encloses the unit ball B and is incident on the point (s, 0, 0, · · · , 0).

Lemma 5. If E :
(x1 − x0)2

a2
1

+
x2

2

a2
2
+
x2

3

a2
2
+· · ·+x2

d

a2
2

= 1 is an ellipsoid of minimum

volume that encloses the unit ball B centered at the origin and is incident on the
point p′ = (s, 0, 0, · · · , 0) then a2

1 = (β − x0)(β−1 − x0) and a2
2 = 1− x0β where

β =
s−

√
s2 + 4d

(d−1)2

2d
d−1

and x0 = s2−1
2s−β−β−1 .

Proof. Since p′ is on E,

(s− x0)2

a2
1

= 1 (1)

Let α be the angle made by the x-axis, the origin, and the point at which E′(t)
touches the upper half of the unit circle, where E′(t) is the projection of E on
x1x2. (See Figures 1.) The tangent to the circle at (cosα, sinα) is

x1 cosα+ x2 sinα = 1 (2)

The tangent to the ellipse at (cosα, sinα) is

(x1 − x0)(cosα− x0)
a2
1

+
x2 sinα
a2
2

= 1

x1(cosα− x0)
a2
1

+
x2 sinα
a2
2

= 1 +
x0(cosα− x0)

a2
1

(3)

406 A. Mukhopadhyay, A. Sarker, and T. Switzer

α

(cosα, sinα)

E ′(t)

s

Fig. 1. An ellipse containing and tangent to the unit circle, and passing through p′

Since (2) and (3) are the same line, we know
a2
1 cosα

cosα− x0
= a2

2 =
1

1 + x0(cos α−x0)
a2
1

.

So

(cosα− x0)
a2
1

= cosα+
x0 cosα(cosα− x0)

a2
1

(cosα− x0 − x0 cosα(cosα− x0))
a2
1

= cosα

(cosα− x0)(1 − x0 cosα)
a2
1

= cosα

a2
1 =

(cosα− x0)(1 − x0 cosα)
cosα

and

a2
2 =

cosα
cosα− x0

(cosα− x0)(1 − x0 cosα)
cosα

= 1− x0 cosα

Using (1), we know that

(s− x0)2 = (cosα− x0)(secα− x0)

s2 − 2sx0 = 1− x0(cosα+ secα)

x0(cosα+ secα− 2s) = 1− s2

x0 =
s2 − 1

2s− cosα− secα

We can therefore write the volume of E in terms of just β = cosα:

volume(E) = Ka1a
d−1
2

= K
√
f(β)

= K

√
(β − x0)(1− x0β)d

β

Approximate Ellipsoid in the Streaming Model 407

= K

√√√√(
β − s2−1

2s−β−β−1

)(
1− s2−1

2s−β−β−1β
)d

β

= K

√(
1 +

s2 − 1
β2 − 2sβ + 1

)(
1 + (s2 − 1)

β2

β2 − 2sβ + 1

)d

= K

√
(β − s)2

β2 − 2sβ + 1

(
(sβ − 1)2

β2 − 2sβ + 1

)d

= K

√
(β − s)2(sβ − 1)2d

(β2 − 2sβ + 1)d+1

= K
(β − s)(sβ − 1)d

(β2 − 2sβ + 1)(d+1)/2

To find the β ∈ (−1, 0) that minimizes f(β),

f
′
(β) =

(β2 − 2sβ + 1)−d/2(sβ − 1)d

(β2 − 2sβ + 1)3/2(sβ − 1)

[
−d(β − s)

2
(sβ − 1) + sd(β

2 − 2sβ + 1)(β − s) − (s
2 − 1)(sβ − 1)

]

=
(β2 − 2sβ + 1)−d/2(sβ − 1)d

(β2 − 2sβ + 1)3/2(sβ − 1)
d(β − s)

[
(−sβ + 1)(β − s) + s(β

2 − 2sβ + 1)
]
− (s

2 − 1)(sβ − 1)

=
(β2 − 2sβ + 1)−d/2(dβ − 1)d

(β2 − 2sβ + 1)3/2(sβ − 1)
(1 − s

2
)(dβ

2 − s(d − 1)β − 1)

Setting f ′(β) = 0,

(β2 − 2sβ + 1)−d/2(sβ − 1)d

(β2 − 2sβ + 1)3/2(sβ − 1)
(1− s2)(dβ2 − s(d− 1)β − 1) = 0

Now s > 1, since p′ is outside the unit circle, so 1− s2 �= 0.

dβ2 − s(d− 1)β − 1 = 0

β =
s−

√
s2 + 4d

(d−1)2

2d
d−1

E is described by
(x1 − x0)2

a2
1

+
x2

2

a2
2

+
x2

3

a2
2

+ · · ·+ x2
d

a2
2

= 1, where

x0 =
s2 − 1

2s− β − β−1 (4)

a2
1 = (β − x0)(β−1 − x0) (5)

a2
2 = 1− x0β (6)

Lemma 6. The minimum ellipsoid that encloses the unit ball B and is incident
on a point lying outside this unit ball has its major axis along the line joining
the point and the center of the unit ball.

408 A. Mukhopadhyay, A. Sarker, and T. Switzer

Proof. Let o be the center of the unit ball B and p a point lying outside B.
Suppose the major axis of the minimum ellipsoid E is not along op. Then we
can rotate this ellipsoid so that the major axis is aligned with op and the ellipsoid
encloses the unit ball and is incident on p. Now we can reduce the major axis
and all the minor axes so that the new ellipsoid E′ touches the unit ball and
passes through p. The volume of this new ellipsoid E′ is smaller than the volume
of E.

By Lemma (3), Lemma (4) and Lemma (6) we can assume that the new point is
on x1 axis. Then we will find the minimum ellipsoid that touches this ball and
its major axis is along the line joining the origin and the new point.

The second problem that we have to solve is the following one.

Problem: Given an ellipsoid EA of full volume in k-dimensional space (k < d)
and a point lying outside the k-flat containing EA, find an ellipsoid of minimum
and full volume in k + 1-dimensional space that spans EA and p.

We first use a scaling transfomation, just as in Problem 1, to transform the
EA into a unit ball, E′

A; the same transformation is also applied to the point p
to obtain p′. The minimum volume ellipsoid that spans E′

A and p′ is of the form:∑k−1
i=1 x

2
i + α1x

2
k + (

∑k−1
i=1 αixi)xk = 1,

since we must get the unit ball on setting xk = 0 in the above equation. The
αi’s are determined from two further conditions that the above ellipsoid must
satisfy: (1) the point p′ is incident on the spanning ellipsoid and (2) the spanning
ellipsoid must be of minimum volume.

Once all the αi’s are determined, we apply the inverse of the scaling transfor-
mation that gave us the unit ball to obtain the spanning ellipsoid in the original
k + 1-dimensional space.

To obtain an initial ellipsoid of full volume, we will have to solve one of the
above problems for each new input point. Once we obtain an ellipsoid of full
volume, we only have to solve the first problem for each new input.

Algorithm: ApproximateEllipsoid

1. Obtain an initial ellipsoid of full volume, solving Problem 1 or Problem 2.
2. Once we have an approximate ellipsoid of full volume, for each new input

point not inside the current approximate ellipsoid we do the following:
2.1 By rotation, translation and scaling, transform the approximate ellipsoid

to the unit ball
2.2 Apply the appropriate rotation so that the new point P aligns on x-axis
2.3 Calculate β, a1 and a2 using the formulas given in Lemma (5)

In the next section we construct an example input sequence to show that the
approximation ratio can be unbounded.

Approximate Ellipsoid in the Streaming Model 409

4 Approximation Ratio of Volume

4.1 A Special Exact Ellipsoid in d-Dimensional Space

Exact Ball

Lemma 7. Suppose Pd is a set of d + 1 points in Rd and s is the distance
between any two points. Then the radius Rd of the ball passing through all those
points is

Rd =
s
√
d√

2
√
d+ 1

Lemma 8. Suppose p0, p1, p2, p3, · · · , pd are equidistant d + 1 points on an d-
dimensional space and B is the d-dimensional ball through p0, p1, p2, p3, · · · , pd.
If we denote the plane through p1, p2, p3, · · · , pd by P ′ then P ′ splits the diameter

through p0 by the ratio
d− 1
d+ 1

.

Proof. (Algebraic proof)
Suppose p0 = (x1, x2, · · · , xd) is equidistant from d points p1 =(s/

√
2, 0, 0, · · · , 0),

p2 = (0, s/
√

2, 0, · · · , 0), · · · pd = (0, 0, · · · , s/
√

2) in Rd. Then from the proof
of Lemma 7 we know that x1 = x2 = x3 = · · · = xd = s

d
√

2
(1±

√
1 + d). Let AB

be a diameter of the ball where A = p0. If N = (c, c, ..., c) is the point where
AB intersects with P ′ then |Np1| = |Np2| = · · · = |Npd| = Rd−1 is the radius
of the disk in d− 1 dimensional space. Now,

(c− s/
√

2)2 + c2 + c2 · · ·+ c2 = R2
d−1

(c− s/
√

2)2 + (d− 1)c2 =
(
s
√
d− 1√
2d

)2

c =
s

d
√

2

Since A =
(

s

d
√

2
(1+

√
1+d),

s

d
√

2
(1+

√
1+d), · · ·

)
and N =

(
s

d
√

2
,
s

d
√

2
, · · ·

)
we can write,

AN =

√
d

(
s

d
√

2
(1 +

√
1 + d)− s

d
√

2

)2

=
s√
2d

√
1 + d

BN = AB −AN

= 2Rd − s
√
d+ 1√
2d

=
2s
√
d√

2
√
d+ 1

− s
√
d+ 1√
2d

= s
d− 1√

2
√
d
√
d+ 1

410 A. Mukhopadhyay, A. Sarker, and T. Switzer

Therefore,
BN

AN
=
d− 1
d+ 1

A special ellipsoid

Lemma 9. The exact ellipsoid incident on (0,−1, 0, · · · , 0), (0, 1, 0, · · · , 0), (0, 0,
1, · · · , 0), (0, 0, 0, 1, · · · , 0), (0, 0, 0, 0, 1, · · · , 0), · · · and ((d+1)l, 0, 0, · · · , 0) must
also pass through (−(d − 1)l, 0, 0, · · · , 0). Moreover, the length of all the semi-
minor axes of this exact ellipsoid is bounded.

Proof. Consider the exact ball that we constructed in Lemma 8. If we scale (with
scaling factor greater than 1) the d-dimensional space in x0 direction then we

get an ellipsoid. All the minor axis of this ellipsoid is
d
√
d√

2
√
d+ 1

and the ratio

of BN to AN is BN
AN = α = d−1

d+1 . Therefore if the exact ellipsoid passed through
((d+ 1)l, 0), then it must pass through (−(d− 1)l, 0).

Lemma 10. There exists an input point sequence for which the ratio of the
minor axis of approximate ellipsoid to that of the exact ellipsoid becomes un-
bounded.

Proof. Consider d points (−1, 0, 0, · · · , 0), (1, 0, 0, · · · , 0), (0, 1, 0, · · · , 0), (0, 0, 1,
· · · , 0), · · · , (0, 0, 0, · · · , 1). Let E0 be the exact ellipsoid through these d points.
Since the approximate ellipsoid through these d points is identical with the exact
one, the ratio of their volumes is 1 in this case. Now we start adding points on
the positive x1-axis.

If we add a point (pm, 0, 0, · · · , 0) on the positive x1-axis then the exact ellip-
soid will pass through (0, 1, 0, · · · , 0), (0, 0, 1, · · · , 0), (0, 0, 0, · · · , 1) and (pm, 0, 0,
· · · , 0). For any pm, the length of all the minor axes of the exact ellipsoid is
bounded (Lemma 9).

We denote the original plane by P0. The transformation S0T0 will transform
E0 to the unit ball where T0 is a translation and S0 is a scaling. Let P1 = S0T0P0
be the transformed plane. We can choose a point (p′, 0) on this transformed plane
such that the minor axis of the spanning ellipsoid, which passes through (p′, 0)
and encloses the unit circle, is greater than 1. Suppose ST is the transformation
which transforms this new ellipsoid to the unit ball where S is a scaling and T
is a translation. Let P2 = STP1. Take (p′, 0) on P2 and find the ellipsoid that
passes through (p′, 0) and encloses the unit ball.

If we repeat this process n times, then each time we increase all the minor
axes of the ellipsoid same amount. Denote the approximate ellipsoid on Pn by
En. The approximate ellipsoid on the original plane can be found by applying
the transforamtion (T−1S−1)nT−1

0 S−1
0 Ed. Since S is a shrinking along all the

minor axes, S−1 is an expansion along minor axes. Therefore we can expand
all the minor axes of approximate ellipsoid as much as we want by adding a
sufficient number of points. Since all the minor axes of the exact ellipsoid are
fixed, we conclude that the ratio of the minor axis of approximate ellipsoid to
that of the exact ellipsoid is unbounded.

Approximate Ellipsoid in the Streaming Model 411

Theorem 1. There exists an input point sequence of points for which the ap-
proximation ratio of the ellipsoid volumes becomes unbounded.

Proof: Let a1A, a2A, and VolumeA denote the semi-major axis, one of the semi-
minor axes and the volume of the approximate ellipsoid respectively in the trans-
formed plane, while aE , bE , and VolumeE denote the same quantities respectively
for the exact ellipsoid. By the method described in Lemma 10 we can construct

an input point sequence for which
bA
bE

is unbounded. Since relative volumes are

preserved by an elliptic transformation, the ratio
VolumeA

VolumeE
is identical for the

ellipsoids in the original plane. Now
VolumeA

VolumeE
=
KaAb

d−1
A

πaEb
d−1
E

=
aA

aE

bA
bE
≥ C

bA
bE

.

Since
bA
bE

is unbounded, we conclude that VolumeA

VolumeE
is unbounded for this input

sequence. �

Though the ratio of the volumes can become unbounded, there exists a direction
in which the width of the approximate ellipsoid is within a factor 2 of the width
of the exact ellipsoid. We prove this in the next section.

5 Boundedness of the Width

The idea is fairly straight forward. Given some minimum spanning ellipsoid
(exact or approximated) of a point set, we need to be able to find 2 points in
that point set whose distance between themselves in some direction is at least
a constant fraction of the width of the ellipsoid in that direction. The following
proof shows that we can always find 2 such points and a direction.

The proof hinges on the fact that the convex hull of the point set will always
contain the center of the minimum ellipsoid, approximated or not. So, to start,
we prove an equivalent version of this; that any halfspace that contains the center
of a minimum spanning ellipsoid of a point set, also contains a point from that
set. We start with the case of the exact minimum spanning ellipsoid and then
use induction to extend this to the approximated case.

Lemma 11. If E is some exact minimum spanning ellipsoid that contains some
point set Q, then any closed halfspace that contains the center, c, of E must also
contain a point p ∈ Q.

Proof. Assume that there exists some closed halfspace, H , such that c ∈ H , but
H ∩Q = ∅. Without loss of generality, we can assume c lies on the boundary of
H . Let ε > 0 be equal to the distance from H to Q. We can translate E by ε in
the direction of the vector normal to H , while still ensuring Q ⊂ E. After the
translation, Q no longer has any points on the boundary of E, so E cannot be
the minimum ellipsoid that contains Q, a contradiction.

412 A. Mukhopadhyay, A. Sarker, and T. Switzer

Lemma 12. Let Q = {q1, q2, ..., qk} be the set of points used to find E0, the
initial minimum spanning ellipsoid. Let En be the approximated ellipsoid after
the (n+ k)-th point, pn has been seen. Any halfspace that contains the center cn
of the ellipsoid En also contains at least one point p ∈ P = Q ∪ {p1, p2, ..., pn}.

Proof. From Lemma 11 we know that the base case (n = 0) is true. Let us
assume that the (n− 1)-th case was true. If a new point pn /∈ En−1 is seen, then
a new minimum ellipsoid En is found that contains both En−1 and pn. If cn−1 is
the center of En−1 and pncn−1 is the line segment whose endpoints are pn and
cn−1, then, from the construction of En we see that cn ∈ pncn−1, where cn is the
center of En. Any halfspace H that has a non-empty intersection with pncn−1
(ie. H∩pncn−1 �= ∅), must contain either pn, cn−1 or both. If H contains pn then
clearly it contains a point from P , since pn ∈ P . Further more, if H contains the
cn−1, center of En−1, then it must contain some point from P −{pn} ⊆ P . Thus,
any halfspace that contains cn ∈ pncn−1 must also contain a point p ∈ P .

With these 2 Lemmas, we can now give the main proof.

Definition 1. Let Ψv(P) be a real-valued function that returns the width of a
point set P in direction v.

Theorem 2. If E is a minimum volume ellipsoid (exact or approximated) that
contains the point set P , then there must exist 2 points {pi, pj} ⊆ P and a
direction n, such that Ψn(E) ≤ 2Ψn({pi, pj}).

Proof. Since E is the minimum ellipsoid (exact or approximated) containing P ,
we can find a point pi ∈ P that lies on the boundary of E. Let c be the center of
E and n be the vector normal to E at the point pi. Let H be the halfspace whose
normal is n, does not contain pi and whose boundary contains c. From Lemma
12, we can find another point pj ∈ P ∩ H . Clearly, Ψn({pi, pj}) ≥ Ψn({pi, c}).
Since 2Ψn({pi, c}) = Ψn(E) ≤ 2Ψn({qi, qj}), the points pi and pj fufill the
requirements; that is, in direction n, the ellipsoid E has a bounded width by a
constant factor 2.

Theorem 3. There exists a direction at which the approximation ratio is bounded.

Proof. Suppose EE is the exact minimum ellipsoid and EA is the approximate
ellipsoid containing P . By theorem 2, we get Ψn(EA) ≤ 2Ψn({pi, pj}). Clearly

we can see that Ψn(EE) ≥ Ψn({pi, pj}). Therefore
Ψn(EA)
Ψn(EE)

≤ 2.

6 Conclusions

It is surprising that the approximation ratio of volumes is unbounded. We showed
that this ratio becomes unbounded by taking a sequence of points in one direc-
tion. We believe that the approximation ratio is bounded for evenly distributed
points. Experiments with this implementation for randomly input point sets in
two dimensions seem to support this vew.

Approximate Ellipsoid in the Streaming Model 413

References

1. Bagchi, Chaudhary, Eppstein, Goodrich: Deterministic sampling and range counting

in geometric data streams. ACM Transactions on Algorithms (TALG) 3 (2007)

2. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analy-

sis, Algorithms, and Engineering Applications. MPS/SIAM Series on Optimization,

vol. 2. SIAM, Philadelphia (2001)

3. Feigenbaum, J., Kannan, S., Zhang, J.: Computing diameter in the streaming and

sliding-window models. Algorithmica 41(1), 25–41 (2004)

4. Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data streams. Tech-

nical Report SRC-TN-1998-011, Hewlett Packard Laboratories, May 7 (1998)

5. Hershberger, Suri: Adaptive sampling for geometric problems over data streams.

In: PODS: 23rd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems (2004)

6. Isenburg, Liu, Shewchuk, Snoeyink: Illustrating the streaming construction of 2D

delaunay triangulations (short). In: COMPGEOM: Annual ACM Symposium on

Computational Geometry (2006)

7. Mukhopadhyay, A., Greene, E., Sarker, A.: Approximate spanning ellpse in the

streaming model. Technical report, University of Windsor, School of Computer Sci-

ence (June 2009)

8. Post, M.J.: A minimum spanning ellipse algorithm. In: FOCS, pp. 115–122. IEEE,

Los Alamitos (1981)

9. Zarrabi-Zadeh, H., Chan, T.: A simple streaming algorithm for minimum enclosing

balls. In: Proceedings of the 18th Canadian Conference on Computational Geometry

(CCCG 2006), pp. 139–142 (2006)

Author Index

Aisu, Hideyuki II-131

Balamohan, Balasingham II-58

Ballinger, Brad II-1

Bazgan, Cristina I-237

Beletska, Anna I-104

Belotti, Pietro I-65

Benbernou, Nadia II-1

Bhattacharya, Binay K. I-354

Bollig, Beate II-16

Bose, Prosenjit II-1

Busch, Arthur H. II-207

Cafieri, Sonia I-65

Cai, Zhipeng I-85

Chebotko, Artem II-97

Chen, Danny Z. I-270

Chen, Hong II-46

Chen, Wenping II-281

Chen, Xujin II-31

Chen, Zhixiang I-309

Cheng, Eddie I-222

Crespelle, Christophe I-1

Daescu, Ovidiu I-41

Damaschke, Peter II-117

Damian, Mirela II-1, II-181

D’Angelo, Gianlorenzo II-254

Das, Sandip I-354

Das, Shantanu I-11

Demaine, Erik D. II-1

Ding, Wei II-243, II-268

Dinh, Heiu I-184

Di Stefano, Gabriele II-254

Dobrev, Stefan II-72

Dragan, Feodor F. II-207

Du, Hongwei I-252

Duan, Zhenhua II-374

Dujmović, Vida II-1

Eppstein, David I-128

Fan, Hongbing II-292

Fan, Neng I-170

Fekete, Sándor I-21

Feldmann, Andreas Emil I-11

Flatland, Robin II-1

Flocchini, Paola II-58

Fu, Bin I-309, II-97

Gao, Yong II-332

Gonzalez-Hernandez, Loreto I-51

Goodrich, Michael T. I-128

Gray, Chris I-21

Gu, Qian-Ping II-107

Harutyunyan, Ararat I-31

Hasan, Maryam I-85

Hashim, Mashitoh II-195

He, Jing II-160

He, Xin I-339

Hu, Xiaodong II-31

Hurtado, Ferran II-1

Iacono, John II-1

Italiano, Giuseppe F. I-157

Jia, Xiaohua II-107

Ju, Wenqi I-41

Karmakar, Arindam I-354

Kellerer, Hans I-408

Kiyomi, Masashi II-362

Kranakis, Evangelos I-385, II-72, II-303

Krizanc, Danny I-385, II-72, II-303

Kröller, Alexander I-21

Kundeti, Vamsi I-184

Lambadaris, Ioannis II-303

Langetepe, Elmar I-369

Latapy, Matthieu I-1

Laura, Luigi I-157

Lee, Jon I-65

Lee, Wonjun I-252

Li, Deying II-46, II-281

Li, Fei I-398

Li, Zheng II-46, II-281

Liang, Hongyu II-160

Liberti, Leo I-65

Lin, Guohui I-85, II-243

416 Author Index

Liu, Guizhen II-170

Liu, Jin-Yi I-300

Liu, Qinghai I-212

Lubiw, Anna II-1

Luo, Jun I-41

Ma, Weidong II-31

Ma, Wenkai II-46, II-281

Marek, Palkowski I-104

Marzban, Marjan II-107

Matsuhisa, Takashi I-77

Memar, Julia I-142

Miao, Zhengke I-114

Miri, Ali II-58

Misio�lek, Ewa I-270

Morin, Pat II-1

Muhammad, Azam Sheikh II-117

Mukhopadhyay, Asish II-401

Nagamochi, Hiroshi II-347

Nandy, Subhas C. I-354

Narayanan, Lata II-303

Nastos, James II-332

Navarra, Alfredo II-254

Nguyen, Dung T. I-197

Nguyen, Thanh Qui I-1

Nguyen, Viet Hung I-260, II-144

Olsen, Martin II-87

Opatrny, Jaroslav II-72, II-303

Otsuki, Tomoshi II-131

Pan, Xuejun II-170

Pardalos, Panos M. I-170

Park, Haesun I-252

Phan, Thi Ha Duong I-1

Ponce, Oscar Morales I-385, II-72

Qiu, Ke I-222

Rajasekaran, Sanguthevar I-184

Rangel-Valdez, Nelson I-51

Raudonis, Kristin II-181

Sacristán, Vera II-1

Saitoh, Toshiki II-362

Santaroni, Federico I-157

Santoro, Nicola II-58

Sarker, Animesh II-401

Schulz, André I-324

Schuurmans, Dale I-85

Shen, Yilin I-197

Shen, Zhi Zhang I-222

Shi, Yi I-85

Shu, Jinlong I-114

Singh, Gaurav I-142

Soper, Alan J. I-408

Souvaine, Diane II-1

Sritharan, R. II-207

Stacho, Ladislav I-385, II-72

Strash, Darren I-128

Strusevich, Vitaly A. I-408

Sun, Jonathan Z. II-170

Switzer, Tom II-401

Takaoka, Tadao II-195

Tan, Jinsong II-317

Tanaka, Toshiaki II-131

Thai, My T. I-197

Tian, Cong II-374

Tomasz, Klimek I-104

Torres-Jimenez, Jose I-51

Tóth, Csaba D. I-324

Toubaline, Sonia I-237

Trott, Lowell I-128

Uehara, Ryuhei II-1, II-362

Vanderpooten, Daniel I-237

Viglas, Anastasios II-87

Wang, Jiun-Jie I-339

Wang, Yuexuan I-252

Widmayer, Peter I-11

Wlodzimierz, Bielecki I-104

Wu, Bang Ye II-219

Wu, Yu-Liang II-292

Xiao, Mingyu II-387

Xue, Guoliang II-243, II-268

Yamakami, Tomoyuki I-285

Yang, Boting II-228

Ye, Qiang I-252

Yu, Guanglong I-114

Yu, Zhihua I-212

Zhang, Huaming I-339

Zhang, Zhao I-212

Zhong, Jioafei I-252

Zhuang, Bingbing II-347

Zinder, Yakov I-142

Zvedeniouk, Ilia II-87

	Title
	Preface
	Organization
	Table of Contents
	Coverage with k-Transmitters in the Presence of Obstacles
	Introduction
	Previous Results
	Our Results

	Coverage of Plane with Obstacles
	Orthogonal Line Segments
	Guillotine Subdivisions
	Nested Convex Polygons

	Coverage of Simple Polygons
	Lower Bounds for Covering Polygons
	Spirangles
	Arbitrary Spirals

	Conclusion
	References

	On Symbolic OBDD-Based Algorithms for the Minimum Spanning Tree Problem
	Introduction
	Preliminaries
	Ordered Binary Decision Diagrams
	Symbolic OBDD-Based Graph Representations and the Minimum Spanning Tree Problem

	A Symbolic Minimum Spanning Tree Algorithm
	On the Complexity of the Minimum Spanning Tree Problem on OBDD-Represented Graphs
	References

	Reducing the Maximum Latency of Selfish Ring Routing via Pairwise Cooperations
	Introduction
	Model
	Basic Properties
	2-Robust Nash Routings
	Concluding Remark
	References

	Constrained Surface-Level Gateway Placement for Underwater Acoustic Wireless Sensor Networks
	Introduction and Motivations
	Related Works
	Notations and Basic Concepts
	Algorithms for the Constrained Surface-Level Gateway Placement Problems
	An Algorithm for the Connected C-SGP Problem
	An Algorithm for Survivable C-SGP Problem

	Performance Evaluations
	Conclusions
	References

	Time Optimal Algorithms for Black Hole Search in Rings
	Introduction
	The Problem
	Related Work
	Main Contributions

	Preliminaries
	Definitions and Notations
	Cautious Walk

	Improved Algorithm
	Optimal Average Time
	Optimal Team Size
	References

	Strong Connectivity in Sensor Networks with Given Number of Directional Antennae of Bounded Angle
	Introduction
	Preliminaries and Notation
	Related Work
	Results of the Paper

	Upper Bound Result on Strongly Connected Spanners
	Maximum Out-Degree 2
	Algorithm

	NP Completeness
	Conclusion
	References

	A Constant-Factor Approximation Algorithm for the Link Building Problem
	Introduction
	Related Work and Contribution

	Background: The PageRank Algorithm
	The Link Building Problem
	Naive Selection of Backlinks
	Link Building Is in APX

	Discussion and Open Problems
	References

	XML Reconstruction View Selection in XML Databases: Complexity Analysis and Approximation Scheme
	Introduction
	Related Work
	XML Reconstruction View Selection Problem
	NP-Completeness
	Fully Polynomial-Time Approximation Scheme
	References

	Computational Study for Planar Connected Dominating Set Problem
	Introduction
	Preliminaries
	Algorithm for Planar CDS Problem
	Computational Results
	Concluding Remarks
	References

	Bounds for Nonadaptive Group Tests to Estimate the Amount of Defectives
	Introduction
	Preliminaries
	Probabilistic Inference of One-Out-of-Two Hypotheses
	The Logarithmic Lower Bound
	Translation-Invariant Strategies and Upper Bounds
	Open Questions
	References

	A Search-Based Approach to the Railway Rolling Stock Allocation Problem
	Introduction
	Railway Rolling Stock Allocation Problem
	SPMCF Problem Formulation
	Related Works

	Solution Approach
	Some Definitions
	Framework of Solution Approach
	Greedy Construction Process for Obtaining Initial Solution
	Backtracking Search Process for Improve Solution

	Computational Experiments
	Description of Datasets
	Comparison with SMB and CPLEX
	Computational Results

	Conclusion
	References

	Approximation Algorithm for the Minimum Directed Tree Cover
	Introduction
	Minimum r-Branching Cover Problem
	Weighted Set Cover Problem as a Special Case

	Integer Programming Formulation for Minimum r-Branching Cover
	Approximating the Minimum r-Branching Cover
	Preliminary Observations and Algorithm Overview
	Initialization
	Phase I
	Phase II
	Phase III
	Performance Guarantee

	Final Remarks
	References

	An Improved Approximation Algorithm for Spanning Star Forest in Dense Graphs
	Introduction
	Our Contributions
	Notation Used for Approximation Algorithms

	Complementary Partial Dominating Set
	Complementary Set Cover
	Complementary Partial Dominating Set

	Algorithm Description and Analysis
	Hardness Results
	Conclusion
	References

	A New Result on $[k, k + 1]$-Factors Containing Given Hamiltonian Cycles
	Introduction
	Related Work
	Our Result
	Lovász's (g,f)-Factor Theorem

	Proof of the Main Theorem
	Future Work
	References

	Yao Graphs Span Theta Graphs
	Introduction
	Existing Results
	Notation and Definitions

	Basic Lemmas
	Y6 Paths Span 6 Edges
	Conclusions
	References

	A Simpler Algorithm for the All Pairs ShortestPath Problem with $O(n^2 log n)$ Expected Time
	Introduction
	Spira's Algorithm
	Moffat-Takaoka Algorithm
	New Algorithm
	Correctness
	Analysis
	Concluding Remarks
	References

	New Min-Max Theorems for Weakly Chordal and Dually Chordal Graphs
	Background and Motivation
	A Min-Max Theorem for Weakly Chordal Graphs
	Distance-k Matchings in Weakly Chordal Graphs
	A Min-Max Theorem for Distance-(2k+1) Matching in Dually Chordal Graphs
	A Class of Hypergraphs
	References

	A Simpler and More Efficient Algorithm for the Next-to-Shortest Path Problem
	Introduction
	The Objective Function and the Constraints
	The Efficient Algorithm
	Correctness and Time Complexity
	Concluding Remarks
	References

	Fast Edge-Searching and Related Problems
	Introduction
	Fast Edge-Searching vs. Fast Searching
	Node Searching vs. Fast (Edge-)Searching
	An Approximation Algorithm
	A Lower Bound
	Planar Graphs
	Conclusions
	References

	Diameter-Constrained Steiner Tree
	Introduction
	The Problems and Intractability
	Preliminaries
	Realizing an Objective Tree
	Binary Tree
	General Tree

	A Pseudo-Polynomial-Time Algorithm for MDCCRP
	An FPTAS for MCDCRP
	Polynomial Time Approximate Testing
	Fully Polynomial Time Approximation Scheme

	Conclusions
	References

	Minimizing the Maximum Duty for Connectivity in Multi-Interface Networks
	Introduction
	Related Work
	Our Results
	Structure of the Paper

	Definitions and Notation
	Complexity
	Approximation
	Conclusion
	References

	A Divide-and-Conquer Algorithm for Computing a Most Reliable Source on an Unreliable Ring-Embedded Tree
	Introduction
	The Unreliable -Rings Network
	Preliminaries
	A Divide-and-Conquer Algorithm
	An MRS on a Ring
	Divide Subroutine
	Merge Subroutine
	A Divide-and-Conquer Algorithm

	Conclusions
	References

	Constrained Low-Interference Relay Node Deployment for Underwater Acoustic Wireless Sensor Networks
	Introduction and Motivations
	Related Works
	Notations and Network Model
	Algorithms for the Constrained Low-Interference Relay Node Deployment Problem
	Computational Complexity and Discussions
	A General Approximation Algorithm Scheme
	Theoretical Analysis

	Conclusions
	References

	Structured Overlay Network for File Distribution
	Introduction
	Problem Formulation
	File Distribution Time
	EFDP Overlay Network Topology Problem
	Heuristic Algorithm

	Proof of the Theorem
	Conclusions
	References

	Optimal Balancing of Satellite Queues in Packet Transmission to Ground Stations
	Introduction
	Outline and Results of the Paper

	Preliminaries and Notation
	Related Work
	Algorithm for Constructing Optimal Assignments
	Saturated Assignments
	Balanced Assignments
	Largest Assignment with Minimum Achievable Balance Factor
	Largest Assignment with Given Balance Factor
	Optimal Saturated Assignments
	Complexity Analysis of the Algorithms

	Conclusion
	References

	The Networked Common Goods Game
	Introduction
	The Common Goods Problem
	Infinitely Divisible Resource
	Discrete Resource

	Pure Strategy Nash Equilibrium
	The Existence of Nash Equilibrium
	The Uniqueness of Nash Equilibrium

	Nash Dynamics
	Price of Anarchy of the Game
	References

	A Novel Branching Strategy for Parameterized Graph Modification Problems
	Introduction
	Previous Results and Background
	Previous Fixed-Parameter Tractability Results
	Background Information: P4-sparse Graphs

	Edge-Deletion Algorithm
	Finding Cograph Edge-Deletion Sets in P4-Sparse Graphs
	Cograph Edge-Deletion in General Graphs

	Cograph Vertex-Deletion and Trivially Perfect Edge-Deletion Problems
	Vertex-Deletion to Cographs
	Edge-Deletion to Trivially Perfect Graphs

	Conclusions and Future Work
	References

	Listing Triconnected Rooted Plane Graphs
	Introduction
	Preliminaries
	Triconnected Graphs
	Triconnected Rooted Plane Graphs
	Parents of Triconnected Rooted Plane Graphs
	Children of Triconnected Rooted Plane Graphs
	Algorithm
	Concluding Remarks
	References

	Bipartite Permutation Graphs Are Reconstructible
	Introduction
	Bipartite Permutation Graphs
	Permutation Diagram
	Bipartite Permutation Graphs

	Main Proof
	No Degree One Polar Vertex Case
	Polar Vertices with Degree One

	Miscellaneous Proofs
	Concluding Remarks
	References

	A Transformation from PPTL to S1S
	Introduction
	Propositional Projection Temporal Logic
	Monadic Second Order Logic with One Successor
	Transformation from PPTL to S1S
	From Intervals to $\mathfrak{T}-Structures
	From PPTL to S1S

	Other Transformations
	Conclusions
	References

	Exact and Parameterized Algorithms for Edge Dominating Set in 3-Degree Graphs
	Introduction
	Preliminaries
	Reduction Rules
	The Exact Algorithm
	Branching on 3-Regular Graphs (Step 3)
	Branching Operation in Step 4
	Branching Operation in Step 5
	Branching Operation in Step 6
	Branching Operation in Step 7
	Putting All Together

	The Parameterized Algorithm
	Concluding Remarks
	References

	Approximate Ellipsoid in the Streaming Model
	Introduction
	Streaming Model
	Approximation Algorithm for Ellipsoid
	Finding T(.)
	Finding E'A

	Approximation Ratio of Volume
	A Special Exact Ellipsoid in d-Dimensional Space
	Exact Ball
	A special ellipsoid

	Boundedness of the Width
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

