Cyclic Vertex Connectivity of Star Graphs^{*}

Zhihua Yu¹, Qinghai Liu², and Zhao Zhang^{1,**}

College of Mathematics and System Sciences, Xinjiang University Urumqi, Xinjiang, 830046, People's Republic of China hxhzz@163.com

Abstract. For a connected graph G, a vertex subset $F \subset V(G)$ is a cyclic vertex-cut of G if G - F is disconnected and at least two of its components contain cycles. The cardinality of a minimum cyclic vertex-cut of G, denoted by $\kappa_c(G)$, is the cyclic vertex-connectivity of G. In this paper, we show that for any integer $n \geq 4$, the *n*-dimensional star graph SG_n has $\kappa_c(SG_n) = 6(n-3)$.

Keywords: star graph; cyclic vertex-connectivity.

1 Introduction

Let G = (V(G), E(G)) be a simple connected graph, where V(G), E(G) are the vertex set and the edge set, respectively. A vertex subset $F \subseteq V(G)$ is a *cyclic vertex-cut* of G if G-F has at least two connected components containing cycles. Vertices in F are called *faulty*, and vertices in V(G) - F are said to be *good*. If G has a cyclic vertex-cut, then the *cyclic vertex-connectivity* of G, denoted by $\kappa_c(G)$, is the minimum cardinality over all cyclic vertex-cuts of G. When G has no cyclic vertex-cut, the definition of $\kappa_c(G)$ can be found in [15] using Betti number. The cyclic edge-connectivity $\lambda_c(G)$ can be defined similarly, changing 'vertex' to 'edge' (see for example [13,14]).

The concepts of cyclic vertex- and edge-connectivity date to Tait (1880) in attacking Four Color Conjecture [16]. Since then, they are used in many classic fields of graph theory such as integer flow conjectures [21], n-extendable graphs [9,12], etc.

In [18], the authors showed that $\lambda_c(G)$ coincides with $\lambda^2(G)$, where $\lambda^k(G)$ is a kind of conditional connectivity [7] defined as follows: for a connected graph G, an edge subset $F \subset V(G)$ is a R^k -edge-cut if G - F is disconnected and each vertex in V(G) - F has at least k good neighbors in G - F (or equivalently, $\delta(G - F) \geq 2$, where δ is the minimum degree of the graph). The R^k -edge connectivity of G, denoted by $\lambda^k(G)$ is the cardinality of a minimum R^k -vertexcut of G. Thus many results obtained for $\lambda^2(G)$ can be directly transformed to those of $\lambda_c(G)$, for example, results in [11,20].

^{*} This research is supported by NSFC (10971255), the Key Project of Chinese Ministry of Education (208161), Program for New Century Excellent Talents in University, and The Project-sponsored by SRF for ROCS, SEM.

^{**} Corresponding author.

Fig. 1. $\kappa_c(G) = 1 < n - 6 = \kappa^2(G)$, where *n* is the number of vertices in *G*

However, the story is different for $\kappa_c(G)$. Changing 'edge' to 'vertex', we obtain the definition of R^k -vertex-connectivity $\kappa^k(G)$. Since every graph with minimum degree at least 2 has a cycle, we have $\kappa_c(G) \leq \kappa^2(G)$ as long as both $\kappa_c(G)$ and $\kappa^2(G)$ exist. The following example shows that the strict inequality may hold and the gap between $\kappa_c(G)$ and $\kappa^2(G)$ can be arbitrarily large.

In this paper, we determine κ_c for star graphs. Let S_n be the symmetric group of order n, that is, the set of all permutations of $\{1, 2, ..., n\}$. The *n*-dimensional star graph SG_n is the graph with vertex set $V(SG_n) = S_n$, two vertices u, vare adjacent in SG_n if and only if v = u(1i), for some $2 \le i \le n$. We say that the *label* on the edge uv is (1i). Star graphs have been shown to have many desirable properties such as high connectivity, small diameter ect., which makes it favorable as a network topology (see for example [2,8]).

We will show in this paper that $\kappa_c(SG_n) = 6(n-3)$ for $n \ge 4$. In [17], Wan and Zhang proved that for any integer $n \ge 4$, $\kappa^2(S_n) = 6(n-3)$. We guess that this is not an accidental coincidence, which deserves further study.

2 Some Preliminaries

Terminologies not defined here are referred to [3].

For a graph G, a subgraph G_1 of G, and a vertex $u \in V(G)$, we use $N_{G_1}(u) = \{v \in V(G_1) \mid v \text{ is adjacent with } u \text{ in } G\}$ to denote the *neighbor set of* u *in* G_1 . In particular, if $G_1 = G$, then $N_G(u)$ is the neighbor set of u in G, and $d_G(u) = |N_G(u)|$ is the *degree* of vertex u in G. The *minimum degree* of G is $\delta(G) = \min\{d_G(u) \mid u \in V(G)\}$. For a vertex subset $U \subseteq V(G)$, let $N_{G_1}(U) = (\bigcup_{u \in U} N_{G_1}(u)) - U$ be the neighbor set of U in G_1 . For simplicity of notation, we sometimes use a subgraph and its vertex set interchangeably, for example, $N_G(G_1)$ is used to denote $N_G(V(G_1))$ where G_1 is a subgraph of G, and $N_A(U)$ is used to denote $N_{G[A]}(U)$ where A, U are two vertex sets and G[A] is the subgraph of G induced by A.

It is known that SG_n is (n-1)-regular, bipartite, vertex transitive, and edge transitive [1]. We will also use the following result given by Cheng and Lipman.

Lemma 1 ([4]). For $n \ge 4$, let T be a vertex subset of SG_n with $|T| \le 2n - 4$. Then one of the following occurs:

- (i) $SG_n T$ is connected;
- (ii) $SG_n T$ has two connected components, one of which is a singleton;

(iii) $SG_n - T$ has two connected components, one of which is an edge uv, furthermore, $T = N_{SG_n}(uv)$.

As a corollary of Lemma 1, we have

Corollary 1. For $n \ge 4$, $\kappa^1(SG_n) = 2n - 4$. Furthermore, if T is a minimum R^1 -vertex-cut of SG_n , then $T = N_{SG_n}(uv)$ for some edge $uv \in E(SG_n)$.

The girth of a graph G is the length of the shortest cycle in G. The following lemma characterizes the structure of shortest cycles of SG_n .

Lemma 2 ([17]). The girth of SG_n is 6. Any 6-cycle in SG_n has the form $u_1u_2u_3u_4u_5u_6u_1$, where $u_2 = u_1(1i), u_3 = u_2(1j), u_4 = u_3(1i), u_5 = u_4(1j), u_6 = u_5(1i), u_1 = u_6(1j)$ for some i, j with $i \neq j$.

Lemma 2 shows that any 6-cycle of SG_n has its edges labeled with (1i) and (1j) alternately for some $i, j \in \{2, ..., n\}$ and $i \neq j$. As a consequence, we see that

Corollary 2. Any two 6-cycles of SG_n have at most one common edge.

Proof. Suppose $C_1 = u_1 u_2 u_3 u_4 u_5 u_6 u_1$ and $C_2 = u_1 u_2 v_3 v_4 v_5 v_6 u_1$ are two 6cycles of SG_n having a common edge $u_1 u_2$, the label on $u_1 u_2$ is (1*i*), and the label on $u_2 u_3$ is (1*j*) for $j \neq i$. By Lemma 2, the label on $u_2 v_3$ is (1*k*) for some $k \neq i, j$. Then the common edges of C_1 and C_2 must have label (1*i*). Notice that $v_3, v_6 \notin V(C_1)$ since the girth of SG_n is 6. Hence $v_3 v_4$ and $v_5 v_6$, which are the only two other edges on C_2 with label (1*i*), do not belong to C_1 . Thus $u_1 u_2$ is the only common edge of C_1 and C_2 .

Let S_n^i be the subset of S_n that consists of all permutations with element i in the rightmost position, and let SG_{n-1}^i be the subgraph of SG_n induced by S_n^i . Clearly SG_{n-1}^i is isomorphic to SG_{n-1} , and thus we call it a *copy* of SG_{n-1} . It is easy to see that SG_n can be decomposed into n copies of SG_{n-1} , namely $SG_{n-1}^1, SG_{n-1}^2, ..., SG_{n-1}^n$. For any copy SG_{n-1}^i and any vertex $u \in V(SG_{n-1}^i)$, there is exactly one neighbor of u outside of SG_{n-1}^i , namely the vertex u(1n). We call it the *outside neighbor* of u and use u' to denote it.

The following property was proved in Lemma 3 of [17], though we state it in a different way to suit the needs of this paper.

Lemma 3 ([17]). For any path $P = u_0u_1u_2$ which is contained in some copy, the outside neighbors u'_0, u'_1, u'_2 are in three different copies. As a consequence, for any edge u_1u_2 in some copy, u'_1 and u'_2 are in different copies.

The next result can also be found in [17].

Lemma 4 ([17]). For any $i \in \{1, 2, ..., n\}$, $N_{SG_n}(SG_{n-1}^i)$ is an independent set of cardinality (n-1)!, and $|N_{SG_{n-1}^j}(SG_{n-1}^i)| = (n-2)!$ for any $j \neq i$.

3 Main Result

In this section, we determine the value of $\kappa_c(SG_n)$ for $n \ge 4$.

Lemma 5. Let C be a 6-cycle of SG_n $(n \ge 4)$. Then $N_{SG_n}(C)$ is a cyclic vertex-cut of SG_n .

Proof. Clearly, $SG_n - N_{SG_n}(C)$ is disconnected which contains cycle C as a connected component. Hence to prove the lemma, it suffices to show that the subgraph $\tilde{G} = SG_n - N_{SG_n}(C) - C$ has a cycle. In fact, we can prove a stronger property $\delta(\tilde{G}) \geq 2$ as follows.

Suppose $C = u_1 u_2 \dots u_6 u_1$. By Lemma 2, there exist two indices $i, j \neq n$ such that the labels on the edges of C are (1i) and (1j) alternately. If $\delta(\widetilde{G}) \leq 1$, then there exists a vertex $v \in V(\widetilde{G})$ which has at least $n-2 \geq 2$ neighbors in $N_{SG_n}(C)$ (recall that SG_n is (n-1)-regular). Let v_1, v_2 be two distinct vertices in $N_{SG_n}(v) \cap N_{SG_n}(C)$. Suppose, without loss of generality, that v_1 is a neighbor of u_1 . Since SG_n is bipartite, there is no odd cycle in SG_n . Hence v_2 can only be a neighbor of vertex u_3 or u_5 , say u_3 . But then $C' = vv_1u_1u_2u_3v_2v$ is a 6-cycle of SG_n which have two common edges u_1u_2, u_2u_3 with the 6-cycle C, contradicting Corollary 2. Thus $\delta(\widetilde{G}) \geq 2$.

Since every graph with minimum degree at least 2 has a cycle, the lemma is proved. $\hfill \Box$

Theorem 1. For any integer $n \ge 4$, $\kappa_c(S_n) = 6(n-3)$.

Proof. Let C be a 6-cycle in SG_n and $F = N_{SG_n}(C)$. Since the girth of SG_n is 6, no two vertices on C have a common neighbor in $N_{SG_n}(C)$. Thus |F| = 6(n-3). By Lemma 5, F is a cyclic vertex-cut. Hence $\kappa_c(SG_n) \leq |F| \leq 6(n-3)$.

To prove the converse, let F be a minimum cyclic vertex-cut of SG_n . Suppose |F| < 6(n-3), we are to derive a contradiction. For $i \in \{1, 2, ..., n\}$, denote $F_i = F \cap SG_{n-1}^i$, and U_i the set of isolated vertices of $SG_{n-1}^i - F_i$.

Claim 1. If $|F_i| \le 2n - 7$, then $|U_i| \le 1$.

Otherwise, let u, v be two vertices in U_i . Since SG_{n-1}^i has girth 6, we see that u, v have at most one common neighbor. Hence $|N_{SG_{n-1}^i}(\{u,v\})| \ge 2(n-2)-1 > 2n-7$. Since U_i is an independent set, we see that $N_{SG_{n-1}^i}(U_i) \supseteq N_{SG_{n-1}^i}(\{u,v\})$. It follows that $|F_i| \ge |N_{SG_{n-1}^i}(U_i)| \ge |N_{SG_{n-1}^i}(\{u,v\})| > 2n-7$, contradicting that $|F_i| \le 2n-7$.

Claim 2. If $|F_i| \leq 2n-7$, then $SG_{n-1}^i - (F_i \cup U_i)$ is connected.

Suppose this is not true, then $F_i \cup U_i$ is a R^1 -vertex-cut of SG_{n-1}^i . By Corollary 1, $|F_i \cup U_i| \ge \kappa^1(SG_{n-1}^i) = 2n-6$. Combining this with $|U_i| \le 1$ (by Claim 1) and $|F_i| \le 2n-7$, we see that $|U_i| = 1$ and $|F_i \cup U_i| = \kappa^1(SG_{n-1}^i)$ (thus $F_i \cup U_i$ is a minimum R^1 -vertex-cut of SG_{n-1}^i). Again by Corollary 1, $F_i \cup U_i = N_{SG_{n-1}^i}(vw)$ for some edge $vw \in E(SG_{n-1}^i)$. Let u be the unique vertex in U_i . Then u is adjacent with either v or w, contradicting that u is an isolated vertex in $SG_{n-1}^i - F_i$. Thus Claim 2 is proved.

Let $I = \{i : |F_i| \ge 2n - 6\}$. Since |F| < 6(n - 3), we have $|I| \le 2$.

Claim 3. Let G_1 be the subgraph of SG_n induced by $\bigcup_{i \notin I} V(SG_{n-1}^i - (F_i \cup U_i))$. Then G_1 is connected.

By Claim 2, $SG_{n-1}^i - (F_i \cup U_i)$ is connected for any $i \notin I$. Hence to prove Claim 3, it suffices to show that for any two indices $i, j \notin I$, there is a path in G_1 connecting $SG_{n-1}^i - (F_i \cup U_i)$ and $SG_{n-1}^j - (F_j \cup U_j)$. For such $i, j, |U_i|, |U_j| \leq 1$ by Claim 1.

If there is an edge between $SG_{n-1}^i - (F_i \cup U_i)$ and $SG_{n-1}^j - (F_j \cup U_j)$, then we are done. Hence we suppose that there is no edge between $SG_{n-1}^i - (F_i \cup U_i)$ and $SG_{n-1}^j - (F_j \cup U_j)$. Then

$$N_{SG_{n-1}^{j}}(SG_{n-1}^{i} - (F_{i} \cup U_{i})) \subseteq F_{j} \cup U_{j},$$
(1)

and thus $|N_{SG_{n-1}^j}(SG_{n-1}^i-(F_i\cup U_i))|\leq |F_j|+1.$ We will show that this inequality can be refined to

$$|N_{SG_{n-1}^{j}}(SG_{n-1}^{i} - (F_{i} \cup U_{i}))| \le |F_{j}|.$$
(2)

Suppose (2) is not true, then $N_{SG_{n-1}^j}(SG_{n-1}^i - (F_i \cup U_i)) = F_j \cup U_j$ and $|U_j| = 1$. Let u be the unique vertex in U_j . Since u is an isolated vertex in $SG_{n-1}^j - F_j$, it has a neighbor v in F_j . By $N_{SG_{n-1}^j}(SG_{n-1}^i - (F_i \cup U_i)) = F_j \cup U_j$, we see that u and v have outside neighbors u' and v' in $SG_{n-1}^i - (F_i \cup U_i)$, respectively. Since the girth of SG_n is 6 and u and v are neighbors to each other, $u' \neq v'$. Since either u and v has another neighbor in SG_{n-1}^i , by the latter part of Lemma 3, we have a contradiction.

Next, we show that

$$|N_{SG_{n-1}^{j}}(F_{i} \cup U_{i})| \le |F_{i}|.$$
(3)

Since each vertex has exactly one outside neighbor, we have $|N_{SG_{n-1}^{j}}(F_{i} \cup U_{i})| \leq |F_{i} \cup U_{i}| \leq |F_{i}| + 1$. If equality holds, then $|U_{i}| = 1$ and every vertex in $F_{i} \cup U_{i}$ has its outside neighbor in SG_{n-1}^{j} . Similar to the above, the unique vertex $u \in U_{i}$ has a neighbor v in F_{i} , and thus the outside neighbors u', v' can not be both in the same copy. This contradiction establishes inequality (3).

By Lemma 4 and inequalities (2), (3),

$$\begin{split} (n-2)! &= |N_{SG_{n-1}^{j}}(SG_{n-1}^{i})| \\ &= |N_{SG_{n-1}^{j}}(SG_{n-1}^{i} - (F_{i} \cup U_{i}))| + |N_{SG_{n-1}^{j}}(F_{i} \cup U_{i})| \\ &\leq |F_{i}| + |F_{j}| \\ &\leq 2(2n-7). \end{split}$$

This is impossible for $n \ge 6$. Thus n = 4 or 5, in which case the above inequalities become equalities, and thus

$$|F_i| = |F_j| = 2n - 7, (4)$$

$$|N_{SG_{n-1}^{j}}(SG_{n-1}^{i} - (F_{i} \cup U_{i}))| = |F_{j}|,$$
(5)

$$|N_{SG_{n-1}^{i}}(SG_{n-1}^{j} - (F_{j} \cup U_{j}))| = |F_{i}|.$$
(6)

We can show that

$$N_{SG_{n-1}^{j}}(SG_{n-1}^{i} - (F_{i} \cup U_{i})) = F_{j}.$$
(7)

Suppose this is not true, then by (1) and (5), we see that

$$N_{SG_{n-1}^{j}}(SG_{n-1}^{i} - (F_{i} \cup U_{i})) = \{u\} \cup (F_{j} \setminus \{v\}),$$
(8)

where u is the unique vertex in U_j and v is some vertex in F_j . Since u is an isolated vertex in $SG_{n-1}^j - F_j$, it has at least two neighbors in F_j (recall that SG_{n-1} is (n-2)-regular and $n \ge 4$). Thus there exists a vertex $w \in F_j$ such that w is adjacent with u and $w \ne v$. By Lemma 3, the outside neighbors u' and w' can not be both in SG_{n-1}^i , contradicting (8). Thus (7) is proved.

In the case that n = 4 and |I| = 2, suppose, without loss of generality, that $I = \{1, 2\}$. By (4), $|F_3| = |F_4| = 2n - 7$. Hence $|F| \ge 2(2n - 7) + 2(2n - 6) = 6$, contradicting that |F| < 6(n-3) = 6. Hence n = 5, or n = 4 and |I| = 1. In these cases, there exists an index $k \notin I$ and $k \neq i, j$ (recall that $|I| \leq 2$). Since (7) says that every faulty vertex in SG_{n-1}^{j} has its outside neighbor in SG_{n-1}^{i} , we see that vertices in $N_{SG_{n-1}^j}(SG_{n-1}^k)$ are all good. Hence in the case that n = 5, by $|N_{SG_{n-1}^j}(SG_{n-1}^k - (F_k \cup U_k))| \ge (n-2)! - |F_k \cup U_k| \ge (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7) - 1 = 2 \text{ and } (F_k \cup U_k) = (n-2)! - (2n-7)! - (2n-7$ $|U_j| \leq 1$, we see that $SG_{n-1}^k - (F_k \cup U_k)$ has a good neighbor in $SG_{n-1}^j - (F_j \cup U_j)$. In the case that n = 4, we must have $U_k = \emptyset$. Otherwise U_k has a unique vertex u by Claim 1. Since $N_{SG_n^k}(u) \subseteq F_k$, we have $n-2 = |N_{SG_{n-1}^k}(u)| \leq |F_k| \leq |F_k|$ 2n-7, and thus $n \ge 5$, contradicting n = 4. Similarly, $U_j = \emptyset$. Then by $|N_{SG_{n-1}^{j}}(SG_{n-1}^{k}-F_{k})| \ge (n-2)! - |F_{k}| \ge (n-2)! - (2n-7) = 1$, we see that $SG_{n-1}^k - F_k$ has a good neighbor in $SG_{n-1}^j - F_j$. In any case, there is an edge between $SG_{n-1}^k - (F_k \cup U_k)$ and $SG_{n-1}^j - (F_j \cup U_j)$. Symmetrically, it can be shown that there is an edge between $SG_{n-1}^{k} - (F_k \cup U_k)$ and $SG_{n-1}^i - (F_i \cup U_i)$. Then $SG_{n-1}^i - (F_i \cup U_i)$ is connected to $SG_{n-1}^j - (F_j \cup U_j)$ through $SG_{n-1}^k - (F_k \cup U_k)$ (all the vertices on the path connecting $SG_{n-1}^i - (F_i \cup U_i)$ and $SG_{n-1}^j - (F_j \cup U_j)$ belong to G_1).

Claim 3 is proved.

By Claim 3, we may assume that G_1 is contained in a connected component \widetilde{C} of $SG_n - F$. If $I = \emptyset$, then $V(SG_n - F - \widetilde{C}) \subseteq \bigcup_{i=1}^n U_i$. For each vertex $u \in \bigcup_{i=1}^n U_i$, if its outside neighbor is good, then $d_{SG_n-F}(u) = 1$, otherwise $d_{SG_n-F}(u) = 0$. It follows that $\delta(SG_n - F - \widetilde{C}) \leq 1$ and thus $SG_n - F - \widetilde{C}$ has no cycle, contradicting that F is a cyclic vertex-cut. Hence $1 \leq |I| \leq 2$. Let G_2 be the subgraph of SG_n induced by $\bigcup_{i \in I} (SG_{n-1}^i - F_i)$.

Claim 4. Let C be a connected component of G_2 which contains at least one cycle. Then there is an edge between C and G_1 .

Suppose this is not true, then $N_{SG_n}(C) \subseteq F \cup U$, where $U = \bigcup_{j \notin I} U_j$. It follows that for any index $j \notin I$, $N_{SG_{n-1}^j}(C) \subseteq F_j \cup U_j$, and for any index $i \in I$, $N_{SG_{n-1}^j}(C) \subseteq F_i$. As a consequence, using Claim 1,

$$|N_{SG_{n-1}^{j}}(C)| \le |F_{j}| + |U_{j}| \le |F_{j}| + 1 \text{ for } j \notin I, \text{ and}$$
(9)

$$N_{SG_{n-1}^{i}}(C)| \le |F_i| \text{ for } i \in I.$$

$$\tag{10}$$

We can further refine (9) to

$$|N_{SG_{n-1}^j}(C)| \le |F_j| \text{ for } j \notin I.$$

$$\tag{11}$$

Suppose (11) is not true, then $N_{SG_{n-1}^j}(C) = F_j \cup U_j$ and $|U_j| = 1$. Let u be the unique vertex in U_j , and v, w be two neighbors of u in F_j . By Lemma 3, the outside neighbors u', v', w' should be in three different copies. But this is impossible since C has non-empty intersection with at most two copies, namely the copies corresponding to I. Thus (11) is proved.

Combining inequalities (10) and (11), we have

$$|N_{SG_n}(C)| \le |F|. \tag{12}$$

In the following, we count $|N_{SG_n}(C)|$ and derive contradictions to (12).

Case 1. |I| = 1.

Suppose, without loss of generality, that $I = \{1\}$. In this case,

C is contained in $SG_{n-1}^1 - (F_1 \cup U_1).$ (13)

Let D be a shortest cycle in C, and $u_1, ..., u_6$ be six sequential vertices on D. Since the girth of SG_n is 6 and there is no odd cycle in SG_n , we see that if u_1u_6 is an edge, then no vertices of $\{u_1, ..., u_6\}$ can have a common neighbor outside of D; if u_1u_6 is not an edge, then the only pairs of vertices of $\{u_1, ..., u_6\}$ that may have a common neighbor outside of D are $\{u_1, u_5\}$ and $\{u_2, u_6\}$. Furthermore, we see from Corollary 2 that if u_1, u_5 have a common neighbor outside of D, then u_2, u_6 cannot have common neighbor outside of D, and vice versa. Denote $Y = N_{SG_{n-1}^1}(D)$. By the above analysis, we see that $|Y| \ge 6(n-4) = 6n - 24$ if u_1u_6 is an edge, and $|Y| \ge 4(n-4) + 2(n-3) - 1 = 6n - 23 > 6n - 24$ otherwise. Let $Y' = Y \cap V(C)$ and $Y'' = Y \setminus Y'$. Clearly, each vertex $y \in Y''$ is in

 $N_{SG_n}(C)$. For each vertex $y \in Y'$, since its outside neighbor $y' \notin V(C)$ (by (13)), we have $y' \in N_{SG_n}(C)$. Since the outside neighbors of vertices in a same copy are all different, we have

$$|N_{SG_n}(C)| \ge |Y''| + |\{y' \mid y \in Y'\}| + |\{u'_1, ..., u'_6\}| = |Y| + 6 \ge 6n - 18 > |F|,$$

contradicting (12).

Case 2. |I| = 2.

Suppose, without loss of generality, that $I = \{1, 2\}$. Then C is contained in $(SG_{n-1}^1 - F_1) \cup (SG_{n-1}^2 - F_2)$. If C is completely contained in SG_{n-1}^1 or SG_{n-1}^2 , then a contradiction can be obtained as in Case 1. Thus we assume $V(C) \cap V(SG_{n-1}^i) \neq \emptyset$ for i = 1, 2. In this case, there exists an edge of C between SG_{n-1}^1 and SG_{n-1}^2 . Let uv be such an edge, and let P be a path of C on 6 vertices which passes through uv. Denote $X_1 = V(P) \cap V(SG_{n-1}^1)$ and $X_2 = V(P) \cap V(SG_{n-1}^2)$. Then $|X_1|, |X_2| \ge 1$, and thus $|X_1|, |X_2| \le 5$ by $|X_1| + |X_2| = 6$.

For i = 1, 2, let $Y_i = N_{SG_{n-1}^i}(X_i)$. Since SG_{n-1}^i has girth 6, we have

$$|Y_1| + |Y_2| = \begin{cases} 6n - 21 \text{ if one of } X_1 \text{ and } X_2 \text{ is a path on five vertices} \\ \text{the ends of which have a common neighbor,} \\ 6n - 20 \text{ otherwise.} \end{cases}$$
(14)

For i = 1, 2, let $n_i = N_{SG_{n-1}^{3-i}}(X_i \cup Y_i) \cap V(C)$. We claim that

$$1 \le n_i \le \begin{cases} 1, & \text{for } |X_i| = 1, \\ |X_i| - 1, & \text{for } 2 \le |X_i| \le 5. \end{cases}$$
(15)

The left hand side $n_i \geq 1$ is obvious because of the edge uv. For the case that $|X_1| = 5$, assume X_1 induces a path $u_1u_2u_3u_4u_5$ in SG_{n-1}^1 , where $u = u_5$. Then u_5 has its outside neighbor v in SG_{n-1}^2 . By Lemma 3, vertices in $N_{SG_{n-1}^1}(\{u_5, u_4\})$ do not have their outside neighbors in SG_{n-1}^2 ; at most one vertex in $N_{SG_{n-1}^1}(\{u_3\})$ has its outside neighbor in SG_{n-1}^2 ; for i = 1, 2, at most one vertex in $N_{SG_{n-1}^1}(\{u_i\}) \cup \{u_i\}$ has its outside neighbor in SG_{n-1}^2 . Thus $n_i \leq 4 = |X_i| - 1$. The other cases can be proved similarly.

Suppose $|Y_1| + |Y_2| - n_1 - n_2 \ge 6n - 24$. For i = 1, 2, denote $Y'_i = Y_i \cap V(C)$ and $Y''_i = Y_i \setminus Y'_i$. Then $Y''_i \subseteq N_{SG_n}(C)$, and each vertex y in $Y'_1 \cup X_1$ (resp. $Y'_2 \cup X_2$) whose outside neighbor y' is not in SG^2_{n-1} (resp. SG^1_{n-1}) has $y' \in N_{SG_n}(C)$. Hence

$$\begin{aligned} |N_{SG_n}(C)| &\geq |Y_1''| + |\{y' \mid y \in Y_1' \cup X_1\}| - n_1 + |Y_2''| + |\{y' \mid y \in Y_2' \cup X_2\}| - n_2 \\ &= |Y_1| + |Y_2| - n_1 - n_2 + 6 \geq 6n - 18 > |F| \end{aligned}$$

(observe that since the outside neighbors counted in the above inequality are not in $V(SG_{n-1}^1 \cup SG_{n-1}^2)$, no two of them can coincide), which contradicts (12).

Next we consider the case that

for any edge
$$uv$$
 between SG_{n-1}^1 and SG_{n-1}^2 and any path P
taken as above, $|Y_1| + |Y_2| - n_1 - n_2 \le 6n - 25.$ (16)

Combining this with (14), we have

$$n_1 + n_2 \ge \begin{cases} 5, \text{ if } |Y_1| + |Y_2| = 6n - 20, \\ 4, \text{ if } |Y_1| + |Y_2| = 6n - 21. \end{cases}$$
(17)

If both $|X_1| \ge 2$ and $|X_2| \ge 2$, then by (15) and the fact $|X_1| + |X_2| = 6$, we have $n_1 + n_2 \le 4$. Then by (17), we see that $n_1 + n_2 = 4$ and $|Y_1| + |Y_2| = 6n - 21$. But by (14), one of $|X_1|$ and $|X_2|$ must be 1, a contradiction. Hence suppose

for any edge
$$uv$$
 between SG_{n-1}^1 and SG_{n-1}^2 and any path P
taken as above, $|X_1| = 5$, $|X_2| = 1$, or vice versa. (18)

Suppose $P = u_1 u_2 u_3 u_4 u_5 u_6$ is such a path, where u_6 is the only vertex in X_2 . Then $n_2 = 1$ and $n_1 \ge 3$ by (17). By the deduction in proving (15), we see that besides u_6 , the only outside neighbors which can contribute to n_1 are in $N_{SG_{n-1}^1}(u_3)$, $N_{SG_{n-1}^1}(\{u_2\}) \cup \{u_2\}$, $N_{SG_{n-1}^1}(\{u_1\}) \cup \{u_1\}$, and at most one from each of the three sets. If there is a vertex $u_7 \in N_{SG_{n-1}^1}(u_3)$ whose outside neighbor $u'_7 \in SG_{n-1}^2 \cap V(C)$, then $u'_7 u_7 u_3 u_4 u_5 u_6$ is a path contradiction (18). If $u'_2 \in SG_{n-1}^2 \cap V(C)$, then $u'_2 u_2 u_3 u_4 u_5 u_6$ is a path contradiction (18). Hence in order that $n_1 \ge 3$, there must be a vertex $u_7 \in N_{SG_{n-1}^1}(u_2)$ such that $u'_7 \in SG_{n-1}^2 \cap V(C)$. By Lemma 3, $u'_1 \notin SG_{n-1}^2$. Hence in order that $n_1 \ge 3$, there must be a vertex $u_8 \in N_{SG_{n-1}^1}(u_1)$ such that $u'_8 \in SG_{n-1}^2 \cap V(C)$. But then $u'_8 u_8 u_1 u_2 u_7 u'_7$ is a path contradiction (18).

Claim 4 is proved.

As a consequence of Claim 4, every connected component of G_2 which contains a cycle is in \widetilde{C} . Thus $SG_n - F - \widetilde{C}$ consists of some vertices in U and some acyclic connected components of G_2 . Since every vertex in U has degree at most 1 in $SG_n - F$, we see that $SG_n - F - \widetilde{C}$ does not contain cycle, contradicting that F is a cyclic vertex-cut. The theorem is proved. \Box

4 Conclusion and Future Work

In this paper, we determined the cyclic vertex-connectivity κ_c of the *n*-dimensional star graph SG_n . Generally, κ_c is different from κ^2 . For SG_n , these two parameters coincide. Is there something deeper under the coincidence? This is the focus of our future research.

References

- 1. Akers, S.B., Harel, D., Krishnamurthy, B.: The star graph: an attractive alternative to the *n*-cube. In: Proc. Int. Conf. Parallel Processing, pp. 393–400 (1987)
- 2. Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection networks. IEEE Transactions on Computers 38, 555–566 (1989)
- Bondy, J.A., Murty, U.S.R.: Graph theory with application. Macmillan, London (1976)
- Cheng, E., Lipman, M.J.: Increasing the connectivity of the star graphs. Networks 40, 165–169 (2002)
- 5. Day, K., Tripathi, A.: A comparative study of topological properties of hypercubes and star graphs. IEEE Trans. Comp. 5, 31–38 (1994)
- Esfahanian, A.H.: Generalized measures of fault tolerance with application to ncube networks. IEEE Trans. Comp. 38, 1586–1591 (1989)
- 7. Harary, F.: Conditional connectivity. Networks 13, 347–357 (1983)
- Heydemann, M.C., Ducourthial, B.: Cayley graphs and interconnection networks. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry, Montreal, PQ. NATO Advanced Science Institutes Series C, Mathematica and Physical Sciences, vol. 497, pp. 167–224. Kluwer Academic Publishers, Dordrecht (1996)
- Holton, D.A., Lou, D., Plummer, M.D.: On the 2-extendability of plannar graphs. Discrete Math. 96, 81–99 (1991)

- Hu, S.C., Yang, C.B.: Fault tolerance on star graphs. In: Proceedings of the First Aizu International Symposium on Parallel Algorithms/Architecture Synthesis, pp. 176–182 (1995)
- Latifi, S., Hegde, M., Pour, M.N.: Conditional connectivity measures for large multiprocessor systems. IEEE Trans. Comp. 43, 218–222 (1994)
- Lou, D., Holton, D.A.: Lower bound of cyclic edge connectivity for n-extendability of regular graphs. Discrete Math. 112, 139–150 (1993)
- Nedela, R., Skoviera, M.: Atoms of cyclic connectivity in cubic graphs. Math. Slovaca 45, 481–499 (1995)
- Plummer, M.D.: On the cyclic connectivity of planar graphs. Lecture Notes in Mathematics, vol. 303, pp. 235–242 (1972)
- Robertson, N.: Minimal cyclic-4-connected graphs. Trans. Amer. Math. Soc. 284, 665–684 (1984)
- Tait, P.G.: Remarks on the colouring of maps. Proc. Roy. Soc., Edinburgh 10, 501–503 (1880)
- Wan, M., Zhang, Z.: A kind of conditional vertex connectivity of star graphs. Appl. Math. Letters 22, 264–267 (2009)
- Wang, B., Zhang, Z.: On cyclic edge-connectivity of transitive graphs. Discrete Math. 309, 4555–4563 (2009)
- Watkins, M.E.: Connectivity of transitive graphs. J. Combin. Theory 8, 23–29 (1970)
- 20. Xu, J.M., Liu, Q.: 2-restricted edge connectivity of vertex-transitive graphs. Australasian Journal of Combinatorics 30, 41–49 (2004)
- 21. Zhang, C.Q.: Integer flows and cycle covers of graphs. Marcel Dekker Inc., New York (1997)