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Preface

The 4th Annual International Conference on Combinatorial Optimization and
Applications (COCOA 2010) took place in Big Island, Hawaii, USA, December
18–20, 2010. Past COCOA conferences were held in Xi’an, China (2007),
Newfoundland, Canada (2008) and Huangshan, China (2009).

COCOA 2010 provided a forum for researchers working in the areas of combi-
natorial optimization and its applications. In addition to theoretical results, the
conference also included recent works on experimental and applied research of
general algorithmic interest. The Program Committee received 108 submissions
from more than 23 countries and regions, including Australia, Austria, Canada,
China, Denmark, France, Germany, Hong Kong, India, Italy, Japan, Korea,
Mexico, New Zealand, Poland, Slovak Republic, Spain, Sweden, Switzerland,
Taiwan, UK, USA, Vietnam, etc.

Among the 108 submissions, 49 regular papers were selected for presentation
at the conference and are included in this volume. Some of these papers will
be selected for publication in a special issue of the Journal of Combinatorial
Optimization, a special issue of Theoretical Computer Science, a special issue of
Optimization Letters, and a special issue of Discrete Mathematics, Algorithms
and Applications under the standard refereeing procedure.

We thank all authors for submitting their papers to the conference. We are
grateful to all members of the Program Committee and all external referees
for their work within demanding time constraints. We thank the Organizing
Committee for their contribution to making the conference a success. We also
thank Jiaofei Zhong and Donghyun Kim for helping us create and update the
conference website and maintain the Springer Online Conference Service system
and Shawon Rahman for helping in local arrangements.

Finally, we thank the conference sponsors and supporting organizations for
their support and assistance. They are the University of Texas at Dallas, the
University of Hawaii at Hilo, and the National Science Foundation of USA.

December 2010 Weili Wu
Ovidiu Daescu
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Abstract. An intense activity is nowadays devoted to the definition of
models capturing the properties of complex networks. Among the most
promising approaches, it has been proposed to model these graphs via
their clique incidence bipartite graphs. However, this approach has, until
now, severe limitations resulting from its incapacity to reproduce a key
property of this object: the overlapping nature of cliques in complex net-
works. In order to get rid of these limitations we propose to encode the
structure of clique overlaps in a network thanks to a process consisting
in iteratively factorising the maximal bicliques between the upper level
and the other levels of a multipartite graph. We show that the most nat-
ural definition of this factorising process leads to infinite series for some
instances. Our main result is to design a restriction of this process that
terminates for any arbitrary graph. Moreover, we show that the resulting
multipartite graph has remarkable combinatorial properties and is closely
related to another fundamental combinatorial object. Finally, we show
that, in practice, this multipartite graph is computationally tractable
and has a size that makes it suitable for complex network modelling.

1 Introduction

It appeared recently [10,1,3] that most real-world complex networks (like the
internet topology, data exchanges, web graphs, social networks, or biological
networks) have some non-trivial properties in common. In particular, they have
a very low density, low average distance and diameter, an heterogeneous degree
distribution, and a high local density (usually captured by the clustering coef-
ficient [10]). Models of complex networks aim at reproducing these properties.
Random 1 graphs with given numbers of vertices and edges [4] fit the density and

1 In all the paper, random means uniformly chosen in a given class.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part I, LNCS 6508, pp. 1–10, 2010.
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2 M. Latapy et al.

distance properties, but they have homogeneous degree distributions and low lo-
cal density. Random graphs with prescribed distributions [9] and the preferential
attachment model [2] fit the same requirement, with the degree distribution in
addition, but they still have a low local density. As these models are very simple,
formally and computationnaly tractable, and rather intuitive, there is nowadays
a wide consensus on using them.

However, when one wants to capture the high local density in addition to
previous properties, there is no clear solution. In particular, we are unable to
construct a random graph with prescribed degree distribution and local density.
As a consequence, many proposals have been made, e.g. [10,3,7,6] , each with
its own advantages and drawbacks. Among the most promising approaches, [6,7]
propose to model complex networks based on the properties of their clique inci-
dence bipartite graph (see definition below). They show that generating bipar-
tite graphs with prescribed degree distributions for bottom and top vertices and
interpreting them as clique incidence graphs results in graphs fitting all the com-
plex network properties listed above, including heterogeneous degree distribution
and high local density.

However, the bipartite model suffers from severe limitations. In particular,
it does not capture overlap between cliques, which is prevalent in practice. In-
deed, as evidenced in [6,8], the neighbourhoods of vertices in the clique inci-
dence bipartite graph of a real-world complex network generally have significant
intersections: cliques strongly overlap and vertices belong to many cliques in
common. On the opposite, when one generates a random bipartite graph with
prescribed degree distributions, the obtained bipartite graph have much smaller
neighbourhood intersections, almost always limited to at most one vertex (under
reasonable assumptions on the degree distributions). Indeed, the process of gen-
eration based on the bipartite graph is equivalent to randomly choosing sets of
vertices of the graph (with prescribed size distribution) that we all link together.
Because of the constraints imposed on this size distribution by the low density of
the graph , the probability of choosing several vertices in common between two
such random sets tends to zero when the graph grows. As a consequence, the
bipartite model fails in capturing the overlapping nature of cliques in complex
networks. This leads in particular to graphs which have many more edges than
the original ones (two cliques of size d lead to d.(d−1) edges in the model graph,
while the overlap between cliques make this number much smaller in the original
graph).

Our contribution. Since the random generation process of the bipartite graph
is not able to generate non-trivial neighbourhood intersections (that is having
cardinality at least two), a natural direction to try to solve this problem consists
in using a structure explicitly encoding these intersections. This can be done
using a tripartite graph instead of a bipartite one: one may encode any bipartite
graph B = (⊥,�, E) into a tripartite one T = (⊥,�, C,E′) where C is the set
of non-trivial maximal bicliques (complete bipartite graphs having at least two
bottom vertices and two top vertices) of B and E′ is obtained from E by adding
the edges between any biclique c in C and all the vertices of B which belong



Termination of Multipartite Graph Series 3

to c and removing the edges between vertices of C. This process, which we call
factorisation, can be iterated to encode any graph in a multipartite one where
there are hopefully no non-trivial neighbourhood intersections.

In this paper, we show that this iterated factorising process do not end for
some graphs. We then introduce variations of this base process and study them
with regard to termination issue. Our main result is the design of such a process,
which we call clean factorisation, that terminates on any arbitrary graph. In ad-
dition, we show that the multipartite graph on which terminates this process
has remarkable combinatorial properties and is strongly related to a fundamen-
tal combinatorial object. Namely, its vertices are in bijection with the chains
of the inf-semilattice of intersections of maximal cliques of the graph. Finally,
we give an upper bound on the size and computation time of the graph on
which terminates the iterated clean factorising process of G, under reasonable
hypothesis on the degree distributions of the clique incidence bipartite graph of
G; therefore showing that this multipartite graph can be used in practice for
complex network modelling.

Outline of the paper. We first give a few notations and basic definitions
useful in the whole paper. We then consider the most immediate generalisation
of the bipartite decomposition (Section 2) and show that it leads to infinite
decompositions in some cases. We propose a more restricted version in Section 3,
which seems to converge but for which the question remains open. Finally, we
propose another restricted version in Section 4 for which we prove that the
decomposition scheme always terminates.

Notations and preliminary definitions. All graphs considered here are fi-
nite, undirected and simple (no loops and no multiple edges). A graph G having
vertex set V and edge set E will be denoted by G = (V,E). We also denote by
V (G) the vertex set of G. The edge between vertices x and y will be indifferently
denoted by xy or yx.

A k-partite graph G is a graph whose vertex set is partitioned into k parts,
with edges between vertices of different parts only (a bipartite graph is a 2-
partite graph, a tripartite graph a 3-partite graph, etc): G = (V0, . . . , Vk−1, E)
with E ⊆ {uv | u ∈ Vi, v ∈ Vj , i �= j}. The vertices of Vi, for any i, are called the
i-th level of G, and the vertices of Vk−1 are called its upper vertices.
K(G) denotes the set of maximal cliques of a graph G, and NG(x) the neigh-

bourhood of a vertex x in G. When G = (V0, . . . , Vk−1, E) is k-partite, we
denote by NG

i (x), where 0 ≤ i ≤ k − 1, the set of neighbours of x at level i:
NG

i (x) = NG(x) ∩ Vi. When the graph referred to is clear from the context, we
omit it in the exponent. A biclique of a graph is a set of vertices of the graph in-
ducing a complete bipartite graph. We denote B(G) the clique incidence graph
of G = (V,E), i.e. its bipartite decomposition: B(G) = (V,K(G), E′) where
E′ = {vc | c ∈ K(G), v ∈ c}.

In all the paper, an operation will play a key role, we name it factorisation
and define it generically as follows.
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Definition 1 (factorisation). Given a k-partite graph G = (V0, . . . , Vk−1, E)
with k ≥ 2 and a set V ′

k of subsets of V (G), we define the factorisation of G
with respect to V ′

k as the (k + 1)-partite graph G′ = (V0, . . . , Vk, (E \E−) ∪ E+)
where:

– Vk is the set of maximal (with respect to inclusion) elements of V ′
k,

– E− = {yz | ∃X ∈ Vk, y ∈ X ∩ Vk−1 and z ∈ X \ Vk−1}, and
– E+ = {Xy | X ∈ Vk and y ∈ X}.

When Vk �= ∅, the factorisation is said to be effective.

In the rest of the paper, we will refine the notion of factorisation by using dif-
ferent sets V ′

k on which is based the factorisation operation, and we will study
termination of the graph series resulting from each of these refinements.

The converse operation of the factorisation operation is called projection.

Definition 2 (projection). Given a k-partite graph G = (V0, . . . , Vk−1, E)
with k ≥ 3, we define the projection of G as the (k − 1)-partite graph G′ =
(V0, . . . , Vk−2, (E∩(

⋃
1≤i≤k−2 Vi)2)∪A+) where A+ = {yz | ∃i, j ∈ �1, k−2�, i �=

j and y ∈ Vi and z ∈ Vj and ∃t ∈ Vk−1, yt, zt ∈ E} is the set of edges between
any pair of vertices of

⋃
1≤i≤k−2 Vi having a common neighbour in Vk−1.

It is worth to note that the projection is the converse of the factorisation oper-
ation independently from the set V ′

k used in the definition of the factorisation.

2 Weak Factor Series

As explained before, our goal is to improve the bipartite model of [6,7] in order to
be able to encode non-trivial clique overlaps, that is overlaps whose cardinality
is at least two. Since these overlaps in the graph result from the neighbourhood
overlaps of the upper vertices, the purpose of the new model we propose is to
encode the graph into a multipartite one by recursively eliminating all non-trivial
neighbourhood overlaps of the upper vertices. We first describe this process
informally, then give its formal definition and exhibit an example for which it
does not terminate.

Neighbourhood overlaps of the upper vertices in a bipartite graph B =
(V0, V1, E) may be encoded as follows. For any maximal2 biclique C that in-
volves at least two upper vertices and two other vertices, we introduce a new
vertex x in a new level V2, add all edges between x and the elements of C, and
delete all the edges of C, as depicted on Figure 1. We obtain this way a tripartite
graph T = (V0, V1, V2, E

′) which encodes B (one may obtain B from T by the
projection operation) and which has no non-trivial neighbourhood overlaps in
its first two level (V0 and V1).
2 The reason why one would take the maximal bicliques is simply to try to encode all

neighbourhood overlaps using a reduced number of new vertices. Notice that there
are other ways to reduce even more the number of new vertices created, for example
by taking a biclique cover of the edge set of B. This is however out of the scope of
this paper.
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Fig. 1. Example of multipartite decomposition of a graph. From left to right: the orig-
inal graph; its bipartite decomposition; its tripartite decomposition; and its quadripar-
tite decomposition, in which there is no non-trivial neighbourhood overlap anymore.
In this case, the decomposition process terminates.

This process, which we call a factorising step, may be repeated on the tripar-
tite graph T obtained (as well as on any multipartite graph) by considering the
bipartite graph between the upper vertices and the other vertices of the tripartite
(or multipartite) graph, see Figure 1. All k-partite graphs obtained along this
iterative factorising process have no non-trivial neighbourhood overlap between
the vertices of their k− 1 first levels. Then, the key question is to know whether
the process terminates or not.

We will now formally define the factorising process and show that it may result
in an infinite sequence of graphs. In the following sections, we will restrict the
definition of the factorising step in order to always obtain a finite representation
of the graph.

Definition 3 (V •
k and weak factor graph). Given a k-partite graph G =

(V0, . . . , Vk−1, E) with k ≥ 2, we define the set V •
k as:

V •
k = {{x1, . . . , xl} ∪

⋂
1≤i≤l

N(xi) | l ≥ 2, ∀i ∈ �1, l�, xi ∈ Vk−1 and |
⋂

1≤i≤l

N(xi)| ≥ 2}.

The weak factor graph G• of G is the factorisation of G with respect to V •
k .

The weak factorisation admits a converse operation, called projection, which is
defined in Section 1. It implies that the factor graph of G, as well as its iterated
factorisations, is an encoding of G.

The weak factor series defined below is the series of graphs produced by
recursively repeating the weak factorising step.

Definition 4 (weak factor series WFS(G)). The weak factor series of a
graph G is the series of graphs WFS(G) = (Gi)i≥1 in which G1 = B(G) is the
clique incidence graph of G and, for all i ≥ 1, Gi+1 is the weak factor graph of
Gi: Gi+1 = G•

i . If for some i ≥ 1 the weak factor operation is not effective then
we say that the series is finite.

Figure 1 gives an illustration for this definition. In this case, the weak factor
series is finite. However, this is not true in general; see Figure 2. Intuitively,
this is due to the fact that a vertex may be the base for an infinite number of
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e

cd

ba

b da ce
b da ce

...

Fig. 2. An example graph for which the weak factorising process is infinite. From left
to right: the original graph G, its bipartite decomposition B(G), and its tripartite
decomposition B(G)•. The shaded edges are the ones involving vertex e, which play a
special role: all the vertices of the upper level of the decompositions are linked to e.
The structure of the tripartite decomposition is very similar to the one of the bipartite
decomposition, revealing that the process will not terminate.

factorising steps (like vertex e in the example of Figure 2). The aim of the next
sections is to avoid this case by giving more restrictive definitions.

3 Factor Series

In the previous section, we have introduced weak factor series which appear to be
the most immediate extension of bipartite decompositions of graphs. We showed
that, unfortunately, weak factor series are not necessarily finite. In this section,
we introduce a slightly more restricted definition that forbids the repeated use
of a same vertex to produce infinitely many factorisations (as observed on the
example of Figure 2). However, we have no proof that it necessarily gives finite
series, which remains an open question.

Definition 5 (V ◦
k and factor graph). Given a k-partite graph G = (V0, . . . ,

Vk−1, E) with k ≥ 2, we define the set V ◦
k as:

V ◦
k = {X ∈ V •

k such that |
⋂

y∈X∩Vk−1

Nk−2(y)| ≥ 2}.

The factor graph G◦ of G is the factorisation of G with respect to V ◦
k .

This new definition results from the restriction of the weak factor definition by
considering only sets X ∈ V •

k such that the vertices of X ∩ Vk−1 have at least
two common neighbours at level k − 2. In this way, the creation of new vertices
depends only on the edges between levels k − 1 and k − 2 (even though some
other edges may be involved in the factorisation operation). Thus, a vertex will
not be responsible for infinitely many creations of new vertices. This restriction
also plays a key role in the convergence proof of the clean factor series, defined
in next section. That is why we think it may be possible that it is sufficient to
guarantee the convergence of the factor series, but we could not prove it with
this sole hypothesis.

4 Clean Factor Series

In the two previous sections, we studied two multipartite decompositions of
graphs. The first one is very natural but it does not lead to finite objects. The
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second one remains very general but we were unable to prove that it leads to
finite object. As a first step towards this goal, we introduce here a more re-
stricted definition for which we prove that the decomposition is finite. This new
combinatorial object has many interesting features, and we consider it worth
of study in itself. In particular, we prove that it is a decomposition of a well-
known combinatorial object: the inf-semi-lattice of the intersections of maximal
cliques of G. This correspondence allows to calculate quantities of graph G from
elements of M . One of such results is an explicit formula (not presented here)
giving the number of triangles in G, which is a very important parameter of
complex networks.

The clean factor graph (defined below) is a proper restriction of the factor
graph in which the vertices at level k − 1 used to create a new vertex at level k
are required to have exactly the same neighbourhoods at all levels strictly below
level k − 2, except at level 1. Intuitively, this requirement implies that the new
factorisations push further the previous ones and are not simply a rewriting at
a higher level of a factorisation previously done. The particular role of level 1
will allow us to differentiate vertices of the multipartite graph by assigning them
sets of nodes at level 0. Let us now formally define the clean factor graph and
its corresponding series.

Definition 6 (V ∗
k and clean factor graph). Given a k-partite graph G =

(V0, . . . , Vk−1, E) with k ≥ 4, we define the set V ∗
k as:

V ∗
k = {X ∈ V ◦

k | ∀x, y ∈ X ∩ Vk−1, ∀p ∈ {0} ∪ �2, k − 3�, Np(x) = Np(y)}.

The clean factor graph G∗ of G is the factorisation of G with respect to V ∗
k .

Definition 7 (clean factor series CFS(G)). The clean factor series of a graph
G is the series of graphs CFS(G) = (Gi)i≥1 in which G1 = B(G) is the clique
incidence graph of G, G2 = G◦

1, G3 = G◦
2 and, for all i ≥ 3, Gi+1 is the clean

factor graph of Gi: Gi+1 = G∗
i . If for some i the clean factor operation is not

effective then we say that the series is finite.

The rest of this section is devoted to proving the following theorem.

Theorem 1. For any graph G, the clean factor series (Gi)i≥1 is finite.

Notation 1. Let (Gi)i≥1 be the clean factor series of G. For any i ≥ 1, any
x ∈ Vi and any j < i, we denote by Vj(x) the set NGi

j (x) and by V (x) the set⋃
0≤j<i Vj(x).

Remark 1. In the rest of the paper, when referring to Definition 6, it is worth
keeping in mind that for x ∈ Vk−1 and p ≤ k−3, the sets Np(x) and Np(y) used
in the definition are precisely the sets Vp(x) and Vp(y).

Definition 8. We denote by O′ the set {O ⊆ V (G) | ∃k ≥ 2, ∃C1, . . . , Ck ∈
K(G), (∀j, l ∈ �1, k�, j �= l ⇒ Cj �= Cl) and O =

⋂
1≤i≤k Ci}; and by O the

set {O ∈ O′ | |O| ≥ 2}. For any O ∈ O′, we denote by K(O) the set {C ∈
K(G) | O ⊆ C}. We also denote by C the set {Y ⊆ K(G) | ∃O ∈ O′, Y = K(O)}.
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It is clear from the definition that O′ is closed under intersection, this is also the
case for C.

In all the Gi’s of the clean factor series, vertices at level 0 correspond to
vertices of G, vertices at level 1 correspond to the maximal cliques of G, that
is for any y ∈ V1, V0(y) ∈ K(G). That is the reason why in the following we
do not distinguish between the elements of K(G) and those of V1. We will show
that the vertices of V2 correspond to the elements of O. Indeed, x �→ V0(x) is
a bijection from V2 to O. First, for any x ∈ V2, by definition, |V0(x)| ≥ 2, then
V0(x) =

⋂
y∈V1(x) V0(y) belongs to O. Let O ∈ O. Let us show that X = K(O)∪⋂

y∈K(O) V0(y) is a maximal element of V ◦
2 . First note that X∩V0 = O and then

|X ∩ V0| ≥ 2. Now, if you augment X with an element of y ∈ V1 \K(O), since
y �∈ K(O), X∩V0 will decrease. Thus X is maximal and there is a corresponding
x ∈ V2 such that V0(x) = O. Furthermore, it is straightforward to see that the
maximality of V (x) implies that V1(x) = K(O). Which proves the uniqueness of
the x ∈ V2 such that V0(x) = O.

Definition 9. Let G be a graph and let (Gi)i≥1 be its clean factor series. The
characterising sequence S(x) = (O1(x), . . . , Ok−1(x) of a vertex x ∈ Vk, with
k ≥ 2, is defined by:

– O1(x) = V0(x)
– ∀j ∈ �2, k − 1�, Oj(x) is the unique element3 of O′ such that K(Oj(x)) =⋂

y∈Vj(x) V1(y).

Note that Oj is properly defined. Indeed, since C is closed under intersection,
a simple recursion would show that for all i ≥ 3 and for all y ∈ Vi, V1(y) =⋂

z∈Vi−1
V1(z) ∈ C.

Theorem 2 is our main combinatorial tool for proving the finiteness of the
clean factor series (Theorem 1). Its proof is rather intricate, but it gives much
more information than the finiteness of the series. By associating a sequence
of sets to each vertex in levels greater than V2 in the multipartite graph, we
show that each such vertex corresponds to a chain of the inf-semi-lattice of the
intersections of maximal cliques of G. The correspondence thereby highlighted
between this very natural structure and the multipartite factorisation scheme
we introduced is non-trivial and of great combinatorial interest.

Theorem 2. Let G be a graph and (Gi)i≥2 its clean factor series. We then have
the following properties:

1. ∀k ≥ 2, ∀x ∈ Vk, O1(x) � . . . � Ok−1(x) and if k = 3, O2(x) ∈ O and if
k ≥ 4, (O2(x), . . . , Ok−2(x)) ∈ Ok−3

2. ∀k ≥ 2, ∀x, y ∈ Vk, x �= y ⇒ S(x) �= S(y),
3. ∀k ≥ 2, ∀(O1, . . . , Ok−1) ∈ Ok−1, O1 � . . . � Ok−1 ⇒ ∃x ∈ Vk, S(x) =

(O1, . . . , Ok−1).

3 By convention, Oj(x) = V (G) when
⋂

y∈Vj(x) V1(y) = ∅.
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For lack of space, we do not give the proof of Theorem 2. It can be made by recur-
sion on k. The key of our proof is that we could characterise, for any k ≥ 3, the
vertices at level k−1 involved in the creation of a new vertex x at level k : roughly,
they are those vertices y such that there exist O1, . . . , Ok−3, Om, OM ∈ O and
Sy = (O1, . . . , Ok−3, Ok − 2(y)) is such that Om ⊆ Ok−2(y) ⊆ OM . Then, the
characterising sequence of the created vertex x is S(x)=(O1, . . . , Ok−3, Om, OM ).
Please refer to the webpages of the authors for a complete version of the paper
including proof of Theorem 2.

Theorem 1 is a corollary of Theorem 2. Indeed, Theorem 2 states that the
characterising sequence (O1(x), . . . , Ok−1(x)) of any node x at level k is such
that O1(x) � . . . � Ok−1(x). The strict inclusions imply that the length of the
characterising sequence, which is equal to k − 1, cannot exceed the height h of
the inclusion order of elements of O. Since h ≤ n− 1, necessarily Vn+1 is empty.
It follows that the clean factor series is finite and stops at rank at most n.

Size of the multipartite model. The size of the multipartite graph M obtained
at termination of the clean factor series can be exponential in theory, as the
number of maximal cliques itself may be exponential. But in practice, its size
is quite reasonable and it can be computed efficiently. Theorem 3 below shows
that under reasonable hypotheses, the size of M only linearly depends on the
number of vertices of G, with a multiplicative constant reflecting the complexity
of imbrication of maximal cliques.

Theorem 3. If every vertex of G is involved in at most k maximal cliques and
if every maximal clique of G contains at most c vertices, then |V (M)| ≤ 4 ×
min(k 2c c! , 2k k!)× n.

This upper bound can be obtained by bounding the number of sequences
O1, . . . , Oi in two different ways: either by consedering sequences ending with a
fixed setOi = A, which are obtained by starting from setA and removing vertices
one by one; or by considering sequences starting with a fixed set O1 = B, which
are obtained by starting from a maximal clique containing B and intersecting it
by one more maximal clique containing B at each step.

In practice, parameters k and c are quite small, as they are often constrained
by the context itself independently from the size of the graph. Then, the size of
M is small. An important consequence is that, using algorithms enumerating the
cliques or bi-cliques of a graph (see [5] for a recent survey), M can be computed
efficiently, that is in low polynomial time, since the number of maximal cliques
is small.

5 Perspectives

Many questions arise from our work. The first one is to find minimal restrictions
of the factorising process that guarantee termination. On the other hand, for
processes that do not always terminate, one may determine on which classes of
graphs those processes terminate. Another question of interest is the termination
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speed, as well as the size of the obtained encoding: proving upper bounds with
softer hypothesis would be desirable.

Finally, the use of multipartite decompositions as models of complex networks,
in the spirit of the bipartite decomposition, asks for several questions. In this
context, the key issue is to generate a random multipartite graph while preserving
the properties of the original graph. To do so, one has to express the properties to
preserve as functions of basic multipartite properties (like degrees, for instance)
and to generate random multipartite graphs with these properties. This is a
promising direction for complex network modelling, but much remains to be
done.

Acknowledgements. We warmly thank Jean-Loup Guillaume, Stefanie Kosuch
and Clémence Magnien for helpful discussions.
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4. Erdös, P., Rényi, A.: On random graphs I. Publications Mathematics Debrecen 6,
290–297 (1959)
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Abstract. We consider the problem of bisecting a graph, i.e. cutting it
into two equally sized parts while minimising the number of cut edges.
In its most general form the problem is known to be NP-hard. Several
papers study the complexity of the problem when restricting the set of
considered graphs. We attempt to study the effects of restricting the
allowed cuts. We present an algorithm that bisects a solid grid, i.e. a
connected subgraph of the infinite two-dimensional grid without holes,
using only cuts that correspond to a straight line or a right angled cor-
ner. It was shown in [13] that an optimal bisection for solid grids with
n vertices can be computed in O(n5) time. Restricting the cuts in the
proposed way we are able to improve the running time to O(n4). We
prove that these restricted cuts still yield good solutions to the original
problem: The best restricted cut is a bicriteria approximation to an op-
timal bisection w.r.t. both the differences in the sizes of the partitions
and the number of edges that are cut.

1 Introduction

The graph partitioning problem requires that the vertex set of a given graph
is partitioned into a given number p of equal-sized subsets in such a way that
the number of edges having end-points in distinct partitions is minimised. This
problem has applications ranging from task allocation in parallel computers to
automated design of electronic circuits. In our case the motivation stems from
finite element simulations of human bone in order to diagnose osteoporosis [2].
In this setting the underlying graph structure is a three dimensional grid, which
is why we chose two dimensional grids as a first step towards solving the problem
for the former graphs. In general the problem seems to be extremely difficult to
solve within a reasonable runtime. The bisection problem, which is the graph
partitioning problem for p = 2, is already known to be NP-hard for general
graphs, graphs of bounded degree, and d-regular graphs (see [5] for an overview).
� We gratefully acknowledge discussions with Peter Arbenz who introduced the human

bone simulation problem to us, and the support of this work through the Swiss
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For other graph classes polynomial-time bisection algorithms are known, such as
for trees, solid grid graphs, or hypercubes [5]. For planar graphs and unit disk
graphs the complexity of the bisection problem is unknown.

We feel, however, that not only the structure of the graph, but also the struc-
ture of the cuts decisively influences the complexity of the problem. Can simpler
cuts allow for a more efficient computation while still returning valuable infor-
mation? In this paper, we initiate the study of simple cuts, limiting ourselves
to solid grid graphs, which are finite connected subgraphs of the infinite two-
dimensional grid without holes. It was shown by Papadimitriou and Sideri [13]
that an O(n5) algorithm exists that computes the optimal bisection for solid
grids. By restricting the cuts in solid grids to orthogonal lines with at most
one (rectangular) bend, we improve the runtime to O(n4). This runtime gain
comes at a rather small loss in the quality of the partition: We get a bicriteria
approximation to the optimal bisection in the sense that for any ε > 0 there is
a k ∈ [(1 − ε)n/2, (1 + ε)n/2] such that cutting k vertices from the grid using
the restricted cuts is a O(1/

√
ε)-approximation to the bisection width. Since we

use a dynamic programming approach we can find the approximate solution for
any given ε.

Related Work. For the graph partitioning problem on arbitrary graphs, where
the vertex set is to be cut into p sets, Räcke and Andreev [1] show that there
can not exist a polynomial time approximation algorithm if one requires the sets
to have equal size, unless P=NP. This implies that for the partitioning problem
a bicriteria approximation is inevitable. Accordingly they present an algorithm
that for any ε > 0 allows the size of each set in the partition to deviate from n/p
by at most the factor 1+ε. If C∗ denotes the number of edges cut by the optimal
solution in which all sets have size at least �n/p�, they prove that the number
of edges cut by the computed solution are at most O(log1.5(n)/ε2) · C∗. In case
the set sizes are allowed to deviate by a factor of 2 from n/p, Krauthgamer et al.
[11] give a bicriteria approximation algorithm that computes a solution in which
at most O(

√
logn log p) · C∗ many edges are cut.

The problem of bisecting a graph into two equally sized parts has received
a lot of attention as it is regarded as a first step towards the more challenging
problem of partitioning a graph into p sets. However, as mentioned before, the
bisection problem was shown to be NP-hard in general [8]. Therefore there were
many attempts at finding good approximate solutions or solving special cases in
polynomial time. For instance Feige and Krauthgamer [7] give an algorithm with
approximation ratio O(log1.5 n) for general graphs. A different example of such
an algorithm is given by Bui et al. [4] who present a method that finds the optimal
bisection of almost all regular graphs whose bisection width is small. The authors
note that these input instances are especially hard to solve using heuristics since
in graphs with large bisection width any bisection is reasonably good.

Several special classes of graphs have been studied in this context and a list-
ing of these can be found in the survey by Dı́az et al. [5]. One class that is
relevant to our present work are planar graphs. To the best of our knowledge it
is still an open question whether bisecting planar graphs is NP-hard. Feige and
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Krauthgamer [7] present an algorithm with a logarithmic approximation factor.
Bui and Peck [3] give a fixed parameter algorithm for bisecting planar graphs.
Their algorithm has a running time that is exponential in the number of edges
cut by an optimal solution. Hence for planar graphs with logarithmically valued
bisections there is a polynomial time algorithm. Dı́az et al. [6] used the above
work by Bui and Peck to develop a PTAS and a NCAS for planar graphs.

Another class of graphs that is relevant to our present work are trees. For
these MacGregor [12] presents an algorithm that computes the optimal bisec-
tion in time O(n3). Goldberg and Miller [9] present a parallel algorithm that
runs on O(n2) many processors and needs O(log2 n log log n) time to compute
the bisection width of a tree. They also claim that with some modification the
running time of the algorithm given by MacGregor can be reduced to O(n2).

For the class of graphs studied in this paper, viz. solid grid graphs, the only
known polynomial time algorithm is by Papadimitriou and Sideri [13]. In that
paper the authors characterise the types of cuts that constitute an optimal bisec-
tion of a solid grid graph. In a preprocessing step they compute the relevant set of
cuts in time O(n4) and using a dynamic programming approach they then search
through the computed set to find the optimal bisection in O(n5) time. For grid
graphs containing holes, the authors give a reduction from planar graphs with
polynomial weights to grid graphs with holes. However, as mentioned before, the
complexity for bisecting planar graphs is unknown.

The bisection of grids is related to the geometric problem of bisecting a poly-
gon into parts of equal areas, which was shown to be NP-hard by Koutsoupias et
al. [10]. They also give a O(n5) algorithm for approximately bisecting a polygon
of n sides, which is based on the algorithm for solid grid graphs given in [13].

Our Contributions. In an attempt to understand the effect of restricting
the structure of the cuts on the computational complexity and the quality of
the solution, we allow only subsets of the edges that form a straight line or
a right-angled corner (see Figure 1 for an illustration). We present a dynamic
programming algorithm that finds the optimal bisection restricted to this special
class of cuts. Due to the restriction to these simple cuts only, we are able to
approach the problem from a different angle than the authors of [13] did. Their
approach was to see the solid grid as a sort of polygon. This is also reflected
by the fact that their algorithm naturally carries over to polygons as shown in
[10]. Our approach is to define a root in the grid and then use a bottom-up
computation with respect to the root. Therefore some of our ideas are borrowed
from the above mentioned work of MacGregor [12] on bisecting trees.

The advantage of restricting the types of cuts to simple cases is twofold.
The first advantage is that the preprocessing time needed for this set of cuts is
O(n2) instead of O(n4) when considering all relevant cuts. The second is that
our algorithm needs time O(n4) instead of O(n5) as the algorithm to compute
the optimal bisection with unrestricted cuts does. The downside however is that
the result of the computation is an approximation to the optimal bisection with
arbitrary cuts. Since we use a dynamic programming approach our algorithm
does not only output a solution to the bisection problem but also for any other
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Fig. 1. An optimal k-cut (for k = 110) to the left and a k-cut using a restricted set of
cut types to the right. The bold edges are those constituting the cut. Notice that the
cut to the right has three more edges than the one to the left.

value k ∈ {0, ..., n} such that one of the sets has size k and the other n − k.
Hence for any ε > 0 our algorithm is able to output the best partition, i.e. the
one with the smallest number of cut edges, of the vertices into two sets such that
each has a size that deviates at most by the factor 1 + ε from n/2. At the same
time, if C∗ denotes the number of edges cut by an optimal solution in which
both sets have size at least �n/2�, we can guarantee that the number of edges
cut by the partition computed by our algorithm is at most O(1/

√
ε) times C∗.

We expect that the algorithm described in this paper can be generalised to
other graph classes and cuts therein. Hence new insights into the structure of
optimal cuts in different types of graphs can lead to more efficient algorithms to
compute optimal or approximate bisections.

2 Restricting the Cut-Edges

Classically a cut of a graph G, with vertex set V and edge set E, is defined
as a partition of V and its quality is measured by the number of cut-edges,
i.e. those edges that have both endpoints in different sets of the partition (see
e.g. [8]). We introduce a different definition: Given an arbitrary subset of edges
E′ ⊆ E inducing a set of connected components G1 to Gm when removed from
G, any union W =

⋃
i∈M Vi, where M ⊆ {1, ..,m}, of the vertex sets of the

respective components is said to be cut-out by E′. We will specify which vertices
are cut-out by a set of edges when needed. A k-cut S is a set S ⊆ 2E of sets
of edges for which the edges E(S) := {e ∈ s|s ∈ S} cut-out a set of vertices W
of cardinality k. The cut-size of a k-cut S is the sum

∑
s∈S |s| of the sizes of

the edge sets in S. An optimal k-cut is one that minimises the cut-size. Notice
that this definition allows a k-cut to include an edge several times in different
edge sets and that this edge will then also be counted several times for the cut-
size. However in the most general form of the definition as stated above, any
duplicate (i.e. redundant) edges may be removed from one of the edge sets to
yield a different cut which cuts-out the same set of vertices and has a smaller cut-
size. In particular this means that any optimal cut corresponding to the classical
definition using a partition of V , can be transformed into an optimal k-cut S,
for some k, corresponding to our definition by, for instance, simply including the
set of cut-edges of the partition in the set S.
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Definition 1. Given a set Γ̃ ⊆ 2E, a k-cut S is called Γ̃ -restricted if S ⊆ Γ̃ .

We are interested in finding a set Γ̃ ⊆ 2E such that the optimal Γ̃ -restricted
k-cut is a good approximation to the optimal k-cut. Notice that it may not be
possible to cut-out k vertices if Γ̃ is too restrictive. Hence we have to show that
the set we use to restrict the k-cuts will always allow k vertices to be cut-out.
Also notice that contrary to the non-restricted case it may happen that in an
optimal Γ̃ -restricted k-cut S some edges are included in several edge sets in S.

Given a plane graph G, i.e. a planar graph that is embedded in the plane,
we define its dual (multi-)graph D = (F,ED) in the usual way: The vertices in
F are identified with the faces of G. Let f∞ be the face corresponding to the
exterior of G (i.e. the only face of infinite size). We define Fin to be the (possibly
empty) set of interior faces (i.e. all faces except for f∞). For every edge e in G
there is an edge e∗ ∈ ED between the faces that touch e. We say that the edges
e∗ and e correspond to one another. Accordingly we say that a subset of E and
a subset of ED correspond to one another if their respective edges correspond
to one another.

Definition 2. For any non-empty simple cycle o ⊆ ED in D we call the set
s ⊆ E of corresponding edges in G a segment. Let ED ⊆ 2ED be the set of simple
cycles in D and

E := {s ⊆ E | ∃ o ∈ ED : e ∈ s⇔ e∗ ∈ o}

be the set of corresponding segments in G.

In any plane graph a partition of the vertices, i.e. a cut in the traditional sense,
induces a set of cycles in the dual graph via the cut-edges, and vice versa.
Therefore an optimal k-cut S in a plane graph, in which there are no redundant
edges, is always a set of segments from the set E . We will refer to any set of
vertices cut-out by the corresponding edges s ∈ E of a cycle o ∈ ED as being
cut-out by o.

Any single cycle from ED cuts-out two non-empty vertex sets that are true
subsets of the whole vertex set V of the given graph, namely the vertices of
the two components when the corresponding edges are removed. Let Vi ⊂ V
and V ′

i ⊂ V , for i ∈ {1, 2}, be the respective non-empty vertex sets for two
cycles o, o′ ∈ ED. The segments s, s′ ∈ E that correspond to the cycles o and
o′, respectively, are said to cross if Vi ∩ V ′

j �= ∅ for all pairs i, j ∈ {1, 2} (see
Figure 2 for an illustration). Notice that o and o′ share at leastone interior face.
We call these shared faces the crossing points of the segments s and s′. If o
and o′ share some interior faces but do not cross, we say that s and s′ touch.
In this case the shared interior faces are called touching points. Finally if the
cycles o and o′ touch and share at least one edge the segments s and s′ are said
to overlap and the shared edges of s and s′ are called overlapping edges. Notice
that the edges of a pair of crossing segments can always be seen as the edges
of a pair of (different) touching segments, depending on which path is followed
at the crossing points (making them touching points) to form the corresponding
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Fig. 2. From left to right: Two segments crossing, touching, and overlapping in a plane
grid graph. The two segments are indicated by a dashed and a dotted line.

cycles. This means that for any k-cut S of a plane graph we can always find a
k-cut of equal cut-size for which the segments do not cross. We will call such a
k-cut non-crossing.

We call a finite connected subgraph G of the infinite two dimensional grid a
grid graph. Since G is a plane graph it has a dual graph as defined above. A hole
of G is an interior face which in the dual graph has a degree greater than 4. A
grid graph is called solid if its set of faces does not contain any holes. We assume
that the embedding of any given solid grid graph G has the property that the
vertices are coordinates in N×N and an edge between two vertices v and w only
exists if the Euclidean distance between v and w is 1.

It is fairly easy to see, and was also proven in [13], that for a solid grid graph
any cycle in ED, corresponding to a segment from E of an optimal k-cut S, will
always contain the exterior face. The reason is that otherwise the cycle can be
“moved” in an arbitrary direction in the grid until its segment either overlaps
with another segment or the cycle includes the exterior face. In both cases the
resulting cut has a smaller cut-size since in the former case the overlapping edges
can be removed from the cut, while in the latter case the boundary acts as a
“natural barrier” so that some of the edges that were cut before are now no
longer needed to cut-out the same number of vertices. Because of this we will
restrict the used segments from E in a way such that the corresponding cycles
in D all include the exterior face.

For any set of edges q ∈ E (e.g. a segment) that corresponds to a path1

p ∈ ED in the dual graph we define the length lq := |q|. If lq ≥ 2 we say that q
ends in a face f whenever there is exactly one edge in q that touches f and we
say that q embraces a face f if there are more than one edge in q touching f . In
the special case when lq = 1 we say that q ends in a face its edge e touches if e
touches two distinct faces, and we say that q embraces such a face if e touches
only one face, i.e. if e is a bridge. If q ends in the two (distinct) faces f and f ′ we
say that q lies between f and f ′. We call an edge {v, w} ∈ E in a grid graph G
horizontal if v and w have the same y-coordinate. Accordingly we call it vertical
if v and w have the same x-coordinate. A bar b ⊆ E is a non-empty set of either
only horizontal or only vertical edges that corresponds to a path p in D, such
that if p is not a cycle then b does not embrace the exterior face. Notice that the
latter means that if a bar b embraces f∞ it is a segment. The orientation ω of

1 In accordance with the usual terminology, any vertex on a path p has at most two
incident edges in p.
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b is horizontal if the edges in b are vertical, and accordingly it is vertical if the
edges are horizontal.

Definition 3. We call a segment s ∈ E a straight segment if it is a bar. A
segment s ∈ E is a corner segment if there is an interior face c, a horizontal,
and a vertical bar bh and bv, respectively, such that s = bh ∪ bv and both bh and
bv lie between c and f∞. We refer to c as the corner of s and we say that bh and
bv are its respective horizontal and vertical bars. For the given solid grid graph
G for which a k-cut is to be computed, we denote the set of corner and straight
segments by Γ .

Fig. 3. A horizontal and
a vertical straight segment,
and a corner segment of
orientation down-right, up-
right, down-left, and up-
left. The segments are in-
dicated by dashed lines.

Notice that for a straight segment the orientation is
well-defined since it is a bar. For a corner segment s
we also define its orientation ω which can either be
down-right, down-left, up-right, or up-left. Of these
four types “down” and “up” refer to whether the ver-
tical bar of s lies above or below its corner c, while
“left” and “right” refer to whether its horizontal bar
lies to the left or to the right of c. See Figure 3 for
an illustration of all possible segments in the set Γ .

We now turn to the task of showing that for any
solid grid graph it is possible to cut-out any number
of vertices k from V by only using segments from Γ .
Since we will make use of the following Lemma in a
more general setting later on, we will prove a slightly
more general statement.

Lemma 4. For a solid grid graph G and any k ∈ {0, ..., n} there is a non-
crossing Γ -restricted k-cut S in which all corner segments have the same given
orientation ω.

If the set of segments was restricted so that only straight lines were allowed, it is
easy to see that no guarantee as the one given in Lemma 4 could be given. On the
other hand if in addition to straight and corner segments also segments with two
or more corners were used, it is easy to observe that the number of segments to be
considered would be asymptotically larger than the size of Γ . This would increase
the running time of an algorithm based on the ideas presented in this paper to
more than O(n4). The use of Γ -restricted cuts is thus justified by the following
theorem and the running time of our algorithm. The proof of the theorem is
omitted since it involves techniques beyond the scope of the current paper.

Theorem 5. Let C∗ be the cut-size of an optimal k-cut in a solid grid G and
ε ∈ ]0, 1]. Then there exists a Γ -restricted non-crossing k′-cut, for some k′ ∈
[(1− ε)k, (1 + ε)k], which has a cut-size of O(1/

√
ε) · C∗.

Since the algorithm presented in this paper uses a dynamic programming ap-
proach, the output of the algorithm is a table containing the optimal non-crossing
Γ -restricted k-cuts for all k ∈ {0, ..., n}. According to the above theorem we can
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hence look for the k ∈ [(1 − ε)n
2 , (1 + ε)n

2 ], for a desired ε ∈ ]0, 1], that has the
smallest cut-size in the table and be sure that it is a O(1/

√
ε) approximation

of the optimal bisection. In the rest of this paper we will concentrate on how to
compute an optimal non-crossing Γ -restricted k-cut.

3 Computing Optimal Non-crossing Γ -Restricted k-Cuts

Fig. 4. A grid with a
root r in the lower right
corner. The set Vt is in-
dicated by the dark grey
area, and the set Vs is in-
dicated by the dark and
light grey areas together.

To compute an optimal non-crossing Γ -restricted k-cut
we use a dynamic programming approach. We fix a
vertex r of the given solid grid graph G, which we will
call the root of G, for which all other vertices V \ {r}
can be cut-out by a single segment sr ∈ Γ . Notice that
such a vertex always exists and r either has degree 1,
in which case sr is a straight segment, or degree 2, in
which case it is a “convex corner” of the grid and sr

is a corner segment. (see Figure 4). With respect to r
we can now define the non-empty set of vertices Vs of
a segment s ∈ Γ to be those vertices in G that are cut-
out by s but do not include the root r, i.e. Vs ⊆ V \{r}
and Vs �= ∅. We will from now on only refer to Vs as
the vertices cut-out by s. With respect to Vs we define
Gs = (Vs, Es) to be the subgraph of G induced by the
vertices in Vs and ns := |Vs| to be the number of vertices in Gs. Also we define
Γs := {t ∈ Γ |Vt ⊆ Vs} to be the set of segments that cut-out a subset of Vs.
Notice that s is included in Γs and that no t ∈ Γs will cross s. Also notice that
Γt ⊆ Γs for any t ∈ Γs, which also means that Γt ⊆ Γs if and only if Vt ⊆ Vs.
As a consequence the sets Vs and Γs can be used somewhat interchangeably and
we will use the more convenient notion according to context.

For each segment s ∈ Γ we can now define the vector Cs ∈ Nn+1 for which the
entry Cs(k), for k ∈ {0, ..., n}, denotes the cut-size of the optimal non-crossing
Γs-restricted k-cut. Lemma 4 guarantees that for any k ≤ ns the entry Cs(k)
is well-defined since a non-crossing Γ -restricted k-cut in Gs, in which all corner
segments have the same orientation as s, can easily be transformed to a Γs-
restricted k-cut using the same method as in the proof of the Lemma. For any
k > ns we set the entry Cs(k) to infinity. To compute the vectors Cs we need
the notion of interference-free subsets S ⊆ Γ as defined below.

Definition 6. A non-empty set of segments S ⊆ Γ is called interference-free if
Vs∩Vt = ∅ for each pair of distinct segments s, t ∈ S. For such a set S we define
VS =

⋃
s∈S Vs, nS = |VS |, ES =

⋃
s∈S Es, and ΓS =

⋃
s∈S Γs.

In addition to the vectors Cs we also define the vectors CS for interference-free
sets S so that CS(k) is the cut-size of the optimal non-crossing ΓS-restricted
k-cut. Again we set those entries CS(k) where k > nS to infinity, since Lemma 4
also guarantees that only for these values of k the entry of the vector is undefined.
The following theorem shows how the vector CS can be computed from the
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vectors Cs where s ∈ S. The definition of the vector CS given below complies
with the min-convolution of the vectors Cs as first defined by MacGregor [12,9].

Theorem 7. For an interference-free set of segments S ∪ {t} ⊆ Γ the optimal
non-crossing ΓS∪{t}-restricted k-cut can be defined recursively by

CS∪{t}(k) =

⎧⎪⎨⎪⎩
Ct(k) if S = ∅,
min {Ct(i) + CS(k − i) | i ∈ {β1, ..., β2}} if k ≤ nt + nS ,

∞ else.
(1)

where β1 := max{0, k − nS} and β2 := min{k, nt}.

Fig. 5. The set of seg-
ments S = {u1, u2, u3} is
not maximally interfer-
ence-free since u2 and
u3 can be exchanged
with t such that S∗ =
{t, u1} is interference-
free. The set S∗ is maxi-
mally interference-free.

In order to compute the vectors Cs we will make use of
the vectors CS∗ for special interference-free sets S∗ ⊂
Γs. Namely we use those interference-free sets S∗ for
which no other interference-free set can be found that
includes S∗, in the sense given in the definition below.
See Figure 5 for an example.

Definition 8. We call a non-empty set of segments
S∗ ⊆ Γs \ {s} maximally interference-free with respect
to s ∈ Γ if it is interference-free and there does not
exist a segment t ∈ Γs \ {s} and a (possibly empty)
subset S′ ⊆ S∗ such that Vu ⊂ Vt for all u ∈ S′ and
the set (S∗ \ S′) ∪ {t} is interference-free. The set of
maximally interference-free sets for a segment s ∈ Γ is
denoted by Is.

The following theorem shows that we can make use of the maximally interference-
free sets in order to compute the optimal Γs-restricted cuts. The corresponding
algorithm will be based on a dynamic programming approach using the recursive
equations given below and in Theorem 7.

Theorem 9. Let s ∈ Γ be a segment of length ls and k ∈ {0, ..., ns}. If Is is
non-empty, the optimal non-crossing Γs-restricted k-cut is

Cs(k) = min{CS∗(k), ls + CS∗(ns − k) | S∗ ∈ Is}. (2)

If Is is empty then

Cs(k) =

⎧⎪⎨⎪⎩
0 if k = 0,
ls if k = 1,
∞ else.

(3)

To show that an algorithm based on the above theorem is efficient we need the
following statement.
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Theorem 10. For any s ∈ Γ there are O(n) many members in Is. Also all
sets of maximally interference-free sets can be constructed in time O(n2) in a
preprocessing step.

Using this fact we can show that an algorithm based on Theorem 9 is efficient.
Using an amortisation argument on the sizes nt of the vertex sets cut-out by the
segments t ∈ S∗ for a set S∗ ∈ Is in Theorem 7, we get a runtime of O(n4).

Theorem 11. An optimal non-crossing Γ -restricted k-cut of a solid grid graph
G can be computed in time O(n4) for any k ∈ {0, ..., n}.
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Abstract. We investigate the problem of creating fast evacuation plans
for buildings that are modeled as grid polygons, possibly containing
exponentially many cells. We study this problem in two contexts: the
“confluent” context in which the routes to exits remain fixed over time,
and the “non-confluent” context in which routes may change. Confluent
evacuation plans are simpler to carry out, as they allocate contiguous
regions to exits; non-confluent allocation can possibly create faster evac-
uation plans. We give results on the hardness of creating the evacuation
plans and strongly polynomial algorithms for finding confluent evacu-
ation plans when the building has two exits. We also give a pseudo-
polynomial time algorithm for non-confluent evacuation plans. Finally,
we show that the worst-case bound between confluent and non-confluent
plans is 2 − O( 1

k
).

1 Introduction

A proper evacuation plan is an important requirement for the health and safety
of all people inside a building. When we optimize evacuation plans, our goal is
to allow people to exit the building as quickly as possible. In the best case, each
of a building’s exits would serve an equal number of the building’s inhabitants.
However, there might be cases in which this can not happen. For instance, when
there is a bottleneck between two exits, it might make sense for most of the
building’s inhabitants to stay on the side of the bottleneck closer to where they
begin, even if this means that one exit is used more than the other.

In this research, we study the computation of evacuation plans for buildings
that are modeled as grid polygons. We make the assumption that every grid
square is occupied by exactly one person and that at most one person can oc-
cupy a grid square at any given time. This assumption arises from the inability
of building designers to know exactly where people will be in the building in
the moments before an evacuation, and this pessimistic view of the situation
is the only sensible one to take. Also remember that in some cases, such as in
airplanes, the situation in which nearly every bit of floor space is occupied before
an evacuation is more common than the alternative.

Evacuation plans can be divided into two distinct types. In the first, signs are
posted that direct every person passing them to a specific exit. In the second,
� This research was funded by the German Ministry for Education and Research
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every person is assigned to a distinct exit that does not necessarily depend on
the exits to which his or her neighbors are assigned. The first type of evacuation
plan generates what is known as a confluent flow and the second generates a
non-confluent flow. More precise definitions of these terms will be given later.

It is clear that in a non-confluent flow, people can be evacuated as quickly
as in a confluent flow, and we show that in certain instances people can be
evacuated significantly more quickly in a non-confluent flow than in a confluent
flow. However, a confluent flow is significantly easier to carry out than a non-
confluent one, so we also give results related to it. We first show that the problem
of finding an optimal confluent flow belongs to the class of NP-complete problems
if the polygon has “holes”—that is, if it represents a building with completely
enclosed rooms or other spaces. We then give an algorithm with a running time
linear in the description complexity of the region (which can be exponentially
smaller than the number of cells) that computes an evacuation plan for buildings
without holes that have two exits; a generalization to a constant number of exits
is more complicated, but seems plausible. Finally, we show that the worst-case
ratio between the evacuation times for confluent flows and non-confluent flows
for k exits is 2−O( 1

k ).

1.1 Preliminaries

We are given a rectilinear polygon P on a grid. There exists, on the boundary
of P , a number of special grid squares known as exits. We call the set of exits
E = {e1, . . . , ek}. We assume that every grid square in P contains a person. A
person can move vertically or horizontally into an empty grid square or an exit.
The goal is to get each person to an exit as quickly as possible. When an exit
borders more than one grid square, we specify the squares from which people
can move into the exit.

The area of P is denoted by A and the number of vertices of P is denoted by
n. Note that A can be exponential in n. The set of people that leave P through
the exit e is called the e-exit class. We also write exit class to refer to the set of
people who leave through an unspecified exit. The grid squares that are adjacent
to the boundary of P are known as boundary squares.

There are two versions of the problem that we consider. We call these confluent
flows and non-confluent flows. In the first, we add the restriction that every grid
square has a unique successor. Thus, for every grid square s, people passing
through s leave s in only one direction. This restriction implies that evacuation
plans are determined by space only. It does not exist for non-confluent flows.
It can be argued that informing people which exit to use is easier in the case
of confluent flows since a sign can be placed in every grid square, informing
the people who pass through it which exit to use. However, we show that non-
confluent flows can lead to significantly faster evacuations.

The major difficulty in the problem comes from bottlenecks. We define a k-
bottleneck to be a rectangular subpolygonB of P such that two parallel boundary
edges of B are the same as two edges of P , where the distance between the
common edges is k.
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1.2 Related Work

The problem when restricted to confluent flows is similar in many ways to the
unweighted Bounded Connected Partition (or 1-BCP) problem [12]. In this prob-
lem, one is given an unweighted, undirected graph G = (V,E) and k distin-
guished vertices. The goal is to find k connected subsets of V , where each subset
contains exactly one of the distinguished vertices and where each has the same
cardinality. If we define the dual of the grid contained in our polygon to be the
graph formed by connecting adjacent faces and let the distinguished vertices be
the exits, then 1-BCP is clearly the same as evacuation restricted to confluent
flows with k exits.

It was independently shown by Lovász [8] and Györi [7] that a solution to the
1-BCP problem can be found for every graph that is k-connected. However, their
proofs are not algorithmic. Thus, there has been some work on finding partitions
of size k for low values of k. For example, Suzuki et al. give an algorithm for 2-
partitioning 2-connected graphs [14]. One algorithm claiming a general solution
for k-partitioning k-connected graphs [10] is incorrect. Unfortunately, when P
contains 1-bottlenecks, the graph obtained by finding the dual of the grid inside
P is 1-connected. Therefore, the results of Lovász and Györi do not apply. Also,
since the dual of the grid contained in our polygon can have size exponential
in the complexity of the polygon, we would probably need to merge nodes and
then assign weights to the nodes of the newly-constructed graph. The addition of
weights, however, makes the BCP problem NP-complete, even in the restricted
case in which the graph is a grid [3].

Another connection is to the problem of partitioning polygons into subpoly-
gons that all have equal area. The confluent version of our problem, indeed, can
be seen as the “discrete” version of that problem. The continuous version has
been studied. One interesting result from this study is that finding such a de-
composition while minimizing the lengths of the segments that do the partition-
ing is NP-hard even when the polygons are orthogonal [1]. However, polynomial
algorithms exist for the continuous case when that restriction is removed [9].

Baumann and Skutella [2] consider evacuation problems modeled as earliest-
arrival flows with multiple sources. They achieved a strongly-polynomial-time
algorithm by showing that the function representing the number of people evac-
uated by a given time is submodular. Such a function can be optimized using the
parametric search technique of Megiddo. Their approach is different from ours
in that they are given an explicit representation of the flow network as input.
We are not given this, and computing the flow network that is implicit in our
input can take exponential time. Also, their algorithm takes polynomial time in
the sum of the input and output sizes. However, the complexity of the output
can be exponential in the input size.

Another, perhaps more surprising, related problem is machine scheduling.
Viewed simply, confluent flows correspond to non-preemptive scheduling prob-
lems, while non-confluent flows correspond to preemptive scheduling problems.
The NP-hardness result for optimal confluent flows is inspired by the hardness
of scheduling jobs on non-preemptive machines [5], while the worst-case ratio
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e1

e2

Fig. 1. The polygon P given a Partition instance of {11, 6, 9}. To keep the picture a
manageable size, the elements have not been scaled and the left ends of the first and
fifth rows are truncated.

between confluent and non-confluent flows is inspired by the list-scheduling ap-
proximation ratio [6].

2 Confluent Flows

As mentioned in the introduction, in a confluent flow, every grid square has the
property that all people that pass through it use the same exit.

In this section, we present our results related to confluent flows. First, we
show the NP-completeness of the problem of finding an optimal evacuation plan
with confluent flows in a polygon with holes. This holds even for polygons with
two exits. We then give a linear-time algorithm for polygons with two exits.

2.1 Hardness

Weak NP-hardness with two exits. We first sketch that the evacuation problem
with confluent flows is NP-hard if we allow P to have holes. We reduce from the
well-known NP-complete problem Partition; the idea is shown in Fig. 1.

Theorem 1. The problem of finding an optimal confluent flow in a polygon with
holes is NP-complete.

Strong NP-hardness. Theorem 1 shows that the problem is weakly NP-complete.
This means that the hardness of the problem depends on the areas of subpolygons
being exponential in the complexity of the input. This implies that a pseudo-
polynomial algorithm might exist.

However, we can show that if we allow O(n) exits, the problem is strongly
NP-complete. This means that the problem is still NP-complete when all of its
numerical parameters are polynomially bounded in the size of the input.

Our reduction is from Cubic Planar Monotone 1-in-3 Satisfiability (or
CPM 1-in-3 SAT for short). This is a variant of the Satisfiability problem
in which every clause contains exactly 3 literals, every variable is in exactly 3
clauses, the graph generated by the connections of variables to clauses is planar,
every literal in every clause is non-negated, and a clause is satisfied if exactly
one of its variables is true.

We use a reduction that is almost equivalent to the one showing that tiling a
finite subset of the plane with right trominoes is NP-complete [11]. Details are
contained in the full paper [4].

Theorem 2. The problem of finding an optimal confluent flow in a polygon with
holes and O(n) exits is strongly NP-complete.
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2.2 Two Exits

When the polygon P has no holes and only two exits, e1 and e2, we can find an
optimal confluent flow in O(n) time. We first present an algorithm that takes
cubic time that can be modified fairly easily into an algorithm that takes linear
time.

Naïve algorithm. Notice that the case in which P has two exits is simpler than
the case in which P has more exits because of the fact that both exit classes
must each have one contiguous connection to the boundary of P .

We begin with a decomposition of P into rectangles. This decomposition is
the overlay of two simpler decompositions: the vertical and horizontal decom-
positions. The vertical decomposition of a rectilinear polygon P is the partition
of P into rectangles by the addition of only vertical line segments. Similarly,
the horizontal decomposition of P is the partition of P into rectangles by the
addition of only horizontal line segments. We call the overlay ω and its dual
graph ω∗. We add the vertical and horizontal line segments from the grid points
on opposite sides of e1 and e2 to ω as well. We then do the following for every
pair of rectangles r1 and r2 in ω that have at least one edge of the boundary of
P . We first ensure that e1 is between r1 and r2 and that e2 is between r2 and
r1. We also ensure that there are no bottlenecks of size 1 between r1 and r2. If
either of these conditions are not met, we proceed to the next pair of rectangles.
We then set the e1-exit class to be all the grid squares along the boundary of P
between r1 and r2. We then add all the grid squares surrounded by the e1-exit
class to the e1-exit class. We call the area of the e1-exit class A1. We define the
e2-exit class similarly and call its area A2. We call the larger of the two areas A�

and its corresponding exit e�. If A� is less than A/2, we can divide the rest of
the grid squares evenly among the exit classes—see Lemma 2 for details—and
return the solution. Otherwise, we attempt to make the e�-exit class as small as
possible (while staying above A/2) inside r1 and r2 and assign the rest of the
grid squares to the other exit class. We maintain a variable that tracks the area
of the smallest such exit class emin. If we get through all the possible pairs r1
and r2 without finding a pair that we can return, we return emin. The proof of
the following summarizing lemma can be found in the full paper.

Lemma 1. The algorithm presented above is correct and takes O(n3) time.

Linear algorithm. The algorithm above has two steps that lead to it taking
cubic time: the loop over all pairs of rectangles on the boundary of P and the
computation of the minimum area for an exit class that has a connection to the
boundary that begins in one of the rectangles and ends in the other. In this
section, we sketch a more clever solution that avoids these problems; again, full
details are described in the full paper.

We begin by observing that if we update the area, each time we change the
starting and ending points of the connection of the e1-exit class to the boundary
of the polygon rather than computing it anew, the total time spent computing
the area depends on the sum of the complexities of the updated areas.
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We also observe that we loop over the rectangles of ω with at least one edge
attached to the boundary of P . This means that we do not really need to com-
pute the entire overlay ω—only the intersections of ω with the boundary of P .
These intersections can be computed in O(n) time by computing the vertical
and horizontal decompositions of P separately. See Fig. 2 for the idea.

Theorem 3. In the confluent setting, the above algorithm finds the optimal
evacuation plan for a polygon P with two exits in O(n) time, where n is the
number of vertices in P .

(a) (b) (c) (d)

i1 i2

e1

e2

Fig. 2. An example of the linear-time algorithm. The pointers i1 and i2 denote the
endpoints of the connection of the e1-exit class to the boundary of the polygon.

If the overall number of grid pixels is exponential in the number of vertices of the
polygon, particular care is necessary to ensure a small output complexity. Using
a refined output encoding (which is described in the full paper), it is possible to
note the following.

Lemma 2. The above algorithm runs in O(n) time and has output size that is
linear in the input size.

We conjecture that one can use algorithms similar to the naïve algorithm given
above to compute the evacuation of any polygon with a constant number of exits,
but the details become much more involved. We therefore leave this question to
future work.

3 Non-confluent Flows

Compared with confluent flows, non-confluent flows are clearly a stronger model.
We note that any confluent flow is a non-confluent flow, but not vice versa. We
show that non-confluent flows can be as much as 2 − 2/(k + 1) times as fast as
confluent flows by giving an example in which this is the case. We then argue
that the ratio our example achieves is optimal.
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3.1 Pseudo-polynomial Algorithm

In contrast to the case with confluent flows, for which we showed that finding an
assignment of people to exits is strongly NP-complete when we are dealing with
polygons with holes and O(n) exits, we can show that, for non-confluent flows,
a pseudo-polynomial algorithm exists.

The algorithm is based on the technique of using time-expanded networks to
compute flows over time [13]. Therefore, we compute a flow network from the
input polygon as follows. We create a source vertex s and a sink vertex t. For
each grid square in P , we create two vertices—an in vertex and an out vertex.
We connect the in vertex to the out vertex with an edge that has capacity 1
for every grid square. We then make, for some integer T ≥ 1, T copies of the
polygon P1, . . . , PT , where each copy has these vertices and edges added. For
every grid square of P1, we connect s to the in vertex of the grid square with an
edge that has capacity 1. We then connect the out vertex of every grid square
in Pi to the in vertex of all its neighbors in Pi+1 for all 1 ≤ i ≤ T − 1. Again,
the edges we use all have capacity 1. Finally, we connect the out vertex of every
exit to t with an edge that has capacity 1. We call this flow network G.

It is fairly easy to see that if we are able to find a maximum flow of value A
through G, then we are able to evacuate P in T time steps. However, we note
that both T and |G| can be exponential in the complexity of P , making this a
pseudo-polynomial algorithm.

Theorem 4. There exists a pseudo-polynomial algorithm to find an evacuation
of a polygon with a non-confluent flow.

3.2 Differences to Confluent Flows

The example that shows a large gap between confluent and non-confluent flows
is a horizontal rectangle of width 1 with length 2k +mk, for some integer m ≥
1. Attached to this rectangle are k vertical rectangles of width 1 and length
mk—one at every other square for the first 2k squares. Between each vertical
rectangle is an exit. Each exit can only be entered from the square to the left.
See Figure 3 (a).

We can see that the example has an optimal confluent flow that requires
2mk + 3 time steps: three to remove the people directly to the left of each exit
and all the people below the exits, mk to remove the people in the vertical
rectangles, and another mk for the people in the horizontal “tail” to go through
the rightmost exit. On the other hand, in the optimal non-confluent flow, all
exits can remain continuously busy. One way that this can happen is for m
people from the horizontal rectangle to leave through successive exits, while
people from the vertical rectangles are leaving through the other exits. Since
the exits are continuously busy, the amount of time for all people to leave is
(k2m + (2 + m)k)/k = mk + 2 +m. The ratio between the confluent and non-
confluent flows in this case is

2mk + 3
mk +m+ 2

= 2− 2m+ 1
mk +m+ 2

→
m→∞ 2− 2

k + 1
.
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(a) (b)

Fig. 3. (a) A polygon whose optimal non-confluent flow is nearly twice as fast as its
optimal confluent flow. (b) The general shape of any polygon that realizes the maximum
ratio between the confluent and non-confluent flows.

We now show that the ratio achieved in this example is tight. Our ratio is sim-
ilar to (and inspired by) the upper bound for the list-scheduling approximation
ratio [6] in machine scheduling.

Theorem 5. The maximum ratio between the confluent flow and non-confluent
flow in any grid polygon P is 2− (2/(k + 1)).

Proof. Let the ratio between the confluent flow and the non-confluent flow for
a given polygon P be known as RP . When calculating RP , we assume that the
confluent and non-confluent flows are calculated optimally for P .

We begin by observing that by reducing the size of the smallest bottleneck in a
polygon P can only increase RP . Suppose we have polygons Pa and Pb, where Pa

has a minimum bottleneck size of at least 2, and Pb is the same as Pa, except that
one grid square has been removed from the minimum bottleneck. The number of
exit classes on one side of the smallest bottleneck in the confluent case can only
decrease in Pb relative to Pa, while in the non-confluent case, they may stay the
same. Thus, there may be an exit in the non-confluent solution that is used for
longer than in the confluent solution. This implies that the number of steps that
is required to evacuate the building in the confluent setting increases faster than
the number of steps required under the non-confluent setting. Therefore, RPa is
at least as large as RPb

, and may be larger.
This implies that RP is maximized when the size of the minimum bottleneck

is minimized, so we can assume that the size of the minimum bottleneck is 1.
We call the subpolygons on either side of the bottleneck P1 and P2.

Furthermore, we can easily see that increasing the difference between the
number of exits in P1 and P2 can only increase RP . This is because the number
of people that must go through the bottleneck that separates P1 and P2 can
only be increased by increasing this difference. Therefore, we can assume that
all the exits are on one side of the bottleneck between P1 and P2. Without loss
of generality, assume that all exits are in P1.

Given this setup, we attempt to construct P so that as many exits as possible
are used during as many time steps as possible in the non-confluent case. This
implies that there must be some source of people in P1. This is because only
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one person can go through the bottleneck between P1 and P2 per time step.
Therefore, at most one person from P2 can reach an exit per time step. However,
by creating a supply of people in P1, we allow the people from P2 to queue in
front of the exits.

So that the people from P2 can queue in front of the exits, the route taken by
the people in P1 from the supply to the exit must not interfere with the paths
of the people from P2 to the exits. This means that the number of people in P1
must be split and distributed to each exit.

Therefore, P has the form sketched in Figure 3(b). There is a bottleneck B.
The number of people behind B is x, the amount of space for these people to
queue in is y, and the supply of people for each exit ei is si.

In both the confluent and non-confluent solutions, it takes time 2y/k to remove
the y people in the queueing area. In the non-confluent solution, it is necessary
that this is the first step performed. After this is done, the people from behind
the bottleneck begin entering the queueing area. The people must therefore take
turns exiting from the queueing area and exiting from the supplies that are
attached to each exit. This implies that y is as small as possible (while satisfying
y ≥ 2k) and that si ≥ x for all 1 ≤ i ≤ k. Using different values of si yields no
advantage, so we assume that the value of si is some value sx for all i.

The ratio between the confluent flow and non-confluent flow is thus
2y/k + 2sx + 2x

2y/k + 2sx + 2x/k

which is maximized according to our constraints when sx = x and when y = 2k.
This gives a ratio of

2x+ 2k/k
x+ x/k + 2k/k

=
2x+ 2

x+ x/k + 2
= 2− 2x+ 2k

xk + x+ 2k
→

x→∞ 2− 2
k + 1

which is the claimed result. ��

4 Conclusions

We have discussed evacuations in grid polygons. We first showed that finding
evacuations with confluent flows in polygons with holes is hard, even for polygons
with only two exits. We then looked at algorithms to find evacuations with
confluent flows. Finally, we showed that, while the difference between confluent
and non-confluent flows is potentially significant, it is bounded.

Our work raises some questions that require further study. For simple poly-
gons, there is evidence that a constant number of exits allows strongly polynomial
solutions, even though some of the technical details are complicated. What is
the complexity of finding an evacuation plan with a confluent flow when the
number of exits is not constant? Next, can we find an fixed-parameter-tractable
algorithm to find the confluent evacuation of polygons? Finally, can we find
a polynomial algorithm that gives the optimal evacuation using non-confluent
flows? Note that it is not even clear that the output size of such an algorithm is
always polynomial.
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Abstract. Given a graph G = (V, E) with a positive weight function w
on the vertices of G, a global powerful alliance of G is a subset S of V
such that for every vertex v at least half of the total weight in the closed
neighborhood of v is contributed by the vertices of S. Finding the small-
est such set in general graphs is NP-complete, even when the weights are
all the same. In this paper, we give a linear time algorithm that finds
the smallest global powerful alliance of any weighted tree T = (V, E).

Keywords: Alliances, powerful alliances, weighted trees, algorithm.

1 Introduction

The study of alliances in graphs was first introduced by Hedetniemi, Hedetniemi
and Kristiansen [9]. They introduced the concepts of defensive and offensive al-
liances, global offensive and global defensive alliances and studied alliance num-
bers of a class of graphs such as cycles, wheels, grids and complete graphs. The
concept of alliances is similar to that of unfriendly partitions, where the prob-
lem is to partition V (G) into classes such that each vertex has at least as many
neighbors outside its class than its own (see for example [1] and [10]). Haynes
et al. [7] studied the global defensive alliance numbers of different classes of
graphs. They gave lower bounds for general graphs, bipartite graphs and trees,
and upper bounds for general graphs and trees. Rodriquez-Velazquez and Sigar-
reta [15] studied the defensive alliance number and the global defensive alliance
number of line graphs. A characterization of trees with equal domination and
global strong defensive alliance numbers was given by Haynes, Hedetniemi and
Henning [8]. Some bounds for the alliance numbers in trees are given in [6].
Rodriguez-Velazquez and Sigarreta [12] gave bounds for the defensive, offensive,
global defensive, global offensive alliance numbers in terms of the algebraic con-
nectivity, the spectral radius, and the Laplacian spectral radius of a graph. They
also gave bounds on the global offensive alliance number of cubic graphs in [13]
and the global offensive alliance number for general graphs in [14] and [11]. The
concept of powerful alliances was introduced recently in [3].
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Given a simple graph G = (V,E) and a vertex v ∈ V , the open neighborhood
of v, N(v), is defined as N(v) = {u : (u, v) ∈ E}. The closed neighborhood of v,
denoted by N [v], is N [v] = N(v) ∪ {v}. Given a set X ⊂ V , the boundary of X ,
denoted by δ(X), is the set of vertices in V −X that are adjacent to at least one
member of X .

Definition 1. A set S ⊂ V is a defensive alliance if for every v ∈ S, |N [v]∩S| ≥
|N [v]∩(V −S)|. For a weighted graph G, where each vertex v has a non-negative
weight w(v), a set S ⊂ V is called a weighted defensive alliance if for every
v ∈ S,

∑
u∈N [v]∩S w(u) ≥

∑
u∈N [v]∩(V −S) w(u). A (weighted) defensive alliance

S is called a global (weighted) defensive alliance if S is also a dominating set.

Definition 2. A set S ⊂ V is an offensive alliance if for every v ∈ δ(S), |N [v]∩
S| ≥ |N [v] ∩ (V − S)|. For a weighted graph G, where each vertex v has a non-
negative weight w(v), a set S ⊂ V is called a weighted offensive alliance if for
every v ∈ δ(S),

∑
u∈N [v]∩S w(u) ≥

∑
u∈N [v]∩(V −S) w(u). A (weighted) offensive

alliance S is called a global (weighted) offensive alliance if S is also a dominating
set.

Definition 3. A global (weighted) powerful alliance is a set S ⊂ V such that
S is both a global (weighted) offensive alliance and a global (weighted) defensive
alliance.

Definition 4. The global powerful alliance number of G is the cardinality of a
minimum size global (weighted) powerful alliance in G, and is denoted by γp(G).
A minimum size global powerful alliance is called a γp(G)-set.

There are many applications of alliances. One is military defence. In a network,
alliances can be used to protect important nodes. An alliance is also a model
of suppliers and clients, where each supplier needs to have as many reserves as
clients to be able to support them. More examples can be found in [9].

Balakrishnan et al. [2] studied the complexity of global alliances. They showed
that the decision problems for global defensive and global offensive alliances are
both NP-complete for general graphs. It is clear that the decision problems to
find global defensive and global offensive alliances in weighted graphs are also
NP-complete for general graphs.

The problem of finding global defensive, global offensive and global powerful
alliances is only solved for trees. [5] gives a O(|V |3) dynamic programming algo-
rithm that finds global defensive, global offensive and global powerful alliances
of any weighted tree T = (V,E).

In this short paper we give a O(|V |) time algorithm that finds the global
powerful alliance number of any weighted tree T = (V,E). Combining our result
with the obvious lower bound, we actually show that the problem of finding
global powerful alliance number of any weighted tree T = (V,E) is Θ(|V |).

In the next section, we present a linear time algorithm for minimum cardinal-
ity powerful alliance in weighed trees.
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2 Powerful Alliances

In this section, we give a linear time algorithm that finds the minimum cardi-
nality weighted global powerful alliance number of any tree. We assume all the
weights are positive - the algorithm can be easily modified for the case where
the weights are non-negative.

For a set S ⊂ V define w(S) :=
∑

u∈S w(u).
It is clear that when the weight function is positive, the global powerful al-

liance problem can be formulated as follows.

Observation 1. Let G = (V,E) be a graph, and w : V → R+\{0} a weight
function. Then a global powerful alliance in G is a set S ⊂ V such that for all
v ∈ V , ∑

u∈N [v]∩S

w(u) ≥ w(N [v])
2

.

Note that the condition that S is a dominating set is automatically guaranteed
because the weights of all vertices are positive. We will use the above formulation
in our algorithm.

Definition 5. For v ∈ V , the alliance condition for v is the condition that∑
u∈N [v]∩S w(u) ≥ w(N [v])

2 .

2.1 Satisfying the Alliance Condition for a Vertex

Throughout the algorithm, for every vertex v we need to find the smallest num-
ber of vertices necessary in the closed neighborhood of v to satisfy the alliance
condition for v. To solve this problem, we use the following algorithm.

Given positive numbers a1, a2, ..., an, FindMinSubset(a1, a2..., an) is the
problem of finding the minimum k such that there is a k-subset of {a1, a2, ..., an}
the elements of which sum up to at least 1

2

∑n
i=1 ai. We give an algorithm that

solves this problem in time O(n). The algorithm also finds an instance of such
a k-subset. Furthermore, out of all the optimal solutions it outputs a set with a
maximum sum.

Algorithm FindMinSubset[A,n,T].
Input: An array A of size n of positive integers; a target value T .
Output: The least integer k such that some k elements of A add up to at least T .

1. If n = 1, return 1.
2. Set i = �n

2 �.
3. Find the set A′ of the i largest elements of A and compute their sum M .
4. If M > T return FindMinSubset[A′, i, T ]; if M = T return i; else return
i+ FindMinSubset[A−A′, n− i, T −M ].
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Lemma 1. The above algorithm solves the problem FindMinSubset(a1, a2, ...,
an) in time O(n). Furthermore, if the solution is k, the algorithm finds the k
largest elements.

Proof. Let S =
∑n

i=1 ai. It is clear that FindMinSubset[A, n, T = S
2 ] where A

is the array of the elements (a1, a2, ..., an) will solve the desired problem. The
analysis of the running time is as follows. Note that finding the largest k elements
in an array of size n can be done in linear time for any k (see [4]). Therefore,
in each iteration of FindMinSubset, Step 2 and Step 3 take linear time, say
Cn. Since the input size is always going down by a factor of 2, we have that the
running time T (n) satisfies T (n) ≤ T (n/2) + Cn. By induction, it is easily seen
that T (n) = O(n). It is clear that out of all the possible solutions, the algorithm
picks the one with the largest weight.

We now describe the algorithm for weighted powerful alliances in trees.

2.2 An Overview of the Algorithm

We assume the tree is rooted. For each k, we order the vertices of depth k from
left to right. By C(v) we denote the set of children of v. We define p(v) to be
the parent of v.

In each iteration of the algorithm, we may label some vertices with “+”, with
“?p”, or with “?c”. The “+” vertices are going to be part of the powerful alliance.
Under some conditions, we may also pick some of the vertices labelled with “?p”
or “?c”.

Now, we give a brief intuition behind the algorithm. As noted above, when all
the weights are positive, the global powerful alliance problem is simply finding
the smallest set S ⊂ V such that for every vertex v ∈ V , w(N [v]∩S) ≥ w(N [v])

2 .
Our algorithm is essentially a greedy algorithm. We root the tree at a vertex,
and start exploring the neighborhoods of vertices starting from the bottom level
of the tree. The vertices which have already been chosen to be included in the
alliance set S are labelled with “+”. For each vertex v, we find the smallest
number of vertices in its closed neighborhood that need to be added to the ver-
tices labelled “+” in v’s closed neighborhood to satisfy the alliance condition
for v. We do this using the algorithm FindMinSubset. In some cases we may get
more than one optimal solution and it will matter which solution we pick (for
example, if there is an optimal solution containing both v and p(v) then this
solution is preferable when we consider the neighborhood of p(v)). The com-
plication arises when there is an optimal solution containing v, but not p(v),
and there is an optimal solution containing p(v). If w(v) > w(p(v)), then it is
not clear which solution is to be preferred because v is at least as good as p(v)
for satisfying the alliance condition for p(v), but choosing p(v) is preferable for
satisfying the alliance condition for parent of p(v), p(p(v)). In general, when we
have to choose between a solution that contains v and one that contains p(v) we
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give preference to the solution containing p(v) unless: (i) we can immediately
gain by choosing the solution with v due to choices made in previous iterations
(ii)when satisfying the alliance condition for p(v), it might theoretically be better
to have chosen v. In case (ii), we label both v and p(v) with “?”, v with “?c”, and
p(v) with “?p”, and delay satisfying v’s alliance condition for later iterations.

2.3 Labels and Sets

In the algorithm, we use four labels for vertices: “+”, “?c”, “?p” and “?c+”. We
assign a vertex v a label “+” when we can claim that v is contained in some
minimum cardinality powerful alliance. Generally, we assign a vertex v a label
“?c” when we have a choice of taking v or p(v) to satisfy the alliance condition
for v (but we can’t choose both v and p(v)) and w(v) > w(p(v)). In this case, we
also label p(v) with “?p”. For a vertex u, we define D(u) to be the set of all “?c”
children of u. Note that for every vertex u, eventually we must take u or D(u)
in our alliance, regardless whether these vertices are the best in the sense that
they help satisfy the alliance condition for u. We change the label of a vertex v
from “?c” to “?c+” if for satisfying the alliance condition for p(v) it is better to
choose v than p(v). The reason we label it “?c+” and not “+” is that it may
turn out that p(p(v)), the parent of p(v), will be labelled “+”, and and this may
allow labelling p(v) with “+” and unlabelling of v.

There are two occasions when we label a vertex v with “?p”. The first is when
a child of v is labelled “?c”, as described above. The second case is when we
see no optimal solution containing p(v) that would satisfy v’s alliance condition,
but if p(v) were later labelled “+” for another reason, then there would be
an optimal solution containing v that would satisfy v’s alliance condition. This
solution would be preferable since it can decrease the number of vertices required
to satisfy p(v)’s alliance condition.

We denote by N+[v] to be the set of all vertices in the closed neighborhood of
v which are labelled with “+” at the current stage in the algorithm. For a vertex
v ∈ V , we define Findmin(v) to be the function that finds the smallest set of
vertices in N [v]\N+[v](i.e. the set of vertices not labelled with “+”) that need
to be added to the set of vertices in already labelled “+” in v’s neighborhood,
N+[v], to satisfy the alliance condition for v. If there is more than one such
set, Findmin(v) returns the set with maximum total weight. In the algorithm,
by a solution for v we mean either the set Findmin(v) or a set S such that
|S| = |Findmin(v)| and S ∪ N+[v] satisfies the alliance condition for v. Note
that it could be that Findmin(v) = ∅ since the alliance condition could already
have been satisfied for v. Also, note that finding Findmin(v) is done using the
algorithm FindMinSubset defined previously.

For a set of vertices X none of which are labelled “+”, define Findmin(v) : X
to be the set Findmin(v) under the assumption that the vertices of X are now
labelled “+”. We also have a special set Xv for every vertex v. This is the set
of all children u of v labelled with “?p” with the property that |Findmin(u) :
{u, v}| < |Findmin(u)|. This means that when trying to satisfy the alliance
condition for v, if we see a solution that contains v and u, then we can safely
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label u and v with “+”, regardless whether this solution contained p(v) since
we will gain a vertex when solve the alliance condition for u. Therefore, the
Xv children of v can be used under some circumstances to satisfy the alliance
condition for v. We have also two recursive functions, Xcollect(v) and Clear(v),
that are used in the algorithm. Xcollect(v) chooses all the X vertices in the
subtree rooted at v, and finally settles the alliance condition for these vertices.
It is used when we know that we can label v with a “+”. Clear(v) erases the
labels of all the non X vertices that have label “?p” in the subtree rooted at v,
and settles the alliance condition for them. Once we reach the root r(T ) of the
tree, we no longer have the problem of deciding whether to give the parent of
r(T ) a priority over r(T ) or its Xr children, since the parent does not exist. We
can then settle the alliance conditions of all the “?” labelled vertices.

The functions Clear(v) and Xcollect(v) are as follows:

Clear(v)
For every child u of v labelled “?p” AND u /∈ Xv,

Remove the label “?p” (and “?c” if it exists) of u
Replace all the labels of “?c+” from its children by “+”.
Clear(u).
F indmin(u) and label the chosen vertices by “+”.

Xcollect(v)
For every Xv child u of v

Label u with “+”.
Remove “?p” label from u
Remove all “?c+” labels from children of u.
Xcollect(u).
F indmin(u), and label chosen vertices with “+”.

If vertex r is the root, we assume that p(r) = ∅ and w(p(r)) = 0. Also, we
will say that p(r) has label “+” so that we are in Case 1 or in Case 2.1.

2.4 The Algorithm

The algorithm has two cases: the vertex v under consideration is labelled “+”, or
“?p” or unlabelled (it can only receive the label “?c” during the iteration). Each
case has two subcases depending on the label of p(v). We often switch between
the cases. For example, if the vertex v under consideration was unlabelled (Case
2) and gets a label “+”, we jump to Case 1 and continue from there.

All Xv’s are initially set to Xv := ∅.

Algorithm Weighted Powerful Alliances in Trees

for(i = 0 to d) AND for all (vertices v at depth d− i) do
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Algorithm 1. Algorithm for finding Minimum Cardinality Weighted Powerful
Alliance in a tree T . Case 1: v is labelled with “+”.
1: Case 1.1: v has no “?p” children.
2: if p(v) is labelled “+” then
3: Findmin(v) and take any solution. Label all the picked vertices with “+”.
4: else if [p(v) is unlabelled or labelled “?p”] then
5: Findmin(v)
6: if ∃ solution containing p(v) then
7: choose this solution. Label all picked vertices with “+”.
8: if v had label “?p” then
9: remove this label, and remove the labels “?c” from all its children.

10: else
11: Findmin(v)
12: Label picked vertices with “+”

{Case1.2: v has at ≥ 1 “?p” child.}
13: Xcollect(v)
14: Clear(v)
15: Go back to Case 1.1

Algorithm 2. Case 2: v is labelled “?p” or unlabelled.
1: Case 2.1: p(v) is labelled “+”.
2: Let D(v) be the set of children of v that have a label “?c”.
3: Xv := Xv ∪ {u ∈ C(v) : label(u) = “?p”, |Findmin(u) : {u, v}| <
|Findmin(u)|}

4: Define X ′
v = Xv ∪ v ∪ p(v)

5: Findmin(v).
6: if ∃ solution � v OR � solution ⊃ D(v) OR |Findmin(v) : {Xv ∪ v}| <
|Findmin(v)| then

7: Label v with “+”.
8: Remove “?c” label’s from v’s children.
9: Go to Case 1.

10: else
11: Choose a solution S ⊃ D(v). Label vertices of S with “+”
12: Remove “?c” labels from vertices in D(v), remove “?p” label from v
13: Set Xu := ∅ for every vertex u in the subtree rooted at v
14: Clear(v).
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Algorithm 3. Case 2: v is labelled “?p” OR is unlabelled.
1: Case 2.2: p(v) is labelled “?p” OR is unlabelled.
2: Let D(v) be the set of children of v that have a label “?c”.
3: Findmin(v)
4: Xv := Xv ∪ {u ∈ C(v) : label(u) = “?p”, |Findmin(u) : {u, v}| <
|Findmin(u)|}

5: X ′
v = Xv ∪ {v} ∪ {p(v)}

6: if |Findmin(v) : {Xv ∪ v}| ≤ |Findmin(v)| − 2 OR ∃ solution S such that
|S ∩X ′

v| ≥ 2 OR ∃ solution S such that S ⊃ {v, p(v)}. then
7: Label v with “+”, remove its “?p” label. Remove “?c” labels from v’s

children. Go to Case 1.
8: else if ∃ a solution S such that S ⊃ {D(v) ∪ p(v)} then
9: Let R be a solution � p(v) with maximum total weight.

10: if Xv ∪ {v} ∪R\u ≥ w(N [v])/2 for some u ∈ R, u �= p(v) then
11: Label v with “+”, remove its “?p” label.
12: Remove “?c” labels from v’s children.
13: Go to Case 1.
14: else if Xv ∪ {v} ∪R\p(v) < w(N [v])/2 OR w(v) ≤ w(p(v)) then
15: Label p(v) with “+”.
16: if p(v) had label “?p” then
17: remove it, and remove “?c” labels from p(v)’s children.
18: Go to Case 2.1
19: else
20: Label p(v) “?p” if it is not already. Add a label “?c” to v. Relabel “?c”

vertices in D(v) by “?c+”.
21: if |Findmin(v) : X ′

v| < |Findmin(v) : {p(v)}| then
22: Xp(v) := Xp(v) ∪ {v}. Label v with “?p”, if v is unlabelled.
23: Clear(v)
24: else if ∃ a solution S such that S ⊃ D(v) then
25: if |Findmin(v) : {Xv ∪ v}| < |Findmin(v)| then
26: Label v with “+”, remove its “?p” label.
27: Remove “?c” labels from v’s children.
28: Go to Case 1.
29: else
30: Relabel “?c” labels of vertices in D(v) by “?c+”.
31: if |Findmin(v) : X ′

v| < |Findmin(v) : {p(v)}| then
32: Xp(v) := Xp(v) ∪ {v}. Label v with “?p”, if v is unlabelled
33: else
34: Label vertices of S with “+”.
35: Remove “?c+” labels from vertices in D(v)
36: Clear(v).
37: else
38: Label v with “+”. Remove “?p” label from v. Remove “?c” labels from

vertices in D(v). Go to Case 1.
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An illustration of the algorithm by an example (Fig. 1).

v1 82 v2 100
v3 150

v4 80 v5 20 v6 80

v9 50

v7 50

v8 80

v10 36 v11 45
v12 70

v13 35 v14 15
v15 40

v16 25

v1 82 v2 100
v3 150

v4 80 v5 20 v6 80

v9 50

v7 50

v8 80

v10 36 v11 45
v12 70

v13 35 v14 15
v15 40

v16 25

After vertices v1, v2, v3 have been considered (i = 0 in the for loop)

v1 82 v2 100
v3 150

v4 80v5 20 v6 80

v9 50

v7 50

v8 80

v10 36 v11 45
v12 70

v13 35 v14 15
v15 40

v16 25

After vertices v1, v2, ..., v8 have been considered (i = 1 in the for loop)

?c

?p

v1 82 v2 100
v3 150

v4 80v5 20 v6 80

v9 50

v7 50

v8 80

v10 36 v11 45 v12 70

v13 35 v14 15
v15 40

v16 25

After vertices v1, v2, ..., v12 have been considered (i = 2)

?c+

?p
?c

?p

?c

?p

Xv13

v1 82 v2 100
v3 150

v4 80v5 20 v6 80

v9 50

v7 50

v8 80

v10 36 v11 45 v12 70

v13 35 v14 15
v15 40

v16 25

After vertices v1, v2, ..., v15 have been considered (i = 3)

Xv13

?p ?p

v1 82 v2 100
v3 150

v4 80v5 20 v6 80

v9 50

v7 50

v8 80

v10 36 v11 45 v12 70

v13 35 v14 15
v15 40

v16 25

After vertices v1, v2, ..., v16 have been considered (i = 4)

Xv13

Theorem 1. Algorithm Powerful Alliances for Trees correctly computes the
minimum cardinality weighted powerful alliance of a weighted tree T = (V,E) in
time O(|V |).

Due to space restrictions, we omit the proof.

Acknowledgements. I wish to thank Dr. Jacques Verstraete for helpful dis-
cussions, and Leonid Chindelevitch for indicating Lemma 1.
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Abstract. There are n points in the plane and each point is painted
by one of m colors where m ≤ n. We want to select m different color
points such that (1) the total edge length of resulting minimal spanning
tree is as small as possible; or (2) the total edge length of resulting
minimal spanning tree is as large as possible; or (3) the perimeter of
the convex hull of m different color points is as small as possible. We
prove NP-completeness for those three problems and give approximations
algorithms for the third problem.

1 Introduction

Data from the real world are often imprecise. Measurement error, sampling error,
network latency [5, 6], location privacy protection [1, 2] may lead to imprecise
data. Imprecise data can be modeled by a continuous range such as square, line
segment and circle [7, 8]. Imprecise data can also be modeled by discrete range
such as point set. In discrete model, each point set is assigned one distinct color.
Then the problem is converted to choosing one point from each colored point set
such that the resulting geometric structure is optimal. The discrete model has
applications in many areas such as Voronoi diagram [3], community system [9]
and color-spanning object [3].

Related Work. Löffler and van Kreveld [7] address the problem of finding the
convex hull of maximum/minimum area or maximum/minimum perimeter based
on line segment or squares. The running time varies from O(n logn) to O(n13).

Ju and Luo [8] propose an O(n logn) algorithm for the convex hull of the
maximum area based on the imprecise data modeled by equal sized parallel line
segment and an O(n4) algorithm for the convex hull of the maximum perimeter
based on the imprecise data modeled by non-equal sized parallel line segment.

For discrete imprecise data model, Zhang et al. [13] use a brute force algo-
rithm to solve the problem of the minimum diameter color-spanning set problem
(MDCS). The running time of their algorithm is O(nk) if there are k colors and
n points. Chen et al. [9] implement the algorithm in their geographical tagging
system. Fleischer and Xu [10] show that MDCS can be solved in polynomial time
� This work was supported by 2008-China Shenzhen Inovation Technology Program

(SY200806300211A).
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for L1 and L∞ metrics, while it is NP-hard for all other Lp metrics even in two
dimensions and gave a constant factor approximation algorithm.

There are also other works on colored point sets problems [3, 4, 11].

Problem Definition. The problems we discuss in this paper are as follows:

Problem 1. Min-MST. There are n points in the plane and each point is painted
by one of m colors where m ≤ n. We want to select m different color points such
that the total edge length of resulting minimal spanning tree is as small as
possible.

Problem 2. Max-MST.There are n points in the plane and each point is painted
by one of m colors where m ≤ n. We want to select m different color points
such that the total edge length of resulting minimal spanning tree is as large as
possible.

Problem 3. Min-Per.There are n points in the plane and each point is painted
by one of m colors where m ≤ n. We want to select m different color points such
that the perimeter of the convex hull of m different color points is as small as
possible.

We will prove those three problems are NP-complete by reduction from 3-SAT
problem and give approximation algorithms for the third problem.

2 Min-MST Is NP-Complete

First we show that this problem belongs to NP. Given an instance of the problem,
we use as a certificate the m different color points chosen from n points. The
verification algorithm compute the MST of those m points and check whether
the length is at most L. This process can certainly be done in polynomial time.

We prove this problem is NP-hard by reduction from 3-SAT problem. We
need several gadgets to represent variables and clauses of 3-SAT formula. The
general idea is for a 3-SAT formula, we put some colored points on the plane
such that the given 3-SAT formula has a true assignment if and only if the length
of minimum MST of colored points equals some given value.

First we draw a point O with distinct color at (0, 0). For a 3-SAT formula
ψ, suppose it has n variables x1, x2, ..., xn and m clauses. Let xi,j,k (or ¬xi,j,k)
be the variable xi that appears at the j-th literal in ψ from left to right such
that xi (including ¬xi) appears k − 1 times already in ψ before it. For each
variable xi (1 ≤ i ≤ n), six points pj′

i (1 ≤ j′ ≤ 6) are created on p1
i =

(400i− 300, 0), p2
i = (400i− 200, 0), p3

i = (400i − 100, 0), p4
i = (400i, 0), p5

i =
(300i − 100,−100), p6

i = (300i,−100). For each literal xi,j,k (or ¬xi,j,k), eight
additional points are created on p7

i,j,k = (400i−200,−100), p8
i,j,k = (400i,−100),

p9
i,j,k = (0, 400j − 300), p10

i,j,k = (0, 400j − 200), p11
i,j,k = (0, 400j − 100), p12

i,j,k =
(0, 400j), p13

i,j,k = (− 100
3m , 400j − 200), p14

i,j,k = (− 100
3m , 400j) respectively. Among

those fourteen points, p5
i and p6

i have the same color, p7
i,j,k and p13

i,j,k have the
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O

p91,1,1

p101,1,1

p121,1,1
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p141,1,1
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A B

p61

p71,1,1 p81,1,1
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(a)

O

p101,1,1

p111,1,1

p131,1,1

p121,1,1

p21p11

p141,1,1

p41

p151,1,1

p51
p61,1,1 p71,1,1

p31

p81,1,1 p91,1,1

(b)

Fig. 1. Gadget for the first literal x1 (a) for MIN-MST (b) for MAX-MST. Different
symbols means different colors. All solid circles are with distinct colors.

same color, p8
i,j,k and p14

i,j,k have the same color, and all other points have different
colors. Figure 1(a) shows gadget for the first literal x1. According to above
construction, we get a set P of 6n + 24m + 1 points (4n points are on x axis,
2n + 2 × 3m = 2n + 6m points are on line y = −100, 4 × 3m = 12m points
are on y axis, 2 × 3m = 6m points are on line x = − 100

3m , one point is on
point O) in the plane. Let TP be the minimum MST over P . 4n + 12m + 1
points ⊂ P are on x and y axis and they are all with distinct colors. Therefore,
all points on x and y axis and edges with length 100 connecting those points
appear in TP . Since p5

i and p6
i have the same color, p7

i,j,k and p13
i,j,k have the

same color and p8
i,j,k and p14

i,j,k have the same color, we have to choose either
{p5

i , p
7
i,j,k, p

14
i,j,k} or {p6

i , p
8
i,j,k, p

13
i,j,k} to get the minimum MST TP with length

500n+400×3m+3m× 100
3m = 500n+1200m+100. Let choosing {p5

i , p
7
i,j,k, p

14
i,j,k}

correspond xi is false and choosing {p6
i , p

8
i,j,k, p

13
i,j,k} correspond xi is true (see

Figure 2).
Now, we illustrate how to represent the binary relation or in 3-SAT formula.

We assume that the one clause is xi1,j,k1∨xi2,j+1,k2 ∨xi3,j+2,k3. We create three
or points por

i1, j
3 �

, por
i2, j+1

3 � and por
i3, j+2

3 � with the same color (but different with

all other colors) at p13
i1,j,k1, p

13
i2,j+1,k2 and p13

i3,j+2,k3 respectively. If one literal
is in negation form ¬xi,j,k, then we need to create the or point por

i, j
3 �

at p14
i,j,k

instead of p13
i,j,k. Figure 3 shows the gadget for the first clause (x1 ∨ x2 ∨ ¬x3)

and Figure 4 shows the gadget for ψ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4). Let T
be the minimum MST over P plus 3m or points. For literal xi,j,k (or ¬xi,j,k),
if variable xi is true (or false), then {p6

i , p
8
i,j,k, p

13
i,j,k} (or {p5

i , p
7
i,j,k, p

14
i,j,k}) are

chosen that means the or point por
i, j

3 �
can be chosen to construct T without

adding any extra length comparing with TP since por
i, j

3 �
is located at the same

place as p13
i,j,k (or p14

i,j,k). Therefore, if at least one literal is true in one clause, no
extra length will be added to TP for that clause. Otherwise, all three literals in
one clause are false, then all three or points in that clause can not be covered
by points in TP . Since we have to choose one point from those three or points,
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Fig. 2. Suppose x1 is the first literal in the first clause of 3-SAT formula. (a) the
minimum MST when x1 is false. (b) the minimum MST when x1 is true.
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Fig. 3. Gadget for the clause (x1 ∨ x2 ∨ ¬x3) assuming it is the first clause

then the extra length of one will be added to the length of TP . If m′ clauses are
not satisfiable, then the extra length of m′ will be added to the length of TP .
Thus the lemma follows:

Lemma 1. The 3-SAT formula ψ with n variables x1, x2, ..., xn and m clauses
is satisfiable if and only if the length of T is equal to 500n+ 1200m+ 100.

3 Max-MST Is NP-Complete

First we show that this problem belongs to NP. Given an instance of the problem,
we use as a certificate the m different color points chosen from n points. The
verification algorithm compute the MST of those m points and check whether
the length is at most L. This process can certainly be done in polynomial time.
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Fig. 4. Gadget for ψ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) for Min-MST. y axis is
broken to save space.

We prove this problem is NP-hard by reduction from 3-SAT problem. We
need several gadgets to represent variables and clauses of 3-SAT formula. The
general idea is for a 3-SAT formula, we put some colored points on plane such
that the given 3-SAT formula has true assignment if and only if the length of
maximum MST of colored points equals some given value.

First we draw a point O with distinct color at (0, 0). For a 3-SAT formula ψ,
suppose it has n variables x1, x2, ..., xn and m clauses. Let xi,j,k (or ¬xi,j,k) be
the variable xi that appears at the j-th literal in ψ from left to right such that xi

(including ¬xi) appears k − 1 times already in ψ before it. For each variable xi

(1 ≤ i ≤ n), five points pj′
i (1 ≤ j′ ≤ 5) are created on p1

i = (201i− 101, 0), p2
i =

(201i−1, 0), p3
i = (201i, 0), p4

i = (201i−1,−10), p5
i = (201i,−10). For each literal

xi,j,k (or ¬xi,j,k), ten additional points are created on p6
i,j,k = (201i−1,−9−2k),

p7
i,j,k = (201i,−9− 2k), p8

i,j,k = (201i− 1,−10− 2k), p9
i,j,k = (201i,−10− 2k),

p10
i,j,k = (0, 400j − 300), p11

i,j,k = (0, 400j − 200), p12
i,j,k = (0, 400j − 100), p13

i,j,k =
(0, 400j), p14

i,j,k = (−0.5, 400j − 200), p15
i,j,k = (−0.5, 400j) respectively. Among

those fifteen points, p4
i and p5

i have the same color, p6
i,j,k and p14

i,j,k have the
same color, p7

i,j,k and p15
i,j,k have the same color, p8

i,j,k and p9
i,j,k have the same

color, and all other points have different colors. Figure 1(b) shows gadget for the
first literal x1. According to above construction, we get a set P of 5n+ 30m+ 1
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Fig. 5. (a) the maximum MST when x1 is false. (b) the maximum MST when x1 is
true.

points in the plane. Let TP be the maximum MST over P . 3n+ 12m+ 1 points
⊂ P are on x and y axis and they are all with distinct colors. Therefore, all
points on x and y axis and edges with length 100 or 1 connecting those points
appear in TP . Since p4

i and p5
i have the same color, p6

i,j,k and p14
i,j,k have the

same color, p7
i,j,k and p15

i,j,k have the same color, p8
i,j,k and p9

i,j,k have the same
color, we have to choose either {p4

i , p
7
i,j,k, p

8
i,j,k, p

14
i,j,k} or {p5

i , p
6
i,j,k, p

9
i,j,k, p

15
i,j,k}

to get the maximum MST TP with length (201+ 10)n+ 3m(400+0.5 + 2
√

2) =
211n + 1201.5m+ 6

√
2m. Let choosing {p4

i , p
7
i,j,k, p

8
i,j,k, p

14
i,j,k} correspond xi is

false and choosing {p5
i , p

6
i,j,k, p

9
i,j,k, p

15
i,j,k} correspond xi is true (see Figure 5).

For each literal xi,j,k (or ¬xi,j,k), we create one or point por
i, j

3 �
at p14

i,j,k (or

p15
i,j,k) as in section 2. The remaining part of this section is similar to section 2.

Lemma 2. The 3-SAT formula ψ with n variables x1, x2, ..., xn and m clauses
is satisfiable if and only if the length of T is equal to 211n+ 1201.5m+ 6

√
2m.

4 Min-Per Problem Is NP-Complete

First we show that this problem belongs to NP. Given an instance of the problem,
we use as a certificate the m different color points chosen from n points. The
verification algorithm compute the perimeter of the convex hull of thosem points
and check whether the perimeter is at most p. This process can certainly be done
in polynomial time.

We prove this problem is NP-hard by reduction from 3-SAT problem. We
need several gadgets to represent variables and clauses of 3-SAT formula. For a
given instance of 3-SAT problem, suppose it has k variables x1, x2, ..., xk. First
we draw a circle C. The general idea is for a 3-SAT formula, we put some colored
points on and inside C such that the given 3-SAT formula has true assignment if
and only if the perimeter of convex hull CHopt with minimum perimeter equals
some given value.

For two points a, b on C, let ãb be the arc of C from a to b in clockwise
order and ab be the line segment between a, b. Let the length of ab be |ab|. For
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Fig. 6. The gadget for variable xj . The colors of all empty circles are different from
each other and from solid colored points. Solid line segments must appear on CHopt.
Dashed line segments mean they are candidates for edges of CHopt.

each variable xj , we put 10 points xi
j where i = 1, 2, ..., 10 on circle C in such

way: xi
j where i = 1, 2, ..., 10 are arranged in clockwise order (see Figure 6). For

those ten points, only x2
j and x3

j have the same color and all other points have
different colors. Also |x1

jx
2
j | = |x3

jx
4
j |. Then we add two more points x11

j , x
12
j

where x11
j is on line segment x1

jx
2
j and x12

j is on line segment x3
jx

4
j . x

11
j has the

same color as the color of x6
j and x12

j has the same color as the color of x9
j . For

different variables, the arcs they spanned do not overlap and they are arranged
in clockwise order for increasing j. The relative distances between twelve points
satisfy following equations:

redFormate changed:

|x1
jx

2
j |+ |x2

jx
4
j | = |x1

jx
3
j |+ |x3

jx
4
j | = p1|x5

jx
7
j | = |x8

jx
10
j | = p2

|x5
jx

6
j | = |x6

jx
7
j | = |x8

jx
9
j | = |x9

jx
10
j | = p3

|x1
jx

11
j |+ |x11

j x
3
j | − |x1

jx
3
j | = |x2

jx
12
j |+ |x12

j x
4
j | − |x2

jx
4
j | = Δp1

2p3 − p2 = Δp2;Δp1 >> Δp2

The inequality Δp1 >> Δp2 ensures the part of CHopt on arc x̃1
jx

4
j has to be

x1
jx

2
j ∪ x2

jx
4
j or x1

jx
3
j ∪ x3

jx
4
j . Suppose we choose x1

jx
2
j ∪ x2

jx
4
j to be the part of

CHopt. In order to cover the color of x12
j , we have to choose x8

jx
9
j ∪x9

jx
10
j for arc

x̃8
jx

10
j . For the arc x̃5

jx
7
j , since the color of x6

j is the same as the color of x11
j and it

has been covered by x1
jx

2
j∪x2

jx
4
j already, we can just choose x5

jx
7
j for arc x̃5

jx
7
j . x

11
j

acts as the negation of x12
j that means if we choose one of them, the other one will

not be chosen. Similarly, x6
j acts as the negation of x9

j . Therefore, if the variable
xj is assigned to be 1, we choose x1

jx
2
j ∪x2

jx
4
j ∪x4

jx
5
j ∪x5

jx
7
j ∪x7

jx
8
j ∪x8

jx
9
j ∪x9

jx
10
j

as part of CHopt for the arc x̃1
jx

10
j . Otherwise if the variable xj is assigned

to be 0, we choose x1
jx

3
j ∪ x3

jx
4
j ∪ x4

jx
5
j ∪ x5

jx
6
j ∪ x6

jx
7
j ∪ x7

jx
8
j ∪ x8

jx
10
j as part
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of CHopt for the arc x̃1
jx

10
j . Therefore, if we connect all k gadgets together

to form CHopt, the perimeter of CHopt is k × (p1 + 2p2 + Δp2) + p4 where
p4 = 2

∑k
j=1(|x4

jx
5
j |+ |x7

jx
8
j |) +

∑k−1
j=1 |x10

j x
1
j+1|+ |x10

k x
1
1|.

For three literals in each clause, we add three points with same color into
gadgets constructed above corresponding to three literals. For example, if xj

appears in one clause, we put x13
j inside the triangle �x5

jx
6
jx

7
j such that Δp3 =

|x5
jx

13
j |+|x13

j x
7
j |−|x5

jx
7
j | << Δp2. If ¬xj appears in one clause, we put x14

j inside
the triangle �x8

jx
9
jx

10
j such that Δp3 = |x8

jx
14
j |+ |x14

j x
10
j |− |x8

jx
10
j | << Δp2. We

call x6
j and x9

j as apex-point and x13
j and x14

j as or-point. For three literals in
one clause, if all three literals are 0, then corresponding apex-point will not be
chosen as the vertex of CHopt. In order to cover the color of or-point, one of three
or-points has to be chosen as the vertex of CHopt. Then one Δp3 will be add into
the perimeter of CHopt. Therefore, for a given 3-SAT formula with k variables, if
it has true assignment, then the perimeter of convex hull CHopt with minimum
perimeter over the gadgets constructed as above equals k×(p1+2p2+Δp2)+p4.

If the perimeter of convex hull CHopt over the gadgets constructed as above
equals k× (p1 + 2p2 +Δp2) + p4, that means at least one literal of all clauses is
true. Because otherwise, the perimeter of convex hull CHopt will be ≥ k× (p1 +
2p2 +Δp2) + p4 +Δp3. Therefore, the 3-SAT formula has true assignment.

Theorem 1. There are n points in the plane and each point is painted by one of
m colors where m ≤ n. To select m different color points such that the perimeter
of the convex hull of m different color points is as small as possible is NP-
complete.

5 Approximation Algorithms for Min-Per Problem

5.1 π-Approximation Algorithm

The algorithm is simple: for each point p, selectm−1 points p1, ..., pm−1 such that
the colors of p, p1, ..., pm−1 are different and the distance from pi (1 ≤ i ≤ m−1)
to p is less than the distances from other points with the same color as pi to
p. For those m points, construct a convex hull CHp and compute its perimeter.
For all n point, we get n perimeters and the minimum one is what we want. The
running time of this algorithm is O(n(n +m logm)). Assume the perimeter we
get is perapp and the optimal perimeter is popt. Now we prove perapp ≤ πperopt.

Suppose two vertices that decide the diameter of the optimal convex hull
CHopt are pa and pb (see Figure 7). Let r = |papb|. We draw a circle C with
center pa and radius r. CHpa is constructed as above algorithm. CHpa is totally
inside C since CHopt is totally inside C that means there are at least one point
from each color is inside C. Then perimeter of CHpa is perpa ≤ 2πr. We know
that perapp ≤ perpa and peropt ≥ 2r. Therefore perapp ≤ πperopt.
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pa pb
d

CHopt

C

Fig. 7. Illustration of π-approximation algorithm

Theorem 2. There is a π-approximation algorithm for problem 3 with running
time O(n2 + nm logm).

5.2
√

2-Approximation Algorithm

In [12], Abellanas et al. give an O(min{n(n−m)2, nm(n −m)}) algorithm for
computing minimum perimeter axis-parallel rectangle R enclosing at least one
point of each color. Let the perimeter of R be perR and the diameter of R be d. If
we construct CHapp over the points inside R, CHapp contains at least one point
of each color and CHapp is totally inside R: Therefore perapp ≤ perR. There are
some properties for R. There are at least one point on each edge of R. Colors
of those four points are different. There are no other points inside R having the
same color as those four points. Let R′ be the smallest axis-parallel rectangle
enclosing CHopt and d′ be the diameter of R′. Then peropt ≥ 2d′ ≥ 2d. We know
perR ≤ 2

√
2d. Then perapp ≤

√
2peropt.

Theorem 3. There is a
√

2-approximation algorithm for problem 3 with run-
ning time O(min{n(n−m)2, nm(n−m)}).

6 Conclusions

In this paper, we discussed three variations of spread colored points problems and
proved NP-completeness of those three problems. For the third problem, we gave
π and

√
2 approximation algorithms with O(n2 + nm logm) and O(min{n(n−

m)2, nm(n−m)}) running time respectively, where n is the number of points and
m is the number of colors. In future work, it would be interesting to investigate
more geometric problems for colored points. For example, maximizing the closest
pair for spreading colored points.
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Abstract. The development of a new system involves extensive tests
on the software functionality in order to identify possible failures. Also,
a system already built requires a fine tuning of its configurable options
to give the best performance in the environment it is going to work.
Both cases require a finite set of tests that avoids testing all the possible
combinations (which is time consuming); to this situation Mixed Cover-
ing Arrays (MCAs) are a feasible alternative. MCAs are combinatorial
structures represented as matrices having a test case per row. MCAs are
small, in comparison with brute force, and guarantees a level of interac-
tion among the parameters involved (a difference with random testing).
We present a Tabu Search (TS) algorithm to construct MCAs; the nov-
elty in the algorithm is a mixture of three neighborhood functions. We
also present a new benchmark for the MCAs problem. The experimental
evidence showed that the TS algorithm improves the results obtained by
other approaches reported in the literature, finding the optimal solution
in some the solved cases.

Keywords: Mixed Covering Arrays, software testing, Tabu Search.

1 Introduction

Different areas of knowledge like artificial intelligence, machine learning or opti-
mization, relies on the use of sets of data to measure the aptitude of a particular
function to feedback a system so that its general performance is improved. A
function is defined through a set of parameters and an expected output, based
on this fact the test sets can be: a) a complete test set, the one that includes
all the possible combinations of values of the parameters; b) a random test set,
the one generated by a subset of the whole set of possible combination chosen at
random; c) a t-wise test set, the one where a set of data is chosen guaranteeing
a level of interaction between the values of the parameters.

The use of the complete test set would be ideal but the size of the set of
data grows exponentially, this limits its use to functions where the number of
parameters and their values is small. An alternative to this is the use of random
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� Springer-Verlag Berlin Heidelberg 2010
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test sets, which are smaller in size and tend to proportionate a good sample
of the complete set. However, based on recent studies that have shown that
close to 100% of the failures are triggered with interactions among 6 parameters
[14], tasks like testing or fine tuning software could find a better alternative in
the t-wise test sets. A level of interaction t among parameters means that any
combination of values among t parameters appears in the test set.

The problem of constructing t-wise test sets is known as the construction
of Covering Arrays Problem (CAP). The CAP focuses on constructing a test
set which contains the level of interaction indicated with the minimum number
of tests. The solution of the CAP in general is hard, i.e. there is no efficient
algorithm that solves it; the NP completeness of the problem of constructing
CA was reported in [16] and [7].

Different approaches have been used to solve the CAP, some of them are:
exact methods [1], greedy algorithms [22], genetic algorithms (GA) [21], tabu
search (TS) [18], simulated annealing (SA) [6], ant colony optimization algorithm
(ACO) [20], hill climbing (HC) [6], great deluge (GD) [3], SAT model [17] among
others. Due to the complexity of the problem, approximated approaches are
preferred instead of exact approaches, in order to provide good solutions in a
reasonable time.

This paper focuses on a more general case of CAP: the problem of constructing
Mixed Covering Arrays (MCAP), where the values of the different parameters
involved in the problem are heterogeneous. We present a Tabu Search approach
to construct Covering Arrays. What is novel in this approach is the use of a set of
neighborhood functions with a probability to be selected, i.e., instead of using a
single neighborhood function, the algorithm chooses between a set of predefined
neighborhood functions according to a assigned probability to each function.
In order to determine the best probability of selection for each neighborhood
function, a fine tuning process was made over a set of discretized probabilities.

This document is organized as follows: section 2 summarizes the state of the
art of the existing approaches that have been used to construct Covering Arrays
(CAs) and Mixed Covering Arrays (MCAs); section 3 defines the problem of
constructing Mixed Covering Arrays; section 4 details the Tabu Search algorithm
proposed in this paper to solve MCAP; section 5 shows the results from the
experiment where our TS is compared against the algorithms reported in the
literature. The comparison was made based on the average size obtained by the
approaches over an existing benchmark and a new benchmark proposed in this
paper. Finally, section 6 presents the main contribution of this paper.

2 Related Work

There are several reported approaches for the construction of CAs [10], they are
approximated methods, i.e. they do not guarantee that the provided solution
is always optimal. A repository of CAs is available online1, some of them are
optimal or near to the optimal.
1 http://www.tamps.cinvestav.mx/~jtj/authentication.php

http://www.tamps.cinvestav.mx/~jtj/authentication.php
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The metaheuristics applied include genetic algorithms (GA), simulated an-
nealing (SA), tabu search (TS), hill climbing (HC), ant colony optimization
algorithm (ACO) and great deluge (GD). The greedy methods have been im-
plemented in the algorithms Automatic Efficient Test Generator (AETG), De-
terministic Density Algorithm (DDA), Test Case Generator (TCG) and In Pa-
rameter Order (IPO) which was subsequently extended to In Parameter Order
General (IPOG). Other approaches like algebraic methods, constraint program-
ming (CP) and EXACT (exhaustive search of combinatorial test suites) have
also been applied. Details of these are given below:

Shiba et.al. [20] implemented GA, ACO and SA, Stardom [21] implemented
SA, TS and GA, being SA which provided the best results. According to Star-
dom, Bryce [4] emphasizes that SA and TS have constructed many of the CA
optimal or near to the optimal. Nurmela [18] also used TS for constructing CA
and MCA and reported some upper bounds for them, Walker and Colbourn [12]
employed TS using permutation vectors. Likewise Bryce and Colbourn [2] im-
plemented an hybrid technique of greedy methods with the metaheuristics TS,
HC, SA and GD.

Relating to the greedy algorithms, they generate one test at a time, some
examples are AETG [5], DDA [7], IPO [16], IPOG [15], TConfig [24], IPOG-F
[8] and TCG [23]. Cohen et.al. [6] implemented their own version of AETG and
TCG. Other researches are focused on explaining the steps for constructing CA,
one of these is proposed by William and Probert [25] who used algebraic methods
and combinatorial theory. Besides the described methods, an algorithm that
focuses on solving this problem of exact way was proposed by Hinch [11] which
is based on the model CP, moreover, Yang and Zang [26] used a retrospective
algorithm and incorporated it in a tool called EXACT.

The next section shows a formal definition for the problem of constructing
Mixed Covering Arrays.

3 Definition of Mixed Covering Array

A mixed covering array MCA(N ; t, k, v1v2 . . . vk) is a matrix M of size N × k
where each column cj , for 1 ≤ j ≤ k, vj can contain symbols from the set
{0, 1, ..., vj − 1}. Also, any combination of t columns T = {τ1, τ2, ..., τt} from M ,
known as t tuple, must contain all the possible combination of symbols derived
from the set {{0, ..., vτ1}×...×{0, ..., vτt}}. The sets of symbols that each column
can have is known as the alphabet and the cardinality of each set is known as
the cardinality of the alphabet. The value t represents the level of interaction in
the problem of constructing t-wise test sets, this parameter of MCA is known as
the strength of the matrix.

The MCAP is defined as the construction of a MCA(N ; t, k, v1v2 . . . vk) ma-
trix with the minimum of rows. A short notation for the MCAP can be given
using the exponential notation MCA(N ; t, k, vq1

1 . . . vqw
g ); the notation describes,

that there are qr parameters from the set {v1, v2, ..., vk} that takes vs values.
When the value of the minimum N is searched in the MCAP, i.e., the minimum
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size matrix for which an MCA exists for a set of given parameters, the notation
is changed to MCAN(t, k, vq1

1 . . . vqw
g ).

An example of an instance of MCAP can be given when considering the ver-
ification of a Switch WLAN in four different aspects: monitoring, management,
maintenance and safety. The verification process in the switch involves four pa-
rameters, three of them have two possible values and one three. Table 1 shows
the set of parameters of the Switch WLAN and their values.

Table 1. Parameters of a Switch WLAN, the firsth with three possible values and the
rest with two

Monitoring Management Maintenance Safety
PC Load balancing Interference Denial of service

Access points Connection Barriers Ad-hoc Networks
Sensors – – –

A MCA for the Switch WLAN instance of the MCAP shown in Table 1 is
given in Table 2. The complete test set for this instance of the MCAP would
required N = 3× 2× 2× 2 = 24 test cases; instead, the constructed MCA only
requires a set of data with N = 6 cases, with a level of interaction of 2. When
in the tested system the number of its parameters grows, the difference between
the number of cases of a MCA and the complete set is exponential even for
moderate values of the strength t.

Table 2. Mapping of the MCA(6; 2, 4, 3123) to the corresponding pair-wise test suite

Monitoring Management Maintenance Safety

PC Load balancing Barriers Ad-hoc Networks
PC Connection Interference Denial of service

Access points Load balancing Interference Ad-hoc Networks
Access points Connection Barriers Denial of service

Sensors Load balancing Barriers Denial of service
Sensors Connection Interference Ad-hoc Networks

The next section presents the Tabu Search approach proposed in this paper
to construct MCAs. Particularly, we present details about the neighborhood
functions and the evaluation function developed for the strategy and their par-
ticipation in the construction of MCAs.

4 Proposed Approach

The metaheuristic known as Tabu Search (TS) was first proposed by Glover
and Laguna [9] and has been used to solve a large set of problems in artificial
intelligence. The basic TS strategy improves a solution for a given problem by
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visiting neighbors that were created using heuristics over the solution and that
do not belong to a tabu search list.

The key features of the approach presented in this paper are the followings:
a) the routine to create the initial solution for the algorithm; b) the size of the
tabu search list; c) the use of a mixture of neighborhood functions; d) the eval-
uation function; e) the process of fine tuning the probabilities of selection for
each neighborhood function based on a complete test set of discretized proba-
bilities. The approach will be referred as TSA from now on and in the following
subsection details about each of the features will be given.

4.1 Creating the Initial Solution

Given an MCAP instance MCA(N ; t, k, vq1
1 . . . vqw

g ), a solution is represented as
a bidimensional array M of size N × k, where the columns are the parameters
and the rows are the cases of the test set that is constructed. Each cell mi,j in
the array accepts values from the set {0, 1, ..., vj − 1} where vj is the cardinality
of the alphabet of jthcolumn.

The process followed to generate the initial solution s0 for TSA is iterative.
Firstly, for the first t columns it generates vt rows containing the combinations
derived from {0, 1, ..., v1}× ...×{0, 1, ..., vj}, the alphabets of that columns; the
same set of combinations is duplicated as many times as the number of wished
rows N is completed. In the case that the missing rows is smaller than vt,
the combinations will be chosen in the order that they were initially generated
until the total of N rows is completed. Once that the N rows for the first t
columns were generated, the process is repeated for the next t columns and
so on until the k columns of the initial matrix s0 are filled. Table 3 shows
an initial solution matrix s0 generated according with the method described
for MCA(7; 2, 5, 3124); the the first two columns have the symbols bolted that
corresponds to the combinations derived from {0, 1, 2}× {0, 1}.

Table 3. Initial solution s0 for MCA(7; 2, 5, 3124)

a b c d e

0 0 0 0 0
0 1 0 1 1
1 0 1 0 0
1 1 1 1 1
2 0 0 0 0
2 1 0 1 1
0 0 1 0 0

4.2 Tabu List Definitions

The Tabu Search approaches are characterized by the use of a list of movements;
this list contains changes that can’t be made by the algorithm for a certain period
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of time over the matrix M that is constructed, i.e. the neighborhood function
can modify the solution if the modification involves changes that are not listed
in the tabu list. However, an aspiration critera can be used to allow a change in a
solution even if the change is in the tabu list; the aspiration critera consists in a
improvement over the global solution, i.e. if the best known solution constructed
by TSA so far can be improved by a change found in the tabu list then the
change is allowed.

The TSA algorithm characterizes the tabu list through the following parame-
ters: row, column, symbol, used neighborhood function and number of missings.
Summarizing, when a neighborhood function N set the symbol v in the row i
and column j of the matrix M and produces a number of missings m, the values
(N , v, i, j,m) are added to the tabu list during a period of time T .

The expiration time T is defined in this approach as the number of times that
a neighborhood function is called. The following subsection shows the neighbor-
hood functions used in TSA.

4.3 Neighborhood Functions

A neighbor is a solution created from another solution through heuristics. The
approach proposed in this paper uses a combination of three different neighbor-
hood functions to define the neighborhood of a solution. The three neighborhood
functions modify the matrix M representing the solution for the
MCA(N ; t, k, vq1

1 . . . vqw
g ).

In order to describe the neighborhood functions, three sets derived from an
instance MCA(N ; t, k, vq1

1 . . . vqw
g ) of the MCAP will be defined as follows: a)

the set C = {c1, c2, ..., cl}, where each of its elements c is a t tuple to be covered;
b) the set A, where each of its elements Ai is a set containing the combinations
of symbols that must be covered in the t tuple ci ∈ C; and c) the set R =
{r1, ..., rN}, where each element ri ∈ R will be a test set of the MCA that
will be constructed. The cardinality l = |C| is given by the expression

(
k
t

)
. The

cardinality |Ai| of each Ai ∈ A is given by |{0, 1, ..., vi − 1}|, where vi is the
cardinality of the alphabet of column i in the MCA that is constructed. The
cardinality of the set R is N , the expected number of rows in the MCA. Table
4 contains the sets C,A,R derived from the MCA(7; 2, 5, 3124) instance shown
in Table 3.

The neighborhood function N1 consists in two phases. In the first phase
searches for a t tuple c′ ∈ C such that it contains at least one symbol com-
bination a′ missing. To do that, the function N1 randomly chooses a t tuple
ci ∈ C to start with; then, it checks if ci has a symbol combination a ∈ Ai not
covered yet. If the neighborhood function N1 fails in its first try, it takes the
next combination in order ci+1 if i+ 1 <

(
k
t

)
otherwise it takes c1. This process

continues until a non covered t tuple c′ is found and one of its missing symbol
combination is identified, denoted by a′.

Once that a non covered t tuple c′ ∈ C is found and a missing symbol com-
bination a′ identified, the second phase of N1 starts. This phase searches for
the best test case r ∈ R where the symbol combination a′ can substitute the
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Table 4. Example of the sets C,A,R derived from instance MCA(7; 2, 5, 3124) shown
in Table 3

C ← {c1 = (a, b), c2 = (a, c), c3 = (a, d), c4 = (a, e), c5 = (b, c),
c6 = (b, d), c7 = (b, e), c8 = (c, d), c9 = (c, e), c10 = (d, e)}

A ← {A1 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A2 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A3 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A4 = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
A5 = {(0, 0), (0, 1), (1, 0), (1, 1)},
A6 = {(0, 0), (0, 1), (1, 0), (1, 1)},
A7 = {(0, 0), (0, 1), (1, 0), (1, 1)},
A8 = {(0, 0), (0, 1), (1, 0), (1, 1)},
A9 = {(0, 0), (0, 1), (1, 0), (1, 1)},
A10 = {(0, 0), (0, 1), (1, 0), (1, 1)}}

R ← {r1 = {0, 0, 0, 0, 0},
r2 = {0, 1, 0, 1, 1},
r3 = {1, 0, 1, 0, 0},
r4 = {1, 1, 1, 1, 1},
r5 = {2, 0, 0, 0, 0},
r6 = {2, 1, 0, 1, 1},
r7 = {0, 0, 1, 0, 0}}

symbols defined by the non covered t tuple c′ in that case. The test case r′ will
be the one that, when substituting the symbols described by c′ for the symbol
combination a′, minimizes the total number of missing symbol combination in
the MCA constructed. The number of evaluations of the objective function done
by the neighborhood function N1 is O(N), because in the worst case the function
requires to change the symbol combination for c′ in each of the N test cases.

The neighborhood function N2 works directly over the test set R that is being
formed. This function randomly selects a column or parameter from the test set
(which in our case will be a value 1 ≤ j ≤ k). After that, for each different
test case ri ∈ R, the function N2 changes the symbol at ri,j , where j is the jth

symbol in ri ∈ R, and evaluates the number of missing symbol combinations. In
this neighborhood function, every possible change of symbol in ri,j is made. The
number of evaluation functions performed inN2 are O((vj−1)·N), because there
are vj−1 possible changes of symbols in column j and there are N different test
cases. The neighborhood function N2 will choose to change the symbol at ri,j
to v′ iif changing the jth symbol in test case ri for the symbol v′ minimizes the
number of missing combinations among all the other possible changes of symbols
performed by the function.

Finally, the neighborhood function N3 is a generalization of the function N2
in the sense that it performs all the changes of symbols in the whole test set
R. Again, the change of symbol that minimizes the number of missing combina-
tions will be the one chosen by this function to create the new neighborhood. The
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number of evaluations of the objective function performed by this neighborhood
function is O((vj − 1) ·N · k).

The following subsection defines the evaluation function used in this paper to
implement the TSA algorithm.

4.4 Evaluation Function

In this paper, the objective function f(M, C,A) that will be minimized by TSA
is the number of combination of symbols missing in the matrix MCA that is
constructed. For a particular matrix M that represents a MCA, and sets C and
A, a formal definition for this function is shown in Equation 1.

f(M, C,A) :
∑

∀c∈C
∑

∀Ai∈A
∑

∀a∈Ai
g(M, c, a) .

where g(M, c, a) =
{

1 if a in c has not been covered yet in M
0 otherwise

(1)

An example of the use of the evaluation function f(M, C,A) is shown in
Table 5, where the number of missing symbol combinations in matrixM shown in
Table 3 is counted. Table 5 shows in the first column the different combinations of
symbols to be covered in the matrix. The rest of the columns shows the different
t tuples in the matrix and the number of times that each combination of symbol
is covered in M . A symbol − represents that a combination of symbols must not
be satisfied in a certain combination c. The results obtained from f(M, C,A)
is shown at the end of the table, note that the matrix M still has 9 missing
combinations making it a non MCA.

Table 5. Matrix P of symbol combinations covered in M (from Table 3) and results
from evaluating M with f(M, C,A)

P c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

(0, 0) 2 2 2 2 2 4 4 2 2 4
(0, 1) 1 1 1 1 2 0 0 2 2 0
(1, 0) 1 0 1 1 2 0 0 2 2 0
(1, 1) 1 2 1 1 1 3 0 1 1 3
(2, 0) 1 2 1 1 − − − − − −
(2, 1) 1 0 1 1 − − − − − −

f(M, C,A) = 9

The cost of evaluating f(M, C,A) is O(
(

k
t

)
×N), because the operation re-

quires to examine the N rows of the matrix M and the
(
k
t

)
different t tuples.

With the aim of improving the time of this calculation, we implemented the
P matrix. This matrix is shown in Table 5 and it is of size

(
k
t

)
× vmax, where

vmax =
∏i=t

i=1 vi and vi is the ith alphabet cardinality taken in decreasing or-
der from the cardinalities of the columns of M . Each element pij ∈ P contains
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the number of times that the ith combination of symbols is found in the t tuple
cj ∈ C; the value of pij is not taken into account if the ith combination of symbols
must not be included in the t tuple cj .

To avoid the expensive cost O(
(

k
t

)
×N) at every call of f(M, C,A), the matrix

P is used for a partial recalculation of the cost of M , i.e., the cost of changing a
symbol in a cell mij ∈ M is determined and only the affected t tuples in P are
updated, modifying the results from f(M, C,A) according to that changes. The
cells in P that must be updated when changing a symbol from mij ∈M are the
t tuples that involve the column j of the matrix M . On this way, the complexity
taken for the update of f(M, C,A) is reduced to O(

(
k−1
t−1

)
× 2).

The next section presents the results obtained from the implementation of
the TSA algorithm, following the details described in the present section. The
algorithm was compared against an existing benchmark reported in the literature
and a new benchmark proposed in this paper.

5 Experimental Evaluation

The algorithm TSA was implemented in C language and compiled with gcc. The
instances have been run on a cluster using eight processing nodes, each with
two dual-core Opteron Processors. The features of each node are: Processor 2
X Dual-Core AMD, Opteron Processor 2220, 4GB RAM Memory, Operating
Systems Red Hat Enterprise Linux 4 64-bit and gcc 3.4 Compiler.

In order to show the performance of the TSA algorithm, three experiments
were developed. The first experiment had as purpose to fine tune the probabilities
of the neighborhood functions to be selected. The second experiment evaluated
the performance of TSA over a new benchmark proposed in this paper. The
results were compared against one of the best algorithms in the literature that
constructs MCA of variable strength, the IPOG-F algorithm [8]. Finally, the
third experiment was oriented to compared the performance of TSA according
with results obtained by other approaches in a benchmark reported in the liter-
ature. The performance of the algorithms was compared firstly in the number of
test cases generated by each approach and secondly in the time spent by them.

5.1 First Experiment: Fine-Tuning the Neighborhood Functions

In the TSA algorithm, every time that a new neighbor should be created, the
used neighborhood function will be N1 with probability p1, N2 with probability
p2 and N3 with probability p3. In order to determine the values for p1, p2,
p3 which give the best performance for TSA, a complete test set of discrete
probabilities was formed and tested.

The possible values for p1, p2, p3 were set up to {0.1, 0.2, ..., 1.0}. The complete
test set of values for the probabilities was defined according with the solution
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of the Equation 2, which results in a test set with 66 different combinations of
probabilities.

p1 + p2 + p3 = 1 . (2)

Every combination of the probabilities was applied by TSA to construct the
MCA(30; 2, 19, 6151463823) and each experiment was run 31 times. A summary
of the performance of TSA with the probabilities that solved the 100% of the runs
is shown in Table 6. The performance of the best combinations of probabilities
over TSA is shown in column 4 in ascending order of the time spent by them to
construct the MCA.

Table 6. Performance of TSA with the 6 best combinations of probabilities which
solved the 100% of the runs to construct the MCA(30; 2, 19, 6151463823)

XXp1XX XXp2XX XXp3XX Avg. time[sec]

0.4 0.6 0.0 0.11
0.2 0.8 0.0 0.15
0.3 0.7 0.0 0.16
0.6 0.3 0.1 0.17
0.8 0.2 0.0 0.18
0.1 0.9 0.0 0.18

Given the results shown in Table 6 the best configuration of probabilities
was p1 = 0.6, p2 = 0.4, p3 = 0 because it found the MCA in smaller time (in
average). The values p1 = 0.6, p2 = 0.4, p3 = 0 were kept fixed in the following
two experiments.

5.2 Second Experiment: Solving a New Benchmark

This experiment compares the performance of the TSA algorithm against IPOG-
F, one of the best heuristics found in the literature to build test sets of variable
strength. For this purpose, a benchmark of 18 instances was designed. First col-
umn of Table 7 shows the MCA instances of this new benchmark; the interaction
level of these instances range from t = 2 to t = 6 and the column size varies from
6 to 20. The theoretical optimal size of each MCA is shown in column 2. Given
that TSA and IPOG-F are non deterministic strategies, each instance was solved
10 times by them and the average time (in seconds) and the minimum size of
the MCA constructed were reported; this information is shown in columns 3 to
6 in Table 7.

According with the results shown in Table 7, the TSA requires more time to
build MCAs than IPOG-F in average, however the extra time consumed by TSA
allowed the construction of MCAs of smaller size. The TSA algorithm achieved
the optimal solution in 15 from the 18 cases, while IPOG-F did it in only 4. In
conclusion, TSA can construct MCAs of smaller size than IPOG-F.
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Table 7. Results of the performance of TSA for the new benchmark of MCA instances

Instance N* IPOG-F TSA
N Time [sec] N Time [sec]

MCA(N ; 2, 6, 223242) 16 16 0.009 16 0.00202
MCA(N ; 3, 6, 223242) 48 51 0.002 48 0.01647
MCA(N ; 4, 6, 223242) 144 146 0.019 144 0.11819
MCA(N ; 5, 6, 223242) 288 295 0.014 288 0.17247
MCA(N ; 6, 6, 223242) 576 576 0.004 576 0.00162
MCA(N ; 2, 8, 22324252) 25 25 0.003 25 0.00716
MCA(N ; 3, 8, 22324252) 100 107 0.009 100 17.50079
MCA(N ; 4, 8, 22324252) 400 433 0.035 400 94.88019
MCA(N ; 5, 8, 22324252) 1200 1357 0.201 1200 11379.21255
MCA(N ; 6, 8, 22324252) 3600 3743 0.995 3600 7765.91885
MCA(N ; 2, 10, 2232425262) 36 36 0.004 36 0.06124
MCA(N ; 3, 10, 2232425262) 180 207 0.034 185 991.70933
MCA(N ; 2, 12, 223242526272) 49 50 0.006 49 0.42382
MCA(N ; 3, 12, 223242526272) 294 356 0.061 330 528.76392
MCA(N ; 2, 14, 22324252627282) 64 67 0.002 64 1.53441
MCA(N ; 2, 16, 2232425262728292) 81 86 0.012 81 26.93236
MCA(N ; 2, 18, 2232425262728292102) 100 107 0.016 100 702.30086
MCA(N ; 2, 20, 2232425262728292102112) 121 131 0.017 122 3927.93448

5.3 Third Experiment: Comparison with State-of-the-Art
Algorithms

In this experiment, the goal was applied TSA to construct different test sets with
t = {2, . . . , 5} for a Traffic Collision Avoidance System (TCAS) module, which
has been used in other evaluations of software testing [13,19]. TCAS module has
12 parameters, two parameters have 10 values, one has 4 values, two parameters
have 3 values and seven have 2 values, this configuration can be represented like
MCA(N ; t, 12, 102413227). The obtained results were compared with those of
some tools that construct t-wise MCA [15]. Table 8 shows the size of the test
sets of every tool and the spend time in seconds as the case, when the size of
the test set of a tool is not available is labeled like NA.

Table 8. Results of the performance of TSA for TCAS module compared with other
approaches

t-way
TSA IPOG-F ITCH Jenny TConfig TVG

Best
Size Time Size Time Size Time Size Time Size Time Size Time

2 100 0.03 100 0.8 120 0.73 108 0 108 1 hour 101 2.75 100
3 400 26.21 400 0.36 2388 1020 413 0.71 472 12 hour 9158 3.07 400
4 1200 10449.12 1361 3.05 1484 5400 1536 3.54 1476 21 hour 64696 127 1360
5 3600 627079.08 4219 18.41 NA >1 day 4580 43.54 NA 1 day 313056 1549 4218

Figure 1 compares the results shown in Table 8 involving the TSA algorithm
and IPOG-F. The results show that TSA provided a better quality of solution
for all t-wise of TCAS, constructing the MCAs of optimal size in all the cases.
The performance of the algorithm was better in both spent time and quality of
solution for t = 2.
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Fig. 1. Graphical comparison of the performance of TSA and IPOG-F when construct-
ing MCA(N ; t, 12, 102413227). The graph shows how the size N of the MCA increases
(y axis) when the strength increases (x axis). Note that the performance of TSA im-
proves IPOG-F in every strength.

6 Conclusions

This paper presents a Tabu Search approach, referred as TSA, that deals with
the problem of constructing Mixed Covering Arrays. The key features of TSA
are: the use of mixture of three neighborhood functions to create neighbors, an
efficient calculation of the objective function and a novel initialization function.

Each of the three different neighborhood functions had assigned a probability
to be selected used by TSA to create a new neighbor. Given that the performance
of TSA depends on the values of the probabilities assigned, this paper presented
a fine tuning of the probabilities configurations based on a complete test set of
discretized probabilities. The configuration used by TSA was the one that in this
experiment produced the MCAs of smaller size and in less time, in average.

The TSA approach was compared against IPOG-F, one of the best state-of-
art algorithms that has been used to construct MCAs of variable strength. Two
benchmark were used in the comparison: a benchmark taken from the literature
and a new benchmark proposed in this paper. With respect to the benchmark
proposed in this paper, the TSA approach improved the size of the MCAs, in
comparison with IPOG-F, and found the optimal solution in 15 instances of
the 18 that constitutes the complete set; these instances ranges the number of
cardinalities of the alphabets from 2 to 11, the number of columns from 6 to 20
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and the strengths from 2 to 6. With respect to the benchmark taken from the
literature, TSA improved the size of the matrices in comparison with the ones
constructed by IPOG-F, finding the optimal solution in all the cases considered.

The empirical evidence presented in this paper showed that TSA improved
the size of the MCAs in comparison with the tools that, to the best of our
knowledge, are among the best found in the state-of-the-art of the construction
of MCAs of variable strength.
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Abstract. The search tree size of the spatial Branch-and-Bound algo-
rithm for Mixed-Integer Nonlinear Programming depends on many fac-
tors, one of which is the width of the variable ranges at every tree node.
A range reduction technique often employed is called Feasibility Based
Bounds Tightening, which is known to be practically fast, and is thus de-
ployed at every node of the search tree. From time to time, however, this
technique fails to converge to its limit point in finite time, thereby slow-
ing the whole Branch-and-Bound search considerably. In this paper we
propose a polynomial time method, based on solving a linear program,
for computing the limit point of the Feasibility Based Bounds Tightening
algorithm applied to linear equality and inequality constraints.

Keywords: global optimization, MINLP, spatial Branch-and-Bound,
range reduction, constraint programming.

1 Introduction
In this paper we discuss an important sub-step, called Feasibility Based Bounds
Tightening (FBBT) of the spatial Branch-and-Bound (sBB) method for solving
Mixed-Integer Nonlinear Programs (MINLP) of the form:

min xn

g(x) ∈ G0

x ∈ X0

∀i ∈ Z xi ∈ Z,

⎫⎪⎪⎬⎪⎪⎭ (1)

where x ∈ Rn are decision variables, I is the set of all real intervals, G0 =
[g0L, g0U ] ∈ I m and X0 = [x0L, x0U ] ∈ I n are vectors of real intervals, also
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called boxes, Z is a given subset of {1, . . . , n} encoding the integrality constraints
on some of the variables, and g : Rn → Rm are continuous functions. Let X
be the feasible region of (1). We remark that every MINLP involving a general
objective function min f(x) can be reformulated exactly to the formulation (1)
at the cost of adjoining the constraint xn ≥ f(x) to the constraints g(x) ∈ G0.

The sBB is a ε-approximation algorithm (with a given ε > 0) for problems (1)
which works by generating a sequence of upper bounds x′n and lower bounds x̄n

to the optimal objective function value x∗n. The upper bounding solution x′ is
found by solving (1) locally with MINLP heuristics [1,2], whilst the lower bound
is computed by automatically constructing and solving a convex relaxation of
(1). If x′n − x̄n ≤ ε then x′ is feasible and at most ε-suboptimal; if x′ is the best
optimum so far, it is stored as the incumbent. Otherwise X0 is partitioned into
two boxes X ′, X ′′ along a direction xi at a branch point pi, and the algorithm
is called recursively on (1) with X0 replaced by each of the two boxes X ′, X ′′

in turn. This generates a binary search tree: nodes can be pruned if the convex
relaxation is infeasible or if x̄n is greater than the objective function value at
the incumbent. The sBB converges if the lower bound is guaranteed to increase
strictly whenever the box X of ranges of x at the current node decreases strictly.
In general, the sBB might fail to converge in finite time if ε = 0, although some
exceptions exist [3,4].

An important step of the sBB algorithm is the reduction of the variable ranges
X at each node. There are two commonly used range reduction techniques in
Global Optimization (GO): Optimization Based Bounds Tightening (OBBT)
and FBBT. The former is slower and more effective, involves the solution of 2n
Linear Programs (LP) and is used either rarely or just at the root node of the
sBB search tree [18]. The latter is an iterative procedure based on propagating
the effect of the constraints g(x) ∈ G0 on the variable ranges using interval arith-
metic; FBBT is known to be practically efficient and is normally used at each
sBB node. Practical efficiency notwithstanding, the FBBT sometimes converges
to its limit point in infinite time, as the example of Eq. (3.11) in [5] shows. The
same example also shows that an artificial termination condition enforced when
the range reduction extent becomes smaller than a given tolerance might yield
arbitrarily large execution times.

The FBBT was borrowed from Artificial Intelligence (AI) and Constraint
Programming (CP) as a bounds filtering technique. Its origins can be traced to
[6]; it is known not to achieve bound consistency [7] (apart from some special
cases [8]), a desirable property for Constraint Satisfaction Problems (CSP): a
CSP is bound consistent if every projection of its feasible region on each range
Xi is Xi itself [5]. The FBBT was employed as a range reduction technique
for Mixed Integer Linear Programs (MILP) in [9,10] and then for MINLPs in
[11]. Within the context of GO, the FBBT was discussed in [12] and recently
improved in [13] by considering its effect on common subexpressions of g(x).

The main result of this paper is to show that if g(x) are linear forms, then
there exists an LP whose solution is exactly the limit point of the FBBT, which
is therefore shown to be computable in polynomial time. If g(x) are nonlinear
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functions (as is commonly the case for general MINLPs) we can replace them
either by a linear relaxation ḡ(x) ∈ Ḡ0 of X or simply consider the largest linear
subset ĝ(x) ∈ Ĝ0 of the constraints g(x) ∈ G0, according to the usual trade-off
between computational effort and result quality (we follow the latter approach
in our computational results section).

The rest of this paper is organized as follows. In Sect. 2 we define an FBBT
iteration formally as an operator in the interval lattice and show it has a fixed
point. In Sect. 3 we show how to construct a linear relaxation of (1). In Sect. 4 we
describe an LP the solution of which is the limit point of the FBBT algorithm. In
Sect. 5 we discuss computational results on the MINLPLib showing the potential
of the LP-based technique.

2 The FBBT Algorithm

The FBBT algorithm works by propagating the variable range vector X0 ∈ I n

to the operators in g(x) (using interval arithmetic) in order to derive the interval
vector G ∈ I m consisting of lower and upper bounds on g(x) when x ∈ X0;
the vector G ∩ G0 is then propagated back to a variable range vector X using
inverse interval arithmetic. The interval vector X ∩X0 therefore contains valid
and potentially tighter variable ranges for x. If X∩X0 � X0, then the procedure
can be repeated with X0 replaced by X ∩X0 until no more change occurs. The
FBBT algorithm can be shown to converge to a fixed point (fp), see Sect. 2.3.
As mentioned in the introduction, the FBBT might fail to converge to its fp in
finite time. With a slight abuse of terminology justified by Thm. 2.2 we shall
refer to “nonconvergence” to mean “convergence to the fp in infinite time”.

2.1 Expression Graphs

We make the assumption that the functions g appearing in (1) are represented
by expressions built recursively as follows:

1. any element of {x1, . . . , xn}∪R is an expression (such primitive expressions
are called atoms);

2. if e1, e2 are expressions, then e = e1 ⊗ e2 is an expression for all operators
⊗ in a given set O; e1, e2 are said to be subexpressions of e.

Let E be the set of all expressions built by the repeated applications of the two
above rules, and for all e ∈ E let function(e) be the function f : Rn → R which e
represents (this correspondence can be made precise using an evaluation function
for expressions [19], p. 244); conversely, to all functions in f ∈ function(E) we
let expression(f) be the expression e representing f . Each expression e ∈ E can
also be associated to its recursion directed acyclic graph (DAG) dag(e) whose
root node is e and whose other nodes are subexpressions of e, subexpressions of
subexpressions of e and so on. An arc (u, v) in dag(e) implies a subexpression
relation where v is a subexpression of u; with a slight abuse of notation we
identify non-leaf nodes of dag(e) with operators (labelled ⊗v for an operator
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⊗ ∈ O at a node v) and leaf nodes with atoms (labelled either xi if the node
is a variable, or the real constant that the node represents). For all nodes u of
dag(e) we indicate by δ+(u) the outgoing star of the node u, i.e. all vertices v
such that (u, v) is an arc in dag(e).

We assume that O contains: the infix n-ary sum +, the infix binary difference
−, left multiplication operators a× for each nonzero real constant a ∈ R � {0},
the infix n-ary product ×, the infix binary division ÷, right raising operators
(·)q for each rational constant q ∈ Q, the left unary exponential operator exp,
its inverse log and the left unary trigonometric operators sin, cos, tan. We also
let O ′ = {+,−, a×} be the set of linear operators. Endowed with the operator
set O, the MINLP formulation (1) can express all practically interesting MP
problems from Linear Programming (LP), where O is replaced by O ′ and Z = ∅,
Mixed-Integer Linear Programming (LP), where O is replaced by O ′ and Z �= ∅,
Nonlinear Programming (NLP), where Z = ∅, to MINLPs, where Z �= ∅. By
letting atoms range over matrices, formulation (1) can also encode Semidefinite
Programming (SDP) [14]. Black-box optimization problems, however, cannot be
described by formulation (1).

The expression representation for functions is well known in computer science
[15], engineering [16,17] and GO [18,19,20] where it is used for two substeps of the
sBB algorithm: lower bound computation and FBBT. More formal constructions
of E can be found in [21], Sect. 3 and [22], Sect. 2.

2.2 The Problem DAG

We can also associate a DAG to the whole problem (1) to describe its symbolic
nonlinear structure:

D′ =
⋃

i≤m

dag(expression(gi)) (2)

D = contract(D′, {x1, . . . , xn}), (3)

where contract(G,L) is the result of contracting all vertices of G labelled by �
for all � ∈ L, i.e. of replacing each subgraph of G induced by all vertices labelled
by � ∈ L by a single node labelled by �. The difference between D′ and D
is that in D′ some variable nodes are repeated; more precisely, if xj occurs in
both gi and gh, xj will appear as a leaf node in both dag(expression(gi)) and
dag(expression(gh)).

For all v in D (resp. D′) we let index(v) be i if v is the root node for gi, j if
v is the node for xj , and 0 otherwise. If v is a constant atom, we let cv be the
value of the constant.

2.3 Formal Definition of the FBBT Operator

An iteration of the FBBT consists of an upward phase, propagating variable
ranges X to an interval vector G such that g(x) ∈ G, and of a downward phase,
propagating G ∩ G0 down again to updated variable ranges X . Propagation
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occurs along the arcs of D. To each node v of D we associate an interval Yv;
initially we set Y = Y 0 where for all v representing variable nodes we have
Y 0

v = X0
index(v), for root nodes representing constraints we have Y 0

v = G0
index(v),

and Y 0
v = [−∞,∞] otherwise. Operators⊗v act on intervals by means of interval

arithmetic [23]. The upward propagation occurs along the arcs in the opposite
direction, as shown in Alg. 1.

Algorithm 1. up(v, Y )
Require: v (node of D), Y
Ensure: Y
1: if v is not an atom then
2: for all u ∈ δ+(v) do
3: Y = up(u, Y )
4: end for
5: Let Yv = Yv ∩ ⊗v(Yu | u ∈ δ+(v))
6: else if v is a constant atom then
7: Yv = [cv , cv ]
8: end if
9: return Y

The downward propagation is somewhat more involved and follows the arcs of
D′ in the natural direction. For each non-root node v in D′ we define parent(v) as
the unique node u such that (u, v) is an arc inD′, the set siblings(v) = δ+(v)�{v}
and the set family(v) = {parent(v)} ∪ siblings(v), i.e. the siblings and the parent
of v. Let z = parent(v); then ⊗z induces a function R|δ+(z)| → R such that:

wz = ⊗z(wu | u ∈ δ+(z)). (4)

We now define the operator ⊗−1
v as an “inverse” of ⊗z in the v coordinate. If

there is an expression e ∈ E such that wv = function(e)(wu | u ∈ family(v)) if and
only if (4) holds, let ω−1

v = function(e); otherwise, let ⊗−1
v map every argument

tuple to the constant interval [−∞,∞]. The downward propagation, shown in
Alg. 2, is based on applying ⊗−1

v recursively to D′.
We remark that down is defined on D′ rather than D for a technical reason,

i.e. family relies on nodes having a unique parent, which is the case for D′ since
it is the union of several DAGs; however, leaf nodes of D′ representing the same
variable j ≤ n are contracted to a single node in D, which therefore loses the
parent uniqueness property at the leaf node level. Notwithstanding, Y is indexed
on nodes of D rather than D′, so that in Line 3 (Alg. 2), when u is a variable
node we have Yu = Xindex(u), so that the update on Yu is carried out on the
interval referring to the same variable independently of which DAG was used in
the calling sequence.
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Algorithm 2. down(v, Y )
Require: v (node of D′), Y
Ensure: Y
1: if v is not an atom then
2: for all u ∈ δ+(v) s.t. u is not a constant atom do
3: Yu = Yu ∩ ⊗−1

u (family(u))
4: end for
5: for all u ∈ δ+(v) do
6: Y = down(u, Y )
7: end for
8: end if
9: return Y

If p is the number of vertices in D, up and down are operators I p → I p. Since
the up operator only changes the intervals in Y relating to a single expression
DAG, we extend its action to the whole of D:

U(Y ) =
⋂

i≤m

up(ḡi, Y ), (5)

where ḡi denotes the root node of dag(expression(gi)). Similarly, since down needs
to be applied to each root node of D′, we define:

D(Y ) =
⋂

i≤m

down(ḡi, Y ). (6)

Finally, we define the FBBT operator:

F(Y ) = D(U(Y ∩ Y 0) ∩ Y 0). (7)

Lemma 2.1. The operators U , D, F are monotone and inflationary in the in-
terval lattice I p ordered by reverse inclusion ⊇.

Proof. Monotonicity follows because all the interval arithmetic operators in O
are monotone [23], the composition of monotone operators is monotone, the
functions represented by expressions in E are compositions of operators in O.
Inflationarity follows because of the intersection operators in Lines 5 of Alg. 1
and 3 of Alg. 2 and those in (5)-(7). ��

Theorem 2.2. The operator F has a unique least fixed point.

Proof. This follows by Lemma 2.1 and Thm. 12.9 in [24]. ��

We remark that since we ordered I p by reverse inclusion, the least fixed point
(lfp) of Thm. 2.2 is actually the greatest fixed point (gfp) with respect to stan-
dard interval inclusion.
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3 Linear Relaxation of the MINLP

Different implementations of the sBB algorithm construct the lower bound x̄n

to the optimal objective function value x∗n in different ways. Some are based
on the factorability of the functions in g(x) [25,26,27], whilst others are based
on a symbolic reformulation of (1) based on the problem DAG D [18,19,20].
We employ the latter approach: each non-leaf node z in the vertex set of D is
replaced by an added variable wz and a corresponding constraint (4) is adjoined
to to the formulation (usually, two variables wv, wu corresponding to identical
defining constraints are replaced by one single added variable). The resulting
reformulation, sometimes called Smith standard form [18], is exact [14]. A linear
relaxation of (1) can automatically be obtained by the Smith standard form by
replacing each nonlinear defining constraints by lower and upper linear approx-
imations. In order for the sBB convergence property to hold, the coefficients of
these linear approximations are functions of the variable ranges X = [xL, xU ], so
that as the width of Xi decreases for some i ≤ n, the optimal objective function
value of the linear relaxation increases.

4 FBBT in the Linear Case

In this section we assume that the nonlinear part g(x) ∈ G0 of (1) is either
replaced by its linear relaxation ḡ(x) ∈ Ḡ0 as discussed in Sect. 3 or by the
largest subset of linear constraints ĝ(x) ∈ Ĝ0 in (1), called the linear part of (1).
If X̄ = {x ∈ Rn | ḡ(x) ∈ Ḡ0} and X̂ = {x ∈ Rn | ĝ(x) ∈ Ĝ0} are the feasible
regions of the relaxation and of the linear part of (1), then X̄ ⊆ X̂ . Both X̄

and X̂ can be represented by systems of linear equations and inequalities:

Ax ∈ B0, (8)

where A = (aij) is a m× n real matrix. A system (8) encoding X̄ is a lifting in
the w added variables and has in general many more constraints than a system
(8) encoding X̂ . Performing the FBBT on the relaxation will generally yield
tighter ranges than on the linear part. For the purposes of this section, the
construction of the LP yielding the gfp will be exactly the same in both cases.

The constraints in (8) are of the form b0L ≤ ai ·x ≤ b0U , where B0 = [b0L, b0U ]
and ai is the i-th row of A. Letting Ji = {j1, . . . , jki} be such that aij �= 0 for all
j ∈ Ji and aij = 0 otherwise, we write gi(x) =

∑
j∈Ji

aijxj , e = expression(gi) =

aij1 × xj1 + · · ·+ aijki
× xjki

and hence dag(e) is the DAG shown in Fig. 1.
Because of their simple structure, the intervals Yv where v represents operators

such as aij× can be disposed of, and closed form interval expressions for U , D can
be derived that act on an interval vector (X,B) where X ∈ I n and B ∈ I m.
Specifically, U becomes:

U(X,B) = (X, (Bi ∩
∑
j∈Ji

aijXj | i ≤ m)) (9)
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. . .

. . .

+

aij1× aijki
×

xj1 xjki

Fig. 1. The expression DAG of a row of (8)

and D becomes:

down(X,B) = ((Xj ∩
⋂
i≤m

aij �=0

1
aij

(Bi −
∑
� �=j

ai�X�) | j ≤ n), B), (10)

where the products and the sums are interval operations [23]. The equivalence
of (9) with (5) in the linear case follows by simply replacing aijXj with an
interval Yv for a node v in D representing the operator aij×, and similarly for
the equivalence of (10) with (6), where we remark that the interval inverse⊗−1

v of
a linear form in each component is simply another linear form. We consequently
re-define F for the linear case as follows:

F(X,B) = D(U(X ∩X0, B ∩B0)). (11)

4.1 Greatest Fixed Point via Linear Programming

The gfp of F with respect to interval inclusion is, by definition,

gfp(F) = sup⊆{(X,B) ∈ I n+m | (X,B) = F(X,B)}. (12)

Consider the interval vector width sum function | · | : I n → R+ given by
|X | =

∑
j≤n(xU

j − xL
j ). It is easy to see that it is monotonic with the lattice

order ⊆ on I n, in the sense that if X ⊆ X ′ then |X | ≤ |X ′| (the converse may
not hold). Furthermore, for (X,B) ∈ I n+m we have |(X,B)| = |X |+ |B|.

4.1 Proposition

|gfp(F)| ≥ |X |+ |B| for all fixed points (X,B) of F .

Proof. Since (X∗, B∗) = gfp(F) is the inclusion-wise greatest of all fixed points
of F , it is also maximal with respect to all the other fixed points that are included
in it. Suppose, to get a contradiction, that there is a fixed point (X ′, B′) ofF with
|X ′|+ |B′| > |X∗|+ |B∗|; by assumption, (X ′, B′) is not included in (X∗, B∗).
Since the set of fixed points of F is a complete lattice by Tarski’s Fixed Point
theorem [28], there must be a fixed point (X ′′, B′′) of F which includes both
(X ′, B′) and (X∗, B∗). By monotonicity of | · |, |X ′| + |B′| ≤ |X ′′| + |B′′|, and
hence |X∗|+ |B∗| < |X ′′|+ |B′′|, showing that (X ′′, B′′) � (X∗, B∗) and hence
that (X∗, B∗) is not the gfp of F , against the hypothesis. ��



Feasibility-Based Bounds Tightening via Fixed Points 73

4.2 Theorem

The following interval programming problem:

max |X |+ |B|
(X,B) ⊆ (X0, B0)
(X,B) ⊆ U(X,B)
(X,B) ⊆ D(X,B)

⎫⎪⎪⎬⎪⎪⎭ (13)

has a unique global optimum equal to gfp(F).

Proof. By Tarski’s Fixed Point Theorem [28], the gfp of F is the join of all its
pre-fixed points, so we can replace = with ⊆ in (12). The equivalence of (13)
with (12) then follows by Prop. 4.1 and (11). Uniqueness of solution follows by
uniqueness of the gfp. ��

We remark that (13) can be reformulated as an ordinary LP by simply replacing
each interval Xj = [xL

j , x
U
j ] by pairs of decision variables (xL

j , x
U
j ) with the con-

straint xL
j ≤ xU

j (for all j ≤ n and similarly for B = [bL, bU ]). The constraints
for U can be trivially reformulated from interval to scalar arithmetic; the equiv-
alent reformulation for constraints in D is a little more involved but very well
known [18,19,5]. The LP encoding the gfp of the FBBT is given in (14)-(34). The
z variables have been added for clarity — they simply replace products aijxj

appropriately, depending on the sign of aij . Let S+ = {i ≤ m, j ≤ n | aij > 0}
and S−{i ≤ m, j ≤ n | aij < 0}.

max
x,b,z

∑
j≤n

(xU
j − x

L
j ) +

∑
i≤m

(bU
i − b

L
i ) (14)

∀j ≤ n xL
j ≥ x0L

j (15)

∀j ≤ n xU
j ≤ x0U

j (16)

∀i ≤ m bL
j ≥ b0L

i (17)

∀i ≤ m bU
j ≤ b0U

i (18)

∀(i, j) ∈ S+ zL
ij = aijxL

j (19)

∀(i, j) ∈ S
+

z
U
ij = aijx

U
j (20)

∀(i, j) ∈ S− zL
ij = aijxU

j (21)

∀(i, j) ∈ S
−

z
U
ij = aijx

L
j (22)

∀i ≤ m bL
i ≥

∑
j≤n

zL
ij (23)

∀i ≤ m b
U
i ≤

∑
j≤n

z
U
ij (24)

∀(i, j) ∈ S+ xL
j ≥ 1

aij

(bL
i −

∑
� �=j

zU
i�) (25)

∀(i, j) ∈ S+ xU
j ≤ 1

aij

(bU
i −

∑
� �=j

zL
i�) (26)

∀(i, j) ∈ S
−

x
L
j ≥ 1

aij
(bU

i −
∑
� �=j

z
L
i�) (27)

∀(i, j) ∈ S
+

x
U
j ≤ 1

aij
(bL

i −
∑
� �=j

z
U
i�) (28)

∀j ≤ n xL
j ≤ xU

j (29)

∀i ≤ m b
L
i ≤ b

U
i (30)

∀i ≤ m, j ≤ n zL
ij ≤ zU

ij (31)

x
L

, x
U ∈ R

n (32)

bL, bU ∈ R
m (33)

zL, zU ∈ R
mn. (34)

Constraints (15)-(18) encode (X,B) ⊆ (X0, B); constraints (19)-(24) encode
(X,B) ⊆ U(X,B); constraints (25)-(28) encode (X,B) ⊆ D(X,B); and con-
straints (29)-(31) encode the fact that the decision variables xL, xU , bL, bU (as
well as the auxiliary variables zL, zU) represent intervals.

If we formalize the problem of finding the gfp of the FBBT operator as a
decision problem (for example deciding if the gfp width sum is smaller than
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the original bounds X0 by at least a given constant γ > 0), then Thm. 4.2
shows that this problem is in P. It is interesting to remark that [29] proves
that essentially the same problem (with a few more requirements on the type of
allowed constraints in Ax ∈ G0) is NP-complete as long as variable integrality
constraints are enforced.

5 Computational Results

Our testbed consists of the MINLPLib [30] instance library. We first artificially
restricted each instance to X ∈ {−104, 104} in order for | · | to be bounded. Sec-
ondly, we ran the FBBT on the linear constraints ĝ(x) ≤ Ĝ0, with a termination
condition set at |Xk�Xk−1| ≤ 10−6 on slow progress at iteration k. We then
computed the fixed point by solving the LP (14)-(34) applied to ĝ(x) ≤ Ĝ0. The
FBBT, as well as the automatic construction of the LP (14)-(34), were imple-
mented in ROSE [31,32]. LPs were solved using CPLEX 11 [33]. All results were
obtained on one core of an Intel Core 2 Duo at 1.4GHz with 3GB RAM running
Linux.

Out of 194 MINLPs in the MINLPLib we obtained results for 172 (the remain-
ing ones failing on some AMPL [34] error). For each successful instance we com-
puted the width sum |X | of the obtained solution and the user CPU time taken
by the traditional FBBT method and by the LP based one. As these methods
would be typically used in a sBB algorithm, we ignored the LP construction time,
since this would be performed just once at the root node and then simply up-
dated with the current node interval boundsX0. The full table can be accessed at
http://www.lix.polytechnique.fr/~liberti/fbbtlp_table-1007.csv. Ta-
ble 1 only reports the totals, averages and standard deviations of the sample.

Table 1. Totals, averages, standard deviations of the width sum and CPU times taken
by FBBT and LP on 172 MINLPLib instances

FBBT LP-based
Statistic |X| CPU |X| CPU

Total 9.38 × 107 394.37 9.16 × 107 9.07
Average 5.4 × 105 2.29 5.3 × 105 0.05
Std. dev. 1.365 × 106 17.18 1.362 × 106 0.18

Table 1 is consistent with what was empirically observed about the FBBT:
it often works well but it occasionally takes a long time converging to the fixed
point. The LP-based method addresses this weakness perfectly, as shown by the
markedly better CPU time statistics. Since the LP finds the guaranteed gfp, it
also produces somewhat tighter interval bounds, although the savings in terms
of |X | are not spectacular. The traditional FBBT was strictly faster than the
LP-based method in 43% of the instances. The bulk of the CPU time savings of
the LP-based method is due to twelve FBBT CPU time outliers taking > 1s (the
results are shown in Table 2). For nine of these the large CPU time is actually
due to problem size, i.e. the number of FBBT iterations is low (< 5). Three of
the instances displayed clear signs of nonconvergence.

http://www.lix.polytechnique.fr/~liberti/fbbtlp_table-1007.csv
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Table 2. FBBT CPU time outlier instances

Name FBBT CPU time FBBT iterations
cecil 13 27.6 29
nuclear14b 16.25 2
nuclear14 5.96 1
nuclear24b 16.19 2
nuclear24 5.89 1
nuclear25b 18.97 2
nuclear25 6.78 1
product 11.21 4
risk2b 2.28 2
space960 218.41 2
super3t 39.96 15
util 12.78 321
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1 Introduction

This article investigates a stable property in strategies of abstract games. In
cooperative game theory the central solution concept is stable sets, which are
sets of outcomes on which a preference relation � satisfies the two property:
Reflexivity (x � x) and Transitivity (If x � y and y � z then x � z.) A stable
set consists of outcomes satisfying (i) the internal stability ( for every outcomes
being not stable, some coalition has an objection), and (ii) the external stability
(no coalition has an objection to any stable outcome.)

This solution concept is introduced as a ‘standard of behaviour’ by von Neu-
mann and Morgenstern [5]. The stable sets can be treated in the abstract game
framework. Many mathematical difficulties still arise in the stable sets when the
preference is not transitive.

Jiang [3] treats abstract games with transitive preferences, which arise from
strategic games. He addresses the existence problem of the stable sets in the set
of Nash equilibria of a strategic game. Regarding to the original intents of von
Neumann and Morgenstern [5], it is unpleasant to restrict stable sets to subsets
of the Nash equilibria set for the strategic game a priori.

This article aims to improve the point: Removing out the restriction of stable
sets to subsets of Nash equilibria we treat stable sets in the framework of abstract
games; we address a class of abstract games having stable sets, and characterise
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the stable sets as the maximal sets in an upper bounded set of the outcomes.
Our main result is as follows:

Characterisation theorem. Every stable subset of the pure strategies for an
abstract game is characterised as a fixed point of the mapping assigning to each
upper boundedly preordered preference subset of the strategies the set of all its
maximal elements.

After reviewing basic notions and terminology, Section 2 presents the extended
notion of stable sets (Definition 2) in an abstract game. The notion of upper
bounded game (Definition 3) is also introduced, which plays crucial role in de-
termining the existence of stable sets. Section 3 introduces the Jiang mapping
for an abstract game and presents the main theorem (Theorem 1) and the char-
acterisation theorem (Theorem 2). Section 4 establishes the main theorem, from
which the theorem of Jiang [3] follows as a corollary. Finally I conclude with
some remarks on the assumptions in the theorems.

2 Model

2.1 Preference

A binary relation R on a non-empty set X is a subset of X × X with (x, y)
denoted by xRy. A relation R may satisfy one and more properties:

Ref (Reflexivity) For all x ∈ X,xRx;
Trn (Transitivity) For all x, y, z ∈ X , if xRy and yRz then xRz;
Sym (Symmetry) For all x, y ∈ X,xRy implies yRx;
Asym (Antisymmetry) For all x, y ∈ X , if xRy and yRx then x = y;
Cmp (Completeness) For all x, y ∈ X , we have xRy or yRx (or both).

Definition 1. A preference relation on a non-empty X is a binary relation �
on X . For x, y ∈ X we will read ‘x � y as ‘y is at least as preferable as x.’ The
strict preference relation ≺ is defined by

x ≺ y ⇐⇒ x � y but not y � x.

The indifference relation ∼ is defined by

x ∼ y ⇐⇒ x � y and y � x.

A set X together with a definite preference relation � will be called a preference
set denoted by (X,�). A preference relation on X is called rational if it satisfies
the properties Trn and Cmp. A preorder on X is a binary relation � on X
satisfying the properties Ref and Trn. A preorder with Asym is called partial
order.
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Remark 1. Let (X,�) be a rational preference set. The following properties are
true:

(i) � is a preorder.
(ii) ≺ is irreflexive ( x ≺ x is never true) and transitive;
(iii) ∼ is an equivalence relation.

Let (X,�) be a preordered set and Y a subset of X . A maximal element of Y
is an element a such that Y contains no element b with a ≺ b. An element a is
an upper bound of Y in case x � a for every x in Y . A subset Y of X is called
upper bounded in X if it has at least one upper bound in it. A subset Y is called
a chain if for every x, y ∈ Y , either x � y or y � y has to hold.

It is worthy noting that

Lemma 1. Each of the following two statements is equivalent to the axiom of
choice:1

(i) (Zorn’s Lemma) Let (X,�) be a preordered set. If each chain in X has an
upper bound then X has at least one maximal element.

(ii) (Maximal Principle) Let X be a partially ordered set. Each chain in X
is contained in a maximal chain.

2.2 Stable Sets and Bounded Games

An n-person abstract game is a tuple Γ = 〈N, (Ai)i∈N , (�)〉 consisting of

1. N is a set of n players with n � 2 and i denotes a player;
2. Ai is a non-empty set of player i’s pure strategies and A =

∏
i∈N Ai is the

set of strategies;
3. � is a binary relation on A =

∏
i∈N Ai , called preference.

Definition 2. Let Γ = 〈N, (Ai)i∈N ,�〉 be an n-person abstract game and Y a
non empty subset of A =

∏
i∈N Ai. A non-empty subset V of Y is said to be

von Neumann-Morgenstern stable in Y or simply, Y -stable if the two conditions
hold:

IS (Internal stability) For any a, b ∈ V , neither a ≺ b nor b ≺ a holds;
ES (External stability) For any b ∈ Y \V there exist an a ∈ V such that b ≺ a.

If a subset of A is an A-stable set then it will be simply called N-M stable.

We denote by NMS(Γ ;Y ) the set of all stable sets in Y of A =
∏

i∈N Ai, and
denote by NMS(Γ ) the set of all stable subsets in some non-empty set of A =∏

i∈N Ai; i.e.,

NMS(Γ ) = ∪∅�=Y ⊆ANMS(Γ ;Y ).

1 See pp. 31-32 and p.58 in [1].
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Definition 3. Let Γ = 〈N, (Ai)i∈N ,�〉 be an n-person abstract game and Y a
non empty subset of A =

∏
i∈N Ai. The game Γ is called Y -upper bounded if

the following two conditions are true:

(i) (Y,�) is a preordred set, and
(ii) Each chain in Y has an upper bound in Y .

The game Γ will be called simply upper bounded if it is A-upper bounded.

Denote by TUB(Γ ) the set of all non-empty upper bounded subsets of A =∏
i∈N Ai. We will write by NMS∗(Γ ) the set of all stable subsets in some upper

bounded set of A =
∏

i∈N Ai; i.e.,

NMS∗(Γ ) = ∪Y ∈TUB(Γ )NMS(Γ ;Y ).

2.3 Classical Case

An n-person strategic game is a tuple Γ = 〈N, (Ai)i∈N , (�i)i∈N 〉 consisting of

1. N and Ai are the same as above;
2. �i is i’s rational preference relation.

The uniform preference relation � on A =
∏n

i=1Ai is a binary relation on A
defined by

a � b ⇐⇒ a �i b for any i ∈ N.

The strict preference relation ≺ is defined by

a ≺ b ⇐⇒ a � b but not b � a.

The indifference relation ∼ is defined by

x ∼ y ⇐⇒ x � y and y � x.

Remark 2. The game Γ = 〈N, (Ai)i∈N ,�〉 with the uniform preference is an
abstract game. The preference � is a preorder on A, but it is not always rational;
i.e., it satisfies Ref and Trn, but not Cmp in general.

A profile a∗ = (a∗1, · · · , a∗i , · · · , a∗n) is a pure Nash equilibrium for a strategic
game Γ = 〈N, (Ai)i∈N , (�i)i∈N 〉 provided that for each i ∈ N and for every
ai ∈ Ai, (a∗−i, ai) �i a

∗. We denote by PNE(Γ ) the set of all pure Nash equilibria
for Γ .

Remark 3. In his paper [3], Jiang calls a strategic game Γ regular if Γ is PNE(G)-
upper bounded. By N-M stable set Jiang [3] means a stable set in PNE(Γ ).

Example 1 (Jiang [3]). The vagabonds game, in which the preference relation is
derived from individual utility functions, is the tuple 〈Γ, (Ai), (�i)〉 consisting
of

1. N = {1, 2, · · · , n} is a set of n players called vagabonds (n ∈ N ) and i
denotes a vagabond;

2. Ai = R+
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3. i’s utility function ui : Rn
+ → R is given by

ui(x1, · · · , xi, · · · , xn) =

{
xi if

∑
j∈N xj ∈ [0, 1]

0 if
∑

j∈N xj ∈ (1,+∞)

4. �i is i’s preference relation represented by the function ui as follows: For
any x, x′ ∈ A =

∏n
i=1Ai, x �i x

′ ⇐⇒ ui(x) � ui(x′).

Set

Sn = {x = (x1, · · · , xi, · · · , xn) ∈ Rn
+|
∑
i∈N

xi = 1}

Then the game Γ is upper bounded with Sn a stable set in PNE(Γ ). Moreover,
it is ‘regular’ in the sense of Jiang [3].

Remark 4. The game Γ actually contains the unique stable set Sn in PNE(Γ ).
This can be verified by Corollary 1 that will be shown later in the next section.

3 Main Theorem

Let Γ = 〈N, (Ai)i∈N ,�〉 be an n-person abstract game.

Definition 4. By the Jiang mapping for the abstract game Γ , we mean the
mapping JΓ : TUB(Γ ) → NMS(Γ ) which assigns to each Y of TUB(Γ ) the set
VY of all maximal elements in Y : For each Y ∈ TUB(Γ ),

JΓ (Y ) = VY = {y ∈ Y | y is maximal in Y } if Y �= ∅;
JΓ (∅) = ∅ otherwise.

We can now state our main result.

Theorem 1 (Main theorem). Let Γ = 〈N, (Ai)i∈N ,�〉 be an n-person ab-
stract game. The Jiang mapping JΓ is well-defined mapping with the property:
JΓ ◦ JΓ = JΓ . Furthermore, it is a surjective map onto the set NMS∗(Γ ) of all
stable sets in some upper bounded subset of strategies in the game Γ .

Before proceeding with the proof we will establish the characterisation theorem
for stable sets mentioned in Section 1, and we state the theorem explicitly: Let
Fix(JΓ ) denote the set of all fixed members of TUB(Γ ) for JΓ :

Fix(JΓ ) = {Y ∈ TUB(Γ ) | JΓ (Y ) = Y }.

Theorem 2 (Characterisation theorem). Let JΓ be the Jiang mapping for
an n-person abstract game Γ with the preorder preference �. Then the set
NMS∗(Γ ) of all stable sets in some upper bounded subset of strategies in the
game Γ coincides with the set of all fixed points of the Jiang mapping JΓ in
TUB(Γ ); i.e.,

NMS∗(Γ ) = Fix(JΓ ).

In particular, every W ∈ NMS∗(Γ ) can be uniquely expressed by the form W =
JΓ (Y ) for some Y ∈ TUB(Γ ).
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Proof. For any Y ∈ Fix(JΓ ), it immediately follows that Y =JΓ (Y ) ∈ TUB(Γ )∩
NMS(Γ ) ⊆ NMS∗(Γ ), and hence Fix(JΓ ) ⊆ NMS∗(Γ ). The converse will be
shown as follows: Let us take any W ∈ NMS∗(Γ ). By the surjectivity of JΓ it
follows that there is a Y ∈ TUB(Γ ) such that W = JΓ (Y ), and thus it can be
plainly seen by the property for JΓ in Theorem 1 that W ∈ Fix(JΓ ) because
JΓ (W ) = JΓ (JΓ (Y )) = JΓ (W ) = W . Therefore we obtain that NMS∗(Γ ) ⊆
Fix(JΓ ), in completing the proof. ��

4 Proof of Theorem 1

We shall proceed with the proof by the following steps:

JΓ is a well-defined mapping: This follows immediately from the below
theorem:

Theorem 3. Let Γ = 〈N, (Ai)i∈N ,�〉 be an n-person abstract game with the
preorder preference and Y a non-empty subset of A =

∏
i∈N Ai. If Γ is Y -upper

bounded then it has the unique stable set in Y .

Proof. Existence: Let V denote the set JΓ (Y ) of all maximal elements in a
preordered set (Y,�). By Lemma 1(i) we can observe that V is a non-empty set.
We shall show that V is a stable set in Y .

For IS: On noting that each element in V is maximal, IS follows immediately.

For ES: Suppose to the contrary that there exists a y0 ∈ Y \ V such that for
every x ∈ V , it is not true that y0 ≺ x. However, since y0 is not maximal in Y ,
there is a y1 ∈ Y such that y0 ≺ y1. Let T be the set of all the chains C satisfying
the two conditions: (1) C consists of elements x ∈ Y strictly prefereable than y0
(i.e.; x ( y0), and (2) C contains the chain T0 = {y0 ≺ y1}. It is plainly seen that
T0 ∈ T �= ∅ and that T is a partially ordered set equipped with the set theoretical
inclusion. Hence it follows by Lemma 1(ii) that the chain T0 ∈ T is contained
in a maximal chain T ∗ in Y . Since Γ is upper-bounded, the chain T ∗ has an
upper bound y∗ ∈ Y , and so it immediately follows that T ∗ ∪ {y∗} ∈ T because
y0 ≺ y∗ and x � y∗ for all x ∈ T except y0. This means that T ∗ ∪ {y∗} ∈ T
which properly contains T ∗, in contradiction to the maximality of T ∗ in T , as
required.

Uniqueness: Suppose V and W are stable sets in Y with V �= W . Without loss
of generality we may assume V \W �= ∅. Take a ∈ V \W . It follows from ES for
W that there exists b ∈ W such that a ≺ b. By IS for V we obtain b ∈ Y \ V .
From ES for V it follows that there exists c ∈ V such that b ≺ c, and thus
a ≺ b ≺ c. By Trn on Y we obtain that a ≺ c for a, c ∈ V , in contradiction to
IS for V , in completing the proof of Theorem 3. ��

JΓ ◦ JΓ = JΓ : It is easily seen that NMS∗(Γ ;Y ) ⊆ TUB(Γ ) for any Y ∈
TUB(Γ ), and so NMS∗(Γ ) ⊆ TUB(Γ ). It follows that the composite mapping
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JΓ ◦ JΓ is well-defined. For each Y ∈ TUB(Γ ), in viewing of the definition of
JΓ it can be plainly observed that JΓ (Y ) is the set of all maximal elements
in Y , and so JΓ (Y ) ⊆ Y . Therefore it follows from IS that Y ⊆ JΓ (W ), and
JΓ ◦ JΓ (Y ) = JΓ (Y ), as required. ��

JΓ is a surjection onto NMS∗(Γ ): For any W ∈ NMS∗(Γ ), we can take
Y ∈ TUB(Γ ) such that W ∈ NMS∗(Γ ;Y ). By the same argument as above we
can obtain thatW = JΓ (W ), as required. This completes the proof of Theorem 1.

��
As consequence of Theorem 3 we obtain the Jiang’ s theorem:

Corollary 1 (Jiang [3]). Every PNE(Γ )-upper bounded strategic game Γ has
the unique stable set in PNE(Γ ).

5 Concluding Remarks

It well ends this article by giving remarks on the assumptions on Theorem 3:
Transitivity on preference and upper boundedness for a game. These assumptions
play crucial role in the theorem.

Game with non-transitive preference having no stable set: We can easily
construct such game: See the game in Figure 1 in Lucas [4] (p.545) has no stable
set at all. ��

Non-upper bounded game having no stable set: Let 〈R+,�〉 be the real
line equipped with the usual inequality, and we will consider it as one player
strategic game. Then we can easily observe that the game is neither R+-upper
bounded nor has stable set in R+. ��

Conclusion: This article treats the notion of stable sets in an abstract form
game with transitive preference. We investigate conditions under which the sta-
ble sets are guaranteed. The main theorem shows that the stable sets for the
abstract game is characterised as the fixed point of the mapping assigning to
each upper bounded subset in the pure strategies the subset of the maximal
elements of it. The key is to establish that the stable set uniquely exists in each
inductive set of pure strategies for the abstract game. In the classical case of
strategic game, we obtain Jiang’s result as a consequence, which guarantees the
unique stable set in the set of Nash equilibria for the game in the case the Nash
equilibrium set is inductive.

The emphasis is that the continuity on the preferences is not assumed in the
theorems as we can view in Example 1. However the two assumptions, tran-
sitivity on preference and upper boundedness for a game, play crucial role in
guaranteeing existence of the stable set in the game. These comments show that
the two assumptions are necessary to the theorems.
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Abstract. We propose a new bi-clustering algorithm, LinCoh, for find-
ing linear coherent bi-clusters in gene expression microarray data. Our
method exploits a robust technique for identifying conditionally corre-
lated genes, combined with an efficient density based search for cluster-
ing sample sets. Experimental results on both synthetic and real datasets
demonstrated that LinCoh consistently finds more accurate and higher
quality bi-clusters than existing bi-clustering algorithms.

Keywords: Bi-clustering, sample set clustering, gene expression mi-
croarray, gene ontology.

1 Introduction

Gene expression microarray data analysis interprets the expression levels of thou-
sands of genes across multiple conditions (also called samples). Such a study
enables the language of biology to be spoken in mathematical terms; however, it
remains a challenge to extract useful information from the large volume of raw
expression data.

One central problem in gene expression microarray data analysis is to iden-
tify groups of genes that have similar expression patterns in a common sub-
set of conditions. Standard clustering methods, such as k-means clustering [4],
hierarchical clustering [21] and self-organizing maps [20], are ill-suited to this
purpose for two main reasons: that genes exhibit similar behaviors only under
some, but not all conditions, and that genes may participate in more than one
functional process and hence belong to multiple groups. Bi-clustering [9,16] is
intended to overcome the limitations of standard clustering methods by iden-
tifying a group of genes that exhibit similar expression patterns in a subset of
conditions. Bi-clustering was first applied to gene expression analysis a decade
ago [3], subsequently leading to dozens of other bi-clustering algorithms. Never-
theless, the general bi-clustering problem is NP-hard [3]. Efforts were invested
in designing bi-clustering algorithms, mostly heuristics, for finding postulated
types of bi-clusters.
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There are several types of bi-clusters that have been sought previously, includ-
ing (a) the constant value model, (b) the constant row model, (c) the constant
column model, (d) the additive coherent model, where each row (or column) is
obtained by adding a constant to another row (or column, respectively), and (e)
the multiplicative coherent model, where each row (or column) is obtained by
multiplying another row (or column, respectively) by a constant value. In this
paper, we continue to exploit the most general type-(f) linear coherent model [7]
(see Figure 1), in which each row is obtained by multiplying another row by a
constant value and then adding a constant. We further assume that bi-clusters
are arbitrarily positioned and may overlap each other [15]. The most biologically
meaningful types of bi-clusters to be sought should map to the ultimate purpose
of identifying groups of genes that co-participate in certain genetic regulatory
process. For example, housekeeping genes are those that constitutively express
in most conditions, and they could be identified in the first two bi-cluster models
(a) and (b). Most of the existing bi-clustering algorithms seek either type-(d) ad-
ditive bi-clusters or type-(e) multiplicative bi-clusters [7]. Mathematically, the
type-(f) linear coherent model is strictly more general than all the other five
models.

x y z w
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0

x y z w
1.2 1.2 1.2 1.2
0.8 0.8 0.8 0.8
1.5 1.5 1.5 1.5
0.6 0.6 0.6 0.6

x y z w
1.2 0.8 1.5 0.6
1.2 0.8 1.5 0.6
1.2 0.8 1.5 0.6
1.2 0.8 1.5 0.6

x y z w
1.2 0.8 1.5 0.6
1.0 0.6 1.3 0.4
2.0 1.6 2.3 1.4
0.7 0.3 1.2 0.3

x y z w
2.0 4.0 8.0 1.0
1.0 2.0 4.0 0.5
4.0 8.0 16.0 2.0
1.0 2.0 4.0 0.5

x y z w
2.0 4.0 3.0 5.0
1.5 2.5 2.0 3.0
2.3 4.3 3.3 5.3
4.5 8.5 6.5 10.5

(a) (b) (c) (d) (e) (f)

Fig. 1. The six different bi-cluster types

The key idea in our new algorithm, LinCoh, for finding type-(f) linear coherent
bi-clusters is illustrated in Figure 2. Essentially, a pair of genes participates in a
linear coherent bi-cluster must be evidenced by a non-trivial subset of samples
in which these two genes are co-up-regulated (or co-down-regulated). Therefore,
the scatter plot of their pairwise expression levels, see Figure 2, where every
point (x, y) represents a sample in which the two genes have expression levels x
and y respectively, must show a diagonal band with a sufficient number of sample
points. The LinCoh algorithm starts with composing this non-trivial supporting
sample set for each gene pair, then to cluster these so-called outer sample sets.
Each outer sample set cluster, together with the associated genes and inner
samples, is filtered to produce a final bi-cluster.

We compare our LinCoh algorithm to four most popular bi-clustering algo-
rithms: Cheng and Church’s algorithm named after CC [3]; the order preserving
sub-matrix algorithm denoted as OPSM [2]; the iterative signature algorithm de-
noted as ISA [10]; and the maximum similarity bi-clustering algorithm denoted
as MSBE [14]. The first three algorithms have been selected and implemented
in a survey [17]. Cheng and Church defined a merit score called mean squared



Linear Coherent Bi-cluster Discovery 87

−5 −4 −3 −2 −1 0 1 2

−8

−6

−4

−2

0

2

4

6

8

10

12

Gene1: YIL078W

G
en

e2
: Y

LL
03

9C

 

 

mean
1

mean
2

−std.
2

+std.
2

−std.
1

+std.
1

(a) Negative correlation.
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(b) Positive correlation.

Fig. 2. (a) illustrates two yeast genes YIL078W and YLL039C that have negative ex-
pression correlation under a subset of conditions; the red conditions provide a stronger
evidence than the blue conditions, whereas the green conditions do not suggest any
correlation. Similarly in (b), genes YIL078W and YIL052C show a positive expression
correlation.

residue to evaluate the quality of a bi-cluster, and CC is a greedy algorithm for
finding bi-clusters of score no less than a given threshold [3]. OPSM is a heuristic
algorithm attempting to find within a gene expression matrix the sub-matrices,
i.e. bi-clusters, in each of which the genes have the same linear ordering of ex-
pression levels [2]. Another bi-cluster quality evaluation scheme is proposed in
[10] using gene and condition signatures, and the ISA is proposed for finding the
corresponding good quality bi-clusters. In particular, a randomized ISA is put in
place when the prior information of the expression matrix is not available. The
last algorithm, MSBE, is the first polynomial time bi-clustering algorithm that
finds optimal solutions under certain constraints [14].

The rest of the paper is organized as follows: Section 2 presents the details of
our LinCoh algorithm. In Section 3, we first introduce the quality measurements
for bi-clustering results; then describe how synthetic datasets were generated,
followed by the bi-clustering results and discussion; lastly we present the two
real datasets on yeast and e.coli respectively, as well as the bi-clustering results
and discussion. We conclude the paper in Section 4 with some remarks on the
advantages and disadvantages of our LinCoh algorithm.

2 The LinCoh Algorithm

Let E(G,S) be an n×m gene expression data matrix, where G = {1, 2, . . . , n}
is the set of gene indices and S = {1, 2, . . . ,m} is the set of sample (condition)
indices. Its element eij is the expression level of gene i in sample j. Our LinCoh
algorithm consists of two major steps, described in the next two subsections.
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2.1 Step One: Establishing Pairwise Gene Relations

For each pair of genes p, q ∈ {1, 2, . . . , n}, we plot their expression levels in all
samples in a 2D plane, as shown in Figure 2, where a point (x, y) represents a
sample in which gene p has expression level x and gene q has expression level y.
The goal of this step is to detect a correlation between every pair of genes on a
subset of samples, if any. Such a subset of samples must evidence the correlation,
in the way that the two genes are co-up-regulated (or co-down-regulated) in these
samples [13]. We define a beam Bθ,β,γ in the 2D plane to be the set of points on
the plane that are within distance 1

2β to a straight line that depends on θ and
γ. Here θ is the beam angle, β is the beam width, and γ is the beam offset. They
are all search parameters, but we are able to pre-determine some best values or
ranges of values for them.

Let μp and σp (μq and σq) denote the mean expression level of gene p (q, re-
spectively) across all samples and the standard deviation. To identify the subset
of supporting samples for this gene pair, Sθ,β,γ = S ∩Bθ,β,γ , we seek for a beam
Bθ,β,γ in the 2D plane that aligns approximately the main diagonal (or the an-
tidiagonal) of the rectangle defined by {(μp−σp, μq−σq), (μp+σp, μq−σq), (μp+
σp, μq + σq), (μp − σp, μq + σq)}. Such an approximate alignment optimizes the
following objective function, which robustly leads to good quality bi-clusters:

max
θ,β,γ

WSθ,β,γ
·DSθ,β,γ

subject to:
∣∣corr(E(p, Sθ,β,γ), E(q, Sθ,β,γ)

)∣∣ ≥ tcc.

In the above maximization problem, DSθ,β,γ
is the vector of the Euclidean dis-

tances of the samples inside the beam, i.e. Sθ,β,γ, to the line passing through
(μp, μq) and perpendicular to (called the midsplit line of) the beam center line;
WSθ,β,γ

is a weight vector over the samples in Sθ,β,γ, and we use Shepard’s
function wj = dr

j/
∑
dr

j with parameter r ≥ 0 to weight sample j ∈ Sθ,β,γ (to
weight more on distant samples but less on samples nearby the midsplit line); In
the constraint, |corr(·, ·)| is the absolute correlation coefficient between the two
genes p and q, calculated over only the samples in Sθ,β,γ; tcc is a pre-determined
correlation threshold.

The output of the maximization problem is Sθ,β,γ, which is either empty, indi-
cating that no meaningful relationship between the two genes was found, or oth-
erwise a subset of samples that evidence a meaningful correlation between genes
p and q. According to our extensive preliminary experiments, the bi-clustering
results are of high quality when the correlation threshold tcc is larger than 0.75;
and it is set to 0.90 and 0.75, respectively, on synthetic datasets and real datasets.

We implement a heuristic process to search for the beam, whose center line is
initialized to be the line passing through the main diagonal (for positive correla-
tion) or the antidiagonal (for negative correlation) of the rectangle in the expres-
sion plot. The beam width β is fixed at a certain portion of 4σpσq/

√
σp

2 + σq
2;

again supported by the preliminary experiments, a constant portion in be-
tween 0.8 and 1.0 is sufficient to capture most meaningful correlations; and
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we fix it at 0.8 for both synthetic datasets and real datasets. That is, β =
0.8× 4σpσq/

√
σp

2 + σq
2. To determine the beam angle θ in the positive correla-

tion case, we define the search axis to be the midsplit line of the main diagonal;
a small interval is placed on the search axis centering at (μp, μq), which is for
a pivot point to float within; around each position of the pivot point, whose
distance to the center point (μp, μq) is denoted as γ, different angles (the θ)
are searched over to find a beam center line; each resultant beam is tested for
the constraint satisfaction in the maximization problem, and discarded other-
wise; among all those beams that satisfy the constraint, the one maximizing the
objective function is returned as the target beam.

For evaluating the objective function, we have tested multiple values of r and
found that 0 gives the most robust bi-clustering results. Therefore, r is set to 0
as default. For each sample j inside the beam, its distance dj to the mid-split
line of the beam center line is rounded to 0 or 1 using a threshold of

√
σp

2 + σq
2.

When the target beam is identified, though might not be the true optimum to
the objective function, the sample set Sθ,β,γ is further partitioned into outer
sample set (containing the samples with distance dj rounded to 1) and inner
sample set (containing the rest). Gene pairs, together with non-empty outer and
inner sample sets, are sent to Step two for clustering.

2.2 Step Two: Sample Set Clustering

Step one generates an outer sample set and an inner sample set for each gene
pair. In this step, two n × n matrices are constructed: in the outer matrix Mo,
the element mo

pq is the outer sample set for gene pair p and q; likewise, in the
inner matrix M i, the element mi

pq is the inner sample set for gene pair p and q.
We next process these two matrices to robustly find bi-clusters.

First we want to filter out small outer sample sets that indicate insignificant
correlations for gene pairs. To this purpose, we select roughly the largest 0.15%
outer sample sets among all for clustering, which are of 99.7% confidence. This
confidence level is set after testing on a randomly generated datasets, with 68%,
95%, 99.7% confidence levels according to the 68-95-99.7 rule. Observing that
two disjoint gene pairs could have the same outer sample sets but very differ-
ent expression patterns, simply using outer sample sets to construct bi-clusters
might lead to meaningless bi-clusters. In our LinCoh algorithm, genes are used
as bridges to group similar outer sample sets to form bi-clusters, since linear
correlation is transitive. We first define the similarity between two outer sample
sets mo

pq and mo
rs as sim(mo

pq,m
o
rs) = |mo

pq ∩mo
rs|/|mo

pq ∪mo
rs|, which is a most

popular measure in the literature. Next, we rank genes in the descending order
of the number of associated non-empty outer sample sets. Iteratively, the gene
at the head of this list is used as the seed gene, to collect all its associated (non-
empty) outer sample sets. These outer sample sets are partitioned into clusters
using a density based clustering algorithm similar to DBSCAN [5], and the dens-
est cluster is returned, which is defined as a cluster whose central point has the
most close neighbors (see the pseudocode in the Appendix). An initial bi-cluster
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is formed on the union S1 of the outer sample sets in the densest cluster, and
the set G1 of the involved genes.

The quality of the bi-cluster (G1, S1) is evaluated by its average absolute
correlation coefficient,

aacc(G1, S1) =

∑
p,q∈G1

|corr(E(p, S1), E(q, S1))|
(|G1|2 − |G1|)

. (1)

The initial bi-cluster (G1, S1) is refined in three steps to locally improve its
quality. In the first step, all samples in S1 are sorted in decreasing frequency of
occurrence in all the outer sample sets of the seed gene; the lowest ranked sample
is removed if this removal improves the quality of the bi-cluster, or otherwise
the first step is done. Secondly, every gene in G1 is checked to see whether
its removal improves the quality of the bi-cluster, and if so it is removed from
G1. At the end, if the minimum gene pairwise absolute correlation coefficient of
the bi-cluster is smaller than a threshold, the bi-cluster is considered as of low
quality and discarded. By examining values from 0.50 to 0.99, our preliminary
experiments showed that a high threshold in between 0.7 and 0.9 is able to
ensure good quality bi-clusters, and it is set to 0.8 in all our final experiments.
In the last step of bi-cluster (G1, S1) refinement, the inner sample sets of the gene
pairs from G1 are collected; their samples are sorted in decreasing frequencies
in these inner sample sets; using this order, samples are added to S1 as long as
their addition passes the 0.8 minimum pairwise absolute correlation coefficient.
A final bi-cluster (G1, S1) is thus produced.

Subsequently, all genes from G1 are removed from the gene list, and the next
gene is used as the seed gene for finding the next bi-cluster. The process iterates
till the gene list becomes empty. We remark that a gene can participate in
multiple bi-clusters, but it serves as a seed gene at most once. At the end, when
two bi-clusters overlap more than 60% area, the one of smaller size is treated
as redundant and discarded [13]. A pseudocode of our LinCoh algorithm 1 is
provided in the Appendix for the interested readers.

3 Results and Discussion

We examine the LinCoh algorithm, and make comparisons with four other ex-
isting bi-clustering algorithms, CC, OPSM, ISA, and MSBE (their parameter
settings follow the previous works [17,14]), on many synthetic datasets and two
real gene expression microarray datasets on Saccharomyces cerevisiae (yeast) and
Escherichia coli (e.coli) respectively. Essentially, synthetic datasets are used for
evaluating absolute performance, since we know the ground truth; while the real
datasets are mainly used for evaluating relative performance. Consequently we
have different sets of performance measurements on synthetic and real datasets.

On synthetic datasets, bi-clustering algorithms are evaluated on their abil-
ity to recover the implanted (true) bi-clusters. Prelić’s gene match score and
overall match score [17] are adopted. Let C and C∗ denote the set of output
bi-clusters from an algorithm and the set of true bi-clusters for a dataset. The
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gene match score of C with respect to the target C∗ is defined as scoreG(C, C∗) =
1
|C|

∑
(G1,S1)∈C max(G∗

1,S∗
1 )∈C∗

|G1∩G∗
1|

|G1∪G∗
1| , which is essentially the average of the max-

imum gene match scores of bi-clusters in C with respect to the target bi-clusters.
Similarly, the sample match score scoreS(C, C∗) can be defined by replacing gene
sets with the corresponding sample sets in the above. The overall match score
is then defined as their geometric mean, i.e.

score(C, C∗) =
√

scoreG(C, C∗)× scoreS(C, C∗).

On real datasets, the bi-clusters discovered by an algorithm are mapped to
known biological pathways, defined in the GO functional classification scheme
[1], the KEGG pathways [11], the MIPS yeast functional categories [18] (for
yeast dataset), and the EcoCyc database [12] (for e.coli dataset), to obtain their
gene functional enrichment score as implemented in [13]. The average absolute
correlation coefficients (aacc’s) of the discovered bi-clusters are also used to
compare different algorithms.

3.1 Synthetic Datasets

Noise resistance test: This experiment examines how well a bi-clustering
algorithm can recover implanted bi-clusters. We follow Prelić’s testing strategy
to first generate a 100× 50 background matrix (i.e., 100 genes and 50 samples),
using a standard normal distribution for the matrix elements; we then embed
ten 10 × 5 non-overlapping linear coherent bi-clusters along the diagonal; later
for each vector of the five expression values, the first two of them are set to
down-regulated, the last two are set to up-regulated, and the middle one is
non-regulated; lastly, we add noise to the embedded bi-clusters at six different
noise levels (� = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25) by perturbing the entry values
so that the resultant values are � away from the original values. The generation
is repeated ten times to give ten matrices.

The same simulation process is done to generate synthetic datasets contain-
ing additive bi-clusters, when we compare the bi-clustering algorithms on their
performance to recover additive bi-clusters only (which is a special case of linear
coherent bi-clusters).

Figure 3 shows the gene match scores of all five bi-clustering algorithms at
six different noise levels, on their performance of recovering linear coherent bi-
clusters and additive bi-clusters, respectively. Their overall match scores and
gene discovery rates (defined as the percentage of genes in the output bi-clusters
over all the genes in the true bi-clusters) can be found in Figures 8 and 9 in
the Appendix. In terms of match scores, Figures 3 and 8 clearly show that
our LinCoh outperformed all the other four algorithms, ISA ranked the second,
and the other three performed quite poorly. In terms of gene discovery rate,
again LinCoh outperformed all the other four algorithms. We remark that gene
discovery rate can be trivially lifted up by simply output more bi-clusters. It is
not a main measure used in this work, but a useful measure in conjunction with
match scores.
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Fig. 3. The gene match scores of the five algorithms on recovering linear coherent
bi-clusters and additive bi-clusters at six different noise levels

Overlapping test: Individual genes can participate in multiple biological pro-
cesses, yielding bi-clusters that overlap with common genes in an expression
matrix. Bi-clusters might also overlap with a subset of samples. This experi-
ment is designed to examine the ability of different bi-clustering algorithms to
recover overlapping bi-clusters. As before, we consider type-(f) linear coherent
bi-clusters and type-(d) additive bi-clusters, at a fixed noise level of � = 0.1.

Again, ten 100 × 50 background matrices are generated using a standard
normal distribution for the matrix elements; into each of them, two 10× 10 bi-
clusters are embedded, overlapping with each other by one of the following six
cases: 0×0, 1×1, 2×2, 3×3, 4×4, and 5×5. Previous simulation studies suggested
to replace the matrix elements in the overlapped area with a random value; we
expect, however, these overlapping genes to obey a reasonable logic such as
the AND gate and the OR gate leading to a union and an additive behavior.
Therefore, in the union overlap model, the matrix entries in the overlapped
area preserve linear coherency in both bi-clusters (consequently, the overlapped
area extends its linear coherency into both bi-clusters on those samples in the
overlapped area); and in the additive overlap model, these entries take the sum
of the gene expression levels from both bi-clusters.

Figure 4 shows the gene match scores of the five bi-clustering algorithms
in this experiment. Their overall match scores and gene discovery rates under
the union overlap model are plotted in Figures 10 and 11 in the Appendix.
The results of the additive overlap model are in Figures 12, 13, and 14 in the
Appendix. From all these results, one can see that our LinCoh outperformed the
other four algorithms; OPSM and MSBE performed worse, but similarly to each
other; CC performed the worst; and ISA demonstrated varying performance.

3.2 Real Datasets

The yeast dataset is obtained from [8], containing 2993 genes on 173 samples; the
e.coli dataset (version 4 built 3) is from [6], which contains initially 4217 genes
on 264 samples. Genes with small expression deviations were removed from the
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Fig. 4. The gene match scores of the five algorithms for recovering the overlapping
linear coherent and additive bi-clusters, under the union overlap model

second dataset, giving rise to 3016 genes. Such a process ensures that all five
bi-clustering algorithms can run on the dataset. In particular, it took two weeks
for LinCoh to run on each dataset using a 2.2GHz CPU node of 2.5GB memory.
The performance of an algorithm on these two real datasets is measured in gene
functional enrichment score [13]. First, the P -value of each output bi-cluster is
defined using its most enriched functional class (biological process).

The probability of having r genes of the same functional class in a bi-cluster of
size n from a genome with a total of N genes can be computed using the hyperge-
ometric function, where p is the percentage of that functional class of genes over
all functional classes of genes encoded in the whole genome. Numerically [13],

Pr(r|N, p, n) = ( pN
r ) · ( (1−p)N

n−r )/( N
n ).

Such a probability is taken as the P -value of the output bi-cluster enriched with
genes from that functional class [13]. The smallest P -value over all functional
classes is defined as the P -value of the output bi-cluster — the smaller the P -
value of a bi-cluster the more likely its genes come from the same biological
process. For each algorithm, we calculate the fraction of its output bi-clusters
whose P -values are smaller than a significance cutoff α.

Figure 5 compares the five algorithms using six different P -value cutoffs, eval-
uated on the GO database. Results on the KEGG, MIPS, and Regulon databases
are in Figures 15 and 16 in the Appendix. All these results show that our LinCoh
consistently performed well; OPSM and ISA did not perform consistently on the
two datasets across databases; and that MSBE and CC did not perform as well
as the other three algorithms.

One potential issue with the P -value based performance measurement is that
P -values are sensitive to the bi-cluster size [13]; in general, larger bi-clusters
tend to produce more significant P -values. Table 1 in the Appendix summa-
rizes the statistics of the bi-clusters produced by the five algorithms. The last
column in the table records the numbers of unique functional terms enriched
by the produced bi-clusters. On yeast dataset, when measured by the gene en-
richment significance test, OPSM performed very well (Figure 5, left); yet its
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Fig. 5. Portions of discovered bi-clusters by the five algorithms on the two real datasets
that are significantly enriched the GO biological process, using six different P -value
cutoffs

bi-clusters only cover one functional term on the GO and KEGG databases
and two terms on MIPS database. Such a phenomenon suggests that its bi-
clustering result is biased to a group of correlated genes, missed by the P -value
based significance test. Furthermore, we generated all the gene pairs with ab-
solute correlation coefficient greater than or equal to 0.8 over all the samples
for both the yeast and e.coli datasets. Table 2 in the Appendix shows the num-
bers of common GO terms and their counts. Among these strongly correlated
gene pairs, many do not even have one common GO term. Table 3 in the Ap-
pendix shows the top 10 counted common GO terms (full table can be found at
‘http://www.cs.ualberta.ca/~ys3/LinCoh’).

The above two potential issues hint that the P -value based evaluation is mean-
ingful but has limitations. We propose to use the average absolute correlation
coefficient over all gene pairs in a bi-cluster defined in Eq. (1) as an alternative
assessment of the quality of a linear coherent bi-cluster. Figure 6 shows the box
plot of these correlation values for the bi-clusters produced by the five algo-
rithms on the two real datasets. From the figure, one can see that our LinCoh
and OPSM significantly outperformed the other three algorithms. Additionally,
the minimum absolute correlation coefficient over all gene pairs in a bi-cluster
can also be adopted as a quality measurement. Figure 17 in the Appendix shows
these results.

Figure 6 shows that OPSM produced bi-clusters with very high linear co-
herence. But the numbers of samples in its bi-clusters are much smaller than
those in LinCoh’s bi-clusters, as shown in Table 1 in the Appendix (tens versus
hundreds). This suggests that very closely interacting gene pairs can have small
empirical correlation coefficients on a subset of samples, largely due to noise and
measurement errors. In fact, there is always a trade-off between bi-cluster coher-
ence and its size. Thus, to compare algorithms in a less sample-size biased way,
we replaced for each bi-cluster its average absolute correlation coefficient by the
99% confidence threshold using the number of samples in the bi-cluster [19], and

http://www.cs.ualberta.ca/~ys3/LinCoh
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Fig. 6. Box plots of the average absolute correlation coefficients obtained by the five
bi-clustering algorithms on yeast and e.coli datasets, respectively

box plotted these values in Figure 18 in the Appendix. They show much more
comparable performance between LinCoh and OPSM.

4 Conclusions

In this paper, we proposed a new bi-clustering algorithm, LinCoh, for finding
linear coherent bi-clusters in a gene expression matrix. The algorithm has two im-
portant steps, beam detection for pairwise gene correlations and density based
outer sample set clustering. Our experiments on synthetic and real datasets
demonstrate that LinCoh consistently performed well. Using real datasets, we
also showed some limitations of the widely adopted functional enrichment mea-
surement, and proposed to use average absolute correlation coefficient as an
alternative measure for bi-clustering quality. With its outperformance over the
compared four popular algorithms, LinCoh can serve as another useful tool for
microarray data analysis, including bi-clustering and genetic regulatory network
inference.

One disadvantage of LinCoh is its large memory and extensive computing time
requirement, due to constructing the outer and inner sample set matrices. It takes
O(n2mp) to compute the sample set matrices where n is the number of genes
and mp is the number of parameters θ, β and γ. The memory required for storing
the matrices is O(n2ms) where n is the number of genes and ms is the average
size of the sample set elements. It takes weeks and up to 1 Gigabyte memory
to run experiments on the e.coli dataset. Improvements in beam detection and
sample set clustering can also achieve significant speed-ups.
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Appendix

(a) Unobvious Bi-cluster. (b) Obvious Bi-cluster.

Fig. 7. An example of a constant row bi-cluster in the gene expression matrix. (a) shows
a gene expression matrix without any obvious bi-clusters; (b) shows after swapping rows
and columns, a constant row bi-cluster becomes salient.
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Fig. 8. The overall match scores of the five algorithms for recovering linear coherent
and additive bi-clusters, at six different noise levels
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Fig. 9. The gene discovery rates of the five algorithms for recovering linear coherent
and additive bi-clusters, at six different noise levels
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Fig. 10. The overall match scores of the five algorithms for recovering linear coherent
and additive bi-clusters, under six different amounts of overlap using the union overlap
model
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Fig. 11. The gene discovery rates of the five algorithms for recovering linear coherent
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model
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Algorithm 1. The LinCoh Algorithm
Input An n × m real value matrix A(I, J), Tclose, TminCC

Output A set of bi-clusters A(gi, si), where gi ⊆ I and si ⊆ J .

for i = 1 to n do
for j = i + 1 to n do

MO(i, j) = NULL, MI(i, j) = NULL;
θrec = NULL, βrec = NULL, γrec = NULL;
for A set of beam parameters (θ, β, γ) do

if WSouter(θ,β,γ) · D
T
Souter(θ,β,γ)

> |MO(i, j)| then

MO(i, j) = Souter(θ,β,γ);
θrec = θ, βrec = β, γrec = γ;

end if
end for
MI(i, j) = Sinner(θrec ,βrec,γrec);

end for
end for

for i = 1 to n do
for j = i + 1 to n do

if MO(i, j) < μss + α · σss then
MO(i, j) = NULL, MI(i, j) = NULL;

end if
end for

end for

for i = 1 to n do
SSi =

⋃
j∈J (MO(i, j));

end for
GeneListss = DescendSort(Genes) based on |SSi| = NULL of each i ∈ I ;
BiclusterPool = NULL;
while GeneListss = EMPTY do

SeedGene = Pop(GeneListss);
Construct similarity matrix Matrixss for SSseedGene elements based on
MS(SSi, SSj) = |SSi∩SSj|

|SSi∪SSj| ;
Find the centroid sample set SScentroid that has the most close (MS(Si, Sj) ≥
Tclose) neighbors, SSneighbors;
GenePool =

⋃
(Gi ∈ GSScentroid

⋃
GSSneighbors );

SamplePool =
⋃

(Sj ∈ SScentroid

⋃
SSneighbors);

BiClusterinitial = A(GenePool, SamplePool);
BiClusterrefined = RefineBicluster(BiClusterinitial)
if MinAbsCC(BiClusterrefined) ≥ TminCC then

BiclusterPool.add(BiClusterrefined);
end if

end while
Biclustersfinal = RedundantRemoval(BiclusterPool)
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Fig. 12. The gene match scores of the five algorithms for recovering linear coherent and
additive bi-clusters, under six different amounts of overlap using the additive overlap
model
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Fig. 13. The overall match scores of the five algorithms for recovering linear coher-
ent and additive bi-clusters, under six different amounts of overlap using the additive
overlap model
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Fig. 14. The gene discovery rates of the five algorithms for recovering linear coher-
ent and additive bi-clusters, under six different amounts of overlap using the additive
overlap model
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Fig. 15. Portions of yeast bi-clusters that are significantly enriched over different P -
values in the MIPS pathway and KEGG pathway
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Fig. 16. Portions of e.coli bi-clusters that are significantly enriched over different P -
values in the KEGG pathway and experimentally verified regulons
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produced by the five algorithms on the yeast and e.coli datasets
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Table 1. Statistics of different algorithms’ bi-clustering results and the numbers of
functional terms enriched on different databases

#Unique terms enriched
#Bi-clusters μ|gene| σ|gene| μ|sample| σ|sample| (GO, KEGG, MIPS/regulons)

yeast:
LinCoh 100 61.84 38.43 133.09 18.09 5, 7, 5

ISA 47 67 34.54 8.4 1.78 15, 13, 18
OPSM 14 423.29 728.95 9.07 5.14 1, 1, 2
MSBE 40 19.25 8.32 18.68 8.22 8, 4, 6

CC 10 297.7 304.18 60.8 23.46 6, 4, 8
e.coli:

LinCoh 100 9.63 7.66 141.43 34.04 24, 24, 22
ISA 34 124.21 42.18 13.88 6.11 11, 10, 13

OPSM 14 419.29 744.35 8.93 4.8 8, 4, 5
MSBE 9 82.67 18.1 80.22 19.18 1, 3, 4

CC 10 309.9 950.15 31.4 81.74 2, 2, 2

Table 2. For all the gene pairs with absolute correlation coefficient ≥ 0.8, the number
of pairs that have between 0 and 7 common GO terms

Term count yeast e.coli
0 909 2680
1 18860 3485
2 7898 1533
3 1839 490
4 165 239
5 30 52
6 6 18
7 4 0

Overall 28802 5817

Table 3. The top 10 gene pairs’ common GO terms and their counts

yeast e.coli
GO term Count GO term Count

GO:0006412 8353 GO:0006412 811
GO:0000723 1920 GO:0008652 680
GO:0000027 1615 GO:0001539 388
GO:0000028 1070 GO:0006810 317
GO:0006365 969 GO:0006355 234
GO:0006413 893 GO:0006811 195
GO:0030488 782 GO:0006865 183
GO:0006364 720 GO:0006260 127
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Fig. 18. The box plots of the 99% confidence thresholds of the average absolute cor-
relation coefficients of the bi-clusters, using the number of samples in each bi-cluster,
produced by the five algorithms on the yeast and e.coli datasets
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Abstract. A novel iterative algorithm of calculating the exact transitive
closure of a parameterized graph being represented by a union of simple
affine integer tuple relations is presented. When it is not possible to cal-
culate exact transitive closure, the algorithm produces its upper bound.
To calculate the transitive closure of the union of all simple relations,
the algorithm recognizes the class of each simple relations, calculates its
exact transitive closure, forms the union of calculated transitive closures,
and applies this union in an iterative procedure. Results of experiments
aimed at the comparison of the effectiveness of the presented algorithm
with those of related ones are outlined and discussed.

Keywords: parameterized graph, tuple relation, transitive closure, it-
erative algorithm.

1 Introduction
The computation of the transitive closure of a directed graph is a necessary oper-
ation in many algorithms in software engineering, real-time process control, data
bases, optimizing compilers, etc. For example, in the domain of programming lan-
guages and compilation transitive closure is used for redundant synchronization
removal [1], testing the legality of iteration reordering transformations [1], com-
puting closed form expressions for induction variables [1], iteration space slicing
and code generation [3,9,10]. Graphs can be represented in different ways. In this
paper, we consider a class of parameterized affine integer tuple relations whose
constraints are represented with Presburger formulas and which describe graphs
with the parameterized number of vertices (the number of vertices is represented
by an expression including symbolic parameters). To our best knowledge, tech-
niques for computing the transitive closure of a parameterized affine integer
tuple relation describing such graphs were the subject of the investigation of a
few papers only [1,4,5,6,8]. This paper presents an iterative algorithm to calcu-
late the exact transitive closure of relation R being a union of n simple relations
Ri, i=1,2,. . .,n as well as results of experiments with NAS 3.2 benchmarks to

W. Wu and O. Daescu (Eds.): COCOA 2010, Part I, LNCS 6508, pp. 104–113, 2010.
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compare the presented algorithm effectiveness with the semi-naive iterative al-
gorithm [11,12] and that presented in paper [1].

2 Background

The transitive closure of a directed graph G=(V,E ) is a graph H =(V,F ) with
edge (v,w) in H if and only if there is a path from v to w in G. A graph can
be represented by an integer tuple relation whose domain consists of integer k -
tuples and whose range consists of integer k�-tuples, for some fixed k and k�. The
general form of a parameterized affine integer tuple relation is as follows [1]

{[s1, s2, . . . , sk]→ [t1, t2, . . . , tk′ ] |
n

∀
i=1
∃αi1, αi2 . . . , αimi s.t. Fi } (1)

where the Fi are conjunctions of affine equalities and inequalities on the input
variables s1, s2, . . . , sk, the output variables t1, t2, . . . , tk′ , the existentially quan-
tified variables αi1, αi2 . . . , αimi , and symbolic constants. The Omega library is
used for computations over such relations [2]. Different operations on relations
are permitted, such as intersection (∩), union (∪), difference (-), domain of re-
lation (domain(R)), range of relation (range(R)), relation application (R(S)),
positive transitive closure R+, transitive closure (R∗ = R+ ∪ I, where I is the
identity relation). These operations are described in detail in [2].

We say a relation is simple if it is represented neither as a union of other
relations nor its constraints include multiple Fi (only one conjunct F is allowed).

An integer tuple relation describes the corresponding graph G = V,E, where
the input and output tuples of the relation represent a set of vertices V of the
graph G while affine equalities and inequalities describe the existence of edges
in the graph, i.e, define set E of edges (an edge exists if corresponding affine
equalities and inequalities are honored for a given pair of vertices represented
with input and output tuples).

The transitive closure of a relation with arbitrary Presburger constraints are
not computable in general [1].

Kelly et al. [1] define a class of relations, called d-form (simple conjunct rela-
tions with constraints only on the difference of the output and input tuples) for
which the transitive closure is easily computable.

According to Kelly et al. [1], a relation R is said to be in d-form if it can be
represented as follows

R={[i1, i2, ..., in]→ [j1, j2, ..., jn] : ∀p, 1 ≤ p ≤ n,

∃αps.t.(Lp ≤ jp − ip ≤ Up ∧ jp − ip=Mpαp},

where Lp and Up are constants and Mp is an integer. If Lp = −∞ or Up = ∞,
the corresponding constraints are omitted.

Because a d-form relation has constraints only on the difference between the
corresponding elements of the input and output tuples, it is described on the
unbounded region.

For multiple conjunct relations (or a union of simple conjunct relations), the
computation of transitive closure is more complex. To our knowledge, it is not
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yet known whether the exact transitive closure of a union of d-form relations
is computable. The solution presented by Kelly et al. [1] is based on heuristics
that guarantee neither calculating the exact result nor its conservative approx-
imation. Approaches proposed by Boigelot in [4] or Kelly et al. in [1] compute
approximations of transitive closures for such relations.

Despite the limited ability to compute relation R+ exactly, some of useful
algorithms have been proposed. They can be divided into iterative, matrix-based,
graph-based, and hybrid algorithms [5]. In this paper, we concentrate on iterative
algorithms that compute the transitive closure of a relation R, R+, by evaluating
the least fixed point of the following equation [5]:

R+ = R+ ◦R ∪R (2)

A simple iterative algorithm for computing the least fixed point is presented be-
low, whereR is the source relation. Algorithm 1 is known to be semi-naive [11,12],
it is clear that after executing each iteration, it produces a more accurate lower
bound of R+ until the result becomes exact.

Algorithm 1. Semi-naive iterative algorithm
R+ ← R
Δ ← R
repeat

Δ ← Δ ◦ R − R+

R+ ← R+ ∪ Δ
until Δ = ∅

Although this technique works in some cases, there is no guarantee of the
termination of the algorithm. For example, the exact transitive closure of the
relation R = {[i]→ [i+1]} cannot be computed using this approach. Computing
the transitive closure of a relation using Algorithm 1 is prohibitively expensive
due to the possible exponential growth in the number of conjuncts. Thus more
sophisticated techniques are required. In the following section, we present an
improvement of Algorithm 1 permitting for increasing its effectiveness.

3 Iterative Algorithm

We suppose that the input of the algorithm presented below is a union of simple
parameterized affine integer tuple relations. To improve Algorithm 1, we suggest
to firstly recognize the class of each simple relation.

In paper [7], we consider the following classes of relations describing depen-
dences in program loops: d-form relations, uniform relations, relations describing
chains only, relations with coupled index variables, relations with non-coupled
index variables, and finally relations with different numbers of index variables
of input and output relation tuples. We propose techniques and implementation
permitting for recognizing these types of relations. When the class of a relation is
recognized, we proceed to the calculation of the transitive closure of this relation
using techniques presented in papers [1,6,7].
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Given a union of simple relations, Algorithm 2 presented below recognizes the
class of each relation, computes its transitive closure and produces the union of
transitive closures of all relations.

Algorithm 2. Recognizing classes of simple relations and calculating the union
of transitive closures of these relations

Input : Rin =
m⋃

i=1

Ri, where m is the number of simple relations

/* input is represented by the union of simple relations */

Output : Rout =
m⋃

i=1

R∗
i

Rout ← ∅
for all relations Ri ∈ Rin do

1 recognize the class of relation Ri using techniques presented in [7] and calcu-
late R∗

i using the appropriate algorithm of those described in [1,6,7]
2 Rout ← Rout ∪ R∗

i

end for
return Rout

Because an iterative algorithm does not always guarantee the convergence to
exact transitive closure, in some cases we may prefer to calculate an upper bound
of transitive closure(its over-approximation) that describes all direct and transi-
tive connections in a graph and some additional connections not existing in the
graph. For this purpose, we need to convert input relations to d -form relations
and calculate the union of transitive closures of these relations. Algorithm 3
realizes this task.

Algorithm 3. Converting input relations to d-form relations and calculating
the union of transitive closures of these relations

Input : Rin =
m⋃

i=1

Ri, where m is the number of simple relations

/* input is represented by the union of simple relations */

Output : Rout =
m⋃

i=1

d∗
i , where di is the approximation of input relation Ri to the

d -form relation described on the unbounded region

Rout ← I /* variable Rout is initialized to the identity relation */
for all relations Ri ∈ Rin do

1 for relation Ri, create d -form relation di of the form
di ← {[s1, s2, . . . , sm] → [t1, t2, . . . , tm] | ∀p, 1 ≤ p ≤ m, ∃αp s.t. Lp ≤ tp −
sp ≤ Up ∧ tp − sp = Mpαp} ,where di is described on the unbounded region,
Lp and Up are constants, and Mp is an integer. If Lp is -∞ or Up is +∞, the
corresponding constraints are not included in the above equation.

2 calculate d∗
i using the algorithm described in [1] as follows

d+
i ← {[s1, s2, . . . , sm] → [t1, t2, . . . , tm] | ∃k > 0 s.t.∀p, 1 ≤ p ≤

m, ∃αp s.t. Lpk ≤ tp − sp ≤ Upk ∧ tp − sp = Mpαp}
3 Rout ← Rout ∪ d+

i

end for
return Rout
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Algorithm 4. Calculating transitive closure of the union of simple relations

Input : Rin =
m⋃

i=1

Ri, where m is the number of simple relations

/* input is represented by the union of simple relations */

N /* the maximal number of iterations to be run */

mode [exact, upper bound ]
/* exact asks for trying to calculate the exact transitive closure of relation Rin while
upper bound asks for calculating an upper bound of transitive closure */

Output : exact R∗
in or its lower or upper bound

if mode is exact then
Rold ← R

′ ← Δ ← Algorithm 2(Rin)
/* variables Rold, R

′
, and Δ are initialized by calling Algorithm 2. */

i ← 1
loop

Rnew ← R
′ ◦ Δ

/* variable Rnew is the composition of relation R
′
and relation Δ */

Δ ← Rnew − Rold

/* the variable Δ is the difference between relations Rnew and Rold */
i ← i + 1
if Δ = ∅ OR i > N then

break /* the algorithm terminates when relation Δ is empty or when the
algorithm meets the maximal number of iterations to be run */

end if
Δ ← Algorithm 2(Δ)
/* Algorithm 2 is called with parameter Δ */
Rold ← Rold ∪ Δ

end loop
if i ≤ N then

R∗ ← Rold

print ”R∗ is exact transitive closure”
else

R∗ ← Rnew

print ”R∗ is a lower bound of transitive closure”
end if
return R∗

else
d∗ ← Algorithm 3(Rin)

R∗ ←
m∏

i=1

d∗
i

/* the variable R∗ is an upper bound of the transitive closure of relation Rin. */
R∗ ← R∗ \ domain(Rin)
/* Restrict the domain of relation R∗ to the domain of relation Rin */
R∗ ← R∗ / range(Rin)
/* Restrict the range of relation R∗ to the range of relation Rin */
print ”R∗ is an upper bound of transitive closure”
return R∗

end if
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Algorithm 4 is the basic iterative algorithm permitting for calculating either
the exact transitive closure of a union of simple relations or its lower or upper
bound.

To prove that (
m∏

i=1
d∗i \ domain(Rin)) / range(Rin) (produced by Algorithm 4)

represents an upper bound of the transitive closure of a union of simple relations,

we take into account the following. Since Ri ∈ di, d =
m⋃

i=1
di, where m is the

number of simple relations in the union of relations, represents an upper bound

for Rin =
m⋃

i=1
Ri. Hence (d∗ \ domain(Rin)) / range(Rin) is an upper bound of

R∗
in. It is well-known that simple uniform relations and relations being formed as

a union of simple uniform relations are commutative [8]. A d -form relation can
be represented as a union of uniform relations on the unbounded space, hence d -
form relations are commutative. Taking into consideration that for commutative
relations the following is true:

i) the operator (∪) is commutative and associative (R1 ∪ R2 = R2 ∪
R1, R1 ∪ (R2 ∪ R3) = (R1 ∪R2) ∪ R3)

ii) the operator (◦) is associative (R1 ◦ (R2 ◦R3) = (R1 ◦R2) ◦R3)
iii) the operator (◦) distributes over (∪) (R1◦(R2 ∪R3) = R1◦R2 ∪R1◦R3)
iv) Rn ∪ Rn = Rn, where n is any integer, we can rewrite

d∗ =
∞⋃

i=0
Ri = I ∪ (d1 ∪ d2 ∪ . . . ∪ dm) ∪ (d1 ∪ d2 ∪ . . . ∪ dm)2 ∪

(d1 ∪ d2 ∪ . . . ∪ dm)3 ∪ . . .
as
d∗ =

m∏
i=0

d∗i .

To illustrate Algorithm 4, let us consider the following example.

R = {[i, 5]→ [i, i+ 7] | 1 ≤ i ≤ n− 7}∪
{[i, 5]→ [i

′
, i+ 7] | 1 ≤ i < i

′ ≤ n ∧ i ≤ n− 7}∪
{[i, j]→ [j − 7, 5] | 1 ≤ i ≤ j − 8 ∧ j ≤ n}∪
{[i, j]→ [i

′
, j] | 1 ≤ i < i

′ ≤ n ∧ 1 ≤ j ≤ n}

The values of differences Δ calculated according to Algorithm 4 are presented
in Table 1.

After three iterations, the algorithm produces the exact transitive closure of
the form:

R∗ = {[i, 5]→ [i
′
, i

′
+ 7] | 1 ≤ i < i

′ ≤ n− 7}∪
{[i, 5]→ [i

′
, j

′
] | i+ 8 ≤ j

′ ≤ i
′
+ 6, n ∧ i′ ≤ n ∧ 1 ≤ i}∪

{[i, j]→ [i
′
, 5] | i+ 8 ≤ j ≤ j ≤ i

′
+ 6, n ∧ i′ ≤ n ∧ 1 ≤ i}∪

{[i, 5]→ [i, i+ 7] | 1 ≤ i ≤ n− 7}∪
{[i, 5]→ [i

′
, i+ 7] | 1 ≤ i < i

′ ≤ n ∧ i ≤ n− 7}∪
{[i, j]→ [j − 7, 5] | 1 ≤ i ≤ j − 8 ∧ j ≤ n}∪
{[i, j]→ [i

′
, j] | 1 ≤ i < i

′ ≤ n ∧ 1 ≤ j ≤ n}∪



110 B. Wlodzimierz et al.

Table 1. Values of differences Δ

i Δ = Rnew − Rold

1
{[i, 5] → [i

′
, i

′
+ 7] | 1 ≤ i < i

′ ≤ n − 7}∪
{[i, 5] → [i

′
, j

′
] | i + 8 ≤ j

′ ≤ i
′
+ 6, n ∧ i

′ ≤ n ∧ i}∪
{[i, j] → [i

′
, 5] | i + 8 ≤ j ≤ i

′
+ 6, n ∧ i

′ ≤ n ∧ 1 ≤ i}

2
{[i, j] → [i

′
, i

′
+ 7] | 1 ≤ i ≤ j − 8 ∧ j − 6 ≤ i

′ ≤ n − 7}∪
{[i, j] → [i

′
, j

′
] | i + 8 ≤ j < j

′ ≤ i
′
+ 6, n ∧ i

′ ≤ n ∧ 1 ≤ i}
3 {[i, j] → [i

′
, j

′
] | FALSE}

{[i, j]→ [i
′
, i

′
+ 7] | 1 ≤ i ≤ j − 8 ∧ j − 6 ≤ i

′ ≤ n− 7}∪
{[i, j]→ [i

′
, j

′
] | i+ 8 ≤ j < j

′ ≤ i
′
+ 6, n ∧ i′ ≤ n ∧ 1 ≤ i}∪

{[i, j]→ [i, j]}

The above result contains ten “union” operators, while calculating R∗ in
Omega according to the algorithm presented in [1] results in an approximation
of R∗ that contains the twelve “union” operators.

4 Experiments

Algorithms 2, 3, and 4 were implemented using the Omega library [2]. The
version of the Omega library permitting for calculating transitive closure using
Algorithms 2, 3, and 4 can be download from: http://www.sfs.zut.edu.pl/
files/omega3.tar.gz.

The following functions were added to the Omega library to produce the exact
transitive closure of an input relation (being represented by a union of simple
relations) or its upper bound:

Relation IterateClosure(Relation &R)

and

Relation ApproxClosure(Relation &R),

where the dimensions of input and output tuples of R are the same. The first
function calculates the exact transitive closure of input relation R or its lower
bound. The second one produces an upper bound of the transitive closure of input
relation R. Because the Omega library does not permit for non-linear constraints
of relations, the current implementation does not permit for maintaining such
constraints in relations.

Transitive closure is a basic operation underlying Iteration Space Slicing tech-
niques to extract coarse-grained parallelism in program loops [9,10]. That is why
we have studied the effectiveness of the presented iterative algorithms by exper-
imenting with program loops of NAS 3.2 [13] benchmarks. We had two goals.
The first one was to recognize the number and percentage of loops for which
the presented algorithms are able to calculate the transitive closure of a union

 http://www.sfs.zut.edu.pl/files/omega3.tar.gz
 http://www.sfs.zut.edu.pl/files/omega3.tar.gz
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of dependence relations. The second goal was to compare obtained results with
whose yielded by Algorithm 1 and the algorithm presented in [1] and being im-
plemented in the Omega library and calculator [2]. Results of experiments are
presented in Table 2.

A dependence relation is a parameterized affine integer tuple relation that
describes all dependences yielded by instances of a single loop statement or a
pair of statements [1]. A set of all dependence relations (being extracted by
a dependence analysis) describes all dependences in a program loop. We used
Petit [2] to extract dependence relations in a program loop. We have considered
only such loops for which Petit was able to carry out a dependence analysis.

Table 2. Results of experiments

All loops Transitive closure algorithm, R∗ Result Loops %

133

Semi-naive iterative algorithm, (Algorithm 1)

exact 92 69%
lower bound 8 6%
upper bound - -

no result 33 25%

Algorithm presented in [1]

exact 64 48%
lower bound - -
upper bound 7 6%

no result 62 46%

Presented algorithm, (Algorithm 4)

exact 96 72%
lower bound - -
upper bound 4 3%

no result 33 25%

In Table 2, “no result” means that the Omega library (used for implementation
of R∗ in all algorithms) fails to produce any result due to the termination of cal-
culation (exceeding the number of equations permitted, exceeding size memory
permitted, or other exceptions). The number of dependence relations extracted
by Petit for some loops exceeds 500, and the Omega library fails to produce any
result in such a case.

The proposed iterative algorithm allowed us to calculate the exact transitive
closure of dependence relations for 72% loops while that described in [1] only for
48% loops. The semi-naive iterative algorithm does not terminate for 6% loops.
It fails to produce transitive closure, because there exists a simple dependence
relation describing dependence graphs of the chain topology, so we can con-
clude that the semi-naive iterative algorithm never stops if there exists a simple
relation in a union of relations that describes a graph of the chain topology.

Let us now consider the following example of R:

R = {[i, j]→ [i+1, j] | 1 ≤ i < n ∧ 1 ≤ j ≤ m}∪
{[i, j]→ [i+1, j+1] | 1 ≤ i < n ∧ 1 ≤ j < m}



112 B. Wlodzimierz et al.

For the above relation, the semi-naive iterative algorithm fails to calculate tran-
sitive closure, while Algorithm 4 does calculate exact R∗.

We have compared the number of conjuncts in the resulting transitive closure
produced by the algorithm described in paper [1] and in that computed according
to Algorithm 4. For 15 loops from NAS 3.2 benchmarks, the number of conjuncts
in transitive closure obtained applying Algorithm 4 is fewer than that produced
by the algorithm presented in [1]. This permits for generating more efficient par-
allel code [10]. For 49 loops, the number of conjuncts in the resulting transitive
closure is the same. Below, we present the transitive closure calculated for the
LU HP pintgr.f2p 3 loop from NAS 3.2 benchmarks. The union of dependence
relations for the LU HP pintgr.f2p 3 loop is as follows

R = {[j, i] → [j
′
, i

′
] | j = j

′ ∧ N3 ≤ i < i
′ ≤ N4 ∧ N1 ≤ j

′ ≤ N2 ∧ N3 ≤
i
′ ∧ i ≤ N4 OR N1 ≤ j < j

′ ≤ N2 ∧N3 ≤ i
′
, i ≤ N4 ∧N1 ≤ j

′ ∧ j ≤ N2}

Algorithm proposed in [1] and implemented in the Omega library outputs the
following result for transitive closure

R∗ = {[j, i] → [j
′
, i

′
] | j = N2 ∧ N1 = N2 ∧ j′ = N2 ∧ N3 ≤ i < i

′ ≤
N4 OR i

′
= i ∧ N3 = i ∧ N4 = i ∧ N1 ≤ j < j

′ ≤ N2 OR N1 ≤ j <
j
′ ≤ N2 ∧N3 ≤ N4− 1, i

′
, i ∧ i ≤ N4 ∧ i′ ≤ N4 OR j

′
= j ∧N3 ≤ i < i

′ ≤
N4 ∧N1 ≤ j ≤ N2 ∧N1 < N2 OR j

′
= j ∧ i′ = i}

while Algorithm 4 yields

R∗ = {[j, i]→ [j
′
, i

′
] | j = j

′ ∧N3 ≤ i < i
′ ≤ N4 ∧N1 ≤ j

′ ≤ N2 OR N1 ≤
j < j

′ ≤ N2 ∧N3 ≤ i
′
, i ≤ N4 OR j

′
= j ∧ i′ = i}

Both the results represent the exact transitive closure of the above relation R,
but that yielded by Algorithm 4 has fewer conjuncts.

5 Conclusion

The presented iterative algorithm for calculating either exact transitive closure
of a union of simple integer tuple relations or its upper bound demonstrates
better effectiveness than that of the algorithm presented in [1] and that yielded
by Algorithm 1. The experimental study carried out with NAS 3.2 benchmarks
showed that it allows us to calculate exact transitive closure for most graphs
representing dependences in program loops. This permits us to extract all coarse-
grained parallelism in those program loops by means of well-known techniques
based of applying exact transitive closure. In our future research, we intend to
advance the presented algorithm in order to improve its convergence.
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Abstract. For a square primitive nonpowerful sign pattern A, the base
of A, denoted by l(A), is the least positive integer l such that every
entry of Al is #. In this paper, we consider the base set of the primitive
nonpowerful sign pattern matrices. Some bounds on the bases for the

sign pattern matrices with base at least
3
2
n2 −2n+4 is given. Some sign

pattern matrices with given bases is characterized and some “gaps” in
the base set are shown.
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1 Introduction

We adopt the standard conventions, notations and definitions for sign patterns
and generalized sign patterns, their entries, arithmetics and powers. The reader
who is not familiar with these matters is referred to [5], [11].

The sign pattern of a real matrix A, denoted by sgn(A), is the (0, 1,−1)-
matrix obtained from A by replacing each entry by its sign. Notice that in the
computations of the entries of the power Ak, an “ambiguous sign” may arise
when we add a positive sign to a negative sign. So a new symbol “#” has been
introduced to denote the ambiguous sign.

For convenience, we call the set Γ = {0, 1, −1, #} the generalized sign set
and define the addition and multiplication involving the symbol # as follows
(the addition and multiplication which do not involve # are obvious):

(−1) + 1 = 1 + (−1) = #, a+ # = # + a = # (for all a ∈ Γ ),

0 ·# = # · 0 = 0, b ·# = # · b = # (for all b ∈ Γ\{0}).
It is straightforward to check that the addition and multiplication in Γ defined in
this way are commutative and associative, and the multiplication is distributive
with respect to addition. It is easy to see that a (0, 1)-Boolean matrix is a non-
negative sign pattern matrix.
� Supported by NSFC(No. 10871166).

�� Corresponding author. Supported by the NSFC (No. 10671074, No. 11075057, No.
11071078 and No. 60673048).
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Definition 1.1. Let A be a square sign pattern matrix of order n with powers
sequence A,A2, · · ·. Because there are only 4n2

different generalized sign pattern
matrices of order n, there must be repetitions in the powers sequence of A. Sup-
pose Al = Al+p is the first pair of powers that are repeated in the sequence.
Then l is called the generalized base (or simply base) of A, and is denoted by
l(A). The least positive integer p such that Al = Al+p holds for l = l(A) is called
the generalized period (or simply period) of A, and is denoted by p(A). For a
square (0, 1)-Boolean matrix A, l(A) is also known as the convergence index of
A, denoted by k(A).

In 1994, Z. Li, F. Hall and C. Eschenbach [5] extended the concept of the base
(or convergence index) and period from nonnegative matrices to sign pattern
matrices. They defined powerful and nonpowerful for sign pattern matrices, gave
a sufficient and necessary condition that an irreducible sign pattern matrix is
powerful and also gave a condition for the nonpowerful case.

Definition 1.2. A square sign pattern matrix A is powerful if all the powers A1,
A2, A3, · · · are unambiguously defined, namely there is no # in Ak (k = 1, 2, · · ·).
Otherwise, A is called nonpowerful.

If A is a sign pattern matrix, then |A| is the nonnegative matrix obtained from
A by replacing aij with |aij |.

Definition 1.3. An irreducible (0, 1)-Boolean matrix A is primitive if there ex-
ists a positive integer k such that all the entries of Ak are non-zero, such least k
is called the primitive index of A, denoted by exp(A) = k. A square sign pattern
matrix A is called primitive if |A| is primitive. The primitive index of A is equal
to exp(|A|), denoted by exp(A).

It is well known that graph theoretical methods are often useful in the study
of the powers of square matrices, so we now introduce some graph theoretical
concepts.

Definition 1.4. Let A be a square sign pattern matrix of order n. The associated
digraph of A, denoted by D(A), has vertex set V = {1, 2, · · ·, n} and arc set
E = {(i, j)|aij �= 0}. The associated signed digraph of A, denoted by S(A), is
obtained from D(A) by assigning sign of aij to arc (i, j) for all i and j. Let S
be a signed digraph of order n and A be a square sign pattern matrix of order
n; A is called associated sign pattern matrix of S if S(A)=S. The associated
sign pattern matrix of a signed digraph S is always denoted by A(S). Note that
D(A) = D(|A|), so D(A) is also called the underlying digraph of the associated
signed digraph of A or is called the underlying digraph of A simply. We always
denote by D(A(S)) or |S| simply for the underlying digraph of a signed digraph
S. Sometimes, |A(S)| is called the associated or underlying matrix of signed
digraph S.

In this paper, we permit loops but no multiple arcs in a signed digraph. Denote
by V (S) the vertex set and denoted by E(S) the arc set for a signed digraph S.
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Let W = v0e1v1e2 · · · ekvk (ei = (vi−1, vi), 1 ≤ i ≤ k) be a directed walk of

signed digraph S. The sign of W , denoted by sgn(W ), is
k∏

i=1
sgn(ei). Sometimes

a directed walk can be denoted simply by W = v0v1 · · · vk, W = (v0, v1, · · ·, vk)
or W = e1e2 · · · ek if there is no ambiguity. The positive integer k is called the
length of the directed walk W , denoted by L(W ). The definitions of directed
cycle and directed path are given in [1]. The length of the shortest directed path
from vi to vj is called the distance from vi to vj in signed digraph S, denoted by
d(vi, vj). A cycle with length k is always called a k-cycle, a cycle with even (odd)
length is called an even cycle (odd cycle). The length of the shortest directed
cycle in digraph S is called the girth of S usually. When there is no ambiguity,
a directed walk, a directed path or a directed cycle will be called a walk, a path
or a cycle. A walk is called a positive walk if its sign is positive, and a walk is
called a negative walk if its sign is negative. If p is a positive integer and if C
is a cycle, then pC denotes the walk obtained by traversing through C p times.
If a cycle C passes through the end vertex of W , W

⋃
pC denotes the the walk

obtained by going along W and then going around the cycle C p times; pC
⋃
W

is similarly defined. We use the notation v k−→ u (v
k

�−→ u) to denote that there
exists (exists no) a directed walk with length k from vertex v to u. For a digraph
S, let Rk(v) = {u| v k−→ u, u ∈ V (S)} and Rt(v)

k−→ u mean that there exists
a s ∈ Rt(v) such that s k−→ u.

Definition 1.5. Assume that W1, W2 are two directed walks in signed digraph
S, they are called a pair of SSSD walks if they have the same initial vertex, the
same terminal vertex and the same length, but they have different signs.

From [5] or [11], we know that a signed digraph S is powerful if and only if there
is no pair of SSSD walks in S.

Definition 1.6. A strongly connected digraph G is primitive if there exists a
positive integer k such that for all vertices vi, vj ∈ V (G) (not necessarily dis-
tinct), there exists a directed walk of length k from vi to vj. The least such k is
called the primitive index of G, and is denoted by exp(G). Let G be a primitive
digraph. The least l such that there is a directed walk of length t from vi to vj

for any integer t ≥ l is called the local primitive index from vi to vj , denoted by
expG(vi, vj) = l. Similarly, expG(vi) = max

vj∈V (G)
{expG(vi, vj)} is called the local

primitive index at vi, so exp(G) = max
vi∈V (G)

{expG(vi)}.

For a square sign pattern A, let Wk(i, j) denote the set of walks of length k
from vertex i to vertex j in S(A); notice that the entry (Ak)ij of Ak satisfies
(Ak)ij =

∑
W∈Wk(i,j)

sgn(W ). Then we have

(1) (Ak)ij = 0 if and only if there is no walk of length k from i to j in S(A)
(i.e., Wk(i, j) = φ);
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(2) (Ak)ij = 1 (or −1) if and only if Wk(i, j) �= φ and all walks in Wk(i, j)
have the same sign 1 (or −1);

(3) (Ak)ij = # if and only if there is a pair of SSSD walks of length k from
i to j.

So the associated signed digraph can be used to study the properties of the
powers sequence of a sign pattern matrix, and the signed digraph is taken as the
tool in this paper. From the relation between sign pattern matrices and signed
digraphs, we know that it is logical to define a sign pattern A to be primitive
and to define exp(A) = exp(D(A)) = exp(|A|) if A is primitive.

Definition 1.7. A signed digraph S is primitive and nonpowerful if there exists
a positive integer l such that for any integer t ≥ l, there is a pair of SSSD
walks of length t from any vertex vi to any vertex vj (vi, vj ∈ V (S)). Such least
integer l is called the base of S, denoted by l(S). Let S be a primitive nonpowerful
signed digraph of order n. Let u, v ∈ V (S). The local base from u to v, denoted
by lS(u, v), is defined to be the least integer k such that there is a pair of SSSD
walks of length t from u to v for any integer t ≥ k. The local base at a vertex
u ∈ V (S) is defined to be lS(u) = max

v∈V (S)
{lS(u, v)}. So

l(S) = max
u∈V (S)

lS(u) = max
u,v∈V (S)

lS(u, v).

Therefore, a sign pattern A is primitive nonpowerful if and only if S(A) is primi-
tive nonpowerful, and the base l(A) = l(S(A)) is the least positive integer l such
that every entry of Al is #.

From [5], we know that l(A) = l(|A|) for a powerful sign pattern A. So l(A) =
exp(A) if A is a primitive powerful sign pattern. Moreover, if A is a powerful
sign pattern, then A is primitive if and only if every real matrix B in Q(A)
(Q(A) = {B| real matrix B with pattern A}) is primitive. Thus, when A is a
primitive, powerful sign pattern, every real matrix B with pattern A is primitive,
has D(B) = D(A), and has exp(B) = exp(D(|A|)). But we say that the result
about the base of a powerful sign pattern fails to hold for a nonpowerful sign
patterns, see an example as follow:

A =
(

1 1
−1 1

)
.

Note that A is trivially primitive sinceD(A) has all possible arcs, that l(|A|) = 1,
that A2 contains no 0, but l(A) = 3. In particular, a real matrix B with sign
pattern A can behave very differently from A:

B =
(

1 1
−1 1

)
gives B4 = −4I, which means B is not primitive in the usual sense. So the
treatments of the bases about the nonpowerful sign patterns require greater
care than the treatments for the powerful sign patterns.
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Let S be a primitive nonpowerful signed digraph of order n and V (S) =
{1, 2, · · · , n}; for convenience, the vertices can be ordered so that lS(1) ≤ lS(2) ≤
· · · ≤ lS(n). We call lS(k) the kth local base of S. Thus l(S) = lS(n) and it is
easy to see that lS(k) is the smallest integer l such that there are k all � rows in
[A(S)]l. Similarly, expG(k) is defined to be the smallest integer l such that there
are l all “1” rows in |A(G)|l for a primitive digraph G.

Primitivity, base, local base, extremal patterns and other properties of powers
sequence of a square sign pattern matrix are of great significance. The bases
of sign patterns are closely related to many other problems in various areas
of pure and applied mathematics (see [3], [4], [6], [7], [9], [12]). In practice,
we consider the memoryless communication system [6] in communication field,
which is depicted as a digraph D of order n. If D is primitive, the least time t
such that each vertex in D receive the n pieces of different information from any
vertex is equal to the index of D. If D is a primitive non-powerful signed digraph,
the least time t such that each vertex in D receive the n pieces of ambiguous
information from any vertex is just equal to the base of D. So studying the
bases of the primitive non-powerful signed digraphs is very useful in information
communication field, and hence studying the bases of the primitive non-powerful
signed digraphs is also very useful for net works and theoretical computer science.

This paper is organized as follows: Section 1 introduces the basic ideas of
patterns and their supports. Section 2 introduces series of working lemmas. Sec-
tion 3 and Section 4 characterize the cycle properties in the associated signed
digraphs and some bounds about the bases for the sign pattern matrices with

base at least
3
2
n2 − 2n + 4. Section 5 characterizes some sign pattern matrices

with given bases and shows that there are some “gaps” in the base set.

2 Preliminaries

Let S be a strongly connecte digraph of order n and C(S) denote the set of all
cycle lengths in S.

Definition 2.1. Let {s1, s2, · · ·, sλ} be a set of distinct positive integers,
gcd(s1, s2, · · ·, sλ) = 1. The Frobenius number of s1, s2, · · ·, sλ, denoted by

φ(s1, s2, · · · , sλ), is the smallest positive integer m such that k =
λ∑

i=1
aisi for

any positive integer k ≥ m where ai (i = 1, 2, · · · , λ) is non-negative integer.

Lemma 2.2. ([6]) If gcd(s1, s2) = 1, then φ(s1, s2) = (s1 − 1)(s2 − 1).

From Definition 2.1, it is easy to know that φ(s1, s2, · · · , sλ) ≤ φ(si, sj) if there
exist si, sj ∈ {s1, s2, · · ·, sλ} such that gcd(si, sj) = 1. So, if min{si : 1 ≤ i ≤
λ} = 1, then φ(s1, s2, · · · , sλ) = 0.

Lemma 2.3. ([4]) A Boolean matrix A is primitive if and only if D(A) is
strongly connected and gcd(p1, p2, · · · , pt) = 1 where C(D(A)) = {p1, p2, · · · , pt}.
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Definition 2.4. For a primitive digraph S, suppose C(S) = {p1, p2, . . ., pu}.
Let dC(S)(vi, vj) denote the length of the shortest walk from vi to vj which meets
at least one pi-cycle for each i (i = 1, 2, · · · , u). Such shortest directed walk
is called a C(S)-walk from vi to vj. Further, dC(S)(vi), d1(C(S)) and d(C(S))
are defined as follows: dC(S)(vi) = max{dC(S)(vi, vj): vj ∈ V (S)}, d(C(S)) =
max{dC(S)(vi, vj): vi, vj ∈ V (S)}, di(C(S)) (1 ≤ i ≤ n) is the ith smallest one
in {dC(S)(vi)|1 ≤ i ≤ n}, dn(C(S)) = d(C(S)). In particular, if C(S) = {p, q},
d(C(S)) can be simply denoted by d{p, q}.
Lemma 2.5. ([2]) Let S be a primitive digraph of order n and C(S) = {p1, p2,
. . ., pu}. Then exp(vi, vj) ≤ dC(S)(vi, vj) + φ(p1, p2, . . . , pu) for vi, vj ∈ V (S).
We have exp(S) ≤ d(C(S)) + φ(p1, p2, . . . , pu) furthermore.

Lemma 2.6. ([2]) Let S be a primitive digraph of order n whose girth is s.
Then expS(k) ≤ s(n− 2) + k for 1 ≤ k ≤ n.

Lemma 2.7. ([8]) Let S be a primitive digraph of order n and |C(S)| ≥ 3.

Then expS(k) ≤ �1
2
(n− 2)2�+ k for 1 ≤ k ≤ n.

Lemma 2.8. Let D be a primitive digraph of order n which has a s−cycle C,
v ∈ V (C), and |R1(v)| ≥ 2. Then exp(1) ≤ exp(v) ≤ 1 + s(n− 2).

Proof. We can take w, z ∈ R1(v) such that (v, w) ∈ E(C) and (v, z) /∈ E(C)
because of v ∈ V (C) and |R1(v)| ≥ 2. We consider strongly connected digraph
Ds (where A(Ds) = [A(D)]s) in which the arc corresponds to the walk of length
s in S. In Ds, w has a loop and there is arc (w, z). Thus R1(v)

n−2−→ u for any
vertex u in Ds. So there exists a walk of length 1 + s(n − 2) from vertex v to
any vertex u in D. �

Lemma 2.9. ([11]) Let S be a primitive nonpowerful signed digraph. Then S
must contain a p1-cycle C1 and a p2-cycle C2 satisfying one of the following two
conditions:

(1) pi is odd, pj is even and sgnCj = −1 (i, j = 1, 2; i �= j).
(2) p1 and p2 are both odd and sgnC1 = −sgnC2.

C1, C2 satisfying condition (1) or (2) are always called a distinguished cycle pair.
It is easy to prove that W1 = p2C1 and W2 = p1C2 have the same length p1p2
but different signs if p1-cycle C1 and p2-cycle C2 are a distinguished cycle pair,
namely (sgnC1)p2 = −((sgnC2)p1).

Lemma 2.10. ([12])Let S be a primitive signed digraph. Then S is nonpowerful
if and only if S contains a distinguished cycle pair.

Lemma 2.11. ([12])Let S be a primitive nonpowerful signed digraph of order
n and C(S) = {p1, p2, . . ., pm}. If the cycles in S with the same length have the
same sign, p1-cycle C1 and p2-cycle C2 form a distinguished cycle pair, then

(i) lS(vi, vj) ≤ dC(S)(vi, vj) + φ(p1, p2, . . . , pm) + p1p2, vi, vj ∈ V (S).
(ii) lS(vi) ≤ dC(S)(vi) + φ(p1, p2, . . . , pm) + p1p2.
(iii) l(S) ≤ d(C(S)) + φ(p1, p2, . . . , pm) + p1p2.



120 G. Yu, Z. Miao, and J. Shu

Lemma 2.12. ([10])Let S be a primitive nonpowerful signed digraph of order
n and u ∈ V (S). If there exists a pair of SSSD walks with length r from u to
u, then lS(u) ≤ expS(u) + r.

Lemma 2.13. ([10])Let S be a primitive nonpowerful signed digraph of order
n. Then we have lS(k) ≤ lS(k − 1) + 1 for 2 ≤ k ≤ n.

Let D1 consist of cycle (vn, vn−1, · · · , v2, v1, vn) and arc (v1, vn−1) and D2 =
D1

⋃
{(v2, vn)}. Then we have the following lemmas 2.14, 2.15.

Lemma 2.14. ([11])Let S2 be a nonpowerful signed digraph of order n ≥ 3 with
D2 as its underlying digraph. Then we have

(1) if the (only) two cycles of length n − 1 of S2 have different signs, then
l(S2) ≤ n2 − n+ 2;

(2) if the two cycles of length n − 1 of S2 have the same sign, then l(S2) =
2(n− 1)2 + (n− 1).

Lemma 2.15. ([11])Let A be an irreducible generalized sign pattern matrix of
order n ≥ 3. Then

(i) l(A) ≤ 2(n− 1)2 + n; (1)
(ii) equality holds in (1) if and only if A is a nonpowerful sign pattern matrix

and the associated digraph D(A) of A is isomorphic to D1;
(iii) for each integer k with 2n2 − 4n + 5 < k < 2n2 − 3n + 1, there is no

irreducible generalized sign pattern matrix A of order n with l(A) = k.

3 Cycle Properties

Theorem 3.1. Let S be a primitive nonpowerful signed digraph of order n ≥ 6

whose underlying digraph is |S|. If |C(S)| ≥ 3, then l(S) ≤ 3
2
n2 − 2n+ 3.

Proof. By Lemma 2.9, there exists a distinguished cycle pair p1-cycle C1 and
p2-cycle C2 in S, p1C2 and p2C1 have different signs.

Case 1. C1, C2 have no common vertex.
Then p1 + p2 ≤ n. Suppose p1 ≤ n

2
for convenience, Q1 is one of the

shortest walks with length q1 from C1 to C2, {v1} = V (Q1)
⋂
V (C1), {v2} =

V (Q1)
⋂
V (C2), and Q2 is one of the shortest walks with length q2 from v2 to

v1, then q1 ≤ n− p1 − p2 + 1, q2 ≤ n− 1, p2C1
⋃
Q1

⋃
Q2 and Q1

⋃
p1C2

⋃
Q2

are a pair of SSSD walks with length p1p2 + q1 + q2 from v1 to v1.
Note that

p1p2 + q1 + q2 ≤ p1p2 + 2n− p1 − p2 = (p1 − 1)(p2 − 1) + 2n− 1

≤ [
1
2
(p1 + p2 − 2)]2 + 2n− 1 ≤ [

1
2
(n− 2)]2 + 2n− 1 =

n2

4
+ n,
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and exp(v1) ≤ p1(n− 2) + 1 by Lemma 2.8, then

lS(1) ≤ lS(v1) ≤ expS(v1) + p1p2 + q1 + q2 ≤
n

2
(n− 2) + 1 +

n2

4
+ n =

3n2

4
+ 1

and lS(n) ≤ lS(1) + n− 1 ≤ 3n2

4
+ n by Lemmas 2.12, 2.13.

Case 2. C1, C2 have common vertices.
Subcase 2.1. p1 = p2. It is easy to see that p1 is odd.
1◦ p1 = n, let v1 ∈ V (S), expS(v1) =expS(1). The underlying digraph |S| is

not isomorphic to D1 or D2 because |C(S)| ≥ 3. Thus the girth s of S is at most
n−2. By Lemma 2.8, then expS(1) = exp(v1) ≤ s(n−2)+1 ≤ (n−2)2 +1. Note
that C1 and C2 form a pair of SSSD walks from v1 to itself now, by Lemmas
2.12, 2.13, then

lS(1) ≤ lS(v1) ≤ n+(n−2)2+1 = n2−3n+5, lS(n) ≤ lS(1)+n−1 ≤ n2−2n+4.

2◦ p1 ≤ n − 1, suppose v1 ∈ V (C1)
⋂
V (C2) and |R1(v1)| ≥ 2. By Lemmas

2.8, 2.12, 2.13, then

expS(v1) ≤ p1(n−2)+1 ≤ n2−3n+3, lS(1) ≤ lS(v1) ≤ p1+expS(v1) ≤ n2−2n+2

and lS(n) ≤ lS(1) + n− 1 ≤ n2 − n+ 1.
Subcase 2.2. Min(p1, p2) = p1 ≤ n− 2.
Suppose V (C1)

⋂
V (C2) = {v1, v2, · · · , vt} and expD(u) =expD(1). Because

of |C(S)| ≥ 3, so expS(u) ≤ �1
2
(n − 2)2� + 1 by Lemma 2.7. Let qi = d(u, vi),

1 ≤ i ≤ t and suppose q1 = min
1≤i≤t

{qi} for convenience, then q1 ≤ n − (p1 +

p2 − t) + p2 − t = n − p1. So there exists a pair of SSSD walks with length
q1 + d(v1, u) + p1p2 from u to u. Because of

d(v1, u) ≤ n− 1, q1 + d(v1, u) + p1p2 ≤ 2n − 1 + p1(p2 − 1) ≤ 2n− 1 + (n− 2)(n− 1) ≤ n2 − n + 1,

so

lS(1) ≤ lS(u) ≤ q1+d(v1, u)+p1p2+expS(u) ≤ �1
2
(n−2)2�+1+n2−n+1 ≤ 3n2

2
−3n+4

by Lemma 2.12 and lS(n) ≤ lS(1) + n− 1 ≤ 3n2

2
− 2n+ 3 by Lemma 2.13.

Subcase 2.3. {p1, p2} ={n− 1, n}.
Let C1 = Cn−1, C2 = Cn. Suppose expS(u) =expD(1) for convenience, then

expS(u) ≤ 1
2
(n − 2)2 + 1 by Lemma 2.7. Because there exists a pair of SSSD

walks with length n(n − 1) from u to u if u ∈ V (Cn−1), by Lemmas 2.12 and
2.13, so

lS(1) ≤ lS(u) ≤ (n− 2)2

2
+ 1 + n(n− 1) =

3n2 − 6n
2

+ 3, lS(n) ≤ 3n2

2
− 2n+ 2.
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If u /∈ V (Cn−1), there exists a vertex v ∈ V (S) towards u such that (v, u) is

an arc in S and v ∈ V (Cn−1). Then expS(v) ≤ expS(u) + 1 ≤ 1
2
(n − 2)2 + 2.

Because there exists a pair of SSSD walks of length n(n − 1) from v to v, by
Lemmas 2.12 and 2.13, so

lS(1) ≤ lS(v) ≤ (n− 2)2

2
+2+n(n−1) =

3n2 − 6n
2

+4, lS(n) ≤ 3n2

2
−2n+3. �

Corollary 3.2. Let S be a primitive nonpowerful signed digraph of order n ≥ 6.

Then |C(S)| = 2 if l(S) ≥ 3
2
n2 − 2n+ 4.

Theorem 3.3. Let S be a primitive nonpowerful signed digraph of order n ≥ 6.
Cycle C1 with length p1 and cycle C2 with length p2 form a distinguished cycle

pair (p1 ≤ p2). If p1 + p2 ≤ n, then l(S) ≤ 3
4
n2 + n.

Proof. Case 1. C1 and C2 have no common vertex.

As proved in case 1 of Theorem 3.1, lS(n) ≤ 3
4
n2 + n can be obtained.

Case 2. C1 and C2 have at least one common vertex.

Subcase 2.1. If p1 = p2, then p1 ≤
1
2
n. Let v1 ∈ V (C1)

⋂
V (C2) and

|R1(v1)| ≥ 2. By Lemmas 2.8, 2.12, 2.13, then expS(v1) ≤ p1(n − 2) + 1 ≤
1
2
n2 − n + 1, lS(1) ≤ lS(v1) ≤ p1 + expS(v1) ≤

1
2
n2 − 1

2
n + 1 and lS(n) ≤

lS(1) + n− 1 ≤ 1
2
n2 +

1
2
n.

Subcase 2.2. If p1 < p2, then p1 <
1
2
n. Let v1 ∈ V (C1)

⋂
V (C2) and

|R1(v1)| ≥ 2. Similar to Subcase 2.1, note that there is a pair of SSSD walks with

length p1p2 from v1 to itself and p1p2 ≤ (
p1 + p2

2
)2, we get lS(v1) < 3

4n
2−n+ 1

and lS(n) <
3
4
n2. �

Corollary 3.4. Let S be a primitive nonpowerful signed digraph of order n ≥ 6.
Cycle C1 with length p1 and cycle C2 with length p2 form a distinguished cycle

pair (p1 ≤ p2). Then p1 + p2 > n if l(S) ≥ 3
4
n2 + n+ 1.

Theorem 3.5. Let S be a primitive nonpowerful signed digraph with order n ≥
3. If there exist two cycles with the same length but different signs, then we have
l(S) ≤ n2.

Proof. Let C1 and C2 be two cycles such that L(C1) = p = L(C2) but sgn(C1)=-
sgn(C2).

Case 1. C1 and C2 have at least one common vertex.
Let v1 ∈ V (C1)

⋂
V (C2) and |R1(v1)| ≥ 2. Note that p ≤ n and there is a pair

of SSSD walks with length p from v1 to itself, similar to the proof in Subcase
2.1 of Theorem 3.3, we get lS(v1) ≤ n2 − n+ 1 and lS(n) ≤ n2.
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Case 2. C1 and C2 have no common vertex. Then p ≤ n

2
.

Let Q1 be one of the shortest walks with length q1 from C1 to C2,
V (Q1)

⋂
V (C1) = {v1}, V (Q1)

⋂
V (C2) = {v2} and Q2 is one of the short-

est walks with length q2 from v2 to v1. Then q1 ≤ n − 2p + 1, q2 ≤ n − 1.
C1 + Q1 + Q2 and C2 + Q1 + Q2 are a pair of SSSD walks with length
p + q1 + q2 from v1 to v1. Similar to Subcase 2.1 of Theorem 3.3, we get

expS(v1) ≤ p(n− 2) + 1, lS(v1) ≤
n2

2
+
n

2
+ 1 and lS(n) ≤ n2

2
+

3n
2
.

To sum up, the theorem is proved. �

Corollary 3.6. Let S be a primitive nonpowerful signed digraph of order n ≥ 6.
Then any two cycles with the same length have the same sign if l(S) ≥ n2 + 1.

Theorem 3.7. Let A be a primitive nonpowerful square sign pattern matrix

with order n ≥ 6. If l(A) ≥ 3
2
n2 − 2n+ 4, then we have the results as follows:

(i)|C(S(A))| = 2. Suppose C(S(A)) = {p1, p2} (p1 < p2), then gcd(p1, p2) =
1, p1 + p2 > n;

(ii) In S(A), all p1−cycles have the same sign, all p2-cycles have the same
sign, and every pair of p1-cycle and p2-cycle form a distinguished cycle pair.

Proof. The theorem follows from Corollaries 3.2, 3.4, 3.6. �

4 Bounds of the Bases

Lemma 4.1. Let A be a primitive nonpowerful square sign pattern matrix with
order n ≥ 6. If C(S(A)) = {p1, p2} (p1 < p2, p1 + p2 > n), all p1-cycles have the
same sign, all p2-cycles have the same sign in S(A), then l(A) ≤ 2n−1+(2p1−
1)(p2 − 1).

Especially, if p1 = n− 1, p2 = n, then l(A) ≤ 2n2 − 3n+ 2.

Proof. Let C1, C2 form a distinguished cycle pair and L(C1) = p1, L(C2) = p2
in S(A). Suppose V (C1)

⋂
V (C2) = {v1, v2, · · · , vt}. Let d0 = min

1≤i≤t
{d(x, vi)} for

x ∈ V (S(A)). Thus d0 ≤ n− (p1 + p2 − t) + p2 − t = n − p1. Let d0 = d(x, vk)
(1 ≤ k ≤ t), then d(vk, y) ≤ n − 1 for y ∈ V (S(A)). So there exist a pair of
SSSD walks of length d0 + φ(p1, p2) + p1p2 + d(vk, y) (d0 + φ(p1, p2) + p1p2 +
d(vk, y) ≤ 2n − 1 + (2p1 − 1)(p2 − 1)) from x to y. Because x, y are arbitrary,
thus l(S(A)) ≤ 2n− 1+ (2p1− 1)(p2− 1). Therefore, the lemma is proved. �

Theorem 4.2. Let A be a primitive nonpowerful square signed pattern matrix

with order n ≥ 10. If l(A) ≥ 3
2
n2−2n+4 and the girth of S(A) is at most n−3,

then l(A) ≤ 2n2 − 7n+ 6.

Proof. Note that minC(S(A)) ≤ n− 3, then the theorem follows from Theorem
3.7 and Lemma 4.1. �
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5 Gaps and Some Digraphs with Given Bases

Theorem 5.1. Let Dk,i consist of cycle Cn = (v1, vn, vn−1, vn−2, . . ., v2, v1)
and arcs (v1, vn−k), (v2, vn−k+1), . . ., (vi, vn−k+i−1) (1 ≤ i ≤ min{k + 1, n−
k− 1}) (see Fig. 1) where gcd(n, n− k) = 1. Let Sk,i be a primitive nonpowerful
signed digraph with underlying digraph Dk,i (1 ≤ i ≤ min{k+1, n−k−1}). If all
(n−k)-cycles have the same sign in Sk,i, then l(Sk,i) = (2n−2)(n−k)+1−i+n.
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v1

vn

vn−1

v2
vi

vn−k

vn−k+1

vn−k+i−1

Fig. 1. Dk,i

Proof. Every pair of (n − k)-cycle and n-cycle form a distinguished cycle pair
because Sk,i is a primitive nonpowerful signed digraph.

Case 1. i− 1 < k. Then n− k + i− 1 < n.
Now d(C(Sk,i)) = dC(Sk,i)(vn, vn−k+i) = n+ k − i, by Lemma 2.11, then

l(Sk,i) ≤ d(C(Sk,i)) + φ(n, n− k) + n(n− k) = (2n− 2)(n− k) + 1− i+ n.

We assert l(Sk,i) = (2n− 2)(n− k)+ 1− i+n. Now we prove that there is no
pair of SSSD walks of length (2n− 2)(n− k)− i+ n from vn to vn−k+i.

Otherwise, suppose W1,W2 are a pair of SSSD walks with length (2n −
2)(n−k)− i+n from vn to vn−k+i. Let P be the unique path from vn to vn−k+i

on cycle Cn and W = P
⋃
Cn. Then Wj (j = 1, 2) must consist of W , some

n-cycles and some (n − k)-cycles, namely, |Wj | = (2n − 2)(n − k) − i + n =
n+ k − i+ ain+ bi(n− k) (aj , bj ≥ 0, j = 1, 2). Because of gcd(n, n− k) = 1,
so (a1 − a2)n = (b2 − b1)(n − k), n|(b2 − b1), (n − k)|(a1 − a2), and then
b2 − b1 = nx, a1 − a2 = (n− k)x for some integer x.

We assert x = 0. If x ≥ 1, then b2 ≥ n. Thus we have

(2n− 2)(n− k)− i+ n = n+ k − i+ a2n+ (b2 − n)(n− k) + n(n− k)

and φ(n, n− k)− 1 = a2n+ (b2 − n)(n− k), which contradicts the definition of
φ(n, n − k). In a same way, we can get analogous contradiction when x ≤ −1.
The assertion x = 0 is proved. So W1,W2 have the same sign because b2 =
b1, a1 = a2 and all (n − k)−cycles have the same sign. This contradicts that
W1,W2 are a pair of SSSD walks. Thus there is no pair of SSSD walks of length
(2n− 2)(n− k)− i+ n from vn to vn−k+i, and so

l(Sk,i) = lSk,i
(vn, vn−k+i) = (2n− 2)(n− k) + 1 + n− i.
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Case 2. k = i− 1. Then n− k + i− 1 = n.
Now d(C(Sk,i)) = dC(Sk,i)(vn, v1) = n − 1. As the proof of case 1, we can

prove

l(Sk,i) = lSk,i
(vn, v1) = (2n− 2)(n− k) + 1 + n− i. �

Suppose that n is odd, let L consist of cycle Cn = (v1, vn , vn−1, vn−2, vn−3, . . .,
v2, v1) (n ≥ 6) and arcs (v1, vn−2), (v3, vn). Let F consist of cycle Cn−1 = (v1,
vn , vn−1, vn−3, vn−4, . . ., v2, v1) (n ≥ 6) and arcs (v1, vn−2), (vn−2, vn−3).
Let F1 consist of cycle (v1, vn−1, vn−2, . . ., v2, v1) and arcs (v1, vn−2), (v2, vn),
(vn, vn−1). Let F2 consist of cycle (v1, vn, vn−2, vn−3, vn−4, . . ., v2, v1) and
arcs (v1, vn−2), (vn, vn−1), (vn−1, vn−3). Let F3 consist of cycle (v1, vn−2, vn−3,
vn−4, . . ., v2, v1) and arcs (v1, vn−1), (vn−1, vn−2), (v1, vn), (vn, vn−2). Let F

′
i

(2 ≤ i ≤ n− 3) consist of cycle (v1, vn−1, vn−2, . . ., v2, v1) and arcs (v1, vn−2),
(vi+1, vn), (vn, vi−1). Let F4 consist of cycle (v1, vn−1, vn−2, . . ., v2, v1) and
arcs (v1, vn−2), (v1, vn), (vn, vn−3). Let F5 consist of cycle (v1, vn−1, vn−2, . . .,
v2, v1) and arcs (v1, vn−2), (v2, vn), (vn, vn−2). Let F6 consist of cycle (v1, vn−1,
vn−2, . . ., v2, v1) and arcs (v1, vn), (vn, vn−3), (v2, vn−1). Let F7 consist of cycle
(v1, vn−1, vn−2, . . ., v2, v1) and arcs (v1, vn−2), (v3, vn), (vn, vn−1). Let B1
consist of cycle Cn = (v1, vn, vn−1, . . ., v2, v1) and arcs (v1, vn−3), (v3, vn−1).
Let B2 consist of cycle Cn = (v1, vn, vn−1, . . ., v2, v1) and arcs (v1, vn−3), (v4,
vn). Let B3 consist of cycle Cn = (v1, vn, vn−1, . . ., v2, v1) and arcs (v1, vn−3),
(v2, vn−2), (v4, vn). Let B3 consist of cycle Cn = (v1, vn, vn−1, . . ., v2, v1) and
arcs (v1, vn−3), (v2, vn−2), (v4, vn). Let B4 consist of cycle Cn = (v1, vn, vn−1,
. . ., v2, v1) and arcs (v1, vn−3), (v3, vn−1), (v4, vn).

Suppose that n is odd, let T be a primitive nonpowerful signed digraph with
underlying digraph L , all (n − 2)-cycles have the same sign in T . Let S0 be
a primitive nonpowerful signed digraph with underlying digraph F , all (n− 1)-
cycles have the same sign, all (n − 2)-cycles have the same sign in S0. Let
S1 be a primitive nonpowerful signed digraph with underlying digraph F1, all
(n − 1)-cycles have the same sign, all (n − 2)-cycles have the same sign in S1.
Let S2 be a primitive nonpowerful signed digraph with underlying digraph F2,
all (n−1)-cycles have the same sign, all (n−2)-cycles have the same sign in S2.
Let S3 be a primitive nonpowerful signed digraph with underlying digraph F3,
all (n−1)-cycles have the same sign, all (n−2)-cycles have the same sign in S3.
Let S4 be a primitive nonpowerful signed digraph with underlying digraph F4,
all (n−1)-cycles have the same sign, all (n−2)-cycles have the same sign in S4.
Let S5 be a primitive nonpowerful signed digraph with underlying digraph F5,
all (n−1)-cycles have the same sign, all (n−2)-cycles have the same sign in S5.
Let S6 be a primitive nonpowerful signed digraph with underlying digraph F6,
all (n−1)-cycles have the same sign, all (n−2)-cycles have the same sign in S6.
Let S7 be a primitive nonpowerful signed digraph with underlying digraph F7,
all (n−1)-cycles have the same sign, all (n−2)-cycles have the same sign in S7.
Let Si be a primitive nonpowerful signed digraph with underlying digraph F

′
i ,

all (n−1)-cycles have the same sign, all (n−2)-cycles have the same sign in Si.
Let Q1 be a primitive nonpowerful signed digraph with underlying digraph B1,



126 G. Yu, Z. Miao, and J. Shu

all (n− 3)-cycles have the same sign in Q1. Let Q2 be a primitive nonpowerful
signed digraph with underlying digraph B2, all (n − 3)-cycles have the same
sign in Q2. Let Q3 be a primitive nonpowerful signed digraph with underlying
digraph B3, all (n− 3)-cycles have the same sign in Q3. Let Q4 be a primitive
nonpowerful signed digraph with underlying digraph B4, all (n− 3)-cycles have
the same sign in Q4.

Similar to the proof of Theorem 5.1, we can prove the following Theorem 5.2:

Theorem 5.2. Let S be a primitive nonpowerful signed digraph with order n.
Then

l(S) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2n2 − 5n+ 2, S = T , n is odd;
2n2 − 7n+ 8, S ∈ {S0,S1,S2};
2n2 − 7n+ 7, S ∈ {S3, · · · ,S7}

⋃
{Si|2 ≤ i ≤ n− 3};

2n2 − 7n+ 4, S = Q1;
2n2 − 7n+ 3, S ∈ {Q2,Q3,Q4}.

Theorem 5.3. Let A be a primitive nonpowerful square sign pattern matrix
with order n(n ≥ 10). Then we have:

(1) There is no A such that l(A) ∈ [2n2 − 7n+ 9, 2n2 − 3n] if n is a positive
even integer.

(2) If n is a positive odd integer, then
(i) There is no A such that l(A) ∈ ([2n2− 7n+ 9, 2n2− 5n+ 1]

⋃
[2n2− 5n+

5, 2n2 − 3n]);
(ii) l(A) = 2n2 − 5n+ 4 if and only if D(A) ∼= D2,1;
l(A) = 2n2 − 5n + 3 if and only if D(A) ∼= D2,2, the cycles with the same

length have the same sign in S(A);
l(A) = 2n2−5n+2 if and only if D(A) ∼= D2,3 or D(A) ∼= L , the cycles with

the same length have the same sign in S(A);
(3) For any integer n ≥ 10, l(A) = 2n2 − 7n + 8 if and only if D(A) is

isomorphic to one in {F , F1, F2}, the cycles with the same length have the same
sign in S(A);
l(A) = 2n2 − 7n+ 7 if and only if D(A) is isomorphic to one in {F3, F4, F5,

F6, F7}
⋃
{F ′

i | 2 ≤ i ≤ n − 3}, the cycles with the same length have the same
sign in S(A).

(4) {2n2 − 7n + m| 3 ≤ m ≤ 6} ⊂ En if gcd(n, n − 3) = 1 (namely 3 	 n),
where En = {l(A)| A is a primitive nonpowerful square sign pattern matrix with
order n (n ≥ 10)}.

Proof. Note that n ≥ 10, then 2n2 − 7n + 7 ≥ 3
2
n2 − 2n + 4. By Theorem

3.7, then C(S(A)) = {p1, p2}, p1 < p2, p1 + p2 > n, all p1−cycles have the same
sign, all p2−cycles have the same sign in S(A). By Theorem 4.2, we know that
l(A) ≤ 2n2 − 7n+ 6 if p1 ≤ n− 3. So, if l(A) ≥ 2n2 − 7n+ 7, there are just the
following possible cases:

(1) p2 = n, p1 = n− 1;
(2) p2 = n, p1 = n− 2;
(3) p2 = n− 1, p1 = n− 2.
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Note that l(S3,i) = 2n2 − 7n + 7 − i (1 ≤ i ≤ 4), then the theorem follows
from the Lemmas 2.14, 2.15 and Theorems 5.1, 5.2. �
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Extended Dynamic Subgraph Statistics
Using h-Index Parameterized Data Structures
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Abstract. We present techniques for maintaining subgraph frequencies in a dy-
namic graph, using data structures that are parameterized in terms of h, the h-
index of the graph. Our methods extend previous results of Eppstein and Spiro for
maintaining statistics for undirected subgraphs of size three to directed subgraphs
and to subgraphs of size four. For the directed case, we provide a data structure to
maintain counts for all 3-vertex induced subgraphs in O(h) amortized time per
update. For the undirected case, we maintain the counts of size-four subgraphs
in O(h2) amortized time per update. These extensions enable a number of new
applications in Bioinformatics and Social Networking research.

1 Introduction

Deriving inspiration from work done on fixed-parameter tractable algorithms for NP-
hard problems (e.g., see [5,6,18]), the area of parameterized algorithm design involves
defining numerical parameters for input instances, other than just the input size, and de-
signing data structures and algorithms whose performance can be characterized in terms
of those parameters. The goal, of course, is to find useful parameters and then design
data structures and algorithms that are efficient for typical values of those parameters
(e.g., see [9,10]). In this paper, we are interested in extending previous applications of
this approach in the context of dynamic subgraph statistics—where one maintains the
counts of all (induced and non-induced) subgraphs of certain types—from undirected
size-three subgraphs [10] to applications involving directed size-three subgraphs and
undirected subgraphs of size four.

Upon cursory examination this contribution may seem incremental, but these ex-
tensions allow for the possibility of significant computational improvement in several
important applications. For instance, in bioinformatics, statistics involving the frequen-
cies of certain small subgraphs, called graphlets, have been applied to protein-protein
interaction networks [16,21] and cellular networks [20]. In these applications, the fre-
quency statistics for the subgraphs of interest have direct bearing on biological network
structure and function. In particular, in these graphlets applications, the undirected sub-
graphs of interest include one size-two subgraph (the 1-path), two size-three subgraphs
(the 3-cycle and 2-path), and six size-four subgraphs (the 3-star, 3-path, triangle-plus-
edge, 4-cycle, K4 minus an edge, and K4), which we respectively illustrate later in
Fig. 7 as Q4, Q6, Q7, Q8, Q9, and Q10.

In addition, maintaining subgraph counts in a dynamic graph is of crucial impor-
tance to statisticians and social-networking researchers using the exponential random
graph model (ERGM) [12,22,24] to generate random graphs. ERGMs can be tailored
to generate random graphs that possess specific properties, which makes ERGMs an

W. Wu and O. Daescu (Eds.): COCOA 2010, Part I, LNCS 6508, pp. 128–141, 2010.
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ideal tool for Social Networking research [24,22]. This tailoring is accomplished by a
Markov Chain Monte Carlo (MCMC) method [22], which generates random graphs via
a sequence of incremental changes. These incremental changes are accepted or rejected
based on the values of subgraph statistics, which must be computed exactly for each
incremental change in order to facilitate acceptance or rejection. Thus, there is a need
for dynamic graph statistics in ERGM applications.

Typical graph attributes of interest in ERGM applications include the frequencies of
undirected stars and triangles, which are used in the triad model [13] to study friends-
of-friends relationships, as well as other more-complex subgraphs [23], including undi-
rected 4-cycles and two-triangles (K4 minus an edge), and directed transitive triangles,
which we illustrate as graph T9 in Fig. 3. Therefore, there is a salient need for algo-
rithms to maintain subgraph statistics in a dynamic graph involving directed subgraphs
of size three and undirected subgraphs of size four.

Interestingly, extending the previous approach, of Eppstein and Spiro [10], for main-
taining undirected size-three subgraphs to these new contexts involves overcoming
some algorithmic challenges. The previous approach uses a parameterized algorithm
design framework for counting three-vertex induced subgraphs in a dynamic undirected
graph. Their data structure has running time O(h) amortized time per graph update (as-
suming constant-time hash table lookups), where h is the largest integer such that there
exists h vertices of degree at least h, which is a parameter known as the h-index of the
graph. This parameter was introduced by Hirsch [14] as a combined way of measuring
productivity and impact in the academic achievements of researchers. As we will show,
extending the approach of Eppstein and Spiro to directed subgraphs of size three and
undirected subgraphs of size four involves more than doubling the complexity of the
algebraic expressions and supporting data structures needed. Ensuring the directed size-
three procedure maintains the complexity bounds of previous work required extensive
understanding of dynamic graph composition. Developing the approach for size-four
subgraphs that would allow only the addition of a single factor of h required innovative
work with the structure of stored graph elements.

1.1 Other Related Work

Although subgraph isomorphism is known to be NP-complete, it is solvable in polyno-
mial time for small subgraphs. For example, all triangles and four-cycles can be found
in an n-vertex graph with m edges in O(m3/2) time [15,3]. All cycles up to length
seven can be counted (but not listed) in O(nω) time [2], where ω ≈ 2.376 is the ex-
ponent for the asymptotically fastest known matrix multiplication algorithm [4]. Also,
in planar graphs, the number of copies of any fixed subgraph may be found in linear
time [7,8]. These previous approaches run too slowly for the iterative nature of ERGM
Markov Chain Monte Carlo simulations, however.

1.2 Our Results

In this paper, we present an extension of the h-index parameterized data structure design
from statistics for undirected subgraphs of size three to directed subgraphs of size three
and undirected subgraphs of size four. We show that in a dynamic directed graph one
can maintain the counts of all directed three-vertex subgraphs in O(h) amortized time
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per update, and in a dynamic undirected graph one can maintain the four-vertex sub-
graph counts in O(h2) amortized time per update, assuming constant-time hash-table
lookups (or worst-case amortized times that are a logarithmic factor larger). These re-
sults therefore provide techniques for application domains, in Bioinformatics and Social
Networking, that can take advantage of these extended types of statistics. In addition,
our data structures are based a number of novel insights into the combinatorial structure
of these different types of subgraphs.

2 Preliminaries

As mentioned above, we define the h-index of a graph to be the largest h such that the
graph contains h vertices of degree at least h. We define the h-partition of a graph to be
the sets (H,V \H), where H is the set of vertices that form the h-index.

2.1 The H-Index

It is easy to see that the h-index of a graph with m edges is O(
√
m); hence it is O(

√
n)

for sparse graphs with a linear number of edges, where n is the number of vertices.
Moreover, this bound is optimal in the worst-case, e.g., for a graph consisting of

√
n

stars of size
√
n each. As can be seen in Fig. 1 Eppstein and Spiro [10] show experimen-

tally that real-world social networks often have h-indices much lower than the indicated
worst-case bound. These indices, perhaps more easily viewed in log-log scale in Fig 2,
were calculated on networks with a range of ten to just over ten-thousand nodes. The h-
index of these networks were consistently below forty with only a few exceptions, none
greater than slightly above one-hundred. Moreover, many large real-world networks
possess power laws, so that their number of vertices with degree d is proportional to
nd−λ, for some constant λ > 1. Such networks are said to be scale-free [1,17,19], and
it is often the case that the parameter λ is between 2 and 3 in real-world networks. Note
that the h-index of a scale-free graph is h = Θ(n1/(1+λ)), since it must satisfy the

Fig. 1. Scatter plot of h-index and network size from Eppstein and Spiro [11]
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Fig. 2. Scatter plot of h-index and network size, on log-log scale from Eppstein and Spiro [11]

equation h = nh−λ. Thus, for instances of scale-free graphs with λ between 2 and 3,
an algorithmic performance of O(h) is much better than the worst-case O(

√
n) bound

for graphs without power-law degree distributions. For example, an O(h) time bound
for a scale-free graph with λ = 2 would give a bound of O(n1/3) while for λ = 3 it
would give anO(n1/4) bound. Likewise, an algorithmic performance ofO(h2) is much
better than a worst-case performance of O(n) for these instances, for λ = 2 would give
a bound of O(n2/3) while for λ = 3 it would give an O(n1/2) bound. Thus, by taking
a parametric algorithm design approach, we can, in these cases, achieve running times
better than worst-case bounds characterized strictly in terms of the input size, n.

2.2 Maintaining Undirected Size-3 Subgraph Statistics

As mentioned above, Eppstein and Spiro [10] develop an algorithm for maintaining the
h-index and the h-partition of a graph among edge insertions, edge deletions, and inser-
tions/deletions of isolated vertices in constant time plus a constant number of dictionary
operations per update. Observing that the h-index doubles after Ω(h2) updates, Epp-
stein and Spiro further show a partitioning scheme requiring amortizedO(1/h) partition
changes per graph update. This partitions the graph into sets of low- and high-degree
vertices, which we summarize in Theorem 1.

Theorem 1 ([10]). For a dynamic graph G = (V,E), we can maintain a partition
(H,V \ H) such that for v ∈ H , degree(v) = Ω(h) and |H | = O(h); and for
u ∈ V \ H , degree(u) = O(h) in constant time per update, with amortized O(1/h)
changes to the partition per update.

Using this partitioning scheme, one can develop a triangle-counting algorithm as fol-
lows. For each pair of vertices i and j, store the number of length-two paths P [i, j] that
have an intermediate low-degree vertex. Whenever an edge (u, v) is added to the graph,
increase the number of triangles by P [u, v], and update the number of length-two paths
containing (u, v) in O(h) time. One can then iterate over all the high-degree vertices,
adding to a triangle count when a high-degree vertex is adjacent to both u and v. Since
there are O(h) high-degree vertices, this method takes O(h) time. These same steps
can be done in reverse for an edge removal.
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Whenever the partition changes, one must update P [·, ·] values to reflect vertices
moving from high to low, or low to high, which requires O(h2) time. Since there are
amortized O(1/h) partition changes per graph update, this updating takes O(h) amor-
tized time per update. The randomization comes from the choice of dictionary scheme
used. The data structure as described requiresO(mh) space, which is sufficient to store
the length-two paths with an intermediate low-degree vertex.

Finally, to maintain counts of all induced undirected subgraphs on three vertices,
it suffices to solve a simple four-by-four system of linear equations relating induced
subgraphs and non-induced subgraphs. This allows one to keep counts of the induced
subgraphs of every type with a constant amount of work in addition to counting tri-
angles. Extending this to directed subgraphs of size three and undirected subgraphs
of size four requires that we come up with a much larger system of equations, which
characterize the combinatorial relationships between such types of subgraphs.

3 Directed Three-Vertex Induced Subgraphs

Using the partitioning scheme detailed in Theorem 1, we can maintain counts for the
all possible induced subgraphs on three vertices (see Fig. 3) in O(h) amortized time
per update for a dynamic directed graph. We begin by maintaining counts for induced
subgraphs that are a directed triangle, we then show how to maintain counts of all
induced subgraphs on three vertices.

T0 T1 T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14 T15

Fig. 3. The 16 possible directed graphs on three vertices, excluding isomorphisms, organized in
left-to-right order by number of edges in the graph. We label these graphs T0 to T15.

3.1 Counting Directed Triangles

Let a directed triangle be a three-vertex directed graph with at least one directed edge
between each pair of vertices. There are seven possible directed triangles, labeled D0
to D6 in Fig. 4. We let dk denote the count of induced directed triangles of type Dk in
the dynamic graph. We now show how to maintain each count di by extending Eppstein
and Spiro’s technique.

For a pair of vertices i and j, we define a joint to be a third vertex l that is adjacent to
both i and j. Vertices i, l and j are said to form an elbow. Fixing a vertex to be a joint,
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D0 D1 D2 D3 D4 D5 D6

Fig. 4. The 7 directed triangles, labeled D0 to D6

there are nine unique elbows which we labelE0 toE8(see Fig. 5). We store a dictionary
mapping pairs of vertices i and j to the number of elbows of type Ek formed by i and
j and a low-degree joint, denoted ek[i, j].

E0 E1 E2 E3

E4 E5 E6 E7

E8

Fig. 5. The nine elbows with a fixed joint

We now discuss how the directed triangle counts change when adding an edge (u, v).
We do not discuss edge removal since its effects are symmetric to edge insertion.

For directed triangles with a third low-degree vertex, we update our counts using the
dictionary of elbow counts. If edge (v, u) is not in the graph, directed triangle counts
increase as follows.

d0 = d0 + e1[u, v]

d1 = d1 + e0[u, v] + e2[u, v] + e3[u, v]

d2 = d2 + e5[u, v] + e7[u, v]

d3 = d3 + e4[u, v]

d4 = d4 + e6[u, v]

d5 = d5 + e8[u, v]

If edge (v, u) is present in the graph, adding (u, v) destroys some directed triangles
containing (v, u). Therefore, the directed triangle counts change as follows.

d0 = d0 − e1[v, u]

d1 = d1 − (e0[v, u] + e2[v, u] + e3[v, u])

d2 = d2 + (e0[u, v] + e1[u, v]) − (e5[v, u] + e7[v, u])

d3 = d3 + e3[u, v] − e4[v, u]

d4 = d4 + e2[u, v] − e6[v, u]

d5 = d5 + (e4[u, v] + e5[u, v] + e6[u, v] + e7[u, v]) − e8[v, u]

d6 = d6 + e8[u, v]

To complete the directed triangle counting step, we iterate over theO(h) high-degree
vertices to account for directed triangles formed with u and v and a high-degree vertex,
taking O(h) time.

If either u or v is a low-degree vertex, we must also update the elbow counts involv-
ing the added edge (u, v). We consider, without loss of generality, the updates when u is
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considered the low-degree elbow joint. For ease of notation, we categorize the different
relationships between adjacent vertices as follows:

inneighbor(u) = {w ∈ V : (w, u) ∈ E ∧ (u, w) ∈ E}
outneighbor(u) = {w ∈ V : (u, w) ∈ E ∧ (w, u) ∈ E}

neighbor(u) = {w ∈ V : (u, w) ∈ E ∧ (w, u) ∈ E}.

We summarize the elbow count updates in Table 1.

Table 1. Summary of updating elbow counts when u is considered a low-degree joint

(v, u) ∈ E (v, u) ∈ E

w ∈ inneighbor(u) \ {v}
e0[w, v] = e0[w, v] + 1

e1[v, w] = e1[v, w] + 1

e6[w, v] = e6[w, v] + 1

e5[v, w] = e5[v, w] + 1

w ∈ outneighbor(u) \ {v}
e0[v, w] = e0[v, w] + 1

e1[w, v] = e1[w, v] + 1

e4[v, w] = e4[v, w] + 1

e7[w, v] = e7[w, v] + 1

w ∈ neighbor(u) \ {v}
e4[w, v] = e4[w, v] + 1

e7[v, w] = e7[v, w] + 1

e8[w, v] = e8[w, v] + 1

e8[v, w] = e8[v, w] + 1

Finally, when there is a partition change, we must update the elbow counts. If node
w moves across the partition, then we consider all pairs of neighbors of w and update
their elbow counts appropriately. Since there are O(h2) pairs of neighbors, and a con-
stant number of elbows, this step takes O(h2) time. Since O(1/h) amortized partition
changes occur with each graph update, this step requires O(h) amortized time.

3.2 Subgraph Multiplicity

Let the count for induced subgraph Ti be called ti. Furthermore, for a vertex v, let
i(v) = |inneighbor(v)|, o(v) = |outneighbor(v)| and r(v) = |neighbor(v)|. We can
represent the relationship between the number of induced and non-induced subgraphs
using the matrix equation⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 2 2 2 3 3 3 3 4 4 4 4 5 6
0 0 1 0 0 0 1 1 0 0 2 1 1 1 2 3
0 0 0 1 0 0 1 1 3 1 2 2 2 3 4 6
0 0 0 0 1 0 0 1 0 1 1 1 2 1 2 3
0 0 0 0 0 1 1 0 0 1 1 2 1 1 2 3
0 0 0 0 0 0 1 0 0 0 2 2 0 1 3 6
0 0 0 0 0 0 0 1 0 0 2 0 2 1 3 6
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 2
0 0 0 0 0 0 0 0 0 1 0 2 2 1 3 6
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 3
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 3
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3
0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14
t15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n0 =
(

n
3

)
n1 = m(n − 2)

n2 = 1
2
(n − 2)

∑
v∈V r(v)

n3 =
∑

(u,v)∈E

∑
(v,w)∈E,w �=u 1

n4 =
∑

v∈V

(
indegree(v)

2

)
n5 =

∑
v∈V

(
outdegree(v)

2

)
n6 =

∑
v∈V (

(
r(v)
2

)
+ o(v) · r(v))

n7 =
∑

v∈V (
(

r(v)
2

)
+ i(v) · r(v))

n8 = d0 + d2 + d5 + 2d6

n9 = d1 + d2 + 2d3 + 2d4 + 3d5 + 6d6

n10 =
∑

v∈V

(
r(v)
2

)
n11 = d3 + d5 + 3d6

n12 = d4 + d5 + 3d6

n13 = d2 + 2d5 + 6d6

n14 = d5 + 6d6

n15 = d6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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On the right hand side, each ni is the count of the number of non-induced Ti sub-
graphs in the dynamic graph. Each ni (excluding directed triangle counts) is maintained
in constant time per update by storing a constant amount of structural information at
each node, such as indegree, outdegree, and reciprocity of neighbors. On the left hand
side, position i, j in the matrix counts how many non-induced subgraphs of type Ti

appear in Tj . We are counting non-induced subgraphs in two ways: (1) by counting the
number of appearances within induced subgraphs and (2) by using the structure of the
graph. Since the multiplicand is an upper (unit) triangular matrix, this matrix equation is
easily solved, yielding the induced subgraph counts. Thus, we can maintain the counts
for three-vertex induced subgraphs in a directed dynamic graph in O(h) amortized time
per update, andO(mh) space, plus the additional overhead for the choice of dictionary.

4 Four-Vertex Subgraphs

We begin by describing the data structure for our algorithm. It will be necessary to
maintain the counts of various subgraph structures. The data structure in whole consists
of the following information:

– Counts of the non-induced subgraph structures, m3 throughm10.
– A set E of the edges in the graph, indexed such that given a pair of endpoints there

is a constant-time lookup to determine if they are linked by an edge.
– A partition of the vertices of the graph into two sets H and V \H .
– A dictionary P1 mapping each vertex u to a pair P1[u] = (s0[u], s1[u]). This pair

contains the counts for the structures S0 and S1 that involve vertex u ( see Fig. 6).
That is, the count of the number of two-edge paths that begin at u and pass through
two vertices in V \H and the number of these paths that connect back to u forming
a triangle. We only maintain nonzero values for these numbers in P1; if there is no
entry in P1[u] for the vertex u then there exist no such path from u.

– A dictionary P2 mapping each pair of vertices u, v to a tuple P2[u, v] = (s2[u, v],
s3[u, v], s4[u, v], s5[u, v], s6[u, v]). This tuple contains the counts for the structures
S2 throughS6 that involve vertices u and v ( see Fig. 6). That is, the number of two-
edge paths from u to v via a vertex of V \H , the number of three-edge paths from
u to v via two vertices of V \ H , the number of structures in which both u and v
connect to the same vertex in V \H which connects to another vertex in V \H , the
number of structures similar to the last in which the final vertex in V \H shares an
edge connection with u or v, and the number of structures where between u and v
there are two two-edge paths through vertices of V \H in which the two vertices
in V \H share an edge connection. Again, we only maintain nonzero values.

– A dictionary P3 mapping each triple of vertices u, v, w to a number P2[u, v, w] =
(s7[u, v, w]). This value is the count for the structure S7 that involves vertices u,
v, and w ( see Fig. 6). This is, the number of vertices in V \ H that share edge
connections with all three vertices. As before, we only maintain nonzero values for
these numbers.
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S0 S1

S2 S3 S4 S5 S6 S7

Fig. 6. We store counts of these eight non-induced subgraphs to maintain counts of four-vertex
non-induced subgraphs Q3 to Q10. The counts are indexed by the labels of the white vertices,
and the blue vertices indicate a vertex has low-degree.

Q0 Q1 Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9 Q10

Fig. 7. The 11 possible graphs on four vertices, excluding isomorphisms, organized in left-to-right
order by number of edges in the graph

Upon insertion of an edge between vertices v1 and v2 we will need to update the
dictionaries P1, P2, and P3. If both v1 and v2 are in H , no update is necessary.

If v1 and v2 are both in V \H then we will need to update the counts s0 through s6.
First find which vertices in H connect to v1 or to v2. Increment s0 for these vertices. If
both vertices in V \H connect to the same vertex inH then increment s1 for this vertex.
Increment s2 for v1 and the vertices that connect to v2, and for v2 and the vertices that
connect to v1. Then increment s3 based on pairs of neighbors of v1 and v2 and neighbors
of neighbors in V \H . If either v1 or v2 connect to two vertices in H increment s4 for
the vertices in H . Considering v1 to be the vertex with edge connections to two vertices
in H , for each vertex in H that connects to v2 increment s5. For two vertices in H such
that v1 and v2 each connect to both, increment s6 for the vertices in H .

If v1 and v2 are such that one is in V \ H and the other in H we will proceed as
follows. Consider v1 to be the vertex in V \H . First, determine the number of vertices
in V \H connected to v1 and increase s0 for v2 by that amount. Upon discovering these
adjacent vertices in V \ H test their connection to v2. For each of those connected,
increment s1 for v2. It is necessary to determine which vertices inH share an edge with
v1. After these connections have been determined increment the appropriate dictionary
entries. Form pairs with v2 and the connected vertices in H and update the s2 counts.
Form triples with v2 and two other connected vertices in H and update the counts in s7.
The s5 update comes from determining the triangles formed by the additional edge and
using the degree of the vertices in H , and the count of the connected triangles, which
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can be calculated by searching for attached vertex pairs in H and using s2. In order to
update the count for s6 begin with location of vertex pairs as with the elbow update. For
each of the H vertex pairs increase the stored value by the number of vertices in V \H
that share an edge with v1 and with both of the vertices in H , which can be retrieved
from s2.

Examining the time complexity we can see that in order to generate the dictionary
updates the most complex operation involves examination of two sets of connected
vertices consecutively that are O(h) in size each. This results in O(h2) operations to
determine which updates are necessary. Since it is possible to see from the structure
of the stored items that no single edge insertion can result in more than O(h2) new
structures, this will be the upper bound on dictionary updates, and make O(h2) the
time complexity bound.

These maintained counts will have to be modified when the vertex partition is up-
dated. If a vertex is moved fromH to V \H then it is necessary to count the connected
structures it now forms. This can be done by examining all edges formed by this vertex,
and following the procedure for edge additions. When a vertex is moved intoH it is nec-
essary to count the structures it had been forming as a vertex in V \H and decrement
the appropriate counts. This can be done similarly to the method for generating new
structures. In analysis of the partition updates we see that since we are working with a
single vertex with O(h) degree the complexity has an additional O(h) factor to use the
edge-based dictionary update scheme. This results in O(h3) time per update. Since this
partition update is done an average of O(1/h) times per operation, the amortized time
for updates, per change to the input graph, is O(h2).

4.1 Subgraph Structure Counts

The following section covers the update of the subgraph structure counts after an edge
between vertices v1 and v2 has been inserted. Let these vertices have degree count d1
and d2 respectively. Recall that mi refers to the count of the non-induced subgraph of
the structure Qi (see Fig. 7).

The m3 count will be increased by (m− (d1 + d2 − 2)), where m is the number of
edges in the graph. Since this structure consists of two edges that do not share vertices,
the increase of the count comes from a selection of a second edge to be paired with the
inserted edge. The second term in the update value reflects the number of edges that
connected to the inserted edge.

The m4 count will be updated as follows. Each of the two vertices can be the end of
a claw structure. From each end two edges in addition to the newly inserted edge must
be selected. Thus the value to update the count is

(
d1−1

2

)
+
(
d2−1

2

)
.

The m5 count is updated by calculating the number of additional triangles the edge
addition would add, which can be done with the Eppstein-Spiro [10] method, and mul-
tiplying that by a factor of (n−3) to reflect the selection of the additional vertex, where
n is the number of vertices in the graph.

The update for m6 is done in parts based on which position in the structure the edge
is forming. The increase to the count for the new structures in which the additional edge
is the center in the three-edge path is ((d1 − 1)(d2 − 1)).
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This value will be increased by the count when the new edge is not the center of the
structure. The process to calculate the count increase will assume that v1 connects to
the rest of this structure. The same process can be done without loss of generality with
the assumption v2 connects to the rest of the structure. These values will then both be
added to form the final part of the count update. If v1 is an element of H then we will
sum the results from the following subcases. First we consider the case where the vertex
adjacent to v1 is in H . The number of these paths of length two originating at v1 can be
counted by summing the degree of these vertices minus 1. We must also subtract one
for each of the adjacent vertices in H that are adjacent to v2. If v1 is not an element of
H , then it has h or less neighbors. Sum over all neighbors the following value. If the
vertex does not have an edge connecting it to v2 then the degree of the vertex; if it does
the degree minus one.

The m7 count is updated as follows. An inserted edge can form the structure in three
positions, so our final update will be the sum of those three counts. For the first case let
the inserted edge be the additional edge connected to the triangle. For this case, we must
do all of the following for both vertices and sum the result. If the vertex is in H retrieve
s1. This gives us the connected triangles through vertices in V \ H . Then determine
which vertices in H connect to the vertex. Form the triangle counts with all vertices in
H . Form those with one additional vertex in H using s2. If the vertex is in V \H , then
determine its neighbors connections and form a connected triangle count.

In the second case the edge is in the triangle and shares a vertex with the additional
edge. The count can be determined in two parts. First the triangles. If either v1 or v2 are
in V \ H then the triangle count can be calculated. If both are in H then a lookup to
s2 will determine the number of triangles. The number of additional edges can then be
calculated using the degrees of the vertices of the inserted edge, with care to not count
the edges used to form the triangle. The product of the triangle and additional edge will
form the increase for this case.

The final case occurs when the inserted edge is part of the triangle, but does not
share a vertex with the additional edge. If either v1 or v2 are in V \H then the triangle
count can be calculated, and the degree of the vertices used to form these triangles can
be used to calculate the count increase. If both v1 or v2 are in H then there are three
remaining subcases. The count if all vertices are in H can be determined. If the vertex
on the additional edge that is not in the triangle is in H , then using the three known
vertices in H and a lookup from P2 can yield the counts. If both remaining vertices are
in V \H this is the structure stored in s4, and counts can be retrieved. Sum the counts
for these subcases to calculate the total increase for this case.

The count form8 is increased upon edge update by a sum of the following. The count
of the length three path through vertices in V \H can be looked up in s3. There are two
possible types of length three paths remaining. In the first, both vertices are inH . These
paths can be counted be examining the connections between v1, v2, and all vertices in
H . The second contains one vertex in H and one in V \H . These paths can be counted
by establishing which vertices in H connect to either v1 or v2, and then using the count
in s2 of the length two paths from the vertices in H to v2 or v1 respectively.

Them9 count can be increased by an edge insert in two positions. The first is between
the opposite ends of the cycle. If either v1 or v2 is in V \H then the edge connections
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can be determined and the count calculated. If both v1 and v2 are in H then the count
of the two two-edge paths that form the cycle must be determined. These paths will
either pass through a vertex in H or a vertex in V \H . The former can be counted by
examining the vertices in H , and the latter by a lookup to s2.

The second possible position for an edge insert is on the outer path of a cycle that
already has an edge through it. If either v1 or v2 are in V \ H calculate the count as
follows, summing with an additional calculation considering the vertices reversed. If
the vertex connected to the triangle is in V \ H then the count can be determined by
examining neighbors and their edge connections. If the vertex not connected to the tri-
angle is in V \H then examine the neighbors. For those neighbors that are in V \H the
count can be determined by examining additional edge connections of neighbors. For
the neighbors in H a lookup s2 is required to completely determine the counts. If both
v1 and v2 are in H then the count is calculated as follows. If all vertices of the structure
are in H , determine the count by examining edge connections. If both remaining ver-
tices are in V \H the count can be determined by lookup to s5. Otherwise, one of the
two remaining vertices is in H . This will leave a structure that can be completed and
provide a count by using a lookup to s2, or s7.

The m10 count update is separated by the membership of v1 and v2. If either vertex
is contained in V \ H , consider v1, then it is possible to determine which vertices
connect to v1 and which of these share edges with v2 and each other. This count can be
calculated and the total count can be updated. If both v1 and v2 are in H then we will
sum the values determined in the following three subcases. First, all four vertices are in
H . This count can be determined by examining the edge connections of the vertices in
H . If three vertices in H form the correct structure, the count of cliques formed with
one vertex in V \ H can be determined by a look up to s7. These counts should be
summed for all vertices in H that form the correct structure with v1 and v2. The final
count, with both of the remaining vertices in V \H can be determined by an s6 lookup.

The time complexity for the updates of the stored subgraphs is O(h2). Calculations
and lookups can be performed in constant time, and subcase calculations can be done
independently. The most complicated subcase count computations involve examination
of two sets of connected vertices consecutively that are O(h) in size each. This results
in O(h2) operations. The space complexity for our data structure is O(1) for the main-
tained subgraph counts,O(m) for E,O(n) for the partition to maintainH , andO(mh2)
for the dictionaries, because each edge belongs to at most O(h2) subgraph structures.

4.2 Subgraph Multiplicity

The data structure in the previous section only maintains counts of certain subgraph
structures. With the addition of m, n, and the count of length two paths, where m is
the number of edges and n the number of vertices, it is possible to use these counts to
determine the counts of all subgraphs on four vertices. The additional valuesm, n, and
the count of length two paths can be maintained in constant time per update. Values
for m and n are modified incrementally. Adding an edge uv will increase the count of
length two paths by du + dv , the degrees of u and v respectively. Removing the edge
will decrease the value by du + dv − 2.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1
0 1 2 2 3 3 3 4 4 5 6
0 0 1 0 3 3 2 5 4 8 12
0 0 0 1 0 0 1 1 2 2 3
0 0 0 0 1 0 0 1 0 2 4
0 0 0 0 0 1 0 1 0 2 4
0 0 0 0 0 0 1 2 4 6 12
0 0 0 0 0 0 0 1 0 4 12
0 0 0 0 0 0 0 0 1 1 3
0 0 0 0 0 0 0 0 0 1 6
0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m0 =
(

n
4

)
m1 = m

(
n−2

2

)
m2 = (n − 3)

∑
v∈V

(
degree(v)

2

)
m3

m4

m5

m6

m7

m8

m9

m10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Similar to the matrix for size three subgraphs, we can use the counts of the non-

induced subgraphs on the right and the composition of the induced subgraphs to deter-
mine the counts of any desired subgraph.

5 Conclusion

The work we present here can maintain counts for all 3-vertex directed subgraphsO(h)
amortized time per update. This can be done in O(mh) space. For the undirected case,
we maintain counts of size-four subgraphs in O(h2) amortized time per update and
O(mh2) space. Although we do not discuss the specifics in this paper, the method-
ology presented can be used to count directed size-four subgraphs with similar com-
plexity. These developments open significant possibility for improvement in calculat-
ing graphlet frequencies within Bioinformatics and in ERGM applications for social
network analysis.

References

1. Albert, R., Jeong, H., Barabasi, A.-L.: The diameter of the world wide web. Nature 401,
130–131 (1999)

2. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algorith-
mica 17(3), 209–223 (1997)

3. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1),
210–223 (1985)

4. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of
Symbolic Computation 9(3), 251–280 (1990)

5. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter algorithms for
(k, r)-center in planar graphs and map graphs. ACM Trans. Algorithms 1(1), 33–47 (2005)

6. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness i: Basic results.
SIAM J. Comput. 24(4), 873–921 (1995)

7. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. Journal of Graph
Algorithms & Applications 3(3), 1–27 (1999)

8. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–
291 (2000)

9. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an algorithmic
lens. In: GIS 2008: Proceedings of the 16th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pp. 1–10. ACM, New York (2008)



Extended Dynamic Subgraph Statistics Using h-Index Parameterized Data Structures 141

10. Eppstein, D., Spiro, E.S.: The h-index of a graph and its application to dynamic subgraph
statistics. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS,
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Abstract. The paper describes an optimization procedure for a class
of discrete optimization problems which is defined by certain properties
of the boundary of the feasible region and level sets of the objective
function. It is shown that these properties are possessed, for example,
by various scheduling problems, including a number of well-known NP-
hard problems which play an important role in scheduling theory. For
an important particular case the presented optimization procedure is
compared with a version of the branch-and-bound algorithm by means
of computational experiments.

Keywords: discrete optimization, scheduling theory, parallel machines,
unit execution times.

1 Introduction

We consider the discrete optimization problem

min
(x1,x2,...,xn)∈X

F (x1, x2, ..., xn), (1)

where F (x1, x2, ..., xn) is a nondecreasing function defined on the n-dimensional
hypercube of points with integer coordinates satisfying the inequalities 0 ≤ xi ≤
p(n), 1 ≤ i ≤ n, where p is a polynomial. Without loss of generality it will be
assumed that p(n) is integer. The feasible region X is a subset of this hypercube.

The above description is too general for any specific optimization procedure.
The following three additional properties narrow the considered class of discrete
optimization problems but are not very restrictive - the resultant class, for ex-
ample, contains various well-known NP -hard problems of scheduling theory. In
what follows, the expression “in polynomial time” has the standard meaning
that, for all instances of (1), the number of operations is bounded above by the
same polynomial in n. Similarly, the expression “cardinality is bounded above
by some polynomial in n” means that, for all instances of (1), the number of
elements in the considered set is bounded above by the value of the same poly-
nomial in n.
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The first property is concerned with the boundary of X which definition is
based on the notion of dominance: point a = (a1, a2, ..., an) dominates point
b = (b1, b2, ..., bn) if bi ≤ ai for all 1 ≤ i ≤ n, and a strictly dominates b if at
least one of these inequalities is strict. The boundary of X is the set of all points
in X which do not strictly dominate any point in X .

Property 1. There is an algorithm which for any point in X in polynomial time
determines whether or not this point is on the boundary of X .

The second property pertains to the notion of a level set defined as follows.
For any value F̄ of F , a set D is F̄ -dominant if F (x1, x2, ..., xn) = F̄ for all
(x1, x2, ..., xn) ∈ D and F (y1, y2, ..., yn) = F̄ implies that (y1, y2, ..., yn) is domi-
nated by some point in D. For any value F̄ of F , a level set, denoted by A(F̄ , F ),
is an F̄ -dominant set with the smallest cardinality among all F̄ -dominant sets.
The next section justifies this definition by showing that for any value F̄ of F
the corresponding level set is unique.

Property 2. For any value F ′ of F , the corresponding level set can be found in
polynomial time.

According to Property 2 the cardinalities of all level sets are bounded above by
some polynomial in n. Observe that if F̄ = F (p(n), ..., p(n)), then A(F̄ , F ) is
comprised of only one point (p(n), ..., p(n)).

The third property is the existence of an algorithm that for any value F ′ of
F such that F ′ < F (p(n), ..., p(n)) finds the smallest value of F greater than F ′

with a number of operations bounded above by some polynomial in n.

Property 3. For any value F ′ of F such that F ′ < F (p(n), ..., p(n)) the value

F ′′ = min
{(x1,x2,...,xn):F (x1,x2,...,xn)>F ′)}

F (x1, x2, ..., xn).

can be found in polynomial time.

As has been mentioned above, Section 2 justifies the definition of level sets by
showing that, for any value of F , the corresponding level set is unique. The next
section, Section 3, presents some examples. In particular, Section 3 shows that,
even when the cardinality of the range of F is bounded above by some polynomial
in n, Property 2 and Property 3 do not imply the existence of a polynomial-time
optimization procedure. Indeed, in general, the problem remains NP -hard in the
strong sense because for some (and even for all) values F̄ of the objective function
F , it is quite possible to have A(F̄ , F ) ∩ X = ∅. The proposed optimization
procedure, which is based on Property 1, Property 2 and Property 3, is described
in Section 4. Section 5 illustrates the optimization procedure presented in Section
4 by considering its application to one of the scheduling problems which plays an
important role in scheduling theory. The results of computational experiments
aimed at comparing this application with a version of the branch-and-bound
method are reported in Section 6.
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2 Level Sets

Let K be any set of points with integer coordinates. Denote Kc the set of all
points x ∈ K such that there is no point in K which strictly dominates x.

Lemma 1. For any value F̄ of F and any F̄ -dominant set D, the set Dc is a
level set.

Proof. Consider an arbitrary x = (x1, x2, ..., xn) such that F (x1, x2, ..., xn) = F̄ .
Since D is an F̄ -dominant set, there exists y ∈ D that dominates x. Since
the domain of F is a hypercube of points with integer coordinates, there exists
z ∈ Dc that dominates y and therefore x. (Observe that z = y if z does not
dominate y strictly.) Hence, Dc is an F̄ -dominant set.

Suppose that Dc is not a level set. Then, its cardinality |Dc| > |A(F̄ , F )|,
and therefore, there exists x ∈ Dc such that x /∈ A(F̄ , F ). By the definition of a
level set, there exists y ∈ A(F̄ , F ) which dominates x, and by the definition of
an F̄ -dominant set, there exists z ∈ Dc which dominates y. Since x /∈ A(F̄ , F ),
y strictly dominates x. Hence, z strictly dominates x which contradicts the def-
inition of Dc. ��

The following theorem justifies the definition of a level set by establishing its
uniqueness. The theorem is a straightforward consequence of Lemma 1.

Theorem 1. For any value F̄ of F , A(F̄ , F ) is unique.

Proof. Suppose that for some value F̄ of F where exist two different level sets
A and D. Then by Lemma 1, A ⊆ D and D ⊆ A. Hence, A = D. ��

3 Particular Cases of the Considered Problem

3.1 Scheduling on Parallel Machines: The Boundary of the Feasible
Region

An important source of NP -hard problems with Property 1 and Property 2 is
scheduling theory. As an example, consider the following classical scheduling
problem. A set N = {1, . . . , n} of n tasks is to be processed on m > 1 identical
machines subject to precedence constraints in the form of an anti-reflexive, anti-
symmetric and transitive relation on N . If in this relation task i precedes task j,
denoted i→ j, then task i must be completed before task j can be processed. If
i→ j, then i is called a predecessor of j and j is called a successor of i. Each task
can be processed on any machine, and each machine can process at most one task
at a time. The processing time of each task is one unit of time. For each j ∈ N ,
the processing of task j can commence only after its release time rj , where rj is
a nonnegative integer. Without loss of generality it is assumed that the smallest
release time is zero. If a machine starts processing a task, it continues until
completion, i.e. no preemptions are allowed. Since no preemptions are allowed,
a schedule is specified by tasks’ completion times. In the scheduling literature
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the completion time of task j is normally denoted by Cj , but for the purpose
of our discussion it is convenient to denote the completion time of task j by
xj . The goal is to minimize F (x1, ..., xn), where F is a nondecreasing function.
In the scheduling literature (see for example [3]) this problem is denoted by
P |prec, rj , pj = 1|F . Here P signifies parallel identical machines, prec indicates
presence of precedence constraints, and pj = 1 shows that all processing times
are equal to one unit of time. Correspondingly, P |prec, pj = 1|F denotes the
same problem under the assumption that all release times are zero.

Since i → j implies xi + 1 ≤ xj , without loss of generality we assume that
i → j implies ri + 1 ≤ rj . Given this assumption, we can assume that for any
task i with ri > 0, the number of tasks j with rj < ri is greater than ri. Indeed,
suppose that this does not hold, and among all i, violating this assumption, g is
a task with the smallest release time. Then, even processing only one task at a
time, one can complete all tasks j with rj < rg before time rg, and therefore the
problem can be split into two separate problems: one with all tasks j satisfying
rj < rg and another with all remaining tasks. The above assumption implies that
there exists an optimal schedule with all completion times less than or equal
to n. Consequently, we can consider the objective function F only on the n-
dimensional hypercube defined by the inequalities 0 ≤ xj ≤ n for all 1 ≤ j ≤ n.
Then, the feasible region X can be viewed as the set of points (x1, x2, ..., xn)
specifying all feasible schedules with completion times less than or equal to n.
In other words, X is the set of all points (x1, ..., xn) with integer coordinates
satisfying the following three conditions

(a) rj + 1 ≤ xj ≤ n for all 1 ≤ j ≤ n;
(b) |{i : xi = t}| ≤ m for all 1 ≤ t ≤ n;
(c) xi ≤ xj + 1 for all i and j such that i→ j.

The property specified in the following lemma can be checked in O(n2) op-
erations. Therefore, this lemma shows that the P |prec, rj , pj = 1|F scheduling
problem has Property 1.

Lemma 2. A point (x1, ..., xn) ∈ X is on the boundary of X if and only if, for
each integer t ≥ 1 such that |{g : xg = t}| < m and each xj > t, either rj ≥ t
or there exists i such that xi = t and i→ j.

Proof. Suppose that x = (x1, ..., xn) ∈ X is on the boundary of X , and let t ≥ 1
be any integer such that |{g : xg = t}| < m and j be any task such that xj > t.
Consider the point x′ = (x′1, ..., x

′
n), where x′j = t and x′g = xg for all g �= j.

Since x is on the boundary of X and x strictly dominates x′, x′ /∈ X . Hence,
either rj ≥ t or there exists g such that g → j and xg ≥ t. If rj ≥ t, then the
desired property holds. Suppose that rj < t and among all g such that g → j
and xg ≥ t select one with the smallest xg . Let it be task i. If xi = t, then
the desired property holds. Suppose that xi > t. The relation i → j implies
ri < rj < t. On the other hand, consider the point x′′ = (x′′1 , ..., x

′′
n), where

x′′i = t and x′′g = xg for all g �= i. Since x strictly dominates x′′ and x is on
the boundary of X , x′′ /∈ X . Hence, there exists q such that q → i and xq ≥ t,
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which by the transitivity of precedence constraints gives q → j and therefore
contradicts the selection of i.

Conversely, consider x = (x1, ..., xn) ∈ X and suppose that, for each integer
t ≥ 1 such that |{g : xg = t}| < m and each j such that xj > t, either rj ≥ t or
there exists i such that xi = t and i→ j. Suppose that x is not on the boundary
ofX , i.e. x strictly dominates some x′ = (x′1, ..., x

′
n) ∈ X . Then, among all g such

that x′g < xg select one with the smallest x′g. Let it be task j. Then, xg = x′j
implies x′g = xg. Hence |{g : xg = x′j}| < m, which together with x′j < xj

implies that either rj ≥ x′j or there exists i such that xi = x′j and i → j. The
inequality rj ≥ x′j contradicts (x′1, ..., x

′
n) ∈ X . On the other hand, the existence

of i such that xi = x′j and i→ j also contradicts x′ ∈ X because x′i = xi. ��

3.2 The Level Sets of max
1≤j≤n

ϕj(xj)

In order to give an example of a problem with Property 2 and Property 3,
consider (1) with the objective function

F (x1, x2, ..., xn) = max
1≤j≤n

ϕj(xj), (2)

where each ϕj(xj) is a nondecreasing function defined for all integer 0 ≤ xj ≤
p(n). Let F̄ be an arbitrary value of F , and let aj be the largest among all
integer xj satisfying the inequalities ϕj(xj) ≤ F̄ and xj ≤ p(n). It is easy to
see that F (a1, ..., an) = F̄ . Moreover, if F (x1, x2, ..., xn) = F̄ , then (a1, ..., an)
dominates (x1, x2, ..., xn). Hence, for each F̄ the level set A(F̄ , F ) is comprised
of only one point. This point can be found in polynomial time, for example by
using the binary search on the interval [0, p(n)] separately for each ϕj . Hence,
the objective function (2) has Property 2.

Let F ′ < F ′′ be two consecutive values of F , i.e. there is no value of F be-
tween these two values. Let (a′1, ..., a

′
n) and (a′′1 , ..., a

′′
n) be the points constituting

A(F ′, F ) and A(F ′′, F ), respectively. Let J be the set of all j satisfying a′j < p(n).
Observe that (a′′1 , ..., a

′′
n) strictly dominates (a′1, ..., a

′
n) and a′j < a′′j implies j ∈ J .

Moreover, for all j ∈ J , ϕj(a′j + 1) > F ′ and therefore ϕj(a′j + 1) ≥ F ′′. The
above observations lead to the following inequalities

F ′′ ≤ min
j∈J

ϕj(a′j + 1) ≤ max
1≤j≤n

ϕj(a′′j ) = F ′′.

Hence,
F ′′ = min

j∈J
ϕj(a′j + 1). (3)

As has been shown above, for a given F ′, the corresponding point (a′1, ..., a
′
n),

constituting A(F ′, F ), can be found in polynomial time. Then, F ′′ can be ob-
tained using (3). Therefore, the objective function (2) has Property 3.

Objective functions of the form (2) are common, for example, in scheduling
theory. Thus, one of the most frequently used objective functions in scheduling
is the function with all ϕj(t) = t − dj , where dj is interpreted as a due date of
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task j. In this case, the objective function is referred to as the maximum lateness
and is denoted by Lmax. If all due dates are zero, the maximum lateness problem
converts into the so-called makespan problem and the corresponding objective
function is denoted by Cmax.

Since the domain of each ϕj is the set of all integer points in the interval
[0, p(n)], ϕj takes on at most p(n) + 1 different values. Consequently, the cardi-
nality of the range of (2) cannot exceed n(p(n) + 1). So, the union of all level
sets cannot contain more than n(p(n)+1) points. Starting with value F (0, ..., 0)
and with the corresponding level set (which is comprised of only one point),
one can enumerate the union of all level sets in polynomial time. Nevertheless,
in general, the problem remains NP -hard because the elements of level sets do
not necessarily belong to the feasible region X . Thus, it is well known that the
P |prec, pj = 1|Cmax problem is NP -hard in the strong sense [4,2].

3.3 Property 2 and Property 3 in Multi-objective Optimization

Consider an optimization problem with k nondecreasing objective functions
F1, ..., Fk, each defined on the same n-dimensional hypercube of points with
integer coordinates satisfying the inequalities 0 ≤ xi ≤ p(n), 1 ≤ i ≤ n, where
p(n) is a polynomial in n. A common approach in multi-objective optimization
is the replacement of several objective functions by a single function

F (x1, ..., xn) = ψ(F1(x1, ..., xn), ..., Fk(x1, ..., xn)), (4)

where ψ is a nondecreasing function.

Lemma 3. For any value F̄ of (4) and for any (a1, ..., an) ∈ A(F̄ , F ), there are
points (a(i)

1 , ..., a
(i)
n ) ∈ A(Fi(a1, ..., an), Fi), 1 ≤ i ≤ k, such that aj = min

1≤i≤k
a
(i)
j

for all 1 ≤ j ≤ n.

Proof. Consider an arbitrary point (a1, ..., an) ∈ A(F̄ , F ), and for each 1 ≤
i ≤ k denote F̄i = Fi(a1, ..., an). By the definition of A(F̄i, Fi), there exists
(a(i)

1 , ..., a
(i)
n ) ∈ A(F̄i, Fi) such that aj ≤ a

(i)
j for all 1 ≤ j ≤ n. Consider the point

(ã1, ..., ãn), where ãj = min
1≤i≤k

a
(i)
j for all 1 ≤ j ≤ n. Since ψ is a nondecreas-

ing function, each Fi is a nondecreasing function, each (a(i)
1 , ..., a

(i)
n ) dominates

(ã1, ..., ãn), and (ã1, ..., ãn) dominates (a1, ..., an),

F (a1, ..., an) ≤ F (ã1, ..., ãn) ≤ ψ(F1(a
(1)
1 , ..., a(1)

n ), ..., Fk(a(k)
1 , ..., a(k)

n ))

= ψ(F̄1, ..., F̄k) = F (a1, ..., an).

Hence, F (ã1, ..., ãn) = F (a1, ..., an). On the other hand, by the definition of
A(F̄ , F ), F (a1, ..., an) = F̄ , and therefore F (ã1, ..., ãn) = F̄ . Moreover, by the
same definition, there exists a point (a′1, ..., a′n) ∈ A(F̄ , F ) which dominates
(ã1, ..., ãn). Consequently, aj ≤ ãj ≤ a′j for all 1 ≤ j ≤ n. If at least one of
these inequalities is strict, then (a′1, ..., a

′
n) strictly dominates (a1, ..., an) which

contradicts Lemma 1 and Theorem 1. So, aj = min
1≤i≤k

a
(i)
j for all 1 ≤ j ≤ n. ��
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According to Lemma 3 all level sets of F can be obtained from the level sets of
F1,..., Fk. Therefore, in some cases, the fact that each of F1,..., Fk has Property
2 or Property 3 or both may imply that (4) also has these properties. One such
case is considered in Theorem 2 and Theorem 3. Both theorems consider the
case when the cardinality of the range of each F1,..., Fk is bounded above by a
polynomial in n, which is typical for example for scheduling theory.

Theorem 2. If each of F1,..., Fk has Property 3 and the cardinality of the
range of each F1,..., Fk is bounded above by a polynomial in n, then (4) also has
Property 3.

Proof. Each Fi is a nondecreasing function defined on the n-dimensional hyper-
cube of points with integer coordinates satisfying the inequalities 0 ≤ xi ≤ p(n),
1 ≤ i ≤ n. Therefore, its smallest value is Fi(0, ..., 0). Since Fi has Property 3
and the cardinality of the range of Fi is bounded above by some polynomial in
n, it is possible to enumerate all values of Fi in polynomial time by starting with
Fi(0, ..., 0) and using Property 3 of Fi. Consequently, it is possible in polynomial
time to generate all combinations (F̄1, ..., F̄k), where each F̄i is some value of the
corresponding Fi. Therefore, (4) has Property 3. ��

Theorem 3. If each of F1,..., Fk has Property 2 and Property 3 and the car-
dinality of the range of each F1,..., Fk is bounded above by a polynomial in n,
then (4) also has Property 2.

Proof. Let F̄ be an arbitrary value of F , and let (F̄1, ..., F̄k) be an arbitrary
combination of values of F1, ..., Fk such that F̄ = ψ(F̄1, ..., F̄k). Since each
Fi has Property 2, there exists an algorithm which in polynomial time finds
all elements of A(F̄i, Fi). Hence, it is possible to find in polynomial time all
combinations (a(1), ..., a(k)), where each a(i) = (a(i)

1 , ..., a
(i)
n ) is an element of

the corresponding A(F̄i, Fi). Each combination (a(1), ..., a(k)) gives the point
( min
1≤i≤k

a
(i)
1 , ..., min

1≤i≤k
a(i)

n ). So, the cardinality of the set of all such points is

bounded above by some polynomial in n. Therefore, it is possible to find in poly-
nomial time the subset D(F̄1, ..., F̄k) of this set comprised of all points (a1, ..., an)
satisfying Fi(a1, ..., an) = F̄i for all 1 ≤ i ≤ n.

Since the cardinality of the range of each Fi is bounded above by some poly-
nomial in n and since each Fi has Property 3, it is possible to find in polynomial
time all combinations (F̄1, ..., F̄k) of values of F1,..., Fk satisfying the condi-
tion F̄ = ψ(F̄1, ..., F̄k). Furthermore, as has been shown above, there exists a
polynomial-time algorithm which for each such combination finds all elements
of the corresponding set D(F̄1, ..., F̄k). Therefore, the union D of D(F̄1, ..., F̄k)
for all combinations (F̄1, ..., F̄k), satisfying F̄ = ψ(F̄1, ..., F̄k), can be found in
polynomial time. According to Lemma 3, A(F̄ , F ) ⊆ D, and therefore D is an
F̄ -dominant set. Then, by Lemma 1, Dc is the level set. Since the cardinality of
D is bounded above by a polynomial in n, Dc can be found in polynomial time
which implies Property 2. ��
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4 The Optimization Procedure

The approach outlined below assumes that the problem (1) has Property 1,
Property 2 and Property 3. The considered iterative optimization procedure at
each iteration uses some lower bound on the optimal value of F . All these lower
bounds belong to the range of F . Although F (0, 0, ..., 0) is always available, a
better choice of the initial lower bound possibly can be made from the analysis
of the actual problem.

For each lower bound F̄ , the optimization procedure strives to find a feasible
point with this value of the objective function (in such case the procedure termi-
nates with this point as an optimal solution) or to detect that there is no feasible
point that corresponds to F̄ (after that a larger lower bound is calculated). This
is accomplished by considering in succession all elements of A(F̄ , F ). Each ele-
ment of A(F̄ , F ) initiates a search tree. The root of the search tree corresponds
to the considered element of A(F̄ , F ), say point (a1, ..., an). All nodes in this
search tree correspond to points in the domain of F , i.e. points with integer
coordinates satisfying the inequalities 0 ≤ xi ≤ p(n), 1 ≤ i ≤ n. At each stage
of constructing the search tree, the procedure chooses a node which does not
have a successor in the already constructed fragment of this tree and connects
this node to one or several new nodes (branching). Branching is conducted in
such a way that the point associated with the chosen node strictly dominates
the points that correspond to the new nodes introduced by branching. Hence, all
points associated with nodes of the search tree cannot have value of F greater
than F (a1, ..., an) = F̄ . Furthermore, since F̄ is a lower bound on the optimal
value of F , branching adds only new points (y1, ..., yn) satisfying the condition
F (y1, ..., yn) = F̄ . If one of the new points introduced by branching is in X , the
procedure terminates with this point as an optimal solution.

Since each variable is a nonnegative integer and is bounded above by p(n),
the number of nodes in any path of any search tree cannot exceed np(n) which
guarantees convergence. Furthermore, branching at any node of the search tree
is conducted in such a way that the point which corresponds to this node strictly
dominates some point inX if and only if at least one of the new points introduced
by branching also dominates some point in X . This guarantees that eventually
the procedure terminates with an optimal solution.

As in the case of the branch-and-bound method, the implementation of the
approach outlined above varies from problem to problem. Nevertheless, Property
1, Property 2 and Property 3 allow some general techniques, including the idea
of projection described below and the idea of function � and the corresponding
lower bounds � also described below. Again, the calculation of each lower bound
� depends on the problem in hand.

Let b = (b1, ..., bn) /∈ X be an arbitrary point associated with a node of the
already constructed fragment of the search tree, and assume that b does not have
any successor in this fragment. Denote

�(b1, ..., bn) = min
(x1,...,xn)∈X

max
1≤j≤n

[xj − bj ].
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Then, b dominates a feasible point if and only if �(b1, ..., bn) ≤ 0. In general,
the question whether or not �(b1, ..., bn) ≤ 0 is an NP-complete problem. Thus,
the NP -completeness in the strong sense of this question for the P |prec, pj =
1|Cmax scheduling problem, which is a particular case of (1), follows from [4]
and [2]. Given the above observation, it is a good idea to calculate instead of
�(b1, ..., bn) its lower bound �. The actual method of calculating � depends on a
specific problem. If � > 0, then b is fathomed, i.e. no branching at b is required.
If � ≤ 0 or � is even not calculated at all, then b can be projected onto X ,
where the projection of b onto X is a point with the smallest t among all points
(b1 + t, ..., bn + t) satisfying (b1 + t, ..., bn + t) ∈ X . The point (b1, ..., bn) can be
projected onto X in polynomial time, since this requires to consider only points
(b1 + t, ..., bn + t) with integer t satisfying the inequality |t| ≤ p(n). Of course,
the projection may not exist.

Let (b1 + τ, ..., bn + τ) be the projection of b onto X . Recall that b /∈ X . On
the other hand, by the definition (b1 + τ, ..., bn + τ) ∈ X . Hence, τ �= 0.

Theorem 4. If (b1 + τ, ..., bn + τ) is on the boundary of X and τ > 0, then b
does not dominate any feasible point.

Proof. Since (b1 + τ, ..., bn + τ) is on the boundary of X , by the definition of the
boundary of X , for any (x1, ..., xn) ∈ X , there exists j such that xj ≥ bj + τ ,
and therefore max

1≤i≤n
(xi − bi) ≥ τ . Hence, �(b1, ..., bn) ≥ τ > 0 and b does not

dominate any feasible point. ��

Observe that if τ < 0, then b strictly dominates (b1 + τ, ..., bn + τ). Since b is a
point associated with a node of the search tree and since (b1 + τ, ..., bn + τ) is a
feasible point, (b1 + τ, ..., bn + τ) is an optimal solution. The two remaining cases
that have not been covered in Theorem 4 and in the observation above are the
case when τ > 0 but the projection does not belong to the boundary of X and
the case when the projection does not exist. These two cases are addressed by
Theorem 5. Let X(b1, ..., bn) be the set of all (x1, ..., xn) ∈ X such that

max
1≤j≤n

[xj − bj] = �(b1, ..., bn).

Theorem 5. If τ > 0 and (b1 + τ, ..., bn + τ) does not belong to the boundary of
X or if the projection does not exist, then there exists (x1, ..., xn) ∈ X(b1, ..., bn)
and i such that

xi − bi < �(b1, ..., bn). (5)

Proof. Observe that the statement of this theorem does not hold if and only if
X(b1, ..., bn) is comprised of only point (b1 + �(b1, ..., bn), ..., bn + �(b1, ..., bn)).
If the projection does not exist, then (b1 + t, ..., bn + t) /∈ X for all integer t.
In particular, (b1 + �(b1, ..., bn), ..., bn + �(b1, ..., bn)) is not in X and therefore
is not in X(b1, ..., bn), because X(b1, ..., bn) is a subset of X . Hence, for any
(x1, ..., xn) ∈ X(b1, ..., bn), there exists i satisfying (5).

Suppose that the projection exists but (b1 + τ, ..., bn + τ) /∈ X(b1, ..., bn).
Assume that (b1 + �(b1, ..., bn), ..., bn + �(b1, ..., bn)) ∈ X(b1, ..., bn). Then, by the
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definition of projection, τ < �(b1, ..., bn), which by virtue of (b1+τ, ..., bn+τ) ∈ X
leads to the following contradiction:

�(b1, ..., bn) > τ ≥ min
(x1,...,xn)∈X

max
1≤j≤n

[xj − bj] = �(b1, ..., bn).

So, (b1 + �(b1, ..., bn), ..., bn + �(b1, ..., bn)) /∈ X(b1, ..., bn), and therefore for any
(x1, ..., xn) ∈ X(b1, ..., bn) there exists i satisfying (5).

Finally, assume that (b1 + τ, ..., bn + τ) ∈ X(b1, ..., bn). Then, τ = �(b1, ..., bn).
Furthermore, since (b1+τ, ..., bn+τ) is not on the boundary ofX , (b1+τ, ..., bn+τ)
strictly dominates some (x1, ..., xn) ∈ X , i.e. xj ≤ bj + τ for all 1 ≤ j ≤ n and at
least one of these inequalities is strict. Then, taking into account the definition
of �(b1, ..., bn),

�(b1, ..., bn) = min
(y1,...,yn)∈X

max
1≤j≤n

[yj − bj ] ≤ max
1≤j≤n

[xj − bj ] ≤ τ = �(b1, ..., bn).

Hence, (x1, ..., xn) ∈ X(b1, ..., bn), and (5) holds for this (x1, ..., xn). ��

Let bi be a coordinate satisfying (5), and let b′ = (b′1, ..., b
′
n) be the point obtained

from b by replacing bi by b′i = xi−�(b1, ..., bn). Hence, b and b′ differ only by one
coordinate. Point b strictly dominates b′ and �(b′1, ..., b

′
n) = �(b1, ..., bn). Hence, b

strictly dominates some point in X if and only if b′ also dominates some point in
X . Therefore, if bi and xi − �(b1, ..., bn) are known, then it is possible to branch
at the node which corresponds to b with only one new node - the node which
corresponds to b′. Even if xi−�(b1, ..., bn) is not known, branching with only one
new point is still possible by replacing bi by bi − δi, where δi is a lower bound
on bi − xi + �(b1, ..., bn). Since bi − xi + �(b1, ..., bn) is integer and is greater
than zero, it is always possible to choose δi = 1, although a better lower bound
improves convergence.

Not surprisingly, in general a coordinate bi satisfying (5) is not known, and
the optimization procedure instead of finding a desired coordinate bi, finds some
subset B ⊆ {1, ..., n} such that the set {bi : i ∈ B} contains the desired
coordinate. Different instances of (1) may have different methods of finding B. An
example can be found in the next section. In the unlikely absence of a better idea,
the entire set {1, ..., n} can be taken as a subset containing a coordinate with the
desired property. Once the set B is found, the optimization procedure connects
the node associated with (b1, ..., bn) with several new nodes (branching) each
corresponding to a point obtained from (b1, ..., bn) by reducing one coordinate
bi with i ∈ B by bi − δi.

5 Minimization of the Maximum Weighted Lateness

Consider the P |prec, pj = 1|F scheduling problem, introduced in Subsection 3.1,
with the objective function

F (x1, ..., xn) = max
1≤j≤n

wj(xj − dj), (6)
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where dj is a due date for completion of task j (the desired time by which task
j needs to be completed) and wj is a positive weight. Given this interpretation,
the considered problem requires to minimize the maximum weighted lateness.
An approach similar to one discussed below was briefly outlined in [5].

Observe that (6) is a particular case of the objective function (2) considered
in Subsection 3.2. Hence, for any lower bound F̄ on the optimal value of F ,
the corresponding level set A(F̄ , F ) is comprised of only one point, say a =
(a1, ..., an). According to Subsection 3.1 and Subsection 3.2, for each 1 ≤ i ≤ n,

ai = min
{⌊

F̄

wi

⌋
+ di, n

}
. (7)

According to Section 4, in the search tree induced by a, each node represents
a point in the domain of F . This set of candidates for being a point associated
with a node of the search tree can be reduced to the set of so called consistent
points. For any point (b1, ..., bn) in the domain of F , the corresponding consistent
point (b′1, ..., b

′
n) is computed as follows. For each task i, let K(i) be the set of all

tasks j such that i→ j, i.e. K(i) is the set of all successors of i. The coordinates
of (b′1, ..., b′n) are computed iteratively. At each iteration, b′i is computed for i
satisfying the condition that all b′j, j ∈ K(i), have been already computed,
including the case K(i) = ∅. If K(i) = ∅, then b′i = bi. Otherwise,

b′i = min
{
bi, min

d≥h

(
d−

⌈ |{j : j ∈ K(i) and b′j ≤ d}|
m

⌉)}
, (8)

where h = minj∈K(i) b
′
j and d is integer.

The notion of consistency was originally introduced in [1] for the P2|prec, pj =
1|Lmax scheduling problem, where P2 indicates that the set of tasks is to be
processed on two machines. Similar to [1], we have the following lemma.

Lemma 4. Let b = (b1, ..., bn) be an arbitrary point in the domain of F , b′ =
(b′1, ..., b

′
n) be the corresponding consistent point, and x = (x1, ..., xn) ∈ X be an

arbitrary feasible point dominated by b. Then b′ also dominates x.

Proof. Suppose that this statement is not true, and consider the first iteration
of the procedure computing b′ that produces some b′i such that b′i < xi. Since b
dominates x, xi ≤ bi. Hence, according to (8), K(i) �= ∅ and there exists integer
d′ ≥ minj∈K(i) b

′
j such that

b′i = d′ −
⌈ |{j : j ∈ K(i) and b′j ≤ d′}|

m

⌉
.

By the selection of b′i, for all j ∈ K(i), xj ≤ b′j and therefore

{j : j ∈ K(i) and b′j ≤ d′} ⊆ {j : j ∈ K(i) and xj ≤ d′}.
Then, by the feasibility conditions (b) and (c) in Subsection 3.1,

xi ≤ d′ −
⌈
|{j : j ∈ K(i) and xj ≤ d′}|

m

⌉
≤ d′ −

⌈ |{j : j ∈ K(i) and b′j ≤ d′}|
m

⌉
= b′i

which contradicts b′i < xi. ��
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Given Lemma 4, in order to narrow the search for a feasible point, each point
associated with a node in the search tree should be replaced by the corresponding
consistent point. This is equally applicable to the root of the search tree, i.e.
the point computed according to (7) should be replaced by the corresponding
consistent point.

The initial lower bound on the optimal value of F can be calculated as

F̄ = max
1≤j≤n

wj(cj − dj), (9)

where the point (c1, ..., cn) is computed according to an iterative procedure which
is a mirror reflection of the one used for computing consistent points. For each
task i, let Q(i) be the set of all tasks j such that j → i, i.e. Q(i) is the set of
all predecessors of i. The coordinates of (c1, ..., cn) are computed iteratively. At
each iteration, ci is computed for i satisfying the condition that all cj, j ∈ Q(i),
have been already computed, including the case Q(i) = ∅. If Q(i) = ∅, then
ci = 1. Otherwise, l(i) = maxj∈Q(i) cj and

ci = max
1≤l≤l(i)

{
l +

⌈
|{j : j ∈ Q(i) and cj ≥ l}|

m

⌉}
, (10)

where l is integer. Similar to Lemma 4, it is easy to show that, for any (x1, ..., xn)
∈ X and for all 1 ≤ j ≤ n, cj ≤ xj which justifies that (9) is a lower bound on
the optimal value of F .

Let b = (b1, ..., bn) be a consistent point associated with some node of the
search tree. If b ∈ X , then the optimization procedure terminates with b as an op-
timal solution. Assume that b /∈ X . Then, the optimization procedure calculates
a lower bound � on �(b1, ..., bn) as follows. Consider an arbitrary (x1, ..., xn) ∈ X
and arbitrary S ⊆ {1, ..., n}. Then, according to the feasibility condition (b),

min
j∈S

xj +
⌈
|S|
m

⌉
− 1 ≤ max

j∈S
xj .

Hence, � can be calculated as

� = max
1≤l≤l̄

{
max
d≥b(l)

(
l +

⌈
|{j : cj ≥ l and bj ≤ d}|

m

⌉
− 1− d

)}
, (11)

where l and d are integer, l̄ = max1≤i≤n ci and b(l) = min{i: ci≥l} bi.
If � > 0, then the considered node is fathomed. The minimum of all � for

fathomed nodes will be used for calculating a larger lower bound on the optimal
value of F . Assume that � ≤ 0. Then, by (11), ci ≤ bi for all 1 ≤ i ≤ n. Since
each ci is greater than or equal to 1, b satisfies the first of the three feasibility
conditions stated in Subsection 3.1, i.e. b satisfies condition (a) and does not
satisfy either condition (b), or condition (c), or both. Then, for any integer t,
the point (b1 + t, ..., bn + t) does not satisfy the same condition either. Hence, the
projection of b onto X does not exist, and according to Theorem 5, there exists
bi satisfying (5). As has been discussed in Section 4, instead of finding bi, the
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optimization procedure finds a subset B ⊆ {1, ..., n} such that for at least one
i ∈ B the coordinate bi satisfies (5). In order to find B, a schedule (z1, ..., zn) is
constructed using the following iterative algorithm.

According to this algorithm, each iteration corresponds to some point in time
t. At the first iteration t = 1. Each iteration deals with the set of all tasks i
such that either Q(i) = ∅ or zj < t for all j ∈ Q(i). If the cardinality of this
set is less than or equal to m (recall that m is the number of machines), then
the algorithm sets zi = t for all i in this set. If the cardinality is greater than
m, then the algorithm sets zi = t only for m tasks by considering tasks in a
nondecreasing order of bi. Then, t is replaced by t + 1 and, if there are any
unscheduled tasks, the next iteration starts. This cycle repeats until all tasks
have been scheduled.

Denote �̄ = max1≤j≤n(zj−bj). If �̄ ≤ 0, then (z1, ..., zn) is an optimal solution
and the optimization procedure terminates. Assume that �̄ > 0. Let zg be the
smallest among all zj such that zj−bj = �̄. Then, the inequality � ≤ 0 guarantees
the existence of an integer t such that

1 ≤ t ≤ zg − 1 and |{j : zj = t and bj ≤ bg| < m. (12)

Indeed, if zg = 1 or if zg > 1 but |{j : zj = t and bj ≤ bg| = m for all
1 ≤ t ≤ zg − 1, then

� ≥
⌈
|{j : cj ≥ 1 and bj ≤ bg}|

m

⌉
− bg ≥ zg − bg = �̄ > 0,

which contradicts � ≤ 0. Let τ be the largest among all integer t satisfying (12).
Denote U = {j : τ < zj < zg} ∪ {g}.
Lemma 5. For any j ∈ U , there exists i such that i→ j and zi = τ .

Proof. Consider an arbitrary j ∈ U . Since zj > τ and bj ≤ bg, according to the
algorithm, which was used for constructing (z1, ..., zn), there exists v such that
zv ≥ τ and v → j. Among all such v select one with the smallest zv. Let it be
i. If zi = τ , then the lemma holds. Suppose that zi > τ . Then, since i → j,
zi < zj and consequently i ∈ U . Since i ∈ U , there exists u such that zu ≥ τ
and u → i. This implies that zu < zi and, by the transitivity of precedence
constraints, u→ j, which contradicts the selection of i. ��
Let B be the set of all j such that zj = τ and K(j)∩ U �= ∅. Then, by virtue of
Lemma 5,

U ⊆ ∪j∈BK(j). (13)

Consider an arbitrary (x1, ..., xn) ∈ X(b1, ..., bn), and let xi = minj∈B xj . Then,
taking into account (13), the fact that bj ≤ bg for all j ∈ U , and the definition
of X(b1, ..., bn),

xi − bi ≤ max
j∈U

xj −
⌈
|U |
m

⌉
− bi = max

j∈U
xj − (zg − zi)− bi

= max
j∈U

xj − bg − (zg − bg) + zi − bi ≤ �(b1, ..., bn)− (zg − bg) + zi − bi.
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By the choice of g and i, zg − bg > zi − bi, and therefore xi and bi satisfy (5).
Furthermore,

bi − xi + �(b1, ..., bn) ≥ zg − bg − (zi − bi).

So, the right-hand side of this inequality can be used in branching as a lower
bound δi on bi−xi +�(b1, ..., bn). That is, branching at the node associated with
b introduces |B| new nodes corresponding to the points each of which is obtained
form b by replacing one bi by bi − δi where i ∈ B and δi = zg − bg − (zi − bi).

Suppose that the search tree does not give a feasible point. Then, each fath-
omed node (b1, ..., bn) in this tree has an associated lower bound � > 0 on
�(b1, ..., bn). Then, the smallest among all these lower bounds, say �∗, is a lower
bound on �(a1, ..., an), where (a1, ..., an) is the point computed according to (7).
This leads to a new lower bound

F̄ = min
{j: aj<n}

wj(aj + �∗ − dj).

6 Computational Experiments

The algorithm described in Section 5 was compared by means of computational
experiments with an implementation of the branch-and-bound method. These
computational experiments were conducted in CSIRO by the third author on a
64-bit 28x dual 3.2 GHz Xeon machines with 2Gb of virtual memory. The par-
tially ordered sets for these experiments were provided by Dr Tatjana Davidović.

The computational experiments used an implementation of the branch-and-
bound method which constructs a search tree with nodes corresponding to partial
schedules. A partial schedule is defined by the set S = {xj1 , ..., xjk

} of completion
times that have been already determined. The root of the search tree corresponds
to the empty partial schedule with S = ∅. Consider a node defined by S =
{xj1 , ..., xjk

}, and let t = maxi∈S xi. Branching at this node is based on the set
R ⊆ ({1, ..., n} − {j1, ..., jk}) of all j such that either xi ≤ t, for all i ∈ Q(j), or
Q(j) = ∅. If |R| ≤ m, then the branching introduces only one new node which
is obtained by expanding the current S by setting xj = t + 1 for all j ∈ R.
If |R| > m, then all combinations of m elements of R are considered and each
combination gives a new node by expanding the current S by setting xj = t+ 1
for all j in this combination.

Consider a partial schedule S = {xj1 , ..., xjk
} corresponding to a node of the

search tree. Then, lower and upper bounds on the best value of the objective
function which can be obtained from this node are computed as follows. The set
S induces the scheduling problem P |prec, pj = 1, rj |maxj /∈{j1,...,jk} wj(xj − dj),
where i → j if and only if this relation exists in the original problem, and each
release time rj is r = maxxj∈S xj . Let f and f̄ be lower and upper bounds on
the optimal value of the objective function of the induced problem, and let F̄
be the value of the objective function for the partial schedule. Then, the lower
and upper bounds for the considered node are min

{
f, F̄

}
and max

{
f̄ , F̄

}
,

respectively. The upper bound f̄ is a value of the objective function for a schedule
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constructed in the same way as (z1, ..., zn) in Section 5, i.e. the original due dates
dj are replaced by consistent due dates d′j and then the tasks are scheduled
according to these new due dates. In order to compute f , a lower bound cj
on the completion time of each j is computed similarly to Section 5. The only
difference is the smallest value of such lower bounds which instead of 1 is now
r. Then, similar to (11),

f = max
r≤l≤l̄

{
max
d≥b(l)

Wld

(
l +

⌈ |{j : cj ≥ l and d′j ≤ d}|
m

⌉
− 1− d

)}
,

where l and d are integer; l̄ is the largest ci; b(l) = min{i: ci≥l} d′i; and

Wld = min
{j: cj≥l and d′

j≤d}
wj .

Four groups, each containing 30 partially ordered sets, were used. Each par-
tially ordered set in the first group contained 50 tasks, in the second group - 100
tasks, in the third group - 150 tasks and in the fourth group - 200 tasks. Both
algorithms were terminated after the first 15 minutes. The table below gives the
percentage of all problems solved by the branch-and-bound method (BB) and
by the method described in this paper (A).

Machines 3 4 5 6
Tasks A BB A BB A BB A BB

50 100 60 100 73.33 100 90 100 86.67
100 86.67 53.33 96.67 60 100 43.33 100 63.33
150 60 50 86.67 53.33 90 43.33 93.33 56.67
200 70 56.67 66.67 46.67 70 50 66.67 46.67

The next table gives the percentage of all problems where one method gives a
better solution than the other.

Machines 3 4 5 6
Tasks A BB A BB A BB A BB

50 13.33 0.00 20.00 0.00 13.33 0.00 13.33 0.00
100 13.33 0.00 16.67 0.00 26.67 0.00 10.00 0.00
150 16.67 0.00 23.33 3.33 33.33 3.33 20.00 0.00
200 26.67 3.33 46.67 0.00 40.00 0.00 33.33 0.00
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Abstract. Given a directed graph G, an edge is a strong bridge if its
removal increases the number of strongly connected components of G.
Similarly, we say that a vertex is a strong articulation point if its removal
increases the number of strongly connected components of G. In this
paper, we present linear-time algorithms for computing all the strong
bridges and all the strong articulation points of directed graphs, solving
an open problem posed in [2].

1 Introduction

We assume that the reader is familiar with the standard graph terminology,
as contained for instance in [5]. Let G = (V,E) be a directed graph, with m
edges and n vertices. A directed path in G is a sequence of vertices v1, v2, . . .,
vk, such that edge (vi, vi+1) ∈ E for i = 1, 2, . . . , k − 1. A directed graph G
is strongly connected if there is a directed path from each vertex in the graph
to every other vertex. The strongly connected components of G are its maximal
strongly connected subgraphs. Given a directed graph G, a vertex v ∈ V is a
strong articulation point if its removal increases the number of strongly con-
nected components of G. Similarly, we say that an edge e ∈ E is a strong bridge
if its removal increases the number of strongly connected components of G. Fig-
ure 1 illustrates the notion of strong articulation points and strong bridges of a
directed graph.

The notions of strong articolation points and strong bridges are related to the
notion of 2-vertex and 2-edge connectivity of directed graphs. We recall that a
strongly connected graph G is said to be 2-vertex-connected if the removal of

� This work has been partially supported by the 7th Framework Programme of the EU
(Network of Excellence “EuroNF: Anticipating the Network of the Future - From
Theory to Design”) and by MIUR, the Italian Ministry of Education, University and
Research, under Project AlgoDEEP.

W. Wu and O. Daescu (Eds.): COCOA 2010, Part I, LNCS 6508, pp. 157–169, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. A strongly connected graph G. Vertices 3 and 5 are strong articulation points
in G, while edges (2, 3) and (4, 5) are strong bridges in G

any vertex leaves G strongly connected; similarly, a strongly connected graph
G is said to be 2-edge-connected if the removal of any edge leaves G strongly
connected. It is not difficult to see that the strong articulation points are exactly
the vertex cuts for 2-vertex connectivity, while the strong bridges are exactly
the edge cuts for 2-edge connectivity: G is 2-vertex-connected (respectively 2-
edge-connected) if and only if G does not contain any strong articulation point
(respectively strong bridge). The 2-vertex and 2-edge connectivity of a directed
graph can be tested in linear time. For 2-vertex connectivity, there is a very recent
algorithm of Georgiadis [11]. Although there is no specific linear-time algorithm
in the literature, the 2-edge connectivity of a directed graph can be tested in
O(m+n) as observed somewhat indirectly in [9]: one can test whether a directed
graph is 2-edge-connected by using Tarjan’s algorithm [14] to compute two edge-
disjoint spanning trees in combination with the disjoint set-union algorithm of
Gabow and Tarjan [10]. However, both the algorithm of Georgiadis and the
combination of Tarjan’s algorithm with the set-union data structure of Gabow
and Tarjan do not find all the strong articulation points or all the strong bridges
of a directed graph.

In this paper, we show how to find all the strong bridges and all the strong
articulation points of a directed graph in O(m + n) worst-case time. Besides
being natural concepts in graph theory, strong articulation points and strong
bridges find applications in other areas. For instance, the computation of strong
articulation points arise in constraint programming, and in particular in the tree
constraint defined by Beldiceanu et al. [2]. The detection of the strong articula-
tion points in a directed graph is indeed a crucial step in their filtering algorithm
for the tree constraint, and Beldiceanu et al. [2] leaves as an open problem the
design of a linear-time algorithm for computing all the strong articulation points
of a directed graph. The algorithm presented in this paper solves exactly this
problem.
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Besides being interesting on their own, the algoritms presented in this paper
have further applications. A first application is verifying the restricted edge
connectivity of strongly connected graphs, as defined by Volkman in [15]: our
algorithm is able to improve the bounds in [15] fromO(m(m+n)) to O(n(m+n)).
As a further application, we cite that our method is able to simplify substantially
the approach of Georgiadis [11] to test the 2-vertex connectivity of a strongly
connected graph and it also provides a more practical linear-time algorithm for
this problem.

The remainder of this paper is organized as follows. Section 2 introduces few
preliminary definitions and proves some basic properties on strong articulation
points and strong bridges. In Section 3 we analyze the relationship between
strong articulation points, strong bridges and dominators in flowgraphs. In Sec-
tion 4 and Section 5 we show how to exploit effectively this relationship and
present, respectively, our linear-time algorithms for computing the strong bridges
and the strong articulation points of a directed graph, whilst in Section 6 we
consider some applications. Finally, Section 7 contains some concluding remarks.
Some details are omitted from this extended abstract for lack of space.

2 Preliminaries

In this section we prove some properties about strong bridges and strong articula-
tion points. Throughout the paper, we assume that we need to compute strong
bridges and strong articulation points only in the case of strongly connected
graphs. This is without loss of generality, since the strong bridges (respectively
strong articulation points) of a directed graph G are given by the union of the
strong bridges (respectively strong articulation points) of the strongly connected
components of G.

We start with some technical lemmas. Let G = (V,E) be a directed graph.
Let S ⊆ E be a subset of edges of G: we denote by G \ S the graph obtained
after deleting from G all the edges in S. Let X ⊆ V be a subset of vertices of G:
we denote by G \X the graph obtained after deleting from G all the vertices in
X together with their incident edges.

Lemma 1. Let G = (V,E) be a strongly connected graph, and let v ∈ V be a
vertex of G. Then v is a strong articulation point in G if and only if there exist
vertices x and y in G, x �= v, y �= v, such that all the paths from x to y in G
contain vertex v.

Proof. Assume that v is a strong articulation point: then G \ {v} is not strongly
connected. This implies that there must be two vertices x and y, x �= v, y �= v,
such that there is no path from x to y in G \ {v}, which is equivalent to saying
that all the paths from x to y in G must contain vertex v. Conversely, assume
that there exist vertices x and y in G, x �= v, y �= v, such that all the paths from
x to y in G contain vertex v. Removing v from G leaves no path from x to y,
and thus G \ {v} is no longer strongly connected. This implies that v must be
an articulation point of G. ��
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Lemma 2. Let G = (V,E) be a strongly connected graph, and let (u, v) ∈ E
be an edge of G. Then (u, v) is a strong bridge in G if and only if there exist
vertices x and y in G such that all the paths from x to y in G contain edge (u, v).

Proof. Similar to the proof of Lemma 1. ��

Note that as a special case of Lemma 2 we can have x = u and y = v. We now
need the following definition.

Definition 1. Given a directed graph G = (V,E), we say that an edge (u, v) is
redundant if there is an alternative path from vertex u to vertex v avoiding edge
(u, v). Otherwise, we say that (u, v) is non-redundant.

The following lemma is a consequence of Lemma 2.

Lemma 3. Let G = (V,E) be a strongly connected graph. Then the edge (u, v) ∈
E is a strong bridge if and only if (u, v) is non-redundant in G.

By Lemma 3, in a strongly connected graph the problem of finding strong bridges
is equivalent to the problem of finding redundant edges. We remark that finding
all the redundant edges in a directed acyclic graph is essentially the transitive
reduction problem. This is equivalent to the problem of computing the transi-
tive closure [1], which is known to be equivalent to Boolean matrix multiplica-
tion [7,8,12]. Thus, while for directed acyclic graphs the best known bound for
computing redundant edges is O(nω), where ω is the exponent of the fastest ma-
trix multiplication algorithm (currently ω < 2.376), we show in this paper that
for strongly connected graphs all the redundant edges can be computed faster,
in optimal O(m+ n) time.

A directed graph can have at most n strong articulation points. This bound
is realized by the graph consisting of a simple cycle: indeed in this graph each
vertex is a strong articulation point. To bound the number of strong bridges in
a directed graph, we need a different argument. Let G = (V,E) be a strongly
connected graph, and fix any vertex v of G. Let T+(v) to be an out-branching
rooted at v, i.e., a directed spanning tree rooted at v with all edges directed away
from v. Similarly, let T−(v) to be an in-branching rooted at v, i.e., a directed
spanning tree rooted at v with all edges directed towards v.

Lemma 4. The graph G′ = T+(v)∪T−(v) contains at most (2n−2) edges, can
be computed in O(m + n) time and includes all the strong bridges of G.

Proof. G′ is the union of two branchings, each having at most (n−1) edges: this
gives immediately the bound on the size of G′. G′ can be computed in linear
time using either depth-first or breadth-first search. We now show that all the
strong bridges of G must be contained in G′. For any given pair of vertices x, y
in V , there is a directed path from x to y in G′: the in-branching T−(v) contains
a path from x to v, and the out-branching T+(v) contains a path from v to y.
Thus, G′ is a strongly connected subgraph of G, and therefore all the edges not
in G′ are redundant and cannot be strong bridges. ��
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The following corollary is an immediate consequence of Lemma 4:

Corollary 1. A directed graph G can have at most (2n− 2) strong bridges.

The bound given in Corollary 1 is tight, as it is easy to construct graphs having
exactly (2n−2) strong bridges. Lemma 4 gives immediately a simple O(n(m+n))
algorithm to compute strong bridges: first compute the subgraph G′ = T+(v) ∪
T−(v) in O(m + n) time; since all the strong bridges of G are contained in G′,
for each edge (u, v) in G′ test whether (u, v) is a strong bridge by computing the
strongly connected components of G \ {(u, v)}.

3 Strong Articulation Points, Strong Bridges and
Dominators

Our linear-time algorithms for computing strong articulation points and strong
bridges exploits a connection between strong articulation points, strong bridges
and dominators in flowgraphs. We start with few definitions, and next we show
how those notions are related.

A flowgraph G(s) = (V,E, s) is a directed graph with a start vertex s ∈ V
such that every vertex in V is reachable from s. The dominance relation in G(s)
is defined as follows: a vertex u is a dominator of vertex v if every path from
vertex s to vertex v contains vertex u. Let dom(v) be the set of dominators of
v. Clearly, dom(s) = {s} and for any v �= s we have that {s, v} ⊆ dom(v): we
say that s and v are the trivial dominators of v in the flowgraph G(s). The
dominance relation is transitive and its transitive reduction is referred to as the
dominator tree DT (s). Note that the dominator tree DT (s) is rooted at vertex
s. Furthermore, vertex u dominates vertex v if and only if u is an ancestor of v in
DT (s). If u is a dominator of v, and every other dominator of u also dominates
v, we say that u is an immediate dominator of v. It is known that if a vertex v
has any dominators, then v has a unique immediate dominator: the immediate
dominator of v is the parent of v in the dominator tree DT (s).

Let G = (V,E) be a strongly connected graph, and let s be any vertex in
G. Since G is strongly connected, every vertex of V is reachable from s: thus
for every vertex s ∈ V , G(s) = (V,E, s) is a flowgraph. Note that there are n
flowgraphs for each strongly connected graph. As an example, Figure 2 shows
the dominator trees of the flowgraphs relative to the graph of Figure 1. The
following lemmas show a close relationship between strong articulation points in
strongly connected graphs and non-trivial dominators in flow graphs.

Lemma 5. Let G = (V,E) be a strongly connected graph, and let s be any vertex
in G. Let G(s) = (V,E, s) be the flowgraph with start vertex s. If u is a non-
trivial dominator of a vertex v in G(s), then u is a strong articulation point
in G.

Proof. If u is a non-trivial dominator of v in the flowgraph G(s) = (V,E, s), then
u �= s, u �= v and all the paths in G from s to v must include u. Consequently,
G\ {u} is not strongly connected and thus u must be a strong articulation point
in G. ��
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Fig. 2. Dominator trees of the flowgraphs relative to the graph of Figure 1. Non-trivial
dominators are shown in bold.

Lemma 6. Let G = (V,E) be a strongly connected graph. If u is a strong artic-
ulation point in G, then there must be a vertex s ∈ V such that u is a non-trivial
dominator of a vertex v in the flowgraph G(s) = (V,E, s).

Proof. If u is a strong articulation point of G, then by Lemma 1 there must be
two vertices s and v in G, s �= u, v �= u, such that every path from s to v contains
vertex u. This implies that u must be a non-trivial dominator of vertex v in the
flowgraph G(s). ��

We observe that Lemmas 5 and 6 are still not sufficient to achieve a linear-
time algorithm for our problem: indeed, to compute all the strong articulation
points of a strongly connected graph G, we need to compute all the non-trivial
dominators in the flowgraphs G(s), for each vertex s in V . Since the dominators
of a flowgraph can be computed in O(m + n) time [4] and there are exactly n
flowgraphs to be considered, the running time of this algorithm isO(n(m+n)). In
the next sections, we will show how a more careful exploitation of the relationship
between strong articulation points and dominators yields a linear-time algorithm
for computing the strong articulation points of a directed graph.

We now show how to exploit similar properties for strong bridges. We say that
an edge (u, v) is a dominator edge of vertex w if all every path from vertex s to
vertex w contains edge (u, v). Furthermore, if (u, v) is an edge dominator of w,
and every other edge dominator of u also dominates w, we say that (u, v) is an
immediate edge dominator of w. Similar to the notion of dominators, if a vertex
has any edge dominators, then it has a unique immediate edge dominator. As an
example, Figure 3 shows the out-branching trees of the flowgraphs relative to the
graph of Figure 1. The following lemmas are completely analogous to Lemmas 5
and 6.

Lemma 7. Let G = (V,E) be a strongly connected graph, and let s be any
vertex in G. Let G(s) = (V,E, s) be the flowgraph with start vertex s. If (u, v) is
a dominator edge in G(s), then (u, v) is a strong bridge in G.
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Fig. 3. Out-branchings of the flowgraphs relative to the graph of Figure 1. Dominator
edges are shown in bold.

Lemma 8. Let G = (V,E) be a strongly connected graph. If (u, v) is a strong
bridge in G, then there must be a vertex s ∈ V such that (u, v) is a dominator
edge in the flowgraph G(s) = (V,E, s).

Similar to dominators, also the dominator edges of a flow graph can be computed
in linear time. To do this, we compute two edge-disjoint out-branchings rooted
at a fixed vertex s with the algorithm of Tarjan [14]: by definition, the dominator
edges of the flowgraphG(s) are all the edges that appear in both out-branchings1.
Tarjan’s algorithm is able to identify the dominator edges before building the
out-branchings, and can be made to run in time O(m + n) with the help of the
linear time disjoint-set union algorithm of Gabow and Tarjan [10].

As previously explained for the case of dominators and strong articulation
points, Lemmas 7 and 8 are still not sufficient to obtain a linear-time algorithm
for computing all the strong bridges of a strongly connected graph G, since we
would need to compute the edge dominators for all n flowgraphs of a given
strongly connected graph. We will show in the next section how to obtain this
goal by exploiting more carefully the relationship between strong bridges and
dominator edges.

4 Finding Strong Bridges

In this section we present a linear-time algorithm for computing the strong
bridges of a directed graph G. We recall from Section 2 that it is enough to
1 This result can be seen also as a consequence of Edmond’s Theorem [6], that states

that a k-connected directed graph admits k edge-disjoint out-branchings rooted at
a fixed vertex r.
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restrict our attention to the case where G is strongly connected. Given a di-
rected graph G = (V,E), define its reversal graph GR = (V,ER) by reversing all
edges of G: namely, GR has the same vertex set as G and for each edge (u, v) in
G there is an edge (v, u) in GR. We say that the edge (v, u) in GR is the reversal
of edge (u, v) in G. The following lemma is immediate:

Lemma 9. Let G = (V,E) be a strongly connected graph and GR = (V,ER) be
its reversal graph. Then GR is strongly connected. Furthermore, edge (u, v) is a
strong bridge in G if and only if its reversal (v, u) is a strong bridge in GR.

Let G = (V,E) be a strongly connected graph, let s ∈ V be any vertex in G, and
let G(s) = (V,E, s) be the flowgraph with start vertex s. We denote by DE(s)
the set of dominator edges in G(s). Similarly, let GR = (V,ER) be the reversal
graph of G, and let GR(s) = (V,ER, s) be the flowgraph with start vertex s. We
denote by DER(s) the set of dominator edges in GR(s). The following theorem
provides a characterization of strong bridges in terms of the dominator edges in
the two flowgraphs G(s) = (V,E, s) and GR(s) = (V,ER, s).

Theorem 1. Let G = (V,E) be a strongly connected graph, and let s ∈ V be any
vertex in G. Then edge (u, v) is a strong bridge in G if and only if (u, v) ∈ DE(s)
or (v, u) ∈ DER(s).

Proof. We first prove that if (u, v) is a strong bridge in G, v �= s, then we must
have (u, v) ∈ DE(s) or (v, u) ∈ DER(s). Assume not: namely, assume that
(u, v) is a strong bridge in G, v �= s, but (u, v) �∈ DE(s) and (v, u) �∈ DER(s).
Since v is a strong bridge in G, then G \ {(u, v)} is not strongly connected. As
a consequence, there must be a vertex w in G, w �= s, such that the following
is true: w is in the same strongly connected component as s in G, but w is not
the same strongly connected component as s in G \ {(u, v)}. Namely, either (a)
there is a path from s to w in G, but there is no path from s to w in G\{(u, v)},
or (b) there is a path from w to s in G, but there is no path from w to s in
G\{(u, v)}. If we are in case (a), then all the paths from s to w in G must contain
edge (u, v). This is equivalent to saying that (u, v) is a dominator edge of w in
the flowgraph G(s) = (V,E, s), i.e., (u, v) ∈ DE(s), which clearly contradicts
the assumption (u, v) ∈ DE(s) or (v, u) ∈ DER(s) If we are in case (b), then
all the paths from w to s in G must contain edge (u, v). This is equivalent to
saying that (v, u) is a dominator edge of w in the flowgraph GR(s) = (V,ER, s),
i.e., (v, u) ∈ DER(s), which again contradicts the assumption (u, v) ∈ DE(s) or
(v, u) ∈ DER(s). This shows that if (u, v) is a strong bridge in G, then (u, v)
must be in DE(s) or (v, u) must be in DER(s).

To prove the converse, let (u, v) be any edge such that (u, v) ∈ DE(s) or
(v, u) ∈ DER(s). If (u, v) ∈ DE(s), (u, v) is a dominator edge in G(s), and thus
(u, v) must be a strong bridge in G by Lemma 7. Analogously, if (v, u) ∈ DER(s),
again by Lemma 7 (v, u) must be a strong bridge in GR: Lemma 9 now ensures
that (u, v) must be a strong bridge in G as well. This completes the proof of the
theorem. ��
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We now present our algorithm for computing the strong bridges of a strongly
connected graph.

Algorithm StrongBridges(G)

Input : A strongly connected graph G = (V,E), with n vertices and m edges.
Output : The strong bridges of G.

1. Choose arbitrarily a vertex s ∈ V in G.
2. Compute DE(s), the set of dominator edges in the flowgraph G(s) =

(V,E, s).
3. Compute the reversal graph GR = (V,ER).
4. Compute DER(s), the set of dominator edges in the flowgraph GR(s) =

(V,ER, s).
5. Output the union of the edges in DE(s) and the reversal of the edges in

DER(s).

Theorem 2. Algorithm StrongBridges computes the strong bridges of a
strongly connected graph G in time O(m+ n).

Proof. The correctness of the algorithm hinges on Theorem 1. We now analyze
its running time. Since the edge dominators of a flowgraph can be computed
in linear time, Steps 2 and 4 can be implemented in time O(m + n). Finally,
the reversal graph GR in Step 3 can be computed in linear time, and thus the
theorem follows. ��

Theorem 2 can be generalized to general directed graphs:

Theorem 3. The strong bridges of a directed graph G can be computed in time
O(m+ n).

Proof. To compute the strong bridges of G it is enough to find the strongly
connected components of G in O(m+n) time [13], and then to return the strong
bridges of each connected component of G. By Theorem 2, this require overall
O(m+ n) time. ��

5 Finding Strong Articulation Points

In the previous section we have seen how to compute the strong bridges of a
directed graph. Now we show that to adapt the same approach to compute the
strong articulation points. The following are the analogs of Lemma 9 and of
Theorem 1.

Lemma 10. Let G = (V,E) be a strongly connected graph and GR = (V,ER)
be its reversal graph. Vertex v is a strong articulation point in G if and only if
v is a strong articulation point in GR.
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Theorem 4. Let G = (V,E) be a strongly connected graph, and let s ∈ V be
any vertex in G. Then vertex v �= s is a strong articulation point in G if and
only if v ∈ D(s) ∪DR(s).

Note that Theorem 4 provides no information on whether vertex s is a strong
articulation point. However, this can be easily checked as shown in the following
algorithm.

Algorithm StrongArticulationPoints(G)

Input : A strongly connected graph G = (V,E), with n vertices and m edges.
Output : The strong articulation points of G.

1. Choose arbitrarily a vertex s ∈ V in G, and test whether s is a strong
articulation point in G. If s is an articulation point, output s.

2. Compute D(s), the set of non-trivial dominators in the flowgraph G(s) =
(V,E, s).

3. Compute the reversal graph GR = (V,ER).
4. ComputeDR(s), the set of non-trivial dominators in the flowgraphGR(s) =

(V,ER, s).
5. Output D(s) ∪DR(s).

Theorem 5. Algorithm StrongArticulationPoints computes the strong ar-
ticulation points of a strongly connected graph G in time O(m+ n).

Proof. The correctness of the algorithm hinges on Theorem 4. We now analyze
its running time. Step 1 can be implemented in time O(m+ n) by simply com-
puting the strongly connected components of G \ {s} [13]. Since computing the
dominators of a flowgraph requires linear time [3], also Steps 2 and 4 can be
implemented in time O(m+ n). Finally, the reversal graph GR in Step 3 can be
computed in linear time, and thus the theorem follows. ��

Theorem 5 can be generalized to general directed graphs:

Theorem 6. The strong articulation points of a directed graph G can be com-
puted in time O(m+ n).

Proof. To compute the strong articulation points of G it is enough to find the
strongly connected components of G in O(m+ n) time [13], and then to return
the strong articulation points of each connected component of G. By Theorem 5,
this require overall O(m+ n) time. ��

We conclude this section by observing that is possible to reduce the problem
of computing strong bridges to the problem of computing strong articulation
points:

Lemma 11. If there is an algorithm to compute the strong articulation points
of a strongly connected graph in time T (m,n), then there is algorithm to compute
the strong bridges of a strongly connected graph in time O(m+n+T (2m,n+m)).
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Proof. Let G = (V,E) be a strongly connected graph with m edges and n ver-
tices. We define a new graph G′ as follows. G′ contains all the vertices of G;
furthermore, for each edge e = (u, v) in G, we introduce a new vertex ϕ(e) in G′.
The edge set of G′ is defined as follows: for each edge e = (u, v) in G, there are
edges (u, ϕ(e)) and (ϕ(e), v) in G′. Note that G′ has exactly n+m vertices and
2m edges, it is still strongly connected and can be computed in time O(m+ n).
The lemma now follows from the observation that an edge e is a strong bridge
in G if and only if the corresponding vertex ϕ(e) is a strong articulation point
in G′. ��

By Lemma 11, a linear-time algorithm for computing the strong articulation
points implies immediately a linear-time algorithm for computing the strong
bridges. This provides an alternative algorithm to the one described in Section 4.

6 Applications of Strong Articulation Points and Strong
Bridges

Strong articulation points and strong bridges are natural concepts in graph the-
ory, and appear to be interesting on their own. In this section, we list a few
other applications of our linear-time algorithms for computing strong articula-
tion points and strong bridges.

Verifying restricted edge connectivity. A notion related to edge connectivity is
restricted edge connectivity [15]. Let G be a strongly connected graph: an edge
set S is a restricted edge-cut of G if G \ S has a non-trivial strongly connected
component D such that G \ V (D) contains (at least) one edge. The restricted
edge connectivity λ′(G) is the minimum cardinality over all restricted edge-cuts
S. A strongly connected graph G is called λ′-connected if λ′(G) exists. In [15]
Volkmann presented an O(m(m + n)) algorithm to verify the λ′-connectedness
of a strongly connected graph G. The algorithm by Volkmann needs to carry out
m distinct computations of strongly connected components, one for each edge
of the graph. It is possible to reduce to O(n) the total number of computations
of strongly connected components required, i.e., one for each strong bridge of G
(recall that the strong bridges of a directed graph are O(n) by Corollary 1). This
improves to O(n(m+ n)) the overall time needed to verify the λ′-connectedness
of a strongly connected graph.

Testing 2-vertex connectivity. Very recently Georgiadis [11] gave a linear-time
algorithm for testing the 2-vertex connectivity of a strongly connected graph G.
The algorithm in [11] work as follows: first, choose two distinct vertices a and b
in G, and next check whether the four flowgraphs G(a), G(b), GR(a), and GR(b)
have only trivial dominators. The proof of correctness given in [11] is rather
involved and lengthy. Theorem 4 in this paper provides a much simpler proof:
if G(a) and GR(a) have only trivial dominators, then only vertex a could be an
articulation point in G; if also the flowgraphs G(b) and GR(b) have only trivial
dominators, then a cannot be a strong articulation point, and hence G must
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be 2-vertex connected. Conversely, if G is 2-vertex connected, then G has no
strong articulation points, and therefore, for any choice of the start vertex s, the
flowgraphs G(s) and GR(s) have only trivial dominators. We also observe that
the algorithm presented in this paper is likely to be faster in practice than the
algorithm in [11]. Indeed, while the algorithm in [11] needs to work with four
different flowgraphs, the algorithm presented here needs only two different flow-
graphs, plus one simple computation of the strongly connected components. We
recall that, besides simplifying the correctness proofs and providing algorithms
that are likely to be faster in practice, our algorithm is able to report all the cut
vertices, i.e., all the strong articulation points in G.

7 Conclusions

Strong articulation points and strong bridges in directed graphs are a natural
generalization of the notions of articulation points and bridges in undirected
graphs. Surprisingly, they have not received much attention in the literature,
despite the fact that they seem to arise in several applications (see, e.g., [2,15]). In
this paper, we have presented linear-time algorithms for computing all the strong
articulation points and all the strong bridges of a directed graph. Our algorithms
are simple, and thus appear to be amenable to practical implementations.
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Abstract. The graph partitioning problem (GPP) consists of partitioning the ver-
tex set of a graph into several disjoint subsets so that the sum of weights of the
edges between the disjoint subsets is minimized. The critical node problem (CNP)
is to detect a set of vertices in a graph whose deletion results in the graph having
the minimum pairwise connectivity between the remaining vertices. Both GPP
and CNP find many applications in identification of community structures or in-
fluential individuals in social networks, telecommunication networks, and supply
chain networks. In this paper, we use integer programming to formulate GPP and
CNP. In several practice cases, we have networks with uncertain weights of links.
Some times, these uncertainties have no information of probability distribution.
We use robust optimization models of GPP and CNP to formulate the community
structures or influential individuals in such networks.

1 Introduction

The graph partitioning problem (GPP) consists of partitioning the vertex set of a graph
into several disjoint subsets so that the sum of weights of the edges between the disjoint
subsets is minimized. The critical node problem (CNP) is to detect a set of vertices in
a graph whose deletion results in the graph having the minimum pairwise connectivity
between the remaining vertices. Both GPP and CNP are NP-complete [8,1].

Let G = (V,E) be an undirected graph with a set of vertices V = {v1,v2, · · · ,vN} and
a set of edges E = {(vi,v j) : edge between vertices vi and v j,1≤ i, j ≤ N}, where N is
the number of vertices. The weights of the edges are given by a matrix W = (wi j)N×N ,
where wi j(> 0) denotes the weight of edge (vi,v j) and wi j = 0 if no edge (vi,v j) exists
between vertices vi and v j. This matrix is symmetric for undirected graphs G and is the
adjacency matrix of G if wi j ∈ {0,1}.

For the graph partitioning problem, we are given the cardinalities n1, · · · ,nK of sub-
sets that we want to partition V , and K is the number of subsets. Let xik be the indicator
that vertex vi belongs to the kth subset if xik = 1 or not if xik = 0, and yi j be the indicator
that the edge (vi,v j) with vertices vi,v j are in different subsets if yi j = 1 and vi,v j in the
same subset if yi j = 0. Thus, the sum of weights of the edges between the disjoint sub-
sets can be expressed as 1

2 ∑N
i=1 ∑N

j=1 wi jyi j or ∑N
i=1 ∑N

j=i+1 wi jyi j because of wi j = wji

and wii = 0 for non-existence of loops. Each vertex vi has to be partitioned into one and
only one subset, i.e., ∑K

k=1 xik = 1, and the kth subset has the number nk of vertices, i.e.,
∑N

i=1 xik = nk. The relation between xik and yi j can be expressed as yi j = 1−∑K
k=1 xikx jk

W. Wu and O. Daescu (Eds.): COCOA 2010, Part I, LNCS 6508, pp. 170–183, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and this can be linearized as −yi j− xik + x jk ≤ 0,−yi j + xik− x jk ≤ 0 for k = 1, · · · ,K
under the objective of minimization. Therefore, the feasible set of deterministic for-
mulation of graph partitioning problem for a graph G = (V,E) with weight matrix W
is

X =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(xik,yi j) :

∑K
k=1 xik = 1,∑N

i=1 xik = nk,
−yi j− xik + x jk ≤ 0,
−yi j + xik− x jk ≤ 0,
xik ∈ {0,1},yi j ∈ {0,1},

i = 1, · · · ,N, j = i+ 1, · · · ,N,k = 1, · · · ,K

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (1)

and the objective function is

min
(xik,yi j)∈X

N

∑
i=1

N

∑
j=i+1

wi jyi j (2)

where we minimize the total weight of edges connecting distinct subsets. The GPP is to
solve the program with the objective (2) and the constraints in (1) of X . This is a binary
integer linear programming problem.

For the critical node problem, we are given the number K as the number of vertices
we want to delete in V . Let vi be the indicator that vertex vi belongs to the deleted
subset Vd of V if vi = 1 and otherwise vi = 0, and let ui j be the indicator that the edge
(vi,v j) with two ends vi,v j are in the resulted graph after deletion of the subset Vd of
V if ui j = 1 and otherwise ui j = 0. Here, we use the notation vi as one vertex of V and
the indicator of this vertex to be deleted or not. Thus, the pairwise connectivity between
the remaining vertices in V \Vd can be expressed as ∑N

i=1 ∑N
j=i+1 wi jui j because of the

symmetric wi j = wji and no loop of G with wii = 0. The constraints of CNP include that
the number of vertices in the deleted subset is K, i.e., ∑N

i=1 vi = K, and all three edges
in E have the relation that if two edges are in the resulted graph, another edge is also
in the resulted graph, i.e., max{ui j +u jk−uik,ui j−u jk +uik,−ui j +u jk +uik} ≤ 1. The
relation between ui j and vi,v j can be expressed as ui j + vi + v j ≥ 1 under the objective
of minimization, which implies that the edge (vi,v j) between the subsets Vd and V \Vd

should be deleted if one or two of the vertices are deleted. Therefore, the feasible set of
deterministic formulation of critical node problem for a graph G = (V,E) with weight
matrix W is

Y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(vi,ui j) :

ui j + vi + v j ≥ 1,
ui j + u jk−uik ≤ 1,
ui j−u jk + uik ≤ 1,
−ui j + u jk + uik ≤ 1,
∑N

i=1 vi = K,
vi ∈ {0,1},ui j ∈ {0,1},

i = 1, · · · ,N, j = i+ 1, · · · ,N,k = j + 1, · · · ,N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3)

and the objective function is

min
(vi,ui j)∈Y

N

∑
i=1

N

∑
j=i+1

wi jui j (4)
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where we minimize the pairwise connectivity between the remaining vertices. The CNP
is to solve the program with the objective (4) and the constraints in (3) of Y . This is also
a binary integer linear programming problem.

The graph partitioning problem has been studied for a long time and recently studied
by linear and quadratic programming approaches [6]. The critical node problem is pro-
posed recently by [1], and solved with several heuristic methods and exact integer pro-
gramming methods. In this paper, we minimize the pairwise connectivity between the
remaining vertices after deleting some vertices instead of another form named the car-
dinality constrained critical node problem, which is to minimize the number of deleted
nodes to limit the connectivity.

Both GPP and CNP have been applied in analyzing networks [5,2,4]. Two important
elements or structures in networks are communities and influential individuals, where a
community is a dense group of nodes with high connectivity and the influential individ-
ual is a node which plays a leader role in the network. The GPP is to partition the nodes
into several subsets which are quite related to communities, while the CNP is trying to
find the critical nodes or influential individuals in the network. However, the influential
individual or the critical node always have the dense part with itself as the center of
this community. This leads us to use both GPP and CNP to analyze the networks in the
meantime.

In practice, the links between nodes always change their connectivity in a network.
That is, the weights are uncertain along the time. In this paper, we use robust optimiza-
tion models to formulate both GPP and CNP to deal with these problems with uncertain
weights. In addition, we use our models to analyze several networks arising from social
networks or some artificial networks.

The rest of this paper is organized as follows: section 2 discusses the robust opti-
mization models and algorithms based on a decomposition method, for GPP and CNP
with uncertain weights; In section 3, we discuss the application of GPP and CNP in
networks with detailed explanations; In section 4, several numerical experiments are
performed to analyze some social networks; Section 5 concludes the paper.

2 Robust Models for GPP and CNP

2.1 Uncertainty Assumptions

In this paper, we consider the uncertainty for the weight matrix W = (wi j)N×N . Assume
that each entry wi j is modeled as independent, symmetric and bounded random but
unknown distribution variable w̃i j , with values in [wi j − ŵi j,wi j + ŵi j]. Note that we
require wi j = wji for undirected graph G and thus ŵi j = ŵ ji for i, j = 1, · · · ,N. Assume
ŵi j ≥ 0, wi j ≥ ŵi j and wii, ŵii = 0 for all i, j = 1, · · · ,N.

2.2 Robust Optimization Models for GPP and CNP

For the graph G = (V,E) with the weighted matrix W = (wi j)N×N , the uncertainties
satisfy w̃i j ∈ [wi j − ŵi j,wi j + ŵi j]. For the positive integer K, the GPP requires the
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given cardinalities nk(k = 1, · · · ,K). For general graph partitioning [6], nk is not nec-
essarily to be given and only required to satisfy nk > 1; For equal partitioning, nk ∈
{�N/K�,�N/K�+1}with total ∑k nk = N. In CNP, we also delete exactly K vertices to
minimize the pairwise connectivity between the remaining vertices.

Because of the existence of uncertain weights of edges in G, we use robust optimiza-
tion models to formulate the GPP and CNP in order to optimize against the worst cases
by min-max objective functions. These models find the best partitioning in GPP and
best deletion of CNP in the worst cases of the uncertainties w̃i j.

Let J be the index set of W with uncertain changes, i.e., J = {(i, j) : ŵi j > 0, i =
1, · · · ,N, j = i + 1, · · · ,N}, where we assume that j > i since W is symmetric. Let Γ
be a parameter, not necessarily integer, that takes values in the interval [0, |J|]. This
parameter Γ , which is introduced in [3], is to adjust the robustness of the proposed
method against the level of conservatism of the solution. The number of coefficients wi j

is allowed to change up to �Γ � and another wit , jt changes by (Γ −�Γ �).
Thus, the robust optimization model of GPP (RGPP) with given cardinalities nk can

be formulated as follows,

min
(xik,yi j)∈X

z (5)

s.t.
N

∑
i=1

N

∑
j=i+1

wi jyi j + max{
S : S ⊆ J, |S| ≤ Γ
(it , jt) ∈ J \S

}
(

∑
(i, j)∈S

ŵi jyi j +(Γ −�Γ �)ŵit , jt yit , jt

)
− z≤ 0.

and as shown in the following theorem, it can be reformulated as an equivalent binary
integer linear programming. The method used in this proof was first proposed in [3].

Theorem 1. The formulation (5) is equivalent to the following linear programming
formulation:

min
N

∑
i=1

N

∑
j=i+1

wi jyi j +Γ p0 + ∑
(i, j)∈J

pi j (6)

s.t. p0 + pi j− ŵi jyi j ≥ 0, (i, j) ∈ J

pi j ≥ 0, (i, j) ∈ J

p0 ≥ 0,

(xik,yi j) ∈ X .

Proof. For a given matrix (yi j)i=1,··· ,N, j=i+1,··· ,N , the part

max{
S : S ⊆ J, |S| ≤ Γ
(it , jt) ∈ J \S

}
(

∑
(i, j)∈S

ŵi jyi j +(Γ −�Γ �)ŵit , jt yit , jt

)
,
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in (5) can be linearized by introducing zi j for all (i, j) ∈ J with the constraints
∑(i, j)∈J zi j ≤ Γ ,0≤ zi j ≤ 1, or equivalently, by the following formulation

max ∑
(i, j)∈J

ŵi jyi jzi j (7)

s.t. ∑
(i, j)∈J

zi j ≤ Γ ,

0≤ zi j ≤ 1, (i, j) ∈ J

The optimal solution of this formulation should have �Γ � variables zi j = 1 and one
zi j = Γ −�Γ �, which is equivalent to the optimal solution in the maximizing part in (5).

By strong duality, for a given matrix (yi j)i=1,··· ,N, j=i+1,··· ,N , the problem (7) is linear
and can be formulated as

min Γ p0 + ∑
(i, j)∈J

pi j

s.t. p0 + pi j− ŵi jyi j ≥ 0, (i, j) ∈ J

pi j ≥ 0, (i, j) ∈ J

p0 ≥ 0.

Combing this formulation with (5), we obtain the equivalent formulation (6), which
finishes the proof. ��
Similarly, the robust optimization model for CNP (RCNP) to delete K vertices is as
follows,

min
(vi,ui j)∈Y

z′ (8)

s.t.
N

∑
i=1

N

∑
j=i+1

wi jui j + max{
S : S ⊆ J, |S| ≤ Γ
(it , jt) ∈ J \S

}
(

∑
(i, j)∈S

ŵi jui j +(Γ −�Γ �)ŵit , jt uit , jt

)
− z′ ≤ 0.

and its equivalent binary integer linear programming formulation is

min
N

∑
i=1

N

∑
j=i+1

wi jui j +Γ p′0 + ∑
(i, j)∈J

p′i j (9)

s.t. p′0 + p′i j− ŵi jui j ≥ 0, (i, j) ∈ J,

p′i j ≥ 0, (i, j) ∈ J,

p′0 ≥ 0,

(vi,ui j) ∈ Y.

By comparing the robust optimization models of GPP ((5),(6)) and CNP ((8),(9)),
they are quite similar except that the feasible sets for xik,yi j in GPP and vi,ui j in CNP.
Both programs in (6) and (9) are formulated as binary integer linear programs, which
can be solved through commercial software, such as CPLEX. In the following section,
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we use a decomposition method on a variable to reformulate robust optimization mod-
els of GPP and CNP. In addition, the probability distribution of the gap, between the
objective value of the robust optimization model RGPP (5) and the objective value of
the robust optimization model with respect to uncertainty w̃i j by choosing different Γ ,
is studied in [3]. Since the robust optimization model for RCNP (8) is quite similar to
RGPP (5), the probability distribution of the gap for RCNP can be studied similarly.

2.3 Algorithm Based on a Decomposition on One Variable

Next, we will construct an algorithm based on a decomposition method on a variable to
solve the programs (6) and (9). The numerical experiments in Section 4 show that this
algorithm is much more efficient than the direct branch and bound method by CPLEX.
For all (i, j) ∈ J, let el (l = 1, · · · , |J|) be the corresponding value of ŵi j in the increas-
ing order. For example, e1 = min(i, j)∈J ŵi j and e|J| = max(i, j)∈J ŵi j. Let (il , jl) ∈ J be
the corresponding index of l, i.e., ŵ(il , jl) = el . In addition, we define e0 = 0. Thus,
[0,e1], [e1,e2], · · · , [e|J|,∞) is a decomposition of [0,∞).

For l = 0,1, · · · , |J|, we define the program Gl as follows:

Gl = Γ el + min
(xik,yi j)∈X

⎧⎨⎩ N

∑
i=1

N

∑
j=i+1

wi jyi j + ∑
(i, j):ŵi j≥el+1

(ŵi j− el)yi j

⎫⎬⎭ . (10)

Totally, there are |J|+ 1 of Gls. In the following theorem, we prove that the decompo-
sition method based on p0 can solve the program (6). The method in the proof was first
proposed in [3].

Theorem 2. Solving robust graph partitioning problem (6) is equivalent to solve the
|J|+ 1 problems Gls in (10) for l = 0,1, · · · , |J|.

Proof. From (6), the optimal solution (x∗ik,y
∗
i j, p

∗
0, p

∗
i j) satisfies

p∗i j = max{ŵi jy
∗
i j− p∗0,0},

and therefore, the objective function of (6) can be expressed as

min
{p0≥0,(xik,yi j)∈X}

Γ p0 +
N

∑
i=1

N

∑
j=i+1

wi jyi j + ∑
(i, j)∈J

max{ŵi jyi j− p0,0}

= min
{p0≥0,(xik,yi j)∈X}

Γ p0 +
N

∑
i=1

N

∑
j=i+1

wi jyi j + ∑
(i, j)∈J

yi j max{ŵi j− p0,0}, (11)

where the equality is obtained by the fact yi j is binary in the feasible set X .
By the composition [0,e1], [e1,e2], · · · , [e|J|,∞) of [0,∞) for p0, we have

∑
(i, j)∈J

yi j max{ŵi j− p0,0}=

{
∑(i, j):ŵi j≥ŵil , jl

(ŵi j− p0)yi j, if p0 ∈ [el−1,el ], l = 1, · · · , |J|;
0, if p0 ∈ [e|J|,∞).
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Thus, the optimal objective value of (6) is minl=1,··· ,|J|,|J|+1{Zl}, where

Zl = min
{p0∈[el−1,el ],(xik,yi j)∈X}

⎛⎝Γ p0 +
N

∑
i=1

N

∑
j=i+1

wi jyi j + ∑
(i, j):ŵi j≥ŵ

il , jl

(ŵi j− p0)yi j

⎞⎠ , (12)

for l = 1, · · · , |J|, and

Z|J|+1 = min
{p0≥e|J|,(xik,yi j)∈X}

Γ p0 +
N

∑
i=1

N

∑
j=i+1

wi jyi j.

For l = 1, · · · , |J|, since the objective function (12) is linear over the interval p0 ∈
[el−1,el], the optimal is either at the point p0 = el−1 or p0 = el . For l = |J|+ 1, Zl is
obtained at the point e|J| since Γ ≥ 0.

Thus, the optimal value minl=1,··· ,|J|,|J|+1{Zl} with respect to p0 is obtained among
the points p0 = el for l = 0,1, · · · , |J|. Let Gl be the value at point p0 = el in (12), i.e.,

Gl = Γ el + min
(xik,yi j)∈X

⎧⎨⎩ N

∑
i=1

N

∑
j=i+1

wi jyi j + ∑
(i, j):ŵi j≥el+1

(ŵi j− el)yi j

⎫⎬⎭ .

We finish the proof. ��
As shown in Theorem 2, G|J| = Γ e|J|+∑N

i=1 ∑N
j=i+1 wi jyi j is the original nominal prob-

lem. Our Algorithm is based on this theorem.

Algorithm
Step 1: For l = 0,1, · · · , |J|, solving Gl in (10);
Step 2: Let l∗ = argminl=0,1,··· ,|J|G

l ;
Step 3: Then {x∗ik,y∗i j}= {xik,yi j}l∗ .

Similarly, for the robust critical node problem, we have the following theorem, and
we omit the proof here.

Theorem 3. Solving robust critical node problem (9) is equivalent to solve the |J|+ 1
problems Hls for l = 0,1, · · · , |J|, where the problem Hl is formulated as follows:

Hl = Γ el + min
(vi,ui j)∈Y

⎧⎨⎩ N

∑
i=1

N

∑
j=i+1

wi jui j + ∑
(i, j):ŵi j≥el+1

(ŵi j− el)ui j

⎫⎬⎭ . (13)

In the case of Γ = 0, which means none of wi js is allowed to change, both RGPP and
RCNP become nominal problems (2) and (4), respectively.

3 Networks Analysis by GPP and CNP

Before presenting the relations of GPP, CNP and networks, we first introduce the two
important properties in networks: community structure and influential individuals. As
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mentioned in [9], many systems take the form of networks, such as co-author net-
works, telecommunication networks, supply chain networks, Internet and Worldwide
Web, power grids, networks in social society, as well as many biological networks, in-
cluding neural networks, food webs and metabolic networks. Two well-known networks
that have been studied much are scale-free networks, which mean the degree distribu-
tion of them follows a power law, and small-world networks, or known as six degrees
of separation.

If a network can be divided into several groups such that the nodes within a group
have denser connections than nodes from different groups, this network is said to have
community structure. A community is the group of nodes in such division. For ex-
ample, in a co-author network, the groups may mean different research scientists under
different research topics. Mathematically, in a graph G = (V,E) for a network, the ver-
tex set can be divided according to the weights between them into several subsets such
that the vertices within a subset have heavier sum weights of edges than that among
distinct subsets. The partitioning of graph is exactly the process to detect community
structure in a network while the subsets are corresponding to communities. As we have
mentioned above, the graph partitioning is NP-complete and is hard to solve. Thus,
community detection in a network, especially for arising complex networks for some
real world problems, is a difficult task.

Despite of these difficulties, several methods for community detection have been
developed and employed with application in different areas successfully, such as
minimum-cut method [11], hierarchical clustering, Girvan-Newman algorithm [9],
modularity maximization [12], and clique percolation method [13]. Our proposed
method graph partitioning can be considered as a generalization of minimum-cut
method with more than two subsets. It is different from clique percolation method where
each subset is a complete graph. Although these methods work in different situations,
we still have the question such that how many possible groups we have, and what the
sizes of groups are in a network. These are the parameters K and n1, · · · ,nK required
in graph partitioning. In graph partitioning, the paper [6] has discussed how to obtain
K and presented that the cardinalities n1, · · · ,nK can be relaxed to an interval region
[Cmin,Cmax].

In fact, the constraint of the sum ∑K
k=1 xik = 1 requires each vertex is partitioned into

one and only one subset. The ∑N
i=1 xik = nk defines the size of the kth subset. Since xik ∈

{0,1}, the sum ∑N
i=1 xik takes integer values between the lower size bound Cmin and the

upper bound Cmax. These two bounds are known parameters and can be chosen roughly
from {1, · · · ,N}. The two kinds of constraints ensure that each vertex belongs to exactly
one subset and all vertices have corresponding subsets. The later one is guaranteed
by the fact that ∑K

k=1 nk = ∑K
k=1 ∑N

i=1 xik = ∑N
i=1 ∑K

k=1 xik = ∑N
i=1 1 = N, which means

that nk can take any integer values in [Cmin,Cmax] but their sum is fixed as N. Thus, in
analyzing networks, we only need the information about the rough region of the sizes
for communities.

The weight of an edge in a graph describes the closeness of the connections between
two nodes in a network. However, the weight is not always certain. It has dynamic
changes along the time. The proposed robust optimization model of graph partitioning
is to deal with such uncertainty.
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Another property arising in networks is the influential individuals, which represent
the most important nodes in networks. For example, in a co-author network, some scien-
tists may have bigger contributions to or influences in the research society, and they can
be considered as influential nodes in this network. In a supply chain network, some lo-
gistics centers have the most important positions for satisfying the supply and demand
in the supply chain and these centers are the influential nodes. Obviously, detecting
these nodes are important for logistics companies so that they can design emergency
plans early before having possible destroy or other problems arising in these centers.
Different from wide studies in community structures in networks, the research in influ-
ence individuals is rare.

In graph theory, the centrality is used to determine the relative importance of a vertex
within the graph [7,14]. Four measures of centrality include degree centrality, between-
ness, closeness and eigenvector centrality. Different from the methods used in [10,17],
we use the critical node detection methods in graphs [1] and the importance of vertices
is measured based on the connectivity. A node is said to have influence in the network if
deletion of it results in the maximum number of disconnect components in the network.
Similarly, the weights between vertices are always uncertain, and we also construct the
robust optimization model of critical node detection.

Fig. 1. Zachary’s karate club with two communities and two influential nodes: 1, 34

When concentrating on some networks, we always find that several dense groups ap-
pear and these groups always have centers within them. Using the concepts mentioned
above, we say that this is the phenomenon of community with influence individual cen-
ter. This is the reason why we use both GPP and CNP to analyze the networks in the
meantime.

Given a network with the graph notation G = (V,E) with the weight matrix W to
measure the closeness of connectivity between nodes, we are deciding to detect K com-
munities and also K influential individuals in the network.

In addition, we can study the influential individuals within each community. Af-
ter obtaining the community structure of the network, we use the the CNP model on
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each community and the two or three influential individuals with each community can
be found. These parameters K(K ∈ {2, · · · ,N − 1}),n1, · · · ,nK for analyzing are ob-
tained from experiences or direct observations. For robust models, we assume that ev-
ery weight wi j of edge (vi,v j) has the uncertainty which is a more close description of
real networks. In next section, we discuss several numerical experiments on networks.

4 Numerical Experiments

In this section, we consider a well-known social networks: Zachary’s karate club [15]
and a generated artificial network with uncertainties on edges. For the network of
Zachary’s karate club, we use GPP and CNP models to identify the two groups in this
club and the leaders, respectively. For the artificial network, we use robust models of
GPP and CNP to study its community structures and influential individuals. The algo-
rithms based on our models are implemented using CPLEX 11.0 via ILOG Concert
Technology 2.5, and all computations are performed on a SUN UltraSpace-III with a
900 MHz processor and 2.0 GB RAM. Computational times are reported in CPU sec-
onds.

The Zachary’s karate club [15] is a network consists of 34 nodes and 78 links repre-
senting friendships between members of the club over two years’ period. In the study
of this network [15], a disagreement, between administrator of the club and the club’s
instructor, resulted two groups. One group is the members leaving with the instructor
to start a new club. The corresponding parameters are K = 2,n1 = 16,n2 = 18 in our
models of GPP and CNP. It shows that our algorithm based on GPP model can find the
two groups correctly as shown in Fig. 1, which is the same as that in the study of [9].
In addition, by our model of CNP, we correctly find the two influential individuals with
in two groups: instructor (node 1) and the administrator (node 34). If assume K = 5 in
our CNP model, we can find influential nodes 1, 3, 2 in the first group and nodes 34, 33
in the second group, which are named as core vertices in [9].

In the following, we use Matlab to generate an artificial network with 22 nodes and
48 links with weight in interval ranges (see Table 1). The values of wi j and ŵi j in

Table 1. Uncertainties of 48 links

Edge [li j,ui j] Edge [li j,ui j] Edge [li j,ui j] Edge [li j,ui j]
( 1, 2 ) [ 0.11, 0.67 ] ( 4, 10 ) [ 0.62, 1.54 ] ( 6, 17 ) [ 1.49, 2.97 ] ( 9, 20 ) [ 0.21, 3.01 ]
( 1, 3 ) [ 0.07, 0.49 ] ( 4, 14 ) [ 0.78, 0.98 ] ( 6, 19 ) [ 0.79, 0.95 ] ( 10, 20 ) [ 0.69, 0.71 ]
( 1, 6 ) [ 0.80, 3.50 ] ( 4, 20 ) [ 0.34, 1.78 ] ( 6, 21 ) [ 0.43, 0.93 ] ( 11, 20 ) [ 0.36, 1.48 ]
( 1, 7 ) [ 0.50, 1.28 ] ( 5, 13 ) [ 0.29, 1.15 ] ( 7, 10 ) [ 0.35, 0.79 ] ( 12, 13 ) [ 0.35, 2.01 ]
( 1, 17 ) [ 0.65, 2.17 ] ( 5, 14 ) [ 1.35, 0.53 ] ( 7, 18 ) [ 0.01, 1.03 ] ( 12, 19 ) [ 0.78, 3.70 ]
( 1, 18 ) [ 0.29, 0.22 ] ( 5, 15 ) [ 0.45, 1.73 ] ( 7, 20 ) [ 0.30, 0.66 ] ( 12, 22 ) [ 1.04, 2.12 ]
( 1, 19 ) [ 0.08, 0.22 ] ( 5, 16 ) [ 0.86, 3.32 ] ( 8, 11 ) [ 1.37, 0.63 ] ( 13, 14 ) [ 0.40, 0.90 ]
( 2, 11 ) [ 0.71, 1.41 ] ( 5, 19 ) [ 0.94, 1.18 ] ( 8, 13 ) [ 0.22, 0.44 ] ( 13, 21 ) [ 0.39, 0.59 ]
( 2, 20 ) [ 1.21, 1.63 ] ( 5, 21 ) [ 0.94, 2.20 ] ( 8, 20 ) [ 0.14, 2.20 ] ( 14, 15 ) [ 0.79, 2.63 ]
( 3, 8 ) [ 0.27, 1.69 ] ( 5, 22 ) [ 0.70, 1.16 ] ( 9, 11 ) [ 0.67, 3.41 ] ( 15, 16 ) [ 0.50, 0.66 ]
( 3, 9 ) [ 0.42, 1.40 ] ( 6, 7 ) [ 0.51, 0.77 ] ( 9, 13 ) [ 0.07, 0.17 ] ( 17, 18 ) [ 0.56, 1.26 ]
( 4, 5 ) [ 0.76, 0.86 ] ( 6, 12 ) [ 0.48, 0.80 ] ( 9, 15 ) [ 0.51, 0.71 ] ( 21, 22 ) [ 0.84, 4.24 ]
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Fig. 2. An artificial network with 22 nodes and 48 links

problems (5) and (8) can be easily computed from the interval values [li j,ui j]. We use
robust optimization models of GPP and CNP to analyze this network (see Fig. 2). In
this network, 3 communities are found with 5 nodes, 8 nodes and 9 nodes respectively.
Assume K = 3 and Γ = 48 in RCNP, three influential nodes (nodes 5, 6, and 20) are
found, and each of them is in a community. Observing the node 1 and node 6 in the
same group, there are 6 edges incident with node 6 and 7 edges incident with node 1.
The weighted degree for node 6 is in [4.50,9.92], while the weighted degree for node
1 is in [2.50,8.55]. Node 6 is chosen as the influential node in this group in the worst
cases (4.50> 2.50 and 9.92> 8.55).

Next, we compare the methods proposed in Section 2.3 with the direct method
in CPLEX to solve the equivalent formulations (6) and (9). In Table 2, we present
the computational seconds and computational results. The methods in Theorem 2 and

Table 2. Comparisons of two computational methods

Graphs and Parameters RGPP RCNP
CPLEX (6) Method Thm 2 CPLEX (9) Method Thm 3

N r [l,u] |J| Γ K n1, · · · ,nK Seconds Results Seconds Results Seconds Results Seconds Results
10 0.1 [0,1] 4 2 3 3,3,4 0 0 0 0 0.04 0 0.08 0

0.2 9 5 3 3,3,4 0.08 2.55 0.03 2.55 0.03 2.46 0.02 2.46
0.3 13 7 3 3,3,4 0.13 6.29 0.10 6.55 0.03 4.22 0.12 4.22

20 0.1 [0,1] 19 10 4 4,5,5,6 0.36 6.39 0.28 7.07 0.65 8.66 0.41 9.46
0.2 37 19 4 4,5,5,6 9.07 22.10 5.05 22.10 1.58 26.30 1.66 28.63
0.3 57 29 4 4,5,5,6 35.93 43.25 14.37 43.77 1.31 41.16 1.35 41.16

30 0.1 [0,1] 42 22 4 5,7,8,10 10.35 16.38 2.02 16.58 18.23 31.52 6.87 33.27
40 0.1 [0,1] 78 39 4 8,9,10,13 153.67 33.85 194.44 33.85 187.42 78.27 49.22 78.02
50 0.1 [0,1] 122 61 4 9,12,13,16 >3000 65.46 2167.83 67.43 668.66 118.98 398.00 120.26
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Table 3. Subsets and critical nodes

Graphs RGPP RCNP

10 0.1
(2,3,5)
(4,7,9) 9

(1,6,8,10) 6,10

10 0.2
(1,2,9) 9
(4,7,10) 5
(3,5,6,8) 10

10 0.3
(2,3,6)
(1,5,10) 5
(4,7,8,9) 7,9

20 0.1

(3,4,6,12)
(2,8,9,13,17) 8

(5,11,14,18,19) 14,18
(1,7,10,15,16,20) 1

20 0.2

(10,16,17,19)
(4,8,11,14,18) 4,18
(1,3,7,13,15) 1

(2,5,6,9,12,20) 12

20 0.3

(5,6,13,19) 13
(2,3,7,10,16) 2

(8,9,12,14,18)
(1,4,11,15,17,20) 4,11

30 0.1

(11,17,20,21,29)
(4,10,13,14,16,19,23) 13
(1,6,7,9,12,22,27,28) 12

(2,3,5,8,15,18,23,24,26,30) 8,18

40 0.1

(4,7,11,15,18,28,29,40)
(1,3,6,8,12,2,4,30,33,39) 39

(2,5,9,10,14,16,20,21,25,38) 5
(13,17,19,22,23,26,27,31,32,34,35,36,37) 19,23

50 0.1

(4,8,18,20,21,28,30,33,40) 21
(1,9,12,17,22,24,25,26,37,41,42,43)

(2,6,11,13,15,16,19,23,31,45,46,48,49)
(3,5,7,10,14,27,29,32,34,35,36,38,39,44,47,50) 35,38,50

Theorem 3 are also implemented in ILOG Concert Technology 2.5. The gaps for all
these methods in CPLEX are set as 0.1. The parameter r in a graph is the density, which
is the ratio of the number of edges and the number of possible edges.

From Table 2, for robust graph partitioning problems, the method by Theorem 2 is
more efficient than default CPLEX method (6) in most cases; for robust critical node
problem, the method by Theorem 3 is also more efficient than default CPLEX method
(9) in most cases. The better results are in bold. In Table 3, we present the subsets and
critical nodes from the better results. For K critical nodes and K subsets, in many cases,
the K critical nodes are distributed in K−1 subsets.
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5 Conclusions

In this paper, for a given network modeled by a graph model with certain and uncertain
weights of links, we have presented the optimization models for both graph partition-
ing problem and critical node problem. These models are formulated as binary integer
linear programs. An algorithm based on a decomposition method on one variable is
presented. After that, we introduce two important structures: community and influen-
tial individuals in networks. We have established the relationship between these two
structures with GPP and CNP in graph theory.

Because of the uncertainties arising in real social or biological networks, the ro-
bust optimization models of GPP and CNP are quite useful to analyze these complex
networks. We also present several numerical experiments to analyze the networks by
RGPP and RCNP. It shows our models are quite useful. However, because of the NP-
completeness of the nominal problems GPP and CNP, the RGPP and RCNP are quite
complex in computation. Designing efficient algorithms for such problems is still under
discussion. On the other hand, since the real networks in practice are always random
and have some properties, such as scale-free and small-world, the further research can
concentrate on combining such problems with these propositions.

Moreover, a set of critical nodes has some specific functions in some networks
with dynamic situations. For example, the network modeling for epileptic brain is con-
structed by nonlinear dynamic measurements [16]. Part of the brain has special func-
tions to control the movement of body. This network can be analyzed by our proposed
method to find the critical sites of such functional nodes.
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Abstract. Sequence assembly from short reads is an important prob-
lem in biology. It is known that solving the sequence assembly problem
exactly on a bi-directed de Bruijn graph or a string graph is intractable.
However finding a Shortest Double stranded DNA string (SDDNA) con-
taining all the k-long words in the reads seems to be a good heuristic
to get close to the original genome. This problem is equivalent to find-
ing a cyclic Chinese Postman (CP) walk on the underlying un-weighted
bi-directed de Bruijn graph built from the reads. The Chinese Postman
walk Problem (CPP) is solved by reducing it to a general bi-directed
flow on this graph which runs in O(|E|2 log2(|V |)) time.

In this paper we show that the cyclic CPP on bi-directed graphs
can be solved without reducing it to bi-directed flow. We present a
Θ(p(|V |+|E|) log(|V |)+(dmaxp)3) time algorithm to solve the cyclic CPP
on a weighted bi-directed de Bruijn graph, where p = max{|{v|din(v) −
dout(v) > 0}|, |{v|din(v) − dout(v) < 0}|} and dmax = max{|din(v) −
dout(v)}. Our algorithm performs asymptotically better than the bi-
directed flow algorithm when the number of imbalanced nodes p is much
less than the nodes in the bi-directed graph. From our experimental re-
sults on various datasets, we have noticed that the value of p/|V | lies
between 0.08% and 0.13% with 95% probability.

Many practical bi-directed de Bruijn graphs do not have cyclic CP
walks. In such cases it is not clear how the bi-directed flow can be useful in
identifying contigs. Our algorithm can handle such situations and identify
maximal bi-directed sub-graphs that have CP walks. We also present a
Θ((|V | + |E|) log(V )) time algorithm for the single source shortest path
problem on bi-directed de Bruijn graphs, which may be of independent
interest.

1 Introduction

Sequencing the human genome was one of the major scientific breakthroughs
in the last seven years. Analysis of the sequenced genome can give us vital
information about the expression of genes, which in turn can help scientists
to develop drugs for diseases. Thus sequencing the genome of an organism is
of fundamental importance in both medicine and biology. Unfortunately the
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technology used in major human genome sequencing projects – Human Genome
Project (HGP) [1] and Celera [2], was too expensive to be adopted in a large
scale. This led to the research on next-generation sequencing methods. Pyro-
sequencing technologies such as SOLiD, 454 and Solexa generate a large number
of short reads which have acceptable accuracy but are several times cheaper
compareted to the Sanger technology adopted in the HGP project.

Directed de Bruijn graph based sequence assembly algorithms such as [3] and
[4] seem to handle these short read data efficiently compared to the string graph
based algorithms (see e.g., [5]). Unfortunately solving the sequence assembly
problem exactly on both these graph models seems intractable [6]. However
heuristics such as finding a shortest string which includes all the k-mers (sub
strings of length k) seem to yield results close to the original genome. In the
case of directed de Bruijn graphs finding an Eulerian tour seems to yield good
results. If the graph is not Eulerian then a Chinese Postman (CP) tour has been
suggested in [4]. To account for the double strandedness of the DNA molecule
we need to simultaneously search for two complimentary CP tours. In [6] the
directed de Bruijn graphs are replaced with bi-directed de Bruijn graphs to find
two complimentary CP tours simultaneously. A CP tour on the un-weighted bi-
directed graph constructed from the reads serves as a solution to the Shortest
Double Stranded DNA string (SDDNA) problem. The solution presented in [6]
solves the SDDNA problem by reducing it to a general weighted bi-directed flow
problem. This algorithm runs in O(|E|2 log2(V )) time.

In this paper we present algorithms for SDDNA/CPP on bi-directed de Bruijn
graphs without using a bi-directed flow algorithm. Our algorithms are based on
identifying shortest bi-directed paths and use of weighted bi-partite matching.
Our algorithms perform asymptotically better than the bi-directed flow algo-
rithm when the imbalanced nodes in the bi-directed graphs are much smaller
in number than |V |. This restriction seems to be true in practice from what
we have observed in our experiments. On the other hand it turns out that in
many practical situations these bi-directed de Bruijn graphs fail to have cyclic
CP tours. In these cases it is not clear how the bi-directed flow algorithm [6] can
help us in identifying a set of contigs covering every k-long word at least once.
In contrast to this flow algorithm, our algorithm can be useful in obtaining a
minimal set of contigs when a cyclic CP tour does no exist. We now summa-
rize our results as follows. Firstly our deterministic algorithm to solve the cyclic
CPP on a general bi-directed graph takes Θ(p(|V | + |E|) log(|V |) + (dmax p)3)
time, where dmax = max{|din(v) − dout(v)|, v ∈ V }, p = max{|V +|, |V −|},
V + = {v|v ∈ V, din(v) − dout > 0} and V − = {v|v ∈ V, din(v) − dout < 0}.
Secondly we solve the SDDNA problem on an un-weighted bi-directed de Bruijn
graph deterministically in Θ(p(|V |+ |E|)+(dmax p)3) time. As a consequence we
also present a Θ((|V |+ |E|) log(V )) time single source shortest bi-directed path
algorithm, which may be of independent interest to some assembly algorithms
such as Velvet [3] – TourBus heuristic.

The organization of the paper is as follows. In Section 2 we provide some
preliminaries. Section 3 defines the CPP and SDDNA problems. In Section 4
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we introduce our algorithm for single source shortest bi-directed paths, which is
used as a component in our main algorithm. The main algorithm is introduced
in Section 7 along with algorithms for several sub-problems. Section 8 briefly
explains how we can handle situations when the bi-directed graphs do not have
cyclic CP tours. Finally experimental studies are reported in Section 9.

2 Preliminaries

Let s ∈ Σn be a string of length n. Any substring sj (i.e., s[j, . . . j + k − 1], n−
k + 1 ≥ j ≥ 1) of length k is called a k−mer of s. The set of all k−mer’s of a
given string s is called the k−spectrum of s and is denoted by S(s, k). Given a
k−mer sj, s̄j denotes the reverse compliment of sj (e.g., if sj = AAGTA then
s̄j = TACTT ). Let ≤ be the partial ordering among the strings of equal length,
then si ≤ sj indicates that string si is lexicographically smaller than sj . Given
any k−mer si, let ŝi be the lexicographically smaller string between si and s̄i.
We call ŝi the canonical k−mer of si. More formally, if si ≤ s̄i then ŝi = si else
ŝi = s̄i. A k−molecule of a given k−mer si is a tuple (si, s̄i) consisting of si

and its reverse compliment s̄i, the first entry in this tuple is called the positive
strand and the second entry is called the negative strand.

A bi-directed graph is a generalized version of a standard directed graph. In
a directed graph every edge (–� or �–) has only one arrow head. On the other
hand, in a bi-directed graph every edge (�–�, �–�,�–� or �–�) has two arrow
heads attached to it. Formally, let V be the set of vertices of a bi-directed graph,
E = {(vi, vj , o1, o2)|vi, vj ∈ V ∧ o1, o2 ∈ {�,�}} is the set of bi-directed edges in
a bi-directed graphG(V,E). A walk w(vi, vj) between two nodes vi, vj ∈ V of a bi-
directed graphG(V,E) is a sequence vi, ei1 , vi1 , ei2 , vi2 . . . vim , eim+1 , vj , such that
for every intermediate vertex vil

, 1 ≤ l ≤ m, the orientation of the arrow heads
on either side is opposite. To make this more clear let eil

, vil
, eil+1 be the sub-

sequence in the walk w(vi, vj), eil
= (vil−1 , vil

, o1, o2), eil+1 = (vil
, vil+1 , o1, o2)

then for the walk to be valid eil
.o2 = eil+1 .o1. If vj = vi and ei1 .o1 = eim+1 .o2

then the walk is called cyclic. A walk on the bi-directed graph is referred to as
a bi-directed walk. We define an orientation function O : V 2 → {�,�}2 which
gives the orientation of the bi-directed edge between a pair of vertices – if one
exists . For instance if (vi, vj ,�,�) is a bi-directed edge between vi and vj then
O(vi, vj) = �–�. An edge which is adjacent on a vertex with an orientation � (�)
is called an incoming (outgoing) edge. The incoming(outgoing) degree of a vertex v
is denoted by din(v) (dout(v)). A vertex v is called balanced iff din(v)−dout(v) = 0.
A vertex is called imbalanced iff |din(v)− dout(v)| > 0. The imbalance of a vertex
is called positive iff din(v)−dout(v) > 0. Similarly a vertex is negative imbalanced
iff din(v) − dout(v) < 0. A bi-directed graph is called connected iff every pair of
vertices have a bi-directed walk between them.

A de Bruijn graphDk(s) of the order k on a given string s is defined as follows.
The vertex set V of Dk(s) is defined as the k−spectrum of s (i.e., V = S(s, k)).
We use the notation suf(vi, l)(pre(vi, l)) to denote the suffix(prefix) of length l
in string vi. The symbol . denotes concatenation between two strings. Finally
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the set of directed edges E of Dk(s) is defined as follows E = {(vi, vj)| suf(vi,
k − 1) = pre(vj , k − 1) ∧ vi[1]. suf(vi, k − 1).vj [k] ∈ S(s, k + 1)}. We can further
generalize the definition of a de Bruijn graph Bk(S) on a set S = {s1, s2 . . . sn}
of strings, V = ∪n

i=1S(si, k) and E = {(vi, vj)| suf(vi, k−1) = pre(vj , k−1)∧∃ l :
vi[1]. suf(vi, k − 1).vj [k] ∈ S(sl, k + 1)}.

To model the double strandedness of the DNA molecules we should also con-
sider the reverse compliments (S̄ = {s̄1, s̄2 . . . s̄n}) while we build the de Bruijn
graph. To address this a bi-directed de Bruijn graph BDk(S ∪ S̄) has been sug-
gested in [6]. The set of vertices V of BDk(S ∪ S̄) consists of all the possible
k−molecules from Σk. For every k+1−mer z ∈ S∪S̄, if x, y are the two k−mer’s
of z then an edge is introduced between the k−molecules (vi, vj) corresponding
to x and y. The orientations of the arrow heads on the edges is chosen as follows.
If both x, y are the positive strands in vi, vj an edge (vi, vj ,�,�) is introduced.
If x is a positive strand in vi and y is a negative strand in vj an edge (vi, vj ,�,�)
is introduced. Finally if x is a negative strand in vi and y is a positive strand in
vj an edge (vi, vj ,�,�) is introduced.

3 Problem Definitions

A Chinese Postman walk in a bi-directed graph is a bi-directed walk which visits
every edge at least once. A cyclic Chinese Postman walk of minimum cost on a
weighted bi-directed graph is denoted as CPW. The problem of finding a CPW
is referred to as CPP. The problem of finding a CPW on an un-weighted bi-
directed de Bruijn graph (of order k) constructed from a set of reads is called
the Shortest Double stranded DNA string (SDDNA) problem. In this paper we
give algorithms for the cyclic CPP and SDDNA problems.

4 Single Source Shortest Path Algorithm on a Bi-directed
de Bruijn Graph

We first present an algorithm for the single source shortest path problem on a
bi-directed de Bruijn graph. The bi-directed de Bruijn graph in the context of
sequence assembly has non-negative weights on the edges. This makes it possible
to extend the classic Dijkstra’s single source shortest path algorithm to these
graphs. In our algorithm we attach two labels for each vertex in the bi-directed
graph.

Given a source vertex s, the algorithm initializes all the labels similar to
Dijkstra’s algorithm. In each stage of the algorithm a label with the smallest cost
is picked and some of labels corresponding to adjacent nodes are updated. The
only major difference between Dijkstra’s algorithm and our algorithm is the way
we update the labels. Dijkstra’s algorithm updates all the labels/nodes which
are adjacent to the smallest label/node currently picked. However our algorithm
updates only those labels/nodes which are consistent with the bi-directed walk
property. We now give details of our algorithm and prove its correctness.
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Let G = (V,E) be the bi-directed graph of interest. Also let s be the source
and t be the destination. We are interested in finding a shortest bi-directed walk
from s to t. We introduce two labels dist+[u], dist−[u] for every vertex u ∈ V .
The algorithm first initializes labels corresponding to the source (i.e. dist+[s]
and dist−[s]) to zero. Along with these labels of all the nodes adjacent to s
are also initialized with the corresponding edge weight. The orientation of the
edge determines the label we use for initialization. For instance, if (s, v) is a bi-
directed edge with �–� as the orientation, the label dist−[v] is initialized with
ws,v and dist+[v] is left uninitialized. In contrast, if the orientation of the edge
is �–� then dist+[v] is initialized to ws,v and dist−[v] is left uninitialized. All
the uninitialized labels contains ∞ by default.

In each iteration of the algorithm a label with the minimum cost is picked.
Since we have two types of labels, the minimum label can come from either dist+

or dist−. In the first case let u+ be the node corresponding to the minimum label
during the iteration. This intuitively means that we have a path from s to u+

and the orientation of the edge adjacent to u+ in this path is either �–� or �–�.
We are going to prove this fact later in the correctness. On the other hand if u+

is different from the destination t, then u+ may possibly appear as an internal
node in the shortest bi-directed walk between s and t. In this case the path
through u+ should satisfy bi-directed walk constraint. Thus we should explore
only those node(s) adjacent to u+ with an edge(s) orientated as �–� or �–�.
The orientation of the edge determines the type of the label we need to update
– similar to the label initialization. For instance let (u+, v) be an edge adjacent
on u+ with an orientation of �–�. In this case we should use label dist−[v]
to make an update. Similarly if the orientation of the same edge is �–� then
dist+[v] is used in the update process. Consistent with the classical terminology
of the Dijkstra’s algorithm, we refer to the minimum cost label picked in each
iteration as the permanent label. For instance if a label dist−[v] is picked to be
the minimum label in an iteration then we call dist[v] as the permanent label of
node v. Now to prove the correctness of the algorithm. It is sufficient to show
that the cost on the permanent label of a node in each iteration is the weight of
the shortest bi-directed path from s to that node.

Theorem 1. The permanent label of a node u ∈ V in each iteration of Algo-
rithm 1 is the weight of the shortest bi-directed path from s to u.

Proof. We prove the statement by induction on the number (n) of iterations in
Algorithm 1. We now prove the base case when n = 1. Since we have initialized
dist+[s] = dist−[s] = 0 and the values of the remaining both initialized and
uninitialized nodes are > 0; the first iteration picks s and zero is trivially the
cost of shortest bi-directed path form s to s.

Assume that the statement is true for n = 1 . . . k. As per the induction hypoth-
esis the permanent labels dist[s], dist[vi2 ] . . . dist[vik

] correspond to the costs of
the shortest bi-directed paths between s and s, vi2 . . . vik

.
Now let dist′[vik+1 ] < dist[vik+1 ] be the cost of the shortest bi-directed walk

from s to vik+1 . Also let s, vj2 . . . vjk
, vik+1 be the path corresponding to the cost

dist′[vik+1 ]. Note that vjk
cannot be one of the nodes with a permanent label. If
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Algorithm 1. Algorithm to find the shortest bi-directed path from s to t
INPUT : Bi-directed graph G = (V, E) and two vertices s, t ∈ V
OUTPUT: Cost of the shortest bi-directed path between s and t

1

dist+[s] = dist−[s] = 02

dist+[v] = dist−[v] = ∞ ∀v ∈ V ∧ v = s3

4

while dist+ = φ or dist− = φ do5

u+ = minu{dist+}6

u− = minu{dist−}7

8

if u+ = t or u− = t then9

return min{dist+[u+], dist−[u−]}10

11

12

if dist+[u+] < dist−[u−] then13

U+ = {v|(u+, v) ∈ E ∧ (O)(u+, v) = �–�)}14

U− = {v|(u+, v) ∈ E ∧ (O)(u+, v) = �–�)}15

dist[u+] = dist+[u+]16

dist+ = dist+ − {u+}17

else18

U+ = {v|(u−, v) ∈ E ∧ (O)(u−, v) = �–�)}19

U− = {v|(u−, v) ∈ E ∧ (O)(u+, v) = �–�)}20

dist[u−] = dist−[u−]21

dist− = dist− − {u−}22

23

24

foreach u ∈ dist+ do25

dist+[u] = min{dist+[u], dist+[u+] + w[u+, u]}26

foreach u ∈ dist− do27

dist−[u] = min{dist−[u], dist−[u−] + w[u−, u]}28

29

30

return ∞31

not, we would have dist′[vik+1 ] = dist[vik+1 ] (because we should have updated
vk+1 when the vjk

was given a permanent label) which is a contradiction. Now
let dist′[vjk

] be the cost of the shortest path from s to vjk
. Clearly, dist′[vjk

] <
dist[vik+1 ] and this means that none of the nodes vj2 , vj3 . . . vjk

haa a permanent
label. Since in the iteration n = 1 the algorithm updated the labels adjacent to
all the nodes this means that either dist+[vj2 ] or dist−[vj2 ] should have a cost
0 < ws,j2 and dist′[vik+1 ] ≥ ws,j2 . In each iteration from n = 1, . . . , (k + 1) we
picked the globally minimum label dist[vik+1 ] < ws,j2 ≤ dist′[vik+1 ] which is a
contradiction. �
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3
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1

3

4 2

(b)

1 2

Fig. 1. (a) node 4 contains two bi-directed walks from node 1, the green colored path
is the shortest.(b) the walk starting from node 1 and ending at node 1 is a Chinese
walk but not a cyclic Chinese walk.

We now give a simple example to illustrate the algorithm. Consider the bi-
directed graph in Figure 1(a), with a unit weight on every edge. Let s = 1 and
t = 4 for instance. From Figure 1(a) we see two bi-directed walks – red, green.
The green path is the shortest path of length 4 units.

5 Terminal Oriented Shortest Bi-directed Walks

In the previous section we have seen how to find a shortest bi-directed walk be-
tween two nodes in a given bi-directed graph. We now define a terminal oriented
bi-directed walk as follows. Let w(vi, vj) = vi, ei1 , vi1 , ei2 , vi2 . . . vim , eim+1 , vj be
any bi-directed walk between two nodes vi and vj in a bi-directed graph. Then
this bi-directed walk w(vi, vj) is called terminal oriented bi-directed walk iff
ei1 .o1 = � and eim+1 .o2 = �. For example in Figure 1(a) there are two bi-
directed walks between nodes 4 and 1 – marked with green and red. However
only the green bi-directed walk is terminally oriented. A terminal oriented bi-
directed walk w is called the shortest terminal oriented bi-directed walk iff there
is no other terminal oriented bi-directed walk shorter than w.

5.1 An Algorithm for Finding a Terminal Oriented Shortest
Bi-directed Walk

It is easy to modify Algorithm 1 to find a terminal oriented shortest path be-
tween s and t. We only have to modify the initialization step and the step
which checks if the target node has been reached. During the initialization at
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line 2 of Algorithm 1 we make dist+[s] = 0 and dist−[s] = ∞. This avoids the
exploration of bi-directed walks which does not start with �. In line 9, we stop
our exploration only if u+ = t. These changes ensure that the bi-directed walk
at s starts with � and ends with � at t.

6 A Sufficient Condition for an Eulerian Tour on a
Bi-directed Graph

The following Lemma 1 [6] is a sufficient condition for a cyclic Eulerian tour in a
bi-directed graph. A bi-directed graph which has a cyclic Eulerian tour is called
an Eulerian bi-directed graph.

Lemma 1. A connected bi-directed graph is Eulerian if and only if every vertex
is balanced.

Note that if a bi-directed graph is Eulerian then a cyclic CP walk is the same
as a cyclic Eulerian walk. We emphasize the cyclic adjective for the following
reason. Figure 1(b) has a CP walk starting and ending at vertex 1. However
the CP walk is not cyclic because the walk starts with � and ends with �. The
bi-directed graph in Figure 1(b) is not balanced. If the bi-directed graph is not
Eulerian, the key strategy to find a cyclic CP walk is to make it Eulerian by
introducing multi-edges into the original graph. The hope is that introducing
multi-edges would make the bi-directed graph balanced. Thus a cyclic Eulerian
walk on a balanced multi-edge bi-directed graph would give a cyclic CP walk
on the original graph. Since we are interested in finding a shortest cyclic CP
walk, we would like to minimize the number of multi-edges we introduce in the
original graph.

4 6

5

3

(a)

4 6

5

3

(b)

1 2 1 2

Fig. 2. (a) a simple bi-directed graph, (b) a multi-bi-directed graph. Notice that ori-
entations of the multi-edges is the same as the orientation of the original edge.
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7 A Deterministic Algorithm to Find a Cyclic CP Walk
on a Bi-directed Graph

We now describe our deterministic algorithm to find a cyclic CP walk on a
weighted bi-directed graph. First we define a multi-bi-directed graph as a bi-
directed graph in which an edge between two nodes is overlaid at least once,
without changing its orientation. Figure 2(a) shows a bi-directed graph; Fig-
ure 2(b) shows a valid multi-bi-directed graph. Notice that while overlaying the
edge we did not change its orientation. Since the orientation of the multi-edges
is the same as the original edges, any bi-directed walk involving multi-edges is
consistent with the bi-directed walk in the original graph. Another important
property of the multi-bi-directed graphs is their ability to make the nodes bal-
anced. Notice that the vertex 3 in the original bi-directed graph is positively
imbalanced – din(v3) = 2, dout(v3) = 1. However in the multi-bi-directed graph
in Figure 2(b) we are able to balance vertex 3 by introducing some multi-edges
into the original graph. Given a bi-directed graph G = (V,E), let Gm = (V,Em)
be some multi-bi-directed graph corresponding to G. The following Lemma 2
gives a characterization for G to have a cyclic CP walk.

Lemma 2. A non Eulerian bi-directed graph G = (V,E) has a cyclic Chinese
Postman walk ⇐⇒ ∃ a corresponding multi-bi-directed graph Gm = (V,Em)
which is Eulerian.

Given a multi-bi-directed graph Gm(V,Em) corresponding to some bi-directed
graph G = (V,E), we define the multi-bi-directed graph weight as W(Gm) =∑
e∈Em

c(e), where c : e ∈ E → R+ is a cost function on the bi-directed graph

G(V,E). We denoteG∗(V,E∗) as the minimum weight Eulerian multi-bi-directed
graph corresponding to G(V,E) if at all one exists. The following Lemmas are
easy to prove.

Lemma 3. Finding a cyclic CP walk on a bi-directed graph G(V,E) is equiv-
alent to finding a minimum weight Eulerian multi-bi-directed graph G∗(V,E∗)
corresponding to G.

Lemma 4. If a bi-directed-graph G(V,E) has a cyclic CP walk then the cost of
that walk is equal to the weight of G∗(V,E∗).

7.1 Balancing Bi-partite Graph

Given a bi-directed de Bruijn graph G(V,E) we define a corresponding Balanc-
ing Bi-partite Graph, B(P,Q,Eb) as follows. Let V + = {v| din(v)−dout(v) > 0},
V − = {v| din(v) − dout(v) < 0}. P = ∪p∈V +{p(1), p(2) . . . p(|din(p)−dout(p)|)},
Q = ∪q∈V −{q(1), q(2) . . . q(|din(q)−dout(q)|)}. We now introduce an edge between
p(i) ∈ P and q(j) ∈ Q iff p, q ∈ V are connected by a terminal oriented bi-
directed walk from p to q. Let distt(p, q) be the weight of this walk. Then Eb =
{(p(i), q(j))| distt(p, q) �= ∞ ∧ p, q ∈ V }. The weight of the edge (p(i), q(j)) ∈ Eb

is the weight of terminal oriented bi-directed walk distt(p, q).
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Lemma 5. A non Eulerain bi-directed graph G(V,E) has a cyclic CP walk ⇐⇒
the balancing bi-partite graph B(P,Q,Eb) has a perfect match.

7.2 Constructing a Family of Eulerian Multi-bi-directed Graphs

We now give a construction for generating Eulerian multi-bi-directed graphs
corresponding to a given non Eulerian bi-directed graph which has a cyclic CP
walk. We call this a Balancing Match Family denoted by F . Lemma 5 can be used
to generate F . Assume that G(V,E) is a non Eulerian bi-directed graph that
has a cyclic CP walk. The following construction generates a family of Eulerian
multi-bi-directed graphs corresponding to G(V,E).

– STEP-1: Create a balancing bi-partite graph B(P,Q,Em) corresponding to
G(V,E) by choosing some terminal oriented bi-directed walk between p(i) ∈
P and q(j) ∈ Q.

– STEP-2: Find a perfect match Mb in B(P,Q,Em). For each edge in Mb

overlay the corresponding terminal oriented bi-directed walk on G(V,E).
This generates a Eulerian multi-bi-directed graph Gm(V,Em).

The following Lemma 6 is easy to see.

Lemma 6. If G(V,E) is a non Eulerian bi-directed graph that has a cyclic CP
walk, then every corresponding Eulerian multi-bi-directed graph Gm(V,Em) be-
longs to the family F .

The following Lemma gives an expression for the weight of any Gm(V,Em) ∈ F .

Lemma 7. Let G(V,E, c) be a non Eulerian weighted bi-directed graph which
has a cyclic CP walk c : E → R+. Let Gm(V,Em, c) ∈ F be some Eulerian multi-
bi-directed graph. Then, W(Gm) =

∑
e∈E

c(e) +
∑

(p(i),q(j))∈Mb

distt(p, q), where Mb

is a perfect match in B(P,Q,Eb).

7.3 An Algorithm for Finding an Optimal Cyclic CP Walk

We now put together all the results in the preceding sub-section(s) to give an
algorithm to find G∗(V,E∗). The algorithm is summarized in the following steps.

– STEP-1: We first identify positive and negative imbalanced nodes in G. Let
V + = {v|din(v) − dout(v) > 0}, V − = {v|din(v)− dout(v) < 0}

– STEP-2: Find the cost of a terminal oriented shortest bi-directed walk be-
tween every pair (v, u) ∈ V + × V −. Let this cost be denoted as distt(v, u).

– STEP-3: Create a balancing bi-partite graph B(P,Q,Eb) as fol-
lows. Let P = ∪v∈V +{v(1), v(2), . . . , v(|din(v)−dout(v)|)}, Q =
∪u∈V −{u(1), u(2), . . . , u(|din(u)−dout(u)|)}, E = {(v(i), u(j))|v(i) ∈ P ∧ u(j) ∈
Q}. The cost of an edge c(v(i), u(j)) = distt(v, u).
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– STEP-4: Find a minimum cost perfect match in B. Let this match be Mb. If
B does not have a perfect match then G does not have a cyclic CP walk.

– STEP-5: For each edge (v(i), u(j)) ∈Mb , overlay the terminal oriented short-
est bi-directed walk between v and u in the G(V,E). After overlaying all
the terminal oriented bi-directed walks from Mb on to G(V,E) we obtain
G∗(V,E∗). We will prove that it is optimal in Theorem 2.

Theorem 2. If G(V,E) is a bi-directed graph that has a cyclic CP walk, then the
cost of this cyclic CP walk is equal toW(G∗) =

∑
e∈E

c(e)+
∑

(v(i),u(j))∈Mb

distt(v, u).

Here Mb is the min-cost perfect match in the balancing bi-partite graph B.

7.4 Runtime Analysis of the Algorithm to Find a Cyclic CP Walk

Let p = max{|V +|, |V −|} and dmax = max
v∈V

{|din(v) − dout(v)}. STEP-2 of the

algorithm runs in Θ(p(|V |+|E|) log(|V |)) time to compute distt(v, u). In STEP-3
|P | ≤ dmaxp , |Q| ≤ dmaxp. For STEP-4 Hungarian method can be applied to
solve the weighted matching problem in Θ((dmaxp)3) time. So the total runtime
of this deterministic algorithm is Θ(p(|V | + |E|) log(|V |) + (dmaxp)3). As men-
tioned before if p is much smaller than |V | this algorithm performs better than
the bi-directed flow algorithm.

7.5 Runtime Analysis of the Algorithm to Find SDDNA

Since SDDNA runs on a bi-directed de Bruijn graph which is un-weighted, STEP-
2 of the algorithm runs in Θ(p(|V |+ |E|)) time – because we don’t need to use
a Heap, we just do a BFS on the bi-directed graph. The rest of the analysis
for the runtime remains the same and the total run time of the algorithm is
Θ(p(|V |+ |E|) + (dmaxp)3).

8 Dealing with Practical Bi-directed de Bruijn Graphs
with no Cyclic CP Walks

As we have mentioned earlier most of the bi-directed de Bruijn graphs con-
structed from the reads do not satisfy the sufficient condition for cyclic CP
walks. In such cases our algorithm can still be used, by modifying it to find a
maximum match in the balancing bi-partite graph rather than perfect match.
We can introduce a hypothetical node h and connect all the un-matched nodes
in the balancing bi-partite graph to h with appropriate bi-directed edges and
thus make all the original nodes balanced. We can now find a cyclic CP walk in
this hypothetical graph. Every sub-walk in the cyclic CP walk that starts from
h and ends at h can be reported as a contig. Thus our algorithm is capable of
handling cases when the bi-directed graph cannot have a cyclic CP walk.
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9 Experimental Results

As we have mentioned in the previous sections the asymptotic complexity of our
algorithm depends on p – the maximum of positively and negatively imbalanced
nodes. In the case of de Bruijn graphs dmax ≤ |Σ|, where |Σ| is the size the
alphabet from which the strings are drawn. In our case this is exactly four. So
we can safely ignore dmax in the case of de Bruijn graphs and just concentrate
on p. In the rest of the discussion we would like to refer to p as the number
of imbalanced nodes. It is clear that p is a random variable with support in
[0, |V |]. So we would like to estimate the expected number of imbalanced nodes
in a graph with |V | bi-directed edges. We estimated the mean of the random
variable p

|V | from several samples of bi-directed de Bruijn graphs constructed
from reads from a plant genome. A simple t−test is applied to to estimate the
95% confidence interval of p

|V | . See Table 1 for the details of the samples used.
Notice that as we increase the size of k (de Bruijn graph order) from 21 to 25,
the number of imbalanced nodes in columns corresponding to |V +| and |V −|
reduces. This is because increasing k reduces the number of edges which may
reduce the number of imbalanced nodes. On the other hand for a fixed value of k
the number of imbalanced nodes increases consistently with the nodes. However
the rate of growth is very slow compared to the rate of growth of the number of
nodes. Finally we use this evidence to hypothesize that the number of imbalanced
nodes in practical bi-directed graphs is only between 0.087% to 0.133% of the
number of nodes in the graph, with a probability of 95%.

Table 1. The value of p on short read data from a plant genome sequencing data from
CSHL

READS k NODES P-IMBAL N-IMBAL BAL-BI-GRAPH
|V +| |V −| |P | |Q| p p×100

|V |
102400 21 1588569 1157 1133 1186 1173 1186 0.075
153600 21 2353171 2240 2141 2298 2211 2298 0.098
204800 21 3097592 3509 3492 3601 3590 3601 0.116
256000 21 3825101 4953 5004 5074 5131 5131 0.134
307200 21 4538734 6719 6748 6878 6912 6912 0.152
358400 21 5235821 8586 8603 8789 8802 8802 0.168
409600 21 5917489 10665 10693 10914 10934 10934 0.185
102400 25 1202962 569 521 588 540 588 0.049
153600 25 1788533 1104 1026 1139 1062 1139 0.064
204800 25 2362981 1744 1708 1788 1759 1788 0.076
256000 25 2927656 2521 2523 2579 2592 2592 0.089
307200 25 3484849 3370 3414 3451 3517 3517 0.101
358400 25 4032490 4333 4369 4441 4485 4485 0.111
409600 25 4571554 5390 5467 5518 5613 5613 0.123[
x̄ − z α

2
S√
n

, x̄ + z− α
2

S√
n

]
: 95% C.I for average p×100

|V | is [0.0872%, 0.1330%]



196 V. Kundeti, S. Rajasekaran, and H. Dinh

9.1 Implementation and Data

An implementation of the algorithms discussed is available at http://trinity.
engr.uconn.edu/~vamsik/fast_cpp.tgz.

10 Conclusion and Further Research

In this paper we have given an algorithm for cyclic Chinese Postman walk on a
bi-directed de Bruijn graph. Our algorithm is based on identifying shortest bi-
directed walks and weighted matching. This algorithm performs asymptotically
better than the bi-directed flow algorithm when the number of imbalanced nodes
are much smaller than the nodes in the bi-directed graph. On the other hand
this algorithm can also handle the instances of bi-directed graphs which does not
have a cyclic CP walk and provide a minimal set of walks, cyclic walks which
cover every edge in the bi-directed graph at least once.

There are several research directions which can be pursued. Firstly, we need
to address how the addition of paired reads may impose new constraints on the
cyclic CPP walk. Secondly, while Eulerization of the bi-directed graph we have
chosen the shortest path bi-directed path, however this may not correspond to
the repeating region in the genome. Other strategy to make the graph Eulerian
is to choose the path with maximum read multiplicity. This on other hand may
increase the length of the Chinese walk, can we simultaneously optimize these
two objectives ?.
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Abstract. The discovery of power law distribution in degree sequence
(i.e. the number of vertices with degree i is proportional to i−β for some
constant β) of many large-scale real networks creates a belief that it
may be easier to solve many optimization problems in such networks.
Our works focus on the hardness and inapproximability of optimization
problems on power law graphs (PLG). In this paper, we show that the
Minimum Dominating Set, Minimum Vertex Cover and Maximum
Independent Set are still APX-hard on power law graphs. We further
show the inapproximability factors of these optimization problems and
a more general problem (ρ-Minimum Dominating Set), which proved
that a belief of (1 + o(1))-approximation algorithm for these problems
on power law graphs is not always true. In order to show the above the-
oretical results, we propose a general cycle-based embedding technique
to embed any d-bounded graphs into a power law graph. In addition, we
present a brief description of the relationship between the exponential
factor β and constant greedy approximation algorithms.

Keywords: Theory, Complexity, Inapproximability, Power Law Graphs.

1 Introduction

In real life, the remarkable discovery shows that many large-scale networks fol-
low a power law distribution in their degree sequences, ranging from biological
networks, the Internet, the WWW to social networks [19] [20]. That is, the num-
ber of vertices with degree i is proportional to i−β for some constant β in these
graphs, which is called power law graphs (PLG). The observations show that the
exponential factor β ranges between 1 and 4 for most real-world networks [8].
Intuitively, the following theoretical question is raised: What are the differences
in terms of complexity and inapproxamability of several optimization problems
between on general graphs and on PLG?

Many experimental results on random power law graphs give us a belief that
the problems might be much easier to solve on PLG. Eubank et al. [12] claimed
that a simple greedy algorithm leads to a 1 + o(1) approximation ratio on Min-
imum Dominating Set (MDS) problem (without any formal proof) although
MDS has been proved NP-hard to be approximated within (1 − ε) logn unless
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NP=ZPP. The approximating result on Minimum Vertex Cover (MVC) was
also much better than the 1.366-inapproximability on general graphs [10]. In [22],
Gopal claimed that there exists a polynomial time algorithm that guarantees a
1 + o(1) approximation of the MVC problem with probability at least 1− o(1).
However, there is no such formal proof for this claim either. Furthermore, sev-
eral papers also have some theoretical guarantees for some problems on PLG.
Gkantsidis et al. [14] proved the flow through each link is at most O(n log2 n) on
power law random graphs (PLRG) where the routing of O(dudv) units of flow
between each pair of vertices u and v with degrees du and dv. In [14], the authors
take advantage of the property of power law distribution by using the structural
random model [1],[2] and show the theoretical upper bound with high probabil-
ity 1− o(1) and the corresponding experimental results. Likewise, Janson et al.
[16] gave an algorithm that approximated Maximum Clique within 1−o(1) on
PLG with high probability on the random poisson model G(n, α) (i.e. the num-
ber of vertices with degree at least i decreases roughly as n−i). Although these
results were based on experiments and random models, it raises an interest in
investigating hardness and inapproximability of classical optimization problems
on PLG.

Recently, Ferrante et al. [13] had an initial attempt to show that MVC, MDS
and Maximum Independent Set (MIS) (β > 0), Maximum Clique (Clique)
and Minimum Graph Coloring (Coloring) (β > 1) still remain NP-hard on
PLG. Unfortunately, there is a minor error in the proof of their Lemma 5 which
makes the proof of NP-hardness of MIS, MVC, MDS with β < 1 no longer hold.
Indeed, it is not trivial to fix that error and thus we present in Appendix A
another way to show the NP-hardness of these problems when β < 1.

Our Contributions: In this paper, we show the APX-hardness and the inap-
proximability of MIS, MDS, and MVC according to a general Cycle-Based Em-
bedding Technique which embeds any d-bounded graph into a power law graph
with the exponential factor β. The inapproximability results of the above prob-
lems on PLG are shown in Table 1 with some constant c1, c2 and c3. Then, the
further inapproximability results on Clique and Coloring are shown by tak-
ing advantage of the reduction in [13]. We also analyze the relationship between
β and constant greedy approximation algorithms for MIS and MDS.

In addition, recent studies on social networks have led to a new problem of
spreading the influence through a social network [18] [17] by initially influencing
a minimum small number of people. By formulating this problem as ρ-Minimum
Dominating Set (ρ-MDS), we show that ρ-MDS is Unique Game-hard to be
approximated within 2− (2 + od(1)) log log d/ log d factor on d-bounded graphs
and further leading to the following inapproximability result on PLG (shown in
Table 1).

Organization: In Section 2, we introduce some problem definitions, the model of
PLG, and corresponding concepts. In Section 3, the general embedding technique
are introduced by which we can use to show the hardness and inapproximability
of MIS, MDS, MVC in Section 4 and Section 5 respectively. In addition, the
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Table 1. Inapproximability Results on Power Law Graph with Exponential Factor β

Problem Inapproximability Factor Condition

MDS 1 + 2 (log c3 − O(log log c3) − 1) /((c3 + 1)ζ(β)) NP⊆DTIME
(
nO(log log n)

)
MIS 1 − 2

(
c1 − O

(
log2 c1

))
/(c1(c1 + 1)ζ(β)) Unique Game Conjecture

MVC 1 + 2
(
1 − (2 + oc2(1)) log log c2

log c2

)
/((c2 + 1)ζ(β)) Unique Game Conjecture

ρ-MDS 1 +
(
1 − (2 + oc2(1))

log log c2
log c2

)
/((c2 + 1)ζ(β)) Unique Game Conjecture

Clique O
(
n1/(β+1)−ε

)
NP=ZPP

Coloring O
(
n1/(β+1)−ε

)
NP=ZPP

inapproximability result of Clique and Coloring are also shown in Section 5.
In Section 6, we analyze the relationship between β and constant approximation
algorithms, which further proves that the integral gap is typically small for op-
timization problems on PLG than that on general bounded graphs. We fix the
NP-hardness proof for β < 1 presented in [13] in Appendix A.

2 Preliminaries

This section provides several parts. First, we recall the definition of the new op-
timization problem ρ-Minimum Dominating Set. Next, the power law model and
some corresponding concepts are proposed. Finally, we introduce some special
graphs which will be used in the analysis throughout the paper.

2.1 Problem Definitions

The ρ-Minimum Dominating Set is defined as general version of MDS problem.
In the context of influence spreading, the ρ-MDS problem says that given a graph
modeling a social network, where each vertex v has a fix threshold ρ|N(v)| such
that the vertex v will adopt a new product if ρ|N(v)| of its neighbors adopt it.
Thus our goal is to find a small setDS of vertices such that targeting the product
to DS would lead to adoption of the product by a large number of vertices in
the graph in t propagations. To be simplified, we define ρ-MDS problem in the
case that t = 1.

Definition 1 (ρ-Minimum Dominating Set). Given an undirected graph
G = (V,E), find a subset DS ⊆ V with the minimum size such that for each
vertex vi ∈ V \DS, |DS ∩N(vi)| ≥ ρ|N(vi)|, where 0 < ρ ≤ 1/2.

2.2 Power Law Model and Concepts

A great number of models [5] [6] [1] [2] [21] on power law graphs are emerging
in the past recent years. In this paper, we do the analysis based on the general
(α, β) model, that is, the graphs only constrained with the distribution on the
number of vertices with different degrees.
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Definition 2 ((α, β) Power Law Graph Model). A graph G(α,β) = (V,E)
is called a (α, β) power law graph where multi-edges and self-loops are allowed if
the maximum degree is Δ =

⌊
eα/β

⌋
and the number of vertices of degree i is:

yi =

{⌊
eα/iβ

⌋
, if i > 1 or

∑Δ
i=1

⌊
eα/iβ

⌋
is even

�eα�+ 1, otherwise
(1)

Definition 3 (d-Bounded Graph). Given a graph G = (V,E), G is a d-
bounded graph if the degree of any vertex is upper bounded by an integer d.

Definition 4 (Degree Set). Given a power law graph G(α,β), let Di(G(α,β))
be the set of vertices with degree i on graph G(α,β).

2.3 Special Graphs

Definition 5 (Cubic Cycle CCn). A cubic cycle CCn is composed of two
cycles. Each cycle has n vertices and two ith vertices in each cycle are adjacent
with each other. That is, Cubic Cycle CCn has 2n vertices and each vertex has
degree 3. An example CC8 is shown in Figure 1.

Then a Cubic Cycle CCn can be extended into a d-Regular Cycle RCd
n with the

given vector d. The definition is as follows.

Definition 6 (d-Regular Cycle RCd
n). Give a vector d = (d1, . . . , dn), a d-

Regular Cycle RCd
n is composed of a two cycles. Each cycle has n vertices and

two ith vertices in each cycle are adjacent with each other by d− 2 multi-edges.
That is, d-Regular Cycle RCd

n has 2n vertices and the two ith vertex has degree
di. An example RCd

8 is shown in Figure 3.

Definition 7 (d-Cycle Cd
n). Give a vector d = (d1, . . . , dn), a d-Cycle Cd

n is
a cycle with a even number of vertices n such that each vertex has degree di with
(di − 2)/2 self-loops. An example Cd

8 is shown in Figure 4.

Definition 8 (κ-Branch-d-Cycle κ-BCd
n). Given a d-Cycle and a vector κ =

(κ1, . . . , κm), the κ-Branch-d-Cycle is composed of |κ|/2 branches appending Cd
n,

where |κ| is a even number. An example is shown in Figure 5.

Fact 1. κ-Branch-d-Cycle has |κ| even number of vertices with odd degrees.

Fig. 1. CC8

(a) MDS (b) MVC, MIS

Fig. 2. Solutions on CC8
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di-2 mulit-edges

Fig. 3. RCd
8

(di-1)/2 self-loops

Fig. 4. Cd
8

(di-1)/2 self-loops

(ki-1)/2 self-loops

Fig. 5. 4-BCd
6

3 General Cycle-Based Embedding Technique

In this section, we present General Cycle-Based Embedding Technique on (α, β)
power law graph model with β > 1. The idea on Cycle-Based Embedding Tech-
nique is to embed an arbitrary d-bounded graph into PLG with β > 1 with
a d1-Regular Cycle, a κ-Branch-d2-Cycle and a number of cliques K2, where
d1, d2 and κ are defined by α and β. Since the classical problems can be poly-
nomially solved in both d-Regular Cycles and κ-Branch-d-Cycle according to
Corollary 1 and Lemma 2, Cycle-Based Embedding Technique helps to prove
the complexity of such problem on PLG according to the complexity result of
the same problem on bounded graphs.

Lemma 1. MDS, MVC and MIS is polynomially solvable on Cubic Cycle.

Proof. Here we just prove MDS problem is polynomially solvable on Cubic Cycle.
The algorithm is simple. First we arbitrarily select a vertex, then select the vertex
on the other cycle in two hops. The algorithm will terminate until all vertices
are dominated. Now we will show that this gives the optimal solution. Let’s take
CC8 as an example. As shown in Fig. 2(a), the size of MDS is 4. Notice that
each node can dominate exact 3 vertices, that is, 4 vertices can dominate exactly
12 vertices. However, in CC8, there are altogether 16 vertices, which have to be
dominated by at least 4 vertices apart from the vertices in MDS. That is, the
algorithm returns an optimal solution. Moreover, MVC and MIS can be proved
similarly as shown in Fig. 2(b).

Corollary 1. MDS, MVC and MIS is polynomially solvable on d-Regular Cycle
and d-Cycle.

Lemma 2. MDS, MVC and MIS is polynomially solvable on κ-Branch-d-Cycle.

Proof. Let us take the MDS as an example. First we select the vertices connecting
both the branches and the cycle. Then by removing the branches, we will have a
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line graph regardless of self-loops, on which MDS is polynomially solvable. It is
easy to see that the size of MDS will increase if any one vertex connecting both
the branch and the cycle in MDS is replaced by some other vertices.

Theorem 1 (Cycle-Based Embedding Technique). Any d-bounded graph
Gd can be embedded into a power law graph G(α,β) with β > 1 such that Gd

is a maximal component and the above classical problems can be polynomially
solvable on G(α,β) \Gd.

Proof. With the given β and τ(i) = �eα/iβ� − ni where ni = 0 when i > d, we
construct the power law graph G(α,β) as the following algorithm:

1. Choose a number α such that eα = max1≤i≤d{ni · iβ} and eα/β ≥ d;
2. For the vertices with degree 1, add �τ(1)/2� number of cliques K2;
3. For τ(2) vertices with degree 2, add a cycle with the size τ(2);
4. For all vertices with degree larger than 2 and smaller than �eα/β�, construct

a d1-Regular Cycle where d1 is a vector composed of 2�τ(i)/2� number of i
elements for all i satisfying τ(i) > 0;

5. For all leftover isolated vertices L such that τ(i) − 2�τ(i)/2� = 1, construct
a d1

2-Branch-d2
2-Cycle, where d1

2 is a vector composed of the vertices in L
with odd degrees and d2

2 is a vector composed of the vertices in L with even
degrees.

The last step holds since the number of vertices with odd degrees has to be
even. Therefore, eα = max1≤i≤d{ni · iβ} ≤ n, that is, the number of vertices in
graph G(α,β) N = ζ(β)n = Θ(n) meaning that N/n is a constant. According to
Corollary 1 and Lemma 2, since G(α,β) \Gd is composed of a d1-Regular Cycle
and a k-Branch-d2-Cycle, it can be polynomially solvable.

4 Hardness of Optimization Problems on PLG

In this section, we prove that MIS, MDS, MVC are APX-hard on PLG.

Theorem 2 (Alimonti et al. [3]). MDS is APX-hard on cubic graphs.

Theorem 3. MDS is APX-hard on PLG.

Proof. According to Theorem 1, we use the Cycle-Based Embedding Technique
to show L-reduction from MDS on d-bounded graph Gd to MDS on power law
graph G(α,β). Let φ and ϕ be a feasible solution on Gd and G(α,β) respectively.

We first consider MDS on different graphs. Notice that MDS on a K2 is 1,
n/4 on a d-Regular Cycle according to Lemma 1 and n/3 on a cycle. Therefore,
for a solution φ on Gd, we have a solution ϕ on G(α,β) is ϕ = φ+n1/2+ n2/3+
n3/4, where n1, n2 and n3 corresponds to τ(1), τ(2) and all leftover vertices in
Theorem 1. Correspondingly, we have OPT (ϕ) = OPT (φ)+n1/2+n2/3+n3/4.
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On one hand, for a d-bounded graph with vertices n, the optimal MDS is
lower bounded by n/(d+ 1). Thus, we know

OPT (ϕ) = OPT (φ) + n1/2 + n2/3 + n3/4
≤ OPT (φ) + (N − n)/2 ≤ OPT (φ) + (ζ(β) − 1)n/2
≤ OPT (φ) + (ζ(β) − 1)(d+ 1)OPT (φ)/2 = [1 + (ζ(β) − 1)(d+ 1)/2]OPT (φ)

where N is the number of vertices in G(α,β).
On the other hand, with |OPT (φ) − φ| = |OPT (ϕ) − ϕ|, we proved the L-

reduction with c1 = 1 + (ζ(β) − 1)(d+ 1)/2 and c2 = 1.

Theorem 4. MVC is APX-hard on PLG.

Proof. In this proof, we construct as Cycle-Based Embedding Technique, accord-
ing to Theorem 1, to show L-reduction from MVC on d-bounded graph Gd to
MVC on power law graph G(α,β). Let φ be a feasible solution on Gd and ϕ be a
feasible solution on G(α,β).

However, MVC on K2, cycle, d-Regular Cycle and κ-Branch-d-Cycle is n/2.
Therefore, for a solution φ on Gd, we have a solution ϕ on G(α,β) is ϕ = φ +
(N − n)/2. Correspondingly, we have OPT (ϕ) = OPT (φ) + (N − n)/2.

On one hand, for a d-bounded graph with vertices n, the optimal MVC is
lower bounded by n/(d+ 1). Therefore, similarly as the proof in Theorem 3,

OPT (ϕ) ≤ [1 + (ζ(β) − 1)(d+ 1)/2]OPT (φ)

On the other hand, with |OPT (φ) − φ| = |OPT (ϕ) − ϕ|, we proved the L-
reduction with c1 = 1 + (ζ(β) − 1)(d+ 1)/2 and c2 = 1.

Corollary 2. MIS is APX-hard on PLG.

5 Inapproximability of Optimization Problems on PLG

5.1 MDS, MIS, MVC

Theorem 5 (P. Austrin et al. [4]). For every sufficiently large integer d, MIS
on a graph d-bounded G is UG-hard to approximate within a factor O

(
d/ log2 d

)
.

Theorem 6 (P. Austrin et al. [4]). For every sufficiently large integer d,
MVC on a graph d-bounded G is UG-hard to approximate within a factor 2 −
(2 + od(1)) log log d/ log d.

Theorem 7 (M. Chleb́ık et al. [9]). For every sufficiently large integer d,
there is no (log d−O(log log d))-approximation for MDS on d-bounded graphs
unless NP ⊆ DTIME

(
nO(log log n)

)
.

Theorem 8. MIS is UG-hard to approximate to within a factor 1− 2(c1−O(log2 c1))
c1(c1+1)ζ(β)

on PLG.
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Proof. In this proof, we construct the power law graph based on Cycle-Based
Embedding Technique in Theorem 1 and show the Gap-Preserving from MIS on
d-bounded graph Gd to MIS on power law graph G(α,β). Let φ be a feasible
solution on Gd and ϕ be a feasible solution on G(α,β). We show Completeness
and Soundness with m′ = m+ (N − n)/2.

– If OPT (φ) = m⇒ OPT (ϕ) = m′

Let OPT (φ) = m be the MIS on graph Gd, we have OPT (ϕ) which is
composed of several parts: (1) OPT (φ) = m; (2) MIS on clique K2, cycle
and d-Regular Cycle are all exactly half number of all vertices. Therefore,
MIS on G(α,β) \Gd is (N−n)/2, where N and n are respectively the number
of vertices on G(α,β) and Gd. We have OPT (ϕ) = OPT (φ) + (N − n)/2.
That is, OPT (ϕ) = m′ where m′ = m+ (N − n)/2.

– If OPT (φ) < O
(
log2 d/d

)
m⇒ OPT (ϕ) <

(
1− 2(c1−O(log2 c1))

c1(c1+1)ζ(β)

)
m′

OPT (ϕ) = OPT (φ) +
N − n

2
< O

(
log2 d

d

)
m+

N − n
2

=

⎛⎝1−

(
1−O

(
log2 d

d

))
m

m+ N−n
2

⎞⎠m′ <

⎛⎝1−

(
1−O

(
log2 d

d

))
N
2m

⎞⎠m′

<

⎛⎝1−
1−O

(
log2 d

d

)
(d+1)N

2n

⎞⎠m′ <

⎛⎝1−
2n

(
1−O

(
log2 d

d

))
N(d+ 1)

⎞⎠m′

=

⎛⎝1−
2n

(
1−O

(
log2 d

d

))
ζ(β)(d + 1)n

⎞⎠m′ ≤
(

1−
2
(
c1 −O

(
log2 c1

))
c1(c1 + 1)ζ(β)

)
m′

where c1 is the minimum integer d satisfying Theorem 5.
Equation (1) holds since 1 ≤ OPT (φ) < O

(
log2 d

d

)
m. Since Gd is a d-

bounded graph, m ≥ n/(d + 1). The last step holds since it is easy to see
that function f(x) = (x−O

(
log2 x

)
)/(x(x+1)) is monotonously decreasing

when f(x) > 0 for any x > 0.

Theorem 9. MVCisUG-hard to be approximatedwithin 1+
2
(

1−(2+oc2(1)) log log c2
log c2

)
(c2+1)ζ(β)

on PLG.

Proof. The proof is similar to the inapproximability of MIS. We only show the
Soundness here.

OPT (ϕ) = OPT (φ) +
N − n

2
>

(
1 +

1 − (2 + od(1)) log log d
log d

1 + N−n
2m

)
m′

>

⎛⎝1 +
2n

(
1 − (2 + od(1)) log log d

log d

)
(d + 1)ζ(β)n

⎞⎠m′ >

⎛⎝1 +
2
(
1 − (2 + oc2(1))

log log c2
log c2

)
(c2 + 1)ζ(β)

⎞⎠m′
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where c2 is the minimum integer d satisfying Theorem 6 and m′ = (N − n)/2.
The inequality holds since function f(x) = (1−(2+ox(1)) log log x/ log x)/(x+1)
is monotonously decreasing when f(x) > 0 for all x.

Theorem 10. There is no 1 + 2(log c3−O(log log c3)−1)
(c3+1)ζ(β) -approximation for Mini-

mum Dominating Set on PLG unless NP ⊆ DTIME
(
nO(log log n)

)
.

Proof. In this proof, we construct the power law graph based on Cycle-Based
Embedding Technique in Theorem 1 and show the Gap-Preserving from MDS on
d-bounded graph Gd to MDS on power law graph G(α,β). Let φ and ϕ be feasible
solutions on Gd and G(α,β). We show Completeness and Soundness.

– If OPT (φ) = m⇒ OPT (ϕ) = m′

Let OPT (φ) = m be the MDS on graph Gd, we have OPT (ϕ) which is
composed of several parts: (1) OPT (φ) = m; (2) MDS on a K2 is 1, n/4
on a d-Regular Cycle according to Lemma 1 and n/3 on a cycle. That is,
OPT (ϕ) = m′ where m′ = m + n1/2 + n2/3 + n3/4, where n1, n2 and n3
corresponds to τ(1), τ(2) and all leftover vertices in Theorem 1.

– If OPT (φ) > (log d − O(log log d)) m ⇒ OPT (ϕ)>
(
1 + 2(log c3−O(log log c3)−1)

(c3+1)ζ(β)

)
m′

OPT (ϕ) = OPT (φ) + n1/2 + n2/3 + n3/4

>

(
1 +

((log d − O(log log d)) − 1)
1 + (N − n)/(2m)

)
m′ >

(
1 +

2 (log c3 − O(log log c3) − 1)
(c3 + 1)ζ(β)

)
m′

where c3 = max{γ1, γ2}, where γ1 is the minimum integer d satisfying Theo-
rem 7 and γ2 satisfying df(x)

dx = 0 with function f(x) = (log x−O(log log x)−
1)/(x+ 1). Why we choose such c3 is that γ2 is the maxima of f(x).

5.2 ρ-Dominating Set Problem

Theorem 11. ρ-PDS is UG-hard to be approximated into 2− (2+od(1)) log log d
log d

on d-bounded graphs.

Proof. In this proof, we show the Gap-Preserving from MVC on (d/ρ)-bounded
graph G = (V,E) to ρ-PDS on d-bounded graph G′ = (V ′, E′). w.l.o.g., we
assume that d and d/ρ are integers. We construct a graph G′ = (V ′, E′) by
adding new vertices and edges to G. For each edge (u, v) ∈ E, create k new
vertices uv1, . . . , uvk where 1 ≤ k ≤ �1/ρ� and 2k new edges (uvi, u) and (uvi, u)
for all i ∈ [1, k] as shown in Fig. 6. Clearly, G′ = (V ′, E′) is a d-bounded graph.

Let φ and ϕ be solutions to MVC on G and G′ respectively. We claim that
OPT (φ) = OPT (ϕ).

On one hand, if {v1, v2, . . . , vj} ∈ V is minimum vertex cover on G. Then
{v1, v2, . . . , vj} is a ρ-PDS on G′ because every old vertex in V has ρ of all
neighbors in MVC and every new vertex in V ′ \ V has at least one of two
neighbors in MVC. Thus OPT (φ) ≥ OPT (ϕ). One the other hand, we can
prove that OPT (ϕ) does not contain new vertices, that is, V ′ \ V . Consider a



206 Y. Shen, D.T. Nguyen, and M.T. Thai

G=(V,E) G'=(V',E')

u v

w y

u v

w y
wy1

wyk

uv1

uvk

uw1uwk vy1 vyk

...
...

... ...

Fig. 6. Reduction from MVC to ρ-MDS

vertex u ∈ V , if u ∈ OPT (ϕ), the new vertices uvi for all v ∈ N(u) and all
i ∈ [1, k] are not needed to be selected. If u 
∈ OPT (ϕ), it has to be dominated
by rho proportion of its all neighbors. That is, for each edge (u, v) incident to
u, either v or all uvi has to be selected since every uvi has to be selected or
dominated. If all uvi are selected in OPT (ϕ) for some edge (u, v), v is still not
dominated by enough vertices if there are some more edges incident to v and
the number of vertices uvi k is great than 1, that is, �1/ρ� ≥ 1. In this case,
therefore, v will be selected to dominate uv. Thus, OPT (ϕ) does not contain new
vertices. Since the verices in V selected is a solution to ρ-MDS, that is, for each
vertex u in graph G, u will be selected or at least the number of neighbors of u
will be selected. Therefore, the vertices in OPT (ϕ) consist a Vertex Cover in G.
Thus OPT (φ) ≤ OPT (ϕ). Then we present the Completeness and Soundness.

– If OPT (φ) = m⇒ OPT (ϕ) = m

– If OPT (φ)>
(
2−(2 + od(1)) log log(d/2)

log(d/2)

)
m⇒OPT (ϕ)>

(
2−(2 + od(1)) log log d

log d

)
m

OPT (ϕ) >
(

2− (2 + od(1))
log log(d/ρ)

log(d/ρ)

)
m>

(
2− (2 + od(1))

log log d
log d

)
m

since the function f(x) = 2− log x/x is monotonously increasing for any x.

Theorem 12. ρ-PDS isUG-hard to be approximated into 1+
2
(
1−(2+oc2(1)) log log c2

log c2

)
(c2+1)ζ(β)

on PLG.

Proof. In this proof, we will show the Gap-Preserving from ρ-MDS on bounded
degree graph Gd to ρ-MDS on power law graph G(α,β).

We use the same construction as in Theorem 8. Let φ be a solution on G′
d

and ϕ be a solution on G(α,β), we prove the Completeness and Soundness.

– If OPT (φ) = m⇒ OPT (ϕ) = m′

Let OPT (φ) = m be the ρ-MDS on graph Gd, we have OPT (ϕ) which is
composed of several parts: (1) OPT (φ) = m; (2) MDS on a K2 is 1, g(ρ)n
on a d-Regular Cycle according to Lemma 1 and f(ρ)n on a cycle, where

f(ρ) =

{
1
4 , ρ ≤ 1

3
1
3 ,

1
3 < ρ ≤ 1

2

and g(ρ) = 1
3 for all ρ ≤ 1

2 .
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Therefore, ρ-MDS on G(α,β) to be m′ where m′ = m+n1/2+f(ρ)n2+g(ρ)n3,
where n1, n2 and n3 corresponds to τ(1), τ(2) and all leftover vertices in
Theorem 1.

– If OPT (φ)>
(
2−(2 + od(1)) log log d

log d

)
m⇒OPT (ϕ)>

(
1 +

1−(2+oc2 (1))
log log c2

log c2
(c2+1)ζ(β)

)
m′

OPT (ϕ) = OPT (φ) + n1/2 + f(ρ)n2 + g(ρ)n3

>

⎛⎝1 +
2n

(
1 − (2 + od(1)) log log d

log d

)
(d + 1)ζ(β)n

⎞⎠m′ >

⎛⎝1 +
2
(
1 − (2 + oc2(1)) log log c2

log c2

)
(c2 + 1)ζ(β)

⎞⎠m′

Again, c2 is the minimum integer d satisfying Theorem 6. The inequal-
ity holds since function f(x) = (1− (2 + ox(1)) log log x/ logx) /(x + 1) is
monotonously decreasing when f(x) > 0 for any x.

5.3 Maximum Clique, Minimum Coloring

Theorem 13 (Hastad [15]). There is no n1−ε-approximation on Maximum
Clique problem unless NP=ZPP.

Lemma 3 (Ferrante et al. [13]). Let G = (V,E) be a simple graph with n
vertices and β ≥ 1. Let α ≥ max{4β, β log n+ log(n + 1)}. Then, G2 = G \G1
is a bipartite graph.

Lemma 4. Given a function f(x) (x ∈ Z, f(x) ∈ Z+) monotonously decreases,∑
x f(x) ≤

∫
x
f(x).

Corollary 3. eα
∑eα/β

i=1

( 1
d

)β
< (eα − eα/β)/(β − 1).

Theorem 14. Maximum Clique cannot be approximated within O
(
n1/(β+1)−ε

)
on large PLG with β > 1 and n > 54 for any ε > 0 unless NP=ZPP.

Proof. In [13], the authors proved the hardness of Maximum Clique problem on
power law network. Here we use the same construction. According to Lemma 3,
G2 = G\G1 is a bipartite graph when α ≥ max{4β, β logn+log(n+1)} for any
β ≥ 1. Let φ be a solution on general graph G and ϕ be a solution on power law
graph G2. We show the Completeness and Soundness.

– If OPT (φ) = m⇒ OPT (ϕ) = m
If OPT (φ) ≤ 2 on graph G, we can solve Clique problem in polynomial

time by iterating the edges and their end vertices one by one, where G
is not a general graph in this case. w.l.o.g, assuming OPT (φ) > 2, then
OPT (ϕ) = OPT (φ) > 2 since the maximum clique on bipartite graph is 2.

– If OPT (φ) ≤ m/n1−ε ⇒ OPT (ϕ) < O
(
1/(N1/(β+1)−ε′)

)
m

In this case, we consider the case that 4β < β logn+ log(n+ 1), that is,
n > 54. According to Lemma 3, let α = β logn+log(n+1). From Corollary 3,
we have
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N = eα
eα/β∑
d=1

(
1
d

)β

<
eα − eα/β

β − 1
=
nβ(n+ 1)− n(n+ 1)1/β

β − 1
<

2nβ+1 − n
β − 1

Therefore, OPT (ϕ) = OPT (φ) ≤ m/n1−ε < O
(
m/

(
N1/(β+1)−ε′

))
.

Corollary 4. The Minimum Coloring problem cannot be approximated within
O
(
n1/(β+1)−ε

)
on large PLG with β > 1 and n > 54 for any ε > 0 unless

NP=ZPP.

6 Relationship between β and Approximation Hardness

As shown in previous sections, many hardness results depend on β. In this sec-
tion, we analyze the hardness of some optimization problems based on the value
of β by showing that trivial greedy algorithms can achieve constant guarantee
factor on MIS and MDS.

Lemma 5. When β > 2, the size of MDS of a power law graph is greater than
Cn where n is the number of vertices, C is some constant depended only on β.

Proof. Let MDS = (v1, v2, . . . , vt) with degrees d1, d2, . . . , dt be the MDS of
power-law graph G = (V,E). The total of degrees of vertices in dominating
set must be at least the number of vertices outside the dominating set. Thus∑i=t

i=1 di ≥ |V \DS|. With a given total degrees, a set of vertices has minimum
size when it includes highest degree vertices. With β > 2 the function ζ(β−1) =∑∞

i=1
1

iβ−1 is converged, there exists a constant t0 = t0(β) such that

�eα/β�∑
i=t0

i

⌊
eα

iβ

⌋
≤

t0∑
i=1

⌊
eα

iβ

⌋
where α is any large enough constant. Thus the size of MDS is at least

�eα/β�∑
i=t0

⌊
eα

iβ

⌋
≈
(
ζ(β) −

t0∑
i=1

1
iβ

)
eα ≈ C|V |

where C = (ζ(β) −
∑t0

i=1
1
iβ )/(ζ(β)).

Consider the greedy algorithm which selects vertices from the highest degree ver-
tices to lowest one. In the worst case, it selects all vertices with degree greater
than 1 and a half of vertices with degree 1 to form a dominating set. The ap-
proximation factor of this simple algorithm is a constant.

Corollary 5. Given a power law graph with β > 2, the greedy algorithm that
selects vertices in decreasing order of degrees provides a dominating set of size
at most

∑�eα/β�
i=2

⌊
eα/iβ

⌋
+ 1

2e
α ≈ (ζ(β)− 1/2)eα. Thus the approximation ratio

is (ζ(β) − 1
2 )/(ζ(β) −

∑t0
i=1 1/iβ).
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Let us consider a maximization problem MIS, we propose a greedy algorithm
Power-law-Greedy-MIS as follows. Sort the vertices in non-increasing order then
start checking from the lowest degree vertex, if the vertex is not adjacent to any
selected vertex, it is selected. The set of selected vertices forms an independent
set with the size at least a half the number of vertices with degree 1 which is
eα/2. The size of MIS is at most a half of number of vertices, then we have

Lemma 6. Power-law-Greedy-MIS has factor 1/(2ζ(β)) on PLG with β > 1.
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Appendix A : Embedding Construction with β < 1

Ferrante et. al. [13] proved the NP-hardness of MIS, MDS, and MVC where
β < 1 based on Lemma 7 which is invalid. A counter-example is as follows. Let
D1 =< 3, 2, 2, 1 > and D2 =< 7, 6, 5, 4, 3, 2, 2, 1 > then D1 is eligible and Y1 =<
1, 2, 1 >< Y2 =< 1, 2, 1, 1, 1, 1, 1 > but D2 is NOT eligible with fD2(4) < 0.
In this part, we present an alternative lemma to prove the hardness of these
problems on power-law graphs with β < 1.

Definition 9 (d-Degree Sequence). Given a graph G = (V,E), the d-degree
sequence of G is a sequence D =< d1, d2, . . . , dn > of vertex degrees in non-
increasing order.

Definition 10 (y-Degree Sequence). Given a graph G = (V,E), the y-degree
sequence of G is a sequence Y =< y1, y2, ..., ym > where m is the maximum
degree of G and yi = |{u|u ∈ V and degree(u) = i}|.

Definition 11 (Eligible Sequences). A sequence of integers S=< s1, . . . , sn >
is eligible if s1 ≥ s2 ≥ . . . ≥ sn and, for all k ∈ [n], fS(k) ≥ 0, where

fS(k) = k(k − 1) +
n∑

i=k+1

min{k, si} −
k∑

i=1

si

Lemma 7 (Invalid Lemma, [13]). Let Y1 and Y2 be two y-degree sequences
with m1 and m2 elements respectively such that (1) Y1(i) ≤ Y2(i), ∀1 ≤ i ≤ m1,
and (2) two corresponding d-degree sequences D1 and D2 are contiguous. If D1
is eligible then D2 is eligible.

Erdős and Gallai [11] showed that a sequence of integers to be graphic - d-degree
sequence of an graph, iff it is eligible and the total of all elements is even. Then
Havel and Hakimi [7] gave an algorithm to construct a simple graph from a
degree sequence.

Lemma 8 ([7]). A sequence of integers D =< d1, . . . , dn > is graphic if and
only if it is non-increasing, and the sequence of values D′ =< d2 − 1, d3 −
1, . . . , dd1+1− 1, dd1+2, . . . , dn > when sorted in non-increasing order is graphic.

http://www.cs.purdue.edu/homes/gopal/powerlawtalk.pdf
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We now prove the following lemma, which can substitute Lemma 7 for the NP-
hardness proof in [13].

Lemma 9. Given an undirected graph G = (V,E), 0 < β < 1, there exists poly-
nomial time algorithm to construct power-law graph G′ = (V ′, E′) of exponential
factor β such that G is a set of maximal components of G′.

Proof. To construct G′, we choose α = max{β ln(n− 1) + ln(n+ 2), 3 ln 2} then
�eα/((n− 1)β)� > n+ 2, i.e. if there are a least 2 vertices of G′ having degree d,
there are at least 2 vertices of G′\G having degee d. According to the definition,
the total degrees of all vertices in G′ and G are even. Therefore, the lemma will
follow if we prove that the degree sequence D of G′\G is eligible.

In D, the maximum degree is �eα/β�. There is only one vertex of degree i if
1 ≤ eα/iβ < 2 and furthermore eα/β ≥ i > e(α−ln 2)/β = (eα/2)1/β.

We check fD(k) in two cases:

1. Case 1: k ≤
⌊
eα/β/2

⌋
fD(k) = k(k − 1) +

n∑
i=k+1

min{k, di} −
k∑

i=1

di

> k(k − 1) +
T−k∑
i=k

k +
k−1∑
i=B

i+
B−1∑
i=1

2−
k∑

i=1

(T − k + 1)

= k(T − k) + (k −B)(k − 1 +B)/2 +B(B − 1)− k(2T − k + 1)/2
= (B2 −B)/2− k

where where T =
⌊
eα/β

⌋
and B =

⌊
(eα/2)1/β

⌋
+1. Note that with α > 3 ln 2,

α/β > ln 2 (2/β + 1). Hence
(⌊

(eα/2)1/β
⌋

+ 1
) (⌊

(eα/2)1/β
⌋)

>
⌊
eα/β

⌋
≥

2k, so fD(k) > 0.

2. Case 2: k >
⌊
eα/β/2

⌋
fD(k + 1) ≥ fD(k) + 2k − 2dk+1 ≥ fD(k) ≥ . . . ≥ fD(

⌊
eα/β/2

⌋
) > 0



Cyclic Vertex Connectivity of Star Graphs�
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Abstract. For a connected graph G, a vertex subset F ⊂ V (G) is a
cyclic vertex-cut of G if G − F is disconnected and at least two of its
components contain cycles. The cardinality of a minimum cyclic vertex-
cut of G, denoted by κc(G), is the cyclic vertex-connectivity of G. In this
paper, we show that for any integer n ≥ 4, the n-dimensional star graph
SGn has κc(SGn) = 6(n − 3).

Keywords: star graph; cyclic vertex-connectivity.

1 Introduction

Let G = (V (G), E(G)) be a simple connected graph, where V (G), E(G) are the
vertex set and the edge set, respectively. A vertex subset F ⊆ V (G) is a cyclic
vertex-cut of G if G−F has at least two connected components containing cycles.
Vertices in F are called faulty, and vertices in V (G) − F are said to be good.
If G has a cyclic vertex-cut, then the cyclic vertex-connectivity of G, denoted
by κc(G), is the minimum cardinality over all cyclic vertex-cuts of G. When G
has no cyclic vertex-cut, the definition of κc(G) can be found in [15] using Betti
number. The cyclic edge-connectivity λc(G) can be defined similarly, changing
‘vertex’ to ‘edge’ (see for example [13,14]).

The concepts of cyclic vertex- and edge-connectivity date to Tait (1880) in
attacking Four Color Conjecture [16]. Since then, they are used in many classic
fields of graph theory such as integer flow conjectures [21], n-extendable graphs
[9,12], etc.

In [18], the authors showed that λc(G) coincides with λ2(G), where λk(G) is
a kind of conditional connectivity [7] defined as follows: for a connected graph
G, an edge subset F ⊂ V (G) is a Rk-edge-cut if G−F is disconnected and each
vertex in V (G) − F has at least k good neighbors in G − F (or equivalently,
δ(G − F ) ≥ 2, where δ is the minimum degree of the graph). The Rk-edge
connectivity of G, denoted by λk(G) is the cardinality of a minimum Rk-vertex-
cut of G. Thus many results obtained for λ2(G) can be directly transformed to
those of λc(G), for example, results in [11,20].
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Fig. 1. κc(G) = 1 < n − 6 = κ2(G), where n is the number of vertices in G

However, the story is different for κc(G). Changing ‘edge’ to ‘vertex’, we obtain
the definition of Rk-vertex-connectivity κk(G). Since every graph with minimum
degree at least 2 has a cycle, we have κc(G) ≤ κ2(G) as long as both κc(G) and
κ2(G) exist. The following example shows that the strict inequality may hold
and the gap between κc(G) and κ2(G) can be arbitrarily large.

In this paper, we determine κc for star graphs. Let Sn be the symmetric group
of order n, that is, the set of all permutations of {1, 2, ..., n}. The n-dimensional
star graph SGn is the graph with vertex set V (SGn) = Sn, two vertices u, v
are adjacent in SGn if and only if v = u(1i), for some 2 ≤ i ≤ n. We say that
the label on the edge uv is (1i). Star graphs have been shown to have many
desirable properties such as high connectivity, small diameter ect., which makes
it favorable as a network topology (see for example [2,8]).

We will show in this paper that κc(SGn) = 6(n− 3) for n ≥ 4. In [17], Wan
and Zhang proved that for any integer n ≥ 4, κ2(Sn) = 6(n− 3). We guess that
this is not an accidental coincidence, which deserves further study.

2 Some Preliminaries

Terminologies not defined here are referred to [3].
For a graph G, a subgraph G1 of G, and a vertex u ∈ V (G), we use NG1(u) =

{v ∈ V (G1) | v is adjacent with u in G} to denote the neighbor set of u in
G1. In particular, if G1 = G, then NG(u) is the neighbor set of u in G, and
dG(u) = |NG(u)| is the degree of vertex u in G. The minimum degree of G is
δ(G) = min{dG(u) | u ∈ V (G)}. For a vertex subset U ⊆ V (G), let NG1(U) =
(
⋃

u∈U NG1(u))− U be the neighbor set of U in G1. For simplicity of notation,
we sometimes use a subgraph and its vertex set interchangeably, for example,
NG(G1) is used to denote NG(V (G1)) where G1 is a subgraph of G, and NA(U)
is used to denote NG[A](U) where A,U are two vertex sets and G[A] is the
subgraph of G induced by A.

It is known that SGn is (n− 1)-regular, bipartite, vertex transitive, and edge
transitive [1]. We will also use the following result given by Cheng and Lipman.

Lemma 1 ([4]). For n ≥ 4, let T be a vertex subset of SGn with |T | ≤ 2n− 4.
Then one of the following occurs:

(i) SGn − T is connected;
(ii) SGn − T has two connected components, one of which is a singleton;
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(iii) SGn − T has two connected components, one of which is an edge uv,
furthermore, T = NSGn(uv).

As a corollary of Lemma 1, we have

Corollary 1. For n ≥ 4, κ1(SGn) = 2n− 4. Furthermore, if T is a minimum
R1-vertex-cut of SGn, then T = NSGn(uv) for some edge uv ∈ E(SGn).

The girth of a graph G is the length of the shortest cycle in G. The following
lemma characterizes the structure of shortest cycles of SGn.

Lemma 2 ([17]). The girth of SGn is 6. Any 6-cycle in SGn has the form
u1u2u3u4u5u6u1, where u2 = u1(1i), u3 = u2(1j), u4 = u3(1i), u5 = u4(1j), u6 =
u5(1i), u1 = u6(1j) for some i, j with i 
= j.

Lemma 2 shows that any 6-cycle of SGn has its edges labeled with (1i) and (1j)
alternately for some i, j ∈ {2, ..., n} and i 
= j. As a consequence, we see that

Corollary 2. Any two 6-cycles of SGn have at most one common edge.

Proof. Suppose C1 = u1u2u3u4u5u6u1 and C2 = u1u2v3v4v5v6u1 are two 6-
cycles of SGn having a common edge u1u2, the label on u1u2 is (1i), and the
label on u2u3 is (1j) for j 
= i. By Lemma 2, the label on u2v3 is (1k) for some
k 
= i, j. Then the common edges of C1 and C2 must have label (1i). Notice that
v3, v6 
∈ V (C1) since the girth of SGn is 6. Hence v3v4 and v5v6, which are the
only two other edges on C2 with label (1i), do not belong to C1. Thus u1u2 is
the only common edge of C1 and C2. �

Let Si
n be the subset of Sn that consists of all permutations with element i in

the rightmost position, and let SGi
n−1 be the subgraph of SGn induced by Si

n.
Clearly SGi

n−1 is isomorphic to SGn−1, and thus we call it a copy of SGn−1.
It is easy to see that SGn can be decomposed into n copies of SGn−1, namely
SG1

n−1, SG
2
n−1, ..., SG

n
n−1. For any copy SGi

n−1 and any vertex u ∈ V (SGi
n−1),

there is exactly one neighbor of u outside of SGi
n−1, namely the vertex u(1n).

We call it the outside neighbor of u and use u′ to denote it.
The following property was proved in Lemma 3 of [17], though we state it in

a different way to suit the needs of this paper.

Lemma 3 ([17]). For any path P = u0u1u2 which is contained in some copy,
the outside neighbors u′0, u

′
1, u

′
2 are in three different copies. As a consequence,

for any edge u1u2 in some copy, u′1 and u′2 are in different copies.

The next result can also be found in [17].

Lemma 4 ([17]). For any i ∈ {1, 2, ..., n}, NSGn(SGi
n−1) is an independent set

of cardinality (n− 1)!, and |NSGj
n−1

(SGi
n−1)| = (n− 2)! for any j 
= i.
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3 Main Result

In this section, we determine the value of κc(SGn) for n ≥ 4.

Lemma 5. Let C be a 6-cycle of SGn (n ≥ 4). Then NSGn(C) is a cyclic
vertex-cut of SGn.

Proof. Clearly, SGn − NSGn(C) is disconnected which contains cycle C as a
connected component. Hence to prove the lemma, it suffices to show that the
subgraph G̃ = SGn−NSGn(C)−C has a cycle. In fact, we can prove a stronger
property δ(G̃) ≥ 2 as follows.

Suppose C = u1u2...u6u1. By Lemma 2, there exist two indices i, j 
= n such
that the labels on the edges of C are (1i) and (1j) alternately. If δ(G̃) ≤ 1,
then there exists a vertex v ∈ V (G̃) which has at least n − 2 ≥ 2 neighbors in
NSGn(C) (recall that SGn is (n− 1)-regular). Let v1, v2 be two distinct vertices
in NSGn(v)∩NSGn(C). Suppose, without loss of generality, that v1 is a neighbor
of u1. Since SGn is bipartite, there is no odd cycle in SGn. Hence v2 can only be
a neighbor of vertex u3 or u5, say u3. But then C′ = vv1u1u2u3v2v is a 6-cycle of
SGn which have two common edges u1u2, u2u3 with the 6-cycle C, contradicting
Corollary 2. Thus δ(G̃) ≥ 2.

Since every graph with minimum degree at least 2 has a cycle, the lemma is
proved. �

Theorem 1. For any integer n ≥ 4, κc(Sn) = 6(n− 3).

Proof. Let C be a 6-cycle in SGn and F = NSGn(C). Since the girth of SGn is 6,
no two vertices on C have a common neighbor in NSGn(C). Thus |F | = 6(n−3).
By Lemma 5, F is a cyclic vertex-cut. Hence κc(SGn) ≤ |F | ≤ 6(n− 3).

To prove the converse, let F be a minimum cyclic vertex-cut of SGn. Suppose
|F | < 6(n − 3), we are to derive a contradiction. For i ∈ {1, 2, ..., n}, denote
Fi = F ∩ SGi

n−1, and Ui the set of isolated vertices of SGi
n−1 − Fi.

Claim 1. If |Fi| ≤ 2n− 7, then |Ui| ≤ 1.
Otherwise, let u, v be two vertices in Ui. Since SGi

n−1 has girth 6, we see that
u, v have at most one common neighbor. Hence |NSGi

n−1
({u, v})| ≥ 2(n−2)−1 >

2n−7. Since Ui is an independent set, we see that NSGi
n−1

(Ui) ⊇ NSGi
n−1

({u, v}).
It follows that |Fi| ≥ |NSGi

n−1
(Ui)| ≥ |NSGi

n−1
({u, v})| > 2n− 7, contradicting

that |Fi| ≤ 2n− 7.

Claim 2. If |Fi| ≤ 2n− 7, then SGi
n−1 − (Fi ∪ Ui) is connected.

Suppose this is not true, then Fi∪Ui is a R1-vertex-cut of SGi
n−1. By Corollary

1, |Fi∪Ui| ≥ κ1(SGi
n−1) = 2n−6. Combining this with |Ui| ≤ 1 (by Claim 1) and

|Fi| ≤ 2n− 7, we see that |Ui| = 1 and |Fi ∪Ui| = κ1(SGi
n−1) (thus Fi ∪Ui is a

minimum R1-vertex-cut of SGi
n−1). Again by Corollary 1, Fi∪Ui = NSGi

n−1
(vw)

for some edge vw ∈ E(SGi
n−1). Let u be the unique vertex in Ui. Then u

is adjacent with either v or w, contradicting that u is an isolated vertex in
SGi

n−1 − Fi. Thus Claim 2 is proved.
Let I = {i : |Fi| ≥ 2n− 6}. Since |F | < 6(n− 3), we have |I| ≤ 2.
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Claim 3. Let G1 be the subgraph of SGn induced by
⋃

i	∈I V (SGi
n−1−(Fi∪Ui)).

Then G1 is connected.
By Claim 2, SGi

n−1 − (Fi ∪ Ui) is connected for any i 
∈ I. Hence to prove
Claim 3, it suffices to show that for any two indices i, j 
∈ I, there is a path in G1
connecting SGi

n−1− (Fi∪Ui) and SGj
n−1− (Fj ∪Uj). For such i, j, |Ui|, |Uj| ≤ 1

by Claim 1.
If there is an edge between SGi

n−1 − (Fi ∪ Ui) and SGj
n−1 − (Fj ∪ Uj), then

we are done. Hence we suppose that there is no edge between SGi
n−1− (Fi∪Ui)

and SGj
n−1 − (Fj ∪ Uj). Then

NSGj
n−1

(SGi
n−1 − (Fi ∪ Ui)) ⊆ Fj ∪ Uj , (1)

and thus |NSGj
n−1

(SGi
n−1−(Fi∪Ui))| ≤ |Fj |+1. We will show that this inequality

can be refined to

|NSGj
n−1

(SGi
n−1 − (Fi ∪ Ui))| ≤ |Fj |. (2)

Suppose (2) is not true, then NSGj
n−1

(SGi
n−1−(Fi∪Ui)) = Fj∪Uj and |Uj| = 1.

Let u be the unique vertex in Uj. Since u is an isolated vertex in SGj
n−1−Fj , it

has a neighbor v in Fj . By NSGj
n−1

(SGi
n−1− (Fi ∪Ui)) = Fj ∪Uj , we see that u

and v have outside neighbors u′ and v′ in SGi
n−1− (Fi ∪Ui), respectively. Since

the girth of SGn is 6 and u and v are neighbors to each other, u′ 
= v′. Since
either u and v has another neighbor in SGi

n−1, by the latter part of Lemma 3,
we have a contradiction.

Next, we show that
|NSGj

n−1
(Fi ∪ Ui)| ≤ |Fi|. (3)

Since each vertex has exactly one outside neighbor, we have |NSGj
n−1

(Fi∪Ui)| ≤
|Fi∪Ui| ≤ |Fi|+1. If equality holds, then |Ui| = 1 and every vertex in Fi∪Ui has
its outside neighbor in SGj

n−1. Similar to the above, the unique vertex u ∈ Ui

has a neighbor v in Fi, and thus the outside neighbors u′, v′ can not be both in
the same copy. This contradiction establishes inequality (3).

By Lemma 4 and inequalities (2), (3),

(n− 2)! = |NSGj
n−1

(SGi
n−1)|

= |NSGj
n−1

(SGi
n−1 − (Fi ∪ Ui))|+ |NSGj

n−1
(Fi ∪ Ui)|

≤ |Fi|+ |Fj |
≤ 2(2n− 7).

This is impossible for n ≥ 6. Thus n = 4 or 5, in which case the above inequalities
become equalities, and thus

|Fi| = |Fj | = 2n− 7, (4)

|NSGj
n−1

(SGi
n−1 − (Fi ∪ Ui))| = |Fj |, (5)

|NSGi
n−1

(SGj
n−1 − (Fj ∪ Uj))| = |Fi|. (6)
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We can show that
NSGj

n−1
(SGi

n−1 − (Fi ∪ Ui)) = Fj . (7)

Suppose this is not true, then by (1) and (5), we see that

NSGj
n−1

(SGi
n−1 − (Fi ∪ Ui)) = {u} ∪ (Fj \ {v}), (8)

where u is the unique vertex in Uj and v is some vertex in Fj . Since u is an
isolated vertex in SGj

n−1 − Fj , it has at least two neighbors in Fj (recall that
SGn−1 is (n − 2)-regular and n ≥ 4). Thus there exists a vertex w ∈ Fj such
that w is adjacent with u and w 
= v. By Lemma 3, the outside neighbors u′ and
w′ can not be both in SGi

n−1, contradicting (8). Thus (7) is proved.
In the case that n = 4 and |I| = 2, suppose, without loss of generality, that

I = {1, 2}. By (4), |F3| = |F4| = 2n− 7. Hence |F | ≥ 2(2n− 7) + 2(2n− 6) = 6,
contradicting that |F | < 6(n−3) = 6. Hence n = 5, or n = 4 and |I| = 1. In these
cases, there exists an index k 
∈ I and k 
= i, j (recall that |I| ≤ 2). Since (7) says
that every faulty vertex in SGj

n−1 has its outside neighbor in SGi
n−1, we see

that vertices in NSGj
n−1

(SGk
n−1) are all good. Hence in the case that n = 5, by

|NSGj
n−1

(SGk
n−1−(Fk∪Uk))| ≥ (n−2)!−|Fk∪Uk| ≥ (n−2)!−(2n−7)−1 = 2 and

|Uj | ≤ 1, we see that SGk
n−1−(Fk∪Uk) has a good neighbor in SGj

n−1−(Fj∪Uj).
In the case that n = 4, we must have Uk = ∅. Otherwise Uk has a unique vertex
u by Claim 1. Since NSGk

n−1
(u) ⊆ Fk, we have n − 2 = |NSGk

n−1
(u)| ≤ |Fk| ≤

2n − 7, and thus n ≥ 5, contradicting n = 4. Similarly, Uj = ∅. Then by
|NSGj

n−1
(SGk

n−1 − Fk)| ≥ (n− 2)!− |Fk| ≥ (n− 2)!− (2n− 7) = 1, we see that

SGk
n−1 − Fk has a good neighbor in SGj

n−1 − Fj . In any case, there is an edge
between SGk

n−1−(Fk∪Uk) and SGj
n−1−(Fj∪Uj). Symmetrically, it can be shown

that there is an edge between SGk
n−1 − (Fk ∪Uk) and SGi

n−1 − (Fi ∪Ui). Then
SGi

n−1− (Fi∪Ui) is connected to SGj
n−1− (Fj ∪Uj) through SGk

n−1− (Fk∪Uk)
(all the vertices on the path connecting SGi

n−1−(Fi∪Ui) and SGj
n−1−(Fj∪Uj)

belong to G1).
Claim 3 is proved.
By Claim 3, we may assume that G1 is contained in a connected component

C̃ of SGn − F . If I = ∅, then V (SGn − F − C̃) ⊆
⋃n

i=1 Ui. For each vertex
u ∈

⋃n
i=1 Ui, if its outside neighbor is good, then dSGn−F (u) = 1, otherwise

dSGn−F (u) = 0. It follows that δ(SGn −F − C̃) ≤ 1 and thus SGn −F − C̃ has
no cycle, contradicting that F is a cyclic vertex-cut. Hence 1 ≤ |I| ≤ 2. Let G2
be the subgraph of SGn induced by

⋃
i∈I(SG

i
n−1 − Fi).

Claim 4. Let C be a connected component of G2 which contains at least one
cycle. Then there is an edge between C and G1.

Suppose this is not true, then NSGn(C) ⊆ F ∪ U , where U =
⋃

j 	∈I Uj. It
follows that for any index j 
∈ I, NSGj

n−1
(C) ⊆ Fj ∪Uj , and for any index i ∈ I,

NSGi
n−1

(C) ⊆ Fi. As a consequence, using Claim 1,
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|NSGj
n−1

(C)| ≤ |Fj |+ |Uj | ≤ |Fj |+ 1 for j 
∈ I, and (9)

|NSGi
n−1

(C)| ≤ |Fi| for i ∈ I. (10)

We can further refine (9) to

|NSGj
n−1

(C)| ≤ |Fj | for j 
∈ I. (11)

Suppose (11) is not true, then NSGj
n−1

(C) = Fj ∪ Uj and |Uj | = 1. Let u be
the unique vertex in Uj, and v, w be two neighbors of u in Fj . By Lemma 3,
the outside neighbors u′, v′, w′ should be in three different copies. But this is
impossible since C has non-empty intersection with at most two copies, namely
the copies corresponding to I. Thus (11) is proved.

Combining inequalities (10) and (11), we have

|NSGn(C)| ≤ |F |. (12)

In the following, we count |NSGn(C)| and derive contradictions to (12).

Case 1. |I| = 1.
Suppose, without loss of generality, that I = {1}. In this case,

C is contained in SG1
n−1 − (F1 ∪ U1). (13)

Let D be a shortest cycle in C, and u1, ..., u6 be six sequential vertices on D.
Since the girth of SGn is 6 and there is no odd cycle in SGn, we see that if u1u6
is an edge, then no vertices of {u1, ..., u6} can have a common neighbor outside of
D; if u1u6 is not an edge, then the only pairs of vertices of {u1, ..., u6} that may
have a common neighbor outside of D are {u1, u5} and {u2, u6}. Furthermore,
we see from Corollary 2 that if u1, u5 have a common neighbor outside of D,
then u2, u6 cannot have common neighbor outside of D, and vice versa. Denote
Y = NSG1

n−1
(D). By the above analysis, we see that |Y | ≥ 6(n− 4) = 6n− 24 if

u1u6 is an edge, and |Y | ≥ 4(n−4)+2(n−3)−1 = 6n−23 > 6n−24 otherwise.
Let Y ′ = Y ∩ V (C) and Y ′′ = Y \ Y ′. Clearly, each vertex y ∈ Y ′′ is in

NSGn(C). For each vertex y ∈ Y ′, since its outside neighbor y′ 
∈ V (C) (by
(13)), we have y′ ∈ NSGn(C). Since the outside neighbors of vertices in a same
copy are all different, we have

|NSGn(C)| ≥ |Y ′′|+ |{y′ | y ∈ Y ′}|+ |{u′1, ..., u′6}| = |Y |+ 6 ≥ 6n− 18 > |F |,

contradicting (12).

Case 2. |I| = 2.
Suppose, without loss of generality, that I = {1, 2}. Then C is contained

in (SG1
n−1 − F1) ∪ (SG2

n−1 − F2). If C is completely contained in SG1
n−1 or

SG2
n−1, then a contradiction can be obtained as in Case 1. Thus we assume

V (C) ∩ V (SGi
n−1) 
= ∅ for i = 1, 2. In this case, there exists an edge of C
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between SG1
n−1 and SG2

n−1. Let uv be such an edge, and let P be a path of
C on 6 vertices which passes through uv. Denote X1 = V (P ) ∩ V (SG1

n−1) and
X2 = V (P ) ∩ V (SG2

n−1). Then |X1|, |X2| ≥ 1, and thus |X1|, |X2| ≤ 5 by
|X1|+ |X2| = 6.

For i = 1, 2, let Yi = NSGi
n−1

(Xi). Since SGi
n−1 has girth 6, we have

|Y1|+ |Y2| =

⎧⎪⎨⎪⎩
6n− 21 if one of X1 and X2 is a path on five vertices

the ends of which have a common neighbor,
6n− 20 otherwise.

(14)

For i = 1, 2, let ni = NSG3−i
n−1

(Xi ∪ Yi) ∩ V (C). We claim that

1 ≤ ni ≤
{

1, for |Xi| = 1,
|Xi| − 1, for 2 ≤ |Xi| ≤ 5. (15)

The left hand side ni ≥ 1 is obvious because of the edge uv. For the case
that |X1| = 5, assume X1 induces a path u1u2u3u4u5 in SG1

n−1, where u =
u5. Then u5 has its outside neighbor v in SG2

n−1. By Lemma 3, vertices in
NSG1

n−1
({u5, u4}) do not have their outside neighbors in SG2

n−1; at most one
vertex in NSG1

n−1
({u3}) has its outside neighbor in SG2

n−1; for i = 1, 2, at most
one vertex in NSG1

n−1
({ui}) ∪ {ui} has its outside neighbor in SG2

n−1. Thus
ni ≤ 4 = |Xi| − 1. The other cases can be proved similarly.

Suppose |Y1|+|Y2|−n1−n2 ≥ 6n−24. For i = 1, 2, denote Y ′
i = Yi∩V (C) and

Y ′′
i = Yi \Y ′

i . Then Y ′′
i ⊆ NSGn(C), and each vertex y in Y ′

1 ∪X1 (resp. Y ′
2 ∪X2)

whose outside neighbor y′ is not in SG2
n−1 (resp. SG1

n−1) has y′ ∈ NSGn(C).
Hence

|NSGn(C)| ≥ |Y ′′
1 |+ |{y′ | y ∈ Y ′

1 ∪X1}| − n1 + |Y ′′
2 |+ |{y′ | y ∈ Y ′

2 ∪X2}| − n2

= |Y1|+ |Y2| − n1 − n2 + 6 ≥ 6n− 18 > |F |

(observe that since the outside neighbors counted in the above inequality are not
in V (SG1

n−1 ∪ SG2
n−1), no two of them can coincide), which contradicts (12).

Next we consider the case that

for any edge uv between SG1
n−1 and SG2

n−1 and any path P
taken as above, |Y1|+ |Y2| − n1 − n2 ≤ 6n− 25. (16)

Combining this with (14), we have

n1 + n2 ≥
{

5, if |Y1|+ |Y2| = 6n− 20,
4, if |Y1|+ |Y2| = 6n− 21. (17)

If both |X1| ≥ 2 and |X2| ≥ 2, then by (15) and the fact |X1|+ |X2| = 6, we have
n1 + n2 ≤ 4. Then by (17), we see that n1 + n2 = 4 and |Y1| + |Y2| = 6n− 21.
But by (14), one of |X1| and |X2| must be 1, a contradiction. Hence suppose

for any edge uv between SG1
n−1 and SG2

n−1 and any path P
taken as above, |X1| = 5, |X2| = 1, or vice versa. (18)
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Suppose P = u1u2u3u4u5u6 is such a path, where u6 is the only vertex in
X2. Then n2 = 1 and n1 ≥ 3 by (17). By the deduction in proving (15), we
see that besides u6, the only outside neighbors which can contribute to n1 are
in NSG1

n−1
(u3), NSG1

n−1
({u2}) ∪ {u2}, NSG1

n−1
({u1}) ∪ {u1}, and at most one

from each of the three sets. If there is a vertex u7 ∈ NSG1
n−1

(u3) whose outside
neighbor u′7 ∈ SG2

n−1 ∩ V (C), then u′7u7u3u4u5u6 is a path contradiction (18).
If u′2 ∈ SG2

n−1 ∩ V (C), then u′2u2u3u4u5u6 is a path contradiction (18). Hence
in order that n1 ≥ 3, there must be a vertex u7 ∈ NSG1

n−1
(u2) such that u′7 ∈

SG2
n−1 ∩ V (C). By Lemma 3, u′1 
∈ SG2

n−1. Hence in order that n1 ≥ 3, there
must be a vertex u8 ∈ NSG1

n−1
(u1) such that u′8 ∈ SG2

n−1 ∩ V (C). But then
u′8u8u1u2u7u

′
7 is a path contradiction (18).

Claim 4 is proved.
As a consequence of Claim 4, every connected component ofG2 which contains

a cycle is in C̃. Thus SGn−F−C̃ consists of some vertices in U and some acyclic
connected components of G2. Since every vertex in U has degree at most 1 in
SGn − F , we see that SGn − F − C̃ does not contain cycle, contradicting that
F is a cyclic vertex-cut. The theorem is proved. �

4 Conclusion and Future Work

In this paper, we determined the cyclic vertex-connectivityκc of the n-dimensional
star graph SGn. Generally, κc is different from κ2. For SGn, these two parameters
coincide. Is there something deeper under the coincidence? This is the focus of our
future research.
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Abstract. We enumerate all of the shortest paths between any vertex v
and the identity vertex in an (n, k)-star graph by enumerating the mini-
mum factorizations of v in terms of the transpositions corresponding to
edges in that graph. This result generalizes a previous one for the star
graph, and can be applied to obtain the number of the shortest paths
between a pair of vertices in some of the other similar structures. It also
implies an algorithm to enumerate all such paths.

Keywords: parallel computing, networks and graphs, minimum factor-
ization, combinatorics, shortest paths, algorithms.

1 Introduction

Given a graph G, a well-known problem is to find out the number of the short-
est paths, not necessarily disjoint, between a pair of vertices in G. A solution
to this counting problem can serve as an important topological property for an
interconnection network in terms of strong connectivity, effective fault-tolerance,
lower communication cost and desired routing flexibility [15]. In fact, a param-
eter related to the number of shortest paths, referred to as semigirth, has been
defined, and made use of, in [6,9,13,18].

This number of shortest paths between two vertices has been calculated for
several vertex symmetric structures. For example, it is easy to see that there are
H(u⊕v)! different shortest paths from u to v, two vertices in a hypercube graph,
where H(·) is the Hamming weight function, and ‘⊕’ the exclusive-or operation.
A closed-form formula for this quantity has also been obtained for the hexagonal
networks [7], and for the star graphs [11], respectively.

Since a star graph [1] is a special case of the (n, k)-star graph [3] , it is natural to
consider whether there is a closed-form expression for the corresponding problem
in the (n, k)-star graph, as well. Such a result is first reported in [2], obtained via
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a many-to-one mapping from shortest paths in an (n, k)-star graph to a suitable
star graph by making use of a combinatorial result as established in [11].

In this paper, we further investigate this shortest path problem as related to
the (n, k)-star graphs by generalizing the argument given in [11]. An (n, k)-star
graph, denoted as Sn,k in this paper, is defined on the relationship between k-
permutations. It turns out that, each and every shortest path between a vertex,
v, and Ek (= 12 · · ·k), the identity vertex in such a graph can be characterized as
a unique minimum factorization of (the cyclic form of) v in terms of (n, k)-star
transpositions, corresponding to edges in such a graph. Hence, the number of
the shortest paths between v and Ek in Sn,k equals the number of minimum
factorizations of v in terms of (n, k)-star transpositions.

The general problem of counting the minimum factorizations of a permuta-
tion, especially for the full cycle, i.e., (1, 2, . . . , n), with prescribed cycle types,
has been studied for quite some time [8,10]. In particular, the minimum factor-
ization counting problem has been studied in the past for various allowed trans-
positions, starting with Denes’ classic work [5], with no restriction being placed
on the type of transpositions. Later on, Stanley studied the same problem, where
the allowed transpositions form a Coxeter group [17], i.e., those in the form of
{(i, i+ 1)|i ∈ [1, n)}, corresponding to edges in a bubblesort graph [12]; and Irv-
ing et al, while further extending a combinatorial result achieved by Pak [14],
solved this problem for the star transpositions [11], namely, those in the form of
{(1, i)|i ∈ [2, n]}, corresponding to edges in a star graph. To continue with this
line of work, we count, in this paper, the number of minimum factorizations of a
vertex in the (n, k)-star graph in terms of the (n, k)-star transpositions, which,
when k = n− 1, become star transpositions, by generalizing a bijection between
the star transpositions and a collection of bi-colored trees as proposed in [11] to
that between the (n, k)-star transpositions and a collection of bi-colored trees.
Therefore, our results generalize those from [11]. The technique used can be
applied to derive such quantity in other similar structures. In addition, our dis-
cussion implies an algorithm that enumerates all such minimum factorizations,
and consequently, all the shortest paths between an arbitrary vertex and the
identity.

The rest of this paper proceeds as follows: In the next section, we characterize
the cycle structures of a vertex in an (n, k)-star graph, and discuss, in Section 3,
the structure of minimum factorizations of a vertex in Sn,k. We then derive a
general formula for the number of the shortest paths between any vertex and
the identity vertex in an (n, k)-star graph in Section 4. We finally conclude this
paper in Section 5.

2 The (n, k)-Star Graph and the Cycle Structures of Its
Vertices

Let 〈n〉 stand for {1, 2, . . . , n}, in an (n, k)-star graph, Sn,k(V,E), k ∈ [1, n), Sn,k

for short, V is the collection of k-permutations on 〈n〉; and, for any u, v ∈ V, (u, v)
is an edge in Sn,k iff v can be obtained from u = u1u2 · · ·uk by either 1) applying
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Fig. 1. A (4, 2)-star S4,2

a transposition (1, i) to u, i ∈ [2, k]; or 2) for some x ∈ 〈n〉 − {ui|i ∈ [1, k]},
replacing u1 with x in u. Figure 1 shows a (4, 2)-star.

An n-star or Sn [1], on the other hand, is defined over Γn, the set of all
permutations on < n >, where (u, v) is an edge iff v can be obtained from u by
applying a star transposition (1, i), 2 ≤ i ≤ n. It is easy to see that Sn,n−1 is
isomorphic to the n-star.

Let v = v1v2 · · · vk be a vertex of Sn,k. For all i ∈ [1, k], we refer to vi as
a symbol occurring in v, and i its position. Following the terms adopted in [3],
we refer to vi as an internal symbol, if vi ∈ [1, k]; and as an external symbol if
vi ∈ (k, n]. Similarly, we refer to a position i as an internal, or external, position,
respectively, depending on whether i ∈ [1, k].

We now associate each k-permutation v with a permutation v′ on {1, 2, . . . , n}
called the extended permutation of v. Suppose v is v1v2 · · · vk. We define its
extended permutation v′1v

′
2 . . . v

′
n of v as follows: v′i = vi for i = 1, 2, . . . , k; for

j ∈ {k + 1, k + 2, . . . , n}, we consider two cases. Note that the k-permutation
v = v1v2 · · · vk is a function from {1, 2, . . . , k} to {1, 2, . . . , n} with v(l) = al for
l ∈ {1, 2, . . . , k}. For j ∈ {k + 1, k + 2, . . . , n}, if j 
∈ {v1, v2, . . . , vk}, that is, j
is not in the image of v, define v′j = j. If vi = j for some i, then the definition
is more involved. Let r = j. Repeat r := v−1(r) until r is not in the image of v.
Let v′j = r.

For example, for v = 2968134 ∈ S9,7, we extend it to a 9-permutation as
follows: besides the first 7 symbols as shown in v, for the external position 8, as
8 occurs in position 4, which occurs in position 7, but 7 does not occur in v, we
set v′8 = 7. Similarly, we set v′9 = 5 to get v′ = 296813475.

From now on, when talking about any node v ∈ Sn,k, we refer to its extended
permutation.

This distinction of internal and external symbols naturally leads to a distinc-
tion between internal cycles and external cycles that might occur in the cyclic
representation of a vertex in an (n, k)-star graph. The definition of an internal
cycle for v ∈ Sn,k is given as usual:

C = (c1, · · · , cl),
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such that 1) for all j ∈ [1, l], cj ∈ [1, k]; 2) for j ∈ [1, l − 1], the position of cj+1
in v is cj ; and 3) the position of c1 in v is cl.

On the other hand, let em be an external symbol occurring in an internal
position of v ∈ Sn,k, m ≥ 1, Eem , the external cycle associated with em in v, is
defined as follows:

Eem = (em; e0, · · · , em−1),

where 1) for all j ∈ [0,m− 1], ej ∈ [1, k]; 2) for j ∈ [1,m], the position of ej in
v is ej−1; 3) the position of e0 in v is em, an external position.

We note, in the above definition, although e0 is located in an external position,
thus not part of a vertex in Sn,k, it is now included in the associated external
cycle.

The following result [16, Proposition 2.1] is parallel to the general one for the
symmetric group:

Proposition 1. Every vertex v ∈ Sn,k, v 
= Ek, can be factorized into the fol-
lowing product of disjoint cycles, each containing at least two symbols:

v = Eem1
· · ·Eemp

C1 · · ·Cr, p+ r > 0,

where Eemi
, i ∈ [1, p], are the external cycles and Cj , j ∈ [1, r], the internal ones.

This factorization is unique, except for the order in which the cycles are written.

For example, for v = 2968134 ∈ S9,7, since its extended permutation is 296813475,
it is immediate that its equivalent cyclic form is (9; 5, 1, 2)(8; 7, 4)(3, 6),where the
first two cycles are external and the last one is internal.

We can thus identify any vertex v of a given (n, k)-star graph with its unique
cyclic factorization, which we will refer to as its cycle structure, denoted as C(v),
in the rest of this paper. We will also use b(v) to refer to the total number of sym-
bols in C(v), bI(v) (bE(v)) the total number of symbols in the internal (external)
cycles of C(v), g(v) the number of all the cycles in C(v), and gI(v) (gE(v)) the
number of internal (external) cycles in C(v). We will drop the parameter v in
these expressions when the context is clear.

We note that, when factorizing a cycle of C(v), v ∈ Sn,k, in terms of the (n, k)-
star transpositions, corresponding to the edges in Sn,k, any such a transposition
has to be in the form of (1, j), j ∈ [2, n], by the structural definition of the (n, k)-
star graph. Since such a transposition is in the same format as that for the star
transposition as defined for the vertex decomposition for the star graph [11], we
call this collection of transpositions allowed for the (n, k)-star graph, referred to
earlier as the (n, k)-star transpositions, the extended star transpositions in this
paper.

Because of this central role played by the position 1, we refer to any cycle
that contains position 1 a primary cycle, and normal otherwise. A primary cycle
could be either internal or external.

In general, a cycle, σ = (c1, c2, . . . , cl), l ≥ 2, can be factorized into a product
of l − 1 transpositions: (c1, c2) · · · (c1, cl), when applied from left to right. Such
a factorization puts every symbol occurring in σ to its correct position in E =
12 · · ·n, the identify permutation in Γn. The following result [5, Lemma 1] shows
that this decomposition is a shortest one of this nature.
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Lemma 1. A cycle of degree k, k ≥ 2, can not be represented by a product of
less than k − 1 transpositions.

When a cycle is primary, without loss of generality, c1 = 1, any transposition
in the above shortest product is in the form of (1, j), j ∈ [2, n], thus giving us
the desired minimum transposition sequence of C(v). Otherwise, it is easy to
see that the product (1, c1)(1, c2) · · · (1, cl)(1, c1) is a minimum factorization of
σ = (c1, c2, . . . , cl), l ≥ 2, ci 
= 1, with its length being l+ 1.

From now on, by a minimal factorization of C(v), v ∈ Sn,k, denoted as f(v), we
mean a minimum factorization of C(v) in terms of extended star transpositions,
(1, j), j ∈ [2, n]. Let f(v) = f1 · · · fm be such a minimum factorization, we refer
to each fi, i ∈ [1,m], a factor of f(v), and, if fi is associated with a cycle σj , we
also say fi meets σj , following terminology adopted in [11].

Clearly, the length of a minimum factorization of v ∈ Sn,k in terms of the
extended star transpositions equals the distance between v and Ek in Sn,k, since
such a minimum factorization immediately leads to a path between v and Ek in
Sn,k. On the other hand, if there were a shorter path from v to Ek, we would
have an even shorter factorization. This latter distance between a vertex v and
Ek in Sn,k is a known result [3,16], given as follows:

Theorem 1. The distance between Ek and v in Sn,k can be expressed as follows:

1. If v does not contain any external cycle, then

dSn,k
(Ek, v) =

{
bI + gI , if none of the internal cycles is primary,
bI + gI − 2. otherwise.

2. Otherwise,

dSn,k
(Ek, v) =

{
b+ gI + 1 if none of the cycles is primary,
b+ gI − 1, otherwise.

We use F(v) to denote the collection of all the minimum factorizations of
C(v), v ∈ Sn,k. In the rest of this paper, we will calculate the number of such
minimum factorizations of a vertex v ∈ Sn,k, namely, |F(v)|.

3 The Structural Characterization of a Minimum
Factorization

We first characterize the structure for those extended star transpositions asso-
ciated with the same internal cycle.

Lemma 2. Let σ be an internal cycle in C(v), v ∈ Sn,k, f(σ) be a minimum
factorization of σ. Then

1. if σ is primary, i.e., σ = (1, b2, . . . , bl), then for all j ∈ [2, l], (1, bj) occurs
exactly once in f(σ), with the order of the transpositions in f(σ) being (1, b2),
· · · , (1, bl), when applied from left to right;
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2. otherwise, σ = (a1, a2, . . . , al), such that for no j ∈ [1, l], aj = 1, then for
some j ∈ [1, l], (1, aj) occurs exactly twice in f(σ) and for all other i 
=
j, (1, aj) occurs exactly once in f(σ), with the order of the transpositions,
for this choice of j, being (1, aj), (1, aj+1), · · · , (1, aj−l), (1, aj), again when
applied from left to right.

We omit the proof of the above result as it is the same as that of a result for the
star graph [11, Lemma 3], since no external symbols occur in internal cycles.

We now discuss the role played by all the external cycles as contained in
C(v), v ∈ Sn,k, in the minimum factorization of v. Let σE

1 , σ
E
2 , . . . , σ

E
gE

be the
external cycles, such that σE

i = (ei
mi

; ei
0, . . . , e

i
mi−1).

We can certainly factorize such external cycles in the way as we did with the
internal cycles, but, the length of such a resulted factorization will be{

b+ g, if none of the cycles is primary;
b+ g − 2, otherwise.

When compared with the distance result as contained in Theorem 1, it is easy to
see that such a factorization won’t be minimum when C(v) contains more than
one external cycles. On the other hand, the above factorization will place all the
symbols, including those external symbols that occur in internal positions, of a
vertex v to their correct positions in En. For external symbols, this is certainly
not necessary since the correct positions for those external symbols are external,
thus invisible.

The above consideration leads to a minimum routing algorithm as suggested
in [3,16], for vertices containing (an) external cycle(s), which only places all the
internal symbols to their correct internal positions in Ek, while placing external
symbols in some external positions, but not necessary the correct, external, ones.

We first discuss the case when one of the external cycles is primary. With-
out loss of generality, let σE

1 be primary, i.e., for some j ∈ [1,m − 1], σE
1 =

(1, e1j+1, . . . , e
1
m−1, e

1
m; e10, . . . , e

1
j−1), then a factorization corresponding to these

external cycles could be the following:

(1, e1j+1)(1, e
1
j+2) · · · (1, e1m1−1)(1, e2m2

)(1, e20) · · · (1, e2m2−1)
· · ·

(1, egE
mgE

)(1, egE

0 ) · · · (1, egE

mgE
−1)(1, e

1
m1

)(1, e10) · · · (1, e1j−1),

which is effectively a factorization of the following type-1 aggregated external
cycle:

(1, e1j+1, . . . , e
1
m1−1)σ

E
2 · · ·σE

gE
(e1m1

; e10, . . . , e
1
j−1),

where σE
2 · · ·σE

gE
stands for the concatenation of the symbols in σE

i , i ∈ [2, gE].
As an example, for v = 2968134 ∈ S9,7, i.e., C(v) = (9; 5, 1, 2)(8; 7, 4)(3, 6), a

factorization associated with the two external cycles is the following:

(1, 2)(1, 8)(1, 7)(1, 4)(1, 9)(1, 5).
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Indeed, when applying the above product to v,

296813475
(1,2)→ 926813475

(1,8)→ 726813495
(1,7)→ 426813795

(1,4)→ 826413795
(1,9)→ 526413798

(1,5)→ 126453798,

where the last two underlined digits represent the two invisible digits in S9,7.
We caution that the relative order of the positions in each external cycle is

important, thus should remain the same. In fact, if we rearrange the positions
in an external cycle σE

i as (ei
j , e

i
j+1, . . . , e

i
j−1) such that j 
= mi, i ∈ [2, gE ], the

external symbol ei
j, located in position ei

j−1, will not be placed in the correct
position ei

j , but the very first position as contained in σE
i+1; or the external

position e1m1
in case i = gE .

As shown in [16, Corollary3.1], as a result of applying the above factorization,
all the internal symbols, ei

j, j ∈ [0,mi] − {mi−1}, i ∈ [1, gE], will be moved to
its correct position while the external symbols, ei

mi
, located in position ei

mi−1,
i ∈ [1, gE], will be moved to ei+1

mi+1
, i.e., cyclically shifted to the right.

Since the length of this factorization for the external cycles is bE−1, the length
of a resulting factorization for v is b+ gI − 1, thus minimum by Theorem 1.

We note that any permutation of σE
2 , · · · , σE

gE
, when the order of the sym-

bols in each cycle stays the same, will also lead to a minimum factorization of
C(v), which again will place all the internal symbols in their respective correct
positions, while placing each external symbol in some external position in the
extension of v.

When none of the external cycles in C(v) is primary, we can follow a similar
argument to obtain the following minimum factorization for C(v) :

(1, e1m1
)(1, e10) · · · (1, e1m1−1)(1, e

2
m2

)(1, e20) · · · (1, e2m2−1)
· · · (1, egE

mgE
)(1, egE

0 ) · · · (1, egE
mgE−1

)(1, e1m1
),

which is effectively a factorization of the following type-2 aggregated external
cycle:

(e1m1
; e10, . . . , e

1
m1−1)σ

E
2 · · ·σE

gE
,

where the order of the symbols in each cycle has to stay the same, since, for this
case, the relative order of the positions in the above type-2 aggregated external
cycle is also important.

We summarize the above discussion with the following result.

Lemma 3. Let σE =
{
σE

1 , σ
E
2 , . . . , σ

E
gE

}
be the external cycles in C(π) ∈ Sn,k,

gE ≥ 1, then

1. if, without loss of generality, σE
1 is primary, then f(σE,1), a minimum fac-

torization of the external cycles when σE
1 is primary, is the same as that for

the following type-1 aggregated external cycle:

σE,1 = (1, e1j+1, . . . , e
1
m1−1)σ

E
2 · · ·σE

gE
(e1m1

; e10, . . . , e
1
j−1).
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where σE
2 · · ·σE

gE
stands for the concatenation of all the elements in those

cycles subject to permutation of the cycles, while the order of the positions
in each σE

i , i ∈ [2, gE] stays the same.
2. Otherwise, f(σE,2), a minimum factorization of the external cycles, when

none of them is primary, is the same as that for the following type-2 aggre-
gated external cycle:

σE,2 = (e1m1
; e10, . . . , e

1
m1−1)σ

E
2 · · ·σE

gE
,

where σE
2 · · ·σE

gE
stands for the concatenation of all the elements in those

cycles subject to permutation of the cycles, while the order of the positions
in each σE

i , i ∈ [2, gE] stays the same.
3. In both cases, there are (gE − 1)! ways to construct an aggregated external

cycle, which contains exactly bE symbols.

We now look at the relationship between transpositions associated with dis-
tinct cycles. Assume σ1 is a primary cycle, with its associated factoriza-
tion being (1, c2) · · · (1, cl1), and σ2 is a normal cycle with factorization being
(1, a1)(1, a2) · · · (1, al2)(1, a1).

If some transposition(s) associated with σ1 are embedded in those for σ2 in a
f(v), i.e., for some j ∈ [2, l], 1 ≤ i0 ≤ j0 ≤ l1, and transposition products f1(v)
and f2(v),

f(v) = f1(v)(1, a1)(1, a2) · · · (1, aj)(1, ci0) · · · (1, cj0)(1, aj+1) · · · (1, al2)(1, a1)f2(v),

then, the symbol aj+1, located in position aj , after being placed in position 1
by (1, aj), instead of being placed in its correct position aj+1, will be placed in
position ci0 , and will get stuck there, since σ1 is primary thus the transposition
(1, ci0) occurs only once in f(v). Thus, transpositions corresponding to a primary
cycle cannot be embedded within those corresponding to a normal cycle.

On the other hand, assume ci, ci+1 ∈ σ2, and aj−1, aj ∈ σ3, both normal, and

f(v) = f1(v)(1, aj−1)(1, ci)(1, aj)(1, ci+1)f2(v).

After the transposition (1, aj−1) places the symbol aj to position 1, (1, ci) will
place ci+1 to position 1 and aj to position ci. then (1, aj) is to place ci+1 in
position aj , and the symbol aj+1 to position 1. Finally, the transposition (1, ci+1)
is to place the symbol aj+1 to position ci+1. Since neither position ci nor aj is
the position 1, it takes at least two more occurrences of (1, aj) in f2(v) to restore
the symbol aj to its correct position aj in e, which requires the transposition
(1, aj) appear at least three times in f(v). But, by Lemma 2, (1, aj) occurs at
most twice.

In other words, if transpositions of a normal cycle are embedded by transpo-
sitions of another cycle, either normal or primary, all such transpositions in the
former normal cycles have to be completely embedded by transpositions of the
latter cycle.

This proves the following result about the relationship of those transpositions
associated with different cycles, which is similar to that for the star graph [11,
Lemma 3].
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Lemma 4. Let σ1 and σ2 be two different cycles in C(v), v ∈ Sn,k, and f(v) a
minimum factorization of v. Suppose that for a < c < b, the factors at positions
a and b are associated with σ1, and that at position c is associated with σ2. Then

– σ2 is not primary, and
– all the transpositions associated with σ2 are embedded between factors at

position a and b in f(v).

It turns out that the combination of Lemma 2, Lemma 3 and Lemma 4 is also
sufficient for a collection of extended star transpositions to be a minimum factor-
ization of a vertex in Sn,k. Due to the space limit, we have to omit the sufficiency
proof.

We note that Irving et al showed in [11] that the collection of minimum tran-
sitive factorizations of a vertex in a star graph are characterized by Lemmas 2
and 4. A factorization, f, of a vertex in Sn is transitive if the orbit of some ele-
ment of 〈n〉, when acted on by the group, as generated by the factors in f, equals
〈n〉. Thus, e.g., given v = 13245 = (2, 3) ∈ S5, the factorization (1, 2)(1, 3) of
v, although minimum, is not transitive, since the orbits of 1, 2 and 3 all equal
{1, 2, 3}, orbit of 4 equals {4}, and that of 5 equals {5}. On the other hand,
(1, 2)(1, 3)(1, 4)(1, 4)(1, 5)(1, 5) is a minimum transitive factorization of v, since,
with the corresponding group, the orbit of 1 equals {1, 2, 3, 4, 5}.

It is pointed out in [11] that the length of a minimum transitive factorization
of a vertex v in Sn, containing m cycles, is n + m − 2, regardless whether the
symbol 1 constitutes a fixed point.

4 The Number of Minimum Factorizations of a Vertex in
(n, k)-Star

Irving et al, in [11], enumerated the number of the minimum transitive factoriza-
tions of a vertex in a star graph, Sn, in terms of star transpositions, by setting
up a bijection between such factorizations and a collection of certain bi-colored
trees, via an intermediate structures of words.

More specifically, given a vertex v ∈ Sn, such that C(v) = σ1σ2 · · ·σm, |σi| =
li, the resulting bi-colored tree, T (v), has the following properties: 1) The root of
T (v) is white; 2) the non-root white vertices are labeled 2, . . . , m; 3) the white
vertex labeled i has li − 1 black children, and; 4) all black children are leaves.

Let T (v) be the collection of all such bi-colored trees, Irving et al derived the
following fundamental result in [11]: The total number of such bi-colored trees is
the following:

|T (v)| = (n+m− 2)!
n!

l1,

where the factor l1 counts the arrangements of the l1 − 1 black children for a
given structure of the factors corresponding to the m− 1 sub-trees.
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As a result, Irving et al gave the number of the minimum transitive factoriza-
tions of a vertex v ∈ Sn as follows [11]:

|F1(v)| = |T (v)| × l2 × · · · × lm =
(n+m− 2)!

n!
l1 × · · · × lm.

When a cycle structure C(v) contains no fixed points other than 1, a minimum
transitive factorization is the same as a minimum factorization in terms of the
extended star transpositions. This is not the case when C(v) does contain such
fixed points. For example, for u = 21, C(u) = (1, 2), thus the minimum factoriza-
tion of C(u) is simply (1, 2), giving a shortest path from u to E2 in S4,2, as shown
in Figure 1. On the other hand, since u contains both 3 and 4 as fixed points,
one of the minimum transitive factorizations of u is (1, 3)(1, 4)(1, 4)(1, 3)(1, 2),
which leads to a path 21 − 31 − 41 − 31 − 21 − 12 from 21 to 12 in Figure 1
of length 5. In fact, since u = 2134 contains four symbols and three cycles, the
length of all the minimum transitive factorizations of u is 5.

In general, for each f, a fixed point greater than 1, the transitivity requirement
adds a pair of (1, f) into a minimum transitive factorization which plays no role
in routing at all, thus a minimum transitive factorization of a vertex in Sn,k does
not always lead to a shortest path. Since what we want to count is the number
of the shortest paths, we must remove this transitivity requirement from our
consideration. On the other hand, it turns out that Irving et al’s process that
bijectively maps a minimum transitive factorization of a vertex in Sn to a bi-
colored tree is also a bijection from the collection of the minimum factorizations
of a vertex v in Sn,k, when we aggregate all the external cycles in C(v) into
one aggregated external cycle within Γn, to the collection of the bi-colored trees
where every white vertex, except the root, contains at least one black child, when
we ignore all the fixed points greater than 1 in v.

For v = 2968134 ∈ S9,7, we convert C(v) = (9; 5, 1, 2)(8; 7, 4)(3, 6) into the
following structure while combining the two external cycles, one of them primary,
into a type-1 aggregation external cycle σE,1 :

C′(v) = (1, 2, 8, 7, 4, 9, 5)(3, 6) = σE,1σI
1 = σ1σ2.

By Lemmas 2, 3, and 4, one of the minimum factorizations of C′(v) is the fol-
lowing:

f(v) = (1, 2)(1, 8)(1, 3)(1, 6)(1, 3)(1, 7)(1, 4)(1, 9)(1, 5).

Then, we have

Φ(f(v)) = w(v); 3 = (1, 1, 2, 2, 2, 1, 1, 1, 1); 3.

The label 3 indicates that, in this particular case, we decompose σI
1 , i.e., σ2,

into (1, 3)(1, 6)(1, 3). Thus, (1, 3) is the leftmost factor of f(v) that meets σI
1 .

By Lemma 3, another way to decompose σ2 is certainly (1, 6)(1, 3)(1, 6).
We notice that in the above example, the sub-tree rooted at 2 can be placed to

the left of the first black child, or to the right of the last one, or in between any
adjacent black children. There are seven such arrangements, exactly that of l1. If
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we also consider the two choices of decomposing (3, 6), we would have fourteen
different such bi-colored trees, corresponding to fourteen minimum factorizations
of v.

In general, the aforementioned Φ is a bijection from F(v), the collection of
minimum factorizations as specified by Lemmas 2, 3 and 4, to a collection of
words, W(v), and a list of factors with which the factorization meets their re-
spective, normal, cycles.

Furthermore, w(v) = (1, 1, 2, 2, 2, 2, 1, 1, 1, 1) is uniquely mapped to the bi-
colored tree as shown in Figure 2.
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Fig. 2. An example of a bi-colored tree construction

In general, this procedure provides a bijection between the collection of such
words, W(v), and a collection of bi-colored trees, T (v) as characterized earlier.
Therefore, the problem of enumerating the number of minimum factorizations
of a vertex v ∈ Sn,k in terms of the extended star transpositions also reduces to
the bi-colored tree enumeration problem, which Irving et al solved in [11], where
each white child contains zero or more black children.

We are now ready to derive a closed-form formula for the number of the
shortest paths between v ∈ Sn,k and the identity vertex in Sn,k. We carry out
calculations in different cases as given in Theorem 1.

– If C(v) contains no external cycle, all the symbols occurring in v are taken
from [1, k], and the only kind of transpositions we need to factorize v are
those in the form of (1, j), j ∈ [2, k], i.e., those for the star graph Sk. Hence,
the number of minimum factorizations of v in Sn,k in this case is simply that
of v in Sk.

Let v contain m cycles, trivial or not, and p fixed points in [2, k.] By a
known result [11,2].

|F(v)| = ((k − p) + (m− p)− 2)!
(k − p)! l1 × · · · × lg(v). (1)

We note that, in this case, all the external symbols are fixed points in v, as
a vertex in Sn,k.
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We now express Eq. 1 in our terminology.
• If the symbol 1 is also a fixed point, then 1, as a symbol that occurs in a

trivial cycle, is not counted in b(v), similarly, the trivial cycle (1) is not
counted in g(v). Hence, we have b(v) = k− p− 1, and g(v) = m− p− 1.

• Otherwise, we have b(v) = k − p and g(v) = m− p.
Thus, when C(v) does not contain external cycles,

|F(v)| =
{

(b(v)+g(v))!
(b(v)+1)! l1 × · · · × lg(v), if v1 = 1;

(b(v)+g(v)−2)!
b(v)! l1 × · · · × lg(v), otherwise.

(2)

– Otherwise, let C(v) = σI
1 · · ·σI

gI
σE

1 · · ·σE
gE
. We first convert C(v) to C′(v) =

σI
1 · · ·σI

gI
σE , where σE is an aggregated external cycle.

• if C′(v) contains a primary cycle, i.e., v1 
= 1, without loss of general-
ity, we assume C′(v) = σ1σ2 · · ·σgI+1, where σ1 is primary, either an
internal cycle or an aggregated external cycle. We now follow Irving et
al’s construction to obtain T (v), where there are gI + 1 white vertices,
bI + bE = b vertices in total, thus the total number of such trees, for a
given σE is

|T (v)| = ((b + (gI + 1)− 2)!
b!

l1 =
(b+ gI − 1)!

b!
l1.

By Lemma 4, there are (gE−1)! ways to generate an aggregated external
cycle, and an aggregated external cycle contains exactly bE symbols.
Moreover, by Lemmas 2, the order of the factors associated with a normal
cycle is circularly equivalent.
∗ If σ1 = lI1 is an internal cycle, then

|F(v)| = (b+ gI − 1)!
b!

× lI1 × · · · × lIgI
× bE × (gE − 1)!. (3)

∗ Otherwise, σE is a primary cycle, i.e., a type-1 aggregated external
cycle, thus,

|F(v)| = (b+ gI − 1)!
b!

× bE × lI1 × · · · × lIgI
× (gE − 1)!. (4)

• Otherwise, if C′(v) does not contain a primary cycle, v1 = 1, the resulting
T (v) contains an extra white vertex, i.e., the root vertex labeled 1. Thus,
T (v) contains gI +2 white vertices, a total of bI +bE +1 = b+1 vertices.
Hence, the total number of such trees, for a given type-2 aggregated
external cycle, is the following:

|T (v)| = ((b + 1) + (gI + 2)− 2)!
(b + 1)!

lI1 =
(b+ gI + 1)!

(b+ 1)!
,

as lI1 = 1.
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Again, by Lemma 4, there are (gE − 1)! ways to generate a type-2
aggregated external cycle, containing bE symbols; and by Lemmas 2
and 3, the order of the factors associated with normal internal cycles are
circularly equivalent, we have the following result:

|F(v)| = (b+ gI + 1)!
(b + 1)!

lI1 × · · · × lIgI
× bE × (gE − 1)!. (5)

We note that, in this case, when v1 = 1, |σI
1 | = lI1 = 1. But, we still keep

this lI1 term to achieve a uniformity.

To reiterate, By Eqs. 2, 3, 4 and 5, we have obtained the following main result
of this paper:

Theorem 2. Let v ∈ Sn,k such that C(v) = σI
1 · · ·σI

gI
σE

1 · · ·σE
gE
, gE ≥ 0, and

F(v) be the collection of the minimum factorizations of v. Then

1. If v does not contain any external cycle, then

|F(v)| =
{

(b(v)+g(v))!
(b(v)+1)! l1 × · · · × lg(v), if v1 = 1;

(b(v)+g(v)−2)!
b(v)! l1 × · · · × lg(v), otherwise.

2. Otherwise,

|F(v)| =
{

(b(v)+gI (v)+1)!
(b(v)+1)! lI1 × · · · × lIgI(v) × bE × (gE(v) − 1)!, if v1 = 1;

(b(v)+gI (v)−1)!
b(v)! lI1 × · · · × lIgI(v) × bE × (gE(v) − 1)!, otherwise.

Corollary 1. Let v ∈ Sn,k, v 
= Ek, and let P(v) be the collection of all the
shortest paths between v and ek, then |P(v)| = |F(v)|, where F(v) is given in
Theorem 2.

The result as shown in the above corollary agrees with the one as obtained in [2],
which, as mentioned in the introductory section, was obtained via the structural
relationship between the star graphs and the (n, k)-star graphs. Moreover, since
(n, k)-star graph is vertex symmetric, Corollary 1 applies to any two vertices in
Sn,k.

We end our discussion with an example. Again, consider v = 2968134 ∈ S9,7,
C(v) = (9; 5, 1, 2) (8; 7, 4)(3, 6), we have that

C′(v) = (1, 2, 8, 7, 4, 9, 5)(3, 6) = σEσI
1 .

Since v1 
= 1, gI = 1, lI1 = 2, b = 9, and bE = 7, by Corollary 1, the number of
the shortest paths from v to e7, the identity vertex in S9,7, is

|F(v)| = (9 + 1− 1)!
9!

× 2× 7 = 14,

which agrees with our earlier combinatorial analysis.
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5 Concluding Remarks

In this paper, we further extended earlier works done on the number of minimum
factorizations of vertices in terms of star transpositions to the number of such
minimum factorizations in terms of the general (n, k)-star transpositions, and
derived the number of the shortest paths between any two vertices in the (n, k)-
star graph.

We believe the approach that we reported in this paper, continuing the line
of enumerating minimum factorizations of a permutation in terms of a certain
class of allowed transpositions, suggests a general scheme to calculate the num-
ber of shortest paths between vertices in a structure defined on permutations as
these two quantities are equal to each other. The results as related to the (n, k)-
star graph that we reported in this work provides a demonstrating example in
this regard. As another example, it turns out that the collection of minimum
transpositions of a permutation in terms of the arrangement transpositions, cor-
responding to the edges in the arrangement graphs [4], can be bijectively mapped
to a collection of the ordered forests of bi-colored trees. We are currently inves-
tigating this arrangement transposition case, and will report our results in a
separate paper.
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Abstract. We consider the k most vital edges (nodes) and min edge
(node) blocker versions of the 1-median and 1-center location problems.
Given a weighted connected graph with distances on edges and weights
on nodes, the k most vital edges (nodes) 1-median (respectively 1-center)
problem consists of finding a subset of k edges (nodes) whose removal
from the graph leads to an optimal solution for the 1-median (respec-
tively 1-center) problem with the largest total weighted distance (re-
spectively maximum weighted distance). The complementary problem,
min edge (node) blocker 1-median (respectively 1-center), consists of re-
moving a subset of edges (nodes) of minimum cardinality such that an
optimal solution for the 1-median (respectively 1-center) problem has a
total weighted distance (respectively a maximum weighted distance) at
least as large as a specified threshold. We show that k most vital edges
1-median and k most vital edges 1-center are NP -hard to approximate
within a factor 7

5
− ε and 4

3
− ε respectively, for any ε > 0, while k most

vital nodes 1-median and k most vital nodes 1-center are NP -hard to
approximate within a factor 3

2
− ε, for any ε > 0. We also show that the

complementary versions of these four problems are NP -hard to approx-
imate within a factor 1.36.

Keywords: most vital edges and nodes, 1-median, 1-center, complexity,
approximation.

1 Introduction

For problems of security or reliability, it is important to assess the ability of a
system to resist to a destruction or a failure of a number of its entities. This
amounts to identifying critical entities which can be determined with respect to
a measure of performance or a cost associated to the system. In this paper we
focus on simple location problems. Consider for instance the following problem.
We aim at locating one hospital or one supermarket in order to serve n areas.
Each area is characterized by a population which represents a potential demand.
The areas are connected by roads with a given distance. The objective for lo-
cating this hospital or supermarket is not the same. Indeed, for the hospital,
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we aim at finding the location that minimizes the maximum distance weighted
by population from the hospital to all areas while for the supermarket we aim
at finding the location that minimizes the total weighted distance from the su-
permarket to all areas. However, there may occur incidents such as works on
road or floods that make some roads inaccessible. In this case several problems
may arise. We can aim at detecting the critical roads whose failure causes the
largest increase in the weighted distance. Alternatively, wa can aim at determin-
ing the maximum number of damaged roads which still ensures a certain quality
of service level. Modeling the considered network by a weighted connected graph
with distances on edges and weights on nodes, where roads are edges and areas
are nodes, these problems consist either of finding among all subset of edges or
nodes, a subset whose removal from the graph generates the largest increase in
the total or maximum weighted distance or of determining a subset of edges or
nodes of minimal cardinality such that, when we remove this subset from the
graph, the total or maximum weighted distance is at least as large as a specified
threshold. In the literature these problems are referred respectively to as the k
most vital edges/nodes and the min edge/node blocker problems.

The k most vital edges/nodes and min edge/node blocker versions have been
studied for several problems, including shortest path, minimum spanning tree,
maximum flow, maximum matching and independent set. The k most vital edges
problem with respect to shortest path was proved NP -hard [2]. Later, k most vi-
tal edges/nodes shortest path (and min edge/node blocker shortest path, respec-
tively) were proved not 2-approximable (not 1.36-approximable, respectively) if
P 
= NP [8]. For minimum spanning tree, k most vital edges is NP-hard [6] and
O(log k)-approximable [6]. In [11] it is proved that k most vital edges maximum
flow is NP -hard. For maximum matching, min edge blocker is NP -hard even for
bipartite graphs [12], but polynomial for grids and trees [10]. In [3], the k most vi-
tal nodes and min node blocker versions with respect to independent set for bipar-
tite graphs remain polynomial on the unweighted graphs and become NP -hard for
weighted graphs. For bounded treewidth graphs and cographs these versions re-
main polynomial [3]. Concerning the approximation on bipartite weighted graphs,
k most vital nodes with respect to independent set has no ptas [3].

In this paper the k most vital edges (nodes) and min edge (node) blocker
versions for the 1-median and 1-center problems are studied.

After introducing some preliminaries in Section 2, we prove in Section 3 that k
Most Vital Edges (Nodes) 1-median (1-center) and Min Edge (Node)

blocker 1-median (1-center) are not constant approximable for some con-
stants, unless P=NP. Final remarks are provided in Section 4.

2 Basic Concepts and Definitions

Consider G = (V,E) a connected weighted graph with |V | = n and |E| = m. Let
dvivj be the distance between vi and vj for (vi, vj) ∈ E and wvi be the weight
associated to node vi for i = 1, . . . , n (wvi represents the demand occurring at
node vi). Denote by d(vi, vj) the minimum distance between two nodes vi and
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vj of G. The 1-median (respectively 1-center) problem consists of locating the
median (respectively the center) of a graphG, that is the node v which minimizes
the total weighted distance (respectively the maximum weighted distance) to all
nodes of the graph given by

∑
vi∈V

wvi d(v, vi) (respectively max
vi∈V

wvi d(v, vi)).

Denote by G − R the graph obtained from G by removing the subset R of
edges or nodes.

We consider in this paper the k most vital edges (nodes) and min edge (node)
blocker versions of the 1-median and 1-center problems. These problems are
defined as follows:

k Most Vital Edges 1-median (1-center)

Input: A connected graph G = (V,E) weighted by two functions d : E → N
and w : V → N and a positive integer k.
Output: A subset S∗ ⊆ E, with |S∗| = k, whose removal generates an optimal
solution for the 1-median (1-center) problem in the graph G − S∗ of maximal
value.

k Most Vital Nodes 1-median (1-center)

Input: A connected graph G = (V,E) weighted by two functions d : E → N
and w : V → N and a positive integer k.
Output: A subset N∗ ⊆ V , with |N∗| = k, whose removal generates an optimal
solution for the 1-median (1-center) problem in the graph G − N∗ of maximal
value.

Min Edge blocker 1-median (1-center)

Input: A connected graph G = (V,E) weighted by two functions d : E → N
and w : V → N and a positive integer U .
Output: An edge blocker S∗ ⊆ E of minimal cardinality where an edge blocker
is a subset of edges such that the value of an optimal solution for the 1-median
(1-center) problem in the graph G− S∗ is greater than or equal to U .

Min Node blocker 1-median (1-center)

Input: A connected graph G = (V,E) weighted by two functions d : E → N
and w : V → N and a positive integer U .
Output: A node blocker N∗ ⊆ V of minimal cardinality where a node blocker
is a subset of nodes such that the value of an optimal solution for the 1-median
(1-center) problem in the graph G−N∗ is greater than or equal to U .

Given an NPO optimization problem and an instance I of this problem, we use
|I| to denote the size of I, opt(I) to denote the optimum value of I, and val(I, S)
to denote the value of a feasible solution S of instance I. The performance ratio
of S (or approximation factor) is r(I, S) = max

{
val(I,S)
opt(I) ,

opt(I)
val(I,S)

}
. The error of

S, ε(I, S), is defined by ε(I, S) = r(I, S) − 1.
For a function f , an algorithm is an f(n)-approximation, if for every instance

I of the problem, it returns a solution S such that r(I, S) ≤ f(|I|).
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The notion of a gap-reduction was introduced in [1] by Arora and Lund. A
minimization problem Π is called gap-reducible to a maximization problem Π ′

with parameters (c, ρ) and (c′, ρ′), if there exists a polynomial time computable
function f such that f maps an instance I of Π to an instance I ′ of Π ′, while
satisfying the following properties.

– If opt(I) ≤ c then opt(I ′) ≥ c′

– If opt(I) > cρ then opt(I ′) < c′
ρ′

Parameters c and ρ are function of |I| and parameters c′ and ρ′ are function
of |I ′|. Also, ρ, ρ′ ≥ 1.

The interest of a gap-reduction is that if Π is not approximable within a factor
ρ then Π ′ is not approximable within a factor ρ′.

The notion of an E-reduction (error-preserving reduction) was introduced in
[9] by Khanna et al. A problem Π is called E-reducible to a problem Π ′, if there
exist polynomial time computable functions f , g and a constant β such that

– f maps an instance I of Π to an instance I ′ of Π ′ such that opt(I) and
opt(I ′) are related by a polynomial factor, i.e. there exists a polynomial p
such that opt(I ′) ≤ p(|I|)opt(I),

– g maps any solution S′ of I ′ to one solution S of I such that ε(I, S) ≤
βε(I ′, S′).

An important property of an E-reduction is that it can be applied uniformly to
all levels of approximability; that is, if Π is E-reducible to Π ′ and Π ′ belongs
to C then Π belongs to C as well, where C is a class of optimization problems
with any kind of approximation guarantee (see also [9]).

3 NP-Hardness of Approximation

We first prove that k Most Vital Edges (Nodes) 1-median and k Most

Vital Edges (Nodes) 1-center are not constant approximable for some con-
stants, unless P=NP. For this, we construct, in theorems 1 and 2, gap-reductions
from Min Vertex Cover restricted to tripartite graphs. This problem is shown
NP -hard in [7] where Garey et al. prove that it is NP -hard to find a minimum
vertex cover in graphs of maximum degree 3, considering also that these graphs,
with the exception of the clique K4, are 3-colorable [4].

Theorem 1. k Most Vital Edges 1-median and k Most Vital Edges 1-

center are NP-hard to approximate within a factor 7
5 −ε and 4

3−ε respectively,
for any ε > 0.

Proof. We first consider k Most Vital Edges 1-median.
Let I be an instance of Min Vertex Cover formed by a graph G = (V,E)

with a tripartition V = V1 ∪ V2 ∪ V3 and |V | = n. We construct an instance I ′
of k Most Vital Edges 1-median consisting of a graph G′ = (V ′, E′) with
k < n as follows (see Figure 1). We associate for each node vi

	 ∈ Vi, two nodes
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vi
	,1 and vi

	,2 in V ′ and connect them in E′, for i = 1, 2, 3 and � = 1, . . . , |Vi|. We
add for each edge (vi

	, v
j
r) ∈ E, with i < j, the edge (vi

	,2, v
j
r,1) to E′. We also

add four nodes x1, x2, x
′
2, x3 connected by the path (x1, x

′
2), (x

′
2, x2), (x2, x3). We

connect x1 to v1
	,1 for � = 1, . . . , |V1|, x′2 to v2

	,1 and x2 to v2
	,2 for � = 1, . . . , |V2|

and x3 to v3
	,2 for � = 1, . . . , |V3|. We assign a distance 1 to edges (x1, x

′
2),

(x1, v
1
	,1), (x′2, v

2
j,1), (x2, v

2
j,2) and (x′2, x3) for � = 1, . . . , |V1| and j = 1, . . . , |V2|,

a distance 2 for the edge (x′2, x2) and a distance 0 for all the other edges in E′.
We set wx1 = 8, wx2 = wx3 = 1 and assign a weight 0 to all other nodes in
V ′. We replace all edges of E′, except the edges (vi

	,1, v
i
	,2), for i = 1, 2, 3 and

� = 1, . . . , |Vi|, by the gadget given in Figure 2. For each edge to be replaced,
one chooses indifferently the vertex playing the role of i in Figure 2, except for
all edges incident to x1 for which we take x1 as i. We show in the following that:

1. opt(I) ≤ k ⇒ opt(I ′) ≥ 7
2. opt(I) > k ⇒ opt(I ′) ≤ 5

which proves that k Most Vital Edges 1-median is NP -hard to approximate
within a factor 7

5 − ε, for any ε > 0.
First observe that there exists at least one optimal solution of k Most Vital

Edges 1-median containing only edges among the edges (vi
	,1, v

i
	,2), for i =

1, 2, 3 and � = 1, . . . , |Vi|. Indeed, if a solution contains edges from a gadget
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Fig. 1. Construction of G′ from G
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Fig. 2. The replacement gadget of an edge e = (i, j) ∈ E′

corresponding to an initial edge (i, j), it must contain at least n edges from this
gadget in order to have a chance to increase the solution value by suppressing
communication between i and j. Therefore, since k < n, it is at least as good to
select k edges among those which do not belong to the gadgets.

Observe also that G′ is designed so as to ensure that x1 will always be the
optimal 1-median node. Indeed, since the weight of vertex x1 is 8 and all edges
incident to x1 have distance 1, any other node would have a total weighted
distance of at least 8. In the following, x1 has always a total distance of at
most 7.

1. If there exists a vertex cover V ′ ⊆ V of cardinality less than k in G then
consider any set of vertices V ′′ ⊃ V ′ of cardinality k, and remove S′′ =
{(vi

	,1, v
i
	,2) : vi

	 ∈ V ′′} from G′. The optimal 1-median node in G′ − S′′ is
x1 with a total weighted distance d(x1, x2) + d(x1, x3) = 3 + 4 = 7. Hence,
opt(I ′) ≥ 7.

2. Let S∗ be any solution of k Most Vital Edges 1-median which contains
only edges (vi

	,1, v
i
	,2), for i = 1, 2, 3 and � = 1, . . . , |Vi|. The optimal 1-

median node in G′−S∗ is x1 with opt(I ′) = d(x1, x2)+ d(x1, x3). Each edge
(vi

	,1, v
i
	,2) of S∗ corresponds to a node vi

	 ∈ Vi in the graph G, for i = 1, 2, 3
and � = 1, . . . , |Vi|. Let N∗ be the subset of nodes in G that correspond to
edges of S∗. Since |N∗| = k and opt(I) > k, N∗ is not a vertex cover in
G. Thus, there exists at least one edge (vi

	, v
j
r) ∈ E which is not covered.

This implies in G′ the existence of a path from xi (or x′i) to xj , with i < j,
passing through the gadget corresponding to the edge (vi

	,2, v
j
r,1), enabling a

decrease of some shortest path distances. Hence,
• if i = 1 and j = 2 then opt(I ′) ≤ 6
• if i = 1 and j = 3 then opt(I ′) ≤ 3
• if i = 2 and j = 3 then opt(I ′) ≤ 6

Therefore, opt(I ′) ≤ 6.
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We consider now k Most Vital Edges 1-center. We use the same con-
struction as above. We show that:

1. opt(I) ≤ k ⇒ opt(I ′) ≥ 4
2. opt(I) > k ⇒ opt(I ′) ≤ 3

which proves that k Most Vital Edges 1-center is NP -hard to approximate
within a factor 4

3 − ε, for any ε > 0.
Similarly as above, there exists at least one optimal solution of k Most Vital

Edges 1-center containing only edges among the edges (vi
	,1, v

i
	,2), for i =

1, 2, 3 and � = 1, . . . , |Vi|. Moreover, as before, x1 will always be the optimal
1-center node.

1. If there exists a vertex cover V ′ ⊆ V of cardinality less than k in G then
consider any set of vertices V ′′ ⊃ V ′ of cardinality k, and remove S′′ =
{(vi

	,1, v
i
	,2) : vi

	 ∈ V ′′} from G′. The optimal 1-center node in G′ − S′′ is x1
with a maximum weighted distance max{d(x1, x2), d(x1, x3)} = 4. Hence,
opt(I ′) ≥ 4.

2. Let S∗ be any solution of k Most Vital Edges 1-center which contains
only edges (vi

	,1, v
i
	,2), for i = 1, 2, 3 and � = 1, . . . , |Vi|. The optimal 1-center

node in G′ − S∗ is x1 with opt(I ′) = max{d(x1, x2), d(x1, x3)}. Each edge
(vi

	,1, v
i
	,2) of S∗ corresponds to a node vi

	 ∈ Vi in the graph G, for i = 1, 2, 3
and � = 1, . . . , |Vi|. Let N∗ be the subset of nodes of G corresponding to
edges in S∗. Since |N∗| = k and opt(I) > k, N∗ is not a vertex cover in
G. Thus, there exists at least one edge (vi

	, v
j
r) ∈ E which is not covered.

This implies in G′ the existence of a path from xi (or x′i) to xj , with i < j,
passing through the gadget corresponding to the edge (vi

	,2, v
j
r,1). Hence,

• if i = 1 and j = 2 then opt(I ′) ≤ 3
• if i = 1 and j = 3 then opt(I ′) ≤ 3
• if i = 2 and j = 3 then opt(I ′) ≤ 3

Therefore, opt(I ′) ≤ 3. �

Theorem 2. k Most Vital Nodes 1-median and k Most Vital Nodes

1-center are NP-hard to approximate within a factor 3
2 − ε, for any ε > 0.

Proof. We first consider k Most Vital Nodes 1-median.
Let I be an instance of Min Vertex Cover formed by a graph G = (V,E)

with a tripartition V = V1 ∪ V2 ∪ V3 and |V | = n. We construct an instance I ′
of k Most Vital Nodes 1-median consisting of a graph G′ = (V ′, E′) with
k < n as follows (see Figure 3). G′ is a copy of G to which we add complete
graphs Ki

n with n nodes x1
i , . . . , x

n
i for i = 1, 2, 3. We connect each node vi

	 ∈ Vi

with each node xr
i , for i = 1, 2, 3, � = 1, . . . , |Vi| and r = 1, . . . , n. We connect

also each node xr
i to each node xr

i+1 for i = 1, 2 and r = 1, . . . , n. We assign a
distance 2 to edges (xr

i , x
r
i+1) for i = 1, 2 and r = 1, . . . , n, a distance 1 to edges

(xr
1, v

1
	 ) for � = 1, . . . , |V1| and r = 1, . . . , n and a distance 0 to all other edges

in E′. We set wxr
1

= 7 and wxr
2

= wxr
3

= 1 for r = 1, . . . , n, and wvi
�

= 0 for
i = 1, 2, 3, � = 1, . . . , |Vi|. We show in the following that:
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1. opt(I) ≤ k ⇒ opt(I ′) ≥ 6n
2. opt(I) > k ⇒ opt(I ′) ≤ 4n

which proves that k Most Vital Nodes 1-median is NP -hard to approximate
within a factor 3

2 − ε, for any ε > 0.
First observe that there exists at least one optimal solution of k Most Vital

Nodes 1-median containing only nodes of V . Indeed, if a solution contains
nodes from Ki

n for some i, it must contain all nodes of Ki
n in order to have

a chance to increase the solution value by disconnecting these nodes from the
graph. Therefore, since k < n, it is at least as good to select k nodes in V only.

Observe also that G′ is designed so as to ensure that any node xr
1 for r =

1, . . . , n will always be an optimal 1-median node. Indeed, since the weight of
a vertex xr

1 is 7 and all edges incident to xr
1, except the edges (xr

1, x
j
1) for j =

1, . . . , n and j 
= r have distance at least 1, any other node would have a total
weighted distance of at least 7, while any node xr

1 has always a total weighted
distance of at most 6. We consider arbitrarily in the following that x1

1 is the
selected optimal 1-median node.

1. If there exists a vertex cover V ′ ⊆ V of cardinality less than k in G then
consider any set of vertices V ′′ ⊃ V ′ of cardinality k, and remove V ′′ from
G′. Taking x1

1 as the optimal 1-median node in G′ − V ′′, we get a total
weighted distance

∑n
j=1(d(x

1
1, x

j
2) + d(x1

1, x
j
3)) =

∑n
j=1(2 + 4) = 6n. Hence,

opt(I ′) ≥ 6n.

v1
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v1
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v3
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v3
1

v2
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v2
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v2
1

v3
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7
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0
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0
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V1

V2

V30

0

0

0

0

0
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7 1 1
with wv� = 0 for v� ∈ Vi, i = 1, 2, 3

Fig. 3. Construction of G′ from G
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2. Let N∗ ⊆ V be any solution of k Most Vital Nodes 1-median which
contains only nodes of V . Taking x1

1 as the optimal 1-median node inG′−N∗,
we get opt(I ′) =

∑n
	=1(d(x

1
1, x

	
2)+d(x1

1, x
	
3)). Since |N∗| = k and opt(I) > k,

N∗ is not a vertex cover in G. Thus, there exists at least one edge (vi, vj) ∈ E
which is not covered. This implies in G′ the existence of a path from each
xr

i to each xr
j for r = 1, . . . , n, passing through the edge (vi, vj). Hence,

• if i = 1 and j = 2 then opt(I ′) ≤
∑n

	=1(1 + 3) = 4n
• if i = 1 and j = 3 then opt(I ′) ≤

∑n
	=1(2 + 1) = 3n

• if i = 2 and j = 3 then opt(I ′) ≤
∑n

	=1(2 + 2) = 4n
Consequently, opt(I ′) ≤ 4n.

We consider now k Most Vital Nodes 1-center. We use the same construc-
tion as above, but we modify the distance associated to the edges (xr

2, x
r
3) for

r = 1, . . . , n for which we assign a distance 1. We show that:

1. opt(I) ≤ k ⇒ opt(I ′) ≥ 3
2. opt(I) > k ⇒ opt(I ′) ≤ 2

which proves that k Most Vital Nodes 1-center is NP -hard to approximate
within a factor 4

3 − ε, for any ε > 0.
As previously, we can show that only the nodes of V can be removed. We

observe as above that any node xr
1 for r = 1, . . . , n will always be an optimal

1-center node. We consider arbitrarily in the following that x1
1 is the selected

optimal 1-center node.

1. If there exists a vertex cover V ′ ⊆ V of cardinality less than k in G then
consider any set of vertices V ′′ ⊃ V ′ of cardinality k, and remove V ′′

from G′. Taking x1
1 as the optimal 1-center node in G′ − V ′′, we get a

maximum weighted distance max { max
j=1,...,n

d(x1
1, x

j
2), max

j=1,...,n
d(x1

1, x
j
3)} = 3.

Hence, opt(I ′) ≥ 3.
2. Let N∗ ⊆ V be any solution of k Most Vital Nodes 1-center which

contains only nodes of V . Taking x1
1 as the optimal 1-center node in G′−N∗,

we get opt(I ′) = max { max
	=1,...,n

d(x1
1, x

	
2), max

	=1,...,n
d(x1

1, x
	
3)}. Since |N∗| = k

and opt(I)> k, N∗ is not a vertex cover in G. Thus, there exists at least one
edge (vi, vj) ∈ E which is not covered. This implies in G′ the existence of
a path from each xr

i to each xr
j for r = 1, . . . , n, passing through the edge

(vi, vj). Hence,
• if i = 1 and j = 2 then opt(I ′) = max{d(x1

1, x
1
2), d(x1

1, x
1
3)} ≤ 2

• if i = 1 and j = 3 then opt(I ′) = d(x1
1, x

1
2) ≤ 2

• if i = 2 and j = 3 then opt(I′) = max{d(x1
1, x

1
2), d(x

1
1, x

1
3)} ≤ 2.

Therefore, opt(I ′) ≤ 2.

�

We prove now that the four problems Min Edge (Node) blocker 1-median

and Min Edge (Node) blocker 1-center are not 1.36 approximable, unless
P=NP. These results, stated in theorems 3 and 4, are obtained by constructing
E-reductions from Min Vertex Cover shown NP -hard to approximate within
a factor 1.36 [5].
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Theorem 3. Min Edge blocker 1-median and Min Edge blocker 1-

center are NP-hard to approximate within a factor 1.36.

Proof. We first consider Min Edge blocker 1-median.
Let I be an instance of Min Vertex Cover consisting of a graph G = (V,E)

with V = {v1, . . . , vn}. We construct an instance I ′ of Min Edge blocker 1-

median formed by a graph G′ = (V ′, E′) and a positive integer U as follows
(see Figure 4). We associate for each node vi ∈ V two nodes vi and v′i in V ′ and
connect them in E′ for i = 1, . . . , n. We add for each edge (vi, vj) ∈ E, with i < j,
an edge (v′i, vj) to E′. We also add 2n nodes x1, x

′
1, x2, x

′
2, . . . , xn, x

′
n connected

by the path (x1, x
′
1), (x′1, x2), (x2, x

′
2), (x′2, x3), . . . , (x′n−1, xn), (xn, x

′
n). Finally,

we connect xi to vi and x′i to v′i for i = 1, . . . , n. We assign the following distances
to the edges of E′: dviv′

i
= 0, dxivi = dx′

iv
′
i

= 1 and dxix′
i

= 2 for i = 1, . . . , n,
dx′

ixi+1 = 0 for i = 1, . . . , n−1 and dv′
ivj

= 2(j− i)−1 for (vi, vj) ∈ E and i < j.
We set wx1 = 2n2 + 1, wxi = 1 for i = 2, . . . , n, wx′

i
= 1 and wvi = wv′

i
= 0 for

i = 1, . . . , n and we consider that U = 2n2. We replace each edge of E′, except
the edges (vi, v

′
i) for i = 1, . . . , n, by the gadget given in Figure 2 where each

edge is replaced by n+1 instead of n disjoint paths of length 2 (for edges (x1, v1)
and (x1, x

′
1), x1 plays the role of i in Figure 2).

Observe that G′ is designed so as to ensure that x1 will always be the optimal
1-median node. Indeed, since the weight of vertex x1 is 2n2 +1 and all edges in-
cident to x1 have distance at least 1, any other node would have a total weighted
distance of at least 2n2 + 1. In the following, x1 has always a total distance of
at most 2n2.

We prove first that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex
cover of G. Let us consider S∗ = {(vi, v

′
i) : vi ∈ V ∗}. By removing the edges

x′
4x4x′

3x3x′
2x2x′

1x1

v′
4v4
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3

v3
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2v2
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1v1v4
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1 1

1 1

1 1

1 1

2020202

1
5

31
0

0

0

0

2n2 1 1 1 1 1 1 1

with wv� = wv′
�

= 0 for � = 1, . . . , 4

Fig. 4. Construction of G′ from G with n = 4 nodes
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in S∗ from G′, the optimal 1-median node is x1 with a total weighted distance∑n
i=1 wxid(x1, xi)+

∑n
i=1 wx′

i
d(x1, x

′
i) = 2(

∑n−1
i=1 i+

∑n
i=1 i) = 2n2 = U . Hence,

opt(I ′) ≤ |S∗| = opt(I).

When we remove all edges (vi, v
′
i), for i = 1, . . . , n from G′, the optimal 1-median

node in the resulting graph is x1 with value U . Hence, opt(I ′) ≤ n. Let S ⊆ E′

be an edge blocker for G′. If S contains an edge (i, e	
ij) or (e	

ij , j) from a gadget
corresponding to an initial edge (i, j), it must contain at least n+ 1 edges from
this gadget in order to suppress the communication between i and j, otherwise
the value of an optimal solution for the 1-median problem in G′−S is the same
as in G′ − (S\{(i, e	

ij)}) or G′ − (S\{(e	
ij , j)}). Therefore, since opt(I ′) ≤ n, we

can consider in the following that S contains only edges among the edges (vi, v
′
i),

i ∈ {1, . . . , n}.
Let us consider N = {vi : (vi, v

′
i) ∈ S} where S is an edge blocker. We prove,

by contradiction, that N is a vertex cover in G. Suppose that there exists an
edge (vi, vj) ∈ E such that vi 
∈ N , vj 
∈ N and i < j. We show in the fol-
lowing that by removing S from G′, the value of an optimal solution for the
1-median problem in the remaining graph is strictly less than 2n2. Indeed, x1 is
the optimal 1-median node in G′ − S. Let D(x1) be the total weighted distance
associated to x1 in G′−S. We have D(x1) =

∑n
	=1 d(x1, x

′
	) +

∑n
	=1 d(x1, x	) =∑j−1

	=1 d(x1, x
′
	) + d(x1, x

′
j) +

∑n
	=j+1 d(x1, x

′
	)+

∑n
	=1 d(x1, x	). Then, D(x1) ≤

2
∑j−1

	=1 � + d(x1, x
′
j) + 2

∑n
	=j+1 � + 2

∑n−1
	=1 � = 2

∑n
	=1 � − 2j + d(x1, x

′
j) +

2
∑n−1

	=1 � = 2n2 − 2j + d(x1, x
′
j). The edge (vi, vj) being not covered, this im-

plies the existence of a path from x1 to x′j using a subpath from x1 to xi and
joining xi to x′j by a subpath passing through the gadget associated to the edge
(vi, vj). We have d(x1, x

′
j) ≤ 2(i− 1) + 1 + 2(j − i) − 1 + 1 = 2j − 1. Thus, we

have D(x1) ≤ 2n2 − 1 < 2n2, contradicting the assumption that S is an edge
blocker. Therefore, N is a vertex cover in G such that val(I,N) = val(I ′, S).
Consequently, ε(I,N) = val(I,N)

opt(I) − 1 ≤ val(I′,S)
opt(I′) − 1 = ε(I ′, S), which achieves

the proof.
We consider now Min Edge blocker 1-center.
We use the same construction as above with U = 2n. As above, G′ is designed

so as to ensure that x1 will always be the optimal 1-center node.
We show first that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex cover

in G. Let us consider S∗ = {(vi, v
′
i) : vi ∈ V ∗}. By removing the edges of S∗

from the graph G′, the optimal 1-center node is x1 with a maximum weighted
distance d(x1, x

′
n) = 2n = U . Hence, opt(I ′) ≤ |S∗| = opt(I).

Let S ⊆ E′ be an edge blocker. We can assume, similarly to the 1-median
problem, that S contains only edges among the edges (vi, v

′
i), i ∈ 1, . . . , n. Let

us consider N = {vi : (vi, v
′
i) ∈ S}. In the following, we show by contradiction

that N is a vertex cover in G. Suppose that there exists an edge (vi, vj) ∈ E
such that vi 
∈ N , vj 
∈ N and i < j. Then x1 is the optimal 1-center node
in G′ − S with a maximum weighted distance Dmax(x1) = d(x1, xn). The edge
(vi, vj) being not covered, this implies the existence of a path from x1 to x′j using
a subpath from x1 to xi and joining xi to x′j by a subpath passing through the
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gadget associated to the edge (vi, vj). Then Dmax(x1) ≤ 2(i− 1)+1+2(j− i)−
1 + 1 + 2(n− j) = 2n− 1 < 2n, contradicting the assumption that S is an edge
blocker. Therefore N is a vertex cover in G such that val(I,N) = val(I ′, S).
Consequently, ε(I,N) = val(I,N)

opt(I) − 1 ≤ val(I′,S)
opt(I′) − 1 = ε(I ′, S), which achieves

the proof. �

Theorem 4. Min Node blocker 1-median and Min Node blocker 1-

center are NP-hard to approximate within a factor 1.36.

Proof. We consider first Min Node blocker 1-median.
Let I be an instance of Min Vertex Cover consisting of a graph G = (V,E)

with V = {v1, . . . , vn}. We construct an instance I ′ of Min Node blocker 1-

median formed by a graph G′ = (V ′, E′) and a positive integer U as follows
(see Figure 5). G′ is a copy of G to which we add one node x1 and complete
graphs Ki

n+1 with n + 1 nodes x1
i , . . . , x

n+1
i for i = 2, . . . , n. We connect x1

to v1 and xr
2 for r = 1, . . . , n + 1, and each node xr

i to vi for i = 2, . . . , n
and r = 1, . . . , n + 1. We also connect each node xr

i to each node xr
i+1 for

r = 1, . . . , n + 1 and i = 2, . . . , n − 1. We assign a distance 1 to the edge
(x1, v1), a distance 2 to the edges (x1, x

r
2) and (xr

i , x
r
i+1) for i = 2, . . . , n− 1 and

r = 1, . . . , n+ 1, and a distance 0 to all other edges in E′. Let us set wx1 = n3,
wxr

i
= 1 for i = 2, . . . , n and r = 1, . . . , n + 1 and wvi = 0 for i = 1, . . . , n.

Finally, we set U = n(n2 − 1).
Observe that G′ is designed so as to ensure that x1 will always be the optimal

1-median node. Indeed, since the weight of vertex x1 is n3 and all edges incident
to x1 have distance at least 1, any other node would have a total weighted
distance of at least n3. In the following, x1 has always a total distance of at
most n(n2 − 1).

We show first that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex cover
in G. By removing V ∗ from G′, the optimal 1-median node is x1 with a total

x1

v4

v3

v2

v1v4

v3

v2

v1

K2
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0

0
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Fig. 5. Construction of G′ from G with n = 4 nodes
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weighted distance
∑n

	=2
∑n+1

r=1 d(x1, x
r
	) = 2(n+1)

∑n−1
i=1 i = n(n−1)(n+1) = U .

Hence, opt(I ′) ≤ |V ∗| = opt(I).
Let N ⊆ V ′ be a node blocker. According to the construction of G′, in order

to obtain an optimal solution for the 1-median problem in the graph G′ −N of
a value at least U , N must be included in V . We show, by contradiction, that
N is a vertex cover in G. Suppose that there exists an edge (vi, vj) ∈ E such
that vi 
∈ N , vj 
∈ N and i < j. The optimal 1-median node in G′−N is x1 with
value strictly less than n(n− 1)(n+ 1). Indeed, let D(x1) be the total weighted
distance associated to x1 in G′ − N . Hence, D(x1) =

∑n
	=2

∑n+1
r=1 d(x1, x

r
	) =∑j−1

	=2
∑n+1

r=1 d(x1, x
r
	) +

∑n+1
r=1 d(x1, x

r
j) +

∑n+1
r=1

∑n
	=j+1 d(x1, x

r
	)). We distin-

guish two cases:

• If vi = v1 then d(x1, x
r
j) = dx1v1 + dv1vj + dvjxr

j
= 1 for r = 1, . . . , n + 1.

Hence, we obtain D(x1) ≤ 2(n + 1)
∑j−2

	=1 � + (n + 1) + 2(n + 1)
∑n−1

	=j � <

2(n + 1)
∑j−2

	=1 � + 2(j − 1)(n + 1) + 2(n + 1)
∑n−1

	=j � = n(n − 1)(n + 1),
contradiction.
• If vi 
= v1 then d(x1, x

r
j) = d(x1, x

1
i ) + dx1

i vi
+ dvivj + dvjxr

j
= d(x1, x

1
i ) for

r = 1, . . . , n+ 1. Hence, we obtain D(x1) ≤ 2(n+ 1)
∑j−2

	=1 �+ 2(i− 1)(n+
1)+2(n+1)

∑n−1
	=j � < 2(n+1)

∑j−2
	=1 �+2(j−1)(n+1)+2(n+1)

∑n−1
	=j � =

n(n− 1)(n+ 1), contradiction.

Therefore N is a vertex cover in G such that val(I,N) = val(I ′, N). Conse-
quently, ε(I,N) = val(I,N)

opt(I) − 1 ≤ val(I′,N)
opt(I′) − 1 = ε(I ′, N), which achieves the

proof.
We consider now Min Node blocker 1-center.
We use the same construction as above with U = 2(n − 1). Here again, we

observe that G′ is designed so as to ensure that x1 will always be the optimal
1-center node.

We show first that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex cover
in G. By deleting the nodes of V ∗ from G′, the optimal 1-center node in the
remaining graph is x1 with a maximum weighted distance d(x1, x

r
n) = 2(n−1) =

U for any r = 1, . . . , n+ 1. Hence, opt(I ′) ≤ |V ∗| = opt(I).
When we remove all nodes vi, i = 1, . . . , n from G′, the optimal 1-center node

in the resulting graph is x1 with value U . Hence, opt(I ′) ≤ n. Let N ⊆ V ′ be a
node blocker. According to the construction of G′, in order to obtain an optimal
1-center node in G′−N of value at least U , N cannot contain x1. If N contains
nodes x	

i for a given i and �, then N must contains all the n + 1 nodes xr
i for

r = 1, . . . , n + 1, otherwise the value of an optimal solution for the 1-center
problem in G′−N is the same as in G′− (N\{x	

i}). Therefore, since opt(I ′) ≤ n,
we can consider in the following that N is included in V . In the following, we
prove by contradiction that N forms a vertex cover in G. Suppose that there
exists an edge (vi, vj) ∈ E such that vi 
∈ N , vj 
∈ N and i < j. By removing
N from G′, the optimal 1-center node is x1 with a maximum weighted distance
Dmax(x1) = d(x1, x

r
n) for any r = 1, . . . , n. We distinguish two cases:



250 C. Bazgan, S. Toubaline, and D. Vanderpooten

• if vi = v1 then Dmax(x1) = dx1v1 + dv1vj + dvjx1
j

+ d(x1
j , x

r
n) ≤ 1 + 0 + 0 +

2(n− j) ≤ 1 + 2n− 4 < 2(n− 1), contradiction.
• if vi 
= v1 then Dmax(x1) ≤ d(x1, x

1
i ) + dx1

i vi
+ dvivj + dvjx1

j
+ d(x1

j , x
r
n) ≤

2(i− 1)+0+0+0+2(n− j) = 2(n− 1)− 2(j− i) < 2(n− 1), contradiction.

Therefore N is a vertex cover in G such that val(I,N) = val(I ′, N). Conse-
quently, ε(I,N) = val(I,N)

opt(I) − 1 ≤ val(I′,N)
opt(I′) − 1 = ε(I ′, N), which achieves the

proof. �

4 Conclusion

We established in this paper negative results concerning the approximation of k
most vital edges (nodes) and min edge (node) blocker versions of the 1-median
and 1-center location problems. An interesting open question would be to estab-
lish positive results concerning the approximability of these problems. Another
interesting perspective is to find efficient exact algorithms to solve them.
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Abstract. To reduce routing cost and to improve road load balance, we
study a problem of minimizing size of connected dominating set D under
constraint that for any two nodes u and v, the routing cost through D
is within a factor of α from the minimum, the cost of the shortest path
between u and v. We show that for α ≥ 5, this problem in unit disk
graphs has a polynomial-time approximation scheme, that is, for any
ε > 0, there is a polynomial-time (1 + ε)-approximation.

1 Introduction

Given a graph G = (V,E), a node subset D ⊆ V is called a dominating set
if every node not in D has a neighbor in D. A dominating set is said to be a
connected dominating set (CDS) if it induces a connected subgraph.

Due to applications in wireless networks, the MCDS problem, i.e., computing
the minimum connected dominating set (MCDS) for a given graph, has been
studied extensively since 1998 [15,1,10,11,12,14,2,3].

Guha and Khuller [7] showed that the MCDS in general graph has no poly-
nomial time approximation with performance ratio ρ ln δ for 0 < ρ < 1 unless
NP ⊆ DTIME(nO(log log n)) where δ is the maximum node degree of input
graph. They also gave a polynomial-tme (3 + ln δ)-approximation. Ruan et al.
[9] and Du et al. [6] made improvements.
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Recently, motivated from reducing routing cost [4] and from improving road
load balancing [13], the following problem has been proposed:

MOC-CDS: Given a connected graph G = (V,E), compute a connected
dominating set D with minimum cardinality under condition that for
every two nodes u, v ∈ V , there exists a shortest path between u and v
such that all intermediate nodes belong to D.

Ding et al. [4] showed that MOC-CDS has no polynomial time approximation
with performance ratio ρ ln δ for 0 < ρ < 1 unless NP ⊆ DTIME(nO(log log n))
where δ is the maximum node degree of input graph G. They also gave a polyno-
mial time distributed approximation algorithm with performance ratioH( δ(δ−1)

2 )
where H is the hamonic function, i.e., H(k) =

∑k
i=1

1
i .

However, some example shows that the solution of MOC-CDS may be much
bigger than the solution of MCDS. Thus, to reach the minimum routing cost,
the size of CDS may be increased too much. Motivated from this situation, Du
et al. [5] proposed the following problem for any constant α ≥ 1.

αMOC-CDS: Given a graph, compute the minimum CDS D such that
for any two nodes u and v, mD(u, v) ≤ α · m(u, v) where mD(u, v) is
the number of intermediate nodes on a shortest path connecting u and
v through D and m(u, v) = mG(u, v).

1MOC-CDS is exactly MOC-CDS. For α > 1, the constraint on routing cost is
relaxed and hence the CDS size becomes smaller. Du et al. [5] showed that for
any α ≥ 1, αMOC-CDS in general graphs is APX-hard and hence has no PTAS
unless NP = P . Liu et al. [8] showed that αMOC-CDS in unit disk graphs is
NP-hard for α ≥ 4.

In this paper, we show that for α ≥ 5, αMOC-CDS in unit disk graphs
has PTAS, that is, for any ε > 0. αMOC-CDS has polynomial-time (1 + ε)-
approximation.

2 Main Result

First, let us quote a lemma in [5], simplifying the routing cost constraint. For
convenience of the reader, we also include their proof here.

Lemma 1. Let G be a connected graph and D a dominating set D of G. Then,
for any two nodes u and v,

mD(u, v) ≤ αm(u, v),

if and only if for any two nodes u and v with m(u, v) = 1,

mD(u, v) ≤ α. (1)
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Proof. It is trivial to show the “only if” part. Next, we show the “if” part.
Consider two nodes u and v. If m(u, v) = 0, it is clear that mD(u, v) = 0 =
αm(u, v). Next, assume m(u, v) ≥ 1. Consider a shortest path (u,w1, ..., wk, v)
where k = m(u, v) ≥ 1. Let us assume k is even. For odd k, the proof is similar.

Note that m(u,w2) = m(w2, w4) = · · · = m(wk−2, wk) = 1. By (1),
there exist paths (u, s1,1, s1,2, ..., s1,h1 , w2), (w2, s3,1, s3,2, ..., s3,h3 , w4),
..., (wk−2, sk−1,1, sk−1,2, ..., sk−1,hk−1 , wk) such that 1 ≤ hi ≤ α for all
i = 1, 3, ..., k − 1 and si,j ∈ D for all i = 1, 3, ..., k − 1 and j = 1, 2, ..., hi. Now,
note that m(s1,h1 , s3,1) = · · · = m(sk−1,hk−1 , v) = 1. By (1), there exist paths
(s1,h1 , s2,1, s2,2, ..., s2,h2 , s3,1), ..., (sk−1,hk−1 , sk,1, sk,2, ..., sk,hk

, v) such that
1 ≤ hi ≤ α for i = 2, 4, ..., k and si,j ∈ D for i = 2, 4, ..., k and j = 1, 2, ..., hi.
Therefore, there is a path (u, s1,1, ..., s1,h1 , s2,1, ..., sk,hk

, v) with h1+h2+ · · ·+hk

(≤ αk) intermediate nodes all in D. Thus, mD(u, v) ≤ α ·m(u, v). �

Next, the following lemma indicates that a dominating set satisfying condition
(1) must be feasible for αMOC-CDS.

Lemma 2. In a connected graph, a dominating set D satisfying condition (1)
must be a connected dominating set.

Proof. If |D| = 1, then the subgraph induced by D consists of only single node,
which is clearly a connected subgraph.

Next, assume |D| ≥ 2. For any two nodes u, v ∈ D, by Lemma 1, there is a
path between u and v with all intermediate nodes in D. Therefore, D induces a
connected subgraph. �

Now, we start to construct a PTAS for unit disk graphs.
First, we put input unit disk graph G = (V,E) in the interior of the square

[0, q] × [0, q]. Then construct a grid P (0) as shown in Fig. 1. P (0) divides the
sequare [0, pa] × [0, pa] into p2 cells where a = 2(α + 2)k for a positive integer
k and p = 1 + �q/a�. Each cell e is a a × a square, including its left boundary
and its lower boundary, so that all cells are disjoint and their union covers the
interior of the square [0, q]× [0, q].

For each cell e, construct a (a+4)×(a+4) square and a (a+2α+4)×(a+2α+4)
square with the same center as that of e (Fig. 2). The closed area bounded by the
first square is called the central area of cell e, denoted by ec. The area between
the second square and cell e, including the boundary of e and excluding the
boundary of the second square, is called the boundary area of cell e, denoted
by eb. The union of the boundary area and the central area is the open area
bounded by the second square, denoted by ecb.

Now, for each cell e, we study the following problem.

Local(e): Find the minimum subset D of nodes in V ∩ecb such that (a)
D dominates all nodes in V ∩ ec, and (b) for any two nodes u, v ∈ V ∩ ec

with m(u, v) = 1 and {u, v} ∩ e 
= ∅, mD(u, v) ≤ α.

Lemma 3. Suppose α ≥ 5 and |V ∩ ecb| = ne. Then the minimum solution of
Local(e) problem can be computed in time nO(a4)

e .
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Fig. 1. Grid P (0)

Fig. 2. Central Area ec and Boundary Area eb

Fig. 3. Decompsition of Central Area ec

Proof. Cut ec into �(a + 4)
√

2�2 small squares with edge length at most
√

2/2
(Fig. 3). Then for each (closed) small square s, if V ∩ s 
= ∅, then choose one
which would dominates all nodes in V ∩s. Those nodes form a set D dominating
V ∩ ec and |D| ≤ �(a+ 4)

√
2�2.

For any two nodes u, v ∈ D with m(u, v) ≤ 3, connect them with a shortest
path between u and v. Namely, let M(u, v) denote the set of all intermediate
nodes on a shortest path between u and v. Define

C = D ∪
(
∪u,v∈D:m(u,v)≤3M(u, v)

)
.

We show that C is a feasible solution of Local(e) problem. For any two nodes
u, v ∈ V ∩ ec with m(u, v) = 1 and {u, v} 
= ∅, since D dominates V ∩ ec,
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there are u′, v′ ∈ D such that u is adjacent to u′ and v is adjacent to v′. Thus,
m(u′, v′) ≤ 3. This implies that M(u, v) ⊆ C and hence mC(u, v) ≤ 5. Therefore,
C is a feasible solution of αMOC-CDS. Moreover,

|C| ≤ |D|+ 3 · |D|(|D| − 1)
2

≤ 1.5|D|2 ≤ 1.5 · �(a+ 4)
√

2�4.

This means that the minimum solution of Local(e) has size at most
1.5 · �(a + 4)

√
2�4. Therefore, by an exhausting search, we can compute the

minimum solution of Local(e) in time nO(a4)
e . �

Let De denote the minimum solution for the Local(e) problem. Define D(0) =
∪e∈P (0)De where e ∈ P (0) means that e is over all cells in partition P (0).

Lemma 4. D(0) is a feasible solution of αMOC-CDS and D(0) can be computed
in time nO(a4) where n = |V |.

Proof. Since every node in V belongs to some ec, D(0) is a dominating set.
Moreover, for every two nodes u, v ∈ V with m(u, v) = 1, we have u ∈ e for
some cell e, which implies that u, v ∈ ec. Hence, mDe(u, v) ≤ α. If follows that
mD(0)(u, v) ≤ α. By Lemma 2, D(0) is feasible for αMOC-CDS.

Note that each node may appear in ecb for at most four cells e. Therefore, by
Lemma 3, D(0) can be computed in time∑

e∈P (0)

nO(a4)
e ≤ (4n)O(a4) = nO(a4)

where n = |V |. �

To estimate |D(0)|, we consider a minimum solution D∗ of αMOC-CDS. Let
P (0)b = ∪e∈P (0)e

b.

Lemma 5. |D(0)| ≤ |D∗|+ 4|D∗ ∩ P (0)b|.

Proof. We claim that D∗∩ecb is feasible for Local(e) problem. In fact, it is clear
that D∗∩ecb dominates V ∩ec. For any two nodes u, v ∈ ec with m(u, v) = 1 and
{u, v}∩e 
= ∅, the path between u and v with at most α intermediate nodes must
lie inside of ecb and mD∗(u, v) ≤ α implies mD∗∩ecb(u, v) ≤ α. This completes
the proof of our claim.

Our claim implies that |De| ≤ |D∗ ∩ ecb|. Thus

|D(0)| ≤
∑

e∈P (0)

|De|

≤
∑

e∈P (0)

|D∗ ∩ ecb|

≤
∑

e∈P (0)

|D∗ ∩ e|+
∑

e∈P (0)

|D∗ ∩ eb|

≤ |D∗|+ 4|D∗ ∩ P (0)b|. �
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Fig. 4. Grid P (i)

Now, we shift partition P (0) to P (i) as shown in Fig. 4 such that the left and
lower corner of the grid is moved to point (−2(α + 2)i,−2(α + 2)i). For each
P (i), we can compute a feasible solution D(i) in the same way as D(0) for P (0).
Then we have

(a) D(i) is a feasible solution of αMOC-CDS.
(b) D(i) can be computed in time nO(a4).
(c) |D(i)| ≤ |D∗|+ 4|D∗ ∩ P (i)b|.
In addition, we have

Lemma 6. |D(0) + |D(1)|+ · · ·+ |D(k − 1)| ≤ (k + 8)|D∗|.

Proof. Note that P (i)b consists of a group of horizontal strips and a group of
vetical strips (Fig. 5). All horizontal strips in P (0)b ∪P (1)b ∪ · · · ∪P (k− 1)b are
disjoint and all vertical strips in P (0)b ∪P (1)b ∪ · · · ∪P (k− 1)b are also disjoint.
Therefore,

k−1∑
i=0

|D∗ ∩ P (i)b| ≤ 2|D∗|.

Fig. 5. Horizontal and Vertical Strips

Hence,

k−1∑
i=0

|D(i)| ≤ (k + 8)|D∗|. �

Set k = �1/(8ε)� and run the following algorithm.
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Algorithm PTAS
Compute D(0), D(1), ..., D(k − 1);
Choose i∗, 0 ≤ i∗ ≤ k − 1 such that
|D(i∗)| = min(|D(0)|, |D(1)|, ..., |D(k − 1)|);

Output D(i∗).

Theorem 1. Algorithm PTAS produces an approximation solution for αMOC-
CDS with size

|D(i∗)| ≤ (1 + ε)|D∗|

and runs in time nO(1/ε4).

Proof. It follows from Lemmas 4 and 6. �

3 Conclusion

We showed that for α ≥ 5, αMOC-CDS has PTAS and leave the problem open
for 1 ≤ α < 5. Actually, how to connect a dominating set into a feasible solution
for αMOC-CDS is the main difficulty for 1 ≤ α < 5. So far, no good method has
been found without increasing too much number of nodes.
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A Primal-Dual Approximation Algorithm for the
Asymmetric Prize-Collecting TSP

Viet Hung Nguyen
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Abstract. We present a primal-dual �log(n)�-approximation algorithm for the
version of the asymmetric prize collecting traveling salesman problem, where the
objective is to find a directed tour that visits a subset of vertices such that the
length of the tour plus the sum of penalties associated with vertices not in the
tour is as small as possible. The previous work on the problem [9] is based on the
Held-Karp relaxation and heuristic methods such as the Frieze et al.’s heuristic [6]
or the recent Asadpour et al.’s heuristic for the ATSP [2]. Depending on which of
the two heuristics is used, it gives respectively 1 + �log(n)� and 3 + 8 log(n)

log(log(n))

as an approximation ratio. Our approximation ratio �log(n)� outperforms the
first in theory and the second in practice. Moreover, unlike the method in [9], our
algorithm is combinatorial.

1 Introduction

Let G = (V,A) be a complete directed graph with the vertex set V = {1, 2, . . . , n} and
the arc set A. We associate with each arc e = (i, j) a cost ce and with each vertex i ∈ V
a nonnegative penalty πi. The arc costs are assumed to satisfy the triangle inequality,
that is, c(i,j) ≤ c(i,k) + c(k,j) for all i, j, k ∈ V . In this paper, we consider a simplified
version of the Asymmetric Prize Collecting Traveling Salesman Problem (APCTSP),
namely, to find a tour that visits a subset of the vertices such that the length of the tour
plus the sum of penalties of all vertices not in the tour is as small as possible. Note that in
the general version of APCTSP, introduced by Balas [4], the arc costs are not assumed
to satisfy the triangle inequality. Furthermore, in [4] associated with each vertex there
is a certain reward or prize, and in the optimization problem one must choose a subset
of vertices to be visited so that the total reward is at least a given a parameterW0.

The Symmetric Prize Collecting Traveling Salesman Problem (SPCTSP) which is the
symmetric version of APCTSP (i.e. when c(i,j) = c(j,i) for all i, j ∈ V ) has been stud-
ied intensively since the work of Balas [4], especially on the design of approximation
algorithms. The first constant approximation algorithm was given by Bienstock et al.
[5] achieves a ratio 5

2 . This algorithm is based on the solution of a linear programming
problem. The second approximation algorithm, developped by Goemans and Willam-
son [8], is purely combinatorial. They presented a general approximation technique for
constrained forest problems, that can be extended to SPCTSP with 2 as approximation
ratio. Recently, Archer et al. [1] and Goemans [7] respectively improve the primal-dual
algorithm of Goemans and Williamson to 1.990283 and 1.91456.

For APCTSP, though exact algorithms was developed in [3], there was no work on
approximation algorithm until the recent Nguyen et al.’s work [9]. The latter is based

W. Wu and O. Daescu (Eds.): COCOA 2010, Part I, LNCS 6508, pp. 260–269, 2010.
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on the Held-Karp relaxation and heuristic methods such as the Frieze et al.’s heuristic
[6] or the recent Asadpour et al.’s heuristic for the ATSP [2]. Depending on which of
the two heuristics is used, it gives respectively 1 + �log(n)� and 3 + 8 log(n)

log(log(n)) as
an approximation ratio. In this paper, we present a primal-dual �log(n)�-approximation
algorithm for APCTSP. This ratio obviously improves 1 + �log(n)� in theory. It also
improves the second ratio in practice since 3+8 log(n)

log(log(n)) is asymptotically better than

�log(n)� but for realistic values of n, 3+8 log(n)
log(log(n)) is at least nearly 3

2 times the value

of �log(n)� (for example when n = 1020, 3 + 8 log(n)
log(log(n)) ≈ 90 and �log(n)� = 67).

Moreover, unlike the method in [9], our algorithm is combinatorial.
The paper is organized as follows. In Section 2, we give an integer formulation for

the problem. Section 3 describes a primal-dual algorithm based on the linear relaxation
of the formulation in Section 2. In Section 4, we prove that the algorithm outputs a
solution for APCTSP which is at most �log(n)� times the optimal solution.

2 Integer Formulation

Let G = (V,A) be directed graph with |V | = n and |A| = m. Each arc a ∈ A is
associated to a cost ca. Each vertex v ∈ V is associated to a penalty πv. The arc cost c
is assumed to satisfy the triangle inequality. Our aim is to find a tour T which minimizes∑

a∈T ca +
∑

v/∈T πv . We consider the following integer formulation inspired from the
undirected version in [5] for APCTSPj , the subproblem of APCTSP when we impose
a specific vertex j to be in T . For every i ∈ V , for every arc a ∈ A, let

yi =
{

1 if i ∈ T
0 otherwise

and xa =
{

1 if a ∈ T
0 otherwise

For every subset S, let δ+(S) be the set of arcs with tail in S and head in V \ S and
δ−(S) be the set of arcs with head in S and tail in V \ S. Then APCTSPj can be
formulated as follows.

minZj =
∑
e∈A

cexe +
∑
i∈V

πi(1− yi)

subject to x(δ+(i)) = x(δ−(i)) = yi ∀i ∈ V , (1)

x(δ+(S)) ≥ yi ∀S ⊂ V \ {j}, |S| ≥ 2 and ∀i ∈ S,(2)

x(δ−(S)) ≥ yi ∀S ⊂ V \ {j}, |S| ≥ 2 and ∀i ∈ S,(3)

yj = 1, (4)

0 ≤ xe ≤ 1 and integer, and 0 ≤ yi ≤ 1 and integer.

The constraints (1) ensure that T is Eulerian and the constraints (2) are the subtour elim-
ination constraints. Note that one of the two families of constraints (2) and (3) is unnec-
essary if the Eulerian constraints (1) are respected since we have always x(δ+(S)) =
x(δ−(S)) for all S ⊂ V \ {j}. But we include both of the constraints (2) and (3)
in the formulation since we will work on a relaxation called (R) where the Eulerian
constraints (1) will be ignored. Precisely, the constraints (1) and (4) are relaxed to
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x(δ+(i)) ≥ yi for all i ∈ V \ {j},
x(δ−(i)) ≥ yi for all i ∈ V \ {j},
x(δ+(j)) ≥ 1,
x(δ−(j)) ≥ 1.

We can regroup the first two constraints with constraints (2) and (3) by allowing |S| = 1
in these constraints. Let C =

∑
i∈V \{j} πi which is a constant, we can then write down

the relaxation (R) as follows:

(R) minZj =
∑
e∈A

cexe −
∑

i∈V \{j}
πiyi + C

subject to x(δ+(j)) ≥ 1, (5)

x(δ−(j)) ≥ 1, (6)

x(δ+(S)) ≥ yi, ∅ 
= S ⊂ V \ {j} and ∀i ∈ S, (7)

x(δ−(S)) ≥ yi, ∅ 
= S ⊂ V \ {j} and ∀i ∈ S, (8)

yi ≤ 1, i ∈ V \ {j} (9)

yi ≥ 0, i ∈ V \ {j}
xe ≥ 0, e ∈ A

Let us introduce the dual variable(s):

– z+
j associated to the constraint (5),

– z−j associated to the constraint (6),

– z+
S,i associated to the constraints (7),

– z−S,i associated to the constraints (8),
– and finally, zi associated to the constraints (9).

then the dual program (D) of (R) can be written as follows:

(D) maxC + z+
j + z−

j −
∑

i∈V \{j}
zi

subject to
∑

S⊂V \{j} s.t. i∈S

(z−
S,i + z+

S,i) + zi ≥ πi ∀i ∈ V \ {j} (10)

∑
S⊂V \{j} s.t. e∈δ−(S)

∑
i∈S

z−
S,i +

∑
S⊂V \{j} s.t. e∈δ+(S)

∑
i∈S

z+
S,i ≤ ce ∀e ∈ A (11)

z+
S,i, z

−
S,i ≥ 0 ∀S ⊂ V \ {j} and ∀i ∈ S

zi ≥ 0 ∀i ∈ V \ {j}
z+

j , z−
j ≥ 0

In the sequel, we will try to find an approximation algorithm for APCTSPj . An approx-
imation algorithm for APCTSP of the same ratio can be simply deduced from approxi-
mating APCTSPj for each j ∈ V .
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3 Primal-Dual Approximation Algorithm

3.1 General Idea of the Algorithm

We will present a primal-dual algorithm that has at most �log2(n)� iterations of dual
augmentation. The algorithm starts with a feasible dual solution of (D):

– z+
S,i = z−S,i = 0 for all i ∈ V \ {j} and for all S ⊂ V \ {j} such that i ∈ S,

– z+
j = z−j = 0.

– zi = πi.

and applies at most �log2(n)� dual augmentations. In the algorithm, we maintain an
arc subset denoted by T which contains the arcs that will constitute our solution for
APCTSPj at the end of the algorithm. At initialization T = ∅, and at each iteration,
based on the current dual feasible solution of (D), we add a set of vertex disjoint sim-
ple cycles to T . Hence, T is always a collection of strongly connected Eulerian compo-
nents. At each iteration of the algorithm, we consider the graph Ḡ obtained from G by
shrinking the vertex subsets of G corresponding to strongly connected Eulerian com-
ponents in T . We define the cost for the arcs in Ḡ with respect to the current reduced
cost. From Ḡ, we build a bipartite graphB and transform the dual augmenting problem
to a minimum cost assignment problem, called (A), in B with respect to the current
reduced cost. We consider the classical linear programming formulation for (A) and
its dual. In particular, we make the correspondence from each dual variable of (A) to
some dual variable of (D). We solve (A) by any known primal-dual algorithm for the
minimum cost assignement problem and assign the value of the dual optimal solution
of (A) to the corresponding dual variable of (D). Note that each dual variable of (D)
will be augmented at most once and after that its value will not be changed until the
end of the algorithm. After each iteration of the algorithm, we add to T a set of arcs
and may eliminate definitely some vertices from the solution tour T . Note that T can
contain a multiplicity of an arc and if a vertex i is eliminated from T , then all the ver-
tices that belong to the same connected component in the subgraph induced by T , will
be also eliminated. Thus there will be no arc of T such that one end-vertex is in T and
the other has been eliminated from T . The algorithm stops when T becomes connected.
As at each iteration, for each strongly connected Eulerian componentH of T , either H
is merged with some other strongly connected Eulerian component of T , or the vertices
in H are eliminated from T , at most �log2(n)� iterations was performed. We prove that
the cost of the arcs added to T in each iteration is at most C∗ (C∗ is the value of an
optimal solution of APCTSPj ). In particular, for the last iteration the cost of the arcs
added to T plus the total penalty associated to the vertices eliminated from T (from the
first iteration to the end) is at most C∗. As T is Eulerian, T is a solution of APCTSPj

and the cost of T is at most �log2(n)�C∗.

3.2 Computed Items and Their Meaning

Let us define the main items that will be computed in the algorithm:

– T is the set of solution arcs.
– VT̄ ⊂ V denotes the set of the vertices which will not be included in T .
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– VT = V \ VT̄ which is the set of the vertices belonging to T .
– Let GT be the subgraph of G with vertex set VT and arc set T .
– p denotes the counter of iterations.
– In the algorithm, we always set

zi = πi −
∑

S⊂V \{j} s.t. i∈S

(z−S,i + z+
S,i)

for all i ∈ V \ {j}.

3.3 Initialization

The algorithm starts with a feasible dual solution:

– z+
S,i = z−S,i = 0 for all i ∈ V \ {j} and for all S ⊂ V \ {j} such that i ∈ S,

– z+
j = z−j = 0 and zi = πi−

∑
S⊂V \{j} s.t. i∈S(z−S,i+z

+
S,i) = πi for all i ∈ V \{j}.

Let us set the reduced cost c̄ = c. Set T = ∅ and VT̄ = ∅. Set VT = V . Set p = 1.

3.4 The pth iteration

The tranformation to an assignment problem. We build a graph Ḡp = (V̄ p, Āp)
where the vertices in V̄ p correspond to the strongly connected components in GT .
Hence a vertex in Ḡp is either a vertex in G or a pseudo-vertex corresponding to a
vertex subset S ⊆ VT . Note that the subsets associated to the pseudo-vertices in Ḡp are
pairwise disjoint. The arcs in Āp are formed as follows:

– for any two vertices i and k which are in bothG and Ḡp, if there is an arc (i, k) ∈ A
then there is also an arc (i, k) ∈ Āp. The cost of (i, k) in Ḡp is the reduced cost
c̄(i,k).

– for a vertex i in both G and Ḡp and a pseudo-vertex s in Ḡp corresponding to a
subset S ⊆ VT , there is an arc (s, i) ∈ Āp if there exists at least one arc (k, i) ∈ A
with k ∈ S. Let the cost of (s, i), c̄(s,i) = min{c̄(k,i) | k ∈ S and (k, i) ∈ A}. Any
arc (k, i) ∈ A with k ∈ S of reduced cost equal to c̄(s,i) is called representative arc
of (s, i).

– for two pseudo-vertices s and t corresponding to respectively the disjoint subsets S
andT , there is an arc (s, t) ∈ Āp if there exists at least one arc (k, i) ∈ Awith k ∈ S
and i ∈ T . Let the cost of (s, t), c̄(s,t) = min{c̄(k,i) | k ∈ S, i ∈ T and (k, i) ∈ A}.
Any arc (k, i) ∈ A with k ∈ S and i ∈ T of reduced cost equal to c̄(s,t) is called
representative arc of (s, t).

Note that at initialization Ḡp is just a copy of G and the reduced costs c̄ is equal to the
original cost c and zi is the penalty πi for all i ∈ V \ {j}.

From Ḡp, we form a bipartite graph B = (VB, AB) as follows:

– For the vertex in Ḡp containing j, we create two vertices j+ (positive vertex) and
j− (negative vertex) in B and an arc (j+, j−) of cost 0.
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– For each vertex i ∈ V̄ \ {j}, we create four vertices i+, M+
i (positive vertices) and

i−, M−
i (negative vertices) in B. We create three arcs (M+

i , i
−), (i+,M−

i ) and
(M+

i ,M
−
i ). The cost c̄(M+

i ,M−
i ) of (M+

i ,M
−
i ) is assigned to 0. If i is a pseudo-

vertex corresponding to a subset S ⊆ V \{j}, then the costs c̄(M+
i ,i−) and c̄(i+,M−

i )

are assigned to the same value being equal to zi/2 (note that we could also set
z+

Si,k
= λzi and z−Si,k

= (1− λ)zi for any 0 < λ < 1).
– For any two distinct vertices i, k ∈ V̄ , if Ḡp contains an arc (i, k) with cost c̄(i,k),

we create an arc (i+, k−) in B with the same cost. Similarly, if Ḡp contains an arc
(k, i) with cost c̄(k,i), we create an arc (k+, i−) in B with the same cost.

Remark 1. B is a bipartite graph with the positive vertices in a side and the negative
vertices in the other.

Let B+ and B− be respectively the set of positive and negative vertices in B.

Remark 2. The number of positive vertices is equal to the number of the negative ver-
tices, i.e. |B+| = |B−|.

We consider the assignment problem in B which aims at finding the minimum cost as-
signment of the positive vertices to the negative ones. The classical linear programming
formulation for the assignment problem is

(A)min
∑

e∈AB

c̄eχe

subject to∑
e∈δ+(i)

χe = 1 for all i ∈ B+ (12)

∑
e∈δ−(i)

χe = 1 for all i ∈ B− (13)

χe ≥ 0 for all e ∈ AB (14)

and it’s dual is

(DA)min
∑

i∈B+

ui +
∑

k∈B−
vk

subject to

ui + vk ≤ c̄(i,k) for all (i, k) ∈ AB (15)

Applying any primal-dual algorithm for this assignment problem, we obtain a primal
optimal solution χ∗ and its corresponding dual optimal solution u∗ and v∗.

Updating the dual feasible solution of (D) and the sets T , VT̄ . In the solution χ∗,
for each pair of vertices M+

i and M−
i with i ∈ V̄ p \ {j}, there are two possible cases:

1. M+
i is assigned to M−

i . Then i+ and i− are respectively assigned to the vertices
which are not M -vertices, i.e. the strongly connected component containing i will
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be merged with another strongly connected component in GT . Let Si be the subset
represented by i (Si = {i} when i is not a pseudo-vertex). Suppose that i+ is
assigned to some vertex h− and i− is assigned to some vertex k+, we choose any
representative arc e+i = (i′, h′) of (i, h) and any representative arc e−i = (k′′, i′′) of
(k, i). Set z+

Si,i′ = u∗i and z−Si,i′′ = v∗i . Set T = T ∪{e+i , e−i }. If i is pseudo-vertex
and i′ 
= i′′, let Pi′′,i′ be the path from i′′ to i′ in T , let us set T = T ∪ Pi′′,i′ .

2. M−
i is assigned to i+ and M+

i is assigned to i−. In this case, i will be eliminated
from T , i.e. iwill not be visited by T . If i is not a pseudo-vertex, set VT̄ = VT̄ ∪{i}.
Otherwise, i.e. i is a pseudo-vertex in Ḡp representing a vertex subset Si, all the
vertices in Si are eliminated from T, i.e. we set VT̄ = VT̄ ∪ Si. For all k ∈ Si, let
us set z+

Si,k
= zk/2 and z−Si,k

= zk/2.

For the vertex j, there are also two following possible cases:

1. j+ is assigned to j−. The dual variables u∗j and v∗j are necessary equal to 0, there
is no updating operation.

2. j+is assigned to some vertex h− and j− is assigned to some vertex k+. Let Sj

be the subset represented by j, let S̄j = V \ Sj . Let us choose e+j = (j′, h′) any
representative arc of (j, h) and e−j = (k′′, j′′) any representative arc of (k, j). Set
T = T ∪ {e+j , e−j }. We set z−

S̄j,h′ = u∗j and z+
S̄j,k′′ = v∗j . If j′′ 
= j′, let Pj′′,j′ be

the path from j′′ to j′ in T , let us set T = T ∪ Pj′′,j′ .

For all i ∈ V \ {j}, we update zi by the formula:

zi = πi −
∑

S⊂V \{j} s.t. i∈S

(z−S,i + z+
S,i).

If T is connected, output T , z and STOP. Otherwise, set p = p+ 1 and reiterate.

3.5 Analysis of the Algorithm

Lemma 1. There are at most �log2(n)� iterations.

Proof. At pth iteration, for any vertex i in V̄ p,

– either i belongs to a (non trivial) strongly connected Eulerian component which
will shrink into a pseudo-vertex in the next iteration,

– or i will be added to VT̄ .

and the vertices in V̄ p+1 are the pseudo vertices corresponding to the (non trivial)
strongly connected components in Ḡp. Hence, |V̄ p+1| ≤ 1

2 |V̄ p|.

Proposition 1. For an arc (i, k) in T , we have∑
S⊂V \{j} s.t. i∈S and k/∈S

z+
S,i +

∑
S⊂V \{j} s.t. k∈S and i/∈S

z−S,k = c(i,k)



A Primal-Dual Approximation Algorithm for the Asymmetric Prize-Collecting TSP 267

T after Iteration 2

Initialization Iteration 1 : arcs added to T and
an eliminated vertex

solution of the assignment problem
and the arcs corresponding to the 
The cycles in Iteration 1 are shrinked
Iteration 2

A view with the pseudo vertices unshrinked

The arcs added to T in Iteration 2

Fig. 1. An example of how arcs are added to T

Proof. Let consider the moment when (i, k) was added for the first time to T in the al-
gorithm, let Si (respectively Sk) be the vertex subset of the strongly connected Eulerian
component containing i (respectively k). At that moment the value of the dual variables
z+

Si,i
and z−Sk,k was updated such that∑

S⊂V \{j} s.t. i∈S and k/∈S

z+
S,i +

∑
S⊂V \{j} s.t. k∈S and i/∈S

z−S,k = c(i,k) (16)

After that, since Si and Sk are going to be merged and so i and k are going to be in the
same strongly connected Eulerian component, no dual variable z+

S,i such that i ∈ S and
k /∈ S or z−S,k such that k ∈ S and i /∈ S will be updated. Hence, (16) remains true until
the end of the algorithm.

Proposition 2. If a vertex i is eliminated from T then zi = 0.

Proof. Directly by construction.

Proposition 3. At the end of each iteration, the dual variables are always feasible.
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Proof. By the definition of costs in the transformation to the assignment problem which
always take the minimum reduced cost, we can see that dual augmentation in each
iteration always respect the reduced costs.

Proposition 4. In every iteration, the set of arcs added to T is a collection of disjoint
simple cycles.

Proof. Directly by construction.

Corollary 1. The algorithm outputs a T which is Eulerian and hence can be trans-
formed (under the assumption of metric costs) to a tour without additional cost.

For the analysis of the algorithm performance, for all iterations except the last, we will
estimate only the cost of the arcs added to T . The penalty associated with the eliminated
vertices (in all the iterations) will be regrouped with the the arcs added to T in the last
iteration to be estimated together.

Lemma 2. For every iteration except the last, the total cost of the arcs added to T at
this iteration is at most C∗.

Proof. Let z be the dual feasible solution of (D) output by the algorithm. Let us con-
sider the pth iteration which is not the last. Let us build a dual feasible solution zp as
follows.

Case 1. For each arc (i, k) added to T at the pth iteration, for every subset S ⊂ V \{j}
such that i ∈ S and k /∈ S, set zp+

S,i = z+
S,i and for every subset S′ ⊂ V \ {j} such

that k ∈ S′ and i /∈ S′, set zp−S′,k = z−S′,k.
Case 2. All the other variables of type zp+

S,i or zp−S,i, which are not set in Case 1., are
set to 0.

Case 3. Set zpi = πi −
∑

S⊂V \{j} s.t. i∈S(zp−S,i + zp+
S,i) for all i ∈ V \ {j}.

We can see easily that the vector zp with the components built as above is feasible for
(D) and by Proposition 1 the cost of zp is equal to the cost of the arc add to T in the
pth iteration. This cost is obviously at most C∗.

Lemma 3. For the last iteration, the cost of the arcs added to T at this iteration plus
the penalties associated to the vertices eliminated from T (from the first iteration) is at
most C∗.

Proof. The proof is quite similar to the one for Lemma 2. Given z, let us build a dual
feasible solution zl as follows.

Case 1. For each arc (i, k) added to T at the last iteration, for every subset S ⊂ V \{j}
such that i ∈ S and k /∈ S, set zl+S,i = z+

S,i and for every subset S′ ⊂ V \ {j} such
that k ∈ S′ and i /∈ S′, set zl−S′,k = z−S′,k.

Case 2. For each vertex i not in T , for every subset S ⊂ V \ {j} such that i ∈ S, set
zl+S,i = z+

S,i and zl−S,i = z−S,i.
Case 3. All the other variables of type zl+S,i or zl−S,i, which are not set in Case 1. and

Case 2., are set to 0.
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Case 4. Set zli = πi −
∑

S⊂V \{j} s.t. i∈S(zl−S,i + zl+S,i) for all i ∈ V \ {j}.

Obviously, the vector zl with the components built as above is feasible for (D) and by
Propositions 1 and 2 the cost of zl is equal to the cost of the arc added to T in the pth

iteration plus the penalties associated to the vertices not in T . This cost is obviously at
most C∗.

Theorem 1. The cost of T plus the penalties associated to the vertices eliminated from
T is at most �log(n)�C∗.

Proof. The theorem is a direct consequence of Lemmas 2 and 3.

4 Conclusions

Since the asymmetric TSP is a special case of the APCTSP, the algorithm described
in this paper can be viewed as a primal-dual �log(n)�-approximation algorithm for
the asymmetric TSP. It is the first combinatorial algorithm for APCTSP achieving the
same approximation ratio as the best combinatorial approximation algorithm for the
asymmetric TSP by Frieze et al. [6]. This ratio improves the approximation ratio 1 +
�log(n)� given in [9] and is (for reasonable values of n) substantially smaller than the
ratio 3 + 8 log(n)

log(log(n)) which can be obtained if in the algorithm in [9], we use the recent
algorithm for asymmetric TSP by Asadpour et al. [2]. In our opinion, it is interesting
for further works to derive a combinatorial algorithm for both the asymmetric TSP
and the APCTSP achieving an approximation ratio which is asymptotically better than
�log(n)�.
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Abstract. We present several algorithms for computing a feasible tool-
path with desired features for sculpting a given surface using a 5-axis
numerically controlled (NC) machine in computer-aided manufacturing.
A toolpath specifies the orientation of a cutting tool at each point of a
path taken by the tool. Previous algorithms are all heuristics with no
quality guarantee of solutions and with no analysis of the running time.
We present optimal quality solutions and provide time analysis for our
algorithms. We model the problems using a directed, layered graph G
such that a feasible toolpath corresponds to a certain path in G, and
give efficient methods for solving several path problems in such graphs.

1 Introduction

In this paper, we study the feasible toolpath problem in computer-aided man-
ufacturing. Given a surface F and an already specified sculpting path C, we
develop new methods for computing feasible toolpaths with desired features for
manufacturing F using a 5-axis numerically controlled (NC) machine. A feasible
toolpath is a sequence of tool orientations (angles) at the points on the path C
that allow the sculpting of F without collision with the surface or with the ma-
chine and obey a given limit on the angular changes in the orientations between
consecutive points on C (called the angular change constraint).

Depending on the number of degrees of freedom, NC machines are classified as
3-, 4-, or 5-axis. For decades, before the introduction of 5-axis machines, research
was focused on programming 3- and 4-axis machines. Unfortunately, the algo-
rithms developed for those (older) machines, and adopted for 5-axis machines,
produce toolpaths that may include rapid changes in the tool’s orientations
between consecutive path points that are impossible to achieve in practice by
5-axis machines. Thus, computing feasible toolpaths for 5-axis machines has be-
come an important problem in NC machine programming. For the accuracy of
the sculpting process (when using a flat-end tool), it is often desirable that the
tool accesses F at a best possible angle [4,17,21], i.e., the tool’s orientation vector
at a point p is as close as possible to the vector normal to F at p. The greater
� The research of this author was supported in part by the National Science Foundation
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the angle between these two vectors, the greater the height of the unwanted
material left on the surface after sculpting. To minimize the unwanted material,
this angle should be minimized at each path point. A feasible toolpath satisfying
this additional requirement is called a maximum accuracy feasible toolpath.

The problem of finding feasible toolpaths for 5-axis NC machines has been
studied by many researchers [2,8,9,16,17,18,20,21]. A common approach is based
on “toolpath smoothing” techniques [2,8,9,16,17,18] that aim to reduce the an-
gular changes of an already found toolpath. Ho et al. [16] used a quaternion
interpolation algorithm. Jun et al. [17] utilized a configuration space that in-
cludes tool orientation angles. Morishige et al. [18] applied a configuration space
to find two (forward and backward) toolpaths and pick the one with smaller an-
gular changes. A main drawback of the smoothing techniques is that even though
changes in tool orientations are made less abrupt, the resulting toolpaths may
still be infeasible — these techniques do not guarantee that the angular changes
respect the machine limits. Another method, by Wang and Tang [20,21], uses
visibility maps to find toolpaths that obey the angular change constraint [20],
and uses iso-conic partitioning to find maximum accuracy feasible toolpaths [21].

To facilitate computerized treatment of surfaces, a discretized approximate
representation of the surfaces, called free-form surfaces, is commonly used in
practice (see Section 2 for more details). A configuration space is utilized to
capture the possible tool positions that allow the tool to sculpt the surface
without collisions. However, due to the complex shapes of the tools, machines,
and surfaces, analytically computing toolpaths is nearly impossible. In most
computations, discrete configuration spaces, or called discrete visibility maps,
are instead used [2,17,20,21]. Such discrete representations also help to speed up
the computation and offer flexibility in adjusting the granularity of the discrete
division of the configuration space domain (e.g., into certain grid structures).

Inspired by Wang and Tang’s studies [20,21], we also utilize discrete visibility
maps. But, our approaches for computing feasible toolpaths are quite differ-
ent: We use geometric and graph models and techniques. While the methods
in [20,21] are heuristics with no quality guarantee of solutions and no analysis
of the running time, we ensure optimal quality solutions and analyze the time
complexity for all our algorithms. Our main results are as follows.

– An O(kn) time algorithm for finding a feasible toolpath, where n is the
number of points on C and k is the visibility map size for each point ci ∈ C.

– An O(kn) time algorithm for finding a maximum accuracy toolpath, if one
such path exists; otherwise, an O(ln2 + kn2) time algorithm for finding the
minimum number of such paths whose union covers C, where 1 < l ≤ n is
the minimum number of paths needed.

We use a graph model to capture the problem constraints and the optimization
criterion. Our graph G = (V,E) is layered, directed, and acyclic. The size of
the graph depends on the number of contact points, n, on C and the size, k, of
the visibility map (i.e., the discrete grid of possible tool orientations) for each
point on C: |V | = O(nk) and |E| = O(nk2). The feasible toolpaths correspond
to certain (shortest) paths between the first and last layers of the graph. To
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solve the toolpath problem variants, we present several efficient path algorithms
on such layered graphs. In most cases, we significantly reduce the time bounds
for computing various paths over the standard path approach. In fact, we use
the graph only as a conceptual model and do not explicitly build it. Instead, we
exploit the geometric structures of the graph and utilize a number of interesting
geometric and graph techniques for much faster solutions. Our methods could
find applications to other problems with similar geometric or graph structures.

2 Preliminaries

A free-form surface F is a surface that describes the shape of a manufactured
product using a discrete representation [22]. In this representation, a surface
F = (X,N) in R3 is defined by a set of points, X = {x1, . . . , xf}, on F and
the set of unit vectors, N = {n1, . . . ,nf}, normal to F at the points of X . We
assume that the tool’s path is already given as a piecewise-linear contact curve
C = (c1, . . . , cn), where ci ∈ X , 1 ≤ i ≤ n.

A convenient representation of F for modeling NC machining problems is
a spherical representation [22]. A spherical representation FS = (XS , NS) of
F = (X,N), also called the Gaussian image of F , is a set of points, XS =
{p1, p2, . . . }, on a unit sphere S0 centered at the origin in R3 that are the heads
of the unit vectors, NS = {p1,p2, . . .}, starting at the origin and corresponding
to the vectors in N (i.e., the direction of a vector ni ∈ N is the same as that
of a vector pj ∈ NS). For example, the spherical representation of a sphere is
the entire unit sphere S0, the spherical representation of a cylinder is a great
circle of S0, and the spherical representation of a cube is a set of six points on
S0 representing the directions of the cube’s six faces. The advantage of using a
spherical representation of F is that the set of directions from each of which a
point x on F can be accessed by a tool can also be represented by a set of points
on S0. Such a set of points (or directions) is called a visibility map [22] of the
point x. (For more details of the spherical representations and visibility maps,
see [7,13,20].) We assume that, together with C, the set A = {A(c1), . . . ,A(cn)}
is already given, where A(ci) ⊂ S0 (A(ci) 
= ∅) is the visibility map of ci ∈ C.

Since the distance of any point v ∈ A(ci) from the origin is 1, using the
spherical coordinates, v can be uniquely represented by a pair of angles (α, β),
with α ∈ [0, π] and β ∈ [0, 2π]. Let θ be the machine-specific precision limit on
the difference in the tool’s orientations between any two consecutive points on
C. Then, the feasible toolpath problem is formally defined as follows.

Feasible Toolpath (FT) Problem. Given a free-form surface F = (X,N),
a contact curve C = (c1, . . . , cn) with ci ∈ X, a set A of nonempty visibility
maps, and a machine-specific real value θ, determine a feasible toolpath T =
(v∗

1, . . . ,v
∗
n), where v∗

i is a tool orientation at ci ∈ C, for i = 1, . . . , n, such that

1. T satisfies the accessibility constraint, i.e., v∗
i ∈ A(ci) for i = 1, . . . , n, and

2. T satisfies the angular change constraint, i.e., if v∗i−1 = (α∗
i−1, β

∗
i−1) and

v∗i = (α∗
i , β

∗
i ) are the feasible sculpting directions for ci−1 and ci, then |α∗

i −
α∗

i−1| ≤ θ and |β∗
i − β∗

i−1| ≤ θ, for i = 2, . . . , n.
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If a single feasible toolpath does not exist, then determine the minimum number
of feasible toolpaths whose union covers C.

In the maximum accuracy (MaxA) toolpath problem, we seek a feasible toolpath
that additionally maximizes the accuracy of the sculpting by minimizing the sum
of the differences between the tool’s orientation and the vector normal to the
surface at each contact point of C. Let M(v,w) denote the angular difference
between the vectors v and w. Such angular differences can be measured using,
for example, the maximum metric, the L1 metric, or the absolute value of the
angle between the two vectors. The selection of a metric may depend on the
technical details and requirements of a specific NC machine. With this additional
requirement, the MaxA toolpath problem is defined as follows.

Maximum Accuracy (MaxA) Toolpath Problem. Let M(vi,pi) be the an-
gular difference between the tool’s orientation vi at ci and the unit vector pi

normal to F at ci. Compute a feasible toolpath T = (v∗
1, . . . ,v

∗
n) under the max-

imum accuracy criterion:

(v∗
1, . . . ,v

∗
n) = arg min

(v1,...,vn)∈A(c1)×···×A(cn)

{
n∑

i=1

M(vi,pi)

}
. (1)

If a single optimal toolpath does not exist, then determine the minimum number
of optimal toolpaths whose union covers C.

To solve the FT and MaxA problems, we use a geometric structure underlying
a graph model that captures the accessibility and angular change constraints.
Since a point v ∈ S0 is uniquely represented by a pair of angles (α, β), with
α ∈ [0, π] and β ∈ [0, 2π], a visibility map A(ci) lies on a [0, π]× [0, 2π] rectangle
in the (α, β)-plane. We represent a visibility map as a discrete set of points;
hence the angle ranges [0, π] and [0, 2π] are divided into m and 2m angle direc-
tions, respectively (the granularity, i.e., value of m, may depend on the repre-
sentation of F and the physical precision of the machine). Hence, geometrically,
each A(ci) lies on an m × 2m rectangular grid Ri consisting of 2m2 cells rkl

i ,
where rkl

i ∈ Ri corresponds to a pair of angles (αk
i , β

l
i) and represents either

an “accessible” direction of the tool at ci (vkl
i ∈ A(ci)), or is “forbidden” due

to possible collisions. Let Ai be the set of cells of Ri representing the accessi-
ble directions of A(ci) (see Fig. 1(a)). The sequence of accessibility rectangles,
R = {R1, . . . , Rn}, for the contact points on C forms a “stack” of rectangles (or
layers), as in Fig. 1(b). Thus, the accessibility constraint for feasible toolpaths
is specified by A = {A1, . . . , An}. The angular change constraint is reflected in
the following definition.

Definition 1. For any r = (αr , βr) ∈ Rj−1, the square of successors of r, S(r),
is the set of all cells on Rj corresponding to the directions for sculpting F at
cj that can be selected without violating the angular change constraint if the
orientation of the tool at cj−1 corresponds to r. That is,

S(r) = {q = (αq, βq) : q ∈ Rj , |αq − αr| ≤ θ, and |βq − βr| ≤ θ}.
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(a) (b) n

R1
R
R3

2

R (c) jR

j−1R

Fig. 1. (a) The accessibility rectangle Ri with accessible (shaded) and forbidden (clear)
orientations of the visibility map A(ci). (b) A “stack” of the Ri’s. (c) The square of
all possible angle directions on Rj for a cell on Rj−1.

The set S(r) forms a square of cells on Rj (e.g., see Fig. 1(c)).
Our graph model capturing the constraints is quite intuitive. The stack of the

rectangles (layers), R = {R1, . . . , Rn}, forms a 3-D grid for embedding a graph
G = (V,E). The set A = {A1, . . . , An} defines the vertices in V (each cell r ∈ Aj

corresponds to a vertex vr in V ; each Aj defines a layer Vj of vertices), and the
relation S defines the directed edges in E ((vr, vq) ∈ E if and only if vr ∈ Vj−1,
vq ∈ Vj , and q ∈ S(r)). Hence, G is a layered directed acyclic (3-D grid) graph,
with |V | = O(nm2) vertices and, in the worst case, |E| = O(nm4) edges, where
n is the number of points on C and |Ai| = O(m2) for all i = 1, . . . , n.

To extend the graph model to the MaxA problem, we assign weights to the
vertices of G so that w(vj) = M(vj ,nj) is the angular difference between the
tool orientation vj at cj and the vector nj normal to F at cj .

Since a feasible toolpath is a sequence of feasible orientations, one for each
ci, satisfying the angular change constraint, it corresponds to a path in (the
unweighted) G from a vertex of V1 to a vertex of Vn. A feasible toolpath that
additionally satisfies the maximum accuracy requirement corresponds to a short-
est path in the respective weighted graph. Even though very intuitive, this graph
model does not lend itself to the most efficient solutions for the problems. Instead,
we exploit the geometric structures of the graph and use geometric methods.

3 The Feasible Toolpath (FT) Problem

A feasible toolpath T corresponds to a path from layer V1 to layer Vn in the
unweighted graph G = (V,E) as defined in Section 2. If we add to G a source
vertex s and directed unweighted edges from s to all vertices on V1, then by using
a standard method to find a path from s to any vertex on Vn, we would obtain T
in O(|V |+|E|) = O(nm4) time. We significantly reduce this time bound by using
an efficient discrete sweeping method that exploits the geometric structures of
G. Our algorithm takes O(mn+K+L) time, where K and L are some structural
parameters of the problem and are O(nm2) in the worst case. Even in the worst
case when K,L = O(nm2), our algorithm takes O(nm2) = O(|V |) time.

3.1 The Feasible Toolpath Algorithm (FTA)

For now, we assume that a single feasible toolpath T exists. If this is not the
case, then we show in Section 3.3 how to find the minimum number of feasible
toolpaths whose union covers C.
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Fig. 2. (a) The six points in Uj−1 are labeled based on the lexicographical order; the
thick vertical segment is the initial (rightmost) boundary curve. (b) The first three
squares have been visited and the boundary curve (thick vertical segments) updated
accordingly. The arrows show the depths of the examined rows of S(4). (c) Square S(6)
is being visited; only some of its rows are examined. (d) The diagonal band is Aj ; the
shaded polygonal areas within the union of squares inside Aj form Uj .

Our idea for finding T is similar to that of growing a “breadth-first search”
tree in G rooted at the source vertex s: For each layer Rj , we determine the set
of cells in Rj reachable from s, called the feasible set of Rj and denoted by Uj .
Clearly, U1 = A1. T exists if Un 
= ∅ for the last layer Rn.

By Definition 1, for any cell r ∈ Rj−1, we define the square of successors (cells),
S(r) ⊆ Rj , of r. Here we extend this concept to any subset W of Rj−1. For a
subset W ⊆ Rj−1, let S(W ) =

⋃
r∈W S(r) ⊆ Rj . For r ∈ Rj−1 and W ⊆ Rj−1,

let E(r) = S(r) ∩Aj be the permissible image of r, and E(W ) = S(W ) ∩Aj be
the permissible image of W .

The cells in E(r) and E(W ) satisfy both the accessibility and angular change
constraints as the tool goes from cj−1 to cj . An easy induction on j shows that

Uj =

{
A1 for j = 1,
E(Uj−1) for j = 2, . . . , n.

(2)

Using (2), we successively compute each of U1, U2, . . . , Un. If Un 
= ∅, then T =
(r∗1 , . . . , r∗n) can be obtained easily by standard path reporting techniques.

Thus, the key task for our feasible toolpath algorithm (FTA) is: Given
Uj−1, compute Uj efficiently, for each j = 2, . . . , n. This task is performed by
the feasible set procedure (F-SET) in the next section.

3.2 The Feasible Set Procedure (F-SET)

Given Uj−1, the procedure F-SET computes the feasible set Uj . By (2), Uj =

E(Uj−1) = Aj ∩ S(Uj−1) = Aj ∩
(⋃

r∈Uj−1
S(r)

)
. Thus, Uj is the intersection

of the union of squares for all cells in Uj−1 and the set Aj (e.g., see Fig. 2(d)).
Determining Uj is related to Klee’s measure problem in 2-D [1,3,19], which

computes the area of the union of a set of axis-aligned rectangles on the plane.
Bentley solved this problem in optimal O(N logN) time for N rectangles [3],
based on a plane sweeping approach using a segment tree. There are some differ-
ences between Klee’s measure problem in 2-D and our problem. A main difference
is that instead of computing the area of the union, we need to find the union
itself. Furthermore, the cells in the union S(Uj−1) that are not in Aj must be
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excluded from S(Uj−1) to yield the set Uj. Also, our problem is on a discrete do-
main (a 2-D grid), and our rectangles are all squares of the same size. Therefore,
we apply a different plane sweeping method than [3].

A goal of our sweeping is to construct Uj in a time proportional to |Uj |.
To find Uj , we add to the union, one by one, each square S(r), for r ∈ Uj−1,
examine (sweep) the cells of S(r), and add to Uj only those cells that belong
to Aj . To achieve efficiency, during the sweep, we must avoid repeated visits to
the cells that have already been visited. This is crucial since the overlap among
the squares in the union may be significant. We avoid repeated examination of
cells by using a careful sweeping order and the fact that all squares S(r) have
the same size. Our sweeping order includes both the order in which we visit the
squares and the order in which we visit the cells in each square. We also keep
track of the rightmost boundary, called the boundary curve, of the current union.

We first sort the cells of Uj−1 in the lexicographical order (left-to-right,
and then top-to-bottom) based on their coordinates: r1 = (α1, β1) < r2 =
(α2, β2) iff α1 < α2 or (α1 = α2 and β1 < β2). This takes O(m + |Uj−1|)
time using bucket-sort [10]. In Fig. 2(a), the six points of Uj−1 are numbered in
this order. Let p1, p2, . . . , pkj−1 be the list of cells of Uj−1 in this sorted order.
In this order, we successively add the squares S(p1), S(p2), . . . , S(pkj−1) to the
union S(Uj−1). When a square S(pi) is being added, we visit its cells row by
row, starting from the bottom row and up. Each row is visited from right to left.
If a visited cell qih

∈ S(pi) is in Aj , it is added to Uj (which is stored in an array
Uj [1 . . . kj ]). To avoid repeated examination of the cells, we use a boundary curve
array, Ba[1 . . .m], which maintains the rightmost boundary curve of the current
union in Rj ; Ba holds the (α, β) positions (row and column) of the boundary
curve such that Ba[α] = β. When a new square S(p) is added to the union and
its cells are examined, the array Ba is updated by modifying the values for the
rows containing “new cells” from S(p): If the rightmost cell of S(p) in row α0 lies
in column β0 and is added to the union, then Ba[α0] = β0. Due to our order of
adding squares, when a new square is added, no cell to the left of the boundary
curve needs to be examined. Initially, the boundary array holds a value “−1”
for each row, indicating that no cell of Rj is swept yet. In Fig. 2(a), the thick
vertical segment marks the initial boundary curve; in Fig. 2(b)-(c), the boundary
curve is updated after adding S(1), S(2), S(3), S(4), and S(5).

When a square S(p) is added, it is either disjoint from the current union U ′
j or

overlaps with U ′
j. If it is disjoint, then all its cells are examined. Otherwise, we

use the boundary array to limit the sweeping to only the cells in S(p)− U ′
j. We

stop examining the cells of a row whenever we encounter a cell c that lies on the
boundary curve (see Fig. 2(b)). Furthermore, if the cell c on the boundary curve
is the first (rightmost) cell of a row of S(p), we stop examining S(p) altogether
(see Fig. 2(c)).

The F-SET procedure also produces a parent set Pj , such that par(q) ∈ Pj ⊆
Uj−1 is a parent cell of a cell q ∈ Uj . The parent cells are used to report T (by a
standard path reporting technique). For example, a parent for a cell q ∈ Uj can
be the center cell pi ∈ Uj−1 of any square S(pi) containing q.
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3.3 Computing the Minimum Number of Feasible Toolpaths

If a single toolpath T covering C does not exist, i.e., Uj = ∅ for some j ≤ n, then
we need to find the minimum number of feasible toolpaths, T1, . . . , Tl, whose
union T = T1 ∪ · · · ∪ Tl covers C. We first introduce the following definition.

Definition 2. Let I = (i0 = 1, i1, i2, . . . , il−1, il = n) be a sequence of indices
such that ij ∈ {1, . . . , n} and ij−1 < ij for all j = 1, . . . , l. For any i ≤ j, let
Ui,j be the permissible image of Rj by starting the F-SET computation at Ri

(for the subsequence of contact points Ci,j = (ci, . . . , cj) ⊆ C). Then I is called a
path sequence if U1,i1 , Ui1+1,i2 , . . ., Uih−1+1,ih

, . . ., Uil−1+1,n are all non-empty.

If Uih−1+1,ih

= ∅, then by using the feasible toolpath algorithm, we can find a fea-

sible toolpath Th = Tih−1+1,ih
for the subsequence Cih−1+1,ih

= (cih−1+1, . . . , cih
)

of C. Thus, to obtain the minimum number of feasible toolpaths whose union
covers C, it suffices to find a path sequence of the minimum size.

To produce a minimum size path sequence, we apply the greedy method. We
run the feasible toolpath algorithm starting at R1 and until the first Uj = ∅ is
met, for some 1 < j ≤ n, and construct the first feasible toolpath T1 = Ti0,i1

(with i1 = j−1). We then repeat this process, starting with Rj as the first layer
and until either an empty Uj′ is encountered or a non-empty Un is reached. The
union of feasible toolpaths thus computed, T = T1, . . . , Tl, covers C and utilizes
the minimum number of paths. If the size of the resulting path sequence is l,
then the sculpting of F along C will require at least l − 1 repositionings of the
tool (e.g., for the different segments of the toolpath T ).

3.4 Time Complexity of the Feasible Toolpath Algorithm

Let |Uj−1| = kj−1 and |S(Uj−1)| = lj . Using bucket-sort [10], the cells of Uj−1
are sorted in O(m+kj−1) time. Since each cell of S(Uj−1) is visited only once and
the operations on each visited cell can be performed in O(1) time, it takes O(lj)
time to examine all cells in S(Uj−1). Thus, given Uj−1, the F-SET procedure
computes Uj in O(m+kj−1 + lj) time. From U1, the feasible toolpath algorithm
applies the F-SET procedure n− 1 times to compute U2, U3, . . . , Un, in O(m +
k1 + l2) + O(m + k2 + l3) + · · · + O(m + kn−1 + ln) = O(mn + K + L) time,
whereK =

∑n−1
i=1 ki and L =

∑n
i=2 li. Finally, by using the parent cells, a feasible

toolpath T = (r∗1 , r
∗
2 , . . . , r

∗
n) is reported in O(n) time. Hence, computing a single

feasible toolpath (if one exists) takes O(mn+K + L)) time. If a single feasible
toolpath does not exist, then the greedy algorithm produces l path segments for
T with the smallest possible value l, yet its total running time is the same as for
finding one single feasible toolpath. That is, it also takes O(mn +K + L) time
in this case. It should be noted that the total input size of the discrete visibility
maps,

∑n
i=1 |Ai| =

∑n
i=1 |A(ci)|, is O(nm2) in the worst case.

We summarize these results in the next theorem.

Theorem 1. Given a contact curve C = (c1, . . . , cn) and a sequence A = (A1,
. . . , An), where Ai 
= ∅ corresponds to the discrete visibility map for the point ci ∈
C and |Ai| = O(m2), the feasible toolpath problem can be solved in O(mn+K+L)
time, where K,L = O(nm2) in the worst case.
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Even in the worst case with K,L = O(nm2) for which our feasible toolpath algo-
rithm takes O(nm2) time, it is still a significant improvement over the O(nm4)
time solution applying standard path finding techniques to the graph G.

4 The Maximum Accuracy (MaxA) Toolpath Problem

A MaxA solution is a feasible toolpath T such that the sum of the differences
between the tool’s orientation at each contact point ci ∈ C and the vector normal
to F at ci is minimized. It is equivalent to a minimum total weight path from
layer V1 to layer Vn in the directed graph G = (V,E) with non-negative vertex
weights defined in Section 2. Using standard shortest path techniques, MaxA can
be solved in O(|E|+ |V |) = O(nm4) time. To obtain a faster solution, we extend
the feasible toolpath algorithm in Section 3 and give an O(mn + K + L) time
algorithm for the single toolpath case, where K,L = O(nm2) in the worst case.
Again, we show first how to solve the problem when a single feasible toolpath
exists (Sections 4.1 and 4.2), and then how to find the minimum number of
toolpaths if a single toolpath does not exist (Section 4.3).

4.1 The Maximum Accuracy Feasible Toolpath Algorithm
(MaxA-FTA)

A feasible MaxA toolpath Ť optimizes the maximum accuracy criterion (1).
To capture this criterion in computing Ť , to each cell r ∈ Ai, we assign a
weight w(r), where w(r) = M(vr,pi) is the angular difference between the tool’s
orientation vr at ci corresponding to the cell r and the unit vector pi normal to F
at ci. Then, a feasible toolpath Ť = (r∗1 , . . . , r∗n) is a solution to MaxA if w(Ť ) =∑n

i=1 w(r∗i ), the total weight of Ť , is minimized over all feasible toolpaths. We
call such an optimal toolpath Ť a minimum weight feasible toolpath for C. We
also let Ťj = (r∗1 , . . . , r∗j ) denote a minimum weight feasible toolpath for Cj =
(c1, . . . , cj) ⊆ C and Ťj(r) = (r∗1 , . . . , r

∗
j−1, r) denote a minimum weight feasible

toolpath for Cj that ends at a cell r ∈ Uj.
To solve MaxA, we extend the FTA algorithm in Section 3. A main extension

is on how to choose a “best” parent cell for each cell in Uj . A “best” parent
cell for a cell q ∈ Uj , p = par(q), must be such that w(Ťj−1(p)) is the smallest
among all possible parents of q in Uj−1 (in a graph context, such a parent cell
corresponds to q’s predecessor vertex on a shortest path from the source vertex).

A straightforward way to compute par(q) for each cell q ∈ Uj is to examine all
cells r in Uj−1 such that q ∈ S(r) and then let par(q) = p such that w(Ťj−1(p))
is the smallest among all such cells in Uj−1. Since in the worst case, q may have
O(kj−1) = O(|Uj−1|) possible parents in Uj−1, computing this may take O(kj−1)
time for each cell q ∈ Uj , thus significantly increasing the running time of the
MaxA algorithm. Our approach for computing par(q) is to model this task as a
special case of the 2-D range minimum queries (RMQ) and find par(q) in O(1)
time for each q ∈ Uj. This leads to a MaxA-FTA algorithm (for the vertex-
weighted graph case) with a running time that matches with that of the FTA
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algorithm (for the unweighted graph case). The extended version of the F-SET
procedure, called the MaxA-F-SET procedure, is given in the next section.

4.2 The MaxA Feasible Set Procedure (MaxA-F-SET)

The MaxA-F-SET procedure aims to compute the feasible set Uj = {q1, . . . , qkj},
the parent set Pj = {par(q1), . . . , par(qkj )}, and the set of weights of the mini-
mum weight feasible toolpaths ending at the cells of Uj , Wj = {w(Ťj(q1)), . . . ,
w(Ťj(qkj ))}. We assume that Uj−1, Pj−1, and Wj−1 are already available. Uj

can be computed from Uj−1 in exactly the same way as in F-SET. Comput-
ing Wj is easy once Uj and Pj are already computed and Wj−1 is given:
w(Ťj(qi)) = w(qi) + w(Ťj−1(par(qi))). Hence, the main task is to develop an
efficient method for computing Pj .

The MaxA-F-SET procedure computes each par(qj) in O(1) time by modeling
it as a special case of the 2-D range minimum queries (RMQ) [12,23]. A well-
known (1-D) RMQ algorithm by Gabow, Bentley, and Tarjan [12] preprocesses
an array of values in linear time and space, such that a query on finding the
minimum value in any contiguous subarray can be answered in O(1) time. Very
recently, Yuan and Atallah [23] presented an algorithm with linear preprocessing
time and space and O(1) time queries (on any cubic shaped subarrays) for the
RMQ problem on a d-D array for any fixed integer d > 1. Actually, Yuan and
Atallah’s algorithm [23] could be used in our solution. However, their algorithm
is quite involved and relies on some specialized data structures. We give a much
simpler solution that could be easily implemented for manufacturing applica-
tions. Our method is made simple by the fact that, unlike in the general RMQ,
our query range is always of the same shape — it is the shape of the square
of predecessors determined by the angular change limit value θ. We call this
special 2-D case of RMQ the fixed rectangle queries (FRQ). We preprocess the
array Uj−1 in O(|Uj−1|) time so that any par(·) query can be answered in O(1)
time. Below we first give a general description of processing the fixed rectangle
queries and then show how to apply it to our problem.

The fixed rectangle query (FRQ)

We begin with the 1-D fixed range query problem (1-D FRQ). Let B[1 . . .m] be
an array of m real numbers, and M ≥ 1 be a given integer (the fixed range size
of queries). We would like to construct an array Bmin[1 . . .m] such that Bmin[i]
holds the smallest element in the M -element subarray of B beginning at B[i]
(special cases around the boundaries of B can be easily handled). To compute
Bmin[1 . . .m], we utilize a simple version of the 1-D FRQ algorithm by Chen,
Wang, and Wu [5,6]. Their method first partitions B into N =

⌈
m
M

⌉
M -element

subarrays and then computes the prefix minima and suffix minima in each such
subarray, in altogether O(m) time. Since any fixed range query (of size M) on
B spans either one or two of the subarrays in the partition, the answer to the
query can be found easily in O(1) time from a prefix minimum and/or a suffix
minimum. Using this 1-D FRQ algorithm [5,6], we can compute Bmin[i] for all
i = 1, . . . ,m in O(m) time (by performing m 1-D FRQ queries on B).
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To handle the 2-D fixed rectangle queries (2-D FRQ), we make use of the
above 1-D FRQ solution repeatedly. Let C[1 . . .m, 1 . . .m] be a 2-D array of
m2 real numbers, and M ≥ 1 be a given integer. We would like to build a 2-
D array Cmin[1 . . .m, 1 . . .m] such that Cmin[i, j] holds the smallest element in
the M ×M subarray of C with C[i, j] at its upper-left corner. The construc-
tion of Cmin[1 . . .m, 1 . . .m] consists of two stages. In the first stage, we apply
the 1-D FRQ algorithm to each row of C and construct an intermediate array
Cr

min[1 . . .m, 1 . . .m]. A row Cr
min[i, ·] of Cr

min is the 1-D array of minima (as
defined in the above paragraph) for the row C[i, ·] of C, for each i = 1, . . . ,m.
In the second stage, we apply the 1-D FRQ algorithm to each column of Cr

min

to construct the desired array Cmin.
Since each 1-D FRQ process takes O(m) time on each row or column of the

arrays involved, computing Cr
min from C takes O(m2) time and computing Cmin

from Cr
min also takes O(m2) time. Thus, the overall time for computing Cmin

from C is O(m2), i.e., Cmin is constructed in linear time with respect to |C|.
Using Cmin, each 2-D FRQ query (on any M ×M subarray of C) takes O(1)
time to answer (by simply referring to a corresponding entry in Cmin).

The fixed rectangle queries (FRQ) applied to MaxA-F-SET

Assume that Wj−1 is stored in a 2-D array Wj−1[1 . . .m, 1 . . . 2m] such that:

Wj−1[i1, i2] =

{
w(Ťj−1(p)) if p = (αi1 , βi2) ∈ Uj−1,
∞ otherwise.

Let S−1(q) ⊆ Rj−1 be the square of predecessors of q ∈ Rj defined as: If q =
(αq, βq) ∈ Rj , then

S−1(q) = {r = (αr, βr) ∈ Rj−1 : |αq − αr| ≤ θ and |βq − βr| ≤ θ}.

Note that, similar to the square of successors that forms a square of cells on Rj ,
the square of predecessors forms a square of cells on Rj−1. Also, note that any
possible parent of a cell q ∈ Uj must belong to S−1(q) ∩ Uj−1. Hence, for any
cell q = (αj1 , βj2) ∈ Uj , finding par(q) corresponds to a fixed rectangle query
on the M ×M subarray of Wj−1 centered at (αj1 , βj2), where M is a constant
that depends on the angular change constraint. When the 2-D FRQ algorithm
is applied to Wj−1 to produce Wmin, the set of finite entries in Wmin for Wj−1
at the positions corresponding to the cells in Uj form the needed parent set Pj ,
i.e., if q = (αi1 , βi2) ∈ Uj, then par(q) = Wmin[i1, i2].

The time for computing Wmin from Wj−1 using the 2-D FRQ algorithm is
linear in terms of the size of Wj−1 (i.e., |Wj−1| = 2m2). We can lower this
computation time to O(|Uj−1|) by considering only the finite entries of Wj−1.
This can be attained by “compressing” the finite entries of each row (or column)
of Wj−1 into a consecutive sequence. The “compression” can be easily done
together for all rows (or columns) of Wj−1 by bucket-sort. Each of the two stages
of the 2-D FRQ algorithm can be modified to work on the compressed rows (or
columns) without much difficulty. Note that an O(|Uj−1|) time for computing
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Wmin from Wj−1 (and eventually Pj) is meaningful when kj−1 = o(m2). Hence,
it takes O(|Uj−1|+ |Uj|) time to generate par(q) for all q ∈ Uj (i.e., Pj).

4.3 Computing the Minimum Number of Maximum Accuracy
Feasible Toolpaths

When a single feasible toolpath does not exist for C, we must find an optimal
solution with the minimum number of MaxA toolpaths to cover C. Our greedy
method for finding the minimum number of feasible toolpaths covering C for the
FT problem in Section 3.3 may not yield a set of MaxA toolpaths whose total sum
of weights is minimized (as required by MaxA). For example, if one greedily finds
two feasible MaxA toolpaths Ť1,j−1 for C1,j−1 and Ťj,n for Cj,n, the sum of their
weights, w(Ť1,j−1)+w(Ťj,n), may still be larger than the sum w(Ť1,i−1)+w(Ťi,n)
for two different feasible MaxA toolpaths Ť1,i−1 and Ťi,n, with i 
= j. That is,
greedily making each MaxA toolpath go as long as possible may not lead to the
smallest total weight for the union of the MaxA toolpaths. We still use the greedy
method to determine the minimum number l of toolpaths required to cover C.
But, computing an actual set of l toolpaths for an optimal MaxA solution must
be carried out differently. There are O(n2) possible toolpaths between any two
layers Ri and Rj , 1 ≤ i ≤ j ≤ n; one may choose the needed toolpaths for an
optimal MaxA solution from the O(n2) MaxA toolpaths.

Let Ťi,j = (r∗i , . . . , r
∗
j ) be a minimum weight feasible toolpath for the subse-

quence Ci,j = (ci, . . . , cj) ⊆ C and w(Ťi,j) =
∑j

k=i w(r∗k) be its total weight. To
produce an optimal MaxA solution for covering C, we need to solve the following
minimum-link minimum-weight toolpath (MLMWT) problem.

Minimum-Link Minimum-Weight Toolpath (MLMWT) Problem.
Given a set of visibility maps A = {A1, . . . , An} for the set of accessibility rect-
angles R = {R1, . . . , Rn}, find a path sequence I = (i0 = 1, i1, . . . , il−1, il = n)
and the corresponding sequence of minimum weight feasible toolpaths
Ť1 = Ť1,i1 , Ť2 = Ťi1+1,i2 , . . . , Ťl = Ťil−1+1,n for covering C, such that:

1. The cardinality l of I is minimized, and
2. Ť = Ť1 ∪ Ť2 ∪ · · · ∪ Ťl has the minimum total weight w(Ť ) =

∑l
k=1 w(Ťk).

We call Ť an l-link minimum-weight sequence for R. Finding l is easy: We just
apply the greedy method for the FT problem in Section 3.3. But, Ť1, Ť2, . . . , Ťl

need to be chosen from the possible MaxA toolpaths Ťi,j for all 1 ≤ i ≤ j ≤ n.
To find each Ťi,j and its weight w(Ťi,j), consider every pair of rectangles Ri

and Rj (i.e., for a subsequence Ci,j ⊆ C), 1 ≤ i ≤ j ≤ n. If for some pair (i, j),
i < j, a single feasible toolpath Ťi,j does not exist (in particular, we assume that
Ť1,n does not exist), then we set Ťi,j = ∅ and w(Ťi,j) =∞. Since |C| = n, there
are up to O(n2) feasible toolpaths. Let S = {Ťi,j 
= ∅ : 1 ≤ i ≤ j ≤ n} be the set
of all feasible MaxA toolpaths. To compute the set S, we apply the MaxA-FTA
algorithm to n − 1 problem instances, each starting at one of R1, R2, . . . , Rn−1
and ending at Rn. Thus, computing S takes O(mn2 + n(K + L)) time. Now
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given S, we want to find a subset Sl = {Ť1,i1 , Ťi1+1,i2 , . . . , Ťil−1+1,n} ⊆ S of
cardinality l that satisfies condition 2 of the MLMWT problem.

A straightforward way to compute Sl is to treat the MaxA toolpaths in S as
weighted “segments” (with rectangles Ri and Rj as the “endpoints” of each Ťi,j),
and construct a vertex-weighted interval graph GS = (VS , ES) [11,14,15], such
that for each MaxA toolpath Ťi,j 
= ∅, there is a vertex v̌i,j ∈ VS with a weight
w(Ťi,j) and two vertices v̌i1,j1 and v̌i2,j2 in GS are connected by a directed edge
(v̌i1,j1 , v̌i2,j2) if i2 = j1 +1. Then Sl corresponds to a certain l-link shortest path
in GS . Since GS has O(n2) vertices and O(n3) edges (a vertex v̌i,j can have up
to O(n) outgoing edges connecting it to the n− j vertices with a starting index
of j + 1), one could find Sl by applying a general l-link shortest path algorithm
[10] to GS , in O(ln3) time. Together with the construction of S and GS , this
approach would yield an O(ln3 +mn2 +n(K +L)) time solution. Below we give
a different, faster approach for computing Sl from S without building GS , which
is based on dynamic programming.

Let Ť g
j denote a g-link minimum-weight toolpath for C1,j , i.e., Ť g

j is the union
of g feasible MaxA toolpaths covering C1,j . Thus, Ť = Ť l

n. We construct a
dynamic programming table H such that H [h, j] holds the weight of an h-link
minimum-weight toolpath for C1,j , w(Ť h

j ), if Ť h
j exists, or∞ if Ť h

j does not exist.
H is an l × n array since h = 1, . . . , l and j = 1, . . . , n. The entries in the first
row of H are the weights of 1-link minimum-weight toolpaths for C1,1, . . . , C1,n,
and the entry H [l, n] is the weight of the desired l-link minimum-weight toolpath
Ť = Ť l

n, which is an optimal solution to the MLMWT problem (and thus the
MaxA problem). An entry H [g, j] for g > 1 can be computed quite efficiently
from the entries H [g − 1, i] for 1 ≤ i < j based on the following observation.

Lemma 1. If Ť g
j = Ť ∗ ∪ Ťi,j, 1 < i ≤ j ≤ n, is a g-link minimum-weight

toolpath from R1 to Rj, then Ť ∗ is a (g− 1)-link minimum-weight toolpath from
R1 to Ri−1 (Ť ∗ = Ť g−1

i−1 ).

Proof. Suppose Ť ∗ 
= Ť g−1
i−1 , i.e., w(Ť ∗) > w(Ť g−1

i−1 ). Then, by letting P̌ g
j =

Ť g−1
i−1 ∪Ťi,j , we have w(P̌ g

j ) < w(Ť g
j ), a contradiction to the optimality of Ť g

j . ��
Based on Lemma 1, for j = 1, . . . , n and 1 ≤ g ≤ l, we have:

H [g, j] =

{
w(Ť1,j) for g = 1, j = 1, . . . , n
min1<i≤j{H [g − 1, i− 1] + w(Ťi,j)} for 1 < g ≤ l, 1 < j ≤ n

(3)

To obtain H [l, n], we use the dependency relation (3) to fill in the entries of the
array H . To make sure that before computing H [g, j], all entries in row g − 1
that are in the columns preceding j are available, we fill in the entries of H by
starting at the first row (and going left-to-right) and then to the next row.

4.4 Time Complexity of the Maximum Accuracy Feasible Toolpath
Algorithm

The time complexity of our algorithm for solving the maximum accuracy feasible
toolpath problem depends on whether a single MaxA toolpath for C exists.
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First assume that a single maximum accuracy feasible toolpath covering C
exists. Let |Uj | = kj and |S(Uj−1)| = lj for 1 ≤ j ≤ n. The computation of Uj ,
given Uj−1, is the same as in the F-SET procedure, hence taking O(m+kj−1+lj)
time. Given Uj and Pj , computing Wj takes O(1) time per element of Uj , i.e., we
needO(kj) time to findWj . As discussed earlier, computing Pj takesO(kj−1+kj)
time. Thus, the MaxA-F-SET procedure takes O(m+kj−1+kj +lj) time for each
Rj . Since the MaxA-FTA algorithm utilizes the Max-F-SET procedure at most
n− 1 times, it follows that for the case when a single feasible toolpath exists for
C, the MaxA problem is solvable in O(mn +K + L) time, where K =

∑n−1
i=1 ki

and L =
∑n

i=2 li.
If a single feasible toolpath for C does not exist, then the set S of O(n2)

MaxA toolpaths Ťi,j can be computed by solving n− 1 instances of the MaxA-
FTA problem, each with one of R1, R2, . . . , Rn−1 as the first layer. Thus S can
be computed in O(mn2 + n(K + L)) time. Computing each entry of the array
H [1 . . . l, 1 . . . n] can take up to O(n) time, since it involves calculating up to
O(n) values. Hence, we need O(ln2) time to build H . Therefore, it takes overall
O(ln2 +mn2 +n(K+L)) time to find the minimum number of MaxA toolpaths.

Our results are summarized in the following theorem.

Theorem 2. If a single feasible toolpath for C exists, then the maximum accu-
racy toolpath problem can be solved in O(mn+K + L) time. If a single feasible
toolpath does not exist, then the maximum accuracy toolpath problem can be
solved in O(ln2 +mn2 + n(K + L)) time. In the worst case, K,L = O(nm2).
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Abstract. We determine the complexity of approximate counting of
the total weight of assignments for complex-weighted Boolean constraint
satisfaction problems (or CSPs), particularly, when degrees of instances
are bounded from above by a given constant, provided that all arity-1
(or unary) constraints are freely available. All degree-1 counting CSPs
are solvable in polynomial time. When the degree is more than 2, we
present a trichotomy theorem that classifies all bounded-degree counting
CSPs into only three categories. This classification extends to complex-
weighted problems an earlier result on the complexity of the approximate
counting of bounded-degree unweighted Boolean CSPs. The framework
of the proof of our trichotomy theorem is based on Cai’s theory of sig-
natures used for holographic algorithms. For the degree-2 problems, we
show that they are as hard to approximate as complex Holant problems.

1 Bounded-Degree Boolean #CSPs

Our overall objective is to determine the approximation complexity of Boolean
constraint satisfaction problems (or CSPs) whose instances consist of Boolean
variables and their constraints, which describe “relationships” among the vari-
ables. Boolean CSPs have found numerous applications in graph theory, database
theory, and artificial intelligence as well as statistical physics. A CSP asks, for a
given set of Boolean variables and a set of constraints, whether all the constraints
are satisfied by certain Boolean assignments to the variables. The satisfiability
problem (SAT) is a typical example of Boolean CSPs. Since constraints used
for typical CSPs are limited to certain fixed types of allowable ones (a set of
these constraints is known as constraint language), it seems natural to param-
eterize CSPs in terms of a set F of allowable constraints and express them as
CSP(F)’s. Schaefer’s [13] dichotomy theorem classifies all such CSP(F)’s into
two categories: polynomial-time solvable problems (i.e., in P) and NP-complete
problems.

Of all types of CSPs, there has been a great interest in a particular type, in
which each individual variable appears at most d times in all given constraints.
The maximal number of such d on every instance is called the degree of the
instance. This degree has played a key role in a discussion of the complexity
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of CSPs; for instance, the planar read-trice satisfiability problem, which is com-
prised of logical formulas of degree at most 3, is known to be NP-complete, while
the planar read-twice satisfiability problem, whose degree is 2, falls into P. Those
CSPs whose instances have degree bounded are referred to as bounded-degree
Boolean CSPs. Dalmau and Ford [7], for instance, showed that, for certain cases
of F , the complexity of solving CSP(F) does not change even if all instances are
restricted to at most degree 3.

Apart from those CSPs, a counting CSP (or #CSP, in short) asks how many
Boolean assignments satisfy all given constraints. Creignou and Herman [6]
gave a classification theorem for the counting complexity of #CSPs. This result
was eventually extended by Cai, Lu, and Xia [5] to complex-weighted Boolean
#CSPs. They also studied the exact complexity of complex-weighted Boolean
#CSPs whose maximal degree does not exceed 3. From a viewpoint of approxi-
mation complexity, Dyer, Goldberg, and Jerrum [12] showed a trichotomy theo-
rem on the approximate counting of the number of assignments for unweighted
Boolean CSPs, depending on the choice of F . This theorem is quite different
from a dichotomy theorem for the exact-counting complexity of #CSPs.

A degree bound of instances to #CSPs is also crucial in a discussion on the
approximation complexity of the #CSPs. We then ask, for given a degree bound
d, what set F of constraints make #CSPs difficult to compute. Based on the
aforementioned trichotomy theorem, Dyer, Goldberg, Jalsenius, and Richerby
[10] recognized four categories of unweighted Boolean #CSPs whose degrees are
further bounded.

Similar to the unweighted case of Dyer et al. [10], we intend to allow any
complex-weighted unary constraint for free. Notice that the free use of un-
weighted unary constraints were frequently made (e.g., [7]). Moreover, in a more
general setting of Holant problems [1,4], complex-weighted unary constraints
were also given for free.

Notationally, we use the notation #CSP∗
d(F) to denote a problem of comput-

ing the total weight of constraints for all Boolean assignments for which (i) any
complex-weighted unary Boolean constraint can be used for free, (ii) each vari-
able appears at most d times among all given constraints, including free unary
constraints, and (iii) all constraints (except for free constraints) should be taken
from F .

The main purpose of this paper is to prove the following trichotomy theorem
that classifies all #CSP∗

d(F)’s into only three categories.

Theorem 1. Let d ≥ 3 be any degree bound. If either F ⊆ AF or F ⊆ ED,
then #CSP∗

d(F) is in FPC. Otherwise, if F ⊆ IM, then #DOWNSET∗
C ≤AP

#CSP∗
d(F) ≤AP #DOWNSETC under approximation-preserving reducibility (or

AP-reducibility). Otherwise, #SAT∗
C ≤AP #CSP∗

d(F).

Here, #DOWNSET∗
C and #DOWNSETC are two complex-weighted versions of

the counting downset problem and #SAT∗
C is also a similar variant of the counting

satisfiability problem. See [16] for their precise definitions.
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Theorem 1 highlights a clear difference between unweighted Boolean con-
straints and complex-weighted Boolean constraints, partly because of the strong
expressiveness of complex-weighted unary constraints.

Our proof of Theorem 1 is based on the trichotomy theorem of Yamakami
[16], who proved the theorem using a theory of signatures (see, e.g., [2,3]) used
to analyze Valiant’s Holographic algorithms [14,15]. In particular, our key claim,
which directly yields Theorem 1, states that, for any degree bound d ≥ 3 and
for any set F of complex-weighted constraints, #CSP∗

d(F) is AP-interreducible
to #CSP∗(F); in other words, #CSP∗

d(F) is “equivalent” to #CSP∗(F) in ap-
proximation complexity. The most part of this paper is devoted to proving this
key claim. When the degree bound d is 2, on the contrary, we will show that
#CSP∗

2(F) is “equivalent” to Holant problems restricted to the set F of con-
straints, provided that all unary constraints are freely available. In the case of
degree 1, every #CSP∗

1(F) is solvable in polynomial time.
Our argument for complex-weighted constraints is quite different from Dyer

et al.’s argument for unweighted constraints and also from Cai et al.’s argument
for exact counting for complex-weighted constraints. While a key technique in
[10] is 3-simulatability as well as ppp-definability, our proof argument exploits
a notion of limited T-constructability—a restricted version of T-constructability
developed in [16]. With its extensive use, the proof we will present in the rest of
this paper becomes clean, elementary, and intuitive.

2 Preliminaries

Let N denotes the set of all natural numbers (i.e., non-negative integers) and
N+ denotes N − {0}. Similarly, C denotes the set of all complex numbers. For
succinctness, the notation [n] for a number n ∈ N expresses the integer set
{1, 2, . . . , n}. To improve readability, we sometimes identify the “name” of a
node in a given undirected graph with the “label” of the same node.

2.1 Signatures, #CSP, and Holant Problems

For any undirected graph G = (V,E) (where V is a node set and E is an edge
set) and a node v ∈ V , an incident set E(v) of v is the set of all edges incident
to v, and deg(v) is the degree of v. A bipartite graph is a tuple (V1|V2, E), where
V1 and V2 are respectively sets of nodes on the left-hand side and right-hand
side of the graph and E is a set of edges such that V1 × V2.

Each function f from {0, 1}k to C is called a k-ary Boolean signature or simply
a k-ary signature. This k is called the arity of f . We express f as a sequence of its
values (assuming a standard order of all binary strings of length k). For instance,
when k = 2, f can be expressed as (f(00), f(01), f(10), f(11)). A signature f is
symmetric if f ’s values depend only on the Hamming weight of inputs. When
f is a symmetric function of arity k, a succinct notation f = [f0, f1, . . . , fk],
where each fi is the value of f on inputs of Hamming weight i, is often used. For
example, Δ0 = [1, 0] and Δ1 = [0, 1], and EQk = [1, 0, . . . , 0, 1] (k − 1 zeros).
For convenience, we write U for the set of all unary signatures.
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A complex-weighted Boolean #CSP restricted to a set F of signatures, sim-
ply denoted #CSP(F), takes a finite set G of signatures (which are called
constraints in Section 1) of the form h(xi1 , xi2 , . . . , xik

) on Boolean variables
x1, x2, . . . , xn, where i1, . . . , ik ∈ [k] and h ∈ F , and it outputs the value∑

x1,x2,...,xn∈{0,1}
∏

h∈G h(xi1 , xi2 , . . . , xik
). To improve readability, we often

omit the set notation and write, e.g., #CSP(f, g,F ,G) to mean #CSP({f, g}∪
F ∪ G).

Here, we need to address a technical issue concerning complex-valued func-
tions. Recall that each instance to a #CSP involves a finite set of signatures.
How can we compute those signatures? How can we receive them as a part of
input instance for the first place? It is convenient to treat such a k-ary signature
f as a “black box,” which answers the complex value f(x) instantly whenever
one makes a query x ∈ {0, 1}k. This black-box convention helps us eliminate the
entire description of f (e.g., bit sequences) from the instance to a #CSP.

Given two sets F1,F2 of signatures, a bipartite Holant problem Holant(F1|F2)
(on a Boolean domain) is defined as follows. An instance is a signature grid Ω =
(G,F ′

1|F ′
2, π) composed of a finite undirected bipartite graph G = (V1|V2, E),

two finite subsets F ′
1 ⊆ F1 and F ′

2 ⊆ F2, and a labeling function π : V1 ∪
V2 → F ′

1 ∪ F ′
2 such that π(V1) ⊆ F ′

1, π(V2) ⊆ F ′
2, and each node v ∈ V1 ∪ V2

is labeled by the function π(v) : {0, 1}deg(v) → C. For brevity, we sometimes
write fv for π(v). Let Asn(E) be the set of all edge assignments σ : E →
{0, 1}. The bipartite Holant problem is to compute the value HolantΩ defined
as HolantΩ =

∑
σ∈Asn(E)

∏
v∈V fv(σ|E(v)), where σ|E(v) denotes the binary

string (σ(w1), σ(w2), . . . , σ(wk)) if E(v) = {w1, w2, . . . , wk}, whose elements are
sorted in a certain pre-fixed order. A general Holant problem Holant(F) uses
any undirected graph G, not necessarily limited to bipartite graphs.

In fact, #CSP(F) is just another name for Holant({EQk}k≥1|F) by
identifying variable assignments for #CSP(F) with edge assignments for
Holant({EQk}k≥1|F). Throughout this paper, we interchangeably use these two
different ways to view complex-weighted Boolean #CSP problems.

When any unary signature is allowed to use for free of charge, we conveniently
write #CSP∗(F) instead of #CSP(F ,U). For each instance to #CSP∗(F), the
degree of an instance Ω is the greatest number of times that any variable appears
among all constraints; that is, the maximum degree of nodes that appear on the
left-hand side of a bipartite graph in the instance Ω. For any positive integer d,
we write #CSP∗

d(F) for the restriction of #CSP∗(F) to instances of degree ≤ d.

2.2 FPC and AP-Reductions

The notation FPC denotes the set of all functions, mapping binary strings to C,
which can be computed deterministically in polynomial time. Here, as we have
stated before, we do not treat complex numbers as bit sequences; rather, we treat
them as basic “objects” and thus we can perform “natural” operations (such as,
multiplications, addition, division, etc.) on them as basic operations, each of
which requires only constant time to execute. Moreover, we apply such basic op-
erations only in a clearly monitored way so that our assumption on the constant
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execution time of these operations causes no harm to a later discussion on the
approximate computability of #CSP(F). (See [2,3] for further justification.)

Let F be any function mapping from {0, 1}∗ to C. Intuitively, a randomized
approximation scheme for F is a randomized algorithm (equipped with a coin-
flipping mechanism) that takes a standard input x ∈ Σ∗ together with an error
tolerance parameter ε ∈ (0, 1), and outputs values w with high probability for
which both real and imaginary parts of F (x) can be approximated with relative
error eε, where e is the base of natural logarithms. See [9] for more details.

Given two functions F and G, roughly speaking, a polynomial-time
approximation-preserving reduction (or AP-reduction) from F to G is a random-
ized algorithm M that takes a pair (x, ε) ∈ Σ∗×(0, 1) as input, uses an arbitrary
randomized approximation scheme N for G as an oracle, and outputs an approx-
imated value with high probability in time polynomial in (|x|, 1/ε). (Since we
do not need to give the details of oracle mechanism here, the interested reader
should refer to [9].) In this case, we write F ≤AP G and we also say that F is
AP-reducible to G. If F ≤AP G and G ≤AP F , then we write F ≡AP G. Let F
and G be any two signature sets and let e, d ∈ N+. Note that, if F ⊆ G, then
#CSP(F) ≤AP #CSP(G). Moreover, if d ≤ e, then #CSPd(F) ≤AP #CSPe(F).

2.3 Limited T-Constructability

Our starter is a set of useful notations. Let k ∈ N+, let f, f1, f2 be any signatures
of arity k, let i, j ∈ [k], and let c ∈ {0, 1}. Let x1, . . . , xk be Boolean variables.
Let fxi=c denote the function g satisfying that g(x1, . . . , xi−1, xi+1, . . . , xk) =
f(x1, . . . , xi−1, c, xi+1, . . . , xk). If i 
= j, then fxj=xi denotes the function g de-
fined as g(x1, . . . , xj−1, xj+1, . . . , xk) = f(x1, . . . , xj−1, xi, xj+1, . . . , xk). The no-
tation fxi=∗ expresses the function g defined as g(x1, . . . , xi−1, xi+1, . . . , xk) =∑

xi∈{0,1} f(x1, . . . , xi−1, xi, xi+1, . . . , xk). Moreover, the notation f1 ·f2 denotes
the function g such that g(x1, . . . , xk) = f1(x1, . . . , xk)f2(x1, . . . , xk).

A technical tool used in [16] is the notion of T-constructability. Since our
target is bounded-degree #CSPs, we will use its modified version—limited T-
constructability—which plays a central role in the proof of our main theorem.
Let f be any signature of arity k ≥ 1. We say that a bipartite undirected graph
G = (V1|V2, E) (with a labeling function π) represents f if G consists only of k
nodes labeled x1, . . . , xk, which may have a certain number of dangling� edges,
and a single node labeled f , to whom each node xi is incident. As before, we
write fw for π(w). We also say that a bipartite undirected graph G realizes f by
G if G satisfies the following conditions: (i) π(V2) ⊆ G∪U , (ii) G contains at least
k nodes labeled x1, . . . , xk (possibly together with nodes associated with other
variables), (iii) only each node xi may have one or more dangling edges, and (iv)
f(x1, . . . , xd) = λ

∑
y1,...,ym∈{0,1}

∏
w∈V2

fw(z1, . . . , zk), where λ ∈ C − {0} and
z1, . . . , zk ∈ V1 = {x1, . . . , xk, y1, . . . , ym} with distinct variables y1, . . . , ym.

Let d ∈ N. We write f ≤+d
con G if the following conditions hold: there exists

a finite subset G′ of G ∪ U such that, for any number m ≥ 2 and for any graph
� A dangling edge is obtained from an edge by deleting exactly one side of the edge.
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G representing f with distinct variables x1, . . . , xk of degree at most m, there
exists another graph G′ such that (i’) G′ realizes f by G′, (ii’) G′ has the same
dangling edges as in G, (iii’) the nodes labeled x1, . . . , xk have degree at most
m+d, and (iv’) all the other nodes on the left-hand side ofG′ have degree at most
max{3,m+ d}. For example, if f is T-constructed from g as f(x2) = gx1=0(x2)
then f ≤+0

con g, because the node x1 does not appear in any graph representing
f and this x1 is considered as a new variable in any graph realizing f by {g}.

3 Signature Sets

We treat a relation of arity k as both a subset of {0, 1}k and a signature mapping
k Boolean variables to {0, 1}. From this duality, we often utilize the following no-
tation: R(x) = 1 (R(x) = 0, resp.) iff x ∈ R (x 
∈ R, resp.), for every x ∈ {0, 1}k.
Together with some relations defined in Section 2.1, we also use the following
special relations: XOR = [0, 1, 0], Implies = (1, 1, 0, 1), ORk = [0, 1, . . . , 1] (k
ones), and NANDk = [1, . . . , 1, 0] (k ones), where k ∈ N+. For convenience,
the notation EQ (OR and NAND, resp.) refers to the equality function (OR-
function and NAND-function, resp.) of arbitrary arity.

The underlying relation of a k-ary signature f is the set Rf = {x ∈ {0, 1}k |
f(x) 
= 0}. A relationR is said to be affine if it is expressed as a set of solutions to
a certain system of linear equations overGF (2). A relation R is in IMP (slightly
different from IM -conj in [10]) if it is a product of a certain positive number
of relations of the form Δ0(x), Δ1(x), and Implies(x, y). Moreover, let DISJ
(NAND, resp.) be the set of relations defined as products of a positive number
of ORk (NANDk, resp.), Δ0, and Δ1, where k ≥ 2 (slightly different from
OR-conj and NAND-conj in [10]). We will use the following sets of signatures.

1. Let NZ denote the set of all non-zero signatures.
2. Let DG denote the set of all signatures f of arity k that are expressed by

products of k unary functions, which are applied respectively to k variables.
A signature in DG is called degenerate.

3. Let ED denote the set of functions expressed as products of unary signatures,
the equality EQ2, and the disequality XOR (which are possibly multiplied
by constants). See [5] for its basic property.

4. Let IM be the set of all signatures f such that Rf is in IMP and f equals
Rf · g for a certain signature g in NZ.

5. Let AF denote the set of all signatures of the form
g(x1, . . . , xk)

∏
j:j 	=i R

(i)
j (xi, xj) for a certain fixed index i ∈ [k], where

g is in DG and each R
(i)
j is an affine relation.

6. Let DISJ (NAND, resp.) be the set of signatures f defined as Rf ·g, where
Rf ∈ DISJ (Rf ∈ NAND, resp.) and g ∈ NZ.

Note that, for any signature f ∈ IM, its underlying relationRf can be factorized
into a finite number of factors as Rf = g1 · g2 · · · gm, where each factor gi is of
the form Δ0(x), Δ1(x), or Implies(x, y) (x and y may be the same). The list
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L = {g1, g2, . . . , gm} of such factors is said to be imp-distinctive if (i) no single
variable appears both in Δc and Implies in L, where c ∈ {0, 1}, and (ii) no
variable x appears as in Implies(x, x), which belongs to L. Such a distinctive
list always exists for an arbitrary signature f in IM; however, such a list may
not be unique [10,16].

Similar to the notion of imp-distinctive list, we introduce another notion of
“or-distinctive” list for signatures in DISJ . Let f be any signature in DISJ .
Let L be any list of all factors, of the form Δ0(x), Δ1(x), and ORd(xi1 , . . . , xik

),
that defines Rf . This list L is called or-distinctive if (i) no variable appears
more than once in every OR in L, (ii) no Δc (c ∈ {0, 1}) and OR in L share the
same variable, (iii) no OR’s variables are a subset of any other’s (ignoring the
variable order), and (iv) every OR has at least two variables. For the signatures
inNAND, we obtain a similar notion of nand-distinctive list by replacing DISJ
with NAND. It is important to note that, for any signature f in DISJ , there
exists a unique or-distinctive list of all factors for Rf . The same holds for nand-
distinctive lists and NAND [10].

The width of a signature in DISJ (resp. NAND) is the maximal arity of
any factor that appears in the unique or-distinctive (resp. nand-distinctive) list
of all factors for Rf . For our later use, DISJ w (resp. NANDw) denotes the set
of all signatures in DISJ (resp. NAND) of width exactly w.

4 Constructing AP-Reductions to the Equality

As stated in Section 1, Dyer et al. [10] analyzed the complexity of the approxi-
mate counting of bounded-degree unweighted Boolean #CSPs and gave the first
approximation classification, in which they recognized four fundamental cate-
gories of bounded-degree problems. Here, we intend to extend their classification
theorem from unweighted #CSPs to complex-weighted #CSPs by employing the
technique of limited T-constructability given in Section 2.3.

let us begin with a brief discussion on the polynomial-time computability of
bounded-degree #CSPs. For any signature set F , it is known from [5,16] that if
F ⊆ AF or F ⊆ ED then #CSP∗(F) belongs to FPC. From this computability
result, since #CSP∗

d(F) ≤AP #CSP∗(F), the following statement is immediate.

Lemma 1. For any signature set F and any index d ≥ 2, if either F ⊆ AF or
F ⊆ ED, then #CSP∗

d(F) ∈ FPC, and thus #CSP∗(F) ≡AP #CSP∗
d(F).

In what follows, we are mostly focused on the remaining case where F 
 AF
and F 
 ED. At this point, we are ready to describe an outline of our proof
of the main theorem, Theorem 1. For convenience, EQ denotes the infinite set
{EQk}k≥2, where we do not include the equality of arity 1, because it is in U and
is always available for free of charge. Cai et al. [5] first laid out a basic scheme
of how to prove a classification theorem for complex-weighted degree-3 Boolean
#CSPs. Later, Dyer et al. [10] modified this scheme to prove a classification
theorem for unweighted degree-d Boolean #CSPs for any d ≥ 3. Our proof
strategy closely follows theirs.
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From a technical reason, it is better for us to introduce another notation
#CSP∗

d(EQ‖F), which is induced from #CSP∗
d(EQ,F), by imposing the follow-

ing extra condition: no two nodes labeled EQs (possibly having different arities)
on the right-hand side of a given bipartite graph, included in each instance,
are incident to the same node on the left-hand side of the graph. Similarly, we
can define #CSP∗

d(EQd‖F) using EQd instead of EQ. Our proof strategy is
comprised of the following four steps.
1. Initially, we will add the equality of various arities and reduce the original

#CSPs to bounded-degree #CSPs with the above-described condition on
EQ. More precisely, we will AP-reduce #CSP∗(F) to #CSP∗

2(EQ‖F).
2. For any index d ≥ 2 and for any signature f ∈ F , we will AP-reduce

#CSP∗
2(EQd‖F) to #CSP∗

3(f,F), which clearly coincides with #CSP∗
3(F)

since f ∈ F . In addition, we require that this reduction should be “generic”
and “efficient” so that if we can AP-reduce #CSP∗

2(EQd|F) to #CSP∗
3(F)

for every index d ≥ 3, then we obtain #CSP∗
2(EQ‖F) ≤AP #CSP3(F).

3. By combining the above two AP-reductions, we obtain the AP-reduction:
#CSP∗(F) ≤AP #CSP∗

3(F). Since #CSP∗
3(F) ≤AP #CSP∗

d(F) ≤AP
#CSP∗(F) for any index d ≥ 3, we obtain #CSP∗(F) ≡AP #CSP∗

d(F).
4. Finally, we will apply the trichotomy theorem for #CSP∗(F) given in [16]

to determine the approximation complexity of #CSP∗
d(F) using the AP-

interreduction: #CSP∗(F) ≡AP #CSPd(F).

The first step of our proof strategy is quite easy (see, e.g., [10]).

Lemma 2. For any signature set F , it holds that #CSP∗(F) ≤AP
#CSP∗

2(EQ‖F).

To define an AP-reduction from #CSP∗
2(EQd|F) to #CSP∗

3(G,F) in the second
step of our strategy, it suffices to prove, as shown in the following lemma, that
EQd ≤+1

con G by a generic, efficient procedure.

Lemma 3. Let d,m ∈ N with d ≥ 2. If EQd ≤+m
con G, then

#CSP∗
2(EQd‖F) ≤AP #CSP∗

2+m(G,F). In addition, assume that there exists
a procedure of transforming any graph G′ representing EQd into another graph
G′′ realizing EQd in time polynomial in the size of d and the size of the graph
G′. Then, it holds that #CSP∗

2(EQ‖F) ≤AP #CSP∗
2+m(G,F).

Proof. Let Ω = (G,F ′
1|F ′

2, π) be any signature grid to #CSP∗
2(EQd‖F) and

let G = (V1|V2, E) be its bipartite graph. Take each node in V2 labeled EQd and
take any subgraph G′ of G such that G′ consists only of d different nodes labeled,
say, xi1 , . . . , xid

, which are incident to this node EQd. Moreover, each of these d
nodes (on the left-hand side of G′) should contain (at most) one dangling edge,
which is originally connected to a certain other node in G. Clearly, G′ represents
EQd. Since EQd ≤+m

con G, there is another bipartite graph G′′ that realizes EQd

by U ∪G. In G, we replace G′ by G′′. In this replacement, for each dangling edge
appearing in G′, we restore its original connection to the node in G. Note that
any node other than xi1 , . . . , xid

are treated as new nodes and are not incident
to any node outside of G′′.
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Let G̃ be the graph obtained by replacing all such subgraphs G′ with their
corresponding subgraphs G′′. Let Ω̃ be the new signature grid associated with G̃.
The degree of each node xij in G̃ is m plus the original degree in G since no two
nodes labeled EQd in G share the same variables. It is not difficult to show that
HolantΩ̃ = HolantΩ. This implies that #CSP∗

2(EQd|F) ≤AP #CSP∗
2+m(G,F).

The second part of the lemma comes from the fact that we can construct Ω̃
from Ω efficiently and robustly if there is a generic procedure that transforms
G′ to G′′ for any degree-bound d in polynomial time. �

5 Basic AP-Reductions of Binary Signatures

Since we have shown in Section 4 that #CSP∗(F) can be AP-reduced to
#CSP∗

2(EQ‖F), the remaining task is to further reduce #CSP∗
2(EQ‖F) to

#CSP∗
3(F). For this purpose, it suffices to prove that, for any index d ≥ 2 and

for any signature f ∈ F , EQd is limited T-constructable from f together with
unary signatures with maintaining the degree-bound of 3. To be more precise,
we wish to prove that there exists a finite set G ⊆ U for which EQd ≤+1

con G∪{f}.
By examining the proofs of each lemma given below, we can easily notice that
the obtained limited T-constructability, EQd ≤+1

con G ∪ {f} for any d ≥ 3, are
indeed “generic” and “efficient,” as requested by Lemma 3. Therefore, we finally
conclude that #CSP∗

2(EQ‖F) ≤AP #CSP3(f,F).
This section deals only with non-degenerate signatures of arity 2, because

degenerate signatures were already dealt with in Lemma 1. The first case to
discuss is signatures f of the form (0, a, b, 0), (a, 0, 0, b), or (a, b, 0, c), where
abc 
= 0.

Lemma 4. Let d ≥ 2 be any index.

1. Let f = (0, a, b, 0) with a, b ∈ C. If ab 
= 0, then EQd ≤+1
con f .

2. Let f = (a, 0, 0, b) with a, b ∈ C. If ab 
= 0, then there exists a signature
u ∈ U ∩NZ such that EQd ≤+1

con {f, u}.
3. Let f = (a, b, 0, c) with a, b, c ∈ C. If abc 
= 0, then there exist two signatures

u1, u2 ∈ U ∩ NZ such that EQd ≤+1
con {f, u1, u2}. By permuting variable

indices, the case h = (a, 0, b, c) is similar.

The non-degenerate non-zero signatures f = (1, a, b, c) are quite special, because
they appear only in the case of complex-weighted #CSPs. When f is a Boolean
relation, by contrast, it never becomes non-degenerate.

Lemma 5. Let d ≥ 2 and let f = (1, a, b, c) 
∈ DG. If abc 
= 0, then there exist
two signatures u1, u2 ∈ U ∩ NZ satisfying that EQd ≤+1

con {f, u1, u2}.

Proof. Assume that f = (1, a, b, c) with abc 
= 0. First, we claim that ab 
= c.
Assuming otherwise, we have f = (1, a, b, ab) and thus f is written as f(x1, x2) =
[1, a](x1) · [1, b](x2). This means that f belongs to DG, a clear contradiction
against the premise f 
∈ DG. Therefore, ab 
= c follows.
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Now, we set u1 = [1, z], where z = −1/c, and we define g(x1, x2) =∑
y∈{0,1} f(x1, y)f(y, x2)u1(y). This gives g = (1 + abz, a(1 + cz), b(1+ cz), ab+

c2z). Since z = −1/c, g is of the form (1 − ab/c, 0, 0, ab− c). Note that, since
ab 
= c, the first and last entries of g are non-zero. We then apply Lemma 4(2),
which requires another non-zero unary signature u2. In short, the desired signa-
ture g′ is defined as g′(x1, x2) = u2(x1)g(x1, x2). From a graph G representing
EQ2, we construct a new graph G′ by replacing EQ2 in G with {f, u1, u2}. Since
G′ requires extra two edges, one of which is incident to y and the other is inci-
dent to x1. Overall, the degree of each node on the left-hand side of G′ increases
at most 1 in comparison with the same node in G.

In a general case d ≥ 3, for the series x = (x1, . . . , xd) of d variables, we
define g(x) =

∑
y1,...,yd−1∈{0,1}

∏d−1
i=1 (f(xi, yi)u1(yi)f(yi, xi+1)). Since g has the

form (a′, 0, . . . , 0, b′), by choosing a certain signature u′ ∈ U ∩NZ , the signature
g′(x) = u′2(x1)g(x) equals EQd. The degree analysis for g′ is similar to the base
case d = 2. �

A notable case is where f = (0, a, b, c) of f = (a, b, c, 0) with abc 
= 0, which
respectively extend OR2 and NAND2.

Proposition 1. Let f = (0, a, b, c) with abc 
= 0. There exists a signature u ∈
U ∩NZ such that EQd ≤+1

con {f, u}. A similar statement holds for f = (a, b, c, 0)
with abc 
= 0.

Proposition 1 follows from two useful lemmas, Lemmas 6 and 7.

Lemma 6. Let d ≥ 2. Let f1 = (0, a, b, c) and f2 = (a′, b′, c′, 0) with
a, b, c, a′, b′, c′ ∈ C. If ab 
= 0 and b′c′ 
= 0, then EQd ≤+1

con {f1, f2}.

The proof of Lemma 6 is similar to the proof of [10, Lemma 13]. The next lemma
ensures that, with a help of unary signatures, we can transform a signature in
DISJ into another in NAND without increasing its degree. This is a special
case not seen for Boolean signatures and it clearly exemplifies a power of the
complex unary signatures.

Lemma 7. Let h ∈ NZ be any binary signature. There are a binary signature
h′ ∈ NZ and a signature u ∈ U ∩NZ such that NAND2 · h′ ≤+0

con {OR2 · h, u}.
A similar statement holds if we exchange the roles of OR2 and NAND2.

Proof. Let f = OR2 · h for a given signature h ∈ NZ of arity 2. By normal-
izing, we can assume that f = (0, a, b, 1) with ab 
= 0. Let u = [1, z] and define
g(x1, x2) =

∑
x3∈{0,1} f(x1, x3)u(x3)f(x3, x2), which gives g = (abz, az, bz, ab+

z). Here, we set z = −ab. This makes g equal (−(ab)2,−a2b,−ab2, 0).
Note that g(x1, x2) is written as NAND2(x1, x2)h′(x1, x2) if we define h′ =
(−(ab)2,−a2b,−ab2, 1), which is a non-zero signature. As before, from a graph
G representing g, we define a new graph G′ by replacing g with {f, u}. The
degree of node x3 in G′ is 3 and the other variable nodes have the same degree
as their original ones in G. Therefore, it follows that g ≤+0

con {f, u}. �
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6 Signatures of Higher Arity

We have shown in Section 5 that non-degenerate binary signatures limited-T-
constructs EQ of arbitrary arity. Here, we want to prove a similar result for
signatures of higher arity.

Most signatures in IM bears a trait of Implies. Such a trait can be used
to realize EQd directly. Our first goal in this section is to show the following
general statement.

Proposition 2. Let d ≥ 3 and let f be any signature of arity ≥ 3. If f ∈ IM
and f 
∈ ED ∪ NZ, then there exists a finite subset G ⊆ U such that EQd ≤+1

con

G ∪ {f}.

For the proof of this proposition, we need to introduce two special notions dis-
cussed in [16]. From any given signature f , it is possible to extract from Rf all
factors of the form Δ0(x), Δ1(x), and EQd(x1, . . . , xd); in other words, we can
“factorize” Rf into them. After such an extraction, the remaining portion of
Rf can be expressed by a notion of “simple form.” For every k-ary signature f ,
let us consider its representing Boolean matrix Mf , whose rows are indexed by
all instances a = (a1, a2, . . . , ak) in Rf , columns are indexed by numbers in [k],
and each (a, i)-entry is the Boolean value ai. A signature is in simple form if its
representing Boolean matrix does not contain all-0 columns, all-1 columns, or
any pair of identical columns.

To deal with EQd, we further define the notion of “eq-distinctiveness” for
signatures whose factors are Δc’s and EQs. A list L of factors of a relation R,
each of which is of the form either EQd or Δc, is called eq-distinctive if (i) any
EQ in L has arity at least 2, (ii) no Δc (c ∈ {0, 1}) in L shares any variable
with any EQ in L, (iii) a variable set of any EQ cannot become a subset of the
variable set of any other EQ in L, and (iv) no variable appears more than once
in a single EQ in L.

A greedy sweeping procedure performs on a signature f as follows. (i) If there
exists an all-0 column in Mf indexed i, then delete this column. We then
have f(x1, . . . , xk) = Δ0(xi)fxi=0(x1, . . . , xi−1, xi+1, . . . , xk). (ii) If there ex-
ists an all-1 column in Mf indexed i, then delete this column. We then have
f(x1, . . . , xk) = Δ0(xi)fxi=1(x1, . . . , xi−1, xi+1, . . . , xk). (iii) If there is a pair of
identical columns. We search for all columns that are identical to each other.
For simplicity, assume that {1, . . . , d} be a list of all indices whose columns are
identical. We delete all such columns except for the one indexed d. In this case,
we have f(x1, . . . , xk) = EQd(x1, . . . , xd)fx1=xd,...,xd−1=xd(xd, . . . , xk).

Lemma 8. Let e, d ≥ 2. Let f be any signature of arity k ≥ 3 in IM but not
in DG ∪ NZ. Assume that a greedy sweeping procedure makes f(x1, . . . , xk) =
R(x1, . . . , xm′)g(xm, . . . , xk) for a relation R such that R consists only of Δc’s
and EQs and a signature g in simple form. If an eq-distinctive list L of all
factors of R contains an EQe, then EQd ≤+1

con f .

Proof. Assume that a greedy sweeping procedure on Rf makes
Rf (x1, . . . , xk) = R(x1, . . . , xm′)g(xm, . . . , xk) for certain indices m,m′ with
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1 ≤ m ≤ m′ ≤ k. Obviously, R is in IMP . Let L be any imp-distinctive list
of all factors of R. By the premise of the lemma, L contains at least one EQe.
Hereafter, we fix this EQe and, for simplicity, we assume that this EQe takes a
variable series (x1, . . . , xe). By the nature of the greedy sweeping procedure, no
Δc (c ∈ {0, 1}) shares a common variable with EQe(x1, . . . , xe).

Now, we assign appropriate values to all variables except for x1, . . . , xe as
follows. If Δc(xj) is in L, then we define cj = c; if an EQ(xi1 , . . . , xib

) of
arbitrary arity is in L, then we set cij = 0 for all j ∈ [b]; for all the
other variables xj (except for x1, . . . , xe), we set cj = 0. With these values
{ce+1, . . . , ck}, we define q = fxe+1=ce+1,...,xk=ck . Clearly, q(x1, . . . , xe) equals
Rxe+1=ce+1,...,xm′=cm′ (x1, . . . , xe)gxe+1=ce+1,...,xk=ck(xe). Since g is a non-zero
signature, the signature r = gxe+1=ce+1,...,xk=ck is also non-zero. It is not dif-
ficult to show that Rq(x1, . . . , xe) coincides with EQe(x1, . . . , xe); more pre-
cisely, q(x1, . . . , xe) = EQe(x1, . . . , xe)r(xe). This implies that q is of the form
[a, 0, . . . , 0, b] with ab 
= 0. We define u = [1/a, 1/b] and set s(x1, . . . , xe) =
u(x1)q(x1, . . . , xe). It follows that s equals [1, 0, . . . , 0, 1].

Next, we want to show that EQd ≤+1
con G ∪ {f} for a certain finite set G ⊆ U .

There are two cases to consider, depending on the value d. If e ≥ d, then let
s(x1, . . . , xd) = u(xd)qxd+1=∗,...,xe=∗(x1, . . . , xd). This makes s(x1, . . . , xd) equal
EQd(x1, . . . , xd). The other case e < d is not difficult and is omitted here. �

Lemma 9. Let d ≥ 2. Let f ∈ IM but f 
∈ ED ∪ NZ . If f is in simple form,
then there exist two signatures u1, u2 ∈ U for which EQd ≤+1

con {f, u1, u2}.

Proof. Since f ∈ IM, f is of the form f = Rf · g with g ∈ NZ. Since f
is also in simple form, the representing Boolean matrix Mf for f has no all-0
column, no all-1 column, and no identical columns. Note that, if Mf has a factor
Implies(xi, xj) for i 
= j, then there is no signature of the form: Δ0(z) and Δ1(z)
for z ∈ {xi, xj}, and Implies(xj, xi).

Let L be any imp-distinctive list of all factors of Rf . Assume that
Implies(x1, x2) ∈ L but Implies(xj, x1) 
∈ L for all possible indices j. Since
Implies(x1, x2) ∈ L, the signature h = fx3=1,...,xk=1 has the form h(x1, x2) =
Implies(x1, x2)t(x1, x2) for a certain signature t. Since gx3=1,...,xk=1 ∈ NZ, t
should belong to NZ . Thus, we can assume that h = (a, b, 0, c) with a, b, c ∈
C− {0}. Finally, we apply Lemma 4(3) to obtain the desired consequence. �

The proof of Proposition 2 follows from Lemmas 8 and 9.

Proof of Proposition 2. Let f be any signature in IM − (ED ∪ NZ). By
running a greedy sweeping procedure, we obtain the form f = R · g, where
g ∈ NZ and g is in simple form. Since R ∈ IMP , we consider an eq-distinctive
list L of all factors of R. First, assume that R contains an EQe for a certain in-
dex e ≥ 2. In this case, by Lemma 8, we obtain EQd ≤+1

con {f, u}. Next, consider
the case where L contains no EQe, where e ≥ 2. This implies that R consists
only of unary signatures, and thus it belongs to DG. Next, we want to claim
that g 
∈ ED. Assume otherwise. Since R ∈ DG and g ∈ ED, f belongs to ED, a
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contradiction. Thus, g should not belong to ED∪NZ . Since g is in simple form,
we can apply Lemma 9 and we then obtain the lemma. �

Now, we shift our attention to signatures sitting in DISJ ∪NAND. Lemma 6
has handled binary signatures chosen from DISJ ∪NAND. We want to show
that this result can be extended to higher arity.

Proposition 3. Let k ≥ 3 and d ≥ 2. Let f be any k-ary signature in
DISJ ∪ NAND. If f 
∈ DG, then there exist two signatures u1, u2 ∈ U such
that EQd ≤+1

con {f, u1, u2}.

For this proposition, we first claim the following useful lemma. Similar to the
proof of Lemma 8, this lemma can be obtained by assigning either 0 or 1 to all
variables except for carefully-selected w variables in f .

Lemma 10. Let w ≥ 2. For any signature f ∈ DISJ w (NANDw, resp.),
then there exists a non-zero signature h of arity w such that ORw · h ≤+0

con f
(NANDw · h ≤+0

con f , resp.).

With a help of this lemma, the proof of Proposition 3 is given below.

Proof of Proposition 3. Assume that f ∈ DISJ and f has arity k. In
addition, we assume that f has width w for a certain number w ≥ 2; namely,
f ∈ DISJ w. Obviously, w ≤ k. Lemma 10 ensures the existence of a signature
h ∈ NZ of arity w for which ORw · h ≤+1

con f .
Assume that this ORw takes variables x1, . . . , xw . We then choose two specific

variables, x1 and x2, and assign 0 to all the other variables. Let f ′ be the
signature obtained from ORw ·h by these pinning operations. Obviously, f ′ ≤+0

con

f . It is not difficult to show that, since h ∈ NZ, Rf ′(x1, x2) equals OR2(x1, x2);
in other words, f ′ is of the form (0, a, b, c) with abc 
= 0.

Finally, we apply Proposition 1 and then obtain two signatures u1, u2 ∈ U ∩
NZ satisfying that EQd ≤+1

con {f ′, u1, u2}. By combining this with f ′ ≤+0
con f ,

we conclude that EQd ≤+1
con {f, u1, u2}.

The case where f ∈ NAND is similarly treated. �

The remaining type of signatures to consider is ones that sit outside of
DISJ ∪NAND∪DG. As a key claim for those signatures, we prove the following
proposition.

Proposition 4. Let d ≥ 2. For any signature f 
∈ DG of arity k ≥ 2, if
f 
∈ DISJ ∪ NAND, then there exists a finite subset G ⊆ U satisfying that
EQd ≤+1

con G ∪ {f}.

To prove this proposition, we note, as our starting point, a lemma on binary
signatures not in DISJ ∪NAND∪DG. These signatures have already treated
in Section 5 under various conditions.

Lemma 11. Let d ≥ 2. Let f 
∈ DISJ ∪NAND∪DG be any binary signature.
In this case, there exists a finite signature set G ⊆ U ∩ NZ with |G| ≤ 2 such
that EQd ≤+1

con G ∪ {f}.
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The second step for the proof of Proposition 4 is made by the following lemma.
For convenience, let COMP1(f) = {fxi=c | i ∈ [k], c ∈ {0, 1}}.

Lemma 12. Let d, k ≥ 2. For any k-ary signature f 
∈ DISJ ∪NAND∪DG,
if EQd 
≤+1

con G ∪ {f} for any finite subset G ⊆ U , then there exists another
signature g ∈ COMP1 of arity < k such that g 
∈ DISJ ∪ NAND ∪ DG.

Proof. Let f 
∈ DISJ ∪ NAND ∪ DG be any k-ary signature. Assume that
EQd 
≤+1

con G ∪ {f} for any finite subset G ⊆ U ∩ NZ. By letting gb = fx1=b for
each value b ∈ {0, 1}, we obtain f(x1, . . . , xk) =

∑
b∈{0,1}Δb(x1)gb(x2, . . . , xk).

Now, we want to claim that there is no case where either g0, g1 ∈ DISJ or
g0, g1 ∈ NAND. If so, then f clearly belongs to DISJ ∪NAND, a contradic-
tion. Moreover, if both g0 ∈ DISJ and g1 ∈ NAND occur, then Proposition
3 implies that EQd ≤+1

con {g0, g1, u1, u2} for certain signatures u1, u2 ∈ U ∩NZ.
Since g0 ≤+0

con f and g1 ≤+0
con f , we conclude that EQd ≤+1

con {f, u1, u2}. This is
clearly a contradiction. The same holds if we exchange the roles of g0 and g1.
Therefore, there are only two remaining cases: (i) g0 ∈ DISJ ∪ NAND and
g1 
∈ DISJ ∪NAND and (ii) g0 
∈ DISJ ∪NAND and g1 ∈ DISJ ∪NAND.
In either case, we can obtain the desired conclusion of the lemma. �

Finally, Proposition 4 can be proven by combining Lemmas 11 and 12.

7 The Classification Theorem

Throughout the previous sections, we have already established all necessary
foundations for our trichotomy theorem, Theorem 1, on the approximation com-
plexity of complex-weighted bounded-degree Boolean #CSPs. Theorem 1 is an
immediate consequence of our key claim, Proposition 5, which directly bridges
between unbounded-degree #CSPs and bounded-degree #CSPs.

Proposition 5. For any index d ≥ 3 and for any signature set F ,
#CSP∗(F) ≡AP #CSP∗

d(F).

The proposition comes from Lemma 1 and Propositions 2, 3, and 4. Using this
proposition, the main theorem follows directly from the trichotomy theorem
proven in [16].

Another immediate consequence of Proposition 5 is an equivalence be-
tween #CSP∗(F) and Holant(EQ3|F ,U). Notice that #CSP∗(F) coincides with
Holant({EQk}k≥1|F ,U) as stated in Section 2.1.

Proposition 6. For any set F of signatures, it holds that #CSP∗(F) ≡AP
Holant(EQ3|F ,U).

What is the approximation complexity of #CSP∗
d(F) when d is less than 3? To-

ward the end of this section, we briefly discuss this issue. Recall that #CSP∗(F)
is shorthand for #CSP(F ,U). Similar to #CSP∗(F), we write Holant∗(F) to
denote Holant(F ,U).

The following proposition, which answers the above question, determines the
approximation complexity of #CSP∗

d(F) for any d ∈ {1, 2}.
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Proposition 7. 1. For any signature set F , #CSP∗
1(F) is in FPC.

2. For any signature set F , #CSP∗
2(F) ≡AP Holant∗(F).

Overall, we have classified all #CSP∗
d(F)’s as we have initially planned.
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Approximation of Points by a Step Function
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Abstract. The problem considered in this paper is: given an integer
k > 0 and a set P of n points in the plane each with a corresponding
non-negative weight, find a step function f with k steps that minimize
the maximum weighted vertical distance between f and all the points in
P . We present a randomized algorithm to solve the problem in O(n log n)
expected running time. The bound is obviously optimal for the unsorted
input. The previously best known algorithm runs in O(n log2 n) worst-
case time. Another merit of the algorithm is its simplicity. The algorithm
is just a randomized implementation of Frederickson and Johnson’s ma-
trix searching technique, and it only exploits a simple data structure.

Keywords: Randomized algorithm, approximation, step function,
matrix searching.

1 Introduction

In this paper, we consider the problem of approximating a planar point set by
a step function under the weighted measure. Precisely, we are given an integer
k > 0 and a set P of n planar points each with a corresponding non-negative
weight, our objective is to find a step function f with k steps that minimize the
maximum weighted vertical distance between f and all the points in P .

This problem belongs to the large class of (min-ε) approximation problems
for a point set or a polygonal curve (e.g. [2], [9]). Even if the geometric problem
may have application context in geometry-related areas, it is mainly motivated
in the database community for histogram construction, where the step function
we seek will be used as a concise representation of a large dataset [10,11]. Here,
the reason why the weighted measure has received attention is that the data
may hold non-uniform significance.

If all the weights are equal to 1, the special version of the problem has been
extensively researched [4,10,13,15], and finally, was solved optimally by Fournier
and Vigneron [6], in O(n log n) time for the unsorted case and O(n) time for
the sorted case. If the weights are allowed to be any non-negative values, several
upper bounds has also been achieved in recent years. Table 1 summarizes the
previous results and the result of this paper. Among all the previous results, the
best bound depending only on n is O(n log2 n), which was recently obtained by

W. Wu and O. Daescu (Eds.): COCOA 2010, Part I, LNCS 6508, pp. 300–308, 2010.
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Chen and Wang [2]. Just like what Fournier and Vigneron did in [6], Chen and
Wang obtained their bound by generalizing Frederickson’s technique for path
partitioning [7], and additionally by exploiting some complicated data struc-
tures such as fractional cascading. The Frederickson’s technique itself is also a
complicated technique because it has to employ sub-linear feasibility test and
use careful counting tricks.

Table 1. Summary of the results

References Time bounds

Guha and Shim (2007) [10] O(n log n + k2 log6 n)
Karras, Sacharidis, and Mamoulis O(n log L), where L is the largest number
(2007) [11] that the optimal value may reach
Lopez and Mayster (2008) [12] O(n2) or O(n log3 n) (expected)
Fournier and Vigneron (2008) [6] O(n log4 n)
Chen and Wang (2009) [2] O(n log2 n)
The present paper O(n log n) (expected)

In this paper, We present a simple randomized algorithm with O(n log n)
expected running time. The bound is obviously optimal if we assume the in-
put point set is unsorted. The simplicity of the algorithm consists in the fact
that it is obtained by randomizing Frederickson and Johnson’s matrix searching
technique [8] (which is simpler than Frederickson’s technique for path partition-
ing [7]), and only a very simple data structure is exploited.

2 Preliminaries

In this section, we present some necessary notations and assumptions for the
problem, and reformulate the problem as a min-max optimization problem to
make it more intelligible. We also present some observations on the problem,
which are important to our algorithms.

2.1 Notations, Assumptions, and Formulations

Let P = {p1, p2, . . . , pn} be the input point set, with pi = (xi, yi), and let wi ≥ 0
be the weight corresponding to pi. To simplify the exposition, we assume that no
two points in P has the same x-coordinate. We also assume that the points in P
are given in the order of increasing x-coordinates. The sorted input assumption
does not affect the generality of our algorithm since adding a sorting process does
not affect the time bound of our algorithm. With this assumption, we look at
P = {p1, p2, . . . , pn} as a sequence of points, and then, the problem of this paper
is just a special version of the general MIN-MAX PARTITION problem [6,2].
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MIN-MAX PARTITION: Given a sequence of n elements, a positive integer
k ≤ n, and the definition of a cost function θ(b, e) that can map any interval
[b . . . e] with 1 ≤ b ≤ e ≤ n to a non-negative value, compute a k-partition of
interval [1 . . . n], which is defined to be a non-decreasing sequence of integers
{i0, i1, . . . , ik} with i0 = 0 and ik = n, such that max1≤j≤k θ(ij−1 + 1, ij)
is minimized. Here, the elements of the input sequence may be characters,
numbers, points, etc..

For the problem of this paper, the definition of θ(b, e) is

θ(b, e) = min
y∈R

max
b≤i≤e

wi · |yi − y| (1)

That is to say, the problem has no relation with the x-coordinates of the points
in P under the assumption that P is a sorted sequence.

The output of the problem is an optimal approximating step function, which
can be represented by two sequences: a k-partition {i�0, i�1, . . . , i�k} that achieves
optimality; and the sequence of k approximating values {y�

1 , y
�
2 , . . . , y

�
k} induced

by the partition, where y�
j is the y� corresponding to the interval [i�j−1+1, . . . , i�j ]

for 1 ≤ j ≤ k. We denote by ε� the maximum weighted vertical distance between
the optimal step function and P , i.e., ε� = max1≤j≤k θ(i�j−1 + 1, i�j). Just like
many other optimization problems, the finding of ε� is the key of the problem. In
the rest part of this section, we will show that, once ε� is found, the optimal step
function can be easily computed in O(n) time. (See the notes following Lemma 1
and Lemma 2.) Henceforth, we only focus on how to find ε� in the next section.

It is easy to know that the problem can be solved with dynamic program-
ming, but it is difficult to obtain a sub-quadratic running time. Fournier and
Vigneron [6] and also Chen and Wang [2] observed that the function θ(b, e) of
the problem satisfies the monotonicity property, i.e., θ(b, e) ≤ θ(b′, e′) for any
1 ≤ b′ ≤ b ≤ e ≤ e′ ≤ n, so that it can be efficiently solved by some parametric
search techniques. In this paper, we also abide to this paradigm.

2.2 The Decision Algorithm

To apply parametric search or its variants to solve an optimization problem, we
should have a decision algorithm to conduct feasibility test on a given ε > 0.
Fournier and Vigneron [6] and also Chen and Wang [2] exploited the gener-
alizations of Frederickson’s decision algorithm for path partitioning [7], whose
efficiency depends on the efficiency of evaluating θ(b, e). In this paper, we simply
use the linear-time decision algorithm by Karras et al. [11].

Lemma 1 (The decision algorithm). Given ε > 0, we can decide whether
ε < ε� in O(n) time.

Given ε > 0, the decision algorithm of Karras et al. works as follows. We scan
the point sequence P from index 1 to n only one time. During the scanning, we
greedily push indices to the current interval. Suppose the current interval starts
from i, and we are now considering the index j. We incrementally compute
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∩i≤	≤jσ	, where σ	 is the vertical segment [y	 − ε
w�
, y	 + ε

w�
]. If the intersection

does not become empty, we go to the next index; otherwise we terminate the
current interval and start a new one by taking j as the first index. In the end,
we return FALSE or TRUE according to whether or not the total number of
partitioned intervals is larger than k.

Note 1. Another usage of the decision algorithm is that, once ε� is found, we
can obtain the optimal k-partition {i�0, i�1, . . . , i�k} in O(n) time.

2.3 The Evaluation of θ(b, e)

The time bounds of the algorithms in [6] and [2], as well as our randomized
algorithm, all depend on how fast θ(b, e) can be evaluated. Here, we present two
approaches to evaluating θ(b, e). The first approach is a simple one.

Lemma 2 (The direct evaluation method). Without preprocessing, any
θ(b, e) can be evaluated in O(e− b) = O(n) time.

Proof. Guha and Shim [11] and also Chen and Wang [2] observed that, given
1 ≤ b ≤ e ≤ n, the computation of θ(b, e) equals to find the lowest point of the
intersection of 2(e − b + 1) upward halfplanes in the y-z space: z ≥ wi(y − yi)
and z ≥ wi(yi − y), for b ≤ i ≤ e. This task can be accomplished in linear time
since it is just the problem of simplified two-variable linear programming [14].
Once the sought point (y�, z�) is found, then θ(b, e) = z�. ��
Note 2. Once the optimal k-partion {i�0, i�1, . . . , i�k} is computed, by using the
above algorithm we can obtain the optimal approximating values {y�

1 , y
�
2 , . . . , y

�
k}

induced by the partition in O(n) time.

The second approach to evaluating θ(b, e) is based on preprocessing and is due
to Guha and Shim [10] and Chen and Wang [2].

Lemma 3 (The evaluation method with preprocessing). After prepro-
cessing in O(n log n) time and O(n log n) space, any θ(b, e) can be evaluated in
O(logc n) time, where c > 1 is some constant.

What the actual value of c is depends on what data structure is exploited for
preprocessing. Guha and Shim [10] designed a data structure leading to c = 4,
and Chen and Wang [2] decreased it to 3 and 2, with more complicated data
structures. In our randomized algorithm, we will not apply the approach of
Lemma 3 to evaluating θ(b, e). It is mentioned here only for giving an alternative
deterministic algorithm.

3 The Randomized Algorithm

In this section, we present our randomized algorithm for the problem of this
paper. We obtain the algorithm by randomizing Frederickson and Johnson’s
matrix searching technique. We first give an overview of the technique and show
that the deterministic time bound O(n logc n) in [6] and [2] can also be derived
with the technique, where c is the constant in lemma 3.
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3.1 The Matrix Searching Technique

In this subsection, we first recall the technique of Frederickson and Johnson [8] for
(deterministically) searching in a sorted square matrix. On the aspect of solving
the MIN-MAX PARTITION problem, it may be slower than Frederickson’s later
technique [7]. However, it is simpler and can get benefits from randomization.

Suppose there is a min-max optimization problem whose objective is to find
the optimal value λ�, the minimum among all possible λs that make ρ(λ)=TRUE,
where ρ(λ) is a monotonic function that maps a real value to TRUE or FALSE.
Suppose the decision version of the optimization problem can be solved in
O(D(n)) time, and all the possible λs can be represented by a sorted n × n
matrix M = (mi,j), where ”sorted” means mi,j ≤ mi,j+1 and mi,j ≥ mi+1,j for
all entries of M . Then, we can find λ� by performing efficient searching in M .

Suppose the entry of M cannot be accessed in O(1) time, then Frederickson
and Johnson’s algorithm should work as follows. It consists of two phases: the first
phase and the second phase. During the first phase, we maintain a collectionM
of submatrices ofM (by recording their ranges only), and initially setM = {M}.
We repeat the following process until all the submatrices inM become singleton
matrices:

1. Divide each matrix inM into four almost equal-size matrices, and then put
the smallest (i.e. lower-leftmost) entry of each matrix into the set L, and put
the largest (i.e., upper-rightmost) entry of each matrix into the set U .

2. Evaluate the entries in L and U .
3. Select the median element λL of L, and the median element λU of U .
4. Discard from M the matrices that cannot contain λ�, based on the results

of calling the decision procedure with λL and λU and the comparisons be-
tween an extreme entry of a matrix and λL or λU . The detailed criteria for
discarding can be seen in [8] or Section 3.3 of [1].

It can be proved that, through �lgn� iterations, all the matrices inM will reach
singleton, and at the end of the ith iteration, the number of matrices in M is
O(2i). That is to say, the number of matrices inM can never exceed O(n), and
the total number of matrices being processed in the whole phase is O(

∑�lg n�
i=0 2i),

which is also O(n).
Then, in the second phase, we first evaluate the O(n) remaining entries in the

singleton matrices, and sort them, and at last conduct a binary search to find
λ� by calling the decision procedure O(log n) times.

Suppose after an O(π(n)) time preprocessing, we can evaluate any entry of M
in O(κ(n)) time, and we use the worst-case linear-time algorithm for the median
selections (e.g., see the textbook [3]), then the whole searching process can be
accomplished in O(π(n) + n · κ(n) + D(n) logn + n logn) time, where the last
item n logn corresponds to the time consumed in the sorting.

For the problem of this paper, its decision problem can be solved in O(n) time
by Lemma 1, and the sorted matrix M is composed of θ(i, j)’s and 0’s. Precisely,
mi,j = θ(i, j) for 1 ≤ i ≤ j ≤ n, and mi,j = 0 for 1 ≤ j < i ≤ n. Therefore,
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by using the evaluation approach of Lemma 3, we can obtain another determin-
istic algorithm with O(n logc n) worst-case time. It asymptotically matches the
algorithms in [6] and [2], and is simpler than them.

3.2 Solving with Randomization and Comparison

We now solve the problem in O(n log n) expected running time. We achieve this
simply by accommodating both phases of the matrix searching into the paradigm
of randomized prune-and-search. In the whole algorithm, we only employ the
direct method of Lemma 2 for evaluating the entries of M .

Clearly, if we continue to rely on entry evaluation for conducting the search-
ing, we cannot obtain a faster algorithm. Our algorithm gets benefits from the
property that, the comparison between an entry of M and a real value can be
efficiently computed after some ”light” preprocessing.

Lemma 4 (The comparison method). Given ε > 0, with O(n) preprocessing
time and space, we can decide whether θ(i, j) <, =, or > ε in O(log n) time for
any 1 ≤ i ≤ j ≤ n.

Proof. Given ε > 0, the data structure we construct in preprocessing is a binary
interval tree, with each node corresponding to an interval [b . . . e] and possessing
some information related to ε. The root of the tree corresponds to the entire
interval [1 . . . n], and the leaf nodes correspond to the intervals of length one,
i.e., [b . . . b]. For an inner node corresponding to the interval [b . . . e] with b < e,
its left child corresponds to the interval [b . . . q] and its right child corresponds
to the interval [q + 1 . . . e], where q = �(b + e)/2� . From the above criteria, we
can easily know that there are totally O(n) nodes in the tree and its height is
O(log n). In addition, for each node corresponding to the interval [b . . . e], we
record into the node a vertical segment σ that equals to ∩b≤	≤eσ	, where σ	 is
the vertical segment [y	 − ε

w�
, y	 + ε

w�
].

We use a recursive divide-and-conquer procedure to construct the tree. At
each stage of recursion, the work of combination is to compute the intersection
of the two vertical segments stored already in the children of the current node.
This can be accomplished in O(1) time, so that the total preprocessing time is
O(n).

Now, suppose we are given arbitrary i and j with 1 ≤ i ≤ j ≤ n. We decide
the relationship between θ(i, j) and ε by conducting searching in the interval
tree. During the process of searching, we maintain a vertical segment I, and
initially set I = [−∞,+∞]. At the end of the searching, we wish I = ∩i≤	≤jσ	,
so that we can make decision according to whether I is empty, a point, or a
segment with some length. Therefore, the goal of tree searching is to compute
I by using the segments already stored in the tree, as few as possible. We can
implement the searching with a recursive procedure as follows:

Procedure. SEGMENT-INT(node, i, j)
1 if i = b[node] and j = e[node]
2 then I ← I ∩ σ[node], and return.
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3 q ← �(b[node] + e[node])/2�.
4 if i ≤ q and j ≥ q + 1
5 then SEGMENT-INT(lchild[node], i, q),
6 SEGMENT-INT(rchild[node], q + 1, j).
7 else if j ≤ q
8 then SEGMENT-INT(lchild[node], i, j).
9 else � i ≥ q + 1
10 SEGMENT-INT(rchild[node], i, j).

The procedure is correct since we go through each possible child interval of the
parent interval and each branch of the tree searching must stop at some node
whose corresponding interval is a subinterval of [i . . . j]. It is easy to argue that,
on each level of the interval tree, there are at most four nodes being visited:
the nodes whose corresponding interval includes i or j, and possibly, their sister
nodes. Once the nodes in the latter type are met, the branching must stop. So,
the number of visited nodes during the searching is at most four times the height
of the tree, which is O(log n). Considering each visit to a node consumes O(1)
time, we accomplish the proof. ��

For the purpose of clear exposition, we call the preprocessing in Lemma 4 the
inner preprocessing, and call the one in Lemma 3 the initial preprocessing. With
the existence of Lemma 4, we can now accelerate the matrix searching by de-
creasing the number of evaluation calls with the paradigm of randomized prune-
and-search.

Consider the first phase of the matrix searching. At each iteration, the steps
are rewritten as follows: At first we randomly pick λL from the set L and λU

from the set U rather than select the medians. After that, we evaluate the two
entries and conduct the inner preprocessing on each of the two values. Then, the
subsequent work is almost the same as the deterministic matrix searching: calling
the decision procedure and performing matrix discarding. What is different is
that the matrix discarding should be implemented with calling the comparison
procedure.

The correctness of this phase can be easily argued by using the same loop
invariant as the deterministic searching, i.e., the entry corresponding to λ� is
always included in some matrix in M. The analysis can also follow the deter-
ministic version: There are �lgn� iterations, and at the end of the ith iteration,
the expected number of matrices in M is O(2i). Thus, in the whole phase, the
expected number of calls to the evaluation procedure, the inner preprocessing
procedure, and the decision procedure is all O(log n), and the expected number
of calls to the comparison procedure is O(

∑�lg n�
i=0 2i) = O(n). This yields that

the first phase consumes a total O(n logn) expected time.
To find λ� among O(n) remaining entries, we conduct a typical process of

randomized prune-and-search in the second phase. We repeat the following steps
until one entry remains: Randomly choose an entry, evaluate it and conduct the
inner preprocessing on it, decide its feasibility, and then discard the impossible
entries with comparisons. It is not difficult to know that this phase consumes also



Weighted Approximation of Points by a Step Function 307

O(n log n) expected time, since the expected number of comparisons performed
in the whole phase is O(n).

In summary, we have the following result:

Theorem 1. By exploiting the randomized matrix searching, and relying on
Lemma 1 for feasibility test, Lemma 2 for entry evaluation, and Lemma 4 for
entry comparison, we can solve the problem of this paper in O(n logn) expected
time and O(n) space.

By an easy reduction, Fournier and Vigneron [6] showed that the unweighted ver-
sion of the problem cannot be faster than sorting under the assumption that the
input point set is unsorted. Certainly, neither can the general weighted version.
Hence, our bound is optimal for the unsorted case.

4 Concluding Remarks

The result of this paper is achieved by using the randomized matrix searching
technique. It may be interesting to know whether there are other problems that
may be solved with this framework. Especially, we care about a closely-related
problem – weighted approximation of planar points with a piecewise linear func-
tion [2]. The critical point is to design a data structure allowing both efficient
preprocessing and efficient comparison query as we do in Lemma 4. The author
only knows reference [5] employs a similar approach.

For the problem itself, we are interested in the following two questions:

– How to implement a deterministic algorithm with O(n log n) worst-case time
for an unsorted input point set?

– For a sorted input point set, can the problem be solved in (expected or
worst-case) linear time?

Acknowledgments. The comments by an anonymous referee to the previous
version of this paper motivated the current result.
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Abstract. This paper is our third step towards developing a theory of
testing monomials in multivariate polynomials and concentrates on two
problems: (1) How to compute the coefficients of multilinear monomials;
and (2) how to find a maximum multilinear monomial when the input is
a ΠΣΠ polynomial. We first prove that the first problem is #P-hard and
then devise a O∗(3ns(n)) upper bound for this problem for any polyno-
mial represented by an arithmetic circuit of size s(n). Later, this upper
bound is improved to O∗(2n) for ΠΣΠ polynomials. We then design
fully polynomial-time randomized approximation schemes for this prob-
lem for ΠΣ polynomials. On the negative side, we prove that, even for
ΠΣΠ polynomials with terms of degree ≤ 2, the first problem cannot
be approximated at all for any approximation factor ≥ 1, nor ”weakly
approximated” in a much relaxed setting, unless P=NP. For the second
problem, we first give a polynomial time λ-approximation algorithm for
ΠΣΠ polynomials with terms of degrees no more a constant λ ≥ 2. On
the inapproximability side, we give a n(1−ε)/2 lower bound, for any ε > 0,
on the approximation factor for ΠΣΠ polynomials. When the degrees of
the terms in these polynomials are constrained as ≤ 2, we prove a 1.0476
lower bound, assuming P = NP ; and a higher 1.0604 lower bound, as-
suming the Unique Games Conjecture.

Keywords: Multivariate polynomials; monomial testing; monomial co-
efficients; maximum multilinear monomials; approximation algorithms;
inapproximability.

1 Introduction

1.1 Background

There is a long history in theoretical computer science with heavy involvement
of studies and applications of polynomials. Most notably, low degree polynomial
testing/representation and polynomial identity testing have played invaluable
roles in many major breakthroughs in complexity theory. For example, low degree
polynomial testing is involved in the proof of the PCP Theorem, the cornerstone
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of the theory of computational hardness of approximation and the culmination
of a long line of research on IP and PCP (see, Arora et al. [3] and Feige et
al. [12]). Polynomial identity testing has been extensively studied due to its
role in various aspects of theoretical computer science (see, for example, Chen
and Kao [11], Kabanets and Impagliazzo [16]) and its applications in various
fundamental results such as Shamir’s IP=PSPACE [23] and the AKS Primality
Testing [2]. Low degree polynomial representation [20] has been sought for so as
to prove important results in circuit complexity, complexity class separation and
subexponential time learning of Boolean functions (see, for example, Beigel [5],
Fu[13], and Klivans and Servedio [18]). These are just a few examples. A survey
of the related literature is certainly beyond the scope of this paper.

The rich literature about polynomial testing, the close relation of monomial
testing to key problems in complexity such as the k-path testing, satisfiability,
counting and permanent computing, and many other observations have motivated
us to develop a new theory of testing monomials in polynomials represented by
arithmetic circuits or even simpler structures. The monomial testing problem is
related to, and somehow complements with, the low degree testing and the identity
testing of polynomials. We want to investigate various complexity aspects of the
monomial testing problem and its variants with two major objectives. One is to
understand how this problem relates to critical problems in complexity, and if so to
what extent. The other is to exploit possibilities of applying algebraic properties
of polynomials to the study of those critical problems.

1.2 The First Two Steps

As a first step towards testing monomials, Chen and Fu [7] have proved a series
of results: The multilinear monomial testing problem for ΠΣΠ polynomials is
NP-hard, even when each clause has at most three terms and each term has a
degree at most 2. The testing problem for ΠΣ polynomials is in P, and so is
the testing for two-term ΠΣΠ polynomials. However, the testing for a product
of one two-term ΠΣΠ polynomial and another ΠΣ polynomial is NP-hard.
We have also proved that testing c-monomials for two-term ΠΣΠ polynomials
is NP-hard for any c > 2, but the same testing is in P for ΠΣ polynomials.
Finally, two parameterized algorithms have been devised for three-term ΠΣΠ
polynomials and products of two-termΠΣΠ andΠΣ polynomials. These results
have laid a basis for further study about testing monomials.

In the subsequent paper, Chen et al. [8] present two pairs of algorithms.
First, they prove that there is a randomized O∗(pk) time algorithm for testing
p-monomials in an n-variate polynomial of degree k represented by an arith-
metic circuit, while a deterministic O∗(6.4k + pk) time algorithm is devised
when the circuit is a formula, here p is a given prime number. Second, they
present a deterministic O∗(2k) time algorithm for testing multilinear monomi-
als in ΠmΣ2Πt × ΠkΠ3 polynomials, while a randomized O∗(1.5k) algorithm
is given for these polynomials. The first algorithm extends the recent work by
Koutis [19] and Williams [25] on testing multilinear monomials. Group alge-
bra is exploited in the algorithm designs, in corporation with the randomized
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polynomial identity testing over a finite field by Agrawal and Biswas [1], the de-
terministic noncommunicative polynomial identity testing by Raz and Shpilka
[21] and the perfect hashing functions by Chen et al. [10]. Finally, they prove
that testing some special types of multilinear monomial is W[1]-hard, giving
evidence that testing for specific monomials is not fixed-parameter tractable.

1.3 Contributions

Naturally, testing for the existence of any given monomial in a polynomial can be
carried out by computing the coefficient of that monomial in the sum-product
expansion of the polynomial. A zero coefficient means that the monomial is
not in the polynomial, while a nonzero coefficient implies that it is. Moreover,
coefficients of monomials in a polynomial have their own implications and are
closely related to central problems in complexity. As we shall exhibit later, the
coefficients of multilinear monomials correspond to counting perfect matchings
in a bipartite graph and to computing the permanent of a matrix.

Consider a ΠΣΠ polynomial F . F may not have a multilinear monomial in
its sum-product expansion. However, one can always find a multilinear monomial
via selecting terms from some clauses of F , unless all the terms in each clause
of F are not multilinear or F is simply empty. Here, the real challenging is how
to find a longest multilinear from the product of a subset of clauses in F . This
problem is closely related to the maximum independent set, MAX-k-2SAT and
other important optimization problems in complexity.

Because of the above characteristics of monomial coefficients, we concentrate
on two problems in this paper:

1. How to compute the coefficients of multilinear monomials in the sum-product
expansion of a polynomial?

2. How to find/approximate a maximum multilinear monomial when the input
is a ΠΣΠ polynomial?

For the first problem, we first prove that it is #P-hard and then devise a
O∗(3ns(n)) time algorithm for this problem for any polynomial represented by an
arithmetic circuit of size s(n). Later, this O∗(3ns(n)) upper bound is improved
to O∗(2n) for ΠΣΠ polynomials. Two easy corollaries are derived directly from
this O∗(2n) upper bound. One gives an upper bound that matches the best
known O∗(2n) deterministic time upper bound, which was due to Ryser [22] in
early 1963, for computing the permanent of an n×n matrix. The other gives an
upper bound that matches the best known O∗(1.415n) deterministic time upper
bound, which was also due to Ryser [22], for counting the number of perfect
matchings in the a bipartite graph.

We then design three fully polynomial-time randomized approximation
schemes. The first approximates the coefficient of any given multilinear monomial
in a ΠΣ polynomial. The second approximates the sum of coefficients of all the
multilinear monomials in a ΠΣ polynomial. The third finds an ε-approximation
to the coefficient of any given multilinear monomial in a ΠkΣaΠt×ΠmΣs poly-
nomial with a being a constant ≥ 2.
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On the negative side, we prove that, even for ΠΣΠ polynomials with terms of
degree ≤ 2, the first problem cannot be approximated at all regardless of the ap-
proximation factor≥ 1. We then consider ”weak approximation” in a much relaxed
setting, following our previous work on inapproximability about exemplar break-
point distance and exemplar conserved interval distance of two genomes [9,6]. We
prove that, assuming P 
= NP , the first problem cannot be approximated in poly-
nomial time within any approximation factor α(n) ≥ 1 along with any additive
adjustment β(n) ≥ 0, where α(n) and β(n) are polynomial time computable.

For the second problem, we first present a polynomial time λ-approximation
algorithm forΠΣΠ polynomials with terms of degrees no more a constant λ ≥ 2.
On the inapproximability side, we give a n(1−ε)/2 lower bound, for any ε > 0, on
the approximation factor for ΠΣΠ polynomials. When the degrees of the terms
in these polynomials are constrained as ≤ 2, we prove a 1.0476 lower bound,
assuming P 
= NP . We also prove a higher 1.0604 lower bound, assuming the
Unique Games Conjecture.

2 Notations and Definitions

For variables x1, . . . , xn, let P [x1, · · · , xn] denote the communicative ring of all
the n-variate polynomials with coefficients from a finite field P . For 1 ≤ i1 <
· · · < ik ≤ n, π = xj1

i1
· · ·xjk

ik
is called a monomial. The degree of π, denoted

by deg(π), is
∑k

s=1 js. π is multilinear, if j1 = · · · = jk = 1, i.e., π is linear
in all its variables xi1 , . . . , xjk

. For any given integer τ > 1, π is called a τ -
monomial, if 1 ≤ j1, . . . , jk < τ . In the setting of the MAX-Multilinear Problem
in Section 7, we need to consider the length of the monomial π = xj1

i1
· · ·xjk

ik
as

|π| =
∑k

	=1 log(1 + j	). (Strictly speaking, |π| should be
∑k

	=1 log(1 + j	) logn.
But, the common logn factor can be dropped for ease of analysis.) When π is
multilinear, |π| = k, i.e., the number of variables in it.

For any polynomial F (x1, . . . , xn) and any monomial π, we let c(F, π) denote
the coefficient of π in the sum-product of F , or in F for short. If π is indeed in
F , then c(F, π) > 0. If not, then c(F, π) = 0. We also let S(F ) denote the sum
of the coefficients of all the multilinear monomials in F . When it is clear from
the context, we use c(π) to stand for c(F, π).

An arithmetic circuit, or circuit for short, is a direct acyclic graph with + gates
of unbounded fan-ins, × gates of two fan-ins, and all terminals corresponding to
variables. The size, denoted by s(n), of a circuit with n variables is the number
of gates in it. A circuit is called a formula, if the fan-out of every gate is at most
one, i.e., its underlying direct acyclic graph is a tree.

By definition, any polynomial F (x1, . . . , xn) can be expressed as the sum
of a list of monomials, called the sum-product expansion. The degree of the
polynomial is the largest degree of its monomials in the expansion. With this
expression, it is trivial to see whether F (x1, . . . , xn) has a multilinear monomial
(or a monomial with any given pattern) along with its coefficient. Unfortunately,
this expression is essentially problematic and infeasible to realize, because a
polynomial may often have exponentially many monomials in its expansion.
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In general, a polynomial F (x1, . . . , xn) can be represented by a circuit or some
even simpler structure as defined in the following. This type of representation is
simple and compact and may have a substantially smaller size, say, polynomially
in n, in comparison with the number of all monomials in the sum-product expan-
sion. The challenge is how to test whether F has a multilinear monomial, or some
other needed monomial, efficiently without unfolding it into its sum-product ex-
pansion? The challenge applies to finding coefficients of monomials in F .

Throughout this paper, the O∗(·) notation is used to suppress poly(n) factors
in time complexity bounds.

Definition 1. Let F (x1, . . . , xn) ∈ P [x1, . . . , xn] be any given polynomial. Let
m, s, t ≥ 1 be integers.

– F (x1, . . . , xn) is said to be aΠmΣsΠt polynomial, if F (x1, . . . , xn) =
∏t

i=1 Fi,
Fi =

∑ri

j=1 Xij and 1 ≤ ri ≤ s, and Xij is a product of variables with
deg(Xij) ≤ t. We call each Fi a clause. Note that Xij is not a monomial in the
sum-product expansion of F (x1, . . . , xn) unless m = 1. To differentiate this
subtlety, we call Xij a term.

– In particular, we say F (x1, . . . , xn) =
∏t

i=1 Fi is a ΠmΣs polynomial, if it
is a ΠmΣsΠ1 polynomial. Here, each clause Fi is a linear addition of single
variables. In other word, each term in Fi has degree 1.

– F (x1, . . . , xn) is called a ΠmΣsΠt × ΠkΣ	 polynomial, if F (x1, . . . , xn) =
F1 ·F2 such that F1 is a ΠmΣsΠt polynomial and F2 is a ΠkΣ	 polynomial.

When no confusion arises from the context, we use ΠΣΠ and ΠΣ to stand for
ΠmΣsΠt and ΠmΣs, respectively.

Throughout the rest of the paper, we will focus on nonnegative integer coef-
ficients in polynomials.

3 Multilinear Monomial Coefficients, Perfect Matchings
and Permanents

Theorem 1. Let F (x1, . . . , xn) be any given ΠmΣsΠ2 polynomial. It is #P-
hard to compute the coefficient of any given multilinear monomial in the sum-
product expansion of F .

Proof. We shall reduce the counting problem of a bipartite graph to the problem
of computing coefficient of a multilinear monomial in a polynomial. Let G =
(V1 ∪ V2, E) be any given bipartite graph. We construct a polynomial F as
follows.

Assume that V1 = {v1, · · · , vt} and V2 = {u1, · · · , ut}. Each vertex vi ∈ V1 is
represented by a variable xi, so is ui ∈ V2 by a variable yi. For every vertex
vi ∈ V1, let Fi =

∑
(vi,uj)∈E xiyj . Define a polynomial for the graph G as

F (G) = F1 · · ·Ft. Let n = 2t, m = t, and s be maximum degree of the vertices
in V1. It is easy to see that F (G) is a n-variate ΠmΣsΠ2 polynomial.

Now, suppose that G has a perfect matching (x1, yi1), . . . , (xt, yit). Then,
we can choose πj = xjyij from Fj , 1 ≤ j ≤ t. Thus, π = π1 · π2 · · ·πt =
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x1x2 · · ·xty1y2 · · · yt is a multilinear monomial in F (G). Hence, the number of
perfect matchings in G is at most c(π), i.e., the coefficient of π in F (G). On the
other hand, suppose that F (G) has a multilinear monomial π = π′

1 · · · · · π′
t =

x1x2 · · ·xty1y2 · · · yt in its sum-product expansion with π′
j being a term from Fj ,

1 ≤ j ≤ t. By the definition of Fj , π′
j = xjyij , meaning that vertices vj and uij

are directly connected by the edge (j, ij). Since π′ is multilinear, yi1 , . . . , yit are
distinct. Hence, (x1, yi1), . . . , (xt, yit) constitute a perfect matching in G. Hence,
the coefficient c(π) of π in F (G) is at most the number of perfect matchings in
G. Putting the above analysis together, we have that G has a perfect matching
iff F (G) has a copy of the multilinear monomial π = x1x2 · · ·xty1y2 · · · yt in
its sum-product expansion. Moreover, G has c(π) ≥ 0 many perfect matchings
iff the multilinear monomial π has a coefficient c(π) in the expansion. There-
fore, by Valiant’s #P-hardness of counting the number of perfect matchings in
a bipartite graph [24], computing the coefficient of π in F (G) is #P-hard.

Theorem 2. There is a O∗(s(n)3n) time algorithm to compute the coefficients
of all multilinear monomials in a polynomial F (x1, . . . , xn) represented by an
arithmetic circuit C of size s(n).

Proof. We consider evaluating F from C via a bottom-up process. Notice that
at most 2n many multilinear monomials can be formed with n variables. For
each addition gate g in C with fan-ins f1, . . . , fs, we may assume that each fi is
a sum of multilinear terms, i.e., products of distinct variables. This assumption
is valid, because we can discard all the terms in fi that are not multilinear since
we are only interested in multilinear monomials in the sum-product expansion
of F . We simply add f1 + · · ·+ fs via adding the coefficients of the same terms
together. Since there are at most 2n many multilinear monomials (or terms),
this takes O(n2n) times.

Now we consider a multiplication gate g′ in C with fan-ins h1 and h2. As
for the addition gates, we may assume that hi is a sum of multilinear terms,
i = 1, 2. For each term π with degree � in h1, we only need to multiply it with
terms in h2 whose degrees are at most n− �. If the multiplication yields a non-
multilinear term then that term is discarded, because we are only interested in
multilinear terms in the expansion of F . This means that a term π of degree �
in h1 can be multiplied with at most 2n−	 possible terms in h2. Let mi denote
the number of terms in h1 with degree i, 1 ≤ i ≤ n. Then, evaluating h1 · h2 for
the multiplication gate g′ takes time at most

O(n (m1 2n−1 +m2 2n−2 + · · ·+mn−1 21)). (1)

Since there are at most (n
i ) terms with degree i with respect to n variables,

expression (1) is at most

O(n [(n
1 ) 2n−1 + (n

2 ) 2n−2 + · · ·+ (n
n−1) 2n−n])

= O(n
n∑

i=1

(n
i )2n−i) = O(n 3n).
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Since C has s(n) gates, the total time for the entire evaluation of F for finding
all its multilinear monomials with coefficients is O(ns(n)3n) = O∗(s(n)3n).

Theorem 3. Let F (x1, . . . , xn) be any given ΠmΣsΠt polynomial. One can find
coefficients of all the multilinear monomials in the sum-product expansion of F
in O∗(2n) time.

Proof. (Idea) Similar to the analysis for Theorem 2 with the understanding that
each clause in F has ≤ s terms.

Corollary 1. There is a O∗(1.415n) time algorithm to compute the exact num-
ber of perfect matchings in a bipartite graph G = (V1 ∪ V2, E) with n = 2|V1| =
2|V2| vertices.

Proof. (Sketch)Let m = n/2, V1 = {v1, . . . , vm} and V2 = {u1, . . . , um}. For
each vertex ui ∈ V2, we define a variable xi. For each vertex vi ∈ V1, construct
a polynomial Hi = xi1 + xi2 + · · · + xi�i

, where (vi, uij ) ∈ E for j = 1, · · · , �i
and vi has exactly �i adjacent vertices in G. Define H(G) = H1 · · ·Hn/2. Apply
Theorem 3 to H(G).

Corollary 2. The permanent of any given n× n matrix is computable in time
O∗(2n).

Proof. (Sketch) Let A = (aij)n×n be an n× n matrix with nonnegative entries
aij , 1 ≤ i, j ≤ n. Design a variable xi for row i and define polynomials in the
following:

Ri = (ai1x1 + · · ·+ ainxn),
P (A) = R1 · · ·Rn.

Apply Theorem 3 to P (A).

4 Fully Polynomial-Time Approximation Schemes for
ΠΣ Polynomials

In this section, we show that in contrast to Theorems 2 and 3, fully polynomial-
time randomized approximation schemes (”FPRAS”) exist for solving the prob-
lem of finding coefficients of multilinear monomials in a ΠΣ polynomial and
some variants of this problem as well. An FPRAS A is a randomized algorithm,
when given any n-variate polynomial F and a monomial π together with an ac-
curacy parameter ε ∈ (0, 1], outputs a value A(F, π, ε) in time poly(n, 1/ε) such
that with high probability

(1 − ε)c(π) ≤ A(F, π, ε) ≤ (1 + ε)c(π).

Theorem 4. There is an FPRAS for finding the coefficient of any given multi-
linear monomial in a ΠmΣs polynomial F (x1, . . . , xn).
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Proof. Let F (x1, . . . , xn) =
∏m

i=1 Fi such that Fi =
∑si

j=1 xij with si ≤ s. Notice
that any monomial in the sum-product expansion of F will have exactly one
variable from each clause Fi. This allows us to focus on multilinear monomials
with exactly m variables. Let π = xi1 · · ·xim be such a multilinear monomial.
We consider how to test whether π is in F , and if so, how to find its coefficient
c(π).

For each Fi, we eliminate all the variables that are not included in π and let
F ′

i be the resulting clause and F ′ = F ′
1 · · ·F ′

m. If one clause F ′
i is empty, then we

know that π must not be a in the expansion of F ′, nor in F . Now suppose that
all clauses F ′

i , 1 ≤ i ≤ m, are not empty. We shall reduce F ′ to a bipartite graph
G = (V1 ∪ V2, E) as follows. Define V1 = {v1, . . . , vm} and V2 = {u1, . . . , um}.
Here, each vertex vi corresponds to the clause F ′

i , and each vertex uj corresponds
to the variable xj . Define an edge (vi, uj) in E if xj is in Fi.

Suppose that π is a multilinear monomial in F (hence in F ′). Then, each xij

in π is in a distinct clause Ftj , 1 ≤ j ≤ m. This implies that edges (vtj , uij ),
1 ≤ j ≤ m, constitute a perfect matching in G. On the other hand, if edges
(vtj , uij ), 1 ≤ j ≤ m form a perfect matching in G, then we have that xij is in the
clause Ftj . Hence, π = xi1 · · ·xim is a multilinear monomial in F ′ (hence in F ).
This equivalence relation further implies that the number of perfect matchings
in G is the same as the coefficient of the multilinear monomial π in F . Thus,
the theorem follows from any fully polynomial-time randomized approximation
scheme for computing the number of perfect matchings in a bipartite graph, and
such an algorithm can be found in Jerrum et al. [15].

In the following we shall consider how to compute the sum S(F ) of the coefficients
of all the multilinear monomials in a ΠΣ polynomial F .

Theorem 5. There is an FPRAS, when given any n-variate ΠmΣs polynomial
F (x1, . . . , xn), computes S(F ).

Proof. Let F (x1, . . . , xn) =
∏m

i=1 Fi such that Fi =
∑si

j=1 xij with si ≤ s.
Since every monomial in the sum-product expansion of F consists of exactly one
variable from each clause Fj , if m > n then F must not have any multilinear in
its expansion. Thus, we may assume that m ≤ n, because otherwise F will have
no multilinear monomials. Let H = (x1 + · · ·+ xn). Define

F ′(x1, . . . , xn) = F ·Hn−m = F1 · · ·Fm ·Hn−m.

Then, F ′ is a ΠnΣn polynomial. For any given multilinear monomial

π = xi1 · · ·xim

in F with xij belonging to the clause Fj , 1 ≤ j ≤ m, let xim+1 , . . . , xin−m be the
n−m variables that are not included in π, then

π′ = xi1 · · ·xim · xim+1 · · ·xin−m = x1x2 · · ·xn

is a multilinear monomial in F ′. Because F ′ have n clauses with n variables, the
only multilinear monomial that may be possibly contained in F ′ is the multilinear
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monomial π′ = x1x2 · · ·xn. If F ′ indeed has the multilinear monomial π′ with
xij in the clause Fj , 1 ≤ j ≤ m, then π = xi1 · · ·xim is a multilinear monomial
in F . This relation between π and π′ is also reflected by the relation between
the coefficient c(π) of π in the expansion of F and the efficient c(π′) of π′ in
the expansion of F ′. Precisely, the coefficient c(π) of π in F implies that there
are c(π) copies of xi1 · · ·xim for the choices of the first m variables in π′. Each
additional variable xij , m + 1 ≤ j ≤ n − m, is selected from one copy of the
clause H . Since H = (x1 + · · ·xn), there are (n − m)! ways to select these
(n−m) variables from (n−m) copies of H in F ′. Hence, π contributes a value
of c(π)(n−m)! to the coefficient of π′ in F ′. Adding the contributions of all the
multilinear monomials in F to π′ in F ′ together, we have that the coefficient of
π in F ′ is S(F ) · (n −m)!. By Theorem 4, there is an FPRAS to compute the
coefficient of π′ in F ′. Dividing the output of that algorithm by (n −m)! gives
the needed approximation to S(F ).

Theorem 6. Let F (x1, . . . , xn) be ΠkΣaΠt × ΠmΣs polynomial with a ≥ 2
being a constant. There is a O(akpoly(n, 1/ε)) time FPRAS that finds an ε-
approximation for the coefficient of any given multilinear monomial π in the
sum-product F if π is in F , or returns ”no” otherwise. Here, 0 ≤ ε < 1 is any
given approximation factor.

Proof. (Idea) Let F = F1 · F2 such that F1 is a ΠkΣaΠt polynomial, while F2
is a ΠmΣs polynomial. Apply Theorem 5 to the product of each monomial in
the expansion of F1 with F2.

5 Inapproximability

We consider a relaxed setting of approximation in comparison with the
ε-approximation in the previous section. Given any n-variate polynomial F and
a monomial π together with an approximation factor γ ≥ 1, we say that an algo-
rithm A approximates the coefficient c(π) in F within an approximation factor
γ, if it outputs a value A(F, π) such that

1
γ
c(π) ≤ A(F, π) ≤ γ c(π).

We may also refer A as a γ-approximation to c(π).

Theorem 7. No matter what approximation factor γ ≥ 1 is used, there is no
polynomial time approximation algorithm for the problem of computing the co-
efficient of any given multilinear monomial in the sum-product expansion of a
ΠmΣ3Π2 polynomial, unless P=NP.

Proof. (Sketch) Let F (x1, . . . , xn) =
∏m

i=1 Fi be a ΠmΣ3Π2 polynomial. With
loss of generality, we may assume that every term Tij in each clause Fi is a
product of two variables. Let H = (x1 + x2 + · · ·xn) and define

F ′ = F1 · F2 ·H(n−2m) (2)
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Then, F has a multilinear monomial iff F ′ has the only multilinear monomial ψ
with its coefficient c(ψ) = S(F )(n− 2m)!. Hence, the theorem follows from the
NP-completeness of the multilinear monomial testing problem for F that has
been proved in Chen and Fu [7].

Theorem 8. Assuming P 
= NP , given any n-variate ΠmΣ3Π2 polynomial F
and any approximation factor γ ≥ 1, there is no polynomial time approximation
algorithm for computing within a factor of γ the sum S(F ) of the coefficients of
all the multilinear monomials in the sum-product expansion of F .

Proof. (Idea) Similar to the proof for Theorem 7.

6 Weak Inapproximability

In this section, we shall relax the γ-approximation further in a much weak set-
ting. Here, we allow the computed value to be within a factor of the targeted
value along with some additive adjustment. Weak approximation has been first
considered in our previous work on approximating the exemplar breakpoint dis-
tance [9] and the exemplar conserved interval distance [6] between two genomes.
Assuming P 
= NP , it has been shown that the first problem does not admit
any factor approximation along with a linear additive adjustment [9], while the
latter has no approximation within any factor along with a O(n1.5) additive
adjustment [6]. We shall strengthen the inapproximability results of Theorems
7 and 8 to weak inapproximability for computing the coefficient of any given
multilinear monomial in a ΠΣΠ polynomials. But first let us define the weak
approximation.

Definition 2. Let Z be the set of all nonnegative integers. Given four functions
f(x), h(x), α(x) and β(x) from Z to Z with α(x) ≥ 1, we say that h(x) is a weak
(α(x), β(x))-approximation to f(x), if

max
{

0,
f(x)− β(x)

α(x)

}
≤ h(x) ≤ α(x) f(x) + β(x). (3)

Theorem 9. Let α(x) ≥ 1 and β(x) be any two polynomial time computable
functions from Z to Z. There is no polynomial time weak (α(x), β(x))-
approximation algorithm for computing the coefficient of any given multilinear
monomial in an n-variate ΠmΣ3Π2 polynomial, unless P=NP.

Proof. Let F (x1, . . . , xn) =
∏m

i=1 Fi be a ΠmΣ3Π2 polynomial. Like in the proof
of Theorem 7, we assume without loss of generality that every term in each
clause Fi is a product of two variables. We further assume that 2m > n, because
otherwise there are no multilinear monomials in F .

Choose k such that k! > 2α(n+k)β(n+k)+β(n+k). Notice that finding such
a k ≤ 2n is possible when n is large enough, because both α and β are polynomial
time computable. Let H = (x1 + x2 + · · ·xn) and G = (y1 + y2 + · · · yk) with yi

being new variables. Define

F ′ = F ·Hn−2m ·Gk = F1 · · ·Fm ·Hn−2m ·Hk. (4)
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It is easy to see from the above expression (4) that F has a multilinear monomial
iff F ′ has one. Furthermore, the only multilinear monomial that F ′ can possibly
have is ψ = x1 · · ·xn · y1 · · · yk.

Now consider that F has a multilinear monomial π with its coefficient c(π) >
0. Since the degree of π is 2m, let xi1 , . . . , xin−2m be the variables that are
not included in π. Then, the concatenation of π with each permutation of
xi1 , . . . , xin−2m selected from Hn−2m and each permutation of y1, . . . , yk cho-
sen from Gk will constitute a copy of the only multilinear monomial ψ in F ′.
Thus, π contributes c(π)(n− 2m)! k! to the coefficient c(ψ) of ψ in F ′. When all
the possible multilinear monomials in F are considered, the coefficient of c(ψ)
in F ′ is S(F )(n− 2m)!k!. If F ′ has a multilinear monomial, i.e., the only one ψ,
then F has at least one multilinear monomial. In this case, the above analysis
also yields c(ψ) = S(F )(n− 2m)!k! in F ′.

Assume that there is a polynomial time weak (α, β)-approximation algorithm
A to compute the coefficient of any given the multilinear monomial in aΠmΣ3Π2
polynomial. Apply A to F ′ for the multilinear monomial ψ. Let A(ψ) be the
coefficient returned by A for ψ. Then, by expression (3) we have

A(ψ) ≤ α(n+ k) c(ψ) + β(n+ k)
= α(n+ k) S(F ) (n− 2m)! k! + β(n+ k), (5)

A(ψ) ≥ c(ψ)− β(n+ k)
α(n+ k)

=
S(F ) (n− 2m)! k!− β(n+ k)

α(n+ k)
. (6)

When F does not have any multilinear monomials, then F ′ does not either,
implying S(F ) = 0. In this case, by the relation (5), we have

A(ψ) ≤ β(n+ k). (7)

When F has multilinear monomials, then F ′ does as well. By the relation (6),
we have

A(ψ) ≥ S(F ) (n− 2m)! k!− β(n+ k)
α(n+ k)

≥ k!− β(n+ k)
α(n+ k)

>
(2α(n+ k)β(n + k) + β(n+ k))− β(n+ k)

α(n+ k)
= 2β(n+ k). (8)

Since there is a clear gap between (−∞, β(n+k)] and (2β(n+k),+∞), inequal-
ities (7) and (8) provide us with a sure way to test whether F has a multilinear
monomial or not: If A(ψ) > 2β(n + k), then F has multilinear monomials. If
A(ψ) ≤ β(n+ k) then F does not. Since A runs in polynomial time, β(n+ k) is
polynomial time computable and k ≤ 2n, this implies that one can test whether
F has a multilinear monomial in polynomial time. Since it has been proved in
Chen and Fu [7] that the problem of testing multilinear monomials a ΠmΣ3Π2
polynomial is NP-complete, such an algorithm A does not exist unless P=NP.
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Combining the analysis for proving Theorems 8 and 9, we have the following weak
inapproximability for computing the sum of coefficients of all the multilinear
monomials in a ΠΣΠ polynomial.

Theorem 10. Let α(x) ≥ 1 and β(x) be any two polynomial time computable
functions from Z to Z. Assuming P 
= NP , there is no polynomial time weak
(α(x), β(x))-approximation algorithm for computing the sum S(F ) of the co-
efficients of all the multilinear monomials in the sum-product expansion of a
ΠmΣ3Π2 polynomial F .

7 The Maximum Multilinear Problem and Its
Approximation

Given any ΠΣΠ polynomial F (x1, . . . , xn) = F1 · · ·Fm, F may not have any
multilinear monomial in its sum-product expansion. But even if this is the case,
one can surely find a multilinear monomial by selecting terms from a proper
subset of the clauses in F , unless all the terms in F are not multilinear or F
is simply empty. In this section, we consider the problem of finding the largest
(or longest) multilinear monomials from subsets of the clauses in F . We shall
investigate the complexity of approximating this problem.

Definition 3. Let F (x1, . . . , xn) = F1 · · ·Fm be a ΠmΣsΠt polynomial. Define
MAX-SIZE(F ) as the maximum length of multilinear monomials π = πi1 · · ·πik

with πij in Fij , 1 ≤ j ≤ k and 1 ≤ i1 < · · · < ik. Let MAX-MLM(F ) to be
a multilinear monomial π such that |π| = MAX-SIZE(F ), and we call such a
multilinear monomial as a MAX-multilinear monomial in F .

The MAX-MLM problem for an n-variate ΠΣΠ polynomial F is to find
MAX-MLM(F ). Sometimes, we also refer the MAX-MLM problem as the prob-
lem of finding MAX-SIZE(F). We say that an algorithm A is an approximation
scheme within a factor γ ≥ 1 for the MAX-MLM problem if, when given any
ΠΣΠ polynomial F , A outputs a multilinear monomial denoted as A(F ) such
that MAX-SIZE(F ) ≤ γ|A(F )|.

Theorem 11. Let λ ≥ 2 be a constant integer. Let F be any given n-variate
ΠmΣsΠλ polynomial with s ≥ 2. There is a polynomial time approximation
algorithm that approximates the MAX-MLM problem for F within a factor of λ.

Proof. (Sketch) Let F (x1, . . . , xn) = F1 · · ·Fm such that each clause Fi has at
most s terms with degrees at most λ. Let M = M1 · M2 · · ·Mk be a MAX-
multilinear monomial in F . Without loss of generality, assume |M1| ≥ |M2| ≥
· · · |Mk|. We shall devise a simple greedy strategy to find a multilinear monomial
π to approximate M .

We first find the longest term π1 from a clause Fi1 . Mark the clause Fi1 off
in F . Let π = π1. From all the unmarked clauses in F , find the longest term π2
from a clause Fi2 such that π2 has no common variables in π. Mark Fi2 off and
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let π = π1 · π2. Repeat this process until no more terms can be found. At this
point, we obtain a multilinear monomial π = π1 · π2 · · ·π	.

Notice that each term in F has at most λ variables. Each πi may share certain
common variables with some terms in M . If this is the case, then πi will share
common variables with at most λ terms in M . This means that we can select at
least � ≥ � k

λ� terms for π. The greedy strategy implies that

MAX-SIZE(F ) = |M | ≤ λ |π| .

Theorem 12. Let F (x1, . . . , xn) be any given n-variate ΠmΣsΠt polynomial.
Unless P = NP, there can be no polynomial time algorithm that approximates
MAX-MLM(F ) within a factor of n(1−ε)/2, for any ε > 0.

Proof. (Sketch) We shall reduce the maximum independent set problem to the
MAX-MLM problem. Let G = (V,E) be any given indirected graph with V =
{v1, . . . , vn}. For each edge (vi, vj) ∈ E, we design a variable xij representing this
edge. For each vertex vi ∈ V , let d(vi) denote the number of edges connecting
to it and define a term T (vi) as follows:

T (vi) =

{∏
(vi,vj)∈E xij , if d(vi) = n− 1,(∏

(vi,vj)∈E xij

)
·
(∏n−1−d(vi)

j=1 yij

)
, if d(vi) < n− 1.

We now define a polynomial F (G) for the graph G as

F (G) = (T (v1) + · · ·+ T (vn))n.

It follows from the above definitions that G has a maximum independent set of
size K iff F (G) has a MAX-multilinear monomial of length K(n− 1). The lower
bound given in the theorem follows from Zuckerman’s inapproximability lower
bound of n1−ε [26] on the maximum independent set problem.

H̊astad [14] proved that there is no polynomial time algorithm to approximate
the MAX-2-SAT problem within a factor of 22

21 . By this result, we can derive the
following inapproximability about the MAX-MLM problem for the

∏
m

∑
2
∏

2.
Notice that Chen and Fu proved [7] that testing multilinear monomials in a∏∑

2
∏

polynomial can be done in quadratic time.

Theorem 13. Unless P=NP, there is no polynomial time algorithm to approx-
imate MAXM-MLM(F ) within a factor 1.0476 for any given

∏
m

∑
2
∏

2 poly-
nomial F .

Proof. (Sketch) We reduce the MAX-2-SAT problem to the MAX-MLM prob-
lem for

∏
m

∑
2
∏

2 polynomials. Let F = F1 ∧ · · · ∧ Fm be a 2SAT formula.
Without loss of generality, we assume that every variable xi in F appears at
most three times, and if xi appears three times, then xi itself occurs twice and
x̄i once. (It is easy to see that a simple preprocessing procedure can transform
any 2SAT formula to satisfy these properties.) The reduction is similar to, but
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with subtle differences from, the one that was used in [7] to reduce a 3SAT
formula to a

∏
m

∑
3
∏

2 polynomial.
If xi (or x̄i) appears only once in F then we replace it by yi1yi2. When xi

appears twice, then we do the following: If xi (or x̄i) occurs twice, then replace
the first occurrence by yi1yi2 and the second by yi3yi4. If both xi and x̄i occur,
then replace both occurrences by yi1yi2. When xi occurs three times with xi

appearing twice and x̄i once, then replace the first xi by yi1yi2 and the second
by yi3yi4, and replace x̄i by yi1yi3.

Let G = G1 · · ·Gm be the polynomial resulted from the above replacement
process. Here, Gi corresponds to Fi with boolean literals being replaced. Then,
the maximum number of the clauses in F can be satisfied by any true assignment
is K iff a MAX-multilinear monomial in G has length 2K. The lower bound in
the theorem follows from Hȧstad’s inapproximability lower bound on the MAX-
2-SAT problem [14].

Khot et al. [17] proved that assuming the Unique Games Conjecture, there is
no polynomial time algorithm to approximate the MAX-2-SAT problem within
a factor of 1

0.943 . Notice that 1
0.943 > 1.0604 > 22

21 > 1.0476. This tighter lower
bound and the analysis in the proof of Theorem 13 implies the following tighter
lower bound on the inapproximability of the MAX-MLM problem.

Theorem 14. Assuming the Unique Games Conjecture, there is no polynomial
time algorithm to approximate MAXM-MLM(F ) within a factor 1.0604 for any
given

∏
m

∑
2
∏

2 polynomial F .
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The Union of Colorful Simplices
Spanned by a Colored Point Set
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Abstract. A simplex spanned by a colored point set in Euclidean d-space is col-
orful if all vertices have distinct colors. The union of all full-dimensional colorful
simplices spanned by a colored point set is called the colorful union. We show
that for every d ∈ N, the maximum combinatorial complexity of the colorful
union of n colored points in Rd is between Ω(n(d−1)2) and O(n(d−1)2 log n).
For d = 2, the upper bound is known to be O(n), and for d = 3 we present an
upper bound of O(n4α(n)), where α(·) is the extremely slowly growing inverse
Ackermann function. We also prove several structural properties of the colorful
union. In particular, we show that the boundary of the colorful union is covered
by O(nd−1) hyperplanes, and the colorful union is the union of d+1 star-shaped
polyhedra. These properties lead to efficient data structures for point inclusion
queries in the colorful union.

1 Introduction

Given a colored set S of n points in d-dimensional Euclidean space Rd, a simplex is
colorful if its vertices have pairwise distinct colors. The simplicial depth (resp., colorful
simplicial depth) of a point p ∈ Rd is the number of full dimensional closed simplices
(resp., colorful simplices) spanned by S and containing p. It is clear that set of all points
of positive simplicial depth is the convex hull convS. We call the set of all points of
positive colorful simplicial depth the colorful union and denote it by US . It is the union
of all colorful simplices, hence it is a polyhedron in Rd. The study of colorful depth
was pioneered by Bárány [9], who deduced a lower bound on the maximum simplicial
depth by showing that a point lies in a colorful simplex for many random colorings of
the point set.

The colorful linear programming (CLP) problem was proposed by Bárány and
Onn [10]: For a colored set of n points in Rd and a query point q ∈ Rd, find a colorful
simplex that contains q or report that none exists. An important special case is that q
lies in the core of the colored points, which is the intersection of the convex hulls of the
color classes. In this special case, q is in the colorful union by the colorful Carathédory
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theorem [9], and so the CLP is guaranteed to be feasible. This case was thoroughly
studied by Bárány and Onn [10,11] and Deza et al. [17]. The colorful Carathéodry the-
orem has recently been strengthened. Arocha et al. [7] and Holmsen et al. [22] have
independently proved that the query point q lies in the colorful union already if q is
contained in the convex hull of the union of any two color classes. However, very little
in known about the general case that q is an arbitrary point in Rd.

We design efficient data structures for a colored set S of n points in Rd that supports
point inclusion queries for the colorful union US. For d = 2, it is easy to construct
a data structure with O(log n) query time, O(n) space and O(n logn) preprocessing
time. Boissonnat et al. [12] proved that the union US of all colorful triangles for a
set of n colored points in the plane is a simple polygon with at most 2n − 3 vertices,
which can be computed in O(n logn) time. Hence, a point location data structure of
size O(n) can support point inclusion queries for US . For an efficient data structure
in higher dimensions one has to understand the combinatorial structure of the colorful
union. We present the following results.

1. We show that for every d ∈ N, the maximum combinatorial complexity of the col-
orful union for n colored points in Rd is betweenΩ(n(d−1)2) andO(n(d−1)2 logn)
for every d ∈ N. A tight worst case bound of Θ(n) has been known for d = 2, and
we prove a stronger upper bound of O(n4α(n)) for d = 3, where α(·) is the ex-
tremely slowly growing inverse Ackermann function.

2. We show that US is the union of d + 1 star-shaped polyhedra, where the star-
centers are the vertices of an arbitrary colorful simplex. This reduces point inclusion
queries to ray-shooting queries, and leads to efficient data structures to support
point inclusion queries in arbitrary fixed dimension. In particular, in Rd, there is
a data structure of size m, nd−1 ≤ m ≤ n(d−1)2 , that supports point inclusion
queries for US in O(nd−1+ε/m1/(d−1)) time for any ε > 0.

3. We show that the colorful union may have undesirable features already in R3. We
construct colored sets S of n points in R3 with each of the following properties:
(i) US is not star-shaped;

(ii) US has a face whose edges are all adjacent to reflex dihedral angles;
(iii) and the boundary of US contains a chain of Ω(n) reflex vertices.
On the contrary,US is star-shaped and has no two consecutive reflex vertices in R2.

Related Work. The union of geometric objects in Rd has applications in construc-
tive solid modeling, motion planning, proximity problems, and conflict-free colorings.
We redirect the interested reader to the excellent survey [26] on unions of various ge-
ometric objects in Euclidean space. The maximum combinatorial complexity of the
union of m full-dimensional simplices in Rd is O(md), this bound is attained if the
simplices are flat. Research efforts focused on finding families of simplices whose
union have smaller complexity. One example is the family of fat simplices, where
the dihedral angles of all simplices are at bounded from below by a constant δ > 0,
which is the fatness parameter of the family. The maximum complexity of the union of
m fat triangles in R2 is known to be between O(m2α(m) log∗m) and Ω(mα(m)),
where α(·) is the inverse Ackermann function [19,28,32] (the upper bound has re-
cently been improved from O(m log logm) [25]). Ezra and Sharir [20] proved that
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the complexity of m fat tetrahedra in R3 is O(m2+ε) for every ε > 0. Our result about
the complexity of the colorful union is another example: n colored points in Rd de-
termine m = O(nd+1) colorful simplices, yet the complexity of their union is only
O(n(d−1)2 log n) = O(m(d−1)(1− 2

d+1 ) logm).
The colorful simplices in a colored points set in Rd can be interpreted as a complete

multipartite (d + 1)-uniform geometric hypergraph. Alon and Akiyama [5] studied the
number of pairwise disjoint simplices in such a hypergraph, Dey and Pach [15] stud-
ied the intersections of hyperedges, related to the higher dimensional analogues of the
crossing number. To the best of our knowledge, the combinatorial complexity of the
union of colorful simplices in Rd has not been considered before for dimensions d ≥ 3.

2 Preliminaries

Let S be a colored set of n ≥ d + 1 points in Rd. We assume throughout this paper
that every d + 1 points in S are affinely independent. For k = 0, 1, . . . , d, a k-simplex
is a subset P ⊆ S of size k + 1. A d-simplex in Rd is also called a simplex for short.
The convex hull of a subset P ⊆ S is denoted by convP . For subsets with up to three
elements, we use the shorthand notation p = {p}, pq = {p, q}, and pqr = {p, q, r};
if there is no danger of confusion, we also use the same notation for the convex hulls
pq = conv{p, q} and pqr = conv{p, q, r}. We say that a simplex P contains a point
set Q ⊂ Rd if Q ⊆ convP .

The colors of the points in S are represented by positive integers. For a single point
s, we denote by color(s) the color of s. For S′ ⊆ S, we denote by color(S′) ⊂ N the
set of colors that occur in S′. A k-simplex is colorful if its k+ 1 vertices have pairwise
distinct colors. We assume throughout that |color(S)| ≥ d + 1, hence there is at least
one colorful simplex in S. The colorful union of S is the polyhedron

US =
⋃
{convP : P ⊆ S, |P | = d+ 1, and |color(P )| = d+ 1}.

The combinatorial complexity of a polyhedron U is the number of its k-faces for all
k = 0, 1, . . . , d. In R3, in particular, if a polyhedron U is simply connected, then its
0-, 1-, and 2-faces form a plane graph, and hence the combinatorial complexity of U is
proportional to the number of vertices, edges, or faces.

Extremal sets and shells. A point p ∈ S is extremal if there is a bounding halfs-
pace H− (supported by a hyperplane H that contains p) such that color(S ∩ H−) ⊆
{color(p)}. In general, a k-simplex P ⊂ S is extremal if it is colorful and there is a
hyperplane H containing P such that color(S ∩H−) ⊆ color(P ), where H− is again
a halfspace bounded by H . For an extremal (d − 2)-simplex P , let the wedge W (P )
be the intersection of the closed halfspaces cl(H−) for all hyperplanes H that witness
that P is extremal. By definition, all points whose color is not in color(P ) must lie in
W (P ). The boundary of W (P ) consists of two half-hyperplanes, say H1 and H2, each
containing P and one additional point of S, say s1, s2 ∈ S, respectively. The colors of
s1 and s2 may be the same, but they differ from any color in color(P ). We call the two
(d−1)-simplices, P ∪{s1} and P ∪{s2}, the shells of P . We also say that P is the axis



The Union of Colorful Simplices Spanned by a Colored Point Set 327

of these two shells. It is clear that S determines O(nd−1) extremal (d − 2)-simplices,
hence there are O(nd−1) shells in R2.

Parity constraints. The following Lemma (without full proof) can be found in [16,
Theorem 3.5]. For completeness, we give an easy proof using a variational approach.

Lemma 1. Let S be a colorful point set in Rd such that each color class has even
cardinality. If a point q ∈ Rd \ S does not lie on any hyperplane spanned by S, then q
is contained in an even number of colorful simplices.

Proof. Consider a continuous path γ from point q to an arbitrary point r in the exterior
of convS avoiding all affine (d − 1)-flats spanned by any d points in S. We follow γ
from q to r, and keep track of the colorful simplicial depth. The colorful depth of r is
zero. The colorful depth changes only if γ crosses a colorful (d−1)-simplex P spanned
by S. Let S0 ⊂ S be the set of all points whose color is missing from color(P ). By
our assumption, the cardinality of S0 is even. Denote by H the hyperplane spanned by
P . When γ crosses convP from halfspace H− to H+, the colorful simplicial depth
changes by |S0∩H+|− |S0∩H−|, which is even, since |S0| = |S0∩H+|+ |S0∩H−|
is even. ��

We show next that the boundary of the colorful union is covered by shells.

Lemma 2. Every face of the colorful union US is contained in a shell.

Q

r

a1
a2 a3

b1

b2 b3

p

H

f

H+

H−

Fig. 1. Construction of Lemma 2

Proof. Let f be a face of the poly-
hedron US. Since US is the union
of colorful simplices, f lies on the
boundary of some colorful simplex
P ⊂ S. Hence, f is contained in a
colorful (d−1)-simplexQ ⊂ P . As-
sume that P = Q ∪ {r}, and denote
by H the hyperplane spanned by Q
that induces the two open halfspaces
H+ and H−, such that r ∈ H−. If
there is a point s ∈ S ∩ H+ with
color(s) 
∈ color(Q), then f would
be in the interior of the union of two colorful simplices conv(Q∪{r})∪conv(Q∪{s}).
Hence every point in S ∩ H+ is colored by some color from color(Q), that is,
color(S ∩H+) ⊆ color(Q).

If color(S ∩H+) � color(Q), then there is a colorful (d− 2)-simplex R ⊂ Q such
that color(S∩H+) ⊆ color(R). This means thatR is an extremal (d−2)-simplex with
axis R, and Q is a shell of R. Hence f is contained in shell Q, as required.

Now assume that color(S ∩ H+) = color(Q). Let A = {a1, . . . , ad} ⊂ S ∩ H+

be a set of d points with distinct colors (i.e., color(A) = color(Q)). For each ai, let
bi = air ∩H (Fig. 2). Let B = {b1, . . . , bd}, and color each bi with the color of ai. In
the point set Q ∪ B, each of the d color classes has cardinality 2. Pick a point p in the
interior of face f ⊂ H that does not lie on any hyperplane spanned by S. The point p is
in the interior of the colorful d-simplex Q, so by Lemma 1, it is in the interior of some
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other colorful d-simplex Q′ spanned by Q ∪B, which has at least one vertex in B. Let
Q′′ be the set obtained from Q′ by replacing all points bi ∈ Q by their corresponding
counterparts ai. It can be easily checked that Q′′ ∪ {r} is colorful and contains p in its
interior. This contradicts our assumption that f (and p) are on the boundary of US . ��
Visibility within the colorful union. We define visibility with respect to the polyhedron
US . We say that two points p, q ∈ US are visible to each other if the line segment pq is
disjoint from the exterior of US .

Theorem 1. Let S be a colored point set in Rd and let P ⊂ S be an arbitrary colorful
simplex. Then every point in US is visible from some vertex of P .

Proof. Let q ∈ US be a point in the colorful union. If q ∈ convP , then any vertex of
P sees q. Assume that q 
∈ convP . Since q ∈ US , there is a colorful simplex Q ⊆ S
that contains q. If P and Q have a common vertex, then it obviously sees q. Assume
that P ∩Q = ∅. Note that P and Q are each colorful, but they do not necessarily have
the same d + 1 colors. Successively pick a point in P and a point in Q whose colors
are unique in P ∪ Q, and recolor both points to a new color. The recoloring ensures
that both P and Q remain colorful, and P ∪ Q has d + 1 colors. Clearly, if a simplex
R ⊂ P ∪Q is colorful in the new colors, then it was colorful in the original colors, too.
Now P ∪Q is a colored point set where every color class has size 2. Point p is contained
in the colorful simplex Q ⊂ P ∪Q. By Lemma 1, p is contained in some other colorful
simplex R ⊂ P ∪ Q. Then R must have at least one common vertex with P , which is
visible from p. ��

A polyhedron U in Rd is star-shaped if there is a point p ∈ U such that every point
in U is visible from p. Such a point p ∈ U is called a star center. We show that in the
plane, the colorful unionUS is star-shaped. In Section 5, however, we construct colored
point configurations in R3 such that US is not star-shaped.

Lemma 3. If S be a colored point set in R2, then US is star-shaped.

Proof. Let P ⊆ S be the set of all extremal points in S and letW = {W (p) : p ∈ P}
be the set of all wedges determined by some extremal point in S. Recall that a wedge
W (p) contains all points in S whose color is not color(p). It follows that any three
wedges inW have a non-empty intersection (in fact, their intersection contains a point
of S). By Helly’s theorem, all wedges in W have a common intersection point, say
o ∈ R2. We show that US is star-shaped with star center o. It is enough to show that for
every point q ∈ US , the line segment oq lies in US. Consider an arbitrary point q ∈ US ,
and let e be an arbitrary edge of US that intersects the ray −→oq. By Lemma 2, edge e lies
on the boundary of a wedge W (p) ∈ W , where o lies in the interior of W (p). So −→oq
crosses e from the interior to the exterior of US . It follows that−→oq crosses the boundary
of US at most once, and so−→oq∩US is a line segment. Since both o and q are in −→oq∩US ,
segment oq lies in US, as required. ��

3 Efficient Data Structures for Point Inclusion Queries

Using Theorem 1, we can build a data structure for point inclusion queries in the color-
ful union US . Let S be a colored set of n points in Rd, and let G = {g1, . . . , gd+1} ⊂ S
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be an arbitrary colorful simplex. For i = 1, . . . , d + 1, let Si = {s ∈ S : color(s) 
=
i}∪ {gi}, and let Ui be the colorful union of Si. Note that gi is the only point of color i
in Si. By Theorem 1, US = ∪d+1

i=1Ui. That is, for a query point q ∈ Rd, we have q ∈ US

if and only if q ∈ Ui for some i = 1, . . . , d + 1. It is easy to test q ∈ Ui with a ray
shooting query.

Lemma 4. For every i = 1, 2 . . . , d + 1, we have q ∈ Ui if and only if q = gi or the
ray emitted from gi in the direction of q passing through q before reaching a shell of
Si ∪ {gi}.

Proof. Suppose that q 
= gi. Recall that Ui is star-shaped with star-center gi. If q ∈ Ui,
then the ray −→giq passes trough q before reaching the boundary of Ui, and the boundary
of Ui is a shell of Si by Lemma 2. Conversely, suppose that the ray −→giq hits a shell
convΔ of Si. Since the ray starts from gi, Δ is spanned by Si \ {g1}. If the ray passes
though q before hitting convΔ, then q is contained in the colorful simplexΔ∪{gi}. ��

Let Ti denote the set of shells of Si. Since |Si| = O(n), we have |Ti| = O(nd−1).
A ray shooting query for Ti would report the first shell hit by a ray, not the last one.
Nevertheless, the problem can be reduced to vertical ray shooting. If gi is on the convex
hull of S, then a projective transformation can map gi to infinity such that rays emit-
ted from gi become vertical rays directed downwards. The last shell hit by a vertical
downward ray passing through q is the first shell hit by a vertical upward ray starting
from infinity. If gi is not on the convex hull, we can partition Rd into two halfspaces
by a hyperplane containing gi, and build a ray shooting data structure for the set of
shells in Ti clipped in each halfspace. The currently available data structures for ray
shooting queries among a set of (d − 1)-simplices in Rd are based on range spaces of
finite VC-dimension, multi-level partition trees, and Megiddo’s parametric search tech-
nique [2,3,14,29]. Since O(d) vertical ray shooting data structures, each for O(nd−1)
shells in Rd, can jointly answer a containment query for US , we have the following
result.

Theorem 2. For a set of n colored points in Rd, there are data structures for answer-
ing point inclusion queries for the colorful union US. There is a data structure with
O(n(d−1)2α(n)) space and O(log n) query time. If the available space is reduced to
m, nd−1 ≤ m ≤ n(d−1)2 , then the query time increases to O(nd−1+ε/m1/(d−1)) for
any ε > 0.

Edelsbrunner [18] (see also [27,30]) proved that the maximum combinatorial com-
plexity of the upper envelope of m possibly intersecting (d − 1)-simplices in Rd is
Θ(md−1α(m)). Since US = ∪d+1

i=1Ui, then US is the union of d + 1 star-shaped poly-
hedra, each of which has O(n(d−1)2α(n)) combinatorial complexity. This, however,
does not imply the same upper bound for the complexity of US.

4 The Combinatorial Complexity of the Colorful Union

The minimum combinatorial complexity of US for n ≥ d + 1 colored points in Rd

is Θ(1). If the convex hull of S is a colorful simplex, then US = convS with d + 1
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vertices. If S is in convex position, then the minimum combinatorial complexity of US

is Θ(n). This complexity is attained for a colored point set constructed recursively as
follows. Start with the d + 1 vertices of a colorful simplex. In each step, choose an
arbitrary (colorful) face Δ of the current convex hull, place a new point near the center
of Δ in the exterior of the convex hull, and color it with a color that does not occur in
color(Δ). In the remainder of this section, we present lower and upper bounds for the
maximum combinatorial complexity of the colorful union of n colored points in Rd.

4.1 Lower Bounds for the Maximum Combinatorial Complexity

Theorem 3. For every integer d ≥ 2, there are (d+ 1)-colored point sets in Rd of size
n ≥ d+ 1 such that the combinatorial complexity of the colorful union is Ω(n(d−1)2).

Proof. Let d ≥ 2 be a fixed positive integer. For every n ≥ d+ 1, we construct a set S
of n points of d + 1 colors in Rd. We have one point of color d and d + 1 each. Let a
(resp., b) be the point of color d (resp., d+ 1) on the xd-axis at N (resp., N + 1), for a
sufficiently large N to be specified later.

The remaining n− 2 points are evenly distributed in the first d− 1 color classes. We
construct the position of these point in three steps. Let Rd−1 denote the subspace of Rd

spanned by the first d−1 coordinate axes. Step 1. For i = 1, . . . , d−1, place the points
of color i in the interval (0, 1) of the xi-axis. Let S1 denote the set of these points.
Step 2. Perturb each point in S1 in the subspace Rd−1 by a sufficiently small δ1 > 0
such that the resulting point set S2 is in general position in Rd−1. Step 3. Perturb the
xd coordinate of each point in S2 by a sufficiently small δ2 > 0 such that the resulting
point set S3 is in general position in Rd. Our point set is S = S3 ∪ {a, b}.

The points in S1 ⊂ Rd−1 formΘ(nd−1) colorful (d−2)-simplices in Rd−1. Since S1
is in general position, the intersection of any d−1 distinct (d−2)-simplices spanned by
S1 is either empty or a single point. LetM1 denote the (d−1)-tuples of colorful (d−2)-
simplices of S1 with a non-empty intersection. We have |M1| = Θ((nd−1)d−1) =
Θ(n(d−1)2) by the second selection theorem [6,24] which, in turn, follows from the
colorful Tverberg theorem [31]. Let M2 and M3 denote the corresponding (d − 1)-
tuples of (d − 2)-simplices of S2 and S3, respectively. After the first perturbation, the
(d− 1)-tuples inM intersect in distinct points in Rd−1. Denote by vm the intersection
point of a (d − 1)-tuple m ∈ M2, and let VM = {vm : m ∈ M}. Let ε > 0 be the
minimum distance between the points in VM in Rd−1. For every point vm, m ∈ M2,
let Bm ⊂ Rd denote the d-dimensional ball of radius ε/3 centered at vm. The balls
Bm, m ∈ M∈, are pairwise disjoint.

After the second perturbation, S3 is in general position in Rd, and so no point is
contained in d−1 distinct (d−2)-simplices. However, each colorful (d−2)-simplex in
S3 is extremal, with two almost vertical shells incident to points a and b, respectively.
If δ2 > 0 is sufficiently small, the d− 1 pairs of shells whose axes are the d− 1 distinct
(d− 2)-simplices in m ∈M3 intersects in a unique ball Bm. If N is sufficiently large,
then the lower-most intersection point of these d − 1 pairs of shells is a vertex of US .
Since the balls Bm are pairwise disjoint, US has at least Θ(n(d−1)2) vertices. ��
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4.2 Upper Bounds for the Maximum Combinatorial Complexity

Boissonnat et al. [12] showed that the colorful union of a set S of n colored points in
the plane is a simple polygon. They also showed polygon US has no two consecutive
reflex vertices, and the convex vertices are points in S. It follows that US has at most
2n vertices in R2. By Lemma 2, the boundary of US is contained in O(nd−1) shell
simplices for every d ≥ 2. Aronov and Sharir [8,30] proved that the combinatorial
complexity of a single cell in the arrangement of m distinct (d − 1)-simplices in Rd

is O(md−1 logm). The colorful union US has the same combinatorial complexity as
the outer face in the arrangement of its shells, which is O((nd−1)d−1 log(nd−1)) =
O(n(d−1)2 log n). We have shown the following.

Theorem 4. For every d ≥ 2, the combinatorial complexity of the union of colorful
tetrahedra spanned by a set of n colored points in Rd is O(n(d−1)2 logn).

In the remainder of this section, we slightly improve this general bound for d = 3.

Theorem 5. The combinatorial complexity of the union of colorful tetrahedra spanned
by a set of n colored points in R3 is O(n4α(n)), where α(·) is the inverse of the Acker-
mann function.

The proof builds on a the following lemma, which we prove in Section 4.4.

Lemma 5. If S is a set of n colored points in R3, then the relative interior of every
shell of S contains O(n2α(n)) vertices of US.

Proof of Theorem 5. It is enough to count the number of vertices ofUS. Every vertex of
US is incident to at least three faces of US , which lie on shell triangles by Lemma 2. If a
vertex v lies on the boundary of all incident shell triangles, then v ∈ S. So it is enough
to count vertices lying in the (relative) interior of at least one shell triangle. A set of n
colored points span O(n2) colorful edges. So there are O(n2) extremal colorful edges,
hence O(n2) shells. By Lemma 5, US has at most O(n2α(n)) vertices in the relative
interior of each shell triangle. It follows that the total number of vertices is O(n4α(n)).

4.3 Auxiliary Results in the Plane

Before the proof of Lemma 5, we present auxiliary results in the plane. The proof is
deferred to the full version of the paper due to space constraints. We say that a line
segment e is fully visible from a point p ∈ US in R2, if conv(e ∪ {p}) ⊆ US .

Lemma 6. Let S be a colored point set in R2. Let s1, s2 ∈ S with color(s1) = 1 and
color(s2) = 2.

(1) If an edge e of US is not fully visible from both s1 and s2, then the points s1, s2,
and the two endpoints of e are in convex position; both endpoints of e are in S; and
e is an edge of convS.

(2) US has at most two edges that are not fully visible from both s1 and s2.
(3) Any other edge e of US is incident to some extremal vertex s ∈ S such that the

convex hull of e and vertices {s1, s2} ∩W (s) lies in US .
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4.4 Proof of Lemma 5

We are given a set S of n colored points in R3. Let Δ = {v1, v2, v3} be a shell tri-
angle with axis {v1, v2}. We want to show that the relative interior of convΔ contains
O(n2α(n)) vertices of US . Assume without loss of generality that color(vi) = i for
i = 1, 2, 3. Let H be the plane spanned by Δ. As usual H defines two open half-
spaces H+ and H−. Let H− be the open halfspace containing all points of colors
other than {1, 2, 3}. By the definition of shells, we have color(S ∩H+) ⊆ {1, 2}. Let
UΔ = cl(convΔ∩ int(US)) be the restriction of US to the triangle convΔ. It is enough
to show that UΔ has O(n2α(n)) vertices.

Definition of traces. By Lemma 2, every edge of UΔ lies in the intersection of convΔ
and another shell triangle. Let T denote the set of all shell triangles t such that convΔ∩
conv t 
= ∅ and t 
= Δ. Since there are O(n2) shells, we have |T | = O(n2). We
distinguish three types of triangles in T . A triangle t ∈ T is of

type A if exactly one vertex of t is in S ∩H+,
type B if exactly two vertices of t are in S ∩H+ and an axis of t crosses H ,
type C if exactly two vertices t are in S ∩H+ and the axis of t is in H+.

Denote by TA, TB, and TC , respectively, the shell triangles of type A, B, and C. We
have T = TA∪TB ∪TC . For every t ∈ T , the line segment convΔ∩ conv t lies in UΔ,
and it may contain several collinear edges of UΔ. Let trace(t) be the convex hull of all
edges ofUΔ along convΔ∩conv t. We say that trace(t) is of type A (resp., type B or C)
if t ∈ TA (resp., TB or TC). A trace(t) is called i-visible, for i = 0, 1, 2, if UΔ contains
the convex hull of trace(t) and i vertices of Δ, and i is the maximum such integer.
In particular, a i-visible trace is fully visible from i vertices of Δ, where visibility is
understood with respect to the polygon UΔ. If a 0-visible trace can be decomposed
into two line segments which are each fully visible from a vertex of Δ, then fix one
such decomposition, and call the two segments its half-traces. Every half-trace is 1- or
2-visible.

Outline of the proof of Lemma 5. Every vertex of UΔ lying in the interior of convΔ
is at the intersection of two traces. The intersection is either the endpoint of one of the
traces or the crossing point of the two traces (i.e., lies in the relative interior of both
traces). There are O(n2) traces, and so UΔ has O(n2) vertices at endpoints of traces. It
remains to show that UΔ has O(n2α(n)) vertices at crossings of traces. Proposition 1
below shows that UΔ has O(n2α(n)) vertices at the crossing of two traces which are
fully visible from the same vertex of Δ.

For j = 1, 2, 3, the convex hull of vj and a trace or half-trace fully visible from vj

forms a triangle lying in UΔ. Let Dj denote the union of all O(n2) such triangles. It is
clear that Dj ⊆ UΔ.

Proposition 1. For j = 1, 2, 3, the set Dj has O(n2α(n)) vertices.

Proof. By definition, Dj is the union of O(n2) triangles that lie in convΔ and share
vertex vj . Apply a projective transformation that maps vj to infinite, and maps the inci-
dent edges of Δ to vertical halflines pointing up. Every triangle incident to vj and lying
in convΔ is mapped to a region vertically above a line segment. The number of vertices
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of Dj is the combinatorial complexity of the lower envelope of these segments. It is
known that the lower envelope of O(n2) line segments has O(n2α(n2)) = O(n2α(n))
vertices, which is the maximum length of a Davenport-Schinzel sequence of order 3
over O(n2) symbols [4]. ��

To prove Lemma 5, it remains to bound the number of crossings of pairs of traces which
are (1) either fully visible from different vertices of Δ, or (2) one of them is not fully
visible from any vertex of Δ. For this, we study the properties of various types of traces
in more detail. Some of the proofs are deferred to the full version of the paper.

Traces of type A. For every p ∈ S ∩ H+ and q ∈ S ∩ cl(H−), let vpq = pq ∩ H ,
that is, the intersection point of segment pq and plane H . For every p ∈ S ∩ H+,
let Up denote the union of all colorful tetrahedra spanned by p and three points in
S ∩ cl(H−). It is clear that Up ⊆ US. We also define the planar point set S(p) =
{vpq : q ∈ S ∩ cl(H−), color(q) 
= color(p)} and color each point vpq with color(q).
In particular, the three vertices of Δ are in S(p), with their original colors. Observe that
H ∩ Up = US(p).

Proposition 2. If t ∈ TA where p is the vertex of t in S∩H+, then trace(t) is contained
in an edge of Up.

The proof of Proposition 2 as well as the proofs of the following propositions can be
found in the full version of the paper.

By Lemma 6, at most two edges of Up are not fully visible from any vertex of Δ,
and at most one such edge intersects the interior of Δ. Therefore, there is at most one
0-visible trace on the boundary of each Up.

Consider a segment pq with p ∈ S ∩H+ and q ∈ S ∩ cl(H−). If vpq is an extremal
point of S(p), then we define wpq = W (vpq) as the minimum wedge in H at apex
vpq that contains all points of S(p) of colors different from vpq . Note that wpq might
be different from the intersection of a 3-dimensional wedge W (pq), defined for the
entire point set S, and the plane H , since W (pq) also contains the points in S ∩ H+

whose color is not in color(pq). By Proposition 2 and Lemma 2, every trace of type A
lies on the boundary of some wedge wpq . By Lemma 6(3), we can associate every
trace(t) of type A with an adjacent wedge wpq such that UΔ contains the convex hull
of trace(t) and all vertices of Δ lying in wpq . Direct segment trace(t) toward the apex
of the associated wedge. By Lemma 6(1), a 0-visible trace(t) lies on the boundary of
two wedges, each of which contains a single vertex of Δ. We may associate a 0-visible
trace to either of them, and so a 0-visible trace have two possible directions.

Traces of types B and C. We show that every trace of type B or C is 1- or 2-visible.
Therefore, all 0-visible traces are of type A.

Proposition 3. Every trace(t) of type B is

– 2-visible, or
– 1-visible and lies on the boundary of a wedge w such that (i) the apex of w lies on

the axis of t, (ii) w ∩ convΔ ⊂ UΔ, and (iii) w contains either v1 or v2.

For every extremal segment pr where p ∈ H+ and r ∈ H−, with color(r) = 3, there is
at most one wedge w described in Proposition 3. Note that if pr is an extremal segment
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in S, then vpr is an extremal point in S(p), and so wedge wpr is defined. The wedges
wpr and w have the same apex, they both contain the same vertex of Δ. If both wpr

and w exist, let ŵpr be their union, otherwise let ŵpr = wpr . Then ŵpr is a wedge with
apex vpr , it contains only one vertex of Δ, and its boundary contains all traces lying on
the boundaries of wpr and w. Direct the traces on the boundary of ŵpr towards vpr.

Proposition 4. Every trace of type C is

– 2-visible, or
– 1-visible and lies on the boundary of a halfplane h− such that h− ∩ convΔ ⊂ UΔ.

2-visible traces. We show that 2-visible traces are incident to at most O(n2α(n)) ver-
tices of UΔ.

Proposition 5. Let t1, t2 ∈ T such that their traces intersect at point x and trace(t1)
be 2-visible.

(a) If trace(t2) is 2-visible, then both traces are fully visible from a vertex of Δ.
(b) If trace(t2) is 1-visible, then both traces are fully visible from a vertex of Δ; or x

is an endpoint of trace(t1) or trace(t2).
(c) If trace(t2) is 1-visible, then x is an endpoint of trace(t2); or trace(t2) can be

decomposed into two half-traces, each fully visible from some vertices of Δ.

It follows that all vertices of UΔ that lie on some 2-visible trace must be an endpoint
of a trace or a vertex of Dj for some j ∈ {1, 2, 3}. Observe also that if trace(t) lies on
the boundary of a halfplane h− with h− ∩ convΔ ⊂ UΔ, then trace(t) does not cross
any other traces. We conclude that 2-visible traces and all traces of type C are involved
in O(n2α(n)) vertices of UΔ. It remains to consider the vertices of UΔ at the crossings
of 0- and 1-visible traces of type A or B. These traces lie on the boundaries of some
wedges ŵpq . Let X denote the set of vertices of UΔ at crossings of 0- or 1-visible traces
lying on the boundaries of wedges ŵpq . It remains to show that |X | = O(n2α(n)).
Directed traces. Each vertex x ∈ X is incident to two directed edges of UΔ. Since
0-visible traces may have two possible directions, we define the in-degree of x ∈ X as
the number of ingoing edges along 1-visible traces. Let Y ⊆ X be the set of vertices
of in-degree 1 or 2. The following proposition implies that it is enough to prove that
|Y | = O(n2α(n)).

Proposition 6. We have |X | ≤ O(|Y |+ n2α(n)).

Crossing wedges. Consider a vertex x ∈ Y of UΔ. It is at the crossing of some 0-
or 1-visible traces trace(t1) and trace(t2). Since the in-degree of x is 1 or 2, we may
assume that trace(t1) is 1-visible and directed towards x, and trace(t2) is 0- or 1-visible
directed arbitrarily. We also know that trace(t1) and trace(t2) lie on the boundaries of
some wedges ŵpr and ŵqs, respectively, each of which contains exactly one vertex of
Δ. If trace(t2) is 1-visible, then ŵpr and ŵqs contain distinct vertices of Δ, otherwise
the two traces would be visible from the same vertex ofΔ. If trace(t2) is 0-visible, then
it lies on the boundary of two wedges, each of which contains a distinct vertex ofΔ. We
may choose ŵqs such that ŵpr and ŵqs contain different vertices of Δ. The following
proposition restricts how wedges ŵpr and ŵqs can intersect.
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Proposition 7. Let p, q ∈ H+, and r, s ∈ cl(H−) such that vpr and vqs are extremal
in S(p) and S(q). Suppose that wedges ŵpr and ŵqs each contain only one vertex of
Δ, denoted vi and vj , i 
= j, respectively. If two traces on the boundaries of ŵpr and
ŵqs cross at point x ∈ Y , then we have vpr ∈ ŵqs or vqs ∈ ŵpr. ��

We return to study a crossing x ∈ Y of traces trace(t1) and trace(t2), lying on the
boundaries of wedges ŵpr and ŵqs, respectively. We have assumed ŵpr and ŵqs each
contain distinct vertices of Δ, say vi and vj , i 
= j, respectively. We also assumed that
trace(t1) enters the interior of ŵqs at x. By Proposition 7, we may assume that ŵqs

contains the apex of ŵpr, and so trace(t1) remains in the interior of ŵqs. However, x is
not an endpoint of trace(t1), it has to reach the boundary of UΔ again, at its neighbor
x′ ∈ trace(t1). Since (ŵqs\wqs)∩convΔ ⊂ UΔ, trace(t1) also enters wedgewqs, and
the polygon Uq, where Uq ⊆ UΔ. By Lemma 6, trace(t1) can exit Uq through an edge
of Uq fully visible from vi. However, trace(ti) is also fully visible from vi. Therefore,
segment xx′ ⊂ trace(t1) has to intersect the boundary of Di at some vertex of Di. We
charge vertex x to this vertex of D3 (even if it lies in the interior of UΔ. Every vertex of
D1,D2, andD3 is charged at most twice. By Proposition 1, we have |Y | = O(n2α(n)),
as required. This completes the proof of Lemma 5.

5 Colored Point Configurations with Undesirable Features

A point configuration whose colorful union is not star-shaped. In contrast to Theo-
rem 1 one (arbitrary) point is not sufficient to guard the interior of S. There are colored
point sets in R3 whose colorful union is not star-shaped. One example is shown in
Table 1 and Fig. 2(a).

Table 1. The coordinates of a point set whose colorful union is not star shaped

vertex x y z color
p1 −0.9 −1 1 1
p2 −0.9 1 1 1
p3 0.9 −1 1 2
p4 0.9 1 1 2

vertex x y z color
p5 −1 −0.9 −1 3
p6 1 −0.9 −1 3
p7 −1 0.9 −1 4
p8 1 0.9 −1 4

In the point set in Fig. 2, axes p1p3 and p2p4 have color {1, 2}. Every point in US

that sees the relative interior of p1p3 must lie in wedgeW (p1, p3). Similarly, the relative
interior of p2p4 can only be seen from wedgeW (p2, p4). Thus any point in US that sees
both axes must lie in W (p2, p4) ∩ W (p1, p3). The intersection of these two wedges,
however, is strictly below the xy-plane. A superset of the intersection is depicted in
Fig. 2(b). Similarly, the relative interior of p5p7 and p6p8 is visible from the intersection
of two wedges, which is a region strictly above the xy-plane (Fig. 2(b)). It follows that
no point can see all these four edges of US .

A face bounded by edges with reflex dihedral angles. In the plane, every face of
US is incident to a point in S (c.f. [12]). This property immediately implies that the
combinatorial complexity of US is O(n) in R2. In R3, however, there are colored point
sets S such that a face of US is not incident to any colorful edge. See Fig. 3 for an
example.
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p1

p3

p2

p4

p6

p8

p7

(a) (b)

Fig. 2. (a) The colorful union of the point set S. (b) A superset of the visibility regions.

vertex x y z color
p1 7 −10 −3 1
p2 8 −9 0 1
p3 0 −14 10 2
p4 9 −15 6 2
p5 4 −13 0 2
p6 2 −10 −1 3
p7 4 −6 0 3
p8 5 −6 −4 4

p6

p3

p5

p1

p7

p4

Fig. 3. An example where a face is not incident to any axis

A chain of reflex vertices. In the plane, US has no two adjacent reflex vertices [12].
This no longer true in R3. Fig. 4 indicates a family of points sets in R3 where the bound-
ary of a face may contain an arbitrary long chain of reflex vertices. Points of colors 1
and 2 are arranged along two parallel lines in the xy-plane, such that the complete bi-
partite graph between the first two color classes forms a convex chain of length Ω(n)
(Fig. 4, left). Two points of color 3 and 4 are placed below the xy-plane on opposite
sides of all vertical planes through edges of color {1, 2}. A small perturbation can make
any 4 points affine independent.

Fig. 4. A chain of reflex vertices of US along the boundary of a single face
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6 Open Problems

We have tightened the gap between the lower and upper bound for the combinatorial
complexity of the colorful union in R3. We do not know whether the term corresponding
to the Ackerman function is necessary. It is an obvious open problem to simplify and
extend our results to higher dimensions.

We have transformed inclusion queries for US into vertical ray shooting queries,
which lead to the data structure proposed in Theorem 2. We build a ray shooting data
structure for shell (d−1)-simplces spanned by the point set, that is, the ray shooting data
structure ignores the fact the simplices are spanned by a ground set of only n points,
and it also ignores the colors. It remains an interesting open question whether these two
structural properties can be exploited to design a more efficient data structure.

Depth queries are a more general form of inclusion queries. Little is known about
general colorful simplicial depth queries and it is desirable to come up with efficient
data structures for this problem. For the monochromatic case, the simplicial depth can
be computed in R2 in O(n logn) time [21,23], and in R3 in O(n2) time [13,23]. In
higher dimensions no better strategy than the trivial O(n1+d) brute force test seems to
be known. Afshani and Chang [1] proposed a data structure for approximate simplicial
depth queries. There are no similar approximate results for the colorful simplicial depth.
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Abstract. The visibility representation (VR for short) is a classical rep-
resentation of plane graphs. The VR has various applications and has
been extensively studied. A main focus of the study is to minimize the
size of the VR. It is known that there exists a plane graph G with n
vertices where any VR of G requires a size at least � 2n

3
�× (� 4n

3
�−3). For

upper bounds, it is known that every plane graph has a VR with size at
most � 2

3
n� × (2n − 5), and a VR with size at most (n − 1) × � 4

3
n�.

It has been an open problem to find a VR with both height and width
simultaneously bounded away from the trivial upper bounds (namely of
size chn×cwn with ch < 1 and cw < 2). In this paper, we provide the first
VR construction for a non-trivial graph class that simultaneously bounds
both the height and the width. We prove that every 4-connected plane
graph has a VR with height ≤ 3n

4
+ 2�

√
n� + 4 and width ≤ � 3n

2
�. Our

VR algorithm is based on an st-orientation of 4-connected plane graphs
with special properties. Since the st-orientation is a very useful concept
in other applications, this result may be of independent interests.

1 Introduction

Drawing plane graphs has emerged as a fast growing research area in recent
years (see [1] for a survey). A visibility representation (VR for short) of a plane
graph G is a drawing of G, where the vertices of G are represented by non-
overlapping horizontal line segments (with integer end point coordinates), and
each edge of G is represented by a vertical line segment touching the segments of
its end vertices. Figure 1 shows a VR of a plane graph G. The problem of finding
a compact VR is important not only in algorithmic graph theory, but also in
practical applications. A simple linear time VR algorithm was given in [12,13] for
2-connected plane graphs. It uses an st-orientation of G and the corresponding
st-orientation of its st-dual G∗ to construct VR. Using this approach, the height
of the VR is ≤ (n− 1) and the width of the VR is ≤ (2n− 5) [12,13].
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As in many other graph drawing problems, one of the main concerns in VR
research is to minimize the size of the representation. For the lower bounds, it
was shown in [15] that there exists a plane graph G with n vertices where any
VR of G requires a size at least � 2n

3 � × (� 4n
3 � − 3). Several papers have been

published to reduce the height and width of the VR by carefully constructing
special st-orientations. The following table summarizes related previous results.

The VR of plane graph G The VR of 4-Connected plane graph G
Width ≤ (2n− 5) [12,13]
Height ≤ (n− 1) [12,13]
Width ≤ � 3n−6

2 � [5]
Width ≤ � 22n−42

15 � [8] Width ≤ (n− 1) [6]
Height ≤ � 5n

6 � [15]
Width ≤ � 13n−24

9 � [16] Height ≤ � 3n
4 � [14]

Height ≤ � 4n−1
5 � [17]

Height ≤ 2n
3 + �2√n� [4]

Height ≤ 2n
3 +O(1) [18]

Width ≤ � 4n
3 � − 2 [3] Height ≤ �n

2 �+ 2�
√

n−2
2 � [2]

All these results concentrated on one dimension of the VR only. In the table
above, the un-mentioned dimension is bounded by the trivial upper bound (n−1
for the height and 2n − 5 for the width). In [10,11], heuristic algorithms were
developed aiming at reducing the height and the width of VR simultaneously.
It has been illusive to find a VR with both height and width simultaneously
bounded away from the trivial upper bounds. In this paper, we prove that every
4-connected plane graph of n vertices has a VR with height ≤ 3n

4 + 2�
√
n�+ 4

and width ≤ � 3n
2 �. The representation can be constructed in linear time.

The present paper is organized as follows. §2 introduces preliminaries. §3
presents the construction of the VR with the stated height and width bounds.
§4 concludes the paper.

2 Preliminaries
In this section, we give definitions and preliminary results. Definitions not men-
tioned here are standard. A planar graph is a graph G such that the vertices can
be drawn in the plane and the edges can be drawn as non-intersecting curves.
Such a drawing is called a plane embedding. The drawing divides the plane into
a number of connected regions. Each region is called a face. The unbounded face
is the exterior face. Other faces are interior faces. A plane graph is a planar
graph with a fixed embedding. A plane triangulation is a plane graph where
every face is a triangle (including the exterior face). We abbreviate the words
“counterclockwise” and “clockwise” as ccw and cw respectively.

When discussing VR, we assume G is a plane triangulation. (If not, we get
a plane triangulation G′ by adding dummy edges into G. After constructing a
VR for G′, a VR of G is obtained by deleting the vertical line segments for the
dummy edges.)
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A numbering O of a set S = {a1, . . . , ak} is a 1-1 mapping between S and
the set {1, 2, . . . , k}. We write O = 〈ai1 , ai2 , . . . , aik

〉 to indicate O(ai1 ) = 1,
O(ai2) = 2 ... A set S written this way is called an ordered list. For two elements
ai and aj , if ai is assigned a smaller number than aj in O, we write ai ≺O aj .
Let S1 and S2 be two disjoint sets. If O1 is a numbering of S1 and O2 is a
numbering of S2, their concatenation O = 〈O1,O2〉 is the numbering of S1 ∪ S2
where O(x) = O1(x) for all x ∈ S1 and O(y) = O2(y) + |S1| for all y ∈ S2.

An orientation of a (undirected) graph G is a digraph obtained from G by
assigning a direction to each edge of G. Let G = (V,E) be an undirected graph.
A numbering O of V induces an orientation of G as follows: each edge of G is
directed from its lower numbered end vertex to its higher numbered end vertex.
The resulting digraph, denoted by GO, is called the orientation derived from O
which, obviously, is acyclic. We use length(GO) (or simply length(O) if G is clear
from the context) to denote the length of the longest path in GO. (The length
of a path is the number of edges in it.)

Let G be a 2-connected plane graph with an exterior edge (s, t). An orientation
ofG is called an st-orientation if the resulting digraph is acyclic with s as the only
source and t as the only sink (also called an st-graph). For every 2-connected
plane graph G and an exterior edge (s, t), there exists an st-orientation [7].
Properties of the st-orientations can be found in [9].

Let G be a 2-connected plane graph and (s, t) an exterior edge. An st-
numbering of G is a one-to-one mapping ξ : V → {1, 2, . . . , n}, such that
ξ(s) = 1, ξ(t) = n, and each vertex v 
= s, t has two neighbors u,w with
ξ(u) < ξ(v) < ξ(w). Given an st-numbering ξ of G, the orientation of G derived
from ξ is obviously an st-orientation of G. On the other hand, if G = (V,E)
has an st-orientation O, we can define an 1-1 mapping ξ : V → {1, . . . , n} by
topological sort of GO. It is easy to see that ξ is an st-numbering and the orien-
tation derived from ξ is O. From now on, we will interchangeably use the term
“an st-numbering” of G and the term “an st-orientation” of G.

Definition 1. Let G be a plane graph with an st-orientation O, where (s, t) is
an exterior edge drawn at the left on the exterior face of G. The st-dual graph
G∗ of G and the dual orientation O∗ of O is defined as follows:

– Each face f of G corresponds to a node f∗ of G∗. The unique interior face
adjacent to the edge (s, t) corresponds to a node s∗ in G∗, the exterior face
corresponds to a node t∗ in G∗.

– For each edge e 
= (s, t) of G separating a face f1 on its left and a face f2 on
its right, there is a dual edge e∗ in G∗ from f∗

1 to f∗
2 .

– The dual edge of the exterior edge (s, t) is directed from s∗ to t∗.

Fig 1 (1) shows an st-graph G and its st-dual G∗ (where circles and solid lines
denote the vertices and the edges of G; squares and dashed lines denote the nodes
and the edges of G∗). It is well known that the st-dual graph G∗ defined above
is an st-graph with source s∗ and sink t∗. The following theorem was proved in
[12,13]:
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Fig. 1. (1) An st-graph G and its st-dual graph G∗; (2) A VR of G

Theorem 1. Let G be a 2-connected plane graph with an st-orientation O. Let
O∗ be the dual st-orientation of G∗. A VR of G can be obtained from O in
linear time. The height of the VR is length(O) ≤ n− 1. The width of the VR is
length(O∗) ≤ 2n− 5 (which is the number of nodes in G∗).

Figure 1 (2) shows a VR of the graph G shown in Figure 1 (1). The width of
the VR is length(O∗) = 5. The height of the VR is length(O) = 3.

Definition 2. A 4TP graph is a plane graph G satisfying the following two
conditions: (1) G is 4-connected; (2) Every interior face of G is a triangle and
the exterior face is a quadrangle.

The four exterior vertices of a 4TP graph will be denoted by vS , vW , vN , vE in
cw order. Let H be a 4-connected plane triangulation and e = (s, t) an exterior
edge of G. If we delete e from H , the resulting graph G = H − {e} is a 4TP
graph. We label the exterior vertices of G so that s = vS and t = vN . Our
algorithm will construct a VR D of G so that the line segment ls for s has the
smallest y-coordinate, and the line segment lt for t has the largest y-coordinate.
From D, we can obtain a VR D′ of H as follows: Extend both ls and lt to the
left by one unit, then add a vertical line segment α connecting them (see Figure
1 (2).) This operation does not change the height of D and increases the width
of D by 1. From now on we will consider 4TP graphs only.

Definition 3. A regular edge labeling (REL for short) of a 4TP graph G =
(V,E) is a partition and orientation of the interior edges of G into two subsets
Egreen, Ered of directed edges such that the following hold:

1. For each interior vertex v, the edges incident to v appear in cw order around
v as follows: a set of edges in Ered leaving v; a set of edges in Egreen entering
v; a set of edges in Ered entering v; a set of edges in Egreen leaving v.

2. All interior edges incident to vN are in Ered and entering vN . All interior
edges incident to vW are in Egreen and entering vW . All interior edges inci-
dent to vS are in Ered and leaving vS . All interior edges incident to vE are
in Egreen and leaving vE .
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Fig. 2. (1) A 4TP graph G; (2) A REL R of G; (3) Ggreen; (4) Gred

Figure 2 (2) shows a REL of a 4TP graphG shown in Figure 2 (1). The green and
red edges are drawn as solid and dashed lines respectively. Here vS = 1, vW =
2, vN = 14, vE = 13. (These 4 exterior vertices will always be drawn at the
lower-left, upper-left, upper-right and lower-right corners, respectively). It was
shown in [6] that every 4TP graph has a REL, constructible in linear time.

Let R be a REL of a 4TP graph G. Let GR be the orientation of G obtained
from R as follows. The interior edges are directed as in R (ignoring the colors).
The exterior edges are oriented as: vS → vW , vW → vN , vS → vE , vE → vN . It
was shown in [6] that GR is an st-orientation of G with source vS and sink vN .
GR will be called the st-orientation derived from R.

Let Ggreen (Gred, respectively) be the directed graph obtained from GR by
deleting all red (green, respectively) interior edges. Note that both Ggreen and
Gred are st-graphs with source vS and sink vN . Ggreen and Gred are shown in
Fig 2 (3) and (4).

Lemma 1. Let f(Ggreen) and f(Gred) be the number of interior faces of Ggreen

and Gred, respectively. Then f(Ggreen) + f(Gred) = n− 1.

Proof. By Euler’s formula, a 4TP graph G with n vertices has m = 3n−7 edges.
Both Ggreen and Gred contain n vertices. Let mr and mg be the number of edges
in Gred and in Ggreen respectively. By Euler’s formula, we have: f(Ggreen) =
mg + 1 − n and f(Gred) = mr + 1 − n. Each interior edge of G belongs to
either Ggreen or Gred. The four exterior edges belong to both Ggreen and Gred.
Thus mg +mr = m+ 4. Therefore f(Ggreen) + f(Gred) = mg +mr + 2− 2n =
m+ 4 + 2− 2n = n− 1. �
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In Fig 2, G has n = 14 vertices, f(Ggreen) = 7 and f(Gred) = 6. The following
lemma was proved in [6] by a complicated argument. A much simpler proof is
given below. The argument used here will be useful later.

Lemma 2. Let G be a 4TP graph with a REL R. Let GR be the st-orientation
of G derived from R. Let G∗

R be the corresponding dual st-orientation of G∗.
Then length(G∗

R) ≤ n − 1. In other words, the VR of G obtained from GR has
width ≤ n− 1.

Proof. Let P ∗ = {e∗i1 , e
∗
i2
, . . . , e∗ik

} be a longest path in G∗
R, where k = length

(G∗
R). For each j (1 ≤ j ≤ k), let eij be the edge in G corresponding to e∗ij

. If
eij is red, then when P ∗ passes e∗ij

, it enters a new red face in Gred. If eij is
green, then when P ∗ passes e∗ij

, it enters a new green face in Ggreen. Because
both Gred and Ggreen are plane st-graphs, each red or green face can be entered
at most once. Therefore k ≤ f(Ggreen) + f(Gred) = n− 1. �

The following definition was used in [2,4] to find special st-orientations.

Definition 4. A ladder graph of order n is a plane graph L = (A ∪ B,EL).
The vertex set of L can be partitioned into A = {a1, . . . , a�n/2�} and B =
{b1, . . . , b�n/2�}. EL = LA ∪ LB ∪ Lcross where:

– LA = {(ai, ai+1)|1 ≤ i < �n/2�}; LB = {(bj , bj+1)|1 ≤ j < �n/2�}.
– Lcross consists of edges, (called cross edges of L), between a vertex ai ∈ A

and a vertex bj ∈ B; no two edges in Lcross cross each other; and the edges
(a1, b1), (a�n/2�, b�n/2�) ∈ Lcross.

For a cross edge (ai, bj), define slope(ai, bj) = j − i. It is called a level (or up or
down, respectively) edge if slope(ai, bj) = 0 (or > 0 or < 0, respectively).

Definition 5. An orientation L of a ladder graph L is consistent if the following
hold: (1) For any i, the edge (ai, ai+1) is directed from ai to ai+1 and the edge
(bi, bi+1) is directed from bi to bi+1; (2) The edges in Ecross are oriented in a
way such that L is acyclic.

From the definition, it is clear that a consistent orientation L is an st-orientation
of L with source either a1 or b1, and sink either a�n/2� or b�n/2�, depending on
the orientations of (a1, b1) and (a�n/2�, b�n/2�).

Theorem 2. Every ladder graph L of order n has a consistent orientation L,
constructible in linear time, such that the following hold:

1. a1 is the only source and b�n/2� is the only sink of L.
2. length(L) ≤ �n/2�+ 2�

√
(n− 2)/2�.

The essentially same theorem was originally proved in [4]. The theorem stated
above is adapted from a slightly different version in [2]. It can be proved by a
slight modification of the proof in [2].
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3 Compact VR of 4-Connected Plane Graphs

In order to construct a VR of G with stated width and height, by Theorem
1, all we need is to find an st-orientation O of G so that both length(O) and
length(O∗) are not too large. The main difficulty of the construction is that these
two goals often conflict. We will use a REL R of G to guide the construction of
O. (This is why we need the 4-connectivity: Only 4PT graphs have REL.)

Throughout this section, G = (V,E) denotes a 4TP graph and R a REL of
G. The basic idea of the construction is as follows: First, we use R to partition
G into two subgraphs GA and GB of equal size. In the st-orientation O, the
orientations of the edges within GA and GB are the same as in R. The edges of
G between GA and GB form a ladder graph Ecross. The crux for constrcting O is
to orient the edges in Ecross in order to bound both length(O) and length(O∗).

3.1 Partition G into GA, GB and Ecross

Let Rrev be the orientation of G obtained from R by reversing the direction of
green edges. Let GRrev be the orientation of G derived from Rrev. Observe that
if we flip G through a line that passes vS and vN , then Rrev is just a REL of G
(with the roles of vE and vW switched). Thus GRrev is an st-orientation of G.

Let P = {v1, v2, . . . , vn} be a topological ordering of GRrev . Then we have:
v1 = vS , v2 = vW , vn−1 = vE and vn = vN . Partition V into two subsets:
A = {v1, v2, . . . , v�n/2�} and B = {v�n/2�+1, . . . , vn}. Let GA (GB , respectively)
be the subgraph of G induced by the vertex set A (B, respectively). Let GAR
(GBR, respectively) denote the graph GA (GB , respectively) whose edges are
partitioned and oriented according to R.

Next, we order the vertex set ofGA as A = 〈a1, a2, . . . , a�n/2�〉 by a topological
sort of GAR. Note that a1 = vS and a�n/2� = vW . Similarly, we order the vertex
set of GB as B = 〈b1, b2, . . . , b�n/2�〉 by a topological sort of GBR. Note that
b1 = vE and b�n/2� = vN .

The edge set of G can be partitioned into three subsets: EA is the edge set
of GA; EB is the edge set of GB ; and Ecross is the set of edges between A and
B. Let PA be the path from a1 to a�n/2� on the exterior face of GA. Let PB

be the path from b1 to b�n/2� on the exterior face of GB. Let C be the region
bounded by PA, PB and the edges (a1, b1) and (a�n/2�, b�n/2�). The faces of G in
the region C are called the cross faces of G.

Lemma 3. 1. The numbering 〈a1, a2, . . . , a�n/2�〉 is an st-numbering of GA.
2. The numbering 〈b1, b2, . . . , b�n/2�〉 is an st-numbering of GB.

Proof. We only prove (1). The proof of (2) is similar. Since GR is acyclic and
GAR is a subgraph of GR, GAR is acyclic. Clearly, a1 = vS is a source and
a�n/2� = vW is a sink of GAR. Consider any vertex v = ai (1 < i < �n/2�). We
need to show ai has two neighbors aj and ak with j < i < k.

Since v is an interior vertex of G, there is a red edge e = u → v in R. e
is oriented as u → v in Rrev. Thus, in the topological ordering of GRrev , u is
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Fig. 3. (1) the numbering of the graph in Fig 2 (2). The vertices are numbered by a
topological ordering of GRrev . The labels a1, . . . , a7, b1, . . . , b7 indicate their numbering
in GAR and GBR respectively; (2) GAR; (3) the edges in Ecross (with the paths PA

and PB); (4) GBR. Here PA = {a1, a2, a4, a6, a7} and PB = {b1, b2, b4, b6, b7}.

numbered before v. (Namely u = vp and v = vq with p < q). Hence u ∈ A.
Since e is directed as u → v in GAR, u is numbered before v in the topological
ordering of GAR. Namely u = aj for some j < i.

Since v is an interior vertex of G, there is a green edge e′ = v → w in R.
e′ is oriented as w → v in Rrev. Thus, in the topological ordering of GRrev , w
is numbered before v. (Namely w = vr and v = vq with r < q). Hence w ∈ A.
Since e′ is directed as v → w in GAR, w is numbered after v in the topological
ordering of GAR. Namely w = ak for some i < k. �

Construct a ladder graph L = (A ∪ B,Ecross) as follows: L contains a path
LA = a1 → a2 . . .→ a�n/2�, a path LB = b1 → b2 . . .→ b�n/2� and the edges in
Ecross. (For the graph shown in Fig 3 (1), the corresponding ladder graph L can
be obtained from the graph shown in Fig 3 (3) by inserting the vertex a3 into
the edge (a2, a4), a5 into (a4, a6), b3 into (b2, b4) and b5 into (b4, a6)).

Definition 6. Let L be a consistent orientation of L. GRL denotes the orienta-
tion of G obtained as follows: The edges in EA and EB are oriented as in GR.
The edges in Ecross are oriented as in L.

Lemma 4. If L is consistent, then GRL is an st-orientation of G.

Proof. Since GAR and GBR are acyclic and L is a consistent orientation of L,
GRL is acyclic. Consider any interior vertex v of G. If v ∈ A, then v has two
neighbors u,w in GA such that u → v and v → w in GAR. If v ∈ B, then v
has two neighbors u,w in GB such that u → v and v → w in GBR. Depending
on the orientation of the cross edge (a1, b1) in L, either a1 or b1 is the unique
source of GRL. Depending on the orientation of the cross edge (a�n/2�, b�n/2�) in
L, either a�n/2� or b�n/2� is the unique sink of GRL. So GRL is an st-orientation
of G. �
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LL denotes the st-orientation of L derived from L. Let GRL be the st-orientation
of G derived from R and L, and G∗

RL the corresponding dual st-orientation of
G∗.

Theorem 3. length(GRL) ≤ length(LL).

Proof. Let P be a longest path in GRL. We transform P to a path PL in LL as
follows. Consider any edge e = u → v in P . If e is a cross edge, we keep it in
PL. If e is an edge in GA, then u = ai and v = aj for some i < j. We replace e
by the sub-path in LA from ai to aj . If e is in GB , we replace it by a sub-path
in LB. After this operation is performed to all edges in P , we obtain a directed
path PL in LL. Thus: length(GRL) = length(P ) ≤ length(PL) ≤ length(LL). �

Theorem 4. Let P ∗ be a longest path in G∗
RL. Then length(P ∗) ≤ n − 1 + l,

where l is the number of cross faces of G passed by P ∗.

Proof. Because the way GRL is oriented, P ∗ travels in one of the following ways:
I: (i) P ∗ first crosses the edge (a1, a�n/2�) then travels some faces within GA;

(ii) crosses an edge in PA and travels some l cross faces; (iii) crosses an edge in
PB, and travels some faces within GB.

II: P ∗ first crosses the edge (a�n/2�, b�n/2�). It is similar to Case I, except the
portion (i) is empty. We count the length of these sub-paths separately.
GA has na = �n/2� vertices. Let oa be the number of vertices on the exterior

face of GA. Let ia = na − oa be the number of interior vertices of GA. It is easy
to show that the number of interior faces of GA is fa = 2na− oa− 2. By Euler’s
formula, the number of edges in GA is ma = na + fa − 1 = 3na − oa − 3.

Let GA,red be the subgraph of GA consisting of the exterior edges of GA

and its red interior edges. GA,red has na vertices. Let mA,red be the number of
edges in GA,red. By Euler’s formula, the number on interior faces in GA,red is
fA,red = mA,red − na + 1.

Let GA,green be the subgraph of GA consisting of the exterior edges of GA and
its green interior edges. GA,green has na vertices, Let mA,green be the number of
edges in GA,green. By Euler’s formula, the number on interior faces in GA,green

is fA,green = mA,green−na +1. Since each of the oa exterior edges of GA belongs
to both GA,red and GA,green, we have mA,red +mA,green = ma + oa. Thus:
fA,red+fA,green = (mA,red−na+1)+(mA,green−na+1) = mA,red+mA,green−

2na +2 = ma +oa−2na +2 = (3na−oa−3)+oa−2na +2 = na−1 = �n/2�−1.
(For example, the graph GA in Fig 3 (2) has na = 7 vertices. ia = 2, oa = 5,

ma = 3na−oa−3 = 13, and fa = 2na−oa−2 = 7. fA,red = 3 and fA,green = 3).
Consider the sub-path of P ∗ when it travels within GA. When P ∗ crosses a

red edge, it enters a new face in GA,red. When P ∗ crosses a green edge, it enters
a new face in GA,green. Since the edges in GAR are oriented according to REL
R, each face in GA,red and GA,green can be entered at most once. Therefore the
length of P ∗ within GA is at most fA,red + fA,green ≤ �n/2� − 1.

Then P ∗ crosses an edge in PA, and enters the first cross face. It continues to
travel l cross faces. Then P ∗ crosses an edge in PB (which adds 1 to the length
of P ∗) and enters the first face in GB. By the same argument for the sub-path
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of P ∗ within GA, the length of P ∗ within GB is at most nb − 1 = �n/2� − 1.
Hence length(P ∗) ≤ (�n/2� − 1) + l+ 1 + (�n/2� − 1) = n− 1 + l. �

3.2 Orientation of Ecross

We next describe how to find a consistent orientation L for L so that the length
of the longest path P in the st-orientation GRL and the length of the longest
path P ∗ in the dual st-orientation G∗

RL are not too large.
Let k = |Ecross|. Then G has k − 1 cross faces. Note that we always have

k ≤ (n − 1). (The equality holds when all vertices of GA are in the exterior
path PA and all vertices of GB are in the exterior path PB . In this case, PA has
�n/2�− 1 edges and PB has �n/2�− 1 edges. Since each cross face consumes one
edge in either PA or PB, there are �n/2�+ �n/2� − 2 = n− 2 cross faces).

Order the edges in Ecross from bottom up: Ecross = {e1, e2, . . . , ek}. Suppose
that et = (ait , bjt). In particular e1 = (a1, b1) and ek = (a�n/2�, b�n/2�).

Consider any cross edge et. If et is an up edge (namely slope(et) > 0), it’s
natural to orient ei as ait → bjt , because otherwise the length of P might
increase. However, if we always orient cross edges this way, the length of P ∗

might be too large. (Consider a special case where all cross edges are up edges.
If we orient all cross edges from A side to B side, then P ∗ may pass all cross
faces). To avoid this, some up edge et might have to be oriented as ait ← bjt .
This, of course, might increase the length of P . The trick is to orient the cross
edges in a way so that the lengths of P and P ∗ do not increase too much.

Let p = �k/2�. Consider the edge ep = (aip , bjp). Without loss of generality,
we assume slope(ep) = jp − ip ≥ 0. (If not, switch the roles of GA and GB).
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Case 1: slope(ep) = jp − ip ≤ n/4.

Case 1a: ep+1 = (aip+1 , bjp+1) with jp+1 
= jp and ip+1 = ip (see Fig 4 (1)).
We divide L into three sub-ladder graphs:

– X = (AX ∪ BX , EX) of order x = 2(ip − 1), AX = {a1, . . . , aip−1} and
BX = {b1, . . . , bip−1}. Let LX be the consistent orientation of X in Theorem
2, with length(LX) ≤ �x/2�+ 2�

√
x− 2)/2�.

– Y = (AY ∪BY , EY ) of order y = 2(jp−ip +1), AY = {aip , . . . ajp} and BY =
{bip , . . . , bjp}. Define LY = 〈bip , bip+1, . . . , bjp , aip , aip+1, . . . , ajp〉. Note that
length(LY ) = y − 1 and y/2 = jp − ip + 1 = slope(ep) + 1 ≤ n/4 + 1.

– Z = (AZ∪BZ , EZ) of order z = n−2jp, AZ = {ajp+1, . . . , a�n/2�} and BZ =
{bjp+1, . . . , b�n/2�}. Let LZ be the consistent orientation of Z in Theorem 2,
with length(LZ) ≤ �z/2�+ 2�

√
(z − 2)/2�.

Define L = 〈LX ,LY ,LZ〉.

Case 1b: ep+1 = (aip+1 , bjp+1) with jp+1 = jp and ip+1 
= ip (see Fig 4 (2)).
We divide L into three sub-ladder graphs:

– X = (AX ∪ BX , EX) of order x = 2ip, AX = {a1, a2, . . . , aip} and BX =
{b1, b2, . . . , bip}. Let LX be the consistent ordering for X in Theorem 2, with
length(LX) ≤ �x/2�+ 2�

√
(x− 2)/2�.

– Y = (AY ∪ BY , EY ) of order y = 2(jp − ip), AY = {aip+1, . . . ajp} and
BY = {bip+1, . . . , bjp}. Define LY = 〈bip+1, . . . , bjp , aip+1, . . . , ajp〉.

– Z = (AZ∪BZ , EZ) of order z = n−2jp, AZ = {ajp+1, . . . , a�n/2�} and BZ =
{bjp+1, . . . , b�n/2�}. Let LZ be the consistent ordering for Z in Theorem 2,
with length(LZ) ≤ �z/2�+ 2�

√
(z − 2)/2�.

Define L = 〈LX ,LY ,LZ〉.

Case 2: slope(ep) = jp − ip > n/4 (see Fig 4 (3)).
Let eg = (aig , bjg ) be the edge such that g is the largest index between 1 and

p− 1 with slope(eg) = jg − ig ≤ n
4 . Let eh = (aih

, bjh
) be the edge such that h is

the smallest index between p+ 1 and k with slope(eh) = jh− ih ≤ n
4 . We divide

L into five sub-ladder graphs:

– X1 = (AX1 ∪ BX1 , EX1) of order x1 = 2(ig − 1), AX1 = {a1, . . . , aig−1}
and BX1 = {b1, . . . , big−1}. Let LX1 be the consistent orientation for X1 in
Theorem 2, with length(LX1) ≤ �x1/2�+ 2�

√
(x1 − 2)/2�.

– X2 = (AX2 ∪BX2, EX2) of order x2 = 2(jg− ig +1), AX1 = {aig , aig+1, . . . ,
ajg} and BX2 = {big , big+1, . . . , bjg}.
Define LX2 = 〈big , big+1, . . . , bjg , aig , aig+1, . . . , ajg 〉.

– Y = (AY ∪BY , EY ) of order y = 2(ih−jg−1),AY = {ajg+1, ajg+2, . . . , aih−1}
and BY = {bjg+1, bjg+2, . . . , bih−1}.
Define LY = 〈ajg+1, ajg+2, . . . , aih−1, bjg+1, bjg+2, . . . , bih−1〉.

– Z1 = (AZ1∪BZ1, EZ1) of order z1 = 2(jh−ih+1), AZ1 = {aih
, . . . , ajh

} and
BZ1 = {bih

, . . . , bjh
}. Define LZ1 = 〈bih

, bih+1, . . . , bjh
, aih

, aih+1, . . . , ajh
〉.
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– Z2 = (AZ2 ∪ BZ2, EZ2) of order z2 = n − 2jh, AZ2 = {ajh+1, . . . , a�n/2�}
and BZ2 = {bjh+1, . . . , b�n/2�}. Let LZ2 be the consistent orientation for Z2
in Theorem 2, with length(LZ2) ≤ �z2/2�+ 2�

√
(z2 − 2)/2�.

Define L = 〈LX1,LX2,LY ,LZ1,LZ2〉.
We need the following lemmas for the analysis of Case 2.

Lemma 5. There are at most �n/2� cross faces between eg and eh.

Proof. Consider the cross edge eg+1. By the choice of eg, we have slope(eg+1) >
n/4. So eg+1 = (aig , bjg+1) for some jg+1 > jg and jg+1− ig > n/4. This implies
jg+1 > n/4 + ig ≥ n/4 + 1.

Consider the cross edge eh−1. By the choice of eh, we have slope(eh−1) > n/4.
Thus eh−1 = (aih−1 , bjh

) for some ih−1 < ih and jh − ih−1 > n/4. This implies
ih−1 < jh − n/4 ≤ �n/2� − n/4.

Each cross face between eg+1 and eh−1 consumes either one edge in PA be-
tween aig and aih−1 , or one edge in PB between bjg+1 and bjh

. Hence the number
of these cross faces is at most: w ≤ (jh − jg+1) + (ih−1 − ig) < (�n/2� − n/4−
1) + (�n/2� − n/4− 1) = 2�n/2� − n/2− 2 ≤ �n/2� − 2.

Thus the number of cross faces between eg and eh is at most w + 2 ≤ �n/2�.
�

Lemma 6. Let U = X2 ∪ Y ∪ Z1. Let LU = 〈LX2 ,LY ,LZ1〉. Then

length(LU ) ≤ (x2 + y + z1)/2 + n/4 + 1.

Proof. Let S = {eg+1, eg+2, . . . , eh−2, eh−1}. Note that for any et ∈ S, slope(et)
> n/4. Let P be a longest path in LU . Since big is the source and ajh

is the
sink in LU , P must start at big and end at ajh

. The following are three different
ways that P may achieve the maximum length. (In the following, the symbol

l=⇒ means a sub-path of length l. The symbol → means a single edge).

– Q1: big

x2/2−1
=⇒ bjg → aig

jh−ig=⇒ ajh
.

Then length(Q1) = (x2/2− 1)+ 1 + (jh− ig) ≤ (x2 + y+ z1)/2+n/4. (Here
we use the facts: jh − ig = (x2 + y + z1)/2 − 1 and x2/2 = jg − ig + 1 =
slope(eg) + 1 ≤ n/4 + 1).

– Q2: big

jh−ig=⇒ bjh
→ aih

z1/2−1
=⇒ ajh

.
By the same argument, we can show length(Q2) ≤ (x2 + y + z1)/2 + n/4.

– Q3: big

x2/2−1
=⇒ bjg → aig

it−ig=⇒ ait

et→ bjt

jh−jt=⇒ bjh
→ aih

jh−ih=⇒ ajh
.

Then: length(Q3) = (x2/2− 1)+1+ (it− ig)+1+ (jh− jt)+1+ (jh− ih) =
(x2/2 + 2) + (jh − ig) + [(jh − ih)− (jt − it)].

Note that x2/2 ≤ n/4 + 1, slope(eh) = jh − ih ≤ n/4 and slope(et) =
jt− it > n/4. Because slope(eh) and slope(et) are integers, [(jh− ih)− (jt−
it)] ≤ −1. Thus:
length(Q3) ≤ n/4 + 3 + (x2 + y+ z1)/2− 1− 1 = (x2 + y+ z1)/2 + n/4 + 1.

�
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3.3 Analysis

Let L be the orientation for the ladder graph L constructed above.

Lemma 7. L is a consistent orientation of L.

Proof. We prove the lemma for Case 2. The proof for Cases 1a and 1b are
similar. All we have to do is to show L is acyclic. The sub-orientations LX1,LZ2
are acyclic by Theorem 2. The sub-orientations LX2,LY ,LZ1 are acyclic by
the construction. Since L is the concatenation of LX1,LX2,LY ,LZ1,LZ2, the
orientations of the edges whose end vertices belong to different sub-ladder graphs
do not create cycles. Hence L is acyclic. �

Note that in all cases, a1 is the source and b�n/2� is the sink of L. Let GRL be
the st-orientation of G derived from R and L. Let G∗

RL be the corresponding
dual st-orientation of G∗.

Lemma 8. length(G∗
RL) ≤ � 3n

2 � − 1.

Proof. Let P ∗ be a longest path in G∗
RL. Let l be the number of cross faces

passed by P ∗. By Theorem 4, it is enough to show l ≤ �n/2�.
Case 1a: Because the cross edges ep and ep+1 are oriented in opposite direction,

P ∗ can pass the cross faces either in the region above ep or in the region below
ep+1, but not both. Because each of these two regions has at most �(k−1)/2�+1 ≤
�(n− 2)/2�+ 1 cross faces, we have l ≤ �n/2�.

Case 1b: Similar to Case 1a.
Case 2: Note that eg is oriented as aig ← bjg (see Fig 4 (3)). By the choice of

eg, slope(eg+1) > n/4. Hence eg+1 = (aig , bjg+1) for some jg+1 > jg. So eg+1 is
oriented aig → bjg+1 in L. Similarly, we can show eh is oriented as aih

← bjh
, and

eh−1 is oriented as aih−1 → bjh
for some ih−1 < ih. Because of the orientations

of the cross edges eg, eg+1, eh−1 and eh, the path P ∗ can pass cross faces in only
one of the following three regions:

– The region below the edge eg+1. The number of cross faces in this region is
at most �n/2� because this region is below ep.

– The region between eg and eh. The number of cross faces in this region is at
most �n/2� by Lemma 5.

– The region above eh−1. The number of cross faces in this region is at most
�n/2� because this region is above ep. �

Lemma 9. length(GRL) ≤ 3n
4 + 2�

√
n�+ 4.

Proof. Let P be a longest path in LL. By Theorem 3, it’s enough to show
length(P ) ≤ 3n

4 + 2�
√
n�+ 4.

Case 1: Let PX , PY and PZ be the sub-paths of P in the sub-ladder graphs X ,
Y and Z, respectively. By Theorem 2, length(PX) ≤ �x/2�+2�

√
(x− 2)/2� and

length(PZ) ≤ �z/2�+2�
√

(z − 2)/2�. Since Y contains y vertices, length(PY ) ≤
y − 1. The edges connecting these three sub-paths add 2 to the length of P .
Noting the facts: x+ y + z = n and y/2 ≤ n/4 + 1, we have:
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length(P ) = length(PX) + length(PY ) + length(PZ) + 2

≤ (�x/2�+ 2�
√

(x − 2)/2�) + (y − 1) + (�z/2�+ 2�
√

(z − 2)/2�) + 2

≤ (x/2 + 1/2 + 2�
√

(x− 2)/2�) + (y − 1) +

(z/2 + 1/2 + 2�
√

(z − 2)/2�) + 2

= n/2 + y/2 + 2�
√

(x− 2)/2�+ 2�
√

(z − 2)/2�+ 2

Let f(x, z) = 2�
√

(x− 2)/2�+2�
√

(z − 2)/2�. Since x+z ≤ n, it is easy to check
f(x, z) reaches the maximum value when x = z = n/2: f(n/2, n/2) ≤ 2�

√
n�.

Hence: length(P ) ≤ 3n/4 + 2�
√
n�+ 3.

Case 1b: Similar to Case 1a.
Case 2: Let U = X2 ∪ Y ∪ Z1 and LU = 〈LX2 ,LY ,LZ1〉 (as in Lemma 6).
Let PX1, PU , PZ2 be the sub-paths of P in the sub-ladder graphs X1, U , and

Z2 respectively. By Theorem 2, length(PX1) ≤ �x1/2� + 2�
√

(x1 − 2)/2� and
length(PZ2) ≤ �z2/2�+2�

√
(z2 − 2)/2�. By Lemma 6, length(PU ) ≤ length(LU )

≤ (x2 + y + z1)/2 + n/4 + 1. The edges connecting these 3 sub-paths add 2 to
length(P ). Noting the facts that: x1 +x2 +y+z1 +z2 = n, x1 +z2 ≤ n, we have:

length(P ) = length(PX1) + length(PU ) + length(PZ2) + 2

≤ (�x1/2�+ 2�
√

(x1 − 2)/2�) + (x2 + y + z1)/2 + n/4 + 1 +

(�z2/2�+ 2�
√

(z2 − 2)/2�) + 2

≤ n/2 + n/4 + 2�
√

(x1 − 2)/2�+ 2�
√

(z2 − 2)/2�+ 4
≤ 3n/4 + 2�

√
n�+ 4 �

Theorem 5. Every 4-connected plane graph with n vertices has a VR, con-
structible in linear time, with height ≤ 3n

4 + 2�
√
n�+ 4 and width ≤ �3n/2�.

Proof. We have the following algorithm.

1. Delete an exterior edge e = (vS , vN ) from H . The resulting graph G is a
4TP graph.

2. Find a REL R of G in O(n) time [6].
3. Partition G into GA and GB by a topological sort of GRrev .
4. Construct the ladder graph L and find the orientation L as in §3.2.
5. Constructed the st-orientation GRL. Find a VR D′ for G in linear time by

Theorem 1.
6. Add a vertical line for the deleted edge, we get a VR D of H .

By Lemma 8 and 9, the VR D′ for G has height ≤ 3n
4 + 2�

√
n� + 4 and width

≤ �3n/2�−1. The last step increases the width of D by 1. So the height and the
width of D satisfy the stated bounds. All steps of the algorithm can be done in
linear time. So the total run time is O(n). �

4 Conclusion

In this paper, we present a VR construction for 4-connected plane graphs, which
simultaneously bounds height ≤ 3n

4 + 2�
√
n� + 4 and width ≤ �3n/2�. This is
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the first VR construction that simultaneously bounds the height by chn and the
width by cwn where ch < 1 and cw < 2. It would be interesting to find such VR
for broader classes of plane graphs.
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Abstract. Given a set P of n points and a straight line L, we study
three important variations of minimum enclosing circle problem. The
first problem is on computing k circles of minimum (common) radius
with centers on L which can cover the members in P . We propose three
algorithms for this problem. The first one runs in O(nk log n) time and
O(n) space. The second one runs in O(nk+k2 log3 n) time and O(n log n)
space assuming that the points are sorted along L, and is efficient where
k << n. The third one is based on parametric search and it runs in
O(n log n + k log4 n) time. The next one is on computing the minimum
radius circle centered on L that can enclose at least k points. The time
and space complexities of the proposed algorithm are O(nk) and O(n)
respectively. Finally, we study the situation where the points are associ-
ated with k colors, and the objective is to find a minimum radius circle
with center on L such that at least one point of each color lies inside it.
We propose an O(n log n) time algorithm for this problem.

1 Introduction

Geometric facility location problem is an important area of algorithmic research
that deals with the identification of appropriate resource locations for serving a
set of demands efficiently. Many variations of this problem has come up depend-
ing on practical applications. A typical facility location problem is the k-center
problem. Here a set of points P = {p1, p2, . . . , pn} is given in IRd as clients. The
objective is to identify k positions in IRd for placing the facilities such that the
maximum distance of a client from its nearest facility is minimized. We shall
restrict ourself to d = 2. The 1-center problem (or, the minimum enclosing circle
problem) can be solved in O(n) time [18]. Hurtado et al. [12] considered a vari-
ation of the 1-center problem where the center of the smallest enclosing circle
of P is constrained to lie inside a given convex polygon of size m; the proposed
algorithm runs in O(n+m) time. Bose et al. [5] considered the generalized ver-
sion of the problem where the center of the smallest enclosing circle of P is
constrained to lie inside a given simple polygon of size m. The worst case time
complexity of the proposed algorithm is O((n+m) log(n+m)) time. The online
query versions of the 1-center problem are also studied, where the objective is to
preprocess the points in P so that given any arbitrary line or a line segment, the

W. Wu and O. Daescu (Eds.): COCOA 2010, Part I, LNCS 6508, pp. 354–368, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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optimal location of the center can be identified efficiently. Two algorithms are
available for this problem. The older one runs in O(n log n) preprocessing time
using O(n) space, and the query answering time is O(log2 n) [22]. The recent
one reduces the query time to O(log n) with an expense of O(n2) preprocessing
time and space [14].

For the 2-center problem the best known algorithm was proposed by Chan
[6]. He suggested two algorithms; the first one is a deterministic algorithm, and
it runs in O(n log2 n(log logn)2) time, and the second one is a randomized al-
gorithm that runs in O(n log2 n) time with high probability. A variation of this
problem is the discrete two-center problem, where the objective is to find two
closed disks whose union covers the point set P and whose centers are a pair
of points in P . If all the points of P are in convex position, Kim et al.’s [15]
O(n log2 n) time algorithm is the best known result. For general position of P ,
the best result of discrete 2-center problem is O(n

4
3 log5 n) time complexity by

Agarwal et al. [2].
The k-center problem in IRd is known to be NP-complete if d ≥ 2 [16]. In its

decision version, a radius r is given, and the problem is to determine whether
k circles of radius r can cover the points in P . Hwang et al. [10] proposed an
nO(

√
k) time algorithm for the k-center problem in IR2. Therefore it makes sense

to search for efficient approximation algorithms and heuristics for the general
version [13,20]. Recently, Brass et al. [4] studied several interesting variations of
the constrained k center problem, where the centers of the circles lie on a line L.
For the case where the line L is given, the proposed algorithm uses parametric
search, and runs in O(n log2 n) time. If the orientation of the line is given and
one can choose L to minimize the radius, then their proposed algorithm runs in
O(n2 log2 n) time. If no constraint on choosing L is given their algorithm can
choose L and report k circles of minimum radius in O(n4 log2 n) time. Alt et
al. [3] studied several variations of circle covering problem with circles of arbi-
trary radii and centers lying on a straight line. Their objective function is to
minimize the sum/sum-of-square of radii of the covering circles. They proposed
optimal algorithms for the above two optimization problems with time complex-
ity O(n2 logn) and (n4 logn) respectively. They also proposed constant factor
approximation algorithms for these problems that run in O(n log n) time.

In the colored variation of the k enclosing circle problem, each point is assigned
a color in {1, 2, . . . , k} and the objective is to find a minimum radius circle
containing at least one point of each color. Alt et al. [1] introduced the concept
of the farthest color Voronoi diagram, which can be used to compute the smallest
color spanning circle in O(kn) time. The farthest color Voronoi diagram can be
computed in O(kn logn) time [11].

In this paper, we study several constrained versions of the k-center problem.
We first consider the fixed radius covering problem (FRCP), where a real number
r and a straight line L are given along with the point set P . The objective is
to find the minimum number of circles of radius r centered on L that can cover
the points in P (if at all possible). We show that, if the points are sorted with
respect to their projections on L, then this problem can be solved in O(n) time.
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If O(n log n) preprocessing time and space are allowed, then the query version
of the FRCP problem can be solved in O(k log2 n) time, where the radius r is
the input to the query. Next, we shall consider the minimum radius covering
problem (MRCP), where the number of circles k is given as input. The objective
is to cover all the members in P by k circles of equal radii and centered on
the given line L. Our aim is to minimize the radius of the circles. We propose
two implementable algorithms for this problem. Given the set P and an integer
k, the first one computes the optimum radius in O(nk logn) time and O(n)
space. The second one is efficient if k << n; we apply O(k log2 n) time FRCP
algorithm to solve the MRCP in O(n log n + nk + k2 log3 n) time. Finally, we
show that there exists an O(n logn + k log4 n) time algorithm for the MRCP
using parametric searching technique [17]. It needs to be mentioned that Brass
et al. [4] proposed an O(n log2 n) time algorithm for the MRCP using the slope
selection problem [7,17], which in turn uses the parametric searching technique
[18]. Next, we address the minimum radius k-enclosing circle problem, where the
set P and an integer k is given as input. The objective is to compute a circle with
center on the line L which can cover k points in P and its radius is minimum
among all the k points enclosing circles with centers on the line L. We propose
an easy to implement algorithm for this problem that runs in O(n log n + nk)
time and O(n) space. Finally, we study the situation where each point in P is
associated with one of the k given colors, and the objective is to find a minimum
radius circle with center on L such that at least one point of each color lies inside
it. We propose an O(n logn) time algorithm for this problem.

2 FRCP: Fixed Radius Covering Problem

Here the line L and radius r are given along with the points in P . The objective
is to find the minimum number of circles of radius r centered on L that covers
all the points in P , provided at least one such a solution exists. We consider a
slab S bounded by a pair of lines parallel to L and both at distance r from L.
If each member of P lies inside the slab, then there exists a feasible solution to
the problem. We now explain the method of getting the optimum solution for
this problem.

Without loss of generality, we assume that the line L is the x-axis, and the
members in P are above the line L. If a point p lies below L and a circle C passes
through p, then C also passes through the point p′, where p′ is the mirror image
of p with respect to L. We also assume that the points in P are sorted from left
to right. We use C(p, r) to denote the circle of radius r centered at the point p.
Since pi ∈ S, the intersection of C(pi, r) and L is an interval Ii = [ai, bi] where
ai ≤ bi. Let I = {I1, I2, . . . , In} be the set of intervals on the line L. Note that,
(i) for any point q ∈ Ii, C(q, r) contains pi, and (ii) if the intervals in a subset
J ⊆ I overlap, then a circle C(q, r) centered at a point q on the overlapping
region I∗ = ∩j∈JIj contains all the points {pj , j ∈ J} (see Figure 1). Thus, we
have the following result.
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pi

pj

pk

ai biaj

ak

bj

bk

Fig. 1. Three intervals are overlapping on the interval [ak, bi]

Lemma 1. If the end-points of the intervals in I are presorted along the line L,
then the minimum number of circles of a given radius and centered on the line
L required to enclose P , can be obtained in O(n) time.

Proof. The minimum number of circles of radius r centered on � that are required
to enclose the points in P is equal to the cardinality of the minimum clique cover
of the interval graph formed by the intervals in I. If the points in P are sorted
with respect to their x-coordinates, then computing the minimum clique cover
of the intervals in I needs O(n) time [9]. ��

We now improve the worst case time complexity of solving the FRCP problem
to O(k log2 n), where k is the size of the output.

Lemma 2. If C = {C1, C2, . . . , Ck} be the set of circles in the optimal solution,
then the leftmost circle of C1 ∈ C must enclose the leftmost point in P .

Proof. It is easy to observe that I1 contains the projection π1 of the point p1
on L. Let χ1 be the leftmost maximal clique of the interval graph formed by
the intervals in I. We need to prove that χ1 ⊆ I1. Assume the contrary, let
χ1 ∩ I1 = ∅. Let p (
= p1) be a point whose corresponding interval Ip on L
contributes to χ1 (i.e., Ip ∩ χ1 
= ∅). As mentioned earlier, Ip must contain the
projection π of the point p on L. Since π1 is to the left of π, Ip must contain π1.
This is true for all the points that contribute to χ1. Thus, π1 lies in χ1, and we
have a contradiction. ��

Lemma 3. Suppose the intersection of the intervals I1, I2, . . . Im−1 on the line
L is non-empty (say χ = I1 ∩ I2 ∩ . . .∩ Im−1), and Im does not overlap on χ. If
Im+j (j ≥ 1) overlaps on χ, then Im+j also overlaps on Im.

Proof. Similar to the proof of Lemma 2. ��

Lemmata 2 and 3 lead to the following procedure: (i) identify the leftmost in-
terval Im = [am, bm], such that am 
∈ I1; (ii) compute the center of the circle (of
radius r) on L that covers p1, p2, . . . , pm−1, and (iii) repeat steps (i) and (ii) as-
suming pm as p1. This again needs O(n) time. In order to expedite the algorithm,
we neeed to identify m without inspecting all the intervals I2, I3, . . . Im.
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As a preprocessing step, we create a (binary) tournament tree T whose leaf
nodes correspond to p1, p2, . . . , pn. The leaf level is considered to be the 0-th
level of the tree T . The i-th node at level 1 is attached with a pair of points
(p2i+1, p2i+2). If n − 2�n

2 � = 1, then pn is also moved in this level. Thus, the
number of nodes at this level is �n

2 �. In the i-th node of the j-th level of T , the
set of points attached are the union of the points attached to the (2i+1)-th and
(2i+2)-th nodes of the j−1-th level. The process continues up to the root of T .
We attach a secondary structure Vv at each node v of T . It is an array containing
the intersection points of the furthest point Voronoi diagram of the set of points
attached with the node v and the line L (see Figure 2). Each intersection point θ
can serve as the center of the minimum enclosing circle of all the points attached
to this node. The radius ρθ of the corresponding circle is also attached with θ. It
can be shown that the radii attached to these intersection points in order form
a unimodal sequence [22].

The number of points attached to a node in the j-th level is at most 2j , and
computing the secondary structure at this node is O(2j). Since the number of
nodes in the j-th level is at most n

2j , the total time spent at the j-th level is
O(n). Thus, the construction of T needs O(n logn) time and space.

p1 p2 . . .

. . .

. . .

. . .

. . .

pnp3 p4

Fig. 2. Demonstration of the secondary structures at each node of T

We now compute the maximum number of consecutive points starting from pi

that can be covered by a circle of radius r centered on L as follows. We consider
two sets of points A and B, where the points in B are all to the right of the
rightmost point in A, and it is known that the points in A can be covered by a
circle of radius r centered on L. We use θ to denote the rightmost point on L
such that a circle of radius r centered on θ can enclose the points in A. We try
to append maximum number of points from B which can also be covered (along
with A) with a circle of radius r centered on L.

We start execution initializing the set A by pi, and θ be a point on L at
distance r from pi. Let v be the node of T representing the point pi. At any
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stage, let u be the least common ancestor of v and its inorder successor in T .
Let u′ be the right child of u. Let B be the set of points attached to the node
u′. Let ρ∗ be the minimum radius in the secondary structure Vu′ attached to u′

and the corresponding center be θ∗. Here the following cases may arise:

Case 1: θ is to the left of θ∗ in the array Vu′ .
If the distance of the furthest neighbor of θ among the points in B is less
than r, we set A = A ∪ B, and repeat the same step with v = u, without
changing the value of θ.

If the distance of the furthest neighbor of θ among the points in B is
greater than r, then the minimum enclosing circle of the points in B with
center at θ can not cover all the points in B. So, we need to move to the left
child of u′ to condider a subset of B. If the left child of u′ is non-null, then
set u′ = left child of the present u′, and repeat the same process.

Case 2: θ is to the right of θ∗ in the array Vu′ .
If the radius attached to θ∗ in Vu′ is greater than r, then a circle of radius r
centered on L can not even cover the points in B. As in the second part of
Case 1, here also we move to the left child of u′.

If the radius attached to θ∗ in Vu′ is less than r, then we identify the
furthest neighbor p of θ among the points in B. If the distance of p from θ is
less than r, C(pi, r) with center at θ can enclose the points in B along with
A. So, do not change the value of θ.

Otherwise, we again perform binary search in the array Vu′ to locate a
point θ′ on L to the right of θ∗ such that a circle of radius r centered at
θ′ can contain all the points in B. Note that, there may exist some more
points to the right of the points in B which can also be enclosed by the
circle C(pi, r). So, in both the cases (i) we set A = A ∪B, (ii) set v = u, v′

= inorder successor of u, and then (iv) repeat the same process setting u =
least common ancestor of v and v′.

Thus finding the center of each circle, we may need to visit O(log n) nodes in T ,
and in each node, we need to perform binary search in the secondary structure
attached to that node to update θ. Since we need k such circles (the size of the
output) to cover all the points in P , we have the following result.

Theorem 1. The time complexity of the FRCP problem is O(k log2 n) with an
O(n log n) time preprocessing step. Here k is the minimum number of circles of
radius r centered on L that are required to cover the points in P .

3 MRCP: Minimum Radius Covering Problem

Here the number of circles k is given, and our objective is to find the minimum
value of the radius r such that k circles of radius r centered on L can cover the
members in P .

Let C = {C1, C2, . . . , Ck} be the solution of the MRCP. Assume that the
centers of the members in C are ordered from left to right on the line L. Each
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member in the set C must pass through at least one point in P . If the circle passes
through a single point pi then its center will be the perpendicular projection of
pi on the L. In case, a circle passes through at least two points pi, pj ∈ P then its
center is at the intersection point of L and the perpendicular bisector of the line
segment [pi, pj ]. A trivial O(n2 logn) time and O(n2) space algorithm for the
MRCP is as follows: (i) Compute the

(
n
2

)
possible radii of the circles as discussed

above and sort them in an array R; (ii) perform a binary search in R to find the
minimum radius ropt such that k circles of equal radius ropt can cover all the
points in P . At each step of this binary search, we need to invoke the O(n) time
algorithm FRCP (see Lemma 1) to decide whether k circles of the given radius
is suficient to cover P .

We now present three algorithms for the problem using Lemma 2. The first
two are easy to implement, and is based on the following greedy strategy. Let
ropt be the optimum radius. Our algorithm selects a point of maximum index i
such that Pi = {p1, p2, . . . , pi} are all covered by the circle C1. The remaining
points will be covered by k− 1 circles of radius ropt centered on L. Similarly, C2
can also be defined, and so on. The third one is based on parametric searching,
and the objective is to demonstrate that the time complexity of the MRCP can
be reduced to O(n logn) where k is a small constant.

3.1 Algorithm 1

Lemma 4. If r′ is the radius of the minimum radius circle C1 containing {p1, p2,
. . . , pi}, and r′′ is the radius of the minimum radius circle containing {p1, p2, . . . ,
pi, pi+1} then r′ ≤ ropt < r′′.

The index i, that defines C1, can be computed by performing a binary search
among the points in P . At each step of this binary search, we select an index α.
Next we compute the radius r of the minimum enclosing circle with center on
L that covers the points {p1, p2, . . . , pα}, and then invoke FRCP with radius r.
After executing O(log n) steps, we get two radii r′ and r′′ such that more than
k circles of radius r′′ are needed to cover P and less than or equal to k circles of
radius r′′ are needed to cover P . The circle of radius r′ determines the index i.

Lemma 5. The worst case time complexity for computing i (or equivalently C1)
is O(n log n).

Proof. Follows from the fact that each step of the binary search needs O(n) time
(see (i) [18], and (ii) Lemma 1). ��

We consider a circle (say C′
1) of radius r′ with center on L that covers Pi =

{p1, p2, . . . , pi}. Thus, pi+1 is the leftmost point in P \ Pi. We repeat the same
procedure with P \ Pi of size n − i. This again returns a pair of radii r∗ and
r∗∗, where r∗ ≤ ropt < r∗∗. We update r′ = max(r′, r∗) and r′′ = min(r′′, r∗∗).
This process may iterate k times. At the last step, we have a set of points
{pa, pa+1, . . . , pn}. We compute the minimum enclosing circle of these points. If
the radius r of this circle is greater than r′′, then ropt = r′′, otherwise ropt = r′.
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Thus, each iteration of the procedure MRCP fixes one covering circle from left
to right, and k such iterations are required. The time complexity of one iteration
is O(n logn) in the worst case (see Lemma 5). Also, the extra space required by
our algorithm is the tree T and the working space for computing the minimum
enclosing circle of a set of points with center on a given line, which is O(n).
Thus, we have the following result.

Lemma 6. The time and space complexities of Algorithm 1 for the MRCP are
O(kn logn) and O(n) respectively.

3.2 Algorithm 2

We now present a more efficient algorithm where k << n, by avoiding the binary
search in computing C1. Since C1 passes through p1, the center of C1 is either
the projection of pi on the line L or the point of intersection of the perpendicular
bisector of the line segment [p1, pi] with the line L for some i. We compute n
possible radii as stated above. In order to compute r′ and r′′, we choose the
median of the radii, say rmed, and invoke the improved algorithm for FRCP. If it
returns ”NO” (resp. ”YES”), we identify the radii which are greater (resp. less)
than rmed and execute the same procedure. We need to iterate O(log n) steps to
get r′ and r′′.

Lemma 7. The time and space complexities of Algorithm 2 for the MRCP are
O(kn+ n logn+ k2 log3 n) and O(n log n) respectively.

Proof. The preprocessing of the FRCP needs O(n log n) time and space. Dur-
ing the computation of C1, we may need to compute median and invoke the
algorithm for FRCP O(log n) time. Note that, after each step the number of ele-
ments is reduced to half of that of the previous step. So, the total time required
for the median computation is O(n) + O(n

2 ) + +O(n
4 ) + . . . = O(n). Since the

time complexity of the improved algorithm for FRCP is O(k log2 n), the time
complexity of computing r′ and r′′ (or equivalently C1) is O(n + k log3 n). The
time complexity result follows from the fact that, in order to determine ropt, we
need to iterate the same procedure k times. ��

3.3 Algorithm 3

Our approach to solve MRCP is to run FRCP algorithm parametrically with-
out knowing the value of optimal radius r∗ a priori. For a parameter value r
(may not be optimum), the FRCP solution takes O(n) time. We are assuming
that the projection of the points on the given line L are already sorted. Surely
the optimum value of the parameter r∗ is within some interval, say Λ = [a, b].
Initially, we start with Λ = (0,∞). Let Ii(r) = [ai(r), bi(r)] be the intersection
of the circle C(pi, r) with the given line L. Assuming that the line L is the
x axis, we have ai(r) = xi −

√
r2 − y2

i and bi(r) = xi +
√
r2 − y2

i . We thus
have 2n endpoints ai(r) and bi(r), 1 ≤ i ≤ n. We now determine the relative
order of the endpoints of the intervals Ii(r∗), 1 ≤ i ≤ n on L. Note that, the
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relative order of two intervals [ai(r∗), bi(r∗)] and [aj(r∗), bj(r∗)] can be deter-
mined by performing the feasibility test FRCP with r = r′, where r′ is the
euclidean distance between pi (or pj) and the intersection point (α) of L and
the perpendicular bisector of pi and pj . For a pair of points pi and pj , r′ can be
obtained in O(1) time. If r∗ ≤ r′, either one of the intervals Ii(r′) and Ij(r′) is
completely contained in the other or the two intervals do not overlap, but they
may touch. In the other hand, if r∗ > r′ then the two intervals properly overlap.
After the feasibility test with r′ we will be able to find the relative order of the
endpoints ai(r∗), bi(r∗), aj(r∗), bj(r∗), and the interval Λ = [a, b] containing r∗

is now reduced to either [a, r′] or [r′, b], depending on whether r∗ ≤ r′ or r∗ > r′

respectively. The sorting step of the end-points of the intervals with unknown r∗

can be performed by solving O(log2 n) feasibility tests [18]. However, the num-
ber of feasibility tests can be reduced to O(log n) (see Cole [8]). Let the reduced
interval be Λ = [μ, ν] which contains r∗ after the sorting step. The relative order
of the endpoints remains the same for any point in Λ. Thus, we have μ as the
smallest radius. Now we have the following theorem.

Theorem 2. The parametric searching based algorithm solves MRCP in
O(n log n) time. The storage space requirement is O(n).

4 k-MRCP: Minimum Radius k-Enclosing Circle
Problem

A circle is said to be k-enclosing if it encloses at least k points. In this section,
we study the problem of finding the k-enclosing circle of minimum radius whose
center is constrained to lie on a given line L. A brute-force O(n2) time algorithm
is easy to design. We propose an O(n logn+nk) time algorithm for this problem.

Our algorithm starts with partitioning the given plane into �n
k � slabs S =

{S1, S2, . . . , Sn
k
} perpendicular to the line L such that each slab (excepting the

last one) contains exactly k points. As in the earlier problem, we may assume
that L is the x-axis, and all the points in P are above the line L. The slabs
in S are defined by the vertical lines L = {�1, �2, . . . �n

k
−1}, where �i intersects

L at the point ai. The members in the set A = {a1, a2, . . . , an
k −1} are ordered

with respect to their x-coordinate. The entire task can be done in O(n log n
k )

time using the recursive median finding algorithm. Let Pi denote the points
in the slab Si. We use KNR(p) (resp. KNL(p)) to denote the set of k points
nearest to a point p among those who lie to the right (resp. left) side of the
vertical line at p. For each ai, we store KNL(ai) and KNR(ai). The minimum
radius k-enclosing circle centered on ai encloses k points among the 2k points
in KNL(ai)

⋃
KNR(ai). We use KN(ai) to denote the set of points inside this

circle. Now we have the following observations.

Lemma 8. For all ai ∈ A, KN(ai) can be computed in O(n) time.

Proof. KNL(a1) and KNR(a�n
k �−1) can be computed in O(k) time since there

are only k candidate points. For 1 < i < �n
k � − 1, each member in the set
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KNR(ai) either lies in the slab Si+1 or a member of the set KNR(ai+1). If
KNR(ai+1) is available, then KNR(ai) can be computed in O(k) time. Thus
the sets KNR(a�n

k �−1),KNR(a�n
k �−2), . . . ,KNR(a1) can be computed in O(n)

time. Similarly, the sets KNL(a1),KNL(a2), . . . ,KNL(a�n
k �−1) can also be

computed in O(n) time. In order to compute KN(ai), we compute the dis-
tances of ai from the members in KNL(ai)

⋃
KNR(ai), and then choose the

median among these distances in O(k) time. The result follows by adding the
time complexities for computing KN(ai) for all i = 1, 2, . . . , �n

k � − 1. ��

We now describe two algorithms for computing the minimum radius k-enclosing
circle whose center is on the line segment [ai, ai+1]. The first one is relatively
simple, and it takes O(k2) time and space. A different approach is adopted to
reduce the space complexity to O(k) keeping the time complexity invariant.

4.1 Algorithm 1

Note that, the minimum radius k-enclosing circle with center on the
line segment [ai, ai+1] contains k points among the members in the set
Pi

⋃
KN(ai)

⋃
KN(ai+1). The cardinality of this set is at most 3k. It either

passes through one or two points in the above set. If it passes through only a
single point p ∈ Pi, then the center and radius of the circle will be determined
by the perpendicular projection of p on [ai, ai+1]. If it passes through two points
p, q ∈ Pi

⋃
KN(ai)

⋃
KN(ai+1), then the bisector of the line segment [p, q] must

intersect [ai, ai+1], and this determines the center and radius of the correspond-
ing circle. Our desired circle will have one among the

(
k
2

)
possible radii. A simple

way to solve this problem is to sort the O(k2) radii and then perform binary
search to choose the desired r∗. At each step of the binary search (with a radius
r) we test whether radius r is enough for getting a k-enclosing circle by executing
the following steps.

Step 1: Draw circular arcs of radius r centered at each point of Pi

⋃
KN(ai)⋃

KN(ai+1). This generates an interval graph of at most 3k intervals on the
line segment [ai, ai+1].

Step 2: Compute the maximum clique of this graph.
Step 3: If the size of the maximum clique is less than k, then we need to increase

the radius; if it is greater or equal to k, we need to decrease the radius.

The search terminates with a radius r∗ such that the corresponding interval
graph has a k-clique. But, if we choose the next smaller radius from the sorted
list, the size of the maximum clique of the corresponding interval graph is less
than or equal to k − 1.

For a given radius r, the generation ofO(k) intervals and finding the maximum
clique of that interval graph needs O(k log k) time. Since, we need to consider at
most log k radii, the overall time needed for Step 2 is O(k log2 k). Thus, the time
complexity of this algorithm is dominated by the sorting of O(k2) radii, which
is O(k2 log k).
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The time complexity can be reduced to O(k2) by avoiding the sorting as
follows. We first find the median r of the aforesaid O(k2) radii in less than αk2

time, where α is a constant. The testing of r for getting a k-enclosing circle
needs O(k log k) time. For the next iteration of the binary search, we can get the
required set of radii in another k2 comparisons with r. The selection of middle-
most radius in that part is done by executing the median find algorithm in αk2

2
time. But, testing time complexity remains O(k log k). Proceeding similarly, at
the i-th stage the median finding needs αk2

2i time. Thus, the total time complexity
for finding median at different stages is O(k2) in the worst case. The time spent
for the testing of k-enclosing property of the desired circle at different stages is
O(k log2 k). Thus we have the following result:

Theorem 3. The time and space complexities of Algorithm 1 for computing the
minimum radius k-enclosing circle are O(nk) and O(max(n, k2)) respectively.

4.2 Algorithm 2

We now adopt a different approach (adapted from Brass et al. [4]) for reducing
the space complexity of the problem . Let us consider a point p = (α, β) on the
x-y plane, and consider the equation of the circle of radius r (r ≥ β) centered
at p, which is (x − α)2 + (y − β)2 = r2. By putting y = 0, we get the segment
intercepted by this circle on the x-axis, which is Ψ(p) = r2− (x−α)2 = β2. This
is the equation of a hyperbola in the x-r plane (where both r and x vary). Let
�(p) be a line parallel to the x-axis, which is the tangent of Ψ(p). The point of
contact of �(p) and Ψ(p) is called the vertex of Ψ(p), and its r-coordinate gives
the minimum radius required to enclose point p by a circle with center on the
x-axis. For a pair of points p and q in the x-y plane, the minimum radius required
to enclose p and q by a circle with center on the x-axis is obtained as follows: if
the vertex of one hyperbola, say Ψ(p), is inside the other hyperbola Ψ(q), then
the r-coordinate of the vertex of the hyperbola Ψ(p) gives the minimum radius
for enclosing both p and q (see Figure 3(a)), otherwise, the r coordinate of the
intersection point θ of Ψ(p) and Ψ(q) gives the minimum radius for enclosing both
p and q (see Figure 3(b)). Similarly, the minimum radius required to enclose a set
of k points with center on the x-axis is the point having minimum r-coordinate
in the intersection region of the hyperbolas corresponding these k points in the
x-r plane. It may be a vertex of a hyperbola or an intersection point of a pair
of hyperbolas.

Thus, in order to find the minimum radius k-enclosing circle with center on
[ai, ai+1], we need to consider O(k) hyperbolas Ψi = {Ψ(p)|p ∈ Pi

⋃
KN(ai)

⋃
KN(ai+1)}, and have to choose a point with minimum r-coordinate where ex-
actly k hyperbolas in the set Ψi overlap. We need to inspect the two types of
events (i) vertices of the members in Ψi, and (ii) the pairwise intersection points
of the members in Ψi. In other words, we need to compute the k-th layer in
the arrangement of hyperbolas. The r-coordinate of all the type (i) and type
(ii) event points in this level need to be checked. Vahrenhold [23] recently de-
scribed an inplace algorithm for computing the intersections of m line segments
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Fig. 3. Illustration of Algorithm 2

in O(m log2m+M) time and O(m) space, where M is the number of intersec-
tions. We can use that algorithm for computing all the event points in O(k2)
time and O(k) space. Among these O(k2) points, we need to identify a point
having minimum r value and which appears in the kth level of the arrangement
of these O(k) hyperbolas. Thus, we have the following result.

Theorem 4. Given a set of n points, the minimum radius k-enclosing circle
centered on a given line L can be obtained in O(nk) time and O(n) space.

5 Color-Spanning Circle with Center on a Query Line

Here each point in the set P = {p1, p2, . . . , pn} is associated with a color from
a set of k colors, namely {1, 2, . . . , k}. We use σ(pj) to denote the color of the
point pj , and Pi to denote the set of points in the color class i. The objective is
to find the minimum radius circle C∗ with center on the given line L such that
it contains at least one point of each Pi. If k = n, the minimum enclosing circle
of P with center on line L solves the problem.

Without loss of generality, we assume that the points in P are in general
position. We compute the nearest point Voronoi diagram for points in Pi for each
i = 1, 2, . . . , k. Let NVi denote the intersection points of the Voronoi diagram for
points in Pi and the line L. The number of such intersection points is O(|Pi|).
Thus, NVi, i = 1, 2, . . . , k splits L into

∑k
i=1 |NVi| intervals, which is O(n) in

the worst case. For each interval, the nearest point in each color class is known
from the respective Voronoi diagrams. We process these intervals from left to
right. We start with the left-most interval, and consider the nearest point of each
color class in this interval. Let Q denote the set of these k points (of distinct
colors). We compute the convex hull CH(Q) = {q1, q2, . . . , qm} (m ≤ k) of the
points in Q in O(k log k) time and then compute the points of intersection of the
farthest point Voronoi diagram of CH(Q) and the line L. We use FV to denote
this set of points. We can compute the minimum enclosing circle of CH(Q) with
center on L by inspecting the members in FV . This needs O(k) time [22].
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While moving to the neighboring interval to the right of the current interval,
the existing point q of one color class leaves from Q and a point q′ in the same
color class enters in Q. Here one of the four cases may arise:
Case 1: Both q and q′ lie properly inside CH(Q). CH(Q) is not updated, and

hence no action needs to be taken.
Case 2: q is inside CH(Q) but q′ is outside CH(Q). Surely q′ will be a vertex

of the updated CH(Q). Let [q′, qa] and [q′, qb] be two edges of the updated
CH(Q). These are obtained by drawing tangents of CH(Q) from q′. The
vertices {qa+1, qa+2, . . . , qb−1} are deleted. We update FV by deleting the
elements corresponding to the deleted vertices of CH(Q) and adding one or
two new elements in FV as follows. We compute the perpendicular bisectors
of [qa, q

′] and [q′, qb]. If they intersect prior to reaching L, then the point
of intersection of perpendicular bisectors of [qa, qb] and L is added in FV .
But if they intersect after reaching L, then the intersections of both these
line with L are added in FV . The total time needed for this operation is
proportional to (b − a) (the number of vertices of the existing CH(Q) that
goes inside the updated CH(Q)).

Case 3: q is a vertex of CH(Q) and q′ is inside CH(Q). Here, the entry cor-
responding to q in FV is deleted. Some new entries corresponding to the
new vertices in the updated CH(Q) are added in FV . These are obtained
using a method similar to Case 2, and the time taken for this opration is
proportional to the number of vertices that are added to CH(Q).

Case 4: q is a vertex of CH(Q) and q′ is outside CH(Q). We process this case
by deleting q from CH(Q) and updating FV as in Case 3. Next, we add
q′ in CH(Q) and update FV as we did in Case 2. The total time needed
is O(m1 + m2), where m1 and m2 are respectively the number of vertices
added to and deleted from CH(Q).

Theorem 5. The time and space complexities of computing the minimum radius
color spanning circle with center on a given line L are O(n log n) and O(n)
respectively.

Proof. The nearest neighbor Voronoi diagram for the points with color i can
be computed in O(|Pi| log |Pi|), and then computing NVi needs another O(|Pi|)
time. Thus, the total time required for splitting L into intervals by the Voronoi
diagram of all color classes is O(n log n) where

∑k
i=1 |Pi| = n. While process-

ing the first interval the time required for computing the convex hull and the
corresponding FV array is O(k log k).

While computing the subsequent intervals, updating the convex hull needs
O(log k + m) time, where m vertices of the existing convex hull are deleted to
get the updated convex hull for the current interval. Once a point is deleted in
Case 2, it may appear again in the Case 3 while processing some other point.
Thus, a point can appear at most twice, once as a case 2 event and once as a
case 3 event.

After getting the updated convex hull, the updated FV array can be computed
in O(k) time. Thus, the amortized time complexity for processing all the intervals
is O(n log n). The space complexity result is easy to follow. ��
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Searching for an Axis-Parallel Shoreline

Elmar Langetepe

University of Bonn, Department of Computer Science I, Bonn, Germany

Abstract. We are searching for an unknown horizontal or vertical line
in the plane under the competitive framework. We design a framework
for lower bounds on all cyclic and monotone strategies that result in
two-sequence functionals. For optimizing such functionals we apply a
method that combines two main paradigms. The given solution shows
that the combination method is of general interest. Finally, we obtain
the current best strategy and can prove that this is the best strategy
among all cyclic and monotone strategies which is a main step toward a
lower bound construction.

Keywords: Search games, online algorithm, competitive analysis, com-
binatorial optimization, two-sequence functionals.

1 Introduction

Let us assume that we are lost at sea without sight and we are searching for an
unknown shoreline in the competitive sense. That is, we compare the length of
our search path until arriving at the shoreline to the length of the shortest path
to the shoreline if it was known in advance. The logarithmic spiral conjecture
says that the best strategy is a logarithmic spiral and the best spiral achieves
a competitive ratio of 13.81113 . . ., see [2,3,5,6]. This old fundamental search
problem of searching for a line in the plane has recently attracted new attention.

On the one hand it was recently shown that spiral search is optimal for the
searching-for-point-in-the-plane scenario [16]. This result gives hope that it will
be possible to prove that the logarithmic spiral conjecture is also true if we are
searching for a line.

On the other hand there is a new upper bound on the competitive ratio for
finding an axis-parallel shoreline [11]. The given strategy makes use of a special
representation that has to be optimized. Finally, the strategy achieves a ratio of
12.5406 . . .

In this paper we make use of a unique representation of the lower bounds
of all cyclic and monotone strategies in the axis-parallel shoreline setting. The
representation is shown in detail in Sect. 3. The main benefit is that the problem
results in the optimization of two-sequence functionals and finally gives an op-
timal cyclic and monotone strategy. For optimizing two-sequence functionals we
can apply a combination of two main paradigms. This approach was introduced
in [12,17] and the given example shows that the generic approach is of general
interest. We easily achieve the same ratio as in [11] by considering a special

W. Wu and O. Daescu (Eds.): COCOA 2010, Part I, LNCS 6508, pp. 369–384, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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case of our representation. Furthermore, we can slightly improve the above ratio
and we can also state that for cyclic and monotone strategies there is definitely
no hope for further improvements. The main open question is whether there is
always a cyclic and monotone optimal strategy.

2 Preliminaries

We are searching for an unknown line l that is parallel to one of the axes. Since
l can be everywhere in the plane any search path Π finally has to visit all
possible lines l. Consider the length of a search path Π from the origin o to the
first point pl where some line l is met. Let Πpl

o denote this path and |Πpl
o | its

distance. Competitive analysis compares |Πpl
o | to the length of the shortest path

from o to l, denoted by |ol⊥|. The worst-case location of l gives the competitive
ratio of the strategy which means C = supl

|Πpl
o |

|ol⊥| . Then we ask for a strategy Π
that attains the smallest possible constant C.

Competitive analysis was introduced by Sleator and Tarjan [22], and used in
many settings since then, see for example the survey by Fiat and Woeginger [4]
or, for the field of online robot motion planning, see the surveys [10,19]. Note
that we assume that the unknown line is at least one step away from the origin.
Otherwise we have to introduce a fixed additive constant. Both interpretations
are equivalent, see [22].

1

1

−1

l⊥l

Y

−1

pl

p

l1

pl1

q

X o

Π

|Πpl
o |

|o l⊥| ≤ C

Fig. 1. The strategy of Jeż and �Lopuszański [11] is cyclic and monotone. The current
worst case occurs at kinks of the strategy, see the points pl and p.

Somehow it seems to be reasonable that a strategy visits the four possible
directions, east, north, west and south and so on in a cyclic order. Additionally,
if a corresponding direction was already visited at distance d from the start,
the next visit should be beyond d. In this sense we define cyclic and monotone
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strategies as follows. The strategy Π can be parameterized in polar-coordinates
(φ, d(φ)), the angle φ is monotonically increasing and we have d(φ) ≤ d(φ+2π).

In [11] such a strategy is given as a polygonal chain defined by a sequence
of points (xi, yi) for i = 1, 2, 3, . . . These points are visited in the given order.
More precisely Jeż and �Lopuszański define a strategy by x2k+1 = −αx2k−1,
x2k = x2k−3, y2k+2 = −αy2k and y2k+1 = y2k−2 with an expanding factor α. The
reason for this special formulation is that they would like to let the projections
onto the axes expand by a factor α. In Fig. 1 there is an example of the strategy
for the best α with starting values x1 = 1 and y2 =

√
a. For α = 2.03 . . . the

strategy achieves a ratio of 12.5406 . . ., the worst case is attained at the points
(xi, yi).

While a strategy is running there is a current depth up to which all lines in
a given direction already have been visited. The smallest current depth among
all directions will be responsible for a worst case ratio in the very near future.
For example in Fig. 1 at point q the smallest current depth among all directions
up to point q is given at line l. At pl a local worst case ratio is achieved. Thus
we have some discrete points where a worst case ratio in a given direction is
achieved. In general such local worst case situation will at least define a lower
bound on the competitive ratio.

When a local worst case situation for a given direction is attained, the strategy
might expand this direction for a while. For example in Fig. 1 from pl to pl1 the
given strategy expands into the north until the next local worst case situation
is achieved in the west at pl1 . In our case the ratio for all lines to the north
which are newly met during this movement is smaller than the ratio previously
attained at pl. Of course it is not clear that an optimal strategy has to behave
in this fashion.

Furthermore, the strategy presented in [11] and illustrated in Fig. 1 behaves
in a very special way. The local worst case situation for the strategy in Fig. 1 is
always attained exactly at a kink at coordinate x2k = x2k−3 or y2k+1 = y2k−2.
Additionally, the strategy ends its expansion there.

3 A Lower Bound Design

We would like to make use of a more general representation of a cyclic and
monotone strategy. Finally, we would like to find a unique lower bound design
for all local worst case situations. It will turn out that this gives a strategy that
achieves the best local worst case ratio as its overall ratio. Thus the strategy is
an optimal cyclic and monotone strategy. The example of a cyclic and monotone
strategy in Fig. 2(i) shows its general behaviour and the local worst case situ-
ations. In the following let di denote an axis parallel line and for simplicity di

also denotes its orthogonal distance to the origin. While the strategy is moving
around, local worst case situations for the ratio occur at points pi on axis-parallel
lines di, see Fig. 2(i). The corresponding line di was visited one round before at
point qi. Before pi is visited, exactly the lines with distance ≤ di in the specified
direction already have been detected. Closely behind di and after pi was visited
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Fig. 2. (i) A cyclic and monotone strategy successively visits local worst case situations
at discrete points pi. Between pi and pi+1 the strategy can only expand the directions
of di and di−1. (ii) For the original strategy in (i) we replace the movements between
local worst case situations pi and pi+1 accordingly. The ratio closely behind the points
pi will never be greater than the ratio at those points in (i).

a line at distance di + ε is met. This gives a local worst case for the ratio and in
turn a lower bound for the overall ratio. In the very beginning there is a local
worst case ratio for the last line that is visited at distance 1, see for example p0
in Fig. 2(i). The strategy proceeds in a cyclic manner and therefore such local
worst case situation occur in a cyclic order east, north, south, west and so on.

Between two local worst case situation pi and pi+1 the strategy might further
expand a given direction. This will help for future local worst case situations.
For example in Fig. 2(i) between the local worst case situations at p4 (south)
and p5 (east) the strategy expands up to distance d8 at point q8 to the south.
This will later give a new local worst case situation for d8.

The expansion between two local worst case situations need not be unique. For
example between p1 (east) and p2 (north) the cyclic strategy expands a bit more
to the south at q4 and then to the east up to q5 before visiting p2 in the north.
Another interesting situation occurs between the local worst case situations at
p2 and p3. The direction north is expanded up to point q′6. But later on between
p3 and p4 the point q′6 is subsumed by a visit of q6. The corresponding line d6 is
farther away from the start than a line that runs through q′6.

In general for a cyclic and monotone strategy we can characterize the following
behaviour. Between two local worst case situations pi and pi+1 the strategy can
only expand the direction of di and the direction of the preceeding worst case
situation di−1. This is always true since the corresponding lines di and di+1 of pi

and pi+1 span a quadrant where the strategy has to run in. In this quadrant only
the distances of di and of di−1 can be expanded to di+4 and di+3, respectively.
For example in Fig. 2(i) between p3 and p4 the strategy runs in the quadrant
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indicated by the shaded rectangle Q(p3,p4). Here the strategy expands to the
south up to d6 at q6 and to the west up to d7 at q7. Between p3 and p4 the
strategy has to move inside the quadrant indicated by Q(p3,p4).

3.1 Polygonal Path between pi and pi+1

As mentioned in the beginning we would like find a lower bound on all local worst
case situation. Therefore we replace the movement from pi to pi+1 by a polygonal
path as follows. For the strategy in Fig. 2(i) the corresponding replacement is
shown in Fig. 2(ii).

Polygonal path from pi to pi+1 and its expansions

1. A segment from pi to pi+1, if the maximal expansion of di and di−1 to di+4
and di+3 occurs outside the path from pi to pi+1. See for example the path
between p2 and p3 in Fig. 2(i) and Fig. 2(ii) where neither d6 nor d5 is visited.

2. A path from pi to pi+1 that makes a specular reflection at di+4, if the max-
imal expansion for di to di+4 occurs between pi to pi+1 and the maximal
expansion for di−1 to di+3 occurs before pi is met. See for example the path
between p4 and p5 in Fig. 2(i) and Fig. 2(ii) where d8 is visited but not d7.

3. A path from pi to pi+1 that makes a specular reflection at di+3, if the max-
imal expansion for di−1 to di+3 occurs between pi to pi+1 and the maximal
expansion for di to di+4 occurs before after pi+1 is met. See for example the
path between p6 and p7 in Fig. 2(i) and Fig. 2(ii) where d9 is visited but not
d10.

4. A path from pi to pi+1 that makes a specular reflection at di+3 and di+4 if
the maximal expansion for di to di+4 and for di−1 to di+3 occurs between pi

to pi+1. See for example the path between p3 and p4 in Fig. 2(i) and Fig. 2(ii)
where d7 and d6 is visited.

5. In the beginning we move from the start to p0 and visit the last shoreline
at distance d0 = 1 with some specular reflections at d1, d2 and d3. See for
example the path from the start to p0 in Fig. 2(i) and Fig. 2(ii) where d1,
d2 and d3 is visited.

By using specular reflections we have constructed the shortest path from pi

and pi+1 that also fulfills the expansion into the specified directions. This means
that in the above reformulation the ratio at the local worst case situations at
points pi will never be greater than the ratio at such points in the original
strategy. Additionally, in comparison to the strategy of Jeż and �Lopuszański
presented in Fig. 1 our reformulation is more general. We allow additional kinks
between the points pi and pi+1.

For any cyclic and monotone strategy we can do the replacement of the path
between pi and pi+1 as indicated above. The next step is that we would like
to find a unique representation of the paths between pi and pi+1. Obviously
any cyclic and monotone strategy defines an infinite sequence of positive values
(d0, d1, d2, d3, . . .). The remaining task is that we have to fix the points pi on di.

Instead of fixing all pi we would like to find a unique representation for the
length of the polygonal chain from pi and pi+1. We will make use of a second
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infinite sequence of values (β0, β1, β2, β3, . . .). Our goal is to use this second
sequence, so that the length of the path between any pi and pi+1 is uniquely
determined by √

(di+1 + βi di)
2 + (2di+4 − βi+1 di+1 − di)

2 (1)

regardless of which of the first four cases in the enumeration above occurs.
The starting round from the start to p0 with some specular reflections at d1, d2

and d3 (item 5. in the enumeration above) should also fit into our representation.
Therefore, for technical reasons we will make use of d−1 := −2d1. Furthermore,
we will extend β by β−1 := − d2

d1
. One can verify that in this case√

(d0 + β−1 d−1)
2 + (2d3 − β0 d0 − d−1)

2 (2)

exactly represents the first three reflections. We omit the details.
If we can guarantee that the length for any polygonal path between pi and

pi+1 is given by (1) and β−1 and d−1 choosen adequately as motivated above,
it is easy to verify that the supremum of all local worst case situations can be
defined by

sup
k

∑k
i=0

√
(di + βi−1 di−1)

2 + (2di+3 − βi di − di−1)
2

dk
. (3)

The numerator gives a lower bound to the length of the path at the local worst
case situation at pk. The local worst case shoreline is detected closely behind dk.

Fortunately, (3) represents a functional defined by two infinite sequences
(d−1, d0, d1, d2, d3, . . .) and (β−1, β0, β1, β2, β3, . . .). A method for minimizing
such functionals was recently presented in [17]. In the next sections we will
show how to find the optimal sequences for minimizing (3).1 Finally, this gives
the minimal lower bound for all cyclic and monotone strategies and will also
define a discrete strategy that attains the corresponding optimal ratio.

3.2 Unique Representation of the Path from pi to pi+1

The remaining task of this section is to interpret the values (β−1, β0, β1, β2, β3, . . .).
so that the movement between pi and pi+1 always has length (1). The idea is that
we translate the specular reflections from pi to pi+1 to a single segment of the same
length, see Fig. 3(i). If there is only a single reflection between pi and pi+1, we re-
flect either pi or pi+1 on di+3 or di+4, respectively. For example in Fig. 3(i) p5 is
reflected on d8 to p′5 for the path between p4 and p5 and the segment p4p

′
5 has the

same length as the path between p4 and p5. Analogously, p6 is reflected on d9 to
p′6 for the path between p6 and p7. Here p′6p7 has the same length as the polygonal
path between p6 and p7.

1 In the following we will always fix the values d−1 := −2d1 and β−1 := − d2
d1

.
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Similarily, if there is a specular reflection on di+3 and di+4 between pi and
pi+1 we project pi on di+3 and pi+1 on di+4. Thus we obtain p′i and p′i+1 and the
length of the segment p′ip

′
i+1 equals the length of the path from pi and pi+1. For

example see the path from p3 to p4 which can be replaced by the line segment
p′3p

′
4.
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Fig. 3. (i) The polygonal path from pi to pi+1 is replaced by a segment if we resolve the
reflections. (ii) After renaming, the polygonal path from the original pi to the original
pi+1 is always represented by the segment pip

′
i+1.

In general the rule is that we reflect pi on di+3 and obtain p′i. For a general
representation we would like to translate the path between pi and pi+1 by the
segment pip

′
i+1. The problem is that there might be two reflection between pi

and pi+1 and we have to consider the segment p′ip
′
i+1 instead of pip

′
i+1, compare

p′3p
′
4 in Fig. 3(i). Similarily, the polygonal path between pi and pi+1 should be

translated to p′ipi+1 instead of pip
′
i+1, compare p′6p7 in Fig. 3(i). We solve this

problem by renaming.

3.3 Let pip
′
i+1 Always Represent the Path from pi and pi+1

In order to use a unique representation we make use of the following trick. If
pip

′
i+1 does not represent the polygonal path between pi and pi+1, we allow to

rename pi by p′i or pi+1 by p′i+1 and vice versa. The overall rule is that if the
expansion of pi to di+4 does not occur between pi and pi+1 (and therefore has
to occur between pi+1 and pi+2), we will rename pi+1 by p′i+1 and vice versa.
For example, in Fig. 3(ii) we have renamed the reflection points p1, p2, p3, p6
and p7 from Fig. 3(i) in this sense.

This renaming is always consistent for the neighboring paths. If the expansion
of pi on di+4 does occur between pi+1 and pi+2, we have the following situation.
The segment for pi and pi+1 should end at pi+1 and the segment for pi+1 and
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pi+2 should start at p′i+1. Therefore the renaming of pi+1 by p′i+1 and vice
versa guarantees that the polygonal paths are finally interpreted by pip

′
i+1 and

pi+1p
′
i+2 . For example, in Fig. 3(i) the expansion of p5 to d9 occurs between

p6 and p7. Therefore we rename p6 and p′6, see Fig. 3(ii). Thus the path p5p
′
6

represents the length of the path between the original points p5 and p6 and p6p
′
7

represents the path between the original points p6 and p7.

3.4 Represent pip
′
i+1 Uniquely by Sequences

Let us assume that we have renamed the points in the sense of the preceeding
section. Finally, we will represent the set of points pi and p′i by making use of
two infinite sequences (d−1, d0, d1, d2, d3, . . .) and (β−1, β0, β1, β2, β3, . . .). This
will show that the segment pip

′
i+1 always can be defined to have length (1).

W.l.o.g. for the cyclic and monotone strategy we can assume that d0 is in the
south, d1 in the east, d2 in the north, d3 in the west, d4 in the south and so on.
Any point pi is now represented by values ±di and ±βidi. We uniquely set

p4k := (−β4kd4k,−d4k), p4k+1 := (d4k+1,−β4k+1d4k+1),
p4k+2 := (β4k+2d4k+2, d4k+2), p4k+3 := (−d4k+3, β4k+3d4k+3),

see Fig. 4. Note that we have to allow that βi is negative. For example the point
(β4k+2d4k+2, d4k+2) need not necessarily lie in the first quadrant, it can be in
the first or second quadrant. More precisely, the point p6 = (β6d6, d6) in Fig. 4
could have been located in the second quadrant, if β6 is negative. In principle
this is allowed. For convenience and for abusing confusing intersections we did
not use negative βi in our examples, in general this would make no difference.

In any case the reflection points p′i are always given by a reflection of pi on
di+3. For example, if we reflect p4k+2 := (β4k+2d4k+2, d4k+2) on d4k+5 in order
to obtain p′4k+2, we have the same Y -coordinate d4k+2 but the X-coordinate of
p′4k+2 is d4k+5 + (d4k+5 − β4k+2d4k+2) = 2d4k+5 − β4k+2d4k+2. See for example
p′6 = (2d9 − β6d6, d6) in Fig. 4. Note, that the reflection construction from pi to
p′i also holds, if βi is negative.

In general the reflection points can be now uniquely defined be the following
representation:

p′
4k := (−2d4k+3 + β4kd4k,−d4k), p′

4k+1 := (d4k+1,−2d4k+4 + β4k+1d4k+1)

p′
4k+2 := (2d4k+5 − β4k+2d4k+2, d4k+2), p′

4k+3 := (−d4k+3, 2d4k+6 − β4k+3d4k+3) .

Altogether, we can now express the length of pip
′
i+1 by a unique formula using

the correct definition of pi and p′i. Surprisingly, it turns out that pip
′
i+1 has always

length (1). For example, for i = 4k+1 the Euclidean length of the segment from
p4k+1 := (d4k+1,−β4k+1d4k+1) to p′4k+2 := (2d4k+5−β4k+2d4k+2, d4k+2) is given

by
√

(d4k+2 + β4k+1 d4k+1)
2 + (2d4k+5 − β4k+2 d4k+2 − d4k+1)

2. One can easily
check that pip

′
i+1 has length (1) for any i.
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Fig. 4. After renaming the segment pip
′
i+1 can be uniquely represented by (1).

4 Optimization of Single Sequence Functionals

We will briefly repeat the methods presented in [17] and start with a single se-
quence functional. There are two main paradigms for computing optimal strate-
gies by optimizing single sequence functionals. We exemplify the application of
the first approach to the functional

Fk(d−1, d0, d1, . . .) :=

∑k
i=0

√
(di+3 − di−1)

2 + (di+2 + di)
2

dk
. (4)

More precisely, we are searching for an infinite strategy D = d−1, d0, d1 . . . so
that

inf
Y

sup
k
Fk(Y ) = C and sup

k
Fk(D) = C .

For our situation the above functional can be interpreted as follows. If we let
βidi always be equal with di+3, we will obtain a strategy that only makes kinks
at the local worst case situations, compare Fig. 3(ii) and Fig. 1.

The length of the segment pip
′
i+1 in (1) is given by

√
(di+4 − di)2 + (di+3 + di+1)2

and (3) equals (4). Again we can adapt d−1 so that the first round is expressed by
the first summand of the numerator in (4).

Altogether, (4) defines a strategy that behaves like the strategy of Jeż and
�Lopuszański presented in Fig. 1. We can prove that without knowing it they
found the best strategy among all such strategies.

4.1 Optimality of the Exponential Function

The following theorem states that the supremum of a functional is minimized
by an exponential function, if certain properties are fulfilled. The given problem
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results in an optimization problem for functionals Fk(X) with infinite sequences
X = (x0, x1, x2, . . .). For two sequences X = (x0, x1, x2, . . .) and Y =
(y0, y1, y2, . . .) let X + Y := (x0 + y0, x1 + y1, x2 + y2, . . .) and A · X := (A ·
x0, A · x1, A · x2, . . .) for a constant A.

Theorem 1. (adapted from Gal [7,6], Alpern and Gal [1] and Schuierer [21])
Given a sequence of functional Fk(X) for all k ≥ k0 and infinite sequences
X = (x0, x1, x2, . . .) and Y = (y0, y1, y2, . . .) with xi > 0 and yi > 0.

If the following conditions hold for Fk:

(i) Fk is continous,
(ii) Fk is unimodal, which means: Fk(A · X) = Fk(X) and Fk(X + Y ) ≤

max{Fk(X), Fk(Y )},
(iii)

lim inf
a→∞ Fk

(
1
ak
,

1
ak−1 , . . . ,

1
a
, 1
)

= lim inf
εk,εk−1,...,ε1→0

Fk (εk, εk−1, . . . , ε1, 1) ,

(iv)

lim inf
a→0

Fk

(
1, a, a2, . . . , ak

)
= lim inf

εk,εk−1,...,ε1→0
Fk (1, ε1, ε2, . . . , εk, ) ,

(v) Fk+1(x0, . . . , xk+2) ≥ Fk(x1, . . . , xk+2).

then
sup

k
Fk(X) ≥ inf

a
sup

k
Fk(Aa)

with Aa = a0, a1, a2, . . . und a > 0. The supremum of the functional is minimized
by an exponential function.

We are able to prove that the functional Fk(d−1, d0, . . . , dk) fulfills the conditions
of Theorem 1 and we conclude

sup
k
Fk(X) ≥ inf

a
sup

k
Fk(Aa)

where Aa = a0, a1, a2, . . . and a > 0. We can substitute di by ai and can make
use of a geometric serie. We omit some simple analytic details and only present
the results. The problem now can be solved by

inf
a

∑k
i=0

√
(ai+3 − ai−1)2 + (ai+2 + ai)2

ak
= min

a

√
(a4 − a2 + 1)(a2 + 1)2

a− 1

Thus we have found a simple function that has to be minimized over a. Optimiz-
ing the last function in a by analytic means gives a = 1.425421 . . . and exactly
the ratio 12.54064 . . . presented in [11]. The ratio is attained asymptotically at
the local worst case situations, for the first round there is some freedom.

Altogether, this analysis shows that there is definitely no room for improve-
ments, if we choose a cyclic and monotone strategy that always makes a kink at
the local worst case situation.
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4.2 Equality Approach

On the other hand some authors [9,15,18,13,20] suggest to adjust an optimal
strategy X = x0, x1, x2 . . . with Fk(X) ≤ C to an optimal strategy X ′ =
x′0, x

′
1, x

′
2 . . . with Fk(X ′) = C where C is the (probably unknown) best achiev-

able factor. Then one will try to retrieve a recurrence for the values of X ′ from
the equation Fk(X ′) = C = Fk+1(X ′) and find the smallest C that fulfills this
recurrence with positive values. In this section we do not apply this method to
the functional (4) because this seems to be difficult. Instead we use the functional

Fk(X) :=
∑k

i=0 xi

xk
, that stems from the 2-ray search problem, see [2,14].

It can be shown that for the 2-ray search problem such a strategy X with
Fk(X) = C = Fk+1(X) exists. How will we find the optimal strategy in this
case? One will try to retrieve a recurrence for the values of X from the equation
Fk(X) = C = Fk+1(X).

For the 2-ray search problem we assume that X = x0, x1, x2 . . . achieves equal-
ity in every step. We conclude

∑k+2
i=0 xi = Cxk+1 and

∑k+1
i=0 xi = Cxk. Subtract-

ing both sides gives the recurrence xk+2 = C(xk+1 − xk) for k = 0, 1, 2, . . .
Obtaining positive solutions for recurrences can be solved by analytic means,
see [8]. It can be shown that for C < 4 there is no positive sequence that fulfills
the given recurrence xk+2 = C(xk+1 − xk). Furthermore, for xi := (i + 1)2i

we have xk+2 = (k + 3)2k+1 = 4(xk+1 − xk) = (3k + 4)2k+2 − (k + 1)2k+2.
This means, that there is a positive sequence, xi := (i + 1)2i that attains the
competitive ratio C = 4. This means that C = 4 is optimal.

Altogether, we have two different approaches for obtaining optimal strate-
gies stemming from different paradigms. In the following we will combine both
paradigms in order to solve two-sequence functionals, see also [17].

5 Optimizing Two-Sequence Functionals

We would like to find the best cyclic strategy and have to optimize ratio (3). Our
task is to findoptimal sequencesβ = (β−1, β0, β1, . . .) andD = (d−1, d0, d1, d2, . . .)
that minimizes the supremum of the following functional for all k.

Fk(β,D) :=

∑k
i=0

√
(di + βi−1 di−1)

2 + (2di+3 − βi di − di−1)
2

dk
(5)

Let us first assume that the sequence β is fixed. We omit the details but we can
apply Theorem 1 to ratio (5). This means that a strategy di = ai will optimize
supk Fk(D, β). But there is still a second sequence β that has to be optimized
and a simple function for finding a and β is not given. Therefore we suggest to
apply the second paradigm (equality approach) of Sect. 4.2 first. We would like
to reduce the complexity of the problem, see also the example in [17].

Lemma 1. For the functional (5) and the optimal sequences D and β with
supk Fk(D, β) = C there always exists sequences D′ and β′ so that Fl(D′, β′) = C
is fulfilled for all l ≥ 0.
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Proof. The proof works by induction on k. It is non-constructive because an
optimal strategy is not known so far and we use a limit process for the inductive
step.

Let us assume that an optimal cyclic strategy that minimizes supk Fk(D, β) =
C is given. We would like to show by induction that for every k there is always
a strategy D′ and β′ so that Fl(D, β) = C is fulfilled for all 0 ≤ l ≤ k and
Fl(D, β) ≤ C for l > k.

First, we show that we can let a single dk shrink a bit. Let us assume that
Fk(D, β) < C holds. Then we can let dk decrease to d′k and adjust βk to β′

k so
that Fk(D′, β′) = C and Fl(D′, β′) ≤ C for all l 
= k holds.

The adjustment works as follows and is motivated in Fig. 5. If we move the
line of dk toward the origin then three movements of the strategy are concerned.
First, the movement between the local worst case points on dk−1 to dk+1 that
reflects on dk changes. This part of the strategy will always get shorter, if we
move dk towards to the origin. If one of the corresponding segments become
horizontal or vertical, we proceed by moving the corresponding segments toward
the origin, also.

(βk dk, dk) = pk

d′
k

dk+1

dk

(−dk+1, 2dk+4 − βk+1 dk+1)

dk+4

Y

X

p′
k

p′′
k = (β′′

k d′′
k , d′′

k )
d′′

k

(dk−1,−βk−1 dk−1)

p′′′
k

(2dk+3 − βk dk, dk)
(−dk+1, βk+1dk+1)

dk+3

dk−4

(2dk+3 − β′
k d′

k, d′
k)

dk+2

o

Fig. 5. If we move xk downwards to d′
k closer to the origin, we decrease all distances

which are concerned. This remains true, if we move beyond the reflection at dk+3,
compare d′′

k . The ratio Fk(D′, β′) increases, all other ratios decrease or remain the
same.

Additionally, dk and βk dk defines a point pk. The movement from pk to the
next local worst case point on dk+1 that might reflect on dk+4 and/or dk+3 and
the movement of pk toward the local worst case point of dk−1 that might reflect
on dk+3 and/or dk+2 could be concerned, if we move dk to the origin. In Fig. 5
the path from pk to pk+1 reflects on dk+4 and the path from pk to pk−1 reflects
on dk+3.

Let the line for dk move towards the origin. Let us first assume that the kink
happens on dk+3 before pk is met as in Fig. 5. The other case will be handled
later.
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Let the intersection point p′k with the original strategy define the new local
worst case point. In turn it defines the value of β′. Thus, the length of the path
will not increase. In fact by triangle inequality the path length decrease a bit
because the kink appears a bit earlier, see the dashed path in Fig. 5.

Until reaching the reflection point at dk+3 using the adapted values d′k and
β′

k will always decrease the overall path length as indicated above. Fortunately,
we can even move further on without changing the description of the ratio or
functional, respectively.

We simply let the point p′′k move beyond dk+3 which means that β′′
k d

′′
k > dk+3

holds, see Fig. 5. The coordinates of the corresponding point still depends on d′′k
and β′′

k d
′′
k in the same way. Similar to the renaming in Sect. 3.3 here p′′k and its

reflection on dk+3, namely p′′′k , change the role.
The movement from pk−1 to p′′′k and the movement from p′′k to pk+1 is de-

scribed by the same formulas as before. More precisely, by√
(dk+1 + β′′

k d
′′
k)2 + (2dk+4 − βk+1 dk+1 − d′′k)2 and√

(d′′k + βk−1 dk−1)
2 + (2dk+3 − β′′

k d
′′
k − dk−1)

2
.

Although the reflection on dk+3 now appears after p′′k we have the same de-
scription of the strategy. That is we can move d′k closer to the origin to d′′k. The
length of the overall path further decrease. We simply adjust β′′

k accordingly.
While decreasing dk the ratio Fk(D, β) finally has to increase since there

are always elements of the path that will not be concerned. In the induction
proof we will see that finally there is some d′k > 0 that let the ratio increase to
Fk(D′, β′) = C. We will also see that we never have to move dk below dk−4 in
order to obtain this equality.

Therefore finally we will have Fk(D′, β′) = C and Fl(D′, β′) ≤ C for all l 
= k.
The full proof works by induction. First, we let d0 shrink so that F0(D′, β′) =

C and Fl(D′, β′) ≤ C for all l ≥ 1 holds. This is always possible because some
parts of the path to the first point on d0 remains the same.

The induction hypothesis says that for index k there is always an adjustment
of a strategy so that D′ and β′ exists with Fl(D′, β′) = C holds for all 0 ≤ l ≤ k
and Fl(D′, β′) ≤ C for l > k. Additionally, the adjustment let the values of D′

shrink but they will never get to zero.
Now we adjust dk+1 and let it shrink to d′k+1. By induction hypothesis

Fk−3(D′, β′) = C holds before dk+1 and βk+1 is adjusted. This means that we
will attain equality for Fk+1(D′, β′) = C for d′k+1 and β′

k+1 before d′k+1 reaches
d′k−3.

Now we have Fk+1(D′, β′) = C and Fl(D′, β′) ≤ C for l 
= k+1. We apply the
induction hypothesis again for the first k values of the new D′. We can repeat
this process. This means that we will have shrinking values (d′0, d

′
1, d

′
2, . . . , d

′
k+1)

but they will never get to zero. Finally, they have to run into a limit that gives
Fl(D′, β′) = C for 0 ≤ l ≤ k + 1.

Thus, the inductive step is true. For all k there is an optimal strategy so that
Fl(D′, β′) = C for 0 ≤ l ≤ k. ��
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Altogether, we can now apply the idea of Sect. 4.2. We will make use of the fact
that there is an optimal cyclic strategy with Fk(D, β) = C = Fk−1(D, β). This
means

C (dk − dk−1) =
√

(dk + βk−1 dk−1)
2 + (2dk+3 − βk dk − dk−1)

2

and we obtain a new functional

Gk(β,D) :=

√
(dk + βk−1 dk−1)

2 + (2dk+3 − βk dk − dk−1)
2

dk − dk−1
(6)

and the new task is to find sequences D and β so that supk Gk(D, β) is minimal.
Fortunately, for fixed β we can again apply Theorem 1 to Gk(D, β). We omit

the details here. This means that there is an optimal strategy for (6) with di := ai

for a > 1.
Substituting di by ai and using some simple transformation shows that

Gk(A, β) =

√
(a+ βk−1)2 + (2a2 − βk a− 1)2

a− 1
. (7)

Let us assume that we have found the best a. Since βk−1 takes over the role of
βk if we consider Gk+1, the best we can do is let βi be a constant for all i. A
similar statement was shown with more details in [17]. This means that we have

to optimize a function f(a, b) :=
√

(a+b)2+(2a4−b a−1)2

a−1 . We would like to find
the minimum of f(a, b) by analytic means and do not present all details. The
derivative of f(a, b) in b gives b+2a−2a5+ba2√

(a+b)2+(2a4−b a−1)2(a−1)
. It is zero if and only if

b := 2(a2−1)a holds. So for all a we have to use this b for minimization. Finally,

we only have to optimize the function f(a) :=
√

(a2+1)(2a2−1)2

a−1 . For a > 1 this
function has a unique minimum of 12.53853842 . . . for a = 1.431489 . . . and we
have b = 2(a2 − 1)a = 3.0037344 . . .

Note that this is only a very small improvement on the strategy of Jeż and
�Lopuszański but in comparison to the former result we can state that this is
the best strategy that visits the directions in a cyclic order and in a monotone
manner.

Theorem 2. An optimal cyclic and monotone strategy that finds a horizontal
or vertical shoreline can be described by di = ai and βi di = b ai in the sense
of Sect. 3.4 and obtains an optimal competitive ratio of 12.53853842 . . . for a =
1.431489 . . . and b = 2(a2 − 1)a = 3.0037344 . . .

The strategy is shown in Fig. 6. The values di and βi di = b ai has to be inter-
preted in the sense of Sect. 3.4. Note that we have βi di > di+3 and the strategy
first visits pi and then expands the direction of di−1 to di+3. There is a specular
reflection on di+3 between pi and pi+1. Interestingly, there is also a very slight
kink at pi itself.2

2 We have also checked this behaviour analytically. An optimal strategy that behaves
in the same way but has kinks only at di+3 attains a greater ratio.
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(2a a1, a1) = (4.09832 . . . , 1.43148 . . .)

(−2a a3,−a3) = (−8.39814 . . . ,−2.93335 . . .)
(a0,−2a a0) = (1,−2.86297 . . .)

(−a2, 2a(a2 − 1)a2)

(−a2, 2a a2) = (−2.04916 . . . , 5.86671 . . .)

Y

X 1
−1

−1
(−2a(a2 − 1)a3,−a3)

o

Fig. 6. The optimal cyclic strategy defined by di = ai and βi di = b ai with a =
1.431489 . . . and b = 2a = 2.826979 . . . There is also a small kink whenever a local
worst case is met.

Furthermore, the strategy presented above attains its worst case ratio exactely
at the local worst case situations. Additionally, it optimizes the local worst case
situations for all cyclic and monotone strategies and therefore the strategy is the
optimal cyclic and monotone strategy.

6 Conclusion

In this paper we found the current best competitive strategy for searching a
horizontal or vertical shoreline. We formalized a lower bound on all cyclic and
monotone strategies and by optimizing two-sequence functionals we slightly im-
prove the current best strategy. The main open question is how to find a general
(tight) lower bound. It remains to show that there is always an optimal strategy
that visits the directions in a cyclic order and a monotone manner.
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Abstract. Algorithms for the construction of spanning planar subgraphs
of Unit Disk Graphs (UDGs) do not ensure connectivity of the resulting
graph under single edge deletion. To overcome this deficiency, in this
paper we address the problem of augmenting the edge set of planar ge-
ometric graphs with straight line edges of bounded length so that the
resulting graph is planar and 2-edge connected. We give bounds on the
number of newly added straight-line edges and show that such edges can
be of length at most 3 times the max length of the edges of the original
graph; also 3 is shown to be optimal. It is shown to be NP-hard to aug-
ment a geometric planar graph to a 2-edge connected geometric planar
with the minimum number of new edges of a given bounded length. Fur-
ther, we prove that there is no local algorithm for augmenting a planar
UDG into a 2-edge connected planar graph with straight line edges.

Keywords and Phrases: Augmentation, Deletion, 2-edge connected,
Geometric, Local, Minimum number of edges, Planar, UDG.

1 Introduction

In several network applications it is desired to construct a spanning subgraph
of a given unit disk graph graph with “robust connectivity”, in the sense that
the spanning subgraph remains connected under edge deletion. The usual graph
parameter quantifying this robustness is called k-connectivity: a graphG is called
k-edge (respectively, k-vertex) connected if it remains connected despite the
deletion of any k−1 edges (respectively, vertices). k-connectivity is an important
property because it implies fault tolerance under either edge or vertex deletions.

The main question arising is given a UDG on a set of sensors how to con-
struct a k-edge (respectively, vertex) connected spanning graph respecting the
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UDG and that has good planarity and connectivity characteristics as well as
edge lengths which are a constant multiple of the unit radius of the UDG. Two
approaches (or a combination thereof) can be considered. In the first one, called
edge deletion, existing edges of a given graph are removed to obtain the desired
spanning planar subgraph of the given graph. In this case, the main issue arising
is whether or not such a spanning subgraph exists and how to attain it with a
minimum number of deletions. In the second one, called edge augmentation, a
planar spanning graph is obtained from the original graph by adding new edges.
In this case, the main issues arising are the number of edges being added, as
well as the length of the augmented edges (since these represent the ranges of
the corresponding sensors) which should be bounded by a constant independent
of the size of the network.

1.1 Related Work

Both edge deletion and edge augmentation problems have been considered in the
literature. Characterizations on the number of edges for augmenting a graph to a
2-edge connected graph as well as weighted versions (shown to be NP-complete)
can be found in [4]. For any integer k > 1, [5] and [13] give an algorithm for the
minimum number of edges for augmenting any graph G to a k-edge connected
graph in polynomial time. In [2] it is proved that given a 2-edge connected graph
there is an algorithm running in time O(mn) which finds a 2-edge connected
spanning subgraph whose number of edges is 17/12 times the optimal, wherem is
the number of edges and n the number of vertices of the graph. An improvement
is provided in [12] in which a 4/3 approximation algorithm is given. Later, Jothi
et al. [6] provided a 5/4-approximation algorithm. However in these papers the
resulting spanning subgraph are not guaranteed to be planar.

The problem changes significantly when we restrict our attention to planar
graphs. In fact, [8] proved it is NP-hard to determine the minimum number of
edges required to be added to augment a given planar graph into a 2-vertex con-
nected planar graph. [11] proved that it is also NP-hard to augment a geometric
planar graph to a 2-edge connected geometric planar with the minimum number
of new straight line edges (but the newly added edges may be of unbounded
length). Also [7] considers the case of outerplanar graphs. Planar augmentation
results for geometric graphs can be found in [1]. They show that 2n/3 addi-
tional edges are required in some cases and 6n/7 edges are always sufficient for
augmenting a planar graph into a 2-edge connected planar graph. For the case
of trees these bounds become n/2 and 2n/3, respectively. Although the planar
graphs constructed in [1] are geometric the edge lengths of the augmented edges
are not bounded.

Very little is known for UDGs. [3] considers the edge deletion problem in
the context of UDGs and describes two simple algorithms that find subgraphs
with maximal node degree of 10 and 6 that ensure both 2-edge and 2-node
connectivity, respectively. However the resulting graphs are not planar.
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1.2 Contributions and Outline of the Paper

In this paper we relate the lengths of the edges of the resulting augmented graph
to the original UDG. More specifically, in this paper we address the problem of
augmenting the edge set of planar geometric graphs with straight line edges of
bounded length so that the resulting graph is planar (no crossing edges except
in the end points) and 2-edge connected. In Section 2 we give bounds on the
number of newly added straight-line edges and show that such edges can be of
length at most three times the max length of the edges of the original graph; the
number of newly added edges is shown not to exceed the number of cut edges of
the original graph. If the original graph is a tree with n nodes and max degree Δ
then we prove that at most n(1− 1/2Δ) edges are sufficient, while for MSTs at
most 5n/6 edges are shown to be sufficient. All these algorithms are linear in the
number of sensors. In addition, in Subsection 2.2 we indicate how to extend the
NP-completeness proof of [11] in order to show that it is NP-hard to augment a
geometric planar graph to a 2-edge connected geometric planar graph with the
minimum number of new edges of bounded length. In Section 3, we prove that
there is no local algorithm (i.e. a distributed algorithm that finishes in constant
time by using only information at constant distance assuming each link takes
one time unit to traverse) for augmenting a planar UDG into a 2-edge connected
planar graph with straight line edges.

2 Augmentation with Bounded Length Edges

In this section we consider the augmentation problem for planar graphs. First
we give an upper bound on the number of edges for arbitrary planar graphs
and then consider the special cases of MSTs and general geometric trees. We
point out that a zig-zag path with n vertices of a convex polygon [1] requires
�(n − 2)/2� additional edges to augment it into a two-edge connected planar
graph as Figure 1 depicts. This bound is valid regardless of the length of the
edges.

All the algorithms given in this section are linear in the number of sensors.
Later we prove the NP-completeness for computing the minimum number of
augmented edges of bounded length for the planar 2-edge augmentation problem.

All planar graphs considered can be drawn in the plane with straight line
edges. Moreover, edges can be intersected only at their endpoints. A two edge
connected planar graph G = (V,E) consists of a set of cycles, i.e. every edge

Fig. 1. A graph of n vertices that requires �(n− 2)/2� new edges to augment it into a
two-edge connected planar graph
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{u, v} ∈ E is in at least one cycle. We say that {u,w} is an immediate neighbour
of {u, v} if ∠wuv < π and u does not have any other neighbour inside the angle
∠wuv. Observe that an edge can have up to 4 immediate neighbours.

2.1 Upper Bounds

Theorem 1. Let G = (V,E) be a connected geometric graph with |V | ≥ 3,
vertices in general position in the plane (no three points are collinear), b cut
edges and maximum edge length ≤ 1. Then, G can be augmented to a 2-edge
connected planar graph G′ = (V,E ∪ E′) with at most b additional edges of
length at most 3 in time O(|V |).

Proof. In the proof below we indicate how to add new edges leading to the
construction of the new graph G′. Firstly, we introduce some notation that we
require for the proof. We classify edges of G′ in the following categories:

– E1. All the original edges of G or additional edges of length at most one.
Thus, E ⊆ E1.

– E2. Additional edges of length at most two.
– E3. Additional edges of length at most three.

The proof is constructive and in each step an additional edge of length at
most three is added to create a cycle which includes at least one cut edge of G.
The intuitive idea is to create a cycle by joining one cut edge e with one of its
immediate neighbours called pivot of e which in turn forms a triangle. Thus, an
additional edge has always associated exactly one cut edge in E1. We present
the details in Algorithm 1.

The invariant throughout the proof is that additional edges belong to at least
one cycle of G′ having length at most three and each edge e ∈ E3 is always
incident in its triangle to one edge in E2. Moreover, each additional edge is
incident to an original cut edge.

Let e = {u, v} ∈ E be any cut edge of G′ (If it exists, otherwise G′ is already
two-edge connected planar graph.) Let e1 = {u,w} be the immediate neighbour
of e in G′ with min length such that if e1 /∈ E1 then e1 is in a sector formed by
the angle between e and an immediate neighbour of e in G, i.e. in a convex sector
formed by original consecutive edges. e1 exists since |V | ≥ 3. Thus, a priority
is given to the pivot e1 in the following order: E1, E2 and E3 (we refer this as
priority order). Three cases can occur:

Case 1 e1 ∈ E1. Consider the triangle wuv, if it is empty, add {v, w} ∈ E2 to
G′ and form a cycle with e1 and e; see Figure 2a. Otherwise, there must exist
a vertex x inside the triangle wvu such that the triangle xvu is empty (If there
exists more than one then choose the closest to u.) Consider the two components
of G − e. If v and x are in the same component, then add {u, x} ∈ E1 to G′;
see Figure 2b. This creates a cycle with {u, v}. Otherwise, add {x, v} ∈ E2 to
G′; see Figure 2c. This creates a cycle with e. Thus, exactly one edge is added
to G′. Observe that any cut edge e′ incident to x (if it exists) will never choose
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Algorithm 1: Augmenting the connectivity of an arbitrary planar graph
with bounded length straight line edges

input : G = (V, E); G is a connected geometric planar with max length 1.
output: G′ = (V, E ∪ E1 ∪ E2 ∪ E3); G′ is 2-edge connected planar geometric

1 Let B be the set of bridges of G;
2 while B = ∅ do
3 Remove the first element e = {u, v} from B;
4 Let e1 = {u, w} be the immediate neighbour of e in G′ in priority order;
5 if e1 ∈ E1 or e1 ∈ E2 then
6 Let i ∈ {1, 2} be the integer such that e1 ∈ Ei;
7 Find the vertex x such that �(xuv) is empty and x is closest to u;
8 if x = w then Ei+1 ←− Ei+1 ∪ {w, v};
9 else if x and v are in the same component of G − e then

Ei ←− Ei ∪ {x, u};
10 else Ei+1 ←− Ei+1 ∪ {x, v};
11 end
12 else
13 Let e′ be the cut edge associated to e1;
14 Remove e1 of E3;
15 Let e2 be the immediate neighbour of e in G′;
16 Remove e2 of E2;
17 Add the cut edges to B in the chain from e′ to e resulting from the

removal of e1 and e2.
18 end

19 end

{x, v} as its pivot since {x, v} is in a concave angle formed by two consecutive
neighbours of e′.

Case 2 e1 ∈ E2. This case only occurs when e is either a leaf or when all its
immediate neighbours in G′ are in E2. Similar to the previous case, consider
the triangle wuv if it is empty, then add {w, v} ∈ E3 to G′. Otherwise, let x be
a vertex inside the triangle wvu such that the triangle xvu is empty (If there
exists more than one then choose the closest to u.) Consider the two components
of G − e. If x and v are in the same component, then add {u, x} ∈ E2 to G′.
Otherwise, then add {v, x} ∈ E3 to G′. In both cases e is part of a cycle and
exactly one edge is added to G′. Similar to the previous case any cut edge e′

incident to x (if it exists) will never choose the new edge as its pivot since it is
in a concave angle formed by two consecutive neighbours of e′.

Case 3 e1 ∈ E3. This case also occurs only when e is either a leaf or all its
immediate neighbours in G′ are in E3. Since an edge of length greater than
three is not allowed, some added edges must be removed to reconfigure G′ and
be able to employ the previous two cases. We will show that exactly two edge
removals of previously added edges is always sufficient. Let e′ ∈ E1 be the cut
edge associated to e1. Clearly e′ exists and is not an immediate neighbor of e
in G′, otherwise e′ would have chosen e as its pivot. Therefore, the third edge
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(a) wuv is empty.

u v

w
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e

x

(b) v and x are in the
same component.

u v

w

e1

e

x

(c) v and x are
in different com-
ponents.

Fig. 2. e, e1 ∈ E1

e2 ∈ E2 of the triangle formed by e1 and e′ is incident to e. Similarly, let e′′ ∈ E1
be the cut edge associated to e2 which always exists. We will prove that e′′ and
e2 form a triangle with another edge in E1. If e′′ is incident to e then the third
edge, say e3, of the triangle formed by e2 and e′′ is also in E1, otherwise e′′ would
have chosen e as its pivot. On the other hand, if e′′ is not incident to e then e′′

is incident to e′ (otherwise e′ would have never chosen e2 as its pivot since e2
would have been in a concave sector of e′) and e2 is incident to e and e3 and
therefore e3 is also in E1. Thus, by removing e2 and e1 from G′ and processing
in order the cut edges in the chain from e′ to e will add edges only in E1 and
E2; see Figure 3.

u ve

e1 ∈ E3

e′

e2 ∈ E2E1

E1

Fig. 3. The removal of e1 and e2 leaves a chain of four edges in E1

It is easy to see that the number of additional edges is at most b since every
additional edge is associated to exactly one cut edge.

The correctness of the Algorithm 1 comes from the proof above. Regarding the
complexity, line 1 can be done in linear time by traversing the faces since there
are O(|V |) edges and each edge is visited twice. The while statement takes linear
time on the number of bridges. Further, every step inside the while statement
can be done in constant time by doing some preprocessing steps in linear time.
Observe that the removal of added edges only affects processed cut edges at
constant distance. Therefore, each cut edge is considered only a constant number
of times. This completes the proof of Theorem 1.

The upper bound 3 on the length of the augmented edges proved in Theorem 1
cannot be improved further as indicated by the example below.
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wu v x

Fig. 4. A planar graph that can be augmented to a 2-edge connected planar graph
only by adding an edge of length 3 − ε

Example 1. It is easy to see that edge length 3 is sometimes necessary for aug-
menting a planar graph to a 2-edge connected planar graph with straight line
edges. Figure 4 depicts a graph indicating that this can be done only by adding
the new edge ux of length 3 − ε. It is easy to see that any other possibility will
create a crossing and therefore create a non-planar graph.

Example 2. If we allow crossings, the planar graph depicted in Figure 5 can be
augmented to a 2-edge connected graph by adding two edges of length 2− ε.

u v xw

Fig. 5. If we allow crossings, it can be augmented to a 2-edge connected graph by
adding two edges of length 2 − ε

Theorem 2. Let T be an Euclidean MST on a set P of n points, |P | ≥ 3 in
general position. Then, it can be augmented to a 2-edge connected planar graph
G with at most �5n/6� additional edges of length at most 3 times the maximum
edge length of T in time O(n).

Proof. Let T be an Euclidean MST and l be its number of leaves. We may
assume that T has max degree five (Although T can have max degree six, it is
trivial to find an MST T ′ with max degree five with the same weight.) Observe
that in any MST, two consecutive vertices v, w with common neighbour u form
an empty triangle uvw. Coloring the vertices of T with two colours, say 1 and
2. Let C be the set of vertices in the chromatic class, say 1, with less number of
leaves. It is easy to see that internal vertices of T with color, say 1, are stars with
center of color 1 and leaves of color 2. Further, a star with center of color 1 does
not share any edge with any other stars with center of the same chromatic class.
Let Su be a star with center u ∈ C and u0, u1, . . . , ud(u)−1 be the neighbours of
u in clockwise order around u such that the widest angle is formed by ud(u)−1
and u0. If d(u) = 2k, let

S′
u = Su ∪

k−1⋃
i=0

{u2i, u2i+1}.

Otherwise, if d(u) = 2k + 1, let

S′
u = Su ∪

k−1⋃
i=0

{u2i, u2i+1} ∪ {u2(k−1)+1, u2k}.
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Let
G′ = T ∪

⋃
∀u∈C

S′
u.

Observe that G′ has at most �l/2� cut edges which correspond to leaves of T . By
Theorem 1, �l/2� additional edges are enough to augment G to a 2-ECP graph.
To be more precise we present the Algorithm 2 that summarizes these steps.

Algorithm 2: Augmenting of the connectivity of an MST with bounded
length straight line edges
input : Euclidean MST (V,E) with max length 1.
output: G = (V,E ∪E2); G is 2-edge connected planar graph with length

bounded by 3
1 Find a two-coloration of T ;
2 Let C be the chromatic class with the minimum number of leaves;
3 foreach u ∈ C such that d(u) > 1 do
4 Let u0, u1, . . . , ud(u)−1 be the neighbours of u such that ∠u0ud(u)−1 is

the widest angle;
5 if d(u) = 2k then E2 ← E2 ∪

⋃k−1
i=0 {u2i, u2i+1};

6 else E2 ← E2 ∪
⋃k−1

i=0 {u2i, u2i+1} ∪ {u2(k−1)+1, u2k}
7 end
8 Run Algorithm 1 with G(V,E ∪ E2);

Let Vi denote the number of vertices in C of degree i. Thus, V1 = l/2 ≤ n/2.
Observe that

n− 1 =
∑
∀u∈C

d(u) =
5∑

i=1

iVi.

Therefore, the number of additional edges is

V1 + V2 + 2V3 + 2V4 + 3V5 ≤ V1 +
2
3
(n− 1− V1)

≤ V1

3
+

2
3
(n− 1)

<
n

6
+

2n
3

=
5n
6

The correctness of Algorithm 2 comes from the proof above and the running
time is easily seen to be linear in the number of vertices. This completes the
proof of Theorem 2.

Theorem 3. Let T be any arbitrary planar tree T , with n ≥ 3 vertices in general
position and max degree Δ. Then, it can be augmented to a 2-edge connected
planar graph G with at most n(1 − 1

2Δ ) additional edges of length at most 3
times the maximum edge length of T in time O(n).
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Proof. Color vertices of T with two colours, say 1 and 2. Let C be the set of
vertices in the chromatic class with the minimum number of leaves, say 1. Each
internal vertex of C is a star with center of color 1 and leaves of color 2. Moreover,
stars with center in C do not have any common edge. However, a triangle formed
with two consecutive vertices of a vertex u is not necessarily empty. We will show
how to create cycles for each independent star of C. Let u be any vertex in C
such that d(u) ≥ 2 and u0 and u1 be two consecutive neighbours of u forming
an angle less than π. Consider triangle uu0u1. If it is empty, then add a cycle
with {u0, u1}. Otherwise, consider the concave region of all the vertices inside
the triangle uu0u1 including u0 and u1. There must exist two adjacent vertices
v and w in the concave region such that v and w are in different components
of T \ u. Moreover, by Theorem 1 at most d − 2 additional edges are enough
to create cycles with the remaining d− 2 neighbours of u. Thus, each star with
center u can be augmented with d(u) − 1 additional edges. The Algorithm 3
summarizes this process.

Algorithm 3: Augmenting of the connectivity of a arbitrary tree with
bounded length straight line edges
input : T (V,E); T is a tree embedded in the plane such that the max

length is 1.
output: G = (V,E ∪E2); G is 2-edge connected planar graph with length

bounded by 3
1 Find a two-coloration of T ;
2 Let C be the chromatic class with the minimum number of leaves;
3 foreach u ∈ C such that d(u) > 1 do
4 Let u0, u1 two consecutive neighbours of u such that ∠u0uu1 < π;
5 Find two vertices x, y inside the triangle u0uu1 such that x and y are

in different component of T − u;
6 E2 ← E2 ∪ {x, y};
7 end
8 Run Algorithm 1 with G(V,E ∪ E2);

Let Vi denote the number of vertices in C of degree i. It is easy to see that
n− 1 =

∑
∀u∈C d(u) =

∑Δ
i=1 iVi. Hence, the number of additional edges is

V1 +
Δ∑

i=2

(i− 1)Vi ≤ V1 +
Δ− 1
Δ

Δ∑
i=2

iVi

= V1 +
Δ− 1
Δ

(n− 1− V1)

≤ l/2 +
Δ− 1
Δ

(n− 1− l/2)

< n/2 +
Δ− 1
Δ

(n− 1− n/2)

≤ n
(

1− 1
2Δ

)
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Algorithm 3 can be implemented in linear time by doing some preprocessing
in linear time and the correctness comes from the proof above. This proves
Theorem 3.

2.2 NP Completeness

In this subsection we prove that it is NP-hard to augment a geometric planar
graph to a 2-edge connected geometric planar with the minimum number of new
edges of any given bounded length. The proof is in fact a simple modification of
the proof given in [11] to ensure that new edges are always bounded. Below we
indicate the theorem which is necessary in order to derive the result.

Theorem 4. Augmenting a geometric planar graph G into 2-edge connected
geometric planar graph with the minimum number of new straight line of length
r times the longest edge of G is NP-hard.

Proof. (Outline) Take an instance of a planar 3-SAT and consider the construc-
tion of the graph G given in [11][Theorem 1]. Let l be the longest edge of G and
c the longest candidate edge to be added. If c > rl, then add a cycle at any given
arbitrary vertex in the convex hull of G in such a way that it does not interfere
with G and has at least one edge of length l′ ≥ c/r. Thus, every new edge will
be bounded by rl′. The theorem follows by applying the same arguments given
in [11][Theorem 1].

3 Impossibility of Local Algorithm for Augmentation

In this section we prove that there is no local algorithm for augmenting a planar
UDG to a 2-edge connected planar graph. We prove the following theorem.

Theorem 5. There is a unit disk graph G with n nodes located in the plane in
such a way that the following hold.

1. Any distributed algorithm for augmenting G into a 2-edge connected planar
graph with straigh line edges requires Ω(log∗ n) rounds.

2. There is a distributed algorithm for augmenting G into a 2-edge connected
planar graph with straight line edges which takes O(log∗ n) rounds.

In particular, such a planar augmentation of the unit disk graph cannot be done
locally.

Proof. Consider the unit disk graph depicted in Figure 6. Nodes are placed in the
plane in such a way that for each node i (0 < i < n), the angle ∠((i− 1)i(i+1))
formed by node i with its two neighbours i− 1 and i+ 1 is π− ε, where ε > 0 is
sufficiently small. Observe that as a consequence of this geometric representation
of the graph, for i < j and i′ < j′ the straight lines joining vertices i, j and i′, j′

intersect if either i < i′ < j or i′ < i < j′. The vertices form a line graph and
have arbitrary distinct identities, namely for all i, the i-th node has identity idi,
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.....id0
id1 id2 id3

idn−1
idn−2idn−3

Fig. 6. n nodes arranged in a line. For each i, node i has identity idi.

for i = 0, 1, . . . , n − 1. Further, identifiers are picked from the range {1, . . . , n}
and form an arbitrary permutation of this set.

We assume a standard distributed computing model (see [10]) whereby every
node has two ports (one for each of its two neighbours) except for the two
endpoint nodes id0, idn−1 which have only one port and assume that they are
consistently oriented to form the communication model of a line graph.

First we prove the impossibility result in Part 1. Assume there is a distributed
algorithm, say A, for augmentation of the graph into a 2-edge connected planar
graph terminating in T rounds. Consider n consecutive points on a line. In order
to form a planar 2-edge connected graph, new edges are added to the line graph.
This is done by informing each vertex u of the vertex u′ with which it forms a
new edge. We call two such vertices a pair (note that some vertices may not be
paired with any other vertex). Therefore by time T and after execution of the
algorithm A every node u either

1. is paired with another node u′ so that {u, u′} forms a new edge, or
2. it is not paired with any other node of the line graph,

but the graph resulting by augmenting the line graph with the new pairs {u, u′}
is planar and 2-edge connected. Now the main proof is in two cases.

Case 1. Observe that all the new edges of the augmented planar graph are above
the line graph as Figure 7 depicts. It is clear that u and u′ of each pair {u, u′} are
at distance at most T in the line graph since the running time of the algorithm
is T and a message takes one time unit to traverse an edge. Now we can give
an algorithm for coloring the vertices of the graph that has running time O(T ).
The algorithm is in two phases.

u u’v w’v’ w

Fig. 7. Pairing nodes of the line graph so as to form a 2-edge connected planar aug-
mentation

Phase 1: Maximum Intervals Discovery Algorithm. In Phase 1, we calculate
maximum intervals between paired nodes as follows. In executing the algorithm
A nodes can remember the port to which they received the messages. Therefore
it is easy to see that if nodes v, v′ are paired then they can execute an interval al-
gorithm to discover the identities of all the nodes in the interval I(v, v′) delimited
by the nodes v, v′ in the line graphs. Clearly, the running time of this discovery
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algorithm is T . Further, every node v which is paired with node v′ runs an addi-
tional maximal interval algorithm to discover the maximum interval Iu,u′ such
that Iv,v′ ⊆ Iu,u′ . It is clear that since the augmented graph is planar this max-
imum interval is unique and well-defined. Moreover, the length of the maximum
interval Iu,u′ is at most T since the running time of the algorithm A is T .

Phase 2: Coloring Algorithm. This Phase is executed only by pairs u, u′ of nodes
whose interval Iu,u′ is maximum. First of all such nodes receive the same color,
say a. Both u, u′ can easily remember the sequence of identities as they are being
received in their ports and color the nodes in the interval Iu,u′ consistently using
exactly two colors, say b, c. Clearly, the resulting coloring is consistent and has
three colors. However, it is well known that any deterministic algorithm for 3
coloring a ring of n nodes requires Ω(log∗ n) rounds (see [10][page 89]). Therefore
T ∈ Ω(log∗ n), as desired. This completes the proof of Part 2 and hence also the
proof of Theorem 5.

The impossibility theorem just proved hinges on the fact that edges are drawn as
straight lines. If we drop this requirement then we can show that a local algorithm
is possible even for augmentation to a 2-vertex connected planar spanning graph.

Theorem 6. There is a distributed, local algorithm which takes two rounds for
augmenting a line graph into a 2-vertex connected, planar (non-geometric) graph.

Proof. To prove the theorem, consider the case whereby the vertices form a line
graph and have arbitrary distinct identities, namely for all i, the i-th node has
identity idi, for i = 0, 1, . . . , n− 1. Further, identifiers are picked from the range
{1, . . . , n} and form an arbitrary permutation of this set (see [10]). Now we give
the local algorithm. Each node forms two new edges with nodes two hops away
from it (one, if it is a node of degree 1 at an endpoint). In particular, for each
i ≥ 2 the following edges {i, i+2}, {i−2, i} are formed. The resulting graph has
a planar representation (as depicted in Figure 8 by appropriately drawing the
edges above and below the line) and it is also 2-vertex connected. This completes
the proof of Theorem 6.

0 1 3id id id
.....

id n−1n−2id

id2 idn−3

Fig. 8. Planar representation of the line graph augmented with new edges

Observe that the proof of Theorem 6 was based on an underlying line graph.
Moreover the newly added edges that were used to form the augmented graph
were not straight lines. We note that augmentation of a planar graph to a 2-
vertex connected planar graph may not even be possible, in general. This is easily
seen from the unit disk graph depicted in Figure 6. Clearly, a 2-vertex connected
planar spanning graph is possible only by connecting the two endpoints 0, n− 1
with a straight line edge, which requires n communication steps.
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Example 3. The impossibility result given in Theorem 5 is also due to the
fact that the identities are not ordered. For example, if idi = i, where i =
0, 1, . . . , n − 1, then the planar augmentation problem is easy. E.g., execute a
distributed algorithm that draws new edges between nodes with even identi-
ties. This algorithm clearly works if n is odd. If n is even then the augmented
graph resulting after execution of this algorithm will not have the rightmost edge
{n− 2, n− 1} in a cycle. For this reason we add instead the edge {n− 3, n− 1}
which is of length 3.

4 Conclusion

In this paper we focused on the problem of constructing 2-edge connected ge-
ometric planar spanning graphs respecting an existing UDG. Such graphs are
fault tolerant under edge deletion and because of their planarity can also be used
to implement geometric routing with guaranteed delivery [9].
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2. Cheriyan, J., Sebö, A., Szigeti, Z.: An Improved Approximation Algorithm for
Minimum Size 2-Edge Connected Spanning Subgraphs. In: Bixby, R.E., Boyd, E.A.,
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Abstract. Motivated by providing quality-of-service differentiated ser-
vices in the Internet, we consider buffer management algorithms for net-
work switches. We study a multi-buffer model. A network switch consists
of multiple size-bounded buffers such that at any time, the number of
packets residing in each individual buffer cannot exceed its capacity.
Packets arrive at the network switch over time; they have values, dead-
lines, and designated buffers. In each time step, at most one pending
packet is allowed to be sent and this packet can be from any buffer. The
objective is to maximize the total value of the packets sent by their re-
spective deadlines. A 9.82-competitive online algorithm (Azar and Levy.
SWAT 2006) and a 4.73-competitive online algorithm (Li. AAIM 2009)
have been provided for this model, but no offline algorithms have yet
been described. In this paper, we study the offline setting of the multi-
buffer model. Our contributions include a few optimal offline algorithms
for some variants of the model. Each variant has its unique and interest-
ing algorithmic feature.

1 Introduction

Motivated by providing quality-of-service differentiated services in the Internet,
we consider buffer management algorithms for network switches. We study a
multi-buffer model. A network switch consists of m size-bounded buffers Q1,
Q2, . . ., Qm and their sizes are denoted as B1, B2, . . . , Bm respectively. At
any time, the number of packets residing in each individual buffer Qi cannot
exceed its capacity Bi. Time is discretized into time steps. Packets arrive at
the network switch over time and each packet p has an integer arriving time
(release time) rp ∈ Z+, a non-negative value vp ∈ R+, an integer deadline
dp ∈ Z+, and a designated buffer bp ∈ {Q1, . . . , Qm} that it can reside in. The
deadline dp specifies the time by which the packet p should be sent. This model is
preemptive such that the packets already existing in the buffers can be dropped
at any time before they are transmitted. A dropped packet cannot be delivered
any more. In each time step, at most one pending packet is allowed to be sent
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and this packet may be from any buffer. The objective is to maximize weighted
throughput, which is defined as the total value of the packets transmitted by
their respective deadlines. A network switch consisting of either a single buffer
or multiple buffers for transmitting packets is illustrated in Figure 1.

(a)

(b)

Fig. 1. Buffer management for (a) a singe buffer and (b) multiple buffers

The first QoS buffer management model is introduced in [1]. Since then, quite
a few researchers have studied this model as well as other variants, mostly in
the online settings [7][6][3][9][5]. A well-studied model is called the bounded-delay
model. In this model, there is only one buffer. Packets have integer release time,
integer deadlines, and non-negative values. The objective is to maximize the
total value of the packets sent by their deadlines. An implicit assumption on this
model is the buffer’s sufficiently large size. All released packets can be stored in
the buffer before they are delivered or they get to expire. For the bounded-delay
model, an optimal offline algorithm running in O(n2) time has been proposed
in [7], where n is the number of packets released. We call the bounded-delay
model a bounded-buffer model in case the buffer size is enforced to be finite. The
bounded-buffer model generalizes the bounded-delay model, if we allow the buffer
size to be larger than any packet’s slack time. (A packet’s slack time is defined as
the difference between its deadline and release time.) The bounded-buffer model
is one variant of the multi-buffer model proposed by Azar and Levy [2]. A 9.82-
competitive online algorithm [2] and a 4.73-competitive online algorithm [8] have
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been provided for this model, but no offline algorithms yet been described. In this
paper, we study the offline setting of the multi-buffer model. Our contributions
include a few optimal offline algorithms for some variants of the model. Each
variant has its unique and interesting algorithmic feature.

The variants that we consider in this paper and their corresponding algo-
rithms’ running complexities are summarized in Table 1. In the uniform-value
setting, all packets have the same value. In the non-uniform-value setting, pack-
ets are allowed to have arbitrary values. (In designing offline algorithms, there
is no difference between preemptive and non-preemptive settings.)

Table 1. Summary of the running complexities of the optimal offline algorithms for
some variants of the multi-buffer model. n is the number of packets in the input se-
quence. For the bounded-buffer model, the buffer size is B ∈ Z+.

uniform-value setting non-uniform-value setting
m = 1 Θ(n log min{B, n}) O(n2)

m > 1 (packets sharing a common deadline) O(n max{m, log n}) O(n2 max{m, log n})

2 The Bounded-Buffer Model, m = 1

There is only one buffer. Let OPT denote an optimal offline algorithm. Without
loss of generality, we assume OPT is non-idling, that is, OPT sends a packet as
long as the buffer is non-empty.

2.1 The uniform-value Setting

In the uniform-value setting, all packets have the same ‘weight’ and the objec-
tive is to maximize the number of packets delivered successfully. An optimal
algorithm called EDF (which stands for ‘Earliest-Deadline-First’) works simply
as follows. Actually, EDF is an online algorithm.

Algorithm 1. An algorithm for the uniform-value setting with m = 1
1: All packets in the buffer are organized by their deadlines using an augmented red-

black tree [4].
2: Upon each new arrival, we insert it into the packet queue in increasing order of

deadlines.
{Let the current time be t.}

3: If the buffer is full or if more than t′ − t packets are to be sent by some deadline t′

(we call these cases ‘tight’), we drop the packet with the earliest deadline.
4: In each time step, the earliest-deadline packet in the buffer is sent.

Lemma 1. For the bounded-buffer model in the uniform-value setting, there ex-
ists an optimal offline algorithm running in O(n log min{B, n}) time, where n
is the number of packets released and B is the buffer size.
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Proof. We first prove EDF’s correctness using a loop invariant. The loop in-
variant is: At any time, there exists a one-to-one mapping (injection) from each
packet q in OPT’s buffer to a packet j in EDF’s buffer such that dq ≤ dj . With-
out loss of generality, we align the mappings such that an earlier-deadline packet
in OPT’s buffer maps to an earlier-deadline packet in EDF’s buffer. For example,
assume q1 and q2 in OPT’s buffer map to j1 and j2 in EDF’s buffer respectively.
If dq1 < dq2 but dj1 ≥ dj2 , we swap the mappings and let q1 map to j2 and q2
map to j1. Note dq1 ≤ dq2 ≤ dj2 ≤ dj1 .

This invariant holds before any packet is released. Let us assume it holds at
time t. Consider a new arrival p accepted by OPT. Recall that all packets are
with the same value. The packet p is either accepted by EDF or there exists a
packet j which is not mapped yet by any packet in OPT’s buffer and having a
deadline dj ≥ dp. (In this case, we can map p in OPT’s buffer to j in EDF’s
buffer.) Otherwise, we can drop j and accept p or OPT’s buffer is ‘tight’ as well
and OPT rejects p. In each time step, both OPT and EDF send one packet as
long as their buffers are non-empty. Without loss of generality, we can assume
OPT sends the earliest-deadline packet in its buffer. Thus, the loop invariant
still holds after each step’s deliveries. The loop invariant implies the correctness
of the algorithm.

For each new arrival, it takes O(log min{B, n}) to insert p into or drop p
out of the packet queue in EDF’s buffer. The algorithm has an upper bound of
running time O(n log min{B, n}). The proof is completed. �

The following instance shows that no algorithm has a running complexity asymp-
totically better than Ω(n log min{B, n}).

Example 1. Assume B ≥ n. All packets are released at the same time 0. To
identify whether all packets can be delivered successfully, we have to sort them
by deadlines such that packets can be delivered in an earliest-deadline-first
(EDF) manner. The lower bound of comparison-based sorting n numbers takes
Ω(n logn) [4].

Corollary 1. Consider the bounded-buffer model in the uniform-value setting.
If packets’ deadlines are weakly increasing along with their release time, EDF is
an optimal algorithm running in linear time O(n).

2.2 The non-uniform-value Setting

If B ≥ n, the optimal offline algorithm [7] for the bounded-delay model applies
on the bounded-buffer model and has a running time of O(n log n). We assume
B < n. Fix an input sequence I. We have the following algorithm.

Lemma 2. For the bounded-buffer model in the non-uniform-value setting, there
exists an optimal offline algorithm running in O(n2) time, where n is the number
of packets released.
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Algorithm 2. An algorithm for the non-uniform-value setting with m = 1
1: Sort all packets in I in non-increasing value order. For packets with the same value,

sort them in decreasing order of deadlines.
2: Start from a set of packets S = ∅. For each packet j ∈ (I \ S), pick up j in EDF

order and run EDF to examine whether all packets in S ∪ {j} can be delivered
successfully by their respective deadlines. That is, send packets in EDF order and
if one selected packet in S cannot be put in the buffer with size B, then S cannot
be delivered successfully.
{Actually, we can start from the time rj to run EDF over the packets S ∪ {j}
instead of from scratch; though this does not help to reduce the asymptotic running
complexity.}

3: If ‘yes’, update S with S ∪ {j}.
4: For each examined packet j, no matter whether we insert j into S or not, drop it

out of I.
5: Examine all packets in I in order until I gets empty.

Proof. We first claim that the model is a matroid. A matroid is an ordered pair
M = (S, Π) satisfying the following conditions [4].

1. S is a finite set.
2. Π is a nonempty family of subsets of S such that if B ∈ Π and A ⊆ B, then
A ∈ Π . Π is called hereditary if it satisfies this property. The empty set ∅ is
necessarily a member of Π .

3. If A ∈ Π , B ∈ Π , and |A| < |B|, then there exists some element x ∈ B \A
such that A ∪ {x} ∈ Π . We say that M satisfies the exchange property.

In our case, we have the following observations on our algorithm.

1. The set of packets that we consider is finite.
2. Consider a set of packets that can be delivered successfully by their deadlines

in an EDF manner. Its any subset can be delivered successfully as well. Thus,
the heredity property is satisfied.

3. Let two sets of packets be A and B with |A| < |B| that can be successfully
sent by an algorithm. We show that there exists a packet j ∈ B \A such that
A ∪ {j} can be scheduled successfully as well. Otherwise, if for any packet
j ∈ B such that if j is scheduled, then one (and only one) packet in A cannot
be sent by its deadline, then we can modify A to B by inserting each packet
j from B \A to A and drop the packet i ∈ A \B that cannot be sent by its
deadline. At the end of this procedure, we conclude that |B| ≤ |A|.

We then claim that the schedule of S we finally get from Algorithm 2 has
the maximum total value. Note that Algorithm 2 is a greedy algorithm. As the
model is a matroid, Algorithm 2 is optimal.

Let |I| = n. Sorting packets in I takes O(n log n) time. The buffer has at
most B packets at any time, thus, each packet insertion (in increasing deadline
order) takes O(logB) time. Running EDF over a set of packets S ∪ {j} takes
time |S| + 1 ≤ n. For each packet j, examining S ∪ {j} of being successfully
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sent takes time O(logB + n). Thus, the total running time of the algorithm is
O(n log n + n(n + logB)) = O(n2). Thus, our algorithm has a running time of
O(n2). The proof is completed. �

3 Scheduling Packets with a Common Deadline or
without Deadlines, m > 1

In this Section, we consider the cases with multiple buffers. Let OPT denote an
optimal offline algorithm. Without loss of generality, we assume OPT is non-
idling.

In scheduling packets without deadlines, we assume all packets have a common
deadline rmax + n, where rmax is the largest release time of a packet. We also
note that when there are no new arrivals, all packets already in the buffers can
be sequentially delivered successfully.

Let Pi(t) denote the set of packets released at time t designated to the buffer
Qi. Since each buffer Qi cannot accommodate more than Bi packets at any time,
we assume that for each Qi, at any release time t, |Pi(t)| ≤ Bi. Let Qi(t) and
|Qi(t)| denote the packet queue in the buffer Qi and its size, respectively. Let
ri
max denote the largest release time of a packet designated to the buffer Qi. Let
D be the common deadline.

3.1 The uniform-value Setting

In the uniform-value setting, all packets have the same ‘weight’ and the objec-
tive is to maximize the number of packets delivered successfully. Note that an
algorithm with the minimum number of packets unsent achieves the maximum
throughput since the total number of packets released is a fixed number. Thus,
instead of considering maximizing the total number of packets delivered in de-
signing algorithms, we tackle with this variant from the perspective of minimizing
the number of packets dropped.

For each buffer, our idea is to calculate the number of buffer slots that we have
to reserve in order to accept future arrivals (that is, minimizing the number of
packets dropped due to ‘packet overflow’). This value indicates to us the latest
time that we have to deliver a packet from a buffer. Based on this idea, we design
an algorithm described in Algorithm 3 for this variant.

Theorem 1. In scheduling packets with the same value and same deadline, there
exists an optimal offline algorithm running in O(nmax{m, logn}) time, where
n is the number of packets released.

Proof. Let us call our algorithm 3 TS (standing for ‘Tight Schedule’). We first
show the correctness of Algorithm 3 using the exchange argument.

Remember that all packets are with the same value and same deadline and
TS accepts packets in a greedy manner for each buffer, thus, as long as OPT
and TS schedule packets from the same buffer in each time step, they achieve
the same throughput. Let O denote the set of packets sent by OPT. Let t be



404 F. Li

Algorithm 3. An algorithm for the uniform-value setting with m > 1
1: For each buffer Qi, consider Pi(t) in decreasing order of release time t.
2: Define a variable Zi(t) to denote the number of buffer slots that are needed from

the buffer Qi to accommodate packets released at/after time t.
3: Initially, set Zi(ri

max) = max{|Pi(ri
max)|, D − ri

max}.
4: In the reverse order of release time, calculate Zi(t) = min{Bi, Zi(t′) + |Pi(t)| −

(t′ − t)}, where t′ is the immediate next release time (of packets) after time t for
Qi.

5: For each new arrival, if its designated buffer is full, drop the packet. Otherwise,
append the packet at the end of the queue.

6: In each time step t, send any packet from the buffer Qi if Zi(t̃) + |Qi(t)| ≥ Bi,
where t̃ is the immediate next release time of packets for the buffer Qi. Ties are
broken arbitrarily.

7: If all the buffers Qi have Zi(t̃) + |Qi(t)| < Bi, choose any packet to send.
8: Switch to another buffer to send a packet only if this buffer is empty or if another

buffer Qi satisfies Zi(t̃) + |Qi(t)| ≥ Bi at time t.

the first time step in which OPT and TS deliver packets from different buffers.
Assume OPT sends a packet q1 from a buffer Q1 and TS sends a packet p1 from
a buffer Q2 where Q1 �= Q2. At time t, we use t̂ and t̃ to differentiate the two
(possibly) distinct next release time of packets designated to buffers Q1 and Q2
respectively.

If p1 /∈ O, then OPT can be modified by sending p1 in this time step and
dropping q1 out of its packet sending sequence such that O is updated with
O∪{p1} \ {q1}. The updated OPT has no a no less total value. Here, we assume
p1 ∈ O. Since we choose Q2 to send a packet, one of the following cases must
happen.

1. Assume Z1(t̂)+|Q1(t)| < B1 and Z2(t̃)+|Q2(t)| < B2. In this case, delivering
either p1 or q1 will not result in packet overflow for both buffers Q1 and Q2.
Thus, OPT can be changed to choose Q2 to send a packet.

2. Assume Z1(t̂) + |Q1(t)| < B1 and Z2(t̃) + |Q2(t)| ≥ B2. In this case, if TS
does not choose Q2 to send a packet, one packet released at time t̃ or later
will not be delivered successfully. Let this packet be p. Then, among all the
packets in Q2’s current buffer and those packets released later designated to
Q2, one of them must not be in O. Otherwise, OPT will choose Q2 to send
a packet to avoid Q2’s packet overflow. Assume the packet sending sequence
since time t for OPT is q1, . . . , p1, . . .. We modify the sequence for OPT
as p1, . . . , p, . . . and update O as O ∪ {p} \ {q1}. Since p1 is delivered in
this time step, there exists an extra buffer slot (compared with that of the
unmodified OPT which does not send p1 for step t) to accommodate p in
the buffer Q2 and thus, the new packet sequence is schedulable. After our
modification, OPT’s total gain is not reduced and OPT chooses the same
queue as TS does to send a packet in this time step.
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3. Assume Z1(t̂)+|Q1(t)| ≥ B1 and Z2(t̃)+|Q2(t)| ≥ B2. In this case, delivering
either p1 or q1 will result in packet overflow for the other buffer. Thus, with
the same analysis as the above case, OPT can be changed to choose Q2 to
send a packet.

We then show the running time of Algorithm 3. Sorting all distinct release
time for each buffer takes O(n log n) time. Calculating the variables Zi(t) takes
linear time O(n). For each time t, we identify the buffer to send a packet and
this takes time O(m). The overall time of identifying packets to send from
the buffers is O(n · m). In total, the running complexity of our algorithm is
O(nmax{m, logn}). The proof is completed. �

The proof of Theorem 1 immediately implies the following corollary.

Corollary 2. In scheduling packets with the same value and same deadline,
Algorithm 3 provides a way of identifying whether a set of packets can be delivered
successfully.

3.2 The non-uniform-value Setting

We realize that when each buffer size is large enough, the multi-buffer model is
the same as the bounded-delay model since all arriving packets can be accommo-
dated in the buffers. Hence, we have two trivial results on the non-uniform-value
setting.

Lemma 3. For the multi-buffer model, if all the buffers have their sizes larger
than the maximum slack of a packet designated to them, the multi-buffer model
is same as the bounded-delay model. An optimal offline algorithm running in
time O(n2) exists, where n is the number of packets released.

Corollary 3. Consider the multi-buffer model at a time t. There exists an op-
timal offline algorithm sending all the packets in the current buffers, running in
O(n log n) time, where n is the number of packets pending in the current buffers.

In scheduling weighted packets sharing a common deadline, our idea is to com-
bine Algorithm 2 and Algorithm 3. We note that this variant is a matroid as
well (this claim can be verified easily as that in the proof of Lemma 2). Then a
greedy algorithm scheduling packets with more values is optimal. Let S be a set
of packets we decide to send. Initially, S is empty. We order packets in decreasing
order of values. Then, we examine packets one by one, as long as the new one and
those already selected packets can be delivered by the common deadline, we add
this new packet into S. Otherwise, we drop this newly considered packet. There
is a question unsolved: How do we identify whether a set of selected packets can
be delivered since they belong to multiple buffers at different times? We apply
the idea of Algorithm 3, specifically, the result of Corollary 3. The algorithm is
described in Algorithm 4.
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Algorithm 4. An algorithm for the non-uniform-value setting with m > 1
1: Fix an input instance I. Sort all packets in I in non-increasing value order.
2: Start from a set of packets S = ∅. For each packet j ∈ (I \ S), pick up j in order

and examine whether all packets in S ∪ {j} can be delivered successfully. (See
Algorithm 5.)

3: If ‘yes’, update S with S ∪ {j}.
4: For each examined packet j, no matter whether we insert j into S or not, drop it

out of I.
5: Examine all packets in I in order till I gets empty.

Algorithm 5. Identifying whether a set of packets can be delivered successfully
1: Let P ′

i (t) denote a subset of selected packets (S) which are released at time t
designated to the buffer Qi.
{P ′

i (t) = Pi(t) ∩ S.}
2: For each buffer Qi, consider Pi(t) in decreasing order of release time t.
3: In reverse order of release time, we calculate Zi(t) = min{Bi, Zi(t′) + |Pi(t)| −

(t′ − t)}, where t′ is the immediate next release time (of packets) after time t for
Qi.

4: For each new arrival, if its designated buffer is full, drop the packet and return
‘no’. Otherwise, append the packet to the queue.

5: In each time step t, send any packet from the buffer Qi if Zi(t̃) + |Qi(t)| ≥ Bi,
where t̃ is the immediate next release time of packets for the buffer Qi. Ties are
broken arbitrarily.

6: If all the buffers Qi have Zi(t̃) + |Qi(t)| < Bi, choose any packet to send.
7: We switch to another buffer to send a packet only if this buffer is empty or if

another buffer Qi satisfies Zi(t̃) + |Qi(t)| ≥ Bi at time t.

Theorem 2. In scheduling packets with the same deadline, there exists an op-
timal offline algorithm running in O(n2 logn) time, where n is the number of
packets released.

Proof. The correctness of Algorithm 4 depends on the matroid property of this
variant and Corollary 3.

We then show the running time of Algorithm 4. Sorting all distinct release
time for each buffer takes O(n log n) time. Calculating the variables Zi(t) takes
linear time O(n). For each time t, we identify the buffer to send a packet and this
takes time O(m). In total, the running complexity of our algorithm in examining
one packet is O(nmax{m, logn}). Thus, the total running time of Algorithm 4
is O(n2 max{m, logn}). The proof is completed. �

4 Conclusion

In this paper, we design offline algorithms for some variants of the multi-buffer
model. We show that if the number of buffers is restricted to 1 or if all packets
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share a common deadline, some efficient offline algorithms can be developed.
However, for the general case of the multi-buffer model, the constraints from
the buffer sizes, packets’ deadlines and packets’ values complicate this packet
scheduling problem. An optimal offline algorithm for the general multi-buffer
model is being developed.
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Abstract. In this paper, we consider a processing system that consists
of two identical parallel machines such that the jobs are delivered to the
system by a single transporter and moved between the machines by the
same transporter. The objective is to minimize the length of a schedule,
i.e., the time by which the completed jobs are collected together on board
the transporter. The jobs can be processed with preemption, provided
that the portions of jobs are properly transported to the correspond-
ing machines. We establish properties of feasible schedule, define lower
bounds on the optimal length and describe an algorithm that behaves
like a fully polynomial-time approximation scheme (FPTAS).

Keywords: scheduling with transportation; parallel machines; FPTAS.

1 Introduction

Integrating scheduling and logistics decision-making into a single model can be
seen as one of the current trends of scheduling theory. In these enhanced models
it is required to combine typical scheduling decisions with various logistics deci-
sions, normally related to inventory control, machine breakdowns, maintenance,
and various transportation issues.

In this paper, we consider a processing system that consists of two identical
parallel machines. The jobs are delivered to the system by a single transporter,
moved between the machines by that transporter, and on their completion are
transported away.

In the scheduling literature there are several approaches that address the issue
of scheduling with transportation. Normally, transportation occurs between the
processing stages, and therefore more often than not the processing system is a
multi-stage or shop system, e.g., the flow shop and the open shop. Recall that
for two machines, e.g., denoted by A and B, in the case of the flow shop each
job is first processed on machine A and then on machine B, while for the open
shop, the processing route of each job is not known in advance. In both shop
models, each job is seen as consisting of two operations, and the operations of
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the same job are not allowed to overlap. As a rule, for the problems considered
and reviewed in this paper the objective is to minimize the completion time of
all jobs on all machines.

In our study, we focus on approximability issues, which have been a topic
of considerable interest in the area. A polynomial-time algorithm that creates
a schedule with a objective function value that is at most ρ ≥ 1 times the
optimal value is called a ρ−approximation algorithm; the value of ρ is called a
worst-case ratio bound. A family of ρ−approximation algorithms is called a fully
polynomial-time approximation scheme (FPTAS) if ρ = 1 + ε for any ε > 0 and
the running time is polynomial with respect to both the length of the problem
input and 1/ε.

Reviews of four known types of scheduling models with a transportation com-
ponent can be found in [8] and [9]. Two of those types (the robotic cells and the
transportation networks) appear to be less relevant to this study and are not
discussed below.

The model with Transportation Lags is the most studied among those that
combine scheduling with transportation. Here it is assumed that there is a known
time lag between the completion of an operation and the start of the same job on
the machine that is next in the processing route. These lags can be interpreted as
transportation times needed to move a job between the machines, provided that
the transportation device is always available. A detailed review of the complexity
results on open shop and flow shop scheduling with transportation lags is given
in [1]. For the general case with job-dependent transportation lags, the two-
machine open shop problem is unary NP−hard even if for any job the durations
of its operations are equal. A 3

2− approximation algorithm for this problem
is due to [12]. The two-machine flow shop problem is unary NP-hard even if
all processing times are unit, see [13]; several 2-approximation algorithms are
given in [2]. A polynomial-time approximation scheme for the classical flow shop
problem developed in [3] can be modified to handle the transportation lags.

The model that we study in this paper belongs to the class of Models with
Interstage Transporters. For the two-machine flow shop the general model of
this type is introduced in [7]. Assume that there are v transporters each capable
of carrying c jobs between the machines. The transportation time from A to B
is equal to τ , while the travel time of an empty transporter from B to A is equal
to σ. The problem with c = 1 and σ = 0 is shown to be unary NP-hard in [4].
The problem with v = 1 and c ≥ 3 is unary NP-hard, while the case of c = 2 is
open, see [7]. The open shop version of this problem is addressed in [8] and [9].

There are no known approximation results for these models, apart from the
two-machine flow shop and open shop with a single uncapacitated transporter,
i.e., v = 1 and c ≥ n. For both the flow shop and open shop models, it is
assumed that the jobs are brought by the transporter to one of the machines,
moved between the machines in batches, and when the processing is over, the
transporter collects the jobs together and carries them away. For this model, the
objective is to minimize the time by which all completed jobs are collected on
board the transporter.
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The classes of heuristic flow shop schedules in which the jobs are split in at
most b batches on each machine are studied in [8] for b = 2 and in [11] for
b = 3, and b+1

b −approximation algorithms are designed, these ratios being the
best possible as long as a heuristic schedule contains at most b batches. For the
open shop counterpart of the above problem with τ = σ a 7

5− approximation
algorithm is developed in [9].

The problem that we study in this paper belongs to the same family, and
its main features are as follows. There are two identical parallel machines, M1
and M2. The processing time of a job j ∈ N = {1, 2, . . . , n} is equal to pj .
At time zero, the jobs are brought to the system by a transporter. Each job is
either processed without preemption on one of the machines or its processing is
split into several portions, to be performed on different machines. In the latter
case, the total duration of the portions of a job j is equal to pj . For a job to be
(partially) processed on a machine it must be delivered there by the transporter.
A move of the transporter between the machines takes τ time units, and the
number of jobs transferred by a move can be arbitrary. Extending the notation
adopted in [8], we call this problem TP2|v = 1, c ≥ n|Kmax, where Kmax is the
time by which all completed jobs are collected together on board the transporter.

We are aware of only one other study that combines scheduling on parallel
machines with transportation. This is the paper by Qi [10]. As in our case, Qi’s
model also involves two parallel identical machines. However, there are several
points of difference between the two models. First, the type of transportation
used by Qi is essentially a transportation lag. Second, there is no preemption al-
lowed in Qi’s model. Third, the jobs are known to be assigned to the machines in
advance and are moved only to be processed on the other machine and returned
to the originally assigned machine.

The remainder of this paper is organized as follows. In Sect. 2 we establish
properties of schedules that are optimal for problem TP2|v = 1, c ≥ n|Kmax and
derive lower bounds on the optimal length. Section 3 describes and analyzes an
algorithm that creates a schedule with an even number (either two or four) of
moves of the transporter, while the case of the schedules with three moves is
considered in Sect. 4. Some concluding remarks and contained in Sect. 5.

2 Feasible Schedules: Properties, Structure and Lower
Bounds

In this section, we describe properties of optimal schedules for problem TP2|v =
1, c ≥ n|Kmax, identify their structures and establish lower bounds on the opti-
mal value of the objective function.

Recall that the jobs of a set N = {1, 2, . . . , n} have to be processed on any
of two identical processing machines, M1 and M2. The processing time of a job
j ∈ N is equal to pj . Since the machines are identical, we may assume that all
jobs are brought by the transporter to machine M1 at time zero, so that the first
move of the transporter is made from machineM1 to machine M2. Sometimes we
refer to machine M1 as the top machine and to machine M2 as bottom machine;
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also the transporter will be said to move down if it moves from M1 to M2, and
to move up otherwise. On their arrival, some of the jobs will be left at M1 to
be processed and totally completed on that machine. Some other jobs will be
moved to machine M2 to be processed and totally completed on that machine.
There may be jobs that are partly processed on M1 and partly on M2; however
each such job has to be transported to the corresponding machine for (partial)
processing. The transporter can move any number of jobs at a time, and the
length of a move in either direction is equal to τ time units. While a job is being
transported it cannot be processed on either machine; besides, it is not allowed
to process a job on both machines simultaneously. The objective is to minimize
the length of a schedule, i.e., the time Kmax by which all completed jobs are
collected together on board the transporter.

For problem TP2|v = 1, c ≥ n|Kmax, let S∗ denote an optimal schedule, i.e.,
Kmax(S∗) ≤ Kmax(S) for all feasible schedules S. There are three possible types
of a feasible schedule S:

Type 0: all jobs are processed on one machine M1;
Type 1: the number of moves of the transporter in S∗ is odd (upon their com-

pletion the jobs are collected at machine M2);
Type 2: the number of moves of the transporter in S∗ is even (upon their

completion the jobs are collected at machine M1).

In what follows, we assume that a Type 0 schedule is not optimal; otherwise,
the problem is trivial.

Definition 1. For problem TP2|v = 1, c ≥ n|Kmax, a class of feasible schedules
in which (i) the first move of the transporter starts at time zero, and (ii) the last
move does not transfer any jobs that need to be completed is called Class S.

The statement below describes a possible structure of an optimal schedule and
can be proved by ruling out all dominated structures.

Theorem 1. For problem TP2|v = 1, c ≥ n|Kmax, the search for an optimal
schedule can be limited to schedules of Class S with two, three or four moves.

Given a schedule S, let Q(S) denote the set of jobs processed with preemption,
partly on machine M1 and partly on machine M2; we call these jobs fractional.
If in a schedule S some job j is fractional, i.e., j ∈ Q(S), then we denote by xj

and yj the total length of the time intervals during which job j is processed on
machine M1 and machine M2, respectively. Obviously, xj + yj = pj . The set of
whole jobs that are processed without preemption on machine Mi is denoted by
Zi(S), where i ∈ {1, 2}. If no confusion arises, we may drop the reference to a
schedule and write Q, Z1 and Z2. For a non-empty set H ⊆ N of jobs, denote
p(H) =

∑
j∈H pj . The pieces of notation x(H) and y(H) are used analogously.

We now derive lower bounds on the length of a feasible schedule.

Lemma 1. For any schedule S that is feasible for problem TP2|v = 1, c ≥
n|Kmax, the lower bound

Kmax(S) ≥ T, (1)



412 H. Kellerer, A.J. Soper, and V.A. Strusevich

holds, where

T =
p(N)

2
+ τ. (2)

Proof. For schedule S, let X denote the total load on machine M1, i.e., the sum
of processing times of the jobs and portions of jobs processed on M1. If S is a
Type 1 schedule then Kmax(S) ≥ X+τ andKmax(S) ≥ p(N)−X+τ . Otherwise,
if S is a Type 2 schedule then Kmax(S) ≥ X and Kmax(S) ≥ p(N)−X + 2τ . In
any case, the required lower bound (1) follows immediately. 	

It is not possible that there is exactly one move in an optimal schedule, since
the length of such a schedule would be equal to p(N) + τ , which is larger than
p(N), the length of a Type 0 schedule. Thus, there are at least three moves in
any Type 1 schedule S, so that the lower bound

Kmax(S) ≥ pj + τ (3)

holds for each job j ∈ N . Indeed, if a job pj is completed on the top machine
M1, it has to be moved to machine M2, where the schedule terminates. If it
is completed on machine M2, it has to be brought there before its (possibly,
partial) processing may start on that machine. This implies the bound (3).

In each Type 2 schedule the first move of the transporter is made from the
top machine M1, the last move is made from the bottom machine M2, and
the schedule terminates when all completed jobs are collected on board the
transporter at the top machine M1. For any Type 2 schedule S a lower bound

Kmax(S) ≥ pj (4)

holds for each job j ∈ N . Besides, if in a Type 2 schedule S job j or its part is
processed on machine M2, then

Kmax(S) ≥ pj + 2τ. (5)

To see this, notice that job j must be brought to M2 and returned to M1, and
while it is processed on M2 or being moved it cannot be processed on M1.

Lemma 2. For problem TP2|v = 1, c ≥ n|Kmax, the search for the best schedule
with two moves can be limited to the non-preemptive schedules.

Proof. If for a schedule S ∈ S with two moves set Q(S) of fractional jobs is not
empty, then each job j ∈ Q(S) is brought to machine M2 by the first move of
the transporter that starts at time zero, and has to be completed subsequently
on M1, which is impossible for schedules of Class S. See Fig. 1. 	


Lemma 3. For problem TP2|v = 1, c ≥ n|Kmax, let S3 ∈ S be a schedule
with three moves in which some jobs are fractional. Then without increasing the
value of the objective function, schedule S3 can be transformed into either a non-
preemptive schedule (see Fig. 2) or into a schedule S3(k) in which only some job
k ∈ Q(S3) remains fractional (see Fig. 3). In the latter case, the lower bound

Kmax(S3(k)) ≥ pk + 3τ (6)

holds.
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Fig. 1. A schedule with two moves

M1 Z1

M2 Z2
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M1 Z1

M2 Z2
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(a)

Fig. 2. A non-preemptive schedule with three moves

The lemma can be proved by performing appropriate transformations of an
original schedule that do not increase the length of the schedule.

In the proofs and algorithms presented in this paper, we will often use the
following splitting procedure.

Procedure Split(X,Y, γ)
Input: Two sets X and Y = {σ(1), . . . , σ(y)} of jobs and a bound γ such that
|X | ≥ 0, |Y | = y > 1, and p(X) < γ, p(X) + p(Y ) > γ
Output: A set Y ′ ⊂ Y and a job u ∈ Y that is split in two portions
pu = xu + yu, so that p(X) + p(Y ′) + xu = γ

Step 1: Considering the jobs of set Y in the order given by the list σ, find the
position v, where 1 ≤ v ≤ y such that

p(X) +
v−1∑
j=1

pσ(j) < γ, p(X) +
v∑

j=1

pσ(j) ≥ γ.

Step 2: Output Y ′ := {{σ(1), . . . , σ(v − 1)}}, u := σ(v), xu := γ−p(X)−p(Y ′),
yu = pu − xu.

It is clear that the running time of Procedure Split is linear in |X ∪ Y |.

A Z1 k

B k Z2

��� ��� ���

(b)

A Z1 k

B k Z2

��� ��� ���

(a)

Fig. 3. A preemptive schedule S3(k) with three moves
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Fig. 4. A preemptive schedule S4(k) with four moves

Definition 2. A job j ∈ N is said to have rank r, r ∈ {0, 1, 2, 3} if

pj + rτ ≥ T. (7)

It can be shown that a non-preemptive schedule with four moves cannot be
better than that with two moves; thus, we assume that any schedule with four
moves contains at least one fractional job.

Lemma 4. Let A and B be disjoint sets of jobs such that p(A) ≤ T and p(A)+
p(B) > T . Suppose that Procedure Split(A,B, T ) is run and a set B′ ⊂ B and a
job k ∈ B\B′ are found such that p(A) + p(B′) + xk = T , where 0 < xk < pk.
Define Z1 = A ∪ B′ and Z2 = N\ (Z1 ∪ {k}). Let S4(k) be a Type 2 schedule
shown in Fig. 4. Then either (i) job k is a rank 2 job, or (ii) Kmax(S4(k)) = T ,
provided that p(Z2) ≥ 2τ .

Proof. In schedule S4(k) only job k is fractional, and p(Z1) + xk = p(Z2) + yk +
2τ = T . If yk +2τ > T −xk = p(Z1), then job k is a rank 2 job, and the structure
of schedule S4(k) is as shown in Fig. 4(a) or (b). Otherwise, job k is delivered
to machine M1 before all jobs of set Z1 are completed on that machine, and,
due to the condition p(Z2) ≥ 2τ , the next downward move of the transporter is
finished no later than all jobs are completed on machine M2. Thus, the structure
of schedule S4(k) is as shown in Fig. 4(c) and Kmax(S4(k)) = T . 	


Theorem 2. For problem TP2|v = 1, c ≥ n|Kmax, let W ∗
2 be a set of jobs such

that p(W ∗
2 ) ≤ T−2τ and p(W ∗

2 ) ≥ p(W ) for any set W ⊆ N with p(W ) ≤ T−2τ .
Let S∗

4 be the best schedule with four moves. Then

Kmax(S∗
4 ) ≥ y∗ + 4τ, (8)

where

y∗ =
p(N) − p(W ∗

2 )
2

− 2τ. (9)
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Table 1. Instances of the problem

Instance p1 p2 p3 T Kmax(S) Tight lower bound Moves in S∗

1 10 7 5 15 15 (1,5) 2
2 10 7 3 14 14 (1) 3
3 9 2 9 14 14 (1,6) 3
4 10 8 8 17 17 (1) 4
5 10 7 7 16 16.5 (8) 4

Proof. Suppose that in schedule S∗
4 machine M2 processes a set W2 of whole

jobs, while Q = Q(S∗
4 ) is the set of fractional jobs.

For any schedule S4 ∈ S with four moves no fractional job is processed on
machine M2 between the second and the third moves of the transporter. This
implies that Kmax(S∗

4 ) ≥ y(Q) + 4τ .
The length of schedule S∗

4 cannot be shorter than the total processing of the
jobs assigned to machine M1, i.e., Kmax(S∗

4 ) ≥ p(N) − p(W2) − y(Q).
For a fixed set W2, let y be the root of the equation p(N) − p(W2) − y(Q) =

y(Q) + 4τ , i.e.,

y =
p(N) − p(W2)

2
− 2τ.

Then by definition of set W ∗
2 the lower bound (8) holds. 	


The examples below exhibit instances of problem TP2|v = 1, c ≥ n|Kmax for
which an optimal schedule includes two, three or four moves of the transporter.
The examples also demonstrate that all established lower bounds are tight. In all
five listed instances the transportation time τ is equal to 4. Optimal schedules
for Instances 1 and 2 have no preemption; in the other schedules exactly one job
is fractional. For Instances 1-4 the value of T is a tight lower bound, possibly
together with another bound. For Instance 5, the optimal length of the schedule
is strictly larger than T . Here T = 16, so that either W ∗

2 = {2} or W ∗
2 = {3},

and p(W ∗
2 ) = 7 < T − 2τ = 8, see Theorem 2. Thus, the value of y∗ = 0.5 is

computed in accordance with (9).
In this paper, in our analysis of various algorithms we use the following state-

ment; see [5] and Lemma 4.6.1 in [6].

Theorem 3. Consider the subset-sum problem of the form

max
∑

j∈H pjxj∑
j∈H pjxj ≤ c

xj ∈ {0, 1} , j ∈ H ⊆ N,

(10)

This problem admits an FPTAS that for a given positive ε a solution xε
j ∈ {0, 1} ,

j ∈ H, that is either optimal, provided that∑
j∈H

pjx
ε
j < (1 − ε)c
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or
(1 − ε)c ≤

∑
j∈H

pjx
ε
j ≤ c.

Such an FPTAS requires no more than O(n/ε) time.

We split our further consideration in accordance with the number of moves in a
schedule.

3 Finding the Best Schedule with an Even Number of
Moves

In this section, we present an algorithm that behaves as an FPTAS, provided
that the number of moves in an optimal schedule is either 2 or 4.

Using polynomial reductions of a well-known problem Partition to the de-
cision versions of problem TP2|v = 1, c ≥ n|Kmax we can prove that the follow-
ing problems are binary NP-hard: (i) finding the best (non-preemptive) schedule
with two moves, and (ii) finding the best (preemptive) schedule with four moves,
provided that p(N) ≥ 4τ .

The following algorithm outputs a schedule problem TP2|v = 1, c ≥ n|Kmax
and uses an FPTAS for the subset-sum problem as a subroutine.

Algorithm MoveEven

Step 1. Compute T in accordance with (2).
Step 2. Given an ε > 0, run an FPTAS for the subset-sum problem

max
∑

j∈N pjxj∑
j∈N pjxj ≤ T

xj ∈ {0, 1} , j ∈ N.

(11)

Determine Z ′
1 =

{
j ∈ N |xε

j = 1
}

and Z ′
2 =

{
j ∈ N |xε

j = 0
}

and create
schedule S′

2 shown in Fig. 1 with Z1 = Z ′
1 and Z2 = Z ′

2. If p(Z ′
1) ≥ (1− ε)T ,

then go to Step 7.
Step 3. Given an ε > 0, run an FPTAS for the subset-sum problem

max
∑

j∈N pjxj∑
j∈N pjxj ≤ T − 2τ

xj ∈ {0, 1} , j ∈ N,

(12)

Determine Z ′′
2 =

{
j ∈ N |xε

j = 1
}

and Z ′′
1 =

{
j ∈ N |xε

j = 0
}
. Create sched-

ule S′′
2 shown in Fig. 1 with Z1 = Z ′′

1 and Z2 = Z ′′
2 . If p(Z ′′

2 ) ≥ (1 −
ε) (T − 2τ), then go to Step 7.

Step 4. Find set B2 = {j ∈ N |pj + 2τ > T } of the jobs of rank 2. If either
p(Z ′′

1 ) ≤ 4τ or p(B2) ≥ T , then go to Step 7; otherwise go to Step 5.
Step 5. If p(Z ′′

2 ) ≥ 2τ , select an arbitrary job k ∈ Z ′′
1 \B2, define yk =

(T − 2τ) − p(Z ′′
2 ) and xk = pk − yk, make a schedule S′

4 with four moves as
shown in Fig. 4(c) with Z1 = Z ′′

1 \ {k}, Z2 = Z ′′
2 and go to Step 7; otherwise

go to Step 6.
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M1 Z1 k

M2 k Z2

��� ���������

Fig. 5. Schedule S′′
4 with four moves and yk = y∗

Step 6. Compute y∗ by formula (9) with W ∗
2 = Z ′′

2 . Select an arbitrary job
k ∈ Z ′′

1 \B2, define yk = y∗ and xk = pk − yk, make a schedule S′′
4 with four

moves as shown in Fig. 5 with Z1 = Z ′′
1 \ {k}, Z2 = Z ′′

2 and go to Step 7.
Step 7. Output the best of the found schedules as schedule Sε.

Algorithm MoveEven requiresO(n/ε) time. Below we analyze its performance.

Theorem 4. For problem TP2|v = 1, c ≥ n|Kmax, Algorithm MoveEven be-
haves as an FPTAS, provided that there exists an optimal schedule S∗ either
with two or with four moves.

Proof. Suppose first that in an optimal schedule S∗ the transporter makes two
moves.

Consider schedule S′
2 found in Step 2. Notice that p(Z ′

1) ≤ T . We have that
Kmax(S′

2) = max {p(Z ′
1), p(Z

′
2) + 2τ}. If p(Z ′

1) ≥ (1−ε)T , then we derive p(Z ′
2)+

2τ ≤ 2T − (1 − ε)T = (1 + ε)T . Thus, due to (1) we obtain that Kmax(S′
2) ≤

(1 + ε)T ≤ (1 + ε)Kmax(S∗).
Similarly, for schedule S′′

2 found in Step 3, notice that p(Z ′′
2 ) + 2τ ≤ T . We

have that Kmax(S′′
2 ) = max {p(Z ′′

1 ), p(Z ′′
2 ) + 2τ}. If p(Z ′′

2 ) ≥ (1 − ε) (T − 2τ),
then we derive p(Z ′′

1 ) = 2 (T − τ) − p(Z ′′
2 ) ≤ (1 + ε)T − 2ετ . Thus, due to (1)

we obtain that Kmax(S′′
2 ) ≤ (1 + ε)T ≤ (1 + ε)Kmax(S∗).

If for schedule S′
2 found in Step 2 the inequality p(Z ′

1) < (1 − ε)T holds,
then due to Theorem 3, the solution found by the FPTAS is an optimal solution
to problem (11). This means that the value p(Z ′

1) cannot be enlarged and the
value p(Z ′

2) + 2τ cannot be reduced, as long as we require p(Z ′
1) ≤ T , i.e.,

Kmax(S∗) ≥ p(Z ′
2) + 2τ .

Similarly, if for schedule S′′
2 found in Step 3 the inequality p(Z ′′

2 ) < (1 −
ε) (T − 2τ) holds, then due to Theorem 3, the solution found by the FPTAS is
an optimal solution to problem (12). The algorithm outputs schedule Sε such
that Kmax(Sε) ≤ min {Kmax(S′

2),Kmax(S′′
2 )} = min {p(Z ′′

2 ) + 2τ, p(Z ′′
1 )}, which

is optimal.
The conditions of Step 4 describe situations in which the algorithm still

outputs a two-move schedule that is optimal. If p(Z ′′
1 ) ≤ 4τ then no sched-

ule with four moves can be shorter than Kmax(S′′
2 ) = p(Z ′′

1 ), i.e., for an
optimal schedule with an even number of moves the equality Kmax (S∗) =
min {Kmax(S′

2),Kmax(S′′
2 )} holds. For the set B2 of rank 2 jobs found in Step 4

suppose that p(B2) ≥ T . If in schedule S∗ each job of set B2 is processed only on
machine M1, then Kmax(S∗) ≥ p(B2). In this case, schedule S′′

2 found in Step 3
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is optimal. If in S∗ a job of rank 2 is processed, even partly, on machine M2 then
due to (5) we deduce that Kmax(S∗) ≥ pu + 2τ , where u ∈ B2 is the shortest
rank 2 job, so that schedule S′

2 found in Step 2 is optimal.
In the rest of the proof, it is assumed that there are four moves in an optimal

schedule S∗. We arrive at Step 5 if p(Z ′′
1 ) > 4τ and p(B2) < T . Consider the sets

Z ′′
1 and Z ′′

2 found in Step 3. Since no rank 2 job belongs to set Z ′′
2 , we deduce

that B2 ⊂ Z ′′
1 and there exists a job k ∈ Z ′′

1 \B2 such that pk + 2τ < T .
If p(Z ′′

2 ) > 2τ , then due to Lemma 4, we can create schedule S′
4 shown in

Fig. 4(c) with Kmax(S′
4) = T , which means this schedule is optimal; see Step 5.

On the other hand, if p(Z ′′
2 ) ≤ 2τ , then p(Z ′′

1 ) = p(N)− p(Z ′′
2 ) ≥ (2T − 2τ)−

2τ = 2T −4τ . Recall that the FPTAS in Step 3 solves the corresponding subset-
sum problem optimally, so that for the value y∗ found by formula (9) with
W ∗

2 = Z ′′
2 the lower bound Kmax(S∗) ≥ y∗+4τ holds. It can be seen that y∗ > 0.

Since the solution found by the FPTAS is an optimal solution to problem (12),
it follows that for any job k ∈ Z ′′

1 the inequality p(Z ′′
2 ) + pk > T − 2τ holds,

which is equivalent to p(Z ′′
1 ) − pk < T . Thus, we derive from p(Z ′′

1 ) ≥ 2T − 4τ
that pk > y∗.

In Step 6, the algorithm selects a job k ∈ Z ′′
1 \B2 and assigns it to be processed

on machine M2 for y∗ time units. For job k ∈ Z ′′
1 \B2, we derive

p(Z ′′
1 ) − pk =

p(Z ′′
1 )

2
+
p(Z ′′

1 )
2

− pk ≥ p(Z ′′
1 )

2
+ (T − 2τ) − (T − 2τ) =

p(Z ′′
1 )

2
.

In schedule S′′
4 job k is delivered back to machine M1 at time 2τ + y∗ =

p(Z′′
1 )

2 < p(Z ′′
1 ) − pk, so that the structure of schedule S′′

4 is as shown in Fig. 5

with Z1 = Z ′′
1 \ {k}. Since Kmax(S′′

4 ) = y∗ + 4τ = p(Z ′′
1 ) − y∗ = p(Z′′

1 )
2 + 2τ , this

schedule is optimal due to (8). 	


4 Finding the Best Schedule with Three Moves

In this section, we present an algorithm for problem TP2|v = 1, c ≥ n|Kmax
that for many instances finds the best schedule with three moves, but in general
behaves as an FPTAS.

As follows from Lemma 3, the search for the best schedule with three moves
can be limited to (i) non-preemptive schedules with the closest possible loads on
the machines (see Fig. 2), or (ii) preemptive schedules with a single fractional
job (see Fig. 3).

Below, we refer to a rank 3 job as long; otherwise, if a job does not satisfy (7)
for r = 3, it is called short. As seen from the consideration below, the presence
of the short jobs is crucial for fast finding an exact solution to the problem.

It can be proved that for problem TP2|v = 1, c ≥ n|Kmax with no short jobs
and p(N) ≥ 4τ, finding the best non-preemptive schedule as well as the best
preemptive schedule with three moves is binary NP-hard.

Algorithm Move3 presented below finds a schedule with three moves for prob-
lem TP2|v = 1, c ≥ n|Kmax that is either optimal or arbitrarily close to the
optimal one.
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Algorithm Move3

Step 1. Compute T in accordance with (2).
Step 2. Find the set A of all short jobs and the set B of all long jobs. If set A

is not empty, go to Step 3; otherwise, go to Step 9.
Step 3. If p(A) ≥ T − τ , then run Procedure Split(∅, A, T − τ) to find a set

A′ ⊂ A and a job u ∈ A such that p(A′) + xu = T − τ . If xu = pu then
create a non-preemptive schedule S3 shown in Fig. 2 with Z1 = A′ ∪ {u}
and Z2 = N\Z1. If xu < pu, then define Z1 = A′ and Z2 = N\ (Z1 ∪ {u}).
Create a Type 1 schedule S3(u) shown in Fig. 3(a) with k = u. Go to Step 12.

Step 4. Compute ε0 = p(A)/(T − τ), take ε = ε0 and run an FPTAS for the
subset-sum problem

max
∑

j∈H pjxj∑
j∈H pjxj ≤ T − τ

xj ∈ {0, 1} , j ∈ H,

(13)

where H = B. Define H(1) =
{
j ∈ H |xε

j = 1
}
. If p(H(1)) ≥ (1 − ε) (T − τ),

then go to Step 5, otherwise go to Step 6.
Step 5. Run Procedure Split

(
H(1), A, T − τ

)
to find a set A′ ⊂ A and a job

u ∈ A such that p(H(1)) + p(A′) + xu = T − τ . If xu = pu then create a
non-preemptive schedule S3 shown in Fig. 2 with Z1 = H(1) ∪ A′ ∪ {u}. If
xu < pu, then define Z1 := H(1) ∪A′ and Z2 := N\ (Z1 ∪ {u}) and create a
schedule S3(u) shown in Fig. 3(a) with k = u. Go to Step 12.

Step 6. Create a schedule S3 shown in Fig. 2 with Z1 = H(1) ∪A.
Step 7. Renumber the jobs in such a way that B = {1, 2, . . . , h} and p1 ≤ p2 ≤

. . . ≤ ph. Define k := 1 and k := h.

(a) If k = k, then go to Step 8; otherwise, compute k =
⌈(
k + k

)
/2
⌉
.

(b) Define Bk = B\ {k}. Compute εk = pk/(T − τ), take ε = εk and apply
an FPTAS to the subset-sum problem of the form (13) with H = Bk.
Define H(1) =

{
j ∈ H |xε

j = 1
}
.

(c) If p(H(1))+p(A) ≥ (1 − εk) (T − τ), then define k := k; otherwise define
k := k. Go to Step 7(a).

Step 8. For the current value of k, define Z1 := H(1) ∪ A and Z2 :=
N\ (Z1 ∪ {k}). Create a schedule S3(k) shown in Fig. 3(b). Go to Step 12.

Step 9. If p(N) < 4τ then take ε = ε0 = (2τ − p(N)/2) /(T − τ); otherwise,
take a given ε > 0.

Step 10. With the chosen ε, run an FPTAS for the problem (13) with H =
N . Define H(1) =

{
j ∈ H |xε

j = 1
}
. Create a non-preemptive schedule S3

as shown in Fig. 2 with Z1 = H(1). If either p(N) < 4τ or p
(
H(1)

)
≥

(1 − ε) (T − τ), then go to Step 12, otherwise go to Step 11.
Step 11. Find a schedule S3(k) as described in Steps 7-8 above with B = N

and A = ∅.
Step 12. Output the best of all found schedules as the candidate schedule Sε

and Stop.

The statements below analyze the performance of Algorithm Move3.
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Lemma 5. For problem TP2|v = 1, c ≥ n|Kmax with at least one short job,
Algorithm Move3 finds the best candidate schedule with three moves in O(n log n)
time.

Proof. In this lemma, we analyze Steps 1–8 of Algorithm Move3.
Suppose first that p(A) ≥ T − τ . If for job u found in Step 3 we have that

xu = pu, then p(A)+pu = T−τ and we have achieved equal loads on the machines
without splitting a job. Therefore,Kmax(S3) = max {T, 3τ}, and S3 is an optimal
Type 1 schedule. If xu < pu, then job u is a short fractional job. It follows from
pu + 3τ < T that yu + 2τ < p(Z1) and xu + 2τ < p(Z2). Thus, schedule S3(u) is
as shown in Fig. 3(a), so that Kmax(S3(u)) = T and this schedule is optimal. In
the remainder of this proof, assume that p(A) < T − τ < p(B).

In Step 4, since A �= ∅, we have that ε0 > 0. The analysis of schedules found in
Step 5 is similar to that performed above for schedules found in Step 3: either we
have a non-preemptive schedule with equal loads or a preemptive schedule with
a short fractional job. The fact that a short fractional job exists follows from the
observation that p

(
H(1)

)
+ p(A) ≥ (1 − ε0) (T − τ) + ε0 (T − τ) = T − τ .

If p
(
H(1)

)
< (1 − ε0) (T − τ) then due to Theorem 3, the value p

(
H(1)

)
is

optimal for the corresponding subset-sum problem of the form (13). Besides,
p
(
H(1)

)
+ p(A) < T − τ , i.e., there can be no short fractional job. Due to

optimality of the value p
(
H(1)

)
, for schedule S3 found in Step 6 set Z1 = H(1)∪A

forms an optimal solution of the subset-sum problem (13) with H = N , so
that for set Z2 := N\Z1 the value p(Z2) cannot be reduced. We have that
Kmax (S3) = max {3τ, τ + p(Z2)}, which is the length of the best non-preemptive
schedule with three moves.

We arrive at Step 7 when p
(
H(1)

)
+ p(A) < T − τ , knowing that in the

best preemptive schedule S3(k) the fractional job k is going to be long and
Kmax(S3(k)) = pk + 3τ ; see Fig. 3(b). Thus, we need to find the shortest long
job k that can be fractional in schedule S3(k). This is done by the binary search
procedure in Step 7 that takes at most O(log h) iterations.

The best of all found schedules is the best candidate schedule with three
moves, provided that the instance of the problem contains short jobs. The overall
running time of Algorithm Move3 in the presence of short jobs is O(n logn). 	


Lemma 6. For problem TP2|v = 1, c ≥ n|Kmax with no short jobs, Algo-
rithm Move3 finds the best schedule with three moves in O(n) time, provided
that p(N) < 4τ .

In this lemma, we analyze Step 10 of Algorithm Move3, where ε = ε0 is as
defined in Step 9. We can prove that a non-preemptive schedule S3 with Z1 =
H(1) found in Step 10 is optimal, irrespective the sign of the difference p(Z1) −
(1 − ε0) (T − τ).

Lemma 7. For finding the best candidate schedule with three moves for the
instances of problem TP2|v = 1, c ≥ n|Kmax with no short jobs and p(N) ≥ 4τ ,
Algorithm Move3 behaves as an FPTAS that requires at most O(n logn + n/ε)
time.
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Proof. In this lemma, we analyze Steps 10 and 11 of Algorithm Move3. If for
set H(1) found in Step 10 the inequality p(Z1) = p(H(1)) ≥ (1 − ε) (T − τ)
holds, then p(Z2) = p(N\H(1)) ≤ (1 + ε) (T − τ). Since max {p(Z1), p(Z2)} ≥
p(N)/2 ≥ 2τ , we derive that Kmax(S3) = max {3τ, p(Z1) + τ, τ + p(Z2)} ≤
(1 + ε) (T − τ) + τ ≤ (1 + ε)Kmax(S∗).

If p(Z1) < (1 − ε) (T − τ), then the only schedule that may be better
than schedule S3 is a preemptive schedule S3(k) with three moves such that
Kmax(S3(k)) = pk + 3τ < τ + p(Z2), where k is a long job. Such a schedule is
found in Step 11.

Running Step 10 requires O(n/ε) time, Step 11 is essentially a binary search
algorithm that takes O(n logn) time. 	


Lemmas 5–7 can be summarized to completely describe the behavior of Algo-
rithm Move3.

Theorem 5. For problem TP2|v = 1, c ≥ n|Kmax Algorithm Move3 behaves as
an FPTAS, provided that there exists an optimal schedule S∗ with three moves.

For the instances with no short jobs and p(N) ≥ 4τ the problem is NP-hard and
the algorithm runs as an FPTAS that takes O(n logn + n/ε) time. In all other
cases, the best schedule with three moves can be found in O(n log n) time.

5 Conclusion

The general algorithm for handling problem TP2|v = 1, c ≥ n|Kmax involves the
following stages:

1. Create a schedule S0 in which all jobs are processed on machine M1.
2. Run Algorithm MoveEven.
3. Run Algorithm Move3.
4. Output the best of all found schedules.

As shown in Sect. 3 and 4, for some instances of the problem the final algorithm
will find an optimal schedule, while for others it will behave as an FPTAS. The
running time of the algorithm does not exceed O(n log n+ n/ε).

If we limit our search to the schedules in which each job is processed on a
machine with no preemption, then our algorithm can be modified to behave
as a (4/3)−approximation algorithm, and a worst-case bound of 4/3 cannot be
improved in this class, i.e., there are instances of the problem for which the
length of the best non-preemptive schedule can be arbitrarily close to 4/3 times
the length of the optimal preemptive schedule.
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Kröller, Alexander I-21
Kundeti, Vamsi I-184

Lambadaris, Ioannis II-303
Langetepe, Elmar I-369
Latapy, Matthieu I-1
Laura, Luigi I-157
Lee, Jon I-65
Lee, Wonjun I-252
Li, Deying II-46, II-281
Li, Fei I-398
Li, Zheng II-46, II-281
Liang, Hongyu II-160
Liberti, Leo I-65
Lin, Guohui I-85, II-243



424 Author Index

Liu, Guizhen II-170
Liu, Jin-Yi I-300
Liu, Qinghai I-212
Lubiw, Anna II-1
Luo, Jun I-41

Ma, Weidong II-31
Ma, Wenkai II-46, II-281
Marek, Palkowski I-104
Marzban, Marjan II-107
Matsuhisa, Takashi I-77
Memar, Julia I-142
Miao, Zhengke I-114
Miri, Ali II-58
Misio�lek, Ewa I-270
Morin, Pat II-1
Muhammad, Azam Sheikh II-117
Mukhopadhyay, Asish II-401

Nagamochi, Hiroshi II-347
Nandy, Subhas C. I-354
Narayanan, Lata II-303
Nastos, James II-332
Navarra, Alfredo II-254
Nguyen, Dung T. I-197
Nguyen, Thanh Qui I-1
Nguyen, Viet Hung I-260, II-144

Olsen, Martin II-87
Opatrny, Jaroslav II-72, II-303
Otsuki, Tomoshi II-131

Pan, Xuejun II-170
Pardalos, Panos M. I-170
Park, Haesun I-252
Phan, Thi Ha Duong I-1
Ponce, Oscar Morales I-385, II-72

Qiu, Ke I-222

Rajasekaran, Sanguthevar I-184
Rangel-Valdez, Nelson I-51
Raudonis, Kristin II-181

Sacristán, Vera II-1
Saitoh, Toshiki II-362
Santaroni, Federico I-157
Santoro, Nicola II-58
Sarker, Animesh II-401
Schulz, André I-324
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