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Abstract. We discuss the relationship between ID-based key agree-
ment protocols, certificateless encryption and ID-based key encapsula-
tion mechanisms. In particular we show how in some sense ID-based key
agreement is a primitive from which all others can be derived. In doing
so we focus on distinctions between what we term pure ID-based schemes
and non-pure schemes, in various security models. We present security
models for ID-based key agreement which do not “look natural” when
considered as analogues of normal key agreement schemes, but which
look more natural when considered in terms of the models used in cer-
tificateless encryption. Our work highlights distinctions between the two
approaches to certificateless encryption, and adds to the debate about
what is the “correct” security model for certificateless encryption.

1 Introduction

The notion of certificateless encryption was introduced by Al-Riyami and Pa-
terson [3] and considers the following setting, that is similar to that of identity-
based encryption. Each user is represented by a string ID (his identity) and has
a matching secret key produced by a Key Generation Center (KGC). Further-
more each user has also a public/secret key pair, as in the traditional public key
model. The main advantages of certificateless encryption are that such public
keys do not need to be certified and the KGC cannot decrypt ciphertexts of
users. In general, the security of certificateless encryption schemes is formalized
by two properties related to semantic security of standard encryption schemes:
Type I and Type II security. Type I security considers adversaries that are able
to replace the public keys of users while Type II security is stated with respect
to malicious KGCs.
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Ever since its introduction in [3] certificateless encryption has been the subject
of debate as to what is the “correct” definition. This is not only a question of
the definition of the security model, but also the syntax and functionality of
the schemes itself. Many papers have presented differing restrictions for the
adversaries in both Type I and Type II security games, creating a lot of different
security definitions, with each paper claiming theirs to be the “correct” one.
Also other papers have presented new syntax (with similar claims). Most of the
claims are actually related to what can be proved about the schemes the papers
present, rather than some deeper philosophical discussion. We refer the reader
to [14] for a balanced summary of the existing models and schemes.

1.1 Our Contribution

This paper takes a different approach to the study of certificateless schemes, by
studying their relationship to identity-based encryption. We do so in order to
take a step back from scheme construction and instead concentrate on what the
correct security and syntactic definitions should be. To simplify our discussion
we will concentrate on the simpler notion of key-encapsulation (KEM) rather
than encryption.

We show two main results: (1) a natural transform of certain CL-KEM schemes
into ID-KEM schemes. In addition there is (2) another natural transform of all
identity-based key agreement (ID-KA) protocols into CL-KEM schemes. We note
that all our security relationships under our transforms hold in the standard model.

The motivation for this research is twofold: (i) by analyzing these transforma-
tions we are able to get a better understanding of what are the “correct” security
notions and syntaxes for CL encryption; (ii) these reductions may give us a generic
toolbox to construct new, and potentially improved, CL and ID schemes.

Pure and non-pure schemes. Certificateless schemes in the literature can be
syntactically classified into two large classes, which we call pure and non-pure.
This distinction between pure and non-pure schemes also applies to existing ID-
KA protocols. Informally, a pure ID-based key agreement (resp. certificateless
scheme) is one in which the parties compute their messages without using their
long-term secret keys (which is used only in the derivation of the shared session
key). As we will show, such pure schemes allow various functionalities such as
encryption into-the-future etc. Interestingly there are no-known pure schemes
(either ID-KA or CL-KEM) which do not use pairing-based groups.

We show a natural standard model transformation from a pure CL-KEM to a
ID-KEM and we determine the precise security properties of the CL-KEM under
which the resulting ID-KEM is secure in the usual sense. The hope is that this
generic transformation might in the future yield new constructions for ID-based
encryption. It is worthwhile to observe that this transform does not work for
non-pure CL-KEMs. This is not surprising as non-pure CL-KEMs are the only
ones that can be constructed without pairings. So, in some sense this shows
that certificateless encryption is a simpler primitive than ID-based encryption,
although the reverse is commonly believed (as CL encryption is thought as an
extension of ID-based one).
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Towards a correct security model for CL-KEMs and ID-KA pro-

tocols. Next we show a natural generic transform of ID-KA protocols into
CL-KEM schemes. The goal here is to gain some understanding on the cor-
rect security models for these notions. In particular we investigate what security
models in the ID-KA setting imply, through our transform, certain specific CL-
KEM security models. For lack of space, we do not look at all CL-KEM security
models, but we do consider the main ones. Our results, all proven in the stan-
dard model, can be summarized in two distinct points. First, if one concentrates
on pure schemes [11], then the associated transforms have a tight security re-
duction. This supports our previous point that pure schemes have more/better
features. Second, the required security models in the ID-KA setting needed to
imply strong notions of security in the CL-KEM setting are highly non-standard
security notions for key agreement models. This last point can be interpreted in
one of two ways: either the strong security models for CL-KEM schemes are un-
natural and that the weaker definitions should suffice, or the security notions for
ID-KA protocols (and by implication all other forms of key agreement protocol)
are too weak.

At the end of the paper we try to draw some conclusions as to what the “cor-
rect” models for certificateless encryption and ID-based key agreement should
be. Our conclusion is that perhaps the strong security models for certificateless
encryption are probably correct, and that it is the security models for ID-KA
protocols, and indeed standard public key or symmetric key based key agreement
protocols, which need to be strengthened.

Our main generic constructions can be summarized by reference to Figure 1,
the definitions used in the arrows will become clear as we define them in the
following pages.

ID-KA
�

ka Reveal∗ =⇒ Strong Type-I*
ka Rewind =⇒ Weak Type-Ib*

mk-fs Reveal∗

=⇒ Strong Type-II
mk-fs Rewind

=⇒ Weak Type-II

CL-KEM
�Pure Only

Strong Type-I*
=⇒ ID-IND-CCA

ID-KEM

Fig. 1. Relationships Between Schemes

As a final side-result of independent interest, as part of our analysis we con-
sider a weakened notion of Type-I security for certificateless schemes (which we
denote by Type-I* etc). This is because we have discovered an overlap in the
standard security definitions for Strong Type-I and Strong Type-II security for
CL-KEMs. By weakening the definition of Type-I security slightly, we remove
this overlap and at the same time simplify a number of our security proofs, whilst
not reducing the overall security result for the resulting CL-KEMs.
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Other related work. Our results are similar to the work of Paterson and
Srinivasan [17] on the link between ID-based non-interactice key distribution
(NIKD) and ID-based encrytion. In [17] the authors present a security model
for ID-based NIKD and provide a transform from an ID-based NIKD to an
ID-based encryption scheme. We note that the extension of this result to con-
structing ID-KEMs is immediate. However, this transform is not generic in that
it requires special syntactic properties of the base ID-based NIKD scheme. Our
transforms from ID-KA protocols (i.e. interactive protocols) to CL-KEMs and
ID-KEMs are generic and do not require any special syntactic properties of the
underlying ID-KA protocol. In addition the transform of [17] results in ID-IND-
CPA ID-KEMs/ID-based encryption schemes. Indeed to obtain full CCA secure
KEMs/encryption schemes it is easy to see that one needs to extend the secu-
rity model in [17] for ID-based NIKD schemes in such a way as to provide the
adversary with an analogue of our Reveal∗ oracles. Thus whilst our results are
syntactically stronger than those of [17], the security results are roughly equiva-
lent. That we can achieve more syntactically is due to us considering interactive,
as opposed to non-interactive, protocols as our starting point.

2 Identity-Based Key Agreement

In this section we present the notion of ID-based key agreement. We will only
consider two pass ID-based key agreement protocols in this paper as this sim-
plifies the algorithm descriptions somewhat.

ID-Based Key Agreement Definition. A two-pass ID-based key agreement
protocol is specified by six algorithms which run in polynomial time in the se-
curity parameter. The two passes are illustrated in Figure 2. We let ID denote
the set of possible user identities and K KA(mpkKA) be the set of valid session keys
for the public parameter mpkKA.

– KASetup(1t) is a PPT algorithm that takes as input the security parameter
1t and returns the master public key mpkKA and the master secret key mskKA.

– KeyDer(mskKA, ID) is the private key extraction algorithm. It takes as input
mskKA and ID ∈ ID and it returns the associated private key dID. This
algorithm may be deterministic or probabilistic.

– Initiate(mpkKA, dI). This is a PPT algorithm run by the initiator, with iden-
tity I, of the key agreement protocol which produces the ephemeral public
key epkI for transmission to another party. The algorithm stores eskI , the
corresponding ephemeral private key, for use later1.

– Respond(mpkKA, dR). This is a PPT algorithm run by the responder, with
identity R, of the key agreement protocol which produces the ephemeral
public/private key (epkR, eskR).

1 Notice that we refer to the messages exchanged by the parties as public keys, and
their secret states after the computation of the message as secret keys. Jumping
ahead, this is because that’s the role these values play in our transformation from
KA to CL scheme.
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– DeriveI(mpkKA, dI , eskI , epkR, R). This is a (possibly probabilistic) algorithm
run by the initiator to derive the session key KI ∈ K KA(mpkKA) with R.

– DeriveR(mpkKA, dR, eskR, epkI , I). This is a (possibly probabilistic) algorithm
run by the responder to derive the session key KR ∈ K KA(mpkKA) with I.

Initiator Responder

dI , mpkKA dR , mpkKA

(epkI , eskI)←Initiate(mpkKA, dI)
epkI−→
epkR←− (epkR, eskR)←Respond(mpkKA, dR)

KI←DeriveI(mpkKA, dI , eskI , epkR, R) KR←DeriveR(mpkKA, dR, eskR, epkI , I)

Fig. 2. Diagrammatic view of two-pass ID-KA protocols

For correctness we require that in a valid run of the protocol we have that
KI = KR. Notice, that the creation of the ephemeral public/private key pairs
does not depend on the intended recipient. Most ID-KA protocols are of this
form. For example in [11] ID-based key agreement protocols based on pairings
are divided into four Categories. Only in Categories 2 and 4 does the emphemeral
key pair depend on the intended recipient, these being protocols in the Scott [18]
and McCullagh–Barreto [16] families. The majority of pairing-based ID-based
key agreement protocols lie in the Smart [20] family (denoted Category 1 in
[11]), with Category 3 (the Chen–Kudla family [12]) also sharing this property.
The non-pairing based protocol of Fiore and Gennaro [15] also has this property.

If the algorithms Initiate and Respond do not require access to dI and dR

respectively, then we call the protocol a pure identity based key agreement pro-
tocol. This is because the ephemeral public keys can be created before the sender
knows his long term secret key. This therefore allows forms of sending-into-the-
future which are common in many IBE style schemes. We shall return to this
distinction below when discussing the conversion of ID-KA protocols into cer-
tificateless schemes. Indeed identifying differences between these two forms of
ID-KA protocols and certificateless schemes, forms a significant portion of the
current paper. In the categorization of [11] Categories 1, 3 and 4 are all pure
ID-based key agreement protocols, whilst Category 2 and the non-pairing based
FG protocol are non-pure.

A key agreement protocol is said to be role symmetric if algorithm Initiate is
identical to algorithm Respond and algorithm DeriveI is identical to algorithm
DeriveR. The FG protocol is role symmetric, but role symmetry is a more complex
property to determine for pairing-based protocols. For example whether a scheme
is role symmetric can depend on whether one instantiates the protocol with
symmetric or asymmetric pairings. For the schemes in [11] (and focusing solely
on the more practical scenario of asymmetric pairings) all those in Categories
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2 and 4 are role symmetric, those in Category 3 are not, whereas half of those
in Category 1 are. Of particular importance in Category 1 is the SCK protocols
(which are a combined version of the Smart and Chen–Kudla protocol), these
are highly efficient and role symmetric.

Defining Security for ID-Based Key Agreement. We will be using a mod-
ified version of the Bellare–Rogaway key exchange model, as extended to an
identity-based setting. Our model is an extension of the model contained in
Chen et al. [11], but we extend it in various ways which we will describe later.
So as to be precise we describe the model in more formal details than that used in
[11], however we shall (as stated above) be focusing solely on two-pass protocols,
which explains some of our specifications in what follows.

Security of a protocol is defined by a game between an adversary A and a
challenger E. At the start of the game the adversary A is passed the master public
key mpkKA of the key generation centre. During the game the adversary is given
access to various oracles O which maintain various meta-variables, including

– roleO ∈ {initiator , responder ,⊥}. This records the type of session to which
the oracle responds.

– pidO ∈ U . This keeps track of the intended partner of the session maintained
by O.

– δO ∈ {⊥, accepted , error}. This determines whether the session is in a fin-
ished state or not.

– γO ∈ {⊥, corrupted , revealed}. This signals whether the oracle has been cor-
rupted or not.

– sO. This denotes the session key of the protocol if the protocol has completed.

The adversary can execute a number of oracle queries which we now describe.

– NewSession(U, V ) This creates a new oracle, to represent the new session,
which we shall denote by O = Πi

U,V , where i denotes this is the ith session
for the user with identity U , and that the indented partner is V . After calling
this oracle we have

pidO = V and sO = roleO = δO = γO =⊥ .

However, if any other oracle with identity U has been corrupted then we set
γO = corrupted .

– Send(O, role,msg). Recall we are only modelling two-pass protocols, hence
the functionality of this oracle can be described as follows:
• If δO �=⊥ then do nothing.
• If role = initiator then
∗ If msg =⊥, δO =⊥ and roleO =⊥ then set roleO = initiator and

output a message (i.e. send the first message flow in the protocol);
∗ If msg �=⊥ and roleO = initiator (i.e. msg is the second message flow

in the protocol) then compute sO and set δO = accepted ;
∗ Else set δO = error and return ⊥

• If role = responder then



Constructing Certificateless Encryption and ID-Based Encryption 173

∗ If msg �=⊥ and roleO =⊥ then compute sO, set δO = accepted ,
roleO = responder and respond with a message (i.e. send the second
message flow in the protocol).
∗ Else set δO = error and return ⊥.

– Reveal(O). If δO �= accepted or γO = corrupted then this returns ⊥, other-
wise it returns sO and we set γO = revealed .

– Corrupt(U). This returns dU and sets all oracles O in the game (both now
and in the future) belonging to party U to have γO = corrupted . Notice,
that this is equivalent to the extract secret key query in security games for
other types of identity based primitives. Note, that we do not assume that
the rest of the internal state of the oracles belonging to U are turned over
to the adversary.

– Test(O∗). This oracle may only be called once by the adversary during the
game. It takes as input a fresh oracle (see below for the definition of fresh-
ness). The challenger E then selects a bit b ∈ {0, 1}. If b = 0 then the
challenger responds with the value of sO∗ , otherwise it responds with a ran-
dom key chosen from the space of session keys. We call the oracle on which
Test is called the Test-oracle.

At the end of the game the adversary outputs its guess b′ as to the bit b used by
the challenger in the Test query. We define the advantage of the adversary by

AdvID−KA(A) = |2 Pr[b′ = b]− 1| .

We now explain the Test(O∗) query in more detail. An oracle O∗ = Πi
U∗,V ∗ is

said to be fresh if: (1) δO∗ = accepted , (2) γ∗
O �= revealed , (3) Party V ∗ is not

corrupted and (4) there is no oracleO′ with γO′ = revealed with whichO∗ has had
a matching conversation. After the Test(O∗) query has been made the adversary
can continue making queries as before, except that it cannot: corrupt party V ∗,
call a reveal query on O∗’s partner oracle if it exists, call reveal on O∗.

Definition 1. A protocol Π is said to be a secure ID-KA protocol (or more
simply ka secure) if

1. In the presence of a benign adversary, which faithfully conveys messages, on
Πs

i,j and Πt
j,i, both oracles always accept holding the same session key, and

this key is distributed uniformly on {0,1}k;
2. For any polynomial time adversary A, AdvID−KA(A) is negligible.

Forward Secrecy. We also define a notion of master-key forward secrecy, (or
mk-fs secure) following [11]. In this model the adversary is also given the master
secret key mskKA. Thus the adversary can compute the private key dID of any
party. The security game is the same as above, except that instead of a fresh
oracle for the test session it chooses an oracle O∗ which satisfies:

1. δO∗ = accepted
2. γO∗ �= revealed
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3. There is an oracle O′ with which O∗ has had a matching conversation and
δO′ = accepted and γO′ �= revealed .

Weaker notions of forward-secrecy are implied by the above, for example perfect
forward secrecy gives the adversary access to a Corrupt oracle for any ID ∈ ID
but does not give the adversary access to mskKA. A weaker form of simply forward
secrecy is then implied where the adversary can only call the Corrupt oracle on
one party in the test session, i.e. we must have either γO∗ =⊥ or γO′ =⊥.

The advantage for forward secrecy of an adversary is defined in the same way
as above and is denoted by one of

Advmk−fs
ID−KA (A), Advp−fs

ID−KA(A) or Advfs
ID−KA(A),

as appropriate.
For non-pure ID-based key agreement protocols we can consider an additional

notion of forward secrecy, which we call active perfect forward secrecy (resp.
active forward secrecy). In this model we drop the third condition above that
there exists another oracle O′ with which O∗ has had a matching conversation.
This means that the adversary could have been active before corrupting the
parties, i.e. he sent one of the two message flows.

It is interesting to observe that such notion cannot be achieved by any pure
ID-based KA protocol because of the following attack. Assume the adversary
acts as initiator and computes epkI ← Initiate(mpkKA) (he can do that without
dI as the protocol is pure). He can initiate a new session oracle setting epkI as
first message, then ask for the second message and later make a test query on
this oracle. When the adversary corrupts I then he will have all the informations
needed to compute the correct session key and so he will be able to distinguish
wether he received the real session key or a random one. It is easy to see that
such attack does not apply to the case of non-pure protocols as the private key
is needed to produce protocol’s messages.

Our augmented security model. In our analysis of converting ID-based key
agreement protocols into certificateless schemes we will require stronger security
notions in which the adversary will have access to additional oracles. We define
three such oracles, the first one is relatively standard, whilst the second two are
new. The second can be motivated by similar arguments one uses to motivate
resettable zero-knowledge [9], whilst the third oracle is a natural analogue in the
key agreement setting of the strong adversarial powers one gives an adversary
for certificateless schemes. One may therefore consider the extreme nature of
the third oracle as an additional argument as to why the certificateless strongest
security model looks excessive.

– StateReveal(O). If roleO =⊥ then do nothing. Otherwise return the value of
the ephemeral secret key held within the oracle.

– Rewind(O). If roleO = initiator and δO = accepted then this returns O to
the state it was in before it received its last message, i.e. it sets δO = sO =⊥.
If we have γO = revealed then we also reset γO to ⊥.
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– Reveal∗(I, R, epkI , epkR). This is a stronger version of the Reveal query in
that it is not associated to an oracle, but simply takes the two message flows
and returns the associated agreed shared secret assuming these messages
had been transmitted between party I and party R. There is an obvious
restriction in that the adversary is not allowed to call this oracle on the
message flows used in the Test query, nor (for role-symmetric protocols)
with the message flows used in the Test query but with the roles of initiator
and responder swapped.

The StateReveal(O) query corresponds to an adversarial power which can par-
tially corrupt a party, but which does not allow the adversary to obtain the long
term secret. This power has been used in numerous works starting with [10], and
is often considered to be the main distinction between the CK model and the
BR model for key exchange [13].

The presence of the Rewind(O) oracle enables the adversary to extract more
information for a particular set of ephemeral and static public key pairs. To
intuitively see what the Rewind(O) oracle provides us, imagine a standard key
agreement protocol based on standard Diffie–Hellman, for example the Station-
to-Station protocol. Usually one reduces the security of this protocol to the
decisional Diffie–Hellman problem (DDH). But with the presence of a Rewind(O)
oracle the adversary can take a test oracle (which has output the ephemeral
public key gx) and obtain, using a combination of the Rewind(O) and Reveal(O)
oracles, values of the form hx for values of h of the adversaries choosing. This
means the simulator is essentially solving the DDH problem with access to a
static-Diffie–Hellman oracle.

The Reveal∗(I, R, epkI , epkR) is a very strong oracle. As we will show later,
if a protocol is secure even when an adversary is given such an oracle we are
able to transform the protocol into a certificateless encryption scheme which also
satisfies a strong security notion.

We say a protocol is a secure ID-KA protocol in the Rewind-model (resp.
Reveal∗-model) if it is secure as ID-based key agreement protocol where we give
the adversary access to a Rewind (resp. Reveal∗) oracle. If we require access
to two of these oracles we will call the model, for instance, the (StateReveal ,
Rewind)-model, We call these extra models, augmented models, since they aug-
ment the standard security model with extra functionality. Similarly we can
define augmented notions for master-key forward secrecy.

3 From Mutual to One-Way Authentication

In many key agreement protocols one is only interested in one-way authentica-
tion. SSL/TLS is a classic example of this, where the server is always authenti-
cated but the user seldom is. We overview in this section the modifications to
the previous syntax of ID-KA protocols which are needed to ensure only one-way
authentication and show how to convert a mutually authenticated identity-based
key agreement protocol into one which is only one-way authenticated. The rea-
son for introducing only one-way authentication is that this enables us to make
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the jump to certificateless encryption conceptually easier, and can also result in
simpler schemes. We assume the responder in a protocol is the one who is not au-
thenticated, this is to simplify notation in what follows. The scheme definitions
are then rather simple to extend.

We note that any protocol proved to be secure for mutual authentication, can
be simplified and remain secure in the context of one-way authentication. The
transformation from mutual to one-way authentication is performed as follows.
An identity is selected, let us call it R0, which acts as a “dummy” responder
identity. A “dummy” secret key is then created for this user and this is pub-
lished along with the master public key. Notice, that by carefully selecting the
dummy secret key one can often obtain efficiency improvements. The protocol
is then defined as before except that R0 is always used as the responding party,
and we drop any reference to dR0 . Thus we call Respond(mpkKA) rather than
Respond(mpkKA, dR0). Similarly we call

DeriveR(mpkKA, eskR0 , epkID, ID) and DeriveI(mpkKA, dID, eskID, epkR0
)

rather than

DeriveR(mpkKA, dR0 , eskR0 , epkID, ID) and DeriveI(mpkKA, dID, eskID, epkR0
, R0).

In the security model all oracles either have R0 as an intended partner, or the
oracle belongs to R0. If the oracle belongs to R0 then it is corrupted, since R0’s
secret key is public. This means that only oracles belonging to R0 may be used
in the Test queries.

We argue that if the original protocol is secure then its one-way version (ob-
tained as described above) is also one-way secure. To see this observe that an ad-
versary A that breaks the security of the one-way protocol can be turned into an
adversary B against the original protocol. Assume A breaks the security choosing
a test session that involves a user ID (and the dummy identity R0). Then B can
trivially choose a test oracle Πs

R0,ID and forward the obtained key to A.

4 Certificateless Key Encapsulation Mechanisms

In this section we discuss various aspects of certificateless KEMs. The reader is
referred to [8] and [14] for further details.

CL-KEM Definition: A CL-KEM scheme is specified by seven polynomial
time algorithms:

– CLSetup(1t) is a PPT algorithm that takes as input 1t and returns the master
public keys mpkCL and the master secret key mskCL.

– Extract-Partial-Private-Key(mskCL, ID). If ID ∈ ID is an identifier string for
party ID this (possibly probabilistic) algorithm returns a partial private key
dID.

– Set-Secret-Value is a PPT algorithm that takes no input (bar the system
parameters) and outputs a secret value sID.
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– Set-Public-Key is a deterministic algorithm that takes as input sID and
outputs a public key pkID.

– Set-Private-Key(dID, sID) is a deterministic algorithm that returns skID the
(full) private key.

– Enc(mpkCL, pkID, ID) is the PPT encapsulation algorithm. On input of pkID,
ID and mpkCL this outputs a pair (C, K) where K ∈ K CL−KEM(mpkCL) is a
key for the associated DEM and C ∈ C CL−KEM(mpkCL) is the encapsulation
of that key.

– Dec(mpkCL, skID, C) is the deterministic decapsulation algorithm. On input
of C and skID this outputs the corresponding K or a failure symbol ⊥.

Baek et al. gave in [5] a different formulation where the Set-Public-Key algorithm
takes the partial private key dID as an additional input. In this case it is possible
to combine the Set-Secret-Value, Set-Public-Key and Set-Private-Key algorithms
into a single Set-User-Keys algorithm that given as input the partial private key
dID of ID outputs pkID and skID. While the Baek et al. formulation may seem
at first glance to be a simplification, it stops various possible applications of
certificateless encryption, such as encrypting into the future. Extending our def-
inition of pure and non-pure ID-based key agreement protocols to this situation,
we shall call certificateless schemes which follow the original formulation as pure,
and those which follow the formulation of Baek et al. as non-pure.

4.1 CL-KEM Security Model

To define the security model for CL-KEMs we simply adapt the security model
of Al-Riyami and Paterson [3] into the KEM framework, as explained in [8].
The main issue with certificateless encryption is that, since public keys lack au-
thenticating information, an adversary may be able to replace users’ public keys
with public keys of its choice. This appears to give adversaries enormous power.
However, the crucial part of the certificateless framework is that to compute the
full private key of a user, knowledge of the partial private key is necessary.

To capture the scenario above, Al-Riyami and Paterson [2,3,4] consider a
security model in which an adversary is able to adaptively replace users’ public
keys with (valid) public keys of its choice. Such an adversary is called a Type-I
adversary below.

Since the KGC is able to produce partial private keys, we must of course
assume that the KGC does not replace users public keys itself. By assuming that
a KGC does not replace users public keys itself, a user is placing a similar level of
trust in a KGC that it would in a PKI certificate authority: it is always assumed
that a CA does not issue certificates for individuals on public keys which it has
maliciously generated itself! We do however treat other adversarial behaviour of a
KGC: eavesdropping on ciphertexts and making decryption queries for example.
Such an adversarial KGC is referred to as a Type-II adversary below.

Below we present a game to formally define what an adversary must do to
break a certificateless KEM [8]. This is a game run between a challenger and a
two stage adversary A = (A1,A2). Note that X can be instantiated with I or II
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in the description below and that the master secret mskCL is only passed to the
adversary in the case of Type-II adversaries.

Type-X Adversarial Game
1. (mpkCL, mskCL)←CLSetup(1t).
2. (ID∗, s)←AO

1 (mpkCL, mskCL).
3. (K0, C

∗)←Enc(mpkCL, pk∗, ID∗).
4. K1←K CL−KEM(mpkCL).
5. b←{0, 1}.
6. b′←AO

2 (C∗, s, ID∗, Kb).

When performing the encapsulation, in line three of both games, the challenger
uses the current public key pk∗ of the entity with identifier ID∗. The adversary’s
advantage in such a game is defined to be

AdvType−X
CL−KEM(A) = |2 Pr[b′ = b]− 1|

where X is either I or II. A CL-KEM is considered to be secure, in the sense of
IND-CCA2, if for all PPT adversaries A, the advantage in both the games is a
negligible function of t.

The crucial point of the definition above is to specify which oracles the ad-
versary is given access and which are the restrictions of the game. According
to such specifications one can obtain different levels of security. A detailed dis-
cussion about all possible security definitions is given by Dent in [14]. In the
following we describe the various oracles O available to the adversaries, we then
describe which oracles are available in which game and any restrictions on these
oracles.

– Request Public Key: Given an ID this returns to the adversary a value
for pkID.

– Replace Public Key: This allows the adversary to replace user ID’s public
key with any (valid) public key of the adversaries choosing.

– Extract Partial Private Key: Given an ID this returns the partial private
key dID.

– Extract Full Private Key: Given an ID this returns the full private key
skID.

– Strong Decap: Given an encapsulation C and an identity ID, this returns
the encapsulated key. If the adversary has replaced the public key of ID,
then this is performed using the secret key corresponding to the new public
key. Note, this secret key may not be known to either the challenger or the
adversary, hence this is a very strong oracle.

– Weak SV Decap: This takes as input an encapsulation C, an identity ID
and a secret value sID. The challenger uses sID to produce the corresponding
full secret key of ID that is used to decapsulate C. Note, that sID may not
correspond to the actual current public key of entity ID. Also note that
one can obtain this functionality using the Strong Decap oracle when the
certificateless scheme is pure.
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– Decap: On input of an encapsulation C and an identity ID it outputs the
session key obtained decapsulating C with the original secret key created
by ID. One can obtain this functionality using a Strong Decap oracle if the
scheme is pure.

Using these oracles we can now define the following security models for certifi-
cateless KEMs, see [14] for a full discussion.

Strong Type-I Security: This adversary has the following restrictions to its
access to the various oracles.

– A cannot extract the full private key for ID∗.
– A cannot extract the full private key of any identity for which it has replaced

the public key.
– A cannot extract the partial private key of ID∗ if A1 replaced the public

key (i.e. the public key was replaced before the challenge was issued).
– A2 cannot query the Strong Decap oracle on the pair (C∗, ID∗) unless ID∗’s

public key was replaced after the creation of C∗.
– A may not query the Weak SV Decap or the Decap oracles (although for

pure schemes, one can always simulate these using the Strong Decap oracle).

We note that this security notion is often considered to be incredibly strong,
hence often one finds it is weakened in the following manner.

Weak Type-Ia Security: Dent describes in [14] a weaker security definition
called Weak Type-Ia that was also used in [8]. Weak Type-Ia security does not
allow the adversary to make decapsulation queries against identities whose public
keys have been replaced. In this case the restrictions on the adversaries oracle
access is as follows:

– A cannot extract the full private key for ID∗.
– A cannot extract the full private key of any identity for which it has replaced

the public key.
– A cannot extract the partial private key of ID∗ if A1 replaced the public

key (i.e. the public key was replaced before the challenge was issued).
– A may not query the Strong Decap oracle at any time.
– A2 cannot query the Weak SV Decap oracle on the pair (C∗, ID∗) if the

attacker replaced the public key of ID∗ before the challenge was issued.
– A2 cannot query the Decap oracle on the pair (C∗, ID∗) unless the attacker

replaced the public key before the challenge was issued.

Though this notion is clearly weaker than Strong Type-I, it still looks reason-
able for practical purposes. In fact Strong Type-I gives to the adversary as much
power as possible, but it is unclear whether a real adversary can obtain decap-
sulations in practice from users whose public keys have been replaced by the
adversary itself.

We pause to note that there are weaker forms of Type-I security called Weak
Type-Ib and Weak Type-Ic security. In Weak Type-Ib security access to the
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Weak SV Decap oracle is denied to the adversary, whereas in Weak Type-Ic
security not only denies access to the Weak SV Decap oracle, but it also denies
the ability to the replace public keys entirely. We also can define a CPA like-
notion, which we call Weak Type-I-CPA which denies access to all forms of
decapsulation oracle (this is a notion which is not used in other papers, but
which will be useful when we present our conclusions).

In addition, for each definition of Type-I security we can define a slightly
weaker variant denoted by ∗ (e.g. Strong Type-I*) in which the adversary cannot
query the partial private key of the target identity ID∗ at any point. This weaker
variant will simplify somewhat our security theorems. But, it still allows us to
obtain a final non-weakened result due to the combination with security theorems
for Type-II security, which we define below.

Strong Type-II Security: In the Type-II game the adversary has access to
the master secret key mskCL and so can create partial private keys itself. The
strong version of this security model enables the adversary to query the various
oracles with the following restrictions:

– A cannot extract the full private key for ID∗.
– A cannot extract the full private key of any identity for which it has replaced

the public key.
– A1 cannot output an identity ID∗ for which it has replaced the public key.
– A cannot query the partial private key oracle at all.
– A2 cannot query the Strong Decap oracle on the pair (C∗, ID∗) unless the

public key used to create C∗ has been replaced.
– A may not query the Weak SV Decap or the Decap oracles (although for

pure schemes, one can always simulate these using the Strong Decap oracle).

Note, because we assume in this case that the adversary is the KGC, the adver-
sary does not have access to the partial private key oracle since all partial private
keys are ones which he can compute given mskCL. This applies even in the case
where generation of the partial private key from mskCL and ID is randomised.

Weak Type-II Security: As for the case of Type-I security one can consider a
weaker variant of Type-II security In this notion the adversary is not allowed to
replace public keys at any point and thus it cannot make decapsulation queries
on identities whose public keys have been replaced. This is the traditional form of
Type-II security, and is aimed at protecting the user against honest-but-curious
key generation centres. Again a weak form, which we call Weak Type-II-CPA,
can be defined which gives no access to any decapsulation oracle, this form of
security will only be needed in the discussion leading up to our conclusions. There
are other strengthenings of the Type-II model which try to model completely
malicious key generation centres, see [14] for a discussion of these models. But
we will not consider these in this paper.

Full Type-I security from Type-I* security and Strong Type-II security:
In this section we justify our consideration of Type-I* security by showing that
proving a scheme Type-I* secure is sufficient to get “full” Type-I security if such
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a scheme also satisfies the strongest notion of Type-II security. In some sense
this says that the definitions Type-I and Strong Type-II overlap in a specific
case.

For ease of presentation we prove the theorem for the case of Strong Type-I
security, but it is easy to see that it holds even if the scheme is Weak-Type-
Ia*, Weak Type-Ib*, Weak Type-Ic* or Weak Type-I-CPA*. In this case one
obtains the corresponding level of security (e.g. Weak Type-Ia ). To complete
the picture we recall that Dent noted in [14] that Weak Type-II security implies
Weak Type-Ic security. We can state the following theorem whose proof can be
found in the full version of the paper.

Theorem 1. If a CL-KEM is Strong-Type-I* and Strong Type-II secure then it
is Strong Type-I secure

5 Generic Construction of CL-KEM from ID-KA

In this section we show our main result, namely a generic transform of any
ID-KA protocol into a CL-KEM scheme.

Suppose we are given algorithms for a one-way authenticated ID-KA protocol
(KASetup, KeyDer, Initiate, Respond, DeriveI , DeriveR). Given a one-way identity-
based key agreement protocol KA, we let CL(KA) denote the derived certificate-
less KEM obtained from the following algorithms.

– CLSetup(1t). We run (mpkKA, mskKA)←KASetup(1t) and then set:
mpkCL←mpkKA and mskCL←mskKA.

– Extract-Partial-Private-Key(mskCL, ID). We set dID← KeyDer(mskKA, ID).
– The pair Set-Secret-Value and Set-Public-Key are defined by running

(epkID, eskID)←Initiate(mpkKA, [dID]).

The output of Set-Secret-Value is defined to be sID = eskID and the output
of Set-Public-Key is defined to be pkID = epkID.

– Set-Private-Key(dID, sID) creates skID by setting skID = (dID, sID).
– Enc(mpkCL, pkID, ID). This runs as follows:
• (epk0, esk0)←Respond(mpkKA).
• K←DeriveR(mpkKA, esk0, pkID, ID).
• C←epk0.

– Dec(mpkCL, skID, C). Decapsulation is obtained by executing

K←DeriveI(mpkKA, dID, skID, C).

In the above construction if the underlying ID-based key agreement protocol is
pure (resp. non-pure), then we will obtain a pure (resp. non-pure) certificate-
less KEM, i.e. it will follow the original formulation of Al-Riyami and Paterson
(resp. Baek et al.). To see this, notice that the Set-Public-Key function calls the
Initiate(mpkKA, [dI ]) operation, which itself may require dI .
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5.1 Security Results on the ID-KA to CL-KEM Transforms

Once we have defined our black-box construction of CL-KEM from ID-KA pro-
tocols we prove its security in the theorems below. As one can see, the theorems
show that the resulting CL-KEM can achieve different types of security accord-
ing to the security of the underlying ID-KA protocol. As already discussed in
the introduction, this relationship between the security models of ID-KA and
CL-KEM sheds light on understanding which are the correct notion of security
for the two primitives.

Theorem 2 (Type-I Security). Consider the certificateless KEM CL(KA)
derived from the one-way ID-based key agreement protocol KA as above:

– If KA is secure in the Reveal∗-model then CL(KA) is Strong Type-I* secure
as a certificateless KEM.

– If KA is secure in the Rewind model then CL(KA) is Weak Type-Ib* secure
as a certificateless KEM.

– If KA is secure in the normal model then CL(KA) is Weak Type-I-CPA*
secure as a certificateless KEM.

In particular if A is an adversary against the CL(KA) scheme (in the above
sense) then there is an adversary B against the KA scheme (also in the above
sense) such that for pure schemes we have

AdvType−I
CL−KEM(A) = AdvID−KA(B)

and for non-pure schemes we have

AdvType−I
CL−KEM(A) ≤ e · (qpk + 1) ·AdvID−KA(B)

where qpk is the maximum number of extract public key queries issued by algo-
rithm B.

The proof of this theorem can be found in the full version of the paper.
We notice that the proof technique does not allow the simulator to provide

the partial private key of the challenge identity ID∗. Which is why our theorem
is stated for the case of Strong Type-I* (resp. Weak Type-Ib* or Weak Type-
I-CPA*). If we then apply the result of Theorem 1, along with the following
theorems, we obtain full Strong Type-I security (resp. Weak Type-Ib or Weak
Type-I-CPA) for the scheme CL(KA).

In looking at Type-II security we present two security theorems. The first one
(Theorem 3) is conceptually simpler but requires our underlying identity based
key agreement scheme to have a strong security property (i.e. it must support
state reveal queries). The second theorem (Theorem 4) is more involved and
does not provide such a tight reduction. On the other hand the second theorem
requires less of a security guarantee on the underlying key agreement scheme.
The proofs of both theorems can be found in the full version of the paper.

Theorem 3 (Type-II Security – Mk I). Consider the certificateless KEM
CL(KA) derived from the one-way ID-based key agreement protocol KA as above:

– If KA satisfies master-key forward secrecy in the (StateReveal ,Reveal∗)-
model then CL(KA) is Strong Type-II secure as a certificateless KEM.
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– If KA satisfies master-key forward secrecy in the (StateReveal ,Rewind)-
model then CL(KA) is Weak Type-II secure as a certificateless KEM.

– If KA satisfies master-key forward secrecy in the StateReveal-model then
CL(KA) is Weak Type-II-CPA secure as a certificateless KEM.

In particular if A is an adversary against the CL(KA) scheme (in the sense
described above) then there is an adversary B against the master-key forward
secrecy of the KA scheme (also in the above sense) such that

AdvType−II
CL−KEM (A) = Advmk−fs

ID−KA (B).

We now turn to showing that one does not necessarily need the StateReveal
query to prove security, although the complication in the proof results in a less
tight reduction.

Theorem 4 (Type-II Security – Mk II). Consider the certificateless KEM
CL(KA) derived from the one-way ID-based key agreement protocol KA as above:

– If KA satisfies master-key forward secrecy in the Reveal∗-model then
CL(KA) is Strong Type-II secure as a certificateless KEM.

– If KA satisfies master-key forward secrecy in the Rewind model then CL(KA)
is Weak Type-II secure as a certificateless KEM.

– If KA satisfies master-key forward secrecy in the normal model then CL(KA)
is Weak Type-II-CPA secure as a certificateless KEM.

In particular if A is an adversary against the CL(KA) scheme (in the above
sense) then there is an adversary B against the KA scheme (also in the above
sense) then we have

AdvType−II
CL−KEM (A) ≤ e · (qpk + 1) · Advmk−fs

ID−KA (B)

where qpk is the maximum number of extract public key queries issued by algo-
rithm B.

6 Identity-Based Key Encapsulation Mechanisms

In this section we are going to show the relationship between CL-KEM and
identity-based KEMs. In particular we will give a generic transformation from
any pure CL-KEM into an ID-KEM. As in the case of ID-KA and CL-KEM,
here it is also interesting to observe how the different security models of CL-
KEM transform into analogous models for ID-KEM. We defer the reader to [8]
for further details on the definitions and security models of ID-KEMs.

Generic Construction of ID-KEM from pure CL-KEM. To construct an
ID-KEM from a CL-KEM the obvious solution is to set the user public/private
keys to be trivial and known to all parties. This however can only be done for
pure CL-KEMs since in non-pure schemes one does not have complete control
over the public/private keys, since they depend on the partial private key dID.
We call the resulting scheme the ID(CL) scheme, as it is an ID-KEM built from
a CL-KEM. Now we can state the following theorem whose proof, for lack of
space, appears in the full version.
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Theorem 5. Consider the pure ID-KEM ID(CL) derived from the pure CL-KEM
scheme CL as above. Then if CL is Strong Type-I* secure then ID(CL) is ID-
IND-CCA secure. In particular if A is an adversary against the ID(CL) scheme
then there is an adversary B against the CL-KEM scheme such that

AdvID−IND−CCA
ID−KEM (A) = AdvStrong−Type−I∗

CL−KEM (B).

7 Conclusion: Which Certificateless Model Is Correct?

In this section we summarize the conclusions we have drawn from our analysis.
It is worth pointing out that these are personal conclusions, and we leave the
reader to draw their own analysis.

Firstly, all our conclusions are predicated on the assumption that our trans-
forms are all “natural”, in that they are the obvious way to convert an ID-KA
protocol into a CL-KEM and a CL-KEM into an ID-KEM. If these are the nat-
ural transformations then the underlying security and syntactic models should
also transform naturally.

Pure vs Non-Pure. First we discuss the issue of pure vs non-pure certificateless
schemes. Our transform from CL-KEMs to ID-KEMs requires the underlying
CL-KEM to be pure. This is not surprising as an essential feature of ID-based
cryptography is that of the identity (and hence the associated secret key) being
independent of all parameters bar the actual identity. It is not surprising even
because non-pure CL-KEMs are the only ones that can be constructed without
pairings.

We draw two conclusions from this. First, the pure syntax is more powerful
as it enables functionalities such as encryption-into-the-future (a.k.a. workflow).
Second, we can say that certificateless encryption is a primitive simpler than ID-
based encryption, although people have usually thought at the former as an ex-
tension of the latter. When ID-based encryption was proposed [19], one of its main
motivations was to avoid the certificates management issues of standard public
key encryption. Then it took almost twenty years to have IBE schemes, basically
thanks to the idea of exploiting pairings. From our considerations we can say that
the “hard part” of constructing ID-based encryption is not avoiding certificates,
but achieving those additional properties (e.g. workflows); i.e. technically speak-
ing, having a user’s public key independent of the scheme parameters.

CPA Security. Before turning to CCA security of certificateless encryption we
first consider the simpler case of CPA security. We remarked in the introduction
that the [17] construction of ID-based encryption from ID-based NIKD schemes
only produces CPA secure schemes, unless one assumes an oracle equivalent to
our Reveal∗ oracle.

Similar considerations apply in our case. The construction of ID-KEMs from
CL-KEMs will produce a CPA secure ID-KEM if the underlying CL-KEM is
Weak Type-I-CPA* secure. Note, that we only require Weak Type-I-CPA* and
not Weak Type-I-CPA security. In constructing CL-KEMs from ID-KA protocols
we need to consider what security is required of the underlying ID-KA protocol to
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ensure Weak Type-I-CPA and Weak Type-II-CPA security of the CL-KEM. Our
theorems show that a sufficient condition is that the underlying ID-KA protocol
is secure in the standard sense, i.e. with no Reveal∗, Rewind or StateReveal
oracles. Although the security reduction is tighter if we assume the adversary
has access to StateReveal oracles, i.e. we use a CK-like security model for ID-
based key agreement. We note that the security reductions go through more
naturally when one considers the CL-KEM to have Weak Type-I-CPA* security
and Weak Type-II-CPA security. We then obtain the full Weak Type-I-CPA by
appealing to the analogue of Theorem 1.

CCA Security. Our theorems show that to obtain full Strong Type-I and Strong
Type-II security of the derived CL-KEM we require the ID-based key agreement
security model to give the adversary access to our Reveal∗ oracle. This is a very
non-standard oracle for key agreement protocols, but this should not be surpris-
ing. Essentially CCA security for an encryption scheme means the adversary has
to be able to open anything, even something created in an illegitimate way (even
if the opening results in the ⊥ symbol). All our Reveal∗ oracle does is to provide
the adversary against the ID-based key agreement scheme with an oracle to open
anything. A similar remark as to Strong Type-I* as opposed to Strong Type-I
security as mentioned in the above comments on CPA security also applies in
this case.

Summary. So in summary we believe the correct syntactic security definitions
for CL-KEMs should be schemes with Strong Type-I* and Strong Type-II secu-
rity where the pure syntax allows for more properties. By using Strong Type-I*
as the security definition instead of Strong Type-I we obtain a natural seperation
between the two security notions, rather than dealing with the cases in the inter-
section twice. However, our construction from ID-based key agreement schemes
would seem to imply that the correct security definition should be one which uses
StateReveal queries (i.e. one which follows the analogue of CK-security). How-
ever, it also implies that the model also includes Reveal∗ queries, which seems to
provide an extreme form of security definition for key agreement schemes. Since
it would seem silly to define security for normal key agreement schemes and
ID-based key agreement schemes in a different manner, this would imply that
standard key agreement schemes should also be defined to be secure in the pres-
ence of a Reveal∗ oracle. This final conclusion is somewhat unsatifactory, and
we hope our work will inspire other researchers to investigate this connection.
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