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Preface

The 4th International Conference on Pairing-Based Cryptography (Pairing 2010)
was held in Yamanaka Hot Spring, Japan, during December 13-15, 2010. It was
jointly co-organized by the National Institute of Advanced Industrial Science
and Technology (AIST), Japan, and the Japan Advanced Institute of Science
and Technology (JAIST).

The goal of Pairing 2010 was to bring together leading researchers and prac-
titioners from academia and industry, all concerned with problems related to
pairing-based cryptography. We hope that this conference enhanced commu-
nication among specialists from various research areas and promoted creative
interdisciplinary collaboration.

The conference received 64 submissions from 17 countries, out of which 25 pa-
pers from 13 countries were accepted for publication in these proceedings. At
least three Program Committee (PC) members reviewed each submitted paper,
while submissions co-authored by a PC member were submitted to the more
stringent evaluation of five PC members. In addition to the PC members, many
external reviewers joined the review process in their particular areas of expertise.
We were fortunate to have this energetic team of experts, and are deeply grate-
ful to all of them for their hard work, which included a very active discussion
phase. The paper submission, review and discussion processes were effectively
and efficiently made possible by the Web-based system iChair.

Furthermore, the conference featured three invited speakers: Jens Groth from
University College London, Joseph H. Silverman from Brown University, and
Gene Tsudik from University of California at Irvine, whose lectures on cutting-
edge research areas— “Pairing-Based Non-interactive Zero-Knowledge Proofs,”
“A Survey of Local and Global Pairings on Elliptic Curves and Abelian Vari-
eties,” and “Some Security Topics with Possible Applications for Pairing-Based
Cryptography,” respectively— contributed in a significant part to the richness
of the program.

We are very grateful to our supporters and sponsors. In addition to AIST
and JAIST, the event was supported by the Special Interest Group on Computer
Security (CSEC), IPSJ, Japan, the Japan Technical Group on Information Se-
curity (ISEC), IEICE, Japan, and the Technical Committee on Information and
Communication System Security (ICSS), IEICE, Japan, and co-sponsored by
the National Institute of Information and Communications Technology (NICT),
Japan, Microsoft Research, Voltage Security, Hitachi, Ltd., and NTT Data.



VI Preface

Finally, we thank all the authors who submitted papers to this conference,
the Organizing Committee members, colleagues and student helpers for their
valuable time and effort, and all the conference attendees who made this event
a truly intellectually stimulating one through their active participation.

December 2010 Marc Joye
Atsuko Miyaji
Akira Otsuka
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Germán Sáez UPC, Spain
Michael Scott Dublin City University, Ireland
Alice Silverberg University of California at Irvine, USA
Katsuyuki Takashima Mitsubishi Electric, Japan
Keisuke Tanaka Tokyo Institute of Technology, Japan
Edlyn Teske University of Waterloo, Canada
Frederik Vercauteren K.U. Leuven, Belgium
Bogdan Warinschi University of Bristol, UK
Duncan S. Wong City University of Hong Kong, China
Bo-Yin Yang Academia Sinica, Taiwan
Sung-Ming Yen National Central University, Taiwan
Fangguo Zhang Sun Yat-sen University, P.R. China
Jianying Zhou I2R, Singapore



Organization IX

External Reviewers

Joonsang Baek, Angelo De Caro, Wouter Castryck, Emanuele Cesena, Melissa
Chase, Kuo-Zhe Chiou, Sherman Chow, Cheng-Kang Chu, Iwen Coisel, Vanesa
Daza, Jérémie Detrey, Sungwook Eom, Essam Ghadafi, Goichiro Hanaoka, Javier
Herranz, Qiong Huang, Xinyi Huang, Vincenzo Iovino, David Jao, Ezekiel
Kachisa, Dalia Khader, Woo Chun Kim, Fabien Laguillaumie, Tanja Lange, Wei-
Chih Lien, Hsi-Chung Lin, Georg Lippold, Jerome Milan, Michael Naehrig, Toru
Nakanishi, Greg Neven, Daniel Page, Elizabeth Quaglia, Carla Rafols, Francisco
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An Analysis of Affine Coordinates
for Pairing Computation

Kristin Lauter, Peter L. Montgomery, and Michael Naehrig

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

{klauter,petmon,mnaehrig}@microsoft.com

Abstract. In this paper we analyze the use of affine coordinates for

pairing computation. We observe that in many practical settings, e. g.

when implementing optimal ate pairings in high security levels, affine

coordinates are faster than using the best currently known formulas for

projective coordinates. This observation relies on two known techniques

for speeding up field inversions which we analyze in the context of pairing

computation. We give detailed performance numbers for a pairing imple-

mentation based on these ideas, including timings for base field and ex-

tension field arithmetic with relative ratios for inversion-to-multiplication

costs, timings for pairings in both affine and projective coordinates, and

average timings for multiple pairings and products of pairings.

Keywords: Pairing computation, affine coordinates, optimal ate pairing,

finite field inversions, pairing cost, multiple pairings, pairing products.

1 Introduction

Cryptographic pairing computations are required for a wide variety of new cryp-
tographic protocols and applications. All cryptographic pairings currently used
in practice are based on pairings on elliptic curves, requiring both elliptic curve
operations and function computation and evaluation to compute the pairing of
two points on an elliptic curve [36]. For a given security level, it is important to
optimize efficiency of the pairing computation, and much work has been done
on this topic (see for example [6,7,5,30,35,44,42]).

Elliptic curve operations can be implemented using various coordinate sys-
tems, such as affine or different variants of projective coordinates (for an overview
see [10]). It has long been the case that many implementers have found affine
coordinates slow for elliptic curve operations because of the relatively high costs
of inversions and the relatively fast modular multiplication that can be achieved
for special moduli such as generalized Mersenne primes. Thus projective coordi-
nates were also suggested for pairing implementations [33,41], and very efficient
explicit formulas were found for various parameter choices [1,16]. So recently
there has been a bias in the literature towards the use of projective coordi-
nates for pairings as well. Nevertheless, researchers had previously concluded
that affine coordinates can be superior in many situations (see [22, Section 5]
and [21, Section IX.14]).

M. Joye, A. Miyaji, and A. Otsuka (Eds.): Pairing 2010, LNCS 6487, pp. 1–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 K. Lauter, P.L. Montgomery, and M. Naehrig

In this paper we analyze the use of affine coordinates for pairing computation
in different settings. We propose the use of two known techniques for speeding up
field inversions and analyze them in the context of pairing computation. Based
on these, we find that in many practical settings, for example when implementing
one of the optimal pairings [44] based on the ate pairing [30] in high security
levels, affine coordinates will be much faster than projective coordinates.

The first technique we investigate is computing inverses in extension fields by
using towers of extension fields and successively reducing inverse computation to
subfield computations via the norm map. We show that this technique drastically
reduces the ratio of the costs of inversions to multiplications in extension fields.
Thus when computing the ate pairing, where most computations take place in
a potentially large extension field, the advantage of projective coordinates is
eventually erased as the degree of the extension gets large. This happens for
example when implementing pairings on curves for higher security levels such as
256 bits, or when special high-degree twists can not be used to reduce the size
of the extension field.

The second technique we investigate is the use of inversion-sharing for pairing
computations. Inversion-sharing is a standard trick whenever several inversions
are computed at once. As the number of elements to be inverted grows, the
average ratio of inversion-to-multiplication costs approaches 3. Inversion-sharing
can be used in a single pairing computation if the binary expansion is read from
right-to-left instead of left-to-right. This approach also has the advantage that it
can be easily parallelized to take advantage of multi-core processors. Inversion-
sharing for pairing computation can also be advantageous for computing multiple
pairings or for computing products of pairings, as was suggested by Scott [41]
and analyzed by Granger and Smart [25].

Ironically, although the two techniques we investigate can be used simultane-
ously, it is often not necessary to do so, since either technique alone can reduce
the inversion to multiplication ratio. Either technique alone makes affine coor-
dinates faster than projective coordinates in some settings.

To illustrate these techniques, we give detailed performance numbers for a
pairing implementation based on these ideas. This includes timings for base field
and extension field arithmetic with relative ratios for inversion-to-multiplication
costs and timings for pairings in both affine and projective coordinates, as well
as average timings for multiple pairings and products of pairings. In our im-
plementation, affine coordinates are faster than projective coordinates even for
Barreto-Naehrig curves [8] with a high-degree twist at the lowest security levels.
However, we expect that for other implementations, the benefits of affine coor-
dinates would only be realized for higher security levels or for curves without
high-degree twists.

The paper is organized as follows: Section 2 provides the necessary back-
ground on the ate pairing and discusses the costs of doubling and addition steps
in Miller’s algorithm. In Section 3, we show how variants of the ate pairing
can benefit from using affine coordinates due to the fact that the inversion-to-
multiplication ratio in an extension field is much smaller than in the base field.
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Section 4 is dedicated to revisiting the well-known inversion-sharing trick and
its application in pairing computation. Finally, Section 5 gives benchmarking
results for our pairing implementation based on the Microsoft Research bignum
library.

2 Pairing Computation

Let p > 3 be a prime and Fq be a finite field of characteristic p. Let E be an
elliptic curve defined over Fq, given by E : y2 = x3 +ax+ b, where a, b ∈ Fq and
4a3 + 27b2 �= 0. We denote by O the point at infinity on E. Let n = #E(Fq) =
q + 1 − t, where t is the trace of Frobenius, which fulfills |t| ≤ 2

√
q. We fix a

prime r with r | n. Let k be the embedding degree of E with respect to r, i. e.
k is the smallest positive integer with r | qk − 1. This means that F∗

qk contains
the group μr of r-th roots of unity. The embedding degree of E is an important
parameter, since it determines the field extensions over which the groups that
are involved in pairing computation are defined.

For m ∈ Z, let [m] be the multiplication-by-m map. The kernel of [m] is the
set of m-torsion points on E; it is denoted by E[m] and we write E(Fq�)[m] for
the set of Fq� -rational m-torsion points (� > 0). If k > 1, which we assume from
now on, we have E[r] ⊆ E(Fqk), i.e. all r-torsion points are defined over Fqk .

Most pairings that are suitable for use in practical cryptographic applications
are derived from the Tate pairing, which is a map E(Fqk)[r]×E(Fqk )/rE(Fqk) →
F∗
qk/(F∗

qk)r (for details see [18,19]). In this paper, we focus on the ate pairing
[30], variants of which are often the most efficient choices for implementation.

2.1 The Ate Pairing

Given m ∈ Z and P ∈ E[r], let fm,P be a rational function on E with divisor
(fm,P ) = m(P )−([m]P )−(m−1)(O). Let φq be the q-power Frobenius endomor-
phism on E. Define two groups of prime order r by G1 = E[r] ∩ ker(φq − [1]) =
E(Fq)[r] and G2 = E[r] ∩ ker(φq − [q]) ⊆ E(Fqk)[r]. The ate pairing is defined
as

aT : G2 ×G1 → μr, (Q,P ) 	→ fT,Q(P )(q
k−1)/r, (1)

where T = t − 1. The group G2 has a nice representation by an isomorphic
group of points on a twist E′ of E, which is a curve that is isomorphic to E.
Here, we are interested in those twists which are defined over a subfield of Fqk

such that the twisting isomorphism is defined over Fqk . Such a twist E′ of E is
given by an equation E′ : y2 = x3 + (a/α4)x + (b/α6) for some α ∈ Fqk with
isomorphism ψ : E′ → E, (x, y) 	→ (α2x, α3y). If ψ is minimally defined over
Fqk and E′ is minimally defined over Fqk/d for a d | k, then we say that E′ is
a twist of degree d. If a = 0, let d0 = 4; if b = 0, let d0 = 6, and let d0 = 2
otherwise. For d = gcd(k, d0) there exists exactly one twist E′ of E of degree d
for which r | #E′(Fqk/d) (see [30]). Define G′

2 = E′(Fqk/d)[r]. Then the map ψ is
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a group isomorphism G′
2 → G2 and we can represent all elements in G2 by the

corresponding preimages in G′
2. Likewise, all arithmetic that needs to be done

in G2 can be carried out in G′
2. The advantage of this is that points in G′

2 are
defined over a smaller field than those in G2. Using G′

2, we may now view the
ate pairing as a map G′

2 ×G1 → μr, (Q′, P ) 	→ fT,ψ(Q′)(P )(q
k−1)/r.

The computation of aT (Q′, P ) is done in two parts: first the evaluation of the
function fT,ψ(Q′) at P , and second the so-called final exponentiation to the power
(qk − 1)/r. The first part is done with Miller’s algorithm [36]. We describe it for
even embedding degree in Algorithm 1 which shows how to compute fm,ψ(Q′)(P )
for some integer m > 0. We denote the function given by the line through two
points R1 andR2 on E by lR1,R2 . IfR1 = R2, then the line is given by the tangent
to the curve passing through R1. Throughout this paper, we assume that k is
even so that denominator elimination techniques can be used (see [6,7]).

Algorithm 1. Miller’s algorithm for even k and ate-like pairings
Input: Q′ ∈ G′

2, P ∈ G1, m = (1, ml−2, . . . , m0)2

Output: fm,ψ(Q′)(P ) representing a class in F∗
qk/(F∗

qk )r

1: R′ ← Q′, f ← 1

2: for i from �− 1 downto 0 do
3: f ← f2 · lψ(R′),ψ(R′)(P ), R′ ← [2]R′

4: if (mi = 1) then
5: f ← f · lψ(R′),ψ(Q′)(P ), R′ ← R′ + Q′

6: end if
7: end for
8: return f

Miller’s algorithm builds up the function value fm,ψ(Q′)(P ) in a square-and-
multiply-like fashion from line function values along a scalar multiplication com-
puting [m]Q′ (which is the value of R′ after the Miller loop). Step 3 is called a
doubling step, it consists of squaring the intermediate value f ∈ Fqk , multiplying
it with the function value given by the tangent to E in R = ψ(R′), and doubling
the point R′. Similarly, an addition step is computed in Step 5 of Algorithm 1.

The final exponentiation in (1) maps classes in F∗
qk/(F∗

qk)r to unique represen-
tatives in μr. Given the fixed special exponent, there are many techniques that
improve its efficiency significantly over a plain exponentiation (see [42,24]).

The most efficient variants of the ate pairing are so-called optimal ate pairings
[44]. They are optimal in the sense that they minimize the size of m and with
that the number of iterations in Miller’s algorithm to log(r)/ϕ(k), where ϕ is
the Euler totient function. For these minimal values of m, the function fm,ψ(Q′)
alone usually does not give a bilinear map. To get a pairing, these functions need
to be adjusted by multiplying with a small number of line function values; for
details we refer to [44].

Secure and efficient implementation of pairings can be done only with a careful
choice of the underlying elliptic curve. The curve needs to be pairing-friendly,
i.e. the embedding degree k needs to be small, while r should be larger than

√
q.
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A survey of methods to construct such curves can be found in [20]. For security
reasons, the parameters need to have certain minimal sizes which lead to optimal
values for the embedding degree k for specific security levels (see for example
the keysize recommendations in [43] and [4]).

Furthermore, it is advantageous to choose curves with twists of degree 4 or 6,
so-called high-degree twists, since this results in higher efficiency due to the more
compact representation of the group G2. To achieve security levels of 128 bits
or higher, embedding degrees of 12 and larger are optimal. Because the degree
of the twist E′ is at most 6, this means that when computing ate-like pairings
at such security levels, all field arithmetic in the doubling and addition steps in
Miller’s algorithm takes place over a proper extension field of Fq.

2.2 Costs for Doubling and Addition Steps

In this section, we take a closer look at the costs of the doubling and addi-
tion steps in Miller’s algorithm. We begin by describing the evaluation of line
functions in affine coordinates, i.e. a point P on E, P �= O, is given by two
affine coordinates as P = (xP , yP ). Let R1, R2, S ∈ E with R1 �= −R2 and
R1, R2 �= O. Then the function of the line through R1 and R2 (tangent to E if
R1 = R2) evaluated at S is given by lR1,R2(S) = yS − yR1 − λ(xS − xR1), where
λ = (3x2

R1
+a)/2yR1 if R1 = R2 and λ = (yR2 −yR1)/(xR2 −xR1) otherwise. The

value λ is also used to compute R3 = R1 + R2 on E by xR3 = λ2 − xR1 − xR2

and yR3 = λ(xR1 − xR3) − yR1 . If R1 = −R2, then we have xR1 = xR2 and
lR1,R2(S) = xS − xR1 .

Before analyzing the costs for doubling and addition steps, we introduce no-
tations for field arithmetic costs. Let Fqm be an extension of degree m of Fq for
m ≥ 1. We denote by Mqm , Sqm , Iqm , addqm , subqm , and negqm the costs for
multiplication, squaring, inversion, addition, subtraction, and negation in the
field Fqm . When we omit the indices in all of the above, this indicates that we
are dealing with arithmetic in a fixed field and field extensions do not play a
role. The cost for a multiplication by a constant ω ∈ Fqm is denoted by M(ω).
We assume the same costs for addition of a constant as for a general addition.

Let notations be as described in Section 2.1. Let e = k/d, thenG′
2 = E′(Fqe)[r].

Let P ∈ G1, R′, Q′ ∈ G′
2 and let R = ψ(R′), Q = ψ(Q′). Furthermore, we assume

that Fqk = Fqe(α) where α ∈ Fqk is the same element as the one defining the
twist E′, and we have αd = ω ∈ Fqe . This means that each element in Fqk is
given by a polynomial of degree d−1 in α with coefficients in Fqe and the twisting
isomorphism ψ maps (x′, y′) to (α2x′, α3y′).

Doubling steps in affine coordinates: We need to compute

lR,R(P ) = yP − α3yR′ − λ(xP − α2xR′) = yP − αλ′xP + α3(λ′xR′ − yR′)

and R′
3 = [2]R′, where xR′

3
= λ′2 −2xR′ and yR′

3
= λ′(xR′ −xR′

3
)−yR′ . We have

λ′ = (3x2
R′ + a/α4)/2yR′ and λ = (3x2

R + a)/2yR = αλ′. Note that [2]R′ �= O in
the pairing computation.
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The slope λ′ can be computed with Iqe +Mqe +Sqe +4addqe , assuming that we
compute 3x2

R′ and 2yR′ by additions. To compute the double of R′ from the slope
λ′, we need at most Mqe +Sqe +4subqe . We obtain the line function value with a
cost of eMq to compute λ′xP and Mqe +subqe +negqe for d ∈ {4, 6}. When d =
2, note that α2 = ω ∈ Fqe and thus we need (k/2)Mq+Mqk/2 +M(ω)+2subqk/2

for the line.
We summarize the operation counts in Table 1. We restrict to even embedding

degree and 4 | k for b = 0 as well as to 6 | k for a = 0 because these cases
allow using the maximal-degree twists and are likely to be used in practice. We
compare the affine counts to costs of the fastest known formulas using projective
coordinates taken from [31] and [16]; see these papers for details. For an overview
of the most efficient explicit formulas known for elliptic-curve operations see the
EFD [10]. We transfer the formulas in [31] to the ate pairing using the trick in
[16] where the ate pairing is computed entirely on the twist. In this setting we
assume field extensions are constructed in a way that favors the representation
of line function values. This means that the twist isomorphism can be different
from the one described in this paper. Still, in the case d = 2, evaluation of the
line function can not be done in kMq; instead 2 multiplications in Fqk/2 need to
be done (see [16]). Furthermore, we assume that all precomputations are done
as described in the above papers and small multiples are computed by additions.

Table 1. Operation counts for the doubling step in the ate-like Miller loop omitting

1Sqk + 1Mqk

DBL d coord. Mq Iqe Mqe Sqe M( · ) addqe subqe negqe

ab �= 0
2

affine k/2 1 3 2 1M(ω) 4 6 −
2 | k Jac. [31] − − 3 11 1M(a/ω2) 6 17 −
b = 0

4
affine k/4 1 3 2 − 4 5 1

4 | k W(1,2) [16] k/2 − 2 8 1M(a/ω) 9 10 1

a = 0
6

affine k/6 1 3 2 − 4 5 1

6 | k proj. [16] k/3 − 2 7 1M(b/ω) 11 10 1

Addition steps in affine coordinates: The line function value has the same
shape as for doubling steps. Note that we can replace R′ by Q′ in the line and
compute

lR,Q(P ) = yP − α3yQ′ − λ(xP − α2xQ′) = yP − αλ′xP + α3(λ′xQ′ − yQ′)

and R′
3 = R′ +Q′, where xR′

3
= λ′2 − xR′ − xQ′ and yR′

3
= λ′(xR′ − xR′

3
) − yR′ .

The slope λ′ now is different, namely λ′ = (yR′ − yQ′)/(xR′ − xQ′). Note that
R′ = −Q′ does not occur when computing Miller function values of degree less
than r. The cost for doing an addition step is the same as that for a doubling
step, except that the cost to compute the slope λ′ is now Iqe + Mqe + 2subqe .

Table 2 compares the costs for affine addition steps to those in projective coor-
dinates. Again, we take these operation counts from the literature (see [1,16,15]
for the explicit formulas and details on the computation). Concerning the field
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Table 2. Operation counts for the addition step in the ate-like Miller loop omitting

1Mqk

ADD d coord. Mq Iqe Mqe Sqe addqe subqe negqe

ab �= 0
2

affine k/2 1 3 1 − 8 −
2 | k Jacobian [1] − − 8 6 6 17 −
b = 0

4
affine k/4 1 3 1 − 7 1

4 | k W(1,2) [16] k/2 − 9 5 7 8 1

a = 0
6

affine k/6 1 3 1 − 7 1

6 | k projective [15,16] k/3 − 11 2 1 7 −

and twist representations and line function evaluation, similar remarks as for
doubling steps apply here.

The multiplication with ω in the case d = 2 can be done as a precomputation,
since Q′ is fixed throughout the pairing algorithm. Since other formulas do not
have multiplications by constants, we omit this column in Table 2.

Affine versus projective: Doubling and addition steps for computing pairings
in affine coordinates include one inversion in Fqe per step. The various projective
formulas avoid the inversion, but at the cost of doing more of the other opera-
tions. How much higher these costs are exactly, depends on the underlying field
implementation and the ratio of the costs for squaring to multiplication.

A rough estimate of the counts in Table 2 shows that for Sqe = Mqe or
Sqe = 0.8Mqe (commonly used values in the literature, see [10]), the cost traded
for the inversion in the projective addition formulas is at least 9Mqe . For doubling
steps, it is smaller, but larger than 3Mqe in all cases. Since doubling steps are
much more frequent in the pairing computation (especially when a low Hamming
weight for the degree of the used Miller function is chosen), the traded cost in
the doubling case is the most relevant to consider.

Example 1. Let ab �= 0, i.e. d = 2. The cost that has to be weighed against
the inversion cost for a doubling step is 9Sqk/2 − (k/2)Mq + M(a/ω2) − M(ω) +
2addqk/2+11subqk/2 . Clearly, (k/2)Mq < Sqk/2 , and we assume M(ω) ≈ M(a/ω2)

and addqk/2 ≈ subqk/2 . If Sqk/2 ≈ 0.8Mqk/2, we see that if an inversion costs less
than 6.4Mqk/2 + 13addqk/2 , then affine coordinates are better than Jacobian.

Example 2. In the case a = 0, d = 6, and Sqk/6 ≈ 0.8Mqk/6, similar to the
previous example, we deduce that if an inversion in Fqk/6 is less than 3Mqk/6 +
(k/6)Mq+M(b/ω) +12addqk/6 , then affine coordinates beat the projective ones.

To compare affine to projective formulas, we need to look at the relative cost of
an inversion that is used in the affine formulas versus the cost of the additional
operations needed for the projective formulas. Therefore, an important measure
that determines whether the affine formulas are competitive with the projective
formulas is the ratio of the cost of an inversion to the cost of a multiplication.
For a positive integer �, define the inversion-to-multiplication ratio in the field
Fq� by Rq� = Iq�/Mq� .
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In implementations of prime fields, inversions are usually very expensive, i.e.
the ratio Rq is very large. So the costs for inversions are much higher than the
above-mentioned costs to avoid them. Thus it does not make sense to use affine
coordinates. But it is possible to obtain much smaller ratios, e.g. when computing
in extension fields. Since the ate pairing requires inversions only in Fqe this could
be in favor of affine coordinates. Depending on the specific ratio Rq for a given
implementation, affine coordinates might even be faster than projective.

3 Inversions in Extension Fields for the Ate Pairing

In this section, we describe and analyze a way to compute inversions in finite
field extensions. It is based on a given, fixed implementation of arithmetic in the
underlying prime field and explains that the inversion-to-multiplication ratio
R = I/M decreases when moving up in a tower of field extensions.

3.1 Inverses in Field Extensions

The method we suggest for computing the inverse of an element in an extension
of some finite field Fq was originally described by Itoh and Tsujii [32] for binary
fields using normal bases. Kobayashi et al. [34] generalize the technique to large-
characteristic fields in polynomial basis and use it for elliptic-curve arithmetic.
It is a standard way to compute inverses in optimal extension fields (see [2,27]
and [17, Sections 11.3.4 and 11.3.6]).

We require Fq� = Fq(α) where α has minimal polynomial X� − ω for some
ω ∈ F∗

q and assume gcd(�, q) = 1. Then, the inverse of β ∈ F∗
q� can be computed

as
β−1 = βv−1 · β−v,

where v = (q� − 1)/(q − 1) = q�−1 + · · · + q + 1. Note that βv is the norm of β
and thus lies in the base field Fq. So the cost for computing the inverse of β is
the cost for computing βv−1 and βv, one inversion in the base field Fq to obtain
β−v, and the multiplication of βv−1 with β−v. The powers of β are obtained by
using the q-power Frobenius automorphism on F�q.

We give a brief estimate of the cost of the above. A Frobenius computation
using a look-up table of �−1 pre-computed values in Fq consisting of powers of ω
costs at most �−1 multiplications in Fq (see [34, Section 2.3], note gcd(�, q) = 1).
According to [29, Section 2.4.3] the computation of βv−1 via an addition chain
approach, using a look-up table for each needed power of the Frobenius, costs at
most �log(�−1)+h(�−1) Frobenius computations and fewer multiplications in
Fq� . Here h(m) denotes the Hamming weight of an integerm. Knowing that βv ∈
Fq, its computation from βv−1 and β costs at most � base field multiplications,
one multiplication with ω, and �−1 base field additions. The final multiplication
of β−v with βv−1 can be done in � base field multiplications. This leads to an
upper bound for the cost of an inversion in Fq� as follows:

Iq� ≤ Iq + (�log(�− 1) + h(�− 1))(Mq� + (�− 1)Mq)
+2�Mq + M(ω) + (�− 1)addq. (2)
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Let M(�) be the minimal number of multiplications in Fq needed to multiply
two different, non-trivial elements in Fq� not lying in a proper subfield of Fq� .
Then the following lemma bounds the ratio of inversion to multiplication costs
in Fq� from above by 1/M(�) times the ratio in Fq plus an explicit constant.
Thus the ratio in the extension improves by roughly a factor of M(�).

Lemma 1. Let Fq be a finite field, � > 1, Fq� = Fq(α) with α� = ω ∈ F∗
q. Then

using the above inversion algorithm in Fq� leads to

Rq� ≤ Rq/M(�) + C(�),

where C(�) = �log(�−1)+h(�−1)+ 1
M(�)

(
3�+(�−1)(�log(�−1)+h(�−1))

)
.

Proof. Since M(�) is the minimal number of multiplications in Fq needed for
multiplying two elements in Fq� , we can assume that the actual cost for the
latter is Mq� ≥M(�)Mq. Using inequality (2), we deduce

Rq� = Iq�/Mq� ≤ Iq/(M(�)Mq) + C̃(�) = Rq/M(�) + C̃(�),

where C̃(�) = �log(�−1)+h(�−1)+(2�+(�−1)(�log(�−1)+h(�−1)))/M(�)+
(Mω + (� − 1)addq)/(M(�)Mq). Since M(ω) ≤ Mq and addq ≤ Mq, we get
Mω + (�− 1)addq ≤ �Mq and thus C̃(�) ≤ C(�). ��
In Table 3 we give values for the factor 1/M(�) and the additive constant C(�)
that determine the improvements of Rq� over Rq for several small extension
degrees �. We take the numbers for M(�) from the formulas given in [38].

Table 3. Constants that determine the improvement of Rq� over Rq

� 2 3 4 5 6 7

1/M(�) 1/3 1/6 1/9 1/13 1/17 1/22

C(�) 3.33 4.17 5.33 5.08 6.24 6.05

For small-degree extensions, the inversion method can be easily made explicit.
We state and analyze it for quadratic and cubic extensions.

Quadratic extensions: Let Fq2 = Fq(α) with α2 = ω ∈ Fq. An element
β = b0 + b1α �= 0 can be inverted as

1
b0 + b1α

=
b0 − b1α
b20 − b21ω

=
b0

b20 − b21ω
− b1
b20 − b21ω

α.

In this case the norm of β is given explicitly by b20 − b21ω ∈ Fq. The inverse of β
thus can be computed in Iq2 = Iq + 2Mq + 2Sq + M(ω) + subq + negq.

We assume that we multiply Fq2 -elements with Karatsuba multiplication,
which costs Mq2 = 3Mq +M(ω) + 2addq + 2subq. As in the general case above,
we assume that the cost for a full multiplication in the quadratic extension is at
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least Mq2 ≥ 3Mq, i.e. we restrict to the average case where both elements have
both of their coefficients different from 0. Thus

Rq2 = Iq2/Mq2 ≤ (Iq/3Mq) + 2 = Rq/3 + 2,

where we roughly assume that Iq2 ≤ Iq+6Mq. This bound shows that for Rq > 3
the ratio becomes smaller in Fq2 . For large ratios in Fq it becomes roughly Rq/3.

Cubic extensions: Let Fq3 = Fq(α) with α3 = ω ∈ Fq. Similar to the quadratic
case we can invert β = b0 + b1α+ b2α2 ∈ F∗

q3 by

1
b0 + b1α+ b2α2

=
b20 − ωb1b2
N(β)

+
ωb22 − b0b1
N(β)

α+
b21 − b0b2
N(β)

α2

with N(β) = b30 + b31ω + b32ω
2 − 3ωb0b1b2. We start by computing ωb1 and ωb2

as well as b20 and b21. The terms in the numerators are obtained by a 2-term
Karatsuba multiplication and additions and subtractions via 3Mq computing
b0b2, ωb1b2 and (ωb2 + b0)(b2 + b1). The norm can be computed by 3 more
multiplications and 2 additions. Thus the cost for the inversion is Iq3 = Iq +
9Mq + 2Sq + 2M(ω) + 4addq + 4subq. A Karatsuba multiplication can be done
in Mq3 = 6Mq + 2M(ω) + 9addq + 6subq. We use Mq3 ≥ 6Mq, assume Iq3 ≤
Iq + 18Mq and obtain Rq3=Iq3/Mq3 ≤ (Iq/6Mq) + 3 = Rq/6 + 3.

Towers of field extensions: Baktir and Sunar [3] introduce optimal tower
fields as an alternative for optimal extension fields, where they build a large
field extension as a tower of small extensions instead of one big extension. They
describe how to use the above inversion technique recursively by passing down
the inversion in the tower, finally arriving at the base field. They show that this
method is more efficient than computing the inversion in the corresponding large
extension with the Itoh-Tsujii inversion directly.

In pairing-based cryptography it is common to use towers of fields to represent
the extension Fqk , where k is the embedding degree. Benger and Scott [9] discuss
how to best choose such towers, but do not address inversions.

3.2 Extension-Field Inversions for the Ate Pairing

We have seen in Section 2 that for the ate pairing, the inversions in the doubling
and addition steps are inversions in a proper extension field of Fq. We now take
a closer look at specific high-security levels to see which degrees these extension
fields have. For a pairing-friendly elliptic curve E over Fq with embedding degree
k with respect to a prime divisor r | #E(Fq), we define the ρ-value of E as
ρ = log(q)/ log(r). This value is a measure of the base field size relative to the
size of the prime-order subgroup on the curve.

Table 4 gives the recommendations by NIST [4] and ECRYPT II [43] for
equivalent levels of security for the discrete logarithm problems in the elliptic
curve subgroup of order r and in a subgroup of F∗

qk . For efficiency reasons, it is
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Table 4. NIST [4] and ECRYPT II [43] recommendations for bitsizes of r and qk

providing equivalent levels of security on elliptic-curve point groups and in finite fields

security NIST [4] ECRYPT II [43]

(bits) r (bits) qk (bits) ρk qk (bits) ρk

128 256 3072 12 3248 12.69

192 384 7680 20 7936 20.67

256 512 15360 30 15424 30.13

Table 5. Extension fields for which inversions are needed when computing ate-like

pairings for different examples of pairing-friendly curve families suitable for the given

security levels

security construction in [20] curve k ρ ρk d extension

128

Ex. 6.8 a = 0 12 1.00 12.00 6 Fp2
Ex. 6.10 b = 0 8 1.50 12.00 4 Fp2
Section 5.3 a, b �= 0 10 1.00 10.00 2 Fp5
Constr. 6.7+ a, b �= 0 12 1.75 21.00 2 Fp6

192

Ex. 6.12 a = 0 18 1.33 24.00 6 Fp3
Ex. 6.11 b = 0 16 1.25 20.00 4 Fp4
Constr. 6.3+ a, b �= 0 14 1.50 21.00 2 Fp7

256

Constr. 6.6 a = 0 24 1.25 30.00 6 Fp4
Constr. 6.4 b = 0 28 1.33 37.24 4 Fp7
Constr. 6.24+ a, b �= 0 26 1.17 30.34 2 Fp13

desirable to balance the security in both groups. The group sizes are linked by
the embedding degree k, which leads to desired values for ρk as given in Table 4.

To implement pairings at a given security level, one needs to find a pairing-
friendly elliptic curve with parameters of at least the sizes given in Table 4; for
efficiency it is even desirable to obtain ρk as close to the desired value as possible.
An overview of construction methods for pairing-friendly elliptic curves is given
in [20]. In Table 5, we list suggestions for curve families by their construction
in [20] for high-security levels of 128, 192, and 256 bits. The last column in
Table 5 shows the field extensions in which inversions are done to compute the
line function slopes. We not only give families of curves with twists of degree
4 and 6, but also more generic families such that the curves only have a twist
of degree 2. Of course, in the latter case the extension field, in which inversions
for the affine ate pairing need to be computed, is larger than when dealing with
higher-degree twists. Because curves with twists of degree 4 and 6 are special
(they have j-invariants 1728 and 0), there might be reasons to choose the more
generic curves. Note that curves from the given constructions are all defined over
prime fields. Therefore we use the notation Fp in Table 5.

Remark 1. The conclusion to underline from the discussion in this section, is
that, using the improved inversions in towers of extension fields described here,
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there are at least two scenarios where most implementations of the ate pairing
would be more efficient using affine coordinates:

When higher security levels are required, so that k is large. For example 256-
bit security with k = 28, so that most of the computations for the ate pairing
take place in the field extension of degree 7, even using a degree-4 twist (second-
to-last line of Table 5). In that case, the I/M ratio in the degree-7 extension
field would be roughly 22 times less (plus 6) than the ratio in the base field
(see the last entry in Table 3). The costs for doubling and addition steps given
in the second lines of Tables 1 and 2 for degree-4 twists show that the cost of
the inversion avoided in a projective implementation should be compared with
roughly 6Sq7 + 5addq7 + 5subq7 extra for a doubling (and an extra 6Mq7 +
4Sq7 + 7addq7 + subq7 for an addition step). In most implementations of the
base field arithmetic, the cost of these 16 or 17 operations in the extension field
would outweigh the cost of one improved inversion in the extension field. See for
example our sample timings for degree-6 extension fields in Table 6 in Section 5.
Note there that even the cost for additions and subtractions is not negligible as
is usually assumed.

When special high-degree twists are not being used. In this scenario there are
two reasons why affine coordinates will be better under most circumstances:

First, the costs for doubling and addition steps given in the first lines of
Tables 1 and 2 for degree-2 twists are not nearly as favorable towards projective
coordinates as the formulas in the case of higher degree twists. For degree-2
twists, both the doubling and addition steps require roughly at least 9 extra
squarings and 13 or 15 extra field extension additions or subtractions for the
projective formulas.

Second, the degree of the extension field where the operations take place is
larger. See the bottom row for each security level in Table 5, so we have extension
degree 6 for 128-bit security up to extension degree 13 for 256-bit security.

4 Sharing Inversions for Pairing Computation

In this section, we revisit a well-known trick for efficiently computing several
inverses at once, asymptotically achieving an I/M-ratio of 3. We point out and
recall possibilities to improve pairing computation in affine coordinates by using
this trick.

4.1 Simultaneous Inversions

The inverses of s field elements a1, . . . , as can be computed simultaneously with
Montgomery’s well-known sharing-inversions trick [37, Section 10.3.1.] at the
cost of 1 inversion and 3(s− 1) multiplications. It is based on the following idea:
to compute the inverse of two elements a and b, one computes their product ab
and its inverse (ab)−1. The inverses of a and b are then found by a−1 = b · (ab)−1

and b−1 = a · (ab)−1.
In general, for s elements one first computes the products ci = a1 · · · · ·

ai for 2 ≤ i ≤ s with s − 1 multiplications and inverts cs. Then we have
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a−1
s = cs−1c

−1
s . We get a−1

s−1 by c−1
s−1 = c−1

s as and a−1
s−1 = cs−2c

−1
s−1 and so

forth (see [17, Algorithm 11.15]), where we need 2(s − 1) more multiplications
to get the inverses of all elements.

The cost for s inversions is replaced by I + 3(s− 1)M. Let Ravg,s denote the
ratio of the cost of s inversions to the cost of s multiplications. It is bounded
above by Ravg,s = I/(sM) + 3(s − 1)/s ≤ R/s + 3, i.e. when the number s of
elements to be inverted grows, the ratio Ravg,s gets closer to 3. Note that most
of the time, this method improves the efficiency of an implementation whenever
applicable. However, as discussed in Section 3, in large field extensions, the I/M-
ratio might already be less than 3 due to the inversion method from Section 3.1,
in which case the sharing trick would make the average ratio worse.

4.2 Sharing Inversions in a Single Pairing Computation

Schroeppel and Beaver [40] demonstrate the use of the inversion-sharing trick to
speed up a single scalar multiplication on an elliptic curve in affine coordinates.
They suggest postponing addition steps in the double-and-add algorithm to ex-
ploit the inversion sharing. In order to do that, the double-and-add algorithm
must be carried out by going through the binary representation of the scalar
from right to left. First, all doublings are carried out and the points that will
be used to add up to the final result are stored. When all these points have
been collected, several additions can be done at once, sharing the computation
of inversions among them.

Miller’s algorithm can also be done from right to left. The doubling steps
are computed without doing the addition steps. The required field elements and
points are stored in lists and addition steps are done in the end. The algorithm
is summarized in Algorithm 2. Unfortunately, addition steps cost much more
than in the conventional left-to-right algorithm as it is given in Algorithm 1.
In the right-to-left version, each addition step in Line 10 needs a general Fqk -
multiplication and a multiplication with a line function value. The conventional
algorithm only needs a multiplication with a line. These huge costs can not be
compensated by using affine coordinates with the inversion-sharing trick.

Parallelizing a single pairing. However, the right-to-left algorithm can be
parallelized, and this could lead to more efficient implementations taking ad-
vantage of the recent advent of many-core machines. Grabher, Großschädl, and
Page [23, Algorithm 2] use a version of Algorithm 2 to compute a single pairing
by doing addition steps in parallel on two different cores. They divide the lists
with the saved function values and points into two halves and compute two in-
termediate values which are in the end combined in a single addition step. For
their specific implementation, they conclude that this is not faster than the con-
ventional non-parallel algorithm. Still, this idea might be useful for two or more
cores, once multiple cores can be used with less overhead. It is straightforward
to extend this algorithm to more cores.

So we suggest that the parallelized algorithm can be combined with the shared
inversion trick when doing the addition steps in the end. The improvements
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Algorithm 2. Right-to-left version of Miller’s algorithm with postponed addi-
tion steps for even k and ate-like pairings
Input: Q′ ∈ G′

2, P ∈ G1, m = (1 = ml−1, ml−2, . . . , m0)2

Output: fm,ψ(Q′)(P ) representing a class in F∗
qk/(F∗

qk )r

1: R′ ← Q′, f ← 1, j ← 0

2: for i from 0 to �− 1 do
3: if (mi = 1) then
4: AR′ [j]← R′, Af [j]← f , j ← j + 1

5: end if
6: f ← f2 · lψ(R′),ψ(R′)(P ), R′ ← [2]R′

7: end for
8: R′ ← AR′ [0], f ← Af [0]

9: for (j ← 1; j ≤ h(m)− 1; j + +) do
10: f ← f ·Af [j] · lψ(R′),ψ(AR′ [j])(P ), R′ ← R′ + AR′ [j]
11: end for
12: return f

achieved by this approach strongly depend on the Hamming weight of the value
m in Miller’s algorithm. If it is large, then savings are large, while for very sparse
m there is almost no improvement. Therefore, when it is not possible to choosem
with low Hamming weight, combining the parallelized right-to-left algorithm for
pairings with the shared inversion trick can speed-up the computation. Grabher
et al. [23] note that when multiple pairings are computed, it is better to parallelize
by performing one pairing on each core.

4.3 Multiple Pairings and Products of Pairings

Many protocols involve the computation of multiple pairings or products of
pairings. For example, multiple pairings need to be computed in the searchable
encryption scheme of Boneh et al. [13]; and the non-interactive proof systems pro-
posed by Groth and Sahai [26] need to check pairing product equations. In these
scenarios, we propose sharing inversions when computing pairings with affine co-
ordinates. In the case of products of pairings, this has already been proposed and
investigated by Scott [41, Section 4.3] and Granger and Smart [25].

Multiple pairings. Assume we want to compute s pairings on pointsQ′
i and Pi,

i.e. a priori we have s Miller loops to compute fm,ψ(Q′
i)

(Pi). We carry out these
loops simultaneously, doing all steps up to the first inversion computation for a
line function slope for all of them. Only after that, all slope denominators are
inverted simultaneously, and we continue with the computation for all pairings
until the next inversion occurs. The sMiller loops are not computed sequentially,
but rather sliced at the slope denominator inversions. The costs stay the same,
except that now the average inversion-to-multiplication cost ratio is 3 + Rqe/s,
where e = k/d and d is the twist degree.

So when computing enough pairings such that the average cost of an inver-
sion is small enough, using the sliced-Miller approach with inversion sharing in
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affine coordinates is faster than using the projective coordinates explicit formulas
described in Section 2.2.

Products of pairings. For computing a product of pairings, more optimiza-
tions can be applied, including the above inversion-sharing. Scott [41, Section 4.3]
suggests using affine coordinates and sharing the inversions for computing the
line function slopes as described above for multiple pairings. Furthermore, since
the Miller function of the pairing product is the product of the Miller functions
of the single pairings, in each doubling and addition step the line functions can
already be multiplied together. In this way, we only need one intermediate vari-
able f and only one squaring per iteration of the product Miller loop. Of course
in the end, there is only one final exponentiation on the product of the Miller
function values. Granger and Smart [25] show that by using these optimizations
the cost for introducing an additional ate pairing to the product can be as low
as 13% of the cost of a single ate pairing.

5 Example Implementation

The implementation described in this section is an implementation of the optimal
ate pairing on a Barreto-Naehrig (BN) curve [8] over a 256-bit prime field, i.e.
the curve has a 256-bit prime number n of Fp-rational points and embedding
degree k = 12 with respect to n.

The implementation is part of the Microsoft Research pairing library. It is
specialized to the BN curve family but is not specialized for a specific BN curve.
It is based on Microsoft Research’s general purpose library for big number arith-
metic, which can be compiled under 32-bit or 64-bit Windows. On top of that,
we use the tower of field extensions Fp12/Fp6/Fp2/Fp to realize field arithmetic
in Fp12 . In Table 6 we give timings for the required field arithmetic in the fields
Fp, Fp2 , Fp6 , and Fp12 for the 32-bit and 64-bit versions, respectively. The 32-
bit timings are for a pure software C-implementation, while the 64-bit software
makes use of assembly code for base field multiplications, i.e. special code for
Montgomery multiplication with a prime modulus of 256 bits, only using the
fixed size of the modulus. Note that the timings in cycles and miliseconds stem
from two different measurements and thus do not exactly translate.

The last column in Table 6 gives the I/M-ratios for the corresponding exten-
sion field and demonstrates the effect of using the inversion method for extension
field towers described in Section 3.1. The ratios are even smaller than predicted
by the theoretical upper bounds in Lemma 1 and Table 3. This is explained by
the fact that actual multiplication costs for elements in Fq� are higher than the
estimates given there that take into account only multiplications from the base
field and neglect all other base field operations.

The pairing implementation uses the usual optimizations. First of all, a twist
E′/Fp2 provides the group G′

2 to represent elements in G2 as described in Sec-
tion 2.1. The affine doubling and addition steps in Miller’s algorithm are com-
puted as shown in Section 2.2. The projective steps use the explicit formulas
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Table 6. Field arithmetic timings in a 256-bit prime field, on an Intel Core 2 Duo

E8500 @ 3.16 GHz under 32-bit/64-bit Windows 7. Average over 1000 operations in

cpucycles (cyc) and microseconds (μs).

add sub M S I R = I/M
cyc μs cyc μs cyc μs cyc μs cyc μs

32-bit

Fp 327 0.11 309 0.10 988 0.32 945 0.32 13285 4.18 13.45

Fp2 588 0.19 585 0.18 4531 1.44 2949 0.91 18687 5.65 4.13

Fp6 1746 0.54 1641 0.52 38938 12.09 26364 8.44 78847 24.98 2.03

Fp12 3300 1.06 3233 1.03 123386 38.97 88249 27.94 210907 66.90 1.71

64-bit

Fp 189 0.06 163 0.05 414 0.13 414 0.13 9469 2.98 22.87

Fp2 329 0.10 300 0.10 2122 0.67 1328 0.42 11426 3.65 5.38

Fp6 931 0.29 834 0.26 18544 5.81 12929 4.05 40201 12.66 2.17

Fp12 1855 0.57 1673 0.51 60967 19.17 43081 13.57 103659 32.88 1.70

from the recent paper of Costello et al. [16]. The final exponentiation is done as
described in [42], and uses the special squaring formulas given by Granger and
Scott [24].

Table 7 gives benchmarking results for several pairing functions in the library,
compiled under 32-bit and 64-bit Windows 7, respectively. All functions com-
pute the optimal ate pairing for BN curves as described for example in [39]. The
line entitled “20 at once (per pairing)” gives the average timing for one pairing
out of 20 that have been computed at the same time. This function uses the
inversion-sharing trick as described in Section 4.3. The function corresponding
to the line “product of 20” computes the product of 20 pairings using the opti-
mizations described in Section 4.3. The lines with the attribute “1st arg. fixed”
mean functions that compute multiple pairings or a product of pairings, where
the first input point is fixed for all pairings, and only the second point varies.
In this case, the operations depending only on the first argument are done only
once. We list separately the final exponentiation timings. They are included in
the pairing timings of the other lines.

Table 7. Optimal ate pairing timings on a 256-bit BN curve, measured on an Intel Core

2 Duo E8500 @ 3.16 GHz under 32-bit/64-bit Windows 7. Average over 20 pairings in

cpucycles (cyc) and milliseconds (ms).

optimal ate pairings 32-bit 64-bit

cyc ms cyc ms

projective 32,288,630 10.06 15,426,503 4.88

single pairing 30,091,044 9.49 14,837,947 4.64

20 at once (per pairing) 29,681,288 9.39 14,442,433 4.53

affine 20 at once, 1st arg. fixed (per pairing) 27,084,852 8.53 13,124,802 4.12

product of 20 (per pairing) 10,029,724 3.16 4,832,725 1.52

product of 20, 1st arg. fixed (per pairing) 7,316,501 2.32 3,563,108 1.12

single final exponentiation 15,043,435 4.75 7,266,020 2.28
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Implementation Notes

1. For both the 32-bit and 64-bit versions of the library, a single pairing is com-
puted faster with affine coordinates than with projective coordinates. This is
due to the relatively low I/M-ratios in the base field Fp (13.45 and 22.87 re-
spectively) and in the quadratic extension (ratios 4.13 and 5.38 respectively).
These low ratios are due to a relatively efficient inversion implementation in
the base field combined with the improved inversion for quadratic extensions
given in Section 3.1.

2. At this security level (128-bits) and using the special high-degree-6 twist, the
projective implementation is almost on par with the affine implementation,
so that even a small improvement in the base field multiplication would tip
the balance in favor of a projective implementation.

3. However, as was explained in Remark 1 in Section 3.2, either for higher secu-
rity levels or for curves without special high degree twists, affine coordinates
will be much faster than projective coordinates given our base field and ex-
tension field arithmetic. Indeed, our I/M-ratio in a degree 6 extension is
already roughly 2, for both our 32-bit and 64-bit versions. With a ratio of 2,
projective coordinates are not a good choice.

4. Because our I/M-ratios in the quadratic field extension are already so close
to 3, there is little improvement expected or observed from using the shared
inversion tricks discussed in Section 4.

5. Note that field addition and subtraction costs are not negligible, as one might
think from the fact that they are not often included in the operation counts
when comparing various methods for elliptic curve operations and pairing
implementations. In our base field arithmetic, 1 multiplication costs roughly
the same as 3 field additions or subtractions, but the relative cost of additions
and subtractions in extension fields is significantly less.

6. Note that the ratio of squarings to multiplications changes in the extension
fields as well. A squaring in the quadratic extension is done with only 2
multiplications using the fact that the extension is generated by

√−1. This
improvement carries through to squarings in the higher field extensions.

Comparison to related work. We compare our work with the best results
for optimal ate pairing implementations on BN curves that we are aware of.

The software described in [28] needs about 10, 000, 000 cycles on an Intel
Core 2 for the R-ate pairing. Modular multiplication takes 310 cycles which is
about 25% faster than ours and seems to mostly account for the difference in
performance with our implementation for a pairing in projective coordinates.

Recently, there has been significant improvement on pairing implementations
for BN curves. The paper [39] presents an implementation that computes the
optimal ate pairing on a 256-bit BN curve using one core of an Intel Core 2 Quad
in about 4, 380, 000 cycles. The implementation described in [11] computes the
same pairing on a 254-bit BN curve in 2, 490, 000 cycles on an Intel Core i7.

Software as described in [39] and [11] is much faster than our implementa-
tion for the following reason. The above implementations gain their efficiency by



18 K. Lauter, P.L. Montgomery, and M. Naehrig

special curve parameter choices combined with a careful instruction scheduling
specific to the parameters and certain computer architectures or even proces-
sors, in particular resulting in highly efficient multiplications in the base field
and the quadratic extension field. Instead, our implementation is based on a
general-purpose library for the base field arithmetic which can be compiled on
many platforms and works for all BN curves. Thus our implementation is not
competitive with specially tailored ones as in [39] and [11]. Nevertheless, the
effects implied by the use of affine coordinates that we demonstrated with the
help of our implementation also apply to implementations with faster field mul-
tiplications. Affine coordinates will then be better only when working with larger
extension degrees that occur for higher security levels.

Acknowledgements. We would like to thank Dan Shumow and Tolga Acar for
their help with the development environment for our implementation. We thank
Steven Galbraith, Diego F. Aranha, and the anonymous referees for their helpful
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Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal ate

pairing over Barreto-Naehrig curves. IACR ePrint Archive, report 2010/354 (2010),

http://eprint.iacr.org/2010/354

12. Blake, I.F., Seroussi, G., Smart, N.P. (eds.): Advances in Elliptic Curve Cryptog-

raphy. Cambridge University Press, Cambridge (2005)

13. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption

with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.

LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

14. Cohen, H., Frey, G., Doche, C. (eds.): Handbook of Elliptic and Hyperelliptic Curve

Cryptography. Chapman and Hall/CRC, Boca Raton (2005)

15. Costello, C., Hisil, H., Boyd, C., Nieto, J.M.G., Wong, K.K.-H.: Faster pairings on

special Weierstrass curves. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS,

vol. 5671, pp. 89–101. Springer, Heidelberg (2009)

16. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with

high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,

vol. 6056, pp. 224–242. Springer, Heidelberg (2010)

17. Doche, C.: Finite Field Arithmetic. In: [14], ch. 11, pp. 201–237. CRC Press, Boca

Raton (2005)

18. Duquesne, S., Frey, G.: Background on Pairings. In: [14], ch. 6, pp. 115–124. CRC

Press, Boca Raton (2005)

19. Duquesne, S., Frey, G.: Implementation of Pairings. In: [14], ch. 16, pp. 389–404.

CRC Press, Boca Raton (2005)

20. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.

Journal of Cryptology 23(2), 224–280 (2010)

21. Galbraith, S.D.: Pairings. In: [12], ch. IX, pp. 183–213. Cambridge University Press,

Cambridge (2005)

22. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In:

Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer,

Heidelberg (2002)
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Abstract. This paper describes the design of a fast software library

for the computation of the optimal ate pairing on a Barreto–Naehrig

elliptic curve. Our library is able to compute the optimal ate pairing

over a 254-bit prime field Fp, in just 2.33 million of clock cycles on a

single core of an Intel Core i7 2.8GHz processor, which implies that

the pairing computation takes 0.832msec. We are able to achieve this

performance by a careful implementation of the base field arithmetic

through the usage of the customary Montgomery multiplier for prime

fields. The prime field is constructed via the Barreto–Naehrig polynomial

parametrization of the prime p given as, p = 36t4 + 36t3 + 24t2 + 6t + 1,

with t = 262−254 +244. This selection of t allows us to obtain important

savings for both the Miller loop as well as the final exponentiation steps

of the optimal ate pairing.

Keywords: Tate pairing, optimal pairing, Barreto–Naehrig curve, or-

dinary curve, finite field arithmetic, bilinear pairing software implemen-

tation.

1 Introduction

The protocol solutions provided by pairing-based cryptography can only be made
practical if one can efficiently compute bilinear pairings at high levels of secu-
rity. Back in 1986, Victor Miller proposed in [26,27] an iterative algorithm that
can evaluate rational functions from scalar multiplications of divisors, thus al-
lowing to compute bilinear pairings at a linear complexity cost with respect to
the size of the input. Since then, several authors have found further algorith-
mic improvements to decrease the complexity of Miller’s algorithm by reducing
its loop length [3, 4, 12, 20, 21, 38], and by constructing pairing-friendly elliptic
curves [5, 14,29] and pairing-friendly tower extensions of finite fields [6,24].
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Roughly speaking, an asymmetric bilinear pairing can be defined as the non-
degenerate bilinear mapping, ê : G1 × G2 → G3, where both G1, G2 are finite
cyclic additive groups with prime order r, whereas G3 is a multiplicative cyclic
group whose order is also r. Additionally, as it was mentioned above, for cryp-
tographic applications it is desirable that pairings can be computed efficiently.
When G1 = G2, we say that the pairing is symmetric, otherwise, if G1 �= G2,
the pairing is asymmetric [15].

Arguably the ηT pairing [3] is the most efficient algorithm for symmetric pair-
ings that are always defined over supersingular curves. In the case of asymmetric
pairings, recent breakthroughs include the ate pairing [21], the R-ate pairing [25],
and the optimal ate pairing [38].

Several authors have presented software implementations of bilinear pairings
targeting the 128-bit security level [1,8,10,16,18,23,31,32]. By taking advantage
of the eight cores of a dual quad-core Intel Xeon 45nm, the software library
presented in [1] takes 3.02 millions of cycles to compute the ηT pairing on a
supersingular curve defined over F21223 . Authors in [8] report 5.42 millions of
cycles to compute the ηT pairing on a supersingular curve defined over F3509 on
an Intel Core i7 45nm processor using eight cores. The software library presented
in [32] takes 4.470 millions of cycles to compute the optimal ate pairing on a
257-bit BN curve using only one core of an Intel Core 2 Quad Q6600 processor.

This paper addresses the efficient software implementation of asymmetric bi-
linear pairings at high security levels. We present a library,1 that performs the
optimal ate pairing over a 254-bit Barreto–Naehrig (BN) curve in just 2.33 mil-
lion of clock cycles on a single core of an Intel i7 2.8GHz processor, which implies
that the optimal ate pairing is computed in 0.832msec. To the best of our knowl-
edge, this is the first time that a software or a hardware accelerator reports a high
security level pairing computation either symmetric or asymmetric, either on one
core or on a multi-core platform, in less than one millisecond. After a careful selec-
tion of a pairing-friendly elliptic curve and the tower field (Sections 2 and 3), we
describe the computational complexity associated to the execution of the optimal
ate pairing (Section 4). Then, we describe our approach to implement arithmetic
over the underlying field Fp and to perform tower field arithmetic (Section 5), and
we give benchmarking results of our software library (Section 6).

2 Optimal Ate Pairing over Barreto–Naehrig Curves

Barreto and Naehrig [5] described a method to construct pairing-friendly ordi-
nary elliptic curves over a prime field Fp. Barreto–Naehrig curves (or BN curves)
are defined by the equation E : y2 = x3+b, where b �= 0. Their embedding degree
k is equal to 12. Furthermore, the number of Fp-rational points of E, denoted
by r in the following, is a prime. The characteristic p of the prime field, the
group order r, and the trace of Frobenius tr of the curve are parametrized as
follows [5]:
1 An open source code for benchmarking our software library is available at

http://homepage1.nifty.com/herumi/crypt/ate-pairing.html

http://homepage1.nifty.com/herumi/crypt/ate-pairing.html
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p(t) = 36t4 + 36t3 + 24t2 + 6t+ 1,
r(t) = 36t4 + 36t3 + 18t2 + 6t+ 1, (1)
tr(t) = 6t2 + 1,

where t ∈ Z is an arbitrary integer such that p = p(t) and r = r(t) are both
prime numbers. Additionally, t must be large enough to guarantee an adequate
security level. For a security level equivalent to AES-128, we should select t such
that log2(r(t)) ≥ 256 and 3000 ≤ k ·log2(p(t)) ≤ 5000 [14]. For this to be possible
t should have roughly 64 bits.

Let E[r] denote the r-torsion subgroup of E and πp be the Frobenius endomor-
phism πp : E → E given by πp(x, y) = (xp, yp). We define G1 = E[r] ∩Ker(πp −
[1]) = E(Fp)[r], G2 = E[r] ∩ Ker(πp − [p]) ⊆ E(Fp12)[r], and G3 = μr ⊂ F∗

p12

(i.e. the group of r-th roots of unity). Since we work with a BN curve, r is a
prime and G1 = E(Fp)[r] = E(Fp). The optimal ate pairing on the BN curve E
is a non-degenerate and bilinear pairing given by the map [30, 32, 38]:

aopt : G2 × G1 −→ G3

(Q,P ) 	−→ (
f6t+2,Q(P ) · l[6t+2]Q,πp(Q)(P ) ·

l[6t+2]Q+πp(Q),−π2
p(Q)(P )

) p12−1
r ,

where

– fs,Q, for s ∈ N and Q ∈ G2, is a family of normalized Fp12 -rational functions
with divisor (fs,Q) = s(Q) − ([s]Q)− (s− 1)(O), where O denotes the point
at infinity.

– lQ1,Q2 is the equation of the line corresponding to the addition of Q1 ∈ G2

with Q2 ∈ G2.

Algorithm 1 shows how we compute the optimal ate pairing in this work.
Our approach can be seen as a signed-digit version of the algorithm utilized
in [32], where both point additions and point subtractions are allowed. The
Miller loop (lines 3–10) calculates the value of the rational function f6t+2,Q

at point P . In lines 11–13 the product of the line functions l[6t+2]Q,πp(Q)(P ) ·
l[6t+2]Q+πp(Q),−π2

p(Q)(P ) is multiplied by f6t+2,Q(P ). The so-called final expo-
nentiation is computed in line 14. A detailed summary of the computational
costs associated to Algorithm 1 can be found in Section 4.

The BN curves admit a sextic twist E ′/Fp2 : y2 = x3 + b/ξ defined over Fp2 ,
where ξ ∈ Fp2 is an element that is neither a square nor a cube in Fp2 , and that
has to be carefully selected such that r|#E′(Fp2) holds. This means that pairing
computations can be restricted to points P and Q′ that belong to E(Fp) and
E′(Fp2), respectively, since we can represent the points in G2 by points on the
twist [5,21,38].

3 Tower Extension Field Arithmetic

Since k = 12 = 22 · 3, the tower extensions can be created using irreducible
binomials only. This is because xk−β is irreducible over Fp provided that β ∈ Fp
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Algorithm 1. Optimal ate pairing over Barreto–Naehrig curves.
Input: P ∈ G1 and Q ∈ G2.

Output: aopt(Q, P ).

1. Write s = 6t + 2 as s =
∑L−1
i=0 si2

i, where si ∈ {−1, 0, 1};
2. T ← Q, f ← 1;

3. for i = L− 2 to 0 do
4. f ← f2 · lT,T (P ); T ← 2T ;

5. if si = −1 then
6. f ← f · lT,−Q(P ); T ← T −Q;

7. else if si = 1 then
8. f ← f · lT,Q(P ); T ← T + Q;

9. end if
10. end for
11. Q1 ← πp(Q); Q2 ← πp2(Q);

12. f ← f · lT,Q1(P ); T ← T + Q1;

13. f ← f · lT,−Q2(P ); T ← T −Q2;

14. f ← f (p12−1)/r;

15. return f ;

is neither a square nor a cube in Fp [24]. Hence, the tower extension can be
constructed by simply adjoining a cube or square root of such element β and
then the cube or square root of the previous root. This process should be repeated
until the desired extension of the tower has been reached.

Accordingly, we decided to represent Fp12 using the same tower extension
of [18], namely, we first construct a quadratic extension, which is followed by
a cubic extension and then by a quadratic one, using the following irreducible
binomials:

Fp2 = Fp[u]/(u2 − β), where β = −5,
Fp6 = Fp2 [v]/(v3 − ξ), where ξ = u, (2)

Fp12 = Fp6 [w]/(w2 − v).

We adopted the tower extension of Equation (2), mainly because field elements
f ∈ Fp12 can be seen as a quadratic extension of Fp6 , and hence they can be
represented as f = g+hw, with g, h ∈ Fp6 . This towering will help us to exploit
the fact that in the hard part of the final exponentiation we will deal with
field elements f ∈ Fp12 that become unitary [35, 36], i.e., elements that belong
to the cyclotomic subgroup GΦ6(Fp2) as defined in [17]. Such elements satisfy,
fp

6+1 = 1, which means that f−1 = fp
6

= g − hw. In other words, inversion
of such elements can be accomplished by simple conjugation. This nice feature
opens the door for using addition-subtraction chains in the final exponentiation
step, which is especially valuable for our binary signed choice of the parameter t.
We also stress that our specific t selection permits to use ξ = u ∈ Fp, which will
yield important savings in the arithmetic computational cost as discussed next.
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3.1 Computational Costs of the Tower Extension Field Arithmetic

The tower extension arithmetic algorithms used in this work were directly
adopted from [18]. Let (a,m, s, i), (ã, m̃, s̃, ĩ), and (A,M,S, I) denote the cost
of field addition, multiplication, squaring, and inversion in Fp, Fp2 , and Fp6 ,
respectively. From our implementation (see Section 5), we observed experimen-
tally that m = s = 8a and i = 48.3m. We summarize the towering arithmetic
costs as follows:

– In the field Fp2 , we used Karatsuba multiplication and the complex method
for squaring, at a cost of 3 and 2 field multiplications in Fp, respectively.
Inversion of an element A = a0 + a1u ∈ Fp2 , can be found from the iden-
tity, (a0 + a1u)−1 = (a0 − a1u)/(a2

0 − βa2
1). Using once again the Karatsuba

method, field multiplication in Fp6 can be computed at a cost of 6m̃ plus
several addition operations. All these three operations require the multipli-
cation in the base field by the constant coefficient β ∈ Fp of the irreducible
binomial u2−β. We refer to this operation asmβ Additionally, we sometimes
need to compute the multiplication of an arbitrary element in Fp2 times the
constant ξ = u ∈ Fp at a cost of one multiplication by the constant β. We re-
fer to this operation as mξ, but it is noticed that the cost of mξ is essentially
the same of that of mβ .

– Squaring in Fp6 can be computed via the formula derived in [9] at a cost of
2m̃+3s̃ plus some addition operations. Inversion in the sextic extension can
be computed at a cost of 9m̃+ 3s̃+ 4mβ + 5ã+ ĩ [34].

– Since our field towering constructed Fp12 as a quadratic extension of Fp6 ,
the arithmetic costs of the quadratic extension apply. Hence, a field mul-
tiplication, squaring and inversion costs in Fp12 are, 3M + 5A, 2M + 5A
and 2M + 2S + 2A + I, respectively. However, if f ∈ Fp12 , belongs to the
cyclotomic subgroup GΦ6(Fp2), its field squaring f2 can be reduced to three
squarings in Fp4 [17].

Table 1 lists the computational costs of the tower extension field arithmetic in
terms of the Fp2 field arithmetic operations, namely, (ã, m̃, s̃, ĩ).

Table 1. Computational costs of the tower extension field arithmetic

Field Add./Sub. Mult. Squaring Inversion

Fp2 ã = 2a m̃ = 3m + 3a + mβ s̃ = 2m + 3a + mβ
ĩ = 4m + mβ

+2a + i

Fp6 3ã 6m̃ + 2mβ + 15ã 2m̃ + 3s̃ + 2mβ + 8ã
9m̃ + 3s̃ + 4mβ

+4ã + ĩ

Fp12 6ã 18m̃ + 6mβ + 60ã 12m̃ + 4mβ + 45ã
25m̃ + 9s̃ + 12mβ

+61ã + ĩ

GΦ6(Fp2) 6ã 18m̃ + 6mβ + 60ã
9s̃ + 4mβ

Conjugation
+30ã
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3.2 Frobenius Operator

Raising an element f ∈ Fp12 = Fp6 [w]/(w2 − v) to the p-power, is an arithmetic
operation needed in the final exponentiation (line 14) of the optimal ate pairing
(Algorithm 1). We briefly describe in the following how to compute fp efficiently.

We first remark that the field extension Fp12 can be also represented as a sextic
extension of the quadratic field, i.e., Fp12 = Fp2 [W ]/(W 6 − u), with W = w.
Hence, we can write f = g+hw ∈ Fp12 , with g, h ∈ Fp6 such that, g = g0 +g1v+
g2v

2, h = h0+h1v+h2v
2, where gi, hi ∈ Fp2 , for i = 1, 2, 3. This means that f can

be equivalently written as, f = g+hw = g0+h0W+g1W 2+h1W
3+g2W 4+h2W

5.
We note that the p-power of an arbitrary element in the quadratic extension

field Fp2 can be computed essentially free of cost as follows. Let b ∈ Fp2 be an

arbitrary element that can be represented as b = b0 + b1u. Then, (b)p
2i

= b and
(b)p

2i−1

= b̄, with b̄ = b0 − b1u, for i ∈ N.
Let ḡi, h̄i, denote the conjugates of gi, hi, for i = 1, 2, 3 respectively. Then,

using the identity W p = u(p−1)/6W , we can write, (W i)p = γ1,iW
i, with

γ1,i = ui(p−1)/6, for i = 1, . . . , 5. From the definitions given above, we can
compute fp as,

fp =
(
g0 + h0W + g1W 2 + h1W

3 + g2W 4 + h2W
5
)p

= ḡ0 + h̄0W
p + ḡ1W 2p + h̄1W

3p + ḡ2W 4p + h̄2W
5p

= ḡ0 + h̄0γ1,1W + ḡ1γ1,2W 2 + h̄1γ1,3W
3 + ḡ2γ1,4W 4 + h̄2γ1,5W

5.

The equation above has a computational cost of 5 multiplications in Fp and
5 conjugations in Fp2 . We can follow a similar procedure for computing fp

2

and fp
3
, which are arithmetic operations required in the hard part of the final

exponentiation of Algorithm 1. For that, we must pre-compute and store the
per-field constants γ1,i = ui·(p−1)/6, γ2,i = γ1,i · γ̄1,i, and γ3,i = γ1,i · γ2,i for
i = 1, . . . , 5.

4 Computational Cost of the Optimal Ate Pairing

In this work we considered several choices of the parameter t, required for defining
p(t), r(t), and tr(t) of Equation (1). We found 64-bit values of t with Hamming
weight as low as 2 that yield the desired properties for p, r, and tr. For example, the
binomial t = 263 −249 guarantees that p and r as defined in Equation (1) are both
258-bit prime numbers. However, due to the superior efficiency on its associated
base field arithmetic, we decided to use the trinomial t = 262 − 254 + 244, which
guarantees that p and r as defined in Equation (1) are 254-bit prime numbers.
Since the automorphism group Aut(E) is a cyclic group of order 6 [30], it is possible
to slightly improve Pollard’s rho attack and get a speedup of

√
6 [11]. Therefore, we

achieve a 126-bit security level with our choice of parameters. The curve equation
is E : Y 2 = X3 + 5 and we followed the procedure outlined in [6, 36] in order to
find a generator P = (xP , yP ) = (1,

√
6) for the group E(Fp), and one generator

Q′ = (xQ′ , yQ′) for the group E′(Fp2)[r], given as,
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xQ′ = 0x19B0BEA4AFE4C330DA93CC3533DA38A9F430B471C6F8A536E81962ED967909B5

+ 0xA1CF585585A61C6E9880B1F2A5C539F7D906FFF238FA6341E1DE1A2E45C3F72u,

yQ′ = 0x17ABD366EBBD65333E49C711A80A0CF6D24ADF1B9B3990EEDCC91731384D2627

+ 0xEE97D6DE9902A27D00E952232A78700863BC9AA9BE960C32F5BF9FD0A32D345u.

In this Section, we show that our selection of t yields important savings in the
Miller loop and the hard part of the final exponentiation step of Algorithm 1.

4.1 Miller Loop

We remark that the parameter 6t + 2 of Algorithm 1 has a bitlength L = 65,
with a Hamming weight of 7. This implies that the execution of the Miller loop
requires 64 doubling step computations in line 4, and 6 addition/subtraction
steps in lines 6 and 8.

It is noted that the equation of the tangent line at T ∈ G2 evaluated at P
defines a sparse element in Fp12 (half of the coefficients are equal to zero). The
same observation holds for the equation of the line through the points T and
±Q evaluated at P . This sparsity allows us to reduce the number of operations
on the underlying field when performing accumulation steps (lines 4, 6, 8, 12,
and 13 of Algorithm 1).

We perform an interleaved computation of the tangent line at point T (re-
spectively, the line through the points T and Q) evaluated at the base point
P , with a point doubling (respectively, point addition) using the formulae
given in [2]. We recall that the field extension Fp12 can be also represented as,
Fp12 = Fp2 [W ]/(W 6 − u), with W = w.

Doubling step (line 4). We represent the point T ∈ E′(Fp2) in Jacobian co-
ordinates as T = (XT , YT , ZT ). The formulae for doubling T , i.e., the equations
that define the point R = 2T = (XR, YR, ZR) are,

XR = 9X4
T − 8XTY 2

T , YR = 3X2
T (4XTY 2

T −XR) − 8Y 4
T , ZR = 2YTZT .

Let the point P ∈ E(Fp) be represented in affine coordinates as P = (xP , yP ).
Then, the tangent line at T evaluated at P can be calculated as [32],

lT,T (P ) = 2ZRZ2
T yP − (6X2

TZ
2
TxP )W + (6X3

T − 4Y 2
T )W 2 ∈ Fp12 .

Hence, the computational cost of the interleaving computation of the tangent
line and the doubling of the point T is, 3m̃+ 8s̃+ 16ã+ 4m. Other operations
included in line 4 are f2 and the product f2 · lT,T (P ), which can be computed
at a cost of, 12m̃+ 45ã+ 4mβ and 13m̃+ 39ã+ 2mβ, respectively. In summary,
the computational cost associated to line 4 of Algorithm 1 is given as, 28m̃ +
8s̃+ 100ã+ 4m+ 6mβ.

Addition step (lines 6 and 8). Let Q = (XQ, YQ, ZQ) and T = (XT , YT , ZT )
represent the points Q and T ∈ E′(Fp2) in Jacobian coordinates. Then the point
R = T +Q = (XR, YR, ZR), can be computed as,
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XR = (2YQZ3
T − 2YT )2 − 4(XQZ2

T −XT )3 − 8(XQZ2
T −XT )2XT ,

YR = (2YQZ3
T − 2YT )(4(XQZ2

T −XT )2XT −XR) − 8YT (XQZ2
T −XT )3,

ZR = 2ZT (XQZ2
T −XT ).

Once again, let the point P ∈ E(Fp) be represented in affine coordinates as
P = (xP , yP ). Then, the line through T and Q evaluated at the point P is given
as,

lT,Q(P ) = 2ZRyP − 4xP (YQZ3
T +YT )W + (4XQ(YQZ3

TXQ−YT )−2YQZR)W 2 ∈ Fp12 .

The combined cost of computing lT,Q(P ) and the point addition R = T + Q
is, 7m̃ + 7s̃ + 25ã + 4m. Finally we must accumulate the value of lT,Q(P ) by
performing the product f · lT,Q(P ) at a cost of, 13m̃+ 39ã+ 2mβ .

Therefore, the computational cost associated to line 6 of Algorithm 1 is given
as, 20m̃+ 7s̃+ 64ã+ 4m+ 2mβ . This is the same cost of line 8.

Frobenius application and final addition step (lines 11–13). In this
step we add to the value accumulated in f = f6t+2,Q(P ), the product of
the lines through the points Q1,−Q2 ∈ E′(Fp2), namely, l[6t+2]Q,Q1(P ) ·
l[6t+2]Q+Q1,−Q2(P ).

The points Q1, Q2 can be found by applying the Frobenius operator as, Q1 =
πp(Q), Q2 = π2

p(Q). The total cost of computing lines 11–13 is given as, 40m̃+
14s̃+ 128ã+ 4m+ 4mβ.

Let us recall that from our selection of t, 6t + 2 is a 65-bit number with a
low Hamming weight of 7.2 This implies that the Miller loop of the optimal
ate pairing can be computed using only 64 point doubling steps and 6 point
addition/subtraction steps. Therefore, the total cost of the Miller loop portion
of Algorithm 1 is approximately given as,

Cost of Miller loop = 64 · (28m̃+ 8s̃+ 100ã+ 4m+ 6mβ) +
6 · (20m̃+ 7s̃+ 64ã+ 4m+ 2mβ) +
40m̃+ 14s̃+ 128ã+ 14m+ 4mβ

= 1952m̃+ 568s̃+ 6912ã+ 294m+ 400mβ.

4.2 Final Exponentiation

Line 14 of Algorithm 1 performs the final exponentiation step, by raising f ∈ Fp12
to the power e = (p12 −1)/r. We computed the final exponentiation by following
the procedure described by Scott et al. in [36], where the exponent e is split into
three coefficients as,

e =
p12 − 1
r

= (p6 − 1) · (p2 + 1) · p
4 − p2 + 1

r
. (3)

2 We note that in the binary signed representation with digit set {−1, 0, 1}, the integers

t = 262 − 254 + 244 and 6t + 2 = 264 + 263 − 256 − 255 + 246 + 245 + 2 have a signed

bitlength of 63 and 65, respectively.
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As it was discussed in Section 3, we can take advantage of the fact that raising
f to the power p6 is equivalent to one conjugation. Hence, one can compute
f (p6−1) = f̄ · f−1, which costs one field inversion and one field multiplication
in Fp12 . Moreover, after raising to the power p6 − 1, the resulting field element
becomes a member of the cyclotomic subgroup GΦ6(Fp2), which implies that
inversion of such elements can be computed by simply conjugation (see Table 1).
Furthermore, from the discussion in Section 3.2 raising to the power p2 + 1,
can be done with five field multiplications in the base field Fp, plus one field
multiplication in Fp12 . The processing of the third coefficient in Equation (3) is
referred as the hard part of the final exponentiation, i.e, the task of computing
m(p4−p2+1)/r, with m ∈ Fp12 . In order to accomplish that, Scott et al. described
in [36] a clever procedure that requires the calculation of ten temporary values,
namely,

mt, mt2 , mt3 , mp, mp2 , mp3 , m(tp), m(t2p), m(t3p), m(t2p2),

which are the building blocks required for constructing a vectorial addition
chain whose evaluation yields the final exponentiation fe, by performing 13
and 4 field multiplication and squaring operations over Fp12 , respectively.3 Tak-
ing advantage of the Frobenius operator efficiency, the temporary values mp,
mp2 , mp3 , m(tp), m(t2p), m(t3p), and m(t2p2) can be computed at a cost of just
35 field multiplications over Fp (see Section 3.2). Therefore, the most costly
computation of the hard part of the final exponentiation is the calculation of
mt,mt2 = (mt)t,mt3 = (mt2)t. From our choice, t = 262 − 254 + 244, we can
compute these three temporary values at a combined cost of 62 · 3 = 186 cy-
clotomic squarings plus 2 · 3 = 6 field multiplications over Fp12 . This is cheaper
than the t selection used in [32] that requires 4 ·3 = 12 more field multiplications
over Fp12 .

Consulting Table 1, we can approximately estimate the total computational
cost associated to the final exponentiation as,

F. Exp. cost = (25m̃+ 9s̃+ 12mβ + 61ã+ ĩ) + (18m̃+ 6mβ + 60ã) +
(18m̃+ 6mβ + 60ã) + 10m+
13 · (18m̃+ 6mβ + 60ã) + 4 · (9s̃+ 4mβ + 30ã) + 70m+
186 · (9s̃+ 4mβ + 30ã) + 6 · (18m̃+ 6mβ + 60ã)

= 403m̃+ 1719s̃+ 7021ã+ 80m+ 898mβ + ĩ.

Table 2 presents a comparison of Fp2 arithmetic operations of our work against
the reference pairing software libraries [18, 32]. From Table 2, we observe that
our approach saves about 39.5% and 13% Fp2 multiplications when compared
against [18] and [32], respectively. We recall that in our work, the cost of the
operationmξ is essentially the same of that ofmβ . This is not the case in [18,32],
where the operation mξ is considerably more costly than mβ .

3 We remark that the cost of the field squaring operations is that of the elements in

the cyclotomic subgroup GΦ6(Fp2) listed in the last row of Table 1.
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Table 2. A Comparison of arithmetic operations required by the computation of the

ate pairing variants

m̃ s̃ ã ĩ mξ

Hankerson et al. [18]
Miller Loop 2277 356 6712 1 412

R-ate pairing
Final Exp. 1616 1197 8977 1 1062

Total 3893 1553 15689 2 1474

Naehrig et al. [32]
Miller Loop 2022 590 7140 410

Optimal ate pairing
Final Exp. 678 1719 7921 1 988

Total 2700 2309 15061 1 1398

This work
Miller Loop 1952 568 6912 400

Optimal ate pairing
Final Exp. 403 1719 7021 1 898

Total 2355 2287 13933 1 1298

5 Software Implementation of Field Arithmetic

In this work, we target the x86-64 instruction set [22]. Our software library is
written in C++ and can be used on several platforms: 64-bit Windows 7 with
Visual Studio 2008 Professional, 64-bit Linux 2.6 and Mac OS X 10.5 with gcc
4.4.1 or later, etc. In order to improve the runtime performance of our pairing
library, we made an extensive use of Xbyak [28], a x86/x64 just-in-time assembler
for the C++ language.

5.1 Implementation of Prime Field Arithmetic

The x86-64 instruction set has a mul operation which multiplies two 64-bit un-
signed integers and returns a 128-bit unsigned integer. The execution of this
operation takes about 3 cycles on Intel Core i7 and AMD Opteron processors.
Compared to previous architectures, the gap between multiplication and addi-
tion/subtraction in terms of cycles is much smaller. This means that we have
to be careful when selecting algorithms to perform prime field arithmetic: the
schoolbook method is for instance faster than Karatsuba multiplication in the
case of 256-bit operands.

An element x ∈ Fp is represented as x = (x3, x2, x1, x0), where xi, 0 ≤ i ≤ 3,
are 64-bit integers. The addition and the subtraction over Fp are performed in a
straightforward manner, i.e., we add/subtract the operands followed by reduc-
tion into Fp. Multiplication and inversion over Fp are accomplished according
to the well-known Montgomery multiplication and Montgomery inversion algo-
rithms, respectively [19].

5.2 Implementation of Quadratic Extension Field Arithmetic

This section describes our optimizations for some operations over Fp2 defined in
Equation (2).
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Multiplication. We implemented the multiplication over the quadratic exten-
sion field Fp2 using a Montgomery multiplication scheme split into two steps:

1. The straightforward multiplication of two 256-bit integers (producing a 512-
bit integer), denoted as, mul256.

2. The Montgomery reduction from a 512-bit integer to a 256-bit integer. This
operation is denoted by mod512.

According to our implementation, mul256 (resp. mod512) contains 16 (resp.
20) mul operations and its execution takes about 55 (resp. 100) cycles.

Let P (u) = u2 + 5 be the irreducible binomial defining the quadratic exten-
sion Fp2 . Let A,B,C ∈ Fp2 such that, A = a0 + a1u, B = b0 + b1u, and C =
c0+c1u = A·B. Then, c0 = a0b0−5a1b1 and c1 = (a0+a1)(b0+b1)−a0b0−a1b1.
Hence, in order to obtain the field multiplication over the quadratic extension
field, we must compute three multiplications over Fp, and it may seem that
three mod512 operations are necessary. However, we can keep the results of
the products mul256(a0, b0), mul256(a1, b1), and mul256(a0 + a1, b0 + b1) in
three temporary 512-bit integer values. Then, we can add or subtract them with-
out reduction, followed by a final call to mod512 in order to get c0, c1 ∈ Fp.
This approach yields the saving of one mod512 operation as shown in Algo-
rithm 2. We stress that the addNC/subNC functions in lines 1, 2, 6, and 7
of Algorithm 2, stand for addition/subtraction between 256-bit or 512-bit inte-
gers without checking the output carry. We explain next the rationale for using
addition/subtraction without output carry check.

The addition x+ y, and subtraction x− y, of two elements x, y ∈ Fp include
an unpredictable branch check to figure out whether x + y ≥ p or x < y. This
is a costly check that is convenient to avoid as much as possible. Fortunately,
our selected prime p satisfies 7p < N , with N = 2256, and the function mod512
can reduce operands x, whenever, x < pN . This implies that we can add up
to seven times without performing an output carry check. In line 8, d0 is equal

Algorithm 2. Optimized multiplication over Fp2 .
Input: A and B ∈ Fp2 such that A = a0 + a1u and B = b0 + b1u.

Output: C = A ·B ∈ Fp2 .
1. s← addNC(a0, a1);

2. t← addNC(b0, b1);

3. d0 ←mul256(s, t);
4. d1 ←mul256(a0, b0);

5. d2 ←mul256(a1, b1);

6. d0 ← subNC(d0, d1);

7. d0 ← subNC(d0, d2);

8. c1 ←mod512(d0);

9. d2 ← 5d2;

10. d1 ← d1 − d2;

11. c0 ←mod512(d1);

12. return C ← c0 + c1u;
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to (a0 + a1)(b0 + b1) − a0b0 − a1b1 = a0b1 + a1b0 < 2p2 < pN . Hence, we can
use addNC/subNC for step 1, 2, 6, and 7. In line 9, we multiply d2 by the
constant value 5, which can be computed with no carry operation. By applying
these modifications, we manage to reduce the cost of the field multiplication over
Fp2 from about 640 cycles (required by a non-optimized procedure) to just 440
cycles.

In line 10, d1 = a0b0 − 5a1b1. We perform this operation as a 512-bit integer
subtraction with carry operation followed by a mod512 reduction. Let x be a
512-bit integer such that x = a0b0 − 5a1b1 and let t be a 256-bit integer. The
aforementioned carry operation can be accomplished as follows: if x < 0, then
t ← p, otherwise t ← 0, then d1 ← x + tN , where this addition operation only
uses the 256 most significant bits of x.

Squaring. Algorithm 3 performs field squaring where some carry operations
have been reduced, as explained next. Let A = a0+a1u ∈ Fp2 , C = A2 = c0+c1u,
and let x = (a0 + p − a1)(a0 + 5a1). Then c0 = x − 4a0a1 mod p. However, we
observe that x ≤ 2p · 6p = 12p2 < N2 where N = 2256. Also we have that,

x− 4a0a1 ≥ a0(a0 + 5a1) − 4a0a1 = a0(a0 + a1) ≥ 0,

which implies,

max(x− 4a0a1) = max(a0(a0 + p) + 5a1(p− a1))
< p · 2p+ 5(p/2)(p− p/2) < pN.

We conclude that we can safely add/subtract the operands in Algorithm 3 with-
out carry check.

Fast reduction for multiplication by small constant values. The pro-
cedures of point doubling/addition and line evaluation in Miller loop, and the

Algorithm 3. Optimized squaring over Fp2 .
Input: A ∈ Fp2 such that A = a0 + a1u.

Output: C = A2 ∈ Fp2 .
1. t← addNC(a1, a1);

2. d1 ←mul256(t, a0);

3. t← addNC(a0, p);

4. t← subNC(t, a1);

5. c1 ← 5a1;

6. c1 ← addNC(c1, a0);

7. d0 ←mul256(t, c1);

8. c1 ←mod512(d1);

9. d1 ← addNC(d1, d1);

10. d0 ← subNC(d0, d1);

11. c0 ←mod512(d0);

12. return C ← c0 + c1u;



Software Implementation of the Optimal Ate Pairing over BN Curves 33

operations mξ,mβ in the tower field arithmetic, involve field multiplications of
an arbitrary element A ∈ Fp2 by small constant values 3, 4, 5, and 8.

We first remark that mξ requires the calculation of a field multiplication
by the constant u. Given A = a0 + a1u ∈ Fp2 , then A · u = β · a1 + a0u =
−5a1 + a0u. Computing this operation using shift-and-add expressions such as
5n = n + (n � 2) for n ∈ Fp may be tempting as a means to avoid full
multiplication calculations. Nevertheless, in our implementation we preferred
to compute those multiplication-by-constant operations using the x86-64 mul
instruction, since the cost in clock cycles of mul is almost the same or even a
little cheaper than the one associated to the shift-and-add method.

Multiplications by small constant values require the reduction modulo p of
an integer x smaller than 8p. Note that we need five 64-bit registers to store
x = (x4, x3, x2, x1, x0). However, one can easily see that x4 = 0 or x4 = 1, and
then one can prove that x div 2253 = (x4 � 3)|(x3 � 61). Division by 2253

involves only three logical operations and it can be efficiently performed on our
target processor. Furthermore, the prime p we selected has the following nice
property:

(ip) div 2253 =

{
i if 0 ≤ i ≤ 9,
i+ 1 if 10 ≤ i ≤ 14.

Hence, we built a small look-up table p-Tbl defined as follows:

p-Tbl[i] =

{
ip if 0 ≤ i ≤ 9,
(i− 1)p if 10 ≤ i ≤ 14.

(4)

We then get |x − p-Tbl[x � 253]| < p. Algorithm 4 summarizes how we apply
this strategy to perform a modulo p reduction.

Algorithm 4. Fast reduction x mod p.
Input: x ∈ Z such that 0 ≤ x < 13p and represented as x = (x4, x3, x2, x1, x0), where

xi, 0 ≤ i ≤ 4, are 64-bit integers. Let p-Tbl be the precomputed look-up table

defined in Equation (4).

Output: z = x mod p.

1. q ← (x4 � 3)|(x3 � 61); (q ← �x/2253	)
2. z ← x− p-Tbl[q];
3. if z < 0 then
4. z ← z + p;

5. end if
6. return z;

6 Implementation Results

We list in Table 3 the timings that we achieved on different architectures. Our
library is able to evaluate the optimal ate pairing over a 254-bit prime field Fp,
in just 2.33 million of clock cycles on a single core of an Intel Core i7 2.8GHz
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processor, which implies that the pairing computation takes 0.832msec. To our
best knowledge, we are the first to compute a cryptographic pairing in less than
one millisecond at this level of security on a desktop computer.

According to the second column of Table 3, the costs (in clock cycles) that
were measured for the Fp2 arithmetic when implemented in the Core i7 processor
are m̃ = 435 and s̃ = 342. Additionally, we measured ã = 40, and ĩ = 7504. Now,
from Table 2, one can see that the predicted computational cost of the optimal
ate pairing is given as,

Opt. ate pairing cost = 2355m̃+ 2287s̃+ 13933ã+ ĩ
= 2355 · 435 + 2287 · 342 + 13933 · 40 + 7504
= 2,371,403.

We observe that the experimental results presented in Table 3 have a reasonable
match with the computational cost prediction given in Section 4.

For comparison purpose, we also report the performance of the software li-
brary for BN curves developed by Naehrig et al. [32], which is the best software
implementation that we know of.4 Naehrig et al. combined several state-of-the
art optimization techniques to write a software that is more than twice as fast
as the previous reference implementation by Hankerson et al. [18]. Perhaps the
most original contribution in [32] is the implementation of the arithmetic over the
quadratic extension Fp2 based on a tailored use of SIMD floating point instruc-
tions. Working in the case of hardware realizations of pairings, Fan et al. [13]
suggested to take advantage of the polynomial form of p(t) and introduced a
new hybrid modular multiplication algorithm. The operands a and b ∈ Fp are
converted to degree-4 polynomials a(t) and b(t), and multiplied according to
Montgomery’s algorithm in the polynomial ring. Coefficients of the results must
be reduced modulo t. Fan et al noticed that, if t = 2m + s, where s is a small
constant, this step consists of a multiplication by s instead of a division by t.

Table 4 summarizes the best results published in the open literature since
2007. All the works featured in Table 4, targeted a level of security equivalent to
that of AES-128. Aranha et al. [1] and Beuchat et al. [8] considered supersingular
elliptic curves in characteristic 2 and 3, respectively. All other authors worked
with ordinary curves.

Several authors studied multi-core implementations of a cryptographic pair-
ing [1, 8, 16]. In the light of the results reported in Table 4, it seems that the
acceleration achieved by an n-core implementation is always less than the ideal
n× speedup. This is related to the extra arithmetic operations needed to com-
bine the partial results generated by each core, and the dependencies between
the different operations involved in the final exponentiation. The question that
arises is therefore: how many cores should be utilized to compute a cryptographic
pairing? We believe that the best answer is the one provided by Grabher et al.:
“if the requirement is for two pairing evaluations, the slightly moronic conclusion

4 The results on the Core 2 Quad processor are reprinted from [32]. We downloaded

the library [33] and made our own experiments on an Opteron platform.
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Table 3. Cycle counts of multiplication over Fp2 , squaring over Fp2 , and optimal ate

pairing on different machines

Our results

Core i7a Opteronb Core 2 Duoc Athlon 64 X2d

Multiplication over Fp2 435 443 558 473

Squaring over Fp2 342 355 445 376

Miller loop 1,330,000 1,360,000 1,680,000 1,480,000

Final exponentiation 1,000,000 1,040,000 1,270,000 1,081,000

Optimal ate pairing 2,330,000 2,400,000 2,950,000 2,561,000

dclxvi [32,33]

Core i7 Opteronb Core 2 Quade Athlon 64 X2d

Multiplication over Fp2 – 695 693 1714

Squaring over Fp2 – 614 558 1207

Miller loop – 2,480,000 2,260,000 5,760,000

Final exponentiation – 2,520,000 2,210,000 5,510,000

Optimal ate pairing – 5,000,000 4,470,000 11,270,000
a Intel Core i7 860 (2.8GHz), Windows 7, Visual Studio 2008 Professional
b Quad-Core AMD Opteron 2376 (2.3GHz), Linux 2.6.18, gcc 4.4.1
c Intel Core 2 Duo T7100 (1.8GHz), Windows 7, Visual Studio 2008 Professional
d Athlon 64 X2 Dual Core 6000+(3GHz), Linux 2.6.23, gcc 4.1.2
e Intel Core 2 Quad Q6600 (2394MHz), Linux 2.6.28, gcc 4.3.3

Table 4. A comparison of cycles and timings required by the computation of the ate

pairing variants. The frequency is given in GHz and the timings are in milliseconds.

Algo. Architecture Cycles Freq.
Calc.
time

Devegili et al. [10] ate Intel Pentium IV 69,600,000 3.0 23.20

Naehrig et al. [31] ate Intel Core 2 Duo 29,650,000 2.2 13.50

Grabher et al. [16] ate
Intel Core 2 Duo (1 core) 23,319,673

2.4
9.72

Intel Core 2 Duo (2 cores) 14,429,439 6.01

Aranha et al. [1] ηT
Intel Xeon 45nm (1 core) 17,400,000

2.0
8.70

Intel Xeon 45nm (8 cores) 3,020,000 1.51

Beuchat et al. [8] ηT
Intel Core i7 (1 core) 15,138,000

2.9
5.22

Intel Core i7 (8 cores) 5,423,000 1.87

Hankerson et al. [18] R-ate Intel Core 2 10,000,000 2.4 4.10

Naehrig et al. [32] aopt Intel Core 2 Quad Q6600 4,470,000 2.4 1.80

This work aopt Intel Core i7 2,330,000 2.8 0.83

is that one can perform one pairing on each core [. . . ], doubling the performance
versus two sequential invocations of any other method that does not already use
multi-core parallelism internally” [16].
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7 Conclusion

In this paper we have presented a software library that implements the optimal
ate pairing over a Barreto–Naehrig curve at the 126-bit security level. To the
best of our knowledge, we are the first to have reported the computation of a
bilinear pairing at a level of security roughly equivalent to that of AES-128 in
less than one millisecond on a single core of an Intel Core i7 2.8GHz processor.
The speedup achieved in this work is a combination of two main factors:
– A careful programming of the underlying field arithmetic based on Mont-

gomery multiplication that allowed us to perform a field multiplication over
Fp and Fp2 in just 160 and 435 cycles, respectively, when working in an
Opteron-based machine. We remark that in contrast with [32], we did not
make use of the 128-bit multimedia arithmetic instructions.

– A binary signed selection of the parameter t that allowed us to obtain sig-
nificant savings in both the Miller loop and the final exponentiation of the
optimal ate pairing.

Our selection of t yields a prime p = p(t) that has a bitlength of just 254 bits.
This size is slightly below than what Freeman et al. [14] recommend for achieving
a high security level. If for certain scenarios, it becomes strictly necessary to meet
or exceed the 128-bit level of security, we recommend to select t = 263 −249 that
produces a prime p = p(t) with a bitlength of 258 bits. However, we warn the
reader that since a 258-bit prime implies that more than four 64-bit register will
be required to store field elements, the performance of the arithmetic library will
deteriorate.

Consulting the cycle count costs listed in Table 3, one can see that for our
implementation the cost of the final exponentiation step is nearly 25% cheaper
than that of the Miller loop.

Authors in [13,32] proposed to exploit the polynomial parametrization of the
prime p as a means to speed up the underlying field arithmetic. We performed
extensive experiments trying to apply this idea to our particular selection of t
with no success. Instead, the customary Montgomery multiplier algorithm ap-
pears to achieve a performance that is very hard to beat by other multiplication
schemes, whether integer-based or polynomial-based multipliers.

The software library presented in this work computes a bilinear pairing at a
high security level at a speed that is faster than the best hardware accelerators
published in the open literature (see for instance [7, 13,23,37]). We believe that
this situation is unrealistic and therefore we will try to design a hardware ar-
chitecture that can compute 128-bit security bilinear pairing in shorter timings.
Our future work will also include a study of the parallelization possibilities on
pairing-based protocols that specify the computation of many bilinear pairing
during their execution.
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Abstract. Over the last decade, pairing-based cryptography has found

a wide range of interesting applications, both in cryptography and in

computer/network security. It often yields the most elegant (if not al-

ways the most efficient) techniques. This talk overviews several topics to

which pairing-based methods either have not been applied, or where they

have not reached their potential. The first topic is “privacy-preserving

set operations”, such as private set intersection (PSI) protocols. Despite

lots of prior work, state-of-the-art (in terms of efficiency) PSI is grounded

in more mundane non-pairing-based number theoretic settings. This is

puzzling, since the same does not hold with closely related secret hand-

shakes and affiliation-hiding key exchange (AH-AKE) techniques. The

second topic is more applied: “security in unattended wireless sensor net-

works” (UWSNs). We discuss certain unique security issues occurring

in UWSNs, overview some protection measures, and consider whether

pairing-based cryptography has some applications in this context. The

third topic is “privacy in mobile ad hoc networks” (MANETs). The cen-

tral goal is to achieve privacy-preserving (i.e., tracking-resistant) mobility

in the presence of malicious insiders, while maintaining security. Since

security is based on authentication, which is, in turn, usually based on

identities, routing and packet forwarding are very challenging. Pairing-

based cryptography might offer some useful techniques for reconciling

security and privacy in this context. Finally, we consider the topic of “se-

cure code attestation for embedded devices” where the main challenge

is: how an untrusted (and possibly compromised) device can convince a

trusted verifier that it runs appropriate code. After discussing current

approaches, once again, consider whether pairing techniques can be of

use.
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Abstract. Designated confirmer signature (DCS) extends undeniable

signature so that a party called confirmer can also confirm/disavow non-

self-authenticating signatures on the signer’s behalf. Previous DCS con-

structions, however, can only let the signer confirm her own signatures

but not disavow an invalid one. Only confirmer is able to disavow. In

this work, we propose a new suite of security models for DCS by adding

the formalization that the signer herself can do both confirmation and

disavowal. We also propose a new DCS scheme and prove its security

in the standard model. The new DCS scheme is efficient. A signature

in this new DCS consists of only three group elements (i.e. 60 bytes

altogether for 80-bit security). This is much shorter than any of the

existing schemes; it is less than 12% in size of the Camenisch-Michels

DCS scheme (Eurocrypt 2000); and it also compares favorably with

those proven in the random oracle model, for example, it is less than

50% in size of the Wang et al.’s DCS scheme (PKC 2007). This new

DCS scheme also possesses a very efficient signature conversion algo-

rithm. In addition, the scheme can be easily extended to support mul-
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1 Introduction

Digital signature, the digital analogy of handwriting signature, is publicly verifi-
able but easy to copy. Anyone can easily convince others that a signer’s signature
is indeed from the signer. This is not desirable in some scenarios, such as software
purchase [5,11] and e-payment [6]. Chaum introduced the notion of undeniable
signature [13], in which a signer’s signature is non-self-authenticating. To verify
a signature, a verifier has to interact with the signer so to let the signer confirm
or disavow the signature. In convertible undeniable signature [5], the signer can
further convert a (valid) signature to a conventional, publicly verifiable one. The
signer is responsible for all the confirmation or disavowal of signatures as well
as signature conversion. Chaum [12] then introduced the notion of designated
confirmer signature (DCS), to alleviate the burden of the signer on confirming,
disavowing and converting signatures. In a DCS scheme, there is a party called
confirmer, which can confirm or disavow a signature on the signer’s behalf. The
confirmer can also convert a DCS signature to a publicly verifiable one so that
if the DCS signature is valid, the publicly verifiable one after conversion will
also be valid; otherwise, it will not be valid either. As we can see, the motiva-
tion of introducing the notion of DCS in [12] is to have a confirmer share the
workload with the signer on confirming, disavowing and converting valid/invalid
signatures. However, valid signatures can only be generated by the signer.

On the construction of DCS schemes, one common issue in previous DCS
schemes [8,14,23,24,32,33,36,39] is that the signer cannot disavow an invalid
signature, though it is able to confirm signatures generated by itself (for example,
using the randomness of the signature generation). Because of this, existing DCS
security models only formalize the confirmation and disavowal capabilities of
the confirmer but not the signer. It remains open to build a DCS scheme which
allows both signer and confirmer to disavow invalid signatures. The ability of
disavowing invalid signatures by the signer is important, and is actually the
original motivation of DCS [12], that is, to alleviate the burden of the signer on
confirming and disavowing signatures rather than removing the capabilities of
doing so from the signer. To see the necessity of allowing the signer to disavow,
consider the following scenario.

Suppose that Apple releases a software, say Snow Leopard, and designates
MacOne as the confirmer, who is retailer that sells the software. In the case
where the retailers are bankrupt, for example, it doesn’t mean that the signer,
which is Apple, is also bankrupt. Then in this case, Apple can confirm their
software themselves, and in the meanwhile, it should be able to deny those
softwares not released by Apple.

A naive solution to this problem is to let the signer and the confirmer
share the same confirmation key. For example, besides its signing key pair,
the signer also generates a confirmation key pair and gives it to the confirmer.
In this way the signer is able to confirm and disavow signatures just like
the confirmer does. However, this approach is not appropriate in practice, be-
cause in the case where multiple signers share the same confirmer, the confirmer
has to obtain a key pair from each signer, and use different keys to confirm
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and disavow for different signers. The complexity for the confirmer to provide
confirmation and disavowal service is high.

1.1 Our Contributions

In this paper, we re-formalize the notion of DCS to capture the signer’s capabil-
ity of disavowing invalid signatures. Since the introduction of DCS in [12], this
problem has ever been discussed by Galbraith and Mao in [20], but a formal defi-
nition is still missing. Besides re-formalizing DCS, we also propose a new scheme
and prove its security under the new security models we defined without random
oracles. The new DCS scheme is efficient, and to the best of our knowledge, has
the shortest signature, which consists of only three elements of a bilinear group
G, i.e. about 60 bytes for 80-bit security. This is much shorter than any existing
schemes with security in the standard model, for example, it is less than 12%
in size of the scheme due to Camenisch and Michels [8]. It also compares favor-
ably with those proven in the random oracle model, for example, it is less than
50% in size when compared with the one due to Wang et al. [36]. Our scheme
also supports very efficient conversion of DCS signatures. Furthermore, it can be
easily extended to support multiple confirmers as well as threshold conversion.
To add a confirmer, the signer only needs to add one group element into the
signature. The scheme also has an additional feature that one can easily sample
a signature uniformly at random from a signer’s signature space. We will see
that this feature is useful when applying DCS to the construction of a practical
ambiguous optimistic fair exchange (AOFE).

On the application of DCS, we construct an efficient AOFE using this new
DCS scheme. The notion of AOFE was introduced by Garay et al. [21], in which
AOFE is called abuse-free optimistic fair exchange. It was later called ambiguous
optimistic fair exchange by Huang et al. [28], in which they proposed an AOFE
with (stronger) security in the standard model. In our AOFE construction, we
have an interactive version and a non-interactive one. Both of them have much
shorter signatures than the previous schemes [21,28]. A partial signature in our
non-interactive AOFE consists of three elements of G and four of Zp (about 140
bytes for 80-bit security), and a full signature has only three G elements (about
60 bytes). In other words, a partial signature of our scheme is about 70% in size
of the scheme due to Garay et al. [21], and a full signature is only about 21% in
size of their scheme. The significant reduction in the full signature size is because
in our scheme we do not need to include the corresponding partial signature into
the full signature, as opposed to [21,28].

2 Related Work

(Designated Confirmer Signature). In [33], Okamoto showed that DCS is equiv-
alent to public key encryption and proposed a concrete DCS scheme, which was
later shown by Michels and Stadler [32] to be insecure that a confirmer can forge
a signer’s signatures. In [32], a generic DCS was also proposed using the ‘commit-
then-sign’ paradigm: the signer computes a commitment c to the message, that
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can be opened by the confirmer, and generates a signature σ on c. A DCS signa-
ture ζ consists of c and σ. To confirm/disavow ζ, the confirmer proves that c is/is
not a commitment to the message. In [14], Chen proposed another DCS scheme,
in which a signature is a non-interactive proof showing the equality of two dis-
crete logarithms. Camenisch and Michels [8] later showed that the confirmer in
the scheme can forge. In [8], the security of DCS in a multi-user setting was for-
malized, where multiple signers share the same confirmer. Many DCS schemes
previously proposed were found vulnerable to the signature-transformation at-
tack which transforms one signer’s signature maliciously to another signer’s sig-
nature. A new DCS was also proposed in [8] and proven secure in their model
under the RSA assumption.

All the works above are in the random oracle model. In [24], Goldwasser and
Waisbard revised the definition and model given by Okamoto [33] to not requir-
ing zero-knowledge proof for signature validity assertions. They also used strong
witness hiding proofs of knowledge to construct DCS schemes by following the
‘sign-then-encrypt’ paradigm. The resulting schemes are proven in the standard
model. However, the disavowal protocol still requires general zero-knowledge
proofs. Gentry, Molnar and Ramzan [23] solved this problem and proposed the
first DCS scheme which does not require any general zero-knowledge proof, and
is provably secure in the standard model. Their scheme is based on Camenisch
and Shoup’s verifiable encryption scheme [9]. Later, Wang, Baek, Wong and Bao
[36] showed that there are some security subtleties in the extractability and in-
visibility of Gentry et al.’s scheme. They proposed another DCS scheme which
does not require public key encryption. Wikström [38] revisited the security def-
initions of DCS and proposed new ones. He also proposed a generic construction
and a concrete instantiation based on strong RSA assumption, decision com-
posite residuosity assumption and decision Diffie-Hellman assumption without
random oracles. In [39], Zhang, Chen and Wei proposed a bilinear-pairing-based
DCS scheme without random oracle. The security for the confirmer considered
in [39] requires that no adversary can impersonate the confirmer to confirm sig-
natures, that is strictly weaker than the invisibility defined by Camenisch et al.
[8]. The scheme was recently shown to be visible [37].

(Optimistic Fair Exchange). Designated confirmer signature has many applica-
tions. One of them is Optimistic Fair Exchange (OFE) of signatures, the notion
of which was introduced by Asokan, Shoup and Waidner [1] for solving the fair-
ness problem in exchange of signatures between two parties say, Alice and Bob.
Previous work either have Alice and Bob release their signatures gradually, e.g.
bit-by-bit, and thus inefficient, or need a third party fully trusted by Alice and
Bob. In OFE, as the initiator, Alice generates and sends her partial signature σ
to Bob. Bob returns his full signature and Alice then sends her full signature ζ
to Bob. If Bob does not receive ζ (e.g. due to interrupted connection or system
crash), Bob will turn to a third party, called the arbitrator, show the fulfillment of
his obligation, and request for resolving σ. The arbitrator first checks the validity
of Bob’s full signature. If it is valid, the arbitrator converts σ to ζ and sends it to
Bob, and in the meanwhile, Bob’s full signature will be forwarded to Alice.
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Since the introduction, OFE has attracted the attention of many researchers,
i.e. [2,18,19,28,29,34]. For example, Park, Chong and Siegel [34] proposed a con-
struction using sequential two-party multisignatures. The construction was later
broken and repaired by Dodis and Reyzin [19]. In [18], Dodis, Lee and Yum
showed that an OFE secure in a single-user setting does not imply the security
in a multi-user setting. They also proposed an efficient OFE in the multi-user
setting under the random oracle model. Huang, Yang, Wong and Susilo [29] fur-
ther strengthened their results by relaxing the restriction on using a public key.
They demonstrated a security gap for OFE between the chosen-key model [31]
(in which an adversary can use any public key) and the registered-key model [3]
(in which the adversary has to prove its knowledge of the secret key before using
a public key). They also proposed a generic OFE scheme secure in the multi-user
setting and chosen-key model, using a standard signature and a ring signature.

(Abuse-free/Ambiguous OFE). In OFE, Alice’s partial signature is generally self-
authenticating and indicates her commitment to some message already. This may
allow Bob to make use of it to convince others that Alice has already committed
herself to the message; while Alice obtains nothing. This could be unfair to Alice.
Garay, Jakobsson and MacKenzie [21] and Huang, Yang, Wong and Susilo [28]
addressed this problem and proposed notions of abuse-free optimistic contract
signing and ambiguous optimistic fair exchange, respectively. In both notions,
Alice and Bob should be able to produce indistinguishable partial signatures so
that given a valid partial signature from Alice, Bob cannot transfer the conviction
to others. In this paper we universally call both of them as ‘AOFE’ in short.
Garay et al. constructed an efficient AOFE from a type of signatures called
‘private contract signatures ’, which is similar to but different from DCS (see [21]
for details). Their private contract signature scheme is built from designated-
verifier signature [30], and is secure in the registered-key model with random
oracles. Huang et al. [28] proposed another efficient construction of AOFE using
Groth-Sahai NIWI and NIZK proofs [25]. Their scheme is secure in the chosen-
key model without random oracle.

3 Definition and Security Model of Designated Confirmer
Signature

3.1 Definition

In a Designated Confirmer Signature (DCS) scheme, there are three parties, a
signer S, a verifier V and a designated confirmer C. A DCS scheme consists of the
following (probabilistic) polynomial-time (PPT) algorithms and two protocols
(which will be defined shortly). Let k ∈ N be a security parameter.

– SKg. Signer S runs it to produce a key pair, i.e. (spk, ssk) ← SKg(1k).
– CKg. Confirmer C runs it to produce a key pair, i.e. (cpk, csk) ← CKg(1k).
– Sig. The algorithm takes as input the signer’s secret key, a message M and

optionally the confirmer’s public key, and outputs a standard signature ζ on
M , i.e. ζ ← Sig(ssk,M, cpk).
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– Ver. This is the corresponding verification algorithm. It takes as input the
signer’s public key, a standard signature, a message and optionally the con-
firmer’s public key, and outputs a bit b, which is 1 for acceptance and 0 for
rejection, i.e. b← Ver(M, ζ, spk, cpk).

– DCSig. Signer S runs it to generate a DCS signature. It takes as input the
signer’s secret key, a message and the confirmer’s public key, and outputs a
DCS signature σ, i.e. σ ← DCSig(ssk,M, cpk).

– Ext. Confirmer C runs it to extract the signer’s standard signature from its
DCS signature. The algorithm takes as input the confirmer’s secret key, a
message, a DCS signature and the signer’s public key, and outputs a standard
signature or ⊥ for the failure of extraction, i.e. ζ/⊥ ← Ext(csk,M, σ, spk).

A DCS scheme also has the following two protocols, which are for the signer
or the confirmer to confirm/disavow DCS signatures. In the protocols we use P
to denote a prover, which could be the signer S or the confirmer C, and use V
to denote a verifier. The common input of P and V is (M,σ, spk, cpk), where σ
is an alleged DCS signature of S on message M . P also has an auxiliary input,
denoted by sk, which is either ssk if P is the signer, or csk if it is the confirmer.

– Confirm. It is for P to convince V the validity of σ. At the end of the protocol,
V outputs a single bit b which is 1 for accepting σ as a valid DCS signature
on M of S, and 0 otherwise. We denote an execution of the protocol by
b← Confirm〈P(sk),V〉(M,σ, spk, cpk).

– Disavow. It is for P to convince V the invalidity of σ. At the end of the
protocol, V outputs a single bit b which is 1 for accepting σ as an invalid
DCS signature on M of S, and 0 otherwise. We denote an execution of the
protocol by b← Disavow〈P(sk),V〉(M,σ, spk, cpk).

The correctness can be defined in a natural way, i.e. the output of the algo-
rithms/protocols should be correct if the parties are honest, and the protocols
should be sound. A DCS scheme is extraction ambiguous if a standard signature
output by Sig is indistinguishable from that output by Ext. If the two distribu-
tions are identical, the scheme is said to be perfectly extraction ambiguous.

3.2 Security Model

Let O = {ODCSig, OConfirm, ODisavow, OExt} be a collection of oracles that an adver-
sary has access to. We consider the following security properties for DCS. Here
we do not provide the oracle OSig which returns the signer’s standard signatures,
as it can be implemented using ODCSig and OExt.

(Security for Verifiers - Extractability). An adversary, even after compro-
mising the secret keys of the signer and the confirmer, should not be able to
cheat the verifier, by generating a pair (M∗, σ∗) so that either σ∗ is confirmable
but unextractable, or disavowable but extractable. Formally, we consider the
game GS4V depicted in Fig. 1, where ‘Case 1’ and ‘Case 2’ refer to the following:

– Case 1: Ver(M∗,Ext(csk,M∗, σ∗, spk), spk, cpk) = 0, i.e. σ∗ is unextractable.
– Case 2: Ver(M∗,Ext(csk,M∗, σ∗, spk), spk, cpk) = 1, i.e. σ∗ is extractable.
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The advantage of the adversary A = (A0,A1,A2) is defined as the probability
that b = 1.

Definition 1 (Security for Verifiers). A DCS scheme is (t, ε)-secure for ver-
ifiers (or extractable) if there is no adversary A = (A0,A1,A2) which runs in
time t, and wins game GS4V with advantage at least ε.

Game GS4V :

(spk, ssk)← SKg(1
k
), (cpk, csk)← CKg(1

k
)

(M∗, σ∗, τ1, τ2)← A0(spk, ssk, cpk, csk)

Case 1 : b1 ← Confirm〈A1(τ1),V〉(M
∗, σ∗, spk, cpk)

Case 2 : b2 ← Disavow〈A2(τ2),V〉(M
∗, σ∗, spk, cpk)

Return b← (b1 ∨ b2).

Game GINV :

(spk, ssk)← SKg(1
k
), (cpk, csk)← CKg(1

k
)

(M∗, τ )← AO
1 (spk, cpk), b← {0, 1}

σ∗
{← DCSig(ssk, M∗, cpk), if b = 0

←$ S , otherwise

b′ ← AO
2 (τ, σ∗

)

Return b← [b′ ?
= b
]

Game GS4S :

(spk, ssk)← SKg(1
k
)

(cpk, csk)← CKg(1
k
)

(M∗, ζ∗
)← AO1 (spk, cpk, csk)

Return b← Ver(M∗, ζ∗, spk, cpk)

Fig. 1. The Security Model of DCS

(Security for Signers - Unforgeability). Anyone, including the confirmer,
should not be able to forge an (honest) signer’s signatures. Formally, we consider
the game GS4S depicted in Fig. 1, where O1 = O\{OExt}. The advantage of the
adversary A is defined as the probability that the returned bit is b = 1 and A
did not query ODCSig on input M∗.

Definition 2 (Security for Signers). A DCS scheme is (t, qs, qc, qd, ε)-secure
for signers (or unforgeable) if there is no adversary A which runs in time t,
makes at most qs queries to ODCSig, qc queries to OConfirm and qd queries to
ODisavow, and wins game GS4S with advantage at least ε.

A stronger variant of the definition is strong unforgeability. Let σi be the return
of ODCSig on input Mi queried by A, and ζi the output of the (deterministic)
algorithm Ext on input (csk,Mi, σi, spk). We change the unforgeability game so
that the adversary wins if b = 1 and (M∗, ζ∗) �∈ {Mi, ζi}qs

i=1. A DCS scheme is
(t, qs, qc, qd, ε)-strongly unforgeable if no adversary after running in time t can
have advantage at least ε in this new game after making queries with the bound
as above.

(Invisibility). Given a DCS signature, a verifier should not be able to tell the
validity of it without the help from the signer or the confirmer. Formally, we
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consider the game GINV depicted in Fig. 1, where S is the signature space defined
by cpk and spk. The advantage of the adversary A is defined as the difference
between one half and the probability that the returned bit is b = 1 and A did
not query OConfirm, ODisavow and OExt on input (M∗, σ∗).

Definition 3 (Invisibility). A DCS scheme is (t, qs, qe, qc, qd, ε)-invisible if
there is no adversary A = (A1,A2) which runs in time t, makes at most qs
queries to ODCSig, qe queries to OExt, qc queries to OConfirm and qd queries to
ODisavow, and wins game GINV with advantage at least ε.

Definition 4. A DCS scheme is said to be secure if it is secure for signers
(Def. 2), secure for verifiers (Def. 1) and invisible (Def. 3).

The definition of invisibility above implicitly requires the existence of an efficient
algorithm which samples a random signature from the space S of the signer’s
DCS signatures. Clearly, if the sampler has the signer’s secret key, it can sample a
signature efficiently by signing a random message. However, if it is only given the
public keys, the situation becomes different. We consider the following definition.

Definition 5 (Samplability). A DCS scheme is samplable if there is a proba-
bilistic polynomial-time algorithm, which given 1k and public keys cpk and spk,
chooses a signature σ randomly and uniformly from the signature space S defined
by cpk and spk in time polynomial in the security parameter k.

The schemes following the ‘commit-then-sign’ paradigm, e.g. [8,23,32,36], are
not samplable, because a DCS signature includes a commitment and the signer’s
(standard) signature on the commitment, and it is infeasible to efficiently sam-
ple the commitment and the corresponding (standard) signature simultaneously.
While for some other schemes, e.g. [39] and the one we propose in Sec. 5, there
is an efficient sampling algorithm. We stress that for DCS schemes with sam-
plability, although it is easy to randomly select a signature from S, it does not
imply that finding M is easy. Otherwise, the DCS scheme will be forgeable.

4 Assumptions

We assume that there is an efficient algorithm IG which takes as input 1k and
outputs a random instance of the bilinear groups, i.e. (G,GT , ê, p, g), where
G,GT are represented as multiplicative groups of prime order p, g is a random
generator of G, and ê : G × G → GT is a bilinear pairing.

Definition 6 (q-HSDH Assumption [7]).The q-Hidden StrongDiffie-Hellman
(q-HSDH) assumption (t, ε)-holds in G if there is no algorithm A which runs in
time at most t, and satisfies the following condition:

Pr[A(g, gx, u, {(g 1
x+si , gsi , usi)}qi=1) = (g

1
x+s , gs, us)] ≥ ε

where s ∈ Zp and s �∈ {s1, · · · , sq}, the probability is taken over the random
choices of x, s1, · · · , sq ∈ Zp, u ∈ G and the random coins used by A.
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Definition 7 (q-DHSDH Assumption [27]). The q-Decisional Hidden Strong
Diffie-Hellman (q-DHSDH) assumption (t, ε)-holds in G if there is no algorithm
A which runs in time at most t, and satisfies the following condition:

|Pr[A(g, gx, u,Q, us, g
1

x+s ) = 1] − Pr[A(g, gx, u,Q, us, Z) = 1]| ≥ ε

where Q = {(g 1
x+si , gsi , usi)}qi=1, and the probability is taken over the random

choices of x, s1, · · · , sq, s ∈ Zp and u, Z ∈ G, and the random coins used by A.

5 A New DCS Scheme without Random Oracle

We now propose an efficient construction of designated confirmer signature,
which makes use of a programmable hash function (PHF) [26]. A PHF = (Gen,
Eval, Trap) is a keyed group hash function which maps the set of arbitrarily long
messages to a group G. It behaves in two indistinguishable ways, depending on
how the key κ is generated. If we use the standard key generation algorithm,
the function behaves normally as prescribed. If we use the alternative trapdoor
key generation algorithm which outputs a simulated key for the function (in-
distinguishable from a real key) and a trapdoor τ , besides the normal output,
the function (on input X and τ) also outputs some secret key trapdoor infor-
mation τ ′ dependent on two generators g, h from the group, e.g. τ ′ = (aX , bX)
such that PHF.Eval(κ,X) = gaXhbX . PHF is (m,n, φ, ϕ)-programmable if the
statistical distance between distributions of real keys for the function and sim-
ulated keys is bounded by φ, and for all choices X1, · · · , Xm ∈ {0, 1}n and
Z1, · · · , Zn ∈ {0, 1}n with Xi �= Zj, it holds that aXi = 0 but aZj �= 0 with
probability at least ϕ. An instantiation of PHF is the ‘multi-generator’ hash
function, defined as PHF.Eval(κ,X) = h0

∏n
i=1 h

Xi

i , where hi’s are the public
generators of G included in κ, and X = (X1 · · ·Xn) ∈ {0, 1}n. We refer readers
to [26] for details.

5.1 The Scheme

Let (G,GT , ê, p, g) be a random instance of bilinear groups output by IG(1k),
PHF be a family of programmable hash functions [26]. The new DCS scheme,
denoted by DCS, works as below, where for simplicity we write PHF.Eval(κ,M)
as Hκ(M) for a key κ.

– SKg(1k). Choose at random x ←$ Zp, u ←$ G, and set X := gx. Run
PHF.Gen(1k) to produce a key κ for the programmable hash function H, Set
and return (spk, ssk) := ((X,u, κ), x).

– CKg(1k). Choose y ←$ Zp randomly. Return (cpk, csk) := (Y, y) = (g
1
y , y).

– Sig(ssk,M, cpk). Pick s←$ Zp randomly. Return ζ := (Hκ(M)
1

x+s , gs, us).
– Ver(M, ζ, spk, cpk). Parse ζ as (δ, ν, θ), and return 1 if both ê(ν, u) = ê(g, θ)

and ê(δ,Xν) = ê(Hκ(M), g) hold, and 0 otherwise.
– DCSig(ssk,M, cpk). Pick s←$ Zp randomly. Return σ :=(Hκ(M)

1
x+s , Y s, us).

– Ext(csk,M, σ, spk). Parse σ as (δ, γ, θ). Set ν := γy, and return ζ := (δ, ν, θ).
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(Signature Space). The DCS signature space with respect to cpk and spk is
defined as S := {(δ, γ, θ) : ê(γ, u) = ê(Y, θ)}. To sample a signature at random
from the space, one picks at random s ←$ Zp, sets γ = Y s, θ = us, and then
picks at random δ ←$ G. The sampled signature is σ = (δ, γ, θ) ∈ S. Note that
it is hard to find message M such that δ = Hκ(M)

1
x+s .

(Confirmation). Let the common input be (M,σ, spk, cpk) where σ = (δ, γ, θ)
is a signature on M . Both the prover P, which is either the signer S or the
confirmer C, and the verifier V check whether the equation ê(γ, u) = ê(Y, θ)
holds. If not, they do nothing. Below we assume that the equation holds. Note
that both S and C can verify the validity of σ. For S, it additionally checks
whether ê(δ, uxθ) = ê(Hκ(M), u), which is equivalent to

ê(δ, u)x = ê(Hκ(M), u) · ê(δ, θ)−1 def= W1. (1)

For C, it additionally checks if ê(δ,Xγy) = ê(Hκ(M), g), which is equivalent to

ê(δ, γ)y = ê(Hκ(M), g) · ê(δ,X)−1 def= W2. (2)

Therefore, P starts an execution of the following proof of knowledge of equality
of discrete logarithms, using the knowledge of either x or y.

PK {α : (ê(δ, u)α = W1 ∧ gα = X) ∨ (ê(δ, γ)α =W2 ∧ Y α = g)} (3)

(Disavowal). Let the common input be (M,σ, spk, cpk) where σ = (δ, γ, θ) is an
invalid signature on M of S. Both P and V check whether the equation ê(γ, u) =
ê(Y, θ) holds. If not, they do nothing. Otherwise, they start an execution of
the following proof of knowledge of inequality of discrete logarithms, using the
knowledge of either x or y.

PK {α : (ê(δ, u)α �= W1 ∧ gα = X) ∨ (ê(δ, γ)α �=W2 ∧ Y α = g)} (4)

Remark 1. The confirmation/disavowal protocols given above are Σ-protocols
[17] with special soundness and perfect special honest-verifier zero-knowledge.
Their corresponding four-move fully fledged perfect zero-knowledge protocols
can be obtained by applying the transformation in [15].

5.2 Security Analysis

Theorem 1. DCS is (t, 2/p)-extractable (Def. 1).

Theorem 2. Let PHF be a family of (m, 1, φ, ϕ)-programmable hash functions.
Let F be a (t, qs, qc, qd, ε)-adversary against the unforgeability (Def. 2) of DCS.
Then there exists an adversary A1 that (t1, ε1)-breaks the qs-SDH assumption [4]
with t1 ≈ t and ε1 ≥ q−1

s ϕ(ε−qm+1
s /pm−φ), or there exists an adversary A2 that

(t2, ε2)-breaks the qs-HSDH assumption and an adversary A3 that (t3, ε3)-breaks
the Discrete Logarithm assumption in G with t2, t3 ≈ t and ε2 + ε3 ≥ ε− φ.
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Theorem 3. Let PHF be a family of (m, 1, φ, ϕ)-programmable hash functions
and D a (t, qs, qe, qc, qd, ε)-distinguisher against invisibility (Def. 3) of DCS. If
DCS is (t1, qs, qc, qd, ε1)-strongly unforgeable and its confirmation and disavowal
protocols are perfect zero-knowledge, then there exists an adversary A which
(t′, ε′)-breaks the (qs+1)-DHSDH assumption and an adversary A′ which (t′′, ε′′)-
breaks the Discrete Logarithm assumption with t1, t′, t′′ ≈ t and ε′ + ε′′ ≥
ε− ϕ− ε1.
The proofs are deferred to the full version of this paper due to page limit. We
remark that a slight modification of the proof of Theorem 2 can be used to
show the strong unforgeability of DCS so that even if the adversary obtained a
signature on a message, it cannot forge a new signature on the same message.

5.3 Extensions

(Signer-Convertible DCS ). The scheme DCS allows the signer S to confirm/
disavow DCS signatures without keeping any state information (e.g. the ran-
domness used in signature generation), however, similar to all the existing DCS
schemes, it does not let the (stateless) signer convert a valid DCS signature to
a standard signature yet. Fortunately, we can extend DCS so to support this
feature with merely a little cost, which includes an additional G element to S’s
public key and its DCS signature. The idea behind our construction is to put
another ‘confirmation key’ into S’s public key. Specifically, S selects at random
ỹ ←$ Zp, and puts Ỹ := g1/ỹ into spk and ỹ into ssk. When generating a DCS
signature, besides δ, γ, θ, S also computes η := (Ỹ )s and sets σ := (δ, γ, θ, η).
The other algorithms and protocols of DCS can be modified accordingly. To con-
vert σ to a standard signature, S computes ν := ηỹ = (g1/ỹ)sỹ = gs and releases
ζ = (δ, ν, θ), which is identical to the one output by the confirmer. Clearly, the
correctness of the conversion is publicly verifiable.

(Universal Convertible DCS ). We can also borrow the notion of universal con-
version from convertible undeniable signature [5] and apply it to the context of
DCS. To universally convert DCS signatures, S only needs to publish ỹ, which
does not do any harm to C or other signers (note: C could also be the confirmer
of other signers), as well as the unforgeability of S’s signatures.

(Multiple Confirmers). The DCS can also be extended to support multiple
confirmers so that each confirmer can convert a DCS signature to obtain the
same standard signature. Suppose that there are n confirmers with public keys
Y1, · · · , Yn. To sign a message M w.r.t. these confirmers, the signer computes
δ, θ as prescribed, and then for each confirmer it computes γi = Y si . The DCS
signature is σ = (δ, γ1, · · · , γn, θ).
(Threshold Conversion). The DCS also supports t-out-of-n threshold conver-
sion. The confirmers run a protocol for example, the distributed key generation
protocol proposed by Canetti et al. [10], to jointly generate the confirmation pub-
lic key Y so that each of them holds a share yi of the corresponding secret key
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y where Yi = g1/yi is the respective public key. To extract a signature, each
confirmer uses their share yi to compute νi = γyi . Anyone who collects at least
t νi’s can recover ν efficiently, i.e. using Lagrange interpolation.

5.4 Performance Comparison

In Camenisch-Michels DCS scheme [8], the signer’s RSA signature is hidden
using Cramer-Shoup encryption [16]. A DCS signature contains four elements
from Z∗

p where p is a prime larger than the RSA modulus N , which needs about
4K bits for 80-bit security. In Gentry-Molnar-Ramzan scheme [23], a DCS sig-
nature consists of a commitment, a standard signature on the commitment and
the Cramer-Shoup encryption [9] of the randomness used in generating the com-
mitment, and thus has size larger than that of Camenisch-Michels scheme. The
extracted signature consists of the DCS signature and the randomness encapsu-
lated in the ciphertext. In Wang-Baek-Wong-Bao scheme [36], a DCS signature
contains two elements d1, d2 of Z∗

p computed from the message (and some ran-
domness), the signer’s standard signature on d1, d2, and a non-interactive proof
of the discrete logarithm of d1 (w.r.t. the group generator), and an extracted
signature consists of d1, d2, the signer’s standard signature on d1, d2 and a non-
interactive proof showing some quadruple being a Diffie-Hellman tuple. Their
confirmation/disavowal protocol is very efficient, simply a proof showing that
some quadruple is/is not a Diffie-Hellman tuple.

In our DCS scheme, both a DCS signature and an extracted signature contain
only three elements of the bilinear group G (about 60 bytes for 80-bit security),
shorter than any of the schemes above. Therefore, when compared with previous
schemes, the signature size of this new DCS scheme is only about 12% that of
the Camenisch-Michels DCS scheme [8]. When compared with the Wang-Baek-
Wong-Bao DCS scheme [36] which is proven in the random oracle model, this
new DCS scheme still has a significant extent of advantage. The signature size
of the new DCS scheme is only about 50% that of theirs. Table 1 shows the
comparison of our DCS scheme with two schemes in the literature in terms of
key sizes, signature sizes and whether the security relies on the random oracle
model (ROM). In the comparison we instantiate the encryption scheme and
signature scheme used in [23] with [9] and [22] respectively, and instantiate the
signature scheme used in [36] with Schnorr signature [35].

Inherited from the shortness of the only known ‘multi-generator ’ instantiation
of programmable hash function [26], the public key of the signer in our DCS
scheme is also long. If we choose to put the key κ for the programmable hash

Table 1. Comparison with Two Existing DCS schemes

Schemes cpk csk spk ssk σ ζ ROM

[8] 5Zp 5Zq 1ZN + k 1ZN 4Zp ≈ 4K 1ZN ≈ 1K ×
[36] 1G 1Zp 1G 1Zp 2G + 4Zp ≈ 0.95K 2G + 6Zp ≈ 1.2K

√
Ours 1G 1Zp 163G 1Zp 3G ≈ 0.47K 3G ≈ 0.47K ×
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function and u in the signer’s public key to the system parameters, we obtain a
DCS scheme secure in the common reference string model. The signer’s public
key of the resulting scheme becomes much shorter, i.e. one G element only (about
20 bytes), and all the signers will share the same signature space. Furthermore,
it can be shown that the scheme enjoys anonymity [20] in the sense that two
signers’ DCS signatures on the same message are indistinguishable.

6 A New Construction of AOFE

As an important application, designated confirmer signature can be used for
building efficient optimistic fair exchange protocols [1,14]. In this section, we
show how to use our new DCS scheme to build an efficient Ambiguous Opti-
mistic Fair Exchange (AOFE) scheme. Essentially, AOFE is a variant of the
traditional OFE, in which both of the exchanging parties can produce indis-
tinguishable signatures on the same message. An AOFE scheme consists of the
following probabilistic polynomial time algorithms/protocols: PMGen for gener-
ating system parameters; SetupTTP for generating a key pair for the arbitrator;
SetupUser for generating a key pair for each user; PSig/PVer for generating and
verifying a partial signature (interactively or non-interactively); Sig/Ver for gen-
erating and verifying a full signature; and Res for converting a partial signature
to a full one. We refer readers to [28] for the details.

The security of AOFE was originally defined in the chosen-key model [28], in
which the adversary is allowed to use any public key arbitrarily. In this work we
consider a stronger but still practical variant of the key model, named registered-
key model, in which the adversary has to prove its knowledge of the secret key
before using a public key.

6.1 Security Model of AOFE in the Registered-Key Model

Let Q(O) be the set of queries that the adversary submits to oracle O, where
O could be any of the oracles below. We assume that the adversary has already
registered a public key to the oracle OKR before using it; otherwise, no response
is given to the adversary.

– OKR takes as input a key pair (pki, ski), and checks the validity of the pair.
If valid, it stores the pair and returns pki to the adversary; otherwise, it
returns ⊥.

– OPSig takes as input (M, pki) and returns a partial signature σ of the signer
with public key pkA, which is valid on M under pkA, pki. The oracle then
starts an execution of PVer with the adversary to show the validity of σ.

– OFakePSig takes as input (M, pki) and returns a partial signature σ generated
using skB, which is valid under pki, pkB. The oracle then starts an execution
of the PVer protocol with the adversary to show the validity of σ.

– ORes takes as input (M,σ, pki, pkj) and outputs ζ if it is a valid (standard)
signature on M under pki, and ⊥ otherwise.



54 Q. Huang, D.S. Wong, and W. Susilo

Signer Ambiguity. The signer ambiguity says that after obtaining the valid
partial signature from the signer S, the verifier V cannot transfer the conviction
to any third party. We require that V is able to produce signatures indistinguish-
able from those by S. Formally, we consider the game Gsa depicted in Fig. 2 (page
55), where O1 = {OKR, OPSig, ORes}, and Υ is D’s state information. Note that
after sending σ∗ to D in the game, the challenger also starts an execution of
the PVer protocol with D to show the validity of σ∗ under pkA, pkB. The ad-
vantage of D, denoted by Advsa

D (k), is defined to be the gap between its success
probability in the game and one half, i.e. Advsa

D (k) = |Pr[D Succ] − 1/2|.
Definition 8 (Signer Ambiguity). An AOFE scheme is signer ambiguous if
there is no probabilistic polynomial-time distinguisher D such that Advsa

D (k) is
non-negligible in k.

Our definition of signer ambiguity is slightly different from that in [28]. There
the distinguisher corrupts both pkA and pkB, while here it only is allowed to
corrupt pkB. We believe that this more reflects the reality, as it is unlikely for
Bob to already know the secret key of Alice before/when he wants to show Alice’s
partial commitment to others.

Security Against Signers. This requires that (malicious) signer A cannot
produce a partial signature, which looks good to V but cannot be resolved to
a full signature by the honest arbitrator, ensuring the fairness for verifiers. V
should always be able to obtain the full commitment of the signer if the signer
has committed to a message. Formally, we consider the game Gsas depicted in
Fig. 2, where O2 = {OKR, OFakePSig , ORes}. The advantage of A in the game,
denoted by Advsas

A (k), is defined as its success probability.

Definition 9 (Security Against Signers). An AOFE scheme is secure against
signers if there is no probabilistic polynomial-time adversary A such that Advsas

A (k)
is non-negligible in k.

Security Against Verifiers. It requires that any efficient verifier B should
not be able to convert a partial signature into a full one with non-negligible
probability if it obtains no help from the signer or the arbitrator. This ensures the
fairness for the arbitrator and the signer. Formally, we consider the game Gsav

depicted in Fig. 2, where O3 = {OKR, OPSig, ORes}. The advantage of B = (B1,B2)
in the game, denoted by Advsav

B (k), is defined as its success probability.

Definition 10 (Security Against Verifiers). An AOFE scheme is secure
against verifiers if there is no probabilistic polynomial-time adversary B such
that Advsav

B (k) is non-negligible in k.

Security Against the Arbitrator. This is for ensuring the unforgeability of
the signer’s signatures. It says that no efficient adversary C, even the arbitrator,
is able to generate with non-negligible probability a valid full signature without
explicitly asking the signer for generating one. Formally, we consider the game
Gsaa depicted in Fig. 2, where O4 = {OKR, OPSig}. The advantage of C in this
game, denoted by Advsaa

C (k), is defined as its success probability.
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Definition 11 (Security Against the Arbitrator). An AOFE scheme is se-
cure against the arbitrator if there is no probabilistic polynomial-time adversary
C such that Advsaa

C (k) is non-negligible in k.

Game Gsa:
PM← PMGen(1

k
), (apk, ask)← SetupTTP

(PM)

(pkA, skA)← SetupUser
(PM, apk), (M∗, pkB, Υ )← DO1 (apk, pkA)

b← {0, 1}, σ∗ ←
{

PSig(M∗, skA, pkA, pkB, apk) , if b = 0

FakePSig(M∗, skB , pkA, pkB, apk), if b = 1

b′ ← DO1 (Υ, σ∗
)

Succ. of D :=
[
b′ = b ∧ (M∗, σ, {pkA, pkB}) �∈ Q(ORes)

]
Game Gsas:

PM← PMGen(1
k
), (apk, ask)← SetupTTP

(PM)

(pkB , skB)← SetupUser
(PM, apk), (M∗, pkA, σ∗

)← AO2(apk, pkB)

ζ∗ ← Res(M∗, σ∗, ask, pkA, pkB)

Succ. of A :=
[
PVer(M∗, σ∗, {pkA, pkB}, apk) = 1∧

Ver(M∗, ζ∗, pkA, pkB , apk) = 0 ∧ (M∗, pkA) �∈ Q(OFakePSig)
]

Game Gsav :
PM← PMGen(1

k
), (apk, ask)← SetupTTP

(PM)

(pkA, skA)← SetupUser
(PM, apk), (M∗, pkB, Υ )← BO3

1 (apk, pkA)

σ∗ ← PSig(M∗, skA, pkA, pkB, apk), ζ∗ ← BO3
2 (Υ, σ∗

)

Succ. of B :=
[
Ver(M∗, ζ∗, pkA, pkB , apk) = 1 ∧ (M∗, ·, {pkA, pkB}) �∈ Q(ORes)

]
Game Gsaa:

PM← PMGen(1
k
), (apk, ask)← SetupTTP

(PM)

(pkA, skA)← SetupUser
(PM, apk), (M∗, pkB, ζ∗

)← CO4(ask, apk, pkA)

Succ. of C :=
[
Ver(M∗, ζ, pkA, pkB , apk) = 1 ∧ (M∗, pkB) �∈ Q(OPSig)

]

Fig. 2. Security Model of AOFE

Definition 12 (Secure AOFE). An AOFE scheme is said to be secure in the
multi-user setting and registered-key model (or simply, secure), if it satisfies
signer ambiguity (Def. 8), security against signers (Def. 9), security against
verifiers (Def. 10) and security against the arbitrator (Def. 11).

6.2 Interactive AOFE

Our interactive AOFE scheme is conceptually simple. The arbitrator acts as the
confirmer of DCS, and the signer’s partial signature σ on a message M consists
of its DCS signature on M and a zero-knowledge proof, i.e. FullConfirm, showing
either the validity of σ or the knowledge of the verifier’s secret key. This proof
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is also known as the designated-verifier proof [30]. To resolve partial signature
σ, the arbitrator uses its secret key in DCS to convert σ to the signer’s standard
signature ζ, which is defined as the signer’s full signature in the AOFE scheme.
The following is the description of the AOFE scheme.

PMGen. This algorithm generates the parameters for the DCS scheme, e.g.
G,GT , ê : G × G → GT , p, g.

SetupTTP. The arbitrator chooses at random y ←$ Zp, and sets its key pair as
(apk, ask) := (g1/y, y).

SetupUser. Each user chooses at random x ←$ Zp, u ←$ G, and sets X := gx.
It also runs PHF.Gen(1k) to produce a key κ for the programmable hash
function H. It sets its key pair as (pk, sk) := ((X,u, κ), x).

PSig/PVer. Let the signer be Ui with public key pki = (Xi, ui, κi) and the
verifier be Uj with public key pkj = (Xj , uj, κj). To partially sign a message
M , Ui and Uj work as follows:
1. Ui selects s ←$ Zp at random, and sends σ := (δ, γ, θ) to Uj , where
δ = Hκi(M‖pkj)1/(xi+s), γ = apks, and θ = usi .

2. Ui starts an execution of protocol FullConfirm with Uj to show that either
σ is Ui’s valid signature on M‖pkj or it knows the secret key of Uj .

3. Uj outputs 1 if it accepts at the end of the proof, and 0 otherwise.
Sig/Ver. To fully sign a message M , the signer Ui selects s ←$ Zp at random

and computes ζ := (δ, ν, θ) = (Hκi(M‖pkj)1/(xi+s), gs, usi ). It sends ζ to the
verifier Uj , which then checks whether both ê(ν, ui) = ê(g, θ) and ê(δ,Xiν) =
ê(Hκi(M‖pkj), g) hold. If so, Uj outputs 1; otherwise it outputs 0.

Res. After receiving from Uj a signature σ = (δ, γ, θ) and a proof transcript
claimed to be Ui’s partial signature, the arbitrator first checks the validity of
the proof, and returns ⊥ to Uj if it is not valid. It then computes ν := γy, and
returns ζ := (δ, ν, θ) if ζ is Ui’s valid signature on M‖pkj , and ⊥ otherwise.

How to simulate a partial signature: To simulate Ui’s partial signature on
a message M , user Uj can randomly select a signature σ′ from the space of Ui’s
partial signatures (see Sec. 5), and then make a FullConfirm proof using its own
secret key as the witness. The invisibility of the underlying DCS scheme and the
perfect zero-knowledge of FullConfirm protocol together tell that the simulated
partial signature looks indistinguishable from a real one.

Theorem 4. The interactive AOFE scheme above is secure (Def. 12) provided
that HSDH and DHSDH assumptions hold in G.

The proof is deferred to the full version of this paper due to the lack of space.

6.3 Non-interactive AOFE

Our interactive AOFE requires seven moves in total. The signer S sends its
partial signature to the verifier V in the first move, then starts an execution of
the protocol FullConfirm, which needs four moves. V sends back its full signature
in the sixth move, and in response, S returns its full signature in the last move.
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However, it is more desirable in practice to reduce the communication cost and
save the bandwidth. The optimal case is the non-interactive AOFE (originally
considered in [28]), which requires only three moves, i.e. the partial signature of
S could be directly verified by V.

By applying the Fiat-Shamir transformation to (the Σ-protocol version of)
FullConfirm, we get a non-interactive zero-knowledge proof of knowledge showing
either the validity of σ or the knowledge of the secret key of V. The resulting
proof, denoted by π, can also be viewed as a designated verifier signature (DVS)
[30], where V is the designated verifier. After receiving σ and π from S, V checks
the validity of π, and accepts σ as S’s valid partial signature only if π is valid.

The non-interactive proof π obtained via Fiat-Shamir transformation consists
of only four elements of Zp, i.e. π = (c1, c2, z1, z2). The verification is done by
checking if

c1 + c2
?= H(M, ê(δ, uz1i )W−c1

1 , gz1X−c1
i , gz2X−c2

j )

= H(M, ê(δ, uz1i θ
c1) · ê(Hκi(M), u−c1i ), gz1X−c1

i , gz2X−c2
j ),

where M is the concatenation of message M and the public keys of P and V,
and H : {0, 1}∗ → Zp is a collision-resistant hash function.

Theorem 5. The non-interactive AOFE above is secure (Def. 12) in the ran-
dom oracle model provided that HSDH and DHSDH assumptions hold in G.

Reduce Public Key Size. Since the key for only known instantiation of
programmable hash functions [26] is long, which consists of 161 elements of G,
the signer’s public key in both AOFE schemes is also long. Observe that the
non-interactive scheme already resorts to a random oracle, we can replace the
programmable hash function with another random oracle. That is, we change
the computation of δ to δ = H′(M)1/(x+s), where H′ : {0, 1}∗ → G is another
collision-resistant hash function and will be modeled as a random oracle in the
security proofs. The size of the signer’s public key in our scheme is significantly
reduced from 163 G elements to two only, i.e. pk = (X,u).

Efficiency and Comparison. In Table 2 we compare our non-interactive
AOFE with Garay et al.’s scheme [21] and Huang et al.’s [28] in terms of signa-
ture sizes, the public-key model (registered-key model or chosen-key model) and
whether the security relies on the random oracle heuristics. In the comparison we
instantiate the one-time signature scheme used in [28] with Boneh-Boyen short
signature [4]. We can learn from the table that our scheme has full signature
much shorter than [21,28]. This is because schemes in [21,28] need to include the
corresponding partial signature into the full signature, while ours does not.

The partial signature generation in our scheme costs seven exponentiations
in G, while the verification of a partial signature costs seven exponentiations in
G and two pairing evaluations. Both the signature generation and verification
involve the evaluation of a ‘multi-generator’ hash, which can be reduced to one
simple hash evaluation as explained above.
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Table 2. Comparison of our non-interactive AOFE with [21,28]

Schemes PSig Sig Key ROM

Ours 3G + 4Zp 3G registered
√

[21] 2G + 8Zp 2G + 12Zp registered
√

[28] 45G + 1Zp 46G + 1Zp chosen ×

6.4 On Chen’s Transformation

In [14], Chen showed how to construct a (traditional) OFE from DCS. The
transformation is different from ours in that after sending a DCS signature σi to
Uj , the signer Ui executes the DCS confirmation protocol with Uj, proving only
the validity of σi. Ui does not show its knowledge of Uj ’s secret key in the proof.
The invisibility of the DCS tells that σi is indistinguishable from any random
signature σ′ chosen from the space of Ui’s signatures. Besides, the confirmation
protocol is zero-knowledge, thus Uj is also able to simulate the proof transcripts,
i.e. by running the zero-knowledge simulator. Therefore, at the first sight, one
may think that Chen’s transformation also results in an AOFE. However, this
is actually not the case as the following issue needs to be handled.

Depending on how Uj is convinced of the validity of Ui’s signature, there are
two kinds of signer ambiguity. One is offline signer ambiguity, which requires
that given a message M , a signature σi and a proof transcript T, no distin-
guisher can tell whether σi was generated by Ui or Uj . The other one is online
signer ambiguity, which in contrast, requires that even when interacting with the
prover, the distinguisher still could not tell with probability greater than one-
half whether σi was generated by Ui or Uj. The former is static and weak for
practical use, because it models passive attacks only. In this work, we consider
the online signer ambiguity. Our definition given in Def. 8 models this stronger
type of signer ambiguity.

Although the randomly chosen signature σ′ resembles a valid signature on M
generated by Ui, with overwhelmingly high probability σ′ would not be valid.
By the soundness of the confirmation protocol, even the real signer itself cannot
prove online (or, interactively) that σ′ is valid. Therefore, the resulting scheme
of Chen’s transformation cannot satisfy the online signer ambiguity, and thus
cannot be shown as a secure AOFE. On the other hand, if we compress the
interactive confirmation protocol using the Fiat-Shamir heuristic, the resulting
non-interactive proof reveals the identity of the prover, because no one else but
the one who holds the witness, i.e. the signer, is able to generate a valid non-
interactive proof. Therefore, Chen’s transformation cannot be used for building
a non-interactive AOFE scheme in this way either.
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Abstract. We present the notion of anonymizable signature, which is an

extension of the ring signature [RST01, BKM06]. By using an anonymiz-

able signature, anyone who has a signed message can convert the signa-

ture into an anonymous signature. In other words, one can leave a signed

message with an appropriate agent who will later anonymize the signa-

ture.

A relinkable ring signature [SHK09] is also an extension of the ring

signature by which the ring forming ability can be separated from the

signing ability. In the relinkable ring signature, an agent who has a spe-

cial key given by the signer can modify the membership of existing ring

signatures. However, the relinkable ring signature has two problematic

limitations; a signer cannot select an agent according to the worth of the

signature, because there exists the unique key to modify the membership

for each public key, and we cannot achieve perfect anonymity even if the

agent is honest.

The proposed anonymizable signature can free one from these lim-

itations. In the anonymizable signature scheme, each signature can be

anonymized without any secret but the signature itself. Thus, the signer

can delegate signature anonymization to multiple agents signature by

signature. Moreover, the anonymizable signature can guarantee uncon-

ditional anonymity and be used for anonymity-sensitive purposes, e.g.,

voting. After providing the definition of the anonymizable signature, we

also give a simple construction methodology and a concrete scheme that

satisfies perfect anonymity and computational unforgeability under the

gap Diffie-Hellman assumption with the random oracle model.

1 Introduction

We present the notion of anonymizable signature, which is an extension of the
ring signature [RST01, BKM06]. By using an anonymizable signature, anyone
who has a signed message can convert the signature into an anonymous signature,
i.e., one can leave a signed message with an appropriate agent who will later
anonymize the signature.

For example, in the case of publication of a governmental document through a
“freedom of information act”, the governmental staff who publicize the document
need to hide the personal information of the individuals in the document. To
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hide this information, they can use a sanitizing signature [SBZ01]. However,
if the document is a contract between the government and an individual, the
information on the signer cannot be hidden because readers must be convinced
that the contract is valid.

To hide the information on the signer, it may seem to be effective for the
signer to leave an additional ring signature with the document at the signing
phase, which will replace his signature at the publishing phase. However, during
the long term preservation of the document, there is a large probability that
the ring signature will be made invalid by leakage of a signing key of a member
in the ring, even if there is little probability that a member would leak his or
her signing key. In such a case, the anonymizable signature could be effective. A
signer can leave a signed message with the governmental staff who will convert
it into an appropriate ring signature with a valid ring at the publishing phase.

If the agent is not trustworthy, the anonymizable signature is not suitable
for an application that needs highly strong anonymity, such as whistleblowing.
However, if the agent can be regarded as an ideal functionality, such a signature
has many applications, e.g., server-aided computation of ring signatures, sani-
tizing of the signer in a signed documents, dynamic group management of ring
signatures, as a countermeasure against the invalidation attack by the secret key
exposure, as a gradually convertible ring signature [SHK09].

1.1 Related Works

An anonymizable signature is an extension of the ring signature [RST01, BKM06].
A ring signature is a kind of anonymous signature by which one can sign anony-
mously without a group setup or group manager. For each time of signing, a
signer of a ring signature chooses a set of appropriate members, called a ring,
then signs a message on behalf of the ring by using his or her own secret key
and all of the public keys of the members in the ring. A signer can form any ring
that includes him or herself as long as he or she has the public keys.

A relinkable ring signature [SHK09] is also an extension of the ring signature
and has a similar functionality to the anonymizable signature. By using a relink-
able ring signature, one can separate the ring-forming ability from the signing
ability. Besides normal ring signature algorithms, the relinkable ring signature
has a special algorithm called relink. An agent who has a special key given by the
signer can derive a ring signature with a modified ring from an existing signed
message by use of the relink algorithm. The agent who has the key to modify a
ring signature can just modify the ring membership of an existing signed mes-
sage; he or she cannot sign a new message. Thus, the signer can transfer the
ring-forming ability to an agent without leaking the signing key. An anonymiz-
able signature can be regarded as an extension of a relinkable ring signature, s.t.,
for each signing phase, the signer generates a new key, namely the signature.

An anonymizable signature also can be regarded as an extension of the con-
vertible ring signature [LWH05], by which the signer can generate a key to revoke
the anonymity of the ring signature. An agent who has an anonymizable signa-
ture can gradually decrease the anonymity of signed message by decreasing the
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number of ring members of the signature. In an extreme case, the agent can
generate a non-anonymous signature by making the ring members include only
the signer. This is similar to a convertible ring signature [LWH05], although
the agent never proof that the two ring signatures are generated from the same
anonymizable signature.

Moreover an anonymizable signature can be regarded as an extension of the
ID-based signature (IBS) [Sha84, BNN04]. The syntax of an anonymizable sig-
nature is similar to that of an IBS, although the roles of the participants are
somewhat different.

1.2 Motivation

In the definition of a relinkable ring signature in [SHK09], a special secret called
relink key is given by the signer at the key generation phase. One can modify the
ring membership of an existing ring signature by use of the signer’s relink key.
Every public key has only one corresponding relink key. Once an agent has a
relink key, it remains valid until the public key is revoked. This correspondence
gives rise to many problematic limitations.

For example, a signer cannot select an agent according to the worth of the
signature because any agent who has the relink key can always relink any signa-
tures that the signer generates. Moreover, the signer cannot avoid the risk that
an agent may relink unexpected ring signatures without his or her permission.

Furthermore, we cannot achieve a perfectly anonymous relinkable ring signa-
ture without strong limitations even if the agent is honest. To prohibit an agent
from excluding the actual signer from the ring, the signer and the agent must
share the information on the actual signer in the ring. If they share the informa-
tion for each ring signature, they need large secrets whose size is proportional to
the number of ring signatures. However, according to the relinkable ring signa-
ture, the only difference between the agent and the verifier is whether he or she
has the relink key. It is impossible to hide the information perfectly beyond the
size of the shared secret. Thus, according to their definition, it is impossible to
achieve perfect anonymity without strong limitation of the number of signatures
or giving some additional information to the agent.

Therefore, to construct an efficient relinkable ring signature, we must give up
the idea of achieving perfect anonymity. Indeed, the concrete scheme proposed in
[SHK09] just achieves a weaker notion of computational anonymity. Even though
the agent is honest, an attacker with unexpected computational resources may
derive the actual signer directly from a ring signature.

All of these problems are caused by the flaw in the definition of a relinkable
ring signature.

1.3 Contributions

In this paper, we present an improved notion, which we call anonymizable sig-
nature. In the anonymizable signature scheme, the signing algorithm creates a
signature on a message. The signature can be converted to an anonymous ring



Anonymizable Signature and Its Construction from Pairings 65

signature, while the signed message cannot be changed. By using an anonymiz-
able signature, the signer passes a message and a signature on the message to
a proxy agent. The proxy agent can convert the signature into a ring signa-
ture afterward. We provide the definition of anonymizable signature, a simple
construction methodology based on the non-interactive proof of knowledge of
a signature, and an anonymizable signature scheme that can be proven to be
unconditionally anonymous and computationally unforgeable under the GDH
assumption in the random oracle model.

2 Definition

2.1 Notations

When X is a probabilistic Turing machine, X(Y ) denotes that X takes Y as an
input. If X has an output value, X(Y ) also denotes the output value of X when
X takes Y as an input. To simplify the description, we will omit some inputs that
are not relevant, e.g., random tape, security parameter, and common reference
string.

When Y is a fixed value, X ← Y denotes that a value Y is assigned to a
variable X . When Y is a set, X $← Y denotes that X is uniformly selected
from Y . When Y is a probabilistic Turing machine, X $← Y () denotes that X is
randomly selected from the output space of Y according to the distribution of
Y ’s output when Y ’s random tape is uniformly selected. X() $→ Y denotes that
X is a probabilistic Turing machine that outputs Y . For any binary operator
◦, X ◦← Y denotes that a new value X ◦ Y is assigned to the variable X . For
instance, when Y is a set, X ∪← Y denotes that a value X ∪ Y is assigned to the
variable X . � denotes an appropriate string that is not relevant. X ?= Y denotes
a Boolean value equivalent to 1 if X = Y and equivalent to 0 otherwise.

2.2 Syntax

Let k ∈ N be the security parameter. Let N = {0, 1, . . .} be the set of signers;
we denote a subset of signers by L ⊂ N . We denote by xi the secret key and by
yi the public key of member i ∈ N . We use notation aL = (ai)i∈L.

The anonymizable signature scheme Σ consists of the following four algo-
rithms: Σ = (KeyGen, Sign, Anonymize, Verify).

Key Generation KeyGen(1k) $→ (x, y) : The key generation algorithm is a
probabilistic poly-time algorithm that takes a security parameter k as input and
outputs a secret key x and a public key y.

Signing Sign(x,m) $→ r : The signing algorithm is a probabilistic poly-time
algorithm that takes a secret key x and a message m as input and outputs a
signature r.

Anonymization Anonymize(r, L, yL,m) $→ σ/ ⊥ : The anonymization algo-
rithm is a probabilistic poly-time algorithm that takes a signature r, ring L ⊂ N ,
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list yL of public keys, and message m as input and outputs a ring signature σ
or ⊥ as rejection.

Verification Verify(L, yL,m, σ)
$→ 0/1 : The verification algorithm is a prob-

abilistic poly-time algorithm that takes a ring L ⊂ N , list yL of public keys,
message m, and ring signature σ as input and outputs a single bit b ∈ {0, 1}.

Note that we can always verify i’s signature r of a message m as

Verify({i}, yi,m, Anonymize(r, {i}, (yi),m)) ?= 1.

To avoid violating the signer’s anonymity, we must treat the signature r as a
secret between the signer and the agent, in contrast to the ring signature σ. A
signature r can be regarded as a secret seed of a ring signature σ.

The syntax of an anonymizable signature is similar to that of an ID-based
signature (IBS) [Sha84, BNN04], although the roles of the participants are some-
what different. We can regard the signing algorithm in an anonymizable signature
as the key extraction in an IBS. The key extraction in an IBS generates a signing
key for each ID, while the signing algorithm in an anonymizable signature gen-
erates a signing key, i.e., an anonymizable signature, for each message. In other
words, a ring signature derived from an anonymizable signature is a special case
of an ID-based signature such that the ID is identical to the message if it’s ring
consists of only the signer. Later in this paper, we will present a concrete scheme
based on the BLS signature [BLS01], which can be seen as a scheme based on
the ID-based Schnorr signature [SK03].

2.3 Security

The security of an anonymizable signature scheme is defined as follows. First,
we prepare definitions of some oracles. Let L0 = {1, ..., n} be the set of indices
of initially registered public keys, Lsk ⊂ L0 be the set of indices for which secret
key exposure oracle Osk is called, and Lkr = {n + 1, n + 2, ...} be the set of
indices of public keys registered by adversary via key registration oracle Okr.

Signing Oracle Os(i,m) $→ μ : The signing oracle takes a signer i ∈ L0 and
a message m as input and outputs a document index μ ∈ N as follows:

1. if i ∈ L0 and m is in valid domain, then set r $← Sign(xi,m), otherwise set
r ←⊥,

2. increment document counter μ̂ ∈ N that is a state information, and set
μ← μ̂

3. update list of signing oracle queries and answers as Qs
∪← {(μ, i,m, r)},

4. return μ.

Anonymization Oracle Oa(μ,L) $→ σ : The anonymization oracle takes a
document index μ ∈ N and a list of ring members L ⊂ L0 ∪ Lkr as input and
outputs a ring signature σ as follows:

1. if μ is registered in Qs and L ⊂ L0 ∪Lkr, then find (i,m, r) s.t. (μ, i,m, r) ∈
Qs and set σ $← Anonymize(r, L, yL,m), otherwise set σ ←⊥,
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2. update list of anonymization oracle queries and answers as Qa
∪← {(μ, i,m, r,

L, σ)},
3. return σ.

Signature Exposure Oracle Oe(μ)
$→ r : The signature exposure oracle takes

a document index μ ∈ N as input and outputs a signature r as follows:

1. if μ is registered in Qs, then find (i,m, r) s.t. (μ, i,m, r) ∈ Qs, otherwise set
r ←⊥,

2. update list of anonymization oracle queries and answers asQe
∪← {(μ, i,m, r)},

3. return r.

Secret Key Exposure Oracle Osk(i)
$→ xi : The secret key exposure oracle

takes a user index i ∈ N as input and outputs secret key xi of i-th user.

1. if i ∈ L0, then set sk ← xi, otherwise set sk ←⊥ and return sk,
2. update the set of indices for which secret key exposure oracle is called, Lsk ∪←

{i},
3. return sk.

Key Registration Oracle Okr(y)
$→ i : The key registration oracle takes a

public key y as input, outputs a new user index i, and register y as the public
key of the i-th user.

1. if y is in valid domain, then increment counter î ∈ N that is a state informa-
tion, set i ← î, and register y as the public key of the i-th user, otherwise
set i←⊥ and return i,

2. update the set of indices of public keys registered by adversary via key
registration oracle, Lkr ∪← {i},

3. return i.

We say that anonymizable signature Σ is secure if it satisfies the following
three properties.

Completeness
Correctly generated signatures are accepted with overwhelming probability. We
say that anonymizable signature Σ satisfies completeness, if

Pr[(xj , yj)
$← KeyGen(1k) (j ∈ L), r $← Sign(xi,m),

σ
$← Anonymize(r, L, yL,m), Verify(L, yL,m, σ) = 0]

is negligible in k for any message m ∈ {0, 1}∗, any ring L ⊂ N , and any signer
i ∈ L.

Anonymity
We consider the following experiment Expanon

k,Σ (A), where adversary A try to
distinguish the signer of a ring signature:
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1. select random bit b $← {0, 1},
2. at the beginning of the experiment, adversary A generates two pairs of secret

and public keys (x0, y0), (x1, y1), register two public keys y0, y1 by key reg-
istration oracle Okr, and outputs two secret keys x0, x1, and the experiment
is aborted if the secret keys are not correct w.r.t. the public keys,

3. adversary A can access key registration oracle Okr(y) adaptively during the
experiment, and we denote the set of indices of all public keys registered by
adversary A during the experiment by Lkr = {0, 1, ...},

4. adversary A outputs (m∗, L∗) s.t. 0, 1 ∈ L∗ ⊂ Lkr,

5. generate ring signature σ∗ $← Anonymize(Sign(xb,m∗), L∗, yL∗ ,m∗) using
the secret key of signer b, and adversary A is given σ∗,

6. finally, adversary A outputs a bit b′ $← AOkr(x1, ..., xn),
7. return 1 if b = b′, 0 otherwise.

We define the advantage Advanon of the adversary A as

Advanon
k,Σ (A) =

∣∣∣∣Pr
[
Expanon

k,Σ (A) = 1
]− 1

2

∣∣∣∣ ,
where probability is taken over a random bit b, keys, random tapes of the oracles,
random tapes of the adversary A, and random tapes of KeyGen, Sign, Anonymize.

Definition 1 (computational anonymity w.r.t. adversarially-chosen
keys). An anonymizable signature Σ satisfies computational anonymity w.r.t.
adversarially-chosen keys if Advanon

k,Σ (Ak) is negligible in k for any probabilistic
poly-time adversary Ak.

In particular, we say that anonymizable signature Σ satisfies perfect anonymity
if we have

Pr[Anonymize(Sign(xi,m), L, yL,m) = σ] =
Pr[Anonymize(Sign(xj ,m), L, yL,m) = σ]

for any security parameter k, any messagem, any ring L, any valid ring signature
σ with L, any i, j ∈ L, and any keys xi, xj .

Unforgeability
We consider the following experiment Expunforge

k,Σ (A), where adversary A try to
forge a valid ring signature without knowing the corresponding signing key or
signature:

1. select random bit b $← {0, 1}, and generate secret and public keys (xi, yi)
$←

KeyGen(1k) for i ∈ L0 = {1, ..., n},
2. at the beginning of the experiment, adversary A is given all public keys
y1, ..., yn,

3. adversaryA can access signing oracleOs(i,m), anonymization oracle Oa(μ,L)
for L ⊂ L0 ∪Lkr, and signature exposure oracle Oe(μ) adaptively during the
experiment,
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4. adversary A can access secret key exposure oracle Osk(i) adaptively during
the experiment, and we denote the set of indices of all secret keys exposed
by adversary A during the experiment by Lsk ⊂ L0,

5. adversary A can access key registration oracle Okr(y) adaptively during the
experiment, and we denote the set of indices of all public keys registered by
adversary A during the experiment by Lkr = {n+ 1, n+ 2, ...},

6. finally, adversary A outputs (m∗, L∗, σ∗) $← AOs,Oa,Oe,Osk,Okr(y1, ..., yn),
7. return 1 if adversary A wins, 0 otherwise.

Here, we say that adversary A wins, if adversary A outputs forged signature
(m∗, L∗, σ∗) and the following conditions hold:

1. Verify(L∗, yL∗ ,m∗, σ∗) = 1,
2. L∗ ⊂ L0 − Lsk,
3. ∀i ∈ L∗, (�, i,m∗, �) �∈ Qe , i.e., adversary A never ask queries Os(i,m∗) = μ

and Oe(μ) for all i ∈ L∗, and
4. (�, �,m∗, �, L∗, σ∗) �∈ Qa, i.e., adversary A never ask queries Os(i,m∗) = μ

and Oa(μ,L∗) = σ∗.

We define the advantage Advunforge of the adversary A as

Advunforge
k,Σ (A) = Pr

[
Expunforge

k,Σ (A) = 1
]
,

where probability is taken over a random bit b, keys, random tapes of the oracles,
random tapes of the adversary A, and random tapes of KeyGen, Verify.

Definition 2 (unforgeability). Anonymizable signature Σ satisfies unforge-
ability if Advunforge

k,Σ (Ak) is negligible in k for any probabilistic poly-time adver-
sary Ak.

3 Proposed Scheme

In this section, we provide a very simple construction methodology of the
anonymizable signature from any signature scheme, then according to our method-
ology we give a concrete scheme based on the BLS signature [BLS01].

3.1 Construction Methodology

We can construct an anonymizable signature scheme Σ from any signature
scheme as follows.

(1) At the signing phase, the signer i generates a signature r of a message m by
using the normal signature scheme that the anonymizable signature is based
on. The signer passes the signature r to the proxy agent. The signature r
must be treated as a secret between the signer and the agent.
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(2) At the anonymizing phase, the agent makes a “non-interactive proof of
knowledge” [FFS87, GMR85] σi which proves that he or she knows a valid
signature r of the signer i on the message m.

(3) To anonymize the proof σi, the agent chooses an appropriate ring and sim-
ulates the proof of knowledge with respect to other members in the ring. By
use of a “proof of partial knowledge (or-proof)” [CDS94], a ring signature σ
can be composed of the proof of knowledge and it’s simulations.

3.2 Concrete Scheme

We constructed an anonymizable signature scheme based on the BLS signature
[BLS01] by which we can easily construct an efficient non-interactive proof of
knowledge.

Let G andGT be cyclic groups of prime order p,G∗ be the set of the generators
of G, e : G×G→ GT be a non-degenerate bilinear map, g ∈ G∗ be a generator
of G, and H : {0, 1}∗ → G∗ and H ′ : {0, 1}∗ → Zp be mutually independent
random oracles. We call the common reference string ρ = (p, G, GT , e, g, H,
H ′) a system parameter. Let k be the security parameter. We assume that the
system parameter can be determined in the polynomial time of k, ρ is encoded
in the polynomial size of k, and all participants in our scheme use the same ρ.

Key Generation. Algorithm KeyGen(1k) takes a security parameter k, randomly
chooses xi ∈U Zp, and outputs secret and public keys (ski = xi, pki = yi = gxi)
for signer i ∈ N .

Signing. Algorithm Sign(xi,m) takes i’s secret key ski = xi and a message m,
computes h = H(ρ,m) ∈ G∗, and outputs a signature r = hxi .

Anonymization. Algorithm Anonymize(r, L, yL,m) takes i’s signature r = hxi ,
a ring L ⊂ N s.t. i ∈ L, public keys yL, and a message m, and outputs a ring
signature σ as follows.

h← H(ρ,m) ∈ G∗ ;
If ∃i s.t. e(g, r) = e(yi, h), i ∈ L, then perform the following steps, otherwise
return ⊥.
Generate a proof of the knowledge r s.t. (∃j ∈ L, r = hxj ) as the followings.

t
$← Zp ;

ãi ← e(g, h)t ∈ GT ;
∀j ∈ L \ {i},

cj
$← Zp, zj

$← G,
ãj ← e(g, zj)e(h, yj)cj ∈ GT ;

ci ← H ′(ρ, L,m, yL, ãL) −∑j 
=i cj ;
zi ← htr−ci ∈ G ;

Return σ ← (cL, zL) .
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Verification. Verify(L, yL,m, σ) takes a ring L ⊂ N , public keys yL, a message
m, and a ring signature σ, and outputs a bit 0/1 as follows.

(cL, zL) ← σ ;
h← H(ρ,m) ∈ G∗ ;
∀j ∈ L, ãj ← e(g, zj)e(h, yj)cj ∈ GT ;

return
{

1 , if H ′(ρ, L,m, yL, ãL) =
∑

j∈L cj
0 , otherwise.

4 Security of the Proposed Scheme

In this section, we show that the proposed scheme satisfies computational un-
forgeability and perfect anonymity. We first refer to the GDH assumption [OP01]
and the BLS signature [BLS01] that is used in the security proof of computa-
tional unforgeability.

4.1 Preliminary

Gap Diffie-Hellman (GDH) Assumption [OP01]

We refer to the GDH assumption where the adversary computes a CDH an-
swer by use of a DDH oracle.

Let Gk be a cyclic group (family) with a security parameter k. We will omit
the suffix k to simplify the description. For any g0, g1, g2, g3 ∈ G, we define a
DDH oracle Oddh(g0, g1, g2, g3) as

Oddh(g0, g1, g2, g3) :=

return
{

1 , if logg0 g1 = logg2 g3
0 , otherwise.

For any algorithm C, we define the GDH experiment Expgdh as

Expgdh
k,G(C) :=

g
$← G, a

$← Zp, b
$← Zp ;

h
$← COddh(g, ga, gb) ;

return
{

1 , if h = gab

0 , otherwise.

We also define the advantage of C, Advgdh, as

Advgdh
k,G(C) := Pr

[
Expgdh

k,G(C) = 1
]
,

where the sample space of the probability is the random tape of Expgdh.

Assumption 1 (the GDH assumption over G). We say that the GDH
assumption holds in G if, for any p.p.t. Ck, Advgdhk,G(Ck) is negligible in k.
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Hereafter, we assume that the above GDH assumption holds in pairing group
G with pairing e : G×G→ GT .

BLS Signature [BLS01]

We refer to the BLS signature to which we reduce the computational unforge-
ability of the proposed scheme.

BLS signature Σb = (KeyGenΣb
, SignΣb

, VerifyΣb
) is defined by the following

algorithms.

Key Generation. Algorithm KeyGenΣb
(1k) takes 1k as input, selects random

x
$← Zp, computes y ← gx ∈ G, and outputs secret and public keys (x, y)

Signing. Algorithm SignΣb
(x,m) takes secret key x and message m as input,

computes h ← H(ρ,m) ∈ G∗ and r ← hx ∈ G, where ρ is a system parameter,
outputs signature r.

Verification. Algorithm VerifyΣb
(y,m, r) takes public key y, message m, and

signature r as input, computes h← H(ρ,m) ∈ G, where ρ is a system parameter,
outputs 1 if e(h, y) = e(g, r), 0 otherwise.

We define BLS signature oracle OΣb
(m) as

OΣb
(m) :=

r
$← SignΣb

(x,m) ;

Qb
∪← (m, r) ;

return r ;

where x is a secret key of the signer. For any algorithm B, we define a Turing
machine Expbls

k,Σb
(B) as

Expbls
k,Σb

(B) :=
clear Qb ;
(x, y) $← KeyGenΣb

(1k) ;

(m∗, r∗) $← BOΣb ,H(y) ;

return
{

1 , if (m∗, r∗) �∈ Qb ∧ VerifyΣb
(y,m∗, r∗) = 1

0 , otherwise.

and the advantage of B, Advbls, as

Advbls
k,Σb

(B) := Pr
[
Expbls

k,Σb
(B) = 1

]
where the sample space of the probability is the random tape of Expbls.
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Lemma 1 ([BLS01]). Let H be a random oracle. We define ε′ and ε′′ as

ε′ := Advblsk,Σb
(B), ε′′ := Advgdhk,G(CB).

Let qe be the maximum number of queries to OΣb
. For any real number ξ ∈ [0, 1],

there exists a p.p.t. C that satisfies

(1 − ξ)qeξε′ ≤ ε′′.
Corollary 1. There exists a p.p.t. C that satisfies

ε′ ≤ 4(qe + 1)ε′′.

4.2 Unforgeability

The proposed scheme satisfies computational unforgeability. To show the un-
forgeability, we reduce the unforgeability of the proposed scheme to the unforge-
ability of the BLS signature. In a simulation, by the rewinding technique, we
can obtain a forgery of the BLS signature.

Theorem 1. The proposed scheme satisfies computational unforgeability under
the GDH assumption in the random oracle model.

Proof. In this proof, we construct a forger B against the BLS signature by use
of a forger A against our scheme. The simulator executes the following steps.

BA,OΣb ,H(y) :=
clear ν,Qs, Qa, Qe ;
j

$← L0 ;
∀i ∈ L0, if i = j then u $← Zp, yi ← ygu ;

else (xi, yi)
$← KeyGen(1k) ;

(L∗,m∗, σ∗) $← ASs,Sa,Se,Ssk,Skr (yL0) ;
if A doesn’t win the game then abort.
rewind A to the corresponding H ′.
A outputs (L′∗,m′∗, σ′∗).
if A doesn’t win the second game then abort.
if (L∗,m∗) �= (L′∗,m′∗) ∨ σ∗ = σ′∗ then abort.
(cL∗ , zL∗) ← σ∗, (c′L∗ , z′L∗) ← σ′∗ ;
find i ∈ L∗ s.t. ci �= c′i ;
if i �= j then abort.

r∗ ← (z′i/zi)
1

ci−c′
i (H(ρ,m∗))−u ;

return (m∗, r∗).

The simulator executes the following signing oracle simulation Ss.
Ss(i,m) :=

μ← ν++ ;
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if i ∈ L0 and m is in valid domain then
r

$← � ;
else r ←⊥ ;
Qs

∪← {(μ, i,m, r)} ;
return μ ;

The simulator executes the following anonymization oracle simulation Sa.
Sa(μ,L) :=

if μ is registered in Qs and L ⊂ L0 ∪ Lkr then
find (i,m, �) s.t. (μ, i,m, �) ∈ Qs ;

σ
$← Simulate(Anonymize(�, L, yL,m)) ;

else σ ←⊥ ;
Qa

∪← {(μ,L, σ)} ;
return σ ;

where Simulate(Anonymize(�, L, yL,m)) is the following algorithm that produces
a ring signature without a signature by manipulating the value of H ′.

Simulate(Anonymize(�, L, yL,m)) :=
h← H(ρ,m) ;

∀j ∈ L, cj $← Zp, zj
$← G,

ãj ← e(g, zj)e(h, yj)cj ∈ GT ;
if H ′(ρ, L,m, yL, ãL) is defined then abort.
else H ′(ρ, L,m, yL, ãL) ←∑

j cj ;
return (cL, zL) ;

Let q be the maximum number of queries to H ′ and α be the success probability
that all Simulate(Anonymize(�, L, yL,m)) does not abort through the execution
of BA. α is evaluated as the following, where q ≥ 1, pn � q, and n = #L0.

α >

q−1∏
i=0

(
1 − i

pn

)
>

(
1 − q

pn

)q
> 1 − q2

pn

The simulator executes the following signature exposure oracle simulation Se.
Se(μ) :=

if μ is registered in Qs then
find (i,m, �) s.t. (μ, i,m, �) ∈ Qs ;

if i = j then r $← (OΣb
(m))(H(ρ,m))u ;

else r $← Sign(xi,m) ;
else r ←⊥ ;
Qe

∪← {(μ, r)} ;
return r ;

The simulator executes the following secret key exposure oracle simulation Ssk.
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Ssk(i) :=
if i ∈ L0 then

if i = j then abort.
x← xi ;
Lsk

∪← {i} ;
else x←⊥ ;
return x ;

The simulator executes the key registration oracle simulation Skr which is iden-
tical to the key registration oracle Okr defined in section 2.3.

We define ε, ε′, and ε′′ as

ε := Advunforge
k,Σ (A), ε′ := Advbls

k,Σb
(BA), ε′′ := Advgdh

k,G(CBA
).

Let qe be the maximum number of queries to Se, q be the maximum number of
queries to H ′ and assume q ≥ 1. Let n = #L0. According to the forking lemma
[BN06],

αε(αε/q − 1/p)/n ≤ ε′.

Thus,
ε ≤ (q/2p+

√
(q/2p)2 + qnε′)/α

≤ (q/2p+
√

(q/2p)2 + 4qn(qe + 1)ε′′)/α
≤ (q/2p+

√
(q/2p)2 + 4qn(qe + 1)ε′′)/(1 − q2/pn).

We assume that the maximum number of queries to the random oracles, namely
q and qe, and the size of the ring n are bounded by some polynomial of secu-
rity parameter k. Let Ak be a polynomial time algorithm of k that attacks the
unforgeability of our scheme with success probability ε. Immediately we have a
polynomial time algorithm CBAk that wins the GDH game with success proba-
bility ε′′, which satisfies the above inequality. Thus, if the GDH assumption over
G holds, for any p.p.t. Ak, ε′′ = Advgdh

k,G(CBAk ) is negligible. Therefore, for any
p.p.t. Ak, ε = Advunforge

k,Σ (Ak) is negligible by the above inequality. ��

4.3 Perfect Anonymity

The proposed scheme satisfies perfect anonymity. To show the perfect anonymity,
we prove that for any valid ring signature σ, for any member i in the ring L,
there exists a unique way to produce the ring signature σ by use of i’s secret key
xi.

Theorem 2. The proposed scheme satisfies the perfect anonymity in the random
oracle model.

Proof. For any σ∗ = (c∗L, z
∗
L) s.t. Verify(L, yL,m, σ∗) = 1, for any i ∈ L, there

exists a unique assignment of the random tape t, cj , zj in the Anonymize function
that satisfies σ∗ = Anonymize(Sign(xi,m), L, yL,m).

t = xic
∗
i +logH(ρ,m) z

∗
i , and cj = c∗j , zj = z∗j , ∀j �= i. ��
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5 Conclusion

We presented a novel concept of a ring signature called anonymizable signature,
by which one can convert a signature into an anonymous ring signature without
any secret but the signature itself. By using an anonymizable signature, a signer
can leave a signed message to a proxy agent who will convert the signature into
a ring signature afterward. If the agent is not trustworthy, the anonymizable
signature is not suitable for an application that needs highly strong anonymity.
However, if the agent can be regarded as an ideal functionality, it has many
applications. We also provided the definition of anonymizable signature, a simple
construction methodology, and a concrete scheme that can be proven to be
unconditionally anonymous and computationally unforgeable under the GDH
assumption in the random oracle model.
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Abstract. This paper describes a new method in pairing-based signa-

ture schemes for identifying the invalid digital signatures in a batch af-

ter batch verification has failed. The method more efficiently identifies

non-trivial numbers, w, of invalid signatures in constrained sized, N ,

batches than previously published methods, and does not require that

the verifier possess detailed knowledge of w. Our method uses “divide-

and-conquer” search to identify the invalid signatures within a batch,

pruning the search tree to reduce the number of pairing computations

required. The method prunes the search tree more rapidly than previ-

ously published techniques and thereby provides performance gains for

batch sizes of interest.

We are motivated by wireless systems where the verifier seeks to con-

serve computations or a related resource, such as energy, by using large

batches. However, the batch size is constrained by how long the verifier

can delay batch verification while accumulating signatures to verify.

We compare the expected performance of our method (for a num-

ber of different signature schemes at varying security levels) for varying

batch sizes and numbers of invalid signatures against earlier methods. We

find that our new method provides the best performance for constrained

batches, whenever the number of invalid signatures is less than half the

batch size. We include recently published methods based on techniques

from the group-testing literature in our analysis. Our new method consis-

tently outperforms these group-testing based methods, and substantially

reduces the cost (> 50%) when w ≤ N/4.

1 Introduction

In many network security and E-commerce systems that use batch signature ver-
ification, the verifier does not have the freedom to accumulate arbitrarily large
batches of messages and signatures to maximize the efficiency of the batch ver-
ifier. Typically the batch size is constrained by how long the verifier can delay
verification of early arriving messages while waiting to accumulate additional
messages for the batch. In such applications, whenever a batch fails verification,
� The views and conclusions contained in this paper are those of the author and should
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the verifier then chooses the best method available to identify the invalid signa-
tures. The choice is determined by the size of the batch, and perhaps based on
some belief about the likely number of invalid signatures, or some estimate of
the bound on the number of invalid signatures.

When the system is part of a data rate limited wireless network, the sig-
nature scheme of choice is often a communication efficient bilinear pairing-
based scheme.1 This choice is justifiable if the need for communication efficiency
justifies the higher processing costs of these schemes compared to 1) conven-
tional signature schemes such as ECDSA [11], or 2) signature schemes using
implicit-certificates [1,23,4]. Such pairing-based schemes include some short sig-
nature schemes [3,5] and several bandwidth efficient identity-based signature
schemes [6,5,29,5].

When batch verification fails, a number of methods have been proposed, pri-
marily for large batches, to identify the invalid signatures in batch verifiable,
pairing-based signature schemes. These proposals include “divide-and-conquer”
(DC) methods such as Fast DC verifier [22] and Binary Quick Search [15], as
well as methods that significantly augment DC with other techniques (i.e., hybrid
methods) [18], and some specialized techniques that are practical for batches with
only a very few invalid signatures [15]. Recently, methods based on group testing
have been proposed [30]. However, no methods have been proposed specifically
for constrained batches.

Our Contribution

In this paper, we present a new method for finding invalid signatures in pairing-
based schemes based on hybrid divide-and-conquer searching. The method out-
performs earlier hybrid divide-and-conquer methods when N is constrained
(16 - 128) and w < N/2. We compare our method with earlier work for a
number of pairing-based schemes and present the results using cost parameters
drawn from a realization of the Cha-Cheon [6] signature scheme at the 80 bit
and 192 bit security levels. Our analysis can be easily applied to other schemes
and at other security levels. Our new hybrid method seeks to identify more
invalid signatures in each (sub-) batch than earlier hybrid methods before re-
sorting to sub-dividing the (sub-)batches. The new method reduces the number
of computations required whenever w < N/2.

Recently group testing algorithms [8] have been proposed for use in identify-
ing invalid signatures in batches [30]. However, many group algorithms assume
that w (or an upper bound) is known. If the estimate d of w must be precise
in order to obtain good performance, then such methods will not be useful in
practice. We compare the expected performance of our method against the best
methods in [30]. We find that our new method, as well as some earlier methods,
always significantly outperform the proposed group testing methods, even when
w is precisely known. We also examine the impact of an inaccurate estimate on
1 Some examples of such systems are: some secure wireless routing protocols, secure

accounting and charging schemes, authenticated localization, and safety messages

(vehicular networks).
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the expected performance of the method in [30] which has the best worse case
performance in our setting when w is known precisely. We find that even when
the estimate is good (d = 2w), the impact on performance is severe.

2 Notation

In this paper we assume that pairing-based schemes use bilinear pairings on an
elliptic curve E, defined over Fq, where q is a large prime. G1 and G2 are distinct
subgroups of prime order r on this curve, where G1 is a subset of the points on
E with coordinates in Fq, and G2 is a subset of the points on E with coordinates
in Fqd , for a small integer d (the embedding degree). The pairing e is a map from
G1 × G2 into GT where GT is a multiplicative group of order r in the field Fqd .

Once the initial batch verification is performed, the costs of the methods for
finding the invalid signatures in a batch are dominated by the cost of a product
of pairings computations, CstMultPair, and the cost of multiplying two elements
of GT , CstMultGT.2

3 Background

Fiat [10] introduced batch cryptography, and the first batch verification signature
scheme was that of Naccache et al. [21] for a variant of DSA signatures. Bellare
et al. [2] presented three generic methods for batching modular exponentiations:
the random subset test, the small exponents test (SET), and the bucket test,
which are related to techniques in [21,27].

A number of pairing-based signature schemes have batch verifiers which use
the small exponents test, many of which have the form

e

(
N∑

i=1

Bi, S

)
=

n̄−1∏
h=1

e

(
N∑

i=1

Di,h, Th

)
(1)

where S and Th are system parameters. Examples when n̄ = 2 include Boneh,
Lynn and Shacham short signatures [3], when the batch consists of messages
signed by a single signer or a common message signed by different signers, the
Cha-Cheon identity-based scheme [6], and the scheme of Xun Yi [28] as inter-
preted by Solinas [25]. Examples of schemes that have this form with n̄ = 3 in-
clude the Camenisch, Hohenberger, and Pedersen (CHP) short signature scheme
(for a common time period [5]) and a recent proposal of Zhang et al. [31] for
signing and batch verifying location and safety messages in vehicular networks.3

2 A cost that can be significant in large batches for some methods is the cost of

additions in G1, CstAddG1, (or additions in G2). The other operations used in the

methods discussed in this paper, such as exponentiation CstExptGT(t1) in Fqd (for

small t1), computing an inverse in GT (CstInvGT), multiplying an element of G1 or

G2 by a modest sized scalar, have minimal impact.
3 Some of these schemes are defined for pairings where G1 = G2. In CHP short signa-

tures one of the pairings has the form e
(
Th,

∑N
i=1 Di,h

)
. For simplicity of presenta-

tion we ignore such distinctions in the remainder of this paper.
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3.1 Identifying Invalid Signatures

Methods for identifying invalid signatures fall into three categories: divide-and-
conquer methods [22,15], exponent testing methods [16,17,26,15], and hybrid tech-
niques [17,18] which combine aspects of divide-and-conquer and other methods.

Divide-and-Conquer Methods. Pastuszak et al. [22] first investigated meth-
ods for identifying invalid signatures within a batch. They explored divide-and-
conquer methods for generic batch verifiers, i.e., methods that work with any of
the three batch verifiers studied by Ballare et al. In these methods the set of sig-
natures in an invalid batch is repeatedly divided into d ≥ 2 smaller sub-batches
to verify. The most efficient of their techniques, the Fast DC Verifier Method,
exploits knowledge of the results of the first d − 1 sub-batch verifications to de-
termine whether the verification of the dth sub-batch is necessary. Performance
measurements of one of the methods of [22] for the Boneh, Lynn and Shacham
(BLS) [3] signature scheme have been reported [9].

In [15] a more efficient divide-and-conquer method, called Binary Quick Search
(BQS), for small exponents test based verifiers was presented. In this method
a batch verifier that compares two quantities, X and Y , is replaced with an
equivalent test A = XY −1, and the batch is accepted if A = 1. The BQS
algorithm is always as least as efficient as any d = 2nary DC Verifier [19]. The
upper bound of the number of batch verifications required by BQS is half that
of the Fast DC Verifier for d = 2 [15].

Exponent Testing Methods. The first exponent testing method, developed
by Lee et al. [16], was capable of finding a single invalid signature within a
batch of “DSA-type” signatures. Law and Matt presented two exponent testing
methods for pairing-based batch signatures, the Exponentiation Method and the
Exponentiation with Sectors (EwS) Method, in [15]. Both methods use exhaus-
tive search during batch verification, resulting in exponential cost.

The Exponentiation Method replaces (1) with α0 =
n̄−1∏
h=0

e

(
N∑

i=1

Di,h, Th

)
where

Di,0 = Bi and T0 = −S. If α0 is equal to the identity, the batch is valid. Other-
wise compute αj , for 1 ≤ j ≤ w,

αj =
n̄−1∏
h=0

e

(
N∑

i=1

ijDi,h, Th

)
(2)

and perform a test on the values αj , αj−1, . . . α0. For j = 1, test whether
α1 = αz1

0 has a solution for 1 ≤ z1 ≤ N using Shanks’ giant-step baby-step
algorithm [24]. If successful, w = 1 and z1 is the position of the invalid signa-
ture. In general the method tests whether

αj =
j∏

t=1

(αj−t)
(−1)t−1 pt (3)

has a solution where pt is the tth elementary symmetric polynomial in 1 ≤ z1 ≤
. . . ≤ zj ≤ N . If a test fails increment j, compute αj , and test. When j = w
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the test will succeed, and the values of z1, . . . , zw are the positions of the invalid
signatures.

The Exponentiation with Sectors Method uses two stages. In the first stage,
the batch is divided into approximately

√
N sectors of approximately equal size

and the Exponentiation Method is used, where each Di,h within a sector is
multiplied by the same constant to identify the v invalid sectors. In the second
stage, the Exponentiation Method is used to find the invalid signatures within
a batch consisting of the signatures from the v invalid sectors.4

Hybrid DC Methods. Lee et al. [17] applied their approach for DSA-type
signatures to identifying a single invalid signature in batches of RSA signatures.
They addressed the problem of identifying multiple invalid RSA signatures by
using their RSA method in a DC method. Each (sub-)batch is tested using their
RSA method. If the (sub-)batch has multiple invalid signatures, it is divided
and its child sub-batches are tested. If a (sub-)batch has a single invalid signa-
ture, that signature is identified; if a (sub-)batch has no invalid signatures, that
(sub-)batch is not tested further. Otherwise the (sub-)batch is divided and its
child sub-batches are tested. However, Stanek showed in [26] that their approach
for RSA signatures is not secure.

In [19] Matt presented two hybrid DC methods. The first, called Single Prun-
ing Search (SPS), uses (2) and (3) for 0 ≤ j ≤ 1 to identify single invalid signa-
tures in (sub-)batches until the root of every maximal sub-tree of the search tree
with a single invalid signature is identified. This method is somewhat similar to
the Lee et al. method for RSA signature batches with multiple invalid signatures.

The second method, Paired Single Pruning Search (PSPS), extends SPS with
an additional test. When a (sub-)batch B has two or more invalid signatures,
α0,L is computed for the left child sub-batch of B, and if both child sub-batches
have invalid signatures, then α0,R = α0 · α−1

0,L is calculated for the right child
sub-batch. Then α1 = αzL

0,L · αzR

0,R is tested for a solution where the exponents
are restricted to the set of i’s used in the child sub-batches. A solution will exist
whenever both child sub-batches have a single invalid signature. The additional
test determines if the two child nodes are both roots of maximal sub-trees of the
search tree with a single invalid signature, without computing α1,L and α1,R.

4 A Hybrid DC Method Exploiting w = 2 Maximal
Sub-trees

Hybrid divide-and-conquer methods operate on (for simplicity) a binary tree T
with w ≥ 1 invalid signatures whose root node is the batch, and each pair of child
nodes represents the two nearly equal size sub-batches of their parent. The SPS
and PSPS methods search down though T until the roots of the w maximal sub-
trees STi, i = 1, .., w, of T , which represent sub-batches that have a single invalid
signature are reached and tested. The Triple Pruning Search method we describe
4 The EwS method is always outperformed by one or more of the other methods we

discuss in this section in our setting; therefore we do not discuss the performance of

this method in Section 6.
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in this paper searches down through T until the roots of the maximal sub-trees
ST 2i, i = 1, .., v, of T , which represent the sub-batches that have exactly two
invalid signatures, and the maximal sub-trees ST 1j, j = 1, .., w − 2v, which
represent sub-batches that have a single invalid signature and which are not a
sub-tree of any of the ST 2i sub-trees, are reached and tested.

Let B be the batch. |X | is the size the (sub-)batch X of B, lowbnd(X) is the
index in B of the lowest position signature in X , w(X) is the number of invalid
signatures in X , and invalid(X) is the set of invalid signatures in X . If T is a
binary tree and X is sub-batch, then X̂ is the sibling of X .

4.1 Triple Pruning Search (TPS) Method

The recursive algorithmonthenextpagedescribes theTriplePruningSearch (TPS)
method on a batch B, which is a list of N = 2h, h ≥ 2, randomly ordered message
/ signature pairs ((m1, s1), . . . , (mN , sN )), where the signature components are
verified elements of the appropriate groups.On the initial call to TPS(X),X = B.

TPS(X) includes the initial batch verification (lines 2 through 4). When
X = B, Get0(B) computes α0,B following the SET algorithm, and then computes
α−1

0,B. The test α0,B = 1 determines whether w(B) = 0.
Lines 5 through 9 determine whether w(B) = 1, and if so they locate the in-

valid signature. Get1(B) computes α1,B in about n̄ ·N ·CstAddG1 + CstMultPair
operations using the partial results from the computation of α0,B, and then com-
putes α−1

1,B. Shanks(B) is used to locate a single invalid signature. Shanks(X)
tests whether α1,X · (α−1

0,X)d = (αs
0,X)c has a solution with l ≤ d ≤ s + l and

0 ≤ c ≤ t, where s ≈ √|X |, t ≈ |X |/s and l = lowbnd(X). If w(X) = 1,
Shanks(X) returns d + c ∗ s, the position of the invalid signature. If w(X) > 1,
then it returns 0. Shanks(X) uses the giant-step baby-step algorithm [24].

Lines 10 through 14 determine whether w(B) = 2, and if so they locate the
two invalid signatures. Get2(X = B) computes α2,B in about n̄ ·N ·CstAddG1 +
CstMultPair operations using the partial results from the computation of α1,B

and α0,B, and then computes α−1
2,B. FastFactor(B) is used to locate the pair of

invalid signatures. FastFactor(X) tests whether α4
2,X · (α−4

1,X)n · αn2

0,X = αm2

0,X

has a solution with 2l + 1 ≤ n ≤ 2(l + |X |) − 1 and 1 ≤ m ≤ |X | − 1, where
l = lowbnd(X); if so, then z2 = (n + m)/2 and z1 = (n−m)/2 with z2 > z1 are
the positions of the two invalid signatures. If w(X) = 2, FastFactor(X) returns
(z1, z2). If w(X) > 2, FastFactor(X) returns (0, 0). See [20].

In line 15, the function TPSQuadSolver(X, Left(X), Right(X)) determines
whether X has two or fewer invalid signatures in its left sub-batch Left(X) and
two or fewer invalid signatures in its right sub-batch Right(X). TPSQuadSolver
places the locations of the invalid signature it identifies in a list which PrintList()
outputs.

4.2 TPSQuadSolver(Parent, Left, Right)

The algorithm on page 85 describes the TPSQuadSolver(Parent, Left, Right)
function on a (sub-)batch Parent with |Parent| = 2h, h ≥ 2, and w(Parent) ≥ 3.
Left and Right represent the two equal size sub-batches of Parent.
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Algorithm 4.1. TPS (X) (Triple Pruning Search)

Input: X – a list of message / signature pairs.

Output: A list of the invalid pairs in the batch.

1: if X = B then
2: α0,[B] ← Get0(B)

3: if α0,[B] = 1 then
4: return
5: α1,[B] ← Get1(B)

6: z ← Shanks(B)

7: if z �= 0 then
8: print (mz, sz)
9: return

10: α2,[B] ← Get2(B)

11: (z1, z2)← FastFactor(B)

12: if z1 �= 0 then
13: print (mz1 , sz1), (mz2 , sz2)
14: return
15: (SearchLeft, SearchRight)← TPSQuadSolver(X,Left(X), Right(X)) .

16: if SearchLeft = true then
17: TPS (Left(X))

18: if SearchRight = true then
19: TPS (Right(X))

20: if X = B then
21: PrintList() // Prints the sorted list of invalid message / signature pairs

22: return

TPSQuadSolver(Parent, Left, Right) uses Get0(Left) to compute α0,Left

(and α−1
0,Left), which requires a CstMultPair computation as well as some com-

paratively minor cost computations in G1. Lines 3 through 8 determine whether
all of the invalid signatures in Parent are in either Left, Right, or are divided
between the two. If both Left and Right have at least one invalid signature then
Get0(Right) is used to compute α0,Right (α−1

0,Right) with negligible cost.5

If TScap ≥ |Parent| ≥ 4, TriFactor(Parent) is used to determine whether
case 1) w(Left) = 2 and w(Right) = 1, or case 2) w(Left) = 1 and w(Right) =
2; otherwise it fails. TriFactor(Parent) [20], uses the function TriSolver to test
case 1 and if that fails, case 2.

Case 1) TriSolver(P = Parent, L = Left, R = Right)
If α4

2,P ·(α−4
0,R)z2

3 ·(α−4
1,P )nL ·(α4

0,R)nL·z3 ·αnL
2

0,L = αmL
2

0,L has a solution with 2lL+1 ≤
nL ≤ 2(lL + |L|) − 1, 1 ≤ mL ≤ |L| − 1 and lR ≤ z3 < lR + |R|, where lL =
lowbnd(L) and lR = lowbnd(R), then z2 = (nL + mL)/2 and z1 = (nL − mL)/2
where z2 > z1 are the positions of the two invalid signatures in L, and z3 in R.

Case 2) TriSolver(P = Parent, R = Right, L = Left)
If α4

2,P · (α−4
0,L)z2

1 · (α−4
1,P )nR · (α4

0,L)nR·z1 · αnR
2

0,R = αmR
2

0,R has a solution with
2lR + 1 ≤ nR ≤ 2(lR + |R|) − 1, 1 ≤ mR ≤ |R| − 1 and lL ≤ z1 < lL + |L|, then

5 αi,Right, i = 0, 1, 2 can be computed inexpensively if αi,Left is known by αi,Right =

αi,Parent · α−1
i,Left.
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Algorithm 4.2. TPSQuadSolver(Parent, Left, Right)

Input: Parent,Left, Right – the lists of message / signature pairs.

Return: (SearchLeft, SearchRight) – control behavior of TPS
1: (z1, z2, z3, z4)← (0, 0, 0, 0)
2: α0,[Left] ← Get0(Left)
3: if α0,[Left] = 1 then
4: copyAlphasAndInverses(Right, Parent);
5: return (false, true)

6: if α0,[Left] = α0,[Parent] then
7: copyAlphasAndInverses(Left, Parent)
8: return (true, false)

9: α0,[Right] ← Get0(Right)
10: if TScap ≥ |Parent| ≥ 4 then // TScap = 8, see Section 6.1

11: (z1, z2, z3)← TriFactor(Parent)
12: if z1 �= 0 then
13: AddToList(z1, z2, z3)

14: return (false, false)

15: if |Parent| = 4 then
16: i← lowbnd(Parent); AddToList(i, i + 1, i + 2, i + 3)

17: return (false, false)

18: SearchLeft← false; SearchRight← false
19: α1,[Left] ← Get1(Left); α1,[Right] ← Get1(Right);
20: z1 ← Shanks(Left)
21: if z1 �= 0 then // w(Left) = 1

22: α2,[Right] ← Get2(Right)
23: if |Parent| > TScap then
24: (z3, z4)← FastFactor(Right)
25: AddToList(z1, z3, z4) // zeros are not added to the list

26: if z3 = 0 then
27: SearchRight← true
28: return (false, SearchRight)
29: else // w(Left) ≥ 2

30: z3 ← Shanks(Right)
31: if z3 �= 0 then // w(Right) = 1

32: α2,[Left] ← Get2(Left)
33: if |Parent| > TScap then
34: (z1, z2)← FastFactor(Left)
35: AddToList(z1, z2, z3) // zeros are not added to the list

36: if z1 = 0 then
37: SearchLeft← true
38: return (SearchLeft, false)

39: else // w(Left) ≥ 2 and w(Right) ≥ 2

40: α2,[Left] ← Get2(Left); α2,[Right] ← Get2(Right)
41: (z1, z2)← FastFactor(Left); (z3, z4)← FastFactor(Right)
42: AddToList(z1, z2, z3, z4) // zeros are not added to the list

43: if z1 = 0 then
44: SearchLeft← true
45: if z3 = 0 then
46: SearchRight← true
47: return (SearchLeft, SearchRight)
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z3 = (nR + mR)/2 and z2 = (nR −mR)/2 where z3 > z2 are the positions of the
invalid signatures in R, and z1 in L.

If w(Parent) = 3, TriFactor(Parent) returns the positions of the three in-
valid signatures, which are added to the list of invalid signatures (line 13).

If |Parent| = 4 and TriFactor(Parent) fails, then the positions of the four
signatures in Parent are added to the list of invalid signatures (line 16).

If |Parent| > 4 and TriFactor(Parent) failed (or was not used), then Get1 is
used to compute α1,Left (and α−1

1,Left) and α1,Right (α−1
1,Right) with approximate

total cost CstMultPair (line 19).
If the following Shanks(Left) test succeeds, then Get2(Right) can compute

α2,Right = α2,Parent · αz1
1,Left and its inverse efficiently with cost 2 CstMultGT +

2 CstInvGT + CstExptGT(t1), where t1 < �log2(N)�. This cost is much less than
CstMultPair, we ignore this cost in Section 5. Next if TriFactor(Parent) was not
used, then FastFactor(Right) is used (line 24) to test whether w(Right) = 2
and if so, identify the two invalid signatures in Right. If TriFactor(Parent) was
used, it must have failed, and so would FastFactor(Right).

If the Shanks(Left) test (line 20) fails, then Shanks(Right) (line 30) is used
to test the right sub-batch. If that test succeeds, then by exchanging Left and
Right, the preceding paragraph describes the function of lines 31 through 38.

If w(Left) ≥ 2 and w(Right) ≥ 2, then Get2 is used to compute α2,Left and
α2,Right and their inverses, with approximate total cost CstMultPair (line 40),
followed by tests of Left and Right using FastFactor.

5 Expected Cost of the New Method

TPS requires that initial batch verification is performed using the Small Expo-
nents Test, and for simplicity, we assume that the batch verifier is of the form
α0,B =

∏n̄−1
h=0 e

(∑N
i=1 Di,h, Th

)
. The cost of this process for Cha-Cheon sig-

natures includes first checking that the signature components are in G1, then
computing the terms

∑N
i=1 Di,h, h = 0, 1 in G1, and finally computing α0,B an

its inverse, and testing whether α0,B = 1.
If α0,B 	= 1 (and all Di,h ∈ G1), then assuming that the intermediate val-

ues Di,h are retained, the costs of computing α1,B and α2,B are each n̄ · |B| ·
CstAddG1 + CstInvGT + CstMultPair. Since CstInvGT � CstMultPair, we ignore
the cost of computing the inverses.

If w = 1, the cost of TPS, not including initial verification, is n̄ · |B| ·
CstAddG1 + CstMultPair plus the average cost of a successful Shanks(B), which
is 4

3

√|B|CstMultGT.
If w = 2, the cost is 2(n̄ · |B| · CstAddG1 + CstMultPair) + 2

√|B|CstMultGT

+ 11
4 |B|CstMultGT, which is the cost of computing the two products of pairings,

including their inputs, a failed Shanks(B), and the average cost of a successful
FastFactor(B).

If w > 2, the cost includes 2(n̄·|B|·CstAddG1+CstMultPair)+2
√|B|CstMultGT

+ 9
2 |B|CstMultGT, which is two products of pairings, a failed Shanks(B), and

a failed FastFactor(B). In addition the cost includes the cost generated by the
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recurrence relation R(TPS)(w, M) to below, with |B| = 2h, where h ≥ 2, and on
initial call M = |B| and w(B) ≥ 3. Note that CstMultGT � CstMultPair, so we
ignore small numbers of CstMultGT in the table below.6

R(TPS)(w, M) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, w = 0, 1, 2,
w > M ;

⎡⎢⎢⎢⎣
w∑

i=0

(
M/2
w−i

)(
M/2

i

)
(R(TPS)(w − i, M/2) + R(TPS)(i, M/2)

+ C(TPS)(w − i, i, M/2))

⎤⎥⎥⎥⎦
(M

w) , w ≥ 3,

where the cost functions C(TPS) are given in the following table.

Costs

Argument CstMultPair CstMultGT

M = 4

C(TPS)(2, 1, M/2) 1 14(6+
√

2)
32 M + 3(7+

√
2)

32 M2

C(TPS)(2, 2, M/2) 1 11
2 M + 3

2M2

TScap ≥ M > 4

C(TPS)(w, 0, M/2) 1

C(TPS)(2, 1, M/2) 1 14(6+
√

2)
32 M + 3(7+

√
2)

32 M2

C(TPS)((w − 1) > 2, 1, M/2) 2 7
3

√
M + 10M + 3

2M2

C(TPS)(2, 2, M/2) 3 4
√

M + 11M + 3
2M2

C(TPS)((w − 2) > 2, 2, M/2) 3 4
√

M + 22 3
4M + 3

2M2

C(TPS)((w − i) > 2, i > 2, M/2) 3 4
√

M + 24 1
2M + 3

2M2

M > TScap

C(TPS)(w, 0, M/2) 1

C(TPS)(2, 1, M/2) 2 7
3

√
M + 11

4 M

C(TPS)((w − 1) > 2, 1, M/2) 2 7
3

√
M + 9

2M

C(TPS)(2, 2, M/2) 3 4
√

M + 11
2 M

C(TPS)((w − 2) > 2, 2, M/2) 3 4
√

M + 7 1
4M

C(TPS)((w − i) > 2, i > 2, M/2) 3 4
√

M + 9M

6 Also note that C(TPS)(w − i, i, M/2) = C(TPS)(i, w − i, M/2) in R(TPS)(w, M) and

that the value of each C(TPS)(w− i, i, M/2) in the table is the average of C(TPS)(w−
i, i, M/2) and C(TPS)(i, w − i, M/2).
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6 Performance

All of the methods discussed in this section perform initial batch verification in
a similar manner. For Cha-Cheon signatures, they all check that the signature
components are in G1, then compute α0 for the batch, and then test whether
α0 = 1. There are some slight variations in how the terms

∑N
i=1 Di,h are summed,

but the cost in each case is the same. In Sections 6.1 and 7.1, we compare the
expected performance of TPS against first the methods discussed in Section 3.1
and then against the group testing based methods, once the initial batch verifi-
cation has failed. See Section 5 and [20] for the derivations of the costs presented
below and additional discussion of the performance of the methods.

We use Cases A and E of [12] for Cha-Cheon signatures to give an indication
of how our results change with variations in the relative cost of operations.7 In
Case A, the group order r is a 160-bit value, the elliptic curve E is defined over
Fq, where q is a 160-bit value, and the embedding degree d = 6. In Case E,
the group order r is a 384-bit value, q is a 384-bit value, and the embedding
degree d = 12. All costs are given in terms of the number of multiplications
(m) in Fq, assuming that squaring has the same cost as multiplication, using the
following estimates from Granger, Page and Smart [12], Granger and Smart [13],
and Devegili et al. [7].

– For Case A, 1 double product of pairings = 14, 027m, 1 multiplication in
Fq6 = 15m, 1 addition in G1 = 11m.

– For Case E, 1 double product of pairings = 104, 316m, 1 multiplication in
Fq12 = 45m, 1 addition in G1 = 11m.

6.1 Comparison with Earlier Methods

Figures 1 through 4 compare methods relative to PSPS, previously the best
performing method for our setting. We also include two additional divide-and-
conquer methods, SPS and BQS, the Exponential method, as well as testing the
signatures individually.

TPS uses successful TriSolver tests to avoid computing CstMultPair for α1’s
(and perhaps) α2’s for child sub-batches. We observe that the O(N2) cost of
these tests requires that we restrict the use of TriFactor to parent batches
of size less than or equal to TScap (line 10 of Algorithm 4.2); otherwise for
larger batches the cost of TriFactor, even when successful, would become greater
than the cost of the α’s and their associated Shanks and FastFactor tests.
In Figures 1 through 8, TScap = 8 which limits the cost of TriFactor to no
more than ≈ 140 CstMultGT. Since the ratio of CstMultPair to CstMultGT for
Case A is 1275 : 1 and Case E is 2318 : 1, the cost of TriFactor does not
significantly impact the overall cost of TPS in these figures. However, setting
TScap = 8 rather than TScap = |B| increases the number of product of pairing
computations used by TPS.
7 The most important factor in the relative performance of all the methods is the ratio

of CstMultPair to CstMultGT. The ratio of CstMultPair to n̄ · |B| · CstAddG1 is much

less significant in our setting.
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Fig. 2. Percent Difference Comparison with PSPS, N = 32

7 Group Testing Based Methods

Zaverucha and Stinson [30] recently examined algorithms from the group test-
ing literature for use in identifying invalid signatures in batches. Like Pastuszak
et al., they work with generic batch verifiers. Zaverucha and Stinson state that
for single processor systems, identifying invalid signatures using Binary Split-
ting (same method as the Fast DC-verifier of Pastuszak et al. [22]) and Hwang’s
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Fig. 3. Percent Difference Comparison with PSPS, N = 64

Fig. 4. Percent Difference Comparison with PSPS, N = 128

Generalized Binary Splitting (HGBS) methods have the lowest bounds on the
worse case number of verifications. Here we examine the expected performance
of these algorithms.

Binary Splitting tests an invalid (sub-)batch of size M by first testing �M
2 

signatures from the (sub-)batch. If this test indicates an invalid signature, a test
of the remaining �M

2 � signatures is required, and the method is applied to both
sub-batchs; otherwise the test is not performed on the sub-batch with the �M

2 �
signatures and the method is applied only to that sub-batch. Binary splitting is
the same method as the Fast DC-verifier of Pastuszak et al. [22].
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Fig. 5. Percent Difference Comparison with BQS, N = 16

Fig. 6. Percent Difference Comparison with BQS, N = 32

The HGBS method [14] makes an estimate d of the number of invalid signa-
tures in a batch of size M . The descriptions of the HGBS method which have
appeared in the literature differ slightly. Here we describe the version of HGBS
which appears in [14].

G1:
If M ≤ 2(d − 1) verify the M signatures individually, otherwise compute
a ∈ N s.t. 2a+1 > (M − d + 1)/d ≥ 2a and goto G2.
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Fig. 7. Percent Difference Comparison with BQS, N = 64

Fig. 8. Percent Difference Comparison with BQS, N = 128

G2:
Test a sub-batch X of size 2a. If all are valid M ← M − 2a and go to G1
for the other signatures. If X is invalid find one invalid signature in X using
a tests via binary search and dispose of the invalid signature and all valid
sub-batches identified during the search. Create a new batch consisting of
all the remaining sub-batches. Set M to the size of this batch and d ← d− 1
and go to G1.

Note that d must be greater than or equal to w, otherwise the method is unde-
fined.8

8 In [14] d is an upper bound, in [8] it is the known number of invalid signatures.
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7.1 Comparison of TPS with Group Testing Based Methods

In Figures 5 through 8 we compare the performance of TPS against two group
testing methods, Binary Splitting and HGBS, relative to BQS. We use BQS since
it only requires that a batch verifier that compares two quantities, X and Y , can
be replaced with the test A = XY −1. BQS is intermediate between the more
signature scheme specific TPS method and the general group testing methods.
We also show the extent to which uncertainty in the estimated (or a bound of
the) number of the invalid signatures in a batch degrades performance of HGBS.
Binary Splitting does not use such an estimate.

8 Conclusion

We presented the TPS method for identifying invalid signatures in pairing-based
batch signature schemes using SET, and have analyzed its expected performance.
The new method provides improved performance for 1 < w ≤ N/2, for the range
of batch sizes of interest. The new method is the best available for our setting,
constrained sized batches verified by single processor systems, when the number
of invalid signatures in a batch can vary considerably but does not exceed N/2.
The method is applicable to a number of batch verified signature schemes, those
presented in [9] and that of Zhang et al. [31].

In [30] the authors investigated using generic verifier methods derived from
group testing algorithms for invalid signature identification. Of the five methods
they discussed, two — Binary Splitting and HGBS — were identified as the best
methods for single processor verifiers. A number of group testing algorithms
such as HGBS rely on an estimate, d, of the number of invalid signatures. In [30]
the authors state that when d differs from w “it is unclear to what extent this
will hurt the performance of the algorithm.” We investigated this issue for the
expected performance of HGBS and showed that the impact can be severe.

The authors also observed that more restrictive verifiers such as the Expo-
nentiation and EwS methods of Law and Matt [15] and the hybrid methods of
Matt [18] (and by extension ours) will outperform their generic verifiers for the
class of signature schemes to which these methods apply. We observe that BQS
assumes only a common feature of many batch verifiers, yet outperforms the
generic group testing based verifiers, especially when the choice of value of d is
uncertain.
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Abstract. Oblivious Transfer with Access Control (AC-OT) is a pro-

tocol which allows a user to obtain a database record with a credential

satisfying the access policy of the record while the database server learns

nothing about the record or the credential. The only AC-OT construction

that supports policy in disjunctive form requires duplication of records

in the database, each with a different conjunction of attributes (repre-

senting one possible criterion for accessing the record). In this paper,

we propose a new AC-OT construction secure in the standard model.

It supports policy in disjunctive form directly, without the above du-

plication issue. Due to the duplication issue in the previous construc-

tion, the size of an encrypted record is in O(
∏t
i=1 ni) for a CNF policy

(A1,1 ∨ . . . ∨ A1,n1) ∧ . . . ∧ (At,1 ∨ . . . ∨ At,nt) and in O(
(
n
k

)
) for a k-of-

n threshold gate. In our construction, the encrypted record size can be

reduced to O(
∑t

i=1 ni) for CNF form and O(n) for threshold case.

1 Introduction

When a user tries to obtain a record from a database, a conventional database
server knows which record is being accessed and whether the user has access
right to the record. However, for some applications, user privacy is a concern.
In an outsourced medical database (e.g., Google Health [7]), knowing which
records a user has accessed may leak private information about the user’s medical
condition to the service provider (i.e., Google). Also, knowing the user’s access
rights may provide hints to the service provider on what records the user may
want to access. If the user has access right to diabetes related records, it is very
likely that the user may have related medical issues. Oblivious Transfer with
Access Control (AC-OT) [4] is a protocol designed for providing solutions to
these user privacy problems.

In an AC-OT protocol, there is a database server, an issuer and a set of users.
The issuer issues credentials to users where credentials are attributes which

M. Joye, A. Miyaji, and A. Otsuka (Eds.): Pairing 2010, LNCS 6487, pp. 96–115, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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specify the access rights of the users. The database server has a database of
records, each record is encrypted by the database server under a record-specific
access policy A. This encrypted database is accessible to all the users, e.g., by
posting it onto a public web site. A user with credentials S (i.e. an attribute set)
can obtain a record R anonymously by running the AC-OT transfer protocol
with the database server if S satisfies the access policy A of R. The database
server learns nothing except the fact that the user with proper credentials has
obtained a record.

The access policy supported in the previous AC-OT construction [4] is for
the conjunction of attributes (e.g., Student ∧ CS Dept.). To realize disjunctive
policy, same records may need to be duplicated and appear for multiple times in
the database. Suppose the policy of a record R is (A1 ∧A2∧A3)∨(B1∧B2∧B3).
R needs to be duplicated so that one encrypted R associates with a conjunctive
policy A1 ∧A2 ∧A3 and the other one with a conjunctive policy B1 ∧B2 ∧B3.
For a CNF policy (A1,1 ∨ . . . ∨ A1,n1) ∧ . . . ∧ (At,1 ∨ . . . ∨ At,nt), the scheme
in [4] produces a set of encrypted duplicated records of size O(

∏t
i=1 ni). For a

k-of-n threshold policy, requiring at least k attributes in the set {A1, . . . , An},
the scheme produces a set of size O(

(
n
k

)
).

Our Result: In this paper, we propose a new AC-OT protocol and show that
it is secure in the standard model. The construction supports policy in disjunc-
tive form directly, without duplicating records. For policies expressed in CNF or
threshold gate, the construction produces a smaller size of encrypted database.
Specifically, the size is in O(

∑t
i=1 ni) for CNF type and in O(n) for k-of-n thresh-

old type of policies. Our construction idea is to use a signature in an oblivious
transfer protocol which is then integrated with a ciphertext-policy attribute-
based encryption (CP-ABE) scheme for supporting policies in the form of CNF
and k-of-n threshold.

1.1 Related Work

In [6], Coull et al. considers AC-OT in a stateful environment, in which, the ac-
cess policy (e.g., Biba and Bell-LaPadual) is represented by a graph. Each node
in the graph is a state and each edge models a transaction from one state to an-
other. Each user in a stateful environment is also assigned an initial state via a
stateful anonymous credential. By using zero-knowledge proof, a user proves to
the database server that he/she is in possession of a state and tries to access a
record where the record corresponds to an edge from the user’s current state. Af-
ter the user obtains the record, the database server updates the user’s credential
to a new state. However, the scheme will be less efficient if it is used in a stateless
environment which is considered in [4] and this paper. According to [4], an access
policy in a stateless environment can be represented as a graph with nodes for each
subset of attributes that a user could have access to, and with a self-loop edge for
each record that can be accessed using this subset. If there are C attributes andN
records, the graph will have 2C nodes and up to N self-loop edges for each node,
and the encrypted database will be of size O(2CN). Also, users have to update
their credentials after each access, since it is fundamentally stateful.
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The AC-OT construction proposed in this paper relies on a fully-simulatable
adaptive oblivious transfer (OT) protocol and a ciphertext-policy attribute-
based encryption (CP-ABE). A fully-simulatable adaptive OT is an adaptive
OT in which the security is defined in a simulation based model (i.e., following
an ideal-world/real-world paradigm). The first fully-simulatable adaptive OT
was proposed by Camenisch et al. [5]. Two other protocols are due to Green and
Hohenberger [8] and Jarecki and Liu [10]. In our construction, we employ the
OT of [5] due to the special use of an unforgeable signature in the OT.

In [2], Bethencourt et al. proposed the first CP-ABE. It supports monotonic
access structures and the security is proven in a selective model, where an ad-
versary submits the challenge access policy A∗ before obtaining the public key
of CP-ABE. The CP-ABE used in our construction requires full security. Lewko
et al. in [11] proposed the first fully secure CP-ABE in the standard model. The
scheme supports access policies with linear secret sharing scheme (LSSS) [11,1].

2 Definitions and Security Model

2.1 Syntax

Let k ∈ N be a security parameter. Let [a, b] be the set {i ∈ N|a ≤ i ≤ b} where

a, b ∈ Z. Let y $← A(x) be the assignment of y to the output of a probabilistic
algorithm A on input x and a fresh random tape. We say that a function f(k)
is negligible in k if for all polynomial p(k), there exists k′ such that f(k) < 1

p(k)

when all k > k′. Without loss of generality, we define a universe of attributes
U = {1, . . . , |U|} and denote each attribute as an element of U . Therefore, an
attribute set S ⊆ U . We also define an access policy A as a collection of attribute
sets, i.e. A ⊆ 2U\{}.

An Oblivious Transfer with Access Control (AC-OT) protocol is a tuple of
probabilistic polynomial-time (PPT) algorithms/protocols:

ISetup(1k) : This issuer setup algorithm generates a public/secret key pair
(pkI , skI). The issuer runs the algorithm and publishes pkI .

DBSetup(pkI , DB = (Ri, APi)i=1,...,N ) : In a database DB with N ∈ N
records (where N is another security parameter), Ri ∈ {0, 1}∗ is the i-th record
and APi is the access policy of Ri. This database setup algorithm generates
a public/secret key pair (pkDB , skDB) and encrypts Ri to encrypted records
Ci with respect to APi. The database server runs this algorithm and publishes
(ERi)i=1,...,N = (Ci, APi)i=1,...,N along with its public key pkDB.

Issue : A user U engages in this protocol with the issuer. The inputs of U are
an attribute set S ⊆ U and pkI ; and the input of the issuer is (pkI , skI). By
executing this protocol, U will obtain a credential CredS ∈ {0, 1}∗ corresponding
to S. We assume that the issuer has already authenticated U with respect to S.

Transfer : U engages in this protocol with the database server. The inputs
of U are an index σ ∈ [1, N ], ERσ, CredS (w.r.t. S), pkI and pkDB where
S satisfies the access policy APσ of ERσ. The input of the database server is
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(pkDB, skDB). By executing this protocol, U will obtain Rσ if the execution is
successful, otherwise, U will get ⊥ (an error signal).

2.2 Security Model

The security of AC-OT is defined in a simulation-based model. In the model,
there is a real world and an ideal world. In the real world, all parties commu-
nicate using a real AC-OT protocol π. Some of the parties are corrupted and
controlled by an adversary A. We call these parties as “dishonest parties”. Other
parties follow π honestly and are called “honest parties”. In the ideal world, all
honest parties and an adversary A′ communicate by sending their outputs to,
and receiving inputs from, a party T , which cannot be corrupted.

We say that π securely implements the functionality T if for any real-world
adversary A, there exists an ideal-world adversary A′ such that no PPT distin-
guisher (the environment) Z can tell whether it interacts with A in the real world
or with A′ in the ideal world, with non-negligible probability. The environment
Z provides inputs to all parties and interacts with the adversary arbitrarily.

Real world: Now we define how honest parties in the real world follow the AC-
OT protocol π. The database server and issuer do not return anything to Z;
only the users return to Z.

1. The issuer I runs ISetup(1k) to generate (pkI , skI) and publishes pkI .
2. Upon receiving (issue, S) from environment Z, where S ⊆ U , an honest user
U engages in the Issue protocol with I. After running the protocol, U sends
a bit b to Z indicating whether the protocol run is successful (b = 1) or not
(b = 0). Note that if b = 1, U has obtained a credential CredS for S.

3. When receiving (initDB,DB = (Ri, APi)i=1,...,N ) from environment Z, the
database server runsDBSetup(pkI , DB) to generate (pkDB , skDB) and then
creates encrypted records (Ci)i=1,...,N . It publishes {ERi=(Ci, APi)}i=1,...,N

and pkDB .
4. Upon receiving (transfer, σ) from environment Z, U checks whether it has a

credential corresponding to an attribute set satisfying APσ. If so, U engages
in the Transfer protocol with the database server. To this end, U obtains Rσ
if the protocol run is successful; otherwise, U receives an error signal ⊥ from
the database server. U also sends Rσ or ⊥ to environment Z.

Ideal world: All parties communicate with each other via T . When receiving
(issue, ...), (initDB, ...) or (transfer, ...) from environment Z, honest parties
forward it to T , then forward the outputs of T to Z. We now define the behavior
of T . T maintains an attribute set SU which is initially empty for each user U .
T also sets DB =⊥.

1. Upon receiving (issue, S) from U , T sends (issue, U, S) to issuer I who, in
turn, sends back a bit b. If b = 1, T sets SU = S. Otherwise, T does nothing.

2. Upon receiving (initDB, (Ri, APi)i=1,...,N ) from the database server, T sets
DB = (Ri, APi)i=1,...,N .
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3. Upon receiving (transfer, σ) from U , T checks whether DB =⊥. If DB �=⊥,
it sends (transfer) to the database server. If the database server sends back
b = 1, T checks if σ ∈ [1, N ] and SU satisfies the access policy APσ. If so, T
sends Rσ to U . Otherwise, it sends ⊥ to U .

3 Preliminaries

3.1 Bilinear Maps and Assumptions

Let G and GT be two cyclic multiplicative groups of order n (which can be prime
or composite). A bilinear map is defined as ê : G × G → GT with the following
properties: (1) Bilinear: for all u, v ∈ G and a, b ∈ Z, ê(ua, vb) = ê(u, v)ab; (2)
Non-degenerate: if g is a generator of G, then ê(g, g) �= 1GT ; and (3) Computable:
there exists an efficient algorithm to compute ê(u, v) for any u, v ∈ G.

Definition 1. (�-strong Diffie-Hellman (�-SDH) assumption) This assumption
holds in G if for all PPT adversaries A, the advantage Adv�-SDH

G (k):

Adv�-SDH
G (k) = Pr[A(g, gx, . . . , gx

�

) = (c, g1/(x+c))]

is negligible in k where g $← G∗, x $← Zp and c ∈ Zp.

Definition 2. (�-powerDecisional Diffie-Hellman (�-PDDH) assumption) It holds
in (G,GT ) if for all PPT adversaries A, the advantage Adv�-PDDH

G,GT
(k):∣∣∣Pr[A(g, gα, . . . , gα

�

, H,Hα, . . . , Hα�

) = 1]− Pr[A(g, gα, . . . , gα
�

, H,H1, . . . , H�) = 1]

∣∣∣
is negligible in k where g $← G∗, H,H1, . . . , H�

$← G∗
T and α $← Zp.

The �-PDDH assumption is implied by (�+1)-BDHE assumption [4].

3.2 Building Blocks

In our construction, we employ a fully secure CP-ABE and a fully-simulatable
adaptive OT. Below are the definitions of these two building blocks.

CP-ABE. It consists of four PPT algorithms (SetupABE, GenKeyABE,
EncABE , DecABE) [2,11]. The setup algorithm, SetupABE(1k) generates a mas-
ter public/secret key pair (pk,mk). The key generation algorithm, GenKeyABE
(mk, S), takes the master secret key mk and an attribute set S ⊆ U outputs
a decryption key dk. The encryption algorithm, EncABE(pk,M,A), takes pk,
a message M ∈ {0, 1}∗ and an access policy A, produces a ciphertext C. The
decryption algorithm, DecABE(pk, C, dk), takes pk, decryption key dk and C,
outputs M if S associated with dk satisfies A, which is associated with C. The
security model (full security) [2,11] is given as follows.

Definition 3. A CP-ABE is fully secure if for all PPT adversaries A, the ad-
vantage of A in the game below is negligible in k.
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Setup: The challenger runs SetupABE(1k) and gives pk to A.
Phase 1: A may query for the decryption keys of attribute sets S1, . . . , Sq1 ⊆ U .
Challenge: A submits two equal-length messages M0,M1 ∈ {0, 1}∗ and a chal-

lenge access policy A∗ such that none of the sets S1, . . . , Sq1 satisfies A∗. The
challenger flips a random coin b ∈ {0, 1} and encrypts Mb with respect to
A∗. The ciphertext C∗ is given to A.

Phase 2: Same as Phase 1 with the restriction that none of the additional at-
tribute sets Sq1+1, . . . , Sq satisfies A∗.

Guess: A outputs b′ ∈ {0, 1}. The advantage of A is defined as |Pr[b′ = b]− 1
2 |.

Fully-Simulatable Oblivious Transfer. We employ the fully-simulatable
adaptive OT due to Camenisch et al. [5]. The sender, on input k ∈ N and
messages M1, . . . ,MN ∈ {0, 1}∗, randomly generates g, h from G∗ and calcu-
lates H = ê(g, h). It also randomly chooses x from Zp and calculates y = gx.
The sender’s public key pk = (ê,G,GT , p, g, y,H) and secret key sk = (h, x).
For i = 1, . . . , N , the sender calculates Ai = g

1
x+i , Bi = ê(h,Ai) ·Mi and sets

Ci = (Ai, Bi). The sender sends C1, . . . , CN to the receiver along with pk. The
sender also shows that PK{(h) : H = ê(g, h)}.

When the receiver wants to obliviously transfer a message Mσ where index
σ ∈ [1, N ], it randomly chooses v from Zp and calculates V = Avσ. The receiver
sends V along with PK{(σ, v) : ê(V, y) = ê(V, g)−σ ê(g, g)v} to the sender. The
sender verifies it and calculates W = ê(h, V ). It sends W along with PK{(h) :
H = ê(g, h)∧W = ê(h, V )} to the receiver. The receiver verifies it and calculates
Mσ = Bσ

W 1/v .
The security model of Camenisch et al. scheme [5] is fully simulatable, meaning

that both the sender and the receiver security are formalized by a simulation-
based definition. Full simulatability is required even if the receiver can adaptively
choose the message to obliviously transfer, based on those messages it has re-
ceived from the sender. [5] proves that the above scheme is fully simulatable
secure under the (N + 1)-SDH and the (N + 1)-PDDH assumptions in the stan-
dard model.

Note that Ai = g
1

x+i is a modified Boneh-Boyen signature [5] on the mes-
sage i with the signer’s secret key x. [5] mentions that such a signature scheme
is unforgeable under the weak chosen message attack [3,5] provided that the
(N + 1)-SDH assumption holds in G, meaning that the receiver in the oblivious
transfer protocol cannot forge a valid Ai = g

1
x+i by herself.

4 Our Construction

In this section, we first devise a new AC-OT construction (Sec. 4.1) which em-
ploys a fully secure CP-ABE. This new AC-OT construction supports the same
access policies of the underlying CP-ABE. Then, we discuss the security of the
construction. At last, we instantiate the construction (Sec. 4.1) with a concrete
CP-ABE.
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4.1 A New AC-OT Construction

In our construction, we combine a ciphertext-policy attribute-based encryption
with Camenisch et al.’s oblivious transfer to provide the access control and
oblivious transfer functionality in an AC-OT protocol. Interestingly, [4] also uses
Camenisch et al.’s OT to build their AC-OT construction. However, we should
note that the reason why we choose Camenisch et al.’s OT is quite different
from [4]. This reason also relates to the idea how we implement access control
and why our AC-OT construction can support disjunction policy directly, but
[4] cannot.

Recall that given the i-th record, Camenisch et al.’s OT construction generates
a modified Boneh-Boyen signature Ai = g

1
(i+x) (where x is the secret key).

The user proves to the database server in a zero-knowledge fashion that she
tries to access the i-th record. [4] extends this idea by embedding a conjunction
policy c1 ∧ . . . ∧ cl into Ai = g

1
(i+x+x1c1+...+xlcl) (where now (x, x1, . . . , xl) is the

secret key). Then, the user can prove in zero-knowledge fashion that she has the
attributes c1, . . . , cl and tries to access the i-th record.

However, it seems hard to find an expression allowing to embed a disjunction
policy into Ai. To overcome this problem, we do not embed an access policy into
Ai, but instead we introduce ciphertext-policy attribute-based encryption (CP-
ABE) to the methodology of devising an AC-OT construction. Specifically, we
encrypt Ai = g1/(i+x) using CP-ABE under the access policy of the i-th record
and let the database server distribute the ciphertext to the users. Now the user
can conditionally release Ai provided that she has a decryption key (which acts
as credentials in our construction) associated with attributes satisfy the policy.
Then, the user can use the decryption result Ai in a Camenisch’s oblivious
transfer protocol to obtain record Ri. It is easy to see that such an AC-OT
construction supports the same access policy of the underlying CP-ABE, which
allows the construction to support disjunction policy directly.

The security of our AC-OT construction relies on the fact that Ai is a modified
Boneh-Boyen signature, which cannot be forged by the users. Therefore, the only
way to obtain Ai is done by a proper CP-ABE decryption. To our knowledge,
the only fully-simulatable adaptive oblivious transfer including a signature in it
is the construction proposed by Camenisch et al. [5]. That is the reason why
we choose Camenisch et al.’s OT. Since the database setup algorithm is non-
interactive, we postpone the proof-of-knowledge PK{(h) : H = ê(g, h)} in [5]
to the Transfer protocol (this trick is used in [4] as well.); We also encrypt
Ci = (Ai, Bi) in OT rather than distributing them directly to the users. The
details of this construction is as follows.

ISetup(1k) : Given a security parameter k ∈ N, the issuer setup algorithm runs
SetupABE(1k) to generate a pair of keys (pkI , skI). The issuer publishes pkI to
all parties.

Issue : The user sends fI , which is initially set to 0, to the issuer. If fI is 0,
the issuer gives PK{(skI) : (skI , pkI) is a key pair} to the user. The user also
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updates fI = 1. Then, the user sends an attribute set S to the issuer. The issuer
runs dkS

$← GenKeyABE(skI , S) to generate a decryption key. The issuer sends
dkS to the user as a credential CredS corresponding to S.

User Database server
fI (initially set to 0) �

Update fI = 1 If fI = 0, PK{(skI) : (skI , pkI) is a key pair}�

Attribute set S �

CredS CredS
$←GenKeyABE(skI , S)�

Fig. 1. Issue Protocol

To prove the issuer’s knowledge on her private key is important in our security
proof because we need to construct an ideal-world adversary who extracts the
private key to decrypt for any CP-ABE ciphertexts.

DBSetup(pkI , (Ri, APi)i=1,...,N) : The database setup algorithm first chooses
G and GT with the same prime order p. It also chooses a bilinear map ê :
G×G → GT . It randomly chooses g, h from G and randomly chooses x from Zp.
It also calculates H = ê(g, h) and y = gx. For each i = 1, . . . , N , this algorithm
calculates Ci = (Ai, Bi) where Ai = g

1
x+i and Bi = ê(Ai, h)Ri. It sets the public

key pkDB = (ê,G,GT , p, g, y,H) and the secret key skDB = (h, x).
Then, it runs Di = EncABE(pkI , Ci, APi) which encrypts Ci under the policy

APi. The database server publishes (ERi)i=1,...,N = (Di, APi)i=1,...,N and pkDB
to all users. It stores pkDB and keeps skDB as secret.

Transfer : It is shown by the Fig. 2. The user U first decrypts Dσ to Cσ using
CredS corresponding to the attribute set S.

Then, U randomly chooses v from Zp and calculates V = Avσ. The user U
sends V to the database server along with a zero-knowledge proof-of-knowledge
PK{(v, σ) : ê(V, y) = ê(V, g)−σê(g, g)v}. Then, the database server verifies the
proof and calculates W = ê(h, V ) via its skDB = (h, x). The database server
sends W along with PK{(h) : H = ê(g, h) ∧ W = ê(h, V )} to U . U obtains
Rσ = Bσ

W 1/v .

4.2 Security

Theorem 1. The AC-OT protocol described in subsection 4.1 securely imple-
ments the AC-OT functionality, provided that the underlying CP-ABE is fully
secure, the (N +1)-SDH assumption holds in G, the (N +1)-PDDH assumption
holds in G and GT , the knowledge error of the underlying PK is negligible and
the underlying PK is perfect zero-knowledgeness.
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User Database server
fDB (initially set to 0) �

Update fDB = 1 If fDB = 0, PK{(h) : H = ê(g, h)}�

Aσ||Bσ = DecABE(pkI , Dσ, CredS) where

S satisfies APσ. V = Av
σ where v

$← Zp. V �
PK{(σ, v) : ê(V, y) = ê(V, g)−σê(g, g)v}

Rσ = Bσ

W1/v W W = ê(h, V )�
PK{(h) : H = ê(g, h) ∧W = ê(h, V )}

Fig. 2. Transfer Protocol

We organize the proof to Theorem 1 into different cases. In each case, some of
the parties (i.e. the users, the issuer and the database server) are assumed to be
corrupted and controlled by an adversary. We do not consider the cases where
all parties are honest/dishonest or where the issuer is the only honest/dishonest
party, as these cases do not have practical impact.

For each case, we assume that there exists a real-world adversary A and show
how to construct an ideal-world adversary A′ such that no PPT environment Z
can tell whether it interacts with A in the real world or A′ in the ideal world.

Following the strategy of game-hopping, we define a sequence of hybrid games
Game0 to Gamen. In Gamei (i = 1, . . . , n), we construct a simulator Si that
runs A as a subroutine and provides the view for the environment Z. Game0
models the case of the real world, while in Gamen, the simulator Sn can be used
to construct an ideal-world adversary A′. More specifically, the adversary A′

runs A as a subroutine and provides the same view of Sn to the adversary A. A′

also simulates the real-world honest parties that communicate with A. We prove
that Gamei and Gamei+1 are indistinguishable for i = 0 to n− 1, which means
A in the real world (S0) and A′ in the ideal world (Sn) are indistinguishable by
the environment Z. The details of the proof are given in Appendix A.

4.3 Instantiating with Concrete CP-ABE

In the above, we proposed an AC-OT protocol that employs (any fully secure)
CP-ABE to encrypt Ai||Bi where Ai ∈ G and Bi ∈ GT . However, as we aware
that message spaces in the most ciphertext-policy attribute-based encryption
(CP-ABE) schemes are restricted to GT (which may or may not be identical
to GT ). In this subsection, we first show, given a CP-ABE scheme, how to
employ the idea of “hybrid encryption” to devise a new CP-ABE which does
not only support the same access policy as the original one but also
supports an unbounded message space. More specifically, given a CP-ABE scheme
(SetupABE, GenKeyABE, EncABE , DecABE) and a data encapsulation
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mechanism (DEM) (EncDEM , DecDEM ), we construct a new CP-ABE scheme
(Setup,GenKey,Enc,Dec) as follows.

1. Setup(1k) : It runs (pk,mk) $← SetupABE(1k) and outputs (pk,mk) as the
public and master secret key pair.

2. GenKey(mk, S) : It runs dkS
$← GenKeyABE(mk, S) and outputs dkS .

3. Enc(pk,M,A) : Given M ∈ {0, 1}∗, it first randomly chooses K from GT

(i.e., the key space of DEM is assumed to be GT ). It computes C1
$←

EncABE(pk,K,A). It also calculates C2
$← EncDEM (K,M) and outputs

the ciphertext C = (C1, C2).
4. Dec(pk, C, dkS): Denote C as (C1, C2). It first runsK=DecABE(pk, C1, dkS).

Then, it computes M = DecDEM (K,C2) and outputs M as the decryption
result.

Theorem 2. The CP-ABE construction described above is fully secure (under
CPA), provided that the underlying original CP-ABE scheme is fully secure (un-
der CPA) and DEM is one-time indistinguishability (IND-OT) [9] secure.

More specifically, given an adversary A in the full security game of the new
CP-ABE, we can construct an adversary B1 in the full security game of the
original CP-ABE and an adversary B2 in the IND-OT game of DEM and show
that AdvA(k) ≤ 2AdvB1(k) + AdvB2(k). Since the original CP-ABE is fully
secure (under CPA) and DEM is IND-OT secure, AdvB1(k) and AdvB2(k) are
negligible in security parameter k ∈ N, which completes the proof. The detailed
proof is omitted from the paper.

Since DEM required in Theorem 2 is IND-OT secure, one-time pad is enough.
EncDEM (K,M) can be done by first employing a pseudo-random bit generator
G to stretch the K and then outputting the ciphertext as G(K)⊕M where ⊕ is
XOR operation. Theoretically, a pseudo-random bit generator can be built from
any one-way function. Practically, we can use a block cipher with counter (CRT)
mode or output feedback (OFB) mode to do this, provided that we model the
block cipher as a pseudo-random permutation.

Next, we employ a concrete CP-ABE construction in [11] to instantiate the
AC-OT construction in subsection 4.1. Recall that [11] supports any linear secret
sharing scheme (LSSS) access policy A = (A, ρ) where A is an l× n matrix and
ρ is a map from each row Ax of A to an attribute ρ(x) ∈ U . Attribute set
S ⊆ U satisfies A = (A, ρ) if and only if there exist constants {ωi}ρ(i)∈S such
that

∑
ρ(i)∈S ωiAi = (1, 0, . . . , 0). The AC-OT construction instantiated with

Lewko et al.’s CP-ABE [11] is as follows.

ISetup(1k) : Given a security parameter k ∈ N, the issuer setup algorithm
chooses a bilinear group G with a composite order N ′ = p1p2p3 where p1, p2
and p3 are primes. It chooses GT with the same order N ′ and a bilinear map
e : G × G → GT . It also randomly chooses α, a ∈ ZN ′ and randomly chooses
u ∈ Gp1 . For each attribute i ∈ U , it randomly chooses si ∈ ZN ′ . The public key
pkI is (N ′, u, ua, Y = e(u, u)α, {Ti = usi}i∈U ). The (master) secret key skI is
(α,X3) where X3 is a generator of Gp3 . The issuer publishes pkI to all parties.
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Issue : The user sends fI , which is initially set to 0, to the issuer. If fI is
0, the issuer gives PK{(α, p1, p2, p3) : Y = e(u, u)α ∧ N ′ = p1p2p3} to the
user.1 The user also updates fI = 1. Then, the user sends an attribute set
S to the issuer. The issuer randomly chooses t ∈ ZN ′ and randomly chooses
R0, R

′
0, Ri from Gp3 for i ∈ S. It outputs a credential CredS as the decryption

key dkS = (S, uαuatR0, u
tR′

0, {T tiRi}i∈S). The issuer sends CredS to the user.

DBSetup(pkI , (Ri, APi)i=1,...,N) : The database setup algorithm first chooses G
and GT with the same prime order p. It also chooses a bilinear map ê : G×G →
GT . It randomly chooses g, h from G and randomly chooses x′ from Zp. It also
calculates H = ê(g, h) and y = gx

′
. For each i = 1, . . . , N , this algorithm

calculates Ci = (Ai, Bi) where Ai = g
1

x′+i and Bi = ê(Ai, h)Ri. It sets the
public key pkDB = (ê,G,GT , p, g, y,H) and the secret key skDB = (h, x′).

For each i = 1, . . . , N , it parses APi as (A, ρ) where A is an l× n matrix and
ρ is a map from each row Ax of A to an attribute ρ(x) ∈ U . Then, it randomly
chooses κ from GT . It also randomly chooses a vector ν = (s, v2, . . . , vn) ∈ ZnN ′ .
For each row Ax of A, it randomly chooses rx ∈ ZN ′ . It calculates Di,1 =
(A, ρ, κe(u, u)αs, us, {uaAx·νT−rx

ρ(x) , u
rx}x). It also runs EncDEM (κ,Ai||Bi) to ob-

tain Di,2. Note that κ,ν and rx (for each x) are chosen freshly for every i =
1, . . . , N .

The database server publishes (ERi)i=1,...,N =(Di = (Di,1, Di,2), APi)i=1,...,N

and pkDB to all users. It stores pkDB and keeps skDB as secret.

Transfer : DenoteDσ,1=(A, ρ, C,C′, {Cx, Dx}x) and CredS=(S,K,L,{Ki}i∈S).
The user U first computes constants ωx ∈ ZN ′ such that

∑
ρ(x)∈S ωxAx =

(1, 0, . . . , 0). It also computes e(C′,K)/
∏
ρ(x)∈S (e(Cx, L)e(Dx,Kρ(x)))ωx =

e(u, u)αs. Then, it recovers κ = C/e(u, u)αs and runs DecDEM (κ,Dσ,2) to ob-
tain Cσ = (Aσ, Bσ). Note that if S satisfies (A, ρ), U will find ωx efficiently
[11].
U randomly chooses v from Zp and calculates V = Avσ. The user U sends V to

the database server along with a zero-knowledge proof-of-knowledge PK{(v, σ) :
ê(V, y) = ê(V, g)−σê(g, g)v}. Then, the database server verifies the proof and
calculates W = ê(h, V ) via its skDB = (h, x′). The database server sends W
along with PK{(h) : H = ê(g, h) ∧W = ê(h, V )} to U . U obtains Rσ = Bσ

W 1/v .
It is easy to see that the security of the above AC-OT construction is a

corollary of Theorem 1 and 2.

5 Performance

Given the concrete construction in subsection 4.3, we analyze the encrypted
record size for the access policies of CNF formula and threshold gate. We should
1 Strictly speaking, this is not identical to PK{(skI) : (skI , pkI) is a key pair }.

However, to prove N ′ = p1p2p3 would be efficient. More importantly, recall that in

the security proof, the constructed ideal-world adversary just needs to extract skI
from the PK. Given p1, p2, p3, the adversary can generate a valid skI by itself.
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note that our construction is not restricted to express CNF formula and threshold
gate, but any policies which can be expressed by a LSSS matrix.

Given a general CNF formula (A1,1 ∨ . . . ∨ A1,n1) ∧ . . . ∧ (At,1 ∨ . . . ∨ At,nt),
we can first represent it by an access tree whose interior nodes are AND and
OR gates and leaf nodes are attributes (e.g., A1,1). It is easy to see that such an
access tree has n1 + . . .+ nt leaf nodes.

Lemma 1. For an access policy which can be expressed by an access tree whose
interior nodes are AND and OR gates and leaf nodes are attributes, the ciphertext
size in the CP-ABE construction [11] is O(n) where n is the number of leaf nodes
in that access tree.

Lemma 1 is given in [11]. The encrypted (i-th) record Di consists of two compo-
nents Di,1 and Di,2 where Di,1 is a CP-ABE ciphertext under the above access
tree policy for CNF formula. Therefore, Di,1 is of size of O(n1 + . . .+ nt). Di,2
is a DEM ciphertext whose size is a constant (e.g, O(1)). To sum up, the en-
crypted record size in our AC-OT construction is O(

∑t
i=1 ni). We also show a

comparison for our construction and [4] (and [6]) in Table 1 for completeness.
Note that due to the use of duplication strategy in [4], the record of above CNF
formula will appear for n1 × . . .× nt times.

Table 1. Comparison of AC-OT protocols expressing CNF formula

Protocol Encrypted record size

[6] O(2
∑ t

i=1 ni)

[4] O(
∏t
i=1 ni)

This paper O(
∑t

i=1 ni)

Given a threshold gate T nk : with at least k attributes in the set {A1, . . . , An},
we have the following lemma.

Lemma 2. For any 1 ≤ k ≤ n, a LSSS matrix A for threshold gate T nk can be
constructed with n rows.

Specifically, we can construct a n × k matrix A = (a1, . . . ,an)T where ai

(i = 1, . . . , n) are k-length vectors such that any k of them consist of a base.
Therefore, if more than k attributes (without loss of generality, we assume the
attributes correspond to ai1 , . . . ,aik , . . . ,aij ), then we can find ω1, . . . , ωk such
that (1, 0, . . . , 0) =

∑k
l=1 ωkail . However, if there are less than k attributes,

ai1 , . . . ,aij (j < k) is linear independent with (1, 0, . . . , 0). The proof to Lemma
2 is omitted in this paper.

In the construction (Sec. 4.3), the size of Di,1 is O(n) if the LSSS matrix A
has n rows. Consequently, the encrypted record size of a T nk threshold gate is
O(n) in our AC-OT construction. The comparison for our construction and [4]
(and [6]) is shown in Table 2. The record will appear for

(
n
k

)
times in [4] due to

its duplication strategy.
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Table 2. Comparison of AC-OT protocols expressing threshold gate

Protocol Encrypted record size

[6] O(2n)

[4] O(
(
n
k

)
)

This paper O(n)

6 Conclusion

In this paper, we proposed a new AC-OT construction which is secure in the
standard model. Our construction is based on an observation that Camenisch
et al.’s OT construction contains an unforgeable signature, which allows us to
conditionally release the signature with a ciphertext-policy attribute-based en-
cryption. Without duplicating records, our construction reduces the size of the
encrypted database by a substantial amount for access policies represented in
CNF or k-of-n threshold gate.

Acknowledgments

This work was supported by Grant HKU 715509E from Hong Kong RGC. We
thank the anonymous reviewers for their valuable comments.

References

1. Beimel, A.: Secure schemes for secret sharing and key distribution. PhD thesis,

Israel Institute of Technology, Technion, Haifa, Israel (1996)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-

tion. In: 28th IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Press,

New York (2007)

3. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,

Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,

Heidelberg (2004)

4. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control.

In: 16th ACM Conference on Computer and Communications Security, pp. 131–

140. ACM, New York (2009)

5. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In:

Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Hei-

delberg (2007)

6. Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database

using stateful anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.

LNCS, vol. 5443, pp. 501–520. Springer, Heidelberg (2009)

7. Google Inc.: Google health, https://www.google.com/health

8. Green, M., Hohenberger, S.: Practical adaptive oblivious transfer from a simple

assumption. Cryptology ePrint Archive, Report 2010/109 (2010),

http://eprint.iacr.org/

https://www.google.com/health
http://eprint.iacr.org/


Oblivious Transfer with Access Control 109

9. Herranz, J., Hofheinz, D., Kiltz, E.: KEM/DEM: Necessary and sufficient condi-

tions for secure hybrid encryption. Cryptology ePrint Archive, Report 2006/265

(2006), http://eprint.iacr.org/

10. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications

to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)

TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

11. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-

tional encryption: Attribute-based encryption and (hierarchical) inner product en-

cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.

Springer, Heidelberg (2010), full version http://eprint.iacr.org/2010/110

A Proof of Theorem 1

A.1 Proof of Case 1 (The Database Server and the Issuer Are
Dishonest)

Lemma 3. For all environments Z and any real-world adversary A controlling
the database server and the issuer, there exists an ideal-world adversary A′ such
that the probability that Z can distinguish whether it interacts with A in the real
world or it interacts with A′ in the ideal world is negligible, provided that the
knowledge error of the underlying PK is negligible and the underlying PK is
perfect zero-knowledgeness.

Game0. The real world. S0 plays the role of the honest users.

Game1. S1 is the same as S0 except that at the first time of issue query instructed
by environment Z, S1 runs the extractor of PK{(skI) : skI and pkI is a key
pair} to extract skI from A. If it fails, S1 outputs ⊥ to Z. Recall that skI and
pkI is the (master) secret key and the public key of the underlying CP-ABE.

Note that the difference between Game0 and Game1 is negligible provided
that the underlying PK is sound. We believe that constructing such PK for
most CP-ABE should be easy.

Game2. S2 is the same as S1 except that at the first time of transfer query
instructed by environment Z, S2 runs the extractor of PK{(h) : H = ê(g, h)}
to extract h from A. If it fails, S2 outputs ⊥ to Z.

The difference between Game1 and Game2 is negligible provided that the
underlying PK is sound.

Game3. S3 is the same as S2 except that at each time of transfer query instructed
by environment Z, S3 engages in Transfer protocol with A to query a record
randomly chosen from those which it has the necessary decryption keys, rather
than querying σ instructed by Z.

Note thatGame2 andGame3 is identical due to the perfect zero-knowledgeness
of the underlying PK{(v, σ) : ê(V, y) = ê(V, g)−σê(g, g)v}.

Now we show how to construct the ideal-world adversary A′ with black-box
access to A, where A′ incorporates all steps from Game3.

http://eprint.iacr.org/
http://eprint.iacr.org/2010/110
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Adversary A′ first runs A to obtain {ERi} and public parameters. At the
each issue query instructed by Z, A′ will simulate a user interacting with A for
issuing the decryption key. If the decryption key is valid, A′ will send b = 1 to
T ; otherwise, it will send b = 0. If it is the first time of Issue protocol, A′ will
also run the extractor with A to extract skI of the underlying CP-ABE (As we
have shown, the probability that the extractor fails is negligible).

When receiving (transfer) from T , A′ will query a record randomly chosen
from those which it has the necessary decryption keys with A. If the Transfer
protocol succeeds, A′ will send back b = 1 to T ; otherwise, it sends back b = 0.
If it is the first time of transfer query instructed by Z, A′ will also run the
extractor to extract h with A (As we have shown, the extractor fails with only
negligible probability).

If A′ has extracted skI and h from A, A′ will use skI to decrypt ERi to
Ai||Bi where Bi = ê(h,Ai)Ri. Then, A′ calculates Ri = Bi

ê(h,Ai)
. A′ sends

(Ri, APi)i=1,...,N to T for initDB.

A.2 Proof of Case 2 (Only the Database Server Is Dishonest)

Lemma 4. For all environments Z and any real-world adversary A control-
ling the database server, there exists an ideal-world adversary A′ such that the
probability that Z can distinguish whether it interacts with A in the real world
or it interacts with A′ in the ideal world is negligible, provided that the knowl-
edge error of the underlying PK is negligible and the underlying PK is perfect
zero-knowledgeness.

Game0. The real world. S0 plays the role of the honest users and the issuer to
A.

Game1. S1 is the same as S0 except that at the first time of transfer query, S1

runs the extractor of PK{(h) : H = ê(g, h)} with A to extract h. If it is failed,
S1 outputs ⊥ to Z.

The difference between Game0 and Game1 is negligible provided that the
underlying PK is sound.

Game2. S2 is the same as S1 except that at each time of transfer query, S2

engages in the Transfer protocol with A to query a record randomly chosen
from those which it has the necessary decryption keys, rather than querying σ
instructed by Z.
Game1 is identical Game2 due to the zero-knowledgeness of the underlying

PK{(v, σ) : ê(V, y) = ê(V, g)−σ ê(g, g)v}.
Now we show how to construct the ideal-world adversary A′. Adversary A′

first runs A to obtain {ERi} and public parameters. At each time of transfer
query, A′ simulates a user interacting with A in Transfer protocol to query
a record randomly chosen from those which it has the necessary decryption
keys. If Transfer protocol succeeds, A′ sends b = 1 to T ; otherwise, it sends
b = 0. If it is the first time of transfer query, A′ also runs the extractor of
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PK{(h) : H = ê(g, h)} with A to extract h (As we have shown that the extractor
fails with only negligible probability).

If A′ has extracted h from A, A′ (since it also simultaneously simulates the
issuer) uses its (master) secret key skI to decrypt {ERi} to Ai||Bi where Bi =
ê(h,Ai)Ri. A′ calculates Ri = Bi

ê(h,Ai)
. A′ also sends (Ri, APi)i=1,...,N to T for

initDB.

A.3 Proof of Case 3 (Only Some Users Are Dishonest)

Lemma 5. For all environments Z and any real-world adversary A controlling
some users, there exists an ideal-world adversary A′ such that the probability that
Z can distinguish whether it interacts with A in the real world or it interacts
with A′ in the ideal world is negligible, provided that the underlying CP-ABE is
fully secure, the (N + 1)-SDH assumption and the (N + 1)-PDDH assumption
hold, the knowledge error of the underlying PK is negligible and the underlying
PK is perfect zero-knowledgeness.

Game0. The real world. S0 plays the role of the honest issuer and database
server to A.

Game1. S1 follows the specification except during each transfer query, when A
requests for a record Rσ from the database server on behalf of some user. A
submits V along with the proof of v, σ:

PK{(v, σ) : ê(V, y) = ê(V, g)−σ ê(g, g)v}.
S1 extracts v and σ and continues the rest of the simulation only if extraction

is successful. Otherwise, it outputs ⊥ to Z.
The difference between Game0 and Game1 is negligible provided that the

underlying PK is sound.

Game2. S2 is the same as S1 except after v, σ has been extracted, S2 computes
Âσ = V 1/v. If A has never request the decryption key for attribute set S sat-
isfying APσ from the issuer and that Âσ = Aσ (notice that S2 simulates the
real-world honest database server to adversary A and S2 generates A1, . . . , AN
by herself.), S2 outputs ⊥ to Z.

The difference between Game1 and Game2 is negligible provided that the
underlying CP-ABE is fully secure and the (N + 1)-SDH assumption holds.

If S2 obtains the correct Aσ from A such that A is not given the corresponding
CP-ABE decryption key, we can use A to break the full security of the underlying
CP-ABE. More specifically, we show how to construct an adversary B that wins
the full security game of the underlying CP-ABE. B plays the role of S2 and is
with black-box access to A.

The challenger first runs SetupABE(1k) and gives the public key pk to B. B
submits APσ to the challenger where APi (i = 1, . . . , N) is instructed by the
environment Z. B also computes Ai = g

1
x+i and Bi = ê(h,Ai)Ri for i = 1, . . . , N
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(Note that B runs Z as subroutine and simulates the real-world honest database
server.). Then B randomly chooses two random numbers rA from G and rB
from GT . B sets M0 = Aσ||Bσ and M1 = rA||rB . B submits M0 and M1

to the challenger. The challenger flips a coin b ∈ {0, 1} and encrypts Mb to
C∗ under APσ. The ciphertext C∗ is given to B. B also encrypts Ai||Bi to
ciphertext Ci under APi for all i = 1, . . . , σ − 1, σ + 1, . . . , N . B publishes
(C1, AP1), . . . , (Cσ−1, APσ−1), (C∗, APσ), (Cσ+1, APσ+1), . . . , (CN , APN ) to A.
When A asks for decryption keys, B will forward the requests to the challenger.
Recall that A does not request the decryption key for attribute set S satisfying
APσ from the issuer, the challenger will answer all requests properly. Finally,
if A outputs Aσ, then B will output b′ = 0 as its guess bit; otherwise, B will
output b′ = 1.

When b = 0 (Pr[b = 0] = 1
2 ), C∗ is the encryption of Aσ||Bσ and this is

identical to Game2. In this case, A will output Aσ with a non-negligible prob-
ability ε. When b = 1 (Pr[b = 1] = 1

2 ), C∗ is encryption of random rA||rB
which is independent with Aσ. A would not output proper Aσ, otherwise, A will
forge a modified Boneh-Boyen signature under weak chosen message attack. This
happens with a negligible probability η under the (N + 1)-SDH assumption [5].

Pr[b = b′] = Pr[b = 0]Pr[b′ = 0] + Pr[b = 1]Pr[b′ = 1]

=
1
2
ε+

1
2
(1 − η)

=
1
2

+
1
2
(ε− η)

where 1
2 (ε− η) is non-negligible.

Game3. S3 is the same as S2 except for each transfer query, it computes W =
(Bσ/Rσ)v and that the proof-of-knowledge protocol

PK{(h) : W = ê(V, h)}
becomes a simulated proof such that S3 does not require the knowledge of h.

The difference between Game2 and Game3 is negligible provided that the
underlying PK is perfect zero-knowledge.

Game4. S4 is the same as S3 except S4 now deviates from the database setup
protocol by replacing the value Bi from ê(h,Ai)Ri to just random elements in
group GT .

The difference between Game3 and Game4 is negligible provided that the
(N + 1)-PDDH assumption holds.

Suppose there exists an environment Z that can distinguish Game3 and
Game4, we show how to construct an adversary B that solves the (N+1)-PDDH
problem. B is given the problem instance g′, g′x, g′x

2
, . . . , g′x

N+1
, H,H1, . . . , HN+1

and its task is to tell if Hi = Hxi

or Hi are just random elements from GT for
i = 1, . . . , N + 1.
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B runs the environment Z and the adversary A as subroutines. It plays the role
of the honest issuer and database server with A and Z. Denote f(x) =

∏N
i=1(x+i)

as the N -degree polynomial in x. Under the additive notation, f(x) =
∑N
i=0 βix

i.
Set g = g′f(x) and thus g =

∏N
i=0 (g′x

i

)βi and is computable by B without the
knowledge of x. Next, the value y = gx is also computable as g′xf(x) since xf(x)
is a degree N + 1 polynomial. B sets the public key of the database server as
pkDB = {g,H, y, ê,G,GT , p}

When it is instructed by environment Z to create a database with records
(Ri, APi)i=1,...,N , it generates Ai = g

1
x+i by Ai = g′

f(x)
x+i . This is computable by

B without the knowledge of x since f(x)/(x + i) = (x + 1) · · · (x + i − 1)(x +
i + 1) · · · (x + N) is a polynomial of degree N − 1. Next, it computes Bi as
(
∏
Hβi

i )Ri.
Note that if Hi = Hxi

for i = 1, . . . , N , then B is acting as S3 in Game3 while
if Hi are just random elements in GT , B is acting as S4 in Game4. Thus, if the
environment Z can distinguish between Game3 and Game4, we have solved the
(N + 1)-PDDH problem.

Now we show how to construct the ideal-world adversary A′ which is given
black-box access to A.

In the beginning, Z tells the ideal-world honest database server to initialize the
database with inputs (Ri, APi) for i = 1 to N . The honest database server for-
wards this request to the trusted party T who sets database as (Ri, APi)i=1,...,N .
While APi is made public to all ideal world users, Ri is kept secret. T also main-
tains a set SU to record what set of attributes has been issued to the user U .

A′ setups the key pairs for the issuer as well as the database server to provide
the simulation for A. However, it has to setup the database without knowing
Ri. A′ did so by setting ERi as (Ci, APi), where Ci is the encryption of Ai||Bi,
with Bi being random element in GT . (As we have shown, Z cannot distinguish
this difference.)

When Z issues the message (issue, S) to A′, A′ sends the same message to A
(Recall that A′ acts as the environment to A). If A deviates from the protocol
and does nothing (remember A′ also acts as the issuer to A), A′ also did not
send any message to T . Otherwise, if A requests a certain set of credentials from
A′, A′ requests the same set of credentials from the trusted party T . If T sends
back 1 to A′, A′ issues the corresponding credential to A. On the other hand, if
T returns 0, A′ returns 0 to A as well.

When Z issues the message (transfer, σ) to A′, A′ sends the same message
to A.If A deviates from the protocol and does nothing (A′ also acts as the issuer
to A), A′ also did not send any message to T . Otherwise, A′ extracts σ from A.
(As we have shown, A′ fails with a negligible probability.)

A′ requests for credentials from T that satisfy APσ (if there is no any user
satisfying this policy). After that, A′ requests for the record Rσ on behalf of
that user. Next, it computes W = (Bσ/Rσ)v and sends W , along with the
zero-knowledge proof, back to A on behalf of the database server. (Again, it is
different from the actual honest database server. However, we have shown that
A (and therefore Z) cannot notice this difference.)
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In fact, one can notice that the simulation provided by A′ to A is the same
as the simulator S5 provided to A. According to the above proof, Z cannot tell
any difference between A and A′.

A.4 Proof of Case 4 (The Issuer and Some Users Are Dishonest)

Lemma 6. For all environments Z and any real-world adversary A controlling
the issuer and some users, there exists an ideal-world adversary A′ such that the
probability that Z can distinguish whether it interacts with A in the real world
or it interacts with A′ in the ideal world is negligible, provided that the (N + 1)-
PDDH assumption holds, the knowledge error of the underlying PK is negligible
and the underlying PK is perfect zero-knowledgeness.

Game0. The real world. S0 plays the role of honest database server and some
honest users to A.

Game1. S1 is the same as S0 except that at each time of transfer query, when
A requests for a record Rσ from the database server on behalf of some user. A
submits V along with the proof of v, σ:

PK{(v, σ) : ê(V, y) = ê(V, g)−σ ê(g, g)v}.
S1 extracts v and σ. If S1 fails, it outputs ⊥ to the environment Z.
The difference between Game0 and Game1 is negligible provided that the

underlying PK is sound.

Game2. S2 is the same as S1 except that for each time of transfer query, it
computes W = (Bσ/Rσ)v and that the proof-of-knowledge protocol

PK{(h) : W = ê(V, h)}
becomes a simulated proof such that S2 does not require any knowledge of h.

The difference between Game1 and Game2 is negligible provided that the
underlying PK is perfect zero-knowledge.

Game3. S3 is the same as S2 except that S3 now deviates from the database
setup protocol by replacing the value Bi from ê(h,Ai)Ri to just random element
in GT .

As we have shown, the difference between Game2 and Game3 is negligible
provided that the (N + 1)-PDDH assumption holds.

Now we show how to construct the ideal-world adversary A′ with black-box
access to A. At each time of transfer query, A′ extracts (v, σ) from A (As we
have shown it fails with only negligible probability). A′ requests the record Rσ
on behalf of the user. A′ queries T for the decryption key of attributes satisfying
APσ. Since A′ simultaneously acts as the dishonest issuer, A′ will send back
b = 1 to T for granting the decryption key. Next, A′ computes W = (Bσ/Rσ)v

and sends W , along with the simulated zero-knowledge proof, back to A on
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behalf of the database server (It is different from the actual honest database
server. However, as we have shown that A (and therefore Z) cannot notice the
difference.).

A′ setups the key pair of the database server to provide the simulation for A.
However, it has to setup the database without knowing Ri. A′ did so by setting
ERi = (Ci, APi), where Ci is the encryption of Ai||Bi, with Bi being random
element in GT . As we have shown that Z cannot distinguish this difference.

B Lewko et al.’s Fully-Secure CP-ABE [11]

Setup(λ,U): The setup algorithm chooses a bilinear group G of order N =
p1p2p3 where p1, p2 and p3 are 3 distinct primes. Let Gpi denote the subgroup
of order pi in G. It then chooses random exponents α, a ∈ ZN and a random
group element g ∈ Gp1 . For each attribute i ∈ U , it chooses a random value
si ∈ ZN . The public parameters PK = (N, g, ga, ê(g, g)α, {Ti = gsi}∀i). The
master secret key MSK = (α,X3) where X3 is a generator of Gp3 .

KeyGen(MSK,S, PK): The key generation algorithm chooses a random t ∈ ZN
and random elements R0, R

′
0, Ri ∈ Gp3 . The secret key is:

SK = (S,K = gαgatR0, L = gtR′
0, {Ki = T tiRi}i∈S).

Encrypt((A, ρ), PK,M): A is an �× n matrix and ρ is map from each row Ax

of A to an attribute ρ(x). The encryption algorithm chooses a random vector
v ∈ ZnN , denoted v = (s, v2, . . . , vn). For each row Ax of A, it chooses a random
rx ∈ ZN . The ciphertext is:

CT = (C = Mê(g, g)αs, C′ = gs, {Cx = gaAx·v, Dx = grx}x).

Decrypt(CT, PK, SK): The decryption algorithm computes constants ωx ∈ ZN
such that

∑
ρ(x)∈S ωxAx = (1, 0, . . . , 0). It then computes:

ê(C′,K)/
∏

ρ(x)∈S
(ê(Cx, L)ê(Dx,Kρ(x)))ωx = ê(g, g)αs.

Then M can be recovered as C/ê(g, g)αs.
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Abstract. Threshold cryptography increases security and resilience by

sharing a private cryptographic key over different devices. Many personal

devices, however, are not suited for threshold schemes, because they do

not offer secure storage, which is needed to store shares of the private

key. We present a solution that allows to include devices without them

having to store their share. Shares are stored in protected form, possibly

externally, which makes our solution suitable for low-cost devices with a

factory-embedded key, e.g., car keys and access cards. By using pairings

we achieve public verifiability in a wide range of protocols, which removes

the need for private channels. We demonstrate how to modify existing

discrete-log based threshold schemes to work in this setting. Our core

result is a new publicly verifiable distributed key generation protocol

that is provably secure against static adversaries and does not require all

devices to be present.

1 Introduction

The increased capabilities of mobile devices and connectivity with the rest of the
world have made the use of these devices exceed their original purpose. Mobile
phones are being used to read e-mail, authorise bank transactions or access social
network sites. As a consequence, personal devices are used more and more for
security-sensitive tasks. Moreover, personal data are copied to these devices and
need to be protected. In both cases, by using cryptography, security reduces
to the management of cryptographic keys. Although mobility is considered as a
major benefit, it is a weakness in terms of security and reliability. Mobile devices
are susceptible to theft, can easily be forgotten or lost, or run out of battery
power. These issues can be mitigated by introducing threshold cryptography.

The aim of threshold cryptography is to protect a key by sharing it amongst
a number of entities in such a way that only a subset of minimal size, namely
the threshold t + 1, can use the key. No information about the key can be
learnt from t or less shares. The setup of a threshold scheme typically involves
a Distributed Key Generation (DKG) protocol. In a DKG protocol a group of
entities cooperate to jointly generate a key pair and obtain shares of the private
key. These shares can then be used to sign or decrypt on behalf of the group.

M. Joye, A. Miyaji, and A. Otsuka (Eds.): Pairing 2010, LNCS 6487, pp. 116–135, 2010.
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The benefits of a threshold scheme are increased security, because an adver-
sary can compromise up to t devices, and resilience, since any subset of t + 1
devices is sufficient. To increase resilience we want to maximise the number of
devices included in the threshold scheme. However, the number of personal de-
vices suitable for threshold schemes is limited because many of these do not
incorporate secure storage, which is needed to store shares of the private key.
We enlarge the group of high-end devices by also considering small devices with
public-key functionality, e.g., car keys or access cards. Typically, these small de-
vices have a factory-embedded private key, which cannot be updated and is the
only object that resides in tamper-proof secure storage.

Our proposed solution allows to store shares in protected form,1 possibly ex-
ternally. These protected shares are generated through a run of our new DKG
protocol. By using pairings we achieve publicly verifiability, which implies that
the correctness of any device’s contribution can be verified by any entity ob-
serving the DKG protocol thus eliminating private channels. As such, not every
device needs to be present during the DKG protocol. We apply our setting to ex-
isting threshold schemes and we show how shares can be used implicitly without
being needed in unprotected form. Furthermore, some devices can be completely
ignorant of the underlying schemes and only serve as partial decryption oracles.

Organisation. Related work is surveyed in Sect. 2. In Sect. 3 we introduce some
basic concepts. We give an overview of typical routines in a threshold setting
and we describe our communication and adversarial model. Security definitions
are given along with an overview of relevant number-theoretic assumptions and
notation on bilinear pairings. In Sect. 4 we present how to protect shares and our
main result, which is a new publicly verifiable DKG protocol that does not re-
quire every device to be present. In Sect. 5 we demonstrate how protected shares
can easily be used in discrete-log based cryptosystems and signature schemes.
More specifically, we demonstrate this for the ElGamal [14] and the Cramer-
Shoup [7] cryptosystems, and the Schnorr signature scheme [25].

2 Related Work

Shamir’s early idea [27] of distributing shares of a secret as evaluations of a
polynomial has become a standard building block in threshold cryptography.
Feldman [8] introduced verifiable secret sharing (VSS) by publishing the coef-
ficients of this polynomial hidden in the exponent of the generator of a group
in which the discrete-log assumption holds. Pedersen [22] then used this idea
to construct the first distributed key generation (DKG) protocol, sometimes re-
ferred to as Joint Feldman, by having each player in a group run an instance of
Feldman’s protocol in parallel. Soon thereafter, Pedersen [23] produced another
remarkable result. He made Feldman’s VSS scheme information-theoretically

1 An obvious answer would be to encrypt shares under the devices’ public keys. This is

undesired because at some point shares will be in the clear in unprotected memory.
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secure by choosing two polynomials and broadcasting the corresponding coef-
ficients as paired commitments, which are known as Pedersen commitments.
Gennaro et al. [15] pointed out that the uniformity of the key produced by
Pedersen’s DKG protocol cannot be guaranteed in the context of a rushing ad-
versary. They constructed a new DKG protocol [15] by first running Pedersen’s
VSS in parallel (Joint Pedersen). Since Pedersen VSS does not produce a public
key, an extra round of communication, basically an instance of Joint Feldman
on the first polynomial, has to be added to compute the public key. They proved
their protocol secure against a static adversary by means of a simulation ar-
gument. Interestingly, Gennaro et al. showed later [16] that, despite the biased
distribution of the key, certain discrete-log schemes that use Pedersen DKG can
still be proved secure at the cost of an increased security parameter. Canetti et
al. [6] used interactive knowledge proofs and erasures, i.e., players erase private
data before commitments or public values are broadcast, in the key construc-
tion phase of the DKG of [15] to make the protocol secure against adaptive
adversaries. Comparable adaptively secure threshold schemes were presented by
Frankel et al. [10].

In the protocols discussed so far, it is assumed that there are private channels
between each pair of players. Both [6] and [10] suggest that these channels can
still be established even with an adaptive adversary using the non-committing
encryption technique of Beaver and Haber [3], which assumes erasures. Jarecki
and Lysyanskaya [19] criticised this erasure model and pointed out that the pro-
tocols presented in [6] and [10] are not secure in the concurrent setting, i.e., two
instances of the same scheme can not be run at the same time. They solved
this by introducing a “committed proof”, i.e., a zero-knowledge proof where the
statement that is being proved is not revealed until the end of the proof. To im-
plement the secure channels without erasures they use an encryption scheme that
is non-committing to the receiver. Abe and Fehr [1] later proposed an adaptively-
secure (Feldman-based) DKG and applications with complete security proofs in
the Universal Composability framework of Canetti [5]. They demonstrated that
a discrete-log DKG protocol can be achieved without interactive zero-knowledge
proofs. However, they still need a single inconsistent player and a secure mes-
sage transmission functionality (private channels), which can be realised using a
receiver non-committing transmission protocol based on [19].

As a consequence of private channels, each of the aforementioned DKG pro-
tocols has some kind of complaint procedure or dispute resolution mechanism.
To get rid of these, several authors have proposed protocols that provide public
verifiability. Stadler [29] was of the first to propose a publicly verifiable secret
sharing (PVSS) protocol. In addition to the Feldman commitments, shares were
broadcast in encrypted form and verified using a non-interactive proof of equality
of (double) discrete logarithms. A more efficient protocol was presented by Fu-
jisaki and Okamoto [11], which is secure under a modified RSA assumption. The
first PVSS shown secure under the Decisional Diffie-Hellman (DDH) assumption
was given by Schoenmakers [26]. The shares are broadcast in encrypted form by
hiding them in the exponent of each player’s individual public key, which has a
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different base (another generator) than the Feldman commitments. The dealer
then uses non-interactive proofs of discrete-log equality. Furthermore, correct
behaviour of the players is verified by extending the secret reconstruction phase
with additional proofs of correctness. Based on Schoenmakers’ result Heidarvand
and Villar [18] presented the first PVSS protocol where verifiability is obtained
from bilinear pairings over elliptic curves and no proofs are needed. Unfortu-
nately, the scheme cannot be used to set up a DKG because the shared secret is
in the co-domain of the pairing. The first full DKG that does not require private
channels was given by Fouque and Stern [9]. The buildings blocks for their con-
struction are Paillier’s cryptosystem and a new non-interactive zero-knowledge
proof. To deal with rushing adversar it is simply assumed that communication
is completely synchronous. For participants not present during the DKG the
amount of information that needs to be stored, i.e., the subshares that need to
be decrypted, is linear in the number of participants that are active in the DKG.

3 Basic Concepts

Before we describe our new protocols, we give an overview of basic concepts that
will be used later on.

3.1 Threshold Cryptography

Threshold cryptography typically involves routines related to setting up the
group, encryption and signatures. A private key is shared amongst n devices
and only a subset of at least t+1 devices need to employ their shares to (implic-
itly) use this private key in a cryptosystem or signature scheme. We define the
following set of routines (threshold routines are indicated with the prefix T):

Pre-setup.
– Init: Initialise the system parameters.
– KeyGen: Generate key material for a device.

Setup.
– ConstructGroup: Given a set of n devices and their public keys, create

and share a key pair for the group with a subset of the devices.
Signatures.
– T-Sign: At least t + 1 devices collaborate to generate a signature on a

message that is verifiable under the group’s public key.
– Verify: Using the group’s public key a signature is verified.

Encryption.
– Encrypt: Encrypt a message under the group’s public key.
– T-Decrypt: At least t+ 1 devices collaborate to decrypt a given ciphertext

that was encrypted under the group’s public key.
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3.2 Communication and Adversarial Model

We assume that n devices {Di}i=1..n, of which t can be faulty, communicate
over a dedicated broadcast channel.2 By dedicated we mean that if a device Di

broadcasts a message, then it is received by all other devices and recognised as
coming from this device. There are no private channels, all communication goes
over the broadcast channel. Communication is round-synchronous, protocols run
in rounds and there is a time bound on each round.

A distinction is commonly made between static and adaptive adversaries.
Static means that the adversary corrupts the devices before the protocol starts,
whereas adaptive means that a device can become corrupt before or at any time
during execution of a protocol. We assume a malicious computationally bounded
static adversary who can corrupt up to t devices. The adversary has access
to all information stored by the corrupted devices and can manipulate their
behaviour during the execution of a protocol in any way. The round-synchronous
communication implies that the adversary could be rushing, i.e., he can wait in
each round to send messages on behalf of the corrupted devices until he has
received the messages from all uncorrupted devices.

3.3 Security Definitions

In a secret sharing scheme a dealer splits a secret into pieces, called shares,
and distributes them amongst several parties. In a threshold setting, the secret
can be reconstructed from any subset of shares of a minimum size. An early
solution was given by Shamir [27], who shared a secret x by choosing a random
polynomial f of degree t such that x = f(0) and each share is an evaluation
of this polynomial, i.e., xi = f(i). Any point on a polynomial of degree t can
be reconstructed by Lagrange interpolation through at least t+ 1 points of this
polynomial. To reconstruct the secret x, the shares are combined as x =

∑
λixi,

with λi the appropriate Lagrange multipliers.
Verifiable secret sharing (VSS) allows the receivers to verify that the dealer

properly shared a secret. We briefly rephrase the requirements of a secure VSS
([23] and [15, Lemma 1]).

Definition 1 (Secure VSS). A VSS protocol is secure if it satisfies the follow-
ing conditions:

1. Correctness. If the dealer is not disqualified then any subset of t+ 1 honest
players can recover the unique secret.

2. Verifiability. Incorrect shares can be detected at reconstruction time by using
the output of the protocol.

3. Secrecy. The view of a computationally bounded static adversary A is inde-
pendent of the secret, or, the protocol is semantically secure against A.

The drawback of VSS is that a single party knows the secret. This can be solved
by generating and sharing the key in a distributed way. The correctness and
secrecy requirements for DKG were defined by Gennaro et al. [17].
2 We abstract from the actual implementation of the dedicated broadcast channel.
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Definition 2 (Secure DKG). A DKG protocol is secure if it satisfies the fol-
lowing conditions:
Correctness is guaranteed if:
(C1) All subsets of t+1 shares provided by honest players define the same private
key.
(C2) All honest parties know the same public key corresponding to the unique
private key as defined by (C1).
(C3) The private key (and thus also the public key) is uniformly distributed.
Secrecy is guaranteed if an adversary can learn no information about the pri-
vate key beyond what can be learnt from the public key. This requirement can be
further enhanced with a simulation argument: for any adversary there should be
a simulator that, given a public key, simulates a run of the protocol for which the
output is indistinguishable of the adversary’s view of a real run of the protocol
that ended with the given public key.

3.4 Pairings and Number-Theoretic Assumptions

We review some assumptions that are relevant for this paper and we refer the
reader to [21] and [28] for more details.

Pairing Notation. Let G1, G2 and GT be cyclic groups of order � and let ê be a
non-degenerate bilinear pairing

ê : G1 × G2 → GT .

A pairing is non-degenerate if for each element P in G1 there is a Q in G2 such
that ê(P,Q) �= 1 and vice versa for each element Q in G2. A pairing is bilinear
if ê(P + P ′, Q) = ê(P,Q)ê(P ′, Q), thus ê(aP,Q) = ê(P,Q)a with a ∈ Z�, and
vice versa for elements in G2. We will use multiplicative notation for GT and
additive notation for G1 and G2.

Discrete Logarithm. Let P be a generator of G1 and let Y be a given arbitrary
element of G1. The discrete logarithm (DL) problem in G1 is to find the unique
integer a ∈ Z� such that Y = aP . Similarly, the problem can be defined in G2

and GT . The DL assumption states that it is computationally hard to solve the
DL problem.

Diffie-Hellman. Let P be a generator of G1 and let aP, bP be two given arbitrary
elements of G1, with a, b ∈ Z�. The computational Diffie-Hellman (CDH) prob-
lem in G1 is to find abP . The tuple 〈P, aP, bP, abP 〉 is called a Diffie-Hellman
tuple. Given a third element cP ∈ G1, the decisional Diffie-Hellman (DDH)
problem is to determine if 〈P, aP, bP, cP 〉 is a valid Diffie-Hellman tuple or not.
Obviously, if one can solve the DL problem then one can also solve the CDH prob-
lem. The opposite does not necessarily hold and, therefore, the CDH assumption
is said to be a stronger assumption than the DL assumption. A divisional variant
of the DDH problem [2], which is considered to be equivalent, is to determine if
〈P, aP, cP, abP 〉 is a valid DH tuple or not, i.e., if c = b.



122 K. Simoens, R. Peeters, and B. Preneel

Co-Bilinear Diffie-Hellman (coBDH). For asymmetric pairings, i.e., G1 �= G2,
where there is no known efficiently computable isomorphism ψ : G2 → G1 the
following problem can be defined. The coBDH-2 problem is defined as given
P ∈ G1 and Q, aQ, bQ ∈ G2, find ê(P,Q)ab. We denote the decisional variant
as coDBDH-2. A divisional variant of the coDBDH-2 problem is to determine
whether 〈P,Q, aQ, abQ, gc〉 is a valid coBDH-2 tuple.

Inversion Problems. Galbraith et al. [12] studied several inversion problems for
pairings. They concluded that these problems are hard enough to rely upon. The
most intuitive argument is that if one can solve a particular pairing inversion in
polynomial time then one can also solve a related Diffie-Hellman problem in one
of the domains or the co-domain.

3.5 Pre-setup

The pre-setup phase is straightforward and works as follows.

Init(1k): The input is a security parameter k. Let G1, G2 and GT be finite
cyclic groups of prime order � with P , Q and g = ê(P,Q) generators of the
respective groups. It is assumed that there is no known efficiently computable
isomorphism ψ : G2 → G1. Let P ′ and P ′′ be two other generators of G1 for
which the discrete logarithm relative to the base P is unknown and let g1 = g,
g2 = ê(P ′, Q) and g3 = ê(P ′′, Q). The procedure outputs the description of the
groups (G1,G2,GT ) and the pairing (ê) along with the public system parameters

PubPar = (P, P ′, P ′′, Q) ∈ G3
1 × G2 .

KeyGen(PubPar,Di): For the given device Di a random si ∈R Z∗
� is chosen as

private key. The corresponding public key is Si = siQ. The procedure outputs
Di’s key pair

(si, Si) ∈ Z∗
� × G2 .

Note that this procedure is executed only once in the lifetime of each Di and
that si is the only secret that has to be securely stored. Typically, this routine is
executed during fabrication of the device. A public key can easily be computed
for a different set of system parameters if this would be required.

4 Distributed Key Generation

In this section, we present our main result, which is a new distributed key gen-
eration (DKG) protocol. Recall from the introduction that we want to set up a
threshold construction without the devices having to securely store their share.
Instead, the shares will be stored in protected form. This idea is put forward in
Sect. 4.1. Our DKG consists of two phases. First, a private key is jointly gener-
ated and shared through the parallel execution of a new publicly verifiable secret
sharing (PVSS) protocol. This PVSS protocol is described in Sect. 4.2. Second,
the corresponding public key is extracted. Together, these two phases make up
our new DKG protocol, which is presented in Sect. 4.3.
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4.1 Protecting Shares

As mentioned in Sect. 3.5, each device Di is initialised with its own key pair
(si, Si). If the group’s private key was x ∈ Z�, then the device would receive a
share xi ∈ Z� that has to be securely stored. Since the device does not provide
secure storage it has to store its share in protected form. One option is to en-
crypt the share xi. This has the disadvantages of involving a costly decryption
operation and the fact that the share will at some point reside in the clear in the
device’s memory. Another option is to store the share as the product xisi. The
obvious disadvantage is that t + 1 devices can collaborate to compute another
device’s private key si.

As we do not want a device’s private key si ever to be revealed, we combine
shares with the device’s public key and store these as public correction factors
Ci = xiSi ∈ G2. A similar idea was used in [26]. However, here we use bilinear
pairings to achieve public verifiability and easy integration of our scheme in
existing discrete-log cryptosystems and signature schemes, without ever having
to reveal the shares (see Sect. 5). We define the group’s private key as xQ ∈ G2

and y = gx = ê(P, xQ) ∈ GT as its public key.3 As such, the share of a device is
xiQ = s−1

i Ci ∈ G2. The construct group routine is formally defined as follows.

– ConstructGroup(PubPar,{Di, Si},t): A subset of the devices Di generates
the group’s public key gx and shares the private key xQ in the form of public
correction factors Ci = xiSi for all n devices. The procedure outputs the
group’s public key

y = gx = ê(P, xQ) ∈ GT

and the public correction factors which are added to the public parameters

PubPar = (P, P ′, P ′′, Q, y, {Ci}i=1,...,n) ∈ G3
1 × G2 × GT × Gn

2 .

4.2 Publicly Verifiable Secret Sharing

The main building block to construct our DKG protocol is a new PVSS protocol.
In this protocol, a dealer generates shares of a secret and distributes them in
protected form. Any party observing the output of the protocol can verify that
the dealer behaved correctly. Basically, the protocol goes as follows.

The dealer chooses uniformly at random x ∈R Z�. The actual secret that is
shared at the end of the protocol is xQ. Similar to Pedersen’s VSS scheme [23],
the dealer chooses two random polynomials f and f ′ of degree t, sets the constant
term of polynomial f to x and broadcasts pairwise commitments Ak ∈ G1 to the
coefficients of the polynomials. Evaluations of both polynomials are combined
with the public keys of the devices and broadcast in protected form. Each device
verifies that all broadcast shares are correct by applying the pairing to check
them against the commitments. The details of the protocol are given in Fig. 1.
3 We note that we could use notation X and Xi for the private key and its shares.

However, to compute the correction factor Ci, elements of Z� will be combined with

Si, but by definition, private key material is in G2.
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The dealer shares the secret xQ, for which he chooses x ∈R Z� :

1. The dealer constructs two polynomials f(z) and f ′(z) of degree t by choosing

random coefficients ck, c
′
k ∈R Z∗

� for k = 0 . . . t , except for c0, which is c0 = x :

f(z) = c0 + c1z + . . . + ctz
t , f ′

(z) = c′0 + c′1z + . . . + c′tz
t .

The dealer broadcasts commitments

Ak = ckP + c′kP
′ , k = 0 . . . t .

2. For each device Di, the dealer computes and broadcasts

xiSi , x′
iSi with xi = f(i) , x′

i = f ′
(i) , i = 1 . . . n .

3. Each device verifies the broadcast shares for all Di by checking that

ê(P, xiSi) · ê(P ′, x′
iSi) =

t∏
k=0

ê(Ak, Si)
ik . (1)

If any of these checks fails, the dealer is disqualified.

Fig. 1. Publicly verifiable secret sharing

Private channels are avoided because the shares xiQ are broadcast in pro-
tected form xiSi. Each device could recover its share by using its private key.
However, the shares are never needed in unprotected form. The protected form
allows for public verifiability, since for any device Di the correctness of xiSi and
x′iSi can be verified by pairing the commitments with Di’s public key Si. The
dealer is disqualified, if for any Di this verification fails. As a consequence, there
is no need for a cumbersome complaint procedure. Moreover, not all devices
need to be present during the execution of the protocol because the shares were
already broadcast in the form in which they will be stored and used.

In the next theorem we will demonstrate that our new PVSS protocol satisfies
the requirements of secure VSS protocol as given by Definition 1.

Theorem 1. Our new PVSS protocol is a secure VSS protocol (Definition 1)
under the divisional variant of the DDH assumption in G2.

Proof (Correctness). It follows directly from Pedersen’s result [23] that each sub-
set of t+ 1 devices can reconstruct the coefficients ckQ, c′kQ of the polynomials
F (z) = f(z)Q and F ′(z) = f ′(z)Q from their shares. If the dealer is not disqual-
ified then (1) holds for all devices and the coefficients will successfully be verified
against the commitments Ak. Hence, it can be verified that all shares are on the
same (respective) polynomial and each subset of t+ 1 devices can compute the
same secret xQ = F (0) . ��

Proof (Verifiability). During reconstruction Di provides xiQ and x′iQ, and it can
be verified that ê(P, xiQ) · ê(P ′, x′iQ) =

∏t
k=0 ê(Ak, Q)i

k

. ��
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Proof (Secrecy). Consider a worst-case static adversary A , i.e., an adversary
that corrupts t devices before the protocol starts. The protocol is semantically
secure against A, if A chooses two values x0Q, x1Q ∈ G2 and cannot determine
which of these two was shared with negligible advantage over random guessing,
given the output of a run of the protocol that shared either the secret x0Q or
x1Q. We prove the semantic security by showing that no such adversary exists.

If there exists an A that has a non-negligible advantage in attacking the
semantic security of our protocol, we can build a simulator SIM that uses A to
solve an instance of the divisional DDH problem in G2 (see Sect. 3.4). Since, this
is assumed to be a hard problem we conclude that no such adversary can exist.

We now describe this simulator. A tuple 〈Q, aQ, cQ, abQ〉 is given to SIM who
has to decide if this is a valid DH tuple, i.e., if cQ = bQ.

1. The simulator SIM does the pre-setup. He chooses the system parameters
PubPar, which contain P and P ′ = ηP , with η known to SIM. He constructs
a set of devices Di, of which one will be the designated device, denoted as
Dd. For each Di �= Dd, SIM generates a random key pair. The public key of
Dd is set to Sd = cQ.

2. The adversary A receives PubPar and the set of devices along with their
public keys. He announces the subset of corrupted devices, which will be
denoted by Dj for j = 1 . . . t .

3. The simulator SIM gives the private keys sj of the corrupted devices to A.
Device Dd is corrupted with a worst-case probability of roughly 1/2, in which
case the simulation fails.

4. A outputs two values x0Q and x1Q, of which one has to be shared.
5. Without loss of generality, we assume SIM chooses x0Q. The output of the

VSS protocol is generated as follows.
– SIM chooses k random zk ∈R Z∗

� and broadcasts commitments Ak = zkP .
– SIM constructs a random polynomial F (z) of degree t subject to F (0) =
x0Q and F (d) = aQ . For (1) to hold, future shares xiQ and x′iQ will
have to satisfy

αiQ = xiQ+ ηx′iQ with αi =
t∑

k=0

zki
k . (2)

SIM evaluates the polynomial F (z) and sets the shares xjQ = F (j) for
each corrupted Dj . For the non-corrupted Di �= Dd, SIM chooses random
shares xiQ ∈R G2 . For i �= j, the shares on the second polynomial x′iQ
and x′jQ are determined by (2).

– With the private keys si and sj , SIM computes the protected shares
xiSi, x

′
iSi and xjSj , x′jSj .

– For Dd, SIM sets xdSd = abQ and x′dSd = η−1(αdSd − abQ).
– All protected shares are broadcast by SIM.

6. The adversary outputs a guess to which of the secrets was shared. If A has
a non-negligible advantage in determining which secret was shared then SIM
concludes that 〈Q, aQ, cQ, abQ〉 must be a valid DH tuple.
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The view of A consists of the commitments Ak, all public keys, the private keys
of the corrupted devices, all protected shares and the shares of the corrupted
devices. The adversary A can only gain an advantage in guessing which key
was shared from values, other than his own shares, which were not chosen at
random. This leaves him with only his shares xjQ and the values xdSd and Sd.
The adversary’s problem of deciding which secret was shared is equivalent to
deciding whether xdQ = x0Q−∑λjxjQ or xdQ = x1Q−∑λjxjQ. Because we
assume SIM chose x0Q, A has to decide whether 〈Q, x0Q−∑λjxjQ,Sd, xdSd〉
is a valid DH tuple or not. ��
We note that given the specific form in which the shares are broadcast, our PVSS
protocol cannot be proved secure against an adaptive adversary by means of a
simulation argument, which does not imply that it is insecure. Indeed, it was
already suggested in [6] and [10] that to maintain private transmission of shares
some form of non-committing encryption should be used. We insist on storing
shares as xiSi in order to maintain the nice properties of this form, which allow
integrating our construction in other threshold applications, as shown in Sect. 5.

A somewhat related PVSS scheme was presented by Heidarvand and Vil-
lar [18].4 Our PVSS scheme differs from theirs by putting the secret in G2,
instead of GT , and thus allowing it to be a building block for DKG and discrete-
log constructions. Moreover, our protocol is semantically secure while the scheme
in [18] is only proved to be secure under a weaker security definition, because
the adversary is not allowed to choose the secrets that he has to distinguish.

4.3 Distributed Key Generation

We now establish a new DKG protocol that outputs protected shares and is
publicly verifiable. Inspired by [15] and [6] the protocol consists of two phases.
In the first phase, the group’s private key is generated in a distributive manner
and shared through a joint PVSS. In the second phase, the group’s public key
is computed. This phase follows to a large extent the result of Canetti et al. [6].
The protocols proceeds as follows.

Each participating device runs an instance of our new PVSS protocol. It
chooses a secret ci,0 ∈R Z� and broadcasts shares of that secret in protected
form. These will be denoted as protected subshares. Each device, acting as a
dealer, that is not disqualified is added to a set of qualified devices, denoted as
QUAL. The group’s private key, although never computed explicitly, is defined
as xQ =

∑
i∈QUAL ci,0Q . A device’s protected share xiSi is computed as the

sum of the protected subshares that were received from the devices in QUAL.
To recover the group’s public key y = gx, the qualified devices will expose

gxi from which y can easily be computed through Lagrange interpolation.5 Each
device will prove in zero-knowledge that the exponent of gxi matches the share
4 Note that we use an asymmetric pairing which is more standard (e.g., see [13]) than

the symmetric form used in [18].
5 As opposed to [6], we do not expose gci,0 , which avoids the costly reconstruction of

the gcj,0 of the qualified devices that no longer participate in the second phase.
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xiQ hidden in xiSi, without revealing it. These interactive zero-knowledge proofs
require uniformly distributed challenges, which can be the same for all devices.

A uniformly distributed challenge is generated through another run of our
joint PVSS. All devices receive protected shares diSi. After open reconstruction
we have a uniformly distributed element dQ ∈ G2 . However, the challenge needs
to be some element d̃ ∈ Z�. This implies a bijective (not necessarily homomor-
phic) mapping ψ : G2 → Z� . An example of such a mapping is to take the
x-coordinate of dQ modulo �, as is used in ECDSA signatures. Several issues
have been reported with this mapping and alternatives, e.g., taking the sum of
the x and the y-coordinates modulo � [20], have been proposed. We refer the
reader to [4] for a more in-depth treatment of this subject.

The details of the protocols are given in Fig. 2. Note that on the one hand,
at least t + 1 honest devices are required for the protocol to end successfully,
hence we require n > 2t. On the other hand, since we require no explicit private
channels, only a minimum of t+ 1 honest devices must participate in the DKG.

We now prove that our new DKG protocol is a secure DKG protocol according
to the requirements specified in Definition 2.

Theorem 2. Our new DKG protocol is a secure DKG protocol (Definition 2)
under the divisional variant of the coDBDH-2 assumption.

Proof (Correctness). All honest devices construct the same set of qualified de-
vices QUAL since this is determined by public broadcast information.

– (C1) Each Di that is in QUAL at the end of phase 1 has successfully shared
ci,0Q through a run of our PVSS protocol. Any set of t+1 honest devices Di

that combine correct shares xjQ can reconstruct the same secret xQ since

xQ =
∑

i∈QUAL
ci,0Q =

∑
i∈QUAL

⎛⎝∑
j

λjxijQ

⎞⎠
=
∑
j

λj
∑

i∈QUAL
xijQ =

∑
j

λjxjQ .

In the key extraction phase of our protocol at least t + 1 values gxi have
been exposed and thus using interpolation gxj can be computed for any Dj .
This allows to tell apart correct shares from incorrect ones.

– (C2) This follows immediately from the key extraction phase and the relation
between the ci,0Q and the shares xiQ given for the previous property (C1).

– (C3) The private key is defined as xQ =
∑

i∈QUAL ci,0Q and each ci,0Q
was shared through an instance of our PVSS. Since we proved that a static
adversary cannot learn any information about the shared secret, the private
key is uniformly distributed as long as one non-corrupted device successfully
contributed to the sum that defines xQ. ��

Uniformity. Our protocol withstands the attack of a rushing adversary that can
influence the distribution of the group’s key as described by Gennaro et al. [17].
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1. All participating devicesDi run the PVSS protocol simultaneously, the protected

subshares are only broadcast after receiving all commitments from all Di .

(a) Each Di constructs two polynomials fi(z) and f ′
i(z) of degree t by choosing

random coefficients ci,k, c
′
i,k ∈R Z∗

� for k = 0 . . . t:

fi(z) = ci,0 + ci,1z + . . . + ci,tz
t , f ′

i(z) = c′i,0 + c′i,1z + . . . + c′i,tz
t ,

and broadcasts commitments

Ai,k = ci,kP + c′i,kP
′ , k = 0 . . . t .

(b) For each device Dj , each Di computes and broadcasts

xijSj , x′
ijSj with xij = fi(j) , x′

ij = f ′
i(j) .

(c) Each device verifies the broadcast shares for all Di by checking that

ê(P, xijSj) · ê(P ′, x′
ijSj) =

t∏
k=0

ê(Ai,k, Sj)
jk

.

Each Di that is not disqualified as a dealer is added to the list of quali-

fied devices, denoted by QUAL. The group’s private key is defined as xQ =∑
i∈QUAL ci,0Q . For each Di its protected share is computed as

Ci = xiSi =
∑

j∈QUAL

xjiSi .

2. The qualified devices expose gxi to compute the public key y = gx.
(a) Each Di in QUAL broadcasts gxi and siP

′′. It is easily verified that

ê(siP
′′, Q) = ê(P ′′, Si) . In addition, Di chooses a random ri ∈R Z∗

� and

broadcasts commitments gri and riSi.
(b) Generation of the uniform challenge, needed in the zero-knowledge proof.

– Devices in QUAL run a Joint PVSS and obtain protected shares diSi
and d′

iSi, which are broadcast and verified. We denote the commitments

of this Joint PVSS as Bi,k .

– Open reconstruction of dQ. Devices in QUAL broadcast diQ and d′
iQ.

These are verified by checking that

ê(P, diQ) · ê(P ′, d′
iQ) =

t∏
k=0

ê(Bk, Q)
jk

for Bk =
∑

i∈QUAL
Bi,k .

– Let d̃ = ψ(dQ), where ψ is a bijective map from G2 to Z�.
(c) Each Di broadcasts Zi = s−1

i (riSi + d̃Ci) = (ri + d̃xi)Q. Any device can

verify that

ê(P, Zi) = gri(gxi)
d̃

and ê(siP
′′, Zi) = ê(P ′′, riSi) · ê(P ′′, Ci)

d̃ .

(d) Public key y is computed from t + 1 correctly verified gxi as y =
∏

gxiλi .

Fig. 2. Publicly verifiable DKG with protected shares
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In this attack an adversary is able to compute a deterministic function of the
private key from the broadcasts, before sending out his contributions. He can
influence the set of qualified devices by choosing whether or not to send out
proper contributions. This allows influencing the outcome of the deterministic
function and thus the distribution of the private key. In our protocol, no such
function can be computed before the second phase. But, because the private key
and thus also the correction factors are fixed after the first phase and determined
by QUAL, the adversary can no longer influence the group’s key. As long as t+1
honest devices participate, the public key can be recovered in the second phase.

Proof (Secrecy). We describe a simulator SIM that, given a public key y, sim-
ulates a run of the protocol and produces an output that is indistinguishable
from the adversary’s view of a real run of the protocol that ended with the given
public key. We assume that SIM knows η ∈ Z∗

� for which P ′ = ηP .

– The first phase of the DKG is run as in the real protocol. Since SIM knows the
private keys si of at least t+1 non-corrupted devices, he knows at least t+1
shares xiQ = s−1

i Ci. By interpolation of these shares, SIM learns the shares
of the corrupted devices. This allows SIM to compute gxi for all devices.

– In the second phase of the DKG protocol SIM sets gx
∗
i for the non-corrupted

Di, such that the public key will be y. The gx
∗
i for the non-corrupted Di

are calculated by interpolation of the gxj of the corrupted Dj and y = gx.
For the zero knowledge proof to hold, SIM chooses a random d∗ ∈R Z∗

� and
forces the outcome of the open reconstruction of the challenge to d∗Q. For
each non-corrupted Di, SIM computes the commitments β∗i = gzi(gx

∗
i )−d̃

and B∗
i = ziSi − d̃xiSi, for random zi ∈R Z∗

� and d̃ = ψ(d∗Q).
(a) SIM broadcasts 〈gx∗

i , siP
′′, β∗i , B

∗
i 〉 for each non-corrupted Di.

(b) All devices run the Joint PVSS and hold shares diQ and d′iQ. SIM forces
the outcome of the open reconstruction of the challenge to d∗Q.
• SIM computes the djQ from the corrupted devices by interpolation

of t+ 1 shares diQ of the non-corrupted devices.
• SIM sets the d∗iQ for the non-corrupted devices by interpolation of

the djQ of the corrupted devices and d∗Q.
• By knowing η, SIM will compute d′∗i Q such that diQ+ηd′iQ = d∗iQ+
ηd′∗i Q . As such, the broadcast shares d∗iQ, d′∗i Q, will verify against
the commitments.

(c) All Z∗
i = ziQ are broadcast and correctly verified.

(d) At the end of the protocol the public key is computed as the given y.

To prevent an adversary from being able to distinguish between a real run of the
protocol and a simulation, the output distribution must be identical. The first
phase, i.e., the Joint PVSS, is identical in both cases. The data that are output
in the second phase and that have a potentially different distribution in a real
run and simulation are given in the following table. We show that all data in
this table have a uniform distribution.
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REAL SIM
1. gxi gx

∗
i

2. gri , riSi β∗i , B
∗
i

3. diQ, d′iQ d∗iQ, d
′∗
i Q

4. Zi Z∗
i

1. The values xi are evaluations of a polynomial of degree t with uniformly
random coefficients. The values x∗i are evaluations of a polynomial that goes
through t evaluations of the first polynomial, namely the xj of the corrupted
participants, and through the discrete logarithm of y. Since the protocol is
assumed to generate a uniformly random key, the new polynomial’s distri-
bution is indistinguishable from the distribution of the first.

2. The value ri was chosen uniformly at random. In the simulation β∗i =
gzi(gx

∗
i )−d̃ and B∗

i = ziSi − d̃xiSi. The value zi is uniformly random and
d̃ = ψ(d∗Q) is derived from the uniformly random d∗.

3. Since the following relation holds, diQ + ηd′iQ = d∗iQ + ηd′∗i Q, it suffices
to show that both diQ and d∗iQ have identical distributions. Because d was
chosen uniformly at random, the same reasoning as for the gxi holds.

4. We have that Zi = riQ+ ηxiQ and Z∗
i = ziQ. The values ri, d and zi were

chosen uniformly at random.

We notice that even though the modified gx
∗
i have the right output distribu-

tion, it is important to note that by broadcasting the modified gx
∗
i we intro-

duce a new assumption. Namely that an adversary cannot distinguish between
〈P,Q, xisiQ, siQ, gxi〉 and 〈P,Q, xisiQ, siQ, gx∗

i 〉. This is the divisional variant
of the coDBDH-2 assumption, as defined in Sect. 3.4. An adversary cannot dis-
tinguish 〈Q,Si, diQ, diSi〉 from 〈Q,Si, d∗iQ, diSi〉. This is the divisional variant
of the DDH assumption, which is a weaker assumption than the coDBDH-2 as-
sumption, meaning that if one could not solve the coDBDH-2 problem, one can
also not solve the DDH problem. Knowledge of P allows to calculate gdi and gd

∗
i

and to transform this to the divisional variant of the coDBDH-2 assumption. ��

5 Threshold Applications

In this section our construction is used to turn discrete-log schemes into threshold
variants with protected shares. It is not our intention to give a rigorous proof of
security of these variants. We rather want to demonstrate the ease with which
our construction fits into existing schemes. We do this for the ElGamal [14]
and the Cramer-Shoup [7] cryptosystems, where we show how pairings allow
implicit use of the shares, i.e., without having to reveal them explicitly, and the
Schnorr [25] signature scheme.

5.1 ElGamal

Basic Scheme. We define the ElGamal [14] scheme in GT with some minor
modifications; the randomness is moved from GT to G1 and the private key is an
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element of G2 instead of Z∗
� , i.e., xQ ∈ G2 for some x ∈R Z∗

� . Let y = ê(P,Q)x be
the corresponding public key. Encryption and decryption are defined as follows.

– Encrypt(PubPar,y,m): To encrypt a messagem ∈ GT under the public key
y, choose a random k ∈R Z∗

� and output the ciphertext

(R, e) = (kP,myk) ∈ G1 × GT .

– Decrypt(PubPar,xQ,(R, e)): To decrypt the given ciphertext (R, e) output
the plaintext

m =
e

ê(R, xQ)
∈ GT .

Threshold Variant. Encryption in the threshold variant is the same as in the
basic scheme. To decrypt a given ciphertext we have to combine the randomness
kP with t + 1 shares xiQ, which are stored as xiSi. If the shares were stored
as gxisi , it would have been impossible to combine them with the randomiser
or the ElGamal encryption and for each device Di the ciphertext would contain
something like gxisik. By taking advantage of the bilinearity of the pairing,
the size of the ciphertext remains constant. Note that Di never has to reveal
his share explicitly; his private key is combined with the randomness and then
paired with the correction factor. The cost of providing a partial decryption is
minimal, namely one elliptic-curve point multiplication. In this way we can use
small devices as partial decryption oracles. Decryption goes as follows.

– T-Decrypt(PubPar,{Di , Si},(R, e)): To decrypt the ciphertext (R, e) each
device Di provides a partial decryption

Di = s−1
i R = s−1

i kP ∈ G1 .

The combining device receives the Di and verifies that ê(Di, Si) = ê(R,Q).
He then combines t+ 1 contributions to output the plaintext

m =
e

d
with d =

∏
ê(Di, Ci)λi .

5.2 Cramer-Shoup

Basic Scheme. Cramer and Shoup [7] presented an ElGamal based cryptosys-
tem in the standard model that provides ciphertext indistinguishability under
adaptive chosen ciphertext attacks (IND-CCA2). We define their scheme in GT

with the same modifications as in the ElGamal scheme; the first two (random)
elements in the ciphertext are moved from GT to G1 and the private key is a
tuple from G5

2 instead of (Z∗
� )

5. Let H : G1 × G1 × GT → Z� be an element of a
family of universal one-way hash functions. The private key is

privK = (x1Q, x2Q, y1Q, y2Q, zQ) ∈R G5
2

and the public key is

pubK = (c, d, h) = (gx1
1 g

x2
2 , g

y1
1 g

y2
2 , g

z
1) ∈ G3

T .

Encryption and decryption are defined as follows.
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– Encrypt(PubPar,pubK,m): To encrypt a message m ∈ GT under pubK,
choose a random k ∈R Z� and output the ciphertext

(U1, U2, e, v) = (kP, kP ′,mhk, ckdkα) ∈ G2
1 × G2

T with α = H(U1, U2, e) .

– Decrypt(PubPar,privK,(U1, U2, e, v)): To decrypt ciphertext (U1, U2, e, v),
first compute α = H(U1, U2, e) and validate the ciphertext by testing if

ê(U1, x1Q+ y1αQ) · ê(U2, x2Q+ y2αQ) = v .

If the test fails, the ciphertext is rejected, otherwise output the plaintext

m =
e

ê(U1, zQ)
∈ GT .

Threshold Variant. It is clear that the Cramer-Shoup public key is not im-
mediately established from running five instances of our DKG protocol. The
decomposition of c = gx1

1 g
x2
2 and d = gy11 g

y2
2 should not be known. We can solve

this problem by introducing a third polynomial f ′′(z). Each device receives three
instead of two shares. The public key is extracted by revealing the third share
and by proving the discrete log equality of gx

′′
i

3 and x′′i Si. The DKG is thereby
reduced to two runs of the variant and one run of the basic DKG protocol. This
results in five protected shares Cx1

i , C
x2
i , C

y1
i , C

y2
i and Czi for each device.

Encryption is the same as in the basic scheme. The decryption routine, which
applies the same ideas as in the threshold ElGamal scheme goes as follows. Note
that the cost of providing a partial decryption is minimal, namely two elliptic-
curve point multiplications.

– T-Decrypt(PubPar,{Di, Si},(U1, U2, e, v)): To decrypt the given ciphertext
(U1, U2, e, v) each device Di provides Di = s−1

i U1 and D′
i = s−1

i U2. The
combining device verifies that ê(Di, Si) = ê(U1, Q) and ê(D′

i, Si) = ê(U2, Q).
He then computes

vi = ê(Di, Cx1
i + αCy1i ) · ê(D′

i, C
x2
i + αCy2i ) .

and combines t + 1 values vi to validate the ciphertext by testing that v =∏
vλi

i . If validation fails, the ciphertext is rejected. The combining device
combines t+ 1 contributions to output the plaintext

m =
e

d
with d =

∏
ê(Di, Czi )

λi .

5.3 Schnorr Signatures

The Schnorr signature scheme [25] is an example of a scheme that provides ex-
istential unforgeability under an adaptive chosen-message attack in the random
oracle model [24] and has been used many times to create a threshold signa-
ture scheme, e.g., in [17,1]. We will define the signature scheme in GT and then
extend it to a threshold variant.
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Basic Scheme. Let H ′ : {0, 1}∗ × GT → Z� be a cryptographic hash function.
Let the private key be xQ ∈ G2 for x ∈R Z∗

� and y = gx ∈ GT the public key.

– Sign(PubPar,xQ,m): To sign a message m ∈ {0, 1}∗ with the private key
xQ choose a random k ∈R Z�, compute r = ê(P, kQ) and c = H ′(m, r), and
output the signature

(c, σ) = (H ′(m, r), kQ+ c xQ) ∈ Z� × G2 .

– Verify(PubPar,y,(c, σ),m): To verify the signature (c, σ) on a message m
compute r̃ = ê(P, σ)y−c and verify equality of c = H ′(m, r̃) .

Threshold Variant. The basic scheme naturally extends to a threshold variant.
As opposed to the encryption schemes, the bilinearity of the pairing is not really
needed. However, the signing devices need to share some randomness and will,
therefore, run the DKG protocol of Sect. 4.3. Signature verification is the same
as in the basic scheme. Signing goes as follows.

– T-Sign(PubPar,{Di},m): To sign a message m ∈ {0, 1}∗ with the group’s
private key the devices Di will run an instance of the DKG protocol of
Sect. 4.3. Each device then holds a share kiSi in protected form of kQ ∈ G2.
Because the value r = ê(P, kQ) ∈ GT is publicly computed at the end of
the protocol, each device can compute c = H ′(m, r) and σi = s−1

i (kiSi +
cCi) = (ki + c xi)Q, which is sent to the combining device. Note that these
partial signatures can be verified since the output of the DKG protocols
contained gki and gxi . Values that were not in the output can be computed
through interpolation. The combining device computes the signing equation
σ =

∑
σiλi and outputs the signature

(c, σ) = (H ′(m, r), kQ+ c xQ) ∈ Z� × G2 .

6 Conclusion

In this paper, we have shown how to increase resilience in threshold cryptog-
raphy by including small devices with limited or no secure storage capabilities.
Assuming these devices have some support for public-key functionality, shares
can be stored in protected form. By using bilinear pairings, this particular form
yields some advantages. The most important feature is public verifiability, which
makes explicit private channels and cumbersome complaint procedures obsolete.
Moreover, not all devices need to be present during group setup, which is per-
formed by the DKG protocol. We have demonstrated how to adopt the protected
shares in existing discrete-log based cryptosystems and signature schemes. Be-
cause shares are never needed in unprotected form, small devices can be used as
decryption oracles at a minimal cost.
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Abstract. Used as the privacy-preserving attestation by Trusted Com-

puting effort (TCG) or the privacy-preserving authentication protocol

in vehicular ad hoc networks (VANETs), group signature becomes more

important than ever. Membership revocation is a delicate issue in group

signatures. Verifier-local revocation (VLR) is a reasonable resolution, es-

pecially for mobile environments. Back unlinkability (BU) is a currently

introduced security property providing further privacy. Based on the

Decision Linear (DLIN) assumption and the q-Strong Diffie-Hellman (q-
SDH) assumption, a new BU-VLR group signature scheme is proposed,

which has the shortest signature size and smallest computation overhead

among the previous BU-VLR group signature schemes.

Keywords: group signature, membership revocation, verifier-local re-

vocation, backward unlinkability.

1 Introduction

As a kind of group-oriented signatures, group signature has advantages over tra-
ditional signature when used in the group environment. This concept was intro-
duced by Chaum and Heyst [1] in 1991, which has one public key corresponding
to multiple private signing keys held by each group member. It allows any group
member to sign anonymously on behalf of the group. In case of dispute, the
actual signer can be identified by the group manager (GM). The motivation of
this kind signature is to protect the signer’s anonymity.

The feature of privacy-preserving makes group signature have many applica-
tions, such as anonymous credential systems, internet voting, trust computing
and bidding. Currently, an appealing application is to design secure vehicular ad
hoc networks [2, 3] based on the group signatures. However, wide implementa-
tion in practice has been confined. One important reason, as pointed out in [4],
is membership revocation. Revocation of a member should disable his signing
� This work is supported by the National High Technology Research and Development

Program of China under grant No. 2009AA01Z418, the China Postdoctoral Science

Foundation under grant No. 20090460192, and the Fundamental Research Funds for

the Central Universities under grant No. YWF1002009.

M. Joye, A. Miyaji, and A. Otsuka (Eds.): Pairing 2010, LNCS 6487, pp. 136–146, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Shorter Group Signature with Backward Unlinkability 137

ability in the future and preserve the anonymity of his past signatures. There
are two main nontrivial resolutions. One is based on witness [5–7]. Another is
based on revocation list (RL) [8–13].

In the RL-based revocation, the GM issues a revocation list of revoked identi-
ties. Any group signature can be verified that in a zero-knowledge way that the
group member’s identity embedded in the signature is not included in the RL.
The drawback of this method is that the signature size is linearly dependent on
the size of RL [8]. This method was improved in [9] that the signature size and
the computation overhead were constant while complexity of verification was
linearly dependent on the size of RL. It is called Verifier-Local Revocation and
formalized by Boneh et al. in [10]. Based on the DLIN assumption and the q-SDH
assumption, they also proposed a VLR group signature scheme in [10] with 1192
bits in signature size, which is the most efficient VLR scheme in performance so
far due to the shortest signature length and least computation.

Nakanishi et al. [11, 12] introduced the backward unlinkability (BU) property
into VLR group signature. This property means that even a member is revoked,
signatures created by himself before the revocation still remain anonymous. This
enhanced privacy protection is preferred under many circumstances. However,
the performance (see table 1) of their scheme is not comparable to Boneh et
al.’s. After that, several BU-VLR group signature schemes are proposed. The
seventh scheme (ZL06) in [13] is the most efficient BU-VLR scheme with non-
frameability, with the same total computation and 114.3% of the length of [10].

The motivation of our paper is to design an efficient BU-VLR group signature
scheme, and a shorter BU-VLR group signature scheme is proposed using bilinear
group. The signature length of our scheme is only 852 bits which is about 71.48%
of that of [10], and 6 of multi-exponentiation and 1 bilinear computation are
reduced in our scheme compared with [10].

Our paper is organized as follows: Section 2 is the preliminaries. The model
and security definitions of BU-VLR group signature are described in section 3.
Our proposed scheme is presented in section 4, and its security is proved in
section 5. Section 6 is the performance comparison with previous VLR group
signature schemes and conclusion is given in section 7.

2 Preliminaries

Our scheme is constructed in bilinear groups with computable bilinear map.
Its security is based on the DLIN assumption and the q−SDH assumption. We
review these preliminaries in this section.

Definition 1 (Bilinear groups [16]). (G1, G2) is called a bilinear group pair,
if there exists a group GT and a bilinear map e : G1×G2 → GT with the following
properties:

1. G1 =< g1 >,G2 =< g2 >, and GT are multiplicative cyclic groups of prime
order p;

2. ψ is an efficiently computable isomorphism from G2 to G1, with ψ(g2) = g1;
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3. e is an efficiently computable bilinear map, such that (1) Bilinear: ∀(u, v) ∈
(G1 ×G2), a, b ∈ Z, e(ua, vb) = e(u, v)ab; (2) Non-degenerate: e(g1, g2) �= 1.

There are two frequently used types of (G1, G2): (1) G1 = G2, then ψ is an
identity map; (2) more general case is G1 �= G2, where the trace map can be used
as homomorphism and certain families of non-supersingular elliptic curves [15]
can be used to construct bilinear groups. Our scheme allows for this case.

Definition 2 (DLIN assumption). For all PPT algorithm A in G2, the prob-
ability

|Pr[A(u, v, h, ua, vb, ha+b) = 1] − Pr[A(u, v, h, ua, vb, hc) = 1]|

is negligible, where u, v, h ∈ G2 and a, b, c ∈ Z∗
p .

Definition 3 (q-SDH assumption). For all PPT algorithm A in (G1, G2),
the probability

Pr[A(g1, g2, g
γ
2 , ..., g

(γq)
2 ) = (g1/(γ+x)

1 , x) : x ∈ Z∗
p ]

is negligible, where γ ∈ Z∗
p . And such a pair (g1/(γ+x)

1 , x) is called a SDH pair.

3 Model and Definitions of BU-VLR Group Signature

We review the model of BU-VLR group signature in [11, 12] bellow.

Definition 4 (BU-VLR Group Signature). A BU-VLR group signature
scheme consists of the following algorithms.

– KeyGen(n, T ): A probabilistic algorithm, on input the number of members
n and the number of time intervals T , generates a group public key gpk,
an n-element vector of members’ signing keys gsk = (gsk1, ..., gskn) and
revocation token grt = (grt11, ..., grtnT ), where gski is kept secret by member
i ∈ [1, n] and grtij denotes the revocation token of member i ∈ [1, n] at time
interval j ∈ [1, T ].

– Sign(gpk, j, gski,M): A probabilistic algorithm generates the signature σ on
a message M at the current time interval j by member i using gski and gpk.

– Verify(gpk, j, RLj, σ,M): A deterministic algorithm includes signature check
and revocation check, which can be performed by anyone to generate one bit b.
If b = 1, it means σ is a valid signature on M at interval j by one member of
the group whose revocation token is not in RLj. If b = 0, then σ is invalid.

– Revoke(RLj , grtij): This algorithm adds grtij to RLj if member i is to be
revoked at the time interval j ∈ [1, T ].
Sometimes, a group signature need be opened to find the actually singer. It
will be shown in section 4 that an open algorithm can be constructed by using
revocation check.
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Definition 5 (Correctness). For all (gpk, gsk, grt) = KeyGen(n, T ), all j ∈
[1, T ], all i ∈ [1, n], and all M ∈ {0, 1}∗, this requires that,

Verify(gpk, j, RLj,Sign(gpk, j, gski,M),M) = 1 ⇐⇒ grtij /∈ RLj
Definition 6 (BU-anonymity). BU-anonymity requires that for all PPT A,
the advantage of A on the following BU-anonymity game is negligible.

– Setup: The challenger runs the key generation algorithm to obtain
(gpk, gsk, grt), and provides the adversary A with gpk.

– Queries: The challenger announces the beginning of every interval j ∈ [1, T ]
to A, which is incremented with time. A can request the challenger about the
following queries at the current interval j.
• Signing: A requests a signature of any member i on arbitrary message M

at interval j. The corresponding signature is responded by the challenger.
• Corruption: A requests the secret key of any member i.
• Revocation: A requests the revocation token of any member i at interval
j. The challenger responds with grtij .

– Challenge: A outputs some (M, i0, i1, j0) with restriction that i0 and i1 have
not been corrupted, and their revocation tokens have not been queried before
the current interval j0 (including j0). The challenger randomly selects φ ∈
{0, 1}, and responds with signature of member iφ on M at interval j0.

– Restricted queries: A is allowed to make queries of signing, corruption and
revocation, except the corruption queries of i0, i1 and their revocation queries
at interval j0. Note that A can query he revocations of i0 and i1 at interval
j′(j′ ≥ j0 for the BU property.

– Output: A outputs a bit φ′ as its guess of φ.

If φ′ = φ, A wins the game. The advantage of A is defined as |pr[φ′ = φ]− 1/2|.
Definition 7 (Traceability). Traceability requires that for all PPT A, the ad-
vantage of A on the following game is negligible.

– Setup: The challenger runs the key generation algorithm to obtain
(gpk, gsk, grt), and sets U empty. The adversary A is provided with gpk
and grt.

– Queries: A can request the challenger about the following queries at each
interval j ∈ [1, T ].
• Signing: A requests a signature of any member i on arbitrary message M

at interval j. The corresponding signature is responded by the challenger.
• Corruption: A requests the secret key of any member i. The challenger

responds the corresponding key and adds i to U .
– Output: A outputs (M∗, j∗, RLj∗ , σ∗). A wins if (1)

Verify(gpk,M∗, j∗, RLj∗ , σ∗) = 1, and (2) σ∗ is traced to a member
outside of U \ RLj∗ or failure, and (3) A has not obtained σ∗ in signing
queries on message M∗.
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4 Proposed Scheme

Our scheme is constructed under the bilinear groups (G1, G2) with isomorphism
ψ as described in Section 2.

KeyGen(n, T )

1. Select a generator g2
R← G2 and a collision resistant hash function H :

{0, 1}∗ → Z∗
p . Set g1 = ψ(g2), G1 =< g1 >.

2. Select γ R← Z∗
p and compute w = gγ2 .

3. Select xi
R← Z∗

p and compute Ai = g
1/(γ+xi)
1 for all i ∈ [1, n].

4. Select rj
R← Z∗

p , then compute hj = g
rj

1 and grtij = (grt1ij , grt
2
ij) =

((wgxi

2 )rj , h
(−xi)
j ) for all j ∈ [1, T ].

The group public key gpk is (g1, g2, h1, ..., hT , w), the private signing key of
member i is (Ai, xi), and his revocation token at interval j is grtij . Output
(gpk, gsk, grt) = (gpk, (gsk1, ..., gskn), (grt11, ..., grtnT )).
Remark: This algorithm can be implemented with flexibility. First, the group
member can join the group in succession, i.e., the group total number n can
be pre-fixed, but the private signing key gsk[i] can be generated later while
member i’s joining. Second, there is no need to generate all the data in grt
at the beginning, that is to say grtij can be generated when member i is to
be revoked at interval j.

Sign(gpk, j, gsk[i],M)
1. Select α R← Z∗

p and compute T1 = Aαi , T2 = hα+xi

j .
2. The signature of knowledge [5, 11, 12] is expressed by the following equa-

tion:

π = SPK{(α, xi, Ai) : T1 = Aαi , T2 = hα+xi

j , e(Ai, wgxi
2 )= e(g1, g2)}(M)

= SPK{(α, xi, Ai) : e(T1, w) = e(g1, g2)α/e(T1, g2)xi , T2 =hα+xi

j }(M).

which is computed as follows by using Fiat-shamir heuristic method [19]:

(a) Pick blinding factors rα, rxi

R← Z∗
p to compute

R1 = e(g1, g2)rα/e(T1, g2)rxi (1)

R2 = h
rα+rxi

j . (2)

(b) Compute the challenge value c = H(gpk, j,M, T1, T2, R1, R2), and
sα = rα + cα, sxi = rxi + cxi.

The signature is σ = (T1, T2, c, sα, sxi).
Verify(gpk, j, RLj , σ,M)

1. Signature check. Verify the validity of σ by checking π as follows:
(a) Retrieve

R̄1 = e(g1, g2)sα(1/e(T1, g2))sxi (1/e(T1, w))c (3)

R̄2 = h
sα+sxi

j (1/T2)c (4)
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(b) Verify the correctness of the challenge c by checking:

c
?= H(gpk, j,M, T1, T2, R̄1, R̄2)

If the above equation holds, then accept; otherwise, reject.
2. Revocation check. For each grtij = (grt1ij , grt

2
ij) ∈ RLj at the current

interval j, if e(T1, grt
1
ij) �= e(T2grt

2
ij , g2) then return 1. Otherwise return

0.
Implicit tracing algorithm. From revocation check, we can see that any
trust third party who knows all grtij(i ∈ [1, n], j ∈ [1, T ]) can play the
role of the opener to find the signer of a given signature. Take the interval
j for example, the opener can identify the signer is member i by checking
e(T1, grt

1
ij) = e(T2grt

2
ij , g2).

Revoke(RLj, grtij)
If member i is to be revoked at the time interval j ∈ [1, T ], the GM adds
grtij = (grt1ij , grt

2
ij) = ((wgxi

2 )rj , hxi

j ) into the RLj.

Remark: Compared with the current BU-VLR group signature schemes, the
shorter size is gained in our scheme due to the argument that the underlying
SPK is short. Our above scheme is actually a non-interactive zero-knowledge of
having a SDH pair (Ai, xi).

5 Security Analysis

Theorem 1. Suppose an adversary A breaks the BU-anonymity of the proposed
scheme with advantage ε, after qH hash queries and qS signing queries, then
there exists an algorithm B breaking the DLIN assumption in G2 with advantage
(1/nT − qHqS/p)ε.
Proof. The input of B is (u, v, h, ua, vb, Z), where u, v, h ∈ G2, a, b ∈ Z∗

p and
either Z = ha+b or Z = hc(c ∈ Zp). B decides which Z it is given by communi-
cating with A as follows:

– Setup. B simulates KeyGen (n, T ) as follows.
1. B sets g2 = u and computes g1 = ψ(u). B selects i∗ ∈ [1, n], j∗ ∈ [1, T ].
2. For all j ∈ [1, T ] except j∗, B selects γ R← Z∗

p to set w = gγ2 . Select

rj
R← Z∗

p to compute hj = g
rj

1 = ψ(u)rj . For j∗, B sets hj = ψ(h).

3. For all i ∈ [1, n] except i∗, B selects xi
R← Z∗

p and computes Ai =

g
1/(γ+xi)
1 . For i = i∗, set xi = a,Ai = g

1/γ+a
1 which is unknown to B for

not having the value of a.
4. B computes grtij = ((wgxi

2 )rj , hxi

j ) for all i and j except j∗. For i∗ except
j∗, B computes

grti∗j = (wgxi∗
2

rj , hxi∗
j )

= ((wga2 )rj , (ψ(u)rj )a) = ((wua)rj , (ψ(ua))rj )

For i = i∗, j = j∗, B sets grti∗j∗ = ((wga2 )rj∗ , ha) which is unknown to
him for not knowing rj∗ .
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– Hash queries. At any time, A can query the hash function used in π. B
responds with random values with consistency.

– Phase 1. At any interval j, A can issue signing queries, corruption queries,
and revocation queries. If i �= i∗, B responds to queries as usual by using the
secret key of member i. If i = i∗, B responds as follows.
• Signing queries. B computes a simulated group signature of member
i∗ as follows.
If j �= j∗:

1. Randomly select α ∈ Z∗
p , T1

R← G1.
2. Compute T2 = hα+xi

j = hαj (grj

1 )a = hαj (ψ(ua))rj .
3. Pick random c, sα, sxi ∈ Z∗

p to compute R1, R2 by equation
(3) and (4), and then set c = H(gpk, j,M, T1, T2, R1, R2). Now,
the simulated π = (c, sxi , sα) is obtained. B outputs a random
guess ω′ ∈ {0, 1} and aborts if A has issued the hash query on
H(gpk, j,M, T1, T2, R1, R2). Since j is random in T , this happens
with probability qH/p.

Finally, B responds signature σ = (T1, T2, c, sα, sxi) and the message
M to A. Each value in σ has the same distribution as in the real, for
random α ∈ Z∗

p and the perfect zero-knowledge-ness of π.
Otherwise j = j∗,

1. Keep a List L which is initially empty.
2. When L is empty then select r ∈ Z∗

p , T1
R← G and set α = r − a.

Compute T2 = hr, and then add (T1, T2, r) into L. Otherwise,
select r′ ∈ Z∗

p to compute (T1)r
′
, (T2)r

′
, and update L by date

((T1)r
′
, (T2)r

′
, rr′).

3. Compute a simulated π as that in the case of j �= j∗. If the
backpatch of the hash function causes a collision, B outputs a
random guess ω′ ∈ {0, 1} and aborts.

• Revocation queries. B outputs a random guess ω′ ∈ {0, 1} and aborts.
• Corruption queries. A can requests the private signing key of any

member i.
• Challenge A outputs (M, j, i0, i1) to be challenged with restriction that

the corruptions and revocations of members i0 and i1 must not be re-
quested before. If j �= j∗, B outputs a random guess ω′ ∈ {0, 1} and
aborts. Otherwise, B picks φ ∈ {0, 1}. If ib �= i∗, B outputs a random
guess ω′ ∈ {0, 1} and aborts, otherwise, responds with the following
simulated signature.
1. B sets α = b, T2 = Z. Note that if Z = ha+b, then T2 = h

α+x∗
i

j∗

2. Compute the simulated π as that in phase 1. If the backpatch of the
hash function causes a collision, B outputs a random guess ω′ ∈ {0, 1}
and aborts.

– Phase 2. This is the same as Phase 1, with restriction that the corruptions
and revocations of members i0 and i1 at interval j must not be requested.

– Output. A outputs its guess φ′. If φ′ = φ, B outputs ω′ = 1 (implying
it guesses Z = ha+b), and otherwise outputs ω′ = 0 (implying it guesses



Shorter Group Signature with Backward Unlinkability 143

Z = hc). Let the variable ω ∈ {0, 1} represents the state of Z. If Z = ha+b

then ω = 1, otherwise ω = 0. The advantage of B is

|Pr[B(u, v, h, ua, ub, Z = ha+b) = 1] − Pr[B(u, v, h, ua, ub, Z = hc) = 1]|
= |Pr[ω′ = 1|ω = 1] − Pr[ω′ = 1|ω = 0]|
= Pr[abort]ε

If B correctly guesses the value j in setup , it only aborts when the backpath is
failure, the probability of which is at most qH/p. Therefore, the probability that
B aborts, due to A′s signature queries, is at most qSqH/p. On the other hand,
the probability that B correctly guesses the value j is 1/T in that A has no
information on j∗. Thus, Pr[abort] ≥ 1/T − qSqH/p and this theorem is proved.

Notice that the above theorem implies the two following facts: one is that the
proposed scheme satisfies BU-anonymity in the random oracle model under the
DLIN assumption. The other is that the strongly A breaks the BU-anonymity
of our scheme, the more advantage B breaks the DLIN assumption in G1.

Theorem 2. Suppose an adversary A breaks the traceability with advantage ε,
after qH hash queries and qS signature queries, then there exists an algorithm B
breaking (n+ 1)-SDH assumption with advantage (ε/n− 1/p)16qH.

Proof. The following is an interaction framework between A and B.

Setup. B is given (g1, g2, wg
γ
2 ) and n SDH pairs (Ai, xi). For each i ∈ [1, n],

either si = 1 indicating that an SDH pair (Ai, xi) is known, or si = 0 indicating
that Ai is known but xi is unknown. Run A on the gpk and grt drawn from the
given parameters.

Hash queries. At any time, A can query the hash function used in π. Random
values are responded with consistency.

Signing queries. A requests a signature of member i on message M at interval
j. If si = 1, B responds with the signature using the secret key (Ai, xi). If
si = 0, B selects α ∈ Z∗

p to compute T1 = Aαi , T2 = hα+xi

j and the simulated π.
If the backpatch of the hash function causes a collision, output a random guess
ω′ ∈ {0, 1} and abort. Otherwise, it responds with (T1, T2, π).

Corruption queries. A requests the secret key of member i. If si = 1, B
responds with (Ai, xi). Otherwise, it outputs a random guess ω′ ∈ {0, 1} and
aborts.

Output. A outputs a forged signature σ′ = (T
′
1, T

′
2, π

′
) with secret key (Ai′ , xi′).

If B fails to identify the signer by revocation check, it outputs σ′. Otherwise,
some i is identified. If si = 0 then output σ′. If si = 1, output a random guess
ω′ ∈ {0, 1} and abort.

There are two types of forger on the above framework. In type 1, A forges a
signature of a member different from all i. In type 2, A forges a signature of the
member i whose corruption is not requested.
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Given q-SDH instance (g
′
1, g

′
2, (g

′
1)
γ), we can obtain (g1, g2, wg

γ
2 ) and q − 1

SDH pairs such that e(Ai, wg
γ
2 ) = e(g1, g2), following the technique of [5]. On

the other hand, any SDH pair besides these q − 1 pairs can be transformed
a solution of the q-SDH instance, which means that the q-SDH assumption is
broken.

Type 1. From (n + 1)-SDH instance, we obtain (g1, g2, w = gγ2 ) and n SDH
pairs (Ai, xi). Then, apply the framework to A. A outputs a signature with
secret key (Ai′ , xi′ ) such that Ai′ �= Ai for i ∈ [1, n]. The simulation is perfect,
and A succeeds with advantage ε.

Type 2. From n-SDH instance, we obtain (g1, g2, w = gγ2 ) and n − 1 SDH
pairs (Ai, xi), which is distributed amongst n pairs, and set si′ = 0. For the
unfilled entry at random index i′, select xi′ ∈ Z∗

p (Ai′ is unknown). Apply the
framework to A. It succeeds unless A never requests the corruption of i′ while
the forged signature including Ai′ . The value of i′ is independent of A’s view,
thus the probability that A outputs the signature of member i′ is at least ε/n.

We can obtain another SDH pair beyond the given q− 1 SDH pairs using the
framework with Type 1 or Type 2. Rewind the framework to obtain two forged
signatures on the same message M and interval j, where the commitments in
the π are the same but the challenges and responses are different. As shown
in [11, 12], the successful probability is at least (ε′ − 1/p)2/16qH by the forking
lemma, where ε′ is the probability that the framework on each forger succeeds.
Therefore, we can obtain a pair (Ai′ , xi′) s.t. (Ai′ �= Ai, xi′ �= xi) for all i with
the probability (ε′ − 1/p)2/16qH .

From above, we can solve the (n+1)-SDH instance with (ε−1/p)2/16qH using
Type 1. And we can solve the n-SDH instance with (ε/n − 1/p)2/16qH using
Type 2. We can guess the type of forger with the probability 1/2. Therefore, the
pessimistic Type 2 proves the theorem, which implies traceability is satisfied in
the random oracle model under the SDH assumption.

6 Performance Comparison

The scheme in [10] is the current most efficient VLR scheme, the schemes in
[11, 12] is the first two BU-VLR ones, and the seventh scheme in [13] is the
current most efficient BU-VLR one with non-frameablity. The following table
shows performance comparisons between these previous VLR schemes and ours
in signature size and computation overhead.

Just like the above schemes, our scheme can make use of the MNT curves [15],
where p is 170 bits, elements in G1 are 171 bits, and elements in G3 are 1020
bits. We denote the computation of multi-exponentiation and bilinear map as
ME and BM respectively. Computing isomorphism takes roughly the same time
as ME [10]. Besides, the properties of back-unlinkability (BU) is also showed in
table 1. Note that each ME may take different time. We ignore the differences
just as the previous schemes in above schemes for convenience to statistical
comparison.
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Table 1. Performance comparisons

|σ|(bits) SIGN VER BU
[10] 1192 8ME+2BM 6ME+(3+|RL|)BM No
[11] 2893 10ME+1BM 6ME+(2+|RLj|)BM Yes
[12] 1533 7ME+1BM 4ME+(2+2|RLj|)BM Yes
[13]-scheme 7 1364 8ME+1BM 6ME+(4+|RLj|)BM Yes
Our scheme 852 4ME+1BM 2ME+(3+|RLj|)BM Yes

From the above table, we can see that: 1) The signature length of our scheme
is about 71.48% of that of [10], and 6 multi-exponentiation and 1 bilinear com-
putation are also reduced. 2) Among the BU-VLR schemes, our scheme is more
efficient.

It should be noted that the revocation mechanisms in above VLR schemes are
similar. They all compute and add grtij to RLj when member i is to be revoked
at interval j. Compared with that in [10] this method has two merits: (1) There
is no extra computation overhead for the unrevoked members and their group
secret signing keys are still valid; (2) At any time, when the revoked members
want and are approved to rejoin the group, then they can create valid group
signature by using their previous group secret keys again. This can be achieved
only by not publishing their revocation tokens in the RL at the corresponding
intervals. The above two features imply the dynamic addition and deletion of
members with flexibility, which are very important in practice.

7 Conclusion

The group signature scheme [10] proposed by D. Boneh et al. is the most effi-
cient current VLR group signature scheme. BU-VLR group signature schemes
were proposed by T. Nakanishi et al. later. But their schemes are not compara-
ble to D. Boneh et al.’s in signature size and computation overhead. Based on
the DLIN assumption and the q-SDH assumption, we propose a new BU-VLR
group signature. It is more efficient than the previous VLR group signature,
for its signature length is just 71.48% of D. Boneh et al.’s and the overhead in
computation is also lower than previous BU-VLR schemes.
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Abstract. In this paper, we present a two-party attribute-based au-

thenticated key exchange scheme secure in the stronger security model

than the previous models. Our strong security model is a natural exten-

sion of the eCK model, which is for PKI-based authenticated key ex-

change, into the attribute-based setting. We prove the security of our

scheme under the gap Bilinear Diffie-Hellman assumption. Moreover,

while the previous scheme needs the three-pass interaction between par-

ties, our scheme needs only the two-pass interaction. In a practical sense,

we can use any string as an attribute in our scheme because the setup

algorithm of our scheme does not depend on the number of attribute

candidates (i.e., the setup algorithm outputs constant size parameters).

Keywords: authenticated key exchange, attribute-based authenticated

key exchange, eCK model, large universe of attributes.

1 Introduction

The aim of Authenticated key exchange (AKE) is to share a common session
key between the authenticated parties. Various variants of AKE (e.g., group set-
ting, password-based, etc.) are used for our daily life (e.g., establishing secure
channels for various web-services). As a new variant of AKE, the attribute-based
AKE (ABAKE) is recently studied [1–5]. In ABAKE schemes, the authentication
condition is different from other AKE variants. While parties (the initiator and
the responder) in a session authenticate each other by their identities in most
of AKE variants, parties authenticate each other by their attributes in ABAKE
schemes. That is, the key generation center (KGC) issues the static secret key to
a party by using the master secret key according to the attributes of the party
in advance and parties specify their policies (i.e., the condition which the peer
is expected to satisfy) respectively. If the attribute of a party satisfies the pol-
icy of the peer and vice versa, the common session key is established. Since
attributes can contain an identity, the ABAKE is a generalization of ID-based
AKE schemes [6] The ABAKE is useful in the situation that some sensitive in-
formation (e.g., medical history) is sent with the secure channel established by
some AKE scheme. Then, parties may hope to hide their identities from the
peer of the session though the peer is needed to be a qualified registered person.
By using the ABAKE, parties can establish the secure channel with a qualified
registered person without revealing their identities.

M. Joye, A. Miyaji, and A. Otsuka (Eds.): Pairing 2010, LNCS 6487, pp. 147–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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1.1 Motivating Problem

Recently, some ABAKE schemes are proposed. In the context of the secret hand-
shake, some schemes are regarded as ABAKE schemes. Ateniese, Kirsch and
Blanton [7] proposed a secret handshake scheme with dynamic and fuzzy match-
ing, where users specify the attribute of the peer. However, their scheme can
deal with only the simple authentication condition of whether the attributes are
matching more than a threshold. Wang, Xu and Ban [1], and Wang, Xu and
Fu [2, 3] proposed simple variants of the ABAKE. In their schemes, attributes
are regarded as identification strings and there is no mechanism for evaluating
policy. Thus, their schemes are a kind of the ID-based AKE rather than the
ABAKE. Gorantla, Boyd and Nieto [4] proposed an ABAKE scheme which pro-
vides parties with the fine-grained access control based on parties’ attributes.
However, the condition is common for all users. Thus, their scheme does not fit
in the ABAKE scenario as each party cannot specify the condition which the
peer is expected to satisfy each other in the session. Their scheme is constructed
based on an attribute-based key encapsulation mechanism and the security is
proved in the security model based on the BR model [8].

There is another previous study on the ABAKE with the fine-grained access
control by Birkett and Stebila (BS10) [5]. The BS10 scheme is generically con-
structed with a predicate-based signature and parties can specify the condition
which the peer is expected to satisfy each other. They prove security of their scheme
without random oracles in the predicate-based key exchange security model based
on the BR model. However, the BS10 scheme has several drawbacks as follows:
First, the BS10 scheme does not satisfy the security against revealing some of the
session variables. The major security model (called eCK model [9]) for the AKE
and its variants have an additional query to allow revealing all randomness (i.e.,
the ephemeral secret key) used during the run in a session. Since the BS10 uses a
predicate-based signature as a building block, the underlying signature scheme has
to be unforgeable against revealing all randomness. But, there is no such predicate-
based signature scheme as in the conclusion of [5]. To prove the security in the eCK
model (eCK security), it is known that the NAXOS technique [9] is effective. The
NAXOS technique means that each user applies a hash function to the static se-
cret key and the ephemeral secret key, and computes an ephemeral public key by
using the output of the function as the exponent of the ephemeral public key. The
adversary cannot know the output of the function as long as the adversary can-
not obtain the static secret key even if the ephemeral secret key is leaked. But,
the NAXOS technique cannot be applied the predicate-based signature trivially.
Secondly, the BS10 scheme needs the three-pass interaction in a session. Most of
Diffie-Hellman (DH) key exchange-based AKE schemes need only the two-pass in-
teraction in a session. This drawback comes from that the BS10 scheme adopts the
signed-DH paradigm [10].

Fujioka, Suzuki and Yoneyama [11] proposed a variant of ABAKE scheme from
scratch, which is secure against revealing internal states. Their scheme provides
parties with the key-policy based access control, that is, the access policy of a
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party is fixed when the party generates his static secret key, not when the party
establish a session. Thus, applications of their scheme may be different from
ABAKE schemes.

1.2 Our Contribution

We introduce an ABAKE scheme which solves the drawback of the BS10 scheme.
Our scheme only needs the two-pass interaction in a session and can be proved
the security against revealing secret keys.

First, we extend the security model of [5] to the eCK(-like) model. By allowing
the adversary to pose special queries to reveal the master secret key, static secret
keys and the ephemeral secret key, the attack scenario is strengthened. Also, if
the adversary obtains both the ephemeral secret key and the static secret key of
an party (or the master key) together, the session key can be trivially computed
by the adversary. Thus, we have to consider freshness of the session. Freshness
means the condition of the session as the adversary cannot trivially break secrecy
of the session key. Although the adversary is not allowed to reveal any secret
information in the session in freshness of the security model of [5], we clarify the
most of malicious behaviors with respect to revealing secret information as our
freshness definition.

Secondly, we construct our ABAKE scheme based on the ciphertext-policy
attribute-based encryption (ABE) by Waters [12]. Waters proposed three ABE
schemes in [12]. We use the third scheme based on the decisional Bilinear Diffie-
Hellman (DBDH) assumption to construct our scheme. However, we cannot triv-
ially adopt the Waters ABE scheme to the ABAKE scheme. Since the Waters
ABE1 has a flow in the encryption procedure, ciphertexts cannot be decrypted
correctly as it is. Thus, we show a repair of the encryption procedure in the
Waters ABE in order to carry out the decryption procedure correctly. Also, we
cannot use any string as an attribute in the Waters ABE because the universe
of attributes is needed to be fixed before the setup by the KGC. By using the
property of the random oracle, we modify the Waters ABE as the setup algo-
rithm does not depend on the number of attribute candidates (i.e., the setup
algorithm outputs constant size parameters) and so we can use any string as an
attribute. We construct our ABAKE scheme by the combination of the modified
Waters ABE and the NAXOS technique.

Finally, we prove the security of our ABAKE scheme in the proposed model
under the gap Bilinear Diffie-Hellman (GBDH) assumption in the random oracle
model. Informally, the GBDH problem is the problem of solving the Bilinear
Diffie-Hellman (BDH) problem with the help of an oracle which solves the DBDH
problem. The use of such “gap” problems was first proposed by Okamoto and
Pointcheval [13] and the GBDH assumption is firstly used in [14].

1.3 Related Works

Attribute-based encryption. The ABAKE is closely related to the ciphertext-
policy ABE because it is natural that access policies are not decided on key gen-
1 Version: 20100330:173851.
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eration but on key exchange. The first ABE scheme is proposed by Sahai and
Waters [15], called the fuzzy ID-based encryption, which parties must match at
least a certain threshold of attributes. Bethencourt et al. [16] proposed the first
ciphertext-policy ABE scheme which allows the ciphertext policies to be very ex-
pressive, but the security proof is in the generic group model. Cheung and New-
port [17] proposed a provably secure ciphertext-policy ABE scheme and their
scheme deals with negative attributes explicitly and supports wildcards in the ci-
phertext policies. Kapadia et al. [18] and Nishide et al. [19] also proposed a
ciphertext-policy ABE scheme and their scheme realizes hidden ciphertext poli-
cies in a limited way, respectively. Shi et al. [20] proposed a predicate encryption
scheme that focuses on range queries over huge numbers, which can also real-
ize a ciphertext-policy ABE scheme with range queries. Boneh and Waters [21]
proposed a predicate encryption scheme based on the primitive called the hid-
den vector encryption. It needs bilinear groups whose order is a product of two
large primes, so it needs to deal with large group elements and the number of at-
tributes is fixed at the system setup. Katz et al. [22] proposed a novel predicate
encryption scheme and their scheme is very general and can realize both key-policy
and ciphertext-policy ABE schemes. Waters [12] proposed expressive and efficient
ciphertext-policy ABE schemes based on noninteractive assumptions. Lewko et
al. [23] proposed the first fully secure ciphertext-policy ABE scheme.

2 Preliminaries

2.1 Access Structure

We introduce the notion of the access structure to represent the access control
by the policy. We show the definition given in [24].

Definition 1 (Access Structure [24]). Let {P1, P2, . . . , Pn} be a set of par-
ties. A collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀Att1, Att2 : if Att1 ∈ A
and Att1 ⊆ Att2 then Att2 ∈ A. An access structure (resp. monotone access
structure) is a collection (resp. monotone collection) A of non-empty subsets
of {P1, P2, . . . , Pn}, i.e., A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

Though this definition restricts monotone access structures, it is also possible to
(inefficiently) realize general access structures by having the not of an attribute
as a separate attribute altogether. Thus, the number of attributes in the system
will be doubled.

2.2 Linear Secret Sharing

We use linear secret sharing schemes (LSSSs) to obtain the fine-grained access
control. The LSSS can provide arbitrary conditions for the reconstruction of the
secret with monotone access structures. We show the definition given in [24].

Definition 2 (Linear Secret Sharing Schemes [24]). A secret sharing
scheme Π over a set of parties P is called linear (over Zp) if
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1. The shares for each party form a vector over Zp.
2. There exists a matrix an M with � rows and n columns called the share-

generating matrix for Π. For all i = 1, . . . , �, the ith row of M we let the
function ρ defined the party labeling row i as ρ(i). When we consider the
column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared,
and r2, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of � shares
of the secret s according to Π. The share (Mv)i belongs to party ρ(i).

The important property of LSSSs is the linear reconstruction property, defined
as follows: Suppose that Π is an LSSS for the access structure A. Let S ∈ A
be any authorized set, and let I ⊂ {1, 2, . . . �} be defined as I = {i : ρ(i) ∈ S}.
Then, there exist constants {wi ∈ Zp}i∈I such that, if {λi} are valid shares
of any secret s according to Π , then

∑
i∈I wiλi = s. In [24], it is shown that

these constants {wi} can be found in time polynomial in the size of the share
generating matrix M .

Note on Convention. We note that we use the convention that vector (1, 0,
0, . . . , 0) is the “target” vector for any linear secret sharing scheme. For any
satisfying set of rows I in M , we will have that the target vector is in the
span of I. For any unauthorized set of rows I the target vector is not in the
span of the rows of the set I. Moreover, there will exist a vector w such that
w · (1, 0, 0, . . . , 0) = −1 and w ·Mi = 0 for all i ∈ I.

2.3 Bilinear Maps

Definition 3 (Bilinear Maps). Let G be a cyclic group of prime order p and
g is a generator of G. We say that e : G × G → GT is a bilinear map if the
following holds:

– For all X,Y ∈ G and a, b ∈ Zp, we have e(Xa, Y b) = e(X,Y )ab,
– e(g, g) �= 1.

We say that G is a bilinear group if e and the group operation in G and GT can
be computed efficiently.

2.4 Gap Bilinear Diffie-Hellman Assumption

Let κ be the security parameter and p be a κ-bit prime. Let G be a cyclic group
of a prime order p with a generator g and GT be a cyclic group of the prime
order p with a generator gT . Let e : G×G→ GT be a bilinear map. We say that
G,GT are bilinear groups with the pairing e.

The gap Bilinear Diffie-Hellman problem is as follows. We define the BDH
function BDH : G3 → GT as BDH(ga, gb, gc) = e(g, g)abc, and the DBDH predi-
cate DBDH : G4 → {0, 1} as a function which takes an input (ga, gb, gc, e(g, g)d)
and returns 1 if abc = d mod p and 0 otherwise. An adversary A is given input
α = ga, β = gb, γ = gc ∈ G selected uniformly random and oracle access to
DBDH(·, ·, ·, ·) oracle, and tries to compute BDH(α, β, γ). For adversary A, we
define advantage
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AdvGBDH(A) = Pr[α, β, γ ∈ G,ADBDH(·,·,·,·)(g, α, β, γ) = BDH(α, β, γ)],

where the probability is taken over the choices of ga, gb, gc and the random tape
of A.

Definition 4 (Gap Bilinear Diffie-Hellman Assumption). We say that
the GBDH assumption in G holds if for all polynomial-time adversary A, the
advantage AdvGBDH(A) is negligible in security parameter κ.

3 Security Model

In this section, we introduce an eCK security model for the ABAKE. Our
attribute-based eCK (ABeCK) model is an extension of the eCK security model
for conventional AKE by the LaMacchia, Lauter and Mityagin [9] to the ABAKE.

The proposed ABeCK model is different from the original eCK model in the
following points: (1) the session is identified by a set of attributes SP of party
P , (2) freshness conditions for queries to reveal static secret keys are different,
and (3) the query to reveal the master key is allowed for the adversary same as
in the ID-based AKE.

Syntax. An ABAKE scheme consists of the following algorithms. We denote a
party by P and his associated set of attributes by SP . The party P and other
parties are modeled as a probabilistic polynomial-time Turing machine.

Setup. The setup algorithm Setup takes a security parameter κ as input, and
outputs a master secret key MSK and a master public key MPK, i.e.,

Setup(1κ) → (MSK,MPK).

Key Generation. The key generation algorithm KeyGen takes the master secret
key MSK, the master public key MPK, and a set of attributes SP given by a
party P , and outputs a static secret key SKSP corresponding to SP , i.e.,

KeyGen(MSK,MPK, SP ) → SKSP .

Key Exchange. The party A and the party B share a session key by performing
the following n-pass protocol. A (resp. B) selects a policy AA (resp. AB) as an
access structure, respectively.
A starts the protocol by computing the 1st message m1 by the algorithm

Message, that takes the master public key MPK, the set of attributes SA, the
static secret key SKSA and the policy AA, and outputs 1st message m1. A sends
m1 to the other party B.

For i = 2, ..., n, upon receiving the (i − 1)th message mi−1, the party P
(P = A or B) computes the ith message by algorithm Message, that takes the
master public key MPK, the set of attributes SP , the static secret key SKSP ,
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the policy AP and the sent and received messages m1, . . . ,mi−1, and outputs
the ith message mi, i.e.,

Message(MPK, SP , SKSP ,AP ,m1, . . . ,mi−1) → mi.

The party P sends mi to the other user P̄ (P̄ = B or A).
Upon receiving or after sending the final nth message mn, P computes a

session key by algorithm SessionKey, that takes the master public key MPK,
the set of attributes SP , the static secret key SKSP , the policy AP and the sent
and received messages m1, ...,mn, and outputs an session key K, i.e.,

SessionKey(MPK, SP , SKSP ,AP ,m1, . . . ,mn) → K.

Both parties A and B can compute the same session key if and only if SA ∈ AB
and SB ∈ AA.

Session. An invocation of a protocol is called a session. A session is activated
with an incoming message of the forms (I, SA, SB) or (R, SB , SA,m1), where I
and R with role identifiers, and A and B with user identifiers. If A was activated
with (I, SA, SB), then A is called the session initiator. If B was activated with
(R, SB , SA,m1), then B is called the session responder. After activated with
an incoming message of the forms (I, SA, SB ,m1, . . . ,mk−1) from the responder
B, the initiator A outputs mk, then may be activated next by an incoming
message of the forms (I, SA, SB,m1, . . . ,mk+1) from the responder B. After
activated by an incoming message of the forms (R, SB , SA,m1, . . . ,mk) from the
initiator A, the responder B outputs mk+1, then may be activated next by an
incoming message of the forms (R, SB , SA,m1, . . . ,mk+2) from the initiator A.
Upon receiving or after sending the final nth message mn, both parties A and
B computes a session key K.

If A is the initiator of a session, the session is identified by sid =
(I, SA, SB,m1), (I, SA, SB,m1,m2,m3), . . . , (I, SA, SB,m1, . . . ,mn). If B is the
responder of a session, the session is identified by sid = (R, SB , SA,m1,m2), (R,
SB, SA, m1, m2, m3, m4), . . . , (R, SB , SA,m1, . . . ,mn). We say that a session is
completed if a session key is computed in the session. The matching session of a
completed session (I, SA, SB,m1, . . . ,mn) is a completed session with identifier
(R, SB , SA,m1, . . . ,mn) and vice versa.

Adversary. The adversary A that is modeled as a probabilistic polynomial-
time Turing machine controls all communications between parties including the
session activation by performing the following queries.

– Send(message): The message has one of the following forms: (I, SA, SB, m1,
. . . , mk), or (R, SB, SA, m1, . . . , mk+1). The adversary obtains the response
from the party.

Revealing secret information of parties is captured via the following queries.

– SessionReveal(sid): The adversary obtains the session key for the session sid
if the session is completed.
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– EphemeralReveal(sid): The adversary obtains the ephemeral secret key asso-
ciated with the session sid.

– StaticReveal(SP ): The adversary learns the static secret key corresponding
to the set of attributes SP .

– MasterReveal: The adversary learns the master secret key of the system.
– Establish(P, SP ): This query allows the adversary to register a static pub-

lic key corresponding to the set of attributes SP on behalf of the party
P ; the adversary totally controls that party. If a party is established by
Establish(P, SP ) query issued by the adversary, then we call the party P
dishonest. If not, we call the party honest.

Freshness. For the security definition, we need the notion of freshness.

Definition 5 (Freshness). Let sid∗ = (I, SA, SB,m1, . . . ,mn) or (R, SB, SA,
m1, . . . ,mn) be a completed session between an honest user A with the set of
attributes SA and B with SB . If the matching session exists, then let sid

∗
be

the matching session of sid∗. We say sid∗ to be fresh if none of the following
conditions hold:

1. The adversary issues a SessionReveal(sid∗) or SessionReveal(sid
∗
) query if

sid
∗

exists,
2. sid

∗
exists and the adversary makes either of the following queries

– both StaticReveal(S) s.t. S ∈ AB and EphemeralReveal(sid∗), or
– both StaticReveal(S) s.t. S ∈ AA and EphemeralReveal(sid

∗
),

3. sid
∗

does not exist and the adversary makes either of the following queries
– both StaticReveal(S) s.t. S ∈ AB and EphemeralReveal(sid∗),2 or
– StaticReveal(S) s.t. S ∈ AA,

where

– if the adversary issues MasterReveal query, we regard that the adversary is-
sues StaticReveal(S) s.t. S ∈ AA and StaticReveal(S) s.t. S ∈ AB queries.

Security Experiment. For our security definition, we consider the following
security experiment. Initially, the adversary A is given a set of honest users, and
makes any sequence of the queries described above. During the experiment, A
makes the following query.

– Test(sid∗): Here, sid∗ must be a fresh session. Select random bit b ∈ {0, 1},
and return the session key held by sid∗ if b = 0, and return a random key if
b = 1.

The experiment continues until A makes a guess b′. The adversary wins the
game if the test session sid∗ is still fresh and if A’s guess is correct, i.e., b′ = b.
The advantage of A in the experiment with the ABAKE scheme Π is defined as

AdvABAKE
Π (A) = Pr[A wins] − 1

2
.

2 AB is decided by the adversary and sent as a part of messages to A because indeed

B does not exist in the session.
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We define the security as follows.

Definition 6 (ABeCK Security). We say that an ABAKE scheme Π is se-
cure in the ABeCK model, if the following conditions hold:

1. If two honest parties completing matching sessions and SA ∈ AB and SB ∈
AA hold, then, except with negligible probability, they both compute the same
session key.

2. For any probabilistic polynomial-time adversary A, AdvABAKE
Π (A) is negli-

gible.

Moreover, we say that the ABAKE scheme is selectively secure in the ABeCK
model, if A specifies AA in sid∗ (and AB in sid

∗
if sid

∗
exists) at the beginning

of the security experiment.

4 Modification of the Waters ABE

In this section, we point out the flaw of the Waters ABE [12] and show some
modification of the scheme.

4.1 Waters ABE

We review the Waters ABE based on the DBDH assumption.
The scheme is parameterized by nmax which specifies the maximum number of

columns in share-generating matrices corresponding to access structures. “s ∈R
S” means randomly choosing an element s of a set S. “|V |” means the bit length
of a value V .

Setup : For input a security parameter κ and the number of attributes U,
choose p, G, GT , g and gT such that bilinear groups with pairing e : G ×
G → GT of order κ-bit prime p with generators g and gT , respectively.
Then, output a master public key MPK := (g, gr, gzT , (h1,1, . . . , h1,U), . . . ,
(hnmax,1, . . . , hnmax,U)) and a master secret keyMSK := gz such that (h1,1,
. . . , h1,U), . . . , (hnmax,1, . . . , hnmax,U) ∈R GU and r, z ∈R Zp.

Encrypt : For input the master public key MPK, a plaintext m and an
LSSS access structure (M,ρ) where the injective function ρ associates rows
of �× n share-generating matrix M to attributes, choose u1, . . . , un ∈R Zp.
Then, output the ciphertext CT := (X ′, X, {U}) for 1 ≤ i ≤ � and 1 ≤ j ≤ n
such that X ′ = m · (gzT )u1 , X = gu1 and Ui,j = (gr)Mi,jujh−u1

j,ρ(i) (let {U}
denote the set of Ui,j for 1 ≤ i ≤ � and 1 ≤ j ≤ n).

KeyGen : For input the master secret key MSK and a set of attributes
S, choose t1, . . . , tnmax ∈ Zp, and compute S′ = gzgrt1 , Tj = gtj for 1 ≤
j ≤ nmax (let {T } denote the set of Tj for 1 ≤ j ≤ nmax) and Sk =∏

1≤j≤nmax
h
tj
j,k for k ∈ S (let {S} denote the set of Sk for k ∈ S). Then,

output a secret key SK := (S′, {T }, {S}).
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Decrypt : For input a ciphertext CT for the access structure (M,ρ) and a
secret key SK for a set S, let I ⊂ {1, 2, . . . , �} be defined as I = {i : ρ(i) ∈ S}.
We suppose that S satisfies M and ρ. Then, find {wi ∈ Zp}i∈I such that∑

i∈I wiλi = s for valid shares {λi} of any secret s according to M and
output the plaintext m as

m = X ′
(∏

1≤j≤n e(Tj,
∏
i∈I U

wi

i,j )
)∏

i∈I e(X,S
wi

ρ(i))/e(X,S
′).

4.2 Flaw of the Encryption Procedure

Since n is decided according to the access structure and n ≤ nmax, n will be
almost smaller than nmax. We point out that if n �= nmax, the decryption algo-
rithm cannot decrypt the plaintext correctly.

The design principle of the decryption can be considered as follows: First,∏
1≤j≤n e(Tj ,

∏
i∈I U

wi

i,j ) is represented as
∏

1≤j≤n e(gtj , g
∑

i∈I rMi,jujwi) ·∏
1≤j≤n e(g

tj ,
∏
i∈I h

−u1wi

j,ρ(i) ). If n = nmax,
∏

1≤j≤n e(g
tj ,
∏
i∈I h

−u1wi

j,ρ(i) ) is can-
celed out by e(X,Swi

ρ(i)) because
∏

1≤j≤n e(gtj ,
∏
i∈I h−u1wi

j,ρ(i) ) =
∏

1≤j≤n∏
i∈I e(g, hj,ρ(i))

−u1tjwi and e(X, Swi

ρ(i)) =
∏
i∈I e(g

u1 ,
∏

1≤j≤nmax
h
tjwi

j,ρ(i)) =∏
1≤j≤nmax

∏
i∈I e(g, hj,ρ(i))

u1tjwi . Next,
∏

1≤j≤nmax
e(gtj , g

∑
i∈I rMi,jujwi) is

transformed into e(gt1 , g
∑

i∈I rMi,1u1wi) = gu1rt1
T by the linear reconstruction

property of the LSSS. Finally, since gu1rt1
T / e(X,S′) = gzu1

T , m is decrypted.
However, if n �= nmax, the first step of this procedure does not work correctly.

That is,
∏
n+1≤j≤nmax

∏
i∈I e(g, hj,ρ(i))

u1tjwi is not canceled out and so remains.
Thus, the Waters ABE lacks completeness in almost all cases (i.e., the number
of the representation of the access structure for a receiver is not equal to nmax).

4.3 Our Modified Waters ABE

To repair the flaw above, we modify the Waters ABE to satisfy completeness.
Moreover, the original Waters ABE restricts the universe of attributes because
the setup algorithm needs to fix it in advance and the master public key depends
on it. We also extend the scheme to allow the large universe of attributes by
using the random oracle. Thus, in our ABE scheme, we can use any string as an
attribute and the master public key only needs the constant size. Note that such
an extension to allow the large universe of attributes is very popular method in
the researches of ABE.

We describe our ABE scheme.

Setup : For input a security parameter κ, choose p, G, GT , g and gT such
that bilinear groups with pairing e : G×G→ GT of order κ-bit prime p with
generators g and gT , respectively.H : {0, 1}∗ → G is a hash function modeled
as the random oracle. Then, output a master public key MPK := (g, gr, gzT )
and a master secret key MSK := gz such that r, z ∈R Zp.
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Encrypt : For input the master public keyMPK, a plaintext m and an LSSS
access structure (M,ρ) where the injective function ρ associates rows of �×n
share-generating matrix M to attributes, choose u1, . . . , un ∈R Zp. Then,
output the ciphertext CT := (X ′, X, {U}) for 1 ≤ i ≤ � and 1 ≤ j ≤ nmax
such that X ′ = m · (gzT )u1 , X = gu1 , and Ui,j = (gr)Mi,jujH(j, ρ(i))−u1 for
1 ≤ j ≤ n and Ui,j = H(j, ρ(i))−u1 for n + 1 ≤ j ≤ nmax (let {U} denote
the set of Ui,j for 1 ≤ i ≤ � and 1 ≤ j ≤ nmax).

KeyGen : For input the master secret key MSK and a set of attributes
S, choose t1, . . . , tnmax ∈ Zp, and compute S′ = gzgrt1 , Tj = gtj for 1 ≤
j ≤ nmax (let {T } denote the set of Tj for 1 ≤ j ≤ nmax) and Sk =∏

1≤j≤nmax
H(j, k)tj for k ∈ S (let {S} denote the set of Sk for k ∈ S).

Then, output a secret key SK := (S′, {T }, {S}).
Decrypt : For input a ciphertext CT for the access structure (M,ρ) and a

secret key SK for a set S, let I ⊂ {1, 2, . . . , �} be defined as I = {i : ρ(i) ∈ S}.
We suppose that S satisfies M and ρ. Then, find {wi ∈ Zp}i∈I such that∑

i∈I wiλi = s for valid shares {λi} of any secret s according to M and
output the plaintext m as

m = X ′
(∏

1≤j≤nmax
e(Tj,

∏
i∈I U

wi

i,j )
)∏

i∈I e(X,S
wi

ρ(i))/e(X,S
′).

Our ABE scheme repair the flaw of the Waters ABE as follows: We add Ui,j =
H(j, ρ(i))−u1 for n+1 ≤ j ≤ nmax in the encryption algorithm and the product
of e(Tj ,

∏
i∈I U

wi

i,j ) is computed for 1 ≤ j ≤ nmax in the decryption algorithm.
By this modification,

∏
1≤j≤nmax

e(gtj ,
∏
i∈I h

−u1wi

j,ρ(i) ) is certainly canceled out
by e(X,Swi

ρ(i)) regardless of n. Hence, our ABE scheme correctly works even if
n �= nmax.

Also, we remove {hj,i} in the setup algorithm and replace {hj,i} with H(j, i)
in the encryption and key generation algorithms. By this modification, the setup
algorithm is carried out independently of the number of attributes and the mas-
ter public key becomes the constant size. Since H is the random oracle, we
can embed arbitrary values to outputs of H . Thus, the security proof correctly
works.3

Theorem 1. Suppose the DBDH assumption holds. Then, our ABE scheme is
selectively secure in the random oracle model.

Due to space limitations, we will show definitions of the selective security and
the DBDH assumption, and the proof of Theorem 1 in the full version of this
paper.

3 Of course, we can repair the flow of the Waters ABE without extension to allowing

the large universe of attributes. Then, we add Ui,j = h−u1
j,ρ(i) instead of H(j, ρ(i))−u1

for n + 1 ≤ j ≤ nmax in the encryption algorithm. The security of this modification

can be proved without random oracles.
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5 Our Construction

In this section, we provide our ABAKE scheme that allows fine-grained access
structure and large universe of attributes. Expressiveness of access structures
is due to the direct application of LSSSs for the access control same as the
Waters ABE. Our construction is also parameterized by nmax which specifies
the maximum number of columns in share-generating matrices corresponding to
access structures.

Setup : For input a security parameter κ, choose p, G, GT , g and gT such
that bilinear groups with pairing e : G × G → GT of order κ-bit prime p
with generators g and gT , respectively. H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → Zp
and H3 : {0, 1}∗ → {0, 1}κ are hash functions modeled as random oracles.
Then, output a master public key MPK := (g, gr, gzT ) and a master secret
key MSK := gz such that r, z ∈R Zp.

KeyGen : For input a set of attributes SP from a party P , choose
tP1 , . . . , tPnmax

∈ Zp, and compute S′
P = gzgrtP1 , TPj = gtPj for 1 ≤

j ≤ nmax (let {TP} denote the set of TPj for 1 ≤ j ≤ nmax) and
SPk

=
∏

1≤j≤nmax
H1(j, k)

tPj for k ∈ SP (let {SP } denote the set of SPk

for k ∈ SP ). Then, output a static secret key SKP := (S′
P , {TP}, {SP }).

Exchange : We suppose that the party A is the session initiator and the
party B is the session responder. A has the static secret key SKA =
(S′
A, {TA}, {SA}) corresponding to the set of his attributes SA and B has the

static secret key SKB = (S′
B, {TB}, {SB}) corresponding to the set of his

attributes SB. Then, A sends to B the ephemeral public key EPKA corre-
sponding to the access structure AA, and B sends to A the ephemeral public
key EPKB corresponding to the access structure AB. Finally, both parties
A and B compute the shared key K if and only if the set of attributes SA
satisfies the access structure AB and the set of attributes SB satisfies the
access structure AA.
1. First, A decides an access structure AA which he hopes that the set of

attributes SB of B satisfies AA. Then, A derives the �A × nA share-
generating matrix MA and the injective labeling function ρA in a LSSS
for AA. A chooses at random the ephemeral secret key ũ1, . . . , ũnA ∈R
Zp. Then, A computes uj = H2(S′

A, {TA}, {SA}, ũj) for 1 ≤ j ≤ nA
and X = gu1 . Also, A computes Ui,j = grMAi,j

ujH1(j, ρA(i))−u1 for
1 ≤ i ≤ �A and 1 ≤ j ≤ nA, and Ui,j = H1(j, ρA(i))−u1 for 1 ≤ i ≤ �A
and nA+1 ≤ j ≤ nmax (let {U} denote the set of Ui,j for 1 ≤ i ≤ �A
and 1 ≤ j ≤ nmax). A sends EPKA := (X, {U}), MA and ρA to B, and
erases u1, . . . , unA .

2. Upon receiving EPKA, B checks whether the set of his attributes SB
satisfies the access structureMA and ρA, andX, {U} ∈ G holds. If not, B
aborts. Otherwise, B decides an access structure AB which he hopes that
the set of attributes SA of A satisfies AB. Then, B derives the �B × nB
share-generating matrixMB and the labeling function ρB in an LSSS for
AB. B chooses at random the ephemeral secret key ṽ1, . . . , ṽnB ∈R Zp.
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Then, B computes vj = H2(S′
B, {TB}, {SB}, ṽj) for 1 ≤ j ≤ nB and

Y = gv1 . Also, B computes Vi,j = grMBi,j
vjH1(j, ρB(i))−v1 for 1 ≤ i ≤

�B and 1 ≤ j ≤ nB, and Vi,j = H1(j, ρB(i))−v1 for 1 ≤ i ≤ �B and
nB+1 ≤ j ≤ nmax (let {V } denote the set of Vi,j for 1 ≤ i ≤ �B and
1 ≤ j ≤ nmax). B sends EPKB := (Y, {V }), MB and ρB to A.
B computes the shared secrets as follows: We suppose that SB sat-

isfies MA and ρA, and let IB ⊂ {1, 2, . . . , �A} be defined as IB = {i :
ρA(i) ∈ SB}. Then, B can efficiently find {wBi ∈ Zp}i∈IB such that∑

i∈IB
wBiλi = s for valid shares {λi} of any secret s according to MA.4

Note that, if SB does not satisfy MA and ρA, B cannot find all wBi for
i ∈ IB from the property of LSSSs.
Then, B sets the shared secrets

σ1 = e(X,S′
B)/
(∏

1≤j≤nmax
e(TBj ,

∏
i∈IB

U
wBi

i,j )
)∏

i∈IB
e(X,SwBi

BρA(i)
),

σ2 = (gzT )v1 , σ3 = Xv1

and the session key K = H3(σ1, σ2, σ3, (X, {U}, MA, ρA), (Y, {V },
MB, ρB)). B completes the session with the session key K, and erases
v1, . . . , vnB .

3. Upon receiving EPKB, A checks whether the set of his attributes SA
satisfies the access structureMB and ρB, and Y, {V } ∈ G holds. If not, A
aborts. Otherwise, A computes the shared secrets as follows: We suppose
that SA satisfies MB and ρB , and let IA ⊂ {1, 2, . . . , �B} be defined as
IA = {i : ρB(i) ∈ SA}. Then, A can efficiently find {wAi ∈ Zp}i∈IA such
that

∑
i∈IA

wAiλi = s for valid shares {λi} of any secret s according to
MB.5 Note that, if SA does not satisfy MB and ρB, A cannot find all
wAi for i ∈ IA from the property of LSSSs.
Then, A sets the shared secrets

σ2 = e(Y, S′
A)/
(∏

1≤j≤nmax
e(TAj ,

∏
i∈IA

V
wAi

i,j )
)∏

i∈IA
e(Y, SwAi

AρB(i)
),

σ1 = (gzT )H2(S′
A,{TA},{SA},ũ1), σ3 = Y H2(S′

A,{TA},{SA},ũ1)

and the session key K = H3(σ1, σ2, σ3, (X, {U}, MA, ρA), (Y, {V }, MB,
ρB)). A completes the session with the session key K.
The shared secrets that both parties compute are

σ1 = e(X,S′
B)/
(∏

1≤j≤nmax
e(TBj ,

∏
i∈IB

U
wBi

i,j )
)∏

i∈IB
e(X,SwBi

BρA(i)
)

= e(X,S′
B)/
∏

1≤j≤nA
e(gtBj , g

∑
i∈IB

rMAi,j
ujwBi )

·∏1≤j≤nmax
e(gtBj ,

∏
i∈IB

H1(j, ρA(i)−u1wBi ))

·∏i∈IB
e(gu1 ,

∏
1≤j≤nmax

H1(j, ρA(i))tBj
wBi )

4 In this case, the secret corresponds to u1 and shares correspond to {MAi,j uj}.
5 In this case, the secret corresponds to v1 and shares correspond to {MBi,j vj}.
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= e(X,S′
B)/
∏

1≤j≤nA
e(gtBj , g

∑
i∈IB

rMAi,j
ujwBi )

= e(gu1 , gzgrtB1 )/e(gtB1 , g
∑

i∈IB
rMAi,1u1wBi )

= g
u1(z+rtB1 )

T /g
u1rtB1
T

= gzu1
T (= (gzT )u1),

σ2 = e(Y, S′
A)/
(∏

1≤j≤nmax
e(TAj ,

∏
i∈IA

V
wAi

i,j )
)∏

i∈IA
e(S

wAi

AρB (i)
, Y ),

= e(Y, S′
A)/
∏

1≤j≤nB
e(gtAj , g

∑
i∈IA

rMBi,j
vjwAi )

·∏1≤j≤nmax
e(gtAj ,

∏
i∈IA

H1(j, ρB(i)−v1wAi ))

·∏i∈IA
e(gv1 ,

∏
1≤j≤nmax

H1(j, ρB(i))tAj
wAi )

= gzv1T (= (gzT )v1),
σ3 = Xv1 = Y u1 = gu1v1 ,

and therefore they can compute the same session key K.

Design Principle. We construct our ABAKE scheme by combining the mod-
ified Waters ABE scheme in Section 4.3 and the NAXOS technique [9]. From
the structure of the ABE scheme, the ephemeral secret key needs to contain n
elements. Thus, we apply the NAXOS technique to each element. Specifically,
we convert (ũ1, . . . , ũnA) and (ṽ1, . . . , ṽnB ) into (u1, . . . , unA) and (v1, . . . , vnB ),
respectively, by using the random oracle H2.

The decryption algorithm of the ABE scheme can be applied to the derivation
of the session key. In the process of the decryption, the decryption algorithm
computes gt1zT where t1 is the randomness in the encryption and z is the secret
in the setup. In our ABAKE, we use σ1 = gu1z

T and σ2 = gv1zT as a part of the
seed of the session key where u1 and v1 are derived from the ephemeral secret
keys of A and B respectively. However, only gu1z

T and gv1zT are not enough to
achieve the security in the ABeCK model in Section 3. The ABeCK model allows
the adversary to reveal the master secret key. We cannot prove the security in
such a case because the simulator cannot embed the BDH instance to the master
secret key and cannot extract information to obtain the answer of the GBDH
problem from only gu1z

T and gv1zT . Thus, we add σ3 = gu1v1 to the seed of the
session key in order to simulate such a case.

Note that, it would be possible to modify our ABAKE scheme to be secure
under the BDH assumption by using the twin DH technique [25]. However, this
modification may bring about more keys, more shared values or much computa-
tion, and, thus, it would not be suitable to construct efficient schemes.

6 Security

We prove that our ABAKE scheme is secure in the ABeCK model. Since the
underlying ABE scheme just satisfies selective security, our ABAKE scheme also
satisfies selective security.
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Theorem 2. Suppose the GBDH assumption holds. Then, our ABAKE scheme
is selectively secure in the ABeCK model in the random oracle model.

Proof. We will show that if a polynomially bounded adversary A can distinguish
the session key of a fresh session from a randomly chosen session key, we can solve
the GBDH problem. Let κ be the security parameter, and let A be a polynomially
(in κ) bounded adversary. We use adversary A to construct a GBDH solver S
that succeeds with non-negligible probability. Suc denotes the event that A wins.
Let AskH be the event that adversary A poses (σ1, σ2, σ3, (X, {U}, MA, ρA),
(Y, {V }, MB, ρB)) to H3. Let AskH be the complement of event AskH . Let sid
be any completed session owned by an honest party such that sid �= sid∗ and
sid is non-matching to sid∗. Since sid and sid∗ are distinct and non-matching,
the inputs to the key derivation function H3 are different for sid and sid∗. Since
H3 is a random oracle, A cannot obtain any information about the test session
key from the session keys of non-matching sessions. Hence, Pr[Suc∧AskH ] ≤ 1

2

and Pr[Suc] = Pr[Suc∧AskH ]+Pr[Suc∧AskH ] ≤ Pr[Suc∧AskH ]+ 1
2 whence

f(κ) ≤ Pr[Suc∧AskH ]. Henceforth, the event Suc∧AskH is denoted by Suc∗.
We denote the master secret and public keys by gz and (g, gr, gzT ) respectively.

For party P , we denote the set of attributes by SP , the static secret key by
(S′
P , {TP }, {SP}), the ephemeral secret key by ũ1, . . . , ũnP , and the exponent of

the ephemeral public keys by uj = H2(S′
P , {TP}, {SP}, ũj) for 1 ≤ j ≤ nP . We

also denote the session key by K. Assume that A succeeds in an environment
with N users, activates at most L sessions within a party.

We consider the following events.

– Let AskS be the event A poses the static secret key (S′
P , {TP}, {SP}) to H2,

before asking StaticReveal queries or MasterReveal query, or without asking
StaticReveal queries or MasterReveal query.

– Let AskS be the complement of event AskS.

We consider the following events that cover all cases of the behavior of A.

– Let E1 be the event that the test session sid∗ has no matching session sid
∗

and A poses StaticReveal(S) s.t. S ∈ AB.
– Let E2 be the event that the test session sid∗ has no matching session sid

∗

and A poses EphemeralReveal(sid∗).
– Let E3 be the event that the test session sid∗ has matching session sid

∗
and A

poses MasterReveal or poses StaticReveal(S) s.t. S ∈ AB and StaticReveal(S)
s.t. S ∈ AA.

– Let E4 be the event that the test session sid∗ has matching session sid
∗

and
A poses EphemeralReveal(sid∗) and EphemeralReveal(sid

∗
).

– Let E5 be the event that the test session sid∗ has matching session sid
∗

and
A poses StaticReveal(S) s.t. S ∈ AB and EphemeralReveal(sid

∗
).

– Let E6 be the event that the test session sid∗ has matching session sid
∗

and
A poses EphemeralReveal(sid∗) and StaticReveal(S) s.t. S ∈ AA.
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To finish the proof, we investigate events AskS ∧ Suc∗ and Ei ∧ AskS ∧ Suc∗
(i = 1, . . . , 6) that cover all cases of event Suc∗.

6.1 Event AskS ∧ Suc∗

In the event AskS, A poses the static secret key (S′
A, {TA}, {SA}) to H2 before

posing StaticReveal queries or MasterReveal query, or without posing StaticReveal
queries or MasterReveal query. The solver S embeds instance as gzT = e(α, β)
and extract gz = gab from S′

A and TA1 because S knows r and can compute
S′
A/T

r
A1

= gz. Then, S obtains BDH(α, β, γ) = e(gz, γ).

6.2 Event E1 ∧ AskS ∧ Suc∗

In the event E1, the test session sid∗ has no matching session sid
∗
, A

poses StaticReveal(S) s.t. S ∈ AB, and does not pose EphemeralReveal(sid∗),
MasterReveal or StaticReveal(S) s.t. S ∈ AA by the condition of freshness. In the
case of event E1 ∧AskS ∧ Suc∗, S performs the following steps.

Init. The GBDH solver S receives a BDH tuple (g, α, β, γ) as a challenge. Also,
S receives (M∗

A, ρ
∗
A) for A∗

A and (M∗
B, ρ

∗
B) for A∗

B as a challenge access structure
from A. M∗

A is �∗A × n∗A matrix and M∗
B is �∗B × n∗B matrix.

Setup. S chooses z′ ∈R Zp and lets gzT := e(α, β)gz
′
T (i.e., z = ab+z′ implicitly).

S embeds gr := α and outputs the master public key MPK = (g, gr, gzT ).
S randomly selects two parties A,B and integers iA ∈R [1, L] that becomes

a guess of the test session with probability 1/n2L. S sets the ephemeral public
key of iAth session of A as follows: First, S programs the random oracle H1

by building a table. For each j, k pair where 1 ≤ j ≤ nmax and k such that
ρ∗A(i) = k for 1 ≤ i ≤ �∗A, S chooses a random value hj,k ∈R Zp. Then, let
H1(j, k) = ghj,kαMA

∗
i,j for 1 ≤ j ≤ n∗A and k such that ρ∗A(i) = k for 1 ≤ i ≤ �∗A.

Otherwise, let H1(j, k) = ghj,k .6 Next, S lets X := γ and chooses random values
x2, . . . , xn∗

A
∈ Zp and sets x1 = 0. Then, S computes Ui,j = αM

∗
Ai,j

xjγ
−hj,ρ∗

A
(i)

for 1 ≤ i ≤ �∗A and 1 ≤ j ≤ n∗A (i.e., (u1, . . . , un∗
A
) = (c, c + x2, . . . , c + xn∗

A
)

implicitly), and Ui,j = γ−hj,ρ∗(i) for 1 ≤ i ≤ �∗A and n∗A + 1 ≤ j ≤ nmax. Finally,
S sets the ephemeral public key EPKA = (X, {U}) of iAth session of A.

Simulation. S simulates oracle queries by A as follows. S maintains the
lists LH1 , LH2 and LH3 that contains queries and answers of the H1, H2 and
H3 oracles respectively, and the list LK that contains queries and answers of
SessionReveal.

1. H1(j, k): If there exists a tuple (j, k, ∗) ∈ LH1 , S returns the registered value.
Otherwise, S chooses hj,k ∈R Zp, returns ghj,k and records it to LH1 .

6 All H1(j, k) are distributed randomly due to the ghj,k . Also, since ρ∗
A is injective,

for any k there is at most one i such that ρ∗
A(i) = k.
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2. H2(S′, {T }, {S}, ũj): If there exists a tuple (S′, {T }, {S}, ũj, ∗) ∈ LH2 , S
returns the registered value.7 Otherwise, S chooses uj ∈R Zp, returns uj
and records it to LH2 .

3. H3(σ1, σ2, σ3, (X, {U},MP , ρP ), (Y, {V },MP̄ , ρP̄ )):
(a) If there exists a tuple (σ1, σ2, σ3, (X, {U},MP , ρP ), (Y, {V },MP̄ , ρP̄ ), ∗) ∈

LH3 , S returns the registered value.
(b) Else if there exists a tuple (I, SP , SP̄ , (X, {U},MP , ρP ), (Y, {V }, MP̄ ,

ρP̄ ), ∗) ∈ LK or (R, SP̄ , SP , (X, {U},MP , ρP ), (Y, {V },MP̄ , ρP̄ ), ∗) ∈
LK , DBDH(X, α, β, σ1) = 1, DBDH(Y, α, β, σ2) = 1 and e(X,Y ) =
e(g, σ3), then S returns the recorded value and record it in the list LH3 .

(c) Else if DBDH(X,α, β, σ1) = 1, DBDH(Y, α, β, σ2) = 1, e(X,Y ) =
e(g, σ3), P = A, P̃ = B and the session is iA-th session of A, then S
stops and is successful by outputting the answer of the GBDH problem
σ1 = BDH(α, β, γ).

(d) Otherwise, S returns a random value K ∈R {0, 1}κ and records it in the
list LH3 .

4. Send(I, SP , SP̄ ): If P = A and the session is iA-th session of A, S returns the
ephemeral public key EPKA computed in the setup. Otherwise, S computes
the ephemeral public key EPKP obeying the protocol, returns it and records
(SP , SP̄ , (EPKP ,MP , ρP )).

5. Send(R, SP̄ , SP , (EPKP ,MP , ρP )): S computes the ephemeral pub-
lic key EPKP̄ obeying the protocol, returns it and records
(SP , SP̄ , (EPKP ,MP , ρP ), (EPKP̄ ,MP̄ , ρP̄ )) as the completed session.

6. Send(I, SP̄ , SP , (EPKP ,MP , ρP ), (EPKP̄ ,MP̄ , ρP̄ )): If (SP , SP̄ , (EPKP ,
MP , ρP )) is not recorded, S records the session (SP , SP̄ , (EPKP ,MP , ρP ))
is not completed. Otherwise, S records the session is completed.

7. SessionReveal(sid):
(a) If the session sid is not completed, S returns an error message.
(b) Else if sid is recorded in the list LK , then S returns the recorded valueK.
(c) Else if (σ1, σ2, σ3, (X, {U},MP , ρP ), (Y, {V },MP̄ , ρP̄ )) is recorded in the

list LH3 , DBDH(X,α, β, σ1) = 1, DBDH(Y, α, β, σ2) = 1 and e(X,Y ) =
e(g, σ3), then S returns the recorded value K and records it in the list
LK .

(d) Otherwise, S returns a random value K ∈R {0, 1}κ and records it in the
list LK .

8. EphemeralReveal(sid): S returns a random value ũ1, . . . , ũn where n is the
size of the column of M in sid and records it.

9. StaticReveal(SP ): In the event E1, SP does not satisfy M∗
A. Without loss of

generality, we can suppose that M∗
Ai,j = 0 for n∗A + 1 ≤ j ≤ nmax. By the

definition of LSSSs, S can efficiently find a vector w = (w1, . . . , wnmax) ∈
Znmax
p such that w1 = −1 and for all i where ρ∗A(i) ∈ SP we have that

7 c, x2, . . . , xn∗
A

are not registered in LH2 . However, A does not pose

EphemeralReveal(sid∗) and so cannot know information about c̃, x̃2, . . . , x̃n∗
A

corresponding to c, x2, . . . , xn∗
A
. Thus, A cannot distinguish the real experiment

from the simulation by such queries.
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w ·M∗
Ai,j

= 0. Note that, we can simply let wj = 0 and consider M∗
Ai,j = 0

for n∗A + 1 ≤ j ≤ nmax.
S sets the static secret key SKP as follows: S chooses random values y1,
. . . , ynmax ∈R Zp and computes S′

P := gz
′
αy1 and TPj = gyj · βwj (i.e., tj =

yj +wjb implicitly). Also, S sets SPk
for k ∈ SP as SPk

:=
∏
i≤j≤nmax

T
hj,k

Pj

for k ∈ SP where there is no i such that ρ∗A(i) = k. For k ∈ SP where there
is i such that ρ∗A(i) = k, S sets SPk

:=
∏
i≤j≤nmax

ghj,kyj · βhj,k · γMA∗
i,j
yj .

10. MasterReveal: S aborts with failure.8
11. Establish(P, SP ): S responds to the query as the definition.
12. Test(sid): If the ephemeral public key in the session sid is not EPKA, then

S aborts with failure. Otherwise, responds to the query as the definition.
13. If A outputs a guess b′, S aborts with failure.

Analysis. The simulation for S is perfect except with negligible probability.
The probability that A selects the session, where the ephemeral public key is
EPKA, as the test session sid∗ is at least 1

N2L .
Under the event Suc∗, A poses correctly formed σ1, σ2, σ3 to H3. Therefore,

S is successful and does not abort.
Hence, S is successful with probability Pr[S solves the GBDH problem] ≥

p1
n2s , where p1 is probability that E1 ∧AskS ∧ Suc∗ occurs.

6.3 Other Events

Event E2∧AskS∧Suc∗. In the eventE2, the test session sid∗ has no matching
session sid

∗
, A poses EphemeralReveal(sid∗), and A does not pose StaticReveal(S)

s.t. S ∈ AA, StaticReveal(S) s.t. S ∈ AB or MasterReveal by the condition of fresh-
ness. Thus, A cannot obtain no information about u1, . . . , unmax except negligible
guessing probability, sinceH2 is the random oracle. Hence, S performs the reduc-
tion same as in the case of event E1 ∧AskS ∧ Suc∗.

Event E3∧AskS∧Suc∗. In the event E3, the test session sid∗ has the match-
ing session sid

∗
, A poses MasterReveal or poses both StaticReveal(S) s.t. S ∈ AA

and StaticReveal(S) s.t. S ∈ AB, and A does not pose EphemeralReveal(sid∗) and
EphemeralReveal(sid

∗
) by the condition of freshness. S simulates the setup and

key generations obeying the scheme. S embeds the BDH instance asX = gx = α,
Y = gy = β in sid∗, and extracts gab from σ3 = gxy. Then, S obtains
BDH(α, β, γ) by e(σ3, γ).

Event E4∧AskS∧Suc∗. In the event E4, the test session sid∗ has the match-
ing session sid

∗
, A poses EphemeralReveal(sid∗) and EphemeralReveal(sid

∗
), and

does not pose StaticReveal(S) s.t. S ∈ AA, StaticReveal(S) s.t. S ∈ AB or
MasterReveal by the condition of freshness. Then, A cannot obtain no informa-
tion about u1, . . . , unmax and v1, . . . , vnmax except negligible guessing probability
because H2 is the random oracle and outputs of StaticReveal are randomized.
Hence, S performs the reduction same as in the case of event E3 ∧AskS ∧Suc∗.
8 In the event E1, A does not pose MasterReveal query.
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Event E5∧AskS∧Suc∗. In the event E5, the test session sid∗ has the match-
ing session sid

∗
, A poses StaticReveal(S) s.t. S ∈ AB and EphemeralReveal(sid

∗
),

and does not pose EphemeralReveal(sid∗), StaticReveal(S) s.t. S ∈ AA or
MasterReveal by the condition of freshness. Then, A cannot obtain no informa-
tion about v1, . . . , vnmax except negligible guessing probability because H2 is the
random oracle and outputs of StaticReveal are randomized. Hence, S performs
the reduction same as in the case of event E3 ∧AskS ∧ Suc∗.

Event E6∧AskS∧Suc∗. In the event E6, the test session sid∗ has the match-
ing session sid

∗
, A poses StaticReveal(S) s.t. S ∈ AA and EphemeralReveal(sid∗),

and does not pose EphemeralReveal(sid
∗
), StaticReveal(S) s.t. S ∈ AB or

MasterReveal by the condition of freshness. Then, A cannot obtain no infor-
mation about u1, . . . , unmax except negligible guessing probability because H2 is
the random oracle and outputs of StaticReveal are randomized. Hence, S per-
forms the reduction same as in the case of event E3 ∧AskS ∧ Suc∗. ��
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Abstract. We discuss the relationship between ID-based key agree-

ment protocols, certificateless encryption and ID-based key encapsula-

tion mechanisms. In particular we show how in some sense ID-based key

agreement is a primitive from which all others can be derived. In doing

so we focus on distinctions between what we term pure ID-based schemes

and non-pure schemes, in various security models. We present security

models for ID-based key agreement which do not “look natural” when

considered as analogues of normal key agreement schemes, but which

look more natural when considered in terms of the models used in cer-

tificateless encryption. Our work highlights distinctions between the two

approaches to certificateless encryption, and adds to the debate about

what is the “correct” security model for certificateless encryption.

1 Introduction

The notion of certificateless encryption was introduced by Al-Riyami and Pa-
terson [3] and considers the following setting, that is similar to that of identity-
based encryption. Each user is represented by a string ID (his identity) and has
a matching secret key produced by a Key Generation Center (KGC). Further-
more each user has also a public/secret key pair, as in the traditional public key
model. The main advantages of certificateless encryption are that such public
keys do not need to be certified and the KGC cannot decrypt ciphertexts of
users. In general, the security of certificateless encryption schemes is formalized
by two properties related to semantic security of standard encryption schemes:
Type I and Type II security. Type I security considers adversaries that are able
to replace the public keys of users while Type II security is stated with respect
to malicious KGCs.
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Ever since its introduction in [3] certificateless encryption has been the subject
of debate as to what is the “correct” definition. This is not only a question of
the definition of the security model, but also the syntax and functionality of
the schemes itself. Many papers have presented differing restrictions for the
adversaries in both Type I and Type II security games, creating a lot of different
security definitions, with each paper claiming theirs to be the “correct” one.
Also other papers have presented new syntax (with similar claims). Most of the
claims are actually related to what can be proved about the schemes the papers
present, rather than some deeper philosophical discussion. We refer the reader
to [14] for a balanced summary of the existing models and schemes.

1.1 Our Contribution

This paper takes a different approach to the study of certificateless schemes, by
studying their relationship to identity-based encryption. We do so in order to
take a step back from scheme construction and instead concentrate on what the
correct security and syntactic definitions should be. To simplify our discussion
we will concentrate on the simpler notion of key-encapsulation (KEM) rather
than encryption.

We show two main results: (1) a natural transform of certain CL-KEM schemes
into ID-KEM schemes. In addition there is (2) another natural transform of all
identity-based key agreement (ID-KA) protocols into CL-KEM schemes. We note
that all our security relationships under our transforms hold in the standard model.

The motivation for this research is twofold: (i) by analyzing these transforma-
tions we are able to get a better understanding of what are the “correct” security
notions and syntaxes for CL encryption; (ii) these reductions may give us a generic
toolbox to construct new, and potentially improved, CL and ID schemes.

Pure and non-pure schemes. Certificateless schemes in the literature can be
syntactically classified into two large classes, which we call pure and non-pure.
This distinction between pure and non-pure schemes also applies to existing ID-
KA protocols. Informally, a pure ID-based key agreement (resp. certificateless
scheme) is one in which the parties compute their messages without using their
long-term secret keys (which is used only in the derivation of the shared session
key). As we will show, such pure schemes allow various functionalities such as
encryption into-the-future etc. Interestingly there are no-known pure schemes
(either ID-KA or CL-KEM) which do not use pairing-based groups.

We show a natural standard model transformation from a pure CL-KEM to a
ID-KEM and we determine the precise security properties of the CL-KEM under
which the resulting ID-KEM is secure in the usual sense. The hope is that this
generic transformation might in the future yield new constructions for ID-based
encryption. It is worthwhile to observe that this transform does not work for
non-pure CL-KEMs. This is not surprising as non-pure CL-KEMs are the only
ones that can be constructed without pairings. So, in some sense this shows
that certificateless encryption is a simpler primitive than ID-based encryption,
although the reverse is commonly believed (as CL encryption is thought as an
extension of ID-based one).
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Towards a correct security model for CL-KEMs and ID-KA pro-

tocols. Next we show a natural generic transform of ID-KA protocols into
CL-KEM schemes. The goal here is to gain some understanding on the cor-
rect security models for these notions. In particular we investigate what security
models in the ID-KA setting imply, through our transform, certain specific CL-
KEM security models. For lack of space, we do not look at all CL-KEM security
models, but we do consider the main ones. Our results, all proven in the stan-
dard model, can be summarized in two distinct points. First, if one concentrates
on pure schemes [11], then the associated transforms have a tight security re-
duction. This supports our previous point that pure schemes have more/better
features. Second, the required security models in the ID-KA setting needed to
imply strong notions of security in the CL-KEM setting are highly non-standard
security notions for key agreement models. This last point can be interpreted in
one of two ways: either the strong security models for CL-KEM schemes are un-
natural and that the weaker definitions should suffice, or the security notions for
ID-KA protocols (and by implication all other forms of key agreement protocol)
are too weak.

At the end of the paper we try to draw some conclusions as to what the “cor-
rect” models for certificateless encryption and ID-based key agreement should
be. Our conclusion is that perhaps the strong security models for certificateless
encryption are probably correct, and that it is the security models for ID-KA
protocols, and indeed standard public key or symmetric key based key agreement
protocols, which need to be strengthened.

Our main generic constructions can be summarized by reference to Figure 1,
the definitions used in the arrows will become clear as we define them in the
following pages.

ID-KA
�

ka Reveal∗ =⇒ Strong Type-I*

ka Rewind =⇒ Weak Type-Ib*

mk-fs Reveal∗

=⇒ Strong Type-II

mk-fs Rewind
=⇒ Weak Type-II

CL-KEM
�Pure Only

Strong Type-I*

=⇒ ID-IND-CCA

ID-KEM

Fig. 1. Relationships Between Schemes

As a final side-result of independent interest, as part of our analysis we con-
sider a weakened notion of Type-I security for certificateless schemes (which we
denote by Type-I* etc). This is because we have discovered an overlap in the
standard security definitions for Strong Type-I and Strong Type-II security for
CL-KEMs. By weakening the definition of Type-I security slightly, we remove
this overlap and at the same time simplify a number of our security proofs, whilst
not reducing the overall security result for the resulting CL-KEMs.
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Other related work. Our results are similar to the work of Paterson and
Srinivasan [17] on the link between ID-based non-interactice key distribution
(NIKD) and ID-based encrytion. In [17] the authors present a security model
for ID-based NIKD and provide a transform from an ID-based NIKD to an
ID-based encryption scheme. We note that the extension of this result to con-
structing ID-KEMs is immediate. However, this transform is not generic in that
it requires special syntactic properties of the base ID-based NIKD scheme. Our
transforms from ID-KA protocols (i.e. interactive protocols) to CL-KEMs and
ID-KEMs are generic and do not require any special syntactic properties of the
underlying ID-KA protocol. In addition the transform of [17] results in ID-IND-
CPA ID-KEMs/ID-based encryption schemes. Indeed to obtain full CCA secure
KEMs/encryption schemes it is easy to see that one needs to extend the secu-
rity model in [17] for ID-based NIKD schemes in such a way as to provide the
adversary with an analogue of our Reveal∗ oracles. Thus whilst our results are
syntactically stronger than those of [17], the security results are roughly equiva-
lent. That we can achieve more syntactically is due to us considering interactive,
as opposed to non-interactive, protocols as our starting point.

2 Identity-Based Key Agreement

In this section we present the notion of ID-based key agreement. We will only
consider two pass ID-based key agreement protocols in this paper as this sim-
plifies the algorithm descriptions somewhat.

ID-Based Key Agreement Definition. A two-pass ID-based key agreement
protocol is specified by six algorithms which run in polynomial time in the se-
curity parameter. The two passes are illustrated in Figure 2. We let ID denote
the set of possible user identities and K KA(mpkKA) be the set of valid session keys
for the public parameter mpkKA.

– KASetup(1t) is a PPT algorithm that takes as input the security parameter
1t and returns the master public keympkKA and the master secret keymskKA.

– KeyDer(mskKA, ID) is the private key extraction algorithm. It takes as input
mskKA and ID ∈ ID and it returns the associated private key dID. This
algorithm may be deterministic or probabilistic.

– Initiate(mpkKA, dI). This is a PPT algorithm run by the initiator, with iden-
tity I, of the key agreement protocol which produces the ephemeral public
key epkI for transmission to another party. The algorithm stores eskI , the
corresponding ephemeral private key, for use later1.

– Respond(mpkKA, dR). This is a PPT algorithm run by the responder, with
identity R, of the key agreement protocol which produces the ephemeral
public/private key (epkR, eskR).

1 Notice that we refer to the messages exchanged by the parties as public keys, and

their secret states after the computation of the message as secret keys. Jumping

ahead, this is because that’s the role these values play in our transformation from

KA to CL scheme.
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– DeriveI(mpkKA, dI , eskI , epkR, R). This is a (possibly probabilistic) algorithm
run by the initiator to derive the session key KI ∈ K KA(mpkKA) with R.

– DeriveR(mpkKA, dR, eskR, epkI , I). This is a (possibly probabilistic) algorithm
run by the responder to derive the session key KR ∈ K KA(mpkKA) with I.

Initiator Responder

dI , mpkKA dR , mpkKA

(epkI , eskI)←Initiate(mpkKA, dI)
epkI−→
epkR←− (epkR, eskR)←Respond(mpkKA, dR)

KI←DeriveI(mpkKA, dI , eskI , epkR, R) KR←DeriveR(mpkKA, dR, eskR, epkI , I)

Fig. 2. Diagrammatic view of two-pass ID-KA protocols

For correctness we require that in a valid run of the protocol we have that
KI = KR. Notice, that the creation of the ephemeral public/private key pairs
does not depend on the intended recipient. Most ID-KA protocols are of this
form. For example in [11] ID-based key agreement protocols based on pairings
are divided into four Categories. Only in Categories 2 and 4 does the emphemeral
key pair depend on the intended recipient, these being protocols in the Scott [18]
and McCullagh–Barreto [16] families. The majority of pairing-based ID-based
key agreement protocols lie in the Smart [20] family (denoted Category 1 in
[11]), with Category 3 (the Chen–Kudla family [12]) also sharing this property.
The non-pairing based protocol of Fiore and Gennaro [15] also has this property.

If the algorithms Initiate and Respond do not require access to dI and dR
respectively, then we call the protocol a pure identity based key agreement pro-
tocol. This is because the ephemeral public keys can be created before the sender
knows his long term secret key. This therefore allows forms of sending-into-the-
future which are common in many IBE style schemes. We shall return to this
distinction below when discussing the conversion of ID-KA protocols into cer-
tificateless schemes. Indeed identifying differences between these two forms of
ID-KA protocols and certificateless schemes, forms a significant portion of the
current paper. In the categorization of [11] Categories 1, 3 and 4 are all pure
ID-based key agreement protocols, whilst Category 2 and the non-pairing based
FG protocol are non-pure.

A key agreement protocol is said to be role symmetric if algorithm Initiate is
identical to algorithm Respond and algorithm DeriveI is identical to algorithm
DeriveR. The FG protocol is role symmetric, but role symmetry is a more complex
property to determine for pairing-based protocols. For example whether a scheme
is role symmetric can depend on whether one instantiates the protocol with
symmetric or asymmetric pairings. For the schemes in [11] (and focusing solely
on the more practical scenario of asymmetric pairings) all those in Categories
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2 and 4 are role symmetric, those in Category 3 are not, whereas half of those
in Category 1 are. Of particular importance in Category 1 is the SCK protocols
(which are a combined version of the Smart and Chen–Kudla protocol), these
are highly efficient and role symmetric.

Defining Security for ID-Based Key Agreement. We will be using a mod-
ified version of the Bellare–Rogaway key exchange model, as extended to an
identity-based setting. Our model is an extension of the model contained in
Chen et al. [11], but we extend it in various ways which we will describe later.
So as to be precise we describe the model in more formal details than that used in
[11], however we shall (as stated above) be focusing solely on two-pass protocols,
which explains some of our specifications in what follows.

Security of a protocol is defined by a game between an adversary A and a
challengerE. At the start of the game the adversaryA is passed the master public
key mpkKA of the key generation centre. During the game the adversary is given
access to various oracles O which maintain various meta-variables, including

– roleO ∈ {initiator , responder ,⊥}. This records the type of session to which
the oracle responds.

– pidO ∈ U . This keeps track of the intended partner of the session maintained
by O.

– δO ∈ {⊥, accepted , error}. This determines whether the session is in a fin-
ished state or not.

– γO ∈ {⊥, corrupted , revealed}. This signals whether the oracle has been cor-
rupted or not.

– sO. This denotes the session key of the protocol if the protocol has completed.

The adversary can execute a number of oracle queries which we now describe.

– NewSession(U, V ) This creates a new oracle, to represent the new session,
which we shall denote by O = Πi

U,V , where i denotes this is the ith session
for the user with identity U , and that the indented partner is V . After calling
this oracle we have

pidO = V and sO = roleO = δO = γO =⊥ .

However, if any other oracle with identity U has been corrupted then we set
γO = corrupted .

– Send(O, role,msg). Recall we are only modelling two-pass protocols, hence
the functionality of this oracle can be described as follows:
• If δO �=⊥ then do nothing.
• If role = initiator then

∗ If msg =⊥, δO =⊥ and roleO =⊥ then set roleO = initiator and
output a message (i.e. send the first message flow in the protocol);

∗ If msg �=⊥ and roleO = initiator (i.e. msg is the second message flow
in the protocol) then compute sO and set δO = accepted ;

∗ Else set δO = error and return ⊥
• If role = responder then
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∗ If msg �=⊥ and roleO =⊥ then compute sO, set δO = accepted ,
roleO = responder and respond with a message (i.e. send the second
message flow in the protocol).

∗ Else set δO = error and return ⊥.
– Reveal(O). If δO �= accepted or γO = corrupted then this returns ⊥, other-

wise it returns sO and we set γO = revealed .
– Corrupt(U). This returns dU and sets all oracles O in the game (both now

and in the future) belonging to party U to have γO = corrupted . Notice,
that this is equivalent to the extract secret key query in security games for
other types of identity based primitives. Note, that we do not assume that
the rest of the internal state of the oracles belonging to U are turned over
to the adversary.

– Test(O∗). This oracle may only be called once by the adversary during the
game. It takes as input a fresh oracle (see below for the definition of fresh-
ness). The challenger E then selects a bit b ∈ {0, 1}. If b = 0 then the
challenger responds with the value of sO∗ , otherwise it responds with a ran-
dom key chosen from the space of session keys. We call the oracle on which
Test is called the Test-oracle.

At the end of the game the adversary outputs its guess b′ as to the bit b used by
the challenger in the Test query. We define the advantage of the adversary by

AdvID−KA(A) = |2 Pr[b′ = b] − 1| .

We now explain the Test(O∗) query in more detail. An oracle O∗ = Πi
U∗,V ∗ is

said to be fresh if: (1) δO∗ = accepted , (2) γ∗O �= revealed , (3) Party V ∗ is not
corrupted and (4) there is no oracle O′ with γO′ = revealed with which O∗ has had
a matching conversation. After the Test(O∗) query has been made the adversary
can continue making queries as before, except that it cannot: corrupt party V ∗,
call a reveal query on O∗’s partner oracle if it exists, call reveal on O∗.

Definition 1. A protocol Π is said to be a secure ID-KA protocol (or more
simply ka secure) if

1. In the presence of a benign adversary, which faithfully conveys messages, on
Πs
i,j and Πt

j,i, both oracles always accept holding the same session key, and
this key is distributed uniformly on {0,1}k;

2. For any polynomial time adversary A, AdvID−KA(A) is negligible.

Forward Secrecy. We also define a notion of master-key forward secrecy, (or
mk-fs secure) following [11]. In this model the adversary is also given the master
secret key mskKA. Thus the adversary can compute the private key dID of any
party. The security game is the same as above, except that instead of a fresh
oracle for the test session it chooses an oracle O∗ which satisfies:

1. δO∗ = accepted
2. γO∗ �= revealed
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3. There is an oracle O′ with which O∗ has had a matching conversation and
δO′ = accepted and γO′ �= revealed .

Weaker notions of forward-secrecy are implied by the above, for example perfect
forward secrecy gives the adversary access to a Corrupt oracle for any ID ∈ ID
but does not give the adversary access tomskKA. A weaker form of simply forward
secrecy is then implied where the adversary can only call the Corrupt oracle on
one party in the test session, i.e. we must have either γO∗ =⊥ or γO′ =⊥.

The advantage for forward secrecy of an adversary is defined in the same way
as above and is denoted by one of

Advmk−fsID−KA (A), Advp−fsID−KA(A) or AdvfsID−KA(A),

as appropriate.
For non-pure ID-based key agreement protocols we can consider an additional

notion of forward secrecy, which we call active perfect forward secrecy (resp.
active forward secrecy). In this model we drop the third condition above that
there exists another oracle O′ with which O∗ has had a matching conversation.
This means that the adversary could have been active before corrupting the
parties, i.e. he sent one of the two message flows.

It is interesting to observe that such notion cannot be achieved by any pure
ID-based KA protocol because of the following attack. Assume the adversary
acts as initiator and computes epkI ← Initiate(mpkKA) (he can do that without
dI as the protocol is pure). He can initiate a new session oracle setting epkI as
first message, then ask for the second message and later make a test query on
this oracle. When the adversary corrupts I then he will have all the informations
needed to compute the correct session key and so he will be able to distinguish
wether he received the real session key or a random one. It is easy to see that
such attack does not apply to the case of non-pure protocols as the private key
is needed to produce protocol’s messages.

Our augmented security model. In our analysis of converting ID-based key
agreement protocols into certificateless schemes we will require stronger security
notions in which the adversary will have access to additional oracles. We define
three such oracles, the first one is relatively standard, whilst the second two are
new. The second can be motivated by similar arguments one uses to motivate
resettable zero-knowledge [9], whilst the third oracle is a natural analogue in the
key agreement setting of the strong adversarial powers one gives an adversary
for certificateless schemes. One may therefore consider the extreme nature of
the third oracle as an additional argument as to why the certificateless strongest
security model looks excessive.

– StateReveal(O). If roleO =⊥ then do nothing. Otherwise return the value of
the ephemeral secret key held within the oracle.

– Rewind(O). If roleO = initiator and δO = accepted then this returns O to
the state it was in before it received its last message, i.e. it sets δO = sO =⊥.
If we have γO = revealed then we also reset γO to ⊥.
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– Reveal∗(I, R, epkI , epkR). This is a stronger version of the Reveal query in
that it is not associated to an oracle, but simply takes the two message flows
and returns the associated agreed shared secret assuming these messages
had been transmitted between party I and party R. There is an obvious
restriction in that the adversary is not allowed to call this oracle on the
message flows used in the Test query, nor (for role-symmetric protocols)
with the message flows used in the Test query but with the roles of initiator
and responder swapped.

The StateReveal(O) query corresponds to an adversarial power which can par-
tially corrupt a party, but which does not allow the adversary to obtain the long
term secret. This power has been used in numerous works starting with [10], and
is often considered to be the main distinction between the CK model and the
BR model for key exchange [13].

The presence of the Rewind(O) oracle enables the adversary to extract more
information for a particular set of ephemeral and static public key pairs. To
intuitively see what the Rewind(O) oracle provides us, imagine a standard key
agreement protocol based on standard Diffie–Hellman, for example the Station-
to-Station protocol. Usually one reduces the security of this protocol to the
decisional Diffie–Hellman problem (DDH). But with the presence of a Rewind(O)
oracle the adversary can take a test oracle (which has output the ephemeral
public key gx) and obtain, using a combination of the Rewind(O) and Reveal(O)
oracles, values of the form hx for values of h of the adversaries choosing. This
means the simulator is essentially solving the DDH problem with access to a
static-Diffie–Hellman oracle.

The Reveal∗(I, R, epkI , epkR) is a very strong oracle. As we will show later,
if a protocol is secure even when an adversary is given such an oracle we are
able to transform the protocol into a certificateless encryption scheme which also
satisfies a strong security notion.

We say a protocol is a secure ID-KA protocol in the Rewind-model (resp.
Reveal∗-model) if it is secure as ID-based key agreement protocol where we give
the adversary access to a Rewind (resp. Reveal∗) oracle. If we require access
to two of these oracles we will call the model, for instance, the (StateReveal ,
Rewind)-model, We call these extra models, augmented models, since they aug-
ment the standard security model with extra functionality. Similarly we can
define augmented notions for master-key forward secrecy.

3 From Mutual to One-Way Authentication

In many key agreement protocols one is only interested in one-way authentica-
tion. SSL/TLS is a classic example of this, where the server is always authenti-
cated but the user seldom is. We overview in this section the modifications to
the previous syntax of ID-KA protocols which are needed to ensure only one-way
authentication and show how to convert a mutually authenticated identity-based
key agreement protocol into one which is only one-way authenticated. The rea-
son for introducing only one-way authentication is that this enables us to make
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the jump to certificateless encryption conceptually easier, and can also result in
simpler schemes. We assume the responder in a protocol is the one who is not au-
thenticated, this is to simplify notation in what follows. The scheme definitions
are then rather simple to extend.

We note that any protocol proved to be secure for mutual authentication, can
be simplified and remain secure in the context of one-way authentication. The
transformation from mutual to one-way authentication is performed as follows.
An identity is selected, let us call it R0, which acts as a “dummy” responder
identity. A “dummy” secret key is then created for this user and this is pub-
lished along with the master public key. Notice, that by carefully selecting the
dummy secret key one can often obtain efficiency improvements. The protocol
is then defined as before except that R0 is always used as the responding party,
and we drop any reference to dR0 . Thus we call Respond(mpkKA) rather than
Respond(mpkKA, dR0). Similarly we call

DeriveR(mpkKA, eskR0 , epkID, ID) and DeriveI(mpkKA, dID, eskID, epkR0
)

rather than

DeriveR(mpkKA, dR0 , eskR0 , epkID, ID) and DeriveI(mpkKA, dID, eskID, epkR0
, R0).

In the security model all oracles either have R0 as an intended partner, or the
oracle belongs to R0. If the oracle belongs to R0 then it is corrupted, since R0’s
secret key is public. This means that only oracles belonging to R0 may be used
in the Test queries.

We argue that if the original protocol is secure then its one-way version (ob-
tained as described above) is also one-way secure. To see this observe that an ad-
versary A that breaks the security of the one-way protocol can be turned into an
adversary B against the original protocol. Assume A breaks the security choosing
a test session that involves a user ID (and the dummy identity R0). Then B can
trivially choose a test oracle Πs

R0,ID
and forward the obtained key to A.

4 Certificateless Key Encapsulation Mechanisms

In this section we discuss various aspects of certificateless KEMs. The reader is
referred to [8] and [14] for further details.

CL-KEM Definition: A CL-KEM scheme is specified by seven polynomial
time algorithms:

– CLSetup(1t) is a PPT algorithm that takes as input 1t and returns the master
public keys mpkCL and the master secret key mskCL.

– Extract-Partial-Private-Key(mskCL, ID). If ID ∈ ID is an identifier string for
party ID this (possibly probabilistic) algorithm returns a partial private key
dID.

– Set-Secret-Value is a PPT algorithm that takes no input (bar the system
parameters) and outputs a secret value sID.
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– Set-Public-Key is a deterministic algorithm that takes as input sID and
outputs a public key pkID.

– Set-Private-Key(dID, sID) is a deterministic algorithm that returns skID the
(full) private key.

– Enc(mpkCL, pkID, ID) is the PPT encapsulation algorithm. On input of pkID,
ID and mpkCL this outputs a pair (C,K) where K ∈ K CL−KEM(mpkCL) is a
key for the associated DEM and C ∈ C CL−KEM(mpkCL) is the encapsulation
of that key.

– Dec(mpkCL, skID, C) is the deterministic decapsulation algorithm. On input
of C and skID this outputs the corresponding K or a failure symbol ⊥.

Baek et al. gave in [5] a different formulation where the Set-Public-Key algorithm
takes the partial private key dID as an additional input. In this case it is possible
to combine the Set-Secret-Value, Set-Public-Key and Set-Private-Key algorithms
into a single Set-User-Keys algorithm that given as input the partial private key
dID of ID outputs pkID and skID. While the Baek et al. formulation may seem
at first glance to be a simplification, it stops various possible applications of
certificateless encryption, such as encrypting into the future. Extending our def-
inition of pure and non-pure ID-based key agreement protocols to this situation,
we shall call certificateless schemes which follow the original formulation as pure,
and those which follow the formulation of Baek et al. as non-pure.

4.1 CL-KEM Security Model

To define the security model for CL-KEMs we simply adapt the security model
of Al-Riyami and Paterson [3] into the KEM framework, as explained in [8].
The main issue with certificateless encryption is that, since public keys lack au-
thenticating information, an adversary may be able to replace users’ public keys
with public keys of its choice. This appears to give adversaries enormous power.
However, the crucial part of the certificateless framework is that to compute the
full private key of a user, knowledge of the partial private key is necessary.

To capture the scenario above, Al-Riyami and Paterson [2,3,4] consider a
security model in which an adversary is able to adaptively replace users’ public
keys with (valid) public keys of its choice. Such an adversary is called a Type-I
adversary below.

Since the KGC is able to produce partial private keys, we must of course
assume that the KGC does not replace users public keys itself. By assuming that
a KGC does not replace users public keys itself, a user is placing a similar level of
trust in a KGC that it would in a PKI certificate authority: it is always assumed
that a CA does not issue certificates for individuals on public keys which it has
maliciously generated itself! We do however treat other adversarial behaviour of a
KGC: eavesdropping on ciphertexts and making decryption queries for example.
Such an adversarial KGC is referred to as a Type-II adversary below.

Below we present a game to formally define what an adversary must do to
break a certificateless KEM [8]. This is a game run between a challenger and a
two stage adversary A = (A1,A2). Note that X can be instantiated with I or II
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in the description below and that the master secret mskCL is only passed to the
adversary in the case of Type-II adversaries.

Type-X Adversarial Game
1. (mpkCL,mskCL)←CLSetup(1t).
2. (ID∗, s)←AO

1 (mpkCL,mskCL).
3. (K0, C

∗)←Enc(mpkCL, pk∗, ID∗).
4. K1←K CL−KEM(mpkCL).
5. b←{0, 1}.
6. b′←AO

2 (C∗, s, ID∗,Kb).

When performing the encapsulation, in line three of both games, the challenger
uses the current public key pk∗ of the entity with identifier ID∗. The adversary’s
advantage in such a game is defined to be

AdvType−X
CL−KEM(A) = |2 Pr[b′ = b] − 1|

where X is either I or II. A CL-KEM is considered to be secure, in the sense of
IND-CCA2, if for all PPT adversaries A, the advantage in both the games is a
negligible function of t.

The crucial point of the definition above is to specify which oracles the ad-
versary is given access and which are the restrictions of the game. According
to such specifications one can obtain different levels of security. A detailed dis-
cussion about all possible security definitions is given by Dent in [14]. In the
following we describe the various oracles O available to the adversaries, we then
describe which oracles are available in which game and any restrictions on these
oracles.

– Request Public Key: Given an ID this returns to the adversary a value
for pkID.

– Replace Public Key: This allows the adversary to replace user ID’s public
key with any (valid) public key of the adversaries choosing.

– Extract Partial Private Key: Given an ID this returns the partial private
key dID.

– Extract Full Private Key: Given an ID this returns the full private key
skID.

– Strong Decap: Given an encapsulation C and an identity ID, this returns
the encapsulated key. If the adversary has replaced the public key of ID,
then this is performed using the secret key corresponding to the new public
key. Note, this secret key may not be known to either the challenger or the
adversary, hence this is a very strong oracle.

– Weak SV Decap: This takes as input an encapsulation C, an identity ID
and a secret value sID. The challenger uses sID to produce the corresponding
full secret key of ID that is used to decapsulate C. Note, that sID may not
correspond to the actual current public key of entity ID. Also note that
one can obtain this functionality using the Strong Decap oracle when the
certificateless scheme is pure.
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– Decap: On input of an encapsulation C and an identity ID it outputs the
session key obtained decapsulating C with the original secret key created
by ID. One can obtain this functionality using a Strong Decap oracle if the
scheme is pure.

Using these oracles we can now define the following security models for certifi-
cateless KEMs, see [14] for a full discussion.

Strong Type-I Security: This adversary has the following restrictions to its
access to the various oracles.

– A cannot extract the full private key for ID∗.
– A cannot extract the full private key of any identity for which it has replaced

the public key.
– A cannot extract the partial private key of ID∗ if A1 replaced the public

key (i.e. the public key was replaced before the challenge was issued).
– A2 cannot query the Strong Decap oracle on the pair (C∗, ID∗) unless ID∗’s

public key was replaced after the creation of C∗.
– A may not query the Weak SV Decap or the Decap oracles (although for

pure schemes, one can always simulate these using the Strong Decap oracle).

We note that this security notion is often considered to be incredibly strong,
hence often one finds it is weakened in the following manner.

Weak Type-Ia Security: Dent describes in [14] a weaker security definition
called Weak Type-Ia that was also used in [8]. Weak Type-Ia security does not
allow the adversary to make decapsulation queries against identities whose public
keys have been replaced. In this case the restrictions on the adversaries oracle
access is as follows:

– A cannot extract the full private key for ID∗.
– A cannot extract the full private key of any identity for which it has replaced

the public key.
– A cannot extract the partial private key of ID∗ if A1 replaced the public

key (i.e. the public key was replaced before the challenge was issued).
– A may not query the Strong Decap oracle at any time.
– A2 cannot query the Weak SV Decap oracle on the pair (C∗, ID∗) if the

attacker replaced the public key of ID∗ before the challenge was issued.
– A2 cannot query the Decap oracle on the pair (C∗, ID∗) unless the attacker

replaced the public key before the challenge was issued.

Though this notion is clearly weaker than Strong Type-I, it still looks reason-
able for practical purposes. In fact Strong Type-I gives to the adversary as much
power as possible, but it is unclear whether a real adversary can obtain decap-
sulations in practice from users whose public keys have been replaced by the
adversary itself.

We pause to note that there are weaker forms of Type-I security called Weak
Type-Ib and Weak Type-Ic security. In Weak Type-Ib security access to the
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Weak SV Decap oracle is denied to the adversary, whereas in Weak Type-Ic
security not only denies access to the Weak SV Decap oracle, but it also denies
the ability to the replace public keys entirely. We also can define a CPA like-
notion, which we call Weak Type-I-CPA which denies access to all forms of
decapsulation oracle (this is a notion which is not used in other papers, but
which will be useful when we present our conclusions).

In addition, for each definition of Type-I security we can define a slightly
weaker variant denoted by ∗ (e.g. Strong Type-I*) in which the adversary cannot
query the partial private key of the target identity ID∗ at any point. This weaker
variant will simplify somewhat our security theorems. But, it still allows us to
obtain a final non-weakened result due to the combination with security theorems
for Type-II security, which we define below.

Strong Type-II Security: In the Type-II game the adversary has access to
the master secret key mskCL and so can create partial private keys itself. The
strong version of this security model enables the adversary to query the various
oracles with the following restrictions:

– A cannot extract the full private key for ID∗.
– A cannot extract the full private key of any identity for which it has replaced

the public key.
– A1 cannot output an identity ID∗ for which it has replaced the public key.
– A cannot query the partial private key oracle at all.
– A2 cannot query the Strong Decap oracle on the pair (C∗, ID∗) unless the

public key used to create C∗ has been replaced.
– A may not query the Weak SV Decap or the Decap oracles (although for

pure schemes, one can always simulate these using the Strong Decap oracle).

Note, because we assume in this case that the adversary is the KGC, the adver-
sary does not have access to the partial private key oracle since all partial private
keys are ones which he can compute given mskCL. This applies even in the case
where generation of the partial private key from mskCL and ID is randomised.

Weak Type-II Security: As for the case of Type-I security one can consider a
weaker variant of Type-II security In this notion the adversary is not allowed to
replace public keys at any point and thus it cannot make decapsulation queries
on identities whose public keys have been replaced. This is the traditional form of
Type-II security, and is aimed at protecting the user against honest-but-curious
key generation centres. Again a weak form, which we call Weak Type-II-CPA,
can be defined which gives no access to any decapsulation oracle, this form of
security will only be needed in the discussion leading up to our conclusions. There
are other strengthenings of the Type-II model which try to model completely
malicious key generation centres, see [14] for a discussion of these models. But
we will not consider these in this paper.

Full Type-I security from Type-I* security and Strong Type-II security:
In this section we justify our consideration of Type-I* security by showing that
proving a scheme Type-I* secure is sufficient to get “full” Type-I security if such
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a scheme also satisfies the strongest notion of Type-II security. In some sense
this says that the definitions Type-I and Strong Type-II overlap in a specific
case.

For ease of presentation we prove the theorem for the case of Strong Type-I
security, but it is easy to see that it holds even if the scheme is Weak-Type-
Ia*, Weak Type-Ib*, Weak Type-Ic* or Weak Type-I-CPA*. In this case one
obtains the corresponding level of security (e.g. Weak Type-Ia ). To complete
the picture we recall that Dent noted in [14] that Weak Type-II security implies
Weak Type-Ic security. We can state the following theorem whose proof can be
found in the full version of the paper.

Theorem 1. If a CL-KEM is Strong-Type-I* and Strong Type-II secure then it
is Strong Type-I secure

5 Generic Construction of CL-KEM from ID-KA

In this section we show our main result, namely a generic transform of any
ID-KA protocol into a CL-KEM scheme.

Suppose we are given algorithms for a one-way authenticated ID-KA protocol
(KASetup,KeyDer, Initiate,Respond, DeriveI ,DeriveR). Given a one-way identity-
based key agreement protocol KA, we let CL(KA) denote the derived certificate-
less KEM obtained from the following algorithms.

– CLSetup(1t). We run (mpkKA,mskKA)←KASetup(1t) and then set:
mpkCL←mpkKA and mskCL←mskKA.

– Extract-Partial-Private-Key(mskCL, ID). We set dID← KeyDer(mskKA, ID).
– The pair Set-Secret-Value and Set-Public-Key are defined by running

(epkID, eskID)←Initiate(mpkKA, [dID]).

The output of Set-Secret-Value is defined to be sID = eskID and the output
of Set-Public-Key is defined to be pkID = epkID.

– Set-Private-Key(dID, sID) creates skID by setting skID = (dID, sID).
– Enc(mpkCL, pkID, ID). This runs as follows:

• (epk0, esk0)←Respond(mpkKA).
• K←DeriveR(mpkKA, esk0, pkID, ID).
• C←epk0.

– Dec(mpkCL, skID, C). Decapsulation is obtained by executing

K←DeriveI(mpkKA, dID, skID, C).

In the above construction if the underlying ID-based key agreement protocol is
pure (resp. non-pure), then we will obtain a pure (resp. non-pure) certificate-
less KEM, i.e. it will follow the original formulation of Al-Riyami and Paterson
(resp. Baek et al.). To see this, notice that the Set-Public-Key function calls the
Initiate(mpkKA, [dI ]) operation, which itself may require dI .
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5.1 Security Results on the ID-KA to CL-KEM Transforms

Once we have defined our black-box construction of CL-KEM from ID-KA pro-
tocols we prove its security in the theorems below. As one can see, the theorems
show that the resulting CL-KEM can achieve different types of security accord-
ing to the security of the underlying ID-KA protocol. As already discussed in
the introduction, this relationship between the security models of ID-KA and
CL-KEM sheds light on understanding which are the correct notion of security
for the two primitives.

Theorem 2 (Type-I Security). Consider the certificateless KEM CL(KA)
derived from the one-way ID-based key agreement protocol KA as above:

– If KA is secure in the Reveal∗-model then CL(KA) is Strong Type-I* secure
as a certificateless KEM.

– If KA is secure in the Rewind model then CL(KA) is Weak Type-Ib* secure
as a certificateless KEM.

– If KA is secure in the normal model then CL(KA) is Weak Type-I-CPA*
secure as a certificateless KEM.

In particular if A is an adversary against the CL(KA) scheme (in the above
sense) then there is an adversary B against the KA scheme (also in the above
sense) such that for pure schemes we have

AdvType−I
CL−KEM(A) = AdvID−KA(B)

and for non-pure schemes we have

AdvType−I
CL−KEM(A) ≤ e · (qpk + 1) · AdvID−KA(B)

where qpk is the maximum number of extract public key queries issued by algo-
rithm B.

The proof of this theorem can be found in the full version of the paper.
We notice that the proof technique does not allow the simulator to provide

the partial private key of the challenge identity ID∗. Which is why our theorem
is stated for the case of Strong Type-I* (resp. Weak Type-Ib* or Weak Type-
I-CPA*). If we then apply the result of Theorem 1, along with the following
theorems, we obtain full Strong Type-I security (resp. Weak Type-Ib or Weak
Type-I-CPA) for the scheme CL(KA).

In looking at Type-II security we present two security theorems. The first one
(Theorem 3) is conceptually simpler but requires our underlying identity based
key agreement scheme to have a strong security property (i.e. it must support
state reveal queries). The second theorem (Theorem 4) is more involved and
does not provide such a tight reduction. On the other hand the second theorem
requires less of a security guarantee on the underlying key agreement scheme.
The proofs of both theorems can be found in the full version of the paper.

Theorem 3 (Type-II Security – Mk I). Consider the certificateless KEM
CL(KA) derived from the one-way ID-based key agreement protocol KA as above:

– If KA satisfies master-key forward secrecy in the (StateReveal ,Reveal∗)-
model then CL(KA) is Strong Type-II secure as a certificateless KEM.
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– If KA satisfies master-key forward secrecy in the (StateReveal ,Rewind)-
model then CL(KA) is Weak Type-II secure as a certificateless KEM.

– If KA satisfies master-key forward secrecy in the StateReveal-model then
CL(KA) is Weak Type-II-CPA secure as a certificateless KEM.

In particular if A is an adversary against the CL(KA) scheme (in the sense
described above) then there is an adversary B against the master-key forward
secrecy of the KA scheme (also in the above sense) such that

AdvType−II
CL−KEM (A) = Advmk−fsID−KA (B).

We now turn to showing that one does not necessarily need the StateReveal
query to prove security, although the complication in the proof results in a less
tight reduction.

Theorem 4 (Type-II Security – Mk II). Consider the certificateless KEM
CL(KA) derived from the one-way ID-based key agreement protocol KA as above:

– If KA satisfies master-key forward secrecy in the Reveal∗-model then
CL(KA) is Strong Type-II secure as a certificateless KEM.

– If KA satisfies master-key forward secrecy in the Rewind model then CL(KA)
is Weak Type-II secure as a certificateless KEM.

– If KA satisfies master-key forward secrecy in the normal model then CL(KA)
is Weak Type-II-CPA secure as a certificateless KEM.

In particular if A is an adversary against the CL(KA) scheme (in the above
sense) then there is an adversary B against the KA scheme (also in the above
sense) then we have

AdvType−II
CL−KEM (A) ≤ e · (qpk + 1) · Advmk−fsID−KA (B)

where qpk is the maximum number of extract public key queries issued by algo-
rithm B.

6 Identity-Based Key Encapsulation Mechanisms

In this section we are going to show the relationship between CL-KEM and
identity-based KEMs. In particular we will give a generic transformation from
any pure CL-KEM into an ID-KEM. As in the case of ID-KA and CL-KEM,
here it is also interesting to observe how the different security models of CL-
KEM transform into analogous models for ID-KEM. We defer the reader to [8]
for further details on the definitions and security models of ID-KEMs.

Generic Construction of ID-KEM from pure CL-KEM. To construct an
ID-KEM from a CL-KEM the obvious solution is to set the user public/private
keys to be trivial and known to all parties. This however can only be done for
pure CL-KEMs since in non-pure schemes one does not have complete control
over the public/private keys, since they depend on the partial private key dID.
We call the resulting scheme the ID(CL) scheme, as it is an ID-KEM built from
a CL-KEM. Now we can state the following theorem whose proof, for lack of
space, appears in the full version.
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Theorem 5. Consider the pure ID-KEM ID(CL) derived from the pure CL-KEM
scheme CL as above. Then if CL is Strong Type-I* secure then ID(CL) is ID-
IND-CCA secure. In particular if A is an adversary against the ID(CL) scheme
then there is an adversary B against the CL-KEM scheme such that

AdvID−IND−CCA
ID−KEM (A) = AdvStrong−Type−I∗

CL−KEM (B).

7 Conclusion: Which Certificateless Model Is Correct?

In this section we summarize the conclusions we have drawn from our analysis.
It is worth pointing out that these are personal conclusions, and we leave the
reader to draw their own analysis.

Firstly, all our conclusions are predicated on the assumption that our trans-
forms are all “natural”, in that they are the obvious way to convert an ID-KA
protocol into a CL-KEM and a CL-KEM into an ID-KEM. If these are the nat-
ural transformations then the underlying security and syntactic models should
also transform naturally.

Pure vs Non-Pure. First we discuss the issue of pure vs non-pure certificateless
schemes. Our transform from CL-KEMs to ID-KEMs requires the underlying
CL-KEM to be pure. This is not surprising as an essential feature of ID-based
cryptography is that of the identity (and hence the associated secret key) being
independent of all parameters bar the actual identity. It is not surprising even
because non-pure CL-KEMs are the only ones that can be constructed without
pairings.

We draw two conclusions from this. First, the pure syntax is more powerful
as it enables functionalities such as encryption-into-the-future (a.k.a. workflow).
Second, we can say that certificateless encryption is a primitive simpler than ID-
based encryption, although people have usually thought at the former as an ex-
tension of the latter. When ID-based encryption was proposed [19], one of its main
motivations was to avoid the certificates management issues of standard public
key encryption. Then it took almost twenty years to have IBE schemes, basically
thanks to the idea of exploiting pairings. From our considerations we can say that
the “hard part” of constructing ID-based encryption is not avoiding certificates,
but achieving those additional properties (e.g. workflows); i.e. technically speak-
ing, having a user’s public key independent of the scheme parameters.

CPA Security. Before turning to CCA security of certificateless encryption we
first consider the simpler case of CPA security. We remarked in the introduction
that the [17] construction of ID-based encryption from ID-based NIKD schemes
only produces CPA secure schemes, unless one assumes an oracle equivalent to
our Reveal∗ oracle.

Similar considerations apply in our case. The construction of ID-KEMs from
CL-KEMs will produce a CPA secure ID-KEM if the underlying CL-KEM is
Weak Type-I-CPA* secure. Note, that we only require Weak Type-I-CPA* and
not Weak Type-I-CPA security. In constructing CL-KEMs from ID-KA protocols
we need to consider what security is required of the underlying ID-KA protocol to
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ensure Weak Type-I-CPA and Weak Type-II-CPA security of the CL-KEM. Our
theorems show that a sufficient condition is that the underlying ID-KA protocol
is secure in the standard sense, i.e. with no Reveal∗, Rewind or StateReveal
oracles. Although the security reduction is tighter if we assume the adversary
has access to StateReveal oracles, i.e. we use a CK-like security model for ID-
based key agreement. We note that the security reductions go through more
naturally when one considers the CL-KEM to have Weak Type-I-CPA* security
and Weak Type-II-CPA security. We then obtain the full Weak Type-I-CPA by
appealing to the analogue of Theorem 1.

CCA Security. Our theorems show that to obtain full Strong Type-I and Strong
Type-II security of the derived CL-KEM we require the ID-based key agreement
security model to give the adversary access to our Reveal∗ oracle. This is a very
non-standard oracle for key agreement protocols, but this should not be surpris-
ing. Essentially CCA security for an encryption scheme means the adversary has
to be able to open anything, even something created in an illegitimate way (even
if the opening results in the ⊥ symbol). All our Reveal∗ oracle does is to provide
the adversary against the ID-based key agreement scheme with an oracle to open
anything. A similar remark as to Strong Type-I* as opposed to Strong Type-I
security as mentioned in the above comments on CPA security also applies in
this case.

Summary. So in summary we believe the correct syntactic security definitions
for CL-KEMs should be schemes with Strong Type-I* and Strong Type-II secu-
rity where the pure syntax allows for more properties. By using Strong Type-I*
as the security definition instead of Strong Type-I we obtain a natural seperation
between the two security notions, rather than dealing with the cases in the inter-
section twice. However, our construction from ID-based key agreement schemes
would seem to imply that the correct security definition should be one which uses
StateReveal queries (i.e. one which follows the analogue of CK-security). How-
ever, it also implies that the model also includes Reveal∗ queries, which seems to
provide an extreme form of security definition for key agreement schemes. Since
it would seem silly to define security for normal key agreement schemes and
ID-based key agreement schemes in a different manner, this would imply that
standard key agreement schemes should also be defined to be secure in the pres-
ence of a Reveal∗ oracle. This final conclusion is somewhat unsatifactory, and
we hope our work will inspire other researchers to investigate this connection.
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Abstract. One advantage of identity-based (ID-based) primitives is the

reduced overhead of maintaining multiple static key pairs and the cor-

responding certificates. However, should a party wish to participate in

more than one protocol with the same identity (ID), say email address,

the party has to share a state between distinct primitives which is con-

trary to the conventional key separation principle. Thus it is desirable to

consider security of protocols when a public identity and a corresponding

private key are utilized in different protocols.

We focus on authenticated key exchange (AKE) and propose a pair

of two-party ID-based authenticate key exchange protocols (ID-AKE)

that are secure even if parties use the same IDs, private keys and master

keys to engage in either protocol. To our knowledge the only ID-AKE

protocol formally resilient to ephemeral key leakage is due to Huang and

Cao (the HC protocol), where a party’s static key consists of two group

elements. Our proposed protocols provide similar assurances and require

a single group element both for static and ephemeral keys, and in that

sense are optimal. From an efficiency perspective, they have the same

number of pairing computations as the HC protocol. The security of all

these protocols is established in the random oracle.

Keywords: ID-based AKE, shared keys, combined keys, pairings.

1 Introduction

In 1984 Shamir [23] proposed the idea of ID-based primitives, whereby a static
public key consists of a party’s undeniable identifier. Consequently, in ID-based
schemes parties are not required to maintain public key certificates: the public
keys are available as soon as the identities become known. This is advantageous
since parties do not have to manage certificates.

In a typical ID-based protocol a key generation center creates a static private
key corresponding to an identity. However, most ID-based protocols and their
analyses do not account for the fact that a party would often use the same iden-
tifier in many different settings. For example, a party, that identifies itself via an
email (or a web) address, is unlikely to maintain different addresses for different
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primitives such as signatures encryption. It may be the case that obtaining pri-
vate keys for different identities is more prohibitive than obtaining certificates
with different public keys bound to the same identity. Furthermore, users may be
attached to their identity string and be reluctant to use other identifiers. Conse-
quently, a party might use the same private key in multiple different protocols.
Such reuse of private material goes against conventional cryptographic wisdom
of separating keys for different primitives.

Key Separation. Key separation can be achieved by appending each identity
string with information describing the primitive or assigning a single identity
string with different private keys for different protocols; for each key there would
be a different key generation center dealing with a particular protocol. Compared
with certificates such solutions do not reduce the number of static private keys
that a party has to manage and so reduce the attractiveness of ID-based solu-
tions. Furthermore, for a given primitive such as signatures or key establishment,
parties are usually given the choice of more than one protocol. For example, the
NIST’s SP800-56A standard [20] defines two key agreement protocols and al-
lows parties to use the same certificate and static public key to engage in either
of those protocol variants. There is little reason to use different static keys if
two protocols achieve similar goals. But as shown by Chatterjee, Menezes and
Ustaoğlu [9], sharing static information between authenticated key exchange
protocols can have a negative effect on overall security even if the protocols are
individually secure. It is therefore not clear a priori that two ID-AKE protocols
can share identities without affecting each others security.

Compositions. Protocol composition can be achieved by describing conditions
that if violated would break security; however users find surprising ways around
such lists. Kelsey, Schneier and Wagner [15] outline chosen protocol attacks in
which, given a target secure protocol, an attacker can create a different and
stand-alone secure protocol which, when sharing state with the target protocol,
results in security breaches. We focus on static information reuse that defines
what is allowed, effectively adopting a conservative approach to shared states.

Pairings. Menezes, Okamoto and Vanstone [19] used pairing to solve the discrete
logarithm problem on some elliptic curves. Sakai, Ohgishi and Kasahara [22] used
them to devise an ID-based variant of the well-known Diffie-Hellman key agree-
ment protocol [11]. With the work of Boneh and Franklin [3], ID-based primitives
utilizing pairings gained widespread attention. They are used in ID-based en-
cryption, signatures, signcryption and ring-signcryption protocols. However, to
our knowledge the only result that is concerned with reusing the same public ID
and the corresponding private key for two distinct primitives is due to González
Vasco, Hess and Steinwandt [12]. We are not aware of any previous work dealing
with shared IDs in ID-AKE.

Key Establishment. Key establishment is a fundamental cryptographic primi-
tive and it is important to devise efficient protocols that satisfy strong security



Ephemeral Key Leakage Resilient and Efficient ID-AKEs 189

requirements. Security definitions for key agreement protocols were initially de-
veloped for two-party protocols by Bellare and Rogaway [1] and Blake-Wilson,
Johnson and Menezes [2] in the shared-secret and public-key setting, respec-
tively. Recent developments in two-party authenticated key exchange have im-
proved the security models and definitions. These models better represent envi-
ronments where protocols are deployed. Security definitions such as [16,17] allow
leakage of information related to the test session; in addition, [18] accounts for
relative timing of information leakage; lastly, [9] models the fact that government
standards allow users to share static keys between different protocols. Security
considerations for AKE protocols are similar to ID-AKE protocols. Therefore
it is natural to adapt the strongest model to the ID-based setting and design
protocols secure within these definitions.

While such an adoption is natural, much work remains to be done. There are
alternatives to Sakai, Ohgishi and Kasahara [22], see for example [10,24]. Boyd
and Choo [4] observe that many existing ID-based protocols are not as secure as
we expect them to be. Also, to the best of our knowledge, the only ID-AKE work
that formally considers ephemeral key leakage is due to Huang and Cao [14]; their
protocols is henceforth referred to as the HC protocol. Unfortunately, the public
keys of the HC protocol consists of two group elements so it is worthwhile to
develop efficient and secure ID-AKE protocols resilient to ephemeral key leakage
using shorter public keys. The protocols proposed by Boyd, Cliff, González-Nieto
and Paterson [5] do not necessarily require pairing-based ID primitives, but in
any case are not ephemeral key leakage resilient.

Universally composable security notion of key exchange is studied in [7], that
considers security of key exchange composing with any protocol, while our se-
curity model considers only security of combination of two authenticated key
exchange protocols. On the other hand, our security model captures leakage of
static and ephemeral keys of test session, that is not captured in [7].

Our Contribution. In this work we extend the shared model of Chatterjee,
Menezes and Ustaoğlu [9] to the ID-based setting. We propose two novel proto-
cols that satisfy the new security definition and show that parties can safely reuse
private keys in these two protocols. As the HC protocol we require rather strong
assumption for formal security. Finally, we provide the efficiency comparison to
the HC protocol.

Organization. In Section 2, we recall the bilinear group and the gap BDH as-
sumption. In Section 3, we briefly outline our combined model. In Section 4, we
propose our new protocols, give comments related to their security arguments
and describe their design principles. In Section 5, we compare our protocols with
existing relevant protocols. We conclude the paper in Section 6.

2 Preliminaries

Let κ be the security parameter and q be a 2κ-bit prime. Let G = 〈g〉 and GT
be cyclic groups of prime order q with generators g and gT , respectively. Let
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e : G×G→ GT be a polynomial-time computable bilinear non-degenerate map
called a pairing. We say that (G,GT ) is are bilinear groups with pairing e.

The gap BDH (Bilinear Diffie-Hellman) problem is as follows. The computa-
tional BDH function BDH : G3 → GT is BDH(U, V,W ) = e(g, g)logU log V logW

and the decisional BDH (Bilinear Diffie-Hellman) predicate BDDH : G4 → {0, 1}
is a function which takes an input (gu, gv, gw, e(g, g)x) and returns the bit 1
if uvw = x mod q and the bit 0 otherwise. An adversary A is given input
U, V,W ∈U G selected uniformly random and oracle access to BDDH(·, ·, ·, ·)
oracle, and tries to compute BDH(U, V,W ). For adversary A, we define advan-
tage

AdvgapBDH(A) = Pr[U, V,W ∈R G,ABDDH(·,·,·,·)(U, V,W ) = BDH(U, V,W )],

where the probability is taken over the choices of U, V,W and A’s random tape.

Definition 1 (gap BDH assumption). We say that G satisfy the gap BDH
assumption if, for all polynomial-time adversaries A, advantage AdvgapBDH(A)
is negligible in security parameter κ.

3 Shared Security Model for ID-Based AKE

Our model extends the shared static key model of Chatterjee, Menezes and Us-
taoğlu [9] in a similar manny in which Huang and Cao [14] extend the LaMacchia,
Lauter and Mityagin [17] model. Unlike Huang and Cao [14] we also allow our
adversary to obtain private or public ephemeral session information before a
session is initiated. Thus our model encompasses relative timing of ephemeral
leakage.

We denote a party by Ui and the identifier of Ui by IDi. We outline our
model for two different two-pass Diffie-Hellman protocols, where parties UA and
UB exchange ephemeral public keys XA and XB, i.e., UA sends XA to UB and
UB sends XB to UA, and thereafter compute a session key. The session key de-
pends on the exchanged ephemeral keys, identities of the parties, the static keys
corresponding to these identities and the protocol instance that is used. We note
that the order in which messages are exchanged is not important in practice as
long as the session peers have consistent views about the information exchanged.
However to simplify the exposition we assume a fixed order of message delivery.
The model can be adapted to different protocols and number of rounds.

In the model, each party is a probabilistic polynomial-time Turing machine in
security parameter κ and obtains a static private key corresponding to its identity
string from a key generation center (KGC) via a secure and authentic channel.
The center KGC uses a master secret key to generate individual private keys. We
assume that the KGC never reveals the static private key for an identity string
IDi to two different parties. In other words, a malicious entity cannot obtain a
static key corresponding to IDi, unless the malicious entity is bound to IDi.
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Session. An invocation of a protocol is called a session. A session is activated via
an incoming message of the forms (Πc, I, IDA, IDB) or (Πc,R, IDA, IDB, XB),
where Πc is a protocol identifier. If UA was activated with (Πc, I, IDA, IDB),
then UA is the session initiator, otherwise the session responder. In the activa-
tion, Πc identifies which protocol the party should execute. After activation, UA
appends an ephemeral public key XA to the incoming message and sends it as an
outgoing response. If UA is the responder, UA computes a session key. A party
UA that has been successfully activated via (Πc, I, IDA, IDB), can be further
activated via (Πc,R, IDA, IDB, XA, XB) to compute a session key. We say that
UA is owner of session sid if the third coordinate of session sid is IDA. We say
that UA is peer of session sid if the fourth coordinate of session sid is IDA. We
say that a session is completed if its owner computes a session key.

A session initiator UA identifies the session via (Πc, I, IDA, IDB, XA,×) or
(Πc, I, IDA, IDB, XA, XB). If UA is the responder, the session is identified via
(Πc,R, IDA, IDB, XB, XA). For session (Πc, I, IDA, IDB, XA, XB) the match-
ing session has identifier (Πc,R, IDB, IDA, XA, XB) and vice versa. From now
on we omit I and R since these “role markers” are implicitly defined by the order
of XA and XB. For further details on session activation, abortion and matching
sessions with incomplete identifiers we refer to [9].

Adversary. The adversary A is modeled as a probabilistic Turing machine
that controls all communications between parties including session activation,
performed via a Send(message) query. The message has one of the following
forms: (Πc, IDA, IDB), (Πc, IDA, IDB, XA), or (Πc, IDA, IDB, XA, XB); Πc is
a protocol identifier. Each party submits its responses to the adversary, who
decides the global delivery order. Note that the adversary does not control the
communication between parties and the key generation center. It is possible to
incorporate into the model the ability of the adversary to time when a party
obtains a static private key. For simplicity, we assume that identities and corre-
sponding static keys are part of A’s input.

A party’s private information is not accessible to the adversary; however,
leakage of private information is captured via the following adversary queries.
For details relating to incomplete session identifiers and discussion related to
EphemeralPublicKeyReveal we refer the reader to [18]:

– SessionKeyReveal(sid). The adversary obtains the session key for the session
sid, provided that the session holds a session key.

– EphemeralPublicKeyReveal(IDi). The adversary obtains the ephemeral public
key that IDi will use when a session is next activated at IDi.

– EphemeralKeyReveal(sid). The adversary obtains the ephemeral secret key
associated with the session sid.

– StaticKeyReveal(IDi). The adversary learns the static secret key of party Ui.
– MasterKeyReveal(). The adversary learns the master secret key of the system.
– EstablishParty(IDi). This query allows the adversary to register a static pub-

lic key on behalf of a party Ui; the adversary totally controls that party. If



192 A. Fujioka, K. Suzuki, and B. Ustaoğlu

a party pid is established by an EstablishParty(IDi) query issued by the ad-
versary, then we call the party dishonest. If not, we call the party honest.
This query models malicious insiders.

Our security definition requires the notion of “freshness”. The protocols we con-
sider have the same security attributes and a single definition suffices.

Definition 2 (Freshness). Let sid∗ be the session identifier of a completed
session, owned by an honest party UA with peer UB, who is also honest. If the
matching session exists, then let sid∗ be the session identifier of the matching
session of sid∗. Define sid∗ to be fresh if none of the following conditions hold:

1. A issues SessionKeyReveal(sid∗) or SessionKeyReveal(sid∗) (if sid∗ exists).
2. sid∗ exists and A makes either of the following queries

– both StaticKeyReveal(IDA) and EphemeralKeyReveal(sid∗), or
– both StaticKeyReveal(IDB) and EphemeralKeyReveal(sid∗).

3. sid∗ does not exist and A makes either of the following queries
– both StaticKeyReveal(IDA) and EphemeralKeyReveal(sid∗), or
– StaticKeyReveal(IDB).

Note that if A issues a MasterKeyReveal() query, we regard A as having issued
both a StaticKeyReveal(IDA) query and a StaticKeyReveal(IDB) query.

Security Experiment. The adversary A starts with a set of honest parties,
for whom A adaptively selects identifiers. The adversary makes an arbitrary
sequence of the queries described above. During the experiment, A makes a
special query Test(sid∗) and is given with equal probability either the session
key held by sid∗ or a random key; the query does not terminate the experiment.
The experiment continues until A makes a guess whether the key is random or
not. The adversary wins the game if the test session sid∗ is fresh at the end of
A’s execution and if A’s guess was correct. Formally,

Definition 3 (security). The advantage of the adversary A in the experiment
with AKE protocols Π1 and Π2 is defined as

AdvAKE
Π1Π2

(A) = Pr[A wins] − 1
2
.

We say that Π1 and Π2 are secure AKE protocols in the shared identity-based
model if the following conditions hold:

1. If two honest parties complete matching Πc-sessions, then, except with negli-
gible probability in security parameter κ, they both compute the same session
key.

2. For any probabilistic polynomial-time bounded adversary A, AdvAKE
Π1Π2

(A) is
negligible in security parameter κ.
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Remark. If the adversary initiates sessions of only one protocol, issues nei-
ther EphemeralPublicKeyReveal(IDi) queries and nor EphemeralKeyReveal(sid)
queries except during the time between session initiation and completion, then
the model is equivalent to the Huang-Cao [14] model.

4 Proposed ID-Based AKE Protocols

This section describes our ID-based protocols. We let H : {0, 1}∗ → {0, 1}k,
H1 : {0, 1}∗ → G, and H2 : {0, 1}∗ → Zq be cryptographic hash function
modeled as random oracles.

Key Generation Center. The KGC randomly selects master secret key z ∈R Zq
and publishes master public key Z = gz ∈ G.

Private Key Generation. Given ID string IDi ∈ {0, 1}∗ of user Ui, the KGC
computes Qi = H1(IDi) and returns static secret key Di = Qzi .

4.1 Proposed ID-Based AKE Protocol 1 – Π1

In this section, we describe the actions required to execute a Π1 session.

Key Exchange. User UA is the session initiator and user UB is the session re-
sponder.

1. UA chooses an ephemeral private key xA ∈R Zq, computes the ephemeral
public key XA = gxA and sends (Π1, IDA, IDB, XA) to UB.

2. Upon receiving (Π1, IDA, IDB, XA), UB chooses an ephemeral private key
xB ∈R Zq, computes the ephemeral public key XB = gxB and responds to
UA with (Π1, IDA, IDB, XA, XB).
UB also computes eA = H2(XA), eB = H2(XB), the shared secrets

σ1 = e(QeA

A XA, DBZ
xB), σ2 = e(QAXA, DeB

B Z
xB ), σ3 = XxB

A ,

the session keyK = H(σ1, σ2, σ3, Π1, IDA, IDB, XA, XB). UB completes the
session with session key K.

3. Upon receiving (Π1, IDA, IDB, XA, XB), UA computes eA = H2(XA), eB =
H2(XB), the shared secrets

σ1 = e(DeA

A Z
xA , QBXB), σ2 = e(DAZxA , QeB

B XB), σ3 = XxA

B ,

the session keyK = H(σ1, σ2, σ3, Π1, IDA, IDB, XA, XB). UA completes the
session with session key K.

Both parties compute the shared secrets

σ1 = g
z(eA log(QA)+xA)(log(QB)+xB)
T ,

σ2 = g
z(log(QA)+xA)(eB log(QB)+xB)
T ,

σ3 = gxAxB
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and therefore compute the same session key K.
It is worth noting that we could also construct secure ID-based AKE by

modifying σ1 and σ2 to the following values

σ1 = g
z(eA log(QA)+xA)(eB log(QB)+xB)
T , σ2 = g

z(log(QA)+xA)(log(QB)+xB)
T ;

however, we opt to define our second protocol via slightly more efficient algo-
rithms.

4.2 Proposed ID-Based AKE Protocol 2 – Π2

In this section, we describe the actions required to execute a Π2 session.

Key Exchange. User UA is the session initiator and user UB is the session re-
sponder.

1. UA chooses an ephemeral private key xA ∈R Zq, computes the ephemeral
public key XA = gxA and sends (Π2, IDA, IDB, XA) to UB.

2. Upon receiving (Π2, IDA, IDB, XA), UB chooses an ephemeral private key
xB ∈R Zq, computes the ephemeral public key XB = gxB and responds to
UA with (Π2, IDA, IDB, XA, XB).
UB also computes the shared secrets

σ1 = e(QAXA, DBZxB ), σ2 = e(QA, DB), σ3 = XxB

A

the session keyK = H(σ1, σ2, σ3, Π2, IDA, IDB, XA, XB). UB completes the
session with session key K.

3. Upon receiving (Π2, IDA, IDB, XA, XB), UA computes the shared secrets

σ1 = e(DAZxA , QBXB), σ2 = e(DA, QB), σ3 = XxA

B

the session keyK = H(σ1, σ2, σ3, Π2, IDA, IDB, XA, XB). UA completes the
session with session key K.

Both parties compute the shared secrets

σ1 = g
z(log(QA)+xA)(log(QB)+xB)
T , σ2 = g

z log(QA) log(QB)
T , σ3 = gxAxB ,

and therefore compute the same session key K.

4.3 Security

The security of the proposed ID-AKE protocols is established by the following
theorem.

Theorem 1. If (G,GT ) are groups where gap Bilinear Diffie-Hellman assump-
tion holds and H, H1 and H2 are random oracles, the ID-AKE Protocols Π1

and Π2 are secure in the shared static key model described in Section 3.

The proof of Theorem 1 is provided in Appendix A.
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4.4 Shared Secrets Design

Protocol Π1. Protocol Π1 is an adaptation of the Unified Protocol in [25] to
the ID-based scenario. We refer the reader to [25] for the rationale behind the
definitions of σ1 and σ2. Unlike the certificated-based scenario in the ID-based
scenario without σ3 the protocol has no forward secrecy with respect to the
master secret key. To provide assurance that the KGC cannot compute the
session key we include σ3. There are other viable alternatives; however, we opt
for the basic Diffie-Hellman value due to its relative simplicity.

Protocol Π2. Protocol Π2 is an adaptation of the Unified Model protocol [2,20].
More precisely, σ2 and σ3 are the static and ephemeral shared secrets, respec-
tively, that Alice and Bob can compute in the ID-based scenario. The certificate-
based variant is vulnerable to some attacks such as key compromise imperson-
ation, which are carried over to the ID-based setting. We include the value σ1

to remove these Unified Model protocol drawbacks.

Computational cost. The naive count of operations for Π1 and Π2 show that
the former requires 2P + 4E and the latter 2P + 2E, where P stands for pairing
computation and E stands for group exponentiation. We do not take into ac-
count the exponentiation required to prepare the outgoing ephemeral public key
since in our analysis these can be pre-computed; it is also not included in the
protocol comparison in Section 5. Since pairing computations are more costly
than exponentiations [8,13] the computational cost of the two protocols is effec-
tively the same. We include both measures because novel techniques may reduce
the cost of pairing computations significantly.

Efficiency. The certificate-based motivating protocol for Π1 is less efficient but
provides stronger security assurances than the certificate-based motivating pro-
tocol for Π2. Surprisingly, in the ID-based scenario Π2 is marginally more ef-
ficient than Π1 and has the same security attributes. This suggest that while
certificate-based protocols can help in the design of ID-based protocols, it is not
necessary that more efficient certificate based protocols result in more efficient
ID-based protocols. A single pairing to produce a session key is a viable option.
However, as in the certificate-based setting better efficiency may require larger
group sizes for comparable security levels. In particular, an ID-based adapta-
tion of the HMQV protocol [16] would suffer from a less tight security argument
because of forking arguments. We therefore opt for protocols with security ar-
guments that do not require forking lemma type arguments.

Protocol choice. One may naturally ask why use Π1 when Π2 already provides
the same security attributes and has some efficiency advantages. SP800-56A [20]
provides two techniques for key establishment and the “unified model” protocol
is both less efficient and has fewer security attributes. But, it is advantageous
to offer fall-back alternatives to accommodate any unexpected environmental
reasons that prevent the use of a particular protocol. Our arguments show that
sharing identities for Π1 and Π2 is cryptographically sound.
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4.5 Further Observations and Comments

Theorem 1 implies that the protocols are secure even if they are used separately.
The security argument for protocol Π1 say is a specialization of the execution
model where the adversary does not activate a session of protocol Π2. Thus, the
theorem provides stronger assurance than separate security arguments.

The essential set of message that Alice (UA) sends to Bob (UB) consists of
four messages (Πc, role, IDA, XA) – the protocol identifier, the role Alice views
for herself, the identifier she uses and her ephemeral public key. The response
from Bob consists of a similar tuple (Π ′

c, role
′, IDB, XB). The first two entries

in Bob’s case simply affirm that he agrees to Alice’s choice of protocol and role.
Our analysis is carried out only in the case where Alice sends her tuple at once
and then receives all of Bob’s response. It is possible that all these messages are
interleaved: for example in the first flow Alice can send only (Πc, role, UA) to
Bob and reveal her identifier IDA only after receiving Bob’s response. For sim-
plicity we have omitted those technical details required in the model description.
However it appears that the only requirement is that parties associate correctly
incoming messages with sessions.

As in the HC protocol, Alice does not need to know her static private key to
complete the message exchange in our protocols. This is unlike the Okamoto-
Tanaka protocol [21], where a party needs its static private key before being
able to compute outgoing messages. The feature is useful in scenarios where
users select identities “on the fly” depending on some ephemeral system setting
such as the day or time.

5 Comparison

Next we compare our protocols with related ID-AKE protocols in terms of un-
derlying assumption, computational efficiency, and security model. In Table 1,
number of pairing computations, the number of exponentiations in G, number
of static public keys in terms of group elements, and number of ephemeral pub-
lic key in terms of group elements are denoted by P, E, #sPK, and #ePK,
respectively. Furthermore, id-CK and id-eCK denotes ID-based versions of the
well-know Canetti-Krawzcyk [6] (CK) and LaMacchia, Lauter and Mityagin [17]
(eCK) security models, respectively. Our model is denoted by id-eCK*; KCI
denotes key compromise impersonation resistance and mSk-fs denotes master
secret key forward security.

For further comparison we refer the reader to [14, Table 1]. It is plausible that
the HC protocol is also secure if ephemeral public keys are revealed to the adver-
sary before used in a session. Our protocols are as efficient as the HC protocol
(the cost of a single exponentiation can be safely ignored here) and therefore
the trade-off lies in the size of the private keys and the underlying assumptions.
Such a comparison is very subjective but we believe that for practical purposes
the use of shorter keys justifies the invocation of the gap assumption.
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Table 1. Comparison with the existing protocols

Protocol Computation #sPk #ePk Security Model Assumption

SCK [10] 2P+3E 1 1 id-CK,KCI,mSk-fs BDH

SYL [10] 1P+3E 1 1 id-CK,KCI,mSk-fs BDH

HC [14] 2P+3E 2 1 id-eCK BDH

Π1 2P+4E 1 1 id-eCK* gap BDH

Π2 2P+2E 1 1 id-eCK* gap BDH

6 Conclusion

In this paper, we proposed the first secure ID-based AKE protocols that used
a single group element as a static secret key, resist ephemeral key leakage, and
can safely share static private information. Moreover, our protocols are efficient
in terms of communication and computations and thus are suitable for practical
applications. It is an interesting problem to consider developing a protocol with
the same setup and communication message, but which requires a single pairing
operation, such as an adaptation of the HMQV [16] protocol to the ID-based
setting. Additionally, it is worth developing a new protocol that can be used in
conjunction with protocol Π2, and uses a single random oracle call during the
session key computation stage.
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A Proof of Theorem 1

We call the variant of the gap BDH assumption where one tries to compute
BDH(U,U,W ) instead of BDH(U, V,W ) as the square gap BDH assumption. The
variant is equivalent to the gap BDH assumption as follows. Given a challenge
U,W of the square gap BDH assumption, one sets V = Us for random integers
s ∈R [1, p−1], and then can compute BDH(U, V,W )1/s = BDH(U,U,W ). Given
a challenge (U, V,W ) of the gap BDH assumption, one can set U1 = UVW , U2 =
UVW−1, U3 = UV −1W , U4 = UV −1W−1, and then compute BDH(U, V,W )
from BDH(Ui, Ui, Usi )

1/s, i = 1, . . . , 4.
We will show that no polynomially bounded adversary can distinguish the

session key of a fresh session from a randomly chosen session key.
Let κ denote the security parameter, and let A be a polynomially (in κ)

bounded adversary. We use A to construct a gap BDH solver S that succeeds
with non-negligible probability. The adversary A is said to be successful with
non-negligible probability if A wins the distinguishing game with probability
1
2 + f(κ), where f(κ) is non-negligible, and the event M denotes a successful A.

Assume that A succeeds in an environment with n users, activates at most
s sessions within a user, makes at most qH , qH1 , qH2 queries to oracles H , H1,
H2, respectively.

We denote the master secret and public keys by z, Z = gz. For user Ui, we
denote the identity by IDi, the static secret and public keys by Di = Qzi , Qi =
H1(IDi), and the ephemeral secret and public keys by xi, Xi = gxi. We also
denote the session key by K.

Let the test session be sid∗ = (Πc, IDA, IDB, XA, XB), where users UA, UB
are initiator and responder of the test session sid∗. Let H∗ be the event that A
queries (σ1, σ2, σ3, sid

∗) to H . Let H∗ be the complement of event H∗. Let sid
be any completed session owned by an honest user such that sid �= sid∗ and
sid is non-matching to sid∗. Since sid and sid∗ are distinct and non-matching,
the inputs to the key derivation function H are different for sid and sid∗. Since
H is a random oracle, A cannot obtain any information about the test session
key from the session keys of non-matching sessions. Hence Pr(M ∧H∗) ≤ 1

2 and
Pr(M) = Pr(M ∧H∗)+Pr(M ∧H∗) ≤ Pr(M ∧H∗)+ 1

2 , whence Pr(M ∧H∗) ≥
p(κ). Henceforth the event M ∧H∗ is denoted by M∗.

We will consider the not exclusive classification of all possible events in the
following Table 2 and 3. Table 2 classifies events when QA, QB are distinct, and
Table 3 classifies events when QA = QB. We denote by z master secret key,
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and by (Di, xi)i=A,B static and ephemeral secret keys of users UA, UB who are
initiator and responder of the test session sid∗. In these tables, “ok” means
the static key is not revealed, or the matching session exists and the ephemeral
key is not revealed. “r” means the static or ephemeral key may be revealed.
“r/n” means the ephemeral key may be revealed if the matching session exists
or no matching session exists. “instance embedding” row shows how simulator
embeds a instance of gap BDH problem. “succ. prob.” row shows the probability
of success of solver S, where pxy = Pr(Exy ∧M∗) and n and s is the number of
parties and sessions.

Since the classification covers all possible events, at least one event Exy ∧M∗

in the tables occurs with non-negligible probability, if event M∗ occurs with
non-negligible probability. Thus, the gap BDH problem can be solved with non-
negligible probability, and that means we shows that the proposed protocol is
secure under the gap BDH assumption. We will investigate each of these events
in the following subsections.

Table 2. Classification of attacks, when QA, QB are distinct. “ok” means the static key

is not revealed, or the matching session exists and the ephemeral key is not revealed.

“r” means the static or ephemeral key may be revealed. “r/n” means the ephemeral key

may be revealed if the matching session exists or no matching session exists. “instance

embedding” row shows how simulator embeds a instance of gap BDH problem. “succ.

prob.” row shows the probability of success of solver S , where pxy = Pr(Exy ∧M∗)
and n and s is the number of parties and sessions.

z DA xA DB xB instance embedding succ. prob.

E1a ok r ok ok r/n Z = U,XA = V, QB = W p1a/n2s

E1b ok ok r ok r/n Z = U,QA = V, QB = W p1b/n2

E2a r r ok r ok XA = V, XB = W p2a/n2s2

E2b ok ok r r ok Z = U,QA = V, XB = W p2b/n2s

Table 3. Classification of attacks, when QA = QB

z DA xA DA xB instance embedding succ.prob.

E′
1b ok ok r ok r/n Z = U, QA = V p1b/n

E′
2a r r ok r ok XA = V, XB = W p2a/n2s2

A.1 E1a

Setup. The gap BDH solver S begins by establishing n honest users that are
assigned random static key pairs. For each honest user Ui, S maintains list LEK
of at most s ephemeral key pairs, and two markers – a user marker and an
adversary marker. The list LEK is initially empty, and the markers initially
point to the first entry of the list LEK . Whenever Ui is activated to create a new
session, S checks if the user marker points to an empty entry. If so, S selects a
new ephemeral key pair on behalf of Ui as described in the Πc (c = 1, 2) protocol.
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If the list entry is not empty, then S uses the ephemeral key pair in that list
entry for the newly created session. In either case the user marker is updated
to point to the next list entry, and the adversary marker is also advanced if it
points to an earlier entry. If A issues an EphemeralPublicKeyReveal query, then S
selects a new ephemeral key pair on behalf of Ui as described in the Πc protocol.
S stores the key pair in the entry pointed to by the adversary marker, returns
the public key as the query response, and advances the adversary marker.

In addition to the above steps, S embeds instance (U, V,W ) of gap BDH
problem as follows. S randomly selects two users UA, UB and integer t ∈R [1, s].
Public master key Z is chosen to be U , and DA is chosen to be ZqA for randomly
selected qA = log(QA). S simulates oracle H1 by selecting a random integer c in
the interval [1, q] and setting H1(IDC) = gc; the static private key corresponding
to IDC is U c. S selects static and ephemeral key pairs on behalf of honest users
as described above with the following exceptions. The i-th ephemeral public
key X selected on behalf of UA is chosen to be V , and the static public key QB
selected on behalf of UB is chosen to beW . S does not possess the corresponding
static and ephemeral private keys.

The algorithm S activates A on this set of users and awaits the actions of
A. We next describe the actions of S in response to user activations and oracle
queries.

Simulation. The algorithm S maintains list LH that contains queries and an-
swers ofH oracle and list LS that contains SessionKeyReveal queries and answers,
and simulates oracle queries as follows.

1. Send(Πc, I, IDi, IDj): S picks ephemeral public key Xi from the list LEK ,
and records (Πc, IDi, IDj, Xi) and returns it.

2. Send(Πc,R, IDj , IDi, Xi): S picks ephemeral public key Xj from the list
LEK , and records (Πc, IDi, IDj , Xi, Xj) and returns it.

3. Send(Πc, I, IDi, IDj , Xi, Xj): If (Πc, IDi, IDj , Xi) is not recorded, then S
records the session (Π1, I, IDi, IDj , Xi, Xj) as not completed. Otherwise, S
records the session as completed.

4. H(σ1, σ2, σ3, Π1, IDi, IDj , Xi, Xj):
(a) If (σ1, σ2, σ3, Π1, IDi, IDj , Xi, Xj) is recorded in list LH , then S returns

recorded value K.
(b) Else if the session (Π1, I, IDi, IDj , Xi, Xj) or (Π1,R, IDj , IDi, Xi, Xj)

is recorded in list LH , then S checks that σ1, σ2, σ3 are correctly formed,
i.e.,

BDDH(Z,Qei

i Xi, QjXj, σ1) = 1,
BDDH(Z,QiXi, Q

ej

j Xj, σ2) = 1

and e(Xi, Xj) = σ3. If σ1, σ2, σ3 are correctly formed, then S returns
recorded value K and records it in list LH .
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(c) Else if i = A, j = B,XA = V,QB =W , then S checks that σ1, σ2, σ3 are
correctly formed, i.e.,

BDDH(Z,Qei

i Xi, QjXj, σ1) = 1,
BDDH(Z,QiXi, Q

ej

j Xj, σ2) = 1,

and e(Xi, Xj) = σ3. If σ1, σ2, σ3 are correctly formed, then since S knows
log(QA), S can compute the answer to the gap BDH instance

((σ′1)(σ
′
2)

−1)1/(1−eB) = g
zxA log(QB)
T = BDH(Z,XA, QB),

where

σ′1 = σ1e(Z,QBXB)−eA log(QA) = g
zxA(log(QB)+xB)
T ,

σ′2 = σ2e(Z,QeB

B XB)− log(QA) = g
zxA(eB log(QB)+xB)
T ,

and stops successfully by outputting the answer.
(d) Otherwise, S returns random value K and records it in list LH .

5. H(σ1, σ2, σ3, Π2, IDi, IDj , Xi, Xj):
(a) If (σ1, σ2, σ3, Π2, IDi, IDj , Xi, Xj) is recorded in list LH , then S returns

recorded value K.
(b) Else if the session (Π2, I, IDi, IDj , Xi, Xj) or (Π2,R, IDj , IDi, Xi, Xj)

is recorded in list LH , then S checks that σ1, σ2, σ3 are correctly formed,
i.e.,

BDDH(Z,QiXi, QjXj, σ1) = 1,
BDDH(Z,Qi, Qj, σ2) = 1,

and e(Xi, Xj) = σ3. If σ1, σ2, σ3 are correctly formed, then S returns
recorded value K and records it in list LH .

(c) Else if i = A, j = B,XA = V,QB =W , then S checks that σ1, σ2, σ3 are
correctly formed, i.e.,

BDDH(Z,QiXi, QjXj, σ1) = 1,
BDDH(Z,Qi, Qj, σ2) = 1,

and e(Xi, Xj) = σ3. If σ1, σ2, σ3 are correctly formed, then since S knows
log(QA), S can compute the answer of the gap BDH instance

σ1τ
−1
1 τ−1

2 τ−1
3 = g

zxA log(QB)
T = BDH(Z,XA, QB),

where

τ1 = σ2 = g
z log(QA) log(QB)
T ,

τ2 = e(Z, σ3) = gzxAxB

T ,

τ3 = e(Z,XB)log(QA) = g
z log(QA)xB

T ,

and stops successfully by outputting the answer.
(d) Otherwise, S returns random value K and records it in list LH .
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6. SessionKeyReveal((Π1, I, IDi, IDj, Xi, Xj) or (Π1,R, IDj , IDi, Xi, Xj)):
(a) If the session sid is not completed, S returns error.
(b) Else if the session sid is recorded in list LS , then S returns recorded

value K.
(c) Else if (σ1, σ2, σ3, Π1, IDi, IDj , Xi, Xj) is recorded in list LH , then S

checks that σ1, σ2, σ3 are correctly formed, i.e.,

BDDH(Z,Qei

i Xi, QjXj, σ1) = 1,
BDDH(Z,QiXi, Q

ej

j Xj, σ2) = 1,

and e(Xi, Xj) = σ3. If σ1, σ2, σ3 are correctly formed, then S returns
recorded value K and records it in list LS .

(d) Otherwise, S returns random value K and records it in list LS .

7. SessionKeyReveal((Π2, I, IDi, IDj, Xi, Xj) or (Π2,R, IDj , IDi, Xi, Xj)):
(a) If the session sid is not completed, S returns error.
(b) Else if the session sid is recorded in list LS , then S returns recorded

value K.
(c) Else if (σ1, σ2, σ3, Π2, IDi, IDj , Xi, Xj) is recorded in list LH , then S

checks that σ1, σ2, σ3 are correctly formed, i.e.,

BDDH(Z,QiXi, QjXj, σ1) = 1,
BDDH(Z,Qi, Qj, σ2) = 1,

and e(Xi, Xj) = σ3. If σ1, σ2, σ3 are correctly formed, then S returns
recorded value K and records it in list LS .

(d) Otherwise, S returns random value K and records it in list LS .

8. H1(IDC): If C = B, S returns QB =W , otherwise selects a random integer
c in the interval [1, q] and return gc.

9. H2(Xi): S simulates random oracle in the usual way.
10. EphemeralPublicKeyReveal(sid): S picks ephemeral public key X from the

list LEK , and returns X .
11. EphemeralKeyReveal(sid): S picks ephemeral secret key x from the list LEK .

If the corresponding ephemeral public key is V , then S aborts with failure,
otherwise returns x.

12. StaticKeyReveal(IDi): If static public key Qi of user Ui is W , then S aborts
with failure, otherwise responds to the query faithfully.

13. MasterKeyReveal(): S aborts with failure.
14. EstablishParty(IDi): S responds to the query faithfully.
15. Test(sid): If ephemeral public key of a user is not V and static public key

of the other user not W in session sid, then S aborts with failure, otherwise
responds to the query faithfully.

16. If A outputs a guess γ, S aborts with failure.
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Analysis. The simulation of A environment is perfect except with negligible
probability. The probability that A selects the session, where ephemeral public
key of a user is V and static public keys of the other users are W , as the test
session sid∗ is at least 1

n2s . Suppose this is indeed the case, S does not abort
in Step 15, and suppose event E1a ∧M∗ occurs, S does not abort in Step 11,
Step 12, and Step 13.

Under eventM∗ except with negligible probability, A queriesH with correctly
formed σ1, σ2, σ3. Therefore S is successful as described in Step 4c or Step 5c
and does not abort as in Step 16.

Hence, S is successful with probability Pr(S) ≥ p1a

n2s , where p1a is probability
that E1a ∧M∗ occurs.

A.2 E1b

Same as the event E1a ∧M∗ in Subsection A.1, except the following points.
In Setup, S embeds gap BDH instance (U, V,W ) as Z = U,QA = V,QB = W ,

and selects randomly xA and simulates as XA = gxA .
In Simulation of H , S extracts BDH(U, V,W ) as follows. In Step 4c, since S

knows xA, S extracts

((σ′1)
1/eA(σ′2)

−1)1/(1−eB) = g
z log(QA) log(QB)
T = BDH(Z,QA, QB),

where

σ′1 = σ1e(Z,QBXB)−xA = g
zeA log(QA)(log(QB)+xB)
T ,

σ′2 = σ2e(Z,QeB

B XB)−xA = g
z log(QA)(eB log(QB)+xB)
T .

In Step 5c, S extracts

σ2 = g
z log(QA) log(QB)
T = BDH(Z,QA, QB).

A.3 E2a

Same as the event E1a ∧M∗ in Subsection A.1, except the following points.
In Setup, S embeds gap CDH instance (V,W ) as XA = V,XB = W , selects

uniformly at random master private key z and computes the corresponding mas-
ter public key Z = gz. The oracle H1 is simulated honestly private keys of all
parties are computed using z.

In Simulation of H , S extracts BDH(U, V,W ) as follows. In Step 4c, since S
knows log(QA), S extracts

((σ′1)
eB (σ′2)

−1)1/(eB−1) = gzxAxB

T = BDH(Z,XA, XB),

where

σ′1 = σ1e(Z,QBXB)−eA log(QA) = g
zxA(log(QB)+xB)
T ,

σ′2 = σ2e(Z,QeB

B XB)− log(QA) = g
zxA(eB log(QB)+xB)
T .

In Step 5c, S extracts

e(Z, σ3) = gzxAxB

T = BDH(Z,XA, XB).
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A.4 E2b

Same as the event E1a ∧M∗ in Subsection A.1, except the following points.
In Setup, S embeds gap BDH instance (U, V,W ) as Z = U,QA = V,XB = W ,

and selects randomly xA, qB = log(QB) and simulates as XA = gxA , DB = ZqB .
In Simulation of H , S extracts BDH(U, V,W ) as follows. In Step 4c, since S

knows xA, S extracts

((σ′1)
eB/eA(σ′2)

−1)1/(eB−1) = g
z log(QA)xB

T = BDH(Z,QA, XB),

where

σ′1 = σ1e(Z,QBXB)−xA = g
zeA log(QA)(log(QB)+xB)
T ,

σ′2 = σ2e(Z,QeB

B XB)−xA = g
z log(QA)(eB log(QB)+xB)
T .

In Step 5c, since S knows xA, S extracts

σ1τ
−1
1 τ−1

2 τ−1
3 = g

z log(QA)xB

T = BDH(Z,QA, XB),

where

τ1 = σ2 = g
z log(QA) log(QB)
T ,

τ2 = e(Z, σ3) = gzxAxB

T ,

τ3 = e(Z,QB)xA = g
zxA log(QB)
T .

A.5 Other Cases

Event E′
1b in Table 3 can be handled same as event E1b in Table 2, with condition

QA = QB under the square gap BDH assumption that is equivalent to the gap
BDH assumption.

Events E′
2a, E

′
3 in Table 3 can be handled same as events E2a, E3 in Table 2,

with condition QA = QB under the gap BDH assumption.
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implies that different types of groups with pairings can be used in the

construction of non-interactive cryptographic proofs and that security

can be based on a number of different decisional assumptions.

M. Joye, A. Miyaji, and A. Otsuka (Eds.): Pairing 2010, LNCS 6487, p. 206, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Designing a Code Generator for Pairing Based
Cryptographic Functions

Luis J. Dominguez Perez� and Michael Scott��

School of Computing

Dublin City University

Ireland

{ldominguez,mike}@computing.dcu.ie

Abstract. Pairing-Based Cryptography has become relevant in indus-

try mainly because of the increasing interest in Identity-Based protocols.

A major deterrent to the general use of pairing-based protocols is the

complex nature of such protocols; efficient implementation of pairing

functions is often difficult as it requires more knowledge than previous

cryptographic primitives. In this paper we present a tool for automati-

cally generating optimized code for pairing functions.

Our cryptographic compiler chooses the most appropriate pairing

function for the target family of curves, either the Tate, ate, R-ate or

Optimal pairing function, and generates its code. It also generates op-

timized code for the final exponentiation using the parameterisation of

the chosen pairing-friendly elliptic curve.
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1 Introduction

Interest in pairing-based cryptography has been growing since the arrival of the
new millennium, and since the development of many constructive protocols, for
example those given in [29], [13]. The usefulness of these protocols has caught
the attention of industry.

Traditional cryptographic protocols, such as RSA, are well established and
seen as “good enough” for the immediate future, but have limited functionality.
Pairing-based cryptography is slowly being seen as a viable option.

The main disadvantage of implementing pairing-based protocols instead of
these commercial solutions is the deeper mathematical background required to
produce an efficient implementation. Every year new improvements on how to
compute pairings appear. A pairing-based protocol designer may prefer to focus
on the proof and formalization of the protocol itself rather than on the physical
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construction of the primitives upon which it relies. Given the many improve-
ments, it is easy to lose track of the most “up-to-date” optimizations and use a
less than optimal implementation.

The aim of a code generator for cryptographic pairing functions is the fol-
lowing: to decide (or suggest) which family of pairing friendly elliptic curves to
choose (for examples we refer to Freeman et al. [22]), to find a low Hamming-
weight x-parameter for the definition of the system parameters; to generate the
elliptic curve with a subgroup size corresponding to the desired security level;
to choose the pairing function that best suits the family of curves to which the
chosen curve belongs, and it’s representation; to add supportive functions; and,
optionally, to generate a sample “playground” for testing the code.

In order for a code generator to be flexible, support for several multipreci-
sion libraries should be included. Some characteristics of the code rely on the
programming language itself, others rely on the library. Some operations use an
in-fixed operator, depending on the library. For some, this may only be possible
with the use of a map and with explicit intermediate storage, where for others,
the compiler can handle it.

Naehrig, Niederhagen and Schwabe in [39], described the abstraction level of
optimization of their BN curves implementation in high, mid and low levels. This
research currently focuses on the high-level. We are not dealing with fine tuning-
up the finite field arithmetic, modular reduction method, NAF representation,
elliptic curve arithmetic costs, or making use of processor specific registers. Also,
we focus only on non-supersingular curves.

The paper continues as follows: section 2 contains a brief introduction to the
Tate, ate, R-ate and Optimal pairings. In section 3 an introduction to addition
chains [20] and addition sequences is presented with an artificial immune system
algorithm to find them. This is relevant to the compiler as it is a key component
in the computation of the final exponentiation of the pairing function, introduced
in section 4.

Galbraith and Scott [23] presented a novel way to perform both scalar mul-
tiplication of elements of G2 and exponentiation in GT . In section 5 we present
a shorter vector than that presented by the authors. This vector is used during
the precomputation stage.

Section 7 describes the target libraries used for this work. Section 9 contains
timings of the generated code for the BN k = 12 curves and the KSS k = 18
curves. The appendixes contain some sample output code.

2 Pairing Functions

Traditionally there are two cryptographic pairings: the Weil and the
Tate-Lichtenbaum pairings. The Weil pairing requires two Miller loops [44,
III.§8]. The Tate pairing requires only one application of the Miller loop, but with
more complex arithmetic. Recent research efforts have concentrated on finding
viable pairings with shorter loops and on simplifying the underlying arithmetic.
This research focuses on the Tate pairings (and variations thereof) as it is known
to be faster [26].
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The best known method for computing pairings (both Weil and Tate variants)
is based on Miller’s algorithm. This is a standard method, and is a double-and-
add and line-and-tangent algorithm. [35] [36]

The computation of pairings basically involves as input elements from two
groups, G1 and G2. These groups use an additive notation and at least one of
them is of prime order r. The pairing will map elements from both groups to a
multiplicatively written group, also of prime order r, and denoted as GT .

Let k be the embedding degree, which sometimes is referred to as the security
multiplier, of an elliptic curve E defined over a finite field Fp, and let r be the
large prime number that divides #E such that r divides (pk − 1). We prefer k
to be even as this will lead to improvements that will become obvious in the
following sections.

Many constructions of pairing-friendly elliptic curves have been proposed by
different authors; examples are MNT curves [37], Freeman curves [21] and BN
[8] curves. These families of curves produce ideal pairing-friendly elliptic curves
for a given security level. These curves have group size approximately equal to
the size of the underlying field, making them very efficient for implementation.
This ratio is known as the ρ-value, and it is defined as: ρ = deg p(x)

deg r(x) (assuming
that p and r are represented as polynomials p(x) and r(x) respectively).

2.1 The Tate Pairing

The Tate pairing is defined as follows [12]:
Let P ∈ E(Fp)[r] and let Q ∈ E(Fpk). Let fa,P be a function with a divisor

(fa,P ) = a(P ) − (aP ) − (a− 1)(O) for a ∈ Z. The non-degenerate, bilinear Tate
pairing is defined as a map:

er : E(Fp)[r] × E(Fpk)/rE(Fpk ) → F∗
pk/(F∗

pk)r

(P,Q) 	→ 〈P,Q〉r = fr,P (Q)

For practical and security purposes it is preferred to raise the value of the pairing
to the power of (pk − 1)/r to obtain a unique representative of the class, i.e

er : (P,Q) 	→ fr,P (Q)(p
k−1)/r.

We refer the interested reader to [12] for further details. It is also advantageous
for Q to be defined as a point over a twist of E.

2.2 The Ate Pairing

The ate pairing [28] is a variant of the Tate pairing and a generalization of the
Eta pairing [6] for ordinary pairing-friendly elliptic curves. The ate pairing is
particularly suitable for pairing-friendly elliptic curves with small values of the
trace of the Frobenius, given by t = t(x) for a chosen value of the x parameter.

In practice, the reduced ate pairing is preferred

eT : (Q,P ) 	→ fT,Q(P )(p
k−1)/r
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where T = t− 1 and P ∈ E(Fp) and Q ∈ E′(Fpk/d)[r] with d the degree of the
twist. In contrast to the Tate pairing, the ate pairing requires curve arithmetic
in the full finite field extension (over the twist, in this case), but enjoys the
advantage of a shorter loop in the Miller operation. This shortening, however,
depends on the family of pairing friendly curves itself. This can be measured
as ω = log r

log |t| . The bigger the ω, the shorter the Miller loop of the ate pairing
compared with the Tate pairing. Note the change of arguments of the f function
between the pairings.

2.3 R-Ate Pairing

The R-ate pairing is a generalization of the ate [28] and atei [46] pairings, im-
proving their computation efficiency [32]. The computation uses up to three
short Miller loops instead of a single Miller loop. The aim is to chose the pa-
rameters so that the three loops together are shorter that a typical ate pairing
loop. Corollary 3.3 from [32] defines four cases of the R-ate pairing. Case 1
matches the Miller loop length of the atei pairing. Case 2 requires a Miller loop
length of the field size, which is not optimal, and case 4 matches the Miller loop
length of the Tate pairing. We prefer the R-ate pairing case 3. If there is no bi-
linear and non-degenerate construction for our curve on this type, we can safely
fall back to case 1, which presents the same length as the atei pairing.

The R-ate pairing is defined as follows [32]:

eA,B : (Q,P ) 	→ fa,BQ(P ) × fb,Q(P ) ×GaBQ,bQ(P ),

where A,B, a, b,∈ N, non-trivial, given by Ti = a · Tj + b, A = Ti, B = Tj ,
Ti ≡ pi mod r, Tj ≡ pj mod r, for some i, j, 1 ≤ i, j ≤ k.

The three Miller loop calls in the R-ate pairing are:

M(Q,P,m2), M(m2Q,P, c), and M(Q,P, d)

where Q and P are defined as for the ate pairing and M is the Miller algorithm.
Here, m1 = Max(A,B), m2 = Min(A,B), c = [m1/m2] and d = m1 − c · m2.
A combination of the a, b, A,B parameters close enough to, or far enough from,
each other may produce a compatible combination.

The parameters of the first and the third Miller loop are the same except for
the length. If the bit representation of d is the same as the higher bits of m2,
then we can reuse an intermediate value of the Miller function. This condition,
however, is not always satisfied and must be verified on a case-by-case basis for
each curve.

Some Ti − Tj combinations require one Miller loop to be executed, others
require three. The fastest R-ate pairing, in terms of the computation cost of its
Miller loops, may not be the one with the lowest footprint; if memory consump-
tion is an issue for a particular implementation, a slightly slower (that is, with
more iterations) R-ate pairing may be preferred over three shorter Miller loops.
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2.4 Pairing Lattices

The family of ate pairings [28,25,46,34,32] are optimized versions of the Tate
pairing restricted to the eigenspaces of the Frobenius.

Let s ∈ Z, h =
∑d

i=0 hixi ∈ Z[x] with h(s) ≡ 0 mod r and d = ϕ(k), with k
the embedding degree, and Q ∈ E(Fpk)[r], then:

(fs,h,Q) =
d∑
i=0

hi((siQ) − (O)).

Defining ||h||1 =
∑d
i=0 |hi| we have that if s is a primitive kth root of unity

modulo r2, and if h(s) ≡ 0 mod r but h(s) �≡ 0 mod r2, then

es,h : (Q,P ) 	→ fs,h,Q(P )(p
k−1)/r

defines a bilinear and non-degenerate pairing [27].

Choosing s. For the choice of s, following the ate pairing definition, we can take
s = r, the subgroup size. We prefer to take s = T = t − 1, which is already an
improvement with respect to the Tate pairing.

Constructing h. For the case of h, we construct a m×m matrix, with m = ϕ(k):

M =

⎛⎜⎜⎜⎜⎜⎝
r 0 · · · 0

−T 1 0 · · · 0
−T 2 0 1 · · · 0

...
. . .

...
−Tm−1 0 · · · 1

⎞⎟⎟⎟⎟⎟⎠ (1)

Let w = (w0, w1, . . . , wm−1) be the shortest Z-linear combination of the rows
of M , then we can construct h =

∑m−1
i=0 wix

i. We have to LLL-reduce the ma-
trix M to get the shortest vector. The explicit construction will be covered in
section 2.6.

2.5 Weak Popov Form

Barreto [5] suggested the use of the Weak Popov Form of a matrix to get a
reduced vector. This matrix construction, presented in [38] by Mulders and Sto-
johann, and recalled in [7] by Barreto, Lindner, and Misoczki in the context of
Coding Theory, has more relaxed conditions than a so-called quasi-echelon form.
In this construction, the pivot is any non-zero element at the end of the vector,
and a pivot is unique in the column.

Mulders and Stojohann presented a few algorithms to transform a matrix into
Weak Popov form [38, Lemmas 2.1-2.5]. An excellent description of the Weak
Popov Algorithm is presented in Appendix A and Algorithm 2 of [7]. A modified
version of this algorithm, may be required to force the coefficients to be in Z.
This can be done after the transformation of the first kind step in the algorithm.
We can transform the M matrix from Equation 1 to be in Weak-Popov form to
get the shortest vector and construct the pairing function.
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2.6 Optimal Pairing

Let λi ≡ pi mod r and r|Φk/d(λi) with d =gcd(i, k), an ate pairing can be defined
as

eλi : (Q,P ) 	→ fλi,Q(P )(p
k−1)/r

this implies that the minimum value of λi is r1/ϕ(k/d).

Definition 1. A pairing function e(·, ·) is called Optimal Pairing if it can be
computed in log2r/ϕ(k) + ε(k) basic Miller iterations, with ε(k) ≤ log2k [45].

The optimal pairing construction reduces the number of iterations of the Miller
loop by decomposing a multiple of r as a sum of the Frobenius endomorphism.
As we suggested for the Pairing Lattice, we prefer to use T = t − 1, where t is
the trace of the curve.

The pairing is defined as:

(Q,P ) 	→
(

l∏
i=0

fp
i

ci,Q
(P ) ·

l∏
i=0

G[si+1]Q,[ciqi]Q(P )

)(pk−1)/r

with si =
∑l

j=i cjp
j , G the line function, and k even.

To find the expansion with short coefficients, Vercauteren [45] uses the
ShortestVectors()Magma function. We prefer to transform the matrix into
a Weak Popov Form, which yields similar results.

BN k = 12 Curves. The matrix M from section 2.4 for these curves is:

MBN =

⎛⎜⎜⎝
3x 4x+ 2 1 x
x 3x+ 1 x+ 1 0
−1 6x+ 2 2 −1

6x+ 2 1 −1 1

⎞⎟⎟⎠ (2)

The optimal pairing can be constructed s = t − 1, and with h(s) = (6x +
2, 1,−1, 1) as follows:

es,h(·, ·) : (Q, P ) 	→ f6x−2,Q(P ) ·G[6x+2]Q,Q1(P ) ·G[6x+2]Q+Q1,−Q2(P ).

where Qi = Qp
i

, computed using the p-power Frobenius.

KSS k = 18 Curves. The matrix M for this family of curves is:

Mk=18 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 5x/7 1 0 −x/7

−5x/7 −2 0 x/7 1 0
0 2x/7 1 0 x/7 0
1 0 x 2 0 0

−x −3 0 0 1 0
0 −x −3 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

The optimal pairing can be constructed with s = t− 1, and h(s) = (−x, −3, 0,
0, 1, 0) as follows:

es,h(·, ·) :(Q, P ) 	→ 1/fx,Q(P ) · 1/f3,Q(P ) ·GQ4,−[3]Q1(P ) ·GQ4−[3]Q1,−[x]Q(P )
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3 Addition Chains

One of the difficult parts of the Tate (and similar) pairing calculation that re-
quires specific optimization is the so-called “final exponentiation” performed
after the Miller loop. This is an exponentiation by (pk − 1)/r of an element in
Fpk . This exponentiation can be simplified by using multiplication and squaring
operations following an addition chain pattern, making the calculation faster by
reusing intermediate values of the computation.

Definition 2. Addition chain. An addition chain for a given integer e is a se-
quence U = (u0, u1, u2, . . . , ul) such that u0 = 1, ul = e and uk = ui + uj for
k ≤ l and some i, j with 0 ≤ i ≤ j.

Finding the shortest addition chain for a given positive integer is an NP-complete
problem [20]. It is clear that a short addition chain for an integer e gives a faster
method for computing fe ∈ Fpk . There are special cases where the shortest
addition chain does not give the best speed up. For example, this might be
the case if one can exchange slower operations for a few extra faster ones (i.e.
exchange an addition for a few doublings, if they are faster). This idea will be
explored in §4.

Definition 3. Addition sequence. Given a list of integers Γ = {v1, .., vl} where
vl ≥ vi∀i = 1, .., l − 1, an addition sequence for Γ is an addition chain for vl
containing all elements of Γ .

Addition sequences, otherwise known as multi-addition-chains, are used to speed
up the final exponentiation [43] and for hashing to a point in G2 [42]. To use
these implementation improvements it is necessary to have code to generate the
addition sequence from a given list of integers.

Another generalization of the addition chains is the addition-subtraction chain,
where the elements can also be constructed by subtraction of the previous ele-
ments. We preferred to use the simpler addition chain.

To automate the addition sequence code generation we use the Dominguez
Perez and Scott [19] suggestion on generalizing the Cruz-Cortés et al. [16] and
Bos and Coster [14] method for generating addition-chains. We construct the
code using vectorial addition chains as in [40]. Selecting which elements must
remain in the sequence and which to discard will continually improve the se-
quence.

As constructing optimal addition-chains is an NP-complete problem, we there-
fore propose to limit the search to a reduced number of improvements. Then the
user can decide if they want to continue the search.

We compared Bernstein’s method [10] to find a short addition sequence for the
KSS k = 36 curves. His method is very fast, however, it generated 363 elements,
whereas our method shows that only 174 are needed. This was thanks to the
artificial intelligence nature of our method.
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4 Final Exponentiation

One of the most expensive operations in the pairing computation is the final
exponentiation by (pk − 1)/r ∈ Fpk , which is required at the end of the com-
putation of the Tate family of pairings. This computation eliminates the r-th
powers and returns a unique r-th roots of unity.

Devegili et al. [17] observed that if the exponent (pk − 1) is appropriately
factored, then one can perform the “easy part” of the exponentiation exploiting
the Frobenius and then perform the “hard part” separately.

The idea is to separate the exponent into 3 pieces:

(pk − 1)/r ⇒ (p
k
2 + 1) · (p k

2 − 1)/Φk(p) · (Φk(p))/r.

The first 2 parts can be easily executed as described. The third part, the “hard
part”, can be executed by the Scott et al. method. [43]

The Scott et al. method [43] requires an addition chain, and the Olivos method
[40] (Also see [15, §9.2] ). Table 1 present the typical output of these methods.
The ti’s represent temporary variables, and the xi’s is the corresponding element
in the base p(x) representation of the hard part of the final exponentiation and
the i-th element in the initial addition-chain.

Table 1. Final exponentiation

code from the Olivos and Scott et

al method. BN k = 12 curve

t0 ← x6∗ x6

t1 ← t0∗ x4

t2 ← t1∗ x5

t3 ← x3∗ x5

t4 ← t3∗ t2
· · ·

Table 2. Final exponentiation

code for a BN k = 12 curve, with

a reduced number of ti elements

t0 ← x6∗ x6

t0 ← t0∗ x4

t1 ← t0∗ x5

t0 ← x3∗ x5

t0 ← t0∗ t1
· · ·

While constructing the code sequence with the Olivos method, it is not pos-
sible to know when any ti (temporary variable) is no longer used in the com-
putation of the addition sequence. For simplicity, we assign a new temporary
variable for each operation required to compute the addition sequence. We then
optimize the memory usage by scanning from bottom-to-top and defining a group
of related operations, recycling the variables whenever possible.

Another improvement is to exchange the memory usage of the xi elements for
a small extra computation. We move all of the xi elements, denoted as R-value1

(Table 2), to a just-in-time L-value assignment.

1 In computer science, an L-value is referred to represent the address of the identified

memory allocation, where areas an R-value is referred to represent its contents. In

other words: let a = b+ c, a is an L-value that represents the memory address where

the addition of the b and c, R-values, is going to be stored.
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5 Galbraith and Scott GLV-Like Method

Gallant, Lambert and Vanstone [24] introduced a method to speed up general
scalar point multiplication of a point P by a scalar n, when there is an efficiently
computable endomorphism ψ on E defined over Fp such that ψ(P ) = λP . Gal-
braith and Scott [23] extended this idea for the G2 and GT groups using higher
dimensions of the endomorphism. They presented a reduced matrix for the BN
k = 12 curves case. We can also use the Weak Popov transformation from section
2.5 with the Galbraith-Scott method.

For the BN k = 12 curves, the vector v generated from Equation 2, which
can be used for precomputing is as follows:

v = (6x3 + 6x2 + 2x,−(6x3 + 6x2 + x),−(2x+ 1),−(5x2)) · nr .
which is smaller than that presented by Galbraith and Scott [23].

To compute a fast exponentiation of a random scalar n by P inG2: we multiply
the vector v by the matrix M from §2.5 and form a vector u, we then multiply
each ui coefficient by ψi−1(P ). For an exponentiation of a random element n by
f ∈ GT : we exponentiate πi−1(f) by ui.

6 Tower Construction Dependent Code

Sections 4 present constructions that rely on addition sequence generation, which
depends on the parameters of the curve. Benger and Scott [9] defined some
criteria for choosing a towering construction for the extension field Fpk . They
present a new method for the towering construction.

For the code construction of the tower of extension fields, we can use [9, Table
1] but also accept a user supplied towering construction. Some multiprecision li-
braries have finite field arithmetic specific for a finite field extension. They will
use their own towering construction rather than that recommended by Benger
and Scott. For example, for implementing pairings over the BN curves [8], RELIC
uses a towering method of Fp → Fp2 → Fp6 → Fp12 , whereas MIRACL recom-
mends Fp → Fp2 → Fp4 → Fp12 . An element of Fp12 may be composed by two
elements in Fp6 or three elements in Fp4 . In practice it is easy to switch between
the two representations.

7 Multiprecision Libraries

When coding cryptographic code from scratch, one question is to decide whether
to create our own set of functions, or use an already standard multiprecision
library.

According to this survey: [1], the main libraries were NTL, Lidia and MIR-
ACL. Official support of Lidia has recently ended as shown on its web-page [4].
Abusharekh, in his MS Thesis [2], presents a more detailed survey of the libraries
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available at that time. In his conclusions, he shows that MIRACL is on aver-
age the fastest, with OpenSSL a close contender. Both surveys are somewhat
outdated, though.

Some recent speed records on the pairing computation are not based on a par-
ticular multiprecision library, but on a hand-crafted set of finite field arithmetic
functions, such as: [39,11,31]. In any of the previous cases, the set of instruc-
tions is only valid for the specific family of curves, and we want a more general
approach. We also wanted the elliptic curve arithmetic already implemented.

For this code generator, we decided to use RELIC and MIRACL as the target
libraries. Some Magma code is also generated and used at runtime.

MIRACL [41] is a multiprecision library which has been on the market for
many years. It is free for academic purposes. It also supports a PBC imple-
mentation including the BN curves [8]. It contains prime field arithmetic and
arithmetic for several extensions fields. It is possible to implement PBC with
several families of pairing-friendly curves. It has recently added support for the
KSS curves with k = 18 embedding degree [30].

The RELIC library [3] is currently at an early stage of development. To date
it includes multiprecision integer arithmetic and prime and extension field arith-
metic, among other features. In particular, it has support for the BN k = 12
curves [8].

Other libraries can be easily added to the generator, but not limited to the
ones based on C/C++ code. Currently, we have not added support to the code
generator for libraries written in languages that use the indentation level of the
code to group their statements.

7.1 Multilibrary Management

To output code for essentially different libraries, we preferred to use associative
arrays in Magma, which are arrays with string identifiers as indexes. These
arrays contain an identifier associated with the different operations, datatype
names, and some basic syntax rules for the corresponding arithmetic. Our code
generator constructs the code for the operations depending on the description of
the operators and operands. Some special circumstances were considered, such
as: operator overloading, temporary assignments, initialization of variables, to
name a few.

For the final exponentiation code, we used an array defining the datatype
names, inversion operator, inversion position (prefix, suffix, infix, circumfix, and
map, etc), accumulator operator (and position), initialization requirements (al-
locate memory, zeroing, try-and-catch support, freeing the variables), how can
we store the output data, etc.

We also created similar arrays for the pairing and the line function. Support
for other multiprecision libraries can be added if we supply this information to
the compiler.
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8 The Code Generator Sequence

The code generator has the code sequence shown in Algorithm 1.

Algorithm 1. Automatic code generator pseudo-code
Input: Security level. Optional: curve to use (see [22]), a and b from the short Weier-

strass representation of the curve, word size of the target environment, precomputed

addition sequences, pairing-friendly family x-parameter generator algorithm to use

(or user supplied x), method to construct the tower of extension fields, the settings

for the artificial immune system part of the code for addition sequence generation,

and the compiling directory.

Defaults to BN curves [8] with a security level of 128 bits with a random x-value.

Output: Compressed directory with the final exponentiation and hashing to G2 code,

supporting code functions depending on the x-value and on the towering construc-

tion, the pairing function code, a test bed, and a script to compile a test bed.

1: Verify the default values and the user supplied parameters.

2: Get the parameters of the curve, the polynomials describing the family, degree of

the twist admitted, the towering construction, the x-value, among others.

3: Construct the final exponentiation and the code for hashing to G2 for the code

generator (in Magma) and for the requested multiprecision library.

4: Verify that the irreducible polynomial generates the twisted curve of the right order

5: Compute the cost of the optimal pairing, construct the R-ate pairing in Magma to

check bilinearity of the parameters, and compute its cost.

6: Compare and decide which pairing function to construct for the desired target li-

brary: Optimal, R-ate, ate or Tate pairing. The user may have requested an specific

pairing function.

7: Generate the code, update the template files, pack the code and compress it.

8: Optionally: compile an example program.

9 Timing the Output Code

We now compare timings from our automatically generated code (for the MIR-
ACL library), with the general purpose PBC library [33], and with the highly
optimized hand-written implementation bundled with the MIRACL library. For
comparison purposes we choose a BN k = 12 curve at the 128-bit security level.
We note that the overall operation count for the MIRACL implementation is
very close to that reported recently by Beuchat et al., [11] in their recent record
setting implementation (although the latter uses a significantly faster specially
tailored implementation of Fp2 arithmetic). The timings were collected on an
Intel Core 2 Duo E6850 3GHz and are presented in table 3.

This demonstrates the validity of our approach, and shows that automatically
generated code is nearly as fast as carefully hand-crafted code, and is significantly
faster than a generic pairing implementation.
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Table 3. Comparison of the generated

code, BN curves. CPU cycles in millions.

Library CPU cycles Time

PBC 160.22 53.37 ms

This paper 10.85 3.63 ms

MIRACL 9.24 3.17 ms

Table 4. Timings for the KSS k = 18

curve. CPU cycles in millions.

Pairing CPU cycles Time

function M FE Tot in ms

This paper 23.8 51.3 72.5 25.1

MIRACL 23.5 49.8 73.3 24.5

In table 4, the timings for the generated code for a R-ate pairing and the
MIRACL implementation are presented.

The CPU cycles are described in table 4 as follows: column M shows the
millions of CPU cycles for the Miller function and related operations; the column
FE, for the final exponentiation; and TOT, is the total. The last column is the
time in milliseconds.

We have managed to generate the code for a KSS curve with k = 36. However,
we currently do not have access to the required finite extension field arithmetic
to run the code. The construction time took several hours with a prescribed
addition sequence for the final exponentiation (section 4). This however, was an
extreme case. The typical construction time ranges from seconds to a couple of
minutes.

10 Conclusions and Future Work

In this work we have presented some constructions for the implementation of
cryptographic pairings necessary to build an automatic code generator.

The generated code uses a slightly larger number of variables in the overall
pairing computation compared to hand-written implementations.

As it was shown in section 9, the generated code is competitive in terms of
speed and number of CPU cycles. The generation time for the addition sequence
in some cases can be very long, but as it was shown for a particular case in
section 3, it can be worth the wait.

This work can be extended to other multiprecision libraries or for its use over
a set of specialized hand-crafted functions. An interesting target library would
be one based on JavaME. We also recommend as a future work, the inclusion of
automatic finite field arithmetic generation.

The source code of this project is available at: [18]
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A Sample Final Exponentiation in MIRACL

The following code was manually re-arranged for formatting purposes.

Listing 1.1. Sample Final Exponentiation for MIRACL, KSS k=18 curves

// INPUT <- f3x0, the value to exponentiate, X is the Frobenius
constant. The x-parameter of the curve.

// OUTPUT -> r, the value of the pairing after the hard part of the
final exponentiation.

#include "FEc6.12lMIRACL.h"
void HardExpo(ZZn18 &r, ZZn18 &f3x0, ZZn3 &X, Big &x){
ZZn18 xA; ZZn18 xB; ZZn18 t0; ZZn18 t1;
ZZn18 t2; ZZn18 t3; ZZn18 t4; ZZn18 t5;
ZZn18 t6; ZZn18 t7; ZZn18 f3x1; ZZn18 f3x2;
ZZn18 f3x3; ZZn18 f3x4; ZZn18 f3x5; ZZn18 f3x6;
ZZn18 f3x7;

f3x1=pow(f3x0,x); f3x2=pow(f3x1,x); f3x3=pow(f3x2,x);
f3x4=pow(f3x3,x); f3x5=pow(f3x4,x); f3x6=pow(f3x5,x);
f3x7=pow(f3x6,x);

xA=Frobenius(inverse(f3x1),X,2); xB=Frobenius(inverse(f3x0),X,2);
t0=xA*xB;
xB=Frobenius(inverse(f3x2),X,2); t1=t0*xB;

http://ftp.computing.dcu.ie/pub/crypto/miracl.zip
http://www.cosic.esat.kuleuven.be/publications/article-1039.pdf
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t0=t0*t0;
xB=Frobenius(inverse(f3x0),X,2); t0=t0*xB;
xB=Frobenius(f3x1,X,1); t0=t0*xB;
xA=Frobenius(inverse(f3x5),X,2)*Frobenius(f3x4,X,4)*Frobenius(
f3x2,X,5);

xB=Frobenius(f3x1,X,1);
t5=xA*xB; t0=t0*t0; t3=t0*t1;
xA=Frobenius(inverse(f3x4),X,2)*Frobenius(f3x1,X,5);
xB=Frobenius(f3x2,X,1);
t1=xA*xB;
xA=Frobenius(f3x2,X,1); xB=Frobenius(f3x2,X,1); t0=xA*xB;
xB=Frobenius(f3x2,X,4); t0=t0*xB;
xB=Frobenius(f3x1,X,4); t2=t3*xB;
xB=Frobenius(inverse(f3x1),X,2); t4=t3*xB;
t2=t2*t2;
xB=Frobenius(inverse(f3x2),X,3); t3=t0*xB;
xB=inverse(f3x2); t0=t3*xB;
t4=t3*t4;
xB=Frobenius(inverse(f3x3),X,3); t0=t0*xB;
t3=t0*t2;
xB=Frobenius(inverse(f3x3),X,2)*Frobenius(f3x0,X,5);
t2=t3*xB; t3=t3*t5; t5=t3*t2;
xB=inverse(f3x3); t2=t2*xB;
xA=Frobenius(inverse(f3x6),X,3); xB=inverse(f3x3); t3=xA*xB;
t2=t2*t2; t4=t2*t4;
xB=Frobenius(f3x3,X,1); t2=t1*xB;
xA=Frobenius(f3x3,X,1); xB=Frobenius(inverse(f3x2),X,3);
t1=xA*xB; t6=t2*t4;
xB=Frobenius(f3x4,X,1); t4=t2*xB;
xB=Frobenius(f3x3,X,4); t2=t6*xB;
xB=Frobenius(inverse(f3x5),X,3)*Frobenius(f3x5,X,4);
t7=t6*xB; t4=t2*t4;
xB=Frobenius(f3x6,X,1); t2=t2*xB;
t4=t4*t4; t4=t4*t5;
xA=inverse(f3x4); xB=Frobenius(inverse(f3x4),X,3);
t5=xA*xB;
xB=Frobenius(inverse(f3x4),X,3); t3=t3*xB;
xA=Frobenius(f3x5,X,1); xB=Frobenius(f3x5,X,1); t6=xA*xB;
t7=t6*t7;
xB=Frobenius(f3x0,X,3); t6=t5*xB;
t4=t6*t4;
xB=Frobenius(inverse(f3x7),X,3); t6=t6*xB;
t0=t4*t0;
xB=Frobenius(f3x6,X,4); t4=t4*xB;
t0=t0*t0;
xB=inverse(f3x5); t0=t0*xB;
t1=t7*t1; t4=t4*t7; t1=t1*t1; t2=t1*t2; t1=t0*t3;
xB=Frobenius(inverse(f3x3),X,3); t0=t1*xB;
t1=t1*t6; t0=t0*t0; t0=t0*t5;
xB=inverse(f3x6); t2=t2*xB;
t2=t2*t2; t2=t2*t4; t0=t0*t0; t0=t0*t3;
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t1=t2*t1; t0=t1*t0;
xB=inverse(f3x6); t1=t1*xB;
t0=t0*t0; t0=t0*t2;
xB=f3x0*inverse(f3x7); t0=t0*xB;
xB=f3x0*inverse(f3x7); t1=t1*xB;
t0=t0*t0; t0=t0*t1;

r=t0;}

B Sample Pairing Construction for MIRACL, KSS k=18

Listing 1.2 shows the code for the R-ate pairing. Listing 1.3 present the code
construction for a shared Miller loop. Listing 1.4 show the line function code.
The code was re-arranged for formatting purposes.

Listing 1.2. R-ate pairing for the MIRACL library. KSS k=18 curves

// INPUT <- Point P in G_2. Point Q in G_1 with the x and y
coordinates in Qx and Qy respectively. X, d2, d3, the Frobenius
constant, and its quadratic and cubic powers. The x-parameter
of the curve. m2 and d, the Miller loop length parameters of
the R-ate pairing.

// OUTPUT -> r, the value of the pairing after the hard part of the
final exponentiation.

#include "RATEc6.12lMIRACL.h"
BOOL Pairing(ECn3 &P, ZZn &Qx, ZZn &Qy, ZZn18 &r, ZZn3 &X, ZZn3 &d2

, ZZn3 &d3, Big &x,Big &m2,Big &d){
ZZn18 fm2; ZZn18 fm1;
ECn3 m1P; ECn3 m2P;
int nb; int i;
ZZn18 fd;
ECn3 dP;
Miller(P,Qx,Qy,fm2,m2P,m2,fd,dP,d);
fd*=fm2;
m1P=m2P;
fd*=g(m1P,dP,Qx,Qy);
fm2*=Frobenius(fd,X,6);
m1P=psi(m1P,d2,d3,6);
fm2*=g(m1P,m2P,Qx,Qy);
SoftExpo(fm2,X);
HardExpo(r,fm2,X,x);
if (fm2.iszero()) {
return FALSE;

}
return TRUE;}
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Listing 1.3. Miller function implementation

// INPUT <- Point P in G_2. Point Q in G_1 with the x and y
coordinates in Qx and Qy respectively. m2 and d, the Miller
loop length parameters of the R-ate pairing. The loop length d
needs to be embedable into m2.

// OUTPUT -> f3 and fd, the value of the Miller function with loop
lengths m2 and d respectively. m2P, dP the scalar-point
multiplication of m2.P and d.P respectively.

void Miller(ECn3 &P, ZZn &Qx, ZZn &Qy, ZZn18 &f3, ECn3 &m2P, Big &
m2, ZZn18 &fd, ECn3 &dP, Big &d){

int i;
int nb=bits(m2); int nb2=bits(d);
f3=1; m2P=P;
for (i=nb-2;i>=0;i--) {
f3*=f3;
f3*=g(m2P,m2P,Qx,Qy);
if (bit(m2,i)) f3*=g(m2P,P,Qx,Qy);
if (i==nb-nb2) {dP=m2P; fd=f3;}

}
}

Listing 1.4. Line function

// INPUT <- A=T+P, where T and P are two points in G_2. The slope
of the line crossing through the point T and P. A fixed point Q
in G_1, with Qx and Qy representing its x,y coordinates
respectively.

// OUTPUT -> The distance between the point Q and the line formed
by the points T,P.

ZZn18 line(ECn3 &A, ZZn3 &slope, ZZn &Qx, ZZn &Qy){
ZZn18 w; ZZn6 a;
ZZn6 b; ZZn6 c;
ZZn3 X,Y; ZZn3 t0; ZZn3 t1;
A.get(X,Y);
t0=-Qy; t1=slope*X; t1=Y-t1;
a.set(t0,t1);
t0=slope*Qx;
b.set(t0);
w.set(a,b);
return w;}



Efficient Generic Constructions of
Timed-Release Encryption with

Pre-open Capability

Takahiro Matsuda�, Yasumasa Nakai, and Kanta Matsuura

The University of Tokyo, Japan

{tmatsuda,kanta}@iis.u-tokyo.ac.jp

Abstract. Timed-release encryption with pre-open capability (TRE-PC),

introduced by Hwang et al. in 2005, is a cryptosystem with which a

sender can make a ciphertext so that a receiver can decrypt it by using

a timed-release key provided from a trusted time-server, or by using a

special information called pre-open key provided from the sender before

the release-time, and thus adds flexibility to ordinary TRE schemes in

many practical situations. Recently, Nakai et al. proposed a generic con-

struction of a TRE-PC scheme from a public-key encryption scheme, an

identity-based encryption scheme (with some special property), and a

signature scheme. Concrete TRE-PC schemes derived via their generic

construction are, however, not so practical because of the used building

block primitives. Motivated by this situation, in this paper we propose

two new generic constructions of TRE-PC schemes. Both of our con-

structions follow the basic idea behind the generic construction by Nakai

et al. but overcome its inefficiency without losing “generality” for the

used building block primitives. Concrete TRE-PC schemes derived from

our generic constructions are comparable to or more efficient than the

currently known TRE-PC schemes in terms of ciphertext overhead size

and computation costs.

Keywords: timed-release encryption, pre-open capability, generic con-

struction, tag-KEM.

1 Introduction

Background and Motivation. Timed-release encryption (TRE) is a kind of en-
cryption system introduced by May [23] in 1993. Roughly speaking, in TRE, a
message can be encrypted in such a way that it cannot be decrypted even by a
legitimate receiver who owns a decryption key for the ciphertext until the time
(called release-time) that is specified by an encryptor. Many of practical appli-
cations/situations where TRE schemes can be used have been considered so far,
such as sealed-bid auctions, electronic voting, contents predelivery systems, and
on-line examinations. Although there are several known approaches and models
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for realizing TRE systems, as with the most recent works regarding TRE, in this
paper we only focus on the public key TRE systems which consider the existence
of a trusted agent called time-server that publishes a global system parameter
and periodically issues a timed-release key that is used by each receiver for de-
crypting a ciphertext together with the receiver’s private key, and in which a
sender and a receiver need not interact with the time-server [13,15,16].

In 2005, Hwang et al. [22] introduced an additional functionality called pre-
open capability in TRE schemes. Roughly, in TRE with pre-open capability
(TRE-PC), a sender can make a ciphertext so that a receiver can decrypt it
by using a timed-release key provided from the time-server at a predetermined
release-time specified by the sender, or by using a special information called
pre-open key provided from the sender before the release-time. This pre-open
key is generated as a by-product when generating a ciphertext. It is naturally
required that even if a honest-but-curious time-server gets a ciphertext together
with a corresponding pre-open key, it should not be able to learn any information
on a plaintext, and even a legitimate receiver should not be able to learn any
information from a ciphertext without a timed-release key or a pre-open key.

This pre-open capability adds more flexibility to TRE in many practical sit-
uations and also increases applications of TRE. For example, Hwang et al. [22]
showed that TRE-PC can be used to realize certified email systems. Dent and
Tang [20] exemplified how TRE-PC is useful for timed-disclosure of governmen-
tal documents which must be kept secret until a certain period of time. See these
papers for more details about the applications of TRE-PC.

Recently, Nakai et al. [24] proposed a generic construction (we call it the NMKM
construction) of a TRE-PC scheme from a chosen ciphertext secure (CCA-secure)
public-key encryption (PKE) scheme, a chosen plaintext secure (CPA-secure)
identity-based encryption (IBE) scheme with a special property called target colli-
sion resistance for randomness, and a one-time signature scheme. Their construc-
tion is essentially the generic construction of a TRE scheme (without pre-open
capability) by Cheon et al. [15,16]. Although their construction enables us to in-
stantiate a number of TRE-PC schemes based on existing basic primitives, con-
crete TRE-PC schemes derived via their generic construction are not so practical
because of the used building block primitives (especially the use of a one-time sig-
nature), and are not more efficient than the existing TRE-PC scheme by Dent and
Tang [20] and the one by Chow and Yiu [18].

The main motivation of this paper is to show more efficient generic construc-
tions of TRE-PC schemes from existing basic primitives that lead to practical
TRE-PC schemes.

Our Contribution. In this paper we propose two new generic constructions of
TRE-PC schemes from existing basic primitives that are secure in the model of
[20] and are more efficient than the NMKM construction. Both of our generic
constructions follow the basic idea behind the NMKM construction, but over-
come its inefficiency without losing “generality” of the building block primitives
in the sense that we can construct TRE-PC schemes from a combination of ordi-
nary KEMs, a wide class (explained below) of identity-based KEMs (IBKEMs),
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and symmetric-key primitives, via our constructions. Concretely, our generic
constructions employ the hybrid encryption structure (i.e., in a KEM/DEM ap-
proach [19,4], where KEM stands for key encapsulation mechanism and DEM
stands for data encapsulation mechanism), and use different approaches from the
NMKM construction for avoiding a one-time signature scheme, which is one of
the main obstacles that makes the NMKM construction less practical compared
to the existing concrete TRE-PC schemes [20,18].

Our first construction is based on a CCA-secure tag-KEM [4], a CPA-secure
IBKEM with target collision resistance for randomness (originally introduced
in [24] for IBE schemes and can be naturally considered for IBKEMs), and a
passively secure DEM. A tag-KEM is a primitive for a secure hybrid encryption
introduced by Abe et al. [4] and has been widely studied. Although one might
think that a tag-KEM is not a basic primitive, Abe et al. show that CCA-
secure tag-KEMs can be generically built from any CCA-secure ordinary (i.e.
non-tag-)KEMs and one-time secure message authentication codes (MACs), and
thus can be achieved generically from existing basic primitives. Moreover, many
practical (direct) constructions of tag-KEMs are also known (with and without
random oracles), e.g. [4,3,5,2]. Our first construction might also be interesting
as a concrete application of tag-KEMs for a different purpose than constructing
hybrid PKE schemes.

Our second construction is simpler than the above construction and is based
on a CCA-secure (ordinary) KEM, a CPA-secure IBKEM with the same secu-
rity as above, and a CCA-secure DEM, but it also requires a random oracle.
Therefore, this construction is suitable for constructing TRE-PC schemes based
on existing building block primitives that already use random oracles.

A number of practical TRE-PC schemes can be obtained via our generic con-
structions. Concretely, we show that concrete TRE-PC schemes derived from
our generic constructions are comparable to or more efficient than the currently
known TRE-PC schemes [20,18] in terms of ciphertext overhead size and com-
putation costs. See Section 5 for details. We also discuss the extensions of the
proposed constructions for TRE-PC that supports release-time confidentiality
[12] and for public key time-specific encryption [25]. See Related Work paragraph
below and Section 4.4 for these. We believe that the constructions obtained via
our generic constructions can also be used as “benchmarks” to compare with
(and evaluate) concrete TRE-PC schemes that will be proposed in the future.

As in the NMKM construction, the IBKEM used in our constructions is re-
quired to satisfy the non-standard security called target collision resistance for
randomness. However, this security is satisfied unconditionally by many existing
pairing-based IBKEM schemes. See a more detailed explanation in Section 2.2.

Related Work. There are two major approaches for realizing TRE. One approach
is to use time-lock puzzles [26]. In this approach, a sender makes a ciphertext
which cannot be finished decrypting before the release-time in a receiver’s en-
vironment, even if the receiver keeps computing to decrypt the ciphertext after
he receives it. This imposes heavy computation cost on the receiver, and it is
difficult to precisely estimate the required time for decryption.
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The other approach is to use a trusted agent (i.e. time-server) which peri-
odically generates a time specific information (timed-release key) needed to en-
crypt a message and/or decrypt a ciphertext. Earlier TRE schemes (e.g. [23,26])
adopted a model in which the time-server and system users (senders and/or re-
ceivers) need to interact. Chan and Blake [13] and Cheon et al. [15,16] indepen-
dently introduced a model in which no interaction between the time-server and
users is required. Most of the works about TRE schemes (e.g. [12,22,20,17,18,24])
after [13,15,16] adopt the model of [13,15,16]. Cheon et al. [15,16] and Cathalo
et al. [12] independently proposed formal security definitions for TRE.

Several additional functionality and security properties have also been intro-
duced for TRE. Cheon et al. [15,16] introduced a TRE scheme with authentica-
tion, which is a TRE-version of public key authenticated encryption [7]. Cathalo
et al. [12] formalized a notion of release time confidentiality for TRE, in which a
ciphertext does not leak any information about its release-time for other entities
than a legitimate receiver.

Very recently, Paterson and Quaglia [25] introduced a new primitive, time-
specific encryption (TSE), which in some sense is a generalization of TRE.
Roughly, in TSE, an encryptor chooses not a release-time, but a release-time
“interval” [Tfrom, Tto], and the ciphertext can be decrypted by using a time in-
stant key (TIK) (which corresponds to a timed-release key in TRE) only when
the time T associated with the TIK satisfies T ∈ [Tfrom, Tto]. They consider
plain setting in which a ciphertext is not specific to any receiver, and public-
key and identity-based settings in which each ciphertext is specified to some
receiver (who has his own secret-key). We will explain in Section 4.4 how our
constructions can be used to construct public-key TSE with pre-open capability.

2 Preliminaries

In this section, we review the primitives that are used as building blocks in our
TRE-PC constructions. The primitives not reviewed here appear in Appendix A,
which are public-key KEM and DEM. (Due to space limitations, some standard
security definitions are omitted, which will be given in the full version.)

Notation. Throughout this paper, “x← y” denotes that x is chosen uniformly
at random from y if y is a finite set, x is output from y if y is an algorithm,
or y is assigned to x otherwise. “x||y” denotes a concatenation of x and y.
“PPTA” denotes probabilistic polynomial time algorithm. If A is a PPTA then
“AO” denotes that A has oracle access to O, and “y ← A(x; r)” denotes that A
computes y as output, taking x as input and using r as randomness. “κ” always
denotes the security parameter. We say that a function f(κ) is negligible (in κ)
if f(κ) < 1/p(κ) for any positive polynomial p(κ) and all sufficiently large κ.

2.1 Tag-KEM

A tag-KEM ΠT consists of the following four PPTAs (TKG, TSKey, TEncap,
TDecap): TKG is a key generation algorithm that takes 1κ as input, and outputs
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a public/secret key pair (pk, sk); TSKey is a session-key generation algorithm
that takes pk as input, and outputs a session-key K ∈ K (K is a session key
space of ΠT ) and a corresponding state information ω that is used in the en-
capsulation algorithm; TEncap is an encapsulation algorithm that takes a tag
tag and ω as input, and outputs a ciphertext c, which is an encapsulation
of a session-key K under pk (where information about K and pk is implic-
itly transmitted by ω); TDecap is a deterministic decapsulation algorithm that
takes sk, tag, and c as input, and outputs K ∈ K ∪ {⊥}. We require, for all
(pk, sk) ← TKG(1κ), all (K,ω) ← TSKey(pk), all tag, and all c← TEncap(tag, ω),
that TDecap(sk, tag, c) = K.

Definition 1. We say that a tag-KEM ΠT is indistinguishable against chosen
ciphertext attacks (IND-CCA secure) if for any PPTA A = (A1,A2) the follow-
ing IND-CCA advantage AdvIND-CCAΠT ,A (κ) is negligible:

AdvIND-CCAΠT ,A (κ) = |Pr[(pk, sk) ← TKG(1κ);K∗
0 ← K; (K∗

1 , ω
∗) ← TSKey(pk);

b← {0, 1}; (tag∗, stA) ← ATDecap(sk,·,·)
1 (pk,K∗

b ); c
∗ ← TEncap(tag∗, ω∗);

b′ ← ATDecap(sk,·,·)
2 (c∗, stA) : b′ = b] − 1

2
|,

where A2 is not allowed to submit the challenge tag/ciphertext pair (tag∗, c∗) to
its given decapsulation oracle TDecap(sk, ·, ·).

2.2 Identity-Based Key Encapsulation Mechanism

An identity-based key encapsulation mechanism (IBKEM) ΠI consists of the
following four PPTAs (ISetup, IExt, IEncap, IDecap): ISetup is a setup algo-
rithm that takes 1κ as input, and outputs a pair of global parameters prm and a
master secret key msk; IExt is an extraction algorithm that takes prm, msk, and
an identity ID as input, and outputs a decapsulation key dkID corresponding to
ID; IEncap is an encapsulation algorithm that takes prm and ID as input, and
outputs a ciphertext/session-key pair (c,K); IDecap is a deterministic decapsu-
lation algorithm that takes prm, dkID, and c as input, and outputs K ∈ K∪{⊥}
(K is a session-key space of ΠI). We require, for all (prm,msk) ← ISetup(1κ),
all ID, all dkID ← IExt(prm,msk, ID), and all (c,K) ← IEncap(prm, ID), that
IDecap(prm, dkID, c) = K.

We will need an IBKEM that satisfies indistinguishability against adaptive-
identity, chosen plaintext attacks (IND-ID-CPA security) for our first construc-
tion and an IBKEM that satisfies one-wayness under the same attacks (OW-ID-
CPA security) for our second construction. Since these security definitions are
standard, we omit the definitions here.

Target Collision Resistance for Randomness. We define target collision resis-
tance for randomness of an IBKEM here. This security is previously defined by
Nakai et al. in [24] for IBE schemes, but we naturally adopt it for IBKEMs.
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Definition 2. We say that an IBKEM ΠI (whose randomness space of IEncap
is RIEncap) satisfies target collision resistance for randomness if for any PPTA
A the following advantage function AdvRandΠI ,A(κ) is negligible:

AdvRandΠI ,A(κ) =

Pr[(prm,msk) ← ISetup(1κ);R∗ ← RIEncap; (ID′, R′) ← A(prm,msk, R∗) :
IEncap(prm, ID′;R′) = IEncap(prm, ID′;R∗) ∧R′ �= R∗].

Whether this security is satisfied or not (possibly under some hardness assump-
tion) depends on concrete instantiations. However, we note that this security
is satisfied unconditionally by most existing pairing-based IBKEMs, such as
[9,27,21,14,28] and their variants. These IBKEMs have the property that under
fixed global parameters and a fixed identity, if a different randomness is used in
the encapsulation algorithm, then a ciphertext/session-key pair will always be
different. As discussed in [24, Section 2.2], many practical pairing-based IBKEMs
(and IBE schemes) have this property, and therefore satisfy target collision re-
sistance for randomness unconditionally.

3 TRE-PC Scheme and TRE-PC KEM

In this section, we review the definitions of algorithms and security of TRE-PC
schemes and TRE-PC KEMs. We adopt the models by Dent and Tang [20].

A timed-release encryption with pre-open capability (TRE-PC) scheme Γ
consists of the following six PPTAs.

TRE.Setup: A setup algorithm that takes 1κ as input, and outputs a pair of
global parameters prm and a master secret key msk.

TRE.Ext: A timed-release key extraction algorithm that takes prm, msk, and a
time T as input, and outputs a timed-release key trk corresponding to T .

TRE.UKG: A user key generation algorithm that takes prm as input, and outputs
a user’s public/secret key pair (upk, usk).

TRE.Enc: An encryption algorithm that takes prm, T , upk, and a plaintext m ∈
M as input, and outputs a ciphertext c and a corresponding pre-open key
pok.

TRE.DecTR: A deterministic release-time decryption algorithm that takes prm,
usk, trk, and c as input, and outputs m ∈ M ∪ {⊥}.

TRE.DecPO: A deterministic pre-open decryption algorithm that takes prm, usk,
pok, and c as input, and outputs m ∈ M ∪ {⊥}.

In the above, M is a plaintext space of Γ .
We require, for all (prm,msk) ← TRE.Setup(1κ), all (upk, usk) ←

TRE.UKG(prm), all T , all trk ← TRE.Ext(prm,msk, T ), all m, and all
(c, pok) ← TRE.Enc(prm, T, upk,m), that TRE.DecTR(prm, usk, trk, c) =
TRE.DecPO(prm, usk, pok, c) = m.

A TRE-PC KEM is a natural KEM analogue of a TRE-PC scheme and con-
sists of six algorithms (we will use the prefix “TRKEM” for denoting algorithms
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ExptIND-TR-CCATSΓ,A (κ) :

(prm, msk)← TRE.Setup(1κ)
(upk, usk)← TRE.UKG(prm)

(m0, m1, T
∗, stA)

← AODecTR
,ODecPO

1 (prm, msk, upk)

b← {0, 1}
(c∗, pok∗)← TRE.Enc(prm, T ∗, upk, mb)

b′ ← AODecTR
,ODecPO

2 (c∗, pok∗, stA)

If b′ = b then return 1 else return 0

ExptIND-TR-CPAISΓ,A (κ) :

(prm, msk)← TRE.Setup(1κ)
(upk, usk)← TRE.UKG(prm)

(m0, m1, T
∗, stA)

← AOExt
1 (prm, upk, usk)

b← {0, 1}
(c∗, pok∗)← TRE.Enc(prm, T ∗, upk, mb)

b′ ← AOExt
2 (c∗, stA)

If b′ = b then return 1 else return 0

ExptBindingΓ,A (κ) :

(prm, msk)← TRE.Setup(1κ)
(upk, usk)← TRE.UKG(prm)

(c∗, T ∗, pok∗)
← AOExt,ODecTR

,ODecPO (prm, upk)

trk∗ ← TRE.Ext(prm, msk, T ∗)
m∗
tr ← TRE.DecTR(prm, usk, trk∗, c∗)

m∗
po ← TRE.DecPO(prm, usk, pok∗, c∗)

If ⊥ �= m∗
tr �= m∗

po �= ⊥
then return 1 else return 0

Definitions of Oracles

Oracle Input Output

OExt T TRE.Ext(prm, msk, T )

ODecTR (T, c) TRE.DecTR(prm, usk, trk, c)
where

trk← TRE.Ext(prm, msk, T )

ODecPO (pok, c) TRE.DecPO(prm, usk, pok, c)

Fig. 1. Security experiments for a TRE-PC scheme Γ . The table (right-bottom) is the

definitions of oracles in the experiments.

of a TRE-PC KEM), i.e., TRKEM.Setup, TRKEM.Ext, TRKEM.UKG, TRKEM.Encap,
TRKEM.DecapTR, and TRKEM.DecapPO. Since the interface of these algorithms are
easily inferred from that of a TRE-PC scheme, we omit it.

3.1 Security Requirements

Here, we review the three kinds of security requirements defined in [20] for a
TRE-PC scheme, which are time-server security, insider security, and binding.
Though here we only mention the security definitions for a TRE-PC scheme,
those for a TRE-PC KEM is a natural KEM analogue of the definitions for a
TRE-PC scheme, and are easily inferred.

Time-Server Security. This security protects message confidentiality against a
curious time-server who owns a master secret key of a TRE-PC scheme. In
[20], it was shown that the security against an outsider who does not have
access to a master secret key nor a user’s secret key is also captured by this
security. Formally, we define the security experiment ExptIND-TR-CCATSΓ,A (κ) for time-
server security (IND-TR-CCATS security) of a TRE-PC scheme Γ in which an
adversary A = (A1,A2) is run as in Fig. 1 (left-top). It should be noted that
the second stage adversary A2 is given not only a challenge ciphertext but also
its corresponding pre-open key. We make several restrictions in the experiment:
A’s challenge plaintexts must satisfy |m0| = |m1|; A2 is not allowed to submit
the challenge time/ciphertext pair (T ∗, c∗) to ODecTR , and also is not allowed to
submit the challenge pre-open key/ciphertext pair (pok∗, c∗) to ODecPO .
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Definition 3. We say that a TRE-PC scheme Γ is IND-TR-CCATS se-
cure if AdvIND-TR-CCATSΓ,A (κ) = |Pr[ExptIND-TR-CCATSΓ,A (κ) = 1] − 1

2 | is negligible for
any PPTA A.

Insider Security. This security protects the message confidentiality against a
malicious receiver who has a user’s secret key and tries to obtain some infor-
mation about a plaintext from a ciphertext without a timed-release key or a
pre-open key. Formally, we define the security experiment ExptIND-TR-CPAISΓ,A (κ) for
insider security (IND-TR-CPAIS security) of a TRE-PC scheme Γ in which an
adversary A = (A1,A2) is run as in Fig. 1 (right-top). We make several restric-
tions in the experiment: A1’s challenge time T ∗ must satisfy T ∗ > T for any
time T that is submitted to OExt by A1; A’s challenge plaintexts must satisfy
|m0| = |m1|; A2 must not issue a time T satisfying T ∗ ≤ T to OExt.

Definition 4. We say that a TRE-PC scheme Γ is IND-TR-CPAIS se-
cure if AdvIND-TR-CPAISΓ,A (κ) = |Pr[ExptIND-TR-CPAISΓ,A (κ) = 1] − 1

2 | is negligible for
any PPTA A.

As noted in [20], the term “CPA” is used because an adversary in the experiment
does not have access to decryption oracles ODecTR and ODecPO . This is simply
because the decryption oracles can be simulated by an adversary who owns
user’s secret key and has access to OExt. See [20] for details.

Binding. Binding protects a receiver from a malicious sender who tries to make a
ciphertext that decrypts to some plaintext with TRE.DecTR but can be pre-opened
to another plaintext with TRE.DecPO. Formally, we define the security experiment
ExptBindingΓ,A (κ) for binding of a TRE-PC scheme Γ in which an adversary A is
run as in Fig. 1 (left-bottom).

Definition 5. We say that a TRE-PC scheme Γ satisfies binding if
Adv

Binding
Γ,A (κ) = Pr[Expt

Binding
Γ,A (κ) = 1] is negligible for any PPTA A.

4 Proposed Generic Constructions

In this section, we show two new generic constructions of TRE-PC schemes. We
first explain the basic construction idea in Section 4.1 for better understanding
of our constructions. Then in Sections 4.2 and 4.3, we show the details of our
generic constructions. Finally we discuss the extensions of our constructions in
Section 4.4.

4.1 Basic Construction Idea

As mentioned earlier, the basic idea for both of our generic constructions
follows the idea behind the NMKM construction: We employ “PKE”-like and
“IBE”-like primitive as main building blocks; A message m is encrypted for the
release-time T in such a way that (a) it can be decrypted (with release-time de-
cryption algorithm) only when the user’s secret key (which is a decryption key of
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“PKE”-part) and the timed-release key (which is a decryption key of “IBE-part”
under the “identity” T ) are simultaneously available, (b) with some mechanism
such that the ciphertexts from each building block component are strongly bound
together into a single TRE-PC ciphertext. In the NMKM construction, “(a)” is
achieved by adopting multiple encryption by PKE and IBE schemes together
with a 2-out-of-2 secret sharing of m, and “(b)” is achieved using a one-time
signature.

However, the naive use of the 2-out-of-2 secret sharing of a messagem and the
use of “encryption” schemes as the underlying building blocks cause a ciphertext
overhead (the difference between the ciphertext size and the plaintext size) by
exactly the size of the message m itself, which can lead to a long ciphertext if m
is long, and thus we avoid this by adopting “KEM/DEM” approaches appropri-
ately. Moreover, a one-time signature also causes a large ciphertext overhead as
well as relatively large computational costs in encryption and decryption algo-
rithms because of signing and verification of signatures. Therefore, in order to
avoid using one-time signatures but still achieve a similar “binding” mechanism
of ciphertext components, each of our proposed constructions employs different
ideas, which will be explained in detail in the following subsections.

As in the NMKM construction, in order to realize pre-open decryption and
achieve binding security, we will use the randomness used to generate the IBE-
part ciphertext as a pre-open key. In the pre-open decryption procedure, this
randomness is used to check the validity of the IBE-part ciphertext and to recover
the “information” hidden in the IBE-part ciphertext.

4.2 Proposed TRE-PC Scheme from Tag-KEM, IBKEM, and DEM

Our first construction utilizes a tag-KEM as the “PKE”-part and an IBKEM as
the “IBE”-part. An actual message is encrypted with a DEM where the session-
key for the DEM is the XOR of the session-keys from the tag-KEM and the
IBKEM. Specifically, let ΠT = (TKG, TSKey, TEncap, TDecap) be a tag-KEM,
ΠI = (ISetup, IExt, IEncap, IDecap) be an IBKEM whose randomness space
of IEncap is RIEncap, and D = (DEnc, DDec) be a DEM. Then the proposed
TRE-PC scheme Γ1 is constructed as in Fig. 2. For simplicity, we assume that
the session key space of ΠT , that of ΠI , and the key space of D are all {0, 1}κ
where κ is a security parameter (we can always achieve this using an appropriate
key derivation function and/or a pseudorandom generator).

Intuition. Recall that when one constructs a CCA-secure hybrid PKE scheme
via the tag-KEM/DEM composition paradigm established in [4], the DEM ci-
phertext is regarded as a tag for a CCA-secure tag-KEM, and then it is input
into the encapsulation algorithm of the tag-KEM. Roughly, because of this “feed-
back” structure, the DEM is only required to be passively secure (i.e. IND-OT
security) while a DEM ciphertext is strongly tied to a tag-KEM ciphertext, and
the entire hybrid PKE satisfies CCA-security. We use this feedback structure of
a tag-KEM to bind all the ciphertext components together into one single TRE-
PC ciphertext. More specifically, the IBKEM ciphertext c2, the DEM ciphertext
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TRE.Setup(1κ):
Return (prm, msk)← ISetup(1κ)

TRE.Ext(prm, msk, T ):

dkT ← IExt(prm, msk, T )

Return trk← (dkT , T ).

TRE.UKG(prm):

Return (upk, usk)← TKG(1κ).

TRE.Enc(prm, T, upk, m):

(k1, ω)← TSKey(upk)

R←RIEncap

(c2, k2)← IEncap(prm, T ;R)

K ← k1 ⊕ k2

c3 ← DEnc(K, m)

tag← (T ||c2||c3)

c1 ← TEncap(tag, ω)

C ← (c1, c2, c3, T ); pok← R
Return (C, pok).

TRE.DecTR(prm, usk, trk, C):

(dkT , T )← trk; (c1, c2, c3, T̂ )← C

If T �= T̂ then return ⊥.

tag← (T ||c2||c3)

k1 ← TDecap(usk, tag, c1)

If k1 = ⊥ then return ⊥.

k2 ← IDecap(prm, dkT , c2)

If k2 = ⊥ then return ⊥.

K ← k1 ⊕ k2

Return m← DDec(K, c3).

TRE.DecPO(prm, usk, pok, C):

R← pok; (c1, c2, c3, T )← C
tag← (T ||c2||c3)

k1 ← TDecap(usk, tag, c1)

If k1 = ⊥ then return ⊥.

(ĉ2, k2)← IEncap(prm, T ; R)

If ĉ2 �= c2 then return ⊥.

K ← k1 ⊕ k2

Return m← DDec(K, c3).

Fig. 2. Proposed TRE-PC Scheme Γ1

c3, and a time T are regarded as a tag for the tag-KEM, and are input into
the encapsulation algorithm of the tag-KEM to generate the tag-KEM cipher-
text c1. Since an entire TRE-PC ciphertext is of the form (c1, c2, c3, T ) where
(c2, c3, T ) are treated as a tag for the tag-KEM, an adversary of the time-server
security experiment cannot gain any useful information of the session-key k1 of
the tag-KEM, and thus that of the session-key K = k1 ⊕ k2 used in the DEM,
without breaking the IND-CCA security of the tag-KEM. If not the informa-
tion on K, the adversary cannot gain any useful information about the message
without breaking the IND-OT security of the DEM. This intuitively ensures
the time-server security (i.e. IND-TR-CCATS security) (we actually need target
collision resistance for randomness of the IBKEM to deal with a certain kind
of pre-open decryption queries, as is same with the NMKM construction). The
insider security (i.e. IND-TR-CPAIS security) is straightforwardly achieved by a
combination of the IND-ID-CPA security of the IBKEM and the IND-OT secu-
rity of the DEM. In our construction, the pre-open key is the randomness used
to generate the IBKEM ciphertext c2. The appropriate re-computation and the
equality check of the IBKEM ciphertext c2 in the pre-open decryption algorithm
ensure binding security.

The security of the proposed TRE-PC scheme Γ1 is guaranteed by the follow-
ing theorems.

Theorem 1. If the tag-KEM ΠT is IND-CCA secure, the DEM D is IND-OT
secure, and the IBKEM ΠI satisfies target collision resistance for randomness,
then the proposed TRE-PC scheme Γ1 is IND-TR-CCATS secure.



Efficient Generic Constructions of TRE with Pre-open Capability 235

Proof. Let A = (A1,A2) be any PPTA IND-TR-CCATS adversary against the
proposed TRE-PC scheme Γ1. We consider the following sequence of games. (The
values with asterisk (*) are the ones used for generating the challenge ciphertext
C∗ = (c∗1, c

∗
2, c

∗
3, T

∗) and its corresponding pre-open key pok∗.)

Game 1: This is the ordinary IND-TR-CCATS experiment regarding our pro-
posed TRE-PC scheme Γ1.

Game 2: Same as Game 1, except that if A2 issues a pre-open decryption query
of the form (pok, C∗) with pok �= pok∗, it is responded with ⊥.

Game 3: Same as Game 2, except that when the challenge ciphertext C∗ is
generated, a random session-key K∗ ← {0, 1}∗ is used to generate c∗3 instead
of using K∗ = k∗1 ⊕ k∗2 .

Let Succi be the event that A succeeds in guessing the challenge bit (i.e.
b′ = b occurs) in Game i, and let POQueryi be the event that A2 submits
at least one pre-open decryption query (pok, C∗) that satisfies pok �= pok∗ and
TRE.Dec(prm, usk, pok, C∗) �= ⊥ in Game i.

Then, the IND-TR-CCATS advantage of the adversary A is estimated as:

AdvIND-TR-CCATSΓ1,A (κ) = |Pr[Succ1] − 1
2
|

≤
∑

i∈{1,2}
|Pr[Succi] − Pr[Succi+1]| + |Pr[Succ3] − 1

2
| (1)

In the following, we will upperbound the above terms.

Lemma 1. |Pr[Succ1] − Pr[Succ2]| is negligible.

Proof of Lemma 1. Notice that Game 1 and Game 2 proceed identically until
the event POQuery1 = POQuery2 occurs. Therefore, we have

|Pr[Succ1] − Pr[Succ2]| ≤ Pr[POQuery1] = Pr[POQuery2].

Hence, it is sufficient to show that Pr[POQuery2] is negligible.
Towards a contradiction assume that Pr[POQuery2] is non-negligible. Then

we can construct another adversary B that can break target collision resistance
for randomness of the IBKEM ΠI with advantage exactly Pr[POQuery2], using
A. Given (prm,msk, R∗), B generates a user key pair (upk, usk) ← TKG(1κ), and
then starts simulating Game 2 for A by running A1 on input (prm,msk, upk).
Since B possesses msk and usk, it can do a perfect simulation of Game 2 (in
particular can respond to all decryption queries from A as in Game 2). When B
generate the challenge ciphertext C∗ = (c∗1, c∗2, c∗3, T ∗), it usesR∗ as a randomness
to generate c∗2 and moreover sets pok∗ = R∗ as a pre-open key for C∗ and
gives them to A. Now, if A2 issues a pre-open decryption query of the form
(pok = R′, C∗ = (c∗1, c∗2, c∗3, T ∗)) that causes POQuery2, it holds that (c∗2, k∗2) =
IEncap(prm, T ∗;R′) = IEncap(prm, T ∗;R∗) and R∗ �= R′, where the latter is due
to the restriction on A in the IND-TR-CCATS experiment. Therefore, whenever
POQuery2 occurs, B can break target collision resistance for randomness by
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outputting (T ∗, R′). This means B’s advantage is exactly Pr[POQuery2] that is
non-negligible, which contradicts target collision resistance for randomness of
the IBKEM ΠI . This completes the proof of Lemma 1. ��
Lemma 2. |Pr[Succ2] − Pr[Succ3]| is negligible.

Proof of Lemma 2. Assume towards a contradiction that |Pr[Succ2]−Pr[Succ3]|
is not negligible. Then we show that we can construct another PPTA adversary
B = (B1,B2) that uses A as a subroutine and has non-negligible IND-CCA
advantage against the tag-KEM ΠT . The description of B is as follows.

BTDecap(usk,·,·)
1 (upk, k∗1,b): (Here, k∗1,1 is a real session-key corresponding to some

state information ω∗, k∗1,0 is a random session-key, and b is a bit that B has to
guess.) B1 first generates (prm,msk) ← ISetup(1κ), and runs A1 with input
(prm,msk, upk). When A1 issues a release-time decryption query (T ′, C =
(c1, c2, c3, T )), B1 first generates trk ← TRE.Ext(prm,msk, T ′) and then de-
crypts C by faithfully following the procedure of TRE.DecTR(prm, usk, trk, C),
except that if B1 has to run TDecap(usk, tag, c1), then B1 submits (tag, c1)
to B’s decapsulation oracle and obtains k1. Pre-open decryption queries
(pok, C = (c1, c2, c3, T )) from A are answered similarly by using the decap-
sulation oracle. When A1 terminates with output (m0,m1, T

∗, stA), B1 picks
a coin β ∈ {0, 1} and a randomness R∗ ∈ RIEncap uniformly at random, and
runs (c∗2, k

∗
2) ← IEncap(prm, T ∗;R∗). Next, B1 sets K∗ ← k∗1,b⊕k∗2 and com-

putes c∗3 ← DEnc(K∗,mβ). Then B1 sets the challenge tag tag∗ ← (T ∗||c∗2||c∗3)
and the state information stB that consists of all the information known to
B1. Finally B1 terminates with output (tag∗, stB).

BTDecap(usk,·,·)
2 (c∗1, stB): B2 first sets C∗ ← (c∗1, c

∗
2, c

∗
3, T

∗) and pok∗ ← R∗, and
then runs A2 with input (C∗, pok∗, stA). All the decryption queries from
A2 are answered in the same way as B1 does, except that if A2 submits a
release-time decryption query of the form (T,C∗) with T �= T ∗ or a pre-
open decryption query of the form (pok, C∗) with pok �= pok∗, then B2

immediately returns ⊥ to A2. When A2 terminates with output a guess bit
β′, B2 sets b′ ← 1 if β′ = β or b′ ← 0 otherwise. Finally, B2 terminates with
output b′ as its guess for b.

Note that B2’s decapsulation queries do not contain the prohibited query
(tag∗, c∗1) where tag∗ = (T ∗||c∗2||c∗3). This is because A2’s release-time decryption
query (T,C) always satisfies (T,C) �= (T ∗, C∗), and a problematic query of the
form (T,C∗) with T �= T ∗ is answered with ⊥ without using B’s decapsulation or-
acle. This is an appropriate answer for A in Game 2 and Game 3, since if T �= T ∗,
the release-time decryption result of our scheme Γ1 returns ⊥ as well. Similarly,
A2’s pre-open decryption query (pok, C) always satisfies (pok, C) �= (pok∗, C∗),
and a problematic query of the form (pok, C∗) with pok �= pok∗ is answered with
⊥ without using B’s decapsulation oracle. Note that this answer is appropriate
in Game 2 and Game 3.
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Then, we estimate the IND-CCA advantage of B.

AdvIND-CCAΠT ,B (κ) = |Pr[b′ = b] − 1
2
| =

1
2
|Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|

=
1
2
|Pr[β′ = β|b = 1] − Pr[β′ = β|b = 0]|

Now, consider the case when b = 1, i.e., k∗1,b = k∗1,1 is a real session-key
corresponding to c∗1 under the tag tag∗ = (T ∗||c∗2||c∗3). Then, it is easy to see
that B perfectly simulates Game 2 for A in which the challenge bit for A is
β. Specifically, B’s responses to decryption queries are perfectly answered as in
Game 2, and the challenge ciphertext C∗ for A is generated as in Game 2 (c∗3 is
computed with a correct session-key K∗ = k∗1,1 ⊕k∗2 as in the proposed TRE-PC
scheme Γ1). Under this situation, the event β′ = β corresponds to the event
Succ2, i.e., Pr[β′ = β|b = 1] = Pr[Succ2].

When b = 0, i.e., k∗1,b = k∗1,0 is a uniformly random value in {0, 1}κ, on the
other hand, B perfectly simulates Game 3 for A in which the challenge bit for
A is β. Specifically, the difference between Game 2 and Game 3 is only in the
generation of c∗3 in the challenge ciphertext C∗ for A, and c∗3 is computed with a
session-key K∗ = k∗1,0 ⊕ k∗2 that is a uniformly random value in {0, 1}κ because
k∗1,0 is chosen uniformly at random. Therefore the challenge ciphertext C∗ for A
is computed as in Game 3. Under this situation, the event β′ = β corresponds
to the event Succ3, i.e., Pr[β′ = β|b = 0] = Pr[Succ3].

In summary, we have AdvIND-CCAΠT ,B (κ) = 1
2 |Pr[Succ2] − Pr[Succ3]|, which is not

negligible according to the assumption we made at the beginning of this proof.
Since this contradicts the IND-CCA security of the tag-KEM ΠT , |Pr[Succ2] −
Pr[Succ3]| must be negligible. This completes the proof of Lemma 2. ��
Lemma 3. |Pr[Succ3] − 1

2 | is negligible.

We omit the proof of this lemma, because it is almost obvious from the IND-
OT security of the DEM D. Note that in Game 3, the session-key for the DEM
ciphertext in A’s challenge ciphertext is a random value. If |Pr[Succ3] − 1

2 | is
not negligible, we can use A to break the IND-OT security of the DEM D. (For
an IND-OT attacker using A, to simulate Game 3 for A is very easy because it
can generate msk and usk for Game 3.)

The inequality (1) and Lemmas 1 to 3 imply that AdvIND-TR-CCATSΓ1,A (κ) is negligible
for any PPTA A. This completes the proof of Theorem 1. ��

Theorem 2. If the IBKEM ΠI is IND-ID-CPA secure and the DEM D is IND-
OT secure, then the proposed TRE-PC scheme Γ1 is IND-TR-CPAIS secure.

Proof. Let A = (A1,A2) be any PPTA IND-TR-CPAIS adversary against the
proposed TRE-PC scheme Γ1. We consider the following sequence of games.
(The values with asterisk (*) are the ones generated during the computation the
challenge ciphertext C∗ = (c∗1, c

∗
2, c

∗
3, T

∗).)
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Game 1: This is the ordinary IND-TR-CPAIS experiment regarding our pro-
posed TRE-PC scheme Γ1.

Game 2: Same as Game 1, except that when the challenge ciphertext C∗ is
generated, a random session-key K∗ ← {0, 1}κ is used to generate c∗3 instead
of using K∗ = k∗1 ⊕ k∗2 .

Let Succi be the event that A succeeds in guessing the challenge bit (i.e. b′ = b
occurs) in Game i.

The IND-TR-CPAIS advantage of A = (A1,A2) is estimated as:

AdvIND-TR-CPAISΓ1,A (κ) = |Pr[Succ1] − 1
2
|

≤ |Pr[Succ1] − Pr[Succ2]| + |Pr[Succ2] − 1
2
| (2)

In the following, we will upperbound the above terms.

Lemma 4. |Pr[Succ1] − Pr[Succ2]| is negligible.

It is almost obvious from the IND-ID-CPA security of the IBKEM ΠI , and thus
we omit the proof (which is given in the full version). Note that the difference
between Game 1 and Game 2 is only in the generation of the challenge ciphertext
for A. If the adversary A’s success probability (in guessing the challenge bit) is
non-negligibly different between Game 1 and Game 2, we can use A to construct
another PPTA adversary B that can distinguish a real-session key corresponding
to the challenge IBKEM ciphertext from a random in the IND-ID-CPA security
of ΠI with non-negligible advantage. Recall that an IND-ID-CPA adversary is
given access to the extraction oracle, and thus B can perfectly simulate the
responses to timed-release key extraction queries from A.

Lemma 5. |Pr[Succ2] − 1
2 | is negligible.

We again omit the proof of this lemma, because it is almost obvious from the
IND-OT security of the DEM D. Note that in Game 2, the session-key for the
DEM ciphertext in A’s challenge ciphertext is a random value, and thus almost
the same explanation mentioned for Lemma 3 is applicable here.

The inequality (2) and Lemmas 4 and 5 imply that AdvIND-TR-CPAISΓ1,A (κ) is negligible
for any PPTA A. This completes the proof of Theorem 2. ��

Theorem 3. The proposed TRE-PC scheme Γ1 satisfies binding against any
(even computationally unbounded) adversary.

Proof. Suppose that an adversary A in the binding experiment regarding
our proposed TRE-PC scheme Γ1 outputs a ciphertext C∗ = (c∗1, c∗2, c∗3, T̂ ∗),
a time T ∗, and a pre-open key pok∗ = R∗. Let trk∗ = (dkT∗ , T ∗) ←
TRE.Ext(prm,msk, T ∗), m∗

tr = TRE.DecTR(prm, usk, trk∗, C∗), and m∗
po =

TRE.DecPO(prm, usk, pok∗, C∗), all of which are computed in the binding experi-
ment, and let tag∗ = (T̂ ∗||c∗2||c∗3).
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TRKEM.Setup(1κ):
Return (prm, msk)← ISetup(1κ).

TRKEM.Ext(prm, msk, T ):

dkT ← IExt(prm, msk, T )

Return trk← (dkT , T ).

TRKEM.UKG(prm):

Return (upk, usk)← PKG(1κ).

TRKEM.Encap(prm, T, upk):

(c1, k1)← PEncap(upk)

R←RIEncap

(c2, k2)← IEncap(prmI , T ; R)

K ← H(c1, c2, k1, k2, T )

C ← (c1, c2, T ); pok← R
Return (C,K, pok).

TRKEM.DecapTR(prm, usk, trk, C):

(dkT , T )← trk; (c1, c2, T̂ )← C

If T �= T̂ then return ⊥.

k1 ← PDecap(usk, c1)

If k1 = ⊥ then return ⊥.

k2 ← IDecap(prm, dkT , c2)

If k2 = ⊥ then return ⊥.

Return K ← H(c1, c2, k1, k2, T ).

TRKEM.DecapPO(prm, usk, pok, C):

R← pok; (c1, c2, T )← C
k1 ← PDecap(usk, c1)

If k1 = ⊥ then return ⊥.

(ĉ2, k2)← IEncap(prm, T ;R)

If ĉ2 �= c2 then return ⊥.

Return K ← H(c1, c2, k1, k2, T )

Fig. 3. Proposed TRE-PC KEM Γ2

On the one hand, the event [m∗
tr �= ⊥] implies T̂ ∗ = T ∗,

TDecap(usk, tag∗, c∗1) = k∗1 �= ⊥, IDecap(prm, dkT∗ , c∗2) = k∗2,tr �= ⊥, K∗
tr =

k∗1⊕k∗2,tr, and DDec(K∗
tr, c

∗
3) = m∗

tr �= ⊥. On the other hand, the event [m∗
po �= ⊥]

implies TDecap(usk, tag∗, c∗1) = k∗1 �= ⊥, IEncap(prm, T̂ ∗;R∗) = (c∗2, k∗2,po),
K∗
po = k∗1 ⊕ k∗2,po, and DDec(K∗

po, c
∗
3) = m∗

po �= ⊥. Then, consider the event
[m∗

tr �= ⊥∧m∗
po �= ⊥]. Since T ∗ = T̂ ∗, the correctness of the IBKEM ΠI implies

k∗2,tr = k∗2,po. Therefore, K∗
tr = (k∗1 ⊕ k∗2,tr) = (k∗1 ⊕ k∗2,po) = K∗

po holds, which in
turn implies m∗

tr = DDec(K∗
tr, c

∗
3) = DDec(K∗

po, c
∗
3) = m∗

po. Hence, we have

Adv
Binding
Γ1,A (κ) = Pr[⊥ �= m∗

tr �= m∗
po �= ⊥] ≤ Pr[m∗

tr = m∗
po ∧m∗

tr �= m∗
po],

where the right hand side of the above inequality is clearly zero, which proves
the theorem. Note that the above holds regardless of A’s running time. ��

4.3 Proposed TRE-PC KEM from PKKEM, IBKEM, and Random
Oracle

Here, we show a generic construction of a TRE-PC KEM that uses a PKKEM,
an IBKEM and a random oracle. LetΠP = (PKG, PEncap, PDecap) be a PKKEM,
ΠI = (ISetup, IExt, IEncap, IDecap) be an IBKEM whose randomness space of
IEncap is RIEncap, and H : {0, 1}∗ → {0, 1}κ be a cryptographic hash function
that is modeled as a random oracle. Then the proposed TRE-PC KEM Γ2 is
constructed as in Fig. 3.

Intuition. The key point of the second construction is to hash all the cipher-
text components with a random oracle to derive the session-key for the DEM.
Intuitively, this “hashing” strongly ties all the ciphertext components via the
derived TRE-PC KEM session-key. Constructed like this, any modification to
a TRE-PC KEM ciphertext leads either to an invalid ciphertext or to a ci-
phertext that decrypts to a completely unpredictable session-key. An adversary
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against time-server security cannot distinguish a real TRE-PC KEM session-key
that corresponds to the given challenge ciphertext from a randomness unless he
by himself generates a valid ciphertext/session-key pair (c1, k1) of the PKKEM
which is used in the challenge ciphertext. However, the adversary cannot produce
such a valid ciphertext/session-key pair unless it breaks the OW-CCA security
of the PKKEM, which ensures the time-server security. (As in the first construc-
tion, we actually need target collision resistance for randomness for dealing with
a certain type of pre-open decapsulation queries.) With a similar reason, insider
security is guaranteed from the OW-ID-CPA security of the IBKEM. As in our
first construction Γ1, the pre-open key is a randomness used to generate the
IBKEM ciphertext c2, and binding is achieved essentially in the same way.

The security of the proposed TRE-PC KEM Γ2 is guaranteed by the following
theorems. (Due to space limitations, we will provide the proofs in the full ver-
sion.) By the TRE-PC KEM/DEM composition result by Dent and Tang [20],
by combining our TRE-PC KEM Γ2 with an IND-CCA secure DEM, we obtain
a full TRE-PC scheme.

Theorem 4. If the PKKEM ΠP is OW-CCA secure and the IBKEM ΠI satis-
fies target collision resistance for randomness, then the proposed TRE-PC KEM
Γ2 is IND-TR-CCATS secure in the random oracle model where H is modeled
as a random oracle.

Theorem 5. If the IBKEM ΠI is OW-ID-CPA secure, then the proposed TRE-
PC KEM Γ2 is IND-TR-CPAIS secure in the random oracle model where H is
modeled as a random oracle.

Theorem 6. The proposed TRE-PC KEM Γ2 satisfies binding against any
(even computationally unbounded) adversary.

4.4 Extensions

TRE-PC with Release Time Confidentiality. The ciphertexts in both of our
constructions contain the release-time T directly and thus do not provide release-
time confidentiality [12]. However, we can extend our constructions to achieve
it as well, by modifying our constructions slightly so that T and the IBKEM
ciphertext c2 are encrypted with the DEM by using a part of the “PKE”-part
session-key k1 as a DEM-key. The modification to each construction requires
no additional building block primitives (such as anonymous IBKEM [21]), and
introduces no ciphertext size overhead and no computation overhead other than
the additional DEM computation. We will discuss this in detail in the full version.

Public Key Time-Specific Encryption with Pre-open Capability. Very recently,
Paterson and Quaglia [25] introduced a new primitive called time-specific en-
cryption (TSE) (see the explanation in the last paragraph in Section 1). We
remark that we can construct a public-key TSE scheme with pre-open capabil-
ity by replacing the IBKEM in our constructions with a KEM analogue of a
CPA-secure plain TSE scheme which satisfies target collision resistance for ran-
domness (which can be defined similarly to that for IBKEMs). The public-key
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TSE schemes based on our generic constructions satisfy CCA-security against
the time-server in the model extended from that of [25] so that the model also
deals with pre-open keys and pre-open decryption oracles as in [20], and CPA
security against a curious receiver (where CPA security against a curious receiver
is sufficient with a similar reason to that for insider security for TRE-PC).

5 Comparison

In this section, we compare concrete TRE-PC schemes derived from our generic
constructions in Section 4 with the existing TRE-PC schemes: the original
scheme by Dent and Tang [20] (DT), the same scheme which is instantiated with
bilinear groups with an asymmetric pairing (DT’), and the scheme by Chow and
Yiu [18] (CY)1. They are summarized in Table 1.

In Table 1, “Γ1(XXX,YYY)” denotes a concrete TRE-PC scheme derived from
our first generic construction Γ1 where the tag-KEM is instantiated by “XXX”
scheme and the IBKEM is instantiated by “YYY” scheme, and similar notation is
used for Γ2. There, AKO denotes the tag-KEM by Abe et al. [5], tWaters denotes
the tag-KEM obtained from the (IND-ID-CPA secure version of) IBKEM by
Waters [27] via the method described in [2, Section 7.3]2, and tBMW denotes
the tag-KEM obtained from the combination of the CCA-secure PKKEM by
Boyen et al. [10] and a one-time MAC via the method described in [4]. DHIES
denotes the PKKEM part of the DHIES scheme [1]. BF denotes the IBKEM part
of the basic IBE scheme by Boneh and Franklin [9], CCMS denotes the OW-ID-
CPA secure version3 of the IBKEM by Chen et al. [14], and Waters denotes the
Waters IBKEM [27] as above.

We stress that the concrete schemes listed in Table 1 are just small examples
derived via our generic constructions, and various combinations of a tag-KEM
and an IBKEM via the first construction Γ1 and those of a PKKEM and an
IBKEM via the second construction Γ2 are possible. For example, all the stan-
dard model schemes in Table 1 have large parameter sizes (O(κ) group elements)
for prm, upk, and/or usk because of the Waters hash functions [27]. If one wants
to achieve a standard model TRE-PC scheme whose parameter sizes are simul-
taneously constant, one can combine the tag-KEM tBMW and the IBKEM by
Gentry [21] at the cost of basing the security on a somewhat stronger assumption,
or combine tBMW and the IBKEM recently proposed by Waters [28] at the cost
of relatively large computation costs. As noted earlier, the IBKEMs from [21]
and [28] also satisfy target collision resistance for randomness unconditionally.

1 It seems not possible, at least with a minor modification, to implement CY with

bilinear groups with an asymmetric paring.
2 Their method turns an IBKEM with a special structural property and slightly

stronger security than IND-ID-CPA into an IND-CCA secure tag-KEM without

any overhead, and the Waters IBKEM [27] satisfies the requirements.
3 For IBKEMs, OW-ID-CPA security can be strengthened into IND-ID-CPA security

by hashing the session-key with a random oracle. We assume this modification in

Γ1(AKO, CCMS) because we need an IND-ID-CPA secure IBKEM in Γ1.
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Random Oracle Schemes. Compared to DT and DT’, all of our schemes have
smaller ciphertext size, and provide smaller computation costs for encryption and
similar amount costs for release-time decryption. Γ2(DHIES,BF) has a slightly
worse computation cost than DT and DT’ for pre-open decryption. The compu-
tation costs for pre-open decryption in Γ2(DHIES,CCMS) and Γ1(AKO,CCMS)
and those in DT and in DT’ would be difficult to compare without further spec-
ifying how the bilinear groups are implemented. The schemes Γ1(AKO,CCMS)
and Γ2(DHIES,CCMS) require no pairing computation in encryption and pre-
open decryption, and thus may be suitable in applications in which pre-open
decryption is frequently performed compared to release-time decryption. (Such
situation would occur in the certified email system based on TRE-PC [22] if the
arbitrating procedure occurs infrequently.) Note that when the SDH assumption
[1] is considered in bilinear groups with a symmetric pairing (resp. an asymmetric
pairing), it is equivalent to the CDH assumption (resp. the co-CDH assumption
[1]). Hence, the assumptions for time-server security of the random oracle model
schemes in Table 1 can be considered to be essentially equivalent.

Standard Model Schemes. Compared to CY, our concrete TRE-PC schemes de-
rived from Γ1 provide shorter ciphertext overhead, taking into account the cur-
rently known instantiations of symmetric/asymmetric pairings. Moreover, our
concrete TRE-PC schemes offer smaller computation costs, and enable us to
prove their security on weaker assumptions (the 3DDH and the 3MDDH assump-
tions [18] required for CY are, if considered in bilinear groups, strictly stronger
than the decisional bilinear DH (DBDH) assumption). However, for fair com-
parison we note that CY is designed to be secure in a stronger security model
(which considers a similar attack model adopted for certificateless encryption

Table 1. Efficiency Comparison among Concrete TRE-PC Schemes

Scheme Random Ciphertext Size (Bits) Assumptions Computation Costs
Oracle? |C| − (|m| + |T |) TS / Insider Enc DecTR / DecPO

DT [20] yes 2|gs| + κ (554) CDHb / BDH 1P, 5E, 1H 1P, 1E / 1P, 1E
DT′ yes 2|ga| + κ (400) co-CDH / BDH 1P, 5E, 1H 1P, 1E / 1P, 1E
Γ1(AKO,CCMS) yes |gnp| + |ga| (320) SDH / q-BDHI 5E 1P, 1E / 3.5E
Γ2(DHIES,BF) yes |gnp| + |ga| (320) SDH / BDH 1P, 4E, 1H 1P, 1E / 1P, 3E, 1H
Γ2(DHIES, CCMS) yes |gnp| + |ga| (320) SDH / q-BDHI 4.5E 1P, 1E / 3.5E
CY [18] no 3|gs| (711) 3DDHb / 3MDDHb 6E, 2W 5P, 1E, 2W / 6P, 2W
Γ1(tWaters,Waters) no 4|ga| (640) DBDH / DBDH 6E, 2W 3P, 1E / 1P, 4E, 1W
Γ1(tBMW,Waters) no 4|ga| + |Mac| (720) DBDH / DBDH 6.5E, 1W 3P, 1E / 1P, 4E, 1W

In “Ciphertext Size” column, |Mac| denotes the size of a one-time MAC tag. |ga| (resp. |gs|) denotes
the bit length of elements in bilinear groups with asymmetric pairing (resp. symmetric pairing),
and |gnp| denotes the bit length of elements in ordinary groups without pairings. We assume that
an IND-CCA secure DEM for Γ2 is redundancy-free, i.e., |DEnc(K,m)| = |m| for any K and m
(e.g. a strong pseudorandom permutation). For concrete bit size examples for 80-bit security, we set
κ = |Mac| = 80, |gs| = 237 [8], and |ga| = |gnp| = 160. In “Assumptions” column, the subscript “b”
means that the assumption is considered in bilinear groups. In “Computation Costs” columns, P, E, H,
and W denote the numbers of pairings, exponentiations, “map-to-point” hashings (hashing into group
elements), and Waters’ hash computations [27], respectively, and other computations are ignored.
We count one multi-exponentiation as 1.5E. Moreover, we assume that each scheme is implemented
so that computation costs become as small as possible. For example, for CY, we do not count the
pairing computations for the validity check of usk because in practice it needs to be done only once.
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[6] and which we think is too strong for TRE-PC schemes used for practical
scenarios) than the model in [20] and provide release-time confidentiality [12],
both of which are not achieved by our concrete constructions. Thus, it can be
considered as a tradeoff between efficiency and stronger security.
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A Other Building Block Primitives

(Public Key) Key Encapsulation Mechanism. A public key (i.e. neither tag-
nor identity-based) key encapsulation mechanism (PKKEM) ΠP consists of the
following three PPTAs (PKG, PEncap, PDecap): PKG is a key generation algorithm
that takes 1κ as input, and outputs a public/secret key pair (pk, sk); PEncap is an

http://eprint.iacr.org/2004/231/
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encapsulation algorithm that takes pk as input, and outputs a ciphertext/session-
key pair (c,K); PDecap is a deterministic decapsulation algorithm that takes
sk and c as input, and outputs K ∈ K ∪ {⊥} (K is a session-key space of
ΠP ). We require, for all (pk, sk) ← PKG(1κ) and all (c,K) ← PEncap(pk), that
PDecap(sk, c) = K.

We will need a PKKEM that is one-way against chosen ciphertext attacks
(OW-CCA) for our second construction. Since the definition of OW-CCA secu-
rity is standard, we omit the definition here.

Data Encapsulation Mechanism. A data encapsulation mechanism (DEM) D
consists of the following two PPTAs (DEnc, DDec): DEnc is an encryption algo-
rithm that takes a key K ∈ {0, 1}κ and a plaintext m as input, and outputs a
ciphertext c; DDec is a deterministic decryption algorithm that takes K and c
as input, and outputs m ∈ M ∪{⊥} (M is a plaintext space of D). We require,
for all K and all m, that DDec(K, DEnc(K,m)) = m.

We will need a DEM with very weak security, indistinguishability against
one-time attacks (IND-OT security) [4]. This is even a weaker security notion
than IND-CPA security for a symmetric-key encryption and can be achieved by
a one-time pad of a message and a session-key.
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Abstract. Cloud computing and cloud storage are becoming increasingly preva-
lent. In this paradigm, clients outsource their data and computations to third-party
service providers. Data integrity in the cloud therefore becomes an important fac-
tor for the functionality of these web services. Authenticated data structures, im-
plemented with various cryptographic primitives, have been widely studied as a
means of providing efficient solutions to data integrity problems (e.g., Merkle
trees). In this paper, we introduce a new authenticated dictionary data structure
that employs multilinear forms, a cryptographic primitive proposed by Silver-
berg and Boneh in 2003 [10], the construction of which, however, remains an
open problem to date. Our authenticated dictionary is optimal, that is, it does
not add any extra asymptotic cost to the plain dictionary data structure, yielding
proofs of constant size, i.e., asymptotically equal to the size of the answer, while
maintaining other relevant complexities logarithmic. Instead, solutions based on
cryptographic hashing (e.g., Merkle trees) require proofs of logarithmic size [40].
Because multilinear forms are not known to exist yet, our result can be viewed
from a different angle: if one could prove that optimal authenticated dictionaries
cannot exist in the computational model, irrespectively of cryptographic primi-
tives, then our solution would imply that cryptographically interesting multilinear
form generators cannot exist as well (i.e., it can be viewed as a reduction). Thus,
we provide an alternative avenue towards proving the nonexistence of multilin-
ear form generators in the context of general lower bounds for authenticated data
structures [40] and for memory checking [18], a model similar to the authenti-
cated data structures model.

Keywords: authenticated dictionary, multilinear forms.

1 Introduction

Recently, there has been an increasing interest in remote storage of information and
data. People outsource their personal files at service providers that offer huge storage
space and fast network connections (e.g., Amazon S3). In this way, clients create vir-
tual hard drives consisting of online storage units that are operated by remote and ge-
ographically dispersed servers. In addition to a convenient solution to space-shortage,
data-archiving or back-up issues, remote storage allows for load-balanced distributed
data management (e.g., database outsourcing). In such settings, the ability to check the
integrity of remotely stored data is an important security property, or otherwise a ma-
licious server can easily tamper with the client’s data. When this data is structured, we
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need to provide solutions for authenticated data structures [39], which offer a compu-
tational model where untrusted entities answer queries on a data structure on behalf of
a trusted source and provide proof of validity of the answer to the user.

In this paper we study two-party authenticated data structures, a model closely re-
lated to memory checking [6], where a client decides to outsource his data, which is
stored in a data structure, to an untrusted server. However, the client needs to make sure
that whenever he retrieves his data back, he is able to verify its validity, i.e., that nobody
has tampered with it. In existing literature, a variety of authenticated data structures of-
fer solutions that use different cryptographic primitives, such as cryptographic hashing
(e.g., [6]), accumulators (e.g., [35]) and lattices (e.g., [34]). The choice of the specific
cryptographic primitive has a drastic impact on the efficiency of the authenticated data
structure. For example it is known that, when using generic collision-resistant hash
functions1 the best one can hope for are logarithmic complexities (in the size of the
data structure) [40]. On the other hand, using accumulators, which favor constant size
proofs, has so far resulted only in sublinear solutions [35], i.e., of O(nε) complexities
(see Table 1). Deriving for example logarithmic time query algorithms (time to con-
struct the proof) that come with constant size proofs and constant time verification has
been an open problem.

This work begins by defining the notion of “optimal” authenticated data structures
(see Definition 7), i.e., authenticated data structures that do not add any asymptotic
overhead to the respective “plain” non-authenticated data structures.2 Then we present
an authenticated dictionary data structure that is based on a new cryptographic primitive
that was recently proposed by Silverberg and Boneh, namely multilinear forms [10],
the construction of which remains however an open problem to date. The use of such a
primitive gives an authenticated dictionary with constant communication and constant
verification complexity, while maintaining all other complexities logarithmic. To the
best of our knowledge, this is the first optimal authenticated dictionary to appear in the
literature, as it exactly matches the respective complexities3 (update time, query time,
answer size) of the optimal dictionary data structure (e.g., implemented as a red-black
tree).

The multilinear form cryptographic primitive that is used in our construction can
be described as the “multi” version of the well-known bilinear map. Although initially
used to attack elliptic curve systems [28], bilinear maps, being literally an efficient a tool
for solving the decisional Diffie-Hellman problem, eventually proved to be a very useful
tool in cryptography (e.g., [7,8,9]) after their first appearance in the literature for a
“good purpose” [24]. However, the main limitation of bilinear maps is the fact that they
cannot be applied twice, i.e., the output element cannot be fed back into the map e(., .)
in an efficient way. Finding such maps, i.e., self-bilinear maps, which could be used
in a recursive way to construct multilinear forms, was recently proved to be infeasible

1 Generic collision-resistant (denoted with GCR in Table 1) hash functions are functions that are
believed to be collision-resistant in practice, e.g., the SHA family of functions.

2 We note here that for the dictionary problem, no such authenticated data structure is known to
exist to date.

3 In this line of work, the asymptotic complexities always refer to the size of the data structure
n and not to the security parameter t, i.e., t = O(1) (see Table 1).
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for groups that are of interest in cryptography, i.e., groups where the computational
Diffie-Hellman problem is hard [13].

However, since cryptographically interesting multilinear form generators4 are not
known to exist to date, one can view our work from a different (and more theoretical)
angle: A proof through a complexity lower bound of the nonexistence of optimal au-
thenticated dictionaries would imply the nonexistence of cryptographically interesting
multilinear form generators (see Theorem 2). This reveals yet another important relation
between two fields—combinatorics and cryptography—and becomes more promising
(towards proving nonexistence of cryptographically interesting multilinear form gener-
ators) given recent advances in the derivation of general complexity lower bounds for
memory checking [18] and authenticated data structures [40].

1.1 Related Work

Multilinear forms were proposed as a possible useful tool in cryptography in 2003 [10]
by Silverberg and Boneh. Since then, no efficient construction of interest in cryptog-
raphy has appeared. A work similar in nature with ours—where an efficient construc-
tion for a cryptographic application based on multilinear forms is proposed— appears
in [25]. The impossibility of deriving multilinear forms through self-bilinear maps is
investigated in [13].

In the context of authenticated data structures, several authenticated data struc-
tures based on cryptographic hashing have been developed, first being the well-known
Merkle trees [29]. Blum et al. develop a similar solution [6], which is dynamized in sake
of efficient certificate revocation by Naor and Nissim in [30]. Authenticated skip lists
in the two-party model are presented in [33]. Authenticated multi-dimensional range-
searching and external memory data structures (I/O efficient) are presented in [27].
Queries over distributed hash tables are efficiently authenticated in [41]. In the context
of databases, authenticated inclusive and exclusive (join, projection) queries are dis-
cussed [17], where the size of the proof is linear in the size of the answer. Atallah et
al. [2] present authenticated data structures for efficient 1D and 2D authenticated range
search queries (query time and proof size are constant) and also for authenticating tree
hierarchies [43]. Also, logarithmic lower bounds for hash-based methods are shown
in [40]. Finally, in the context of memory checking, a linear lower bound on the prod-
uct of reliable space and query time for online memory checkers in the information
theoretic model is given [31], whereas in [18], an Ω(logn/ log logn) lower bound on
query time for online memory checkers in the semantic security model has been shown.

Solutions for authenticated data structures in various settings using other crypto-
graphic primitives, namely one-way accumulators, were introduced by Benaloh and de
Mare [5]. Subsequently, refinements of the RSA accumulator [4,20,38] were shown to
achieve collision resistance as well. Dynamic accumulators were introduced in [12],
where, assuming an honest prover, the time to update the accumulated value or a wit-
ness is independent on the number of the accumulated elements. A first step towards
a different direction, where we assume that we cannot trust the prover and therefore
the trapdoor information is kept secret, was made in [21] (however this work is not

4 I.e., multilinear form generators for groups where the discrete log problem is hard, e.g., elliptic
curve groups. We call these generators admissible later in the paper.
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applicable to the two-party model), achieving O(nε) bounds. An authenticated data
structure that combines hierarchical hashing with the accumulation-based scheme of
[21] is presented in [22] and accumulators using other cryptographic primitives (e.g.,
general groups with bilinear pairings) the security of which is based on other assump-
tions (e.g., hardness of strong Diffie-Hellman problem) are introduced in [11,32,42].
Non-membership proofs for accumulators are presented in [3,16,26]. Finally, authen-
ticated hash tables that use the RSA accumulator are introduced in [35]. In particular,
for authenticated membership queries, there has been a lot of work using different al-
gorithmic and cryptographic approaches. A summary and qualitative comparison can
be found in Table 1.

Table 1. Comparison of existing schemes for authenticating dictionary queries in the two-party
model for a set of size n w.r.t. used techniques and various asymptotic complexity measures.
Here, 0 < ε < 1 is a fixed constant, d can be any function of n (d ≤ n), “GCR” stands
for “generic collision-resistant”, OWF for “one-way function”, “q-SDH” for “q-strong Diffie-
Hellman”, “SRSA” for “strong RSA” and “q-SMDH” for “q-strong multilinear Diffie-Hellman”.
All complexity measures refer to n (not to the security parameter t, which is taken to be a con-
stant) and are asymptotic values. In all schemes, the server space is O(n) and the trusted space
needed at the client is O(1).

reference assumption verification consistency query update verification
proof size proof size time time time

[6,27,30,33] GCR log n log n log n log n log n

[18] OWF logd n d logd n logd n d logd n logd n

[12,38] SRSA 1 1 1 n log n 1

[32] q-SDH 1 1 1 n 1

[35] SRSA 1 1 1 nε log n 1

[35] SRSA 1 1 nε 1 1

[36] q-SDH 1 1 1 nε 1

this work q-SMDH, GCR 1 log n log n log n 1

1.2 Contributions

The contributions of this paper are as follows:

1. We formally (and in a rather intuitive way) define the notion of optimal authenti-
cated data structures;

2. We present the first two-party authenticated dictionary that is based on multilinear
forms. Our construction has constant verification time and constant communication
complexity, while keeping all the other complexities logarithmic in the size of the
structure, n (see Table 1). To the best of our knowledge, this is the first optimal
authenticated dictionary to appear in the literature (Theorem 1);

3. We identify an important connection between lower bounds for authenticated data
structures and the existence of cryptographically interesting multilinear form gen-
erators, giving new directions and intuition for deciding this problem (Theorem 2).



250 C. Papamanthou, R. Tamassia, and N. Triandopoulos

2 Preliminaries

In this section we introduce the main cryptographic primitive that we use in our solution,
the k-multilinear form. We also introduce the notion of cryptographic accumulators, an
instantiation of which will lie at the heart of our solution. Finally we formally define
two-party authenticated data structures. Before we proceed, we give the definition of
negligible functions. If t denotes the security parameter, then we have the following:

Definition 1. We say that a real-valued function ν(t) over natural numbers is neg(t) if
for any nonzero polynomial p, there existsm such that ∀n > m, |ν(n)| < 1

p(n) .

2.1 Multilinear Forms

Let t be the security parameter. Let now G, GT be two cyclic groups of prime order p
and g be a generator of G. We let the bit-size of p (the order of both G and GT) to be
a polynomial of the security parameter t, i.e., log p = O(poly(t)). In our context, any
polynomial in the security parameter is regarded as a constant, since the main dimension
of our problem is the size of the authenticated data structure, n. We are now ready to
define a k-multilinear form. The definition is similar to the one presented in [10]:

Definition 2. We say that a map e : Gk → GT is a k-multilinear form if it satisfies the
following properties:

1. G and GT are cyclic groups of the same prime order p;
2. For all a1, a2, . . . , ak ∈ Z∗

p and x1, x2, . . . , xk ∈ G it is

e(xa1
1 , x

a2
2 , . . . , x

ak

k ) = e(x1, x2, . . . , xk)a1a2...ak ∈ GT;

3. The map is non-degenerate: If g ∈ G generates G then e(g, g, . . . , g) ∈ GT gener-
ates GT.

Note now that since both G and GT are cyclic groups of prime order p the discrete
logarithm problem is hard for both G and GT. Following we continue with the definition
of an admissible k-mulitlinear form, that is going to be useful in our context:

Definition 3. We say that a k-multilinear form e : Gk → GT is admissible if it satisfies
the following properties:

1. The bit-size of the elements in G and GT is independent of k, i.e., it isO(poly(t)) =
O(1);

2. Group operations (exponentiation, multiplication, inversion) in G and GT are in-
dependent of k, i.e., they take time O(poly(t)) = O(1);

3. The multilinear form computation e(x1, x2, . . . , xk) for x1, x2, . . . , xk ∈ G takes
time O(poly(t)k) = O(k);

4. The discrete logarithm problem is hard both in G and GT.

We call the groups G and GT for which there exists an admissible multilinear form
admissible multilinear groups. Finally we define the admissible multilinear form
generator:
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Definition 4. An admissible multilinear form generator G(1t, k) is an algorithm that
runs in polynomial time and for any k, outputs a description of admissible multilinear
groups G and GT (along with algorithms for group operations) and the admissible
k-multilinear form e : Gk → GT.

2.2 The Bilinear-Map Accumulator

Let G be a cyclic group of prime order p that has generator g. The bilinear map accu-
mulator [32] is an efficient way to provide short proofs of membership for elements that
belong to a set. The bilinear-map accumulator works as follows. It accumulates a set of
elements X in Z∗

p and the accumulation value acc(X ) is an element in G. Given a set
of n elements X = {x1, x2, . . . , xn} the accumulation value acc(X ) is defined as

acc(X ) = g(x1+s)(x2+s)...(xn+s) ∈ G ,

where s ∈ Z∗
p is a randomly chosen value that constitutes the trapdoor in the scheme,

i.e., the security of the scheme is based on the fact that s is kept secret from the ad-
versary. The proof of membership for an element xi that belongs to set X will be the
witness

Wxi = g
∏

xj∈X :xj �=xi
(xj+s) ∈ G .

Accordingly, a verifier can test set membership for xi by testing the relationship

W(xi+s)
xi

?= acc(X ) . (1)

If (1) holds, then a verifier outputs “accept”, else he outputs “reject”. For a proof of
non-membership, instead of explicitly storing the elements xj1 < xj2 < . . . < xjn , the
respective hashed intervals h(−∞, xj1), h(xj1 , xj2), . . . , h(xjn ,+∞) can be stored:
Then a proof of non-membership for element x is the proof of membership of the
hashed interval h(xjk , xjk+1) such that xjk < x < xjk+1 . Alternatively (and less effi-
ciently), one can explicitly compute non-membership witnesses, as described in [3,16].
In the following we present the computational assumption on which the security of
the bilinear-map accumulator is based, the q-strong Diffie-Hellman assumption. This
assumption was introduced in [7] and holds over general cyclic prime-order groups:

Definition 5 (q-strong Diffie-Hellman assumption). Let G be a cyclic group of prime
order p, generated by an element g ∈ G. Given the elements of G g, gs, gs

2
, . . . , gs

q

for some s chosen at random from Z∗
p, the probability that a computationally bounded

adversary Adv finds c ∈ Z∗
p and outputs

g
1

s+c ∈ G

is neg(t), where the probability is taken over the random choices of s ∈ Z∗
p.

The security proof argument [32] for the accumulator that has just been presented is
as follows: The adversary is given the elements g, gs, gs

2
, . . . , gs

q ∈ G. Then, given a
set of elements X = {x1, x2, . . . , xn} and the respective accumulation value acc(X ),
we can prove that if a computationally bounded adversary has an algorithm to find a
witness Wxi that passes the verification test of Equation 1 for an element xi /∈ X , then
the adversary can break the q-strong Diffie-Hellman assumption (see [32] for the proof).
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2.3 Two-Party Authenticated Data Structures

In the two-party authenticated data structures model, a client fully outsources the data
structure to an untrusted server, keeping locally only the data structure digest (e.g.,
digest of the Merkle tree). The digest (or succinct state) d of an authenticated data
structure is computed by augmenting the data structure with an authentication structure
that uses a certain cryptographic primitive. Every solution for an authenticated data
structure needs to define d. Computed on the correct data, d will serve as a secure
data structure description subject to which the answer to a data structure query will
be verified at the client by means of a corresponding proof. The digest d, for a given
authenticated data structure (e.g., for the well-known Merkle trees [29], the digest is
the cryptographic hash of the root of the tree), should have the following, fundamental
property: If t is the security parameter, a computationally bounded adversary should
not be able to find two different instances of the authenticated data structure (say for
example two different graphs) that have the same digest with probability more than 2−t.
In order for the client to verify a query on a data structure, he needs to make sure that
the digest d he possesses is the correct one (i.e., it corresponds to the most fresh version
of the data structure). Therefore the client has to make sure it is consistent with the
history of updates.

We now continue with the security definition of a two-party authenticated data struc-
ture: Suppose Dh is the data structure (at time h) we wish to authenticate and let t
be the security parameter. A two-party authenticated data structure is a collection of
the following algorithms (we assume that the algorithms run by the client have always
access to the secret key sk):

1. {sk, pk} ← genkey(1t). It outputs the secret (known only to the client) and public
key (information known to the adversary) on input the security parameter. This
procedure is executed by the client;

2. {auth(D0), d0} ← setup(D0, pk): This algorithm outputs the authenticated data
structure auth(D0), and the respective digest d0. This procedure is executed by
either the client or the server;

3. {Π(o), α(o), Dh+1, auth(Dh+1), dh+1} ← operate(o,Dh, auth(Dh), dh), where
Π(o) is the proof returned (to the client) concerning an operation o (issued by the
client) and α(o) is the answer to the operation o. We distinguish two cases:

– If o is a query,Π(o) is called verification proof and α(o) is the answer to the
query o;

– If o is an update, Π(o) is called consistency proof and α(o) is the “answer”
to the update, i.e., the portion of the data structure that has changed due to the
update.

The quantities Dh+1, dh+1, auth(Dh+1) take values only in the case of updates
(i.e., when the data structure changes). This procedure is executed by the server;

4. {accept, reject, dh+1} ← verify(o, α(o), Π(o), dh, sk), where dh is the current di-
gest ofDh. IfΠ(o) is a verification proof, then it outputs either accept or reject. If
Π(o) is a consistency proof it outputs either accept or reject and also outputs the
new digest dh+1. We say that the client accepts the update (see security definition)
if this algorithm outputs “accept”. Note that this method does not have access to
the whole data structure but only to the proofΠ(o) and is run by the client;
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5. {accept, reject} = check(q, α(q), Dh). This method decides whether α(q) is a
right answer for query q on data structure Dh. Note that here q is an actual query,
i.e., an operation that does not change the state of the data structure.

We can now state the formal security definition:

Definition 6 (Security). Let t be the security parameter and Adv be a computationally-
bounded adversary that is given the public key pk, output by keygen(). The adversary
chooses the initial state of our data structureD0 and the client computes the respective
digest d0. The adversary Adv is given access to D0 and d0. For i = 0, . . . , h − 1 =
poly(t) the adversary Adv issues an update ui in the data structure Di and computes
Di+1 and di+1. The client accepts updates ui, for all i = 0, . . . , h − 1, by running
algorithm verify(). At the end of this game of polynomially-many rounds, the adversary
Adv enters the attack stage where he chooses a query q and computes an answer α(q)
and a verification proof Π(q). We say that the authenticated data structure is secure if
for any computationally-bounded adversary Adv, for any query q and for any series of
updates it is

Pr

⎡⎢⎢⎣
{q,Π(q), α(q)} ← Adv(1t, pk);
accept ← verify(q, α(q), Π(q), dh, sk);
reject = check(q, α(q), Dh);
digest(Dh) = dh.

⎤⎥⎥⎦ ≤ ν(t) ,

where ν(t) is negligible in the security parameter t.

We note here that the authenticated data structures model is different (achieving stronger
guarantees) than the verifiable computation model [1,14,19,23]. Important properties
such as efficient updates of queried data, and unlimited queries—as opposed to one-time
queries or many queries admitting well-formed (verifying) answers—are all supported
in the authenticated data structures model.

2.4 Optimality in Authenticated Data Structures

In this paper we are concerned with the notion of optimality of authenticated data struc-
tures, and we indeed present one such construction (i.e., an optimal authenticated dic-
tionary) that is based on multilinear forms. But what does it mean for an authenticated
data structure to be “optimal”?

Let Dh be a plain (non-authenticated) data structure, designed for efficiently an-
swering some type of query. Denote with |Dh| the space needed by Dh and with
{α(o), Dh+1} ← OPERATE(o,Dh) the following procedure:

– If o is a query, then OPERATE(o,Dh) is the algorithm that produces the answer
α(o) to the query o. In this caseDh+1 = Dh;

– If o is an update, then OPERATE(o,Dh) is the algorithm that executes the update.
The answer α(o) is defined in a similar way as before as the “answer” to the up-
date, i.e., the portion of the data structure that has changed due to the update. For
example, in a red-black tree data structure, the size of the “update” answer can be
O(log n), since information along a logarithmic-sized path can change.
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We are now ready to define an optimal authenticated data structure:

Definition 7. Let Dh be a data structure and let auth(Dh) be a respective authenti-
cated data structure, along with algorithms {genkey(), setup(), operate(), verify()}, as
defined in Section 2.3. We say that auth(Dh) is optimal if and only if

1. The authenticated data structure auth(Dh) is secure according to Definition 6;
2. It is |auth(Dh)| = O(|Dh|);
3. For both queries and updates o, the asymptotic time complexity of the algorithm

{Π(o), α(o), Dh+1, auth(Dh+1), dh+1} ← operate(o,Dh, auth(Dh), dh) is no
more than the asymptotic time complexity of the respective plain data structure
algorithm {α(o), Dh+1} ← OPERATE(o,Dh);

4. For both queries and updates o it holds:
(a) The size of the proof is asymptotically no more than the size of the answer, i.e.,

|Π(o)| = O(|α(o)|);
(b) The asymptotic time complexity of the algorithm {accept, reject, dh+1} ←

verify(o, α(o), Π(o), dh , sk) is O(|α(o)|).
Note that Property 4 requires that both the size of the proof for a certain operation
returned by auth(Dh) and the time to verify it are no more (asymptotically) than the
size of the answer (computed byDh) to the respective operation. This property greatly
relates to recent work that has appeared on super-efficient authenticated data struc-
tures [22], where range search queries with proofs asymptotically less than the size of
the answer are authenticated, and operation-sensitive authenticated data structures [37],
where fundamental set operations with proofs asymptotically equal to the size of the an-
swer are authenticated. However, none of the authenticated data structures in [22,37] is
optimal, due to increased update costs.

The above definition is rather intuitive. It implies that, in order for an authenticated
data structure to be optimal, it should not be adding any extra asymptotic overhead to
the plain (non-authenticated) data structure. So far in the literature (see Table 1), and
specifically for the authenticated dictionary problem, no optimal authenticated data
structure has been constructed. For example, traditional hash-based methods built with
Merkle trees (e.g., [6,27,30,33]) fail to achieve Property 4 from Definition 7. Indeed,
although the answer is of constant size (i.e., either “yes, the element is contained” or
“no, the element is not contained”), the proof for that answer is asymptotically larger
than O(1), i.e., it is O(log n). To achieve this property, other solutions (e.g., [32,35])
have used accumulators. However, accumulator-based solutions, although succeed in
satisfying Property 4, violate Property 3 from Definition 7, since update or query time
is not logarithmic (e.g., it is O(

√
n)). In this paper, we show how to construct the first

optimal authenticated dictionary, using a cryptographic primitive the construction of
which is, however, still an open problem.

3 Multilinear Form Authenticated Structures

In this section we present a two-party authenticated dictionary based on multilinear
forms. We begin with the main building block, the multilnear form accumulator.
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3.1 A Multilinear Form Accumulator

Let t be the security parameter, X = {x1, x2, . . . , xn} be a set of elements and G, GT

be two cyclic groups of prime order p for which there exists an admissible multilinear
form e : Gt → GT as defined in Definition 3. Note that we require the number of
the inputs of the multilinear form to be equal to the security parameter t. Group G
is generated by g and group GT is generated by e(g, g, . . . , g). As in Section 2.2, we
can define a new accumulator that is similar to the bilinear-map accumulator with the
difference that the base of exponentiation is the generator e(g, g, . . . , g) of the cyclic
group GT, i.e.,

acc(X ) = e(g, g, . . . , g)(x1+s)(x2+s)...(xn+s) ∈ GT , (2)

where s is a randomly chosen element of Z∗
p. The proof of membership for an element

xi that belongs to set X will be the witness

Wxi = e(g, g, . . . , g)
∏

xj∈X :xj �=xi
(xj+s) ∈ GT . (3)

Accordingly, a verifier can test set membership forxi by computing W(xi+s)
xi and check-

ing that this equals acc(X ). The q-strong Diffie-Hellmann assumption can be adjusted
to the multilinear form setting, leading to the q-strong multilinear Diffie-Hellmann as-
sumption (see q-SMDH in Table 1), as follows:

Definition 8 (q-strong multilinear Diffie-Hellman assumption). Let G, GT be cyclic
groups of prime order p such that there exists an admissible multilinear form e : Gt →
GT. Let g be the generator of G. Given the elements of G g, gs, gs

2
, . . . , gs

q

for some s
chosen at random from Z∗

p, the probability that a computationally bounded adversary
Adv finds c ∈ Z∗

p and outputs

e(g, g, . . . , g)
1

c+s ∈ GT

is neg(t), where the probability is taken over the random choices of s ∈ Z∗
p.

We now prove security (similar to [32]) of the multilinear form accumulator based on
the q-strong multilinear Diffie-Hellman assumption:

Lemma 1. Let X = {x1, x2, . . . , xn}, t be the security parameter, G, GT be cyclic
groups of prime order p such that there exists an admissible multilinear form e : Gt →
GT and g be the generator of G. Under the q-strong multilinear Diffie-Hellman as-
sumption, the probability that a computationally bounded adversary Adv that is given
the elements g, gs, gs

2
, . . . , gs

q ∈ G can find a valid witness Wx for an element x /∈ X
is neg(t).

Proof. By Equation 3 a computationally bounded adversary Adv finds a witness Wx

such that W(x+s)
x = e(g, g, . . . , g)(x1+s)(x2+s)...(xn+s). Since x /∈ {x1, x2, . . . , xn}

we can write (x1+s)(x2+s) . . . (xn+s) = P(x+s)+λ, where the coefficients of poly-
nomial P and quantity λ are computable in polynomial time in n (polynomial division).
Therefore Adv can compute e(g, g, . . . , g)(x+s)

−1
= [Wx[e(g, g, . . . , g)P ]−1]λ

−1
, since

e(g, g, . . . , g)s
i ∈ GT can efficiently be computed from gs

i ∈ G by using the admis-
sible multilinear form e : Gk → GT for all i = 0, . . . , q. This breaks the q-strong
multilinear strong Diffie-Hellman assumption. �
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3.2 A Two-Party Multilinear Form Authenticated Dictionary Construction

In this section we describe a two-party authenticated dictionary based on admissible
multilinear forms that achieves constant communication complexity and constant veri-
fication complexity. Let X = {x1, x2, . . . , xn} be the elements contained in the dictio-
nary, where x1 < x2 < . . . < xn. The actual set we are going to store, in order to also
support efficient range search and non-membership queries, is the set of intervals, i.e.,
the set A = {a1, a2, . . . , an−1}, where ai = xi||xi+1 is simply the concatenation of
the binary strings xi, xi+1 of bit length 2t (we use t bits for each xi).

In our construction we use a red-black tree, with data at the leaves (i.e., internal
nodes data navigates the searches and does not correspond to actual data) [15]. We
store key-value pairs at the leaves and the ordering is according to the keys. For an
interval ai = xi||xi+1, the key is xi and the value is xi+1, where xi and xi+1 are
successive elements of our set. We recall that a red-black tree implementation of a
dictionary supports operations in O(log n) time in the worst case.

Define now k, the number of the inputs to the admissible multilinear form that we
are going to use to be t, i.e., equal to the security parameter. Note that since we are
in the computational model, it is always the case that t > logn, where n is the total
number of elements that we store in the dictionary. In the construction that follows we
refer to operations on intervals ai = xi||xi+1 (i.e., insert an interval xi||xi+1), instead
of explicit elements xi and then show in the proof of Theorem 1 how, by supporting
operations for intervals, we can support operations for distinct elements. We define all
four algorithms as described in Section 2.3:

1. {sk, pk} ← genkey(1t). The secret sk is the trapdoor s ∈ Z∗
p, which is picked

randomly. Procedure genkey(1t) also calls G(1t, t) from Definition 4 and outputs
the public key pk which is the description of the groups G and GT, the admissible
multilinear form e : Gt → GT and the elements g, gs, . . . , gs

q ∈ G. It also outputs
a description of a collision-resistant hash function h that takes three inputs and
outputs a hash of t bits. We recall that the number of the inputs of the admissible
multilinear form that we are using is t, equal to the security parameter.

2. {auth(D0), d0} ← setup(D0, pk). The digest d0 of the authenticated data structure
is defined as the tuple {acc(A), hash(A)}. It is

acc(A) = e(g, g, . . . , g)(a1+s)(a2+s)...(an−1+s) ,

while hash(A) is computed as the digest of the well-known Merkle tree (description
follows). Both are stored locally by the client and used for verification and updates.
Let now T be the red-black tree built on top of the intervals ai = xi||xi+1 for
i = 1, . . . , n − 1 and where x1 < x2 < . . . < xn. Let v1, v2, . . . , vn−1 be the
leaves of the tree, storing the intervals a1, a2, . . . , an−1 respectively. We define the
label and the hash of vi as

label(vi) = gai+s ∈ G , (4)

hash(vi) = h(null, label(vi), null) , (5)

where h is the collision-resistant hash function. Let now vA be the internal node of
T that is the root of the subtree of T that contains the elements of some A ⊆ A
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(i.e., from vA you can reach elements in A by following the two downward paths).
Then

label(vA) = g
∏

a∈A(a+s) ∈ G , (6)

hash(vA) = h(hash(lchild(vA)), label(vA), hash(rchild(vA))) , (7)

where lchild(v) and rchild(v) are the left and the right child of node v in the tree.
Note that all the labels of the internal nodes of T can be computed in polynomial
time in n without the use of the trapdoor s, and only by using the public key. Also,
as we will see later, in sake of maintaining constant verification and communica-
tion complexity, the hashes hash(.) are used only for updates. Finally, hash(A) is
defined to be the hash(.) value of the root of the tree T , recursively computed by
means of the above equations.

3. {Π(o), α(o), Dh+1, auth(Dh+1), dh+1} ← operate(o,Dh, auth(Dh), dh).
(a) Verification proof case. Suppose o is a query for the interval aj , stored at node

vj . Let π(aj) = vj , vj1, vj2, . . . , vjl be the path of T from node vj that refers
to interval aj to the child of the root of T , where l = O(log n). The verification
proofΠ(aj) is defined as

e(label(sib(vj)), label(sib(vj1)), . . . , label(sib(vjl)), g, . . . , g) ∈ GT , (8)

where sib(v) defines the sibling of node v in the red-black tree T , and function
label() is defined in Equations 4 and 6. The answer α(o) will be the element
aj . Note now that

Π(aj) = Waj = e(g, g, . . . , g)
∏

a∈A:a�=aj
(a+s) ∈ GT ,

as required by Equation 3. Moreover, it is computable in time O(log n) since
we have to collect O(log n) labels and feed them as input in the admissible
multilinear form e(). Note that the remaining inputs of the admissible multilin-
ear form (i.e., t− logn) are set equal to g, the generator of group G. Moreover
the size of the witness is O(1) (only one group element of GT). The presented
method is the first one to construct a witness for an accumulator in logarithmic
time. The straightforward method takes linear time;

(b) Consistency proof case. Suppose o is an update (either an insertion or a dele-
tion) of an interval aj . In accordance with path π(aj) in the verification proof,
whenever there is an update, let π(aj) be the portion of the red-black tree (that
also contains structure) that is accessed (and eventually changes) due to the up-
date of the interval aj . Denote withΠ1(aj) the set of those labels label(v) such
that v ∈ π(aj) and with Π2(aj) the set of those hashes hash(v) such that v ∈
π(aj). The consistency proof is denoted with Π(aj) = {Π1(aj), Π2(aj)}.
We finally note that the time for the construction of the consistency proof is
O(log n) and its size is also O(log n), since a red-black tree insertion or dele-
tion takes O(log n) time in the worst case.
We note here that, although this algorithm outputs Dh+1, it does not output
auth(Dh+1). The updated authenticated data structure (i.e., the newO(log n)-
sized portion of it) will be sent by the client to the server during the execution
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of the verify() algorithm. This is done primarily for efficiency reasons, since
auth(Dh+1) could have been computed by the server anyways, by using the
public key, but in a less efficient way5.

4. {accept, reject, dh+1} ← verify(o, α(o), Π(o), dh, sk).
(a) Verification proof case. If Π(o) is a verification proof, i.e., Π(o) = Π(aj)

(Equation 8), then clearly the procedure outputs “accept” (see Lemma 1) if and
only if

Π(aj)aj+s = acc(A) ,

else it outputs “reject”. The digest of the structure remains the same. Note
that the client does not use the multilinear form for verification since he has
access to the trapdoor s. The verification involves only one exponentiation in
the group GT and therefore takes time O(1).

(b) Consistency proof case. If Π(o) is a consistency proof, then the client has to
update both acc(A) and hash(A) to acc(A′) and hash(A′) respectively. The
digest acc(A) is updated in constant time by setting acc(A′) = acc(A)aj+s if
aj is inserted and acc(A′) = acc(A)(aj+s)−1

if aj is deleted. For the update
of hash(A) to hash(A′), the client performs the following step:

i. Initially he verifies the correctness of the labels inΠ1(aj) by recomputing
the digest hash(A) by means of elements in Π1(aj) and Π2(aj). If this
computation succeeds (Merkle tree verification) then the client is assured
with probability 1 − neg(t), due to collision resistance, that the labels in
Π1(aj) belong to the correct portion of red-black tree T before the certain
update, i.e., they belong to the portion that is accessed due to this update;

If the above test succeeds then the procedure outputs “accept”, else it out-
puts “reject”. If it accepts, with probability 1 − neg(t), Π1(aj) is the set of
labels that is accessed during the update and needs to be updated. Each la-
bel in this set can be updated in constant time, since the trapdoor s is known
by the client. While the labels are updated, the new hashes are also computed
and finally hash(A′) is updated. Basically the client performs a red-black tree
insertion/deletion locally, doing the necessary rotations, updating at the same
time the information label() and hash(). We conclude that hash(A′) is the up-
dated digest with probability 1− neg(t), since it is a function ofΠ1(aj). After
the procedure finishes, the client sends the updated labels, hashes and the up-
dated digests (acc(A′) and hash(A′)) back to the server (i.e., the new portion
of the authenticated data structure auth(Dh+1)): The server therefore only has
to perform a logarithmic time writing of the new information to the data struc-
ture. Note that processing the consistency proof takes logarithmic time. Similar
solutions for two-party authenticated dictionaries using only collision-resistant
hashing have been explored in the literature (e.g., [33]).

Observations. Before presenting the main result of this section we make an impor-
tant observation. The hashing structure on top of the red-black tree (i.e., the additional
hash() label in the construction) is used only for efficiency reasons and not for security

5 It is an open problem—even with the use of multilinear forms—to construct an optimal au-
thenticated dictionary that avoids this interaction.
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reasons. Namely, if we had not used the hashing structure, the untrusted server, having
access to the public information gs, gs

2
, . . . , gs

q

, could update all the labels label(v)
for all affected nodes v. However, this would take O(n log n) time (O(n) time for each
one of the O(log n) nodes of the path) by using well-known methods by means of
Vieta’s formulas (see for example [36]). In this case however, the update time at the
client would be constant, since all needed would be one exponentiation for the update
of acc(A).

However the labels of the affected nodes v, can easily be updated (in O(1) time per
node) by knowing the trapdoor s, something that only the client has access to. There-
fore, with the hashing structure, we authenticate the “affected paths” so that the client
can verify which labels are affected. Then the client efficiently performs the updates
locally, and sends back the new values to be used in the future. This does not violate
security since the new information provided to the server by the client is computable by
the server in polynomial time anyways.

3.3 Main Results

We now present the main results of this section.

Theorem 1. Assume the existence of an admissible multilinear form generator and
collision-resistant hash functions. Then there exists an optimal two-party authenticated
dictionary storing n elements with the following properties:

1. It is secure under the q-strong multilinear Diffie-Hellman assumption and accord-
ing to Definition 6;

2. The size of the verification proof is O(1) both for a (non-)membership query and
for a range search query of � elements;6

3. The query time at the server is O(log n) for a (non-)membership query and
O(log n+ �) for a range search query of � elements;

4. The verification time at the client is O(1) for a (non-)membership query and O(�)
for a range search query of � elements;

5. The size of the consistency proof is O(log n);
6. The update time at the server and at the client is O(log n);
7. The server uses O(n) space;
8. The client uses O(1) space.

Proof. (Security) (1) We prove security according to Definition 6. Given the security
parameter t, the client runs algorithm {sk, pk} ← genkey(1t). Then the adversary picks
a data structureD0, runs {auth(D0), d0} ← setup(D0, pk) and produces an empty au-
thenticated data structure. The adversary chooses a polynomial (in t) number of updates
(say h) to the data structure and turns it into a data structure Dh, with dh being the tu-
ple of digests acc(A) and hash(A), as defined in the description of the algorithms and
where A is the current set of elements. Let now ν(t) be a function that is neg(t). Since
the client has accepted all the updates (see security definition), this means, by construc-
tion, that dh = {hash(A), acc(A)} is the correct digest of the data structure. Specifi-
cally, hash(A) is correct with probability 1 − ν(t) (by collision resistance) and acc(A)

6 Note that super-efficiency [22] is achieved for range search queries besides optimality.
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is correct with probability 1 (since acc(A) is updated with only one exponentiation at
every update). Therefore, if Dh is the data structure after the update phase and dh the
tuple of the updated digests, we have Pr[digest(Dh) = dh] = (1−ν(t))×1 = 1−ν(t).
Therefore, the probability of Definition 6 is written

Pr

⎡⎢⎢⎣
{q,Π(q), α(q)} ← Adv(1t, pk);
accept ← verify(q, α(q), Π(q), dh);
reject = check(q, α(q), Dh);
digest(Dh) = dh.

⎤⎥⎥⎦ =

Pr

⎡⎣{q,Π(q), α(q)} ← Adv(1t, pk);
accept ← verify(q, α(q), Π(q), digest(Dh));
reject = check(q, α(q), Dh).

⎤⎦× Pr[digest(Dh) = dh] =

Pr

⎡⎣{a,Π(a), x} ← Adv(1t, pk);
Π(a)a+s = e(g, g, . . . , g)(a1+s)(a2+s)...(an+s);
a /∈ {a1, a2, . . . , an}.

⎤⎦× (1 − ν(t)) .

The first term, by Lemma 1 is neg(t). Therefore the whole probability is neg(t) × (1 −
ν(t)), which is neg(t).

(Complexity) (2-4) First of all we show equivalence of (non-)membership proofs of
elements with membership proofs of intervals, that are actually stored in the authen-
ticated data structure: A (non-)membership proof for element x is equivalent with a
membership proof of the interval ai = xi||xi+1 such that xi ≤ x ≤ xi+1 (note that
for non-membership proofs it is xi < x < xi+1). Additionally, by Equation 8, we
have that a verification proof for an interval is only one element of GT and is computed
by applying the admissible multilinear form e(). Therefore the size of the verification
proof for an element is O(1) and the time to compute it is O(log n), since O(log n)
elements of G along the red-black tree path have to be collected and then be fed into the
admissible multilinear form e(.). The time to verify involves one exponentiation (see
verify() algorithm) and therefore is O(1). A range proof of � elements consists of one
membership proof of an interval (instead of one element in the exponent, we omit all
the elements of the respective interval). Therefore its size is O(1), it can be computed
in O(log n+ �) time and it can be verified in O(�) time.

(5-6) We now show equivalence of elements updates with intervals updates. Sup-
pose the client wants to insert x. Firstly the client verifies the non-membership of x
by verifying the membership of the interval ai = xi||xi+1 such that xi < x < xi+1.
After interval ai has been verified the client issues the following updates with this or-
der: delete(ai), insert(xi||x), insert(x||xi+1). For deletion of element x, the client first
verifies the membership of intervals xi||x and x||xi+1 and then issues the following
updates in this order: delete(xi||x), delete(x||xi+1), insert(xi||xi+1). Since the cost of
these individual updates is O(log n), we conclude that any update will cost O(log n) in
the worst case.

(7-8) Finally, the extra space needed to store the labels and the hashes on the red-
black tree is O(n), while the space needed by the client is O(1), since the client only
needs to store acc(A), hash(A) and the secret trapdoor, s.

(Optimality) The optimal plain dictionary data structure is the red-black tree,
achieving worst-case complexities O(log n) [15] and answers of constant size.
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Therefore our authenticated data structure satisfies Definition 7 since it has logarithmic
complexities in the worst case, constant verification proof size and constant verification
time. �

We now present the final result of our paper that relates optimality of an authenticated
dictionary with the existence of an admissible multilinear form generator.

Theorem 2. If optimal authenticated dictionaries do not exist, then admissible multi-
linear form generators do not exist either.

Proof. Let’s assume this is not the case and admissible multilinear form generators do
exist in the absence (through a generic lower bound proof—see for example a similar
result for memory checking in [18]) of optimal authenticated dictionaries. This is a
contradiction since we can use the construction of Theorem 1—which will give us a
secure construction since we can use an admissible multilinear form generator for k =
t—to derive an optimal authenticated dictionary. �

Finally we need to make the following important observation. Theorem 2 does not
exclude the existence of some instance of a multilinear form, even in the absence of
optimal authenticated dictionaries (say for example an instance of a multilinear form
for k = 5). The result holds for all admissible k-multilinear forms, i.e., for the existence
of an admissible multilinear form generator, as defined in Definition 4.

4 Conclusions

In this paper, we have presented the first optimal authenticated dictionary with constant-
size verification proof, constant-time verification, and logarithmic query/update costs.
Its design is based on multilinear forms, a recently-proposed cryptographic primitive
[10] whose construction remains an open problem to date.

However, since multilinear forms are not known to exist yet, this work can be viewed
from a different angle: if one could prove that optimal authenticated dictionaries can-
not exist in the computational model, irrespectively of cryptographic primitives, then
our result would imply that cryptographically interesting multilinear form generators
cannot exist as well (i.e., it can be viewed as a reduction). Thus, we provide an alter-
native avenue towards proving the nonexistence of multilinear form generators in the
context of general lower bounds for authenticated data structures [40] and for memory
checking [18].
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Abstract. In this paper we propose a very simple and efficient encoding

function from Fq to points of a hyperelliptic curve over Fq of the form

H : y2 = f(x) where f is an odd polynomial. Hyperelliptic curves of this

type have been frequently considered in the literature to obtain Jacobians

of good order and pairing-friendly curves.

Our new encoding is nearly a bijection to the set of Fq-rational points

on H . This makes it easy to construct well-behaved hash functions to

the Jacobian J of H , as well as injective maps to J(Fq) which can be

used to encode scalars for such applications as ElGamal encryption.

The new encoding is already interesting in the genus 1 case, where it

provides a well-behaved encoding to Joux’s supersingular elliptic curves.

Keywords: Hyperelliptic Curve Cryptography, Deterministic Encoding,

Hashing.

1 Introduction

Hashing into elliptic and hyperelliptic curves. Many cryptosystems based
on discrete log-related hardness assumptions, especially in pairing-based cryp-
tography, involve hashing into a group, usually instantiated as the group of points
of an elliptic curve or the Jacobian of a hyperelliptic curve. For example in the
Boneh-Franklin IBE scheme [4], the public-key for identity id ∈ {0, 1}∗ is an
element Qid = H1(id) of the group. This is also the case in many other pairing-
based cryptosystems including IBE and HIBE schemes [1,15,17], signature and
identity-based signature schemes [3,5,6,10,28] and identity-based signcryption
schemes [8,23].

Those cryptosystems are proved to be secure when the hash function is mod-
eled as a random oracle into the group, and it is not obvious how to instantiate
such a function in practice (when the group is an elliptic curve or a Jacobian)
so that the security proof can go through. As discussed in by Brier et al. [9], it
is sometimes sufficient to use relatively simple constructions that do not behave
like random oracles at all, owing to random self-reducibility properties of the
underlying problems, but it is generally desirable to have proper hash functions
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that can be plugged into any cryptosystem that requires hashing into elliptic
and hyperelliptic curves while not compromising proofs of security in the ran-
dom oracle model.

Deterministic encodings. The basic building block for constructing such hash
functions is an encoding from a set that is easy to enumerate, such as {0, 1}n
or Fq, into the elliptic or hyperelliptic curve group. If the encoding has suitable
properties, combining it with a standard hash function may provide a robust
construction for hashing into the group.

Generic encodings, such as t 	→ t · G where G is a group generator, will not
work, since they leak the discrete logarithm (as the hash value in the group
is usually obtained as from public data, such as the identity in IBE schemes).
Thus, the particular form of the group elements intervenes in the encoding.

In the case of elliptic curves, the classical approach is inherently probabilistic:
one will first compute an integer hash value h(m) and add a short counter
to get x = 0log k‖h(m). If x is the abscissa of a point on the elliptic curve
y2 = x3 + ax + b, this gives the desired point; otherwise, one increments the
counter and tries again. Each step succeeds with probability about 1/2, so if k
is the security parameter, k steps are heuristically enough to construct a point
except with negligible probability.

However, the length of the hash computation depends on the message m,
which can lead to side-channel attacks [7], unless all k steps are run for all
messages, and Legendre symbols and square roots are computed in constant
time, in which case computational cost becomes prohibitive. More importantly
for pairing-based cryptography, it is difficult to assess the security of a scheme
in which such a “probabilistic” hash function is used, even when the underlying
integer hash function h is considered ideal.

Therefore, it has been desirable to devise point construction algorithms on
elliptic and hyperelliptic curves that are more robust, easier to analyze, and
deterministic. Algorithms proposed so far fit in two families:

– SWU-like encodings, similar to those proposed by Shallue and van de Woesti-
jne in [26]. They are based on the construction of explicit rational curves on
a surface associated to the target curve.

– Icart-like encodings, similar to Icart’s function [18]. They are obtained by
writing down a root of the curve equation using radicals of degrees prime
to the order of the multiplicative group. This is only possible if the curve
equation is solvable.

Hyperelliptic curve encodings. While there are now rather general and ef-
ficient constructions for elliptic curves (although some important curves remain
intractable with current techniques), encodings to hyperelliptic curves are scarce.
The first such encoding was proposed by Ulas in [27], for curves of the form
y2 = xn + ax + b or y2 = xn + ax2 + bx. Kammerer, Lercier and Renault, in
their recent paper [20], have presented several additional families of hyperelliptic
curves for which an Icart-like encoding can be constructed, but the target curves
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are still of a special form and may not be convenient to use for cryptographic
applications. Efficiency is also a problem for both of these constructions.

Moreover, all of these algorithms construct points on the curve itself, whereas
the relevant object in cryptography is the group attached to it, namely its Jaco-
bian variety. Very recently, Farashahi et al. [12] have demonstrated how to build
a well-behaved hash function to the Jacobian based on a point-construction al-
gorithm to the curve. Their framework apply to the functions proposed by Ulas
and Kammerer et al., but with some difficulties and somewhat coarse bounds
due to their relatively complex geometric descriptions.

Admissible encodings and indifferentiability. To obtain their well-behaved
hash function construction to the Jacobian, Farashahi et al. rely on the results by
Brier et al. [9], which give sufficient conditions for a hash function construction
of the form H(m) = F (h(m)) to be plugged into any cryptosystem using H as
a random oracle provided that h behaves as a random oracle. Basically, Brier et
al.’s result states that this construction is indistinguishable from a random oracle
as soon as F is an admissible encoding in the following sense.

A function F : S → R between finite sets is an admissible encoding if it sat-
isfies the following properties:
1. Computable: F is computable in deterministic polynomial time.
2. Regular: for s uniformly distributed in S, the distribution of F (s) is statis-

tically indistinguishable from the uniform distribution in R.
3. Samplable: there is an efficient randomized algorithm I such that for any
r ∈ R, I(r) induces a distribution that is statistically indistinguishable from
the uniform distribution in F−1(r).

Our contribution. This paper presents a new encoding for hyperelliptic curves
of the form H : y2 = f(x) where f is an odd polynomial over Fq, with q =
3 mod 4. From this encoding to the curve H , we also deduce efficient injective
encodings and well-behaved hash functions to its Jacobian.

The new encoding has the following desirable properties:

– it can be very efficiently computed using one exponentiation and no division,
in constant time and without branching;

– the encoding is an efficiently invertible bijection: thus, it is possible to en-
code messages as points on the curve and recover them. This has numerous
applications, e.g. to encryption;

– in genus 1, it provides an encoding to supersingular elliptic curves, similar
to Boneh and Franklin’s construction [4], but for different base fields;

– in higher genus, many cryptographically interesting curves are of the form
H , including the curves considered in [14,16,25];

– many constructions of pairing-friendly hyperelliptic curves yield curves of
the form H [21,13];

– since the encoding has a simple geometric description, it is easy to obtain
well-behaved hash functions from it, and the corresponding regularity bounds
are optimally tight.
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2 Odd Hyperelliptic Curves

Let f be an odd monic polynomial over a finite field Fq with q ≡ 3 (mod 4),
which has simple roots in Fq. We denote its degree by 2g + 1, and consider the
hyperelliptic curve over Fq defined by:

H : y2 = f(x) = x2g+1 + a1x
2g−1 + · · · + agx

Let us call such curves odd hyperelliptic curves. Many hyperelliptic curves
relevant to cryptography, and particularly pairing-based cryptography, are of
this form. For example:

– the supersingular elliptic curves of Joux [19]: y2 = x3 + ax;
– the genus 2 curves studied by Furukawa et al. [14] and their extension to

genus g by Haneda et al. [16]: y2 = x2g+1 + ax (for which one can compute
the zeta function);

– in particular, the Type II pairing-friendly curves of genus 2 constructed by
Kawazoe and Takahashi [21];

– the genus 2 hyperelliptic curves for which Satoh [25] gave an efficient class
group counting algorithm: y2 = x5 + ax3 + bx;

– in particular, some of the pairing-friendly genus 2 curves constructed by
Freeman and Satoh [13] (although the case q ≡ 1 (mod 4) is more common).

Additionally, odd hyperelliptic curves and their Jacobians admit an automor-
phism of order 4 over Fq2 (namely (x, y) 	→ (−x,√−1 · y)) which can be used
to map points over Fq to linearly independent points over Fq2 , another useful
property for pairings.

Remark 1. A hyperelliptic curve over Fq is birational to an odd hyperelliptic
curve when the set of points in P1 over which it is ramified is invariant under an
automorphism of P1 of order 2 fixing two of them, both Fq-rational. For example,
hyperelliptic curves of the form:

H ′ : y2 = x6 + ax5 + bx4 − bx2 − ax− 1

are birational to odd hyperelliptic curves, since they are ramified over a set
of points invariant under x 	→ 1/x and containing ±1. One possible change of
variables is x 	→ (x− 1)/(x+ 1).

This remark shows that the coarse moduli space of odd hyperelliptic curves
of genus g over Fq is a subvariety of dimension g − 1 of the dimension 2g − 1
moduli space of genus g hyperelliptic curves.

3 Our New Encoding

3.1 Definition

Let H : y2 = f(x) be an odd hyperelliptic curve over Fq. Denote by
√· the usual

square root function on the set of quadratic residues in Fq (exponentiation by

(q + 1)/4), and by
(

·
q

)
the Legendre symbol over Fq.
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Over Fq, −1 is a quadratic nonresidue, and for any t ∈ Fq, we have f(−t) =
−f(t), so unless f(t) = 0, exactly one of f(t) or f(−t) is a square. In other
words, exactly one of t or −t is the abscissa of an Fq-rational point on H .

This observation allows us to define a point encoding function F to H(Fq) as
follows:

F : Fq −→ H(Fq)

t 	−→
(
ε(t) · t ; ε(t)

√
ε(t) · f(t)

) (1)

where ε(t) =
(
f(t)
q

)
. We claim that this function is well-defined and “almost” a

bijection.
More precisely, recall that a Weierstrass point of H is a point where the

rational function y is ramified: these are the points (x, 0) for x a root of f
together with the point at infinity ∞. Then, let W ⊂ H(Fq) be the set of Fq-
rational Weierstrass points on H , and T ⊂ Fq the set of roots of f .

Theorem 1. The function F given by (1) is well-defined, maps all points in T
to (0, 0) ∈ W , and induces a bijection Fq \ T → H(Fq) \W .

Proof. For t ∈ T , we have ε(t) = 0, hence F (t) = (0, 0) ∈W . Now let t ∈ Fq \T ,
and x = ε(t) · t. Since f is odd and ε(t) = ±1, f(x) = ε(t) · f(t). In particular,
recalling that

(
−1
q

)
= −1, we can write:(

f(x)
q

)
=
(
ε(t) · f(t)

q

)
= ε(t) ·

(
f(t)
q

)
= ε(t)2 = 1

Thus, the second component y = ε(t)
√
ε(t) · f(t) of F (t) is well-defined, and we

have y2 = ε(t) ·f(t) = f(x), so F (t) is an affine point on H(Fq) as required. The
condition t �∈ T further implies that f(t) �= 0, so y �= 0. Therefore, F (t) ∈ Fq \W .

Let us show that the restriction of F to Fq \ T is injective. Indeed, suppose
F (t) = F (u) with t, u �∈ T . Equating x-coordinates, we get ε(t) · t = ε(u) · u,
hence u = ±t. If u = −t, then comparing the y-coordinates, we obtain

ε(t)
√
ε(t) · f(t) = ε(u)

√
ε(u) · f(u)

= ε(−t)
√
ε(−t) · f(−t) = −ε(t)

√
ε(t) · f(t)

which is a condraction. Therefore, t = u and F is injective on Fq \ T .
Finally, F (Fq \ T ) = H(Fq) \W . To see this, take (x, y) ∈ H(Fq) \W and let

t = δ · x, where δ = ±1 is defined by y = δ
√
f(x). We have

ε(t) =
(
f(δx)
q

)
=
(
δ · f(x)
q

)
= δ ·

(
f(x)
q

)
= δ

since f(x) = y2 is a square. Thus:

F (t) =
(
δ2 · x ; δ

√
δ · f(δx)

)
=
(
x ; δ

√
f(x)

)
= (x; y)

as required. ��
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Corollary 1. The cardinal of H(Fq) is q + 1.

Proof. From the above, we get #H(Fq) = #(Fq \ T ) + #W = q − #T + #W .
But W consists of the point at infinity on H , and all points of the form (x, 0),
x ∈ T . Thus, #W = #T + 1, and #H(Fq) = q + 1. ��
Remark 2. – Since F is an efficiently computable bijection between all of Fq

andH(Fq) except at most 2g+2 points on both sides, with an efficiently com-

putable inverse (namely (x, y) 	→
(
y
q

)
x), it is a very well-behaved encoding

function.
In particular, it is clear that if t is uniformly distributed in Fq, the distri-
bution of F (t) in H(Fq) is statistically indistinguishable from the uniform
distribution. According to the results of Brier et al. [9], it follows that if
m 	→ h(m) is a hash function to Fq modeled as a random oracle, then
F (h(m)) is a function into H(Fq) that is indifferentiable from a random or-
acle. When the genus of H is at least 2, however, one is usually interested
in hashing to the Jacobian of H rather than H itself. This will be discussed
in §4.
The fact that F is injective, unlike most other constructions, makes it possi-
ble to also use it for other purposes than hashing, such as encoding a message
to be encrypted, for example with ElGamal.

– Since #T = #(W \ {∞}), it is in fact easy to modify the definition of F
to obtain a bijection F ′ : Fq → H(Fq) \ {∞} which misses only one rational
point on H . It is slightly less efficient to compute, however, and using one
or the other makes no difference in practice (as one is not concerned with a
few exceptional points), so we shall stick to F as defined by (1).

– When H is in fact an elliptic curve E (i.e. deg f = 3), Corollary 1 says
that E is supersingular. These are in fact the supersingular elliptic curves
y2 = x3 + ax discussed by Joux in [19]. Thus, the function F provides a
convenient way to encode points into supersingular elliptic curves over Fq
with q ≡ 3 (mod 4). This is an interesting addition to the original encoding
of Boneh and Franklin [4], which applies to supersingular curves of the form
y2 = x3 + b over fields Fq with q ≡ 2 (mod 3). In particular, our encoding
can be used in characteristic 3.

– In the general case, we see that #H(Fqn) = qn + 1 for any odd extension
degree n. This gives some constraints on the zeta function of H , but in genus
g ≥ 2, many isogeny classes are possible for the Jacobian J of H nonetheless,
so the proposed encoding applies to a wide range of curves. It is not always
easy to determine the order of J(Fq): an approach is given by Satoh in [25]
for g = 2.

3.2 Efficient Computation

The definition of F involves a generalized Legendre symbol and one square root,
which suggests that its computation might be costly, especially if it is to be
done in constant time, an important property in settings where side-channel
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attacks are a concern. However, it is actually possible to compute F with a
single exponentiation, a few multiplications and no division, making it one of
the most efficient deterministic encoding function proposed to date. One such
implementation is described as Algorithm 1. Note that this implementation is
also branch-free, contrary to what happens for encodings such as the one by
Shallue and van de Woestijne [26]; this also prevents certain active side-channel
attacks.

Algorithm 1. Constant-time, single-exponentiation implementation of the en-
coding F . The constant r is (q − 3)/4 if q ≡ 3 (mod 8), (q − 3)/4 + (q − 1)/2
otherwise.
1: function F (t)
2: α← f(t)
3: β ← αr

4: return (αβ2t, αβ)

5: end function

To see that this implementation is correct, consider α and β as defined in
Algorithm 1. For t ∈ T , we have α = 0, hence the procedure returns F (t) = (0, 0)
as required. Now let t �∈ T . We have

β2 = α
q−3
2 =

1
α

(
α

q

)
=
ε(t)
α

In particular, αβ2t = ε(t) · t is indeed the abscissa of F (t).
Moreover, suppose q ≡ 3 (mod 8). Then (q + 1)/4 is odd and ε(t) = ±1, so

we have

αβ = α
q−3
4 +1 = ε(t) · ε(t) · f(t) q+1

4

= ε(t) · (ε(t) · f(t)) q+1
4 = ε(t)

√
ε(t) · f(t)

so the algorithm is correct.
Similarly, when q ≡ 7 (mod 8), (q + 1)/4 is odd and we obtain

αβ = α
q−1
2 + q−3

4 +1 = ε(t) · f(t) q+1
4

= ε(t) · (ε(t) · f(t)) q+1
4 = ε(t)

√
ε(t) · f(t)

which concludes.

4 Mapping to the Jacobian

In the previous section, we have constructed a function F : Fq → H(Fq) which
is efficiently computable and has a number of desirable properties. For crypto-
graphic purposes, however, we are usually interested in obtaining elements of
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a group attached to the curve, namely the Jacobian, rather than points on the
curve itself. In the case of elliptic curves, the curve and its Jacobian are isomor-
phic so no further work is needed, but for curves of genus g ≥ 2, they are quite
different objects.

In the following, we always denote the Jacobian of H by J , and we regard
H as embedded in J via the map H → J sending a point P to the class of the
degree 0 divisor (P ) − (∞). In particular, if P,Q are points in H(Fq), P + Q
denotes the class of (P ) + (Q) − 2(∞).

We propose two constructions of maps to J(Fq) to accommodate for different
use cases: an injective map with large image, which can be used to encode scalars
as group elements (e.g. for encryption), and a map defining an essentially uniform
distribution on J(Fq), to obtain well-behaved hash functions.

4.1 Injective Encoding to the Jacobian

Let us first recall a few facts about hyperelliptic curves, for which we refer for
example to [24]. Elements of J(Fq) are classes of Fq-divisors on H and admit
a canonical representation as so-called reduced divisors defined over Fq. Let ·̃
denote the hyperelliptic involution on H , (x, y) 	→ (x,−y). A divisor D = P1 +
· · ·+Pr (where the Pi are not necessarily distinct points in H(Fq)) is said to be
reduced when r is less than or equal to the genus g ofH , and Pi �= P̃j for all i �= j.
The reduced divisors D and D′ defined by P1, . . . , Pr and P ′

1, . . . , P
′
r are distinct

and non-equivalent as soon as the multisets {P1, . . . , Pr} and {P ′
1, . . . , P

′
r} are

different. Each divisor class in J(Fq) contains a unique reduced divisor defined
over Fq.

Now, with the notations of §3, the encoding F : Fq → H(Fq) defined by (1)
satisfies that for all t ∈ Fq \ T , the only u such that F (u) = F̃ (t) is u = −t.
Therefore, if (t1, . . . , tg) is any tuple of g elements of Fq \T (g being the genus of
H) such that ti+ tj �= 0 for all i, j, then F (t1)+ · · ·+F (tg) is a reduced divisor.
In particular, consider the set X of g-element subsets of Fq \ T not containing
any two opposite elements. Then it is immediate from the facts above that the
map:

Finj : X −→ J(Fq)
{t1, . . . , tg} 	−→ F (t1) + · · · + F (tg)

is injective. We have

#X = 2g
(

(q − #T )/2
g

)
=

1 − o(1)
g!

· qg ≥ cg · #J(Fq)

for some constant cg > 0 depending only on g. Thus, Finj is an injective mapping
to J(Fq) covering a large portion of all points. It is also very easy to compute
since points in the image are directly given as reduced divisors, so no actual
arithmetic on the Jacobian is needed.
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In the case that is most relevant for cryptographic applications, namely g = 2,
we can define an even simpler injective encoding, from the set Y of 2-element
subsets of Fq \ T , which may be easier to manipulate than X :

F ′
inj : Y −→ J(Fq)

{t1, t2} 	−→ F (t1) + F (−t2)
This function injective, easy to compute, and reaches roughly one half of all
points in J(Fq).

4.2 Indifferentiable Hashing to the Jacobian

One can also use F to construct well-behaved hash functions to J(Fq). For this
purpose, Brier et al. [9] have shown how one could use functions to J(Fq) with
good regularity properties, and Farashahi et al. [12] have proposed a framework
based on character sums to prove such regularity properties for functions of the
form:

F⊗s : (Fq)s −→ J(Fq)
(t1, . . . , ts) 	−→ F (t1) + · · · + F (ts)

Since F is so simple, we do not really need to rely on the entire framework
of [12]. Indeed, the following bound, which in the terminology of Farashahi et
al. says that F is a (2g − 2 + ε)-well-distributed encoding, can be proved using
classical results on characters on algebraic curves. Note that this bound is very
tight: it gives a better well-distributedness bound for F in genus up to 6 than
can be established for Icart’s function in genus 1.

Lemma 1. For any character χ of the abelian group J(Fq), let

S(χ) =
∑
t∈Fq

χ(F (t))

Then, whenever χ is nontrivial, we have

|S(χ)| ≤ (2g − 2)
√
q + 4g + 3

Proof. A nontrivial character χ of J(Fq) is also a nontrivial, unramified Artin
character of H (see [22, §2] or [12, §4]). In particular, the Riemann hypothesis
for the L-function on H associated with χ gives:∣∣∣∣∣∣

∑
P∈H(Fq)

χ(P )

∣∣∣∣∣∣ ≤ (2g − 2)
√
q

The result then follows from the observation that∑
t∈Fq

χ(F (t)) = #T · χ((0, 0)) +
∑

P∈H(Fq)\W
χ(P )

= #T · χ((0, 0)) −
∑
P∈W

χ(P ) +
∑

P∈H(Fq)

χ(P )

since #T + #W ≤ 4g + 3. ��
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We can then proceed like in [12] and deduce from this lemma a bound on the
statistical distance between the distribution defined on J(Fq) by F⊗s and the
uniform distribution.

For any D ∈ J(Fq), let Ns(D) denote the number of preimages of D under
F⊗s:

Ns(D) = #
{
(t1, . . . , ts) ∈ (Fq)s | D = F (t1) + · · · + F (ts)

}
Then we have the following result:

Theorem 2. The statistical distance between the distribution defined by F⊗s

and the uniform distribution on J(Fq) is bounded as:∑
D∈J(Fq)

∣∣∣∣Ns(D)
qs

− 1
#J(Fq)

∣∣∣∣ ≤
(
2g + 2 + (4g + 3)q−1/2

)s√#J(Fq)
qs/2

Proof. This results from [12, Theorem 2]. We can give a quick recap of the proof
for the reader’s convenience.

Note first that one can write Ns(D) in terms of the character sums S(χ) as
follows:

Ns(D) =
∑

t1,...,ts∈Fq

1
#J(Fq)

∑
χ

χ (F (t1) + · · · + F (ts) −D)

=
∑
χ

χ(−D)
#J(Fq)

∑
t1,...,ts∈Fq

χ (F (t1) + · · · + F (ts))

=
∑
χ

χ(−D)
#J(Fq)

S(χ)s

Putting the trivial character aside, this yields:

Ns(D)
qs

− 1
#J(Fq)

=
χ(−D)
qs#J(Fq)

∑
χ
=1

S(χ)s

Then, we consider the sum of squares of this expression as D varies along J(Fq).
Let

Vs =
∑

D∈J(Fq)

∣∣∣∣Ns(D)
qs

− 1
#J(Fq)

∣∣∣∣2
We have

Vs =
∑
D

1
q2s#J(Fq)2

∑
χ,χ′ 
=1

χ(−D)χ′(−D) · S(χ)s · S(χ′)s

=
1

q2s#J(Fq)2
∑

χ,χ′ 
=1

(∑
D

χ(D)χ′(D)

)
S(χ)s · S(χ′)s

=
1

q2s#J(Fq)

∑
χ
=1

∣∣S(χ)
∣∣2s ≤

(
(2g + 2)

√
q + 4g + 3

)2s
q2s
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since the sum over D of χ(D)χ′(D) vanishes if χ �= χ′. Finally, the Cauchy-
Schwarz inequality gives:∑

D∈J(Fq)

∣∣∣∣Ns(D)
qs

− 1
#J(Fq)

∣∣∣∣ ≤√Vs ·
√

#J(Fq)

≤
(
2g + 2 + (4g + 3)q−1/2

)s√#J(Fq)
qs/2

as required. ��
Note that #J(Fq) ∼ qg, so that the bound we get on the statistical distance is
in O(q(g−s)/2). Therefore, as soon as s > g, the distribution defined by F⊗s on
J(Fq) is statistically indistinguishable from the uniform distribution. In partic-
ular, in the terminology of Brier et al. [9] which we recalled in the introduction,
the encoding F⊗(g+1) to J(Fq) is regular. It is also obviously computable and
samplable, so F⊗(g+1) is an admissible encoding to J(Fq).

This provides a simple, well-behaved hash function construction to the Jaco-
bian of H . Indeed, it follows that the function

m 	→ F (h1(m)) + · · · + F (hg+1(m))

is indifferentiable from a random oracle if h1, . . . , hg+1 are seen as independent
random oracles into Fq.

5 Conclusion

In this paper, we provide a very efficient construction of a deterministic en-
coding into odd hyperelliptic curves. Odd hyperelliptic curves are a simple and
relatively large class of hyperelliptic curves, compared to the families of curves
covered by previous deterministic encodings. They also include many curves of
cryptographic interest (because of efficient point-counting on the Jacobian, or
pairing-friendliness), even in the elliptic curve case.

This encoding is almost a bijection, which can be useful for a number of appli-
cations, such as encryption, and allows us to construct the first efficient injections
with large image to the Jacobians of odd hyperelliptic curves, as well as indif-
ferentiable hash functions to these Jacobians with particularly tight regularity
bounds.
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Abstract. We provide new hash functions into (hyper)elliptic curves
over finite fields. These functions aim at instantiating in a secure manner
cryptographic protocols where we need to map strings into points on
algebraic curves, typically user identities into public keys in pairing-based
IBE schemes.

Contrasting with recent Icart’s encoding, we start from “easy to solve
by radicals” polynomials in order to obtain models of curves which in
turn can be deterministically “algebraically parameterized”. As a result
of this strategy, we obtain a low degree encoding map for Hessian ellip-
tic curves, and for the first time, hashing functions for genus 2 curves.
More generally, we present for any genus (more narrowed) families of
hyperelliptic curves with this property.

The image of these encodings is large enough to be “weak” encod-
ings in the sense of Brier et al. As such they can be easily turned into
admissible cryptographic hash functions.

Keywords: deterministic encoding, elliptic curves, Galois theory, hy-
perelliptic curves.

1 Introduction

Many asymmetric cryptographic mechanisms are based on the difficulty of the
discrete logarithm problem in finite groups. Among these groups, algebraic curves
on finite fields are of high interest because of the small size of keys needed to
achieve good security. Nonetheless it is less easy to encode a message into an
element of the group.

Let Fq be a finite field of odd characteristic p, and H/Fq : y2 = f(x) where
deg f = d be an elliptic (if d = 3 or 4) or hyperelliptic (if d � 5) curve, we con-
sider the problem of computing points on H in deterministic polynomial time.
In cryptographic applications, computing a point on a (hyper)elliptic curve is
a prerequisite for encoding a message into its Jacobian group. In this regard,
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pairing-based cryptosystems do not make exception. Boneh-Franklin Identity-
Based Encryption scheme [3] requires for instance to associate to any user iden-
tity a point on an elliptic curve.

In the case of elliptic curves, we may remark that it is enough to compute
one rational point G, since we can have other points tG from integers t (at least
if G is of large enough order). To compute such a G, one might test random
elements x ∈ Fq until f(x) is a square. But without assuming GRH, we have no
guarantee of finding a suitable x after a small enough number of attempts, and no
deterministic algorithm is known for computing square roots when p ≡ 1 mod 4.
Moreover, encoding t into tG voids the security of many cryptographic protocols
[13].

Maybe a more serious attempt in this direction for odd degrees d is due to
Atkin and Morain [1]. They remark that if x0 is any element of Fq and λ = f(x0),
then the point (λx0, λ

(d+1)/2) is on the curve Y 2 = λdf(X/λ). But again, the
latter can be either isomorphic to the curve or its quadratic twist, following
that λ is a quadratic residue or not, and we have no way to control this in
deterministic time.

In 2006, Shallue and Woestjine [16] proposed the first practical deterministic
algorithm to encode points into an elliptic curve, quickly generalized by Ulas [17]
to the family of hyperelliptic curves defined by y2 = xn+ax+b or y2 = xn+ax2+
bx. Icart [13] proposed in 2009 another deterministic encoding for elliptic curves,
of complexity O(log2+o(1) q), provided that the cubic root function, inverse of
x �→ x3 on F∗q , is a group automorphism. This is equivalent to q ≡ 2 mod 3. This
encoding uses Cardano-Tartaglia’s formulae to parameterize the points (x : y : 1)
on any elliptic curve E : x3 + ax+ b = y2.

1.1 Contribution

In this paper, we propose a strategy for finding other families with such proper-
ties (Section 2). As an example, we first show how the strategy works for genus
1 curves and come to a new encoding map for Hessian elliptic curves in finite
fields of odd characteristic with q ≡ 2 mod 3 (Section 3.1). Hessian curves are
defined by Ed : x3 + y3 + 1 = 3dxy with d �= 1, but admit an equivalent model
C0,a : y3 + xy + ay = x3 with a �= 0, 1/27. Our encoding function is 2 : 1: each
point of its image admits exactly 2 preimages compared to the 1 to potentially
4 in Icart’s construction.

We then study more carefully genus 2 curves, still over finite fields Fq of odd
characteristic with q ≡ 2 mod 3, and exhibit several large families (Section 3.2),
namely the curves H1,a,b : y2 = (x3 + 3ax + 2)2 + 8bx3 (which we call type A)
and H2,λ,μ,a,v,w : y2/λ = (x3 + 3μx+ 2a)2 + 4b (type B). Both of these families
have dimension 2 over the moduli space.

Finally for all genus g � 2, we propose families of hyperelliptic curves which
admit an efficient deterministic encoding function (Section 4), again provided
some conditions on q (typically q odd, q ≡ 2 mod 3 and q coprime to 2g + 1).

Remark 1. In the paper, we use indifferently the words “parameterization” or
“encoding”, even if, strictly speaking, we do not have fully parameterized curves.
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We are aware that these maps are at least improperly parameterizations since
there might correspond more than one parameter to one point. There are nu-
merous points which lie outside the image of our maps too.

Remark 2. Our main goal is to find the biggest possible families for which there
exists an efficient deterministic encoding. It might be possible to reduce the num-
ber of finite field operations in the description of our algorithms. However, they
all use an exponentiation step like every other known encoding which dominates
by far the computation time, both from a practical and a complexity viewpoint.

Remark 3. Each of our encodings is a weak encoding in the sense of [6]. Combined
with a cryptographic hash function, we can thus construct hash functions into
the set of rational points of these curves that are indifferentiable from a random
oracle.

1.2 Related Work

Other papers about encoding into curves have been independently prepublished
soon after the publication of a preversion of this article on the arXiv.org e-Print
archive (ref 1005.1454).

Especially, Fouque and Tibouchi proposed an injective encoding over odd hy-
perelliptic curves, that is curves of the form y2 = f(x) with f(−x) = −f(x) [12].
For any genus g, this encoding targets a dimension g−1 subspace of hyperelliptic
curves, so of dimension 1 for genus 2 curves. Farashahi proposed an other 2 : 1
encoding into Hessian curves too [11].

Because of square or cubic rooting steps, all these encodings have the same
asymptotic complexity as ours, namely O(log2+o(1) q).

2 A Strategy

Given a genus g, we describe a strategy for finding curves of genus g which admit
a deterministic encoding for a large subset of their points.

It’s worth noting first that only genus 0 curves are rationally parameterizable.
That is, any curve which admits a rational parameterization shall be a conic,
see [15, Theorem 4.11]. Encoding maps into higher genus curves shall thus be
algebraic. We are then reduced to the parameterization of roots of polynomials.
Hence, the main idea of our general strategy is to start from polynomials with
roots which are easily parameterizable and then deduce curves with deterministic
encoding.

2.1 Solvable Polynomials

Classical Galois theory offers a large family of polynomials with easily param-
eterized roots: polynomials with roots that can be written as radicals, which
are polynomials with solvable Galois group. Our strategy is based on these
polynomials.

http://arxiv.org/abs/1005.1454
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More precisely, let fa(X) be a family of parameterized polynomials (where a
denotes a k-tuple (a1, a2, . . . , ak) of parameters) with solvable Galois group. We
are interested in such parametric polynomials but also in the parametric radical
expression of their roots χa. For instance fA(X) = X2 +A in degree 2, or more
interestingly fA,B(X) = X3 + AX + B in degree 3, are such polynomials with
simple radical formulae for their roots. The former verifies χA =

√−A and a root
of the second one is given by the well-known Cardano-Tartaglia’s formulae (see
[8]). The application of our general strategy to this family of degree 3 polynomials
with the parameterization of its roots is described in Section 3.

Let us note that we might use the classical field machinery to construct new
solvable polynomials from smaller ones. Look for instance at De Moivre’s poly-
nomials of degree d: we start from the degree 2 field extension θ2 + Bθ − Ad,
followed by the degree d Kümmer extension γd − θ = 0. Then the element
X = γ − A/γ is defined in a degree d subfield of the degree 2d extension. The
defining polynomial of this extension is given by the minimal polynomial of X ,
which is equal to the De Moivre’s polynomial,

Xd+dAXd−2+2dA2Xd−4+3dA3Xd−6+· · ·+2dA(d−1)/2−1X3+dA(d−1)/2X+B .

A more straightforward similar construction is to consider Kümmer extensions
over quadratic (or small degree) extensions, which yields X2d+AXd+B . From
these two specific families of solvable polynomials, we provide, in Section 4.1
and 4.2, hyperelliptic curves for all genus g � 2 which admit an efficient deter-
ministic encoding function.

2.2 Rational and Deterministic Parameterizations
Given a parameterized family of solvable polynomials ft(X), and a genus g, we
now substitute a rational function Fi(Y ) in some variable Y for each parameter
ai in a.

Let F (Y ) denote the k-tuples of rational functions (F1(Y ), F2(Y ), . . . , Fk(Y )).
The equation fF (Y )(X) now defines a plane algebraic curve C, with variables
(X,Y ). The genus of C increases when the degrees of F (Y ) in Y increase. So
if we target some fixed genus g for C, only few degrees for the numerators and
denominators of F (Y ) can occur. Since we can consider coefficients of these
rational functions as parameters a = (a1, . . . , ak′), this yields a family of curves
Ca.

Less easily, it remains then to determine among these F (Y ) the ones which
yield roots χF (Y ) which can be computed in deterministic time. The easiest case
is probably when no square root occurs in the computation of χt, since then any
choice for F (Y ) will work, at the expense of some constraint on the finite field.
But this is usually not the case, and we might try instead to link these square
roots to some algebraic parameterization of an auxiliary algebraic curve

2.3 Minimal Models
In some case (typically hyperelliptic curves), it is worth to derive from the equa-
tion for Ca a minimal model (typically of the form y2 = ga(x)). In order to
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still have a deterministic encoding with the minimal model, we need explicit
birational maps x = Λa(X,Y ), y = Ωa(X,Y ) too. For hyperelliptic curves, the
usual way for this is to work with homomorphic differentials defined by Ca.
This method is implemented in several computer algebra systems, for instance
MAPLE [14] or MAGMA [5]. All in all, we obtain the following encoding for a
minimal model ga:

– Fix some Y as a (non-rational) function of some parameter t so that all the
square roots appearing in the expression of χF (Y ) are well defined ;

– Compute X = χF (Y ) ;
– Compute x = Λa(X,Y ) and y = Ωa(X,Y ) .

2.4 Cryptographic Applications

Once we will have found an encoding, it is important for cryptographic applica-
tions to study the cardinality of the subset of the curve that we parameterize.
This ensures that we obtain convenient weak encodings for hashing into curves
primitives (see [6]).

In the degree 3 examples given below, as in the higher genus family given
in Section 4.2, we always will be able to deduce from the encoding formulae
(sometimes after some resultant computations), a polynomial relation Pa(Y, t)
between any Y of a point of the image and its preimages. Then the number of
possible preimages is at most the t-degree of Pa(Y, t). Factorizing Pa(Y, t) over
Fq gives then precisely the number of preimages. We detail this process for the
genus 1 application of our method in Section 3.1 and sketch how to obtain such
a polynomial in other sections.

Hyperelliptic curve cryptography relies on hashing into the Jacobian of a
curve. Section 4.3 presents two different ways for accomplishing this task, which
rely on encoding into the set of rational points of the curve.

We also need to know in advance which values of Fq cannot be encoded using
such functions, in order to deterministically handle such cases. In the genus
1 as in other sections of our paper, this subset is always quite small (never
more than several hundred elements) compared to cryptographic sizes, and only
depends on the once and for all fixed curve parameters, therefore it can be
taken into account and handled appropriately when setting up the cryptosystem.
Furthermore, cryptographic encodings of [6] make a heavy use of hash functions
onto the finite field before encoding on the curve; the output of the hash function
can then be encoded with overwhelming probability.

3 Degree 3 Polynomials

In this section, we consider degree 3 polynomials. After easy changes of variables,
any cubic can be written in its “depressed form” X3 + 3AX + 2B, one root of
which is

χA,B = 3
√
−B +

√
A3 +B2 − A

3
√
−B +

√
A3 +B2

.
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In order to make use of this root while avoiding square roots, aiming at (non-
rationally) parameterizing curves of positive genus, we first restrict to finite fields
Fq with q odd and q ≡ 2 mod 3, so that computing cubic roots can be done
thanks to a deterministic exponentiation to the e-th power, e = 1/3 mod q − 1.
We then need to consider rational functions A and B in Y such that the curve
A(Y )3 +B(Y )2 − Z2 can be parameterized too.

For non-zero A, let A(Y ) = T (Y ) for some T and B(Y ) = T (Y )S(Y ) for some
S, this problem is then the same as parameterizing the curve

T (Y ) + S2(Y ) = Z2. (3.1)

This can be done with rational formulae when this curve is of genus 0, or with
non-rational Icart’s formulae when this curve is of genus 1. In the case of ir-
reducible plane curves, this means that T and S are of low degree. Instead of
parameterizing an auxiliary curve, we could have directly chosen T and S such
that T (Y ) + S(Y )2 = Z(Y )2 for some rational function Z. With comparable
degrees for T and S as in the rest of the section, we obtain only genus 0 curves.
Thus we have to greatly increase the degree of S and T in order to get higher
genus curves. Those curves then have high degree but small genus: they have
many singularities.

So, we finally consider in the following degree 3 equations of the form

X3 + 3T (Y )X + 2S(Y )T (Y ) = 0 . (3.2)

We could have considered the case A = 0 too, that is polynomials of the form
fB = X3 + 2B. Our experiments in genus 1 and genus 2 yield curves that are
isomorphic to hyperelliptic curves of any genus constructed from De Moivre’s
polynomials given in Section 4.2. We thus do not study this case further.

3.1 Genus 1 Curves

Parameterization. We made a systematic study of Curves (3.2) of (generic)
genus 1 as a function of the degree of the numerators and the denominators of the
rational function S(Y ) and T (Y ). Results are in Tab. 1, where we put altogether
columns of compatible degrees. Typically, the first column (S a polynomial of
degree at most 2 and T a constant) is a subcase of the second column (S of
degree at most 3 and T a constant).

The only case of interest is when S(Y ) is a polynomial of degree at most 1
and T (Y ) is a polynomial of degree at most 2. When q ≡ 2 mod 3, these elliptic
curves all have a Fq-rational 3-torsion point, coming from X = 0.

Elliptic curves with a Fq-rational 3-torsion point are known to have very fast
addition formulae when given in “generalized” or “twisted” Hessian forms [9, 2].
Since q ≡ 2 mod 3, we even restrict in the following to classical Hessian elliptic
curves.

Let us start from S(Y ) = 3 (Y + a)/2, T (Y ) = −Y/3 , that is curves of the
type

C0,a : Y 2 +XY + aY = X3 , a �= 0, 1/27 . (3.3)
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Table 1. Degrees of S(Y ) and T (Y ) for genus 1 plane curves given by Eq. (3.2)

Degrees

S(Y ) Num. 2 3 2 0 1 0 1 0 0 0 0
Den. 0 0 0 1 0 0 0 1 0 1 0

T (Y ) Num. 0 0 1 1 1 2 2 0 0 0 0
Den. 0 0 0 0 0 0 0 1 2 2 3

Genus of Eq. (3.1) 1 2 1 1 0 0 0 1 1 1 2

Then, the conic S2(Y ) +T (Y ) = 9/4 Y 2 + (9/2 a− 1/3)Y + 9/4 a2 = Z2 can be
classically parameterized “by line” as

Y = 12 t2 − 27 a2

36 t− 4 + 54 a
, Z = 36 t2 + (−8 + 108 a) t+ 81 a2

72 t− 8 + 108 a
,

so that X = Δ/6 + 2Y/Δ where Δ = 3
√

36Y (3 Y + 3 a+ 2Z).
Besides, Curve (3.3) is birationally equivalent to the Hessian model

Ed : x3 + y3 + 1 = 3 dxy, d �= 1, (3.4)

with a = (d2 + d+ 1)/3 (d+ 2)3 and

x= 3 (d+ 2)2 (Y (d+ 2) +X)
3 (d+ 2)2X + d2 + d+ 1

, y=−d
2 + d+ 1 + 3 (d+ 1) (d+ 2)2X + 3 (d+ 2)3 Y

3 (d+ 2)2X + d2 + d+ 1
.

(3.5)

The only remaining case is d = −2, that is the Hessian curve E−2 (the
quadratic twist of the curve E0, both have their j-invariant equal to 0). This
curve is for instance isomorphic to a curve of the type (3.2) with S = (1−7 Y )/4
and T = −26 (3 Y 2 + 1)/27. We might use this to parameterize E−2, but it is
much simpler to start from the curve Y 2 + Y = X3, which can be much more
easily parameterized with Y = t, X = 3

√
t2 + t. This curve is isomorphic to E−2

with x = (X + 1)/(X + Y ), y = (−Y +X − 1)/(X + Y ).
We summarize these calculations in Algorithm 1.
In addition, we have proved what follows.

Theorem 1. Let Fq be the finite field with q elements. Suppose q odd and q ≡ 2
mod 3. Let Ed/Fq be the elliptic curve defined by Eq. (3.4).

Then Algorithm 1 computes a deterministic encoding ed to Ed, from F∗q if

d = −2 and from Fq \
{

(2 d+1)(d2+d+7)
18 (d+2)3

}
otherwise, in time O(log2+o(1) q).

Remark 4. This encoding is not defined on all of Fq, however we can map the
missing value to the point at infinity on the curve.
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Algorithm 1: HessianEncode
input : A Hessian elliptic curve

Ed/Fq : x3 + y3 + 1 = 3 dxy, d �= 1, and t ∈ Fq.
output: A point (xt : yt : 1) on Ed.
if d = −2 then /* t �= 0 */
Y := t; X := (t+ t2)1/3 mod q−1;
xt := (X + 1)/(X + Y ); yt := (−Y +X − 1)/(X + Y );
return (xt : yt : 1)

a := d
2 + d+ 1

3 (d+ 2)3 ; /* t �= (2 d+ 1)(d2 + d+ 7)
18 (d+ 2)3 */

if t = ±3a/2 then
Y := 0; X := 0;

else /* Y �= 0 */

Y := 12 t2 − 27 a2

36 t+ 54 a− 4
; Δ := (36 Y (2 t+ 3 a))1/3 mod q−1;

X := Δ/6 + 2Y/Δ;

xt := 3 (d+ 2)2 (Y (d+ 2) +X)
3 (d+ 2)2X + d2 + d+ 1

;

yt := −3 (d+ 1) (d+ 2)2X + 3 (d+ 2)3 Y + d2 + d+ 1
3 (d+ 2)2X + d2 + d+ 1

;

return (xt : yt : 1)

Fig. 1. Encoding on Hessian elliptic curves

Number of curves. A way quantifying the number of curves defined by Eq. (3.4)
is to compute their j-invariant. Here, we obtain

jEd = 27 d3
(d+ 2)3 (

d2 − 2 d+ 4
)3

(d− 1)3 (d2 + d+ 1)3 . (3.6)

When q ≡ 2 mod 3, there are exactly �q/2	 distinct such invariants. Addition-
ally, one can show that there exists q−1 distinct Fq-isomorphic classes of Hessian
elliptic curves (see [9]).

Cardinality of the image. It is obvious to see that | Im e−2| = q − 1, simply
because Y = t �= 0. Now, determining | Im ed| for d �= 1,−2 needs some more
work, but can still be evaluated exactly.

Theorem 2. Let d �= 1,−2, then | Im ed| = (q + 1)/2 if (d − 1)/(d + 2) is a
quadratic residue in Fq and | Im ed| = (q − 1)/2 otherwise.

Proof. Let (x : y : 1) be a point on Ed, then there exists a unique point (X : Y :
1) on C0,a sent by Isomorphism (3.5) to (x : y : 1).

Viewed as a polynomial in t, the equation 12 t2− 36 Y t− 54 Y a− 27 a2 + 4Y
has 0 or 2 solutions except when 27 Y 2 + (−4 + 54 a)Y + 27 a2 = 0. The latter
has no root in Y if 1− 27 a = (d− 1)3

/(d+ 2)3 is a quadratic non-residue, and
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two distinct roots denoted Y0 and Y1 otherwise (if a = 1/27, the curve C0,a
degenerates into a genus 0 curve).

Let us summarize when (d− 1) / (d+ 2) is a quadratic residue in Fq.

– (1 element) If t ∈
{

(2 d+1)(d2+d+7)
18 (d+2)3

}
, then t is not encodable by ed;

– (2 elements) If t ∈ {± d2+d+1
2 (d+2)3 }, then ed(t) = (0 : −1 : 1);

– (2 elements) If ti is a (double) root of 12 t2− (36 t− 4 + 54 a)Yi−27 a2 with
i = 0, 1, we obtain two distinct points ed(ti) = (xti : yti : 1);

– (q − 5 elements) Else, for each remaining t, there exists exactly one other t′
such that ed(t) = ed(t′) = (xt : yt : 1).

We thus obtain (q − 5)/2 + 2 + 1 = (q + 1)/2 distinct rational points on the
curve. Similarly if (d− 1) / (d+ 2) is a quadratic non-residue in Fq, we obtain
(q − 1)/2 distinct rational points on Ed. �

Related work. Compared to Icart’s formulae [13], this encoding has two draw-
backs of limited practical impact:

– it does not work for any elliptic curves, but only for Hessian curves;
– the subset of the curve which can be parameterized is slightly smaller than

in Icart’s case: we get 
 q/2 points against approximately 5/8#E ± λ√q.
Nonetheless, it has three major practical advantages:

– recovering the parameter t from a given point (x : y : 1) is much easier: we
only have to find the roots of a degree 2 equation instead of a degree 4 one;

– the parameter t only depends on y: we can save half of the bandwidth of a
protocol by sending only y and not the whole point (x : y : 1);

– Y is computable using only simple (rational) finite field operations: no expo-
nentiation is required, but it carries the whole information on the encoded
point. It is thus preferable for encoding purposes to work on the C0,a model
rather than on the Hessian model1.

3.2 Genus 2 Curves

Parameterizations. In the same spirit as in Section 3.1, we made a systematic
study of Curves (3.2) of (generic) genus 2 as a function of the degree of the nu-
merators and the denominators of the rational function S(Y ) and T (Y ). Results
are in Tab. 2.

We can see that there are three cases of interest:

– S(Y ) and T (Y ) be both a rational function of degree 1 ;
– S(Y ) be a rational function of degree 2 and T (Y ) be a constant ;
– S(Y ) be a constant and T (Y ) be a rational function of degree 2.

1 For example, we could imagine that a limited power device computes the encoded
y and sends it to an other device specialized in curve operations, which in turn
computes the associated x and realizes the group operations.
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Table 2. Degrees of S(Y ) and T (Y ) for genus 2 plane curves given by Eq. (3.2)

Degrees

S(Y ) Num. 2 0 1 2 2 2 1 1 0 1 1 1 1 2 0 0 0
Den. 1 2 2 2 0 1 1 0 1 1 1 0 0 0 0 0 0

T (Y ) Num. 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 2 2
Den. 0 0 0 0 1 1 1 1 1 0 1 2 2 2 2 1 2

Genus of Eq. (3.1) 1 1 1 1 2 2 1 1 1 1 1 2 2 3 1 1 1

We now study the two first cases. We omit the third one because it turns out
that it yields curves already obtained in the second case.

S(Y ) and T (Y ) rational functions of degree 1. Let S(Y ) = (αY + β)/
(γY + δ) and T (Y ) = (εY + ϕ)/(μY + ν), then Curve (3.2) is birationally equiv-
alent to curves of the form y2/d2 = (x3 + 3 ax+ 2 c)2 + 8 bx3 where

a = δε− γϕ
δμ− γν , b = (αδ − γβ)(μϕ− εν)

(δμ− γν)2 , c = βε− αϕ
δμ− γν and d = (δμ− γν) .

Many of theses curves are isomorphic to each other and, without any loss of
generality, we can set c = 1 and d = 1. We thus finally restrict to S(Y ) =
−Y, T (Y )=(a2Y + a)/(aY + b+ 1) , so that, when 4 a6b3−b3 (b2 + 20 b− 8

)
a3+

4 b3 (b+ 1)3 �= 0, Curve (3.2) is birationally equivalent to the Weierstrass model
of a genus 2 curve,

H1,a,b : y2 = (x3 + 3 ax+ 2)2 + 8 bx3 , (3.7)

with x = X and y = −4 aY +X3 + 3 aX − 2.

Besides, Curve

S2(Y ) + T (Y ) = Y 2 + (a2 Y + a)/(aY + 1 + b) = Z2 (3.8)

is birationally equivalent to the Weierstrass elliptic curve

V 2 = U3 + (−a6 + 2 (b+ 1)(2 b− 1)a3 − (b + 1)4) U
3

+ 1
27

(2 a9 + 3 (2− 2 b+ 5 b2)a6 − 6 (2 b− 1)(b+ 1)3a3 + 2 (b+ 1)6) . (3.9)

The latter can now be parameterized with Icart’s method. This yields

U = 1
6

3

√
2δ
t2

+ t
2

3
, V = 1

6
3√2δt+ t

3

6
+ 1

6t
(−a6 + 2 (b+ 1)(2 b− 1)a3 − (b+ 1)4)

with

δ=−t8+(−12 (b+1)(2 b−1)a3+6 a6+6 (b+1)4)t4+(12 (2 b−5 b2−2)a6−8 (b+1)6

− 8 a9 + 24 (2 b− 1)(b+ 1)3a3)t2 + 3 (a6 − 2 (b+ 1)(2 b− 1)a3 + (b+ 1)4)2
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Algorithm 2: Genus2TypeAEncode
input : A curve H1,a,b defined by Eq. (3.7) on Fq , an element t ∈ Fq \ S1
output: A point (xt : yt : 1) on H1,a,b

δ := −t8 + (−12 (b+ 1)(2 b− 1)a3 + 6 a6 + 6 (b + 1)4)t4 + (12 (2 b− 5 b2 − 2)a6 − 8 (b+ 1)6

−8 a9 + 24 (2 b− 1)(b + 1)3a3)t2 + 3 (a6 − 2 (b+ 1)(2 b − 1)a3 + (b + 1)4)2;
U := ((2δ/t2)1/3 mod q−1 + 2t2)/6;
V := (2δt)1/3 mod q−1/6 + t3/6 + (−a6 + 2 (b+ 1)(2 b− 1)a3 − (b + 1)4)/6t;
W := −3Ua+ a((b+ 1)2 + a3); Y := (3 (b+ 1)U + (2 b− 1)a3 − (b+ 1)3)/W ; Z := 3V/W ;
T := (a2Y + a)/(aY + b+ 1); Δ := (T (Z + Y ))1/3 mod q−1;
xt := Δ− T/Δ; yt := −4 aY +X3 + 3 aX − 2;
return (xt : yt : 1)

Fig. 2. Encoding on genus 2 curves (of the type A)

Now, back by the birational change of variables between Curve (3.9) and Curve
(3.8), we get Y and Z from U and V (cf. Algorithm 2 for precise formulae). Let
now Δ = 3

√
T (Y )(Z − S(Y )) , then X = Δ− T (Y )/Δ.

So, we obtain the following theorem.

Theorem 3. Let Fq be the finite field with q elements. Suppose q odd and q ≡ 2
mod 3. Let H1,a,b/Fq be the hyperelliptic curve of genus 2 defined by Eq. (3.7).

Then, Algorithm 2 computes a deterministic encoding e1,a,b : F∗q \S1 → H1,a,b,
where S1 is a subset of Fq of size at most 35, in time O(log2+o(1) q).

Proof. The previous formulae define a deterministic encoding provided that t,
W , aY + b+ 1 and Δ are not 0.

The condition W = 0 yields a polynomial in t of degree 8, we thus have at
most 8 values for which W = 0. Similarly, the condition aY + b+ 1 = 0 yields
at most 8 additional values for which W = 0.

Now Δ = 0 if and only if T = 0 or Z = −Y . The condition T = 0 yields 8
additional values. Similarly, the condition Z + Y = 0 yields a polynomial in t of
degree 10, we thus have in this case at most 18 values for which Δ = 0.

The total number of field elements which cannot be encoded finally amounts
to at most 35. �
Cardinality of the image. Let (X,Y ) be a rational point on a C1,a,b,c curve, let
t be a possible preimage of (X,Y ) by our encoding e1,a,b. Then there exists a
polynomial relation in Y and t of degree at most 8 in t (cf. Algorithm 2). Hence
(X,Y ) has at most 8 preimages by e1,a,b. Therefore, | Im e1,a,b| � (q − 35)/8.

Number of curves. Igusa invariants of these curves are equal to

J2 = 26 3 (−9a3 + 4 b2 + 4 b− 9) ,
J4 = 210 3 (−9 b(4 b− 15)a3 + 4 b(b+ 1)(2 b2 + 2 b− 27)) ,
J6 = 214 (729 a6b2 − 216 b2

(
2 b2 + 3 b+ 21

)
a3 + 16 b2

(
4 b2 + 4 b+ 81

)
(b+ 1)2) ,

J8 = 218 3 (−6561 a9b2 + 2916 b2
(
−7 + b2 + 13 b

)
a6

−144 b2
(
4 b4 + 63 b3 + 450 b2 − 149 b− 810

)
a3

+64 b2
(
b4 + 2 b3 + 154 b2 + 153 b− 729

)
(b+ 1)2) ,

J10 = 228 36 (4 a6b3 − b3
(
b2 + 20 b− 8

)
a3 + 4 b3 (b+ 1)3) .
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The geometric locus of these invariants is a surface of dimension 2 given by a
homogeneous equation of degree 90 (which is far too large to be written here).
Consequently, Eq. (3.7) defines O(q2) distinct curves over Fq.

S(Y ) be a rational function of degree 2. Let now S(Y ) = (αY 2 + βY + γ)
/ (δY 2 + εY + ϕ) and T (Y ) = κ, then Curve (3.2) is birationally equivalent to
curves of the form y2/λ = (x3 + 3μx+ 2 a)2 + 4 b where

λ = ε2 − 4ϕδ , μ = κ , a =
κ

λ
(εβ − 2 δγ − 2ϕα) and b =

κ2

λ
(β2 − 4αγ)− a2 .

Many of theses curves are isomorphic to each other and, without any loss of
generality, we can set λ and μ to be either any quadratic residues (for instance
λ, μ = 1) or any non-quadratic residues (for instance λ, μ = −3 because q ≡
2 mod 3).

We finally arrive to

S(Y ) = λ(a − u)Y
2 − 4 vY − 4 (a+ u)
μ(λY 2 − 4)

and T (Y ) = μ ,

where u = μ3/2w − w/2− a for some w ∈ F∗q . Then, when b3λ10(μ6 + 2μ3a2 −
2 bμ3 + a4 + 2 ba2 + b2) �= 0, Curve (3.2) is birationally equivalent to the Weier-
strass model of a genus 2 curve,

H2,λ,μ,a,v,w : y2/λ = (x3 + 3μx+ 2 a)2 + 4 b , (3.10)

where b = v2/λ− u2 for some v in Fq, x = X and y = λ (X3/2 + 3μX/2 + a−
u)Y − 2 v.

We may remark that computing v and w from b is the same as computing a
point (v : w : 1) on the elliptic curve v2/λ−(μ3/2w−w/2−a)2−b = 0. This can
be done in deterministic time from Icart’s formulae when one can exhibit a Fq-
rational bilinear change of variable between this curve and a cubic Weierstrass
model, typically when λ = 1 (but no more when λ = −3).

Besides, let z = w/2 + r3/2w and thus (u+ a)2 + r3 = z2, then

μ2(λY 2 − 4)2(S(Y )2 + T (Y )) = −λ2(4 ua− z2)Y 4 − 8λv(a− u)Y 3

− 8λ(4μ3 − 3 z2 − 2 b+ 6 ua+ 4 a2)Y 2 + 32 v(u+ a)Y + 16 z2 = Z2 (3.11)

is birationally equivalent to the Weierstrass elliptic curve

V 2 = U3 + 28λ2(−μ6 + (b− 2 a2)μ3 − (a2 + b)2)U/3+
212λ3(2μ9 + (6 a2 − 3 b)μ6 − 3 (a2 + b)(b− 2 a2)μ3 + 2 (a2 + b)3)/33 . (3.12)

The latter can now be parameterized with Icart’s method. This yields

U =
1
6

3

√
2δ
t2

+
t2

3
, V =

1
6

3√2δt+
t3

6
+ 128 (−μ6 + (b− 2 a2)μ3 − (b+ a2)2)

λ2

3t



290 J.-G. Kammerer, R. Lercier, and G. Renault

with

δ = −t8 + 29 3 (μ6 + (−b+ 2 a2)μ3 + (a2 + b)2)λ2t4+
214(−2μ9 − (6 a2 − 3 b)μ6 + 3 (a2 + b)(b − 2 a2)μ3 − 2 (a2 + b)3)λ3t2+

216 3(μ12+(−2 b+4 a2)μ9+(3 b2+6 a4)μ6+2 (a2+b)2(−b+2 a2)μ3+(a2+b)4)λ4 .
(3.13)

Again, back by a birational change of variables between Curves (3.12) and (3.11),
we get Y and Z from U and V (cf. Algorithm 3 for precise formulae). Let now
Δ = 3
√
T (Y ) (Z/μ(λY 2 − 4)− S(Y )) , then X = Δ− T (Y )/Δ .

Algorithm 3: Genus2TypeBEncode
input : A curve H2,λ,μ,a,v,w defined by Eq. (3.10) on Fq , an element t ∈ Fq \ S2.
output: A point (xt : yt : 1) on H2,λ,μ,a,v,w

u := −(2 aw + w2 − r3)/2w; b := v2/l− u2; z := (w2 + r3)/2w;
δ := −t8 + 29 3 (μ6 + (−b + 2 a2)μ3 + (a2 + b)2)λ2t4+

214(−2 μ9 − (6 a2 − 3 b)μ6 + 3 (a2 + b)(b − 2 a2)μ3 − 2 (a2 + b)3)λ3t2+
216 3 (μ12 + (−2 b + 4 a2)μ9 + (3 b2 + 6 a4)μ6 + 2 (a2 + b)2(−b + 2 a2)μ3 + (a2 + b)4)λ4;

U := ((2 δ/t2)1/3 mod q−1 + 2t2)/6;
V := (2δt)1/3 mod q−1/6 + t3/6 + 128 (−μ6 + (b − 2 a2)μ3 − (b + a2)2)λ2/3t;
W := −9U2 − 48λ(−3 z2 − 2 b + 6 ua + 4 a2 + 4μ3)U + 256 (−4 μ6 + (6 z2 + a2 − 12 ua + 4 b)μ3+

(b + a2)(5 a2 + 6ua − b − 3 z2))λ2;
Y := (−288 v(u + a)U − 72 zV + 1536 λv(bu + a3 − 2μ3u + ab + aμ3 + ua2))/W ;
Z := −(−324 zU4 + (6912 λμ3z + 1728 λz(−3 z2 − 2 b + 6ua + 4 a2))U3 − 2592 v(u + a)U2V

+(−27648 λ2z(b + a2)(2 a2 +6 ua− 4 b − 3 z2)+193536 λ2zμ6−27648 λ2z(−5 a2 − 12ua + 6 z2 + 7 b)μ3)U2

+(27648 λv(−2 u + a)μ3 + 27648 λv(b+a2)(u + a))UV +(49152 λ3z(36 a3u−18 a2z2 + 12 a4 + 9 z2b + 30 b2

−12 a2b−18 aub)μ3 + 49152 λ3z(−6 b + 18 ua + 12 a2 − 9 z2)μ6 + 49152 λ3z(b+ a2)2(4 a2 + 18 ua
−14 b − 9 z2) + 196608 λ3μ9z)U + (−73728 vλ2(b + a2)2(u + a) − 73728 vλ2(4 u− 8 a)μ6 − 73728 vλ2

(−4 bu + 9 z2a− 7 a3 − 13 ua2 + 2 ab)μ3)V − 7340032 λ4μ12z − 262144 λ4z(60 ua− 56 b+ 85 a2 − 30 z2)μ9

−262144 λ4z(b+ a2)(31 a4 + 72 a3u − 10 a2b− 36 a2z2 + 18 aub + 13 b2 − 9 z2b)μ3 − 262144 λ4z(b+ a2)3

(a2 + 6 ua − 5 b − 3 z2) − 262144 λ4z(15 b2 + 87 a4 − 63 a2z2 +45 z2b−90 aub − 33 a2b + 126 a3u)μ6)/W2;

S := (−u + a)Y 2λ − 4 vY − 4 a − 4u; Δ := 3
√

(Z − S)/(λY 2 − 4);

xt := Δ− μ/Δ; yt := λ (X3/2 + 3μX/2 + a − u) Y − 2 v;
return (xt : yt : 1)

Fig. 3. Encoding on genus 2 curves (of the type B)

So, we obtain the following theorem.

Theorem 4. Let Fq be the finite field with q elements. Suppose q odd and q ≡
2 mod 3. Let H2,λ,μ,a,v,w/Fq be the hyperelliptic curve of genus 2 defined by
Eq. (3.10).

Then, Algorithm 3 computes a deterministic encoding e2,λ,μ,a,v,w : F∗q \ S2 →
H2,λ,μ,a,v,w, where S2 is a subset of Fq of size at most 233, in time O(log2+o(1) q).

Proof. The previous formulae defines a deterministic encoding provided that t,
W , λY 2 − 4 and Z − S are not 0.

The condition W = 0 yields a polynomial in U of degree 2, we thus have at
most 2 values for U for which W = 0. Each value of U then yields a polynomial
in t, derived from δ, of degree 8. We thus have at most 16 values for t to avoid
in this case.
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The condition λY 2 − 4 = 0 similarly yields 2 values for Y . Each such value
yields in return a polynomial of degree 2 in U , and degree 1 in V , which can be
seen as a curve in t and τ = 3

√
2 t δ of degree at most 6. Besides τ3 = 2 t δ is a

curve of degree at most 9. Bezout’s theorem yields thus a maximal number of
2× 6× 9 = 108 intersection points, or equivalently values for t, to avoid in this
case.

Finally, the condition Z = S can be seen as a curve in t and τ of degree 12.
Thus, this yields a maximal number of 12× 9 = 108 values too.

So, the total number of field elements which cannot be encoded finally amounts
to at most 1 + 16 + 2× 108 = 233. �

Cardinality of the image. Let (X,Y ) be a rational point on H2,λ,μ,a,v,w and t
a preimage by e2,λ,μ,a,v,w. Then we have seen in the proof of Theorem 4 that t
and τ = 3

√
2 t δ are defined as intersection points of two curves, one of degree 7

parameterized by Y and the other one of degree 9 from the definition of δ. In
full generality, this might yield for some curves and some of their points a total
number of at most 54 t’s. Therefore, | Im e1,a,b| � (q − 233)/63.

Number of curves. Igusa invariants of these curves are equal to

J2 = −26 3λ2(9 μ3 + 9 a2 + 10 b) ,
J4 = 29 3 bλ4(297 μ3 + 54 a2 + 55 b) ,
J6 = 214 b2λ6(−6480 μ3 + 81 a2 + 80 b) ,
J8 = −216 3 b2λ8(31347 μ6 − 134136 μ3a2 − 158310 bμ3 + 11664 a4 + 23940 ba2 + 12275 b2) ,
J10 = −224 36 b3λ10(μ6 + 2 μ3a2 − 2 bμ3 + a4 + 2 ba2 + b2) .

Here, the geometric locus of these invariants is a surface of dimension 2 given
by a homogeneous equation of degree 30,

11852352 J2
5
J10

2 + 196992 J2
5
J4 J6 J10 − 362998800 J2

3
J4 J10

2 + 64 J2
6
J6

3 − 636672 J2
4
J6

2
J10

− 895349625 J2
2
J6 J10

2 − 64097340625 J10
3 − 373248 J2

4
J4

3
J10 − 4466016 J2

3
J4

2
J6 J10

+ 2903657625 J2 J4
2
J10

2 − 3984 J2
4
J4 J6

3 + 606810 J2
2
J4 J6

2
J10 + 3383973750 J4 J6 J10

2 + 1647 J2
3
J6

4

+ 49583475 J2 J6
3
J10 + 11290752 J2

2
J4

4
J10 + 38072430 J2 J4

3
J6 J10 + 76593 J2

2
J4

2
J6

3

− 115457700 J4
2
J6

2
J10 + 20196 J2 J4 J6

4 − 530604 J6
5 − 85386312 J4

5
J10 − 468512 J4

3
J6

3
.

This shows that Eq. (3.10) defines O(q2) distinct curves over Fq.

4 Hyperelliptic Curves of Any Genus

In this section, we present two families of parametric polynomials which provide
deterministic parameterizable hyperelliptic curves of genus g � 2.

4.1 Quasiquadratic Polynomials

Curves of the form y2 = f(xd) where f is a family of solvable polynomials what-
ever is its constant coefficient may yield parameterizable hyperelliptic curves.
Typically, we may consider polynomials f of degree 2, 3 or 4 or some solvable
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families of higher degree polynomials. Here, we restrict ourselves to quadratic
polynomials since it yields non trivial hyperelliptic curves for any genus.

We define quasiquadratic polynomials as follows.

Definition 1 (Quasiquadratic polynomials). Let K be a field and d be an
integer coprime with char K. The family of quasiquadratic polynomials qa,b(x) ∈
K[x] of degree 2d is defined for a, b ∈ K by qa,b(x) = x2d + axd + b .

Quasiquadratic polynomials define an easily parameterized family of hyperellip-
tic curves y2 = qa,b(x) (see Algorithm 4). When d does not divide q−1 and when
a �= 0, these curves are isomorphic to curves y2 = q1,a(x) by the variable substitu-
tion x→ a1/dx. When a = 0, we are reduced to the unique well-known curve y2 =
x2d + b which can be parameterized by t �→

(
d
√

(−b+ t2)/(2t), (b + t2)/(2t)
)

.

Algorithm 4: QuasiQuadraticEncode
input : A curve Ha : x2d + xd + a = y2, and t ∈ Fq \ {1/2}.
output: A point (xt : yt : 1) on Ha
α := (t2 − a)/(1− 2 t);
xt := α1/d; yt := (−a+ t− t2)/(1− 2 t);
return (xt : yt : 1)

Fig. 4. Encoding on quasiquadratic curves

Theorem 5. Let Fq be the finite field with q elements. Suppose q odd and q �=
2, 3 and d coprime with q− 1. Let Ha/Fq : y2 = x2d + xd + a be an hyperelliptic
curve where a is such that the quasiquadratic polynomial q1,a has a non-zero
discriminant over Fq.

Algorithm 4 computes a deterministic encoding ea : F∗q \ {1/2} → Ha in time
O(log2+o(1) q).

Genus of Ha. Let q1,a ∈ Fq[X ] and Ha : q1,a(x) = y2, where q1,a has degree
2d. We have requested that the discriminant of q1,a is not 0. This implies that
q1,a has exactly 2d distinct roots. Thus Ha has genus d− 1 provided Ha has no
singularity except at the point at infinity.

It remains to study the points of the curve where both derivatives in x and y
are simultaneously 0. This implies y = 0. Thus the only singular points are the
common roots of q1,a(x) and its derivative. Since we request that the discriminant
of q1,a is not 0, there are no singular points.

For d = 3, Ha is the well known family of genus 2 curves with automorphism
group D12 [7]. The geometric locus of these curves is a one-dimensional variety
in the moduli space. Moreover, when x → xd is invertible over Fq, these curves
all have exactly q+1 Fq-points (but they have a much better distributed number
of Fq2 -points).
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The encoding. The parameterization is quite simple. Let Ha : x2d + xd + a = y2

be a quasiquadratic hyperelliptic curve. Setting x = α1/d reduces the parame-
terization of Ha to the parameterization of the conic α2 +α+ a− y2 = 0, which
easily gives α = (−a + t2)/(1− 2 t) and y = (−a+ t− t2)/(1− 2 t) for some
parameter t. We finally obtain Algorithm 4.

Cardinality of the image.

Theorem 6. Given a rational point (x : y : 1) on Ha : q1,a(x) = y2, the equation
ea(t) = (x : y : 1) has exactly 1 solution. Thus, | Im ea| = q − 1

Proof. Let α = xd, then t is a solution of the degree 1 equation y + α =
ta/(a− 2t). �

4.2 De Moivre’s Polynomials

This well-known family of degree 5 polynomials was first introduced by De
Moivre for the study of trigonometric equalities and its study from a Galoisian
point of view was done by Borger in [4]. This definition can be easily generalized
for any odd degree.

Definition 2 (De Moivre’s polynomials). Let K be a field and d be an odd
integer coprime with char K. The family of De Moivre’s polynomials pa,b(x) ∈
K[x] of degree d is defined for a, b ∈ K by

pa,b(x)=xd+daxd−2+2da2xd−4+3da3xd−6+· · ·+2da(d−1)/2−1x3+da(d−1)/2x+b .

Examples. De Moivre’s polynomials of degree 5 are x5 + 5ax3 + 5a2x + b. De
Moivre’s polynomials of degree 13 are x13 +13ax11 +26a2x9 +39a3x7 +39a4x5 +
26a5x3 + 13a6x+ b.

Borger proved in [4] that De Moivre’s polynomials of degree 5 are solvable by
radical, the same is true for De Moivre’s polynomials of any degree.

Lemma 1 (Resolution of De Moivre’s polynomials). Let pa,b be a De
Moivre’s polynomial of degree d, let θ0 and θ1 be the roots of qa,b(θ) = θ2+bθ−ad,
then the roots of pa,b are

(ωkθ1/d0 + ωd−1
k θ

1/d
1 )0�k<d

where (ωk)0�k<d are the d-th roots of unity.

Proof. As in the case of degree 5 (see [4]), we do the variable substitution x =
γ − a/γ, then γd is a root of the polynomial qa,b(θ). �
De Moivre’s polynomials also define a family of deterministically parameterized
hyperelliptic curves for any genus.
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Algorithm 5: DeMoivreEncode
input : A curve H : pa,b(x)− y2 = 0 and t ∈ F∗q \ S .
output: A point (xt : yt : 1) on H
if a = 0 then

return
(
(t2 − b)1/d mod q−1 : t : 1

)

δ := −(3ad + b2 + t4)/6t− 2 b3/27− adb/3− t6/27; A := δ1/3 mod q−1 + t2/3;
Y := tA− (3ad + b2 + t4)/(6t);
α := 3ad/(−3A+ b);
yt := −3Y /(−3A+ b); xt := α1/d mod q−1 + (−ad/α)1/d mod q−1;
return (xt : yt : 1)

Fig. 5. Encoding on De Moivre’s curves

Theorem 7. Let Fq be the finite field with q elements. Suppose q odd and q ≡ 2
mod 3 and d coprime with q − 1. Let Ha,b/Fq : y2 = pa,b(x) be the hyperellip-
tic curve where pa,b is a De Moivre polynomial defined over Fq with non-zero
discriminant.

Algorithm 5 computes a deterministic encoding ea,b : F∗q \ S → Ha,b, where S
is a subset of Fq of size at most 7, in time O(log2+o(1) q).

Conversely, given a point on H we study how many elements in Fq yield this
point.

Theorem 8. Given a point (x : y : 1) ∈ Ha,b(Fq), we can compute the solutions
s of the equation ea,b(s) = (x : y : 1) in time O(log2+o(1) q). There are at most
8 solutions to this equation.

We give below proofs of these two theorems.

Genus and dimension of Ha,b. As in Section 4.1, since we request the discrim-
inant of qa,b to be nonzero, there is no singularity except the point at infinity.
Thus the genus of Ha,b is (d− 1)/2.

The encoding. Thanks to Lemma 1, parameterizing rational points on Ha,b :
pa,b(x) = y2 amounts to finding roots of θ2 + (b − y2)θ − ad. Let them be
α, α′, then we have x = α1/d + α′1/d, αα′ = −ad and α + α′ = y2 − b. Thus
α2−ad = αy2−bα. This is a genus 1 curve with variable α, y which is birationally
equivalent to Y 2 = A3 + (−ad − 1

3b
2)A+ 2

27b
3 + 1

3a
db, with α = 3ad/(−3A+ b)

and y = −3Y /(−3A+ b).
This curve can be parameterized with Icart’s method. This yields A = 3

√
δ +

t2/3, Y = tA − (3ad + b2 + t4)/6t where δ = (−53ad + b2 + t4)/6t− 2 b3/27−
adb/3− t6/27 . We finally obtain Algorithm 5.

Restrictions. Previous necessary conditions on an encoding are also sufficient to
give an encoding for t ∈ Fq provided that every variable substitution is com-
putable.
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In order to compute A and Y using the encoding from [13], we need t �= 0.
Then computing y and α from A and Y we also request −3A + b �= 0, that is
δ �= (b/3− t2/3)3. This amounts to a degree 7 equation, thus at most 7 elements
of Fq are not encodable.

Complexity. Our encoding function uses one Icart’s encoding, of complexity
O(log2+o(1) q) operations in Fq, two exponentiations for computing d-th roots
and a constant number of field operations. The total amounts to O(log2+o(1) q)
running time.

Computation of e−1
a,b. Let (x : y : 1) be a point on Ha,b. The polynomial β2 +

xβ − d
√

(−ad) has at most two roots. Let β be one, and α = β5. Let then
A = 1−3(bα−3ad)/α and Y = −yad/α, we are reduced to finding the solutions
of an Icart’s encoding. It admits at most 4 solutions per α, thus there are at
most 8 solutions to the equation ea,b(t) = (x : y : 1).

Genus 2 case. In this case we are interested in the dimension of the family of
curves defined by De Moivre’s polynomials, H : y2 = x5 + 5ax3 + 5a2x+ b. We
have computed their Igusa invariants,

J2 = 700 a2 , J4 = 13750 a4 , J6 = −2500 a(3 a5 + 32 b2) ,
J8 = −15625 a3(3109 a5 + 896 b2) , J10 = 800000 (4 a5 + b2)2 ,

from which it is easy to derive numerous algebraic relations. This reduces the
set of curves from an expected q2 because of the two parameters a and b to a
set of cardinality O(q).

4.3 Encoding into the Jacobian of an Hyperelliptic Curve

Let H be a genus g hyperelliptic curve defined over a finite field Fq arising
from the families defined in the previous sections 3.2, 4.1 and 4.2. We provide
deterministic functions eH which construct rational points on H from elements
in Fq \ S, where S is a small subset of Fq which depends on the definition of H .
In this section, we present two straightforward strategies for encoding divisors
in JH(Fq) the Jacobian of H . This problem was also studied by Farashahi et al.
[10].

Recall that each class in JH(Fq) can be uniquely represented by a reduced
divisor. A divisor D is said to be reduced when it is a formal sum of points∑r
i=1 Pi − rP∞ with r � g, Pi �= −Pj for i �= j and this sum is invariant under

the action of the Galois group Gal(Fq/Fq).

Encoding 1-smooth reduced divisors. There is a particular subset, denoted by D1,
of reduced divisors which are called 1-smooth. These divisors are the ones with
only rational points in their support. From our encoding function eH , one easily
deduces a function providing elements in D1: in a first step, a set of r � g points
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(none of these points in this set is the opposite of another one) is produced then
a divisor is constructed from this set. This first step can be done determinis-
tically by computing g points with eH and eliminating possible collisions after
negation. When q is large enough, the proportion of D1 in JH(Fq) is ≈ 1/g!
moreover, since eH is not surjective, this function may be not surjective too. If
one wants to construct more general reduced divisors, another strategy has to be
used.

Extension of the base field and encoding. In the definition of the encoding eH ,
we assume specific conditions on the base field Fq so that some power functions
are deterministically bijective. If one wants to directly encode in the Jacobian
of an hyperelliptic curve H defined over Fq, one can change the conditions in
the following way. These specific conditions are now assumed for the extension
field Fqg (and thus no more on Fq). The function eH becomes an encoding e′H
from Fqg \ S′ (where the set S′ can be computed in the same manner as S) to
the set of Fqg -rational points of H . From this new function e′H one can compute
a set of k points in H(Fqg ) such that the sum of their degree over Fq is less
than g. By constructing the Fq-conjugates of these points and eliminating the
possible collision after negation, we deduce a reduced divisor of JH(Fq). This
second strategy is more general than the former but it does not assume the same
conditions on the field Fq.

Like the previous encodings, these two presented here are clearly “weak en-
codings” in the sense of [6].

5 Conclusion and Future Work

We have almost extensively studied families of genus 1 and 2 curves which admit
a deterministic algebraic encoding using the resolution of a degree 3 polynomial.
We come to a new encoding map for Hessian elliptic curves and we give, for the
first time to our knowledge, encoding maps for large families of genus 2 curves.
We have also sketched families of higher genus hyperelliptic curves whose deter-
ministic algebraic parameterization is based on solvable polynomials of higher
degree arising from Kümmer theory.

On-going work is being done to extend these families to finite fields of small
characteristic. A natural question is to generalize the method to solvable degree
5 polynomials too, in the hope to first find a deterministic algebraic parameter-
ization of every genus 2 curve, then of families of higher genus curves.
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Abstract. We present a new method for constructing simple ordinary

abelian surfaces with a small embedding degree. To a quartic CM field K,

we associate a quadric surface H ⊂ P3(Q) and use its parametrization to

determine Weil numbers in K corresponding in the sense of Honda-Tate

theory to such surfaces. In general, the resulting surfaces have parameter

ρ ≈ 8. However, if there exist rational lines on H , they can be used to

achieve ρ ≈ 4. We give examples of non-primitive quartic CM fields such

that H has rulings by rational lines. Furthermore, we show how our

method can be used to construct parametric families of pairing-friendly

surfaces.

1 Introduction

A fundamental problem in pairing-based cryptography is to construct abelian va-
rieties that are suitable for applications. Such varieties, commonly called pairing-
friendly, should contain a subgroup of a large prime order r with a reasonably
small embedding degree k, which allows one to efficiently compute a pairing,
and provides desired security level. Furthermore, to speed up arithmetic on an
abelian variety A over a finite field Fq, it is desirable that the bit size of r is
close to that of the group order |A(Fq)|. The ratio of these quantities is closely
approximated by the parameter ρ = glog q/log r, where g is the dimension of
A. Thus, the main challenge is constructing abelian varieties with a prescribed
embedding degree k and ρ-value as close to 1 as possible.

In the case of pairing-friendly elliptic curves (i.e., one-dimensional abelian va-
rieties) many successful constructions have been found (for an excellent survey
see [5]). Natural examples of higher-dimensional pairing-friendly abelian varieties
come from supersingular varieties, which for every dimension have bounded em-
bedding degrees (e.g., k ≤ 12 for supersingular abelian surfaces), and can provide
groups with ρ ≈ 1 (see [7,11]).

Freeman [3] and Freeman, Stevenhagen and Streng [6] set a mathematical
framework for constructing ordinary pairing-friendly abelian varieties. In brief,
� Research supported by the Polish Minister of Science as a project nr 0 R00 004307

in years 2009-2011.

M. Joye, A. Miyaji, and A. Otsuka (Eds.): Pairing 2010, LNCS 6487, pp. 298–311, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



A New Method for Constructing Pairing-Friendly Abelian Surfaces 299

given a CM field K, we have to find a Weil q-number in K corresponding in the
sense of Honda-Tate theory to a simple ordinary abelian variety over Fq with
embedding degree k. Then the complex multiplication (CM) method is used to
construct an algebraic curve (if it exists) whose Jacobian is isogenous to that
variety. However, due to the specificity of the CM method only suitably small
CM fields K are allowed.

Thus, the primary goal is to find methods for determining suitable Weil num-
bers. The first two such methods for constructing pairing-friendly surfaces and
arbitrary abelian varieties were given in [3] and [6], respectively. However, the
resulting varieties are not “optimal” in general (e.g., ρ ≈ 8 for abelian surfaces).
A standard approach to improve ρ-value is to use parametric families of abelian
varieties. A well-known method for constructing parametric families of elliptic
curves is due to Brezing-Weng [1], and its higher-dimensional analogue, based
on the method in [6], was given by Freeman [2]. Using parametric families one
can obtain abelian surfaces with ρ < 8, but generically ρ is still close to 8.
Recently, Freeman and Satoh [4] used the Weil restriction to adopt the elliptic
curve methods for constructing simple pairing-friendly surfaces, that are not ab-
solutely simple. In general, the resulting surfaces have ρ ≈ 4, but it is possible
to obtain substantially smaller ρ-values. For example, for k = 27 they found a
family with ρ ≈ 2.2, which improves the previous record due to Kawazoe and
Takahashi [9].

Let us note that methods for constructing p-rank 1 pairing-friendly abelian
surfaces, and a suitable variant of the CM method were developed by Hitt
O’Connor et al. [8].

In this note we present a new method for constructing simple ordinary abelian
surfaces with small embedding degrees, which makes use of some well-known
properties of quadric surfaces. Its outline is as follows. To any quartic CM field
K, we associate a quadric surface H ⊂ P3(Q) such that the algebraic integers
π ∈ OK with ππ ∈ Z correspond to integral points on the cone H̃ ⊂ Q4 over
H . To determine suitable Weil numbers in K, we use a parametrization of H
and proceed similarly as in the Cocks-Pinch method for elliptic curves (see [5,
Theorem 4.1]). Furthermore, this method can be extended to construct families
of abelian surfaces (Section 4).

Similarly as for the methods [3,6], the resulting surfaces usually have ρ ≈ 8,
but in special situations we can achieve ρ ≈ 4. This is the case if there exist
rational lines on the quadric H . Such lines seem to be very rare in general, but
for some CM fields there is abundance of them. For example, H has rulings by
rational lines for non-primitive CM fields K = Q

(√−a+ 2
√
d
)
, where a, d are

positive integers such that a2 − 4d is a square in Z (e.g., a = d+ 1).
In this paper, however, we restrict yourself only to giving parameters of abelian

surfaces, because the CM method is developed mainly for primitive CM fields.
Under certain assumptions, the recent method of Freeman and Satoh [4] can be
alternatively used to find curves whose Jacobian has complex multiplications in

the non-primitive CM field K = Q
(√

−(d+ 1) + 2
√
d
)

= Q
(
i,

√
d
)
, and we give
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an example of a curve whose Jacobian realizes parameters found by our method,
which was suggested by the referee.

2 Background

This section summarizes mathematical foundations for constructing pairing-
friendly abelian varieties. For more details we refer to the papers [3,5,6]. (For an
overview of the theory of abelian varieties see [10] and [16].)

Let A be a g-dimensional abelian variety over the finite field Fq, and πA be
its qth power Frobenius endomorphism. To A is associated the characteristic
polynomial PA ∈ Z[x], which is of the form

PA = x2g + a1x
2g−1 + · · · + ag−1x

g+1 + agxg + ag−1qx
g−1 + · · · + a1q

g−1x+ qg,

and satisfies PA(πA) = 0 and #A(Fq) = PA(1). Furthermore, A is ordinary if
and only if gcd(ag, q) = 1. (Let us recall that #A[p] = pν for some 0 ≤ ν ≤ g,
where p = char Fq and A[p] is the group of p-torsion points on A over an algebraic
closure Fq. If ν = g, then A is called ordinary.) By a theorem of Weil, all roots of
PA are Weil q-numbers (i.e., an algebraic integer π is called a Weil q-number, if
for every embedding ϕ : Q(π) → C we have |ϕ(π)| =

√
q). The main theorem of

Honda-Tate theory [14] precisely describes the correspondence between Weil q-
numbers and simple abelian varieties (i.e., A is simple if it has no proper nonzero
abelian subvarieties over Fq).

Theorem 1. The map that associates to a simple abelian variety over Fq its Frobe-
nius endomorphism gives a one-to-one correspondence between the Fq-isogeny
classes of simple abelian varieties over Fq and the Gal(Q/Q)-conjugacy classes
of Weil q-numbers.

Let End(A) be the ring of Fq-endomorphisms on A, and End0(A) denote the
endomorphism algebra End(A) ⊗ Q. The following theorem summarizes basic
properties of this algebra for simple abelian varieties (see Waterhouse and Milne
[16] and Waterhouse [15]).

Theorem 2. Let A be a simple abelian variety over Fq with the endomorphism
algebra D = End0(A), and let K = Q(πA) ⊂ D. Then

(1) D is a division algebra, whose center is the subfield K.
(2) PA = me

A for some e ∈ Z, where mA is the minimal polynomial of πA.
Furthermore, e[K : Q] = 2 dimA and [D : K] = e2.

(3) D contains a CM field of degree 2 dimA.
(4) A is ordinary of dimension g if and only if K is a CM field of degree 2g,

and πA + πA and q are relatively prime in OK .
(5) If A is ordinary, then D = K.

(Let us recall that a number field K is a CM field, if K is a totally imaginary
quadratic extension of a totally real field. A CM field has an automorphism
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(denoted by bar in the sequel), that commutes with every embedding K → C
and the complex conjugation.)

The above theorem implies that if A is simple and ordinary, then End0(A) is
a field, so PA = mA. It follows that

#A(Fq) = PA(1) = NK/Q(1 − πA).

2.1 Pairing-Friendly Abelian Varieties

Let us recall that the embedding degree k of an abelian variety A over Fq with
respect to its subgroup of prime order r, r � | q, is defined as the degree of the field
extension Fq ⊂ Fq(ζr), where ζr is an rth primitive root of unity. Equivalently,
k is the smallest integer l ≥ 1 such that r|(ql − 1), or in other words, k is the
multiplicative order of q (mod r). Furthermore, if r � | kq, then k is the unique
integer satisfying Φk(q) ≡ 0 (mod r), where Φk is the kth cyclotomic polynomial
(see [5, Proposition 2.4]).

From the above theory we easily obtain the following useful fact due to Free-
man [3] and Freeman, Stevenhagen and Streng [6].

Proposition 3. Let k ≥ 1 be an integer, and r be a prime such that k|(r − 1).
Let K be a CM field of degree 2g, and A be a simple abelian variety over Fq
corresponding to a Weil q-number π ∈ K. Suppose that r � | kq. Then r|#A(Fq),
A has embedding degree k with respect to r, and A is ordinary of dimension g if
and only if

(1) NK/Q(1 − π) ≡ 0 (mod r),
(2) Φk(ππ) ≡ 0 (mod r),
(3) K = Q(π), and π + π and q are relatively prime in OK .

3 Our Solution for Abelian Surfaces

In this section we give a method for finding Weil numbers in a quartic CM field,
that satisfy the conditions of Proposition 3.

Let K = Q
(√−a+ b

√
d
)

be a quartic CM field, where a, b, d are positive
integers such that d is not a square and −a+ b

√
d < 0. Given an integral basis

b1, b2, b3, b4 of OK (for explicit formulas on such bases see [13]), we will determine
the coordinates in this basis of Weil q-numbers π ∈ OK corresponding to ordinary
abelian surfaces with embedding degree k.

Let us consider the quadratic form on Z4 given by x 	→ π(x)π(x), where
π(x) =

∑4
i=1 xibi for x = (x1, x2, x3, x4) ∈ Z4. Clearly, we can write

π(x)π(x) = F1(x) + F2(x)
√
d, (1)

where F1, F2 ∈ Q[x, y, z, t] are homogeneous quadratic forms. Thus, π(x)π(x) ∈
Z if and only if x lies on the quadric F2 = 0. In order to determine points
corresponding to Weil numbers in question, we will use a parametrization of this
quadric, which can be obtained by the following well-known fact:
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Lemma 4. Let H ⊂ Pn(Q) be a nonsingular quadric hypersurface with a ratio-
nal point P . Then the projection from P to any hyperplane in Pn(Q) not contain-
ing P induces a birational isomorphism G = (G0, . . . , Gn) : Pn−1(Q) ��� H. Fur-
thermore, the components G0, . . . , Gn can be taken as relatively prime quadratic
forms in Z[X0, . . . , Xn−1].

Proof. For completeness we include the proof. Let F = 0 be an equation of H ,
where F ∈ Q[X0, . . . , Xn] is a homogeneous quadratic form, and Π ⊂ Pn(Q) be
a hyperplane such that P �∈ Π . After a linear change of variables, we may assume
that Π does not coincide with the hyperplane X0 = 0 and P = (a0 : · · · : an)
with a0 �= 0. Let H ′ and Π ′ be the affine subsets of H and Π in the affine
space X0 �= 0 (identified with Qn), and let P ′ = (b1, . . . , bn) with bi = ai/a0.
Let us take any affine parametrization ϕ = (ϕ1, . . . , ϕn) : Qn−1 −→ Π ′, and
consider the lines through P ′ and ϕ(a), a ∈ Qn−1, with the parametrization
xi(a, t) = bi+ t(ϕi(a)− bi), 1 ≤ i ≤ n, t ∈ Q. Substituting their parametrization
into the equation of H ′ yields F (1, x1(a, t), . . . , xn(a, t)) = t2g(a) + th(a) = 0,
where g, h ∈ Q[X1, . . . , Xn−1] are of degree 2 and 1, respectively. Since H is
nonsingular, it follows that for a generic a ∈ Qn−1 the line through P ′ and ϕ(a)
meets H ′ at a unique point other than P ′, which corresponds to t = −h(a)/g(a).
Therefore the map f = (f1, . . . , fn) : Qn−1 ��� H ′ with fi = bi − (ϕi − bi)h/g is
birational. Let us write fi = gi/g0, where gi ∈ Z[X1, . . . , Xn], i ≥ 0, are of degree
≤ 2 and the coefficients of all gi are relatively prime. Then G = (G0, . . . , Gn) :
Pn−1(Q) ��� H with Gi = X2

0gi(X1/X0, . . . , Xn/X0) is a desired map.

We apply the above fact to the quadric surface H := {F2 = 0} ⊂ P3(Q).
Since 1 ∈ OK , it can be written 1 =

∑
aibi with respect to the basis {bi}, so

P = (a1 : a2 : a3 : a4) ∈ H . To show that H is nonsingular, let us write the
form Q4 ) x 	→ π(x)π(x) ∈ Q(

√
d) with respect to the basis 1,

√
d,

√
u,

√
du of

K, where u = −a+ b
√
d. We have

π(x)π(x) =
(
x+ y

√
d+ z

√
u+ t

√
du
)(
x+ y

√
d− z√u− t√du)

=
(
x+ y

√
d
)2 − u(z + t

√
d
)2

=
(
x2 + dy2 + az2 + adt2 − 2bdzt

)
+
(
2xy + 2azt− bz2 − bdt2)√d.

Hence,

F2 = 2xy + 2azt− bz2 − bdt2 = 2xy − b((z − at/b)2 + (d− (a/b)2)t2
)
. (2)

Since d − (a/b)2 < 0, it follows that we can bring F2 by a linear change of
variables over R to the form x2 + y2 − z2 − t2, which is nonsingular.

Let G : P2(Q) ��� H be a parametrization as in the lemma. Obviously, G
induces the map (which we also denote by G)

G : Z3 −→ H̃ ∩ Z4,

where H̃ ⊂ Q4 is the cone overH . Since the components of G are relatively prime
forms in Z[x, y, z], we expect that in the image G(Z3) there exist sufficiently
many points corresponding to Weil numbers in OK .
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Let us turn now to our main goal. Let N ∈ Q[x, y, z, t] be defined by

N(x) = NK/Q(1 − π(x)) (3)

for x = (x1, x2, x3, x4) ∈ Z4 and π(x) =
∑
xibi. If x ∈ G(Z3) corresponds to

the Weil number of an abelian surface with embedding degree k with respect to
a prime r, then according to Proposition 3, x satisfies the system

N ◦G ≡ 0 (mod r), Φk ◦ F1 ◦G ≡ 0 (mod r). (4)

Therefore, to determine points in G(Z3) corresponding to abelian surfaces with
embedding degree k, we choose a prime r of a given bit size such that k|(r− 1),
and find some number of solutions of the above system over Fr. Then we check
whether for lifts x ∈ Z3 of these solutions, the value F1(G(x)) is prime. If this is
the case, then

∑
Gi(x)bi is a desired Weil number. To find some solutions over

Fr, we evaluate one of the variables at various points in Fr, and solve the system
in the remaining two variables. In details the method is as follows.

Algorithm 5.
Input: A quartic CM field K = Q

(√−a+ b
√
d
)
, an integral basis {bi} of OK ,

an embedding degree k, a prime r such that k|(r−1), and two integers n,m ≥ 0.
Output: Either the empty set, or a Weil q-number π ∈ K of a simple ordinary

abelian surface over Fq with embedding degree k with respect to r.

1. Compute the polynomials F1, F2, N ∈ Q[x, y, z, t] satisfying (1) and (3).
2. Apply the method from the proof of Lemma 4, to compute a map G =

(G1, . . . , G4) : Z3 → Z4 such that F2 ◦G = 0, where G1, . . . , G4 ∈ Z[x, y, z]
are relatively prime quadratic forms.

3. Repeat n-times the following procedure: choose a random c ∈ Fr, evaluate
one of the variables at c, say z, and compute f(x, y) = Φk(F1(G(x, y, c)))
and g(x, y) = N(G(x, y, c)) (mod r).

4. If the system f = g = 0 has finitely many solutions over an algebraic closure
Fr, then determine the set Z of all its solutions over Fr (see, e.g., Lemma 9
and Algorithm 10).

5. For each (a1, a2) ∈ Z, let x1, x2, x3 ∈ [0, r) be the lifts of a1, a2, c, respec-
tively. For i1, i2, i3 ∈ [0,m], let yj = xj + ijr, j = 1, 2, 3, and y = (y1, y2, y3).
Put π =

∑
Gi(y)bi and q = ππ = F1(G(y)). If q is prime, K = Q(π), and

π+π and q are relatively prime, then return π and terminate the algorithm.

Remark. The correctness of this algorithm follows from the above discussion and
Proposition 3. We expect that a generic solution of system (4) is approximately
of the same bit size as r, which implies that ρ ≈ 2 deg(F1 ◦G) = 8 in general.

3.1 Improving ρ-Value

In order to achieve ρ ≈ 4 using the above method we need an injective linear
map L : Z2 → Z4 ∩ H̃ . We require that L is defined on Z2 in order to find solu-
tions of the system like (4) with L in place of G. Clearly, such maps correspond
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to rational lines on the quadric H ⊂ P3(Q). Therefore, it would be of interest
to know when there exist rational lines on a quadric in P3(Q). Here we restrict
yourself to giving some examples of quartic CM fields for which the quadric H
contains many such lines.

Remark. Let us note that to look for rational lines on an algebraic surface
S ⊂ P3(Q) it may be convenient to use the Plücker coordinates of the lines
in P3(Q). Then the lines lying on S form an algebraic set in P5(Q) (see, e.g., [12,
p. 62]), and so one can search them by enumerating a part of coordinates and
solving a system with respect to the remaining variables.

Let us recall that a quadric S ⊂ P3(Q) has a ruling, if there exists a family of
pairwise disjoint rational lines on S, which cover S. For example, the quadric
x2 +y2 −z2− t2 = 0 (which in the affine set t �= 0 looks like a hyperboloid of one
sheet) has two rulings given by the equations x− z = (t− y)s, (x+ z)s = t+ y,
and x− t = (z − y)s, (x+ t)s = z + y, where s parametrizes lines in the ruling.
Thus, any quadric in P3(Q), which is projectively equivalent to the quadric
x2 + y2 − z2 − t2 = 0 also has rulings by rational lines.

Let us apply this fact to our quadric H . It follows from (2) that H is projec-
tively equivalent in P3(Q) to the quadric x2+y2−z2−t2 = 0, if it comes from the
CM field K = Q

(√−a+ b
√
d
)

such that b = 2 and (a/b)2 − d is a square in Q

(e.g., K = Q
(√−3 + 2

√
2
)
,Q
(√−4 + 2

√
3
)
,Q
(√−6 + 2

√
5
)
,Q
(√−5 + 2

√
6
)
,

etc.). Note, however, that CM fields of this form are not primitive, and so abelian
surfaces with complex multiplications in K may be not absolutely simple.

Remark. Let us note that pairing-friendly abelian surfaces with ρ ≤ 4 hav-

ing complex multiplications in the CM fields K = Q
(√

−(d+ 1) + 2
√
d
)

=

Q
(
i,

√
d
)

were considered from another point of view by Freeman and Satoh [4],
and in the particular case of d = 2 andK = Q(ζ8) by Kawazoe and Takahashi [9].
Under certain assumptions, their methods allow one to find, without using the
genus 2 CM method, a hyperelliptic curve whose Jacobian has given parameters.

Note that given a rational line E ⊂ H with a linear parametrization L : P1(Q) →
E whose components are relatively prime linear forms in Z[x, y], we should check
whether the form F1 ◦ L may take “many” prime values. Conjecturally, a poly-
nomial f ∈ Q[x] takes infinitely many prime values on integers if and only if
it is irreducible, has positive leading coefficient, f(x) ∈ Z for some x ∈ Z, and
gcd({f(x) : x, f(x) ∈ Z}) = 1 (see [5, Section 2.1]). If f satisfies these conditions,
we say that it represents primes. In the obvious way we can extend this definition
and conjecture on quadratic forms in Q[x, y]. Let us note that our form F1 ◦ L
is positive-definite and integer-valued, since F1(L(x)) = π(L(x))π(L(x)) ∈ Z
for x ∈ Z2. Thus F1 ◦ L represents primes, if it is irreducible in Q[x, y] and
gcd({F1(L(x)) : x ∈ Z2}) = 1. The following algorithm summarizes the above
discussion.
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Algorithm 6.
Input: A quartic CM field K = Q

(√−a+ b
√
d
)
, an integral basis {bi} of OK ,

an embedding degree k, a prime r such that k|(r − 1), and an integer m ≥ 0.
Furthermore, we are given a rational line E on the quadric {F2 = 0} ⊂ P3(Q),
where F2 is given by (1).

Output: Either the empty set, or a Weil q-number π ∈ K of a simple ordinary
abelian surface with embedding degree k with respect to r.
1. Compute the polynomials F1, N ∈ Q[x, y, z, t] satisfying (1) and (3).
2. Find a parametrization L = (L1, . . . , L4) : P1(Q) → E, where L1, . . . , L4 ∈

Z[x, y] are relatively prime linear forms, and consider L as a map Z2 → Z4.
3. If the form F1◦L represents primes, and the systemN◦L = Φk◦F1◦L = 0 has

finitely many solutions over Fr, then determine the set Z of all its solutions
in F2

r.
4. For each (a1, a2) ∈ Z, let x1, x2 ∈ [0, r) be the lifts of a1, a2, respectively.

For i1, i2 ∈ [0,m], let yj = xj + ijr, j = 1, 2, and let y = (y1, y2). Put
π =

∑
Li(y)bi and q = ππ = F1(L(y)). If q is prime, K = Q(π), and π + π

and q are relatively prime, then return π and terminate the algorithm.

Remark. Arguing analogously as for the previous algorithm, we expect that the
ρ-value is generically around 2 deg(F1 ◦ L) = 4.

Example 7. As an application of the above method, we find parameters of
abelian surfaces with ρ ≈ 4 for embedding degrees k = 13, 31, 43, which have
complex multiplications in the CM field K = Q

(√−3 + 2
√

2
)
. Here, we restrict

yourself only to giving parameters, because the CM method is developed mainly
for primitive fields. In some cases the recent method of Freeman and Satoh [4] can
be alternatively used to find curves whose Jacobian has complex multiplications

in the CM field K = Q
(√

−(d+ 1) + 2
√
d
)
.

For simplicity, we will look for Weil numbers in the suborder of OK with
the basis 1, u, v, uv, where u =

√
2 and v =

√
−3 + 2

√
2. We have F1 =

x2 + 2y2 + 3z2 − 8zt + 6t2, and F2 = 2xy − 2z2 + 6zt − 4t2. On the quadric
H = {F2 = 0} ⊂ P3(Q) we find the line with the parametrization L(x, y) =
(0, y,−x,−x). Then the form q(x, y) = F1(L(x, y)) = x2+2y2 represents primes.
For an embedding degree k, we choose a random prime r of a given bit size such
that k|(r − 1). Then using Algorithm 6, we look for coordinates x1, . . . , x4 ∈ Z
of Weil q-numbers π = x1 + x2u+ x3v + x4uv.

(1) k = 13, ρ ≈ 3.99,

r = 23405321049561401799446475832547771376750288802937 (165 bits)

x1 = 0,
x2 = 5179309762621573363923518967361040684119787041950,
x3 = x4 = −16077638912499459748949021310241744458789613610329,

π = (−16077638912499459748949021310241744458789613610329u − 16077638912499459748949021\
310241744458789613610329)v + 5179309762621573363923518967361040684119787041950u,

q = 3121409722350910879886562808141991973446295462198833288542190968988219637719888609\
13019059975093241.
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These parameters are realized by the Jacobian of the hyperelliptic curve

y2 = x5 + 3x

over Fq, which was observed by the referee.

(2) k = 31, ρ ≈ 4.01,

r = 91408658139908491143965968646129222265051493210734240845201161 (206 bits)

x1 = 0,
x2 = 72502616962942344011710663303569590984576772698920572143402286,
x3 = x4 = −4453454327317792327353435007136492902634802507844996620560431,

π = (−4453454327317792327353435007136492902634802507844996620560431u − 445345432731779\
2327353435007136492902634802507844996620560431)v +725026169629423440117106633035695909\
84576772698920572143402286u,

q = 1053309218839577541675952678309645151652748275682940139437015225724607483184033180\
3581120165870579841701126653040599782957353.

(3) k = 43, ρ ≈ 3.99,

r=128903077675849557728518386023166690185602899176368668116931102754484928281 (247 bits)

x1 = 0,
x2 = 372155659674709346036247833621102263000792097221090710046524484502335172,
x3 = x4 = −87592687840749493706069759576404629264659124533660844895753302243637137369,

π = (−87592687840749493706069759576404629264659124533660844895753302243637137369u − 87\
592687840749493706069759576404629264659124533660844895753302243637137369)v +3721556596\
74709346036247833621102263000792097221090710046524484502335172u,

q = 767275596283704003823632884930005248169977481154544212850806286268172243395 2440746\
621183991981676001678915219575344001460361732108933667603032781329.

4 Parametric Families of Abelian Surfaces

In this section we outline how to extend our method to construct parametric
families of abelian surfaces. We start with the definition, which was introduced
by Freeman [2].

Definition 8. Let K be a CM field of degree 2g, let π(x) ∈ K[x], and let
r(x) ∈ Q[x]. We say that (π(x), r(x)) represents a family of g-dimensional abelian
varieties with embedding degree k if:

(1) q(x) = π(x)π(x) ∈ Q[x].
(2) q(x) represents primes.
(3) r(x) is non-constant, irreducible, integer-valued, and has positive leading

coefficient.
(4) r(x) | NK/Q(1 − π(x)).
(5) r(x) | Φk(q(x)).
Remark. Let us explain the above notation. If K ′ is a normal closure of K,
and σ : K → K ′ is an embedding, let us denote also by σ the extension of σ,
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K[x] → K ′[x], which is constant on x. If σ is the complex conjugation on K, we
simply write f for σ(f), f ∈ K[x]. The norm NK/Q(f) ∈ Q[x] is defined as the
product of σ(f) over all embeddings σ : K → K ′.

Note that it follows from (3) that r(x) = dr̃(x) for some d ∈ N and r̃(x) ∈ Q[x],
which is integer-valued an represents primes. In order to find an abelian variety
in the family, we search for x0 ∈ Z such that r̃(x0) and q(x0) both are prime.
If additionally π(x0) is an algebraic integer, K = Q(π(x0)), and π(x0) + π(x0)
and q(x0) are relatively prime in OK , then π(x0) is a Weil q(x0)-number of a
g-dimensional simple ordinary abelian variety with embedding degree k with
respect to r̃(x0). For large x0, the ρ-value of the resulting varieties is close to
the parameter ρ of the family

ρ =
g deg q(x)
deg r(x)

.

Let us now assume that K is a quartic CM field. We will keep the notation from
the previous section. Let {bi} be an integral basis of OK . Then {bi} is also a
basis of K[x] over Q[x]. We will look for families of abelian surfaces (π(x), r(x))
with π(x) =

∑
Gi(l1((x), l2(x), l3(x))bi for some li(x) ∈ Q[x], i = 1, 2, 3. For

this purpose, we have to find an irreducible polynomial r(x) ∈ Q[x] such that
the system

N ◦G = 0, Φk ◦ F1 ◦G = 0 (5)

has a solution (c1, c2, c3) over the number field L = Q[x]/(r(x)). Then to define
π(x) we take the lifts li(x) of ci with deg li < deg r, i = 1, 2, 3. In general,
if a number field L is given in advance, it may be very difficult to find an L-
rational solution, but here we can in fact construct a suitable field together with
a solution. This can be easily done using resultants. We start with any number
field L0, choose an element c ∈ L0, and evaluate at c one of the variables in
the system (5). If the system in the remaining two variables has finitely many
solutions over Q, then the following well-know fact allows us to solve the system,
and implies that all solutions are defined over number fields.

Lemma 9. Let F be an arbitrary field with an algebraic closure F, and let f, g ∈
F[x, y] both depend on y. Then the system f = g = 0 has finitely many solutions
over F if and only if Resy(f, g) �= 0 and the coefficients of f and g with respect
to y are relatively prime in F[x].

Proof. The resultant Resy(f, g) vanishes if and only if f and g have a common
factor in F(x)[y], and hence in F[x, y]. The system f = g = 0 has infinitely many
solutions if and only if f and g have a common factor h ∈ F[x, y]. Such a h exists
and depends on y if and only if Resy(f, g) = 0. If h ∈ F [x], then it must divide
all the coefficients of f and g with respect to y.

It follows a simple algorithm for determining zeros of two polynomials in
F[x, y], which requires factorization of polynomials over finite extensions of F.
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Algorithm 10.
Input: A field F, and two polynomials f, g ∈ F[x, y] such that the system

f = g = 0 has finitely many solutions over F.
Output: All solutions (x1, y1), . . . , (xn, yn) of the system f = g = 0, and the

fields F(xi, yi) (which are finite over F).

1. If f and g both depend on y, compute Resy(f, g).
2. For each irreducible factor h(x) ∈ F[x] of Resy(f, g), let F′ := F[x]/(h(x)),

and let x′ denote the residue class of x.
3. For each irreducible factor p(y) ∈ F′[y] of gcd(f(x′, y), g(x′, y)), let F′′ :=

F′[y]/(p(y)), and let y′ denote the residue class of y. Return (x′, y′) and F′′.
4. If f ∈ F[x] and g ∈ F[y], then for each irreducible factor h(x) ∈ F[x] of f(x),

let F′ := F[x]/(h(x)), and let x′ denote the residue class of x.
5. For each irreducible factor p(y) ∈ F′[y] of g(y), let F′′ := F′[y]/(p(y)), and

let y′ denote the residue class of y. Return (x′, y′) and F′′.
6. If either f and g both depend on x, but not on y, or g ∈ F[x] and f ∈ F[y],

then we proceed similarly with x in place of y.

We are now in a position to give an analogue of Algorithm 5 for constructing
families.

Algorithm 11.
Input: A quartic CM field K with an integral basis {bi}, and an embedding

degree k.
Output: Either the empty set, or a family of abelian surfaces (π(x), r(x)) with

embedding degree k and π(x) ∈ K[x].

1. Compute the polynomials F1, F2, N ∈ Q[x, y, z, t] satisfying (1) and (3).
2. Apply the method from the proof of Lemma 4, to find a mapG=(G1, . . . , G4)

satisfying F2 ◦ G = 0, where G1, . . . , G4 ∈ Z[x, y, z] are relatively prime
quadratic forms.

3. Choose a number field L0, and any c ∈ L0, and evaluate at c one of the
variables, say z.

4. If the system N(G(x, y, c)) = Φk(F1(G(x, y, c))) = 0 has finitely many so-
lutions over Q, then apply Algorithm 10 to F := L0 to determine all its
solutions (xj , yj) and the number fields Lj = L0(xj , yj), j = 1, . . . , n.

5. For j = 1, . . . , n, find a polynomial r(x) ∈ Q[x] such that Lj = Q[x]/(r(x)),
and take the lifts l1(x), l2(x), l3(x) ∈ Q[x] of xj , yj , c, respectively, with
deg li(x) < deg r(x). If q(x) = F1(G(l1(x), l2(x), l3(x))) represents primes,
then return (π(x), r(x)), where π(x) =

∑
Gi(l1(x), l2(x), l3(x))bi, and ter-

minate the algorithm.

Remark. Let us note that since the polynomials li(x) in step 5 satisfy deg li(x) <
deg r(x), it follows that deg q(x) < 4 deg r(x), so we obtain families with ρ < 8.

Similarly as in the previous section, we can use rational lines on the quadric
H ⊂ P3(Q) to construct families with ρ < 4. We left to the reader extending
Algorithm 6. The following two examples are based on this idea. For simplicity,
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we consider quartic CM fields K = Q
(√−a+ b

√
d
)

with the basis 1, u, v, uv of

the suborder Z[u, v], where u =
√
d and v =

√
−a+ b

√
d.

Example 12. For k = 12 and the field K = Q
(√−4 + 2

√
3
)

we obtain the
family with ρ = 3.

We have F1 = x2 + 3y2 + 4z2 − 12zt+ 12t2, F2 = 2xy − 2z2 + 8zt− 6t2, and
N = x4 − 4x3 − 6x2y2 + 8x2z2 − 24x2zt + 24x2t2 + 6x2 + 12xy2 + 24xyz2 −
96xyzt+72xyt2−16xz2 +48xzt−48xt2 −4x+9y4 +24y2z2 −72y2zt+72y2t2 −
6y2 − 24yz2 + 96yzt− 72yt2 + 4z4 − 24z2t2 + 8z2 − 24zt+ 36t4 + 24t2 + 1.

Let us take the line with the parametrization E(x, y) = (0, y,−x,−x) on the
quadric H = {F2 = 0} ⊂ P3(Q). Applying Algorithm 10, we find that the sys-
tem N ◦ E = Φk ◦ F1 ◦ E = 0 has solutions over a number field L of degree 4.
If (x1, y1) ∈ L2 satisfies this system, then F1(E(x1, y1)) is a 12th primitive root
of unity. Since [Q(ζ12) : Q] = 4, it follows that L = Q(ζ12). Thus, we can take
r(x) = Φ12(x) = x4 − x2 + 1. We find that π(x) ∈ K[x] has the coordinates(
0, 1

6 (x3 − x2 − 2x + 2),− 1
4 (x3 + x2),− 1

4 (x3 + x2)
)

with respect to the basis
1, u, v, uv. This yields the following family:

r(x) = x4 − x2 + 1,

π(x) = 1
12

(
(3(−u− 1)v + 2u)x3 − (3(u+ 1)v + 2u)x2 − 4ux+ 4u

)
,

q(x) = 1
3

(
x6 + x5 + 2x3 − 2x+ 1

)
.

Let us give some x0 ∈ Z such that r(x0) and q(x0) both are prime, and π(x0) is
a Weil q(x0)-number:

x0 = 4,
r(x0) = 241,
π(x0) = (−20u − 20)v + 7u,
q(x0) = 1747,
ρ ≈ 2.86.

x0 = 115348,
r(x0) = 177027311990089337713,
π(x0) = (−383684257046324u − 383684257046324)v + 255785069605399u,
q(x0) = 785132441919874946203437499507,
ρ ≈ 2.95.

Example 13. For k = 24 and the field K = Q
(√−3 + 2

√
2
)

we obtain the
family with ρ = 3.

We have F1 = x2 + 2y2 + 3z2 − 8zt + 6t2, F2 = 2xy − 2z2 + 6zt − 4t2, and
N = x4−4x3−4x2y2+6x2z2−16x2zt+12x2t2 +6x2+8xy2+16xyz2−48xyzt+
32xyt2 − 12xz2 + 32xzt− 24xt2 − 4x+ 4y4 + 12y2z2 − 32y2zt+ 24y2t2 − 4y2 −
16yz2 + 48yzt− 32yt2 + z4 − 4z2t2 + 6z2 − 16zt+ 4t4 + 12t2 + 1.

On the quadric H = {F2 = 0} ⊂ P3(Q), we find the same line as above
E(x, y) = (0, y,−x,−x). Arguing similarly as above, we conclude that the sys-
tem N ◦E = Φk ◦F1 ◦E = 0 has solutions over the cyclotomic field L = Q(ζ24).
Thus we can take r(x) = Φ24(x) = x8 − x4 + 1. We find that π(x) has the



310 R. Dry�lo

coordinates
(
0, 1

4 (−x5−x4 +x3 +x2 +x+1), 1
2 (x6−x5), 1

2 (x6−x5)
)

with respect
to the basis 1, u, v, uv. This yields the following family:

r(x) = x8 − x4 + 1,

π(x) = 1
4

(
2(u+ 1)vx6 − (2(u+ 1)v + u)x5 − ux4 + ux3 + ux2 + ux+ u

)
,

q(x) = 1
8

(
2x12−4x11+3x10+2x9−x8−4x7−3x6−2x5+x4+4x3+3x2+2x+1

)
.

Let us give some x0 ∈ Z such that the values r(x0) and q(x0) both are primes,
and π(x0) is a Weil q(x0)-number:

x0 = 187,
r(x0) = 1495315557957352561,
π(x0) = (21266253242751u + 21266253242751)v − 57471411577u,
q(x0) = 452260132911114728793301859,
ρ ≈ 2.93.

x0 = 10215,
r(x0) = 118551476630178079528267516140001,
π(x0) = (568012263996559963753125u + 568012263996559963753125)v − 27808295685150835046u,
q(x0) = 322637933597100348271909871184739622298150909857,
ρ ≈ 2.96.

Acknowledgements. The author would like to thank the anonymous referees for
the above mentioned example, and their helpful comments on the earlier version
of this paper.
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Abstract. Constructing pairing-friendly hyperelliptic curves with small

ρ-values is one of challenges for practicability of pairing-friendly hyper-

elliptic curves. In this paper, we describe a method that extends the

Kawazoe-Takahashi method of generating families of genus 2 ordinary

pairing-friendly hyperelliptic curves by parameterizing the parameters as

polynomials. With this approach we construct genus 2 ordinary pairing-

friendly hyperelliptic curves with 2 < ρ ≤ 3.

Keywords: pairing-friendly curves, hyperelliptic curves.

1 Introduction

Efficient implementation of pairing-based protocols such as one round three way
key exchange [16], identity based encryption [3] and digital signatures [4], de-
pends on what are called pairing-friendly curves. These are special curves with
a large prime order subgroup, so that protocols can resist the known attacks,
and small embedding degree for efficient finite field computations.

Even though there are many methods for constructing pairing-friendly elliptic
curves [14], there are very few methods that address the problem of constructing
ordinary pairing-friendly hyperelliptic curves of higher genus. The first explicit
construction of ordinary hyperelliptic curve was shown by David Freeman [11].
Freeman modeled the Cocks-Pinch method [8] to construct ordinary hyperelliptic
curves of genus 2. His algorithm produce curves over prime fields with prescribed
embedding degree k with ρ-value ≈ 8. Kawazoe and Takahashi [18] constructed
pairing-friendly hyperelliptic curves of the form y2 = x5 + ax which produced
Jacobian varieties with ρ-values between 3 and 4. Recently, Freeman and Satoh
[15] proposed algorithms for generating pairing-friendly hyperelliptic curves. In
their construction it was shown that if an elliptic curve, E, is defined over a
finite field, Fp, and A is abelian v! ariety isogenous over Fpd to a product of
two isomorphic elliptic curves then the abelian variety, A, is isogenous over Fp
to a primitive subvariety of the Weil restriction of E from Fpd to Fp. Notably,
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the Freeman-Satoh algorithm produces hyperelliptic curves with better ρ value
than previously reported. The best, for example, achieves a ρ-value of 20/9 for
embedding degree k = 27. However, the ρ-values of most embedding degrees for
ordinary hyperelliptic curves remain too high for an efficient implementation.

For a curve to be suitable for implementation it should possess desirable prop-
erties which include efficient implementation of finite field arithmetic and the
order of the Jacobian having a large prime factor.

In this paper we generate more Kawazoe-Takahashi genus 2 ordinary pairing-
friendly hyperelliptic curves. In particular, we construct curves of embedding
degrees 2, 7, 8, 10, 11, 13, 22, 26, 28, 44 and 52 with ρ-value between 2 and 3.

We proceed as follows: In Section 2 we present mathematical background and
facts on constructing pairing-friendly hyperelliptic curves while in Section 3 we
discuss the construction of pairing-friendly hyperelliptic curves based on the
Kawazoe-Takahashi algorithms and in Section 4 we present the generalization
of Kawazoe-Takahashi algorithms for constructing pairing-friendly hyperelliptic
curves and we give explicit examples. The paper is concluded in Section 5.

2 Pairing-Friendly Hyperelliptic Curves

2.1 Mathematical Background

Let p > 2 be a prime, let r be prime distinct from p. We denote a hyperelliptic
curve of genus g defined over a finite field Fp by C. This is a non-singular
projective model of the affine curve of the form:

y2 = f(x) (1)

where f(x) is a monic polynomial of degree 2g + 1, has its coefficients in Fp[x]
and has no multiple roots in F̄p. We denote the Jacobian of C by JC and a
group of the Fp-rational points of the Jacobian of C by JC(Fp). This group is
isomorphic to degree zero divisor class group of C over Fp.

As in the elliptic curve case the embedding degree of Jacobian variety is defined
as follows:

Definition 1 ([11]). Let C be an hyperelliptic curve defined over a prime finite
field Fp. Let r be a prime dividing #JC(Fp). The embedding degree of JC with
respect to r is the smallest positive integer k such that r | pk − 1 but r � pi − 1
for 0 < i < k.

The definition, as in the elliptic curve case, explains that k is the smallest posi-
tive integer such that the extension field Fpk , contains a set of rth roots of unity.
Hence we refer to a curve C as having embedding degree k with respect to r
if and only if a subgroup of order r of its Jacobian JC does. As such, for an
efficient arithmetic implementation curves must have small embedding degree so
that arithmetic in Fpk is feasible. Furthermore, we require that the size of the
finite field, Fp, be as small as possible in relation to the the size of the prime
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order subgroup r. This is measured by a parameter known as the ρ-value. For a
g-dimensional abelian variety defined over Fp this parameter is defined as:

ρ = g log (p)
log (r) .

In the ideal case the abelian varieties of dimension g have a prime number of
points in which case ρ ≈ 1. For pairing-friendly one-dimensional abelian varieties
one can reach the ideal case by using the constructions in [19], [6] and [10].
However, this proves not be the case with higher dimensional abelian varieties.
Hence the interest has been to construct higher dimensional abelian varieties
with low embedding degrees and small ρ-values. And the same time, for security
reasons we require r large enough so that discrete logarithm problem (DLP) in
the subgroup of prime order r is suitably hard and k sufficiently large enough
so that the (DLP) in F∗

pk , withstand the known attacks.
There are two main cryptographic pairings, the Weil and the Tate. In both

cases the basic idea is to embed the cryptographic group of order r into a multi-
plicative group of rth roots of unity, μr. A non-degenerate, bilinear map for the
Tate pairing, for example, is defined by the following map:

tr : JC(Fpk)[r] × JC(Fpk)/JC(Fpk) −→ (F∗
pk)/(F∗

pk)r .

3 Kawazoe-Takahashi Hyperelliptic Curves

Kawazoe and Takahashi [18] presented an algorithm which constructed hyper-
elliptic curves of the form y2 = x5 + ax with ordinary Jacobians. Their con-
struction used two approaches, one was based on the Cocks-Pinch method [8] of
constructing ordinary pairing-friendly elliptic curves and the other was based on
cyclotomic polynomials. This idea was first proposed by Brezing and Weng in
[7]. However, both approaches are based on the predefined sizes of the Jacobians
as presented in [9]. The order of the Jacobian, #JC , is closely related to the
characteristic polynomial, χ(t), of the Frobenius endormorphism, π.

Consequently, for genus 2 curves the χ(t) of the Frobenius is a polynomial
known to have the following form:

χ(t) = t4 − a1t
3 + a2t

2 − a1pt+ p2 (2)

within a1, a2 ∈ Fp and furthermore | a1 |≤ 4p and | a2 |≤ 6p. Hence, #JC is
determined from Equation 2 by the following relation:

#JC = χ(1) = 1 − a1 + a2 − a1p+ p2. (3)

The Hasse-Weil bound describes the interval in which the order of the Jacobian
is found as follows: ⌈

(
√
p− 1)2g

⌉ ≤ #JC ≤ ⌊(√p+ 1)2g
⌋

(4)
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Algorithm 1. Kawazoe-Takahashi Type I pairing-friendly Hyperelliptic curves

with #JC = 1− 4d + 8d2 − 4dp + p2

Input: k ∈ Z.
Output: a hyperelliptic curve defined by y2 = x5 + ax with Jacobian group

having a prime subgroup of order r.

1. Choose r a prime such that lcm(8, k) divides r − 1.

2. Choose ζ a primitive kth root of unity in (Z/rZ)×, ω a positive integer such

that ω2 ≡ −1 mod r and σ a positive integer such that σ2 ≡ 2 mod r.
3. Compute integers, c, d such that:

• c ≡ (ζ + ω)(σ(ω + 1))−1 mod r and c ≡ 1 mod 4

• d ≡ (ζω + 1)(2(ω + 1))−1 mod r.

4. Compute a prime p = (c2 + 2d2) such that p ≡ 1 mod 8.

5. Find a ∈ Fp such that:

• a(p−1)/2 ≡ −1 mod p and 2(−1)(p−1)/8d ≡ (a(p−1)/8 + a3(p−1)/8)c mod p.

6. Define a hyperelliptic curve C by y2 = x5 + ax.

Theorem 1 below outlines the characteristic polynomials which defines hyper-
elliptic curves, C, of the form y2 = x5 + ax defined over Fp. The JC of C for
these cases is a simple ordinary Jacobian over Fp.

Theorem 1 ([9],[18]). Let p be an odd prime, C a hyperelliptic curve defined
over Fp by equation y2 = x5 + ax, Jc the Jacobian variety of C and χ(t) the
characteristic polynomial of the pth power Frobenius map of C. Then the follow-
ing holds: (In the following c, d are integers such that p = c2 + 2d2 and c ≡ 1
(mod 4),d ∈ Z (such c and d exists if and only if p ≡ 1, 3 (mod 8)).

1) If p ≡ 1 mod 8 and a(p−1)/2 ≡ −1 mod p, then χ(t) = t4 − 4dt3 + 8d2t2 −
4dpt+ p2 and 2(−1)(p−1)/8d ≡ (a(p−1)/8 + a3(p−1)/8)c mod p

2) If p ≡ 1 mod 8 and a(p−1)/4 ≡ −1 mod p, or if p ≡ 3 mod 8 and a(p−1)/2 ≡ −1
mod p, then χ(t) = t4 + (4c2 − 2p)t2 + p2

Using the formulae in Theorem 1 Kawazoe and Takahashi developed a Cocks-
Pinch-like method to construct genus 2 ordinary pairing-friendly hyperelliptic
curves of the form y2 = x5 + ax. As expected the curves generated by the
Cocks-Pinch-like method had their ρ-values close to 4. Furthermore, they also
presented cyclotomic families. With this method they managed to construct a
k = 24 curve with ρ = 3. In both cases the ultimate goal is to find integers c and
d such that there is a prime p = c2 + 2d2 with c ≡ 1 (mod 4) and χ(1) having
a large prime factor. Algorithms 1 and 2 developed from Theorem 1 construct
individual genus 2 pairing-friendly hyperelliptic curves with ρ ≈ 4.

Remark 1. The key feature in both algorithms is that r is choosen such that
r − 1 is divisible by 8 so that Z/rZ contains both

√−1 and
√

2 for both c and
d to satisfy the conditions in the algorithm.
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Algorithm 2. Kawazoe-Takahashi Type II pairing-friendly Hyperelliptic curves

with #JC = 1 + (4c2 − 2p) + p2

Input: k ∈ Z.
Output: a hyperelliptic curve defined by y2 = x5 + ax with Jacobian group

having a prime subgroup of order r.

1. Choose r a prime such that lcm(8, k) divides r − 1.

2. Choose ζ a primitive kth root of unity in (Z/rZ)×, ω positive integer such

that ω2 ≡ −1 mod r and σ a positive integer such that σ2 ≡ 2 mod r.
3. Compute integers, c, d such that:

• c ≡ 2−1(ζ − 1)ω) mod r and c ≡ 1 mod 4

• d ≡ (ζ + 1)(2σ)−1 mod r.

4. Compute a prime p=(c2 + 2d2) such that p ≡ 1, 3 mod 8 and for some integer

δ satisfying δ(p−1)/2 ≡ −1 mod p and

5. Find a ∈ Fp such that:

• a = δ2 when p ≡ 1 mod 8 or a = δ when p ≡ 3 mod 8.

6. Define a hyperelliptic curve C by y2 = x5 + ax.

4 Our Generalization

We observe that one can do better if the algorithms are parametrized by polyno-
mials in order to construct curves with specified bit size. We represent families of
pairing-friendly curves for which parameters c, d, r, p are parametrized as poly-
nomials c(z), d(z), r(z), p(z) in a variable z. In fact this idea of using polynomials
was used in other constructions for pairing-friendly curves such as in [19],[2] [21]
and [7].

When working with the polynomials we consider polynomials with rational
coefficients. The definitions below describes a family of Kawazoe-Takahashi-type
of pairing-friendly hyperelliptic curves.

Definition 2 ([14]). Let g(z) ∈ Q[z]. We say that g(z) represents primes if the
following are satisfied:

– g(z) is non constant irreducible polynomial.
– g(z) has a positive leading coefficient.
– g(z) represents integers i.e for z0 ∈ Z, g(z0) ∈ Z.
– gcd({g(z) : z, g(z) ∈ Z}) = 1

Definition 3. Let c(z), d(z), r(z) and p(z) be non-zero polynomials with rational
coefficients. For a given positive integer k the couple (r(z), p(z)) parameterizes a
family of Kawazoe-Takahashi type of hyperelliptic curves with Jacobian JC whose
embedding degree is k if the following conditions are satisfied:

(i) c(z) represents integers such that c(z) ≡ 1 mod 4;
(ii) d(z) represents integers;
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(iii) p(z) = c(z)2 + 2d(z)2 represents primes;
(iv) r(z) represents primes;
(v) r(z)|1−4d(z)+8d(z)2−4d(z)p(z)+p(z)2 or r(z)|1+(4c(z)2−2p(z))+p(z)2
(vi) Φk(p(z)) ≡ 0 mod r(z), where Φk is the kth cyclotomic polynomial.

And we define the ρ-value of this family as ρ = 2 deg(p(z))
deg(r(z)) .

In [9] they showed that there exists a simple ordinary abelian variety surface
with characteristic polynomials of Frobenius t4 − 4d+ 8d2 − 4dp+ p2 ∈ Z[t] or
t4 + (4c2 − 2p)+ p2 ∈ Z[t] with certain conditons on c and d. Hence Definition 3
part (i) and (ii) ensures that the polynomial representation of c and d conforms
with the conditions. While condition (v) of Definition 3 ensures that for a given
z for which p(z) and r(z) represents prime r(z) divides #JC(z). In otherwords,
the order of the Jacobian of the constructed curve has a prime order subgroup
of size r(z). Finaly, condition (vi) of Definition 3 ensures that the Jacobian of
the constructed curve has embedding degree k.

With these definitions we now adapt Algorithms 1 and 2 to the polynomial
context. This can be seen in Algorithms 3 and 4 below generalizing Algorithms
1 and 2 respectively. In particular we construct our curves by taking a similar
approach as described in [17] for constructing pairing-friendly elliptic curves.

In general this method uses minimal polynomials rather than a cyclotomic
polynomial in defining the size of the prime order subgroup. The difficult part is
the choosing the right polynomial for representing the size of the cryptographic
group.

With this approach, apart from reconstructing the Kawazoe-Takahashi genus
2 curves, we discover new families of pairing-friendly hyperelliptic curve of em-
bedding degree k = 2, 7, 8, 10, 11, 13, 22, 26, 28, 44 and 52 with 2 < ρ ≤ 3.

The success depends on the the choice of the number field, K. Thus, in the
initial step we set K to be isomorphic to a cyclotomic field Q(ζ�) for some
� = lcm(8, k). The condition on � ensures Q[z]/r(z) contains square roots of
−1 and 2. We take the approach as described in [17] for constructing pairing-
friendly elliptic curves for defining the irreducible polynomial r(z). Even though
this method is time consuming as it involves searching for a right element, it
mostly gives a favorable irreducible polynomial r(z), which defines the size of
the prime order subgroup . Here we find a minimal polynomial of an element
γ ∈ Q(ζ�) and call it r(z), where γ is not in any proper subfield of Q(ζ�). Since
γ is in no proper subfield, then we have Q(ζ�) = Q(γ), where the degree of Q(γ)
over Q is ϕ(�), where ϕ(.) is Euler totient function.

However, with most values of k > 10 which are not multiples of 8, the degree
of r(z) tends to be large. As observed in [14], for such curves this limits the
number of usable primes. The current usable size of r is in the range [2160, 2512].

4.1 The Algorithm Explained

Step 1: Set up. This involves initializing the algorithm by setting Q(ζ�) defined
as Q[z]/Φ�(z). The Choice of this field ensures that it contains ζk and

√−1 and√
2. The ideal choice, in such a case, is Q(ζ8, ζk) = Q(ζlcm(k,8)).
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Algorithm 3. Our generalization for finding pairing-friendly Hyperelliptic curves

with #JC(z) = 1− 4d(z) + 8d(z)2 − 4d(z)p(z) + p(z)2

Input: k ∈ Z, � = lcm(8, k), K ∼= Q[z]/Φ�(z)

Output: Hyperelliptic curve of genus 2 defined by y2 = x5 + ax.

1. Choose an irreducible polynomial r(z) ∈ Z[z].

2. Choose polynomials s(z), ω(z) and σ(z) in Q[z] such that s(z) is a primitive

kth root of unity, ω(z) =
√−1 and σ(z) =

√
2 in K.

3. Compute polynomials, c(z), d(z) such that:

• c(z) ≡ (s(z) + ω(z))(σ(z)(ω(z) + 1))−1 in Q[z]/r(z).

• d(z) ≡ (s(z)ω(z) + 1)(2(ω(z) + 1))−1 in Q[z]/r(z).

4. Compute a polynomial, p(z) = c(z)2 + 2d(z)2.

5. For z0 ∈ Z such that:

– p(z0) and r(z0) represents primes and p(z0) ≡ 1 mod 8 and

– c(z0), d(z0) represents integers and c(z0) ≡ 1 mod 4.
find a ∈ Fp(z0) satisfying:

• a(p(z0)−1)/2 ≡ −1 mod p(z0) and

• 2(−1)(p(z0)−1)/8d(z0) ≡ (a(p(z0)−1)/8 + a3(p(z0)−1)/8)c(z0) mod p(z0).

6. Output (r(z0), p(z0), a)

7. Define a hyperelliptic curve C by y2 = x5 + ax.

Step 2: Representing ζk,
√−1 and

√
2. We search for a favorable element,

γ ∈ Q(ζ�) such that the minimal polynomial of γ has degree ϕ(�) and we call
this r(z). We redefine our field to Q[z]/r(z). In this field we find a polynomial
that represents ζk,

√−1 and
√

2.
For ζk there are ϕ(k) numbers of primitive kth roots of unity. In fact if

gcd(α, k) = 1 then ζαk is also primitive kth root of unity. To find the poly-
nomial representation of

√−1 and
√

2 in Q[z]/r(z) we find the solutions of the
polynomials z2 + 1 and z2 − 2 in the number field isomorphic to Q[z]/r(z) re-
spectively.

Steps 3,4,5: Finding the family. All computations in the algorithm are done
modulo r(z) except when computing p(z). It is likely that polynomials p(z), c(z)
and d(z) have rational coefficient. At this point polynomials are tested to deter-
mine whether they represent intergers or primes as per Definition 3.

4.2 New Curves

We now present a series of new curves constructed using the approach described
above. Proving the theorems is simple considering γ has minimal polynomial
r(z). We give a proof of Theorem 2. For the other curves the proofs are similar.

We start by constructing a curve of embedding degree, k = 7. It is interesting
to note that here we get a family with ρ = 8/3.
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Algorithm 4. Our generalization for finding pairing-friendly Hyperelliptic curves

with #JC(z) = 1 + (4c(z)2 − 2p(z)) + p(z)2

Input: k ∈ Z, � = lcm(8, k), K ∼= Q[z]/Φ�(z)

Output: Hyperelliptic curve of genus 2 defined by y2 = x5 + ax .

1. Choose an irreducible polynomial r(z) ∈ Z[z].

2. Choose polynomials s(z), ω(z) and σ(z) in Q[z] such that s(z) is a primitive

kth root of unity, ω(z) =
√−1 and σ(z) =

√
2 in K.

3. Compute polynomials, c(z), d(z) such that

• c(z) ≡ 2−1(s(z)− 1)ω(z)) mod r(z)

• d(z) ≡ (z(z) + 1)(2σ(z))−1 mod r(z)

4. Compute an irreducible polynomial p(z) = (c(z)2 + 2d(z)2)

5. For z0 ∈ Z such that:

– p(z0) and r(z0) represents primes and p(z0) ≡ 1, 3 mod 8 and

– c(z0), d(z0) represents integers and c(z0) ≡ 1 mod 4.
6. Find a ∈ Fp(z0) such that:

• a = δ2 when p(z0) ≡ 1 mod 8 or

• a = δ when p(z0) ≡ 3 mod 8.

7. Output (r(z0), p(z0), a).
8. Define a hyperelliptic curve C by y2 = x5 + ax.

Theorem 2. Let k = 7, � = 56. Let γ = ζ� + 1 ∈ Q(ζ�) and define polynomials
r(z), p(z), c(z), d(z) by the following:

r(z) = z24 − 24z23 + 276z22 − 2024z21 + 10625z20 − 42484z19

+ 134406z18 − 344964z17 + 730627z16 − 1292016z15 + 1922616z14

− 2419184z13 + 2580005z12 − 2332540z11 + 1784442z10 − 1150764z9

+ 621877z8 − 279240z7 + 102948z6 − 30632z5 + 7175z4 − 1276z3 + 162z2 − 12z + 1

p(z) = (z32 − 32z31 + 494z30 − 4900z29 + 35091z28 − 193284z27 +

851760z26 − 3084120z25 + 9351225z24 − 24075480z23 + 53183130z22 −
101594220z21 + 168810915z20 − 245025900z19 + 311572260z18 −
347677200z17 + 340656803z16 − 292929968z15 + 220707810z14 − 145300540z13 +

83242705z12 − 41279004z11 + 17609384z10 − 6432920z9 + 2023515z8

− 569816z7 + 159446z6 − 49588z5 + 16186z4 − 4600z3 + 968z2 − 128z + 8)/8

c(z) = (−z9 + 9z8 − 37z7 + 91z6 − 147z5 + 161z4 − 119z3 + 57z2 − 16z + 2)/2

d(z) = (z16 − 16z15 + 119z14 − 546z13 + 1729z12 − 4004z11 + 7007z10

− 9438z9 + 9867z8 − 8008z7 + 5005z6 − 2366z5 + 819z4 − 196z3 + 28z2)/4

Then (r(2z), p(2z)) constructs a genus 2 hyperelliptic curves. The ρ-value of this
family is 8/3.

Proof. Since ζ� + 1 ∈ Q(ζ�) has minimal polynomial r(z), we apply Algorithm 3
by working in Q(ζ56) defined as Q[z]/r(z). We choose ζ7 	→ (z − 1)16,

√−1 	→
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(z−1)14 and
√

2 	→ z(z−1)7(z−2)(z6−7z5+21z4−35z3+35z2−21z+7)(z6−
5z5 + 11z4 − 13z3 + 9z2 − 3z+ 1). Applying Algorithm 3 we find p(z) as stated.
Computations with PariGP [23], show that both r(2z) and p(2z) represents
primes and c(2z) represents integers such that it is equivalent to 1 modulo 4.
Furthermore, by Algorithm 3 the Jacobian of our hypothetical curve has a large
prime order subgroup of order r(z) and embedding degree, k = 7.

Considering z0 = 758 we give an example of a 254- bit prime subgroup that is
constructed using the parameters in Theorem 2.

Example 1.

r = 213748555325666652890713665865251428761742681841141544849244\
05425230130090001

p = 741504661189142770769829861344257948821797401549707353154351\
08095481642765042445975666095781797666897

c = −21022477149693687350103984375
d = 192549300334893812717931530445605096860437011144944
a = 3
ρ = 2.646.

C : y2 = x5 + 3x

The next curve is of embedding degree k = 8. According to [25] this family of
curves admits higher order twists. This means that it is possible to have both
inputs to a pairing defined over a base field. The previous record on this curve
was ρ = 4. In Theorem 3 below we outline the parameters that defines a family
of hyperelliptic curves with ρ = 3.

Theorem 3. Let k = � = 8. Let γ = ζ3� + ζ2� + ζ� + 3 ∈ Q(ζ8) and define
polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z4 − 12z3
+ 60z2 − 144z + 136

p(z) = (11z6 − 188z5
+ 1460z4 − 6464z3

+ 17080z2 − 25408z + 16448)/64

c(z) = (3z3 − 26z2
+ 92z − 120)/8

d(z) = (−z3
+ 8z2 − 26z + 32)/8

Then (r(32z)/8, p(32z)) constructs a genus 2 hyperelliptic curves with embed-
ding degree 8. The ρ-value of this family is 3.

This type of a curve is recommended at the 128 bit security level, see Table
3.1 in [1]. Below we give an example obtained using the above parameters.

Example 2.

r = 131072000000009898508288000280324362739203528331792090742\
477643363528725893137(257bits)

p = 184549376000020905654747136986742251766767879474504560418\
252532669506933642904885116183766157641277112712983172884737
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c = 12288000000000695988992000013140209336688082695322003440625
d = −4096000000000231996416000004380073001064027565137751569916
a = 3
ρ = 3.012

C : y2 = x5 + 3x

Theorem 4. Let k = 10, � = 40. Let γ = ζ� + 1 ∈ Q(ζ�) and define polynomials
r(z), p(z), c(z), d(z) by the following:

r(z) = z16 − 16z15 + 120z14 − 560z13 + 1819z12 − 4356z11 + 7942z10 −
11220z9 + 12376z8 − 10656z7 + 7112z6 − 3632z5 + 1394z4 − 392z3 + 76z2 − 8z + 1

p(z) = (z24 − 24z23 + 274z22 − 1980z21 + 10165z20 − 39444z19

+120156z18 − 294576z17 + 591090z16 − 981920z15 + 1360476z14 −
1578824z13 + 1536842z12 − 1253336z11 + 853248z10 − 482384z9 +

225861z8 − 88872z7 + 31522z6 − 11676z5 + 4802z4 − 1848z3 + 536z2 − 96z + 8)/8

c(z) = (−z7 + 7z6 − 22z5 + 40z4 − 45z3 + 31z2 − 12z + 2)/2

d(z) = (z12 − 12z11 + 65z10 − 210z9 + 450z8 − 672z7 + 714z6 − 540z5 + 285z4 −
100z3 + 20z2)/4

Then (r(4z), p(4z)) constructs a genus 2 hyperelliptic curve. The ρ-value of this
family is 3.

Below is a curve of embedding degree 10 with a prime subgroup of size 249
bits. The ρ-value of its JC is 3.036.

Example 3.

r = 47457491054103014068159312355967539444301108619814810948\
2797931132143318041

p = 339268047683548227442734898907507152190802484314819125499\
393410802175044822928270159666053912399467210953623356417

c = −1189724159035338550797061406711295
d = 411866512163557810321097788276510052727469786602189684736
a = 3
ρ = 3.036

C : y2 = x5 + 3x

Theorem 5. Let k = 28, � = 56. Let γ = ζ� + 1 ∈ Q(ζ�) and define polynomials
r(z), p(z), c(z), d(z) by the following:

r(z) = z24 − 24z23 + 276z22 − 2024z21 + 10625z20 − 42484z19 +

134406z18 − 344964z17 + 730627z16 − 1292016z15 + 1922616z14 −
2419184z13 + 2580005z12 − 2332540z11 + 1784442z10 − 1150764z9 + 621877z8 −
279240z7 + 102948z6 − 30632z5 + 7175z4 − 1276z3 + 162z2 − 12z + 1
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p(z) = (z36 − 36z35 + 630z34 − 7140z33 + 58903z32 − 376928z31 +

1946800z30 − 8337760z29 + 30188421z28 − 93740556z27 + 252374850z26 −
594076860z25 + 1230661575z24 − 2254790280z23 + 3667649460z22 −
5311037640z21 + 6859394535z20 − 7909656300z19 + 8145387218z18 −
7487525484z17 + 613613430z16 − 4473905808z15 + 2893567080z14 − 1653553104z13 +

830662287z12 − 364485108z11 + 138635550z10 − 45341540z9 + 12681910z8 −
3054608z7 + 660688z6 − 141120z5 + 32008z4 − 7072z3 + 1256z2 − 144z + 8)/8

c(z) = (−z11 + 11z10 − 55z9 + 165z8 − 331z7 + 469z6 − 483z5 + 365z4 − 200z3 +

76z2 − 18z + 2)/2

d(z) = (z18 − 18z17 + 153z16 − 816z15 + 3059z14 − 8554z13 + 18473z12 − 31460z11

+42757z10 − 46618z9 + 40755z8 − 28392z7 + 15561z6 − 6566z5 + 2058z4 −
448z3 + 56z2)/4

Then (r(2z), p(2z)) constructs a genus 2 hyperelliptic curve. The ρ-value of this
family is ρ ≈ 3.

Here is a curve with a 255 bit prime subgroup constructed from the above
parameters:

Example 4.

r = 42491960053938594435112219237666767431311006357122111696\
690362883228500208481

p = 1094889169501305037288247123944801366479653316841535239280\
568336193026632167195184728514564519636647060505191263121

c = −66111539648877169993055611952337239
d = 739894982244542944193343853775218465253390470331838998400
a = 23
ρ = 2.972

C : y2 = x5 + 23x

The following family for k = 24 has a similar ρ-value as to a family of k = 24
reported in [18]. One can use the following parameters to construct a Kawazoe-
Takahashi Type II pairing-friendly hyperelliptic curve of embedding degree k =
24 with ρ = 3.

Theorem 6. Let k = � = 24. Let γ = ζ24 + 1 ∈ Q(ζ24) and define polynomials
r(z), p(z), c(z), d(z) by the following:

r(z) = z8 − 8z7 + 28z6 − 56z5 + 69z4 − 52z3 + 22z2 − 4z + 1
p(z) = (2z12 − 28z11 + 179z10 − 688z9 + 1766z8 − 3188z7 +

4155z6 − 3948z5 + 2724z4 − 1336z3 + 443z2 − 88z + 8)/8
c(z) = (−z6 + 7z5 − 20z4 + 30z3 − 25z2 + 11z − 2)/2
d(z) = (z5 − 4z4 + 5z3 − 2z2 − z)/4
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Then (r(8z+4)/8, p(8z+4)) constructs a complete ordinary pairing-friendly genus
2 hyperelliptic curves with embedding degree 24. The ρ-value of this family is 3.

The following family is of embedding degree k = 2 with ρ = 3. In this case the
parameters corresponds to a quadratic twist C′ of the curve C whose order of
JC has a large prime of size r.

Theorem 7. Let k = 2 , � = 8. Let γ = ζ28 + ζ8 + 1 ∈ Q(ζ8) and define polyno-
mials r(z), p(z), c(z), d(z) by the following:

r(z) = z4 − 4z3 + 8z2 − 4z + 1
p(z) = (17z6 − 128z5 + 480z4 − 964z3 + 1089z2 − 476z + 68)/36
c(z) = (z3 − 4z2 + 7z − 2)/2
d(z) = (−2z3 + 7z2 − 14z + 4)/6

Then (r(36z + 8)/9, p(36z + 8)) constructs a genus 2 hyperelliptic curve. The
ρ-value of this family is 3.

Here is a curve with a 164 bit prime subgroup constructed from the above
parameters:

Example 5.

r = 18662407671139230451673881592011637799903138004697
p = 102792562578915164898226742137468734090998250325265\

6165164129909459559679217
c = 23328007191686179030939068128424560723
d = −15552004794459612687736644908426134338
a = 10
ρ = 3.049

Here our genus 2 hyperelliptic equation is C′ : y2 = x5 +10x and hence C : y2 =
20(x5 + 10x) is the curve whose #JC has a large prime r and its embedding
degree is 2 with repect to r.

We now present pairing-friendly hyperelliptic curves of embedding k whose poly-
nomial that defines the prime order subgroup r(z), has its degree greater or equal

Table 1. Families of curves, whose deg(r(z)) ≥ 40

k γ Degree(r(z)) Degree(p(z)) ρ-value Modular class

11 ζ� 40 48 2.400 3 mod 4

13 ζ� + 1 48 64 2.667 4 mod 8

22 ζ� + 1 40 56 2.800 0 mod 4

26 ζ� 48 56 2.333 3 mod 4

44 ζ� + 1 48 64 2.600 0 mod 4

52 ζ� + 1 48 60 2.500 0 mod 4
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to 40. The polynomials that defines some of these curves can be found in Ap-
pendix A. Currently these curves, as already pointed out, are only of theoretical
interest. In this table � = lcm(k, 8).

5 Conclusion

We have presented an algorithm that produces more Kawazoe-Takahashi type
of genus 2 pairing-friendly hyperelliptic curves. In addition we have presented
new curves with better ρ-values. A problem with some of the reported curves is
that the degree of the polynomial r(z), which defines the prime order subgroup,
is too large and hence a very small number, if any, of usable curves could be
found. Table 2 summarises the the curves reported in this paper. Curves with
1 ≤ ρ ≤ 2 remain elusive.

Table 2. Families of curves, k < 60, with 2.000 < ρ ≤ 3.000

k Degree(r(z)) Degree(p(z)) ρ-value

2 4 6 3.000

7 24 32 2.667

8 4 6 3.000

10 16 24 3.000

11 40 48 2.400

13 48 64 2.667

22 40 56 2.800

24 8 12 3.000

26 48 56 2.333

28 24 36 3.000

44 48 64 2.600

52 48 60 2.500
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Appendix A: More Examples

Here we include the polynomials that define curves of some of the embedding
degrees in Table 1.

Theorem 8. Let k = 11, � = 88. Let γ = ζ� ∈ Q(ζ�) and
define polynomials r(z), p(z), c(z), d(z) by the following:

r(z) = z40 − z36
+ z32 − z28

+ z24 − z20
+ z16 − z12

+ z8 − z4
+ 1

p(z) = 1/8(z48 − 2z46
+ z44

+ 8z24
+ z4 − 2z2

+ 1)

c(z) = −1/2(z13
+ z11

)

d(z) = 1/4(z24 − z22 − z2
+ 1)

ρ = 12/5

Family (r(4z + 3)/89, p(4z + 3))

Theorem 9. Let k = 13, � = 104. Let γ = ζ�+1 ∈ Q(ζ�) and define polynomials
r(z), p(z), c(z), d(z) by the following:

r(z) = z48 − 48z47
+ 1128z46

+ ... + 2z2 − 24z + 1

p(z) = (z64 − 64z63
+ 2016z62 − ... + 4040z2 − 256z + 8)/8

c(z) = −(z19 − 19z18
+ 171z17

+ ... + 249z2 − 32z + 2)/2

d(z) = (z32 − 32z31
+ 496z30 − ... + 20995z4 − 2340z3

+ 156z2
)/4

ρ = 8/3

Family (r(8z + 4), p(8z + 4)

Theorem 10. Let k = 22, � = 88. Let γ = ζ� ∈ Q(ζ�) and define polynomials
r(z), p(z), c(z), d(z) by the following:

r(z) = z40 − z36
+ z32 − z28

+ z24 − z20
+ z16 − z12

+ z8 − z4
+ 1

p(z) = (z56 − 2z50
+ z44

+ z28
+ z12 − 2z6

+ 1)/8

c(z) = −(z17
+ z11

)/2

d(z) = (z34 − z22
+ z12

+ 1)/4

ρ = 14/5

Family (r(4z + 3)/89, p(4z + 3))

Theorem 11. Let k = 26, � = 104. Let γ = ζ� ∈ Q(ζ�) and define polynomials
r(z), p(z), c(z), d(z) by the following:

r(z) = z48 − z44
+ z40 − z36

+ z32 − z28
+ z24 − z20

+ z16 − z12
+ z8 − z4

+ 1

p(z) = (z56 − 2z54
+ z52

+ 8z28
+ z4 − 2z2

+ 1)/8

c(z) = −(z15
+ z13

)/2

d(z) = (z28 − z26 − z2
+ 1)/4

ρ = 7/3

Family (r(4z + 3), p(4z + 3))
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Abstract. In this paper, we propose two new constructions of identity-

based proxy re-encryption (IB-PRE). The most important feature of our

schemes is that we no longer need the semi-trust assumption on the

proxy. Moreover, we describe the IND-PrID-CCA/CPA security models

for an IB-PRE in a single-hop scenario, and then give a general analysis

on the relationship between the IND-PrID-CPA security model and the

desirable PRE properties: unidirectionality, collusion “safeness” and non-

transitivity. Our first scheme has no ciphertext expansion through the

re-encryption and is proven IND-PrID-CPA secure in the random oracle

model. The second one achieves the IND-PrID-CCA security.

1 Introduction

Background and Motivations. In 1998, Blaze et al. [3] first proposed the
primitive of proxy re-encryption (PRE), in which a proxy with specific infor-
mation (re-encryption key) can translate a ciphertext for the original decryptor,
Alice (delegator), to another ciphertext with the same plaintext for the dele-
gated decryptor, Bob (delegatee). The proxy cannot, however, access the plain-
text. PREs have many intriguing applications, such as email forwarding, law
enforcement, and secure network file storage [2,3]. This concept quickly gained
popularity, and many PRE schemes with identity-based settings (IB-PRE) have
also appeared [10,14,8,18].

The idea of identity-based cryptography can be traced back to the 1984 study
by Shamir [16]. In identity-based settings, the public key of a user is only his/her
identity, such as a social service number, e-mail address, or IP address, while the
corresponding secret key is generated by a trusted private key generator (PKG)
and transmitted to the user via a secure channel. Identity-based framework alle-
viates the burden for certification management and thus identity-based proxy re-
encryption (IB-PRE) schemes are more desirable than non-identity-based ones.
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Therefore in this study we mainly focus on IB-PREs. Note that there is another
approach to constructing PRE schemes that do not require the ID-based setting.
Please refer to recent literatures [1,7,9,12,13,17], etc. in this approach.

In 2007, Green and Ateniese [10] first presented two IB-PRE schemes: One
is IND-PrID-CPA secure and another is IND-PrID-CCA secure. Shortly after-
wards, Matsuo [14] also presented two PRE schemes: a hybrid PRE scheme and
an IB-PRE scheme that was allegedly be CPA-secure in the standard model.
However, in Matsuo’s IB-PRE scheme the re-encryption key contains no infor-
mation about the delegator. As a result, once a single re-encryption key and
the secret key of the corresponding delegatee were leaked, original ciphertexts
for any users, including the target user, in the system could be decrypted by
the adversary. In the same year, Chu and Tzeng [8] also proposed two IB-PRE
schemes and claimed that both were secure in the standard models. They also
claimed that the second scheme was CCA-secure. However, Shao and Cao [17]
showed that the second scheme failed to achieve CCA security since the trans-
formed ciphertext is, in essence, malleable. With further checking, we also find
that the reduction on the CPA security of their first IB-PRE scheme involved
the coin-tossing technique similar to that used by Boneh and Franklin in [5].
We know that this private coin-tossing technique is essentially a random oracle
– more precisely, a one-bit random oracle. This suggests that at the present it
is still a challenge to design an IB-PRE scheme in the standard model, even
just achieving CPA security. In [18], Tang et al. proposed a new inter-domain
IB-PRE scheme. Though it is only CPA secure in the random oracle model, a
remarkable advantage of the scheme is that it allows the delegator and delegatee
to be in different domains, thus it is extremely useful in certain scenarios.

However, all these IB-PRE schemes need the assumption of the proxy to
be semi-trusted, i.e., the proxy does not collude with the delegatees and other
proxies to attack on the delegator, in order to protect the delegator’s secret key
from collusion attacks. This assumption is unnatural in many cases when the
proxy cannot be assumed as trusted, such as in an open cloud system [11,19].
As far as we know, the first PRE scheme that tries to remove the semi-trust
assumption is that in [2]. The PRE scheme is not in identity-based framework
and we are not aware of any IB-PRE scheme without a semi-trust assumption.

Many interesting properties have also been surmised for the primitive of PREs.
In particular, the following properties become greatly sensitive when we remove
the semi-trust assumption. In the following context, let X + Y → Z (resp.
X+Y � Z) denote Z can be derived from X and Y (resp. Z cannot be derived
from X and Y ).

1. Collusion “safeness”. This property is first proposed in [2], indicating that
even if Bob and the proxy collude, they cannot extract Alice’s secret key.
More specifically, this property can be denoted by rkA→B + skB � skA,
where rkA→B means the re-encryption key for transferring user A’s cipher-
text into user B’s ciphertext, and skA, skB are user A’s secret key and user
B’s secret key, respectively.
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2. Non-transferability. This property is also first proposed in [2] which requires
that the proxy and a set of colluding delegatees cannot re-delegate decryption
rights [2]. More specifically, this property can be denoted by rkA→B +
skB � rkA→C for any user C other than A and B.

Here we need to point out in which scenarios the above properties are extremely
useful.

– Regarding the property of collusion “safeness”, we know that in general
scenarios, knowing re-encryption key rkA→B and secret key skB allows one
to decrypt user A’s ciphertexts; so in some sense the functionality of the
combination of rkA→B and skB, denoted by FrkA→B ,skB , seems to imply the
functionality of skA, denoted by FskA . However, the following cases suggest
that FrkA→B ,skB does not imply FskA :

• If the sender has the choice to generate a ciphertext for which re-encryption
is not permitted, then one can decrypt user A’s ciphertexts by using skA,
but cannot do the same work by using the combination of rkA→B and
skB.

• If the scenario is also single-hop1 and rkC→A is given, then by using skA
one can decrypt user C’s ciphertexts, but cannot do the same work by
using the combination of rkA→B and skB.

– Regarding the property of non-transferability, we know that in general sce-
narios, the proxy, colluding with the delegatee, can decrypt the delegator’s
ciphertexts and then can encrypt the messages under others’ public keys; so
in some sense FrkA→B ,skB seems to imply the functionality of re-encryption
key rkA→C , denoted by FrkA→C . However, the latter pattern requires that
the delegatee remains an active, online participant. According to [2], the
property of non-transferability is meaningful in the sense that the only way
for the delegatee to transfer offline decryption capabilities to others is to
expose his/her own secret key.

Up to now, we have neither found a secure IB-PRE scheme with collusion
“safeness”, nor known any secure PRE/IB-PRE scheme with non-transferability.
Therefore our second motivation is to design IB-PRE schemes that are collusion-
“safe”. Also, it is desirable that the schemes are non-transferable.

In addition, we would like to address another important property of PRE/IB-
PRE:

3. Non-transitivity. This property means that two consecutive proxies cannot
re-delegate decryption rights [2]. More specifically, this property can be de-
noted by rkA→B + rkB→C � rkA→C .

1 In the single-hop scenario, re-encrypting a re-encrypted ciphertext leads to an invalid

ciphertext. In the opposite (i.e., multi-hop) scenario, Bob’s ciphertext that is re-

encrypted from Alice’s ciphertext by using the re-encryption key rkA→B could be

further converted into Charlie’s ciphertext by using the re-encryption key rkB→C .

Interested readers can refer to [2,7] for more details related to the definitions of

“single-hop” and “multi-hop”.
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Suppose that user A’s true intention is merely to enable a proxy possessing
rkA→B to convert his ciphertexts only to user B, and not to any other users.
Suppose further, by coincidence user B allows a proxy who knows rkB→C to
convert his ciphertexts to user C. Now, let us consider the single-hop scenario.
If a PRE/IB-PRE scheme is not non-transitive, then user A’s ciphertexts could
be converted into user C’s ciphertexts by collusion of these two proxies. This is
unexpected from user A’s perspective. Therefore the property of non-transitivity
is also desirable in certain scenarios.

Remark 1. Regarding the above mentioned properties of PRE/IB-PRE, we would
like to clarify the following points:

(1) The property of non-transitivity is much more desirable for a PRE/IB-PRE
scheme in the single-hop scenario than in the multi-hop scenario, because
for a multi-hop scenario if two consecutive re-encryption keys, e.g., rkA→B

and rkB→C , are given, then re-encrypting transformation from user A’s ci-
phertexts into user C’s ciphertexts is an authorized functionality, instead of
an attack, though this approach requires that the proxies remain an active,
online participant.

(2) In the single-hop scenario, the property of collusion “safeness” becomes a
necessary condition of non-transitivity. The property of non-transitivity im-
plies that by using the combination of two consecutive re-encryption keys
rkA→B , rkB→C and secret key skC , one cannot decrypt a ciphertext for user
A, while if a PRE/IB-PRE scheme is not collusion-safe, by using rkA→B ,
rkB→C and skC , one could derive skB (or even skA), which enables him/her
to decrypt a ciphertext for user A. This is contradictory.

Contributions and Organizations. To safely remove the semi-trust assump-
tion on the proxy, we let the PKG, which has already been assumed as trustable,
take part in generating the re-encryption keys. From the standpoint of the dele-
gator, this is a less desirable but tolerable action since he/she cannot prevent the
PKG from letting others decrypt his/her ciphertexts. By doing so, we propose
two new constructions of IB-PRE. Our first scheme has no ciphertext expansion
after re-encryption operation and the receiver need not know whether the cipher-
text is re-encrypted. Our enhanced version achieves IND-PrID-CCA security by
using the Canetti-Halevi-Katz (CHK) technique [6]. In addition, both construc-
tions are unidirectional, meaning “delegation from A → B does not allow re-
encryption from B → A”, which is another desirable property of PRE/IB-PRE
(refer to [2] for details).

The rest of the paper is organized as follows. In Section 2, we recall the related
preliminary and cryptographic assumptions. In Section 3, we first reformulate
the definition of IB-PRE scheme, then propose the security models that reflect
the removal of the semi-trust assumption, and finally give an analysis on the
relationship between the IND-PrID-CPA security model and the desirable PRE
properties: unidirectionality, collusion “safenes” and non-transitivity. Concrete
constructions of IB-PRE schemes and the corresponding provable security re-
ductions are given in Section 4. Concluding remarks are presented in Section 5.
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2 Bilinear Pairings and Complexity Assumptions

Our scheme is based on an admissible pairing that was first used to construct
cryptosystems independently by Sakai et al. [15] and Boneh et al. [5]. The mod-
ified Weil pairing and Tate pairing associated with supersingular elliptic curves
are examples of such admissible pairings. However, we describe pairings and the
related mathematics in a more general format here.

Let G1, G2 be two multiplicative groups with prime order p and g as a gen-
erator of G1. G1 has an admissible bilinear map into G2, ê : G1 × G1 −→ G2, if
the following three conditions hold:

(1) Bilinear. ê(ga, gb) = ê(g, g)ab for all a, b ∈ Z∗
p.

(2) Non-degenerate. ê(g, g) �= 1G2 .
(3) Computable. There is an efficient algorithm to compute ê(g1, g2) for ∀g1, g2 ∈

G1.

Bilinear Diffie-Hellman (BDH) Parameter Generator [5,4]: A random-
ized algorithm IG is a BDH parameter generator if IG takes a security parameter
k > 0, runs in time polynomial in k, and outputs the description of two groups
G1 and G2 of the same prime order p and the description of an admissible pairing
ê : G1 × G1 → G2.

Discrete Logarithm Problem: Given g, ga ∈ G1, or μ, μa ∈ G2, find a ∈ Z∗
p.

Computational Diffie-Hellman (CDH) Problem [5]: Given g, ga, gb ∈ G1,
find gab ∈ G1.
Bilinear Computational Diffie-Hellman (BCDH) Problem [4]: Given
g, ga, gb, gc ∈ G1, find ê(g, g)abc ∈ G2.
Bilinear Decisional Diffie-Hellman (BDDH) Problem [4]: Given g, ga, gb,
gc ∈ G1 and T ∈ G2, determine whether T = ê(g, g)abc.

The BDDH (resp. CDH or BCDH) assumption says that the BDDH (resp.
CDH or BCDH) problem is intractable; i.e., there is no polynomial time al-
gorithm that can solve the BDDH (resp. CDH or BCDH) problem with non-
negligible probability. Clearly the BDDH assumption implies the BCDH assump-
tion, which in turn implies the CDH assumption.

3 Definitions, Models and Properties of IB-PRE

In this section, we first give a review of the definition of the IB-PRE scheme and
then propose the security models of IB-PRE without the semi-trust assumption.
Our model has some differences from the models defined in [10] since those are
based on semi-trust assumption on the proxy. Finally, we further explain the
proposed CPA security model and some aforementioned properties.

3.1 Definition

Definition 1 (IB-PRE). An identity-based proxy re-encryption (IB-PRE) sys-
tem consists of seven algorithms (Setup, Ext, RKG, Enc, REnc, Dec, RDec):
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Setup (setup): This algorithm takes a security parameter 1k as input and re-
turns the system parameters params and the master secret key msk to the
private key generator (PKG); params are shared by all users in the system.

Extract (Ext): This algorithm takes params, msk, and the user’s identity id
as inputs. It outputs the user’s secret key skid.

ReKeyGen (RKG): This algorithm takes params, msk, and a pair of identities
(id, id′) as inputs. It outputs a proxy re-encryption key rkid→id′ , which en-
ables the proxy to convert a ciphertext for user id into a ciphertext for user
id′.

Encryption (Enc): This algorithm takes a plaintext m and user id’s identity
id as inputs. It outputs a ciphertext C of m.

Re-encryption (REnc): This algorithm takes a ciphertext C of the message
m for user id and the re-encryption key rkid→id′ as inputs. It outputs a
re-encrypted ciphertext C′ of the same message m for user id′.

Decryption (Dec): This algorithm takes an original ciphertext C and user id’s
secret key skid as inputs, and it outputs plaintext m corresponding to C.

Re-Decryption (RDec): This algorithm takes a re-encrypted ciphertext C′ for
user id′ and the secret key skid′ as inputs. It outputs the plaintext m corre-
sponding to C′.

The consistency of an IB-PRE scheme is defined as follows: Given msk,
params, and two arbitrary users’ identities id and id′, if

(1) skid ← Ext(params, msk, id),
(2) skid′ ← Ext(params, msk, id′),
(3) rkid→id′ ← RKG(params, msk, id, id′),

then the following conditions must hold:

(1) Consistency between encryption and decryption; i.e.,

Decid(skid, Enc(m, id)) = m, ∀m ∈ M.

(2) Consistency among encryption, proxy re-encryption and re-decryption; i.e.,

RDecid′(skid′ , REnc(rkid→id′ , Enc(m, id))) = m, ∀m ∈ M.

3.2 Security Models

In a sequel, we focus on identity-based unidirectional proxy re-encryption (IB-
PRE) schemes and the so-called single-hop scenario is taken into consideration.
We start from an intuitive analysis. The security of an IB-PRE scheme requires
the following condition to be satisfied: given a challenge ciphertext C∗ for identity
idi, the adversary without knowing

(1) secret key skidi , and
(2) secret key skidj and proxy re-encryption key rkidi→idj
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is not allowed to obtain any information about the corresponding plaintext. In
order to describe this condition more formally, we introduce relation matrix R
and secret key vector s as follows: Suppose there are n users in the system, R
and s are defined as follows:

R = (Rid1 , ..., Ridn)T = (rij) �

⎧⎨⎩1, if i = j, or the re-encryption key
from idi to idj is issued;

0, otherwise,

where Ridi = (ri1, ..., rin)T denotes the delegation relations from idi to others
and rii always equals 1 for the trivial relation from idi to itself.

s = (si) �
{

1, if the secret key of the user idi is issued;
0, otherwise.

Clearly, RTi s = 0 if and only if the above condition holds, i.e., the adver-
sary knows NEITHER “secret key skidi” NOR “secret key skidj and proxy
re-encryption key rkidi→idj ”. (Note that in the definition of R, if the phrase
“from idi to idj” is replaced with the phrase “between idi and idj”, then the
bidirectional model is formulated.)

Now, the security models of an IB-PRE scheme can be formally defined via
Game CCA and Game CPA, each of which involves an adversary A and
challenger C.
Game CCA

– Setup. C generates system parameters params and master key msk, and
then transmits params to A while hiding msk. C also initializes R as an
identity matrix and s as a zero vector.

– Phase 1. A is permitted to ask the following queries and C responds to
them.
• Secret-key query on input idi: C returns skidi and sets si = 1.
• Proxy re-encryption key query on input (idi, idj): C returns proxy re-

encryption key rkidi→idj and sets rij = 1.
• Re-encryption query on input (id, id′, C): C returns corresponding re-

encrypted ciphertext C′.
• Decryption query on input (id, C): C returns the corresponding plain-

text.
• Re-decryption query on input (id′, C′): C returns the corresponding

plaintext.
– Challenge. When the adversary A decides to end phase 1, it submits a

target identity id∗ and messages (m0,m1) of equal lengths. Then C responds
as follows:
• C rejects A’s challenge targets and the game ends2 if RTid∗s �= 0; other-

wise, the simulation continues.
• Flips a fair binary coin κ, constructs a challenge ciphertext C∗ for the

message mκ under the identity id∗, and finally sends C∗ to A.
2 This occurs when A submits an invalid challenge identity.



334 L. Wang et al.

– Phase 2. Phase 1 is repeated with the following restrictions.
• Whenever A makes a new secret key query on some idi or a new proxy

re-encryption key query on (idi, idj), C performs the following steps:
∗ First, prepares makes a virtual response (i.e., without sending the

response to A) as in Phase 1.
∗ Checks whether RTid∗s �= 0 holds. If it does, C removes all modifi-

cations that have just been made and rejects A’s query. Otherwise,
C converts this virtual response into a real response (i.e., sends the
response to A).

• A cannot ask a re-encryption query on (id∗, id, C∗) if A obtained the
secret key skid.

• A cannot ask a decryption query on (id∗, C∗) or a re-decryption query
on (id, C) which C for id has been re-encrypted from C∗ for id∗.

– Guess. Finally, A outputs a guess κ′ ∈ {0, 1}.

Definition 2 (IND-PrID-CCA). In Game CCA, A wins if κ′ = κ, and
an IB-PRE scheme is said to be indistinguishable against an adaptively chosen
identity and ciphertext attacks (IND-PrID-CCA) if for an arbitrary polynomial
time adversary A, the probability |Pr[κ′ = κ] − 1/2| is negligible.

Game CPA

– Setup. Identical to Setup in Game CCA.
– Phase 1. Identical to Phase 1 in Game CCA but with the following

restriction:
• A cannot make decryption and re-decryption queries on any inputs.
• A cannot make re-encryption queries on any inputs.

– Challenge. Identical to Challenge in Game CCA.
– Phase 2. Phase 1 is repeated with the restriction that whenever A makes

a new secret key query on some idi or a new proxy re-encryption key query
on (idi, idj), C performs the following steps:
• First, prepares a virtual response (i.e., without sending the response to

A) as in Phase 1.
• Checks whether RTid∗s �= 0 holds. If it does, C removes all modifications

that it has just made and rejects A’s query. Otherwise, C converts this
virtual response into a real response (i.e., sends the response to A).

– Guess. Identical to Guess in Game CCA.

Definition 3 (IND-PrID-CPA). In Game CPA, adversary A wins if κ′ =
κ, and an IB-PRE scheme is said to be indistinguishable against adaptively cho-
sen an identity and chosen plaintext attacks (IND-PrID-CPA) if for an arbitrary
polynomial time adversary A, the probability |Pr[κ′ = κ] − 1/2| is negligible.

Remark 2. The distinction of our security models from that for IB-PRE schemes
with the semi-trust assumption (e.g., GA07 [10]) is reflected by the restrictions
on queries. In GA07’s IND-PrID-CPA security model [10], when A concludes
phase 1 to give a challenge, he/she is restricted from choosing such id∗ that



New ID-Based Proxy Re-encryption Schemes to Prevent Collusion Attacks 335

“trivial” decryption is possible using keys extracted during this phase (e.g., by
using re-encryption keys to translate from id∗ to identity id for which A holds
a decryption key). Moreover, during Phase 2, not only the query on challenge
〈id∗, C∗〉, but also any combination of queries resulting into the decryption of C∗

is prohibited. In other words, if rkid∗→id1 , rkid1→id2 ,..., rkidk−1→idk
have been

queried, then secret key queries on idi for any i = 1, ..., k are restricted. Thus,
besides reflecting a multi-hop scenario, this restriction captures the characteristic
that the proxy does not collude with delegatees and other proxies. In our defined
IND-PrID-CPA security model, only condition RTid∗s = 0 is requested. That is,

(1) the secret key query on id∗ is restricted and
(2) asking both the secret key query on id and the proxy re-encryption key query

on id∗ → id is restricted.

This restriction reflects the removal of the semi-trust assumption, because a re-
encryption key query on id→ id′ and the secret key query on id′ are allowed to
be requested by A.

Theorem 1. If a single-hop IB-PRE scheme achieves the IND-PrID-CPA se-
curity defined above, then it is unidirectional, collusion-safe, and non-transitive.

Proof. First, according to the definition of the IND-PrID-CPA security, the ad-
versary A is allowed to ask for secret key skid and re-encryption key rkid→id∗

for arbitrary identity id �= id∗ in Phase 2 of Game CPA; i.e., after receiving
ciphertext C∗.

– Unidirectionality. Suppose that the discussed IB-PRE scheme is not unidirec-
tional; i.e., A could perform reverse re-encryption. Then A can convert C∗

that is encrypted by using target identity id∗ into a valid ciphertext C̃∗ for
the user with identity id. Thus, A can break the IND-PrID-CPA security
by using id’s secret key skid. This is contradictory. Therefore the proposed
IND-PrID-CPA security implies unidirectionality.

In addition, according to the definition of IND-PrID-CPA security, the adversary
A is also allowed to ask for re-encryption keys rkid∗→id and rkid→id′ as well as
secret key skid′ in either Phase 1 or 2 of Game CPA. But A’s query on secret
key skid will be rejected. Here, we assume that all these three identities, id∗, id,
and id′, are distinct.

– Non-transitivity. Suppose that the discussed IB-PRE scheme fails to cap-
ture the property of non-transitivity, then A could derive re-encryption key
rkid∗→id′ from re-encryption keys rkid∗→id and rkid→id′ . As a result, A can
convert C∗ into a valid ciphertext for user id′. Apparently, A can in turn use
skid′ to break the IND-PrID-CPA security. This is also contradictory. Thus
the proposed IND-PrID-CPA security implies Non-transitivity.

– Collusion “safeness”. Suppose that the discussed IB-PRE scheme fails to cap-
ture the property of collusion “safeness”, then A could derive secret key skid
from rkid→id′ and skid′ . Additionally, using rkid∗→id, A can convert C∗ into
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a valid ciphertext for user id. Apparently, A can in turn use skid to break
the IND-PrID-CPA security. This is contradictory. Therefore the proposed
IND-PrID-CPA security implies collusion “safeness”. In fact, the property
of collusion “safeness” is also implied by the property of non-transitivity in
the single-hop scenarios (see Remark 1 for detailed arguments). ��

4 Proposed Schemes

4.1 A CPA-Secure and Non-transferable IB-PRE Scheme

Our basic IB-PRE scheme consists of the following seven algorithms:

1. Setup (setup): The actions performed by the trusted authority, PKG, are
as follows:
– Run the BDH parameter generator IG with an input 1k to generate

a prime p, two multiplicative groups G1 and G2 of order p, and an
admissible bilinear map ê : G1 × G1 → G2.

– Select α ∈ Z∗
p and compute g1 = gα ∈ G1, where g is a generator of

G1; choose two elements g2, η ∈ G1 at random, where η is called the
re-encryption parameter.

– Let H : {0, 1}l → G1 (where l is a fixed positive integer) be a crypto-
graphic hash function.

The system parameters are given by

params = (G1,G2, p, ê, g, g1, g2, η,H),

and the master key is expressed as msk = gα2 .
2. Extract (Ext): The PKG generates a secret key for the user with identity
id ∈ {0, 1}l as follows:
– Select u ∈ Z∗

p and compute skid = (d0, d1) = (gα2H(id)u, gu). Note that
this u will be used later for issuing a proxy re-encryption key. But the
PKG need not store each user’s u. Instead, each u can be derived by the
formula u = hmsk(id) whenever it is required, where hmsk(·) is a keyed
hash function.

– Send skid to user id via a secure channel. The user can validate his/her
secret key by checking whether

ê(d0, g)
?= ê(g1, g2)ê(H(id), d1)

holds.
3. ReKeyGen (RKG): There are two steps:

– User id sends (“RK”, id, id′) to the PKG which returns the seed of re-
encryption key

r̃kid→id′ =
(
H(id)
H(id′)

)u′

to user id via a secure channel, where u′ was selected by the PKG to
generate secret key for id′.
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– User id picks δ ∈ Z∗
p at random and then computes the proxy re-

encryption key as follows:

rkid→id′ = (rk1, rk2) = (ηδ
(
H(id)
H(id′)

)u′

, gδ).

Finally, user id sends rkid→id′ to his/her proxy via a secure channel.
4. Encryption (Enc): To encrypt message m ∈ M (⊆ G2) for user id, the

encryptor selects r ∈ Z∗
p and sends C to the decryptor, where

C = (C1, C2, C3, C4) = (m · ê(g1, g2)r, gr, H(id)r, ηr).

Note that if the encryptor does not want the ciphertext to be re-encrypted,
he/she can omit C4, or directly pick C4 ∈ G1 at random.

5. Re-Encryption (REnc): Upon receiving 〈C = (C1, C2, C3, C4), id, id′〉, the
proxy first checks whether ê(C2, η) = ê(C4, g) holds: If not, outputs ⊥ which
means that the ciphertext is not allowed to be re-encrypted; otherwise, com-
putes C′ = (C′

1, C2, C3) and sends it to user id′, where

C′
1 = C1 · ê(C4, rk2)

ê(C2, rk1)
.

6. Decryption (Dec): With the input (C1, C2, C3,−), the original decryptor
id can decrypt the ciphertext by computing

m = C1 · ê(C3, d1)
ê(C2, d0)

.

7. Re-Decryption (RDec): With the re-encrypted ciphertext (C′
1, C2, C3) as

the input, user id′ performs the decryption by computing

m = C′
1 · ê(C3, d

′
1)

ê(C2, d′0)
,

where (d′0, d
′
1) is user id′’s secret key. Clearly, the algorithm RDec is exactly

the same as the algorithm Dec. So, from the viewpoint of the decryptor,
he/she need not know whether the ciphertext is re-encrypted.

Remark 3. Though the inputs of the decryption algorithm and the re-decryption
algorithm are different, they are in fact indistinguishable in the sense that the
decryptor cannot decide whether or not the received ciphertext has been re-
encrypted, since the encryptor could send a triple if he/she does not want the
message to be read by others apart from the original decryptor.

Theorem 2 (Consistency of IB-PRE). The above IB-PRE scheme is con-
sistent.



338 L. Wang et al.

Proof. The consistency can be checked by the following computations:

(1) Consistency between encryption and decryption.

C1 · ê(C3, d1)
ê(d0, C2)

= m · ê(g1, g2)r · ê(H(id)r, gu)
ê(gα2H(id)u, gr)

= m · ê(g1, g2)r · ê(H(id)r, gu)
ê(gα2 , gr) · ê(H(id)u, gr)

= m.

(2) Consistency among encryption, proxy re-encryption and decryption.

C′
1 · ê(C3, d

′
1)

ê(d′0, C2)

=
C1

ê(C2, rkid→id′ )
· ê(C3, d

′
1)

ê(d′0, C2)

=
m · ê(g1, g2)r

ê(gr, (H(id)/H(id′))u′)
· ê(H(id)r , gu

′
)

ê(gα2H(id′)u′ , gr)

= m · ê(g1, g2)r · ê(g
r, H(id′)u

′
)

ê(gr, H(id)u′)
· ê(H(id)u

′
, gr)

ê(g2, gr1) · ê(H(id′)u′ , gr)
= m.

��
Theorem 3 (IND-PrID-CPA of IB-PRE). Suppose that H is a random
oracle. Then, the above IB-PRE scheme is indistinguishable against an adap-
tively chosen identity and plaintext attacks (IND-PrID-CPA) under the bilinear
decisional Diffie-Hellman (BDDH) assumption. More precisely, if there is an ad-
versary that can break the IND-PrID-CPA security of the above IB-PRE scheme
with the probability at least ε within time t, then there is an algorithm that can
solves the BDDH problem in G2 with the probability at least ε′ within time t′,
such that

ε′ ≥ ε

e · (qs + 2qr)
and t′ = t+ tQ,

where e is the base of natural logarithm and tQ denotes the time required for
answering all queries, while qs and qr are the numbers of secret key queries and
re-encryption key queries, respectively.

Proof. See Appendix A.

Corollary 1. The proposed IB-PRE scheme is collusion-“safe” and non-transitive
without the semi-trust assumption.

Remark 4. Though it is not known whether the definition of the IND-PrID-CPA
security guarantees the property of non-transferability (which is not proven in
Theorem 1), the following informal argument indicates that our proposed IB-
PRE scheme indeed achieves this desirable property.
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Given re-encryption key rkA→B = (ηδ
(
H(A)
H(B)

)uB

, gδ) and secret key skB =

(gabH(B)uB , guB ), under the aforementioned cryptographic assumption, we have
not seen any method to retrieve the re-encryption key

rkA→C = (ηδc

(
H(A)
H(C)

)uC

, gδc)

without knowing uC , which is computable only by the PKG. An equivalent way
to obtain rkA→C is to calculate r̃kA→C =

(
H(A)
H(C)

)uC

; i.e., the seed of the re-
encryption key. However, the following facts suggest the difficulty in working out
r̃kA→C :

– First, it is difficult to separate factors gab and H(B)uB from the pair
(gabH(B)uB , guB ) with given g, ga, gb ∈ G1 for unknown a, b, uB ∈ Z∗

p.
– Second, without loss of generality, let us view H(A), H(B) and H(C) as
gx, gy and gz ∈ G1 for some unknown x, y, z ∈ Z∗

p, respectively. Then,
computing r̃kA→C is equivalent to computing g(x−z)uC ∈ G1 from the given
g, gx, gy, gz, g(x−y)uB , guB and guC ∈ G1.

Both of the above cases are apparently infeasible under the assumption of the
intractability of the CDH problem in G1.

4.2 CCA-Secure Construction

Let H1 : G2 ×G2 → Z∗
p, H2 : G2 → {0, 1}log |M| (where M is the message space)

and H3 : {0, 1}∗ → G1 be three collision-resistant hash functions. In contrast to
the CPA-secure IB-PRE scheme in section 4.1, only the following four algorithms
must be modified:

Encryption (Enc): To encrypt the message m ∈ M = {0, 1}n for user id, the
encryptor picks a random number σ ∈ G2, sets r = H1(m,σ) ∈ Z∗

p and computes

(C0, C1, C2, C3, C4) = (m⊕H2(σ), σ · ê(g1, g2)r, gr, H(id)r, ηr).

Finally, it sets h = H3(id||C0||C1||C2||C3||C4) and S = hr and sends 〈id, S, C〉
to the decryptor, where C = (C0, C1, C2, C3, C4).

Re-Encryption (REnc): Upon receiving 〈id, S, C = (C0, C1, C2, C3, C4)〉, the
proxy who possesses the re-encryption key (rk1, rk2) first computes

h = H3(id||C0||C1||C2||C3||C4),

then checks whether

ê(g, S) = ê(h,C2) and ê(C2, η) = ê(C4, g)

hold simultaneously: If not, it outputs ⊥ which means the ciphertext is invalid
or not allowed to be re-encrypted; otherwise, it computes

C′
1 =

C1 · ê(C4, rk2)
ê(C2, rk1)

and sends 〈id′, C′〉 to user id′, where C′ = (C0, C
′
1, C2, C3).



340 L. Wang et al.

Decryption (Dec): With the input 〈id, S, C = (C0, C1, C2, C3,−)〉, the original
decryptor id first computes h = H3(id||C0||C1||C2||C3||−), then checks whether
ê(g, S) = ê(h,C2). If not, it outputs ⊥; otherwise, it decrypts the ciphertext by
computing

σ′ = C1 · ê(C3, d1)
ê(d0, C2)

and m′ = C0 ⊕H2(σ′),

then outputs m = m′ if C2 = gH1(m
′,σ′), or ⊥ otherwise.

Re-Decryption (RDec): With a re-encrypted ciphertext 〈id′, C′ = (C0, C′
1, C2,

C3)〉 as the input, user id′ first decrypts the ciphertext by computing

σ′ = C′
1 · ê(C3, d

′
1)

ê(d′0, C2)
and m′ = C0 ⊕H2(σ′),

and then outputs m = m′ if C2 = gH1(m′,σ′), or ⊥ otherwise. Here (d′0, d
′
1) is

the user id′’s secret key.

Theorem 4 (IND-PrID-CCA). Suppose that H,H1, H2 and H3 are random
oracles. Then, the above enhanced IB-PRE scheme is indistinguishable against
an adaptively chosen identity and ciphertext attacks (IND-PrID-CCA) under the
bilinear decisional Diffie-Hellman (BDDH) assumption.

Proof. Considering the space limitation, this proof will be given in a full version
that will soon be available.

Remark 5. Though the above transformation makes use of the well-known CHK
technique [6] that was originally invented to derive a CCA-secure PKE from a
CPA-secure IBE in the standard model, the above theorem is merely formulated
in the random oracle model. This situation is very similar to what was done
by Green and Ateniese [10]. At the present, we do not know whether the ROM
assumption in the above theorem and in [10] can be removed.

5 Concluding Remarks

We have proposed two identity-based proxy re-encryption (IB-PRE) schemes
that can prevent collusion attacks. The most important feature of our schemes
is that we no longer need semi-trust assumption on the proxy. Our first con-
struction has no ciphertext expansion during the re-encryption and is proven
IND-PrID-CPA-secure in the random oracle model. It is also converted into an
IND-PrID-CCA-secure IB-PRE scheme. In both schemes, the security is based
on the bilinear decisional Diffie-Hellman assumption and the PKG takes part
in generating the re-encryption keys. It is still open as to whether our proposal
can be proved IND-PrID-CCA-secure in the standard model and the PKG’s
involvement in the re-encryption key generation can be removed.
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A Proof of Theorem 3

Proof. Our proof technique is basically inherited from the Boneh-Boyen IBE
scheme [4], which can be proven secure in the standard model. Unfortunately, in
resorting merely to the Boneh-Boyen hash technique, we have failed to simulate
the related re-encryption keys, though all involved secret keys can be effectively
simulated. For the sake of simulating re-encryption keys, we make concessions
by combining Boneh-Boyen hash technique and the Boneh-Franklin coin-tossing
technique that is essentially a random oracle model [5].

Suppose that the adversary A has advantage ε in attacking IND-PrID-CPA
security of IB-PRE. We now build an algorithm C that solves BDDH in G2. C’s
goal is to decide whether T = ê(g, g)abc for a given input (g, ga, gb, gc, T ). Let
g1 = ga, g2 = gb, g3 = gc. Then, C performs the following steps:

Initialization. First, C initializes an identity re-encryption key matrix R =
(rij) = I and a zero secret key vector s = (s1, ..., sn) = 0, where n is an
estimation of the maximum number of users. Next, C picks a random number
x ∈ Z∗

p and sets three empty tables with the following structures:

– Hash Table (KT): (v, coin, h)
– Secret Key Table (SKT): (id, r, d0, d1)
– Proxy Re-encryption Key Table (PRKT): (id, id′, rk(1)

id→id′ , rk
(2)
id→id′ )

– Semantic agreement on table operation. We view each above table as an
object-oriented database and possessing the so-called public method lookup:
For a given table TBL with t-fields, the operation

TBL.lookup(v1, v2, · · · , vi−1, vi, vi+1, · · · , vt)

will return 0 if there is no tuple in TBL such that the first field is v1 and the
i-th field is vi, and return 1 otherwise. Here, we assume that there are no
repeated identical tuples in a table and the retrieval conditions are specified
by the underlined values. We also agree that: (1) Whenever lookup returns



New ID-Based Proxy Re-encryption Schemes to Prevent Collusion Attacks 343

1, each vi(i = 1, · · · , t) is assigned with the values recorded in i-th field of
the corresponding item in TBL; (2) Whenever lookup returns 0, except for
underlined inputs (e.g., v1 and vi in above example), other input parameters
become undefined.

– Identity table settings. Without loss of generality, suppose there is an identity
table, denoted by IDT , with a structure (i, idi) that is automatically main-
tained by the system such that whenever a new user with identity id enrolls
in the system, a new item is added into this table accordingly. Therefore, for
any given legitimate identity id, we can determine an index i ∈ {1, · · · , n}
such that id = idi.

Setup. C sets params = (G1,G2, p, ê; g, g1, g2, η) and sends it to A, where re-
encryption parameter η ∈ G1 is picked at random.

Phase 1. When A invokes the following queries, C works accordingly.

– Hash query on input v.
1. If KT.lookup(v, coin, h) = 1 then answers A with h;
2. Otherwise, C generates a random coin ∈ {0, 1} so that Pr[coin = 0] = ξ

for some ξ that will be determined later, and then sets

h =
{
gx1g

v, If coin = 0;
gv, Otherwise.

Then, answers A with h and adds (v, coin, h) into KT.
– Secret key query on input id.

1. Without loss of generality, suppose A has made a hash query on id.
(Otherwise, C can make this query on behalf of A.) This suggests there
exists an item (id, coin, h) in the hash table KT. Now, C checks whether
coin = 1 in this item. If so, aborts; Otherwise, continues.

2. If SKT.lookup(id, r, d0, d1) = 1 then C answers A with (d0, d1) and
goes to Step 4; Otherwise, C continues.

3. C picks r ∈ Zp at random and sets

d0 = g
−id

x
2 H(id)r, d1 = g

−1
x

2 gr.

Then, C answers A with (d0, d1) and adds (id, r, d0, d1) into SKT.
Here, we claim that the secret key for id is well-formed. To see this, let
r̃ = r − b

x . Then, we have that

d0 = g
−id

x
2 (gx1 g

id)r

= ga2(gx1 g
id)

−b
x (gx1 g

id)r

= ga2H(id)r̃,

d1 = g
−b
x gr

= gr̃.

4. C updates si = 1 for some i ∈ {1, · · · , n} such that idi = id.
– Proxy re-encryption key query on input (id, id′).



344 L. Wang et al.

1. If PRKT.lookup(id, id′, rk(1)
id→id′ , rk

(2)
id→id′ ) = 1, C answers A with

(rk(1)
id→id′ , rk

(2)
id→id′ ) and goes to Step 5; otherwise, C continues.

2. Similarly, we can assume that A has made hash queries on id and id′.
(Otherwise, C can make these queries on behalf of A.) This suggests there
exist two items (id, coin, h) and (id′, coin′, h′) in the hash table KT.
Now, C checks whether coin = coin′ = 0. If not, it aborts; Otherwise, it
continues.

3. If SKT.lookup(id′, r′, d′0, d′1) = 1 then C goes to the step 4 directly;
Otherwise, C picks r′ ∈R Z∗

p and sets

d′0 = g
−id′

x
2 H(id)r

′
, d′1 = g

−1
x

2 gr
′
,

and then adds (id′, r′, d′0, d
′
1) into SKT.

4. C picks δ ∈ Zp at random, and answers A with

(rk(1)
id→id′ , rk

(2)
id→id′ ) = (ηδ(gr

′
g

−1
x

2 )id−id
′
, gδ)

and adds (id, id′, rk(1)
id→id′ , rk

(2)
id→id′ ) into PRKT. Here, we claim that

(rk(1)
id→id′ , rk

(2)
id→id′ ) is well-formed. To see this, let r̃′ = r′ − b

x . Then, we
have that

rk
(1)
id→id′ = ηδ · (gr′g

−1
x

2 )id−id
′

= ηδ · (gr′− b
x )id−id

′

= ηδ · (gid−id′)r′− b
x

= ηδ · ( g
x
1g
id

gx1g
id′ )

r′− b
x

= ηδ ·
(
H(id)
H(id′)

)r̃′
,

rk
(2)
id→id′ = gδ.

5. C updates rij = 1 for some i, j ∈ {1, · · · , n} such that idi = id and
idj = id′.

Challenge. When the adversary A decides to end phase 1,

– The A submits a target identity id∗ and messages (m0,m1) of equal length.
– The challenger C responds as follows:

• At first, computes id∗’s relation vector Rid∗ in the relation matrix, then
rejects A’s challenge targets and ends the simulation, if RTid∗s �= 0; oth-
erwise, continues.

• Next, C checks whether coin∗ = 1 in this item. If not, it aborts; Oth-
erwise, it continues. Here, we suppose that A has made a hash query
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on id∗ and there exists an item (id∗, coin∗, h∗) in the hash table KT;
Otherwise, C can make this query on behalf of A before this step.

• Then, C flips a fair binary coin κ ∈ {0, 1}, and constructs a challenge
ciphertext C∗ = (mκ · T, g3, gid∗3 ) for the message mκ.

• Finally, C sends C∗ to A.
* Since g3 = gc holds and H(id∗) = gid

∗
when coin∗ = 1. Thus, we have that

C∗ = (mκ · T, gc, H(id∗)c).

Hence, if T = ê(g, g)abc = ê(g1, g2)c then C∗ is a valid ciphertext ofmκ under
the public key id∗. Otherwise, C∗ is independent of κ in the adversary’s view.

Phase 2. Phase 1 is repeated with the following restrictions: Whenever the
adversary A makes a new secret key query on some idi or a new proxy re-
encryption key query on (idi, idj), C performs the following steps:

– First makes a virtual response (i.e., without sending the response to A) as
in Phase 1, except for the following case3:
• If A invokes a proxy re-encryption key query on (id, id∗), the response

could be arbitrary random pair (rk(1)
id→id∗ , rk

(2)
id→id∗) ∈ G2

1.
– Checks whether RTid∗s �= 0 holds. If it does, C withdraws all modifications

that have just been made and rejects A’s query. Otherwise, C makes this
virtual response into a real response (i.e., sending the response to A).

Guess. Finally, A outputs a guess κ′ ∈ {0, 1}. C concludes its own game by
outputting a guess as follows. If κ = κ′ then C outputs 1 meaning T = ê(g, g)abc.
Otherwise, it outputs 0 meaning T �= ê(g, g)abc.

If T = ê(g, g)abc then A’ guess must satisfy |Pr[κ = κ′] − 1/2| > ε. However,
Pr[κ = κ′] = 1/2 when T is uniform in G2. Therefore if C has not aborted and
a, b, c are uniform in Z∗

p, while T is uniform in G2, we have that

|Pr[C(g, ga, gb, gc, ê(g, g)abc) = 0] − Pr[C(g, ga, gb, gc, T ) = 0]|
≥ |(1

2
± ε) − 1

2
| · Pr[abort]

= ε.

Now, let us provide an estimation of the probability that C has not aborted. Note
that C will never abort on replying to a hash query. At first C will not abort
in the challenge phase with probability exactly (1 − ξ). Similar to [5], suppose
there are in total qs secret key queries and qr re-encryption key queries. For
each secret key query, C will not abort with probability of exactly ξ, while for
each re-encryption key query, C will not abort with probability of exactly ξ2.
Considering that the event for aborting a secret key and the event for aborting

3 The response for A’s proxy re-encryption key query on (id∗, id) can be generated by

the same procedure described in phase 1 because that in our scheme, user id∗’s secret

key, though it cannot be simulated, is not used in the re-encryption key generation.
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a re-encryption key might be dependent, the probability for C not aborting the
whole simulation is at least

Pr[abort] ≥ (1 − ξ)ξqsξ2qr .

The last item achieves maximum 1
e·(qs+2qr) when ξ = 1 − 1

qs+2qr
. This suggests

that in total, C will solve the BDDH problem with an advantage over 1/2 with
at least ε

e·(qs+2qr) , where e is the base of the natural logarithm, while qs and qr
are the numbers of secret key queries and re-encryption key queries, respectively.
This completes the proof of the theorem. ��
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Abstract. Lewko and Waters [Eurocrypt 2010] presented a fully secure

HIBE with short ciphertexts. In this paper we show how to modify their

construction to achieve anonymity. We prove the security of our scheme

under static (and generically secure) assumptions formulated in compos-

ite order bilinear groups.

In addition, we present a fully secure Anonymous IBE in the secret-key

setting. Secret-Key Anonymous IBE was implied by the work of [Shen-

Shi-Waters - TCC 2009] which can be shown secure in the selective-id

model. No previous fully secure construction of secret-key Anonymous

IBE is known.

1 Introduction

Identity-Based Encryption (IBE) was introduced by [14] to simplify the public-
key infrastructure. An IBE is a public-key encryption scheme in which the public-
key can be set to any string interpreted as one’s identity. A central authority
that holds the master secret key can produce a secret key corresponding to a
given identity. Anyone can then encrypt messages using the identity, and only
the owner of the corresponding secret key can decrypt the messages. First re-
alizations of IBE are due to [2] which makes use of bilinear groups and to [8]
which uses quadratic residues. Later, [10] introduced the more general concept
of Hierarchical Identity-Based Encryption (HIBE) issuing a partial solution to
it. An HIBE system is an IBE that allows delegation of the keys in a hierarchical
structure. To the top of the structure there is the central authority that holds
the master secret key, then several sub-authorities (or individual users) that hold
delegated keys which can be used to decrypt only the messages addressed to the
organization which the sub-authority belongs.

In this paper we are interested in Anonymous HIBE that are a special type of
HIBE with the property that ciphertexts hide the identity for which they were
encrypted. Interest in Anonymous IBE and HIBE was spurred by the observa-
tion that it can be used to build Public-Key Encryption with Keyword Search
[1]. As noticed by [4], the first construction of Anonymous IBE was implicit
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in [2] whose security relied on the random oracle assumption. Boneh and Wa-
ters [5] constructed Anonymous HIBE in the selective-id model. Recently, Lewko
and Waters [12] used the Dual System Encryption methodology introduced by
[17] to construct the first fully secure HIBE system with short ciphertexts. The
construction given by [12] seems inherently non-anonymous. Another construc-
tion of Anonymous HIBE was given by [13] but their security proof is in the
selective-ID model.

We show that a slight modification of the HIBE of [12] gives the first fully
secure Anonymous HIBE. Our construction has, like the non-anonymous one of
[12], short ciphertexts; that is, a ciphertext consists of a constant (that is inde-
pendent of the depth of the hierarchy) number of elements from the underlying
bilinear group. The full security of our construction is based on static (that is,
independent from the running time of the adversary and the size of hierarchy)
and generically secure assumptions.

Recently, a fully-secure hierarchical predicate encryption system has been
given by [11]. Anonymous HIBE can be obtained as special case of the construc-
tion of [11] and, even though the construction of [11] is based on prime order
gropus, the ciphertexts of the resulting Anonymous HIBE consist of O(�2) group
elements and keys have O(�3) group elements. In [7] the authors constructed an
Anonymous HIBE scheme based on hard lattice problems; in this construction
the size of a ciphertext depends on the depth of the hierarchy.

We also study Secret-Key Anonymous IBE and show that if our public key
construction is used in the secret key setting (that is, the public key is kept
secret) then the scheme enjoys the additional property of key secrecy; that is,
decryption keys for different identities are indistinguishable. We stress that key
secrecy cannot be obtained in the public key setting as an adversary can test if
a secret key Sk corresponds to identity ID by creating a cipertext Ct for ID (by
using the public key) and then trying to decrypt Ct by using Sk. We mention that
the Secret-Key Predicate Encryption Scheme of [15] has Secret-Key Anonymous
IBE as a special case but its security is in the selective-id model. To the best of
our knowledge, the concept of Secret-Key Hierarchical IBE has not been defined
before and we defer its study to future work.
Organization of the work. In Section 2, we present a brief introduction of bilinear
groups and state the complexity assumptions used to prove the security of our
schemes. In Section 3 we present definitions and our construction for Public-
key Anonymous HIBE. Finally, in Section 4, we present definitions and our
construction for Secret-key Anonymous IBE. Due to lack of space the proof of
security of our assumptions in the generic group model is omitted and can be
found in the extended version [6].

2 Composite Order Bilinear Groups and Complexity
Assumptions

Composite order bilinear groups were first used in cryptographic construction in
[3]. We use groups of order product of four primes and a generator G which
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takes as input security parameter λ and outputs a description I = (N =
p1p2p3p4,G,GT , e) where p1, p2, p3, p4 are distinct primes of Θ(λ) bits, G and
GT are cyclic groups of order N , and e : G×G → GT is a map with the following
properties:

1. (Bilinearity) ∀ g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab.
2. (Non-degeneracy) ∃ g ∈ G such that e(g, g) has order N in GT .

We further require that the group operations in G and GT as well the bilinear
map e are computable in deterministic polynomial time with respect to λ. Also,
we assume that the group descriptions of G and GT include generators of the
respective cyclic groups. Furthermore, for a, b, c ∈ {1, p1, p2, p3, p4} we denote by
Gabc the subgroup of order abc. From the fact that the group is cyclic it is simple
to verify that if g and h are group elements of different order (and thus belong-
ing to different subgroups), then e(g, h) = 1. This is called the orthogonality
property and is a crucial tool in our constructions. We now give our complexity
assumptions.

2.1 Assumption 1

For a generator G returning bilinear settings of order N product of four primes,
we define the following distribution. First pick a random bilinear setting I =
(N = p1p2p3p4,G,GT , e) by running G(1λ) and then pick

g1, A1 ← Gp1 , A2, B2 ← Gp2 , g3, B3 ← Gp3 , g4 ← Gp4 , T1 ← Gp1p2p3 , T2 ← Gp1p3

and set D = (I, g1, g3, g4, A1A2, B2B3). We define the advantage of an algorithm
A in breaking Assumption 1 to be:

AdvAA1(λ) = |Prob[A(D,T1) = 1] − Prob[A(D,T2) = 1]|.

Assumption 1. We say that Assumption 1 holds for generator G if for all prob-
abilistic polynomial-time algorithms A AdvAA1(λ) is a negligible function of λ.

2.2 Assumption 2

For a generator G returning bilinear settings of order N product of four primes,
we define the following distribution. First pick a random bilinear setting I =
(N = p1p2p3p4,G,GT , e) by running G(1λ) and then pick

α, s, r ← ZN , g1 ← Gp1 , g2, A2, B2 ← Gp2 , g3 ← Gp3 , g4 ← Gp4 , T2 ← GT

and set T1 = e(g1, g1)αs and D = (I, g1, g2, g3, g4, gα1A2, g
s
1B2, g

r
2, A

r
2). We define

the advantage of an algorithm A in breaking Assumption 2 to be:

AdvAA2(λ) = |Prob[A(D,T1) = 1] − Prob[A(D,T2) = 1]|.
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Assumption 2. We say that Assumption 2 holds for generator G if for all prob-
abilistic polynomial time algorithm A AdvAA2(λ) is a negligible function of λ.

2.3 Assumption 3

For a generator G returning bilinear settings of order N product of four primes,
we define the following distribution. First pick a random bilinear setting I =
(N = p1p2p3p4,G,GT , e) by running G(1λ) and then pick

r̂, s← ZN , g1, U,A1 ← Gp1 , g2, A2, B2, D2, F2 ← Gp2 , g3 ← Gp3 ,

g4, A4, B4, D4 ← Gp4 , A24, B24, D24 ← Gp2p4 , T2 ← Gp1p2p4

and set T1 = As1D24 and D = (I, g1, g2, g3, g4, U, UsA24, U
r̂, A1A4, A

r̂
1A2, g

r̂
1B2,

gs1B24). We define the advantage of an algorithm A in breaking Assumption 3
to be:

AdvAA3(λ) = |Prob[A(D,T1) = 1] − Prob[A(D,T2) = 1]|.
Assumption 3. We say that Assumption 3 holds for generator G if for all prob-
abilistic polynomial time algorithm A AdvAA3(λ) is a negligible function of λ.

3 Public-Key Anonymous HIBE

3.1 Hierarchical Identity Based Encryption

A Hierarchical Identity Based Encryption scheme (henceforth abbreviated in
HIBE) over an alphabet Σ is a tuple of five efficient and probabilistic algorithms:
(Setup, Encrypt, KeyGen, Decrypt, Delegate).

Setup(1λ, 1�): takes as input security parameter λ and maximum depth of an
identity vector � and outputs public parameters Pk and master secret key
Msk.

KeyGen(Msk, ID = (ID1, . . . , IDj)): takes as input master secret key Msk, iden-
tity vector ID ∈ Σj with j ≤ � and outputs a private key SkID.

Delegate(Pk, ID, SkID, IDj+1): takes as input public parameters Pk, secret key for
identity vector ID = (ID1, . . . , IDj) of depth j < �, IDj+1 ∈ Σ and outputs a
secret key for the depth j + 1 identity vector (ID1, . . . , IDj , IDj+1).

Encrypt(Pk,M, ID): takes as input public parameters Pk, message M and iden-
tity vector ID and outputs a ciphertext Ct.

Decrypt(Pk,Ct, Sk): takes as input public parameters Pk, ciphertext Ct and
secret key Sk and outputs the message M . We make the following obvious
consistency requirement. Suppose ciphertext Ct is obtained by running the
Encrypt algorithm on public parameters Pk, message M and identity ID and
that Sk is a secret key for identity ID obtained through a sequence of KeyGen
and Delegate calls using the same public parameters Pk. Then Decrypt, on
input Pk,Ct and Sk, returns M except with negligible probability.
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3.2 Security Definition

We give complete form of the security definition following [16]. Our security
definition captures semantic security and ciphertext anonymity by means of the
following game between an adversary A and a challenger C.

Setup. The challenger C runs the Setup algorithm to generate public parame-
ters Pk which it gives to the adversary A. We let S denote the set of private
keys that the challenger has created but not yet given to the adversary. At
this point, S = ∅.

Phase 1. A makes Create, Delegate, and Reveal key queries. To make a Create
query, A specifies an identity vector ID of depth j. In response, C creates a
key for this vector by calling the key generation algorithm, and places this
key in the set S. C only gives A a reference to this key, not the key itself. To
make a Delegate query, A specifies a key SkID in the set S and IDj+1 ∈ Σ.
In response, C appends IDj+1 to ID and makes a key for this new identity
by running the delegation algorithm on ID, SkID and IDj+1. C adds this key
to the set S and again gives A only a reference to it, not the actual key. To
make a Reveal query, A specifies an element of the set S. C gives this key
to A and removes it from the set S. We note that A needs no longer make
any delegation queries for this key because it can run delegation algorithm
on the revealed key for itself.

Challenge. A gives two pairs of message and identity (M0, ID
�
0) and (M1, ID

�
1)

to C. We require that no revealed identity in Phase 1 is a prefix of either ID�0
or ID�1. C chooses random β ∈ {0, 1}, encrypts Mβ under ID�β and sends the
resulting ciphertext to A.

Phase 2. This is the same as Phase 1 with the added restriction that any
revealed identity vector must not be a prefix of either ID�0 or ID�1.

Guess. A must output a guess β′ for β. The advantage of A is defined to be
Prob[β′ = β] − 1

2 .

Definition 1. An Anonymous Hierarchical Identity Based Encryption scheme
is secure if all polynomial time adversaries achieve at most a negligible (in λ)
advantage in the previous security game.

3.3 Our Construction

In this section we describe our construction for an Anonymous HIBE scheme.

Setup(1λ, 1�): The setup algorithm chooses random description I = (N =
p1p2p3p4,G,GT , e) and random Y1, X1, u1, . . . , u� ∈ Gp1 , Y3 ∈ Gp3 , X4, Y4 ∈
Gp4 and α ∈ ZN . The public parameters are published as:

Pk = (N,Y1, Y3, Y4, t = X1X4, u1, . . . , u�, Ω = e(Y1, Y1)α).

The master secret key is Msk = (X1, α).
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KeyGen(Msk, ID = (ID1, . . . , IDj)): The key generation algorithm chooses ran-
dom r1, r2 ∈ ZN and, for i ∈ {1, 2}, randomRi,1, Ri,2, Ri,j+1, . . . , Ri,� ∈ Gp3 .
The secret key SkID = (Ki,1,Ki,2, Ei,j+1, . . . , Ei,�) is computed as

K1,1 = Y r11 R1,1, K1,2 = Y α1

(
uID1

1 · · ·uIDj

j X1

)r1
R1,2

E1,j+1 = ur1j+1R1,j+1, . . . , E1,� = ur1� R1,�,

K2,1 = Y r21 R2,1, K2,2 =
(
uID1

1 · · ·uIDj

j X1

)r2
R2,2

E2,j+1 = ur2j+1R2,j+1, . . . , E1,� = ur2� R2,�.

Notice that, SkID is composed by two sub-keys. The first sub-key, (K1,1,K1,2,
E1,j+1, . . . , E1,�), is used by the decryption algorithm to compute the blind-
ing factor, the second, (K2,1,K2,2, E2,j+1, . . . , E2,�), is used by the delegation
algorithm and can be used also to verify that the identity vector of a given
ciphertext matches the identity vector of the key.

Delegate(Pk, ID, SkID, IDj+1): Given a key SkID = (K ′
i,1,K

′
i,2, E

′
i,j+1, . . . , E

′
i,�)

for ID=(ID1, . . . , IDj), the delegation algorithm creates a key for (ID1, . . . , IDj ,
IDj+1) as follows. It chooses random r̃1, r̃2 ∈ ZN and, for i ∈ {1, 2}, random
Ri,1, Ri,2, Ri,j+2, . . . , Ri,� ∈ Gp3 . The secret key (Ki,1,Ki,2, Ei,j+2, . . . , Ei,�)
is computed as

K1,1 =K ′
1,1(K

′
2,1)

r̃1R1,1,K1,2=K ′
1,2(K

′
2,2)

r̃1(E′
1,j+1)

IDj+1 (E′
2,j+1)

r̃1 IDj+1
R1,2,

E1,j+2 = E′
1,j+2 · (E′

2,j+2)
r̃1R1,j+2, . . . , E1,� = E′

1,� · (E′
2,�)

r̃1R1,�.

K2,1 = (K ′
2,1)

r̃2R2,1, K2,2 = (K ′
2,2)

r̃2 · (E′
2,j+1)

r̃2IDj+1R2,2,

E2,j+2 = (E′
2,j+2)

r̃2R2,j+2, . . . , E2,� = (E′
2,�)

r̃2R2,�.

We observe that the new key has the same distributions as the key computed
by the KeyGen algorithm on (ID1, . . . , IDj , IDj+1) with randomness r1 = r′1 +
(r′2 · r̃1) and r2 = r′2 · r̃2.

Encrypt(Pk,M, ID = (ID1, . . . , IDj)): The encryption algorithm chooses random
s ∈ ZN and random Z,Z ′ ∈ Gp4 . The ciphertext (C0, C1, C2) for the message
M ∈ GT is computed as

C0 =M · e(Y1, Y1)αs, C1 =
(
uID1

1 · · ·uIDj

j t
)s
Z, C2 = Y s1 Z

′.

Decrypt(Pk,Ct, Sk): The decryption algorithm assumes that the key and cipher-
text both correspond to the same identity (ID1, . . . , IDj). If the key identity is
a prefix of this instead, then the decryption algorithm starts by running the
key delegation algorithm to create a key with identity matching the cipher-
text identity exactly. The decryption algorithm then computes the blinding
factor as:

e(K1,2, C2)
e(K1,1, C1)

=
e(Y1, Y1)αse

(
uID1

1 · · ·uIDj

j X1, Y1

)r1s
e
(
Y1, u

ID1
1 · · ·uIDj

j X1

)r1s = e(Y1, Y1)αs.
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By comparing our construction with the one of [12], we notice that component
t of the public key and components C1 and C2 of the ciphertext have a Gp4 part.
This addition makes the system anonymous. Indeed, if we remove from our
construction the Gp4 parts of t and C1 and C2 (and thus obtain the scheme of
[12]) then it is possible to test if ciphertext (C0, C1, C2) is relative to identity
(ID1, . . . , IDj) for public key (N,Y1, Y3, Y4, t, u1, . . . , u�, Ω) by testing e(C2, t ·
(uID1

1 · · ·uID�

� )) and e(C1, Y1) for equality.

3.4 Security

Following Lewko and Waters [12], we define two additional structures: semi-
functional ciphertexts and semi-functional keys. These will not be used in the
real scheme, but we need them in our proofs.

Semi-functional Ciphertext. We let g2 denote a generator of Gp2 . A semi-
functional ciphertext is created as follows: first, we use the encryption algorithm
to form a normal ciphertext (C′

0, C
′
1, C

′
2). We choose random exponents x, zc ∈

ZN . We set:
C0 = C′

0, C1 = C′
1g
xzc
2 , C2 = C′

2g
x
2 .

Semi-functional Keys. To create a semi-functional key, we first create a nor-
mal key (K ′

i,1, K
′
i,2, E

′
i,j+1, . . . , E

′
i,�) using the key generation algorithm. We

choose random exponents z, γ, zk ∈ ZN and, for i ∈ {1, 2}, random exponents
zi,j+1, . . . , zi,� ∈ ZN . We set:

K1,1 = K ′
1,1 · gγ2 ,K1,2 = K ′

1,2 · gγzk

2 , (E1,i = E′
1,i · gγz1,i

2 )�i=j+1,

K2,1 = K ′
2,1 · gzγ2 ,K2,2 = K ′

2,2 · gzγzk

2 , (E2,i = E′
2,i · gzγz2,i

2 )�i=j+1.

We note that when the first sub-key of a semi-functional key is used to decrypt
a semi-functional ciphertext, the decryption algorithm will compute the blinding
factor multiplied by the additional term e(g2, g2)xγ(zk−zc). If zc = zk, decryption
will still work. In this case, we say that the key is nominally semi-functional. If
the second sub-key is used to test the identity vector of the ciphertext, then the
decryption algorithm computes e(g2, g2)xzγ(zk−zc) and if zc = zk, the test will
still work.

To prove security of our Anonymous HIBE scheme, we rely on the static
Assumptions 1, 2 and 3. For a probabilistic polynomial-time adversary A which
makes q key queries, our proof of security will consist of the following sequence
of q + 5 games between A and a challenger C.

GameReal: is the real Anonymous HIBE security game.
GameReal′ : is the same as the real game except that all key queries will be

answered by fresh calls to the key generation algorithm, (C will not be asked
to delegate keys in a particular way).

GameRestricted: is the same as GameReal′ except that A cannot ask for keys for
identities which are prefixes of one of the challenge identities modulo p2. We
will retain this restriction in all subsequent games.
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Gamek: for k from 0 to q, we define Gamek like GameRestricted except that
the ciphertext given to A is semi-functional and the first k keys are semi-
functional. The rest of the keys are normal.

GameFinal0 : is the same as Gameq, except that the challenge ciphertext is a
semi-functional encryption with C0 random in GT (thus the ciphertext is
independent from the messages provided by A).

GameFinal1 : is the same as GameFinal0 , except that the challenge ciphertext is a
semi-functional encryption with C1 random in Gp1p2p4 (thus the ciphertext
is independent from the identity vectors provided by A). It is clear that in
this last game, no adversary can have advantage greater than 0.

We will show these games are indistinguishable in the following lemmata.

Indistinguishability of GameReal and GameReal′

Lemma 1. For any algorithm A, AdvAGameReal
= AdvAGameReal′ .

Proof. We note that the keys are identically distributed whether they are pro-
duced by the key delegation algorithm from a previous key or from a fresh call to
the key generation algorithm. Thus, in the attacker’s view, there is no difference
between these games. �

Indistinguishability of GameReal′ and GameRestricted

Lemma 2. Suppose that there exists a PPT algorithm A such that AdvAGameReal′ −
AdvAGameRestricted

= ε. Then there exists a PPT algorithm B with advantage ≥ ε
3 in

breaking Assumption 1.

Proof. Suppose that A has probability ε of producing an identity vector ID =
(ID1, . . . , IDk), that is a prefix of one of the challenge identities ID� = (ID�1, . . . , ID

�
j )

modulo p2. That is, there exists i and j ∈ {0, 1} such that that IDi �= ID�j,i mod-
ulo N and that p2 divides IDi − ID�j,i and thus a = gcd(IDi − ID�j,i, N) is a
nontrivial factor of N . We notice that p2 divides a and set b = N

a . The following
three cases are exhaustive and at least one occurs with probability at least ε/3.

1. ord(Y1) | b.
2. ord(Y1) � b and ord(Y4) | b.
3. ord(Y1) � b, ord(Y4) � b and ord(Y3) | b.

Suppose case 1 has probability at least ε/3. We describe algorithm B that breaks
Assumption 1. B receives (I, g1, g3, g4, A1A2, B2B3) and T and constructs Pk by
running the Setup algorithm with the only exception that B sets Y1 = g1, Y3 = g3,
and Y4 = g4. Notice that B has the master secret key Msk associated with Pk.
Then B runs A on input Pk and uses knowledge of Msk to answer A’s queries.
At the end of the game, for all IDs for which A has asked for the key and for
ID� ∈ {ID�0, ID�1}, B computes a = gcd(IDi− ID�i , N). Then, if e ((A1A2)a, B2B3)
is the identity element of GT then B tests if e(T b, A1A2) is the identity element
of GT . If this second test is successful, then B declares T ∈ Gp1p3 . If it is not,
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B declares T ∈ Gp1p2p3 . It is easy to see that if p2 divides a and p1 = ord(Y1)
divides b, then B’s output is correct.

The other two cases are similar. Specifically, in case 2, B breaks Assumption
1 in the same way except that Pk is constructed by setting Y1 = g4, Y3 = g3,
and Y4 = g1 (this has the effect of exchanging the roles of p1 and p4). Instead in
case 3, B constructs Pk by setting Y1 = g3, Y3 = g1, and Y4 = g4 (this has the
effect of exchanging the roles of p1 and p3). �

Indistinguishability of GameRestricted and Game0

Lemma 3. Suppose that there exists a PPT algorithm A such that AdvAGameRestricted
−

AdvAGame0 = ε. Then there exists a PPT algorithm B with advantage ε in breaking
Assumption 1.

Proof. B receives (I, g1, g3, g4, A1A2, B2B3) and T and simulates GameRestricted

or Game0 with A depending on whether T ∈ Gp1p3 or T ∈ Gp1p2p3 .
B sets the public parameters as follows. B chooses random exponents α, a1, . . . ,

a�, b, c ∈ ZN and sets Y1 = g1, Y3 = g4, Y4 = g3 X4 = Y c4 , X1 = Y b1 and ui = Y ai
1

for i ∈ [�]. B sends Pk = (N,Y1, Y3, Y4, t = X1X4, u1, . . . , u�, Ω = e(Y1, Y1)α) to
A. Notice that B knows the master secret key Msk = (X1, α) associated with Pk
and thus can answer all A’s queries.

At some point, A sends B two pairs, (M0, ID
�
0 = (ID�0,1, . . . , ID

�
0,j)) and (M1,

ID�1 = (ID�1,1, . . . , ID
�
1,j)). B chooses random β ∈ {0, 1} and computes the chal-

lenge ciphertext as follows:

C0 = Mβ · e(T, Y1)α, C1 = T a1ID�
β,1+···+aj ID�

β,j+b, C2 = T.

We complete the proof with the following two observations. If T ∈ Gp1p3 , then
T can be written as Y s11 Y s33 . In this case (C0, C1, C2) is a normal ciphertext

with randomness s = s1, Z = Y
s3a1ID�

β,1+···+aj ID�
β,j+b

3 and Z ′ = Y s33 . If T ∈
Gp1p2p3 , then T can be written as Y s11 gs22 Y

s3
3 and this case (C0, C1, C2) is a

semi-functional ciphertext with randomness s = s1, Z = Y
s3a1ID�

β,1+···+aj ID�
β,j+b

3 ,
Z ′ = Y s33 , γ = s2 and zc = a1ID

�
β,1 + · · · + aj ID�β,j + b. �

Indistinguishability of Gamek−1 and Gamek

Lemma 4. Suppose there exists a PPT algorithm A such that AdvAGamek−1
−

AdvAGamek
= ε. Then, there exists a PPT algorithm B with advantage ε in breaking

Assumption 1.

Proof. B receives (I, g1, g3, g4, A1A2, B2B3) and T and simulates Gamek−1 or
Gamek with A depending on whether T ∈ Gp1p3 or T ∈ Gp1p2p3 .

B sets the public parameters by choosing random exponents α, a1, . . . , a�, b, c ∈
ZN and setting Y1 = g1, Y3 = g3, Y4 = g4, X4 = Y c4 , X1 = Y b1 and ui = Y ai

1 for
i ∈ [�]. B sends the public parameters Pk = (N,Y1, Y3, Y4, t = X1X4, u1, . . . , u�,
Ω = e(Y1, Y1)α) to A. Notice that B knows the master secret key Msk = (X1, α)
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associated with Pk. Let us now explain how B answers the i-th key query for
identity (IDi,1, . . . , IDi,j).

For i < k, B creates a semi-functional key by choosing random exponents
r1, r2, f, z, w ∈ ZN and, for i ∈ {1, 2}, random wi,2, wi,j+1, . . . , wi,� ∈ ZN and
setting:

K1,1 = Y r11 · (B2B3)f , K1,2 = Y α1 · (B2B3)w
(
u

IDi,1
1 · · ·uIDi,j

j X1

)r1
Y
w1,2
3 ,

E1,j+1 = ur1j+1 · (B2B3)w1,j+1 , . . . , E1,� = ur1� · (B2B3)w1,� .

and

K2,1 = Y r21 · (B2B3)zf , K2,2 = (B2B3)zw
(
u

IDi,1
1 · · ·uIDi,j

j X1

)r2
Y
w2,2
3 ,

E2,j+1 = ur2j+1 · (B2B3)w2,j+1 , . . . , E2,� = ur2� · (B2B3)w2,� .

By writing B2 as gφ2 , we have that this is a properly distributed semi-functional
key with γ = φ · f and γ · zk = φ · w.

For i > k, B runs the KeyGen algorithm using the master secret key Msk =
(X1, α).

To answer the k-th key query for IDk = (IDk,1, . . . , IDk,j), B sets zk = a1IDk,1+
· · ·+ ajIDk,j + b, chooses random exponents r′2 ∈ ZN and, for i ∈ {1, 2}, random
wi,2, wi,j+1, . . . , wi,� ∈ ZN , and sets:

K1,1 = T, K1,2 = Y α1 · T zkY
w1,2
3 , (E1,m = T amY

w1,m

3 )�m=j+1.

and

K2,1 = T r
′
2 , K2,2 = T r

′
2·zkY

w2,2
3 , (E2,m = T r

′
2·amY

w2,m

3 )�m=j+1.

We have the following two observations. If T ∈ Gp1p3 , then T can be written
as Y r

′
1

1 Y r33 and (Ki,1,Ki,2, Ei,j+1, . . . , Ei,�) is a normal key with randomness
r1 = r′1, r2 = r′1 · r′2 . If T ∈ Gp1p2p3 , then T can be written as Y r

′
1

1 gs22 Y
r3
3 . In

this case the key is a semi-functional key with randomness r1 = r′1, r2 = r′1 · r′2,
γ = s2 and z = r′2.

At some point, A sends B two pairs, (M0, ID
�
0 = (ID�0,1, . . . , ID

�
0,j)) and (M1,

ID�1 = (ID�1,1, . . . , ID
�
1,j)). B chooses random β ∈ {0, 1} and random z, z′ ∈ ZN

and computes the challenge ciphertext as follows:

C0 =Mβ ·e(A1A2, Y1)α, C1 = (A1A2)a1ID�
β,1+···+aj ID�

β,j+bY z4 , C2 = A1A2Y
z′
4 .

This implicitly sets Y s1 = A1 and zc = a1ID
�
β,1+ · · ·+ajID�β,j+b (mod p2). Since

IDk is not a prefix of ID�β modulo p2, we have that zk and zc are independent and
randomly distributed. We observe that, if B attempts to test whether the k-th
key is semi-functional by using the above procedure to create a semi-functional
ciphertext for IDk, then we will have that zk = zc and thus decryption always
works (independently of T ).

We can thus conclude that, if T ∈ Gp1p3 then B has properly simulated
Gamek−1. If T ∈ Gp1p2p3 , then B has properly simulated Gamek. �
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Indistinguishability of Gameq and GameFinal0

Lemma 5. Suppose that there exists a PPT algorithm A such that AdvAGameq
−

AdvAGameFinal0
= ε. Then there exists a PPT algorithm B with advantage ε in

breaking Assumption 2.

Proof. B receives (I, g1, g2, g3, g4, gα1A2, g
s
1B2, g

r
2, A

r
2) and T and simulates Gameq

or GameFinal0 with A depending on whether T = e(g1, g1)αs or T is a random
element of GT .

B sets the public parameters as follows. B chooses random exponents a1, . . . , a�,
b, c ∈ ZN and sets Y1 = g1, Y3 = g3, Y4 = g4, X4 = Y c4 , X1 = Y b1 , and ui = Y ai

1

for i ∈ [�]. B computes Ω = e(gα1A2, Y1) = e(Y α1 , Y1) and send public parameters
Pk = (N,Y1, Y2, Y3, t = X1X4, u1, . . . , u�, Ω) to A.

Each time B is asked to provide a key for an identity (ID1, . . . , IDj), B creates
a semi-functional key choosing random exponents r1, r2, z, z′ ∈ ZN and, for
i ∈ {1, 2}, random zi,j+1, . . . , zi,�, wi,1, wi,2, wi,j+1, . . . , wi,� ∈ ZN and setting:

K1,1 = Y r11 · gz2 · Y w1,1
3 , K1,2 = (gα1A2) · gz′2 ·

(
uID1

1 · · ·uIDj

j X1

)r1 · Y w1,2
3 ,

E1,j+1 = ur1j+1 · gz1,j+1
2 · Y w1,j+1

3 , . . . , E1,� = ur1� · gz1,�

2 · Y w1,�

3 .

and

K2,1 = Y r21 · (gr2)z · Y w2,1
3 , K2,2 = Ar2 · (gr2)z

′ ·
(
uID1

1 · · ·uIDj

j X1

)r2 · Y w2,2
3 ,

E2,j+1 = ur2j+1 · gz2,j+1
2 · Y w2,j+1

3 , . . . , E2,� = ur2� · gz2,�

2 · Y w2,�

3 .

At some point, A sends B two pairs, (M0, ID
�
0 = (ID�0,1, . . . , ID

�
0,j)) and (M1,

ID�1 = (ID�1,1, . . . , ID
�
1,j)). B chooses random β ∈ {0, 1} and random z, z′ ∈ ZN

and computes the challenge ciphertext as follows:

C0 = Mβ · T, C1 = (gs1B2)a1ID�
β,1+···+aj ID�

β,j+b · Y z4 , C2 = gs1B2 · Y z′4 .

This implicitly sets zc = (a1ID
�
β,1 + · · · + aj ID

�
β,j + b) mod p2. We note that

ui = Y ai mod p1
1 and X1 = Y b mod p1

1 are elements of Gp1 , so when a1, · · · , a�
and b are randomly chosen from ZN , their value modulo p1 and modulo p2 are
random and independent.

We finish by observing that, if T = e(g, g)αs, then the ciphertext constructed
is a properly distributed semi-functional ciphertext with message Mβ. If T in-
stead is a random element of GT , then the ciphertext is a semi-functional ci-
phertext with a random message. �

Indistinguishability of GameFinal0 and GameFinal1

Lemma 6. Suppose that there exists a PPT algorithm A such that AdvAGameFinal0
−

AdvAGameFinal1
= ε. Then there exists a PPT algorithm B with advantage ε in

breaking Assumption 3.
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Proof. First, notice that if exists an adversary A′ which distinguishes an en-
cryption for an identity vector ID�0 from an encryption for an identity vector ID�1,
where ID�0 and ID�1 are chosen by A′, then there exists an adversary A which dis-
tinguishes an encryption for an identity ID� chosen by A from an encryption for
a random identity vector. Hence, we suppose that we are simulating the games
for a such adversary.

B receives (I, g1, g2, g3, g4, U, UsA24, U
r̂, A1A4, A

r̂
1A2, g

r̂
1B2, g

s
1B24) and T and

simulates GameFinal0 or GameFinal1 with A depending on whether T = As1D24 or
T is random in Gp1p2p4 .

B sets the public parameters as follows. B chooses random exponents α, a1, . . . ,
a� ∈ ZN and sets Y1 = g1, Y3 = g3, Y4 = g4, t = A1A4, ui = Uai for i ∈ [�], and
Ω = e(Y1, Y1)α. B sends the public parameters Pk = (N,Y1, Y2, Y3, t, u1, . . . ,
u�, Ω) to A.

Each time B is asked to provide a key for an identity (ID1, . . . , IDj), B creates
a semi-functional key choosing random exponents r′1, r

′
2 ∈ ZN and, for ∈ {1, 2},

random zi,j+1, . . . , zi,�, wi,1, wi,2, wi,j+1, . . . , wi,� ∈ ZN and setting:

K1,1 = (gr̂1B2)r
′
1Y

w1,1
3 , K1,2 = Y α1

((
U r̂
)a1ID1+···+aj IDj (Ar̂1A2)

)r′1
Y
w1,2
3 ,

E1,j+1 =
(
U r̂
)r′1aj+1

Y
z1,j+1
2 Y

w1,j+1
3 , . . . , E1,� =

(
U r̂
)r′1a�

Y
z1,�

2 Y
w1,�

3 .

and

K2,1 = (gr̂1B2)r
′
2Y

w2,1
3 , K2,2 =

((
U r̂
)a1ID1+···+aj IDj (Ar̂1A2)

)r′2
Y
w2,2
3 ,

E2,j+1 =
(
U r̂
)r′2aj+1

Y
z2,j+1
2 Y

w2,j+1
3 , . . . , E2,� =

(
U r̂
)r′2a�

Y
z2,�

2 Y
w2,�

3 .

This implicitly sets the randomness r1 = r̂r′1 and r2 = r̂r′2. At some point, A
sends B two pairs, (M0, ID

� = (ID�1, . . . , ID
�
j )) and (M1, ID

� = (ID�1, . . . , ID
�
j )). B

chooses random C0 ∈ GT and computes the challenge ciphertext as follows:

C0, C1 = T (UsA24)
a1ID�

1+···+aj ID�
j , C2 = gs1B24.

This implicitly sets x and zc to random values.
If T = As1D24, then this is properly distributed semi-functional ciphertext

with C0 random and for identity vector ID�. If T is a random element of Gp1p2p4 ,
then this is a semi-functional ciphertext with C0 random in GT and C1 and C2

random in Gp1p2p4 .
Hence, B can use the output of A to distinguish between these possibilities

for T . �

GameFinal1 gives no advantage

Theorem 1. If Assumptions 1, 2 and 3 hold then our Anonymous HIBE scheme
is secure.
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Proof. If the assumptions hold then we have proved by the previous lemmata
that the real security game is indistinguishable from GameFinal1 , in which the
value of β is information-theoretically hidden from the attacker. Hence the at-
tacker can obtain no advantage in breaking the Anonymous HIBE scheme. �

4 Secret-Key Anonymous IBE

4.1 Secret Key Identity Based Encryption

A Secret-Key Identity Based Encryption scheme (IBE) is a tuple of four efficient
and probabilistic algorithms: (Setup, Encrypt, KeyGen, Decrypt).

Setup(1λ): Takes as input a security parameter λ and outputs the public pa-
rameters Pk and a master secret key Msk.

KeyGen(Msk, ID): Takes as input of the master secret key Msk, and an identity
ID, and outputs a private key SkID.

Encrypt(Msk,M, ID): Takes as input the master secret key Msk, a message M ,
and an identity ID and outputs a ciphertext Ct.

Decrypt(Ct, Sk): Takes as input a ciphertext Ct and a secret key Sk and outputs
the message M , if the ciphertext was an encryption to an identity ID and
the secret key is for the same identity.

4.2 Security Definitions

We present the security of an Anonymous IBE scheme in secret key model. In this
model, we have two definition of security: ciphertext security and key security.

Ciphertext Security definition Security is defined through the following
game, played by a challenger C and an adversary A.

Setup. C runs the Setup algorithm to generate master secret key Msk which is
kept secret.

Phase 1. A can make queries to the oracle Encrypt. To make a such query,
A specifies a pair (M, ID) and receives an encryption of this pair computed
using the Encrypt algorithm with Msk. A can make queries to the oracle
KeyGen. To make a such query, A specifies an identity ID and receives a key
of this identity computed using the KeyGen algorithm with Msk.

Challenge. A gives to C two pair message-identity (M0, ID0) and (M1, ID1).
The identities must satisfy the property that no revealed identity in Phase
1 was either ID0 or ID1. C sets β ∈ {0, 1} randomly and encrypts Mβ under
IDβ . C sends the ciphertext to the adversary.

Phase 2. This is the same as Phase 1 with the added restriction that any
revealed identity must not be either ID0 or ID1.

Guess. A must output a guess β′ for β. The advantage of A is defined to be
Prob[β′ = β] − 1

2 .

Definition 2. An Anonymous Identity Based Encryption scheme is ciphertext-
secure if all polynomial time adversaries achieve at most a negligible (in λ)
advantage in the previous security game.
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Key Security definition Security is defined through the following game,
played by a challenger C and an attacker A.

Setup. C runs the Setup algorithm to generate master secret key Msk which is
kept secret.

Phase 1. A can make queries to the oracle Encrypt. To make a such query,
A specifies a pair (M, ID) and receives an encryption of this pair computed
using the Encrypt algorithm with the master secret key Msk. A can make
queries to the oracle KeyGen. To make a such query, A specifies an identity
ID and receives a key of this identity computed using the KeyGen algorithm
with the master secret key Msk.

Challenge. A gives to C two identities ID0 and ID1. If in Phase 1 A did make a
query (M, ID) to the oracle Encrypt such that ID was either ID0 or ID1, then
the experiment fails. C sets β ∈ {0, 1} randomly and compute the secret key
for IDβ . C sends the secret key to the adversary.

Phase 2. This is the same as Phase 1 with the added restriction that if A did
make a query (M, ID) to the oracle Encrypt such that ID was either ID0 or
ID1, then the experiment fails.

Guess. A must output a guess β′ for β. The advantage A is defined to be
Prob[β′ = β] − 1

2 .

Definition 3. A Secret-Key Anonymous Identity Based Encryption scheme is
key-secure if all polynomial time adversaries achieve at most a negligible (in λ)
advantage in the previous security game.

Notice that no scheme with a deterministic KeyGen procedure can be key-secure.

4.3 Our Construction

In this section we describe our construction for a Secret-key Anonymous IBE
scheme which is similar to its public key version from the previous sections.

Setup(1λ, 1�): The setup algorithm chooses random description I = (N =
p1p2p3p4,G,GT , e) and random Y1, X1, u ∈ Gp1 , Y3 ∈ Gp3 , X4, Y4 ∈ Gp4

and α ∈ ZN . The fictitious public parameters are:

Pk = (N,Y1, Y3, Y4, t = X1X4, u,Ω = e(Y1, Y1)α).

The master secret key is Msk = (Pk, X1, α).
KeyGen(Msk, ID): The key generation algorithm chooses random r ∈ ZN and

also random elements R1, R2 ∈ Gp3 The secret key SkID = (K1,K2) is com-
puted as

K1 = Y r1 R1, K2 = Y α1 (uIDX1)rR2.

Encrypt(Msk,M, ID): The encryption algorithm chooses random s ∈ ZN and
random Z,Z ′ ∈ Gp4 The ciphertext (C0, C1, C2) for the message M ∈ GT is
computed as

C0 = M · e(Y1, Y1)αs, C1 =
(
uIDt
)s
Z, C2 = Y s1 Z

′.
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Decrypt(Msk,Ct, Sk): The decryption algorithm assumes that the key and ci-
phertext both correspond to the same identity ID. The decryption algorithm
then computes the blinding factor similarly to the decryption procedure of
the public-key version. Specifically,

e(K2, C2)
e(K1, C1)

=
e(Y1, Y1)αse

(
uIDX1, Y1

)rs
e (Y1, uIDX1)

rs = e(Y1, Y1)αs.

4.4 Ciphertext Security

To prove ciphertext security of the Anonymous IBE scheme, we rely on the
Assumptions 1, 2 and 3 used in the proof of the public-key scheme.

We make the following considerations. If we instantiate the previous scheme
as a public-key scheme by using the fictitious public-key parameter, it is identical
to our public-key Anonymous IBE scheme (i.e., it is used in the non-hierarchical
version). Thus, it is immediate to verify that from Assumptions 1, 2 and 3 the
security proof follows nearly identically. Generally, if a public-key IBE encryption
scheme is semantically secure, its secret-key version is also semantically secure
because we can simulate the encryption oracle by using the public-key. Therefore,
we have the following theorem.

Theorem 2. If Assumptions 1, 2 and 3 hold, then our Secret-Key Anonymous
IBE scheme is ciphertext-secure.

4.5 Key Security

We will use semi-functional ciphertexts and semi-functional keys like defined
previously. These will not be used in the real scheme, but we need them in our
proofs. We include them for completeness.

Semi-functional Ciphertext. We let g2 denote a generator of Gp2 . A semi-
functional ciphertext is created as follows: first, we use the encryption algorithm
to form a normal ciphertext (C′

0, C
′
1, C

′
2). We choose random exponents x, zc ∈

ZN . We set:
C0 = C′

0, C1 = C′
1g
xzc
2 , C2 = C′

2g
x
2 .

Semi-functional Keys. To create a semi-functional key, we first create a nor-
mal key (K ′

1,K
′
2) using the key generation algorithm. We choose random expo-

nents γ, zk ∈ ZN . We set:

K1 = K ′
1g
γ
2 , K2 = K ′

2g
γzk

2 .

We note that when a semi-functional key is used to decrypt a semi-functional
ciphertext, the decryption algorithm will compute the blinding factor multiplied
by the additional term e(g2, g2)xγ(zk−zc). If zc = zk, decryption will still work.
In this case, we say that the key is nominally semi-functional.

To prove the security of our scheme we rely on static Assumptions 1,2 and 3.
For a PPT adversary A which makes q ciphertext queries, our proof of security
will consist of the following q + 3 games between A and a challenger C.
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GameReal: Is the real key security game.
GameRestricted: Is the same as GameReal except that A cannot ask for keys for

identities which are equal to one of the challenge identities modulo p2. We
will retain this restriction in all subsequent games.

Gamek: For k from 0 to q, Gamek is like GameRestricted, except that the key given
to A is semi-functional and the first k ciphertexts are semi-functional. The
rest of the ciphertexts are normal.

GameFinal: Is the same as Gameq, except that the challenge key is semi-functional
with K2 random in Gp1p2p4 (thus the key is independent from the identities
provided by A). It is clear that in this last game, no adversary can have
advantage greater than 0.

We will show these games are indistinguishable in the following lemmata.

Indistinguishability of GameReal and GameRestricted

Lemma 7. Suppose that there exists a PPT algorithm A such that AdvAGameReal
−

AdvAGameRestricted
= ε. Then there exists a PPT algorithm B with advantage ≥ ε

3 in
breaking Assumption 1.

Proof. The proof is identical to that given in lemma 2. �

Indistinguishability of GameRestricted and Game0

Lemma 8. Suppose that there exists a PPT algorithm A such that AdvAGameRestricted
−

AdvAGame0 = ε. Then there exists a PPT algorithm B with advantage ε in breaking
Assumption 1.

Proof. B receives (I, g1, g3, g4, A1A2, B2B3) and T and simulates GameRestricted

or Game0 with A depending on whether T ∈ Gp1p3 or T ∈ Gp1p2p3 .
B sets the fictitious public parameters as follows. B chooses random exponents

α, a, b, c ∈ ZN and sets Y1 = g1, Y3 = g3, Y4 = g4 X4 = Y c4 , X1 = Y b1 and
u = Y a1 . B uses Pk = (N,Y1, Y3, Y4, t = X1X4, u,Ω = e(Y1, Y1)α) to respond to
the ciphertext queries issued by A. Notice that B knows also the master secret
key Msk = (Pk, X1, α) and thus can simulate all A’s key queries.

At some point, A sends B two identities, ID�0 and ID�1. B chooses random
β ∈ {0, 1} and computes the challenge key as follows:

K1 = T, K2 = Y α1 T
aID�

β+b.

We complete the proof with the following two observations. If T ∈ Gp1p3 , then T
can be written as Y s11 Y s33 . In this case (K1,K2) is a normal key with randomness
r = s1, R1 = Y s33 , R2 = (Y s33 )aID

�
β+b. If T ∈ Gp1p2p3 , then T can be written as

Y s11 gs22 Y
s3
3 and this case (K1,K2) is a semi-functional key with randomness

r = s1, R1 = Y s33 , R2 = (Y s33 )aID
�
β+b, γ = s2 and zc = aID�β + b. Thus, in the

former case we have properly simulated GameRestricted, and in the latter case we
have simulated Game0. �
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Indistinguishability of Gamek−1 and Gamek

Lemma 9. Suppose there exists a PPT algorithm A such that AdvAGamek−1
−

AdvAGamek
= ε. Then, there exists a PPT algorithm B with advantage ε in breaking

Assumption 1.

Proof. B receives (I, g1, g3, g4, A1A2, B2B3) and T and simulates Gamek−1 or
Gamek with A depending on whether T ∈ Gp1p3 or T ∈ Gp1p2p3 .

B sets the fictitious public parameters by choosing random exponents α, a, b,
c ∈ ZN and setting Y1 = g1, Y3 = g4, Y4 = g3, X4 = Y c4 , X1 = Y b1 and u =
Y a1 . Notice that B knows the master secret key Msk = (Pk, X1, α) with Pk =
(N,Y1, Y3, Y4, t = X1X4, u,Ω = e(Y1, Y1)α) and thus can respond to all A’s key
queries. Let us now explain how B answers the i-th ciphertext query for pair
(M, ID).

For i < k, B creates a semi-functional ciphertext by choosing random expo-
nents s, w1, w2 ∈ ZN and setting:

C0 = Me(Y1, Y1)αs, C1 = (uIDX1)s(B2B3)w1 , C2 = Y s1 Y
w2
4

By writing B2 as gφ2 , we have that this is a properly distributed semi-functional
ciphertext with x = φ and zc = w1.

For i > k, B runs the Encrypt algorithm using the master secret key Msk =
(Pk, X1, α).

To answer the k-th ciphertext query for (Mk, IDk), B sets zc = aIDk + b,
chooses random exponent w1, w2 ∈ ZN , and sets:

C0 = Mke(T, Y1)α, C1 = T zcY w1
4 , C2 = TY w2

4

We have the following two observations. If T ∈ Gp1p3 , then T can be written as
Y r11 Y r44 In this case this is a properly distributed normal ciphertext with s = r1.
If T ∈ Gp1p2p3 , then T can be written as Y r11 gr22 Y

r4
4 and in this case it is a

properly distributed semi-functional ciphertext with x = r2.
At some point, A sends B two identities, ID�0 and ID�1. B chooses random

β ∈ {0, 1} and random z, z′ ∈ ZN and computes the challenge key as follows:

K1 = (A1A2)Y z3 , K2 = Y α1 (A1A2)aID
�
β+bY z

′
3

This implicitly sets Y r1 = A1 and zk = aID�β + b mod p2. Since IDk is not
equal to ID�β modulo p2, we have that zk and zc are independent and randomly
distributed.

We can thus conclude that, if T ∈ Gp1p3 then B has properly simulated
Gamek−1. If T ∈ Gp1p2p3 , then B has properly simulated Gamek. �

Indistinguishability of Gameq and GameFinal

Lemma 10. Suppose that there exists a PPT algorithm A such that AdvAGameq
−

AdvAGameFinal
= ε. Then there exists a PPT algorithm B with advantage ε in break-

ing Assumption 3.
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Proof. First, notice that if exists an adversary A′ which distinguishes an en-
cryption for an identity ID�0 from an encryption for an identity ID�1, where ID�0
and ID�1 are chosen by A′, then there exists an adversary A which distinguishes
an encryption for an identity ID� chosen by A from an encryption for a ran-
dom identity. Hence, we suppose that we are simulating the games for a such
adversary.

B receives (I, g1, g2, g3, g4, U, UsA24, U
r̂, A1A4, A

r̂
1A2, g

r̂
1B2, g

s
1B24) and T and

simulates Gameq or GameFinal with A depending on whether T = As1D24 or T is
random in Gp1p2p4 .

B chooses random exponents α ∈ ZN and sets Y1 = g1, Y3 = g4, Y4 = g3.
Each time B is asked to provide a ciphertext for an identity ID, B creates a

semi-functional ciphertext choosing random exponents r, w1, w2 ∈ ZN and sets

C0 = M · e(gr̂1B2, Y1)αs, C1 = (Ar̂1A2)rID(U r̂)rY w1
4 , C2 = (gr̂1B2)rY w2

4

This implicitly sets the randomness of the ciphertext to r̂r, u = A1 and X1 = U .
Each time B is asked to provide a key for an identity ID, B creates a semi-

functional key choosing random exponents r, w1, w2 ∈ ZN and setting:

K1 = (gr̂1B2)rY w1
3 , K2 = Y α1 (Ar̂1A2)rID(U r̂)rY w2

3 .

This implicitly sets the randomness of the secret key to r̂r.
At some point, A sends B two identities, ID�0 and ID�1. B chooses random

w1, w2 ∈ ZN and computes the challenge secret key as follows:

K1 = (gs1B24)Y w1
3 , K2 = Y α1 T

ID�
β (UsA24)Y w2

3 .

This implicitly sets γ and zk to random values.
If T = As1D24, then this is properly distributed semi-functional key for identity

ID�β . If T is a random element of Gp1p2p4 , then this is a semi-functional key with
K2 random in Gp1p2p4 .

Hence, B can use the output of A to distinguish between these possibilities
for T . �

GameFinal gives no advantage

Theorem 3. If Assumptions 1, 2 and 3 hold then our Anonymous IBE scheme
is both ciphertext and key secure.

Proof. If the assumptions hold then we have proved by the previous lemmata
that the real security game is indistinguishable from GameFinal, in which the value
of β is information-theoretically hidden from the attacker. Hence the attacker can
obtain no non-negligible advantage in breaking the key security of the Secret-key
Anonymous IBE scheme. We have showed previously that it is also ciphertext-
secure. �
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5 Conclusions and Open Problems

We constructed the first Fully Secure Anonymous HIBE system with short ci-
phertexts in the public key model and the first fully secure IBE in the secret
key model and proved their security in the standard model from simple and
non-interactive assumptions generically secure. A drawback of our construction
is that it uses bilinear groups of composite order. An open problem is to build
such a scheme in symmetric bilinear groups of prime order. The general technique
of Freeman [9] does not seem to apply to our scheme.

We also stress that our decryption algorithm works if the key and the cipher-
text correspond to the same identity. It would be interesting to construct an
anonymous HIBE in which the decryption algorithm works provided that the
identity of the key is a prefix of the identity of the ciphertext.

To the best of our knowledge, Secret-Key Hierarchical IBE has not been stud-
ied before and we defer it to future work.
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Abstract. We extend a technique by Hanaoka and Kurosawa that pro-

vides efficient chosen-ciphertext secure public key encryption based on

the Computational Diffie-Hellman assumption to the identity-based en-

cryption setting. Our main result is an efficient chosen-ciphertext secure

identity-based encryption scheme with constant-size ciphertexts under

the Computational Bilinear Diffie-Hellman assumption in the standard

model.

Keywords: standard model, identity-based encryption, computational

bilinear Diffie-Hellman assumption, hardcore bits.

1 Introduction

Designing efficient public key encryption schemes with chosen-ciphertext security
under widely accepted hardness assumptions has been a challenging research
direction in modern cryptography. The first breakthrough in this area was the
scheme by Cramer and Shoup [5], which had security based on the Decisional
Diffie-Hellman assumption in the standard model. It is not until very recently
that schemes with similar properties based on the Computational Diffie-Hellman
assumption have been proposed by Cash, Kiltz and Shoup [4], Hanaoka and
Kurosawa [9] and Haralambiev, Jager, Kiltz and Shoup [10].

Identity-based encryption (IBE) [11,3] provides a public key encryption mech-
anism where public keys are arbitrary strings id such as an email address or
any other distinguished user identifier. In this work we extend the technique
by Hanaoka and Kurosawa to the identity-based setting and provide an effi-
cient chosen-ciphertext secure identity-based key encapsulation mechanism with
constant-size ciphertexts under the Computational Bilinear Diffie-Hellman as-
sumption in the standard model.

2 Preliminaries

We introduce some basic notation. If S is a set then s1, . . . , sn
$← S denotes the

operation of picking n elements si of S independently and uniformly at random.

M. Joye, A. Miyaji, and A. Otsuka (Eds.): Pairing 2010, LNCS 6487, pp. 367–376, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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We write A(x, y, . . .) to indicate that A is an algorithm with inputs x, y, . . . and
by z ← A(x, y, . . .) we denote the operation of running A with inputs (x, y, . . .)
and letting z be the output. Throughout this paper we use the term “algorithm”
as equivalent to “probabilistic polynomial-time algorithm”. If st1, st2 are strings,
then st1||st2 denotes the concatenation.

2.1 Identity-Based Encryption and Identity-Based Key
Encapsulation

A IBE scheme Π for identities id ∈ Z∗
p is specified by four algorithms (Setup,

KeyGen,Encrypt,Decrypt) [3]:

– Setup is a randomized algorithm which takes as input security parameter
1k and returns a master public key PK and a master secret key SK. The
master public key includes the description of a set of admissible messages and
ciphertexts MPK , CPK respectively, and a prime integer p. SK is kept secret
by the trusted authority, while PK is publicly available and we consider it
to be an implicit input to the rest of the algorithms.

– KeyGen takes as input SK and an identity id ∈ Z∗
p. It outputs a user secret

key sk[id].
– Encrypt takes as input an identity id ∈ Z∗

p and M ∈ MPK . It returns a
ciphertext C.

– Decrypt takes as inputs a private key sk[id] and a ciphertext C, and it re-
turns M ∈ MPK or the special symbol ⊥ indicating a decryption failure. In
particular ⊥ is returned if C /∈ CPK .

These algorithms must satisfy a natural consistency constraint, namely that for
any security parameter 1k, identity id ∈ Z∗

p and message M ∈ MPK it holds
that M ← Decrypt(sk[id],Encrypt(id,M)) where sk[id] ← KeyGen(SK, id) and
(PK,SK) ← Setup(1k).

An IBE scheme can be obtained by combining an identity-based key en-
capsulation mechanism (IB-KEM) and a symmetric encryption scheme [6,1].
The IB-KEM is run to produce a symmetric encryption key that is later used
to encrypt a message with the given symmetric encryption scheme. Formally,
an IB-KEM for identities id ∈ Z∗

p is specified by four algorithms (KEM.Setup,
KEM.KeyGen,KEM.Encap,KEM.Decap):

– KEM.Setup is a randomized algorithm that takes as inputs a security pa-
rameter 1k and a positive integer κ. It works almost exactly as the Setup
algorithm of an IBE scheme, except that no set of admissible plaintexts is
output. The integer κ denotes the bit-length of the symmetric encryption
keys output by the IB-KEM and is returned as part of PK.

– KEM.KeyGen takes as input SK and an identity id ∈ Z∗
p. It outputs a user

secret key sk[id].
– KEM.Encap takes as input an identity id ∈ Z∗

p and outputs a symmetric key
K ∈ {0, 1}κ and a ciphertext C.
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– KEM.Decap takes as inputs a private key sk[id] and a ciphertext C, and
it returns K or the special symbol ⊥ indicating a decryption failure. In
particular ⊥ is returned if C /∈ CPK .

Similarly to IBE, any IB-KEM must satisfy natural consistency constraints,
namely that for any security parameter 1k, integer κ and identity id ∈ Z∗

p it
holds that K ← KEM.Decap(sk[id], C) where

(K,C) ← KEM.Encap(id,M), sk[id] ← KEM.KeyGen(SK, id)

and (PK,SK) ← KEM.Setup(1k, κ).

Selective-identity chosen-ciphertext security. [3,1] Let us consider the fol-
lowing game:

Initialization. The adversary outputs a security parameter 1k, a positive inte-
ger κ and an identity id� it wants to attack. κmust be polynomially-bounded
in k.

Setup. The challenger runs (PK,SK) ← KEM.Setup(1k, κ). The challenger sets
(K�, C�) ← KEM.Encap(PK, id�). It picks β $← {0, 1} and sends C� to the
adversary, together with K� if β = 1 or a fresh key K† $← {0, 1}κ if β = 0.
It gives PK to the adversary and keeps SK to itself.

Find. The adversary makes a polynomial number of queries of the following
types:
– User secret key. The adversary asks the challenger to run and deliver
sk[id] ← KEM.KeyGen(SK, id) for adversarial input id �= id�.

– Decryption query. The adversary asks the challenger to output the result
of KEM.Decap(sk[id], C) for adversarial input (id, C) �= (id�, C�).

Guess. The adversary outputs a guess β′ ∈ {0, 1}.
The advantage of such an adversary A is defined as

AdvsID−CCA
IBKEM,A(1k) =

∣∣Pr[A(K�, C�) = 1] − Pr[A(K†, C�) = 1]
∣∣ .

Definition 1. An identity-based key encapsulation mechanism IBKEM is secure
under selective-identity and chosen-ciphertext attacks if for any IND-sID-CCA
adversary A the function AdvIND−sID−CCA

IBKEM,A (1k) is negligible.

2.2 Diffie-Hellman Assumptions on Pairing Groups

Let G1 = 〈g1〉 and G2 = 〈g2〉 be (cyclic) groups of order p prime. A map
e : G1 × G2 → G3 to a group G3 is called a bilinear map, if it satisfies the
following two properties:

Bilinearity: e(ga1 , g
b
2) = e(g1, g2)ab for all integers a, b

Non-Degenerate: e(g1, g2) has order p in G3.

We assume there exists an efficient bilinear pairing instance generator al-
gorithm IG that on input a security parameter 1k outputs the description of
〈 e,G1,G2,G3, g1, g2, p 〉, with p a k-bit length prime.
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Definition 2 (BDH assumption). Let 〈 e,G1,G2,G3, p, g1, g2 〉 ← IG(1k).
Let us define

Z ← (
e,G1,G2,G3, p, g1, g2, g

a
1 , g

a
2 , g

b
1, g

b
2, g

c
1

)
where a, b, c $← Zp. We say that IG satisfies the Computational Bilinear Diffie-
Hellman assumption if

AdvBDH
IG,A(k) := Pr[A(Z) = e(g1, g2)abc]

is negligible in k. The probabilities are computed over the internal random coins
of A, IG and the random coins of the inputs.

Our definition of bilinear pairings and BDH assumption encompasses all pairing-
type categories arising from elliptic curves as classified by Galbraith, Paterson
and Smart [8], and hence it is as general as possible.

Definition 3 (BDH hardcore predicate). Let 〈 e,G1,G2,G3, p, g1, g2 〉 ←
IG(1k). Let us define

Z ← (
e,G1,G2,G3, p, g1, g2, g

a
1 , g

a
2 , g

b
1, g

b
2, g

c
1

)
where a, b, c $← Zp. Let h : G3 → {0, 1} be a function and consider

AdvhIG,A(k) :=
∣∣Pr
[A (Z, h, h(e(g1, g2)abc) ) = 1

]− Pr [A (Z, h, β) = 1]
∣∣

where β $← {0, 1}. We say that h is a BDH hardcore predicate if the the BDH
assumption for IG implies that AdvhIG,A(k) is negligible. The probabilities are
computed over the internal random coins of A, IG and the random coins of the
inputs.

2.3 Lagrange Interpolation

Let f(x) =
∑

0≤l≤t blx
l be a polynomial over Zp with degree t and

(
(x0, f(x0)),

. . . , (xt, f(xt))
)

be t+ 1 distinct points where f(x) has been evaluated over Z∗
p.

Then one can recover f(x) as f(x) = f(x0)λx0(x) + . . . + f(x0)λx0(x), where
λxj (x) ∈ Zp[x] for 0 ≤ l ≤ t are called Lagrange coefficients and are defined as

λxl
(x) =

(x− x0)(x− x1) · · · (x− xl−1)(x − xl+1) · · · (x − xt)
(xl − x0)(xl − x1) · · · (xl − xl−1)(xl − xl+1) · · · (xj − xt) .

It can be seen that given
(
g1, (gx0

1 , g
f(x0)
1 ), . . . , (gxt

1 , g
f(xt)
1 )

)
it is possible to com-

pute any gbl
1 for 0 ≤ l ≤ t thanks to the Lagrange coefficients, where G1 = 〈g1〉

has prime order p. Similarly, given(
g1, g

b0
1 , . . . , g

bj−1
1 , (x0, f(x0)), . . . , (xt−j , f(xt−j))

)
it is possible to reconstruct any gbl

1 for j ≤ l ≤ t. These facts are used in our
scheme and in its security reduction.
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3 Chosen-Ciphertext Secure IB-KEM from the BDH
Assumption in the Standard Model

In this section we describe a new IB-KEM which is obtained by extending
the techniques that Hanaoka and Kurosawa [9] applied to ElGamal encryption
scheme [7]. The new IB-KEM is the result of applying these extended techniques
to Boneh and Boyen’s identity-based encryption scheme [2] and it has security
based on the Computational BDH assumption. We assume the existence of global
pairing parameters 〈 e,G1,G2,G3, p, g1, g2 〉 ← IG(1k) known to all the parties.
Our IB-KEM is defined as follows:

– KEM.Setup(1k, κ) chooses a, γ $← Z∗
p and sets u0 ← ga1 , v0 ← ga2 , u−1 ←

gγ1 , v−1 ← gγ2 . Next, it randomly picks b0, b1, . . . , bκ+2
$← Z∗

p and defines
the polynomial f(x) = b0 + b1x

1 + . . . + bκ+2x
κ+2 ∈ Zp[x]. It computes

yl = gbl
1 , Yl = e(u0, g

bl
2 ) for l = 0, . . . , κ + 2. It chooses a target collision

resistant hash function TCR : G1 × {0, 1} → Z∗
p, as well as a BDH hardcore

predicate h : G3 → {0, 1}. It defines the functions H1 : Z∗
p → G1 that maps

id 	→ uid0 u−1 and H2 : Z∗
p → G2 that maps id 	→ vid0 v−1. Finally, let CPK be

G4
1 and

PK ← 〈 e,G1,G2,G3, p, g1, g2, u0, v0, u−1, v−1, y0, . . . , yκ+2,

Y0, . . . , Yκ−1, H1 〉 and
SK ← 〈 a, b0, . . . , bκ+2, H2 〉.

– KEM.KeyGen(SK, id) outputs (sk0[id], . . . , skκ−1[id]), where

skl[id] ←
(
gabl
2 H2(id)rl , grl

2

) ∈ G2
2 and rl

$← Z∗
p for 0 ≤ l ≤ κ− 1

– KEM.Encap(PK, id) computes

C ← (
gr1, g

r·f(t)
1 , g

r·f(t)
1 , H1(id)r

) ∈ G4
1,

K ← h(Y r0 )|| . . . ||h(Y rκ−1) ∈ {0, 1}κ,
where t = TCR(gr1 , 0) and t = TCR(gr1 , 1). It outputs (K,C).

– KEM.Decap takes as inputs a user key sk[id] = (sk0[id], . . . , skκ−1[id]), and
a ciphertext C = (C0, C1, C2, C3). It first checks if e(C0, g

f(t)
1 ) = e(g1, C1)

and e(C0, g
f(t)
1 ) = e(g1, C2). If not it returns ⊥. Otherwise it parses skl[id]

as (Al, Bl) for l = 0, . . . , κ− 1 and it returns

K ← h

(
e(C0, A0)
e(C3, B0)

)∣∣∣∣∣∣∣∣ . . .∣∣∣∣∣∣∣∣h(e(C0, Aκ−1)
e(C3, Bκ−1)

)
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The above scheme is consistent since for a honestly generated ciphertext, we
have

e(C0, Al)
e(C3, Bl)

=
e
(
gr1 , g

abl
2 H2(id)rl

)
e
(
H1(id)r, grl

2

) = e(gr1, g
abl
2 ) · e

(
gr1 , H2(id)rl

)
e
(
H1(id)r, grl

2

) =

= Y rl · e
(
gr1, g

rl(a·id+γ)
2

)
e
(
g
r(a·id+γ)
1 , grl

2

) = Y rl for l = 0, . . . , κ− 1

Theorem 1. Let h be a BDH hardcore predicate and TCR be a target collision-
resistant hash function. Then the above IB-KEM scheme is secure against selective-
identity and chosen-ciphertext attacks if IG is an instance generator algorithm for
which the Bilinear Diffie-Hellman assumption holds.

Proof. An adversary starts by outputting a security parameter 1k, a key length
κ and a target identity id� ∈ Z∗

p. Given a BDH instance

Z ← (
e,G1,G2,G3, g1, g2, p, g

a
1 , g

a
2 , g

b
1, g

b
2, g

c
1

)
and a successful adversary A against the IND-sID-CCA security of our IB-KEM,
we construct an algorithm B distinguishing h

(
e(g1, g2)abc

)
from random with

non-negligible advantage.
To do so we need to apply a hybrid argument that we explain next. Assume

that for challenge ciphertext C� =
(
gc1, g

c·f(t�)
1 , g

c·f(t�)
1 , H1(id�)c

)
, where t� =

TCR(gc1, 0) and t� = TCR(gc1, 1), there exists an adversary A which distinguishes
h(Y c0 )|| . . . ||h(Y cκ−1) from random (thus breaking the IB-KEM security). Then,
there exists another adversary A′ that for some j such that 0 ≤ j ≤ κ − 1
distinguishes h(Y c0 )|| . . . ||h(Y cj )||randκ−j−1 from h(Y c0 )|| . . . ||h(Y cj−1)||randκ−j ,
where randl denotes a l-bit uniformly random string.

Therefore we can assume the existence of such an adversary A′. We use it
to construct an algorithm B that given (g1, g2, ga1 , ga2 , gb1, gb2, gc1) distinguishes
h
(
e(g1, g2)abc

)
from random. B is defined as follows:

Generate system parameters. B starts by setting 〈 e,G1,G2,G3, p, g1, g2 〉
to be the global parameters of the system. It continues by simulating the master
public key of the IB-KEM and the challenge encapsulation to A′:

1. It sets u0 ← ga1 , v0 ← ga2 and u−1 ← u−id
�

0 gδ1 , v−1 ← v−id
�

0 gδ2 for random
δ

$← Z∗
p.

2. It sets t� = TCR(gc1, 0) and t� = TCR(gc1, 1).
3. It sets yj ← gb1 ∈ G1 and zj ← gb2 ∈ G2 and picks random

rndj , . . . , rndκ−1
$← Z∗

p\{t�, t�}
Additionally it chooses

ut� , ut� , b0, . . . , bj−1, uj, . . . , uκ−1
$← Z∗

p
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4. It sets yl = gbl
1 ∈ G1 and zl = gbl

2 ∈ G2 for 0 ≤ l ≤ j − 1.
5. By using Lagrange interpolation, it computes yj+1, . . . , yκ+2 such that for a

function F1(x) =
∏

0≤l≤κ+2 y
xl

l it holds that F1(t�) = g
ut�

1 , F1(t
�) = g

ut�

1 ,
and F1(rndj) = g

uj

1 , . . . , F1(rndκ−1) = g
uκ−1
1 .

6. By using Lagrange interpolation, it computes zj+1, . . . , zκ+2 such that for a
function F2(x) =

∏
0≤l≤κ+2 z

xl

l it holds that F2(t�) = g
ut�

2 , F2(t
�) = g

ut�

2 ,
and F2(rndj) = g

uj

2 , . . . , F2(rndκ−1) = g
uκ−1
2 .

7. It sets Yl = e(ga1 , zl) for l = 0, . . . , κ− 1.
8. Let CPK be G4

1.
9. B sets the master public key to be

PK ← 〈 e,G1,G2,G3, p, g1, g2, u0, v0, u−1, v−1, y0, . . . , yκ+2,

Y0, . . . , Yκ−1, H1 〉,

the challenge ciphertext

C� ← (gc1, (g
c
1)
ut� , (gc1)

ut� , (gc1)
δ)

and the challenge key

K� =
(
h(e(gc1, g

a
2 )b0)||h(e(gc1, ga2 )b1)|| . . . ||h(e(gc1, ga2)bj−1 )||β||randk−j−1

)
,

where β $← {0, 1}.
Finally B initializes A′ with PK and (K�, C�). Notice that, because of the prop-
erties of Lagrange interpolation, the distribution of the resulting master public
key is statistically-close to the distribution of a honestly generated key.

B answers the queries by A′ in the following way:

Create user secret key queries. For a secret key query with id �= id�, it com-

putes skl[id] ←
(
z

−δ
id−id�

l H2(id)rl , z
−1

id−id�

l grl
2

)
, where rl

$← Z∗
p for l = 0, . . . , κ− 1.

To see that this is a valid random user secret key, let us write zl = gbl
2 for bl ∈ Z∗

p

and let sl = rl − bl/(id− id�). Notice that bl is unknown to B for j ≤ l ≤ κ+ 2,
and thus sl is not defined explicitly but implicitly. It turns out that

z
−δ

id−id�

l H2(id)rl = g
−δbl

id−id�

2

(
g
a(id−id�)
2 gδ2

)rl =

= gabl
2

(
g
a(id−id�)
2 gδ2

)rl− −bl
id−id� = gabl

2 H2(id)sl

and z
−1

id−id�

l grl
2 = g

sj

2 .

Decryption queries. For decryption queries of the form (id, C) for id �= id�, it
first checks whether C ∈ CPK . If not, it answers ⊥. Otherwise it obtains sk[id]
by running the user key generation algorithm and returns KEM.Decap(sk[id], C).
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For decryption queries (id�, C), it parses C as (C0, C1, C2, C3) and it proceeds
as follows:

1. If C0 = gc1 it answers ⊥.
2. If C0 �= gc1 and the intersection

{TCR(C0, 0),TCR(C0, 1)} ∩ {t�, t�, rndj , . . . , rndκ−1}

is non-empty then B aborts and outputs a random bit β′.
3. If C0 �= gc1 and the intersection

{TCR(C0, 0),TCR(C0, 1)} ∩ {t�, t�, rndj , . . . , rndκ−1}

is empty, it first checks if e(C0, g
f(t)
1 ) = e(g1, C1) and e(C0, g

f(t)
1 ) = e(g1, C2),

where t = TCR(C0, 0), t = TCR(C0, 1). If not B outputs ⊥ indicating de-
cryption failure. Otherwise B computes C

ut�

0 , C
ut�

0 , C
uj

0 , . . . , C
uκ−1
0 . Let

f1 ∈ Zp[x] be a polynomial of degree κ + 2 whose coefficients for the terms
xl are bl for 0 ≤ l ≤ j − 1. Additionally, f1 satisfies that(

f1(t), f1(t), f1(t�), f1(t
�), f1(rndj+1), . . . , f1(rndκ−1)

)
=(

logC0
C1, logC0

C2, ut� , ut� , uj+1, . . . , uκ−1

)
Next by using Lagrange interpolation it computes Cb1,l

0 for j ≤ l ≤ κ − 1,
where b1,l ∈ Zp denote the coefficients of the xl term of the polynomial f1
respectively. Then it answers the decryption query (id, C) with

h(e(Cb00 , g
a
2 ))|| . . . ||h(e(Cbj−1

0 , ga2 ))||h(e(Cb1,j

0 , ga2 ))|| . . . ||h(e(Cb1,κ−1
0 , ga2 )).

Guess. At some point A′ outputs a guess β′ ∈ {0, 1} and B outputs the same
guess for h(e(g1, g2)abc).

Success analysis of algorithm B. Let us define a series of events:

– Win denotes the event that A′ correctly distinguishes

h(Y c0 )|| . . . ||h(Y cj )||randκ−j−1 from h(Y c0 )|| . . . ||h(Y cj−1)||randκ−j
– Abort is the event that A′ makes a decryption query (id�, (C0, C1, C2, C3))

such that C0 �= gc1 and the intersection {TCR(C0, 0),TCR(C0, 1)} ∩ {t�, t�,
rndj , . . . , rndκ−1} is non-empty

– Invalid denotes the event that A′ makes a decryption query of the form
(id�, (C0, C1, C2, C3)) such that e(C0, g

f(t)
1 ) = e(g1, C1) and e(C0, g

f(t)
1 ) =

e(g1, C2) but B’s decryption answer is incorrect

Then, analogously to [9], B’s advantage in distinguishing h(e(g1, g2)abc) from
a random bit β is bounded as follows
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AdvhIG,B(k) =
∣∣Pr
[B (Z, h, h(e(g1, g2)abc) ) = 1

]− Pr [B (Z, h, β) = 1]
∣∣

≥ ∣∣Pr[Win|Abort ∧ Invalid]Pr[Abort ∧ Invalid] − 1/2
∣∣

≥ |Pr[Win] − Pr[Abort] − Pr[Invalid]|

Lemmas 3 and 4 in [9] imply that the probabilities Pr[Abort] and Pr[Invalid] are
negligible. Finally Pr[Win] = 1

κ · AdvsID−CCA
IBKEM,A due to the hybrid argument. ��

4 Extensions

The IB-KEM presented in the last section admits several extensions.

Identity-based encryption. Coupling our IB-KEM with a chosen ciphertext
secure symmetric key encryption scheme yields an IBE scheme with IND-sID-
CCA security based on the BDH assumption. The resulting IBE scheme is fairly
efficient and has constant size ciphertexts.

Identity-based encryption with adaptive-identity security. It is straight-
forward to upgrade our IBE scheme to have adaptive-identity security by replac-
ing the function H1 (and H2 accordingly) by the function used by Waters [12]
to attain adaptive-identity security.

Hierarchical identity-based encryption. Our modification to the IBE scheme
by Boneh and Boyen can also be applied to the hierarchical IBE scheme pre-
sented by the same authors in [2], and results in an hierarchical IBE scheme
with IND-sID-CCA security based on the BDH assumption. For example, the
resulting hierarchical IB-KEM scheme has a ciphertext for a �-level hierarchical
identity (id1, . . . , id�) with the form(

gr1, g
r·f(t)
1 , g

r·f(t)
1 , H1

1 (id)r , . . . , H�
1(id)

r
) ∈ G3+�

1 ,

where H1
1 , . . . , H

�
1 are � independent instances of the function H1 and t =

TCR(gr1 , 0), t = TCR(gr1, 1). The key K ← h(Y r0 )|| . . . ||h(Y rκ−1) ∈ {0, 1}κ re-
mains unchanged.
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Abstract. There are many bilinear pairings that naturally appear when

one studies elliptic curves, abelian varieties, and related groups. Some of

these pairings, notably the Weil and Lichtenbaum–Tate pairings, can be

defined over finite fields and have important applications in cryptogra-

phy. Others, such as the Néron–Tate canonical height pairing and the

Cassels–Tate pairing on the Shafarevich–Tate group, are of fundamental

importance in number theory and arithmetic geometry, but have seen

limited use in cryptography. In this article I will present a survey of

some of the pairings that are used to study elliptic curves and abelian

varieties. I will attempt to show why they are natural pairings and how

they fit into a wider framework.

Keywords and Phrases: elliptic curve, abelian variety, cryptography,

pairings.

The elliptic curve discrete logarithm problem (ECDLP) has attracted consider-
able attention since Neal Koblitz [9] and Victor Millier [14] independently pro-
posed its use as the basis for crytography. To date, the fastest general algorithms
for ECDLP are exponential, as opposed to the subexponential algorithms known
for the classical discrete logarithm problem (DLP) and the integer factorization
problem (IFP). This is one reason why elliptic curve cryptography (ECC) has
gained in popularity in recent years. Another reason is the existence of certain
functorial pairings that exist on elliptic curves, and more generally on abelian
varieties of all dimensions. The first cryptographic application of pairings was
the reduction of the ECDLP to the DLP [13], which in some cases led to a sig-
nificant decrease in security. Subsequently, pairings were found to have useful
positive applications in cryptography, for example to tripartite Diffie–Hellman
key exchange [8] and to the construction of identity-based cryptosystems [3].

There are many natural pairings on elliptic curves, abelian varieties, and as-
sociated groups, including the Weil pairing on m-torsion, the Lichtenbaum–Tate
pairing over finite fields, the Tate pairing over local fields, the Cassels–Tate pair-
ing on the Shafarevich–Tate group, and the Néron–Tate canonical height pairing
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on algebraic points.1 In this note I will describe these pairings and their inter-
relationships. Although at present only a few of these pairing are being directly
used in cryptography, all of them are of fundamental importance in studying the
arithmetic properties of abelian varieties, and it seems a safe bet that more of
them will find cryptographic applications in the years ahead.

1 Pairings in the Abstract

As a good starting point to understanding pairings on abelian varieties, we con-
sider the following two abstract questions:

1. What is a pairing?
2. What makes a pairing functorial, i.e., natural?

Abstractly, to create a pairing, one starts with a ring R and an R-module M .
By definition, a pairing on M is an R-bilinear map

〈 · , · 〉 : M ×M −→ R,

or equivalently, an R-module homomorphism

φ : M −→ HomR(M,R).

The equivalence of these definitions is clear via the identification

〈a, b〉 = φ(a)(b).

If M is a finitely generated free R-module, i.e., if it has a finite R-basis, then M
is isomorphic to Rd and there are isomorphisms

HomR(M,R) ∼= HomR(Rd, R) = HomR(R,R)d = Rd ∼= M.

The isomorphism HomR(M,R) ∼=M defines a non-degenerate pairing on M .
However, and this is very important, the isomorphism HomR(M,R) ∼=M and

the pairing on M depend on the choice of a basis for M . Once we choose a basis,
we get a pairing. But there are many reasons why it is not desirable to have to
choose a basis.

For example, from a cryptographic perspective, defining a pairing using a
basis means that computing the pairing requires solving a (multidimensional)
discrete logarithm problem. Explicitly suppose that we fix an R-basis e1, . . . , ed
for M . Then any choice of elements cij ∈ R defines a pairing〈

d∑
i=1

uiei,
d∑
i=1

viei

〉
=

d∑
i=1

d∑
j=1

uivjcij .

1 The alert reader may have noted that John Tate’s name appears frequently in this

list. As Marcus du Sautoy said in his remarks [5] when Tate was awarded the Abel

Prize in 2010, “If one measured the influence of a mathematician by the number of

mathematical ideas that bear their name, then John Tate would be a clear winner.”
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Suppose now that we are given two elements u,v ∈M . In order to compute the
value of the pairing 〈u,v〉, we need to write u and v in terms of the given basis,
which in general is a very difficult problem.

Thus the task of defining computationally useful pairings is closely tied to
finding a “good”, i.e., functorial, isomorphism

M
∼−−−−−→ HomR(M,R)

whose definition does not depend on choosing a basis for M .

2 Hom and Ext

Let
0 −−−−→ M −−−−→ N −−−−→ P −−−−→ 0

be an exact sequence ofR-modules. If we look at the homomorphisms fromM ,N ,
and P to some other R-module Q, then the arrows are reversed and we get an
exact sequence

0 −−−−→ HomR(P,Q) −−−−→ HomR(N,Q) −−−−→ HomR(M,Q), (1)

but the right-hand map need not be surjective. In order to extend the sequence,
we use the ExtR construction. The elements of ExtR(M,Q) are represented by
maps

f : M ×M −→ Q

that satisfy the relation

f(x, y) − f(x, y + z) + f(x+ y, z) − f(y, z) = 0 for all x, y, z ∈M . (2)

Two such maps f1 and f2 are considered to be the same if there is a map
g : M → Q such that the difference f1 − f2 has the form

f1(x, y) − f2(x, y) = g(x+ y) − g(x) − g(y).
The reason that ExtR modules are useful is because they allow us to extend

the exact sequence (1).

Proposition 1. Let

0 −−−−→ M −−−−→ N −−−−→ P −−−−→ 0

be an exact sequence of R-modules. Then there is an exact sequence

0 −−−−→ HomR(P, Q) −−−−→ HomR(N, Q) −−−−→ HomR(M, Q)

ExtR(P, Q) −−−−→ ExtR(N, Q) −−−−→ ExtR(M, Q).
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The map from HomR(M,Q) to ExtR(P,Q) is easy to describe. We are given
that the map N → P is surjective, so for each x ∈ P we can choose some
α(x) ∈ N that maps to x. (In other words, α : P → N is a section to the given
map N → P .) Then for any x, y ∈ P , the element

γx,y := α(x + y) − α(x) − α(y)

is in the kernel of N → P , because the map N → P is a homomorphism.
Thus γx,y comes from a (unique) element of M , which we also denote γx,y. Now
let F ∈ HomR(M,Q). We use F to create an element of ExtR(P,Q) via the
formula

P × P −→ Q, (x, y) 	−→ F (γx,y).

Finally, we mention an alternative description of ExtR(M,Q) that is sometime
useful. An element of ExtR(M,Q) gives an extension of M by Q, that is, it can
be used to define an R-module L that fits into the exact sequence

0 −−−−→ Q −−−−→ L −−−−→ M −−−−→ 0. (3)

To do this, let f : M ×M → Q be an element of ExtR(M,Q). We use f to define
a twisted R-module structure on the set M ×Q via the rule

(x1, z1) ⊕f (x2, z2) =
(
x1 + x2, z1 + z2 + f(x1, x2)

)
.

This twisted R-module fits into the exact sequence (3).
Conversely, if we are given an exact sequence (3), then we can produce an

element of ExtR(M,Q) as follows. First, for each x ∈M , choose some β(x) ∈ L
that maps to x. Then we get an element of ExtR(M,Q) from the formula

M ×M −→ Q, (x, y) 	−→ β(x+ y) − β(x) − β(y).

3 The Dual Abelian Variety and the Weil Pairing

The prototypical example of a functorial pairing in algebraic geometry is the
Weil pairing, which on elliptic curves has the form

E[m] × E[m] −→ μm.

This is a pairing of Z/mZ modules, but the usual definition for elliptic curves
is unenlightening and somewhat misleading. In general for an abelian variety A,
the Weil pairing is a pairing

A[m] × Â[m] −→ μm,

where Â is the dual abelian variety to A. There are several useful ways to char-
acterize Â. We start with an abstract definition,

Â = Ext(A,Gm).
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Using this definition, we consider the exact sequence

0 −−−−→ A[m] −−−−→ A
m−−−−→ A −−−−→ 0

and apply Hom( · ,Gm). This reverses the direction of the arrows and (using
Proposition 1) gives an exact sequence

0 −−−−→ Hom(A[m],Gm) δ−−−−→ Ext(A,Gm) m−−−−→ Ext(A,Gm)∥∥∥ ∥∥∥ ∥∥∥
0 −−−−→ Hom(A[m],μm) δ−−−−→ Â

m−−−−→ Â

(4)

(We are also using the fact that Hom(A,Gm) = 0, since there are no algebraic
maps from the compact variety A to the affine variety Gm, and the fact that any
map from A[m] to Gm must have image in μm.) The exact sequence (4) gives a
natural isomorphism

Â[m] ∼= Hom
(
A[m],μm

)
, (5)

and (5) is exactly what we need to define the Weil pairing

em : A[m] × Â[m] ∼= A[m] × Hom
(
A[m],μm

) −→ μm.

Thus the existence of the Weil pairing is a natural consequence of the definition
of the dual abelian variety.

In order to compute the Weil pairing, we use an alternative characterization
of the dual abelian variety as the group of divisor classes

Pic0(A) =
{Divisors algebraically equivalent to 0}

{Divisors linearly equivalent to 0} .

The identification of Ext(A,Gm) with Pic0(A) is reasonably straightforward.
By definition, an element of Pic0(A) is representated by a divisor D that is
algebraically equivalent to 0. (If A is an elliptic curve, this just means that D is
a divisor of degree 0.) For any point P ∈ A, we let

τP : A −→ A, Q 	−→ Q+ P, (6)

be the translation-by-P map. Then one can show that τ∗PD−D is the divisor of
a function,

τ∗PD −D = div(FD,P ).

Recall that elements of Ext(A,Gm) are represented by maps

A×A −→ Gm

satisfying condition (2). We map a divisor class [D] ∈ Pic0(A) to an element
of Ext(A,Gm) via

Pic0(A) −→ Ext(A,Gm)

[D] 	−→
(

(P,Q) 	→ FD,P (Q)
FD,P (O)

)
.
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(If FD,P has a zero or a pole at Q, then some adjustment needs to be made.) If
you trace through all of these definitions, you’ll end up with the usual formula
for the Weil pairing in terms of functions and divisors.

4 Principal Polarizations and the Weil Pairing

The Weil pairing and many other pairings on abelian varieties are most nat-
urally defined as pairings between an abelian variety A and its dual abelian
variety Â. For applications, one generally wants a pairing on A itself. This can
be accomplished by using a natural map from A to Â.

Recall that one description of Â is as the group of divisor classes Pic0(A).
Let τP be the be the translation-by-P map (6). Then for any divisorD ∈ Div(A),
the divisor τ∗PD −D is algebraically equivalent to zero, so we get a map

φD : A −→ Pic0(A), P 	−→ [τ∗PD −D].

Example 1. On an elliptic curve E, we can take D = (O), and then the map φD
is simply

φD(P ) =
[
(−P ) − (O)

]
. (7)

The map φD is a principal polarization if it defines an isomorphism A ∼= Â.
For example, the map (7) on elliptic curves is a principal polarization. More
generally, the Jacobian variety of any (nonsingular) curve has a natural principal
polarization, so Jacobians are self-dual.

More precisely, let C/K be a nonsingular curve of genus g ≥ 1 and let P0 ∈
C(K). The Jacobian variety of C is an abelian variety JC that is isomorphic, as
a group, to Pic0(C). One can show that the map

Cg −→ JC = Pic0(C), (P1, . . . , Pg) 	−→ [
(P1) + (P2) + · · · + (Pg) − g(P0)

]
is almost everywhere finite-to-one, so JC has dimension g. The image of the map

Cg−1 −→ JC = Pic0(C), (P1, . . . , Pg−1) 	−→ [
(P1)+ · · ·+(Pg−1)−(g−1)(P0)

]
is a subvariety of codimension one in JC . It is called the theta divisor and
denoted Θ. Then the map

φΘ : JC −→ Pic0(JC) = ĴC

is a principal polarization that identifies JC with its dual.
If A comes equipped with a principal polarization φD : A → Â, then we can

define the Weil pairing

em : A[m] ×A[m] −→ μm, (P,Q) 	−→ em
(
P, φD(Q)

)
.

For example, using the principal polarization (7) on an elliptic curve leads to
the familiar definition of the Weil pairing found in standard textbooks.
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5 A Primer on Galois Cohomology

The Weil pairing is a fundamental tool used to define other pairings on abelian
varieties. In order to define these new pairings in a functorial way, we need to
use a little bit of group cohomology, about which we briefly recall some basic
definitions and facts. (For more on group cohomology and Galois cohomology,
see for example [1,19].)

LetM be an abelian group on which the Galois group GK = Gal(K̄/K) acts.2

The cohomology group H0(GK ,M) is the group of elements fixed by GK ,

H0(GK ,M) = {a ∈M : aσ = a for all σ ∈ GK}.

A 1-cocycle is a map3

ξ : GK −→M satisfying ξ(στ) = ξ(τ)σ + ξ(σ) for all σ, τ ∈ GK .

A 1-coboundary is a map of the form

η : GK −→M, η(σ) = aσ − a,

for some a ∈M . The cohomology group H1(GK ,M) is the group

H1(GK ,M) =
(group of 1-cocyles)

(group of 1-coboundaries)
.

There are higher cohomology groups that are defined in a similar manner
using “cocyles modulo coboundaries”. In particular, the 2-cocycles that are used
to form H2(GK ,M) are maps

ξ : GK ×GK −→M

satisfying the 2-cocycle condition

ξ(τ, μ)σ − ξ(στ, μ) + ξ(σ, τμ) − ξ(σ, τ) = 0 for all σ, τ, μ ∈ GK .

The 2-coboundaries are maps of the form

η(σ, τ) = f(τ)σ − f(στ) + f(σ) for some map f : GK →M .

Elements of cohomology groups can be multiplied using the cup product

∪ : Hi(GK ,M) ×Hj(GK , N) −→ Hi+j(GK ,M ⊗N).

2 Here K̄ is an algebraic closure of K. We will assume that our fields K are perfect,

so for example K could be a finite field or a field of characteristic zero.
3 We are cheating a little bit, because we should really take only cocycles that are

continuous with respect to the profinite topology on GK . For ease of exposition, we

will ignore this subtlety.
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The general definition of the cup product is somewhat complicated, but we’ll
only need (i, j) = (1, 0) and (1, 1). The former is easy, it is simply

H1(GK ,M) ×H0(GK , N) −→ H1(GK ,M ⊗N), (ξ ∪ a)(σ) = ξ(σ) ⊗ a.
The latter is similar, but with a twist,4

H1(GK ,M) ×H1(GK , N) −→ H2(GK ,M ⊗N), (ξ ∪ η)(σ, τ) = ξ(σ) ⊗ η(τ)σ .
(Note that we are using a left action, so (aσ)τ = aτσ.)

The groupH0(GK ,M) occurs naturally in many contexts, since we often want
to know which elements are fixed by a group. For example, if A/K is an abelian
variety, then H0(GK , A) = A(K) is the group of rational points defined over K.
(For ease of notation, we write Hi(GK , A) instead of Hi

(
GK , A(K̄)

)
. Higher

cohomology groups occur naturally when we apply the functor H0(Gk, · ) to an
exact sequence.

Proposition 2. Let

0 −−−−→ M −−−−→ N −−−−→ P −−−−→ 0

be an exact sequence of GK-modules. Then there is a long exact sequence

0 −−−−→ H0(GK , M) −−−−→ H0(GK , N) −−−−→ H0(GK , P )

H1(GK , M) −−−−→ H1(GK , N) −−−−→ H1(GK , P )

H2(GK , M) −−−−→ H2(GK , N) −−−−→ H2(GK , P )

δ

δ

(The maps denoted δ are called connecting homomorphisms.)

A particularly imporant example of this theorem is associated to the exact se-
quence

0 −−−−→ M [m] −−−−→ M
m−−−−→ M −−−−→ M/mM −−−−→ 0.

Here m is an integer, and the middle map is the multiplication-by-m map

a 	−→ ma.
4 We illustrate typical cohomological calculations by verifying that if ξ and η are

1-cocycles, then ξ ∪ η is a 2-cocycle.

(ξ ∪ η)(τ, μ)σ − (ξ ∪ η)(στ, μ) + (ξ ∪ η)(σ, τμ) − (ξ ∪ η)(σ, τ)

= (ξ(τ) ⊗ η(μ)τ )σ − ξ(στ) ⊗ η(μ)στ + ξ(σ) ⊗ η(τμ)σ − ξ(σ) ⊗ η(τ)σ

= ξ(τ)σ ⊗ η(μ)στ − ξ(στ) ⊗ η(μ)στ + ξ(σ) ⊗ η(τμ)σ − ξ(σ) ⊗ η(τ)σ

= [ξ(στ) − ξ(σ)] ⊗ η(μ)στ − ξ(στ) ⊗ η(μ)στ + ξ(σ) ⊗ [η(μ)τ + η(τ)]σ − ξ(σ) ⊗ η(τ)σ

= ξ(στ) ⊗ η(μ)στ − ξ(σ) ⊗ η(μ)στ − ξ(στ) ⊗ η(μ)στ + ξ(σ) ⊗ η(μ)στ + ξ(σ) ⊗ η(τ)σ − ξ(σ) ⊗ η(τ)σ

= 0.
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In our applications we will have M/mM = 0, so taking cohomology gives the
Kummer sequence

0 → H0(GK ,M)/mH0(GK ,M) δ−→ H1(GK ,M [m]) → H1(GK ,M)[m] → 0.

For our purposes, the most important GK-modules will be5

1. the multiplicative group K̄∗,
2. the group μm of mth-roots of unity in K̄∗,
3. an abelian variety A(K̄),
4. the group A[m] of m-torsion points in A(K̄).

We state two basic, but very important, cohomological properties of the multi-
plicative group.

Theorem 1. (Hilbert’s Theorem 90)

(a) H1(GK , K̄∗) = 0.
(b) H1(GK ,μm) ∼= K∗/K∗m.

The isomorphism in (b) can be made quite explicit. Let a ∈ K∗ and take any
α ∈ K̄∗ satisfying αm = a. Then the corresponding element of H1(GK ,μm) is
the cohomology class of the cocycle σ −→ ασ/α.

6 The Lichtenbaum–Tate Pairing

The Lichtenbaum–Tate pairing is an example of a pairing whose functorial def-
inition uses the Weil pairing in an essential way. A point P ∈ A(K) defines a
class [P ] ∈ A(K)/mA(K). The Kummer sequence (note that A(K̄)/mA(K̄) = 0)
then gives us a 1-cocycle via

A(K)/mA(K) = H0(GK , A)/mH0(GK , A) δ−→ H1(GK , A[m]), [P ] 	−→ FP .

Using this map and the Weil pairing, we can define a map

A(K)/mA(K) × Â[m](K) −→ H1(GK ,μm), (P,Q) 	−→ [σ 	→ em(FP (σ), Q)].

(Note that we need Q to be in Â(K), since otherwise the map σ 	→ em(FP (σ), Q)
is not a 1-cocycle.)

The second part of Hilbert’s Theorem 90 says that H1(GK ,μm) ∼= K∗/K∗m.
The resulting map

〈 · , · 〉LT : A(K)/mA(K) × Â[m](K) −→ K∗/K∗m

is the Lichtenbaum–Tate pairing.

5 If K has positive characteristic p, we will always assume that p does not divide m.
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More precisely, the Lichtenbaum–Tate pairing is constructed out of connecting
homomorphisms, the cup product, and the Weil pairing. Thus

A(K) × Â[m](K) =−−−−→ H0(GK , A) ×H0(GK , Â[m])
δ×1−−−−→ H1(GK , A[m]) ×H0(GK , Â[m])
∪−−−−→ H1(GK , A[m] ⊗ Â[m])
em−−−−→ H1(GK ,μm)
δ−1

−−−−→ K∗/K∗m.

If A is an elliptic curve, or more generally if we have a principal polarization
that allows us to identify Â with A, then we obtain a pairing on A itself,

〈 · , · 〉LT : A(K)/mA(K) ×A[m](K) −→ K∗/K∗m.

In cryptography, the Lichtenbaum–Tate pairing is used when K is a finite
field, say K = Fq. One chooses the abelian variety A and integer m such that
A(Fq)/mA(Fq) and A[m](Fq) are cyclic groups of order m and such that the
natural map

A[m](Fq) −→ A(Fq)/mA(Fq)

is an isomorphism. Then one can show that the Lichtenbaum–Tate pairing

〈 · , · 〉LT : A[m](Fq) × A[m](Fq) −→ F∗
q/F

∗
q
m

is non-degenerate and symmetric. In other words,

〈P,Q〉LT = 〈Q,P 〉LT

and

〈P,Q〉LT = 0 ⇐⇒ P = O or Q = O.

In particular, if P ∈ A[m](Fq) has order m, then 〈P, P 〉LT is an element of
order m in F∗

q/F
∗
q
m.

Finally, it is often convenient to raise the value of the Lichtenbaum–Tate
pairing to the (q − 1)/m power, so that its values are specific mth-roots of unity,
rather than equivalence classes modulo mth-powers. In other words, we use the
isomorphism

F∗
q/F

∗
q
m ∼−−−→ μm(Fq), z −→ z(q−1)/m,

to obtain a modified Lichtenbaum–Tate pairing

〈 · , · 〉′LT : A[m](Fq) ×A[m](Fq) −→ μm(Fq), 〈P,Q〉′LT = 〈P,Q〉(q−1)/m
LT .
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7 Homogeneous Spaces and the Weil–Châtelet Group

Let A/K be an abelian variety. A homogeneous space for A/K is an algebraic
variety B/K together with a group action of A on B. In other words, there is a
map (defined over K)

μ : A×B −→ B

that satisfies
μ
(
P, μ(Q, T )

)
= μ(P +Q, T ).

We further require that the action be principal. This means that for any fixed T ∈
B, the map

μ( · , T ) : A −→ B, P 	−→ μ(P, T ),

is an isomorphism. Note, however, that this isomorphism is only defined over K̄,
so B might not be K-isomorphic to A. However, if B(K) �= ∅, we can take
T ∈ B(K) to get a K-isomorphism A

∼−→ B.

Example 2. The curve

Cabc : ax3 + by3 + cz3 = 0

is a homogeneous space for the elliptic curve

Eabc : x3 + y3 + abcz3 = 0.

Notice that Cabc is isomorphic to the curve Eabc if we work over the field
K( 3

√
a , 3

√
b , 3

√
c ), but they need not be isomorphic over K. To define μ, one

takes a K̄ isomorphism φ : Cabc → Eabc and sets μ(P, T ) = φ−1
(
P + φ(T )

)
.

We say that two homogeneous spaces B and B′ are K-equivalent if there is an
isomorphism B ∼= B′ defined over K that respects the action of A. The Weil–
Châtelet group of A/K is

WC(A/K) =
{homogeneous spaces for A/K}

K-equivalence
.

We say that a homogeneous space B/K is trivial if it is K-equivalent to A/K.
One can show that B/K is trivial if and only if B(K) is non-empty. Of course,
we know that A(K) is non-empty, since O ∈ A(K). Homogeneous spaces arise
naturally when one studies the number theoretic properties of an abelian vari-
ety A/K.

As its name suggests, the set of homogeneous spaces modulo K-equivalence
can be given the structure of a group. Let B/K ∈ WC(A/K) and choose some
point T ∈ B(K̄). Then one can show that for each σ ∈ GK there is a point
ξT (σ) ∈ A(K̄) such that

μ(P, T σ) = μ(P + ξT (σ), T ) for all P ∈ A(K̄).

The map
GK −→ A(K̄), σ −→ ξT (σ),
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is a 1-cocycle, so it represents an element of H1(GK , A). Further, choosing a
different point T ∈ B(K̄) has the effect of changing ξT (σ) by a 1-coboundary,
so B itself determines an element [ξB ] of H1(GK , A). The map

WC(A/K) −→ H1(GK , A), [B] −→ [ξB ],

is a bijection of sets, and we know that H1(GK , A) is a group, so this makes
WC(A/K) into a group.

Why is this useful? The Kummer sequence associated to A is the short exact
sequence (note that H0(GK , A) = A(K))

0 → A(K)/mA(K) → H1(GK , A[m]) → H1(GK , A)[m] → 0.

Thus A(K)/mA(K) is a subgroup ofH1(GK , A[m]). In practice, it is often possi-
ble to do explicit computations and exactly determine the group H1(GK , A[m]).
So calculating A(K)/mA(K) comes down to understanding H1(GK , A). This
last group can be studied using geometry because it is isomorphic to WC(A/K).

8 The Tate Pairing for Local Fields

The Brauer group of a field K classifies the finite rank central simple algebras
over K. We won’t have to worry about what that means, because the Brauer
group is isomorphic to the cohomology group H2(GK , K̄∗). Since Hilbert’s The-
orem 90 says that H1(GK , K̄∗) = 0, the Kummer sequence for K̄∗ gives

0 −−−−→ H2(GK ,μm) −−−−→ H2(GK , K̄∗)
η→ηm

−−−−→ H2(GK , K̄∗),

so
H2(GK ,μm) ∼= H2(GK , K̄∗)[m].

If K/Qp is a p-adic field, i.e., a finite extension of Qp, then an important
theorem from (local) class field theory (see [18]) says that

H2(GK , K̄∗) ∼= Q/Z and H2(GK ,μm) ∼= Z/mZ.

This makes the Brauer group a nice target for pairings.
The starting point for the functorial definition of the Tate pairing is the

Kummer sequence for the abelian variety A,

0 −→ A(K)/mA(K) −→ H1(GK , A[m]) −→ H1(GK , A)[m] −→ 0,

and the analogous sequence for its dual,

0 −→ Â(K)/mÂ(K) −→ H1(GK , Â[m]) −→ H1(GK , Â)[m] −→ 0.

Given an point P ∈ A(K)/mA(K), we map it to a 1-cocycle FP : GK → A[m].
Similarly, given an element ξ ∈ H1(GK , Â)[m], we can lift it to H1(GK , Â[m])
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and get a 1-cocycle Fξ : GK −→ Â[m]. This and the Weil pairing let us define a
map

TP,ξ : GK ×GK −→ μm, TP,ξ(σ, τ) = em
(
FP (σ), Fξ(τ)σ

)
.

(In fancier language, the 2-cocycle TP,ξ may be defined by composing the Weil
pairing with the cup product of FP and Fξ, i.e., TP,ξ = em ◦ (FP ∪ Fξ).) The
map TP,ξ is a 2-cocycle, so it gives an element [TP,ξ] ∈ H2(GK ,μm). We have
defined a pairing

A(K)/mA(K) ×H1(GK , Â)[m] −→ H2(GK ,μm), (P, ξ) −→ [TP,ξ].

Up to here, the construction works for any field K. But if we now make
the assumption that K/Qp is a p-adic field, then H2(GK ,μm) is isomorphic
to Z/mZ, so we get a pairing

〈 · , · 〉Tate : A(K)/mA(K) ×H1(GK , Â)[m] −→ Z/mZ.

Tate [23] proved that this pairing is nondegenerate. Further, by taking an ap-
propriate limit as m → ∞ and using the structure of A(K) when K is a local
field, he showed that one obtains a nondegenerate pairing

〈 · , · 〉Tate : A(K) ×H1(GK , Â) −→ Q/Z.

This is somewhat surprising, since it says that if K is a p-adic field, then the set
of K-rational points of A is dual to the collection of homogeneous spaces of Â.

9 The Shafarevich–Tate Group

An important, but mysterious, group that appears when one studies elliptic
curves or abelian varieties over number fields is the Shafarevich–Tate group X.
The elements of X(A/K) are homogeneous spaces B/K for A with the property
thatB(Kv) is non-empty for every completionKv ofK. In other words, X(A/K)
is the subgroup of WC(A/K) defined to be the kernel of the map

WC(A/K) −→
∏
v

WC(A/Kv).

The Shafarevich–Tate group appears as a natural obstruction when trying to
compute the group of rational points A(K). More precisely, for each integer
m ≥ 2 there is an exact sequence

0 −−−−→ A(K)/mA(K) −−−−→ S(m)(A/K) −−−−→ X(A/K)[m] −−−−→ 0,

where the Selmer group S(m)(A/K) is the kernel of the map

H1(GK , A[m]) −→
∏
v

H1(GKv , A) =
∏
v

WC(A/Kv).
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In theory, and often in practice, it is possible to compute the Selmer group
S(m)(A/K), so computing generators for A(K)/mA(K) is reduced to determin-
ing the elements of order m in X.

It is conjectured that the Shafarevich–Tate group is always finite, although
this is not known in general. The first proofs that X(A/K) is finite for certain
types of abelian varieties were given by Rubin [17] and Kolyvagin [10] in the
1990s. However, it is known that if X(A/K) is finite for a principally polarizedA,
then its order is a perfect square. The way that this is proven is via a pairing,
which is the subject of the next section.

10 The Cassels–Tate Pairing on the Shafarevich–Tate
Group

The Cassels–Tate pairing on X is a bilinear pairing

〈 · , · 〉CT : X(A/K) × X(Â/K) −→ Q/Z.

If A is principally polarized, so Â ∼= A, then the pairing is alternating, and it is
an amusing exercise to show that if a finite group admits an alternating bilinear
pairing, then the order of the group must be a perfect square.

There are several equivalent definitions of the Cassels–Tate pairing, but they
are all somewhat complicated; see [4,15,25]. We briefly describe one definition [24]
in order to illustrate the connection with the Weil pairing and the similarity with
Tate’s local pairing.

Every element of X has finite order, so it suffices to give a pairing on
X(A/K)[m] × X(Â/K)[m]. Let f : GK → A(K̄) and f ′ : GK → Â(K̄) be
1-cocycles representing elements of X(A/K)[m] and X(Â/K)[m], respectively.
Choose some map

g : GK −→ A[m2] satisfying f(σ) = mg(σ) for all σ ∈ GK .

Then there is a unique map

d : GK ×GK −→ A[m]
satisfying d(σ, τ) = g(τ)σ − g(στ) + g(σ) for all σ, τ ∈ GK . (8)

The map d is a 2-cocyle as a map from GK to A[m], but need not be a 2-coboun-
dary, although it is a 2-coboundary if we treat it as a map from GK to A[m2].

The assumption that f represents an element of X(A/K) means that it be-
comes a coboundary over every completion Kv, so not only can we find a map

gv : GKv −→ A[m2] satisfying f(σ) = mgv(σ) for all σ ∈ GKv ,

we can choose gv to be a 1-cocycle. We further note that the image of the
difference g − gv lies in A[m].
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To summarize, we have the following maps:

f a 1-cocycle GK → A[m].
f ′ a 1-cocycle GK → Â[m].
g a map Gk → A[m2] satisfying f = mg.
gv a 1-cocycle GKv → A[m2] satisfying f = mgv.
d a 2-cocycle GK ×GK → A[m] related to g by (8).

The cup product d ∪ f ′ represents an element of H3
(
GK , A[m]⊗ Â[m]

)
, so com-

posing with the Weil pairing em : A[m] × Â[m] → μm, we obtain a map

em ◦ (δ ∪ f ′) : GK ×GK ×GK −→ K̄∗ (9)

representing an element of H3(GK , K̄∗). However, a theorem of Tate (see [15])
says that H3(GK , K̄∗) = 0, so (9) is a coboundary. In other words, there is a
map h : GK ×GK → K̄∗ such that(
em◦(δ∪f ′)

)
(σ, τ, ρ) = h(τ, μ)σ−h(στ, μ)+h(σ, τμ)−h(σ, τ) for all σ, τ, μ ∈ GK .

We use g, gv, f ′, h, and the Weil pairing to define a map

�v : GKv ×GKv −→ K̄∗
v , �v =

em ◦ ((g − gv) ∪ f ′
)

h
.

One can check that �v is in fact a 2-cocycle. (The map em ◦ ((g − gv) ∪ f ′
)

is
not a cocycle, but the map h acts as a sort of correction factor that makes it
into a cocycle.) Thus �v represents an element of H2(GKv , K̄

∗
v ). We recall from

Section 8 that for local fields there is an isomorphism

invv : H2(GKv , K̄
∗
v )

∼−−−→ Q/Z.

(If Kv = R or C, the map has image 1
2Z/Z or 0, respectively.) The Cassels–Tate

pairing
〈 · , · 〉CT : X(A/K)[m] × X(Â/K)[m] −→ Q/Z

is then defined by the formula

〈f, f ′〉CT =
∑
v

invv(�v).

Of course, there are many things to check, for example that the choices we made
do not matter and that only finitely many of the terms in the sum are nonzero.
We refer the reader to the references listed above for further details.

11 The Néron–Tate Canonical Height Pairing

Another important pairing on elliptic curves and abelian varieties is the canonical
height pairing originally defined by Néron [16] and Tate [12]. This pairing on the
group of points A(K) defined over a number field K is closely related to the
information-theoretic content of the points.
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We start with the height of an algebraic number, and rather than giving the
precise definition, which is unenlightening and somewhat technical, we instead
describe what the height represents. (For the exact definition, and for additional
information about heights, both canonical and non-canonical, see for example
[2,6,11,21].) We define the height of an element α ∈ K to be (roughly)

h(α) = # of bits needed to describe the number α.

For example, if K = Q and α = a/b is written in lowest terms, then we can take

h(α) = log2 |a| + log2 |b|

to be the number of bits required to store the two numbers a and b. In general,
if V ⊂ Pn is an algebraic variety embedded in projective space and P ∈ V (K),
we define the height of P to be

h(P ) = the sum of the heights of the coordinates of P .

So, roughly, it takes h(P ) bits to specify the coordinates of the point P .
Different embeddings of V into projective space will give different height func-

tions. For an elliptic curve, one typically takes a Weierstrass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

and then the height of a point P = (x, y) would be h(P ) = h(x) + h(y), or we
could just take h(P ) = h(x).

Now let A/K be an abelian variety, which for the moment we assume is
embedded in projective space, i.e., we are given a specific set of coordinates and
equations that define A. Then it turns out that the height function

h : A(K) −→ R

interacts with the group law on A in a very interesting way. For example, if we
take a point P ∈ A(K) and add it to itself m times, then the height h(mP ) is,
more-or-less, equal to m2h(P ). This leads to the Néron–Tate construction.

Definition 1. Let A/K be an abelian variety defined over a number field K,
together with an embedding A ⊂ Pn. The canonical height (relative to the em-
bedding) is the function

ĥ : A(K) −→ R, ĥ(P ) = lim
m→∞

1
m2
h(mP ).

The canonical (or Néron–Tate) height pairing is the map

〈 · , · 〉NT : A(K) ×A(K) −→ R, 〈P,Q〉NT = ĥ(P +Q) − ĥ(P ) − ĥ(Q).

The canonical height and its associated pairing have a number of remarkable
properties, of which we mention only three.
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Theorem 2. (a) The canonical height satisfies

1
2
〈P, P 〉NT = ĥ(P ) = h(P ) +O(1).

Thus ĥ(P ) encodes the information-theoretic content of the point P .
(b) The height pairing 〈 · , · 〉NT is bilinear.
(c) The extension of 〈 · , · 〉NT to the vector space A(K) ⊗ R is non-degenerate,

i.e., ĥ is a positive definite quadratic form on the finite-dimensional real
vector space A(K) ⊗ R.

The Mordell–Weil theorem says that A(K) is a finitely generated group. Let
P1, . . . , Pr ∈ A(K) be generators for A(K) modulo its torsion subgroup. The
elliptic regulator

Reg(A/K) = det
(〈Pi, Pj〉NT

)
1≤i,j≤r

plays an important role in the arithmetic of A, similar to the role played by the
classical regulator in studying the group of units in a number field. In particular,
it appears in the Birch–Swinnerton-Dyer conjectural formula for the leading
coefficient of the L-series L(E/K, s) at s = 1.

Canonical heights have been used in cryptography to show that certain po-
tential attacks on the elliptic curve discrete logarithm problem (ECDLP) are
not feasible. Recall that the fastest algorithm to solve the classical discrete log-
arithm problem on F∗

q is the index calculus, which has subexponential running
time. Victor Miller, in his original paper [14], said that he did not see how to
formulate an index calculus attack on the ECDLP. The author and Suzuki [22]
used canonical heights and other tools to show that a direct index calculus at-
tack on ECDLP is highly unlikely. Further, a reverse index attack [20] was also
shown to be infeasible [7] using canonical heights. Indeed, Neal Koblitz, one of
the inventors of elliptic curve cryptography, gave a talk at ECC 2000 with the
provocative title

Miracles of the Height Function—A Golden Shield Protecting ECC.

Our description of the canonical height may seem somewhat ad hoc, so we now
explain why it is a “natural pairing” in the same sense that the Weil and Tate
pairings are natural pairings. To do this, we need to go back to the observation
that the canonical height, as we have defined it, depends on the coordinates we
use to describe the points of A, or equivalently, on the embedding of A into Pn.
So we first briefly recall how projective embeddings of varieties are related to
divisors and divisor classes.

If a nonsingular variety V is embedded in Pn, then the intersection of V
with a hyperplane H ⊂ Pn gives a divisor V ∩H on V . If we change to another
hyperplane H ′, we get a divisor V ∩H ′ that is linearly equivalent to V ∩H .
Conversely, let D be a (positive) divisor on V and let f0, . . . , fn be a basis for
the set of algebraic functions on V whose poles are no worse than D. Then we
get a map φD = [f0, . . . , fn] of V into Pn. The divisor D is said to be very ample
if the map φD is an embedding. A general theorem says that every divisor can be
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written as the difference of two very ample divisors. Finally, we say that two di-
visors D1 and D2 are linearly equivalent if their difference D1 −D2 is the divisor
of an algebraic function on V . We write D1 ∼ D2 to denote linear equivalence.
The group of divisors is denoted Div(V ), and the group of divisor classes modulo
linear equivalence is denoted Pic(V ) and is called the Picard group of V .

We have already (more-or-less) defined the height of points in projective space.
Let V be a nonsingular variety. For each divisor D ∈ Div(V ), we write D =
D1 − D2 as a difference of very ample divisors and define a height function
(relative to D) by

hV,D : V (K) −→ R, hV,D(P ) = h
(
φD1 (P )

)− h(φD2 (P )
)
.

There are a number of choices in this definition, but one can show that making
different choices leads to a function h′V,D that differs from hV,D by a bounded
amount, i.e.,

hV,D(P ) = h′V,D(P ) +O(1) for all P ∈ V (K).

These height functions are not yet canonical, but they have many useful prop-
erties, of which we state two.

Proposition 3. Let V be a nonsingular variety defined over a number field K.

(a) hV,D1+D2 = hV,D1 + hV,D2 +O(1).
(b) If D1, D2 ∈ Div(V ) are linearly equivalent, then hV,D1 = hV,D2 + O(1). In

particular, if D ∈ Div(V ) is linearly equivalent to 0, then hV,D is a bounded
function.

A fundamental principle in algebraic geometry is that divisor class relations on
an algebraic variety determine many of the varieties geometric properties. On
the other hand, height functons measure number theoretic properties of points.
The content of Proposition 3 is that heights transform geometry, in the form of
divisor class relations, into number theory, in the form of height relations.

Since an abelian variety A is a variety that is also a group, it is desirable to
describe meaningful relationships between its geometry and its group law. The
next theorem gives one such result in the form of an important divisor relation.

Theorem 3. (Theorem of the Cube) Let A be an abelian variety, let D ∈
Div(A), let m ∈ Z, and let [m] : A → A denote the multiplication-by-m map.
Then

[m]∗D ∼
(
m2 +m

2

)
D +

(
m2 −m

2

)
[−1]∗D.

In particular, if D is symmetric, i.e., if [−1]∗D ∼ D, then [m]∗D ∼ m2D.

The canonical height relative to the divisor D is the function

ĥA,D : A(K) −→ R, ĥA,D(P ) = lim
m→∞

1
m2
hA,D

(
mP ).
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Using Proposition 3 and the Theorem of the Cube, one can show that the limit
exists and depends only on the linear equivalence class of D. The canonical
height is a quadratic form on A(K) ⊗ R, and if D is very ample, then it is a
positive definite form.

The definition of ĥA,D is very nice, but it depends on choosing a divisor D.
As our earlier experience suggests, the functorial canonical height pairing will
not be a bilinear map on A(K) ×A(K), but instead it will be a bilinear map
on A(K) × Â(K). This height is associated to a natural divisor class that lives
on A× Â.

Proposition 4. We identify Â with Pic0(A), which is a subgroup of Pic(A).
There is a divisor P on A× Â, called the Poincaré divisor, satisfying:

1. Let ξ ∈ Â, so we can identify ξ with the divisor class of a divisor D ∈ Div(A).
Then

P ∩ (A× {ξ}) ∼ D.

2. Let P ∈ A. Then
P ∩ ({P} × Â) ∼ 0.

The Poincaré divisor is unique up to linear equivalence.

Theorem 4. Let A be an abelian variety defined over a number field K. The
canonical height on A× Â relative to the Poincaré divisor,

ĥA×Â,P : A(K) × Â(K) −→ R,

is a bilinear form, and it is non-degenerate in the sense that

ĥA×Â,P(P,Q) = 0 for all P ∈ A(K) ⇐⇒ Q ∈ Â(K)tors,

ĥA×Â,P(P,Q) = 0 for all Q ∈ Â(K) ⇐⇒ P ∈ A(K)tors.
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Abstract. This paper presents a novel method for designing compact

yet efficient hardware implementations of the Tate pairing over super-

singular curves in small characteristic. Since such curves are usually re-

stricted to lower levels of security because of their bounded embedding

degree, aiming for the recommended security of 128 bits implies consider-

ing them over very large finite fields. We however manage to mitigate this

effect by considering curves over field extensions of moderately-composite

degree, hence taking advantage of a much easier tower field arithmetic.

This technique of course lowers the security on the curves, which are

then vulnerable to Weil descent attacks, but a careful analysis allows us

to maintain their security above the 128-bit threshold.

As a proof of concept of the proposed method, we detail an FPGA

accelerator for computing the Tate pairing on a supersingular curve over

F35·97 , which satisfies the 128-bit security target. On a mid-range Xilinx

Virtex-4 FPGA, this accelerator computes the pairing in 2.2 ms while

requiring no more than 4755 slices.

Keywords: Tate pairing, supersingular elliptic curves, FPGA imple-

mentation.

1 Introduction

Pairings were first introduced in cryptography in 1993 by Menezes, Okamoto,
& Vanstone [36] and Frey & Rück [24] as an attack against the elliptic curve
discrete logarithm problem (ECDLP) for some families of curves over finite
fields. Since then, constructive properties of pairings have also been discov-
ered and exploited in several cryptographic protocols: starting independently
in 2000 with Joux’s one-round tripartite Diffie–Hellman key agreement [31] and
Sakai–Ohgishi–Kasahara cryptosystem [46], many others have followed, such as
Mitsunari–Sakai–Kasahara broadcast encryption scheme [39], Boneh–Franklin
identity-based encryption [12] or Boneh–Lynn–Shacham short signature [13] for
instance. Pairings nowadays being the cornerstone of various protocols, their
efficient implementation on a wide range of targets became a great challenge,
especially on low-resource environments.
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Although many FPGA implementations of pairing accelerators have been pro-
posed [34,43,30,2,6,9,7,47], none of them allows to reach the AES-128 security
level. However, recent ASIC implementations of pairings over Barreto–Naehrig
(BN) [4] curves with 128 bits of security have been published [22, 33]. The main
difficulty for computing a pairing at the 128-bit security level is to implement
an efficient arithmetic over a quite large finite field.

In contrast with the ASIC implementation, we chose to implement pairings
over supersingular elliptic curves over small-characteristic finite fields so as to
benefit from the many optimizations available in the literature. As a drawback,
since supersingular curves are restricted to low embedding degrees, this implies
considering unbalanced settings, where the curve offers potentially much more
security than the required 128 bits. Nonetheless we took advantage of this ex-
cess of security and defined our curves over finite fields of composite extension
degree: on the one hand, the curves might be weaker because of, for instance,
the Gaudry–Hess–Smart attack [27,26,17]; on the other hand, the arithmetic al-
gorithm can really benefit from this tower field structure. This article is devoted
to the demonstration that this compromise is very effective in the context of a
low-resources hardware implementation.

After a reminder on the Tate pairing and its security in a general context
(Section 2), we present the consequences on security of defining an elliptic curve
over a composite-extension field (Section 3). We then detail the algorithms for
computing the Tate pairing over such curves in Section 4 and present a low-
area FPGA accelerator implementing these algorithms for a test-case curve in
Section 5. Finally we report our performance results and compare them against
other implementations from the literature (Section 6) and conclude in Section 7.

2 Definition and Security of the Tate Pairing

Given an elliptic curve E defined over a finite field Fq , take � a prime number
dividing the cardinal of the curve #E(Fq ). The embedding degree k of E is then
defined as the smallest integer such that � | qk − 1, that is to say such that the
group of �-th roots of unity μ� = {x ∈ Fq | x� = 1} is in F∗

qk . Assuming further
that k > 1 and that there are no points of order �2 in E(Fqk), we can then define
the Tate pairing over E as the map:

e : E(Fq )[�] × E(Fqk)[�] → F∗
qk/
(
F∗
qk

)� ∼= μ�,

where E(Fq )[�] = {P ∈ E(Fq) | [�]P = O} denotes the Fq -rational �-torsion sub-
group. The embedding degree k, also called security multiplier in this context,
acts as a cursor to adjust the size of the multiplicative group F∗

qk with respect
to that of Fq , which directly constrains #E(Fq ) to Hasse’s bounds, therefore
limiting the achievable values of �. Given that the discrete logarithm problem
(DLP) is exponential in the subgroup E(Fq )[�] but subexponential in the finite
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field F∗
qk ⊃ μ� (cf. Section 2.2), one might want to choose a curve giving a security

multiplier k that balances the security on both the input and the output of the
Tate pairing.

As we are targeting the AES-128 security level, elliptic curves with an em-
bedding degree between 12 and 15 seem to be a good choice. Barreto–Naehrig
(BN) curves are a family of such curves with prime cardinal � = #E(Fq ) and
embedding degree k = 12 [4]; as a result BN curves perfectly balance the security
between the �-torsion and μ� at the 128-bit level. However, since BN curves are
defined over prime fields, computing a pairing over them requires expensive mod-
ular arithmetic, which is far less better-suited to hardware implementation than
arithmetic over small-characteristic finite fields. Last but not least, BN curves
are ordinary curves: point doubling and tripling formulae are not as efficient as
in the supersingular case in characteristic 2 and 3 respectively.

As a consequence, we chose to consider supersingular elliptic curves even if
their embedding degree is bounded by 6 [3]. Due to this bound, the security on
the curve will be too high with respect to the security on μ�. We however decided
to take advantage of this: using finite fields with composite extension degree will
decrease the security on the curves but make the field arithmetic better suited
to low-resource hardware implementations. Those points will be detailed and
quantified in the next two sections.

We now detail the definition, security and computation of the Tate pairing
over the considered supersingular elliptic curves.

2.1 Pairing over Supersingular Elliptic Curves

Our study focuses on pairings on supersingular curves over finite fields Fq with
q = pm and p = 2 or 3. We thus define the two following families [3]:

E2,b/F2 : y2 + y = x3 + x+ b, where b ∈ {0, 1}; and
E3,b/F3 : y2 = x3 − x+ b, where b = ±1.

When m is coprime to 2 and 6 in characteristic 2 and 3 respectively, the cardinal
of those curves reaches the Hasse bounds:

#E2,b(Fq ) = 2m ± 2
m+1

2 + 1,

#E3,b(Fq ) = 3m ± 3
m+1

2 + 1.

Moreover, their embedding degree is 4 and 6 in characteristic 2 and 3, respec-
tively. Thanks to their supersingularity, there exists a distortion map over those
elliptic curves, mapping the Fq -rational �-torsion group to another subgroup of
E(Fqk)[�]:

δ : E(Fq )[�] → E(Fqk)[�],

which is used to define the modified Tate pairing as:

ê :

⎧⎨⎩E(Fq )[�] × E(Fq )[�] → F∗
qk/
(
F∗
qk

)� ∼= μ�

(P,Q) 	→ e(P, δ(Q))
.
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One can furthermore show that ê is not degenerate. We refer the reader to
[3] and [9, Table I] for the mathematical details of pairing construction over
supersingular curves.

2.2 Attacks against Pairings over Supersingular Curves

The security of the pairing is determined by the difficulty of the discrete log-
arithm problem (DLP) on the input curve and on the output multiplicative
group.

Since � is a prime, the best known algorithm to attack the DLP on the �-torsion
is Pollard’s ρ method [42], which requires an average of

√
π�/2 group operations.

As Duursma et al. showed in [25, 19], we should take into account the group of
automorphisms on the curve, which has order 24 and 12 in characteristic 2
and 3, respectively, [48, Chap. III, §10] as well as the m iterated Frobenius
endomorphisms (x, y) 	→ (xp

i

, yp
i

), for 0 � i < m as they allow to speed up
Pollard’s ρ method by a

√
m · #Aut(E) factor. All in all the average cost of

Pollard’s method on
E(Fq )[�] is: ⎧⎨⎩

√
π·�
48m if p = 2, and√
π·�
24m if p = 3.

Additionally, one may attack the DLP on μ� ⊂ F∗
qk ; this is the fundamental

idea behind the attacks of Menezes, Okamoto, & Vanstone [36] and Frey &
Rück [24]. Since the �-th roots of unity are defined in the multiplicative group of
a finite field, the DLP may be attacked by sieving algorithms. In our case, where
the characteristic p is 2 or 3, one can use the function field sieve (FFS) [1]; the
complexity of this attack is subexponential:

exp

((
32
9

+ o(1)
) 1

3

· log
1
3 qk · log log

2
3 qk

)
.

If we consider our 128-bit security level target, we need to take m between 1100
and 1200 in characteristic 2 and around 500 in characteristic 3.

3 Elliptic Curves over Composite-Extension Fields

We examine, in this section, the consequences on security of defining supersin-
gular elliptic curves over a finite field of the form Fqn , where q = pm, n is a small
integer and m a prime. This corresponds to substituting qn for q and m · n for
m in the previous section.

It is important to remark that such elliptic curves defined over composite-
extension fields have already been described for cryptographic use under the
name Trace-Zero Variety (TZV) [23]. Applying the Weil descent to E(Fqn), we
obtain an isomorphic variety WE(Fq ) which is also isomorphic to the product
E(Fq ) × B(Fq ) where B(Fq ) is the TZV. It is a variety defined over the base
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field Fq which might also be represented as the quotient E(Fqn)/E(Fq). As we
consider in this work an �-torsion subgroup of E(Fqn) which is not contained in
E(Fq ), this �-torsion is a subgroup of the corresponding TZV. In the context of
pairings, TZVs have also been studied, chiefly for point compression [44,45,16].

3.1 The Gaudry–Hess–Smart Attack

As soon as one defines a curve on a field of composite extension degree, one
should also consider other attacks: the Weil descent can indeed be applied on
those curves and have some “destructive facets.” The Weil descent allows one
to map an elliptic curve defined over Fqn to the Jacobian of a curve of genus at
least n over Fq .

Thus the discrete logarithm problem on the elliptic curve defined over Fqn

might be transported to the DLP on the Jacobian of a genus-n curve over Fq .
This last DLP can then be solved using an index calculus algorithm. Gaudry,
Hess, & Smart have shown that this attack (GHS) runs in Õ(q2−

2
n ) in some

cases (Weil restrictions) [27]. More generally Gaudry [26] and Diem [17] showed
that this also holds in the general case, but with a very bad dependency in n
(hidden in the big-O notation).

3.2 The Static Diffie–Hellman Problem

Recent studies [28,32] showed that defining a curve over a finite field of composite
extension degree makes it weaker regarding the static Diffie–Hellman problem
(SDH). The SDH problem on a curve consists in: given two points P, [d]P ∈
E(Fq ) (where d is a secret integer) and an oracle Q 	→ [d]Q, compute [d]R where
R is randomly chosen point.

The cryptographic consequence of solving SDH problem is breaking the Diffie–
Hellman key exchange protocol when one participant never changes his private
key, as it occurs in the El Gamal encryption scheme for instance [20].

Granger discovered the best known algorithm that solves the SDH problem
on elliptic curves defined over a field of composite extension degree Fqn with
O(q1−

1
n+1 ) calls to the oracle and in Õ(q1−

1
n+1 ) time [28].

One should notice that the attacker not only needs a great computational
power but also a great number of calls to the oracle: a simple but efficient
protection against this attack is revoking a key after a certain amount of use.

3.3 Finding Curves with 128-Bit Security Level

To the best of our knowledge, the literature does not mention any other attack
on curves over fields of composite extension degree.

In order to find suitable curves for our method, we enumerated all the su-
persingular curves of characteristic 2 and 3 on fields with moderately-composite
extension degrees m · n (n < 15) large enough for the 128-bit security level. We
then evaluated an approximation (constants hidden in big-O are not taken into
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Table 1. Different curves and their security in bits against the different known attacks.

A security of N bits means that approximately 2N operations are required to perform

the attack.

Cost of the attacks (bits)

q n b log2 � Pollard’s ρ FFS GHS SDH

21117 1 1 1076 531 128 – –

2367 3 1 698 342 128 489 275

2227 5 1 733 359 129 363 189

2163 7 1 753 370 129 279 142

2127 9 1 487 236 130 225 114

2103 11 1 922 454 129 187 94

289 13 0 1044 515 164 130 82

273 15 0 492 239 136 127 68

3503 1 1 697 342 132 – –

397 5 −1 338 163 130 245 128

367 7 −1 612 300 129 182 92

353 11 −1 672 330 140 152 77

343 13 1 764 376 138 125 63

account) of the computation time of each of the attacks mentioned in the paper:
Pollard’s ρ, FFS, GHS and SDH. A selection of curves reaching the 128-bit level
of security is given in Table 1; since that is not necessarily a security issue for all
protocols, we also present curves that are not resistant to Granger’s SDH attack.

The main difficulty in computing Table 1 is to factor the cardinal of the
different curves because they contains more than 350 digits in characteristic 2
and 240 in characteristic 3. Luckily those cardinals are the Aurifeuillean factors
of Cunningham numbers and many of them are referenced in the factor tables
maintained by Wagstaff [49] and Leyland [35].

The security estimations given in Table 1 confirm the intuition: the more
composite the extension degree of the field of definition, the more effective the
attacks using Weil descent, until they become the best attack on the curves.

As a proof of concept, we finally chose to implement the pairing over the
supersingular curve E3,−1 over F35·97 , as this curve has an embedding degree
equal to 6 and is resistant to all the attacks, even for the SDH problem.

4 Computation of the Tate Pairing over
Composite-Extension Fields

As we have identified some curves that allow us to reach the 128-bit level of
security, we now focus on the algorithms for computing the pairing over such
curves.
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4.1 Algorithms for Computing the Tate Pairing

The computation of the Tate pairing is split into two parts: Miller’s loop [37,38]
and a final exponentiation in the multiplicative group F∗

qk·n .
Many improvements of Miller’s algorithm have been published since its dis-

covery. Duursma & Lee adapted it to exploit the simple point-tripling formulae
in characteristic 3 by turning the double-and-add into a triple-and-add algo-
rithm [18]. Furthermore Barreto et al. put forward the ηT approach which divides
by two the length of the loop by exploiting the action of the Verschiebung on the
�-torsion [5].1 Those improvements and a careful implementation of the arith-
metic of the extension over Fqk·n leads to the algorithms presented by Beuchat
et al. in [8, 6].

To implement the pairing of our test case, we chose the unrolled loop algo-
rithm in [8, Algorithm 5] because it minimizes the number of multiplications
on the field of definition Fqn which represents the major cost on a field large
enough to reach the AES-128 security level. Moreover this algorithm requires
only additions, multiplications and cubings over Fqn but not any cube rooting;
therefore it represents a substantial saving in hardware resources requirements.

We have now determined the sequence of operations in Fqn to compute the ηT
pairing over Fqn . Nonetheless we want to design compact hardware to execute
them: the datapath of a circuit directly handling elements of Fqn would be very
large. Therefore we take advantage of the composite extension degree of our field
of definition and implement the pairing as sequence of operations over Fq : the
datapath of a coprocessor dealing with elements of Fq only will be much smaller.
Thus we have to express the arithmetic of Fqn in terms of operation over Fq in
an efficient way.

4.2 Representation and Computation over the Extension

Pairing computation requires a large number of multiplications. Using normal
basis would thus be very harmful. As a consequence Fqn is represented using a
polynomial basis: Fqn ∼= Fq [X ]/(f(X)) where f is a degree-n irreducible polyno-
mial over Fq . Hence an element of Fqn is represented as a polynomial of degree
at most n − 1 over Fq , and operations over Fqn are mapped to operations over
Fq [X ] followed if necessary by a reduction modulo f .

The irreducible polynomial f could be taken among all irreducible polynomials
of degree n over Fq but we restricted this choice to polynomials over Fp in order
to avoid multiplications over Fq during the different reductions modulo f . This
is possible because n is coprime to m. We also chose f to have a low Hamming
weight, i.e. a trinomial or a pentanomial, so as to further reduce the cost of the
reductions.

Frobenius automorphism over Fqn. During the pairing computation, many
iterated applications of the Frobenius, i.e. pi-th powering, are required. By lin-
earity of this operation, we have:
1 The ηT pairing is in fact a power of the actual Tate pairing but the conversion

between the two is free [6].
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Moreover we have that Xpn ≡ 1 (mod f) because f is defined over Fp . Therefore
computing the i-th iterated Frobenius over Fqn is tantamount to computing the i-
th iterated Frobenius over all coefficients and then applying a linear combination
on them that only depends on the value of i mod n.

Multiplications over Fqn. Multiplication is the most expensive operation
and it can be greatly optimized by using subquadratic multiplication schemes.
Choosing the best algorithm to compute the products of two degree-(n − 1)
polynomials depends on many criteria and we studied how different solutions fit
our case.

Many subquadratic multiplication algorithms can be used: Karatsuba, Mont-
gomery’s Karatsuba-like formulae [40,21], or CRT-based algorithms [14,15]. The
common point between those algorithms is that they can all be expressed as the
linear combination of a set of products of linear combinations of the coefficients
of the operands.

The Toom–Cook algorithm and its variants cannot be used easily in the
case of polynomials over low-characteristic fields, as it is based on an evaluate–
interpolate scheme. To be efficient, evaluation points, their inverse, and their
successive powers should have a small representation. However, we cannot find
enough “simple elements” in low-characteristic fields: taking interpolation points
in Fq instead of Fp will increase the number of multiplications and defeat the
whole point of the method.

Furthermore, as we will see in Section 5.1, additions do not have a negligible
cost when compared to multiplications as it is often assumed in estimations of
multiplication complexity. Thus we have to express the formulae given by the
different algorithms and count the total number of operations of each type.

Inversion over Fqn. During the final exponentiation step of the pairing com-
putation, an inversion over Fqn has to be carried out. Because there is only one
inversion in the whole pairing computation, there is no gain to dedicate spe-
cific hardware resources to speed up its computation. However, thanks to the
Itoh–Tsujii algorithm [29] which consists in applying Fermat’s little theorem,
the inversion over Fqn is computed with (n−1) ·m applications of the Frobenius
in Fqn , some multiplications over Fqn and one inversion over Fq . We also used
another Itoh–Tsujii’s algorithm to compute this last inversion over Fq and then
do not need any other inversion since inversion over Fp is the identity when
p = 2 or 3.

4.3 Our Test Case: F35·97

We chose to construct the extension for our test case as F35·97 ∼= F397 [X ]/(X5 −
X + 1), F397 itself being represented as F3 [t]/(t97 + t16 − 1). Thus we evaluated
multiplication over the extension cost thanks to different algorithms (cf. Table 2):
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– the quadratic and so-called schoolbook method;
– one-level Karatsuba, where the sub-products are computed using the school-

book method;
– recursive Karatsuba, where the sub-products are also computed thanks to

Karatsuba algorithm;
– Montgomery’s Karatsuba-like formulae [40];
– algorithm based on the Chinese Remainder Theorem (CRT) by Cenk &

Özbudak [14] (cf. Section A for detailed algorithm).

Since n = 5 is odd, Montgomery’s trick [40, Section 2.3] for applying the Karat-
suba formulae can be used and saves one extra sub-product.

As we have now expressed a variety of algorithms for multiplication over F35·97 ,
choosing one of them is a matter of algorithm–architecture co-design. Indeed,
timing for each algorithm heavily depends on:

– the cost of multiplication on F397 compared to the addition,
– the data dependencies, and
– the scheduling of the operations in regards to the memory architecture.

Table 2. Cost of different multiplication algorithms over F35·97

Algorithm
Multiplications Additions Add./Mul.

over F397 over F397 Ratio

Schoolbook 25 8 0.32

One-level Karatsuba (Montgomery’s trick) 21 29 1.38

Recursive Karatsuba 15 39 2.60

Recursive Karatsuba
14 43 3.07

(Montgomery’s trick)

Montgomery’s Karatsuba-like
13 54 4.153

formulae [40]

Cenk & Özbudak [14] 12 53 4.42

Finally, it turned out that the algorithm by Cenk & Özbudak [14] best fitted
our arithmetic coprocessor (cf. Section 5). In conclusion, the overall cost of
the arithmetic over the extension field F35·97 is presented in Table 3. Table 4
summarizes the number of operations over the field F397 and its extension F35·97

needed to perform Miller’s loop and the final exponentiation from [8].

5 Hardware Accelerator for Computing the Tate Pairing

5.1 An Arithmetic Coprocessor over Fq

As we have now reduced the pairing computation to a sequence of operations over
Fq with q = pm, we need a coprocessor able to perform additions, multiplications
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Table 3. Cost of the arithmetic over F35·97 in terms of operations over F397

× + (.)3

Addition – 5 –

Multiplication 12 53 –

Iterated Frobenius, (.)3
i

where i ≡ 0 (mod 5) – – 5i

where i ≡ 1 (mod 5) – 5 5i

where i ≡ 2 (mod 5) – 6 5i

where i ≡ 3 (mod 5) – 8 5i

where i ≡ 4 (mod 5) – 7 5i

Inverse 41 129 484

Table 4. Count of operations for full-pairing computation over F35·97 , and the corre-

sponding cost over F397

× + (.)3 1/.

F35·97 3104 13127 4123 1

F397 37289 253314 21099 –

and Frobenius (squarings and cubings) over this field. To this intent, we chose
the coprocessor that Beuchat et al. developed for the final exponentiation in [10].

The architecture of this coprocessor is reproduced in Fig. 1 and is composed
of three units running in parallel: a register file implemented by means of a
dual-ported RAM, a unit performing additions and Frobenius applications, and
a parallel-serial multiplier. Several direct feedback paths exist between the in-
puts and outputs of the units, for instance allowing a product to be used in an
addition without having to go through the register file: this allows us to save
time while decreasing the pressure on the memory, which is a major bottleneck
of the architecture.

Frobenius computations are quite scarce in the overall pairing algorithm (cf.
Table 4) but long sequences of iterated squarings or cubings occur several times.
The coprocessor is designed to fit this observation: the addition unit shares most
of its datapath with a Frobenius unit which can carry out both single and double
applications of the Frobenius in one clock cycle. One should also notice that there
is a direct feedback loop from its output to one of its inputs so as to further speed
up sequences of Frobenius.

Products are processed in a parallel-serial fashion: at each cycle the first
operand is multiplied by D coefficients of the second operand. The complete
multiplication over Fpm is then computed in

⌈
m
D

⌉
clock cycles. D is a parameter

of the processor and is chosen as trade-off between computation time of the mul-
tiplication and the operating frequency (a large value of D lengthens the critical
path and this deteriorates the frequency).
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Fig. 1. Finite field coprocessor over Fq

In our case of computing the Tate pairing over F35·97 , we chose D = 14. The
product on F397 then takes 7 clock cycles, i.e. 7 times longer than an addition.
Given this cost ratio between multiplications and additions, the multiplication
algorithm over F35·97 by Cenk & Özbudak fit best the coprocessor, that is to say
we managed to find a scheduling of the algorithm that hides all the additions
behind the 12 multiplications over F397 . A multiplication algorithm with less
sub-products and more additions would not yield a better execution time since
the bottleneck would be in the memory access. Indeed memory ports are near
to be saturated in our scheduling of Cenk & Özbudak’s algorithm.

5.2 Micro- and Macrocode

Considering the total number of multiplications over Fq (cf. Table 4) and their
cost, the pairing needs a minimum of 260 000 clock cycles to be calculated.
During those cycles, the 36 control bits (the ci’s in Fig. 1) should be set: this
represents a total amount of 10 Mbit of memory for the pairing program. Thus
we cannot store those control bits directly in an instruction memory: it would
use up much more resources than the coprocessor itself.

In order to reduce instruction memory requirements, we implemented two
levels of code. In the lower one, the microcode, we implemented the arithmetic
over the extension F35·97 . These operations are called in a macro-program that
computes the actual pairing. Given that the non-reduced pairing is computed
thanks to Miller’s loop, we also constructed a loop mechanism on the macrocode.

Finally the implementation of the Tate pairing over E(F35·97) is a sequence of
464 macro-operations which takes 428 853 clock cycles to be executed. Although
microcoding implies a loss of parallelism, it allows us to drastically reduce the
size of the instruction memory, which now fits in 24 kbit.

The register file is split into two parts: the first one contains 32 macro-variables
(elements of F35·97) and the second serves as a scratch space of 16 temporary
variables (elements of F397) for use inside the microcode. Macro-variables are
blocks of 5 consecutive addresses in the register file that are accessed in the
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microcode thanks to a windowed address mechanism. Since each element of F3

is represented by 2 bits, the total amount of RAM used is 33 kbit.

6 Results and Comparisons

We prototyped and synthesized our design on Xilinx mid-range Virtex 4 and
also on Spartan-3’s, which are more suited to embedded systems. Place-and-
route results show that the coprocessor uses 4755 slices and seven 18 kbit RAM
blocks of a Virtex-4 (xc4vlx25-11) clocked at 192 MHz, finally computing our
test-case pairing in no more than 2.11 ms. Performance for the low-end FPGA
are more modest but still interesting: on a Spartan 3 (xc3s1000-5) running at
104 MHz, this pairing can be computed in 4.1 ms using 4713 slices.

To the best of our knowledge, this design is the first FPGA implementation
of a pairing reaching 128 bits of security; thus we compared our design to FPGA
implementations of less secure pairings (Table 5), along with ASIC (Table 6)
and software (Table 7) implementations of 128-bit security pairings.

Table 5. Tate pairing computation on FPGA

Curve
Sec.

FPGA
Area Freq. Time Area×time

(bits) (slices) (MHz) (μs) (slices.s)

Barenghi et al. [2] E(Fp512
) 87 xc2v8000-5 33857 135 1610 54.5

Shu et al. [47] E(F2457 ) 88 xc4vlx200-10 58956 100 100.8 5.94

Beuchat et al. [9] E(F2457 ) 88 xc4vlx100-11 44223 215 7.52 0.33

Beuchat et al. [6] E(F2459 ) 89 xc2vp20-6 8153 115 327 2.66

Beuchat et al. [6] E(F3193 ) 89 xc2vp20-6 8266 90 298 2.46

Beuchat et al. [9] E(F3193 ) 89 xc4vlx200-11 47260 179 9.33 0.44

Shu et al. [47] E(F2557 ) 96 xc4vlx200-10 37931 66 675.5 25.62

Beuchat et al. [9] E(F2557 ) 96 xc4vlx200-11 55156 139 13.2 0.73

Beuchat et al. [9] E(F3239 ) 97 xc4vlx200-11 66631 179 11.5 0.77

Beuchat et al. [9] E(F2613 ) 100 xc4vlx200-11 62418 143 15.1 0.95

Beuchat et al. [9] E(F2691 ) 105 xc4vlx200-11 78874 130 18.8 1.48

Beuchat et al. [9] E(F3313 ) 109 xc4vlx200-11 97105 159 16.9 1.64

This paper E(F35·97 ) 128
xc4vlx25-11 4755 192 2227 10.59

xc3s1000-5 4713 104 4113 19.38

The literature about pairing computation on FPGAs only focuses on low-
security pairings because they already reach the limit of the available FPGA
resources. Indeed the designs presented in [2, 6, 7, 9, 47] have a datapath that
handles the field of definition of their respective curves and thus increasing the
security means increasing the designs’ area. In contrast our approach allows us
to “split” elements of the field of definition into smaller parts and thus achieve a
smaller area: the coprocessor is very compact compared to the other published
architectures. However we have to pay the price of security in terms of compu-
tation time: computing a pairing over E(F35·97 ) (128 bits of security) with our
processor is 130 times slower than computing one over E(F3313) (109 bits) with
Beuchat et al.’s hardware [9]. It is however 20 times smaller.
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Table 6. Performance of some ASIC accelerators for pairings over BN-curves of AES-

128 security level

Platform
Area

RAM Frequency Time
without RAM

Fan et al. [22] 130 nm ASIC 113 kGates 32 kbits 204 MHz 2.91 ms

Kammler et al. [33] 130 nm ASIC 97 kGates 64 kbits 308 MHz 15.8 ms

Table 7. Computation of pairing at the AES-128 security level in software

Curve Processor Time (ms)

Beuchat et al. [11]
Supersingular over F21223 2.4 GHz Intel Core2 11.9
Supersingular over F3509 2.4 GHz Intel Core2 7.59

Naehrig et al. [41] 257 bit BN curve 2.4 GHz Intel Core2 1.87

The first ASIC implementations of pairings with 128 bits of security were
presented in [33, 22]. The two implementations use BN-curves so as to exploit
their optimal embedding degree k = 12 while targeting 128 bits of security.
Although we did not synthesize our design on ASIC, a very rough and pessimistic
estimation places our coprocessor around the 100-kGate mark, not counting
the register file. That is to say roughly the same area as required by the two
accelerators presented in Table 6. We also use 33 kbit of dual-ported RAM: a
bit more than Fan et al. and half of the amount used by Kammler et al. As a
result, our architecture seems to be very comparable with the ones from [33,22]
in terms of area, and its performance is also very closed to the ASICs’ one.

Finally we compared our results against single-core software implementations
of 128-bits pairings over supersingular curves [11] and BN curves [41]. Even
though, we targeted our implementation to embedded systems and low-resource
hardware, our timings are very comparable to that of the software implementa-
tions: specific hardware for small-characteristic finite field arithmetic proves to
be very efficient when compared to software implementations.

7 Conclusion

We presented a compact hardware implementation of a pairing reaching 128 bits
of security, which is perfectly suited for embedded systems. To this end, we
showed that the Tate pairing on supersingular curves over composite-extension
field is a pertinent solution, even though their embedding degree k could be
deemed too small at first glance. This also demonstrates that the efficiency of
the underlying arithmetic plays a key role in pairing computation, and should be
taken into account, right along with the size of the base field and the embedding
degree, when designing pairing-based cryptosystems.
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Furthermore, the idea to use curves defined over finite fields Fqn of moderately-
composed extension degree might be exploited in other areas of cryptography.
While targeting the AES-128 level of security, the attacks based on Weil descent
do not introduce extra weaknesses on the curve as long as n is kept small enough.
This is an interesting result in itself: expanding the fauna of pairing-friendly
curves suited to the 128-bit security level is indeed very relevant for cryptography.
Moreover, computations on such curves can be carried out in a more efficient
and parallel way, which yields better overall performances.

An interesting development of this work is to implement this idea in charac-
teristic 2. Indeed, arithmetic over binary fields is simpler than in characteristic 3;
as a consequence, characteristic 2 might also be a good choice, even though the
embedding degree is even lower. We are planning to explore this direction in the
near future.

Implementing the pairing on all the supersingular elliptic curves shown in
Table 1 would also give a better coverage of the area–time trade-off for com-
puting pairings with 128 bits of security: the more composite the extension
degree, the smaller the base field Fq and thus the coprocessor. Additionally, in
our approach, products over Fq are performed thanks to a quadratic scheme
but the algorithms used for multiplications over Fqn are subquadratic; therefore
using a larger n for a same size of the field Fqn might lead to a more efficient
multiplication.

Furthermore, Cesena has noticed that the extra structure in curves defined
over a composite-degree extension field—or TZVs—leads to a natural paralleliza-
tion of Miller’s algorithm [16]. It might be of interest to design a more parallel
accelerator exploiting this fact. Such a circuit might achieve a lower latency for
computing the Tate pairing with 128 bits of security at the cost of a larger silicon
footprint.

Last but not least, the method presented in this article might scale to higher
levels of security. For instance, the curve E3,1(F317·67) reaches 192 bits of security,
while keeping the hardware requirements to a minimum. Finding other such
curves and comparing them against higher-embedding-degree ordinary curves
might help finding the crossover point between the two and assessing the actual
relevance of supersingular elliptic curves in the context of low-resource pairing-
based cryptography.
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Algorithm 1. Multiplication in F35m

Input: A = a0 + a1α + a2α
2 + a3α

3 + a4α
4 and B = b0 + b1α + b2α

2 + b3α
3 + b4α

4

where ai, bi ∈ F3m .

Output: C = A ·B
1. a5 ← a0 + a1; b5 ← b0 + b1; a6 ← a2 + a3; b6 ← b2 + b3

2. a7 ← a2 − a3; b7 ← b2 − b3; a8 ← a0 + a4; b8 ← b0 + b4

3. a9 ← a4 + a5; b9 ← b4 + b5

4. p0 ← a0 · b0; p1 ← a1 · b1; p2 ← a4 · b4; p3 ← a5 · b5

5. p4 ← (a1 − a3) · (b1 − b3); p5 ← (a1 − a6) · (b1 − b6)

6. p6 ← (a2 − a8) · (b2 − b8); p7 ← (a6 + a9) · (b6 + b9)

7. p8 ← (a6 − a9) · (b6 − b9); p9 ← (a0 − a4 + a7) · (b0 − b4 + b7)

8. p10 ← (a1 − a7 − a8) · (b1 − b7 − b9); p11 ← (a3 − a4 + a5) · (b3 − b4 + b5)

9. t0 ← p1 − p3; t1 ← p7 + p10; t2 ← p7 − p10

10. t3 ← p2 + p4; t4 ← p8 − p6; t5 ← p11 − t0
11. c0 ← t4 − t0 − t2 − p4; c1 ← p2 − p0 − p9 − t1 − t5
12. c2 ← p5 − p8 − t3 − t5; c3 ← t2 − t3 + t4
13. c4 ← p4 − p0 − p6 + t1
14. return C = c0 + c1α + c2α

2 + c3α
3 + c4α

4

B �-torsion of Presented Curves

We provide in this appendix the largest factor � of the cardinals of the curves used
in Table 1 and the one with 192-bit security level mentioned in the conclusion.

B.1 Characteristic 2

– E2,1(F21117):
� = 619074192321273307277438691119233058790820634893360057193377\

122275541424570658263412019435765493074195820297417376747932\
248094264569966237629582261870883925353443145570692187335548\
683837515601099459860669193973764482753436531478745981766945\
411504253650899252459234448440440995323058733022537477753547\
543331526824911551527333 (1076 bits)

– E2,1(F23·367 ):
� = 969479603278186730289503541042886691666123364558568701313813\

359745290668184127412771736661726167918225502828978334069274\
912792960814346728226407067755389529068277515573173949951347\
909708753667984651964976566357 (698 bits)

– E2,1(F25·227 ):
� = 387807566127257652326614188973820517854886880596071365340579\

081203820130327954203519023617159911950745211425564080964614\
422638824727652925391132558155138126471653299809062407679361\
06177017769993501924867181334979908226181 (733 bits)
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– E2,1(F27·163 ):
� = 527333423657076418735771198490742135902593988840498282835698\

225469081551234017413009393924349615391057883025970143409298\
825525377011095738875173885561559802962759260228479765262681\
16379830377028893576144901165532020673741756101 (753 bits)

– E2,1(F29·127 ):
� = 345428763515337455320513346595838457562152586937282502188431\

308746562321219499017628832563019820634682827019770799089846\
906371734583958492969933493 (487 bits)

– E2,1(F211·103 ):
� = 455093218131231753950603619629047497847974430881584114342263\

233539580092770726678766917392702585626625835978899843075414\
305198878050459905535835655050847093202783299430021075356835\
014745535421646570085100803038555197229274765925231278728563\
73610510150628859847392052958851491521 (922 bits)

– E2,0(F213·89 ):
� = 211802332252682334826944758481503093655177752110895515656983\

707753921755157758466447995474127577060935924385455703016958\
758137983194279952499146720659285364563684009302850259666276\
195641855840764518419327179431718554254174581321083982947322\
981528804011230947625432051866970535921099135184332412995164\
093370870167293 (1044 bits)

– E2,0(F215·73 ):
� = 980057908630054849590982407802589457588999793562532628176670\

097785129845409864188659712165658132978663850242420453783649\
6466934970984285832503798101 (492 bits)

B.2 Characteristic 3

– E3,1(F3503 ):
� = 545523657676112447260904563578912738373307867219686215849632\

469801471112426878939776725222290437653718473962733760874627\
315930933126581248465899651120481066111839081575164964589811\
985885719017214938514563804313 (697 bits)

– E3,−1(F35·97):
� = 588732453011753508013694503091100490261928459157514647309296\

941697666832507096172127852923090672844101 (338 bits)
– E3,−1(F37·67):
� = 198877173206052894812635074296157932741332034424157038650419\

395854116075771637066167599499150109958221999967622358900215\
860067276223554731852424604942067727364565534943781395876039\
31839 (612 bits)



416 N. Estibals

– E3,−1(F311·53 ):
� = 211481819493746086782493570063344144137025400858064707053988\

970007297523680247046853068625411347010037987354570096140286\
131167233246014189282737634759057772983792414550023605401048\
42866391856375045279587 (672 bits)

– E3,1(F313·43 ):
� = 780805131216013322135909117531963030525104533454379292999972\

285176605028947704178161317765629689154271408914071417540782\
065065391844801376440344497422353298680259050077190192414921\
27880097531140775099199845730350794443332650516869 (764 bits)

– E3,1(F317·67 ):
� = 580807251443580749015157892103879774263203646148186545733767\

301327964005061856781013661205024478877326019301235549238196\
694127664203363097646101448800184666886885534005618344906757\
470472679514154608265809419697947368576581275390419495027194\
917502298809542558562159519788829324206159582134293407859461\
864900191066023449574873333303427818411171268971389507316485\
836697413405268401148957441805917547876956854138626736036981\
306196286962102571430752380788971186616714875260124599797020\
43146595818195017 (1650 bits)



A Variant of Miller’s Formula and Algorithm

John Boxall1, Nadia El Mrabet2,�, Fabien Laguillaumie3, and Duc-Phong Le4,�

1 LMNO – Université de Caen Basse-Normandie, France

john.boxall@unicaen.fr
2 LIASD – Université Paris 8, France
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Abstract. Miller’s algorithm is at the heart of all pairing-based cryp-

tosystems since it is used in the computation of pairing such as that of

Weil or Tate and their variants. Most of the optimizations of this al-

gorithm involve elliptic curves of particular forms, or curves with even

embedding degree, or having an equation of a special form. Other im-

provements involve a reduction of the number of iterations.

In this article, we propose a variant of Miller’s formula which gives

rise to a generically faster algorithm for any pairing friendly curve. Con-

cretely, it provides an improvement in cases little studied until now, in

particular when denominator elimination is not available. It allows for

instance the use of elliptic curve with embedding degree not of the form

2i3j , and is suitable for the computation of optimal pairings. We also

present a version with denominator elimination for even embedding de-

gree. In our implementations, our variant saves between 10% and 40% in

running time in comparison with the usual version of Miller’s algorithm

without any optimization.

1 Introduction

Pairings were first introduced into cryptography in Joux’ seminal paper describ-
ing a tripartite (bilinear) Diffie-Hellman key exchange [20]. Since then, the use
of cryptosystems based on bilinear maps has had a huge success with some
notable breakthroughs such as the first identity-based encryption scheme [10].
Nevertheless, pairing-based cryptography has a reputation of being inefficient,
because it is computationally more expensive than cryptography based on mod-
ular arithmetic. On the other hand, the use of pairings seems to be essential in
the definition of protocols with specific security properties and also allows one
to reduce bandwidth in certain protocols.
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Ever since it was first described, Miller’s algorithm [24] has been the central
ingredient in the calculation of pairings on elliptic curves. Many papers are
devoted to improvements in its efficiency. For example, it can run faster when
the elliptic curves are chosen to belong to specific families (see for example
[4,6,12]), or different coordinate systems (see for example [18,13,7]). Another
standard method of improving the algorithm is to reduce the number of iterations
by introducing pairings of special type, for example particular optimal pairings
[26,17,16] or using addition chains (see for example [8]).

In this paper we study a variant of Miller’s algorithm for elliptic curves
which is generically faster than the usual version. Instead of using the formula
fs+t = fsft

�s,t

vs+t
(see Subsection 2.2 for notation and Lemma 1) on which the

usual Miller algorithm is based, our variant is inspired by the formula
fs+t = 1

f−sf−t�−s,−t
(see Lemma 2 for a proof). An important feature is that

the only vertical line that appears is f−1, in other words the vertical line passing
through P , and even this does not appear explicitly except at initialization. We
shall see in § 3.1 why it does not appear in the addition step. Our algorithm is
of particular interest to compute the Ate-style pairings [3,17] on elliptic curves
with small embedding degrees k, and in situations where denominator elimina-
tion using a twist is not possible (for example on curves with embedding degree
prime to 6). A typical example is the case of optimal pairings [26], which by def-
inition only require about log2(r)/ϕ(k) (where r is the group order) iterations of
the basic loop. If k is prime, then ϕ(k ± 1) ≤ k+1

2 which is roughly ϕ(k)
2 = k−1

2 ,
so that at least twice as many iterations are necessary if curves with embedding
degrees k ± 1 are used instead of curves of embedding degree k.

The paper is organized as follows. In Section 2 we recall some background on
pairings, and recall the usual Miller algorithm (Figure 1). In Section 3 we explain
and analyze generically our version of Miller’s algorithm, which is resumed by the
pseudocode in Figure 2 when the elliptic curve is given in Jacobian coordinates.
Section 4 discusses a variant without denominators applicable when k is even (see
Figure 5). Section 5 describes some numerical experiments and running times;
in an example with k = 18 and r having 192 bits, the algorithm of Figure 5 is
roughly 40% faster than the usual Miller algorithm, and about as fast as the
algorithm of [4].

Further work is needed to see whether many of the recent ideas used to im-
prove the usual Miller algorithm can be adapted to the variant presented here.
We believe that doing so should lead to further optimizations.

2 Background on Pairings

2.1 Basics on Pairings

We briefly recall the basic definitions and some examples of pairings used in
cryptography. For further information, see for example [9,11].

We let r ≥ 2 denote an integer which, unless otherwise stated, is supposed to
be prime. We let (G1,+), (G2,+) and (GT , ·) denote three finite abelian groups,
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which are supposed to be of order r unless otherwise indicated. A pairing is
a map e : G1 × G2 → GT such that e(P1 + P2, Q) = e(P1, Q)e(P2, Q) and
e(P,Q1 + Q2) = e(P,Q1)e(P,Q2) for all P , P1, P2 ∈ G1 and for all Q, Q1,
Q2 ∈ G2. We say that the pairing e is left non degenerate if, given P ∈ G1 with
P �= 1, there exists Q ∈ G2 with e(P,Q) �= 1. The notion of a right degenerate
pairing is defined similarly and e is said to be non degenerate if it is both left
and right non degenerate

We recall briefly one of the most frequent choices for the groups G1, G2 and
GT in pairing-based cryptography. Here, G1 is the group generated by a point
P of order r on an elliptic curve E defined over a finite field Fq of characteristic
different to r. Thus, G1 ⊆ E(Fq) is cyclic of order r but, in general, the whole
group E[r] of points of order dividing r of E is not rational over E(Fq). Recall
that the embedding degree of E (with respect to r) is the smallest integer k ≥ 1
such that r divides qk − 1. A result of Balasubramanian and Koblitz [2] asserts
that, when k > 1, all the points of E[r] are rational over the extension Fqk of
degree k of Fq. The group G2 is chosen as another subgroup of E[r] of order r.
Finally, GT is the subgroup of order r in F×

qk ; it exists and is unique, since r
divides qk − 1 and F×

qk is a cyclic group.
Let P ∈ E(Fq) be an r-torsion point, let DP be a degree zero divisor with

DP ∼ [P ]− [OE ], and let fr,DP be such that div fr,DP = rDP . Let Q be a point
of E(Fqk) (not necessarily r-torsion) and DQ ∼ [Q] − [OE ] of support disjoint
with DP . Consider

eTr (P,Q) = fr,DP (DQ). (1)

Weil reciprocity shows that if DQ is replaced by D′
Q = DQ + div h ∼ DQ, then

(1) is multiplied by h(DP )r. So the value is only defined up to r-th powers.
Replacing DP by D′

P = DP + div h changes fr,DP to fr,D′
P

= fr,DP h
r, and the

value is well-defined modulo multiplication by r-th powers. If then Q is replaced
by Q + rR, the value changes again by an r-th power. This leads to adapting
the range and domain of eTr as follows.

Theorem 1. The Tate pairing is a map

eTr : E(Fq)[r] × E(Fqk)/rE(Fqk ) → F×
qk/(F×

qk)r

satisfying the following properties:

1. Bilinearity,
2. Non-degeneracy,
3. Compatibility with isogenies.

The reduced Tate pairing computes the unique rth root of unity belonging to the
class of fr,DP (DQ) modulo (F×

qk)r as fr,DP (DQ)(q
k−1)/r. In practice, we take Q

to lie in some subgroup G2 of order r of E(Fqk) that injects into E(Fqk)/rE(Fqk)
via the canonical map. The more popular Ate pairing [3] and its variants (see
[23] for instance) are optimized versions of the Tate pairing when restricted
to Frobenius eigenspaces. Besides its use in cryptographic protocols, the Tate
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pairing is also useful in other applications, such as walking on isogeny volcanoes
[19], which can be used in the computation of endomorphism rings of elliptic
curves.

However, in this article we concentrate on the computation of fn,DP (DQ)
(which we write as fn,P (Q) in the sequel). This is done using Miller’s algorithm
described in the next subsection.

2.2 Computation of Pairings and Miller’s Algorithm

In order to emphasize that our improvement can be applied in a very general
context, we explain briefly in this subsection how pairings are computed. In what
follows, F denotes a field (not necessarily finite), E an elliptic curve over F and
r an integer not divisible by the characteristic of F. We suppose that the group
E(F) of F-rational points of E contains a point P of order r. Since r is prime to
the characteristic of F, the group E[r] of points of order r of E is isomorphic to
a direct sum of two cyclic groups of order r. In general, a point Q ∈ E[r] that is
not a multiple of P will be defined over some extension F′ of F of finite degree.

If P , P ′ are two points in E(F), we denote by �P,P ′ a function with divisor
[P ] + [P ′] + [−(P + P ′)] − 3[OE ] and by vP a function with divisor
[P ]+[−P ]−2[OE ]. Clearly these functions are only defined up to a multiplicative
constant; we recall at the end of this section how to normalize functions so that
they are uniquely determined by their divisor. Note that vP is just the same as
�P,−P .

If s and t are two integers, we denote by fs,P (or simply fs if there is no
possibility of confusion) a function whose divisor is s[P ]− [sP ]− (s−1)[OE]. We
abbreviate �sP,tP to �s,t and vsP to vs. As understood in this paper, the purpose
of Miller’s algorithm is to calculate fs,P (Q) when Q ∈ E[r] is not a multiple
of P . All pairings can be expressed in terms of these functions for appropriate
values of s.

Miller’s algorithm is based on the following Lemma describing the so-called
Miller’s formula, which is proved by considering divisors.

Lemma 1. For s and t two integers, up to a multiplicative constant, we have
fs+t = fsft

�s,t

vs+t
.

The usual Miller algorithm makes use of Lemma 1 with t = s in a doubling step
and t = 1 in an addition step. It is described by the pseudocode in Figure 1,
which presents the algorithm updating numerators and denominators separately,
so that just one inversion is needed at the end. We write the functions � and
v as quotients (N�)/(D�) and (Nv)/(Dv), where each of the terms (N�), (D�),
(Nv), (Dv) is computed using only additions and multiplications, and no inver-
sions. Here the precise definitions of (N�), (D�), (Nv), (Dv) will depend on the
representations that are used; in Section 3.2 we indicate one such choice when
short Weierstrass coordinates and the associated Jacobian coordinates are used.
In the algorithm, T is always a multiple of P , so that the hypothesis that Q
is not a multiple of P implies that at the functions �T,T , �T,P , v2T and vT+P
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Algorithm 1. Miller(P,Q, s) usual

Data: s =
∑l−1
i=0 si2

i (radix 2), si ∈ {0, 1}, Q ∈ E(F′) not a multiple of P .

Result: fs,P (Q).

T ← P , f ← 1, g ← 1,

for i = l − 2 to 0 do
f ← f2(N�)T,T (Dv)2T ,

g ← g2(D�)T,T (Nv)2T ,

T ← 2T
if si = 1 then

f ← f(N�)T,P (Dv)T+P ,

g ← g(D�)T,P (Nv)T+P ,

T ← T + P
end

end
return f/g

Fig. 1. The usual Miller algorithm

cannot vanish at Q. It follows that f and g never vanish at Q so that the final
quotient f/g is well-defined and non-zero.

Obviously in any implementation it is essential for the functions appearing in
the programs to be uniquely determined, and so we end this section by recalling
briefly how this can be done in our context. If w is a uniformizer at OE , we say
that the non-zero rational function f on E is normalized (or monic) with respect
to w if the Laurent expansion of f at OE is of the form

f = wn + cn+1w
n+1 + cn+2w

n+2 + · · · , ci ∈ F,

(i. e. if the first non-zero coefficient is 1). Any non-zero rational function on E can
be written in a unique way as a product of a constant and a normalized function,
and the normalized rational functions form a group under multiplication that is
isomorphic to the group of principal divisors.

As a typical example, when E is in short Weierstrass form

y2 = x3 + ax+ b, a, b ∈ F (2)

one can take w = x
y . Any rational function on E can be written as a quotient of

two functions whose polar divisors are supported at the origin OE of E. If f is
a function whose only pole is at OE , then there exist two polynomials U(x) and
V (x) such that f = U(x) +V (x)y: here U and V are uniquely determined by f .
Furthermore, if the order of the pole of f is n, then n ≥ 2 and U(x) is of degree
n
2 and V (x) of degree at most n−4

2 if n is even and V (x) is of degree n−3
2 and

U(x) of degree at most n−1
2 when n is odd. Then f is normalized if and only if,

when f is written in the form U(x) + V (x)y, U(x) is monic when n is even and
V (x) is monic when n is odd. In general, a rational function on E is normalized
if and only if it is a quotient of two normalized functions whose polar divisors
are supported by the origin.
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For example, when E is given by the equation (2), the functions

�T,P (x, y) =

{
y − yP − yT −yP

xT −xP
(x− xP ), T �= OE , ±P,

y − yP − 3x2
P +a

2yP
(x− xP ), T = P, 2P �= OE .

and
vP (x, y) = x− xP

are normalized, so that if they are used in implementations of the algorithms
given in Figures 1 and 2, then these algorithms output fs,P (Q) with fs,P the
normalized function with divisor s[P ] − [sP ] − (s− 1)[OE ].

3 Our Variant of Miller’s Algorithm

In this section, we describe our variant of Miller’s formula and algorithm and
analyze the cost of the latter in terms of basic operations.

3.1 The Algorithm

The main improvement comes from the following Lemma.

Lemma 2. For s and t two integers, up to a multiplicative constant, we have

fs+t =
1

f−sf−t�−s,−t
.

Proof. This lemma is again proved by considering divisors. Indeed,

div(f−sf−t�−s,−t) = (−s)[P ] − [(−s)P ] + (s+ 1)[OE ]
+(−t)[P ] − [(−t)P ] + (t+ 1)[OE ]
+[−sP ] + [−tP ] + [(s+ t)P ] − 3[OE ]

= −(s+ t)[P ] + [(s+ t)P ] + (s+ t− 1)[OE ]
= −div(fs+t),

which concludes the proof. 	

We shall seek to exploit the fact that here the right hand member has only three
terms whereas that of Lemma 1 has four.

Our variant of Miller’s algorithm is described by the pseudocode in Figure 2.
It was inspired by the idea of applying Lemma 2 with t = s or t ∈ {±1}. How-
ever, the scalar input is given in binary representation. It updates numerators
and denominators separately, so that only one final inversion appears at the end.
As in Figure 1, the hypothesis that Q is not a multiple of P implies that at no
stage do f and g vanish, so that the final quotient f/g makes sense. Note that T
is always a positive multiple of P . We use the notation �′−T,−P for the function
f−1�−T,−P , since in many situations it can be computed faster than simply by
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Algorithm 2. Miller(P,Q, r) modified

Data: s =
∑l−1
i=0 si2

i, si ∈ {0, 1}, sl−1 = 1, h Hamming weight of s, Q ∈ E(F′)
not a multiple of P

Result: fs,P (Q);

f ← 1, T ← P ,

if l + h is odd then
δ ← 1, g ← f−1

end
else

δ ← 0, g ← 1

end
for i = l − 2 to 0 do

if δ = 0 then1

f ← f2(N�)T,T ,

g ← g2(D�)T,T ,

T ← 2T , δ ← 1

if si = 1 then2

g ← g(N�′)−T,−P ,

f ← f(D�′)−T,−P ,

T ← T + P , δ ← 0

end

end
else3

g ← g2(N�)−T,−T ,

f ← f2(D�)−T,−T ,

T ← 2T , δ ← 0

if si = 1 then4

f ← f(N�)T,P ,

g ← g(D�)T,P ,

T ← T + P , δ ← 1

end

end

end
return f/g

Fig. 2. Our modified Miller algorithm

computing f−1 and �−T,−P and taking the product. For example, when E is
given in short Weierstrass coordinates by the equation y2 = x3 + ax + b, a,
b ∈ F, we have

�′−T,−P = f−1�−T,−P =
1

xQ − xP
(
yQ + yP + λ(xQ − xP )

)
=
yQ + yP
xQ − xP + λ, (3)

where yQ+yP

xQ−xP
can be precomputed (at the cost of one inversion and one multipli-

cation in the big field) and λ denotes the slope of the line joining T to P .
The tables in Figures 3 and 4 show that our variant is more efficient than the

classical Miller’s algorithm as we save a product in the big field at each doubling
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and each addition step. We also save some multiplications and squarings in
F. The following subsection discusses all this in more detail. In Section 4 we
describe a version without denominators that works for elliptic curves with even
embedding degree.

3.2 Generic Analysis

In this subsection, we compare the number of operations needed to compute
fs,P (Q) using the algorithms in Figures 1 and 2. In order to fix ideas, we make
our counts using Jacobian coordinates (X,Y, Z) associated to a short Weierstrass
model y2 = x3 + ax + b, a, b ∈ F, so that x = X/Z2 and y = Y/Z3. We
suppose that the Jacobian coordinates of P lie in F and that those of Q lie in
some extension F′ of F of whose degree is denoted by k. We denote by ma the
multiplication by the curve coefficient a and we denote respectively by m and
s multiplications and squares in F, while the same operations in F′ are denoted
respectively by Mk and Sk if k is the degree of the extension F′. We assume
that F′ is given by a basis as a F-vector space one of whose elements is 1, so that
multiplication of an element of F′ by an element of F counts as k multiplications
in F. We ignore additions and multiplications by small integers.

If S is any point of E, then XS , YS and ZS denote the Jacobian coordinates of
S, so that when S �= OE , the Weierstrass coordinates of S are xS = XS/Z

2
S and

yS = YS/Z
3
S. As before, T is a multiple of P , so that XT , YT and ZT all lie in

F. Since P and Q are part of the input, we assume they are given in Weierstrass
coordinates and that ZP = ZQ = 1.

We need to define the numerators and the denominators of the quantities ap-
pearing in the algorithms of Figures 1 and 2. The cost of computing these quan-
tities and the total cost of these algorithms are analyzed in Figures 3 and 4.

The doubling step. We first deal with doubling. Suppose that 2T �= OE ,
which will always be the case if r is odd. Then yT �= 0 and the slope of the
tangent to E at T is

μT =
3x2

T + a
2yT

=
(Nμ)T
(Dμ)T

,

where (Nμ)T = 3X2
T + aZ4

T and (Dμ)T = 2YTZT = (YT + ZT )2 − Y 2
T − Z2

T .
Hence the value of �T,T at Q can be written

�T,T (Q) = yQ − yT − μT (xQ − xT ) =
(N�)T,T
(D�)T,T

,

where now

(N�)T,T = (Dμ)TZ2
T yQ − (Nμ)TZ2

TxQ − 2Y 2
T − (Nμ)TXT

and
(D�)T,T = (Dμ)TZ2

T .
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The coordinates X2T , Y2T and Z2T of 2T are given by⎧⎪⎨⎪⎩
X2T = (Nμ)2T − 8XTY 2

T ,

Y2T = (Nμ)T (4XTY 2
T −X2T ) − 8Y 4

T ,

Z2T = (Dμ)T .

Hence the value of v2T at Q can be calculated as

v2T (Q) = xQ − x2T =
(Nv)2T
(Dv)2T

,

where (Dv)2T = Z2
2T and (Nv)2T = Z2

2TxQ −X2T .
In the modified algorithm, we also need to compute �−T,−T at Q. But the

coordinates of −T are (xT ,−yT ), so that we can write

�−T,−T (Q) = yQ + yT + μT (xQ − xT ) =
(N�)−T,−T
(D�)−T,−T

,

with
(N�)−T,−T = (Dμ)TZ2

T yQ + (Nμ)TZ2
TxQ + 2Y 2

T − (Nμ)TXT

and
(D�)−T,−T = (Dμ)TZ2

T .

All the operations needed in the doubling steps of the algorithms in Figures 1
and 2 are shown in detail in Figure 3. The quantities are to be computed in the
order shown in the table, a blank entry indicating that the corresponding quan-
tity need not be computed in the case indicated at the top of the corresponding
column. The costs of the computations are calculated assuming that the results
of intermediate steps are kept in memory. An entry 0 indicated that the quantity
has already been calculated at a previous stage.

The addition step. Next we deal with addition. When T �= ±P , the slope of
the line joining T and P is

λT,P =
yT − yP
xT − xP =

(Nλ)T,P
(Dλ)T,P

,

where (Nλ)T,P = YT − yPZ3
T and (Dλ)T,P = XTZT − xPZ3

T .
It follows that the value of �T,P at the point Q is given by

yQ − yP − λ(xQ − xP ) =
(N�)T,P
(D�)T,P

,

where we precompute yQ−yP and xQ−xP , and the numerator and denominator
are given by

(N�)T,P = (Dλ)T,P (yQ − yP ) − (Nλ)T,P (xQ − xP )
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Quantity Formula Classical Miller Modified Miller Modified Miller

(Fig. 1) (Fig. 2, loop 1) (Fig. 2, loop 3)

(Nμ)T 3X2
T + aZ4

T ma + 3s ma + 3s ma + 3s

(Dμ)T 2YTZT = (YT + ZT )2 − Y 2
T − Z2

T 2s 2s 2s

(N�)T,T (Dμ)TZ
2
T yQ − (Nμ)TZ

2
T xQ

−2Y 2
T − (Nμ)TXT (3 + 2k)m (3 + 2k)m

(D�)T,T (Dμ)TZ
2
T 0 0

X2T (Nμ)2T − 8XT Y
2

T s + m s + m s + m

Y2T (Nμ)T (4XTY
2

T −X2T ) − 8Y 4
T s + m s + m s + m

Z2T (Dμ)T 0 0 0

(Dv)2T Z2
2T s

(Nv)2T Z2
2T xQ −X2T km

(N�)−T,−T (Dμ)TZ
2
T yQ + (Nμ)TZ

2
T xQ

+2Y 2
T − (Nμ)TXT (3 + 2k)m

(D�)−T,−T (Dμ)TZ
2
T 0

f ← f2(N�)T,T (Dv)T,T km + Sk + Mk

g ← g2(D�)T,T (Nv)T,T km + Sk + Mk

f ← f2(N�)T,T Sk + Mk

g ← g2(D�)T,T km + Sk

f ← f2(D�)−T,−T km + Sk

g ← g2(N�)−T,−T Sk + Mk

TOTAL ma + 8s ma + 7s ma + 7s

+(5 + 5k)m +(5 + 3k)m +(5 + 3k)m

+2Sk + 2Mk +2Sk + Mk +2Sk + Mk

Fig. 3. Analysis of the cost of generic doubling

and
(D�)T,P = (Dλ)T,P .

The coordinates XT+P , YT+P and ZT+P of T + P are then given by⎧⎪⎨⎪⎩
XT+P = (Nλ)2T,P − (XT + xPZ2

T )(XT − xPZ2
T )2,

YT+P = −(Dλ)3T,P yP + (Nλ)T,P (xP (Dλ)2T,P −XT+P ),
ZT+P = (Dλ)T,P .

It follows that we can write the value of vT+P at Q as

vT+P (Q) = xQ − xT+P =
(Nv)T+P

(Dv)T+P
,

with (Nv)T+P = xQZ
2
T+P −XT+P and (Dv)T+P = Z2

T+P .
When the loop beginning with line 2 of Figure 2 is used, we need to calculate

�′−T,−P at Q. In fact, using equation (3), we can write

�′−T,−P (Q) =
yQ + yP
xQ − xP +

(Nλ)T,P
(Dλ)T,P

.

If yQ+yP

xQ−xP
has been precomputed and has value αQ,P , we can write
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�′−T,−P (Q) =
(N�′)−T,−P
(D�′)−T,−P

,

with (N�′)−T,−P = (Dλ)T,PαQ,P + (Nλ)T,P and (D�′)−T,−P = (Dλ)T,P .
All the operations needed in the addition steps of the algorithms in Figures 1

and 2 are shown in detail in Figure 4. As with the doubling step, the quantities
are to be computed in the order shown in the table, a blank entry indicating that
the corresponding quantity need not be computed in the case indicated at the
top of the corresponding column. The costs of the computations are calculated
assuming that the results of intermediate steps are kept in memory. An entry 0
indicated that the quantity has already been calculated at a previous stage.

Quantity Formula Classical Miller Modified Miller Modified Miller

(Fig. 1) (Fig. 2, loop 2) (Fig. 2, loop 4)

(Dλ)T,P (XT − xPZ
2
T )ZT s + 2m s + 2m s + 2m

(Nλ)T,P YT − yPZ
3
T 2m 2m 2m

(N�)T,P (Dλ)T,P (yQ − yP )

−(Nλ)T,P (xQ − xP ) 2km 2km

(D�)T,P (Dλ)T,P 0 0

XT+P (Nλ)2T,P −XT (XT − xPZ
2
T )2

−xPZ
2
T (XT − xPZ

2
T )2 2s + 2m 2s + 2m 2s + 2m

YT+P −yPZ
3
T (XT (XT − xPZ

2
T )2

−xPZ
2
T (XT − xPZ

2
T )2)

+(Nλ)T,P (xPZ
2
T (XT − xPZ

2
T )2

−XT+P ) 2m 2m 2m

ZT+P (Dλ)T,P 0 0 0

(Nv)T+P xQZ
2
T+P −XT+P s + km

(Dv)T+P Z2
T+P 0

(N�′)−T,−P αQ,P (Dλ)T,P + (Nλ)T,P km

(D�′)−T,−P (Dλ)T,P 0

f ← f(N�)T,P (Dv)T+P km + Mk

g ← g(D�)T,P (Nv)T+P km + Mk

f ← f(D�′)−T,−P km

g ← g(N�′)−T,−P Mk

f ← f(N�)T,P Mk

g ← g(D�)T,P km

TOTAL 4s + (8 + 5k)m 3s + (8 + 2k)m 3s + (8 + 3k)m

+2Mk +Mk +Mk

Fig. 4. Analysis of the cost of generic addition

3.3 The Main Result

The following theorem recapitulates the number of operations in our variant of
Miller’s algorithm.

Theorem 2. Suppose E is given in short Weierstrass form y2 = x3 + ax + b
with coefficients a, b ∈ F. Let P ∈ E(F) be a point of odd order r ≥ 2 and let Q
be a point of E of order r with coordinates in an extension field F′ of F of degree
k. We assume P and Q given in Weierstrass coordinates (xP , yP ) and (xQ, yQ).
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1. Using the associated Jacobian coordinates, the algorithms of Figures 1 and
2 can be implemented in such a way that all the denominators (D�)T,T ,
(D�)T,P , (Dv)2T , (Dv)T+P and (D�′)−T,−P belong to F.

2. When this is the case:
(a) Each doubling step of the generic usual Miller algorithm takes ma+8s+

(5 + 5k)m + 2Sk + 2Mk operations while in the generic modified Miller
algorithm it requires only ma + 7s + (5 + 3k)m + 2Sk + Mk operations.

(b) Each addition step of the generic usual Miller algorithm takes 4s + (8 +
5k)m+ 2Mk operations. On the other hand, the generic modified Miller
algorithm requires only 3s + (8 + 2k)m + Mk operations when line 2 is
needed and 3s + (8 + 3k)m + Mk operations when line 4 is needed.

We have made no serious attempt to minimize the number of operations, for
example by using formulas similar to those in [1].

Since the first part of Theorem 2 implies that, when F is a finite field with q
elements, we have

(D�)q−1
T,T = (D�)q−1

T,P = (Dv)q−1
2T = (Dv)q−1

T+P = (D�′)q−1
−T,−P = 1,

denominator elimination is possible when we only need to calculate fs,P (Q) to
some power divisible by q − 1. Such an algorithm saves at least km operations
both in the classical version and our variant.

Our new version of Miller’s algorithm works perfectly well for arbitrary em-
bedding degree. For example, using Theorem 2 of [16], it should be possible
to find an elliptic curve with a prime embedding degree minimizing the num-
ber of iterations. Optimal pairings [26] involve in their computation a product∏�
i=0 f

qi

ci,Q
(P ) whose terms can be computed with our algorithm. Note that

switching P and Q will lead to more computations in the extension field, but it
is shown in [23] that optimized versions of the Ate and the twisted Ate pairing
can be computed at least as fast as the Tate pairing. Note that Heß [16] §5,
also mentions pairings of potential interest when k is odd and the elliptic curve
has discriminant −4 and when k is not divisible by 3 and the elliptic curve has
discriminant −3.

4 Curves with Even Embedding Degree

Currently, most implementations (where F is a finite field) are adapted to curves
with embedding degree 2i3j , since the usual version of Miller’s algorithm can
be implemented more efficiently. Indeed, such curves admit an even twist which
allows denominator elimination [4,5]. In the case of a cubic twist, denominator
elimination is also possible [22]. Another advantage of embedding degrees of the
form 2i3j is that the corresponding extensions of F can be written as composite
extensions of degree 2 or 3, which allows faster basic arithmetic operations [21].

In what follows, we discuss a version with denominator elimination of our
variant adapted to even embedding degrees. Similar ideas have been used before,
for example in [22] or [13]. We suppose that F is a finite field of odd cardinality
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q which we denote by Fq. We consider an elliptic curve E with short Weierstrass
model y2 = x3+ax+b with a, b ∈ Fq. We suppose that E(Fq) contains a point P
with affine coordinates (xP , yP ) of order an odd prime r and embedding degree
k. If n ≥ 1 is an integer, we denote by Fqn the extension of degree n of Fq in a
fixed algebraic closure of Fq.

We suppose for the rest of this section that k is even. Let γ be a non-square
element of Fqk/2 and fix a square root β in Fqk of γ, so that every element of
Fqk can be written in a unique way in the form x+ yβ with x, y ∈ Fqk/2 . Then
one knows that E[r] contains non zero points Q = (xQ, yQ) that satisfy xQ,
yQ/β ∈ Fqk/2 . In fact, if π denotes the Frobenius endomorphism of E over Fq
given by π(x, y) = (xq , yq), then π restricts to an endomorphism of E[r] viewed
as a vector space over the field with r elements, and a point Q ∈ E[r] \ {OE}
has the desired property if and only if Q belongs to the eigenspace V of π with
eigenvector q. We can easily construct such points Q as follows: if R ∈ E[r], then
the point

Q := [k](R) −
k−1∑
i=0

πi(R)

lies in V and, when r is large, the probability that it is non zero when R is
selected at random is overwhelming.

As is well-known, this leads to speed-ups in the calculation of fs,P (Q) when-
ever Q ∈ V . For example, the calculation of (N�)T,P (see Figure 4) takes only
(2k2 )m = km operations. On the other hand, in general neither αQ,P nor αQ,P /β
belongs to Fqk/2 , so that the calculation of (N�′)−T,−P also requires km opera-
tions. So, the improvement obtained in the generic case is lost.

When P ∈ E[r](Fq) and Q ∈ V , it is well-known that the Tate pairing

eTr (P,Q) is given by eTr (P,Q) = fr,P (Q)
qk−1

r . Denominator elimination is possi-
ble since qk/2 − 1 divides qk−1

r , as follows from the fact that r is prime and the
definition of the embedding degree k.

Let v = x + yβ with x, y ∈ Fqk/2 be an element of Fqk . The conjugate of v
over Fqk/2 is then v̄ = x− yβ. It follows that, if v �= 0, then

1
v

=
v

x2 − γy2
(4)

where x2 − γy2 ∈ Fqk/2 . Thus, in a situation where elements of Fqk/2 can be
ignored, 1

v can be replaced by v, thereby saving an inversion in Fqk .
We exploit all this in the algorithm in Figure 5, where we use the same notation

as in Figure 2. It outputs an element f of Fqk such that

f q
k
2 −1 = fs,P (Q)q

k
2 −1. Thus, when s = r, we find, since q

k
2 − 1 divides qk−1

r ,

that eTr (P,Q) = f
qk−1

r .
We replace the denominators �−T,−T and �−T,−P (updated in the function g)

by their conjugates �−T,−T and �−T,−P . In Jacobian coordinates, one has
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(N�′)−T,−P = αQ,P (Dλ)T,P + (Nλ)T,P , and (5)

(N�)−T,−T = 2YT (−yQZ3
T + YT ) + (Nμ)T (xQZ2

T −XT ). (6)

Cost analysis of the doubling and addition steps in this algorithm can be found
in Figures 6 and 7. We summarize our conclusions in the following result.

Theorem 3. Let β be a non-square element of Fqk whose square lies in Fqk/2 .
Suppose E is given in short Weierstrass form y2 = x3+ax+b with coefficients a,
b ∈ Fq. Let P ∈ E(Fq) be a point of odd prime order r with even embedding degree
k. Let Q be a point of E of order r with coordinates in the extension field Fqk of Fq
of degree k. We assume P and Q given in Weierstrass coordinates (xP , yP ) and
(xQ, yQ) with xQ, yQ/β ∈ Fqk/2 . Using the associated Jacobian coordinates, every
doubling step of the algorithm of Figure 5 requires ma+7s+(5+k)m+Sk+Mk

operations and every addition step requires 3s + (8 + k)m + Mk.

As before, we have made no serious attempt to minimize the number of opera-
tions, for example by using formulas similar to those in [1]. Moreover, we believe
that there is scope for further improvement in the case of curves in special fam-
ilies or curves with efficient arithmetic (see for example [14]).

5 Experiments

We ran some experiments comparing usual Miller (Figure 1) with the variant of
Figure 2 when k = 17 and k = 19. When k = 18, we compared the performance
of the algorithms of Figures 1 and 5 and also the algorithm proposed in 2003 by
[4]. In each case, the group order r has 192 bits and the rho-value ρ = log q

log r is a
little under 1.95, q being the cardinality of the base field. In the example with
k = 17, the big field Fqk was generated as Fq[x]/(x17 +x+12) while when k = 18
and k = 19, Fqk was generated as Fq[x]/(xk + 2). Our curves were constructed
using the Cocks-Pinch method (see [15]).

– For k = 17, the curve is E : y2 = x3 + 6 and

r = 6277101735386680763835789423207666416102355444464039939857

q = 220522060437535156222191257592633526736200793713321924733

07847627831759233301534795727680900605364912261884382771

– For k = 18, the curve is E : y2 = x3 + 3 and

r = 6277101735386680763835789423207666416102355444464046918739

q = 352868453926302204292551351775152292482424484549774231757

09690337313725164646870411526771707409116652544029681389
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Algorithm 3. Miller(P,Q, s) modified with even embedding degree

Data: s =
∑l−1
i=0 si2

i, si ∈ {0, 1}, sl−1 = 1, h Hamming weight of s, Q ∈ E[r] a

non-zero element with xQ, yQ/β ∈ Fqk/2 .

Result: An element f of Fqk satisfying fq
k/2−1 = fs,P (Q)q

k/2−1

f ← 1, T ← P ,

if l + h is odd then
δ ← 1

end
else

δ ← 0

end
for i = l − 2 to 0 do

if δ = 0 then1

f ← f2(N�)T,T , T ← 2T , δ ← 1

if si = 1 then2

f ← f(N�′)−T,−P , T ← T + P , δ ← 0

end

end
else3

f ← f2(N�)−T,−T , T ← 2T , δ ← 0

if si = 1 then4

f ← f(N�)T,P , T ← T + P , δ ← 1

end

end

end
return f

Fig. 5. The modified Miller algorithm for even embedding degree

Quantity Formula Modified Miller Modified Miller

(Fig. 5, loop 1) (Fig. 5, loop 3)

(Nμ)T 3X2
T + aZ4

T ma + 3s ma + 3s

(Dμ)T 2YTZT = (YT + ZT )2 − Y 2
T − Z2

T 2s 2s

(N�)T,T (Dμ)TZ
2
T yQ − (Nμ)TZ

2
T xQ − 2Y 2

T − (Nμ)TXT (3 + 2(k/2))m

X2T (Nμ)2T − 8XT Y
2

T s + m s + m

Y2T (Nμ)T (4XT Y
2

T −X2T ) − 8Y 4
T s + m s + m

Z2T (Dμ)T 0 0

(N�)−T,−T (Dμ)TZ
2
T yQ + (Nμ)TZ

2
T xQ + 2Y 2

T − (Nμ)TXT (3 + 2(k/2))m

f ← f2(N�)T,T Sk + Mk

f ← f2(N�)−T,−T Sk + Mk

TOTAL ma + 7s ma + 7s

+(5 + k)m +(5 + k)m

+Sk + Mk +Sk + Mk

Fig. 6. Analysis of doubling for even embedding degree
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Quantity Formula Modified Miller Modified Miller

(Fig. 5, loop 2) (Fig. 5, loop 4)

(Dλ)T,P (XT − xPZ
2
T )ZT s + 2m s + 2m

(Nλ)T,P YT − yPZ
3
T 2m 2m

(N�)T,P (Dλ)T,P (yQ − yP ) − (Nλ)T,P (xQ − xP ) 2(k/2)m

XT+P (Nλ)2T,P −XT (XT − xPZ
2
T )2

−xPZ
2
T (XT − xPZ

2
T )2 2s + 2m 2s + 2m

YT+P −yPZ
3
T (XT (XT − xPZ

2
T )2

−xPZ
2
T (XT − xPZ

2
T )2)

+(Nλ)T,P (xPZ
2
T (XT − xPZ

2
T )2

−XT+P ) 2m 2m

ZT+P (Dλ)T,P 0 0

(N�′)−T,−P αQ,P (Dλ)T,P + (Nλ)T,P km

f ← f(N�′)−T,−P Mk

f ← f(N�)T,P Mk

TOTAL 3s + (8 + k)m 3s + (8 + k)m

+Mk +Mk

Fig. 7. Cost analysis of addition for even embedding degree

– For k = 19, the curve is E : y2 = x3 + 2 and

r = 6277101735386680763835789423207666416102355444464038231927

q = 3283317304958250802561369083603001259755349697426976567975

2651677037684673416288844142247623389652333826612345637

For the computations, we used the NTL library [25] and implemented the algo-
rithms without any optimization on an Intel(R) Core(TM)2 Duo CPU E8500 @
3.16Ghz using Ubuntu Operating System 9.04. The computations of the Miller
function (without any final exponentiation) were executed on 100 random inputs.
The experimental average results are summarized in Figure 8.

k Usual Miller Our variant Our variant with k even Miller without

(Fig. 1) (Fig. 2) (Fig. 5) denominators [4]

17 0.0664s 0.0499s - -

18 0.0709s - 0.0392s 0.0393s

19 0.0769s 0.0683s - -

Fig. 8. Timings

6 Conclusion

In this paper we presented a variant of Miller’s formula and algorithm. Generi-
cally, it is more efficient than the usual Miller algorithm as in Figure 1, calcula-
tion suggest that it can lead to a real improvement in cases where denominator
elimination is not available. Consequently, we believe it will have applications in
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pairing-based cryptography using elliptic curves with embedding degree not be-
ing on the form 2i3j, for example when the optimal Ate or Twisted Ate pairing
is used. Further work is needed to clarify such questions.
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Abstract. Scott uses an efficiently computable isomorphism in order to

optimize pairing computation on a particular class of curves with embed-

ding degree 2. He points out that pairing implementation becomes thus

faster on these curves than on their supersingular equivalent, originally

recommended by Boneh and Franklin for Identity Based Encryption. We

extend Scott’s method to other classes of curves with small embedding

degree and efficiently computable endomorphism.

1 Introduction

Pairings were first used in cryptography for attacking the discrete logarithm
problem on the elliptic curve [21], but nowadays they are also used as bricks
for building new cryptographic protocols such as the tripartite Diffie-Hellman
protocol [15], identity-based encryption [5], short signatures [6], and others.

A cryptographic pairing is a bilinear map e : G1×G2 → G3, where G1, G2 and
G3 are groups of large prime order r. Known pairings on elliptic curves, i.e. the
Weil, Tate pairings, map to the multiplicative group of the minimal extension
of the ground field Fq containing the r-th roots of unity. The degree of this
extension, denoted usually by k, is called the embedding degree with respect to
r. The basic algorithm used in pairing computation was given by Miller and is an
extension of the double-and-add method for finding a point multiple. The cost
of the computation heavily depends on costs of operations in Fqk . Consequently,
in practice we need curves with small embedding degree.

The reduction of the loop length in Miller’s algorithm is one of the main
directions taken by research in pairing computation during the past few years.
These results concern only pairings on G1×G2 or G2×G1, where subgroups G1

and G2 are given by

G1 = E[r] ∩ Ker(π − [1]) and G2 = E[r] ∩ Ker(π − [q]),

where π is the Frobenius morphism of E, i.e. π : E → E, (x, y) �→ (xq, yq).
The pairings computed by the new algorithms [2,13] are actually powers of the

M. Joye, A. Miyaji, and A. Otsuka (Eds.): Pairing 2010, LNCS 6487, pp. 435–449, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Tate pairing and are called in the literature the Eta (G1 × G2, G2 × G1), Ate
(G2 × G1) and twisted Ate pairing (G1 × G2).

Furthermore, Hess and, independently, Vercauteren [12,27] showed that on
some families of curves with small Frobenius trace, the complexity of Miller’s
algorithm is O( 1

ϕ(k) log r), where ϕ is the Euler totient function.
In this paper, we propose the use of efficiently computable endomorphisms,

other than the Frobenius map, to optimize pairing computation. Our method,
which works on curves having a small embedding degree, improves pairing com-
putation on curves constructed by the Cocks-Pinch method.

The remainder of this paper is organized as follows. Section 2 presents back-
ground on pairings and the Cocks-Pinch method for constructing curves with
complex multiplication. Section 3 presents our results which make use of en-
domorphisms to compute pairings. Section 4 presents an evaluation of costs of
an implementation of our algorithm and compares performances to those of the
Tate pairing computation. In Appendix 5 we give examples of curves constructed
using the Cocks-Pinch method, with small embedding degree and endomorphism
of small degree.

2 Background on Pairings

The definition of the Tate pairing and of Miller’s algorithm [20] used in pair-
ing computations. This algorithm heavily relies on the double-and-add method
for finding a point multiple. Let E be an elliptic curve given by a Weierstrass
equation:

y2 = x3 + a4x+ a6, (1)

defined over a finite field Fq, with char(Fq) �= 2, 3. Let P∞ denote the neutral
element on the elliptic curve. Consider r a large prime dividing #E(Fq) and k
the embedding degree with respect to r.

Let P be an r-torsion point and for any integer i, denote by fi,P a function
with divisor div (fi,P ) = i(P ) − (iP ) − (i− 1)(P∞) (see [24] for an introduction
to divisors). Note that fr,P is such that div (fr,P ) = r(P ) − r(P∞).

In order to define the Tate pairing we take Q a point in E(Fqk) representing
an element of E(Fqk)/rE(Fqk). Let T be a point on the curve such that the
support of the divisor D = (Q + T ) − (T ) is disjoint from the one of fr,P . We
then define the Tate pairing as

tr(P,Q) = fr,P (D). (2)

This value is a representative of an element of F∗
qk/(F∗

qk)r. However for crypto-
graphic protocols it is essential to have a unique representative so we will raise it
to the ((qk−1)/r)-th power, obtaining an r-th root of unity. We call the resulting
value the reduced Tate pairing

Tr(P,Q) = tr(P,Q)
qk−1

r .
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As stated in [10], if the function fr,P is normalized, i.e. (urP∞fr,P )(P∞) = 1 for
some Fq-rational uniformizer uP∞ at P∞, then one can ignore the point T and
compute the pairing as

Tr(P,Q) = fr,P (Q)(q
k−1)/r.

In the sequel of this paper we only consider normalized functions. Before going
into the details of Miller’s algorithm, we recall the standard addition law on an
elliptic curve in Weierstrass form. Suppose we want to compute the sum of iP
and jP for i, j ≥ 1. Let l be the line through iP and jP . Then l intersects the
cubic curve E at one further point R according to Bezout’s theorem (see [11]).
We take v the line between R and P∞ (which is a vertical line when R is not
P∞). Then v intersects E at one more point and we define the sum of iP and
jP to be this point.

The lines l and v are functions on the curve E and the corresponding divisors
are

div (l) = (iP ) + (jP ) + (R) − 3(P∞),
div (v) = (R) + ((i+ j)P ) − 2(P∞).

One can then easily check the following relation:

fi+j,P = fi,P fj,P
l

v
. (3)

Turning back to Miller’s algorithm, suppose we want to compute fr,P (Q). We
compute at each step of the algorithm on one side mP , where m is the integer
with binary expansion given by the i topmost bits of the binary expansion of r,
and on the other side fm,P evaluated at Q, by exploiting the formula above. We
call the set of operations executed for each bit i of r a Miller operation.

Algorithm 1. Miller’s algorithm
INPUT: An elliptic curve E defined over a finite field Fq, P an r-torsion point on the

curve and Q ∈ E(Fqk).

OUTPUT: the Tate pairing tr(P, Q).

1: Let i = [log2(r)], K ← P ,f ← 1

2: while i ≥ 1 do
3: Compute the equation of l arising in the doubling of K
4: K ← 2K and f ← f2l(Q)

5: if the i-th bit of r is 1 then
6: Compute the equation of l arising in the addition of K and P
7: K ← P + K and f ← fl(Q)

8: end if
9: Let i← i− 1.

10: end while
11: return f .
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Table 1. Cost of one step in Miller’s algorithm for even embedding degree

Doubling Mixed addition

J [1,14] (1 + k)m + 11s + 1M + 1S (6 + k)m + 6s + 1M

J , y2 = x3 + b
(2k/d + 2)m + 7s + 1M + 1S (2k/d + 9)m + 2s + 1M

d = 2, 6 [7]

J , y2 = x3 + ax
(2k/d + 2)m + 8s + 1M + 1S (2k/d + 12)m + 4s + 1M

d = 2, 4 [7]

Implementing pairings. In implementations, we usually prefer curves with even
embedding degree. On these curves, thanks to the existence of twists, most
computations in a Miller operation are done in proper subfields of Fqk . Moreover,
thanks to the final exponentiation, terms contained in proper subfields of Fqk

can be ignored (see [18]). Algorithm 1 gives the pseudocode of Miller’s algorithm
for curves with even embedding degree. In Table 1 we give costs for the doubling
and the addition step in Algorithm 1 for an implementation on G1 × G2, on
curves with twists1 of degree d. We denote by m, s the costs of multiplication
and squaring in Fq and M,S the costs of multiplication and squaring in Fqk .

Security issues. A secure pairing-based cryptosystem needs to be implemented
on elliptic curve subgroups G1 and G2 such that the discrete logarithm prob-
lem is computationally difficult in G1, G2 and in F∗

qk . The best known algo-
rithm for computing discrete logarithms on elliptic curves is the Pollard-rho
method [25,22], which has complexity O(

√
r), where r is the order of the groups

G1 and G2. Meanwhile, the best known algorithm for solving the discrete loga-
rithm problem in the multiplicative group of a finite field is the index calculus
algorithm, which has sub-exponential running time [17,16]. Consequently, in or-
der to achieve the same level of security in both the elliptic curve subgroups and
in the finite field subgroup, we need to choose a qk which is significantly larger
than r. It is therefore interesting to consider the ratio of these sizes

k log q
log r

.

As the efficiency of the implementation will depend critically on the so-called
ρ-value

ρ =
log q
log r

,

it is preferable to keep this value as small as possible.

The Cocks-Pinch method for constructing pairing friendly curves. Let E be an
ordinary curve defined over a finite field Fq. We denote by π the Frobenius
morphism and by t its trace. Given the fact that curve must have a subgroup of
1 We briefly recall that a twist E′ of degree d of an elliptic curve E defined over Fq

is a curve isomorphic to E, such that the isomorphism between the two curves is

minimally defined over Fqd . The reader should check [24] for more details on twists.
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large order r and that the number of points on the curve is #E(Fq) = q + 1 − t
we write

q + 1 − t = hr.

Furthermore, the fact that the Frobenius is an element of an order in a quadratic
imaginary field Q(

√−D) gives

Dy2 = 4q − t2 = 4hr − (t− 2)2.

To sum up, in order to generate a pairing friendly curve, we are looking for
q, r, k,D, t and y satisfying the following conditions

r | Dy2 + (t− 2)2,
r | qk − 1,
t2 + Dy2 = 4q.

Cocks and Pinch gave an algorithm (which is presented in [4]) which finds, given
r and a small k, parameters q prime and t satisfying the equations above.

Algorithm 2. The Cocks-Pinch algorithm
INPUT: k,r a prime number, D and k|(r − 1).

OUTPUT: q, t such that there is a curve with CM by
√−D over Fq with q + 1 − t

points where r|(q + 1− t) and r|(qk − 1).

1: Choose a primitive k-th root of unity g in Fr.
2: Choose an integer t← g + 1(mod r).
3: if gcd(t, D) �= 1 then
4: exit (or choose another g).

5: end if
Choose an integer y0 = ±(t− 2)/

√−D(mod r).
j → 0

6: repeat
7: q ← (t2 + D(y0 + jr)2)/4
8: j ← j + 1

9: until q is prime

10: return q and t

This method produces ordinary curves with a ρ-value approximatively 2,
which is less preferred in practice. However, Vercauteren [8, Prop. 7.1] showed
that for certain embedding degrees and certain values of the CM discriminant
−D, there are no ordinary curves with smaller ρ-value.

Proposition 1. Let E be an elliptic curve over Fq with a subgroup of prime
order r > 3 and embedding degree k > 1 with respect to r. If E has a twist E′/Fq
of degree k and r ≥ 4

√
q, then E is supersingular.
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It follows that in some cases, like k = 2 or k = 4 and2 discriminant −4, the curves
produced by the Cocks-Pinch algorithm have optimal ρ-value. Moreover, with
this method we may choose the value of r from the very beginning. This is an
advantage, because we may choose r with low Hamming weight. On curves with
such r, in Algorithm 1, we perform mostly doublings and very few additions.

The Eta pairing and its variants. To our knowledge, isogenies were proposed
to speed up pairing computation for the first time by Barreto et al. [2], who
introduced the Eta pairing. This idea was extended by Hess et al. [13]. We
present here the main result in [13], without giving the proof.

Theorem 1. Let E be an elliptic curve defined over Fq, r a large prime with
r|#E(Fq) and k the embedding degree with respect to r. Assume that k > 1 and
denote by t the trace of the Frobenius.

(a) For T = t− 1, Q ∈ G2 = E[r] ∩ Ker(π − [q]), P ∈ G1 = E[r] ∩ Ker(π − [1])
we have
(i) fT,Q(P ) defines a bilinear pairing, which we call the Ate pairing;
(ii) Let N = gcd(T k − 1, qk − 1) and T k − 1 = LN , with k the embedding

degree, then

tr(Q,P )L = fT,Q(P )c(q
k−1)/N

where c =
∑k−1

i=0 T
k−1−iqi ≡ kqk−1 mod r. For r � L, the Ate pairing is

non-degenerate.
(b) Assume E has a twist of degree d and set m = gcd(k, d) and e = k/m. We

denote by c =
∑m−1

i=0 T e(m−1−i)qei ≡ mqe(m−1) mod r. We have
(i) fT e,P (Q) defines a bilinear pairing, which we call the twisted Eta pairing;
(ii) tr(P,Q)L = fT e,P (Q)c(q

k−1)/N and the twisted Eta pairing is non-
degenerate if r � L.

The Ate and twisted Eta pairing can be computed using Miller’s algorithm with
a loop length of logT and logT e, respectively. Consequently, if the trace t is
smaller than r, these pairings may be significantly faster than the Tate pairing.

3 Speeding Up Pairing Computation Using
Endomorphisms of Small Degree

The following result was given by Verheul [28], whose purpose was to investigate
the existence of distortion maps for points of order r, i.e. maps φ such that
for a point P , φ(P ) /∈ 〈P 〉. We will make use of this result to improve pairing
computation.

Theorem 2. Let E be an ordinary elliptic curve defined over Fq and let P be a
point over Fq of E, whose order is a prime integer r �= q. Suppose the embedding
degree k is greater than 1 and denote by Q a point defined over Fqk , such that
π(Q) = qQ. Then P and Q are eigenvectors of any other endomorphism of E.
2 Only curves with discriminant −4 have twists of degree 4.
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Proof. Let φ be an endomorphism of E. For the point P we have

φ(π(P )) = π(φ(P )) and φ(π(P )) = φ(P ). (4)

The first equality comes from the fact that the ring End(E) is commutative, the
second one is due to the fact that P ∈ E(Fq). It follows that π(φ(P )) = φ(P ),
so φ(P ) is an eigenvector for the eigenvalue 1 of π. This means that φ(P ) ∈ 〈P 〉.
The proof for Q is similar.

Notation 1. In the sequel we denote the correction of two points R1 and R2 as
follows:

corrR1,R2 =
lR1,R2

vR1+R2

,

where lR1,R2 is the line passing through R1 and R2 and vR1+R2 is the vertical
line through R1 +R2.

Our starting idea is a method to exploit efficiently computable endomorphisms
in pairing computation suggested by Scott [23], for a family of curves called NSS.
These curves are defined over Fq with q ≡ 1 mod 3 and given by an equation of
the form y2 = x3+B. Since they have k = 2 and ρ ∼ 2, the Eta and Ate pairings
will not bring any improvement to pairing computation. However, these curves
admit an endomorphism φ : (x, y) → (βx, y), where β is a non-trivial cube root
of unity. Its characteristic equation is φ2 + φ+ 1 = 0. If P is an eigenvalue of φ
such that φ(P ) = λP , then λ verifies the equation

λ2 + λ+ 1 = cr.

We obtain

f cr,P (Q) = fλ2+λ,P (Q) = fλ(λ+1),P (Q) = fλ+1
λ,P (Q) · fλ+1,[λ]P (Q) · l[λ]P,P

v[λ+1]P
.

Since for P = (x, y), λP is given by (βx, y), we can easily compute fλ,λP (Q) and
fλ,P (Q) at the same time when running Miller’s algorithm, by replacing x with
βx when computing doublings, additions and line equations. Note that pairing
computation on these curves has been recently improved by Zhao and al. [29].

We apply similar techniques to curves with endomorphisms that verify a char-
acteristic equation x2 + ax + b = 0, with a, b small. In all cases, we use the
Cocks-Pinch method to construct curves such that there is a λ ∼ √

r which
verifies λ2 + aλ + b = cr. This can be done by exhaustive search on λ. Thanks
to the density of prime numbers, we are able to produce couples (λ, r) within
seconds with MAGMA.

We obtain a new algorithm for pairing computation, whose loop is shorter
than that of the algorithm computing the Tate pairing.
Lemma 1. Let E be an elliptic curve defined over a finite field Fq and φ an
endomorphism of E whose degree is b. Let P,Q be two points on the curve E.
Then for any integer λ the following equality is true up to a constant:

fλ,φ(P )(φ(Q)) = fb
λ,P (Q)

⎛⎝ ∏
K∈Ker φ\{P∞}

corrP,K(Q)

⎞⎠λ ⎛⎝ ∏
K∈Ker φ\{P∞}

corrλP,K(Q)

⎞⎠−1
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Proof. We have

φ∗(fλ,φ(P )) = λ
∑

K∈Kerφ

(P +K) −
∑

K∈Kerφ

(λP +K) − (λ − 1)
∑

K∈Kerφ

(K)

= λ
∑

K∈Kerφ

((P +K) − (K)) −
∑

K∈Kerφ

((λP +K) − (K))

= λ
∑

K∈Kerφ

((P ) − (O)) −
∑

K∈Kerφ

(λP ) − (O) + div

⎛⎜⎝
⎛⎝ ∏
K∈Kerφ

lK,P
vK+P

⎞⎠λ
⎞⎟⎠

−div

⎛⎝ ∏
K∈Kerφ

lK,λP
vK+λP

⎞⎠ = div(fλ,P ) + div

⎛⎝ ∏
K∈Kerφ\{P∞}

corrλP,K

⎞⎠
−div

⎛⎝ ∏
K∈Kerφ\{P∞}

corrλP,K

⎞⎠ .
Using the fact that φ∗(fλ,φ(P )) = fλ,φ(P ) ◦ φ, we obtain the equality we have
announced.

In the sequel, we make use of the following relation which holds for all m,n ∈ Z
and any point P on the elliptic curve

fmn,P = fnm,P · fn,mP . (5)

This equality can be easily checked using divisors. In the sequel, we denote by φ̂
the dual of an isogeny φ. The reader is referred to [24] for the definition of the
dual.

Theorem 3. Let E be an elliptic curve defined over a finite field Fq , r a prime
number such that r|#E(Fq) and k the embedding degree with respect to r. Let φ
be an efficiently computable separable endomorphism of E, whose characteristic
equation is X2 + aX + b = 0. Let G1 and G2 be the the subgroups of order r
whose elements are eigenvectors of φ defined over Fq and Fqk , respectively. Let
λ be the eigenvalue of φ on G1, verifying λ2 + aλ+ b = cr, with r � bc. Then the
map aφ(·, ·) : G1 × G2 → F∗

qk/(F∗
qk)r given by

aφ(P, Q) = fλ+a
λ,P (bQ)fbλ,P (φ̂(Q))fa,λP (bQ)fb,P (bQ)

⎛⎝ ∏
K∈Kerφ\{P∞}

corrP,K(φ̂(Q))

⎞⎠λ

·
⎛⎝ ∏
K∈Kerφ\{P∞}

corrλP,K(φ̂(Q))

⎞⎠−1

corrλ2P,aλP (bQ) lλ2P+aλP,bP (bQ)

is a bilinear non-degenerate pairing.
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Proof. The following equality is obtained by repeatedly applying the equality
at (5)

fλ2+aλ+b,P = (fλλ,P ) · (fλ,λP ) · (faλ,P ) · (fa,λP ) · (fb,P )
·corrλ2P,aλP · lλ2P+aλP,bP . (6)

By applying Lemma 1, we obtain

fλ,λP (bQ) = f bλ,P (φ̂(Q))

⎛⎝ ∏
K∈Kerφ\{P∞}

corrP,K (φ̂(Q))

⎞⎠λ

·
⎛⎝ ∏
K∈Kerφ\{P∞}

corrλP,K (φ̂(Q))

⎞⎠−1

By replacing this term in equation (6), we derive that aφ(P,Q) is a power of
tr(P,Q). Since (bc, r) = 1, we conclude that aφ defines a non-degenerate pairing
on G1 × G2.

If the value of λ is close to
√
r and a and b are small, Theorem 3 gives an

efficient algorithm to compute the Tate pairing (actually a small power of the
Tate pairing). This is Algorithm 3. The complexity of the new algorithm is
O(log abλ).

Algorithm 3. Our algorithm for pairing computation for curves with an effi-
ciently computable endomorphism
INPUT: An elliptic curve E, P, Q points on E and φ such that φ(P ) = λP , Q′ = φ̂(Q).

OUTPUT: A power of the Tate pairing Tr(P, Q).

1: Let i = [log2(λ)], K ← P , f ← 1, g ← 1

2: while i ≥ 1 do
3: Compute equation of l arising in the doubling of K
4: K ← 2K and f ← f2l(bQ) and g ← g2l(Q′)
5: if the i-th bit of λ is 1 then
6: Compute equation of l arising in the addition of K and P
7: K ← P + K and f ← fl(bQ) and g ← gl(Q′)
8: end if
9: Let i← i− 1

10: end while
11: Compute A← fλ+a

12: Compute B ← gb

13: Compute C ←
(∏

K∈Kerφ\{P∞} corrP,K(Q′)
)λ (∏

K∈Kerφ\{P∞} corrλP,K(Q′)
)−1

14: Compute D ← fa,λP (bQ)fb,P (bQ)

15: F ← corrλ2P,aλP (bQ)lλ2P+aλP,bP (bQ)

16: Return A ·B · C ·D · F
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4 Computational Costs

Suppose we use an endomorphism φ whose characteristic equation is

φ2 + aφ+ b = 0,

with a and b small. We also neglect the cost of computing the dual of φ at Q,
φ̂(Q), because φ̂ can be precomputed by Vélu’s formulae [26] and is given by
polynomials of small degree. Note that in some protocols Q is a fixed point, so
all the precomputations on this point may be done before the computation of
the pairing.

We also note that the endomorphism is defined over Fq, because the curve
E is ordinary. Moreover, the points in Kerφ are eigenvectors for the Frobe-
nius endomorphism. Indeed, since End(E) is a commutative ring, we have
φ(π(K)) = π(φ(K)) = O, for all K ∈ Kerφ. It follows that π(K) ∈ Kerφ.
Thus the points of Kerφ are defined over an extension field of Fq of degree
smaller than b. Furthermore, if Kerφ is cyclic, we have⎛⎝ ∏

K∈Kerφ\{P∞}
corrP,K(φ̂(Q))

⎞⎠ ∈ Fqk .

Consequently, given that the degree of φ is small, we assume that the number of
operations needed to compute the correction

∏
K∈Kerφ corrP,K(φ̂(Q)) is negligi-

ble. Since a and b are small, we also assume that the costs of the exponentiation
at line 12 and that of the computation of functions at line 14 of Algorithm 3 are
negligible.

Since in practice we usually consider curves with even embedding degree, we
present only results for these curves. We assume that the curves have an effi-
ciently computable endomorphism and eigenvalues of size

√
r. In our evaluation,

we only counted the number of operations performed in the doubling part of
Miller’s algorithm, because we suppose that λ and r have low Hamming weight
(which is possible if the curve is constructed with the Cocks-Pinch method).
For operations in extension fields of degree 2, we use tower fields. For example,
to construct an extension field of degree 4 we have

Fq ⊂ Fq2 ⊂ Fq4 .

With Karatsuba’s method the cost of an operation in the extension field of degree
2 is three times the cost of the same operation in the base field, while with Toom-
Cook a multiplication in an extension field of degree 3 costs 5 multiplications in
the base field. Using the formulas in Table 1 the total cost of the doubling step
in Algorithm 3 and of the exponentiation at line 11 is

(11s + (1 + 2k)m + 2M + 2S) logλ+ logλM if D �= 3, 4.

Our computations showed that our method gives better performances than the
Tate pairing for some families of ordinary curves with embedding degree 2, 3 and
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4. Indeed, using the complexity estimations above and making the assumption
that s ≈ m, our algorithm is faster than the Tate pairing if and only if

(12 + 2k)m + 5M > 2((12 + k)m + 2M).

A simple computation shows that this is true if and only if k ≤ 4. In Table 2,
we compare the performances of our method to those of Miller’s algorithm, for
curves with embedding degree 2 and 4 constructed via the Cocks-Pinch method.
Note that for k = 2, the Eta pairing algorithm (and its variants) is not faster
than the Tate pairing algorithm, because t ≈ r. We assume that for curves with
embedding degree 4 the CM discriminant is not −4, because for such curves the
Tate and the twisted Ate pairing have comparable costs. Note that for D = −4
the twisted Ate pairing computation has complexity O(log t) and is thus faster
than the Tate pairing and also faster than our method if t is careffully chosen of
small size.

Table 2. Our method versus the Tate pairing

bit length of r k = 2 k ≥ 4 and D �= 4

Tate pairing This work Tate pairing This work

160 bits 3040 2400 5120 4880

As explained in [8], curves with small embedding degrees are preferred in im-
plementations at low security levels (80 bits). Thus, if we want to set up a pairing-
based cryptosystem with a 160-bit elliptic curve subgroup, we may choose a MNT
curve with embedding degree 6 and ρ-value close to 1 or we may take a curve with
embedding degree k ∈ {2, 3, 4} and ρ-value close to 2. Table 3 presents a list of
families of curves that have been proposed for pairing-based cryptography at 80
bits security level. Note that we may use an ordinary curve with embedding de-
gree 2 and ρ-value approximatively 3 constructed by the Cocks-Pinch method or
a supersingular curve with k = 2 and ρ ∼ 3 (see Algorithm 3.3 in [8]). Table 6
presents the operation count in Fq for pairing computation on curves with differ-
ent embedding degrees. We assume that ordinary curves with embedding degrees
2 are constructed via the Cocks-Pinch method and we evaluate the cost of the
computation performed in Algorithm 3 for these curves, as explained above. For
supersingular curves and MNT curves with embedding degree 6 we estimate the
cost of the doubling part in Algorithm 1 computing the Tate pairing using formu-
lae in Table 1. Since on these curves, the parameter r does not necessarily have
low Hamming weight, we also count the number of operations performed in the
mixed addition part of the Miller operation, if a NAF representation of r is used.
For k = 4, the Cocks-Pinch method allows constructing curves with small trace
of the Frobenius (by choosing a small g and then taking r a divisor of Φ4(g) in
Algorithm 2). In this case, if the curve has a twist o degree 4, i.e. D = 4, then the
twisted Ate pairing is optimal. Otherwise, the Tate pairing is optimal. Finally, we
also give a family with k = 4 and D = 3 from [8]. On curves from this family, the
optimal pairing can be computed using lattice reduction in log r

2 Miller iterations
(see [12] for details).
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Table 3. Bit sizes of curve parameters for pairing-based cryptography at 80 bits

security level

bit length of r bit length of q bit length of qk value of k and ρ

160 480 960 supersingular curves k = 2 and ρ ∼ 3

160 480 960 ordinary curves k = 2 and ρ ∼ 3

160 160 960 MNT curves k = 6 and ρ ∼ 1

160 320 1280 ordinary curves k = 4 and ρ ∼ 2

160 220 960 ordinary curves k = 4 and ρ ∼ 1.5

Table 4. Pairing computation at 80 bits security level

value of k and ρ
doubling step mixed addition

(operations in Fq) (operations in Fq)

supersingular curves k = 2 and ρ ∼ 3 3040 -

ordinary curves k = 2 and ρ ∼ 3 2400 -

MNT curves k = 6 and ρ ∼ 1 7680 1760

ordinary curves k = 4 and ρ ∼ 2 and D = 4 2400 -

ordinary curves k = 4 and ρ ∼ 1.5 and D = 3 2480 -

Table 5. Pairing computation at 80 bits security level

value of k and ρ Miller loop final exponentiation total cost

supersingular curves k = 2 and ρ ∼ 3 13680 5760 19350

ordinary curves k = 2 and ρ ∼ 3 10800 5760 16470

MNT curves k = 6 and ρ ∼ 1 9440 6400 15840

k = 4 and ρ ∼ 2 and D = 4 5880 14138 20018

k = 4 and ρ ∼ 1.5 and D = 3 3100 4980 8080

Table 5 presents total costs for the Miller loop and for the final exponentiation,
in terms of number of operations in Fq, for different types of curves and embed-
ding degrees. In the final exponentiation, we assume that applying the Frobenius
operator can be done for free and we estimate only the cost of Φr(q)/r. The last
column presents global costs of pairing computation. Note that the size of q is
different for these families of curves. We have therefore taken into account costs
of integer multiplication for different bit lengths (see [3] for GMP benchmarks).

We have realised a simple implementation under MAGMA 2.15-1.5. We give
the time in seconds for the computation of 100 pairings on a 2.6 GHz Intel Core
2 Duo processor. Note that in theory an implementation of pairings on MNT
curves is expected to be faster.

We conclude by giving in Appendix 5 examples of curves constructed with
the Cocks-Pinch method, with endomorphism verifying an equation of the form
X2 + aX+ b = 0 and roots λ ∼ √

r. We also note that on these curves, the GLV
method [9] can be used to speed up scalar multiplication in the implementation
of a pairing-based protocol. We therefore believe that these curves offer a good
choice for pairing-based cryptography at 80 bits security level.
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Table 6. Execution time on a 2.6 GHz Intel Core 2 Duo processor

value of k and ρ bit length of r This work Eta/Tate

ordinary curves k = 2 and ρ ∼ 3 160 1.02 1.42

MNT curves k = 6 and ρ ∼ 1 172 - 1.96

ordinary curves k = 4 and ρ ∼ 1.5 and D = 3 160 - 0.41

5 Conclusion

We have given a new algorithm for pairing computation on curves with endomor-
phisms of small degree. Our pairing on curves constructed with the Cocks-Pinch
method is more efficient than than known pairings for some curves with embed-
ding degree 2 and 4.
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2. Barreto, P., Galbraith, S., Héigeartaigh, C., Scott, M.: Efficient Pairing Computa-

tion on Supersingular Abelian Varieties. Des. Codes Cryptography 42(3), 239–271

(2007)

3. Bernstein, D.: Integer multiplication benchmarks,

http://cr.yp.to/speed/mult/gmp.html

4. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography.

London Mathematical Society Lecture Note Series, vol. 317. Cambridge University

Press, Cambridge (2005)

5. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:

Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg

(2001)

6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.

In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer,

Heidelberg (2001)

7. Costello, C., Lange, T., Naehrig, M.: Faster Pairing Computations on Curves with

High-Degree Twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,

vol. 6056, pp. 224–242. Springer, Heidelberg (2010)

8. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.

Journal of Cryptology 23, 224–280 (2010)

9. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic

curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,

vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

http://eprint.iacr.org/2009/155
http://cr.yp.to/speed/mult/gmp.html


448 S. Ionica and A. Joux

10. Granger, R., Hess, F., Oyono, R., Thériault, N., Vercauteren, F.: Ate pairing on

hyperelliptic curves. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.

430–447. Springer, Heidelberg (2007)

11. Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, vol. 52.

Springer, Heidelberg (1977)

12. Hess, F.: A note on the Tate pairing of curves over finite fields. Arch. Math. 82,

28–32 (2004)

13. Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Transac-

tions on Information Theory 52, 4595–4602 (2006)

14. Ionica, S., Joux, A.: Another approach to pairing computation in Edwards coordi-

nates. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,

vol. 5365, pp. 400–413. Springer, Heidelberg (2008)

15. Joux, A.: A one round protocol for tripartite Diffie-Hellman. Journal of Cryptol-

ogy 17(4), 263–276 (2004)

16. Joux, A., Lercier, R.: The function field sieve in the medium prime case. In:

Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer,

Heidelberg (2006)

17. Joux, A., Lercier, R., Smart, N., Vercauteren, F.: The number field sieve in the

medium prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.

326–344. Springer, Heidelberg (2006)

18. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:

Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.

Springer, Heidelberg (2005)

19. MAGMA Computational Algebra System. MAGMA version V2.16-5 (2010),

http://magma.maths.usyd.edu.au/magma

20. Miller, V.: The Weil pairing, and its efficient calculation. Journal of Cryptol-

ogy 17(4), 235–261 (2004)

21. Okamoto, T., Menezes, A., Vanstone, S.A.: Reducing elliptic curve logarithms to

logarithms in the finite field. In: Proceedings 23rd Annual ACM Symposium on

Theory of Computing (STOC), pp. 80–89. ACM Press, New York (1991)

22. Pollard, J.: Monte Carlo methods for index computation (mod p). Mathematics of

Computation (32), 918–924 (1978)

23. Scott, M.: Faster pairings using an elliptic curve with an efficient endomorphism.

In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005.

LNCS, vol. 3797, pp. 258–269. Springer, Heidelberg (2005)

24. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathemat-

ics, vol. 106. Springer, Heidelberg (1986)

25. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic ap-

plications. Journal of Cryptology (12), 1–18 (1999)
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Appendix 1

In order to display the equations of the endomorphism easily, we give first a
small example.

Example 1. A toy example
We take D = −4 · 2 and we want a curve with an endomorphism whose

characteristic equation will be

X2 + 2 = 0.

We choose λ = 66543 verifying the equation λ2 + 2 = r, with

r = 4427970851.

Our implementation of the Cocks-Pinch method in MAGMA [19] found the
following curve

y2 = x3 + 4976887516324122696283x+ 2211950007255165642796

over the prime field Fq, with

q = 14930662548972368088859.

This curve has k = 2 with respect to r. The endomorphism corresponding to
α =

√−2 in Z[
√−2] is

[α](x, y) =

(
7465331274486184044429

x2 + 4976887516324122696285x + 2

x + 4976887516324122696285
,

11197940817690300409659
x2 + 9953775032648245392570x + 8294812527206871160477

(x + 4976887516324122696285)2
y

)
.

As observed in [9], computing this endomorphism is slightly harder than dou-
bling. The equations of the dual of α are similar.

Example 2. Consider D = 3 and an endomorphism with characteristic equation
given by X2 + 2X + 4 = 0. We found λ = 240 + 229 +1 verifying λ2 + 2λ+ 4 = r
where r is given by r = 1210106699470122931716103. We have

q = 126422926680861157408034773355095519523073976963357.

The curve E given by the equation y2 = x3 + 1 has embedding 2 with respect
to r.

Example 3. Consider D = 4 and an endomorphism with characteristic equation
given by X2 + 2X + 2 = 0. We found λ = 240 + 225 +1 verifying λ2 + 2λ+ 2 = r
where r is given by r = 1208999607721222100484101. We have

q = 19838652498577664643118213771277780493813406356549557.

The curve E given by the equation y2 = x3 + x has embedding 4 with respect
to r.
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Abstract. This paper presents a Pairing Crypto Processor (PCP) over

Barreto-Naehrig curves (BN curves). The proposed architecture is specif-

ically designed for field programmable gate array (FPGA) platforms. The

design of PCP utilizes the efficient implementation of the underlying fi-

nite field primitives. The techniques proposed maximize the utilization

of in-built features of an FPGA device which significantly improves the

performance of the primitives.

Extensive parallelism techniques have been proposed to realize a PCP

which requires lesser clock cycles than the existing designs. The proposed

design is the first reported result on an FPGA platform for 128-bit se-

curity. The PCP provides flexibility to choose the curve parameters for

pairing computations.

The cryptoprocessor needs 1730 k, 1206 k, and 821 k cycles for the

computation of Tate, ate, and R-ate pairings, respectively. On a Virtex-4

FPGA device it consumes 52 kSlices at 50MHz and computes the Tate,

ate, and R-ate pairings in 34.6 ms, 24.2 ms, and 16.4 ms, respectively,

which is comparable to known CMOS implementations.

Keywords: Fpk -arithmetic, FPGA, Barreto-Naehrig curves, elliptic-

curve cryptography (ECC), pairing-based cryptography.

1 Introduction

CRYPTOGRAPHIC PAIRING [24] is a bilinear map G1 × G2 → G3 where G1

and G2 are typically additive groups and G3 is a multiplicative group. Many
cryptographic pairings such as the Tate pairing [27], ate pairing [20], and R-ate
pairing [8] choose G1 and G2 to be specific cyclic subgroups of E(Fpk), and G3 to
be a subgroup of Fpk . Selection of such groups as well as field types have a strong
impact on the security and computation cost of pairing. Barreto-Naehrig curves
(BN curves) [19] are a type of elliptic curves which support the computation of
cryptographic pairings with a 128-bit security level. It is defined over a 256-bit
prime field having embedding degree k = 12.

Related works. The software implementation results of pairings over BN
curve have been shown in [1], [15], [13], and [16]. The highly optimized software

M. Joye, A. Miyaji, and A. Otsuka (Eds.): Pairing 2010, LNCS 6487, pp. 450–466, 2010.
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codes run on a 64-bit core2 processor which computes a R-ate pairing in only
10, 000, 000 cycles. The software implementation of [1] gives the speed record for
the computation of Optimal-ate pairing on BN curves, which is computed by
4, 470, 408 cycles on a Intel Core 2 Quad Q6600 processor.

An application specific instruction-set processor (ASIP) has been proposed
in [5]. It is designed by extending a RISC core with additional scalable func-
tional units. It requires a special programming environment in order to execute
pairings. Therefore, the authors have developed a special C compiler. Implemen-
tation result shows that the ASIP can compute an Optimal-ate pairing in 15.8
ms over a 256-bit BN curve at 338 MHz with a 130 nm CMOS library.

A pairing processor specially for BN curves has been proposed in [6]. It exploits
the characteristic of the field defined by BN curves and choose curve parameters
such that the underlying Fp multiplication becomes more efficient. It shows a 5.4
times speedup of a pairing computation compared to the ASIP proposed in [5].
However, the main limitation of the pairing processor [6] is that it is useful only
for computing pairings over a fixed BN curve.

Contribution. This paper proposes a flexible cryptoprocessor for the compu-
tation of pairings over BN curves. Field programmable gate array (FPGA) is
one of the suitable platforms for implementing cryptographic algorithms. In this
paper, we propose new implementation techniques of addition and multiplication
on FPGAs. The in-built features available inside an FPGA device have been uti-
lized to develop a high speed 256-bit adder circuit. We show that when utilizing
such adder circuits and adopting a parallelism technique, the multiplication in
Fp can be substantially improved. Based on such Fp arithmetic cores, we develop
a parallel configurable hardware for computing addition, subtraction, and multi-
plication on Fp and Fp2 . Existing techniques to speed up arithmetic in extension
fields (see [16,21]) for fast computation in Fp6 and Fp12 are used on top of it.
The major contributions of the paper are highlighted here.

• The paper implements underlying primitives for Fp arithmetic on FPGA
platforms, which provides a significant speedup from existing platform-
independent techniques.

• It proposes a pairing hardware that is flexible for curve parameters.
• Parallelism techniques are adopted in different levels including underlying

finite field operations which drastically reduces the overall cycle count of
pairing computation.

• The proposed FPGA design achieves a comparable speed with the existing
CMOS design.

The proposed configurable Fpk arithmetic cores and parallel computation result
in a significant improvement on the performance of Tate, ate, and R-ate pairing
over BN curves.

Organization of the paper. Section 2 of the paper gives a brief description of
cryptographic pairings and BN curves. Efficient design of finite field primitives
on FPGA platforms are described in section 3. Section 4 describes the pairing
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cryptoprocessor. Section 5 shows the experimental results based on BN curves
and provides comparative studies with existing contemporary designs. The paper
is concluded in section 6.

2 Background of Pairings

The name bilinear pairing indicates that it takes a pair of vectors as input and
returns a number, and it performs linear transformation on each of its variables.
For example, the dot product of vectors is a bilinear pairing [11]. Similarly, for
cryptographic applications the bilinear pairing (or pairing) operations are defined
on elliptic or hyperelliptic Jacobian curves. Pairing is a mapping G1 × G2 →
G3, where G1 is a additive subgroup of E(Fq) on some elliptic or hyperelliptic
Jacobian curve defined over a finite field Fq, G2 is an another similar kind of
subgroup of E(Fqk) over the lowest extension field Fqk , and G3 is a subgroup of
the multiplicative group of Fqk . Here q is the characteristic field representative.
It is normally 2m, 3m, or a large prime p. The parameter k corresponds to the
embedding degree, often referred to as security multiplier in pairing computation,
i.e. the smallest positive integer such that r divides qk − 1 and r is a large odd
prime which divides the order of the curve group (#E(Fq)). If the point P be
a r-torsion point then the Tate pairing of order r is a map: er : E(Fq)[r] ×
E(Fqk)[r] → F∗

qk/(F∗
qk)r, where E(Fq)[r] denote the subgroup of E(Fq) of all

points of order dividing r, and similarly for Fqk . Tate pairing of order r satisfies
the following properties:

• Non-degeneracy : For each P �= O there exist Q ∈ E(Fqk)[r] such that
er(P,Q) �= r.

• Bilinearity : For any integer n, er([n]P,Q) = er(P, [n]Q) = er(P,Q)n for
all P ∈ E(Fq)[r] and Q ∈ E(Fqk)[r].

• Computability : There exists an efficient algorithm to compute er(P,Q)
given P and Q.

The value er is representative of an element of the quotient group F∗
qk/(F∗

qk)r.
However for cryptographic protocols it is essential to have a unique element so
it is raised to the ((qk − 1)/r)-th power, obtaining an rth root of unity. The
resulting value is called reduced Tate pairing.

2.1 Choice of Elliptic Curve

The most important parameters for cryptographic pairings are the underlying
finite field, the order of the curve, the embedding degree, and the order of G1,G2

and G3. These parameters should be chosen such that the best exponential time
algorithms to solve the discrete logarithm problem (DLP) in G1 and G2 and
the sub-exponential time algorithms to solve the DLP in G3 take longer than a
chosen security level. This paper uses the 128-bit symmetric key security level.
For the 128-bit security level, the National Institute of Standards and Technology
(NIST) recommends a prime group order of 256 bits for E(Fp) and of 3072 bits
for the finite field Fpk [17].
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Barreto-Naehrig curves, introduced in [19], are elliptic curves over fields of
prime order p with embedding degree k = 12. The BN curve is represented as :

EFp : Y 2 = X3 + 3

with BN parameter z = 6000000000001F2D (in hexadecimal) [16]. It forms the
group E(Fp) with order #E(Fp) = r = 36z4 + 36z3 + 18z2 + 6z + 1, which is a
256-bit prime of Hamming weight 91. The field characteristic p = 36z4 + 36z3 +
24z2+6z+1 is a 256-bit prime of Hamming weight 87, and t−1 = p−r = 6z2+1
is a 128-bit integer of Hamming weight 28. Here t = p+1− r is the trace of EFp .
The prime p ≡ 7 (mod 8) (so -2 is a quadratic non-residue, we represent it by
β) and p ≡ 1 (mod 6).

2.2 Pairing Computation

Pairing computation consists of two major steps : the computation of Miller
function and the final exponentiation. Algorithm 1 shows computation of Tate
pairing. The first part is computed by one of the optimized version of Miller al-
gorithm [25]. Several optimizations of this algorithm have been presented in [27].
The resulting algorithm is called BKLS algorithm.

Algorithm 1. Computing the Tate pairing

Input: P ∈ G1 and Q ∈ G2.
Output: er(P, Q).

Write r in binary : r =
∑L−1
i=0 ri2

i.

T ← P , f ← 1.

for i from L− 2 downto 0 do
T ← 2T .

f ← f2 · lT,T (Q).

if ri = 1 and i �= 0 then
T ← T + P .

f ← f · lT,P (Q).

end

end

return f (qk−1)/r.

The BN curves also admits a sextic twist [15], which means that the point
Q is mapped on a point Q′ defined over Fp2 . Thus the line functions lT,T (Q)
and lT,P (Q) is computed over Fp2 instead of Fp12 . Value of the line functions are
represented as : l0 + l1W

2 + l2W
3, with l0 ∈ Fp, l1, l2 ∈ Fp2 , and a quadratic

non-residue W over Fp2 . The Miller function f is computed over Fp12 , which is
represented as : f0 + f1W + f2W 2 + f3W 3 + f4W 4 + f5W 5, with fi ∈ Fp2 . So in
the Tate pairing computation f2, f · lT,T (Q), and f · lT,P (Q) are performed on
Fp12 . Whereas all other computations are performed on Fp and Fp2 .
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The detailed procedure of pairing computation including the final exponentia-
tion on BN curve is described in [15] and [16]. Another efficient way of computing
final exponentiation is described in [7]. This paper follows the descriptions that
are given in [15] for computing the Tate, ate, and R-ate pairings. We use Jaco-
bian coordinate systems for performing elliptic curve operations, where a point
(X,Y, Z) corresponds to the point (x, y) in affine coordinates with x = X/Z2

and y = Y/Z3. Let (m, s, i) denote the cost of multiplication, squaring, inversion
in Fp. Using Jacobian coordinate system the Miller function of Tate pairing on
BN curve requires 27934m and the final exponentiation requires 7246m+ i [15].
Thus the total cost for Tate pairing on BN curve is 35180m+ i. Similarly, the
cost of ate pairing is 23047m+ i and the cost of R-ate pairing is 15093m+ 2i.

3 Implementing Fp Primitives on FPGA

In 1983 Blakley introduced an interesting algorithm to perform modular multi-
plication of two integers A and B modulo an integer M [30,31]. It is an iterative
binary double-and-add algorithm. The main idea of the algorithm is that it
keeps the intermediate result after each iteration below the modulus value. Thus
it avoids final division. Let A be the multiplicand, B be the multiplier, and
R = (A · B) mod M , where A,B,M,R are represented in two’s complement
number system. The binary representation of B =

∑l−1
i=0 bi2

i, and R is initial-
ized by A. The algorithm first computes R = 2R mod M , and if bi = 1 then it
computes R = (R+A) mod M . The mod M operation are performed by single
subtraction in both cases.

In the context of Fp multiplication the modulus M corresponds to p. All
arithmetics in Fp are performed in two’s complement number system. Therefore,
all values are kept in two’s complement number system throughout the whole
pairing computation, which avoids input and output conversions like existing
implementations [5,6].

3.1 Fast Carry Chains for Fp Primitives

The main difficulty of the Blakley algorithm is that the computation of addition
on large operands. The modified Blakley algorithm for large operands are shown
in [22,26]. The use of carry save adder (CSA) helps to speed up the repeated
additions on large operands. However these modified versions require at least
one final addition on large carry chain. Also they use some pre-computed values
which require additional time and storage area.

This paper exploits the features available in an FPGA device for efficient
computation of Blakley algorithm on large operands. The specific features that
are available in an FPGA device are efficiently utilized for developing arithmetic
primitives in F2m fields in [14]. However, to the best of the authors knowledge
no work is existing in the literature for the same in case of Fp field. The mod-
ern FPGA consists of 16 slices (or 32 LUTs) within a single row which are
connected through an in-built fast carry chain (FCC). The FCC can perform
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addition on two 32-bit operands most efficiently compared to any other adder
structures [3,29]. It is experimentally shown that on a Virtex-4 FPGA device the
latency of a 32-bit addition using a fast carry chain takes only 5.8 ns; whereas,
the same using a carry lookahead structure takes 8.7 ns. Hence, fast carry chain
is 1.5 times faster than carry lookahead structure for computing addition of two
32-bit operands on an FPGA platform. In order to compute an addition of two
operands longer than 32 bits, the FPGA will utilize more than one row which
requires additional routing delay. For example, the addition (A+B) of two 64-bit
operands (A,B) using a single 64-bit carry chain is slower than the same using
three 32-bit FCC and a 2:1 multiplexor [3].

We develop an efficient 256-bit adder using 32-bit fast carry chains. The re-
peated Karatsuba decomposition is applied on 256-bit operands. An operand
is decomposed upto a depth of three for converting it into eight pieces of 32-
bit operands. A 64-bit addition is performed by using three 32-bit fast carry
chains with a carry select structure. Let, A = A1232 +A0, B = B1232 +B0, and
C = A+B, where Ai, Bi are 32-bit integers. We compute A0 +B0, A1 +B1 +0,
and A1 +B1 +1 in parallel on three FCC. Then the carry out of the least signif-
icant addition (A0 +B0) is used to multiplex the results of the most significant
additions. Thus the latency of a 64-bit adder is 1 FCC + 1 MUX, where MUX
corresponds to a 2:1 multiplexer. Similarly, a 128-bit adder is developed by three
64-bit adders, and a 256-bit adder is developed by three 128-bit adders. There-
fore, a 256-bit adder is developed hierarchically from 32-bit adder. At every level
of hierarchy it adds one additional MUX in the critical path. Thus the latency of
a 256-bit adder is 1 FCC + 3 MUX delay, which is 9.9ns on a Virtex-4 FPGA.
Whereas, the latency of a 256-bit carry lookahead adder on the same platform
is 16.7ns, which is 1.7 times slower than the above technique.

3.2 Programmable Fp Primitive

The 256-bit high speed adder circuit that is designed by utilizing fast carry
chains and Karatsuba decomposition technique is exploited to develop a pro-
grammable Fp primitive. Figure 1 shows the overall resulting structure of the
Fp adder/subtractor/multiplier unit. We use the same structure for all three Fp
operations for pairing computation. The configuration of the design to perform
addition and subtraction can be easily formed. The input parameters (A, B) are
added by the right most adder unit and then reduced (if necessary) by adding
2’s complement of p. The select lines c1 and c2 of mx blocks (multiplexors) are
generated from the carry out of 256-bit adders, which decide whether the re-
sultant values are greater than the modulus p. The unit performs addition and
subtraction in Fp in one clock cycle.

Proposed hardware follows the parallelism technique of Montgomery lad-
der [28] for computing Blakley multiplication algorithm in Fp. The choice of
this algorithm is due to its lower hardware cost. The algorithm also provides the
scope of adaptability with Montgomery ladder for parallelism. The Montgomery
ladder computes two intermediate results (R0, R1) in each iteration. It computes
independent modular doubling and modular addition in each iteration, which are
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Fig. 1. The architecture of Fp adder/subtractor/multiplier unit

performed in parallel on the proposed unit. The data transfer in the registers for
computing (A · B) mod p is as follows :

• The register s1 is initialized by zero, and register s2 is initialized by A, which
are used to hold the intermediate result R0 and R1, respectively.

• Iterative execution starts from i = 255 and goes down to zero, where it is
considered that the operands are the members of Fp with a 256-bit p.

• The right part of left-shifter block performs (R0 +R1) mod p. This modular
addition is performed by two 256-bit adder units. The first adder performs
R0 +R1, whereas the second one makes the reduction by a 2’s complement
subtraction. The final result is multiplexed by themx1 block. The left-shifter
performs 2Rbi and its left part computes the reduction (2Rbi) mod p. The
final result is multiplexed by mx2 block. In the architecture, an A64 block
corresponds to a 64-bit adder unit.

• The data access mechanism restores the intermediate resultsRb̄i
← (R0+R1)

mod p and Rbi ← (2Rbi) mod p, where b̄i represents the complement of bi.
• After final iteration, the register s1 holds the result of (A · B) mod p.

The procedures runs iteratively for 256 times. Thus, the above unit performs
one 256-bit Fp multiplication in only 256 cycles.

4 The Pairing Cryptoprocessor (PCP)

This section describes the proposed architecture of the cryptoprocessor. The ar-
chitecture is based on the efficient utilization of FPGA features. The parallelism
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techniques are adopted in different level of computations for overall speed up.
First, we explain the top level of the design followed by the internal parts.

4.1 The Datapath Design

The major operations for pairing computations are point doubling (PD), point
addition (PA), line computation (l(Q)), f2, and f · l(Q). In case of Tate pairing
on BN curve, the PA and PD are performed on E(Fp). Hence, the underline
operations are performed in Fp. Similarly, the operation l(Q) is performed in Fp2
while the other two operations are performed in Fp12 . In case of ate and R-ate
pairings, the PA, PD, l(Q) are performed in Fp2 , and f2, f · l(Q) are performed
in Fp12 . However, each of the above computations are well defined and constitute
a sequence of Fp operations which provides a scope of parallelism. The proposed
datapath exploits such properties to speed up pairing computations on FPGA
platforms.

Figure 2 shows the overall resulting structure of the datapath. Two Config-
urable Fpk Arithmetic Units (CAU) are included which perform arithmetic in
Fp and Fp2 depending on their mode of configurations. The instructions that
are decoded to configure the CAUs are stored into a small instruction memory
segment. There is a special instruction fetch and decode (IFD) unit which reads
the respective instructions and converts them to proper configuration signals
for both the CAUs. The input data to the CAUs come in parallel from respec-
tive registers. The mechanism and regularity of data access for computing above
operations are fairly simple. The distribution of access to the registers and res-
olution of access conflicts are handled efficiently at the runtime by a dedicated
hardware block, the data access unit (DAU) that distributes the data access to
the CAUs from the correct register and vice versa.

Each CAU performs atmost three Fp operations in parallel. Thus, overall
twelve independent operands along with modulus p and six outputs are accessed
in either directions between memory elements and the CAUs. This on-demand
concurrent data requests result in multiple independent read or write connections
between CAUs and DAU. The DAU takes care of granting accesses. Therefore,
a simple multiplexing protocol is used between CAUs and registers, which is
able to confirm a request within the same cycle in order not to cause any delay
cycles when trying to access data in parallel. The data accesses and instruction
sequences are hard coded into the sequence control of the architecture which
avoids the additional software development costs.

The data access conflicts have been resolved prior to design the DAU protocol.
The proposed one is a custom hardware for pairing computations which executes
a fixed set of operations. The dependency of the instructions are predefined
and thus the access conflicts are known. The priority of the data processing
and the respective execution is rearranged accordingly which achieves maximum
utilization of CAUs.

Figure 3 depicts the functionality of data access unit. The major connections
between registers and CAUs are shown while the DAU performs as a mediator.
Due to the demand of parallel access, the proposed pairing hardware stores all
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intermediate results in its active registers. Fifty 256-bit registers (d = 50) are
incorporated. Each of the register consists of data-in, data-out, and enable lines.
It gets updated by data-in lines when the respective enable signal is invoked.
The crossbar switch (results) redirects the outputs of each operation to regis-
ters. Similarly, the operands are redirected from registers to the input ports of
the CAUs. The respective select signals are generated prior to the above two
redirection procedures. The access control block synchronizes the select lines of
the multiplexors for operands and results. It also synchronizes the enable signals
of registers for restoring the intermediate results.

The sequence control runs synchronously with the IFD unit. It generates the
select and enable signals with respect to each of the operand and result port
which are going inside the DAU. In brief, the sequence control generates the
signals for controlling input/output to the CAUs and registers while IFD is
responsible to generate respective signals for configuring each of the CAUs.

A Configurable Fpk Arithmetic Unit (CAU). It is observed that the major
operations for pairing computations over BN curves are performed either on Fp
or on Fp2 . Thus we design a configurable architecture for performing arithmetics
in Fp and Fp2 . Figure 4 shows the data processing inside the proposed CAU. It
consists of three Fp arithmetic units, which are individually capable to perform
addition, subtraction, and multiplication in Fp. Thus a CAU performs atmost
three parallel Fp operations, which demand six operands and a modulus p in
parallel. The final outputs are stored in first three registers, respectively.

          parallel            accesses

    parallel                           accesses

register 
1

data multiplexers

register 
2

register 
4

Fp  Add / Sub / 
Mult

2

Fp  Add / Sub / 
Mult

3

micro-inst 
sequence 
generator

Fp  Add / Sub / 
Mult

1

register 
3

Fig. 4. The architecture of Configurable Fpk Arithmetic Unit (CAU)

The major Fp2-operations are multiplication and squaring. Let an element α ∈
Fp2 be represented as α0 + α1X , where α0, α1 ∈ Fp and X is an indeterminate.
The formula of Karatsuba multiplication c = ab on Fp2 is :
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v0 = a0b0, v1 = a1b1,

c0 = v0 + βv1,
c1 = (a0 + a1)(b0 + b1) − v0 − v1,

where v0, v1, c0, c1, a0, a1, b0, b1 ∈ Fp. Here β is a quadratic non-residue in Fp
which is -2 in case of BN curve. Similarly, the squaring c = a2 on Fp2 using
Complex method is computed by :

v0 = a0a1,

c0 = (a0 + a1)((a0 + βa1)) − v0 − βv0
c1 = 2v0.

Hence the costs of multiplication and squaring in Fp2 are 3m and 2m [21]. How-
ever, due to the parallel independent structure, the cost of both operations on a
CAU is only m.

The micro inst sequence generator finds the current operation type and gen-
erates the respective micro instructions. For example, let the current operation
is a Fp2 multiplication. The sequence of operations for computing c = ab in Fp2
on a CAU is as follows :

1. It computes t3 ← a0 + a1 and t4 ← b0 + b1 and stores them into register-3
and register-4, respectively.

2. It performs t1 ← a0b0, t2 ← a1b1, and t3 ← t3t4 in parallel, and stores the
results into register-1, register-2, and register-3, respectively.

3. It performs t1 ← t1 − t2 and t4 ← t1 + t2, and stores them into register-1
and register-4.

4. It performs t1 ← t1 − t2 and t2 ← t3 − t4, and stores them into register-1
and register-2.

5. It outputs the value of register-1 and register-2 as c0 and c1, respectively.

The micro inst sequence generator generates micro instruction like register en-
able, CAU reset, operand select, done, etc. It is constructed as a typical state
machine which generates micro instructions at each state. Its deterministic state
transition takes place at every cycle based on the current state and overall sta-
tus of the CAU. In case of Fp multiplication, it remains in a same state for 256
cycles. Whereas, it remains only one cycle in a same state for computing Fp
addition and subtraction. Thus the computation of c = ab in Fp2 takes only 260
cycles which costs approximately m.

4.2 Computation of the Pairings on PCP

In this paper we follow the formula and algorithms for the computation of cryp-
tographic pairings that are given in [15]. However, due to the multiple func-
tional units the operations are performed in parallel by the proposed PCP.
In Jacobian coordinates the formulae for doubling a point T = (X,Y, Z) are
2T = (X3, Y3, Z3) where X3 = 9X4 − 8XY 2, Y3 = (3X2)(4XY 2 − X3) − 8Y 4
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and Z3 = 2Y Z. The computation of 2T , lT,T (Q), and f2 are performed
in parallel. The tangent line at T , after clearing denominators, is l(x, y) =
3X3 − 2Y 2 − 3X2Z2x+ Z3Z

2y [23].
In case of Tate pairing computation on BN curvesX,Y, Z,X3, Y3, Z3 ∈ Fp and

x, y ∈ Fp2 . The above operations are performed by one of the CAUs which costs
6m. At the same time another CAU starts the computation of f2. We represent
the Miller function f as (f0,0 + f0,1v + f0,2v2) + (f0,0 + f0,1v + f0,2v2)w, where
fi,j ∈ Fp2 . The equivalent representations of f are :

f = f0 + f1w, wheref0, f1 ∈ Fp6

= (f0,0 + f0,1v + f0,2v2) + (f1,0 + f1,1v + f1,2v2)w, wherefi,j ∈ Fp2

= f0,0 + f1,0W + f0,1W 2 + f1,1W 3 + f0,2W 4 + f1,2W 5

Thus, the squaring (f2) is performed in Fp12 which requires two Fp6 mul-
tiplications using Complex method. Now, one Fp6 multiplication requires six
multiplications in Fp2 . The first Fp6 multiplication is computed in parallel with
2T , lT,T (Q) by another CAU which costs 6m. The second Fp6 multiplication is
performed by both the CAUs, which costs only 3m in the PCP. Therefore, the
total cost of computing 2T , lT,T (Q), and f2 by the PCP is 9m.

The lQ is represented as : (l0 + l1v) + (l2v)w, where l0 ∈ Fp, l1, l2 ∈ Fp2 ,
which is equivalent to l0 + l1W 2 + l2W 3. The computation of f · l(Q) is done by
three Fp6 multiplications using Karatsuba multiplication procedure. Due to the
sparse representation of lQ the costs are lesser than the actual costs. In total the
computation of f · l(Q) requires 37 Fp multiplications, which costs only 7m in
PCP.

The formulae for mixed Jacobian-affine addition are the following: if P =
(X1, Y1, Z1) is in Jacobian coordinates and Q = (X2, Y2) is in affine coordinates,
then P+Q = (X3, Y3, Z3) where X3 = (Y2Z

3
1−Y1)2−(X2Z

2
1−X1)2(X1+X2Z

2
1),

Y3 = (Y2Z
3
1−Y1)[X1(X2Z

2
1−X1)2−X3]−Y1(X2Z

2
1−X1)3, Z3 = (X2Z

2
1−X1)Z1.

The line through T and P is l(x, y) = [(Y2Z
3
1−Y1)X2−Y2Z3]−(Y2Z

3
1−Y1)x+Z3y.

The cost of computing T + P , lT,P (Q) is 5m in the PCP.
Therefore, the cost of computing doubling step of the Miller algorithm is

16m and the cost for evaluating addition step is 12m in the PCP. The total
cost for evaluating iterative Miller function of the Tate pairing computation
over BN curves is 5176m. The final exponentiation is computed by the exact
procedures that are described in [15]. It requires one inversion in Fp which we
perform by ap−2. The cost for computing the final exponentiation is 1477m in
our PCP. Hence, the total cost for computing a Tate pairing over BN curves by
our cryptoprocessor is 6653m, which takes 1, 729, 780 cycles.

The ate pairing interchanges the input points of Tate pairing and it runs
a smaller number of iterations. It uses t − 1 (instead of r) to determine the
number of iterations in the Miller operation [15]. In case of BN curve t ≈ √

r,
which makes the number of iterations halved. The computation costs 3165m,
1477m, and 4642m for the Miller operation, the final exponentiation, and the
ate pairing, respectively on our proposed hardware. Hence, the number of cycles
required to compute an ate pairing by the PCP is 1, 206, 902.
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The R-ate pairing follows the same procedures of ate pairing but it uses a =
6z + 2 (instead of t − 1) to determine the number of iterations in the Miller
operation. Since, a ≈ √

t on BN curves, the Miller operation in R-ate pairing
has half as many iterations as in ate pairing computation. In case of R-ate pairing
the Miller operation consists an additional step which requires an inversion in
Fp. The costs 1681m, 1477m, and 3158m for the Miller operation, the final
exponentiation, and the R-ate pairing, respectively. The total number of cycles
required to compute an R-ate pairing is 821, 080 by the proposed hardware.

5 Results

The whole design has been done in Verilog (HDL). All results have been obtained
from the place-and-route report of Xilinx ISE Design Suit [10] using a Virtex-4
xc4vlx200-12ff1531 FPGA device with a supply voltage of 1.2V . The design can
run at a maximum frequency of 50MHz. The pairing hardware uses around 52k
logic slices including controllers and data access unit. It uses 27k flip flops for
registers. It finishes one Tate, ate, and R-ate pairing computations in 34.6ms,
24.2ms, and 16.4ms, respectively. Table 1 shows the implementation results.

Table 1. Implementation results of proposed hardware on xc4vlx200 device

Operation Slice LUT FF Frequency Cycles Security Times
[MHz] [bit] [ms]

Tate

52 k 101 k 27 k 50

1730 k

128

34.6

ate 1207 k 24.2

R-ate 821 k 16.4

The critical path of the design goes through the data access mechanism, then
through two 256-bit adders, the multiplexer mx1, and back through data access
mechanism. In § 3.1 it is shown that the latency of a 256-bit adder circuit is 9.9ns.
However, this addition latency consists of input buffer delay of 1.3ns, addition
logic delay of 6.2ns, and output buffer delay of 2.4ns. The individual delays of
the addition logic includes input and output buffer delays. In our architecture
the critical path is within two internal registers which includes neither the input
buffer nor the output buffer. Therefore, the total latency of the critical path of
the design is calculated as 3.8ns+ 2 × 6.2ns+ 1.6ns+ 2.2ns = 20ns.

5.1 Comparison with Pairing Implementations

This section provides the performance comparison with related pairing implemen-
tations over BN curves. Performances are compared with actual implementations
of cryptographic pairings on software and dedicated hardware achieving a
128-bit security level. Hardware implementations of ηT pairing over binary
and cubic curves are shown in [9,18]. These designs are for lower security levels
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Table 2. Hardware and software implementations of pairing over BN-curves

Reference designs Platform Pairing Frequency Area Cycles Times
[MHz] [ms]

our design Virtex-4

Tate

50 52 kSlices

1730 k 34.6

ate 1206 k 24.2

R-ate 821 k 16.4

Kammler et al. [5] 130 nm CMOS

Tate

338 97 kGates

11 627 k 34.4

ate 7706 k 22.8

R-ate 5340 k 15.8

Fan et al. [6] § 130 nm CMOS
ate

204 183 kGates
862 k 4.2

R-ate 593 k 2.9

Naehrig et al. [1] core2 Q6600 Opt.-ate - - 4 470 k -

Beuchat et al. [4] core i7 2:8GHz Opt.-ate - - 2 630 k -

Hankerson et al. [15]
Pentium-4 ate

2400
- 81 000 k -

64-bit core2 R-ate 10 000 k -

Grabher et al. [13] 64-bit core2 ate 2400 - 14 640 k -

Devegili et al. [16] Pentium-4
Tate

3400
- 156 740 k -

ate 133 620 k -

§ implementation specifically for BN-curves with fixed parameters.

(72-bit) and hence it shallbe unfair to comparewith the presentwork.Table 2 gives
a performance comparison of related hardware and software implementations.

Due to the parallel structure our PCP computes six Fp multiplications in
parallel which are completed in 256 cycles. The main features that strengthen
the proposed PCP for pairing computations are as follows :

• The proposed cryptoprocessor is the first FPGA results for pairing compu-
tation with 128-bit security.

• Our adopted parallelism and efficient use of two Fpk arithmetic cores reduce
the total number of cycles drastically.

• Due to the inherent properties the frequency of a design in FPGA is much
lower than that in ASIC (CMOS standard cell). However, the speed achieved
of the PCP is comparable to the CMOS standard cell design.

• The PCP is flexible to configure for different curve parameters.

The underlying platform plays a crucial role in determining the performance of
a design. Thus, existing designs on different platforms does not lead to a fair
comparison. We try to find out the platform independent features of existing de-
signs and compare them with our proposed one. The cycles required to compute
pairings on different designs may be considered such a parameter.

Kammler et al. [5] reported the first hardware implementation of crypto-
graphic pairings achieving a 128-bit security. In [5] the proposed hardware is
not only a cryptoprocessor, but an actual ASIP : it is in fact a general purpose
processor, augmented with finite field arithmetic units in order to compute pair-
ings. It uses the same z that we have considered to generate a 256-bit BN curve.
The Montgomery algorithm is used for Fp multiplication. The platform of the
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design is 130 nm CMOS standard cell library, whereas our design is on Virtex-4
FPGA. The main feature of the design [5] is the fast modular multiplication in
Fp which takes only 68 cycles. The average cycle count of our PCP for one Fp
multiplication is only 43 which is 1.6 times faster than [5]. With respect to the
Tate pairing computation, the design of [5] takes 11 627 k cycles, whereas our
design takes only 1730 k cycles, which is much less (0.15 times) compared to [5].

Fan et al. [6] proposed a processor for cryptographic pairing over BN curves.
They designed a fast modular multiplier in Fp only for BN parameters which
takes only 23 cycles. The 130 nm ASIC design of [6] provides the best known
performance which takes only 2.9ms for computing a R-ate pairing over BN-
curve. This design also attain smaller area-latency product than that in [5]. But
the main drawback of the design proposed in [6] is that it does not provide
the flexibility to compute pairings on chosen parameters. Whereas, our design
provides the above flexibility in all aspects which indeed requires more cycles.

The results of software implementations [15,13] are quite impressive. On an
Intel 64-bit core2 processor, R-ate pairing requires only 10, 000, 000 cycles. The
advantages of Intel core2 is that it has a fast multiplier (two full 64-bit mul-
tiplications in 8 cycles) and relatively high clock frequency. It takes 13 times
more clock cycles than our cryptoprocessor. In a very recent work by Naehrig
et al. [1] shows that the Optimal-ate pairing on BN curves can be computed by
4, 470, 408 cycles on an Intel Core 2 Quad Q6600 processor. The software imple-
mentation of same pairing on a different curve is described in [4]. It takes only
2.63 million clock cycles on a Intel Core i7 : 2.8 GHz processor. However, the
exact time required to compute pairings by executing softwares on a Desktop
or Server systems are not predictable. It depends on so many other factors like
available cache memory, context switching, bus speed of the system, etc.

6 Conclusion

In this paper we explored the inherent FPGA features for designing efficient Fp
primitives. The parallel scheduling has been applied to speed up multiplication
in Fp2 and Fp12 . The proposed pairing cryptoprocessor can be programmed for
any curve parameters. It provides a comparable speed with the existing ASIC
designs. The overall clock cycles required to compute pairings over BN curves
are less than existing designs. To the best of our knowledge it is the first FPGA
result for high security (128-bit) cryptographic pairings.

The recent work by Granger and Scott [2] shows that a 1-2-4-12 towering is
to be preferred to a 1-2-6-12 towering as implemented in this work. Therefore,
in future it could be considered for further speedup of pairing computations.
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